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1.1 Modern view of developmental stages. From a zygote, the embryo un-
dergoes cell division without growth, named cleavage. After approximately
ten division rounds, cells organize around the yolk in the blastula, and the
three germ layers appear (ectoderm, mesoderm, endoderm). During gastru-
lation, the three germ layers rearrange and start to specialize into different
structures. In particular, the ectoderm forms the basis for the neural tube,
which will form the brain during the Neurulation process. Finally, the or-
ganogenesis process finishes the development of the more specialized struc-
tures, such as muscle and neurons. The figure summarizes these last two
stages by the grey-shaded region between the gastrula stage and the early
embryo. Dark orange areas in the embryo represent the yolk, while lighter
areas show the position of the cell mass. Icons used in the figure are ta-
ken from https://togotv.dbcls.jp/en/pics.html by DBCLS, which is licensed
under CC-BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/ 2

1.2 Dynamic inference methods. (A) DLITE assumes that the forces (F⃗i)
in the system are tangent to the membranes (r̂ij) at the tricellular junctions,
scaled by the tension value (λ). It tracks each system element through time
and assigns the previous time solution as an initial guess for the next time
point. Here [Mλ] is the matrix representation of the system. (B) VFM Finite
Element Mesh is built from the microscopy images of the system. Tensions
are inferred by using the relationship between the forces of the system ([F ])
and the velocity of the nodes ([v]), mediated by a damping matrix ([D]).
(C) ForSys uses the velocity of the junctions ([b]), modulated by a scale
parameter ([b]) relating the spatial and time scales. The microscopy images
correspond to a primordium (A and C) and a neuromast (B). In both cases,
membranes were tagged using claudnb:lyn-EGFP. Image reproduced from
Borges and Chara, 2024 (submitted). . . . . . . . . . . . . . . . . . . . . . 9
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whose angle is used in the calculations. (C) On the other hand, curved
edges allow a closer following of the shape. In (B) and (C) vectors r⃗∗, with
∗, represent the two cells at each side of the junction and show the resulting
approximation. Image adapted from Borges and Chara, 2024 (submitted). . 20

2.3 Exploration of the scale parameter. (A)Heatmaps of the saturated sco-
re function as a function of the scale parameter (1/Wi) and the velocity at
each frame. (B) Boxplots with the best scale parameter for the examples.
Each individual boxplot shows all repetitions and frames. The best values
is taken as the median of each boxplot. The distribution medians are sum-
marized in table 2.1. Figure adapted from [15]. . . . . . . . . . . . . . . . . 24

2.4 Fitting of the damping coefficient Square Distance from the theoretical
value for the scale parameter to the maximum in the saturated score function
in the sweeps. The distance is calculated for a damping coefficient η = 1
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3.1 The stress inference pipeline. (A) The static inference is performed on
a microscopy image by creating a skeletonized tissue representation. Then,
ForSys reads it and builds the system of equations according to the geometri-
cal properties of the tissue. Lastly, the system is solved, and the intracellular
pressures and intercellular stresses are inferred. (B) Similarly, the dynamical
inference uses a time series of images to add dynamical information to the
system of equations used in the static case. A time mesh is generated from
the succession of microscopy images, and pivot vertices are tracked through
time. Then, the velocity of these vertices from frame to frame is used to
modify the system of equations, allowing non-static tissues to be analyzed
by stress inference. Image reproduced from [15]. . . . . . . . . . . . . . . . 30
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the values of DLITE and CellFIT. Each column represents one of the ex-
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(B) are for a selected representative simulation. (C) Then, the result for
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dition at the last simulated frame. The black dashed line is the y=x line
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The ground truth (A) can be compared to the values for the DLITE pre-
dictions (B) and the Static ForSys (C). The three rows shown correspond
to the final time. The color bar shows the order of the colormap for both
the stresses and the pressures. Figure adapted from [15] . . . . . . . . . . 33
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Four different conditions were generated with seapipy to test the static
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example. The mean absolute percentage error (A) and the saturated score
function (B) for all simulations are represented in two boxplots, DLITE and
Static inference with ForSys, paired by condition. Dots show the result for
individual repetitions. Figure adapted from [15] . . . . . . . . . . . . . . . 34
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system’s tensions changed. The color bar shows the order of the colormap
for both the stresses and the pressures. Figure adapted from [15]. . . . . . 35
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3.6 Dynamic inference outperforms the static pipeline. The mean abso-
lute percentage error (A) and the saturated score function value (B) for
all simulations are represented in two boxplots, Static and Dynamical infe-
rence, paired by condition. Dots show the result for individual repetitions.
(C) Dependence of the MAPE on the velocity |v|2. The scattered dots are
the median for all experiments with a velocity corresponding to the current
|v|2 bin. Error bars in the y-axis are one standard deviation, and error bars
in the x-axis represent the size of the velocity bin. (D) Dynamic to static
score function ratio (r = log(dynamic
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Xenopus embryo and position of the mucociliary epithelium. (B) Five ex-
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3.10 In vivo ForSys inference in an epithelium with rotating cells. (A)
Schematic of cell composition in a zebrafish lateral line neuromast. Senso-
ry hair cells are located in the middle and surrounded by different support
cells. (B) Microscopy image of a neuromast whose cells can be tracked by
membrane-tethered EGFP. (B’) Below is the ForSys tension prediction af-
ter membrane segmentation. (C) The tension predicted for membranes is
classified by the type of cell-cell contact. The homotypic contacts between
hair cells show the highest predicted tension, while the homotypic contacts
between support cells show the lowest on average. Each data point is the
mean of the predicted tension values for each membrane type in one frame.
The frames come from N=7 videomicroscopy experiments. (D) Schematic
of the planar cell inversions occurring in 50% of the nascent hair cell pairs:
sibling hair cells perform a 180° rotation to exchange positions along the
anterior-posterior axis. (E) Time-lapse frames showing the in vivo rotation
process: around 100 minutes after mitosis, the nascent hair cells exchange
anteroposterior positions by rotating in the epithelial plane. The sibling cells
remain attached during the rotation, while the surrounding cells do not ac-
tively participate in the movement. (F) Homotypic tensions between the
young rotating hair cells are significantly lower than their contacts with the
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Summary

Interactions in biological systems are myriad. Attempting to understand them provides
valuable insights with broader bearing in biology, bioengineering, and medicine. Notwith-
standing this immense realm of applications, biology presents unique characteristics that
are not present in other “traditional” physical systems, making Biological Physics an exci-
ting area of research that has the possibility of introducing new physics. This thesis will be
guided by the leitmotif of understanding the coordination that allows functional patterns
to arise in biological matter. In other words, what is the interplay between mechanics and
signaling that underlies tissue shape?

The shape of biological tissue arises during development through the combination of
morphogenetic signals and local mechanical interactions of the tissues’ minimal units, the
cells. Measuring mechanical observables such as stress and stiffness is crucial to under-
standing the shaping that occurs. Direct experimental manipulation of biological samples
allows access to these observables at the cost of altering their natural course of development
at best and destroying them irreversibly at worst. This restricts the type of phenomena
that can be studied using these techniques, as investigating processes taking place over
longer time scales would be challenging.

Computational methods such as Stress Inference can overcome these problems. These
methods do not require further interaction with the sample aside from microscopy ima-
ging. Nonetheless, no publicly available methods exist to apply Stress Inference to time-
dependent systems. In this thesis, I develop an innovative method to infer physical forces
from a time series of microscopy images, which enables me to address shape generati-
on (morphogenesis) and maintenance (morphostasis) in vivo. I introduce a formalism to
incorporate dynamic information into the inference pipeline and model the cells as a vis-
coelastic material. With that assumption, I derive a relationship between the elastic and
viscous scales for the first time in this type of model.

I introduce ForSys as a new tool that utilizes dynamic microscopic information. I have
made ForSys Open Source to enhance its usability and impact in the field of tissue bio-
physics. Tissues can be represented as a collection of geometrical entities. Vertex models
use this approach to simulate the evolution of tissues by changing the position of vertices,
representing tricellular junctions of the cells. I also introduce seapipy as a tool to create in
silico ground truths of stress distributions from vertex models. Aided by this tool, I stre-
amline the validation of ForSys in static and dynamic in silico settings before moving to
in vivo systems. I test ForSys in three different systems belonging to two model organisms.



xviii Summary

I first show that ForSys’ static predictions correlate with Myosin II fluorescence measure-
ments in the Xenopus mucociliary epithelium. Then, I use it to investigate the formation
of protoneuromasts in the zebrafish lateral line in the early hours of its development. I find
that weighted inferred pressures are a good predictor of rosette formation prior to neuro-
mast deposition. Finally, with ForSys, I study the stress distributions between homotypical
and heterotypical cell-cell boundaries in the mechanosensory neuromasts of the zebrafish
lateral line. There, ForSys predictions show asymmetries in the stress distributions between
different cell types.

I then turn my attention to the process by which sensory hair cells in the neuromast
acquire their pattern, the Planar Cell Inversion process (PCI). Through careful quantitati-
ve measurements, I show that PCI can be divided into three phases with distinct features.
Moreover, I study the process in two mutant lines with knockouts of the Emx2 transcrip-
tion factor and the Notch1a gene, which are suspected to be involved in the Planar Cell
Polarity pathway in the organ. My results show that the mutants have distinctive charac-
teristics to the wild type. Then, I present a simple two-agent model to simulate PCI. I
implement a one-dimensional Monte Carlo model that evolves using Metropolis-Hastings
importance sampling, with a simple Hamiltonian that incorporates a soft spheres repulsion
and attractive wells for each agent. Using the position of the wells, I propose two model
alternatives: a symmetrical and an asymmetrical model. I show that the asymmetrical mo-
del qualitatively matches the wild-type observations, while the symmetrical model does so
with the mutants. Using ForSys, I also show that the stress in homotypic hair cell tight
junctions is lower than in the heterotypic junctions between them and the surrounding
cells, hinting at adhesion differences consistent with experimental observations.

I introduce two new software tools to aid in the experimental exploration of the me-
chanical state of biological matter. I apply them to study the PCI process and shed some
light on the underlying biology that drives it. I believe that the formalism and tools I made
available will push forward the development of better and more complete means to measu-
re mechanical quantities in biological systems, aiding our understanding of morphogenesis
and morphostasis at the mesoscopic scale.



Zusammenfassung

Wechselwirkungen in biologischen Systemen sind vielfältig. Der Versuch, sie zu verstehen,
liefert wertvolle Erkenntnisse, die in der Biologie, der Biotechnik und der Medizin von
weitreichender Bedeutung sind. Ungeachtet dieses immensen Anwendungsbereichs weist
Biologie einzigartige Merkmale auf, die in anderen “traditionellen” physikalischen Systemen
nicht vorhanden sind. Die Biologische Physik ist somit ein spannendes Forschungsgebiet,
welches möglicherweise neue Physik bietet. Das Leitmotiv der vorliegenden Arbeit ist das
Verständnis der Koordination, die die Entstehung funktioneller Strukturen in biologischem
Gewebe ermöglicht. Mit anderen Worten: Wie spielen Mechanik und Signalübertragung
zusammen, um die Struktur von Gewebe zu bestimmen?

Die Form von biologischem Gewebe entsteht während seiner Entwicklung durch die
Kombination von morphogenetischen Signalen und lokalen mechanischen Wechselwirkun-
gen zwischen den kleinsten Einheiten des Gewebes, den Zellen. Die Messung mechanischer
Größen wie Spannung und Steifigkeit ist äußerst wichtig für das Verständnis dieser Formge-
bung. Direkte experimentelle Manipulation biologischer Proben ermöglicht den Zugang zu
diesen Messgrößen, allerdings mit der Gefahr, dass der natürliche Entwicklungsverlauf im
besten Fall verändert und im schlimmsten Fall irreversibel zerstört wird. Dies beschränkt
die Arten von Phänomenen, die mithilfe dieser Techniken erforscht werden können, da
länger andauernde Prozesse mit diesen Techniken nur schwer untersuchbar sind.

Computergestützte Methoden wie die Spannungsinferenz können diese Probleme über-
winden. Diese Methoden erfordern neben mikroskopischer Bildgebung keine weitere Inter-
aktion mit der Probe. Dennoch gibt es keine öffentlich zugänglichen Methoden, um Span-
nungsinferenz auf zeitabhängige Systeme anzuwenden. In dieser Arbeit entwickle ich eine
innovative Methode zur Ableitung physikalischer Kräfte aus einer Zeitreihe von Mikrosko-
piebildern, die es ermöglicht, die Formbildung (Morphogenese) und -erhaltung (Morphosta-
se) in vivo zu untersuchen. Ich führe einen Formalismus ein, um dynamische Informationen
in die Inferenzpipeline einzubeziehen und modelliere die Zellen als ein viskoelastisches Ma-
terial. Aus dieser Annahme leite ich zum ersten Mal in dieser Art von Modell eine Beziehung
zwischen der elastischen und der viskosen Skala ab.

Ich stelle mit ForSys ein neues Tool vor, das dynamische mikroskopische Informati-
on nutzt. Ich habe ForSys Open Source zur Verfügung gestellt, um seine Anwendbarkeit
zu erhöhen und seinen Beitrag zur Gewebebiophysik zu optimieren. Gewebe können als
eine Sammlung von geometrischen Einheiten dargestellt werden. Vertex-Modelle nutzen
diesen Ansatz, um die Entwicklung von Geweben zu simulieren, indem sie die Position
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von Vertices, also trizellulären Verbindungen, verändern. Außerdem präsentiere ich sea-
pipy, ein Softwaretool, mit dem sich aus Vertex-Modellen in silico Ground Truths von
Spannungsverteilungen erstellen lassen. Mithilfe dieses Tools optimiere ich die Validierung
von ForSys in statischen und dynamischen in silico Konfigurationen, bevor ich zu in vivo
Systemen übergehe. Ich teste ForSys in drei verschiedenen Systemen aus zwei Modellor-
ganismen. Zunächst zeige ich, dass die statischen Vorhersagen von ForSys mit Myosin-
II-Fluoreszenzmessungen im mukoziliären Epithel von Xenopus korrelieren. Anschließend
untersuche ich mit ForSys die Bildung von Protoneuromasten im Seitenlinienorgan des
Zebrafisches in den ersten Stunden seiner Entwicklung. Ich stelle fest, dass der gewichte-
te abgeleitete Druck ein guter Prädiktor für die Rosettenbildung vor der Ablagerung von
Neuromasten ist. Schließlich nutze ich ForSys, um die Spannungsverteilung zwischen homo-
typischen und heterotypischen Zell-Zell-Grenzen in den mechanosensorischen Neuromasten
des Zebrafisch-Seitenlinienorgans zu untersuchen. Dort zeigen die Vorhersagen von ForSys
Asymmetrien in der Spannungsverteilung zwischen verschiedenen Zelltypen.

Danach betrachte ich den Prozess, durch den die Haarsinneszellen im Neuromast ihre
Struktur erhalten, die ebene Zellumkehr (PCI, Planar Cell Inversion). Durch sorgfältige
quantitative Messungen zeige ich, dass PCI in drei Phasen mit unterschiedlichen Merkma-
len unterteilt werden kann. Darüberhinaus untersuche ich den Prozess in zwei Mutanten-
linien mit Knockouts des Transkriptionsfaktors Emx2 und des Gens Notch1a, von denen
man annimmt, dass sie an der planaren Zellpolarität (planar cell polarity) in diesem Organ
beteiligt sind. Meine Ergebnisse zeigen, dass der Prozess in den Mutanten andere Merk-
male aufweist als im Wildtyp. Anschließend stelle ich ein einfaches Zwei-Agenten-Modell
zur Simulation von PCI vor. Ich implementiere ein eindimensionales Monte-Carlo-Modell,
das sich mithilfe des Metropolis-Hastings Importance Sampling anhand einer einfachen
Hamilton-Funktion entwickelt. Diese besteht aus einer weiche-Kugeln-Abstoßung und Po-
tentialtöpfen für jeden Agenten. Anhand der Position der Töpfe schlage ich zwei Model-
lalternativen vor: ein symmetrisches und ein asymmetrisches Modell. Ich zeige, dass das
asymmetrische Modell qualitativ mit den Beobachtungen des Wildtyps, und das symmetri-
sche mit denen der Mutanten übereinstimmt. Mit Hilfe von ForSys zeige ich außerdem, dass
der Stress in homotypischen Haarzellen-Tight Junctions geringer ist als in heterotypischen
Verbindungen zwischen ihnen und den sie umgebenden Zellen, was auf Adhäsionsunter-
schiede hinweist, die mit experimentellen Beobachtungen übereinstimmen.

Ich stelle zwei neue Software-Tools vor, die bei der experimentellen Erforschung des me-
chanischen Zustands biologischer Gewebe helfen. Ich wende sie an, um den PCI-Prozess zu
untersuchen und die zugrundeliegende Biologie, die ihn antreibt, zu beleuchten. Ich glaube,
dass der Formalismus und die Werkzeuge, die ich zur Verfügung gestellt habe, die Entwick-
lung besserer und umfassenderer Mittel zur Messung mechanischer Größen in biologischen
Systemen vorantreiben und unser Verständnis von Morphogenese und Morphostase auf der
mesoskopischen Skala unterstützen werden.
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López-Schier, H. and Chara, O. (2024). ForSys: non-invasive stress inference from
time-lapse microscopy. bioRxiv.

3. Borges, A.., Pinto-Teixeira, F., Wibowo, I., Pogoda, H.-M., Hammerschmidt, M.,
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Kapitel 1

Introduction

1.1 Mechanobiology

The study of forces in biology and their relationship with the evolution of tissues can be
traced back to the late nineteenth-century works by His, Roux, Driesch, and Spemann,
synthesized in the Entwicklungsmechanik movement [78]. This movement tried to under-
stand the shaping of the embryo from a mechanical lens. Before this movement, in the late
eighteenth century and beginning of the nineteenth, the study of organism development,
or embryology, was transverse by debates about the merits of preformation vs. epigenesis,
in a time before the publication of Darwin’s “On the Origin of the Species” in 1859 [40].
Naturalists such as Etienne Geoffroy Saint-Hilaire (1772-1844) had a profoundly theologi-
cal interpretation of organism development anchored in Transcendental Anatomy. In his
view, all organisms develop from an idealized system of a divine origin. His primary inte-
rest lies in how the external environment affects the development of the chicken. Studying
the effect of external factors on development was common in the nascent embryological
discipline. Due to the lack of specialized tools, results were more challenging to replicate.
This led many researchers to create their own tools, accelerating experiments in the next
generation.

During this period, much focus was on teratology, the study of physiological abnormali-
ties. This was studied by performing experiments on the embryos during their development
and, through them, learning how to cause them. Experiments like refrigerating or varnis-
hing chick eggs performed by Camille Dareste (1822-1899) are among the first examples[39].
Different refinements were introduced to only affect part of the egg, such as precise incisions
to sear specific sites in the embryo [156, 50, 155], which inaugurated a “causal” develop-
mental biology [26]. A little before the advent of Entwicklungsmechanik, different parts of
the embryo were recognized and studied; for example, the germ layers were identified by
Heinz Christian Pander (1794-1865) in 1817 [53, 5]. Different germ layers could be follo-
wed until they eventually transformed into new structures during the development cycle of
different animals. The main stages of embryological development are summarized in figure
1.1.
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Abbildung 1.1: Modern view of developmental stages. From a zygote, the embryo
undergoes cell division without growth, named cleavage. After approximately ten division
rounds, cells organize around the yolk in the blastula, and the three germ layers appear
(ectoderm, mesoderm, endoderm). During gastrulation, the three germ layers rearrange
and start to specialize into different structures. In particular, the ectoderm forms the basis
for the neural tube, which will form the brain during the Neurulation process. Finally, the
organogenesis process finishes the development of the more specialized structures, such
as muscle and neurons. The figure summarizes these last two stages by the grey-shaded
region between the gastrula stage and the early embryo. Dark orange areas in the embryo
represent the yolk, while lighter areas show the position of the cell mass. Icons used in the
figure are taken from https://togotv.dbcls.jp/en/pics.html by DBCLS, which is licensed
under CC-BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/

These studies gave experimental insights into the preformation vs. epigenesis debate. In
preformation theory, the embryo is construed as a “miniature” version of the full adult that
grows during development. In contrast, epigenesis provides a picture where the embryo is
formed through successive small changes [146]. Moreover, another competing explanation
for the development of the organisms was the embryological parallelism, where the diffe-
rent stages of embryological development go through the adult stages of the organism’s
phylogenetic ancestors [53]. One of its main proponents, Ernst Haeckel (1834-1919), sum-
marizes it as “Ontogeny recapitulates Phylogeny” [53]. Ontogeny refers to the organism’s
development from the egg’s fertilization to its adult form. Phylogeny, on the other hand,
refers to the history of the evolution of a certain species. This idea is also called recapitu-
lation theory, or biogenetic law. He proposed the existence of the Gastraea as an original,
ancestral form from which all animals evolved. In his view, it was only during gastrulation
that his Urform was truly visible [138].

In an attempt to settle the debate between these competing ideas, Karl Ernst von
Baer (1792-1876) postulated the Laws of Embryology [7]. He studied germ layer formation,
especially in chick embryos, cataloging their development from day zero to hatching and
noting the changes that the germ layers underwent, among other contributions. His four
laws deal with the pillars of preformation and recapitulation theory. The laws can be stated,
as summarized by Huxley in 1853 [65], as:
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1. The more general characters of a large group appear earlier in the embryo than the
more special characters.

2. From the most general forms the less general are developed, and so on, until finally
the most special arises.

3. Every embryo of a given animal form, instead of passing through the other forms,
rather becomes separated from them.

4. The embryo of a higher form never resembles any other form, but only its embryo.

These laws, taken in pairs, reveal much about the existing debates in the area at the
time. The first two address the preformationists’ ideas. In them, von Baer establishes that
the embryo develops from general to specific, and it is the more general, perhaps in modern
terms, more “potent” structures that give rise to evermore specialized tissues. On the other
hand, the last two laws pitch into the recapitulation theory. There, von Baer highlights
that during development, rather than similarities, the differences between different species
get accentuated.

The Entwicklungsmechanik gained traction amid this debate. Development cannot be
studied only through manipulations of the embryo’s external environment or by explaining
the different structures beginning to be characterized teleologically. Wilhelm His (1831-
1904) proposed that the embryo should be studied through the causal links that arise
from the mechanics of its development rather than focusing on how its past might have
affected it [67]. At first glance, this was a “Markovian” approach, although thirty years
before Markov’s paper [63]. In this view, evolution led to the structural changes that
allowed the embryo to form, but the developmental process of the embryo could be studied
independently.

Later, Wilhelm Roux (1850-1924) studied frog embryos and worked on how cell division
affected development. His most popular experiment involved killing one cell at the two-
cell stage with a needle to establish how that would affect the embryo as a whole. Even
though he did not remove the killed cell, and therefore its results might still be affected by
the interplay between the two cells, he observed that those embryos that survived reached
other stages as a ’half-embryo’. This led him to propose a Mosaic theory of epigenesis.
Cells have unique roles, becoming increasingly determined after cell division. His influence
in the Mechanics of Development movement extends far beyond his scientific contributions.
He also created the Archiv für Entwicklungsmechanik der Organismen journal in 1894 and
later in 1925 the Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen.

Similarly, Hans Driesch (1867-1941) conducted experiments on sea urchins, separating
the two blastomeres by agitating the animal in suspension. This separation did not halt
development but resulted in animals half the expected size. Having lost half of the embryo
during the early blastomere stages, the animals were able to arrive at the larvae stage.
Driesch interpreted this result as not only the specialization of cells in a mosaic pattern
but also as involving some regulatory activity that allows for compensation of the lost half.
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At the beginning of the twentieth century, while working at the University of Munich,
the embryologist Johannes Holtfreter (1901-1992) proposed a new idea to account for the
morphogenetic movements observed during development. He showed that certain tissues
favor association with other tissues (tissue affinity, “Gewebeaffinität”), even after complete
dissociation of the cells [75, 145]. Moreover, together with Phillip Townes (1927-2017), they
postulated that directed cell migration might spawn from differences in the rate of recovery
of cell membranes [145], a concept known as “timing hypothesis”[137].

After this work, the meaning of “mechanistic” interpretation shifted. Due to improve-
ments in genetic techniques and a better understanding of the molecular basis of heredity
and regulation, the physical aspects of development took a secondary role, whereas mole-
cular explanations were preferred [138]. Perhaps the best example is the works by Lewis,
Nüsslein-Volhard, and Wieschaus, leading to the 1995 Nobel Prize in medicine, where they
studied how different genes affected the development of the Drosophila fly and the specia-
lization of its organs [92, 112].

Most recently, mechanics, in the physical sense, has resurfaced in the study of different
biological processes, especially development [117, 64, 30] and regeneration [131, 142, 89].
Tissue shapes are not only consequences of the biochemical signaling pathways regulating
tissue activity but also result from a complex interaction between the regulatory network
and the population of cells [29, 31, 48, 57].

Studies of tissue rheology have been used to answer quantitatively different open questi-
ons in the field, using physical and biological explanations. For example, elastic properties
during the zebrafish’s body elongation were investigated using deformable magnetic dro-
plets [132, 103]. Optical traps [109], and laser ablation [12, 48, 143] are popular methods
for probing elastic properties in vivo. For an exhaustive description of existing methods
of experimental tissue rheology, I would like to refer to the excellent review articles by
Sugimura et al. [140], Rosa Cusachs et al. [126], and Gómez-Gonzalez et al. [58],

An alternative to experimental manipulation of a system is to use the widespread availa-
bility of computer resources to estimate its mechanical state. Generally, these methods are
called Stress Inference tools [59, 127]. This approach allows an inexpensive and quick over-
view that might guide further experimentation. In the next section, I will describe them in
detail. Moreover, I have compiled Table 1.1 to summarize all the existent stress inference
methods.

1.2 Stress Inference

Using the shape of a tissue to estimate the force present in it was applied by Stein and
Gordon in the 1980s [136] for the first time [127]. The conceptual idea behind this method is
to encode the topological information in a set of linear equations that are simultaneously
solved to render the tensions and pressures in the system. Whether to solve for stress,
pressure, or both depends on the technique used and will be reviewed in the following
paragraphs. Another critical part of these models is the algorithm used to estimate the
shape itself, which will be briefly described in this introduction. A detailed description
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of the methods will appear at the beginning of Chapter 2. Currently, these methods are
referred to as Stress Inference methods, as suggested by several authors [127, 33, 111, 15], as
the inference outcomes are scalar values representing the stress components in each of the
cell membranes. Perhaps the more general term Mechanical State Inference (or estimation)
would be more appropriate. I will use force, tension, and stress, depending on which term
is used by the authors of the original work being discussed.

Over more than a decade of work [21, 20, 32, 157], Brodland and colleagues created
an inference method that could follow a Finite Element mesh through time and use the
shape of the mesh to estimate the tensions in the arrangement, they called their technique
Cinemechanometry [37]. A unique characteristic of this method is that the mesh does
not need to coincide with the membranes, and sub- and supra-cellular structures could
be addressed. They successfully applied it to account for the tensions during the furrow
invagination of Drosophila and renamed their tool Video Force Microscopy (VFM) [22].
Importantly, this method uses video microscopy, not only a still image, to estimate the
tensions in the mesh.

One of the main limitations of force inference techniques is the quality of the source
images. Not long after VFM was released, Ishihara and Sugimura created a Bayesian infe-
rence tool [71]. The advantage of using a Bayesian approach lies in the ability to reconstruct
the pressures and tension in the systems even when the image quality does not allow for
discerning the curvatures of the membranes faithfully. These early implementations of for-
ce inference had the intracellular pressures, as well as the intercellular tension, intermixed
into one system of equations, whose solution would describe the mechanical state of the
system. They also had a polygonal approach to the shape of the cells. In this approach,
all cell junctions are approximated by a straight edge drawn from the tricellular junction
to the tricellular junction. Similarly, Chiou, Hufnagel, and Shraiman published a method
that also uses a polygonal approach and a mixed representation of pressures and forces
[33]. In their method, instead of using a Bayesian solver, Chiou and colleagues found the
solution through inverting the system of equations.

Some years later, Brodland and collaborators released the Cellular Force Inference
Toolkit (CellFIT) [23] as a new method to estimate forces in the system. There, the authors
make two technical innovations. Firstly, they separated the pressure from the stresses in the
mathematical description of the system and introduced the possibility of curved edges. By
allowing curved edges, the stability of the solution is increased by providing independent
equations at both vertices of each membrane. An increased stability means that slight
variations of the initial data affect the model’s outcome less. On the other hand, separating
pressure and tension estimation allowed a better understanding of the origin of intracellular
pressures, with all models to date using the Young-Laplace equation.

At the end of the 2010s, an innovation came from using video microscopies. VFM was
less stable than its static counterpart, CellFIT. However, Vasan and colleagues used the
new curved edges idea and separated equations for stress and pressure in combination
with time series information, introducing DLITE (Dynamic Local Intercellular Tension
Estimator) [147]. In their approach, vertices, edges, and cells are tracked in time, and the
values for the tensions in the edges in a previous time point are used to inform the solver
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method in the subsequent inference. This increases the solution’s robustness compared to
CellFIT [147].

Finally, Noll, Streichan, and Shraiman proposed a clever idea to estimate not only the
tensions in the system but also the shape of the cells simultaneously [111]. They named this
method VMSI (Variational Method of Stress Inference). The main idea is to concurrently
calculate the tension and the geometry by imposing the equilibrium condition at each
tricellular junction. They found the method to be much more robust than its predecessors.
However, this method is more challenging to implement and has not been made publicly
available.

Three-dimensional stress inference presents a unique set of challenges particular to the
new geometry. In this thesis, I will only address two-dimensional stress inference in a tissue
monolayer; currently, two methods work in a three-dimensional setting [148, 70].

1.2.1 Dynamic Stress Inference

During developmental processes, morphogenetic flows shape organisms into their functional
forms [129, 128] in species such as Zebrafish [160, 9, 120, 130, 119] and Drosophila [99, 80,
57, 35]. Most Stress inference methods rely on the spatial relationship between the vertices
of the system, usually taken as the tricellular junctions [17]. However, if there is a time
series of images, how can we incorporate that information effectively into the inference
pipeline?

To my knowledge, only three methods in the literature tackle his problem. 1) DLITE
uses the time series to improve the robustness of the solution by giving an informed guess
of the tension to the system solver (Figure 1.2A)[147]. 2) Video Force Microscopy (VFM),
in which the tension of the Finite Element Mesh edges is found using a damping matrix
(Figure 1.2B) [22]. And 3) ForSys, where the system is modeled as viscoelastic, and the
movements are incorporated directly into the equations(Figure 1.2C) [15]. Methods that
use movement details to inform the solution are called Dynamic inference, contrasting with
Static inference.

It should be noted that DLITE is not a fully Dynamic algorithm because it only uses
the movement to inform the next step of the solver method, as pointed out by other authors
[127]. Video Force Microscopy, on the other hand, uses a damping matrix to calculate the
force from the velocity of the mesh movement. However, it is less robust than CellFIT
due to its straight-edge approach and inherent arbitrariness in the mesh choice. Moreover,
its source code, or binary files, were never made available to the community. The ForSys
method is a product of this thesis and will be explained in Chapter 3, and it is available
as Open Source software on GitHub.

I have compiled a table describing all existing stress inference software 1.1. In the table,
I sketch the algorithm for each method, whether it is a dynamic or static method, and show
which system they were initially applied to, along with their availability.
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Period Duration in hours post fertilization (hpf)
Zygote 0 to 0.75 hpf

Cleavage 0.75 to 2.25 hpf
Blastula 2.25 to 5.25 hpf
Gastrula 5.25 to 10 hpf

Segmentation period 10 to 24 hpf
Pharyngula period 24 to 48 hpf

Hatching period 48 to 72 hpf
Larval period >72 hpf

Tabelle 1.2: Developmental stages of the Zebrafish. Table adapted from Kimmel et
al., [79].

Having briefly described the evolution of mechanobiology and what stress inference
algorithms are, in the next section, I will describe the experimental system that will be
used in most of the present work, that is, the zebrafish and its lateral line organs: The
Neuromasts. All other results of this thesis spawned from the scientific questions posed
about the development and regeneration of this organism.

1.3 The Zebrafish: Lateral line and Neuromasts

The zebrafish (Danio rerio), a tropical freshwater fish native to South Asia, will be used
as an experimental system through this thesis. Zebrafish is an easy-to-maintain and cost-
effective model organism [158, 38]. It is a common model organism in development and
regeneration. Females lay approximately one hundred eggs, allowing a good sample for
screening and experiment planning. Zebrafish are sexually mature at three to four months,
allowing for the fast establishment of mutant lines. Under normal conditions, establishing a
new mutant line takes approximately 6 months. Breeding can be repeated weekly. Moreover,
they have a rapid development, entering the larval period after approximately seventy-two
hours post fertilization (hpf) and until 30 days post fertilization (dpf) to become an adult
[79](for details see table 1.2). During its development laboratory, zebrafish are traslucent,
facilitating the accessibility of imaging techniques.

This species has homologs for approximately ∼ 70% of human genes. Moreover, much
of its physiology is similar to the corresponding mammalian functions. They are a common
system in regeneration studies. They can regenerate different organs, such as the heart,
fin, hair cells, and spinal cord, among others [76, 91] [118] [121, 151][10, 124, 123].

1.3.1 The lateral line

To sense the environment around them, zebrafish, as well as other aquatic vertebrates,
possess a series of mechanosensory organs whose function is to regulate the so-called “touch-
at-a-distance” sense [44]. These organs are organized in a line from head to tail, called the
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Abbildung 1.2: Dynamic inference methods. (A) DLITE assumes that the forces (F⃗i)
in the system are tangent to the membranes (r̂ij) at the tricellular junctions, scaled by the
tension value (λ). It tracks each system element through time and assigns the previous time
solution as an initial guess for the next time point. Here [Mλ] is the matrix representation
of the system. (B) VFM Finite Element Mesh is built from the microscopy images of the
system. Tensions are inferred by using the relationship between the forces of the system
([F ]) and the velocity of the nodes ([v]), mediated by a damping matrix ([D]). (C) ForSys
uses the velocity of the junctions ([b]), modulated by a scale parameter ([b]) relating the
spatial and time scales. The microscopy images correspond to a primordium (A and C) and
a neuromast (B). In both cases, membranes were tagged using claudnb:lyn-EGFP. Image
reproduced from Borges and Chara, 2024 (submitted).

lateral line. They influence rheotaxis, predator/prey dynamics, schooling, and reproduction
[77, 114, 139]. The organs that form the lateral line, the neuromasts, contain the sensing
cells. These cells are commonly referred to as Hair Cells, and their function is similar to
the mammalian inner ear [52].

Two lines are formed at different developmental stages during the fish’s development.
First, the Posterior Lateral Line (PLL), going from head to tail, forms starting behind the
ear and sequentially dotting the side of the animal until the tail. The neuromasts that form
the lateral line are deposited by a cluster of around one hundred cells that migrate along
the line called primordium. At approximately 22 hpf, the first primordium starts migrating
behind the fish’s ear and gives rise to the horizontal neuromasts (prim1) [51, 107]. Their
orientation mimics the direction of the primordium migration [98]. Afterward, a second
primordium (prim2) appears ∼16 hours after prim1 to deposit the vertical neuromasts
[100]. The impact of the anatomical differences between these two sets of organs will become
apparent in section 1.3.3. At approximately 38 hpf, the Anterior Lateral Line (ALL) starts
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forming by the migration of two primordia that appear above and below the eye [72]. In
this work, the Lateral Line refers only to the Posterior Lateral Line and its primordia.

In larval fish, the posterior lateral line has less than ten neuromasts on each side of the
body [54]. A scheme of this set of organs will be shown in Chapter 3 and figure 3.8. The num-
ber of organs increases during adulthood through stitching by budding or inter-neuromast
proliferation [56, 154, 88]. This organ system is easily accessible, as the neuromasts are on
the skin’s surface. This allows straightforward imaging and pharmacological manipulation
to study the different processes during its development.

1.3.2 The posterior lateral line migratory primordia

The first primordium migrates below the skin from the head to the tail in the span of
approximately twenty-four hours, originating from the posterior placode behind the fish’s
ear [100]. Cyclically, clusters of cells detach from the primordium, staying in the deposited
position and forming the neuromast at the site. The front of the primordium consists
of mesenchymal leader cells that migrate. In contrast, in the trunk of the primordium,
trailing cells are constricted in the apical region, forming epithelial rosettes before the
proto-neuromast is deposited [87].

Primordium migration is a complex process maintained by a regulatory network with
the Wnt/βcatenin and FGF as primary contributors. FGF is expressed in the trailing
region, and Wnt appears mainly at the leading edge where the βcatenin is activated [6, 87,
107, 96]. Even though the activator is unknown, the Wnt inhibitor Dkk1 has been shown
to regulate it [6]. Moreover, the chemokine receptors 4b and 7b (CXCR4b and CXCR7b,
respectively) regulate the movement. CXCR4b is expressed in the leading cells of the
migratory cluster, while CXCR7b localizes in the trailing cells. Interestingly, the boundary
between mesenchymal cells and epithelial tissue undergoing rosettogenesis coincides with
the FGF / Wnt boundary. A study of this complex reaction network might shed light
on the specific regulation that underlies primordium migration and neuromast deposition
[3, 133, 16].

Neuromasts derived from the first primordium of the posterior lateral line generate
horizontal neuromasts, whose hair cells are oriented following the anteroposterior axis.
The second primordium gives rise to vertical neuromasts oriented toward the dorsoventral
axis [98].

1.3.3 Neuromasts and the Hair Cells

The mechanosensory organs in the lateral line are the neuromasts. Adult organs comprise
approximately 70 cells [51, 97, 66], with four main cell types being identified. The mantle
cells of the organ provide structural support and are located in the outer rim of the neuro-
mast. Recently, neuromast ionocytes have been identified to have a role in hair cell function
in adult fish [115]. Sustentacular cells provide support, have the highest proliferative power
[151], and surround the mechanosensory hair cells. The hair cells are the sensory cells of the
organ, having a hair bundle projecting outward from the fish’s body. The bundle is formed
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by actin-rich stereocilia whose order, from shorter to taller, gives each hair cell a distinctive
polarity. Next to the tallest stereocilia, a single kinocilium microtubule protrudes.

Supporting cells in the neuromast transform into a Unipotent Hair Cell Progenitor
(UHCP), giving rise to two sibling hair cells through mitotic division. Upon damage, the
hair cell population can replenish even in the presence of extensive damage [151], recovering
both functionality and topology.

Each hair cell is innervated by neurons that transmit to the central nervous system.
Water movements around the fish affect the direction of the bundle, triggering either a
hyperpolarization or a depolarization of the hair cell, depending on the direction of the
movement. When the bundle deforms towards the microtubule, the ion channel opens, de-
polarizing the hair cell. Neuromasts have around 20 hair cells stereotypically located at the
center of the organ, surrounded by the other cell types. The hair cell population orders in
a mirror-symmetric organization aligned with either the anteroposterior axis in horizontal
neuromasts or the dorsoventral axis in vertical neuromasts, with half of the population
facing opposite directions. Due to pressure differences in the alignment axis, this symme-
try allows half of the population to depolarize and the other half to hyperpolarize, giving
the organ equal sensitivity in both axis directions. Therefore, correct organ patterning is
essential for the organ’s function. Cells in the neuromast undergo an intriguing process in
which cells rotate around a common center to reposition themselves in their functionally
necessary positions, called Planar Cell Inversion (PCI).

1.3.4 Neuromast patterning: The Planar Cell Polarity (PCP)

In epithelial tissues, cells order through a signaling pathway called the Planar Cell Pola-
rity (PCP) pathway [27]. Patterns grow gradually through the different stages of animal
development. The PCP pathway has been extensively studied in Drosophila melanogaster,
which led to the identification of key genes such as Van Gogh, Diego, and Frizzled. Genetic
and pharmacological manipulation of the PCP pathway leads to deformed patterns due
mainly to changes in cell orientation [82, 106, 104].

Even though a complete picture of how the PCP pathway affects orientation in the
neuromast is lacking, it intervenes in the orientation of the hair cell population [141]. In
wild-type conditions, horizontal neuromasts have hair cells located on the anterior side
of the organ facing caudally, while cells in the posterior region face rostrally. Mutations
in some of the intervening genes cause major changes in the cell orientation. Mutations
in vangl2, or frizzle in a smaller amount, produce isotropic orientation of the cells in the
organ [106]. Interestingly, Wnt mutations create a concentric pattern, with sibling cells still
oppositely oriented, effectively breaking the mirror symmetry to a line through the center
of the organ and perpendicular to the organizing axis [106].

The main factor contributing to orientation in zebrafish hair cells is the Emx2 (Empty
spiracles homebox 2) transcription factor [74, 68]. After the mitotic division of the UHCP,
sibling hair cells enter a bistable switch to determine their genotypic identity for the rest
of their life [73]. This switch is a competence between Emx2 and Notch levels in each cell,
leading to a definite identity as Emx2 positive or Emx2 negative cell. Experimentally, Emx2
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is present in hair cells of the posterior region, oriented caudally, and therefore, anterior cells
facing rostrally are Emx2 negative [74]. It has been proposed that Emx2 affects the position
of the hair within the cell but not the final position of the cell in the organ [113].

1.3.5 Planar Cell Inversions: PCI

Collective cell migration is pervasive in many biological processes, such as cancer invasion,
immune response, wound healing, and during the development of organisms [85, 125, 84].
Recently, different methods have been developed to study cell-cell interactions in the pre-
sence of strong confinement and controlled conditions [24, 25]. There, a two-cell system’s
movement was restricted in vitro by localizing the cells inside wells, and the cells interacted
through a common bridge.

Neuromasts in the zebrafish lateral line present a minimal model to study cell migration
in vivo. During the development of the organ, hair cells rearrange after the Unipotent
Hair Cell Progenitor division [159]. These movements are not well understood, with only a
handful of mechanistic models addressing, at times, different aspects of the process [47, 113],
one of which is part of this thesis [82]. The benefits of using this particular system lie in
the ease of access to the organs as they lie on the fish’s skin and the existing wealth of
knowledge about the fish itself that allows for genetic and pharmacological alterations if
necessary.

After the division of the UHCP, sibling hair cells rotate around an axis that passes
through a common point of contact to exchange positions. After the rotation, hair cell pairs
drift away. As cells invert their original positions and always align with the Planar Polarity
axis, this process is called Planar Cell Inversion (PCI). During this process, cells must start
the rotation, maintain the circular motion, and stop after a rotation of approximately 180◦.

Additionally, PCI does not occur for every nascent hair cell pair. Different bodies of
work have reported inversion rates of wild-type hair cells, chronologically: 60%[159]; 71%
[102] and 60.8% [106]. In section 4.3.3 (And figure 4.5B), I will present the quantification
published by Kozak et al., with inversion happening in 56% of the cases [82]. Those cell
dyads that do not undergo PCI still conform to the mirror symmetry of the orientation
pattern without rearranging. Notably, inversions are observed even when the Planar Pola-
rity pathway has been disrupted by mutations of genes such as vangl2 and drizzle [106].
Other typical genetic mutations to study this process are the orientation-defining emx2
and its antagonist notch1a.

PCI-like behavior has not yet been seen in mammals [43]. However, similar dynamics
have been reported in other organs of the fish, flies, and in vitro studies of mammalian cells
[94, 95]. This minimal cell migration model, where only two cells rotate around a common
axis perpendicular to the epithelial sheet, could help understand cell-cell interactions during
migration. Moreover, understanding these phenomena might prove helpful for medicine, as
contrary to human hair cells, in zebrafish, they can regenerate.
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1.4 Motivation

The organization of biological phenomena around the constraints given by nature is a
remarkable event. Biological systems are organized through a myriad of relations, feedback,
and feedforwards, influencing their environment and themselves far beyond the scale where
they are constrained. With their interactions, they can build complex processes that start
microscopically but, taken together, allow incredible achievements, such as the coordination
of cells “species” to parsimoniously create tissues, organs, systems, animals, and beyond.
In turn, cells are the fruit of the interactions of smaller parts, such as proteins, formed by
molecules and atoms, and so forth.

Studying how different levels of organization complement each other and coordinate
their behaviors to increase the capabilities of the isolated parts is a worthy task. In parti-
cular, biological systems can showcase phenomena that do not appear in “inert” matter,
allowing for the investigation of new physics. As there are many scales involved, researchers
set the scale with the scientific question being pursued at hand. In the present thesis, by
and large, I will focus on tissue-level phenomena, where the smallest “particles” are the
cells.

My main interest lies in understanding how patterns form in biological systems, that is,
how the individual agents of the system can arrive at a definite pattern replicable by the
organism. As a model system, I studied the zebrafish lateral line and its organs, such as
the neuromast. These organs reliably arrive at the same mirror-symmetric pattern during
development and regeneration, a pattern necessary for the organism’s correct functioning.
If the mirror symmetry is disturbed, the fish will be disadvantaged.

As a first attempt, I decided to look into the mechanical interactions occurring in the
organ. Therefore, I created a computational tool that allows the characterization of the
mechanical stress of the system through the inference of the stress present in the cortex of
the cells in the epithelial layer. As was mentioned in Section 1.3.5, in Zebrafish, sometimes
there is a reversal of the cell’s polarity just after cell division. Accordingly, I had to develop
this algorithm to work not only in static images but in dynamic conditions. I analyzed the
Planar Cell Inversion process from data Dr. Kozak and Dr. Miranda-Rodriguez acquired.
Finally, I developed a pipeline to analyze the inversion data systematically and used it to
create a phenomenological model of the movement.

In chapter 2, I will introduce the formalism used to create the stress inference algo-
rithm, as well as an interesting relationship that arises linking the time and space scale in
Mechanical Inference Models. Then, I will present, in Chapter 3, the software I developed,
ForSys, to infer the stresses and pressures. I will show the Planar Cell Inversion quantifica-
tion results, the modeling strategy, and the implications of such a formalism in Chapter 4.
Afterward, I will show the accompanying software developed to aid in validating ForSys in
appendix A. Finally, in appendix B, I will present the calculation of the moment of inertia
of a pair of cells that approach each other as a proxy for the inertia in the Planar Cell
Inversion movement.
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Kapitel 2

Dynamic Mechanical State Inference

In this chapter, I will propose a formalism to incorporate time into the stress inference
models. This will allow valuable information about the movement to refine the inference
techniques.

2.1 Introduction

Different experimental techniques allow stress measurements in biological tissues. Tech-
niques such as light traps that allowed probing of viscoelastic properties in Drosophila
development[8], magnetic droplets that were used to measure differences in the properties
of the zebrafish body during elongation [103, 132], or laser ablation, to measure membrane
stress through recoil [12, 48, 143]. Distinct methods have varying degrees of complexity and
different hypotheses that should be met. Performing an experiment like the ones described
above influences the tissue, most often irreversibly. For instance, magnetic droplets are
added to the embryo at around 12 hours post fertilization (4-6 somites stage [103]), which
then develops normally. In laser ablation, the tissue is damaged irreparably by cutting
membranes using a high-power laser.

Another avenue for determining the mechanical state of a biological system can be com-
putationally aided. Inference techniques allow estimating the relationship between stresses
and pressures in a system without operating on the sample. Their algorithm is applied to
microscopy images of the tissue of interest. These methods require three main characteri-
stics to perform well

1. Details of the microscopy: The user must decide on the level of detail at which
the inference is applied. The relevant structures must be visible in the microscopy to
reconstruct it computationally.

2. Theoretical framework: All techniques have a set of assumptions. In computatio-
nal approaches, this becomes central. The choice of the underlying model influences
the result of the inference. It also might affect the level of detail required for the
experimental image.
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Abbildung 2.1: Geometry as an observable. (A) The orientation of rods in a magnetic
field is a proxy for the underlying field. Black rods are simulated iron filings orientation with
a small Gaussian noise. Continuous red lines show the underlying field. (B) Analogously,
the form of the membranes can be used to estimate the stress that shaped them. The color
of the membranes and cells indicates stress and pressure, respectively. The color scale is
relative in both cases.

3. Knowledge of the relationship between different scales: In almost all current
stress inference models, only the relative positions and orientations of the cells’ mem-
branes or the velocity of the cells in continuous strain models are relevant, but not
both simultaneously. When both are present in the model, the relation between the
scales must be tuned.

Understanding morphogenetic movements is central to unveiling the role that cell me-
chanics play in biology. In the present chapter, I will propose a method to infer the me-
chanical state of a tissue from a combination of its topology and dynamics. First, I will
describe the static algorithm by which single microscopy images can be inferred. Then, I
will introduce how to add dynamic information from the apparent cell movements into the
inference. Finally, I will analyze how this interplay between the spatial and temporal scales
impacts the analysis. All the analyses presented in this work will pertain to two-dimensional
inferences.

2.1.1 Geometrical stress inference

Here, I will describe stress inference from static images, which uses only the geometry of
the cells’ arrangements. I will call this static inference or geometric stress inference. These
methods calculate scalar quantities that serve as a measurement of the stress acting on
a membrane. Originally, they were called force inference methods, but stress inference is
more appropriate due to the scalar nature of their results [127, 33, 111].

In a magnetic field, iron filings will align with the underlying field, making it possible
to predict its direction at each position by measuring the relative displacement of the rods
2.1A. Similarly, geometrical stress inference uses the relative orientation of the tissue’s
membranes to predict the stress field that originated such geometry 2.1B.
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In two dimensions, the tissue is reconstructed computationally into vertices, joined by
edges defining cells in a monolayer. In particular, the protagonists in this approach are
those vertices where three membranes meet, called tricellular junctions, triple junctions
(TJs) [17] or pivot vertices (Marked as i and j in figure 2.2A). The importance of these
elements lies in that at each junction, the contact angle between the cells’ membranes
carries information about the energy of the interfaces [41]. In this type of inference, each
triple junction is assumed to be in mechanical equilibrium, which allows the formulation
of a system of equations representing the mechanical state of the system.

Each edge is defined as a straight line joining two vertices. Cells are then created by a
collection of joined vertices with the edges as their boundaries. At every tricellular junction,
the mechanical equilibrium hypothesis leads to a force equation whose terms depend on the
stress model. Each edge’s contribution is in the direction of the membrane, scaled by the
stress. This originates from the vertex model definition of line tension where the potential
energy of the interface is proportional to the length of the edge (first term of equation
A.2) [23, 22, 71, 147, 22]. Similarly, different authors have added terms inspired by the
vertex model, such as cell elasticity and contractility [105, 4, 49]. At each pivot vertex, the
equilibrium is then defined as ∑

j

λj ř
i
j = 0 (2.1)

where the sum is over all the membranes (j) connecting to the pivot (i), λj is the stress of
membrane j, řij is the versor representing the membrane j from vertex i.

Using equation 2.1 in all pivot vertices of the system leads to a homogeneous system
of equations relating the versors that describe the geometry, with their relative strengths,
given by the stress λ. Namely, at each of the V pivot vertices, the equation will read

λ1ř
i
1 + λ2ř

i
2 + λ3ř

i
3 = 0 (2.2)

for the ith vertex. In these equations, each one of the versors is known from the geometry,
and only the stresses λ∗ are unknown.

The solutions to these equations depend on correctly determining the shape of membra-
nes. Membranes’ shapes can be approximated as either straight or curved. In the straight-
edge formalism, the only vertices in the system are those that define tricellular junctions,
effectively approximating each cell as a polygon (Figure 2.2B).

This method has the advantage that it can be used even for insufficiently defined
microscopies, where the boundaries of the cells are not clearly defined. This, in turn,
means that the details pertaining to the membrane’s curvature are not visible. However,
the straight-edged approximation makes the system less robust. This is because, in this
situation, each versor will contribute the same magnitude, with opposite sign, at each
end of the membrane (Figure 2.2B). On the other hand, curved edges add independent
information to the system of equations as they might have different values at each end of
the membrane (Figure 2.2C).

In the curved-edge approach, each vertex that is not a tricellular junction is considered
virtual. The cell’s membranes are then composed of a collection of internal edges that
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join virtual vertices. Virtual vertices are not directly involved in the calculation insofar as
they only change the membrane’s angle and contribute to the level of detail in calculating
the curvature. In this setting, the versors r̂ are calculated using the limiting angle at
the tricellular junctions, considering the curvature of the interfaces. The limiting angle is
calculated by the circular fitting of all the virtual edges that compose a cellular boundary.

Each tricellular junction will contribute one equation per spatial dimension to the sy-
stem and approximately three unknowns. The number of unknowns may vary as membranes
connect two pivots, or it could also happen that a pivot vertex has more than three mem-
branes connecting. This can be summarized in a geometrical matrix [Mλ] where each row
will represent a pivot component and each column a membrane. In a system with V pivot
vertices and E membranes, this reads

[Mλ][λ] = 0 (2.3)

here, [Mλ] ∈ R2V xE and [λ] ∈ R1xE. Brodland et al. have pointed out that generally, this
definition leads to an overdetermined system of equations [23], i.e., with more equations
than unknowns. However, there can be underdetermined systems, especially when the ed-
ges can not be fully resolved [71, 127]. In principle, junctions with more than three joining
membranes, such as four-fold vertices, can be pivot vertices. However, they are less ener-
getically stable [135], a fact that was pointed out by Thompson more than half a century
ago [144, 55]. Moreover, each four-fold vertex contributes fewer equations (two) than un-
knowns (four), which could eventually lead to an underdetermined system of equations, as
mentioned above.

Importantly, equation 2.3, as it is a homogenous equation, allows for the trivial solution
where all stresses in the tissue are identically null. There are two prevalent methods to avoid
this; other authors and I have used a Lagrange multiplier to establish a relation among the
stresses by introducing a normalization for the average value of the stress [23, 22, 37, 15].
This is incorporated by adding an additional equation to the system, fixing the average
value of the stresses ∑

j

λj = λ̄

Even though all stress inference algorithms set the average to one (λ̄ = 1), this is a free
hyperparameter of the model. This has the additional advantage of adding an equation to
the system, which increases its stability. A different method deals with the null solution
by penalizing it through a regularizer in the cost function associated with the algorithm
used to find the solution [147]. Vasan et al. implement this by requiring the simultaneous
minimization of the equation’s residual and the maximization of the stresses at each pivot
vertex.

Usually, an approximate solution for the system is found through the Least Square
method. For this, a new system of equations is created as

[Mλ]⊺[Mλ][λ] = 0 (2.4)

Notably, equation 2.4 could have a solution with negative values for some of the λ
stresses. Physically, this implies that the direction of the force in the system of equations
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2.2 is in the opposite direction to the versor; that is, the membrane would be pushing
instead of pulling. Typically, these problems arise from elements incompatible with the
stress inference model being used, such as four-fold junctions, membranes with more than
one concavity, or membranes at near right angles [127, 135, 149]. Therefore, it is possible
to avoid these situations altogether by skipping problematic membranes and junctions.
Another possibility is to use a constrained solution, such as the Non-Negative Least Squares
method [86, 153, 108]. Other methods can be used to solve the system of equations, such
as direct inversion of the system, aided by pseudoinverses, such as the Moore-Penrose
pseudoinverse, which will be discussed below [116, 33, 45].

Pressures can be estimated using the Young-Laplace equation. This equation relates
the difference in the pressure difference between two cells (∆P ) with the shape of the
membrane that separates them and its stress as,

∆P = λijρij (2.5)

where λij is the stress of the membrane that joins vertices i and j, and ρij is the curvature
of the shared membrane. This leads to an inhomogeneous system of linear equations. In
matrix form,

[MP ][P ] = [bP ] (2.6)

In the [MP ] matrix, each row represents a shared interface between two cells with a +1 and
a -1 in the columns corresponding to the two cells. The [P ] column vector has all the un-
known pressures, and the right-hand side [bP ] column vector contains the product between
the curvature and the stress of each membrane, as detailed in equation 2.5. Similarly to
stresses, it is common to incorporate a Lagrange multiplier to establish an ambient pressu-
re, usually set to zero. The effect of changing this constraint on the pressure solutions has
not been addressed in any inference model. Measuring the pressure of biological systems
is an under-explored topic. Recently, Campàs et al. determined the osmotic contributions
to the intracellular pressure in zebrafish in vivo [152].

The stress distribution is then inferred by solving a system of equations constructed
from the constitutive equation 2.1 by Least Square minimization [23, 147, 33], variational
[111] or Bayesian methods [71]. As none of these methods allows inference during morpho-
genetic movements, it is worthwhile to wonder how it would be possible to expand them
to work under those conditions.

2.2 Incorporating dynamical information in a infe-

rence pipeline

Previously, I presented the three main characteristics a dynamic inference model should
fulfill. The first of these points was the determination of the details of the microscopy.
Brodland and colleagues have argued that the elements of the tissue can be divided into
two categories: Passive components, such as cytoplasm and extracellular matrix, and active
elements, such as the actomyosin network and the cell membranes [22, 37]. Passive elements
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Abbildung 2.2: Membranes and tricellular junctions. (A) Scheme of a four-cell sy-
stem with two tricellular junctions ( 1 and 2 ). A common edge between them joins both
junctions. At each one of these junctions, the contact angles are α1, β1 and γ1 and α2, β2

and γ2 for the TJs 1 and 2 respectively. Different approximations exist for the contact
angles. (B) In a polygonal approximation, the two tricellular junctions are joined by a
straight line whose angle is used in the calculations. (C) On the other hand, curved edges
allow a closer following of the shape. In (B) and (C) vectors r⃗∗, with ∗, represent the two
cells at each side of the junction and show the resulting approximation. Image adapted
from Borges and Chara, 2024 (submitted).

dissipate energy, while active components generate work. Therefore, the relevant structures,
such as the cells’ boundaries, must be well-defined in the microscopy for the inference to
be effective. However, some methods may allow sub and supra-cellular levels of detail [22].

In the present work, the level of detail will be constrained to the shape of cells’ membra-
nes; I will ignore the subcellular details that account for the stress generation machinery
itself. The next point was the underlying assumptions of the model. I will only use the
vertex model line tension approximation as presented above in equation 2.2. Finally, as for
the third consideration about the scale relation, I will show a method to incorporate the
dynamic information into the inference pipeline. This will inevitably add the time scale to
the algorithm, profoundly changing the character of the model. Then, in section 2.3, I will
show how to deal with this arising issue.

I will suppose that the system evolves through a series of quasistatic states in an over-
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damped regime [122]. Physically, this is equivalent to introducing a viscoelastic response
to membrane deformations [8, 34], effectively modeling the cell as a viscoelastic material.
I do this by adding a damping term proportional to the velocity of each junction to all
equations. This transforms the equation for the ith vertex (as shown in equation 2.2) into∑

j

λj ř
i
j = ηv⃗ i (2.7)

where η is the damping coefficient and v⃗ i is the velocity of vertex i.
This addition transforms the system presented in equation 2.3 into a nonhomogeneous

system of equations as
[Mλ][λ] = [B] (2.8)

where [Mλ] is the geometric matrix introduced in section 2.1.1, and [λ] is the column vector
of the stresses. Now, the system adds the [B] ∈ R1xV matrix. Each two rows of this matrix
contains the two spatial coordinates of the velocity for a given junction as

[B] =


v1x
v1y
...
vVx
vVy


Different methods can be used to solve this inhomogeneous system of equations. A

Least Squares approximation can be made as

[Mλ]⊺[Mλ][λ] = [Mλ]⊺[B] (2.9)

Another strategy is to directly invert the system of equations. As this is not generally possi-
ble, a pseudoinverse such as the Moore-Penrose [116] can be calculated. The pseudoinverse
is defined as

[A]‡ = ([A]⊺[A])−1A⊺

where [A] ∈ Rnxm. Therefore, the solution to the system in equation 2.9 becomes

[λ] = ([Mλ]⊺[Mλ])−1[Mλ]⊺[B] (2.10)

In Python, numerical solutions can be found by leveraging the lmfit package [108]. This
package implements a wrapper around the SciPy implementation of the Least Square mini-
mizer, adding additional parameters to the numerical algorithm. It is possible to calculate
the residuals at each junction in the system, i.e., [Mλ][λ]− [B], and pass them to the lmfit
algorithm, which calculates the least squares system. This is equivalent to calculating the
least squares systems directly on the system, as described in equation 2.9. To demonstrate
this, we can see that the minimum value of the residual function is the same as the solution
2.10. For this, let the residual function be

D = ||[Mλ][λ] − [B]||2
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Then, by expanding the product this is equivalent to

([Mλ][λ] − [B])⊺([Mλ][λ] − [B]) = [λ]⊺[M ]⊺[M ][λ] − [λ]⊺[M ]⊺[B] − [B]⊺[M ][λ] + [B]⊺B

The solution will be an extreme of the residuals, therefore we have to find the minima.
Taking the derivative of the residual with respect to [λ], we find that

∂D

∂[λ]
= 2[M ]⊺[M ][λ] − 2[M ]⊺[B] (2.11)

which after setting ∂D
∂[λ]

= 0 leads to the same solution as 2.10.
I have shown that by modeling the cell as a viscoelastic material whose state evolves

through quasistatic snapshots, the movement of the tricellular junctions can be incorpo-
rated to the inference problem. This leads to a linear inhomogeneous system of equations,
with no additional unknowns than in the static case. To solve this, different algorithms can
be used. In the present work, I have always attempted direct inversion, and when this was
not possible or when negative values were found, a Non-Negative Least Squares algorithm
was used.

2.3 The relation between the viscous and elastic scale

In section 2.2, I introduced changes to equation 2.2 that incorporated a drag term, as
shown in equation 2.7. Importantly, this addition brings a new scale into the model: time.
In static stress inference, forces along the membranes are described with their magnitude
only being carried in the stress λ, while the direction has a unitary norm. On the contrary,
while the constant η might be adjusted, the velocity carries the units with which it was
measured. This impels the necessity of tailoring the system in the correct scale relationship
between time and space.

Through a back-of-the-envelope calculation, I can show the expected units for η, set
by the relations in equation 2.7. In that equation (2.7), the left-hand side has the versors,
which carry no units, and the stress λj, which has units of N/m2. Taken together with the
right-hand side, the damping units are [η] = Ns

m
1
m2 = Ns

m3 . On the contrary, if λ is instead
taken to be the magnitude of the force, this would make the coefficient have the usual
damping units of [η] = Ns

m
. I recognize that a deeper dimensional analysis of the different

implications of the mental model behind stress inference is lacking in the literature.
We can transform the constitutive equations into a nondimensional form by taking

a reference stress and velocity. Both quantities can, in principle, be taken from diverse
observables in the system. Here, I chose to rescale the stress using the system’s average
stress as

λ′
j =

λj

λ̄

where λ′
j is the nondimensional stress of the membrane j and λ̄ is the average stress in the

system. Furthermore, I can use the time average, which is performed over all frames of the
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mean junction velocity, to obtain a reference velocity. Mathematically,

v̄ =
1

Nframes

tf∑
t=ti

∑Nt
junctions

j ||v⃗ i
t ||

N t
junctions

where the time average is performed over the Nframes (= tf − ti) from frames ti to tf , and
the average velocity in each frame is over all the N t

v junctions at frame t.
We can incorporate the described reference stress and velocity in equation 2.7 to obtain

its non-dimensional form, which appears after rearranging the dimensional factors discussed
in the preceding paragraph to the right-hand side

∑
j

λ′
j ř

i
j =

(
ηv̄

λ̄

)
v⃗ ′,i

v̄
(2.12)

Significantly, the number ηv̄
λ̄

provokes an interesting interpretation. Both the numerator
and denominator of the number have units of force. However, the denominator expresses
the average stress of the membranes in the system, while the denominator is the stress
coming from the junction’s movements. In essence, this number sets a relation between the
two different scales of the system. Therefore, it could be interpreted as the reciprocal of
the Weissenberg number (Wi), which relates the elastic (λ̄) and viscous scales (ηv̄) in the
system [42]. Although I note a difference between the viscous definition and my usage of
the damping coefficient, going forward, this scale constant will be written as 1

Wi
.

This implies that to solve the system as presented in equation 2.9, the right-hand side
has to be modified by normalizing by the reference velocity (v̄) and multiplying by the
scale constant 1

Wi
,

[Mλ]⊺[Mλ][λ] =
1

Wi

1

v̄
[Mλ]⊺[B] (2.13)

and hereafter I will define the [B′] matrix as [B′] = 1
Wi

1
v̄
[B].

We found a non-dimensional expression of the constitutive equations needed for infer-
ring stress in dynamic environments. Realizing that the emerging non-dimensional number
1
Wi

= ηv̄
λ̄

accounts for the relation between viscous and elastic forces in the system, I will
investigate how to tune this number in these models to correctly estimate the scales.

2.4 Evaluation of goodness of fit

We require a systematic procedure to measure the degree of similarity of the methods’
results with the ground truth obtained by experimental or computational approaches. I
decided to use a combination of three measurable quantities: the Pearson correlation coef-
ficient, the Mean Absolute Percentage Error (MAPE), and the coefficient of determination.
In all cases, I apply these statistics to the ground truth and the inference generated by the
software.
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Abbildung 2.3: Exploration of the scale parameter. (A)Heatmaps of the saturated
score function as a function of the scale parameter (1/Wi) and the velocity at each frame.
(B) Boxplots with the best scale parameter for the examples. Each individual boxplot
shows all repetitions and frames. The best values is taken as the median of each boxplot.
The distribution medians are summarized in table 2.1. Figure adapted from [15].

In this way, the different characteristics these observables measure are combined. The
Pearson coefficient measures the degree of covariance between the inference and the expec-
ted value. It is defined between 1, for perfect correlation to -1 for perfect anti-correlation,
with zero indicating no correlation. The Coefficient of Determination measures the variabi-
lity of the inference to the ground truth, with its values varying from 1 for a perfect match
to − inf for the worst case. Finally, the MAPE indicates how much the inferred values
differ from the expected ground truth, having a zero value for a perfect match and + inf as
a worst case. Combining these three quantities allows for a measurement of precision and
accuracy in one observable.

The score I propose takes a zero value when the system is maximally different from the
ground truth and is unbounded from above if a perfect match occurs. Therefore, the score
function is defined as

s(M, p, r) =
α

M
+

β

2

1 + p

1 − p
+

γ

1 − r
(2.14)

where M , p, and r are the MAPE, Pearson coefficient, and coefficient of determination,
respectively. The coefficients α, β, and γ allow changing each statistic’s relative importance
in the score calculation. Hereafter, these three parameters will always be taken as one
(α = β = γ = 1).

I introduced a cut-off as the score function in 2.14 is unbounded from above. This
cut-off saturates the function at the value for which the error would be around 1 %

s(0.01, 0.99, 0.99) = 299.5
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Example Scale parameter ( 1
Wi

) ηfit
x-axis furrow 0.08 2.2
y-axis furrow 0.07 2.4

circular furrow 0.12 2.5
Random tensions 0.18 3.1

Combined examples 0.09 2.3

Tabelle 2.1: Best scale parameter’s values and fitted damping coefficient. After
sweeping values from 0 to 0.5, the best scale parameter is chosen as the median of the best
values for each of the twenty-five repetitions for each example separately. The fitting of
the damping coefficient is performed by minimizing the distance of the theoretical scale
parameter to the maximum score in each condition

When the saturated score function is used, 299.5 will be assigned to those scores higher
than the cut-off. This is done in figures 2.3, 3.4 and 3.6.

Next, I used this score to find the best scale parameter in each example. For this, I
performed a sweep of the possible values for the scale parameter ( 1

Wi
), starting from a

value of 0 up until 0.5. A zero value is equivalent to a static inference, as the right-hand
side of equation 2.13 becomes zero. Moreover, a scale parameter value of 0.5 implies that
the elastic scale is twice as strong as the viscous. The sweep was performed separately
in all repetitions of the four examples (Figure 2.3A). Initially, a bigger parameter space
exploration was performed to arrive at the best search interval.

After aggregating the repetitions by example, the best scale parameter was chosen as
the median of the values for which the score is maximal (Figure 2.3B). In every case, the
value of the median coincided with the mode of the parameter’s distributions. The values
are summarized in table 2.1.

2.5 Theoretical scale value

Equation 2.12 shows that the scale parameter ( 1
Wi

) depends on the reference stress (λ̄),
the reference velocity (v̄), and the damping coefficient (η). Both reference values can be
measured from the system in the in silico cases. By construction, the stresses coming from
the solution of the stresses equations will have a mean of one (λ̄ = 1), and the velocities can
be calculated according to equation 2.3. Therefore, it is possible to estimate the theoretical
scale parameter’s value for different drag values η.

The simulations to create the tissues were performed using the Surface Evolver [18] (as
described in appendix A), and according to the selected implementation, the value for the
damping should be η = 1. I then plotted the theoretical values from the simulations in the
heatmaps of figure 2.3A (Blue lines). To this end, the velocity was defined as the norm of
the vector containing the components of the velocity of the junctions in each row; I will
call this dimensional velocity. Then, the dimensional velocity was sorted into twenty bins,
shown as the x-axis in the heatmaps of figure 2.3A. Intriguingly, in all cases, the theoretical



26 2. Dynamic Mechanical State Inference

value for the scale parameter appears below the optimal value per the simulations. Given
that the other two values involved in the calculation are measured from the simulations,
this implies that the damping coefficient, which is the only free parameter, is bigger than
one.

Therefore, I created a fitting routine to estimate the optimal value for the η coefficient
so that it is closer to the seen results from the parameter sweep. Using the scipy package
[153], I minimized the distance between the calculated value and the scale parameter
corresponding to the maximum score function. The minimization is then performed over the
sum of the distances of the velocity bins. As the score function was saturated, the highest
score degenerated in the scale parameter in some cases. Therefore, I use the median of the
degenerated values in the scale parameter as its optimal value. The fitting was performed
five times, one for each of the four prescribed conditions and once for the sum of all the
conditions. The resulting theoretical scale parameters for the adjusted damping coefficient
are shown in figure 2.3A (Green line) and summarized in table 2.1. Interestingly, the optimal
value for the damping coefficient in the prescribed examples improves the accuracy of the
theoretical scale parameter for almost all velocities in every case (Figure 2.4 Orange lines),
compared with the assumption of a damping of 1 (Figure 2.4 Blue lines).

In this section, I have analyzed the theoretical value of the scale parameter and com-
pared it with the optimal value that arises from the maximum score. The theoretical value
was lower than expected by this comparison. Thus, I performed a fitting routine on the
only free parameter: the damping coefficient η. This coefficient was found to be higher than
the expected value of η = 1 as summarized in table 2.1. Taken together, these results show
that in the in silico ground truths generated, the scale of the elastic stresses is an order of
magnitude above the viscous one.



2.5 Theoretical scale value 27

Abbildung 2.4: Fitting of the damping coefficient Square Distance from the theoretical
value for the scale parameter to the maximum in the saturated score function in the sweeps.
The distance is calculated for a damping coefficient η = 1 (blue lines) and the best-fitted
values. The best values are in each legend. ηx-furrow = 2.2, ηy-furrow = 2.4, ηcircular-furrow = 2.5,
and ηrandom-tensions = 3.1.
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Kapitel 3

ForSys: Open Source stress and
pressure inference

ForSys is an Open Source inference algorithm developed in Python specifically tailored
to manage dynamic information from video microscopy. In a nutshell, ForSys utilizes the
topology of the membranes and the velocity of the cell’s boundaries to deduce the stress
distributions. As was discussed above (chapter 2), the algorithm starts from a microscopy
image and converts it into a polygonal structure that allows curved edges. The software’s
static modality heeds what was described in section 2.1.1, following other authors closely
[23, 147]. ForSys’s dynamic model’s details were presented in section 2.2. The user may
define whether the inference should be performed with a Static or a Dynamic algorithm.

To use this tool, the user converts static microscopy or a time series of microscopies into
skeleton images of the cell boundaries through image segmentation [1, 2] or skeletonization.
This segmented image is read by ForSys and converted into a polygonal structure with
curved edges. This later is transformed into a system of equations depending on the input
and the chosen modality. Finally, the inference results are presented as color codes in the
membranes for the stress values and in the cell’s faces for estimated intracellular pressures.
A scheme of this pipeline is presented for the static (Figure 3.1A) and the dynamic modes
(Figure 3.1B).

Before using the tool I developed to study the mechanical state of a real-world biological
system like the zebrafish neuromasts, I must validate it against a known ground truth.
To this end, I created another package called seapipy [13]. seapipy is a Python package
that allows the generation of Surface Evolver-compatible files through a simple interface,
allowing a fast and easy integration within the ForSys environment. A detailed description
of the seapipy software will be presented in appendix A. First, to perform the validation,
I generated four different ground truths archetypes with seapipy that were used to test
the accuracy of the static and dynamic modes. Later, I tested the capabilities of ForSys
to estimate the stresses in a published set of in vivo data: the mucociliary epithelium of
Xenopus embryos [150]. Afterward, I applied the software to the migrating primordium in
the zebrafish’s lateral line and studied the generation of the protoneuromasts. Finally, I
studied the mechanical state of the different cell types in maturing neuromasts.
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3.1 ForSys inference in in silico static images

The static modality of ForSys was implemented following the description of chapter 2. The
main difference between ForSys’s static modality and other methods such as CellFIT [23]
or DLITE [147] stems from the imposition of the average constraint before transforming
the system into its least-square form. In this section, I will compare the accuracy of ForSys
simulations with the DLITE and CellFIT solutions. The authors of the DLITE method have
added a CellFIT modality to their software, which I will use when referring to the CellFIT
results. This is because CellFIT is not open source, so its integration into the analysis
pipeline would be challenging for direct comparison between membranes. Moreover, its
binary files are no longer available.

First, I investigated how similar the inference solutions for the three methods, Cell-
FIT, DLITE, and ForSys’s static modality, are. This analysis showed that the accuracy of
the methods is very similar, as seen by their closeness to the y = x line (Figure 3.2A).
Furthermore, the distributions of stress values arising from the inferences are nearly identi-
cal(Figure 3.2B). Finally, the accumulated solutions for all repetitions at the last frame of
the simulations display remarkable similarity (Figure 3.2C). The comparison between the
score function values for the static modality of ForSys and DLITE shows that ForSys, even
in its static modality, outperforms other methods in all but the random tension scenario.

To further analyze the differences between distributions of stresses found through in-
ference, I measured the distance between distributions in the Wasserstein sense. As the
distance value gives a number that might be difficult to interpret by itself, I also generated
an artificial normal distribution with a mean of µ = 1 and a standard deviation of σ = 0.2.
The Wasserstein distance is zero if and only if the two distributions being compared are
equal, and it can be arbitrarily large for increasingly different sets of data. The distan-
ce was almost zero in all pairwise comparisons among the three algorithms. To make it
comparable, I defined the relative distance as the ratio between the distance between the
methods’ solutions and the distance with the random distribution. This analysis showed
that the vertical and horizontal furrow are ∼30 times, the circular furrow is ∼10 times, and
the random stresses are ∼5 times more similar between the different methods’ solutions
than the random distribution. This shows that the methods’ solutions are remarkably simi-
lar. Therefore, in the rest of this section, DLITE implementation will be used to compare
closely with ForSys.

To perform a more comprehensive comparison, I used the last frame generated by the
simulation in each of the four examples. The ground truth value (Figure 3.3A), DLITE’s
estimation (Figure 3.3B), and the inference by ForSys static modality (Figure 3.3C) of the
intercellular stresses and intracellular pressures are qualitatively similar. Both methods
show a relatively low Mean Absolute Percentage Error (MAPE) (∼ 10%)(Figure 3.4A).
ForSys showed a lower value for the MAPE, as compared to DLITE, for all cases except
the random stresses. This was tested using the Mann-Whitney U test with the alternative
hypothesis that ForSys’s MAPE is stochastically lower than DLITE’s, giving significance
scores of p < 1e−5, p < 1e−8, and p = 0.01 for the x-furrow, the y-furrow and the circular
furrow respectively. The same test was repeated using the saturated score function (Figure
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Abbildung 3.2: Comparison between static ForSys and other force inference me-
thods. I tested whether the static implementation of ForSys differed from the values of
DLITE and CellFIT. Each column represents one of the examples. (A) I show that the
inferred stress versus the ground truth follows the y=x line, plotted as a solid black line as
a visual aid, for the three methods at the last simulated frame. (B) Moreover, the distri-
bution of stresses of all methods has similar behaviors in the histograms. Both panels (A)
and (B) are for a selected representative simulation. (C) Then, the result for all inferred
tensions versus ground truth repetitions is shown for each condition at the last simulated
frame. The black dashed line is the y=x line and is a visual aid. The score function’s values
are in the lower right corner of each plot. ForSys, in its static modality, has better results
in the three first examples and comparable results in the random tension case. Figure re-
produced from [15].

3.4B). This showed that ForSys had a stochastically bigger score value than DLITE in
all cases except the random stresses, with a significance of p < 0.001, p < 1e − 4, and
p < 0.01 for the x-furrow, the y-furrow and the circular furrow respectively, confirming the
previous result. Interestingly, in the random stresses example, the alternative hypothesis
that the distributions are equal shows that ForSys and DLITE are not significantly different
(p = 0.01). Additionally, ForSys displays, on average, a smaller spread of both MAPE and
values for the score, as revealed by the smaller interquartile range of the distributions of
values.

Taken together, these results show that the static modality of ForSys is accurate and
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Abbildung 3.3: In silico qualitative validation for tissues in static equilibrium. Four
different conditions were generated with seapipy to test the static equilibrium condition.
Each column shows a representative repetition per example. The ground truth (A) can
be compared to the values for the DLITE predictions (B) and the Static ForSys (C).
The three rows shown correspond to the final time. The color bar shows the order of the
colormap for both the stresses and the pressures. Figure adapted from [15]

precise to effectively recover the in silico generated ground truths. Accordingly, in the
next section, only the static modality of ForSys will be used to compare with the dynamic
results.

3.2 ForSys inference in an in silico dynamical setting

I used the time evolution of the in silico examples to validate the dynamic modality of
ForSys. As introduced in section 2.2, I will assume that the cells in the tissue are in an
overdamped regime, in the sense that I model the cells as a viscoelastic material. This
was achieved by incorporating the velocity into the equilibrium equations at each junction
mediated by a damping coefficient η. Finally, in section 2.3, I showed that this leads to a
number related to the rate between viscous and elastic scales in the system, which I named
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Abbildung 3.4: In silico quantitative validation for tissues in static equilibrium.
Four different conditions were generated with seapipy to test the static equilibrium con-
dition. Each column shows a representative repetition per example. The mean absolute
percentage error (A) and the saturated score function (B) for all simulations are represen-
ted in two boxplots, DLITE and Static inference with ForSys, paired by condition. Dots
show the result for individual repetitions. Figure adapted from [15]

1
Wi

.

ForSys determines the velocity of each junction by tracking them through the time series
of images. This is achieved by searching for all the junctions near the original position of
the one being tracked in the new frame and joining the closest ones. In those cases that it
can not be determined, no future position is assigned to the junction, which is interpreted
as a null velocity in the equation. It is also possible to manually assign an initial guess to
connect junctions’ id through time. Once the junction has been assigned to the previous
time point, it is removed from the list of possible futures. Therefore, adding even a small
set of initial guesses can lead to a more faithful tracking of the junctions.

In dynamical inference, the inclusion of the velocities made it necessary to create a non-
dimensional version of the constitutive equations, which in turn made the system dependent
on dimensionless parameter: ηv̄

λ̄
. In the dynamic modality, I used the fitted values of this

parameter, presented in section 2.2 and table 2.1.

First, I looked into the qualitative differences between the ground truth generated
by seapipy and the inference results. I found that the four prescribed conditions (Figure
3.5A) were qualitatively recapitulated by the inference both in the static (Figure 3.5B)
and dynamic modality (Figure 3.5C). However, in the three furrow cases, ForSys dynamic
shows a better qualitative agreement with the ground truths, as it finds a more defined
outline of the furrow sections.

Next, I used the mean absolute percentage error (MAPE) (Figure 3.6A) and the satura-
ted score function (Figure 3.6B) to quantify the accuracy and precision of the method. The
dynamic modality has a lower MAPE for all cases except in the random tensions. This was
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Abbildung 3.5: In silico validation of ForSys for tissues in dynamical equilibrium.
I generated four examples with seapipy to test dynamical equilibrium conditions. Each
column shows a representative repetition per example. The first row (A) shows the ground
truth values for the stress and the pressures, the static inference made by ForSys is in the
second row (B), and the dynamical ForSys inference is in (C). I show each example at
one time point after the system’s tensions changed. The color bar shows the order of the
colormap for both the stresses and the pressures. Figure adapted from [15].

confirmed by a Mann-Whitney U-test, with the alternative hypothesis that the dynamic
modality has a stochastically smaller MAPE (p < 1e − 9; p < 1e − 9; p < 1e − 7, for the
x-furrow, y-furrow, and circular furrow, respectively). I applied a similar analysis using the
saturated score function and found that the dynamic modality has stochastically larger
score values for all four examples (p < 1e − 8; p < 1e − 9; p < 1e − 9; p = 0.03, for the
x-furrow, y-furrow, circular furrow, and random, respectively). Interestingly, the MAPE
value is not significantly different between the static and dynamic modalities (p = 0.06).

Notably, the accuracy and precision of both the dynamic and static modalities depend
on the degree of motion in the vertices of the tissue. This can be seen in the dependence
of MAPE on the dimensional velocity of the system (|v|2) (Figure 3.6C). This implies that
both modalities, mainly the dynamic modality, worsen with more movement. Even though
this result may seem counter-intuitive, it is important to note that an increase in movement
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Abbildung 3.6: Dynamic inference outperforms the static pipeline. The mean ab-
solute percentage error (A) and the saturated score function value (B) for all simulations
are represented in two boxplots, Static and Dynamical inference, paired by condition. Dots
show the result for individual repetitions. (C) Dependence of the MAPE on the velocity
|v|2. The scattered dots are the median for all experiments with a velocity corresponding
to the current |v|2 bin. Error bars in the y-axis are one standard deviation, and error bars
in the x-axis represent the size of the velocity bin. (D) Dynamic to static score function
ratio (r = log(dynamic

static
)) as a function of the |v|2 bin. A ratio bigger than zero shows that

the dynamic solutions performed better (Red zone), and a negative value (Green Zone)
favors the static solution. The black dashed line at r = 0 separates both zones. All velocity
bins favor the dynamic solution. Figure adapted from [15]
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translates into a noisier inference. This is because the system of equations is ill-conditioned,
as Broadland and colleagues measured in the static case using the condition number [23].
This means that small input changes will get amplified in the solution. However, Figure
3.6C also shows that the static modality worsens rapidly, while the dynamic modality finds
a plateau in this velocities’ range. For the highest velocity, the mean absolute percentage
error in the static modality is ∼ 80% against ∼ 15% in the dynamic’s case.

Finally, we can visualize the better modality as a function of the dimensional velocity
(|v|2) by calculating the logarithm of the ratio between the saturated score function of
both modalities: r = log

(
dynamic score
static score

)
(Figure 3.6D). In this plot, the region with r > 0,

plotted in red, shows that the dynamic modality performs better, and for r < 0, shown
as a green shade, the static would be a better algorithm. We can see that the dynamic
modality outperforms the static one for all velocity values.

Therefore, I showed that the dynamic algorithm could faithfully recover the ground
truth values generated by the in silico seapipy pipeline. I have also shown that the accuracy
and precision of the method depend on the degree of movement in the tissue, getting worse
with increasing velocities. However, the dynamic modality reaches a plateau and is shown
to outperform the static variant consistently.

3.3 In vivo validation in the Mucociliary epithelium

of Xenopus embryos

After showing that ForSys correctly recapitulates the in silico examples in its static and
dynamic modalities,I focused on an in vivo system. For this, I used a published data
set of the mucociliary epithelium of the Xenopus embryo [150](Figure 3.7A). I used the
fluorescently tagged myosin II intensity as a proxy for membrane stress. This was quantified
using a non-muscle myosin II A-specific intrabody (SF9-3xGFP). This protein has been
used as a proxy for active myosin II [60, 110]. Besides, this sensor allows the membrane to
be visible to segment the image before the analysis by ForSys.

Using a single microscopy image per epithelium (Figure 3.7A), I segmented the tissue
using EPySeg [1] and performed manual corrections with Tissue Analyzer [2]. First, I
qualitatively compared five examples (Figure 3.7). I created the myosin maps from the
microscopy to plot the ground truth intensities in the same scale as the inferred stress.
ForSys could recover information about areas of high stress, such as embryos three and
five. Moreover, in embryo 4, ForSys can reproduce a homogeneous stress pattern. In these
five experiments, there is a moderate correlation between the inference and the myosin
intensity for each embryo (R = 0.56 ± 0.11; mean ± std)(Figure 3.7C, and mean absolute
percentage errors of approximately 20 % (21 ± 5; mean ± std). In addition, stress and
myosin intensity distributions are not significantly different (p = 0.76; Mann-Whitney U
test; N = 154)(Figure 3.7D).

In total, I analyzed 127 embryos, many of which had a small number of membranes.
Therefore, the following analysis will use only embryos with a significant p-value in the
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Abbildung 3.7: Comparison of ForSys-derived stress with myosin II measure-
ments in the Xenopus embryo mucociliary epithelium. (A) Scheme of the Xeno-
pus embryo and position of the mucociliary epithelium. (B) Five examples of inference
in Xenopus embryos. The microscopy image is shown alongside the myosin intensity map
and the ForSys inference result. The color code in the maps represents the myosin sensor
intensity and the stress prediction. The scale was saturated at tension values of two. The
highlighted region in the microscopies shows the area that was analyzed. (C) Relationship
between myosin sensor intensity and stress inferred for the five examples. Each scatter
point shows the value for a particular membrane in that example. The dashed black line
represents the y = x line. Each color corresponds to the rounded rectangle around the em-
bryo and its font color in panel (B). The average Pearson correlation coefficient is R=0.56
± 0.11; (mean±std) (D) Quantification of stresses and myosin sensor intensity for the five
examples. Inferred stresses and myosin intensities are not significantly different (p=0.76;
Mann-Whitney U test; N=154). Figure reproduced from [15].
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Pearson correlation coefficient. When pulling together all embryos, I found a moderate
correlation between the inferred stress in the membranes and their myosin fluorescence
(R = 0.38 and p < 1e−40; N = 1176 membranes). Additionally, I quantified the correlation
for each embryo separately and found a median correlation of R = 0.54 ± 0.19 (mean ±
std; p < 0.05). These correlation values agree with previously reported correlations between
Myosin intensity and other stress inference techniques [111, 71].

Therefore, I found that ForSys inference correlates positively with the myosin fluo-
rescence in the membranes of the mucociliary epithelium in Xenopus embryos, which is
used as a proxy for the membranes’ stress. This in vivo validation of the tool serves as
an important step to apply it to other biological systems, as will be shown in the next
sections.

3.4 Characterizing the mechanical state of the zebra-

fish neuromast

Having validated the tool in silico and in vivo, I now turned to investigate the mechanical
state of the neuromasts in the zebrafish lateral line. The inclusion of dynamic inference now
allows the study of the stresses and pressures present during the primordium movement
through the zebrafish embryo while forming the lateral line. The migratory primordium
comprises approximately one hundred cells that move from the head to the tail of the fish
embryo (Figure 3.8A). Periodically, groups of around thirty cells detach from the trailing
part of the primordium and are then deposited along the lateral line [52]; these groups of
cells are called protoneuromasts.

Each of these deposited structures gives rise to a neuromast. This mechanosensitive
organ is a pseudostratified tissue formed by various cell types. For simplicity, in this chap-
ter, I will group the cells into two different categories: sustentacular cells, which support
the organ, and hair cells, which provide the sensory function. Hair cells originate after
sustentacular cells give rise to a hair-cell progenitor, which divides into a pair of hair cells.

In the present section, I will show how ForSys can be used to predict the localization in
space and time of protoneuromasts during primordium migration. Later, I will describe the
mechanical state of the neuromast organ during its development, particularly as it relates
to the Polarity Cell Inversion movement.

3.4.1 Stress and pressure distribution in the migrating primor-
dium

I will study the migration of the primordial in Zebrafish two days after fertilization (2
dpf). I will use a time series of images with EGFP-labeled plasma membranes (Figure
3.8B). I followed the primordia trajectory for thirty minutes, taking one image every two
minutes. In all cases, I segmented the images in the basal plane region. After inputting
ForSys with the segmentation, I obtained a stress and pressure map describing the state
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Abbildung 3.8: ForSys inference of a moving epithelium in the zebrafish lateral
line at 2 dpf. (A) Schematic of the biological model. The neuromasts of the posterior
lateral line are formed by detaching from a primordium that migrates from the anterior to
the posterior of the fish. (B) Frames 0, 7, and 15 of the primordium migration in which cell
membranes are fluorescently marked with Claudnb:lyn-EGFP. (B’) The membrane signal
is used for segmentation, which ForSys uses to predict cell membrane tension and intracel-
lular pressure. (C, C’) Consecutive frames show cell division. The membrane tension in
the cell just about to divide is considerably higher than the surrounding membranes. After
division, the dividing membrane retains a high tension. Figure adapted from [15].
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of the primordium (Figure 3.8B’).
First, I concentrated on qualitatively describing what happened to the stresses found

in the membranes just after cell division. I found that cells just before cell division show
higher stress than their non-dividing neighbors (Figure 3.8C). Moreover, after cell division,
the stress remains higher in the shared membrane between the sibling cells (Figure 3.8C’).

Then, I studied the mechanical state of the whole tissue. As mentioned, the primordi-
um creates protoneuromasts in its anterior region while migrating posteriorly. Just before
detachment, an epithelial rosette is formed around the center of the soon-to-be separated
area. This process involves forming apical constrictions in the epithelial cells [62] (Figure
3.9A and B). Therefore, the constriction can be easily detected by morphological analysis
in the apical plane of the epithelium [46]. However, how constrictions in the apical region
relate to the morphology of the basal plane is unknown.

First, I located the rosettes by looking at the morphology of the apical plane, shown in
asterisks in Figure 3.9B and 3.9C, and manually annotated their position in the anterior-
posterior axis (AP-axis). I used the pressure inferred by ForSys in its dynamic modality
smoothed using Kernel Density Estimation, using cells’ pressures as weights. This resulted
in a smooth curve that describes the cells’ pressure as a function of the positions in the
AP-axis for each time point (Figure 3.9C).

I found that the rosettes’ positions, as seen by detecting the constrictions in the apical
plane, are spatially correlated with the zones of high pressure inferred by ForSys (Figure
3.9C). Moreover, their predicted positions are highly correlated with the annotated posi-
tions (R = 0.99 and p < 1e − 26, N = 34; for the combination of both rosettes) (Figure
3.9D). Notably, in one of the neuromasts, ForSys can predict the presence of a rosette
before it is visible in the apical plane.

This analysis revealed that rosette formation might be preceded by mechanical changes
in the tissue, which would allow the detection of apical rosettes by changes in the basal
region.

3.4.2 The mechanical state of the neuromast

After protoneuromasts detach from the primordium, they are deposited along the zebrafish
embryo, forming the lateral line. They later develop to form the mechanosensory neuro-
mast organ. Here, I will study the relation of stresses between different cell types in the
neuromast. This organ is composed of a center of mechanosensory hair cells surrounded by
supporting cells (Figure 3.10A) [66]. Cells were tagged with a plasma membrane marker,
which allowed me to segment them using ilastik [11] and epyseg [1] (Figure 3.10B). After
segmentation, ForSys, in its dynamic modality, was used with the time series of images to
infer the stresses in the organ (Figure 3.10B).

I will concentrate the efforts on the hair cells and their relation with the supporting
cells around them. I observe that hair cells’ membranes have a higher stress on average
(p < 1e− 5) compared to Hair Cell-Supporting cell interfaces. Additionally, the homotypic
interfaces between supporting cells have the lowest stress (p=0.03) compared to Hair Cell-
Supporting cell interfaces (Figure 3.10C).
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Abbildung 3.9: ForSys inference predicts localization of epithelial rosettes. (A)
Schematic of the primordium orientation and the position of the optical planes. (B) Mi-
croscopy image of fluorescently marked membranes with Claudnb:lyn-EGFP. Constriction
of the cell membranes in rosettes is evident in the apical plane. The asterisks show the
anteroposterior location of rosettes. Cell segmentation was done on a Z-plane at a more
basal plane than the one shown. (C) Ridgeline plots of cell densities along the antero-
posterior axis were performed over 16 frames for a representative primordium. Time goes
from bottom to top. The direction of primordium migration is to the right. The asterisks
show the positions of the manually annotated rosettes. (D) Anteroposterior position of
the manually tracked rosette against the inferred position by taking the local maxima of
the density of pressure values from (B). The diagonal line marks y=x as a reference for
comparing predicted and manually annotated values. Figure adapted from [15].
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Next, I looked into the Planar Cell Inversion process (PCI). In PCI, after the division
of the Hair Cell Progenitor, the sibling pair rotate around 180◦ around their centroid
(Figure 3.10D and Figure 3.10E). This process happens around half the times [82, 159].
The mechanism that underlies the inversion process remains unknown.

I decided to focus on the membranes of the hair cells during the inversion processes
and compare the stress inferred by ForSys between the homotypic hair cell-hair cell and
the heterotypic hair cell-sustentacular cell membranes. I found that the interfaces between
hair cells and sustentacular cells have significantly smaller stress than the hair cell-hair-cell
membranes (p < 1e− 4) (Figure 3.10F).

Taken together, this suggests that a cell-type specific adhesion pattern exists that coor-
dinates the remodeling process during PCI. Moreover, due to the inverse relation between
adhesion and stress, this result implies that the PCI process is led by a strong adhesion
between sibling hair cells and weaker links with the surrounding tissue, which helps in
contact remodeling during the pair’s rotation.
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Abbildung 3.10: In vivo ForSys inference in an epithelium with rotating cells.
(A) Schematic of cell composition in a zebrafish lateral line neuromast. Sensory hair cells
are located in the middle and surrounded by different support cells. (B) Microscopy image
of a neuromast whose cells can be tracked by membrane-tethered EGFP. (B’) Below is
the ForSys tension prediction after membrane segmentation. (C) The tension predicted for
membranes is classified by the type of cell-cell contact. The homotypic contacts between
hair cells show the highest predicted tension, while the homotypic contacts between support
cells show the lowest on average. Each data point is the mean of the predicted tension
values for each membrane type in one frame. The frames come from N=7 videomicroscopy
experiments. (D) Schematic of the planar cell inversions occurring in 50% of the nascent
hair cell pairs: sibling hair cells perform a 180° rotation to exchange positions along the
anterior-posterior axis. (E) Time-lapse frames showing the in vivo rotation process: around
100 minutes after mitosis, the nascent hair cells exchange anteroposterior positions by
rotating in the epithelial plane. The sibling cells remain attached during the rotation,
while the surrounding cells do not actively participate in the movement. (F) Homotypic
tensions between the young rotating hair cells are significantly lower than their contacts
with the surrounding cells. Figure reproduced from [15].



Kapitel 4

Planar Cell Inversion

In the previous chapter, I showcased software that allowed me to study distinct processes
during the development of the Zebrafish lateral line. I used it to study the formation of
the protoneuromasts during the primordium’s head-to-tail migration and the asymmetry
in the stresses dependent on the nature of the junction. In this chapter, I will concentrate
on an intriguing process during neuromast development where two cells are involved in a
coordinated movement that eventually gives rise to the patterning of the organ: the Planar
Cell Inversion.

4.1 Introduction

Collective cell migration is pervasive in complex biological phenomena such as development
and regeneration. For these movements to occur, processes at different scales must operate
and coordinate for a robust result. However, the internal functions need not be deterministic
or stochastic, and different cogs could behave under different dynamics.

Neuromasts are mechanosensory organs located in the lateral line of the zebrafish (Figu-
re 4.1A). Neuromasts exhibit a circular shape, with the mechanosensory cells in the middle
of the organ, surrounded by supporting cells (Figures 3.5A and 4.1B). Mature wild-type
neuromasts exhibit a stereotypical patterning on the apical side, where hair cells orient op-
posite each other. The positioning of the kinocilia measures the orientation of these cells.
Interestingly, this pattern exhibits a strong alignment with either the Antero-Posterior axis
(AP axis) or the Dorso-Ventral axis (DV axis), depending on its genesis. Those neuromasts
derived from the first primordium (prim1) that appears during embryogenesis are aligned
with the AP axis, while those deriving from the second primordium (prim2) align with the
DV axis [106]. The precise patterning of the organ is crucial to its sensory function.

The kinocilia’s orientation characterizes the cell’s polarity and can be represented as
a vector going from the cell boundary to the hair. Mean-field values can be calculated to
estimate the degree of orientation and alignment of the hair cells in the organ. To this end,
the organ’s polarity can be measured using the dipole moment of the orientation vectors,
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mathematically
d = ⟨cos θ⟩

Where θ is the angle between each of the cells’ polarity vectors and a director vector, in
this context either the AP or DV axis. On the other hand, the alignment can be described
using the nematic order parameter S, which measures the average orientation of the cells
to the common director axis as

S =

〈
3 cos2 θ − 1

2

〉
Using this definition, the angles will be zero for a perfectly aligned sample, and therefore
S = 1. On the contrary, for an isotropic distribution, the nematic order parameter will be
zero.

The organ’s patterns are not only robust from a developmental point of view. Neuro-
masts lie in the fish’s skin and are therefore exposed to harm. Following an injury, they
are capable of regenerating the organ even after extreme damage, such as ablating around
95% of the organ’s cells [151]. After the regeneration process, the neuromast is not only
composed of roughly the same number of cells as a noninjured organ, but its hair cells
regain their nematic ordering as well as their polarity.

The process of Planar Cell Inversion is a good model system for studying collective
migration because it is a minimal model, with only two cells performing the lion’s share
of the motion. In their movement, the rotating pair interacts locally with the surrounding
cells of the tissue, but the movement of the neighbors is negligible as compared to the dyad.
The cell pair appears from a Unipotent Cell Pair Progenitor (UHCP), which develops from
a supporting cell. Lateral, a local mechanochemical symmetry-breaking event defines each
cell pair’s genotype (Figure 4.1C) [73, 47, 83]. During this event, one of the cells in the pair
will activate Notch1a receptors, which leads to a loss of the Emx2 transcription factor. The
chemical identity acquired by the cells in this process will determine their orientation to
the organizing axis. Emx2 positive cells face the posterior and ventral region while Notch1a
orient to the anterior and dorsal side for prim1 and prim2 derived neuromasts, respectively
(Figure 4.1D). The acquisition of the chemical identity happens through a bistable switch,
which makes it impossible to know which cell of the pair will have a particular identity
before the symmetry has been broken [73]. Cells of the same orientation cluster on the side
opposite to their orientation in the organ.

In Planar Cell Inversion, the hair cell pair rotates around its geometric center after
the symmetry-breaking event, effectively inverting its position to the organizing axis. PCI
occurs in approximately 60% percent of cases. I hypothesized that this process involves
three distinct stages:

1. Initiation of the movement: This stage begins just after the hair cells appear
from the UHCP, and it mainly involves the symmetry-breaking event. This stage
ends when the rotation of the cells starts.

2. Progression of the movement: Here, the cells undergo the rotation per se and
involve the stochastic noise and the deterministic drift towards the end position.
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Abbildung 4.1: The neuromast organ and the polarity of the hair cells.(A) Neu-
romast microscopy with its membranes tagged using claudnb:lyn-EGFP. (B) Neuromasts
comprise two types of supporting cells: sustentacular (in blue) and mantle cells (in red),
and hair cells (in dark green) in the middle. (C) After hair cells are born from a Unipotent
Hair Cell Progenitor, they undergo a symmetry-breaking event, which consists of a bista-
ble switch and determines their identity to be either emx2 positive or emx2 negative. (D)
Cellular identity defines the orientation of the hair in the hair cells, with Emx2 positive
cells pointing to the posterior side and the Emx2 negative cells in the anterior direction.
The color represents the identity, and the black dot represents the position of the hair.
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3. The stoppage of the movement: After the cells have rotated once around their
geometric center approximately 180º, the movement stops. This stage should involve
the mechanism by which cells sense that their final position has been reached and
their arrest of movement.

Interestingly, this process has been studied in vitro [19, 69, 25, 24]. Contrary to in vivo
observations, cell rotation was found always to take place in this context, and the rotational
movement does not stop. Other theoretical approaches have used a variety of models to
study the process. Camley and colleagues [28] found vital ingredients for the rotation of a
pair of cells in a patterned substrate using a Phase Field Model (PFM) [36, 81]. In their
PFM, the authors added the dynamics of the nucleus of each cell as additional fields. They
were able to show rotational dynamics for some parametrization of the cell-cell interactions.
Using Particle dynamics, Leong managed to examine cell rotations in a two-cell system and
study the direction of protrusions depending on the direction of rotation. He found that
the cell cluster rotates with a characteristic S-shape, or its mirror image, depending on the
direction of the movement [90]. Li and Sun used a physical model akin to a vertex model,
with a chemical signal modeling the Rho-ROCK pathway, and found a similar correlation
between the shape of the interface and the direction of the rotational motion [93]. We could
not replicate this observation in vivo [82].

In this chapter, I will explore the process of Planar Cell Inversion and propose a frame-
work to study this type of process. To better understand the controlling force behind the
movement, I will investigate PCI for the wild-type fish and two knockout mutants: emx2
and notch1a. As previously stated, these two have an antagonistic relationship in which
Notch1a represses the activity of the Emx2 transcription factor. Thus, I will explore how
PCI occurs in wild-type fish and how these two knockouts affect its onset, progression, and
stoppage.

4.2 In vivo Planar Cell Inversion

I aim to quantify the process of Planar Cell Inversion (PCI). As a first step, I need to
define which observables I will require to represent the movement. In PCI, after a period
of noisy movement, cells perform one rotation around their centroid and separate slowly
after arriving at their final position. To visualize it, Figure 4.2A shows a representative
example, seen from the center of mass of the pair1. In this picture, the size of the dots in
the scatter represents time. Here, both cells start on opposite sides of the x-axis and rotate
clockwise once until they exchange positions. After the exchange, cells separate gradually,
as shown by the bigger scatter dots. Taken together, this hints at a stochastic period before
the inversion, where cells move randomly, followed by a directed migration to rotate and
finalized by a slow drift away from their sibling.

1I will use the center of mass when referring to the center of the cell dyad system, which would be
equivalent as taking both cell masses to be equal. Then, the centroid will refer to the geometrical center
of an individual cell.
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Figure 4.2A showed that the movement seen from the center of mass of the cell dyad
has circular symmetry. Therefore, I decided to quantify the rotational movement using
the angle of the pair. This is defined as the angle between a line that passes through
the centroids of the siblings and the horizontal axis (AP axis) (Figure 4.2B). With this
definition, an angle of zero is aligned with the AP axis, and an angle of ninety degrees
would represent a pair of hair cells perpendicular to the axis position. No distinction is
made between which cells are most anterior or most posterior. Therefore, this definition
makes the angles lie between 0 and 180◦, being these two angles equivalent. This definition
has the additional advantage of giving one quantity for the whole rotational movement of
both cells.

Furthermore, I used the cumulative angle, defined as the sum of all angular changes
over time, to quantify the pair’s movement. Positive angle changes represent anti-clockwise
movement, and negative changes represent a clockwise cell rotation. I defined an inversion
event as those pair movements with a cumulative angle of at least ninety degrees. Using
this quantification, cell movements for the seventy inverting pairs display a sigmoid-like
behavior with a fast angle change during the inversion (Figure 4.2C). Figure 4.2C shows
all the trajectories in gray, with a highlighted representative one in red. The average of all
trajectories is shown as a solid green inside the shaded region, representing one standard
deviation. Not all PCIs last the same time for calculating the mean and standard deviation,
so I binned the times in fifty bins, between 0 and 550 minutes. While individual trajectories
are shown without binning, the mean and standard deviation in the cumulative angle in
figure 4.2C are calculated by taking the mean over repeated values in the bin.

The shape of the trajectories in the cumulative angle space, as well as the biological
observations, hint at a sigmoid-like process. Therefore, I used a four-parameter logistic
function defined as

f(t) = c +
d− c

1 + (t/a)b
(4.1)

here, t is the time. The a, b, c, and d parameters are the function’s inflection point,
steepness, and lower and higher asymptotes, respectively. The resulting curve is shown
in Figure 4.2D. This generalization allows me to discuss the three parts of the process,
represented in the figure by the stages of the rotations by the blue and green cells. To
mathematically define the beginning and the end of the process, I use the intersection
between a line going through the inflection point and the asymptotes, also shown as black
crosses in Figure 4.2D.

The three parts of the process can be characterized in different ways, and each one
presents unique features. For instance, sibling cells are closest together during the Pro-
gression phase of the inversion, measured as the distance between their centroids (Figure
4.2E, orange distribution). Therefore, as hair cells are surrounded by sustentacular cells,
the homotypic hair cell-hair cell interfaces are maximized during the inversion. This also
relates to an increase in the pair’s circularity as a whole. These phenomena are not seen
in non-inverting pairs [82]. A physical toy-model explanation of this relates to the moment
of inertia of the pair, as it would be minimum for a perfectly circular shape, as opposed to
an oblong configuration. Even though the moment of inertia calculation is easy for a circle
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and for an ellipse in two dimensions, I derived a continuous representation as a function
of the bond length, which can be seen in Appendix B. Finally, in the last phase, siblings
drift away from each other, as seen by the green distribution in Figure 4.2D.

Before analyzing the specific characteristics of the inversion process between the mutant
genotypes, one last general characteristic of the PCI process involves the existence of
confinement. First, I did not observe Hair Cells moving across the tissue, which points to
PCI as a local rearrangement process. Then, I quantify the movement of the non-inverting
and inverting cells in ten neuromasts by quantifying the movement of all their cells (Figure
4.2F). I calculated the Pearson correlation of the trajectories of all non-inverting cells in
the organ against each other, against the inverting pair, and of the inverting pair to each
other separately in each experiment. I found that the non-inverting cells are uncorrelated
(R=0.14), suggesting no organized movement of the non-inverting cells in the organ as a
group. I also found that sibling cells performing PCI are uncorrelated with the rest of the
cells in the organ (R=0.07), which points to their movement being independent of their
neighbors. Finally, I also saw that the inverting pair of cells has a strongly anti-correlated
movement (R=-0.77), consistent with their circular movement to exchange positions.

I have shown that PCI is a three-part process. In this play, the sibling cells exchange
their positions by rotating around their center of mass once while the rest of the epithelium
surrounds their movement. I also showed that the siblings are closest to each other during
the rotation (in the Progression phase) and will drift apart once it stops. Next, I will
analyze the differences that appear when studying the Notch1a and Emx2 loss of function
mutants in this system before venturing into a modeling approach.

4.3 Phenotypic differences in the PCI process

This section will focus on perturbations of the Planar Cell Polarity pathway through emx2
and notch1a knockouts. By analyzing their behavior with respect to wildtype fish, I found
that not only is the final pattern at which the neuromasts arrive different in each case, but
there are also differences in the PCI process itself. Understanding these differences may
help understand the process as a whole.

4.3.1 Mutants delayed the initiation of their inversion

As I stated at the beginning of the chapter, during the development of the neuromasts,
the hair cells acquire a definite polarity, which is dependent on the chemical identity of the
cell. Due to the bistable switch mechanism [73], after the symmetry-breaking event, the
cells’ identity is fixed. In the wild type, Emx2 positive cells are located on the anterior side
preferentially, with their hairs in the opposite direction. In contrast, Emx2 negative cells
are positioned on the posterior side facing opposite to them. Mutant lines with an Emx2
knockout point all cells caudally, while Notch1a knockouts acquire an inverse pattern, with
all cells oriented rostrally (Figure 4.3A).

To compare the timing of the genotypes in each phase, I analyzed the distributions for
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Abbildung 4.3: Mutants and wild type present differences in the phases and
final pattern (A) Scheme of the final pattern achieved by the hair cells after neuromast
development. The axis is Antero-Posterior from left to right. Green cells represent emx2
negative cells, and red cells emx2 positive. The gray circle shows the position of the hair
bundle. (B, C, D), Boxplots showing the time spent by the process in each of the three
phases (Onset, progression, and stoppage, respectively) for the wild type and each mutant.
Dots represent individual experiments (N=40, N=23 and N=9 for wild type, Emx2 -/- and
Notch1a -/- respectively).

the 69 experiments. I used the Mann-Whitney U test with a two-sided alternative hypo-
thesis when testing if two distributions are similar and the lesser (or greater) alternative
hypothesis when testing for stochastic ordering, using the SciPy implementation of the
test [153]. During PCI, hair cells in wild-type fish and in the Emx2 mutants take longer to
start inverting than in the notch1a -/- mutant (p = 0.02 and p = 0.005, respectively), while
Emx2 -/- mutants take about the same time (Figure 4.3B). I found no differences between
the three conditions in the duration of the inversion (Figure 4.3C). However, Notch1a mu-
tants reach their final positions faster than wild-type and Emx2 mutant (p = 0.01 and
p = 0.005, respectively; Figure 4.3D).

Even though I found no statistical difference between the wild-type fish and the Emx2
mutant in any of the phases, qualitatively, the mutant appears to delay the start of their
inversion and its ending. This suggests that notch1a and Emx2 mutants affect the initiation
of the process but not its progression. As the effect on the stoppage time is convoluted with
the delay in the initiation of the process it is not possible to address whether the mutation
affects on the termination time as well.
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4.3.2 The final angle of the hair cell pair depends on the muta-
tion

After the division of the Unipotent Hair Cell Progenitor, the sibling cells emerge with
an angle approximately aligned with the AP axis, which is valid for the three conditions
explored. As the switch that determines the chemical identity of the cells for the remainder
of their life occurs sometime after the division, it could be expected that it is not affected by
any of the knockouts. I confirm this hypothesis by performing a Mann-Whitney test, which
showed no statistical differences between the initial angle distributions (Figure 4.4A).

However, after the progression of the PCI process, cells acquire a new final angle after
they stop rotating, which is distinctive for each genotype. I found that the wildtype’s
final angles are statistically different from the emx2 and notch1a knockouts (p=0.004 and
p=0.01, respectively; Figure 4.4B). I found that the final angles achieved by the wildtype
are 18◦ ± 15◦, for emx2 are 28◦ ± 21◦ and for notch1a 30◦ ± 19◦ (in all cases expressed as
mean ± std). However, the angles are not normally distributed. I reasoned that due to the
angles being represented only in the first quadrant, they would accumulate at an angle of
zero. Therefore, I fitted a Gamma distribution to the angles in each case, which density
function is defined as

f(x, α; δ, β) =
βα(x− δ)α−1e−β(x−δ)

Γ(α)

where δ represents the offset, β the scale and α the shape factor. All three conditions
have similar scales (β ≈ 0.3) and offsets (δ ≈ 0). However, they have different shape
parameters. In the wildtype case, the shape parameter is almost equal to one, αwt = 0.98.
On the contrary, both mutants have a shape parameter of almost two, which represents
the more skewed distribution of values (αemx2 = 1.65 and αnotch = 1.99). Importantly, a
shape of one reduces the Gamma distributions to an exponential (f(x;α) = αe−αxΘ(x),
with Θ the Heaviside function).

Together, these results indicate noticeable differences between the final angles of the
wild type and the mutants. As the initial conditions are similar in every case, I suppose that
differences in final angles are acquired during the progression. The progression dynamics
might be involved, as well as the start and stop “signals” that initiate and terminate this
phase.

4.3.3 Emx2 and Notch1a mutants affect the progression of the
cell rotation

I first concentrated on the progression of the inversion. During Planar Cell Inversion, each
cell in the dyad moves non-monotonically in a stochastic walk to exchange positions. I call
the swings in the direction of the movement ’wobbling.’ To measure wobbling, I calculated
the noise as the arc length of the curve defined by the movement. I normalized it to the



54 4. Planar Cell Inversion

Abbildung 4.4: Initial and final distribution of angles (A) Initial distribution of angles
for the wild type, emx2 -/- and notch1a -/-.(B) Distribution of final angles for the three
presented conditions. The distributions are significantly different between the wild type
and the other two, with p=0.004 for wild type and emx2 knockout and p=0.01 between
wild type and notch1a knockout. Each of the distributions in both panels have Nwt = 71,
Nemx2−/− = 42 and Nnotch1a−/− = 22.

shortest distance between the initial and final positions. Symbolically,

Wj =

∑N−1
t=0 |rj(t + 1) − rj(t)|
|rj(N) − rj(0)|

(4.2)

where rj is the position of cell j at time t, and the sum is taken for all the times except
the last one. This definition has the advantage of being non-dimensional and allows for a
direct comparison between experiments with different durations.

I found significant differences in wobbling among the three genotypes (Figure 4.5A).
Due to the many outliers present in the distribution, the p-values reported in the figure
correspond to the Anderson-Darling test. As expected, the noise in the wild type is the
lowest of the three: p = 0.022 for wt vs. emx2 -/-, p < 0.0001 for wt vs. notch1a -/-
. Surprisingly, the Notch1a knockout also has significantly higher noise than the other
mutant (p < 0.0001, emx2 -/- vs notch1a -/-). Again, I used the Mann-Whitney U test for
stochastic ordering.

Next, I investigated whether the proportion of PCIs happening is the same for each
genotype. In a purely random initiation, I would expect a fifty percent chance. I found a
similar value in the wild type and emx2 cases (56 % and 55 %, respectively). Even though
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Abbildung 4.5: Mutations affect cell rotation differently. (A) Boxplot of the noise
during the planar cell inversion in the wild types and mutants, the p-values come from an
Anderson-Darling test comparing distributions. (B) Inversion frequency shown as a diffe-
rence to an equal probability situation, i.e., 50% chance. (C) Handedness of the rotational
movement for the three experimental conditions.

inversion happens with a similar frequency between wild types and emx2 mutants, notch1a
mutant inversions are less likely to occur (41%) (Figure 4.5B).

Finally, I investigated the handedness of the inversion. I found qualitative differences
between the genotypes in the direction of the movement, but they are not significantly
different (Figure 4.5C). The handedness of the inversion will be determined by the shortest
distance to perform the process. A cell pair that starts with an angle of 20◦ will probably
rotate 180◦ counterclockwise to 200◦ instead of 220◦ clockwise to the same position. The-
refore, the process’s handedness will depend more on the cell pair’s initial angle than on
the pair’s genotypic identity.

4.4 Computational model

Guided by the previous result, I developed a minimal model to shed light on the characte-
ristic behaviors that the different genotypes exhibit. As the central part of the cell dyad’s
rotational motion pertains to the process’s progression phase, I built the model around
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Abbildung 4.6: Computational modeling of the Planar Cell Inversion. (A) Sketch
of the model. Solid blue balls represent each of the cells, and the arrows are the possible
clockwise or anticlockwise movement around the horizontal axis. Each of the cells’ positions
is tracked through their angle with respect to that axis. The gradient coloring represents the
possible asymmetry between the anterior and posterior regions. (B) In the asymmetrical
model, both cells, shown as a green and a blue ball, have an attractive well on opposite
sides of the AP axis, represented by a dashed ball of corresponding colors. (C) In the
symmetrical model, each attractive well is on the same side of the axis.

that phase. Moreover, as described in the previous sections, it is in this phase that the
genotypical differences become apparent.

I postulated a one-dimensional problem in which two interacting agents can move freely.
This dimension represents the angle the cells’ position vector makes with the horizontal
axis, which in this problem represents the Anterior-Posterior axis. If the radius at which
the two agents lie is fixed, this problem can be described as rotating two agents around
a common center (Figure 4.6A). At each discrete time, cells can move a fixed amount
either anticlockwise (+1) or clockwise (-1). The reasoning for using a one-dimensional
representation of space was based on the assumption that the inversion is a process mainly
driven by the two sibling cells. This logic follows from the results presented in Figure 4.2F,
where the sibling cells are strongly anti-correlated. At the same time, the movement of the
inverting pair versus the movement of the rest of the organ is uncorrelated. Effectively,
this corresponds to the PCI of the sibling hair cells on a small circular portion of the
organ, delimited by the surrounding cells. I introduced a Hamiltonian energy function to
accommodate this and all considerations and explored two different modeling possibilities.

In section 4.3.2, I showed that even though the initial angles do not differ with respect
to the mutations, the final angles achieved by the pair do. Therefore, I added potential
wells into the model that attract the agents to represent these preferential positions. I
decided to use a Gaussian well representation of the potential as

Ω(θj) = −e−
(θj−µj)

2

2σ2 (4.3)

where θj is the position, µj is the well’s minimum and σj is the potential’s standard
deviation for cell j. The well’s minima can be located at any position in the one-dimensional
space and will be the crucial difference between the models presented in the following
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section. The standard deviation of the well, σ, represents its steepness and reach. A very
steep potential in Gaussian wells will favor a rapid evolution but might not be sensed if far
enough apart from the agent. In the system, I fixed this at a value of approximately 288◦,
which ensures that the agents feel the wells at any position in space.

Cells cannot occupy the same position, so a repulsion must be introduced. To do this,
two typical methods involve either hard-sphere or soft-sphere repulsion. In the hard-sphere
formalism, cells are not allowed to interpenetrate each other. On the other hand, the soft-
spheres formalism provides some degree of elasticity, controlled by the parametrization. I
used the well-known Lennard-Jones potential and retained its repulsive part. Therefore,
the spheres will have a repulsion given by

ϕ(θ2 − θ1) =

{(
d

θ2−θ1

)12 |θ2 − θ1| ≤ d,

0 otherwise
(4.4)

where d is maximum distance of the interaction, and the θj the positions of each cell.
Equation 4.4 can be transformed into a hard-sphere potential by making the energy in the
case that |θ2 − θ1| ≤ d arbitrarily large.

I compiled these interactions, equations 4.3 and 4.4, in an energy function that only
depends on the angular position of the cells, θ1 and θ2, as

H(θ1, θ2) = ρϕ(θ2 − θ1) + ω1Ω(θ1) + ω2Ω(θ2) (4.5)

where ρ, ω1, and ω2 control the strength of the repulsion and the depth of the wells,
respectively. This expression allows the exploration of many modeling possibilities to try
to establish which could be the mechanisms behind the dynamics I see experimentally.
In particular, this definition of the model has only one free parameter in the repulsion
potential once the exponent of the interaction is set, two parameters per Gaussian well,
and three parameters in the energy function, or Hamiltonian. Therefore, there are eight
free parameters. From the experiments, I decided that the cells must always be in contact,
and thus, the d parameter in equation 4.4 is fixed at 180◦. I do not expect differences in
the repulsion between different models, as it should be a characteristic of the mechanical
exclusion of the cells’ membranes. Hence, I fixed the repulsion value at ρ = 0.01 in all
simulations. Moreover, the width of the wells is also chosen so that their effect can be
sensed by the cells long-range, at approximately 288◦ in equation 4.3. Consequently, four
free parameters remain in the model, controlling the potential wells’ positions (2) and
depth (2). I will build two possible scenarios around these parameters to explore.

4.4.1 The symmetrical and asymmetrical models

I created two simple characteristic models with different positions of the Gaussian wells
and tested their behavior by varying the depth of said wells, that is, their intensity. In the
asymmetrical model, I set the position of the potential well sensed by each cell on opposite
sides of the AP axis. The cell’s minimum position will be opposite to the side at which it



58 4. Planar Cell Inversion

starts. For example, if a cell begins in the anterior position, its minimum will be located
in the posterior region and vice versa. Due to the fact that cells’ minima are on opposite
sides of the AP axis, I call this model asymmetrical. Additionally, I defined a model where
the two wells’ minima coincide, which I call symmetrical model.

The asymmetrical model allows cooperation between the inverting pair of cells as they
move. In contrast, the symmetrical model leads to competition for the same position. This
last model achieves the final position through a trade-off between the cell-cell exclusion
and the well’s depth. Notably, both models would coincide if one of the Gaussian wells has
zero depth. This last case represents the possibility that only one of the cells is actively
moving while the other follows due to the confined nature of the inversion. This possibility
is especially relevant as I have shown before that PCI can occur even when an emx2
symmetry-breaking event has not happened, such as in the case of both knockouts.

4.4.2 The Metropolis-Hastings algorithm

I created Python software to implement the model using a Monte Carlo approach to mini-
mize the energy defined in equation 4.5. As the system’s properties will be linked through
the Hamiltonian’s definition, I expect them to be close together in the system’s phase
space. Therefore, I decided to use a Metropolis algorithm implementation [101, 61]. In this
algorithm, space sampling gives a higher chance of acceptance to more likely states. Detai-
led balance ensures that the probability distribution only depends on the initial and final
energy and requires that all processes are in equilibrium with their inverse at equilibrium,

M∑
j

pjP (j → k) =
M∑
k

pkP (k → j)

where P (l → m) is the probability of going from an initial state xl to xm, and pl is the
probability distribution. This equation can be rearranged by joining probabilities distri-
butions on one side and transition probabilities on the other. Moreover, the probability
distributions can be separated into a selection probability and an acceptance probability
as

P (j → k)

P (k → j)
=

g(j → k)

g(k → j)

A(j → k)

A(k → j)
(4.6)

where g is the selection probability and A is the acceptance probability.
In the Metropolis-Hastings algorithm, the probability of each state is chosen as a

Boltzmann distribution(P (xj) = 1
Z
e

H(xj)

kBT ), leaving the selection probability as uniform
(g(j → k) = 1/M). Finally, the acceptance probability, defined in equation 4.6, is

A(j → k) =

{
e−β(Ek−Ej) Ek > Ej

1 Ek ≤ Ej

(4.7)

where E∗ is the energy of state ∗. Choosing states in this way guarantees that the distri-
bution in the macroscopic limit approaches the equilibrium distribution.
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4.4.3 Model implementation

To create the two models’ agents, I used the experimental initial angle distributions of
individual cells to randomly allocate the initial positions of one of the cells, creating the
second one at exactly 180◦ apart. The angular position of the first cell is taken from a normal
distribution centered at 180◦ and with a standard deviation of 50◦ (µ ± σ = 180◦ ± 50◦).
Furthermore, I incorporate the symmetry-breaking event into the simulation by starting
with all wells’ depths set to zero (ω1 = ω2 = 0), leaving only the repulsion interaction
between the cells. After a certain number of steps, defined in a breaking time parameter,
the depths of the wells are assigned according to the simulation parameters.

The algorithm follows by letting each cell randomly choose to move one spatial step
clockwise or anti-clockwise at each time with uniform probability. The spatial step is set
at ∆x = 0.25◦. Once a direction is chosen, the cell’s position is changed virtually, and
the corresponding energy of the new state is calculated. This process is repeated for both
cells, and the energy of the two new states is compared to that of the unchanged initial
positions. Finally, the system is updated according to equation 4.7. In pseudo-code,

1 c1 = Cell(position=random.normal(180, 50))

2 c2 = Cell(position=180-c1.position)

3 cells = [c1, c2]

4 for t in range(0, nsteps):

5 if t > breaking_time:

6 c1.break_symmetry()

7 c2.break_symmetry()

8

9 e0 = get_systems_energy()

10 virtual_velocity = random.choice([1, -1], 2)

11 update = [False, False]

12 for index in range(2):

13 cells[index].virtual_update(virtual_velocity[index])

14 cells[index - 1].restore_to_real()

15 e1 = get_systems_virtual_energy()

16 if check_metropolis(e0, e1, Temperature):

17 update[index] = True

18

The Metropolis-Hastings check function is implemented as

1 def check_metropolis(e0, e1, temperature):

2 if e1 < e0:

3 return True

4 else:

5 if temperature != 0:
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6 if random.uniform(0, 1) < exp(-temperature * (e1 - e0)):

7 return True

8 else:

9 return False

10 else:

11 return False

4.4.4 Models results comparison against in vivo rotations

As I intend to test the model’s hypothesis against the experimental conditions, I first
compiled two representative cumulative angle trajectories for a wild type and a notch1a
mutant (Figure 4.7A and B, respectively). I only compared the notch1a mutant as they
present with more significant differences concerning the wild type than the emx2 mutant.
These trajectories will be compared to the ones generated for the in silico conditions of
the asymmetrical and symmetrical wells introduced in previous sections.

I simulated the model for the asymmetrical and symmetrical parameterizations and
qualitatively compared their trajectories to the described experimental curves. In the si-
mulations I show, the asymmetrical model was constructed as a one-well system with a
depth of 50 (Figure 4.7C). The symmetrical model consisted of two wells on the posterior
side of the axis, with a relative depth of 0.4 (ω1/ω2, meaning depths of 20 and 50 for each
cell (Figure 4.7D). I found that the asymmetrical model’s trajectories resemble the wild-
type experimental ones, while the symmetrical model corresponds to the mutant’s result.
This resemblance is especially noticeable when looking at the total rotation performed by
the cell pair, with the cells in the symmetrical model rotating less than the ones in the
asymmetrical. Moreover, cells in the symmetrical model have higher wobbling than those
in the asymmetrical model.

The final angle reached by the inverting pair is expected to be crucial for the physiology
of the neuromast. I then investigated how the relative depth of the wells impacted the angle
at which the inverting agents concluded their process. As presented in the section 4.3.2, the
genotypic identity of the system influences the final angles achieved. Similarly, I found that
the two model variants have different behaviors, which in turn depend on the relative depth
of the wells (Figure 4.7E). I observed that the asymmetrical model is robust with respect
to changes in the relative depth with almost no variation, while the symmetrical model
has a deviation from the AP axis of 60◦ for a relative depth of 0.5 (ω1 = 50; ω1 = 25).

Furthermore, I found that the wells’ relative depth affects the movement’s noise, as
defined in equation 4.2. Again, the asymmetrical model is robust to the changes in the
relative depth, while the symmetrical model’s wobbling increases when ω1 → ω2. This
result points in the direction that the symmetrical model behaves similarly to the mutant
genotypes due to the increased noise in the dynamics, as shown in section 4.3.3.

Finally, I explore the final angle distributions by choosing two well parameterizations
consistent with the observed final angles. As the asymmetrical model is robust to changes
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Abbildung 4.7: Computational model relationship with the phenotypes. (A, B)
Representative cumulative angle trajectory of the inverting pair for a wild type and a
notch1a knockout. The colored regions represent the three phases of the process: onset
(blue), progression (orange), and stoppage (green). (C, D) Similarly, the asymmetrical
and symmetrical models are represented in the same configuration for a depth of 50 and
0 (C) and a depth of 50 and 20 (D). (E) Final angle achieved by the inverting pair as
a function of the relative depth of the wells for the symmetrical (red) and asymmetrical
(blue) model. The dashed line represents the mean value, and the shadowed area is one
standard deviation. (F) Noise predicted by both models as a function of the relative well
depth. (G, G’) final angles achieved by the asymmetrical (well depth of 50 and 0, panel
G) and symmetrical (well depth of 50 and 20, panel G’) models.
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in the depth, I decided on the case where only one of the wells is active (ω1 = 50 and
ω2 = 0), and for the symmetrical model, I chose a relative depth of ω1

ω2
= 0.4 (ω1 = 50 and

ω2 = 20) (Figure 4.7G and G’).
The asymmetrical model is more robust to changes in the relative depth of the wells and

presents less noise than its symmetrical counterpart. Moreover, cells reliably align more
closely with the AP axis in the symmetrical model than in the asymmetrical model. Thus,
I argue that the asymmetrical model better represents the wild-type situation, while the
symmetrical one can help study the mutant’s behavior.
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Discussion

The aim of the present work is to understand how different agents interact to genera-
te functional patterns in biological tissues. Throughout this thesis, I have used a dual
strategy. First, I focused on the local interactions between the cells and how this coope-
ration can achieve the final pattern. Afterward, I characterized the Planar Cell Inversion
process through careful quantitative measurements. Using this information, I proposed a
phenomenological PCI model that can reproduce wild-type observations and mutant pairs
qualitatively.

5.1 Inferring mechanical states through time

Different mechanical properties can be measured in vivo, or at least estimated. In this the-
sis, I have proposed a new method to infer the Mechanical State, as given by the collection
of intercellular stress and intracellular pressures in a 2D tissue monolayer. In particular,
I have offered a formalism that allows the dynamic information in the movement of the
tricellular junctions to be incorporated into the Geometrical Stress Inference framework,
allowing it to become dynamic.

We discussed at the beginning of section 2 the main ingredients that should be present
in an inference model. This thesis mainly focuses on the third one mentioned: the scale
relationship dilemma that arises when incorporating time to the pipeline. Usually, stress
inference is performed by solving a homogeneous system of equations. Moreover, the results
given by mechanical inference are values relative to an unknown scale. Together, these
two statements reveal that the scale itself can be neglected. Nevertheless, when dynamic
elements are incorporated, that is, some aspect of the time evolution of the system, the
particular measurement scale used for space and time needs to harmonize. Currently, seven
Stress Inference algorithms exist, of which only two have a temporal component: VFM [22]
and ForSys [15].

By examining the form of the force at each tricellular junction and the viscoelastic
approximation used for the system’s dynamical behavior, I found a new number through
the nondimensionalization of the system, which I conspicuously called 1/Wi. This number
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represents the relation between the viscous (ηv̄) and the elastic (λ̄) scales of the system.
There, the ∗̄ quantities denote a representative quantity of the experimental system, such
as the velocity or stress.

By fitting in silico known data, I found that this parameter had a value of approxi-
mately 0.1, meaning that in the in silico model I used, the elastic scales are an order of
magnitude more significant than the viscous one, which is compatible with the expected
result. Importantly, I showed that the accuracy of the inferences depends on selecting the
correct parameter. Interestingly, when calculating the value it should have, from the mean
of the system’s tensions and the mean of the system’s velocities, I found that in all examp-
les, the observed value was bigger than the theoretical one. I then fitted the free viscosity
constant η to find an optimal value η ≈ 2.5 for the in silico simulations.

A related quantity for which no new equation was presented is the pressure. I have based
the pressure estimation on the Young-Laplace equation, which is derived under equilibrium
conditions. Establishing a new pressure equation, considering the dynamical aspects, is an
open problem.

Therefore, I showed how time can be effectively incorporated into estimating the me-
chanical state of a 2D monolayer of cells. I also showed that tuning the space and time
scales is critical to finding biologically relevant values effectively.

5.2 ForSys: A software to infer dynamic states

After creating a theoretical framework that allows time to come into play in stress inference
models, I turned to developing a software tool. The goal was to create an easy-to-use and
approachable software tool that the community could use readily. Given these requirements,
I used Python, a programming language widely used in the scientific community, and I
made the software Open Source through GitHub [14]. This is especially relevant, as from
the seven software that exist for stress inference, only three are available to the public and
are Open Source (Bayesian, DLITE, and ForSys), of which ForSys is the only one with
dynamic capabilities. The package conserves the possibility of creating static inferences.
Still, when presented with a time series of images, the user can let the software include the
dynamic information in the inference pipeline.

We found that ForSys performs very well in in silico models created through Surface
Evolver, even when compared in its static modality with other established methods. I also
showed that in its dynamic setting, ForSys consistently outperforms static implementations.
I validated static ForSys in the mucociliary epithelium of Xenopus embryos in vivo and
found a good correlation between the myosin fluorescence, used as a proxy for junctional
stress, and ForSys inference. It is important to point out that current stress inference
methods that have used tagged myosin intensity for validation have found correlations in
the same range as I, as I discussed in the corresponding section.

Significantly, to effectively generate in silico datasets to validate the tool, I created
another Open Source software: seapipy. This software uses the well-established Surface
Evolver to generate the ground truths using Python without needing to write Surface
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Evolver commands. I believe this tool will significantly help catalyze the efforts to develop
better methods, as it provides an easy way to generate trustworthy ground truths based
on the vertex model implemented in Surface Evolver. A clear next step is to adapt seapipy
ground truth generation method to allow 3D systems to be created and evolved. This would
allow a systematic validation method for 3D inference techniques.

Finally, I used the ForSys software to study the biological questions that drove this work,
primordium’s migration through the Zebrafish lateral line, and the Planar Cell Inversion
Process. For the first time, I found that proto-neuromast formation could be predicted in
the basal plane by looking at the pressure gradient inferred by the tool. Epithelial rosettes
form in the center of the proto-neuromast before deposition, and ForSys predicted its
localization with a correlation of R = 0.99.

I estimated the mechanical state of cells during the Planar Cell Inversion process in the
neuromasts of the developing Zebrafish. This was approached using a two-fold strategy. I
first looked into the stresses of the cell-cell interfaces grouped by cell type. I found that the
homotypic hair cell-hair cell interface had the highest stress in the tissue. This is consistent
with the view that hair cells maintain a strong bond, localizing in the center of the circular
organ. Then, I showed that the homotypic interfaces between rotating sibling hairs have
a lower tension than the rotating cells with the surrounding neighbors. Importantly, due
to the inverse relation between cell adhesion and cell stress, it can be interpreted that
PCI occurs through a strong adhesion of sibling hair cells and a weaker adhesion to the
surrounding cells.

We investigated the cell-cell mechanical interactions in the migrating primordium and
the fish’s neuromasts with ForSys. This gave new insights into the rosettogenesis leading up
to neuromast deposition and the asymmetries present in the neuromast. These asymmetries
could be involved in the PCI process, allowing sibling hairs to increase their common
interface and minimize contact with their neighbors, thus enabling rotational movement.

5.3 Finding the East: Polarity Cell Inversion

In the last part of this thesis, I concentrated on analyzing the rotational movement of the
hair cell pair after the unipotent hair cell progenitor’s (UHCP) division. I showed that a
sigmoid-like function can be used to characterize their movement and provides a valuable
guide to splitting its process into three separated phases: Onset, progression, and stoppage.
Thus allowing a systematic approach to classifying each part of the movement.

We analyzed PCI and found observable differences between the three genotypes studied.
Notably, the emx2 knockout mutants present a delayed initiation and termination of the
PCI process without changes to the progression. Interestingly, this difference is not visible
in the notch1a mutants, hinting that the delays might not be only due to the system’s loss
of a symmetry-breaking event. I also showed differences in the final angle achieved under
all conditions without noticeable distinctions in the starting point. Moreover, neuromasts
belonging to mutant fish presented higher noise in the rotation. These results indicate that
the loss of chemical asymmetry alters the road toward the final pattern and its orientation.
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I created a minimalist phenomenological model to understand the physical consequences
of the genotypical differences. In this simple model, two agents representing the cells inter-
act in a confined one-dimensional space. Each agent feels the space exclusion of the other
through a soft-spheres model and is attracted to a definite position in space. I built two
model variants, which differ in the relative positioning of the attraction wells. The first
variant, the asymmetrical model, has each cell with an attraction well opposite to its star-
ting position. In the symmetrical variant, both attraction wells are situated in the same
position on the axis. In each case, the depth of the wells and the strength with which the
cells interact with them can be explored.

We found that the asymmetrical model closely follows the wild-type observations, while
the symmetrical model is similar to the mutants, especially the notch1a knockout. Moreo-
ver, by exploring both alternatives as a function of the relative strengths of each cell’s
interaction with its corresponding well, I observe that the asymmetrical model is exceptio-
nally robust to changes in the relative strength, in contrast to the symmetrical model. The
symmetrical model’s final angles strongly depend on the wells’ relative strength. Further-
more, they are noisier than their asymmetrical counterparts. Importantly, the simulation
results show that it is not the absolute value but the relative strength of the attractors
that affects the system’s behavior.

Together, I could quantitatively analyze the Planar Cell Inversion phenomenon in the
neuromasts of the zebrafish lateral line. Through a modeling approach, I proposed an
interpretation of the role of the cells’ chemical identity, working as “guides” to direct the
pair’s migration during the inversion. Due to the space exclusion in the model, I could not
rule out the possibility that only one of the cells is pushing while the other follows due to
the confinement.

An explanation of how planar cell inversion relates to the functional form of the organ
is still lacking. There has been evidence that Emx2 is involved in the positioning of the hair
within the cell but not the cell’s position in the organ. This might relate to the dilation
in the initiation of the PCI in these mutants. Moreover, there has been no evidence of a
mutant that could prevent PCI from happening, as even when the whole PCP pathway is
affected by knockouts of the vangl2 or wnt11r genes, the process may still occur.

5.4 Final words

In this thesis, I studied collective cell migration phenomena in the Zebrafish lateral line
through different modeling approaches. I created two software packages to generate in silico
ground truths (seapipy) and to study the mechanical state of tissues, specially in a dynamic
setting (ForSys). Finally, I successfully applied this to answer pressing questions regarding
the relationship between the adhesion properties of different cell types in the neuromast
and during the inversion process.

In the future, I believe that an extension of ForSys to three dimensions will be necessary
to address ever more complex questions in the rheology of tissues. Additionally, applying
stress estimation to other systems, such as plants, is an underexplored avenue that might
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provide interesting insights into critical questions such as crop survival in agriculture.
ForSys will continue to be developed and grown to incorporate and accommodate dif-

ferent algorithms. In this way, it can serve as a Mechanical State Inference toolkit instead
of a standalone tool. In turn, this will benefit the community as a whole, as different algo-
rithms could be tested on the same data and cross-checked to evaluate the robustness of
the inference solutions.

Mechanical State Inference is a valuable technique that complements other stress mea-
surement methods. It can aid in experiment planning by being used as a first inexpensive
technique to evaluate the system’s state before a more complex and destructive experi-
ment is performed in the sample of interest. Moreover, another unexplored possibility lies
in using AI methods to make the inference instead of a tractable system of equations. In
a first approach, from the image segmentation, an AI model should be able to predict the
stresses, given the training data provided. This data can originate from different proxies
for stress, such as myosin fluorescence intensity, or even in silico ground truths.

A more advanced implementation that allows automatic real-time segmentation could
even perform inference from the microscope, aiding the imaging process and cementing
Mechanical State Inference as an invaluable tool for experimentalists.
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Anhang A

seapipy: Automatic generation of in
silico tissues

To validate the stress inference software, it was necessary to generate in silico images of
tissue monolayers with known values for the membrane stress and intracellular pressures
as ground truth. Moreover, these states should be generated in evolving tissues to analyze
their dynamic component. We decided to use Surface Evolver [18], which implements a
vertex model [105, 49, 4].

The Vertex model is well suited to simulate evolving tissue monolayers. In this model,
cells are modeled as polygons, with the edges of the polygons representing the cell mem-
branes. At each point where two edges meet, a vertex is generated. All the forces will be
acting on the vertices of the system, which can be formulated through an effective potential
energy [105] or through virtual work [4].

The most common terms in an effective potential energy approach typically involve
membrane constriction, cell elasticity, and cell contractility [134]. Membrane constricti-
on, also called line tension, has an energy proportional to the size of the interface (∆r),
mediated by a constant (λ) as

F j
line = λ∆r (A.1)

for membrane j. Cell elasticity is modeled akin to Hooke’s law, which rewards cells near
a designated target area. Finally, cell contractility rewards smaller cell sizes. To obtain
the global energy, the line tension is summed over all membranes, and cell elasticity and
contractility over all the cells in the system as

U =
membranes∑

i=0

λi∆r⃗i +
cells∑
j=0

KE

2
(Aj − Atarget)

2 +
KC

2
A2

j (A.2)

where KE and KC are the elasticity and contractility constants respectively, and Aj is the
area of the jth cell. Alternatively to this representation [134], the contractility term can be
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used with the perimeter instead of the area as [49]

EC =
cells∑
j=0

KC

2
P 2
j

where Pj is the perimeter of cell j. Surface Evolver implements an evolution over the vertices
that minimizes the energy, using a parameter, scale, as a time step.

To simplify the creation of multiple simulations under different conditions, we created
seapipy [13], an Open Source software that implements a Python API to communicate with
the Surface Evolver executable files. seapipy can create Surface Evolver-compatible files
using Python scripting, removing the necessity of writing boilerplate code multiple times for
each condition. The software generates a Voronoi Tessellation with a given geometry, assi-
gning initial stress to the different membranes through the Lattice.create example lattice()
function. From this point, it is possible to add different commands to create the desired
conditions during the system’s evolution and save snapshots of the tissue’s state.

I generated four ground truth conditions to test ForSys [15] in its Static and Dynamic
modality against other established tools such as DLITE [147] and CellFIT[23] Figure A.1
panel A. Three conditions generate a furrow-like distribution of stresses, and a fourth one
creates a random distribution of stress values with a 50% spread. For each condition, I
generated twenty-five replicates.

I generated an initial Voronoi Tessellation with random stresses taken from a normal
distribution, with µ = 1 and σ = 0.1, over N = 64 points in a rectangular, at a distance of
20 from each other. Each point in the grid was moved according to a Gaussian noise with
a mean of zero and a standard deviation of 0.15. Each cell was assigned a target area value
of 450 ± 5 from a normal distribution.

An initial relaxation is produced by averaging the vertices’ positions in the membrane
and evolving the tissue for 10000 steps with different scale values. The averaging is done
three times and the evolution two times (scale = 0.25 and scale = 0.1). After this, the
system relaxes for a certain number of steps following this recipe

1 se_object.initial_relaxing(evolve_step=10000)

2 se_object.evolve_relaxing(number_of_times=10, steps=2500)

3 se_object.add_vertex_averaging(how_many=100)

4 se_object.change_scale(new_scale=0.005)

5 se_object.evolve_relaxing(number_of_times=5, steps=5000)

6 se_object.save_one_step(parameters['save_dir'],

7 parameters['file_name'])

8 se_object.evolve_relaxing(number_of_times=5, steps=5000)

The function on line 2 ( repeated in lines 5 and 8) evolves the tissue the number of steps
assigned, with a scale of 0.01, and then performs all the T1 transitions that could be needed
in the system, using a maximum edge size of 0.1. This is repeated number of times times.
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Abbildung A.1: Seapipy image generation. (A) Four different conditions were generated
with Surface Evolver through the seapipy package. (B) Afterward, tissue stresses and
pressures are inferred with ForSys. Figure reproduced from [15].

All four examples use the same algorithm to generate their starting geometry. Still,
the initial seeding for the cells’ centers in the tessellation and the stress distributions are
random. We define a quantity, Surface Evolver Time (SET), as the number of steps (n)
times the scale (∆t)

t = n∆t

The algorithm described above generates the first time point at time 3875 SET. The tissue
then evolves 125 SET, marking the second time point. At that time, the stresses are
assigned according to the particular recipe of the example, and each following time point
is taken every 0.25 SET.

The recipes are the same in the Horizontal and Vertical Furrows; however, the Proba-
bility Density Functions (PDF) are rotated with respect to each other: Horizontal Furrows
have the PDF as a function of the x position, and Vertical Furrows as a function of the y
position. New tensions are created by summing the original stress of the membrane with
the corresponding value of the PDF at the position of the edges centroid. The PDF’s peak
is in the center of the tissue, with a standard deviation of around two cellular radii. On the
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other hand, the Circular Furrow uses the distance between the tissue’s centroid and the
edge’s center, effectively making the stresses decay radially from the center. In the Ran-
dom Tensions case, membrane stresses are assigned by choosing from a list of five possible
values (1, 1.1, 1.2, 1.3, and 1.5) using a uniform distribution. In all cases, after the first
two snapshots, the evolution continues for 23 additional steps.

seapipy allowed for an easy generation of the simulations and replicates, streamlining
the in silico validation processes. Moreover, as the software is in Python, it would be
possible to integrate it seamlessly with ForSys (Figure A.1 Panel B. As seapipy is an Open
Source package, I hope that the rest of the community can take advantage of its capabilities
and expand on them.

In the future, seapipy should be expanded to allow for the generation of 3D ground
truths, which would allow the validation of 3D stress inference algorithms.



Anhang B

Inertia of the rotating pair

During Planar Cell Inversion (PCI), cells orchestrate their interactions to exchange positi-
ons by rotating around their contact point. To try to understand the energetic implications
of the motion, we have built a toy model to represent the inertia of the movement by cal-
culating the moment of inertia of the pair. A separate discussion might be held about the
usage of this type of model in a viscoelastic material, such as the cells that are, in turn,
immersed in a possibly overdamped medium [122]. However, we believe that this simple
model can still allow a better understanding of the physical nature of the PCI. We illustrate
our mental picture of the process in Figure B.1A. We sketch the process as two soft disks
that deform as they approach their joint center of mass, ending up as one disk of twice the
original mass.

From a Newtonian representation, inertia accounts for the torque necessary to produce
an angular acceleration in a body, akin to mass in Newton’s second law. Therefore, an
equivalent statute is τ = Iα, where τ is the torque, I is the inertia, and α is the angular
acceleration. Similarly, as mass and momentum relate, the angular momentum can be
expressed through the moment of inertia and the angular velocity as L = Iω.

The moment of inertia is calculated as the sum of the contributions of every mass
element in the system depending on its distance to the axis of rotation,

I =

∫
dmr2 (B.1)

The selection of the rotation axis is important for the process to be modeled. Still, it is not
a definite choice, as Steiner’s theorem allows the axis to be changed for any other parallel.

We intend to derive an equation for the moment of inertia as a function of the distance
between the disks. The most important quantities are the bond length, shown in figure
B.1B as L, and referred to in the text as l, and the total distance between the centers of
the two disks, D. Then, the distances from the centers to the contact point are d1 and d2
for both disks, and the angle formed by the center of one of the disks and the endpoints
of the mutual interface are θ. The quantities l, D, and θ can be related to each other and
much of the calculations will be about these derivations.
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Abbildung B.1: Moment of inertia of the rotating pair. (A) After the Unipotent Cell
Hair Progenitor division, cells separate during the onset phase, and after a small period,
they start to join together. The Polarity Cell Inversion process starts around the time that
a rounding appears. During the rotation, the two-cell system has the maximum circularity.
The left side of the panel shows a sketch of the movement, and the right side shows a
microscopy image to illustrate the step. (B) The two-cell system can be studied as the
dependence of the distance D with the length of the interface l. (C) Moment of inertia
of the two-cell system as a function of the bond length l. The moment of inertia for two
circular bodies through their contact point is shown as the dashed line on the top of the
plot. The dashed line at the bottom shows the moment of inertia for a circle in the axis
through its center. In panels (A) and (C), the brightness of the circles shows their density
after mass relocation.
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We will assume that the mass gets redistributed uniformly between the pair while they
coalesce. We will address how to calculate the distribution of mass later on. We can split
the inertia into constituent parts that will be expressed as their geometrical shape. The red
crosses in or beside each of the symbols will represent the axis of rotation. The moment of
inertia of the general system can be written as

I =
1

+
2
− 1 − 2 (B.2)

which, after noting that = - , gives

I =
1

+
2
−
(

1 − 1

)
−
(

2 − 2

)
(B.3)

Each term of equation B.3 will be calculated separately and then combined. First, the
moment of inertia of a disk of radius R with homogeneous density ρ with respect to an axis
through its center is = 2πρR4

4
. In general, a segment of a disk with an angle of θ has

a moment = ρθR4

4
. On the other hand, for the triangles 1 and 2, an element of mass

dm is going to be positioned at r = (x, y), and therefore we can perform the integration

= ρ

∫∫
dA r2 = ρ

∫ d

0

∫ − lx
2d

−−lx
2d

dxdy(x2 + y2) = ρ

(
1

4
ld3 +

1

48
l3d

)
(B.4)

where the distance d is the distance from the right-most vertex of the triangle to the center
of its base, and l is the length of the base at the left. Using the parametric representation
of the circles, we can find the two points at which the disk surfaces intersect (create the
lens ≬) to find that

d1 =
D2 + R2

1 + R2
2

2D
(B.5)

l

2

2

= R2
1 −

(
D2 + R2

1 + R2
2

2D

)
(B.6)

Using B.6, it is possible to find a relationship between the distance D and the interface
length l. Let D̄(l) = D2(l), then D(l) is implicitly defined by

D̄2(l) + D̄(l)(l2 − 2(R2
1 + R2

2) + (R2
1 −R2

2) = 0 (B.7)

Until now, the inertia has been calculated with respect to an axis that passes through the
center of each disk. However, in our model, the disks jointly rotate around their center of
mass. To perform the transformation, we use Steiner’s theorem as

= + m d21

= + m d22

= + m d21
= + m d22
= + m d21
= + m d22
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These expressions all depend on d1 (or on d2 = D−d1) that was found in equation B.6,
which in turn is a function of D(l) defined through equation B.7.

The final ingredient we need is the angles θ1 and θ2 for calculating the disk segments.
This is easily found through trigonometry to be for j = 1, 2

θj = 2 arcsin
l

2Rj

(B.8)

At the start of the section, we mentioned that we suppose that the mass is redistributed
to the disks uniformly when they come into contact, i.e. the radii of the disks stay constant.
The change in density can be expressed as

ρ =
m

A
→ ρ′ =

m + δm

A
=

m

A
+

δm

A
= ρ +

δm

A
(B.9)

The correction to the system’s mass has to come from calculating the mass of the lens
formed by the cells and its area: δm = ρA≬ = ρ(A + A ). The conceptual change in mass

is then expressed as

δm = ρ
2∑

i=1

R2
i

2
(θi − sin θi) (B.10)

Taken together, these results give a full continuous expression for the moment of inertia of a
pair of interpenetrating disks that rotate around their combined centroid. We summarized
the results in figure B.1C, and using the dashed lines, we showed that the perfect circle
with twice the mass, as well as the two-disk system, are special cases of the expression
we have derived in the present appendix. It is interesting to entertain the possibility that
the high circularity of hair cells acquired before their Planar Cell Inversion might be an
energetic optimization to reduce their inertia. We believe this result is a general result for
soft disks and might have a broader applicability.
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2024 (2024).
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[82] E.L. Kozak, J.R. Miranda-Rodŕıguez, A. Borges, K. Dierkes, A. Mineo, F. Pinto-
Teixeira, O. Viader-Llargués, J. Solon, O. Chara und H. López-Schier, Development
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Quantitative videomicroscopy reveals latent control of cell-pair
rotations in vivo
Eva L. Kozak1,*, Jerónimo R. Miranda-Rodrıǵuez1,*, Augusto Borges1,2,3, Kai Dierkes4, Alessandro Mineo4,
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ABSTRACT

Collective cell rotations are widely used during animal organogenesis.
Theoretical and in vitro studies have conceptualized rotating cells as
identical rigid-point objects that stochastically break symmetry to move
monotonously and perpetually within an inert environment. However, it
is unclear whether this notion can be extrapolated to a natural context,
where rotations are ephemeral and heterogeneous cellular cohorts
interact with an active epithelium. In zebrafish neuromasts, nascent
sibling hair cells invert positions by rotating ≤180° around their
geometric center after acquiring different identities via Notch1a-
mediated asymmetric repression of Emx2. Here, we show that this
multicellular rotation is a three-phasic movement that progresses via
coherent homotypic coupling and heterotypic junction remodeling. We
found no correlation between rotations and epithelium-wide cellular
flow or anisotropic resistive forces. Moreover, the Notch/Emx2 status of
the cell dyad does not determine asymmetric interactions with the
surrounding epithelium. Aided by computer modeling, we suggest that
initial stochastic inhomogeneities generate a metastable state that
poises cells to move and spontaneous intercellular coordination of the
resulting instabilities enables persistently directional rotations, whereas
Notch1a-determined symmetry breaking buffers rotational noise.

KEY WORDS: Multicellular rotations, Patterning, Regeneration,
Symmetry breaking, Zebrafish

INTRODUCTION
Collective cell movement is widespread during the formation and
regeneration of organs (Lecaudey et al., 2008; Norden and

Lecaudey, 2019; Dalle Nogare et al., 2020; Founounou et al.,
2021; Alhashem et al., 2022; Hartmann and Mayor, 2022). This
multicellular behavior is controlled at three levels: the onset, the
progression and the conclusion. Each level generates the initial
conditions for the next, and transition periods synchronize multiple
sub- and supra-cellular processes to generate a predictable outcome
(Gómez-Gálvez et al., 2021; Fredberg, 2022). At the extremes, the
coordination of such processes may be deterministic and guided
globally, or stochastic and canalized by local interaction and
feedback between cells (Collinet and Lecuit, 2021; Hartmann and
Mayor, 2022; Wibowo et al., 2011; Mirkovic et al., 2012; Tanner
et al., 2012; Wang et al., 2013; Horne-Badovinac, 2014; Cetera
et al., 2018; Hirata et al., 2018).

Here, we focus on a minimal model of collective cell rotations
involving the positional inversion of just two cells, which was first
described in neuromasts of the zebrafish lateral line (Wibowo et al.,
2011). Neuromasts display largely invariant size and pattern.
They consist of a radial-symmetric epithelium containing
mechanosensory hair cells in the center, and two types of non-
sensory supporting cells forming two outward concentric rings
(Fig. 1A) (Wada and Kawakami, 2015). Hair cells are also
polarized along a single axis across the apical face of the epithelium
(López-Schier and Hudspeth, 2006). Hair cells undergo continuous
renewal without modifying the architecture of the organ (Cruz
et al., 2015; Pinto-Teixeira et al., 2015; Peloggia et al., 2021).
During turnover, hair cells are produced sequentially, in pairs or
dyads, from the mitotic division of facultative unipotent
progenitors (UHCP) that originate from internal supporting cells
(López-Schier and Hudspeth, 2006; Ma et al., 2008; Cruz et al.,
2015; Denans et al., 2019; Thomas and Raible, 2019; Hardy et al.,
2021; Baek et al., 2022). Local lateral-inhibitory signaling via
Notch1a breaks the initial symmetry in nascent sibling hair cells by
repressing the transcription factor Emx2 in one of them (Jacobo
et al., 2019; Kozak et al., 2020). The cell that activates the Notch1a
receptor (Notch-on) loses Emx2 expression, whereas its sibling
(Notch-off ) maintains it. Although this symmetry-breaking
process is deterministic in that it always results in one of the
siblings losing Emx2 expression, it is also stochastic because it is
unpredictable which cell will do so. Concurrently with this step,
around half of the hair-cell pairs rotate once around their geometric
center (Fig. 1B-D and Movie 1) (Wibowo et al., 2011; Mirkovic
et al., 2012).

Notably, cell-pair rotations in vivo resemble the angular
movement of mammalian cells in vitro, which is driven by three
co-occurring processes: intrinsic cell motility and stochastic
symmetry breaking (to initiate movement), strong intercellular
adhesion (enabling dynamic coupling between cells for persistent
directionality) and spatial confinement (so that cells cannot
translocate) (Brangwynne et al., 2000; Huang et al., 2005;
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Camley et al., 2014; Leong, 2013; Li and Sun, 2014; Huang, 2016).
Also, cell-pair rotations in vitro happen nearly always, have no
predictable duration or extent, and do not involve intrinsic
differences between cells or interactions with a surrounding
epithelium. They are monotonous, exhibiting symmetrical
sinusoidal trajectories with almost invariable frequency and
amplitude (Huang et al., 2005). Moreover, theoretical studies have
strongly influenced our thinking about multicellular rotations
(Huang et al., 2005; Camley et al., 2014; Li and Sun, 2014;
Leong, 2013). Yet, the mechanistic overlap between rotating cells ex
vivo and in a natural context remains unknown. Here, we combine
videomicroscopy, experimental perturbations and modeling to

quantitatively characterize cell-pair rotation in vivo, and reveal
previously-overlooked features affecting rotational precision.

RESULTS
Cell-pair rotation in vivo is a discrete movement of nascent
sibling hair cells
We began by acquiring a highly resolving dataset from intravital
videomicroscopy of neuromasts in the posterior lateral line of larval
zebrafish (Pinto-Teixeira et al., 2013). We used specimens
expressing a combination of fluorescent transgenic markers to
identify and visualize every neuromast cell (Haas and Gilmour,
2006; Kindt et al., 2012; López-Schier and Hudspeth, 2006; Steiner

Fig. 1. Inversions are local movements of nascent sibling hair cells. (A) Scheme of a neuromast, depicting an outer ring of mantle cells (red), internal
supporting cells (gray) and central hair cells (light blue) with their axis of planar polarity (dark blue dots). Dashed line indicates the midline of the organ. (B)
Scheme of hair-cell development. Unipotent progenitors (UHCP) divide into two hair cells. Sibling hair cells undergo positional inversion to place Notch-on/
Emx2(−) and Notch-on/Emx2(+) cells on opposite sides of the epithelium. (C) The inversion is an angular movement of at least 90°. (D) Selected frames
from a time-lapse movie of cell-pair inversion in a wild-type neuromast expressing cldnb:EGFP and myo6b:GFP. The timings are relative to the mitotic
division that generates the hair-cell pair. Scale bar: 5 µm. (E) One exemplary hair-cell dyad during an inversion. The position of each cell during the inversion
is depicted relative to the centroid of the pair. Time is color-coded from dark violet to yellow, where 0 is the time immediately after cell division and 400 is the
upper limit of the inversion. (F) Position of the hair-cell progenitor at the time of its mitotic division. The color of the dots indicates whether the resulting hair-
cell pair inverts (red) or not (blue). The center was defined as the position of all pre-existing hair cells in the neuromast. Side panels show the density of
points along the dorsoventral (D-V) and anteroposterior (A-P) axes of the epithelium. It shows 22 inverting and 18 non-inverting hair-cell pairs from different
neuromasts in 22 specimens. (G) Boxplots showing the Pearson correlation coefficient for the movement of cells in the neuromast along the A-P axis. Each
point represents the cells during a rotation. Box plots show median values (middle bars) and first (Q1) to third (Q3) interquartile ranges (boxes); upper
whisker is either 1.5× the interquartile range or the maximum value (whichever is the smallest) and lower whisker is either 1.5× the interquartile range or the
minimum value (whichever is the biggest). For each neuromast, the movement was compared between the rotating hair cells (HC); the rotating hair cells and
all other cells; and between all other cells. n=9 independent neuromasts from N=9 different larvae.
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et al., 2014). To quantify rotations at high resolution, we first
defined the angle between the axis connecting the center of each cell
of nascent pairs and the horizontal axis of the neuromast, which
invariably runs parallel to the anteroposterior axis of the animal’s
body (Fig. 1C). Sibling hair cells invert positions by moving in
circular arcs around their geometric center (Fig. 1E). We used a
strict definition of inversion as a rotation of at least 90° of the line
connecting the center of both cells at the time of their birth. Angular
movements lower than 90° were considered local rearrangements
rather than inversions. We confirmed results from previous studies,
that ∼50% of hair-cell dyads inverted, whereas the other half
underwent transient rocking movements that did not result in a net
positional exchange between the cells (Wibowo et al., 2011;
Mirkovic et al., 2012; Ohta et al., 2020). We also found a similar
frequency of inverting and stationary cell pairs in horizontal and
vertical neuromasts (56.3% and 47.4%, respectively).
We did not see any significant bias from these rules when

comparing inverting cell pairs at different positions along the
orthogonal axes of the neuromast, suggesting that the localization of
the cell-pair within the organ does not determine or tune rotations
(Fig. 1F). Moreover, we never observed hair cells translocating
across the tissue, indicating the inversions are a purely local
collective movement. To directly test whether the rotation is an
active process autonomous to the inverting cell pairs or otherwise
driven by the action of neighboring cells, we assessed the movement
of every cell across the entire epithelium (Fig. S1A). We segmented
cellular boundaries from live imaging of neuromasts expressing a
plasma-membrane targeted EGFP. Then, we quantified the
displacement of each cell using particle tracking while keeping
the center of the neuromast spatially fixed (Movie 2). This allowed
us to compute the Pearson correlation coefficient R for the
trajectories in nine independent datasets. We found that the
rotation of hair-cell pairs is highly anticorrelated (R=−0.77),
reflecting local translocation of cells. This was expected given that
the trajectory of each hair cell is almost perfectly mirror-
symmetric relative to the centroid of the cell pair (Fig. 1E).
However, we found that epithelium-wide cellular movement
is uncorrelated (R=0.14). This means that the movement of any
one cell did not correlate with that of any other cell taken at
random, indicating no coherent epithelium-wide cellular flow.
Importantly, the movement of the rotating cell pairs is
uncorrelated with the rest of the epithelium (R=0.07), indicating
that rotations are not driven by any fixed anisotropic force
(Fig. 1G). These data further reinforce the conclusion that cell-pair
inversion is an autonomous active process of physically confined
nascent hair cells.

Cell-pair inversion is triphasic and characterized by
temporally correlated strong homotypic contacts and
coordinated heterotypic junctional remodeling
Evolving changes in cell shape as well as junctional interphase
length and shape indicate the dynamics of forces acting upon cells.
This includes intrinsic intra- and inter-cellular forces as well
extrinsic forces from neighboring cells (Maître and Heisenberg,
2011; Yap et al., 2018; Lenne et al., 2021). Therefore, we decided
to investigate the above morphological features during the
rotations. To this end, we established a generalizable standard to
benchmark this and future studies by continuously measuring the
positional angle of rotating cell pairs and computing the absolute
cumulative angle over time. Using a four-parameter logistic
function that provided a good fit for the empirical data, we found
that cell-pair rotations can be clearly split into three phases with

unique characteristics. Phase 1 is the period between the birth of
the hair-cell pair and the onset of rotation, Phase 2 is the time
where the main angular movement occurs and Phase 3 follows the
end of active rotation until the cell pair reaches its final position
(Fig. 2A).

The three phases differ in several important ways. In rotating cell
pairs, the distance between the center of each cell remains constant
during Phase 1, drops significantly during Phase 2 and then
increases again in Phase 3 (Fig. 2B). In Phase 1, the cumulative
angle of movement stays close to 0. Phase 2 starts with a rapid
change in the cumulative angle, ending within a maximal rotation of
180° at Phase 3. Fig. 2C shows one example of a rotating pair.
During Phase 2, the circularity of the cell pair is low in Phase 1, high
throughout Phase 2, and decreases sharply at Phase 3 (Fig. 2D),
revealing that both cells deform in a correlated manner (Fig. S1B).
Coincidently, there is a conspicuously fast change of the homotypic
interphase (common junction) between the inverting cells, growing
to a maximum during Phase 2, and shrinking again in Phase 3
(Fig. 2E). Also, the variation in circularity of the cell pair and of the
length of their common junction correlate during all three phases
(Fig. 2D-F; Fig. S1C). Importantly, none of these variations were
observed in non-inverting pairs (Fig. 2F; Fig. S1D).

Rotating cell pairs in vitro display an invariant sigmoidal
common junction (previously called ‘Yin-Yang shape’ in various
in vitro and theoretical studies) (Brangwynne et al., 2000; Huang
et al., 2005; Leong, 2013; Li and Sun, 2014). Notably, in vitro, the
polarity of the sigmoid and the handedness of the rotations are
always correlated, in that cell pairs rotate anti-clockwise upon S-
shaped junctions and clockwise when junctions are Ƨ-shaped
(Huang et al., 2005). This correlation has been explained by the
effect of a front-end lamellipodium of one cell wrapping the trailing
edge of the other cell (Brangwynne et al., 2000), which led to the
conclusion that cells neither push, nor pull one another during
rotations (Brangwynne et al., 2000). However, theoretical analyses
concluded that the cells must employ rear pull during rotations
(Camley et al., 2014; Leong, 2013). We decided to explore this
provocative idea of rotating cells in vivo by classifying their
homotypic interphase into four categories (Fig. 3A). Two of them
are non-chiral: linear shape (I), and curved shape (C). Note that the
C mirrored junction is non chiral because it can be rotated back:
Ɔ⇔C. The remaining two are chiral (S and Ƨ) because they cannot
be rotated into one other. By measuring interphase across focal
planes in Phase 2, we found that in the majority of the cases they are
symmetric and linear (I-shaped). Although we observed some S and
Ƨ shapes, we found no correlation between their handedness and the
direction of rotation (Fig. 3B; Movie 3).

Notch1a and Emx2 differentially affect cell-pair rotations
The above results led us to hypothesize that sibling hair cells interact
symmetrically with the adjacent epithelial cells. This is intriguing
given that sibling hair cells are distinct from one another by virtue of
their asymmetric Notch/Emx2 status (Jiang et al., 2017; Jacobo
et al., 2019; Kozak et al., 2020; Erzberger et al., 2020; Kindt et al.,
2021). Therefore, we searched for any consistent difference between
sibling cells that may indicate that this molecular asymmetry is
mechanistically linked to the rotation. To this end, we employed
cellular- and temporal-resolved tracking to obtain a topological and
dynamic representation of rotations (Movie 2). We extrapolated
junctional dynamics by quantifying the difference in the number of
neighbors of each hair cell at consecutive timepoints (Fig. 3C).
Importantly, because the final position of each hair cell will reveal
their Notch/Emx2 status, we could also retrospectively infer
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whether a cell is Notch-off/Emx2(+) or Notch-on/Emx2(−) before
the onset of inversions in Phase 1.We hypothesized that, if neighbor
exchange over time was symmetric, when one hair cell loses a
neighbor it immediately recovers by gaining a new neighbor and
vice versa. This is true even if the exchange of neighbors were not
simultaneously experienced by both hair cells. Symmetry means
that the difference between the number of neighboring cells that the
rotating siblings will have is always zero. Any departure from zero
indicates that the contact of Notch-off/Emx2(+) and Notch-on/
Emx2(−) cells with neighboring epithelial cells is consistently
different (that is, invariably asymmetric). Of note, cellular
proliferation and death are negligible during the recording period,
effectively ruling out neighbor gain or loss via changes in cell
number. As expected, we found that the difference in the number of
neighbors is zero for non-inverting cell pairs because they do not
exchange neighbors (Fig. 3D). For inverting pairs, the accumulated
sum diverged from zero from birth, indicating that one of the hair
cells (that we call ‘popular’) consistently has more neighbors than
its sibling (Fig. 3D), which is maintained throughout the rotation.
Importantly, however, the identity of the popular cell could not be
predicted from the dynamic data, indicating that the Notch/Emx2
status of a cell does not correlate with its popularity. These results
led us to hypothesize that Notch/Emx2 asymmetry does not
determine rotations, and that neither cell drives the movement.
Importantly, this idea is in partial disagreement with the current
model, which states that Emx2 is dispensable for rotations, whereas
Notch1a is essential (Ohta et al., 2020; Erzberger et al., 2020).

Therefore, we decided to directly test it using self-consistent
experimental conditions, data acquisition and analysis. We recorded
rotations in fish carrying homozygous loss-of-function mutations in
Emx2 (Movie 4) or Notch1a (Movie 5). We first confirmed that
rotations happen at normal frequency in emx2 mutants (Fig. 3E)
(Ohta et al., 2020). However, they are marginally less frequent in
notch1amutants (Fig. 3E). Put together, these data indicate that cell-
pair rotation is characterized by co-occurring increase of hair-cell
homotypic interactions and coherent heterotypic junction
remodeling. Furthermore, the Notch-off/Emx2(+) and Notch-on/
Emx2(−) cells participate in the rotation in an indistinguishable
manner.

Intrigued by the previous results, we decided to perform a more
detailed quantitative analysis of rotations across the three phases,
comparing wild-type specimens with those carrying loss-of-
function mutations in Emx2 and Notch1a (Fig. S1E-G). We found
that the rotations in the wild type were approximately equally
frequent in the clockwise and anti-clockwise directions. Similarly,
emx2 and notch1a mutants had negligible handedness bias
(Fig. 4A). Following this, we fitted a sigmoid function to each
rotating trajectory with respect to time to unbiasedly define the
boundaries between the three phases (Fig. 2A; Fig. S1H-J). The
onset of the active rotation phase (start of Phase 2) was typically
∼100 min after the birth of the hair cells, but with noticeable
variability. We found that the start of Phase 2 was marginally
delayed in emx2 mutants, but significantly accelerated in notch1a
mutants (Fig. 4B). The duration of Phase 2, however, did not differ

Fig. 2. Rotations are characterized by strong
homotypic cell-cell interactions. (A) Scheme of an
inversion (top) and fitting a four-parameter logistic
function to the empiric data of the absolute cumulative
angles (bottom), revealing the three phases of the
inversion process. Green dot represents the transition
between Phases 1 and 2, and the blue dot between
Phases 2 and 3. These transitions are called onset
and termination, respectively. (B) Distance between
sibling hair cells (HC) during the three phases. Sibling
cells are closest during Phase 2. (C) Time-resolved
cumulative angular change (top) for a representative
cell pair from Time 0. The two dashed vertical lines
mark the beginning and end of the rotation. A negative
angle change indicates a clockwise direction of
rotation. (D) Circularity of the same cell pair, which,
taken as a unit, reaches maximal circularity during
Phase 2. The onset and termination of inversion are
marked by dashed vertical lines. (E) Length of the
junction between hair cell pairs, which is highest
during Phase 2. (F) Comparison of mean circularity for
inverting and non-inverting cell pairs during the three
phases. Phase 2 is characterized by a significantly
higher circularity than Phase 1, and the circularity
drops dramatically in Phase 3. The circularity for non-
inverting pairs is comparable to the Phase 3 of
inverting pairs. Trivially, for non-inverting cells there is
a single phase. **P<0.01, Wilcoxon rank sum test. Box
plots show median values (middle bars) and first (Q1)
to third (Q3) interquartile ranges (boxes); upper
whisker is either 1.5× the interquartile range or the
maximum value (whichever is the smallest) and lower
whisker is either 1.5× the interquartile range or the
minimum value (whichever is the biggest). Each point
represents the cells during a rotation.
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between the three genotypes (Fig. 4C). As a consequence, cell-pairs
in notch1a mutants arrived at Phase 3 earlier than in wild-type and
emx2 mutants (Fig. 4D).

Effect of Notch/Emx2 asymmetry on the accuracy and
precision of rotations
Tissue patterning is affected by both the accuracy and the precision
of underlying dynamical processes (Mestek Boukhibar and
Barkoulas, 2016). Importantly, although precision and accuracy
are often used interchangeably, they represent non-trivial different
parameters. A precise process displays a tight distribution of data
points, regardless of the mean value. In other words, it has low
variance. By contrast, an accurate process has a specific and
consistent mean value, regardless of the actual variance of data
points. It follows that loss of accuracy leads to an invariant
scattering of data but with a significant deviation from mean values
(akin to consistent but non-noisy changes), whereas a loss of
precision will show higher scattering of data points but with non-
significant changes in the mean values (akin to a noisier
distribution). This distinction is important because it allows us to

better compare wild-type, emx2 and notch1a mutant specimens, to
shed light on the aspects of the inversion process that are influenced
by genetically-determined cell identity or cell-pair asymmetry. We
first focused on the transition between Phases 2 and 3. Namely,
whether cell pairs arrive at their final position in one single
movement or whether they overshoot and then re-align to the main
axis of the organ by either a single corrective movement or multiple
approximating rocking movements. As a measure of overshoot, we
subtracted the final turn (the final absolute cumulative angle) from
the maximal turn (the maximal absolute cumulative angle) of the
cell pair. We saw rare events of cell pairs performing a double
inversion or reversals, arresting in their original position. These
exceptional cases were equally frequent in all three genotypes
(Fig. 5A,B). In most cases, the values of the maximal turn and the
final turn were very close (Fig. 5B).

When measuring thewhole angular movement, it became evident
that rotations are not strictly monotonous because they include small-
scale and recurrent swings, which we call ‘wobbling’. To quantify
wobbling, we estimated the arc-length by summing the absolute
angular changes. We found high wobbling in emx2mutants, and even

Fig. 3. Notch1a/Emx2 asymmetry is dispensable for cell-pair rotations. (A) Illustration of the cell-cell interfaces, shapes of which are classified as curved
(C), linear (I), S or Ƨ shaped. Because an Ƨ cannot be rotated into an S, a distinction is made of the rotation direction. (B) The frequency of distinct interface
shapes during inversion. The most common shape is a straight interface (63.41%), followed by curved (21.31%) and then S-shaped curves (S: 6.57% and Ƨ:
8.7%). No shape consistently correlated with the chirality of rotation. (C) Scheme of the topological interactions between all epithelial cells during the
inversion of a cell pair (representing one empirical example). Each circle is an individual cell. The area of each circle is proportional to the area of real cells
from microscopy images. Straight lines (edges) represent a physical contact between any two cells. Cells are considered neighbors if there is an edge
connecting them. A pair of hair cells is colored blue and orange. Neighboring cells are colored light blue if they connect only to the blue sibling in a given
frame; yellow if they only connect to the other sibling; or green if they are connected to both. (D) Absolute cumulative difference in the number of neighbors
for each cell of inverting (blue) and non-inverting (red) pairs. The difference of neighbors at a given time is the number of neighbors of Cell A minus the
number of neighbors of Cell B. The cumulative difference at any given time T is the sum of the neighbor differences from time 1 to time N. Therefore, if there
is no cell with a constantly higher number of neighbors over time, the cumulative difference remains close to zero. However, if either one of the cells
constantly has more neighbors, over time the absolute cumulative difference will go up. Vertical dashed line and gray shaded areas mark the median and
standard deviation of the Phase 2I for the inverting cells in this sample. Shown is the LOESS smoothing of inverting and non-inverting trajectories. (E)
Fraction of hair-cell pairs that invert in wild type, emx2 mutant and notch1a mutant larvae. n (number of cell pairs)=71 from wild type, 42 from emx2 mutant,
22 from notch1a mutant larvae.
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higher in notch1amutants (Fig. 5C). We further calculated noise as a
related but unitless quantity of regularity, defined as the arc length of
each trajectory normalized by the shortest path from starting to final
position. The distributions for each experimental condition were
statistically different (Fig. 5D), in that rotations were noisy in emx2
mutants, and much noisier in notch1a mutants.
Next, we compared the initial and final positional angles (Phase 1

versus Phase 3). The initial angle corresponds to the position of the
hair cells immediately after they are born. In the wild type, hair cells
arise with a full spectrum of initial angles, but through rotations, the
distribution of final angles becomes remarkably biphasic: either
lower than 50° or higher than 150° (Fig. 6A). Note that a positional
angle of either 0° or 180° means a perfect alignment with the
anteroposterior axis of the neuromast. We speculated that the
significant angular variability of Phase 1 (initiation) may be
buffered through Phase 2 (active rotation) to reach a remarkably
invariable alignment of the cells in Phase 3 (termination). The initial
alignment of the cell pairs influences rotation handedness in order to
undergo the lowest possible angular change (Fig. 6B). In other words,
inverting cell pairs arising at 0°will tend to rotate 180°, whereas cells
arising, for example at 30°, will rotate 150° rather than 210° in the
opposite direction. We found the average final turn of rotating cell
pairs is indistinguishable in wild type and emx2mutants, but larger in
notch1a mutants (Fig. 6C). However, the final angle distributions in
bothmutants were significantly different from thewild type (Fig. 6D).

A computer model of the inversion suggests that
intercellular asymmetry simultaneously underlies rotational
and positional precision
Our understanding of the mechanism governing the robustness of
cell-pair inversions in vitro has enormously benefited from
accompanying the experimental studies with solid theory.
However, a theoretical framework of inversions in vivo has not

yet been established. To remedy this shortcoming, we decided to
develop a naïve computational model of inversions in vivo. We
emphasized the rotational wobbling during Phase 2 and also the
termination that corresponds to Phase 3. The reason behind this
choice is that these events represent the main dynamic process of the
inversion and are the ones experiencing the most significant
deviations between the three genotypes analyzed in this study. First,
we simulated the cell dyad as two particles that can freely rotate
within a single plane about an orthogonal axis (Fig. 7A,B). This is
appropriate because there is no evidence of anything preventing
rotations once they start, and we hardly ever witnessed any off-place
inversion. Of note, it is equivalent to having the rotational angle with
respect to the x-axis as the only degree of freedom. Moreover, the x-
axis was set to coincidewith the anatomical anteroposterior axis of the
neuromast. Because experimental data show that the final angle of
wild-type cells falls within a narrow distribution (Fig. 6D), we
reasoned that certain locations are strongly preferred. Therefore, we
introduced attractive potentials into the model. Specifically, each cell
is affected by an attractive potential modeled as a Gaussian well at a
certain position in the circle, the depth ofwhich represents the strength
of the attraction. As our results indicate that only the inverting cell pair
has a coordinated movement during the inversion process, we
assumed that the role of the neighboring cells is to only confine the
cell pair, with no active participation. Apart from the attraction wells,
each cell of the pair interacts with each other through a soft sphere
repulsion term, with an effective radius such that the cells are
permanently in contact with one another, representing an effective
spatial exclusion.

First, we tested a model in which each cell has its respective
Gaussian well on the opposite sides of its location at the start of the
inversion (Fig. 7A). Effectively, this means that a cell that appears in
the anterior pole will have its minima in the posterior pole and vice
versa. As each cell has its corresponding attractor in the opposite

Fig. 4. Loss of Notch1a but not Emx2 impacts
cell-pair rotations. (A) Handedness of cell-pair
inversions in wild-type, emx2 and notch1a mutant
larvae. (B) Comparison of the onset (duration of
Phase 1) of inverting cell pairs from wild type, emx2
and notch1a mutants. (C) Comparison of the rotation
duration (Phase 2) of inverting cell-pairs from wild-
type, emx2 mutant and notch1a mutant larvae.
(D) Comparison of the termination time (Start of
Phase 3) of inverting cell pairs from wild-type, emx2
mutant and notch1a mutant larvae. (A-D) n (number
of cell pairs)=40 from wild-type, 23 from emx2
mutant, 9 from notch1a mutant larvae. Statistics were
calculated using an unpaired two-sided Student’s
t-test. Box plots show median values (middle bars)
and first (Q1) to third (Q3) interquartile ranges
(boxes); upper whisker is either 1.5× the interquartile
range or the maximum value (whichever is the
smallest) and lower whisker is either 1.5× the
interquartile range or the minimum value (whichever
is the biggest). Each point represents the cells during
a rotation.
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side of the anteroposterior (A-P) axis, we call this model
asymmetrical. We found that the rotation that we modeled in
silico qualitatively matches the empirical data from the wild type, in
that the cell pair performs a stochastic rotation until each cell reaches
its respective well (Fig. 7C; Movie 6). Notably, we also observed
that if only one of the cells has an attractive well, the resulting
dynamics are indistinguishable from the case where both cells have
an attractive well (Movie 7). Specifically, in this case, one of the
cells will be directed towards the minima, driving the inversion,
whereas the other cell will passively move due to the spatial
exclusion defined above. Importantly, the Notch1a/Emx2 identity
of the ‘driving’ cell is irrelevant. Our experimental data show that
the cell-pair rotations take place also in emx2 and notch1a mutants,
in which the symmetry of Emx2 expression is not broken.
Accordingly, we also generated a symmetrical model, in which

both cells have attractive wells on the same side of the circle and
compete to arrive at it (Fig. 7B). In this model, the cells undergo
rotation until they reach a compromise between their mutual
exclusion and the attraction to the minimum of the wells (Fig. 7D;
Movie 8). Trivially, the particular case in which one of the wells has
a depth of zero matches the one-well situation (Movie 7). After
proper parametrization (see Materials and Methods), we simulated
our model and quantified the final angle achieved by the cell pairs
and the noise of the angular trajectory, defined as the arc length of
each trajectory normalized by the shortest path from starting to final
position.We found that the asymmetrical model is in best agreement
with the wild-type experimental data (Fig. 7E). Most importantly,

we found that in the symmetrical model the final angle strongly
depends on the relative depth between the wells, but not on the
absolute strength of attraction. Thus, when one of the wells has half
the depth of the other, the final angle has a deviation of ∼60° with
respect to the x-axis (Fig. 7F). We also saw that noise in the
asymmetrical model was consistently lower than in the symmetrical
model (Fig. 7G). Symmetry in the cell attractors results in more
variability in the final angle (Fig. 7E,F), as well as higher wobbling
(noisier dynamics) (Fig. 7C versus D, and Fig. 7G).

DISCUSSION
Much of our understanding of multicellular rotations derives from
experimental and theoretical studies of cells in vitro (Brangwynne
et al., 2000; Huang et al., 2005; Tseng et al., 2012; Leong, 2013; Li
and Sun, 2014; Camley et al., 2014; Segerer et al., 2015; Camley
and Rappel, 2017; Brückner et al., 2021). Huang and colleagues
proposed three essential conditions for cell-cohort rotation in vitro:
(1) cells must be in a confined space; (2) cells should have a long-
persistence time of intrinsic motility; (3) the cell dyad must be
coupled by intercellular adhesion (Huang et al., 2005). Leong used
interphase morphology and rotation chirality to introduce a particle-
dynamics model to explain why dynamic coupling (the third
condition) is essential for rotations (Leong, 2013). Along the same
line, Camley and colleagues introduced a mean-field model to
identify conditions under which cells would initiate a rotation
(Camley et al., 2014). They proposed a confined system where each
cell has a polarity defined by the evolution of a chemical signal.

Fig. 5. Mutations in notch1a impact the
precision of the inversion. (A) Overshooting
versus final turn in the rotations of cell pairs from
wild type, emx2 and notch1a mutants. We defined
overshooting as the difference between the
maximal turn and the final turn (absolute
cumulative angle). (B) The maximal and final turns
of >90° and >180° for cell pairs from wild-type,
emx2 mutant and notch1a mutant larvae. The
sketches below illustrate the definition of
categories with an example. (C) Comparison of
cell pair wobbling and final turn. Wobbling was
defined as the cumulative angle changes minus
final turn. (D) Noise of rotating cell pairs was
calculated as the arc length of each trajectory
normalized by the shortest path from starting
position to final position. Statistics were calculated
using the Anderson-Darling test. (A-D) n (number
of cell pairs)=71 from wild-type, 42 from emx2
mutant, 22 from notch1a mutant larvae. Box plots
show median values (middle bars) and first (Q1) to
third (Q3) interquartile ranges (boxes); upper
whisker is either 1.5× the interquartile range or the
maximum value (whichever is the smallest) and
lower whisker is either 1.5× the interquartile range
or the minimum value (whichever is the biggest).
Each point represents the cells during a rotation.

7

RESEARCH ARTICLE Development (2023) 150, dev200975. doi:10.1242/dev.200975

D
E
V
E
LO

P
M

E
N
T



Notwithstanding these insightful theoretical milestones, the
generality and relevance of their conclusions to cells rotating in
their natural context has remained unknown. In this study, we fill
this gap by focusing on a minimal model of collective cell
movement in vivo involving the coherent rotation of two cells.
Combining experiment, quantitative videomicroscopy and
computer simulation, we establish the first model underlying the
emergence and coherence of cell-pair rotations in vivo (Fig. 8).
Previous studies have suggested that Notch1a-mediated

symmetry breaking via Emx2 is necessary for cell-pair inversions
in vivo (Erzberger et al., 2020). Yet, independent work that forced
symmetrical expression of the Notch1a target Emx2 showed
marginal non-significant effects on rotations (Ohta et al., 2020).
We interpreted this disagreement as suggesting that either
genetically-determined cell-pair asymmetry via Notch1a/Emx2
and cell-pair inversions are epiphenomena, or that Notch1a
controls rotations independently of its only known transcriptional
target in neuromasts (Jacobo et al., 2019; Kozak et al., 2020). To
address this discrepancy, we used a novel approach to quantitatively
analyze the inversion process. We confirmed the predicted
dispensability of Emx2 but, unexpectedly, found that ∼40% of
hair-cell pairs inverted in specimens lacking Notch1a. We further
demonstrated that neither Emx2 or Notch1a activity, nor Notch1a/
Emx2 asymmetry between sibling cells, are essential for cell-pair
rotations in vivo. These results allow us to consider various
possibilities to explain the discrepancy of previous conclusions.
First, neomorphic or gain-of-function mutant alleles in the genes

under study may produce an atypical function that affects rotations
(Guichard et al., 2002; Langdon et al., 2006), which may have led to
the erroneous conclusion that Notch1a activity is essential for
rotations. Second, passenger mutations are not uncommon across
the genome of the zebrafish strains used in nearly every laboratory.
Because previous studies used a single Notch1a mutant allele, the
molecular profile of which remains unknown, and no rescue
experiments were reported, this possibility cannot be overlooked
(Erzberger et al., 2020). To solve these issues, we have combined
unambiguous high-resolution quantitative determination of
inversions, comprehensive statistical tests and two independently-
generated notch1a mutant alleles, the molecular lesion of which
has been well characterized, and from which we obtained an
indistinguishable phenotype (Kozak et al., 2020). We found
marginal statistical differences in rotation frequency between all
three genotypes. Our results are unlikely to result from partial
penetrance of the two notch1a mutant alleles that we have used
because both had a very strong effect on other previously well-
characterized phenotypes: neuromast epithelial bipolarity and
somitogenesis (Kozak et al., 2020). Unexpectedly, however, we
found that the loss of Notch1a produces noisier rotations without
changes in mean values. This suggests that neither Notch1a activity
nor Notch1a-mediated asymmetry impact the active or resistive forces
that underlie rotations, and reveals that bothNotch(on) andNotch(off)
hair cells participate equally in the movement. In addition, although
rotating cells consistently interact asymmetrically with the
surrounding epithelium, their Notch/Emx2 status does not correlate

Fig. 6. Cell-pair asymmetry affects the precision and accuracy of Phase 3. (A) Relationship between the final and initial angles. The initial angle is the
positional angle of the cell pair immediately after the division. The final angle is where cells come to rest (regardless of whether they have rotated). Note that
both angles were normalized to 0-180° (from 0-360°). (B) Relationship between the initial angle and the final turn of cell pairs of wild type, emx2 mutant and
notch1a mutants. Note the initial angle was normalized to 0-180° (from 0-360°). (C) Comparison of the final turn of cell pairs from wild type, emx2 mutant and
notch1a mutant larvae. Statistics were calculated using an unpaired two-sided Student’s t-test. Box plots show median values (middle bars) and first (Q1) to
third (Q3) interquartile ranges (boxes); upper whisker is either 1.5× the interquartile range or the maximum value (whichever is the smallest) and lower
whisker is either 1.5× the interquartile range or the minimum value (whichever is the biggest). Each point represents the cells during a rotation. (D) Final
angle of cell pairs from wild type, emx2 and notch1a mutants. The difference in the distribution of final angles from wild type and the two mutants are
statistically significant (P<0.05), Statistics were calculated using a two sample Kolmogorov–Smirnov test (P=0.004 for wild type and emx2 mutant, and
P=0.01 for wild type and notch1a mutant). (A-D) n (number of cell pairs)=71 from wild type, 42 from emx2 mutant, 22 from notch1a mutants.
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with this asymmetry. Finally, the loss of Emx2 or Notch1a did not
affect the speed of the rotation. Therefore, we conclude that Notch1a
is not essential for inversions, and that both cells participate equally in
the angularmovement.We envision that it is not the action of Notch1a
itself, but instead that of Notch1a-mediated cell-pair asymmetry
which impacts rotational precision by generating a slight but
persistent bias in microscopic dynamics. This leads to an increase
in macroscopic coordination, with the consequent reduction of
dynamic noise. Importantly, these findings reveal unanticipated latent
control of rotational precision in vivo.
Moreover, we investigated the extent to which cell-pair inversion

in vivo is a result of non-autonomous forces. We found no
correlation between cell-pair rotations and epithelium-wide cellular
flow, indicating that there are no anisotropic resistive forces from the

surrounding epithelium. Alternatively, if anisotropic forces exist,
they are not stably oriented (Yap et al., 2018; Bodor et al., 2020). We
found that Phase 1 is unpredictable and highly variable, and that the
onset of Phase 2 is very fast, strongly suggesting that Phase 1 is
marked by instability. The dynamics of Phase 2 have low variability
across the arc described by the cell pair. Although wobbling is
noticeable, the rotational movement is persistently directional.
Inertia is unlikely to explain persistence given the extremely low
Reynolds numbers of biological tissues (Hakim and Silberzan,
2017). Instead, we speculate that directionality is driven by a ‘leaky’
ratchet mechanism that allows persistence despite wobbling
(Caballero et al., 2020). Under this scenario, persistently directional
rotations will emerge by spontaneous self-generating reciprocity
between cells in physical confinement. This is further supported by

Fig. 7. Computational modeling of cell-pair
inversion. (A,B) Sketch of the two-cell
computational model. Each cell freely rotates around
a circle of a fixed radius, with its angle with respect
to the x-axis (representing the A-P axis) as the
degree of freedom for each cell. The arrows in each
cell indicate the direction as +1 or −1 for anti-
clockwise and clockwise movement, respectively.
Each cell is attracted to one and only one Gaussian
well. The depth of each well determines the strength
with which its corresponding cell is attracted. The
depth of one well can be different from the other.
(A) In the asymmetrical model both cells have their
attractive wells on opposite sides of the A-P axis.
(B) In the symmetrical model both attractive wells lie
on one side of the system, leading to a competition.
(C,D) Two typical trajectories of the inverting pair in
cumulative angle, as defined in Fig. 2C, for the
asymmetrical and symmetrical model, respectively.
The background colors indicate the phases of the
process: blue (Phase 1), orange (Phase 2), green
(Phase 3). (E) Distribution of final angles predicted
by both models. Well depths are 0 and 50 (relative
well depth=0) for the asymmetric model, and 50 and
20 (relative well depth=0.4) for the asymmetric
model. (F,G) The final angle (F) and the noise
(G) predicted by the asymmetric (symmetric) model
are robust (sensitive) against the relative well depth.
The depth of the reference well was fixed at 50 in
these simulations. Asymmetric and symmetric
models are represented in blue and red,
respectively. Box plots show median values (middle
bars) and first (Q1) to third (Q3) interquartile ranges
(boxes); upper whisker is either 1.5× the
interquartile range or the maximum value (whichever
is the smallest) and lower whisker is either 1.5× the
interquartile range or the minimum value (whichever
is the biggest).
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the observation that the interphase between inverting cells is
symmetric and linear (I-shaped) in the majority of the cases.
Although we did find some S and Ƨ shapes, their handedness did
not correlate with the direction of the rotation. This suggests that
rotating cells in vivo do not exert consistent pulling or pushing forces
upon one another. Therefore, rotating cell pairs in neuromasts may
represent a vertebrate example of ‘contact following’, a mechanism
that has been put forward to explain the coherent motion of
Dictyostelium cells when they form circular rotating cohorts
(Umeda and Inouye, 2002).
The molecular mechanism governing the extent (discontinuity)

of the rotation (Phase 3) remains enigmatic. However, we also used
a naïve computational model to advance on this question. We
generated two models, called symmetrical and asymmetrical. Both
models include a Gaussian well of minimal energy on the opposite
sides of the location of each cell of the dyad at the start of the
inversion process. However, in the asymmetrical model each cell
has its corresponding attractor in the opposite side of the A-P axis
of the neuromast. In the symmetrical model, both cells have
attractive wells on the same side of the neuromast and compete to

arrive at it. The symmetrical model best explains the experimental
results of emx2 and notch1a mutants, by assuming a different
relative affinity for each set of potentials. By contrast, the
asymmetrical model better recapitulates the robustness and final
positions of the wild-type scenario. Hence, our theoretical
framework suggests that the relative asymmetry of the cell
attractors is the crucial element that underlies the robustness of
the inversion process in vivo. Moreover, by testing models that
recapitulate empirical data, we suggest that rotational movement
will cease once the two-cell system reaches a low energy state
(higher stability). Therefore, movement ceases when a ‘potential
well’ or local minimum of potential energy exists, towards which
the system will invariably and inevitably converge. This idea also
explains another outstanding question: why do half of the cell
dyads never rotate? Our model suggests that this occurs because a
stable state takes hold before the coordination of local instabilities
that leads to rotation can take place. Importantly, this argument
would imply that the loss of Notch1a may not necessarily
accelerate Phase 1 as we stated above, but simply prevent the
late-onset rotations from taking place, coincidently skewing the

Fig. 8. A model of cell-pair rotation in vivo. Overview of cell-pair inversion process summarizing the key elements of the inversions in wild type on the left,
and stating major differences occurring in the notch1a−/− and emx2−/− larvae on the right. The precision of the angular movement in vivo approaches that of
cells in vitro. Phase 1 starts immediately after division of the UHCP, is characterized by a coordinated shape of the cells and expansion of the homotypic
bond. Phase 2 marks the maximum of circularity of the dyad, the length of the homotypic bond and of angular velocity. Mutant rotations are characterized by
significant wobbling, denoted by double-headed arrows. A computational model recapitulates this dynamic difference just by assuming that the minima of
energy potentials are either symmetric or asymmetric (green and blue curves represent the Gaussian wells to which minima the respective cells are attracted
in our computational model). In Phase 3 the angle between the cells and the A-P axis (blue lines) is 0 with high accuracy and precision but it is misaligned in
mutants. The symmetric and asymmetric models can also explain these differences.
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onset towards lower values and decreasing the frequency of
inversions.
We conclude that dyads of genetically equivalent cells can rotate

if they are in a metastable state during which they experience
persistent instabilities that enable them to move. A co-occurring
spontaneous coordination of unbiased cellular motion would initiate
rotations, whereas coherent homotypic interactions and heterotypic
junction remodeling will enable directional persistence. Notch1a-
mediated symmetry breaking between sibling cells acts as a
stabilizer of the rotation. Our theoretical framework is important
because it also suggests that relative asymmetry, rather than absolute
attractiveness of potential wells, is the crucial element that underlies
the robustness of the inversion process. This study exemplifies the
power of combining high-resolution quantitative data with
computational modeling to further understand the relationship
between stochastic and deterministic processes underlying
multicellular dynamics in vivo.

MATERIALS AND METHODS
Zebrafish lines and husbandry
Zebrafish larvae (Danio rerio) were kept under standard conditions at
28.5°C. The transgenic lines myo6b:β-actin-GFP (Kindt et al., 2012) and
Tg[−8.0cldnb:Lyn-EGFP] (Haas and Gilmour, 2006), and the emx2LOF
mutant line (Jiang et al., 2017) have been previously described. Notch1a
CRISPR mutagenesis has been described in Kozak et al. (2020). We
recovered two indel alleles hzm17 and hzm18. hzm17 is an indel disrupting
the notch1a ORF at exon 16 and is kept in the myo6b:β-actin-GFP
transgenic background. hzm18 is an indel causing the loss of part of exon 3
of notch1a and is kept in a myo6b:β-actin-GFP; claudnb:lyn-EGFP double
transgenic background. Experiments were carried out either by crossing
hzm17 to hzm18 or in-crossing hzm18.

Imaging, image processing and data extraction
The time-lapse movies were generated using 2-3 days postfertilization
MS222-anesthetized larvae mounted in 1% low-melting point agarose in a
glass-bottom Petri dish. Up to five larvae were imaged simultaneously
using a Zeiss custom-built inverted spinning-disc confocal microscope
with a 63× water-immersion objective. For each stage position, stacks of
16-20 z-slices 1 µm apart were acquired every 200 s. In the videographs,
newborn hair cells were identified retrospectively by playing the movies
backwards from the time when hair cells can be unambiguously defined
using validated transgenic markers (López-Schier and Hudspeth, 2006;
Kindt et al., 2012). All 4D movies were processed using FIJI software
(Schindelin et al., 2012). Stacks were centered by laying point regions of
interest at timeframes of significant drift and then running the Manual Drift
Correction plugin. Nine inverting pairs and five non inverting pairs were
selected for image segmentation and were further registered for z-slice drifts
using the plugin Correct 3D drift (Parslow et al., 2014).

Comparison of cell-pair inversion
Nascent hair cells were manually tracked from the moment of division at
a minimum 300 min with the MTrackJ plugin (Meijering et al., 2012).
Cell tracking data (71, 42 and 22 cell pairs from wild type, emx2 and
notch1a knockouts, respectively) was imported into R (version 4.0.3),
where all subsequent analysis was carried out. Individual cell positions
were centered in pairwise fashion and observation time was limited to
500 min. For each observation time except the first, change in angle
between cells relative to previous observation was calculated, positive
angle denoting anti-clockwise rotation. Furthermore, for each cell pair
and each observation time, cumulative angle (sum of angle changes) and
absolute cumulative angle (named turn) were calculated. For each cell
pair, starting angle and final angle were calculated as means of first ten or
last ten observations, respectively. Final cumulative angle (final turn)
and final cumulative absolute angle change were extracted as respective
values at last observation. Critical angle defining planar cell inversion

was set to 90°. If final cumulative angle change was higher than this
critical value, the cells were considered to perform planar cell inversion.
Two-sided binomial test was used to calculate statistics on the
occurrence of cell-pair rotations in different genotypes relative to wild
type. For the cell pairs that did undergo an inversion, a four parameter
log-logistic curve was fitted to the cumulative angle using python
‘scipy.optimize’ library. The form of the logistic used was:

f ðtÞ ¼ cþ d � c

1þ ðt=aÞb ;

where t is the time, and a, b, c and d are the parameters to fit. Here, a is the
time of the logistic midpoint, b is the steepness, c marks the low
asymptote and the high asymptote.

Start and end times of inversion (Ic and Id) were calculated as the points
where the tangent line through the inflection point and the low and high
asymptote intersect, respectively:

Ic ¼ c� f ðaÞ
bðc� dÞ

4a
þ a

Id ¼ d � f ðaÞ
bðc� dÞ

4a
þ a

;

where f (a) is the fitted logistic function described above, evaluated at time a.
The noisewas defined as the quotient between the real path traveled by the

cell and the shortest path from start to end position according to:

Wj ¼
PN�1

t¼o j rjðt þ 1Þ � rjðtÞ j
j rjðNÞ � rjð0Þj ;

where rj (t) is the position of cell j at time t in the xy-plane, and N is the
number of frames in the experiment. Only the first 200 frames were used for
this calculation. Those experiments where one of the two sibling cells
moved less than 2 μm were not taken into account for the analysis. The
resulting distributions for noise, as defined above, were analyzed by
pairwise comparison using an Anderson-Darling test (AD) to see whether
samples could be drawn from the same underlying distribution and with a
Wilcoxon-Mann–Whitney statistic (WMW)to test the alternative of the first
distribution being stochastically less than the other. The P-values for the
noise with both tests were: wild type versus emx2−/−, AD P=0.024, WMW
P=0.022; wild type versus notch1a−/−, AD P<0.001, WMW P<0.0001;
emx2−/− versus notch1a−/−, AD P<0.001, WMW P<0.0001.

Topological analysis of neuromast cells during hair cell inversion
After registration, one z-slice per time point was selected, taking 10
timepoints before division and at least 70 after. To segment membranes, we
used the Autocontext workflow from ilastik v1.3.3 (Kreshuk and Zhang,
2019). As we used the double cldnb:lyn-EGFP; myo6b:β-actin-GFP
transgenic, we trained in a first step, the probability of pixels to belong to
one of four categories: membrane, cytoplasm, sub-membrane actin and
background. In the second step, the probability of the four categories was
used to train the algorithm to classify cell boundary pixels and all other
pixels. The resulting probabilities were loaded in the multicut segmentation
workflow to get a skeletonized segmentation of cells. These automated
segmentations were loaded into Tissue analyzer (Aigouy et al., 2016) and
manually corrected and semi automatically tracked. From the software
Tissue analyzer, we exported two types of data: (1) cell tracking
data containing x and y centroid position, cell area, perimeter (in pixels)
and an ID identifying individual cells through time; (2) bond tracking
data, indicating the identity of cells sharing a membrane segment, and
the length of the membrane segment (in pixels). The data for each pair
was fused to create a network dynamic object with the networkDynamic
R package (v 0.10.1) containing information for nodes (cells) and
edges (cell connections) through time as well as position, area, and
perimeter.

Cumulative difference in number of neighbors is defined, for any given
time T, as:

XT
t¼0

Nt �Mt ;
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where Nt is the number of cell neighbors, at time t, of the cell that ultimately
arrived at the anterior side irrespective of whether any rearrangement
happened [the Notch-off/Emx2(+) cell] and Mt is the number of cell
neighbors, at time t, of the cell that finishes the sequence on the posterior
side irrespective of whether any rearrangement happened [the Notch-on/
Emx2(−) cell].

Morphological analysis of the hair cell pairs during inversion
Circularity of the pair was calculated for all timeframes at which the nascent
hair cells shared a bond, as:

4pA

P2
;

where A is the sum of the area of both cells and P is the sum of the perimeter
of both cells minus two times the length of their shared membrane segment.
To determine the interfacial shape, the lines corresponding to the membrane
interface between rotating pairs were exported as a list of xy coordinates and
rotated and centered such that both ends laid on the 0 of the y-axis and
equidistant to the 0 on the x-axis. A S or Ƨ shape was assigned depending on
the asymmetry of the line on the x-axis. The line was classified as a C shape
depending on its asymmetry on the y-axis, if it was not previously classified
as S or Ƨ. If the interface had no notable asymmetry on either axis, it was
classified as straight.

Analysis of final hair cell angle
The final angle for the three experimental conditions is defined as the angle
of the vector that goes through both hair cell sibling cells with respect to the
horizontal axis. Given the cartesian coordinates of each pair v0 ¼ ðx00; x01Þ
and v1 ¼ ðx10; x11Þ, the vector vf=v0−v1 connects both cells. As, in principle,
any of the two cells can be labeled as zero or one, the orientation of the
vector is not important for the calculation. Thus, the angle is calculated as:

u ¼ arctan
jx01 � x11j
jx00 � x10j

� �
;

which appropriately gives all angles in the first quadrant.
Then, the angle distributions were compared by pairs using a

Kolmogorov-Smirnov test to evaluate whether the two samples belong to
the same distribution. This was performed using SciPy’s statistical package
(Virtanen et al., 2020).

Computational model
In order to better understand how the in vivo rotations progress and stop, we
decided to develop a mathematical and computational model. We chose a
Monte Carlo Metropolis minimization scheme as it combines deterministic
potentials to model the stop and stochastic evolution for the progression. In
our model, each of the two cells is characterized by a particle in a one-
dimensional space, representing the anglewith respect to the A-P axis. Thus,
the positions θ=0 and θ=180° correspond to opposing sides of that
anatomical axis. The anterior region is defined as the second and third
quadrant, while the posterior region is the first and fourth one (Fig. 7A).
Each cell is subject to certain potentials. Cells see one another through a soft
sphere repulsion, taken from the repulsive term of a Lennard-Jones
potential.

fðu2 � u1Þ ¼
d

u2 � u1

� �12

; ju2 � u1j � d

0; otherwise

8<
: ;

where d is the maximum interaction distance and θ1 and θ2 are the positions
of both cells. As the hair cell pair is bound throughout the rotation at all times
in the in vivo experiments, parameter d is chosen as 180° to account for an
interaction in the whole domain.

We also assumed that each cell is ruled by an attractor in the form of a
Gaussian well,

VðvjÞ ¼ �e
�
ðuj � mjÞ2

2s2 ;

where θj is the position of cell j, μj is the position of the attractor’s minima for
cell j and σ is the attractor’s standard deviation. Both potentials are encoded
in the system’s energy, through a Hamiltonian, as:

Hðu1; u2Þ ¼ rfðu2 � u1Þ þ v1 Vðu1Þ þ v2Vðu2Þ:

The final configuration of the system is reached through an evolution,
according to a Metropolis-Hasting algorithm for the phase space sampling
(Metropolis et al., 1953; Hastings, 1970). The coefficients ρ, ω1 and ω2

allow the control of each potential’s strength, representing the repulsion
strength and the depth of each well, respectively. After an initial breaking
time, the potential is turned on by setting ω1, ω2 or both to non zero values.
The initial positions of the cells in the simulation are taken from a normal
distribution. Its parameters are obtained through a fit of a Gaussian function
to the experimental initial positions of the hair cells pairs, just after the
progenitor’s division, choosing μinitial=180°±50° as an initial condition. The
one-dimensional space is arbitrarily divided in a 0.25-degree interval, which
is the smallest possible position change. Thereafter, cells may update their
position as an anti-clockwise or clockwise movement, one cell at a time.
This movement is represented by normalized velocities +1 and −1 in the
discreet space, respectively. The change in energy due to the new position is
then compared with the previous energy state. If the system’s energy is
reduced, the change is accepted with a probability of 1, otherwise it is
accepted with a probability drawn from a Boltzmann distribution. When the
change is rejected, the corresponding cell does not move. These calculations
are performed for a fixed number of time steps for all simulations.
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Abstract 

During tissue development and regeneration, cells interpret and exert mechanical forces that are 

challenging to measure in vivo. Therefore, stress inference algorithms have emerged as powerful tools 

to estimate tissue stresses. However, how to incorporate tissue dynamics effectively into the 

inference remains elusive. Here, we present ForSys, a Python-based software that estimates 

intercellular stresses and intracellular pressures using time-lapse microscopy. We validated ForSys in 

silico and in vivo using the well-characterized mucociliary epithelium of the Xenopus embryo. We 

applied ForSys to study the migrating zebrafish lateral line primordium. We found that stress increases 

during cell rounding just before cell division and predicted the onset of epithelial rosettogenesis with 

high accuracy. Finally, we analyzed the development of the zebrafish neuromast and inferred 

mechanical asymmetries in a cell type-specific adhesion pattern. The versatility and simplicity of 

ForSys enhance the toolkit for studying spatiotemporal patterns of mechanical forces during tissue 

morphogenesis in vivo. 
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Introduction 

Recent advancements in experimental techniques have reignited interest in exploring the 

mechanical properties of biological tissues, commonly referred to as tissue rheology. These methods 

have facilitated precise and quantitative measurements of tissue mechanical parameters. For 

example, implanted deformable magnetic droplets have been used to determine the elastic 

properties along the zebrafish anteroposterior axis during body elongation 1,2 and presomitic 

mesoderm differentiation 3. Similarly, the application of optical traps has enabled controlled 

deformation of cell membranes, thereby facilitating the study of viscoelastic properties during 

Drosophila development 4. Laser ablation experiments have also been employed in various systems 

to probe cortical tension by measuring the recoil of cell junctions upon laser cutting 5–7. Despite their 

importance, these experimental methods often come with significant drawbacks. They can be costly 

and necessitate specialized equipment, posing implementation challenges for many researchers. 

Moreover, these techniques might not be conducive to long-term imaging, potentially disrupting the 

normal development and, in some cases, leading to the destruction of the sample. Hence, there is a 

pressing need for alternative approaches to overcome these limitations while still delivering 

accurate and non-invasive measurements of tissue rheology. 

Computational methods offer a promising solution, enabling the cost-effective and straightforward 

implementation of tissue mechanical characterization in vivo8. Inference techniques have emerged 

as powerful tools in tissue rheology, utilizing readily available microscopy images to infer the 

effective stress of a system based on the geometry of the cellular junctions. A key aspect of this 

approach centers on tricellular junctions (TJ), where three cells converge 9. The underlying 

framework relies on one major assumption: mechanical equilibrium is maintained at each TJ. The 

strength of these models lies in their simplicity, reducing the estimation of intercellular stresses to 

the solution of an overdetermined system of linear equations 10,11. One of the first implementations 

of the force-inference approach is CellFIT 10, which enables the estimation of stresses from 

microscopy images. While CellFIT provides accurate estimates in static tissues, its applicability to 

dynamic tissues is limited. Although recent techniques using time series data offer improvements 12, 

a computational tool capable of dynamic stress inference has been lacking. 

Here, we introduce ForSys, an open-source Python-based inference algorithm specifically developed 

to tackle the complexities of dynamical stress inference from time series experiments. ForSys utilizes 

the local velocity of cell junctions to extract the spatiotemporal stress distribution in vivo, providing 

accurate estimations of a tissue's mechanical state. 
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Results 

ForSys: a Python-based open-source software to infer mechanical stress in tissues. 

ForSys enables the inference of intercellular mechanical stress and intracellular pressure of tissues. It 

takes the two-dimensional (2D) segmentation of an image, which delineates cell outlines, as its 

input. It then conceptualizes the entire tissue as a polygonal structure. In this structure, each 

polygon represents a cell, with edges connecting vertices. 

ForSys operates in two distinct modes contingent upon the input (Fig. 1). When supplied with a 

singular segmentation of a static image, the software engages its Static mode (Fig. 1A) (see "Statical 

stress inference" in the Materials and Methods section). In this mode, a stress inference is applied to 

a single image. Conversely, if the input comprises the segmentation of a time series dataset, ForSys 

presents the option to function in its Dynamic mode (see "The dynamic inference case" in the 

Materials and Methods section) (Fig. 1B). This mode involves the extraction of temporal trajectories 

for vertices from the microscopy time series, thereby incorporating corresponding vertex velocities 

to refine stress inference. 

 

ForSys infers in silico stresses accurately in static equilibrium. 

To assess ForSys's performance against existing tools, we utilized as a ground truth simulations 

generated by a vertex model implemented in Surface Evolver via seapipy, analyzed it using our 

software, and compared the results with outputs from previously published methods, focusing 

specifically on CellFIT 10 and DLITE 12. Given that both tools yield similar results (Extended data figure 

3A and 3B), we opted for DLITE implementation due to its open-source nature, enabling a direct 

comparison with tissue stresses extracted from Surface Evolver outputs. 

We selected the final time-point (t = 24) of simulations generated from four different conditions to 

compare the ground truth from the Surface Evolver output (Fig. 2A), DLITE’s estimation (Fig. 2B), and 

ForSys in its Static modality (Fig. 2C). In all cases, the predicted intercellular stresses and intracellular 

pressures closely matched the ground truth. Moreover, both stress inference methods exhibited a 

high degree of accuracy and precision, as reflected by a low Mean Absolute Percentage Error (MAPE) 

(<10%) (Fig 2D) and a high saturated score function (~30) (Figure 2E and Extended Data Figure 3C). 

Importantly, ForSys showed a significantly lower MAPE (p = 1e-05; p = 1e-8; p = 0.01, for the x-

furrow, y-furrow, and circular furrow, respectively), higher saturated score (p < 0.001; p < 1e-4; p < 

0.01 for the x-furrow, y-furrow, and circular furrow, respectively) and smaller interquartile range 

than DLITE, for all cases except the random tensions (See the “Statistical estimator” section in 

Materials and Methods for details). 
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These results indicate that ForSys's static modality yields higher accuracy and precision estimations 

than DLITE while effectively capturing the in silico-generated ground truth spatial distributions in 

static equilibrium. Consequently, only ForSys in its Static modality will be used hereafter for 

comparison with a static solution. 

 

ForSys stress inference in dynamical tissues outperforms static methods in silico 

With the aim of inferring stress in dynamic tissue, we assumed that the tissue goes through a 

succession of quasistatic states in an overdamped regime13, consistent with a viscoelastic response 

of the cell junctions to the deformations created by the forces acting on them14,15. Consequently, we 

incorporated a viscous term proportional to the velocity of the corresponding vertex in each 

junction’s equation. Importantly, these velocities are not unknown: ForSys estimates them using the 

spatial coordinates of the vertices tracked over time. In ForSys, we call this modality of stress 

inference Dynamic.  

Dynamic inference depends on a dimensionless parameter proportional to the reciprocal of the 

Weissenberg number16–18 (see a detailed description in the “The dynamic inference case” section of 

Materials and Methods). Thus, we fitted this parameter and found its optimal value for each of the 

examples. Our results indicate that the best dynamic results are obtained with a scale parameter of 

about 0.1 (see Extended Data Fig. 5 and the Materials and Methods section “Determination of the 

scale parameter”). 

Under our prescribed conditions (Figure 3A), ForSys in its dynamical modality (Fig. 3C) outperforms 

static inference (Figure 3B), accurately reproducing stress and pressure distributions akin to the 

ground truth. Furthermore, our results indicate that dynamic modality improves static modality 

accuracy and precision, as indicated by MAPE (p < 1e-09; p < 1e-9; p < 1e-7, for the x-furrow, y-

furrow, and circular furrow, respectively) (Figure 3D) and the saturated score function (p < 1e-08; p < 

1e-9; p < 1e-9; p = 0.03, for the x-furrow, y-furrow, circular furrow, and random, respectively) (Figure 

3E) (See the “Statistical estimator” section in Materials and Methods for details). 

Interestingly, accuracy and precision (estimated with the MAPE and the saturated score function) of 

stress inference in each ForSys modality are damped by the increases of TJ local movements, here 

reflected in the norm of the velocities vector (|𝑣|2) (Figure 3F and G). Notably, the dynamic modality 

outperforms the static one for all TJ velocities, as observed by the time evolution of MAPE (Figure 

3F). This can be evidenced through the ratio between dynamic and static scores (Figure 3G), where 

values greater than one mean that the dynamic modality outperforms the static one. The 

outperformance of the dynamical modality is clearer for higher TJ velocities (Figure 3F and Figure 3G 
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and Extended Data Fig. 4). Thus, ForSys, in its dynamic modality, can retain a better approximation 

due to its use of the vertices' velocity, i.e., future positions, to estimate the stress.  

In this section, we have demonstrated through in silico validation that the dynamic modality of 

ForSys outperforms other methods in accurately inferring stresses in remodeling tissues. 

 

ForSys validation in vivo using the mucociliary epithelium of Xenopus embryos 

To validate ForSys in a biological setting, we used published data from the mucociliary epithelium in 

Xenopus embryos (Fig. 4A) 19. We quantified myosin II intensity using a non-muscle myosin II A-

specific intrabody (SF9-3xGFP, for simplicity referred to as myosin II), which has been previously 

used as a proxy for active myosin II 20,21. We segmented the microscopy images using Epyseg 22 (see 

Materials and Methods “SF9 myosin II sensor intensity measurements“ for details) and compared 

myosin II measurements with the stress values inferred by ForSys. 

As in previous sections we qualitatively compared the derived stress distribution maps with the 

ground truths, here given by the normalized myosin II sensor intensity (Figure 4B). We observed 

good qualitative agreement between inferred stress and myosin intensity, with regions of higher 

myosin fluorescence corresponding to higher inferred stress, most noticeable in Embryo 3 and 

Embryo 5 of Figure 4B. In contrast, in Embryo 4 of the same panel, ForSys can reproduce a more 

homogenous distribution along the tissue. On a quantitative level we found that ForSys predictions 

are moderately correlated with the myosin measurements for each embryo (R=0.56 ± 0.11; mean ± 

std) (Figure 4C). In addition, ForSys stresses predictions have a MAPE value of (21 ± 5)% (mean ± 

std). Overall, the distributions of myosin intensity and inferred stress are qualitatively similar and not 

significantly different (Figure 4D, p=0.76; Mann-Whitney U test; N=154). 

Consequently, ForSys accurately and precisely infers the stresses present in the mucociliary 

epithelium of the Xenopus embryo, as measured by the fluorescence of the myosin II sensor. 

 

Dynamic stress inference of collective cell behavior in zebrafish  

We sought to explore ForSys inferences in an in vivo model that mixes TJs with low and high motility. 

To this end, we turned to two morphogenetic processes that occur during the development and 

homeostasis of the zebrafish lateral line, a mechanosensory organ formed by a collection of discrete 

organs called neuromasts. 

We first applied ForSys to an in vivo model of collective cell morphogenetic behavior leading to the 

formation of epithelial rosettes in the lateral line primordium of developing zebrafish. The 

primordium is a collection of just over 100 cells that move collectively from head-to-tail of the fish 

embryo (Fig. 5A). During migration, groups of approximately 25 trailing cells periodically detach from 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.28.595800doi: bioRxiv preprint 



 

5 

the primordium, sequentially giving rise to individual neuromasts that are then deposited at semi-

regular pace 23. Although the lateral line primordium has been extensively characterized genetically 

24,25, the mechanical forces present during migration and rosettogenesis remain unknown. 

Therefore, we decided to use ForSys in its Dynamic modality to analyze time lapse data of migrating 

primordia, whose cells’ plasma membranes were fluorescently labeled with EGFP. Migrating 

primordia were followed for 30 minutes with a temporal resolution of two minutes (Supplementary 

video 1)(Fig. 5B and 5B’). 

ForSys predicted the mitotic division of primordial cells by revealing high stress in the pre-dividing 

cellular membrane relative to the membrane of the non-dividing surrounding cells (Fig. 5C). The 

stresses remain partially conserved after division, mainly in the cell membrane separating the 

resulting cell siblings (Fig. 5C’). 

We then applied ForSys to predict stress tissue-wide. Apical constrictions of epithelializing cells are 

mechanistically associated with the formation of the rosettes that preempt neuromast 

morphogenesis 26. The apical constriction is readily detectable by morphology when looking at the 

apical plane of the primordium (Fig. 5D and 5D’)27. The relationship between apical constrictions and 

forces in more basal planes of the cells and how they relate to rosettogenesis remain undefined.  

To begin to address this possible relationship, we used time series data and aggregated the position 

of the cells along the anteroposterior axis of the primordium by kernel density estimation. We 

weighed each cell using the intracellular pressure inferred from ForSys, which results in a smoothed 

curve estimating intracellular pressure along the migration axis (Fig 5E). This analysis showed that 

the anteroposterior positions of the rosettes, manually annotated by looking at apical constriction 

(Asterisks in Fig. 5D’ and 5E), correlate with the predicted zones of high intracellular pressure 

inferred by ForSys. The closeness between the predicted pressure maxima and the manually 

annotated rosette formation indicates a high correlation between these two quantities during 

primordium migration (R=0.99, p<1e-51, N=61; for rosettes 1 and 2 combined ) (Figure 5F). 

Encouraged by our previous results, we next analyzed mature neuromats. The center of this organ is 

occupied by mechanosensory hair cells, which are surrounded by non-sensory supporting cells 

(Figure 6A) 28. We used a plasma membrane marker to define cells, which were segmented using 

ilastik 29  and epyseg 22 (Figure 6B).  Then, we used the Dynamical modality of ForSys to estimate the 

stress at each membrane (Figure 6B’) and found that membranes belonging to hair cells have higher 

stress on average. Homotypic interfaces between hair cells have the highest stress (p < 1e-7 vs. hair 

cell-supporting cell interfaces). On the other hand, homotypic contacts between supporting cells 

have the lowest stress (p<0.006 vs. hair cell-supporting cell interfaces) (Figure 6C).  
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We then focused on a still-puzzling process called planar cell inversion (PCI) 30,31.  PCI occurs when 

supporting cells give rise to hair-cell progenitors, which divide once to generate a pair of hair cells. 

Approximately half of the resulting nascent hair-cell pairs undergo a 180º rotation around their 

geometric center  30,31 (Figure 6D and 6E). The mechanical forces occurring during cell-pair inversions 

are not known. Therefore, we focused our analysis on the homotypic junctions between the sibling 

hair cells and compared them to those with the surrounding supporting cells. This allowed us to test 

how the stress differs between the different cell types. We found that the stress in the membranes 

juxtaposing the rotating hair-cell pair is significantly smaller than that between hair cells and the 

adjacent supporting cells (p<0.0005) (Figure 6F). Because tension and adhesion are generally 

inversely related, PCI could be characterized by a strong adhesion within the rotating cell pair and 

weaker adhesion with the surrounding cells. This result suggests a cell-type and cell-state-specific 

adhesion pattern that underlies contact remodeling necessary for coordinated cell-pair rotations. 

Taken together, these results show that ForSys's dynamical implementation predicts high stresses 

before cell division in a migrating tissue. They also revealed that rosette formation could be 

prefigured by mechanical rosettogenesis changes in the cells, which allows the inference of apical 

constrictions during rosettogenesis using information from basal planes.  

Discussion 

Here, we introduce ForSys, a new software that statically and dynamically infers stresses without 

disrupting biological tissues. Traditional inference methods rely on geometrical information to 

calculate the relationship among the stresses acting on cell membranes in a static image. However, 

these methods generally lack the dynamical component present in a time-series microscopy. ForSys 

extends the applicability of inference techniques by enabling dynamic stress inference in cell 

membranes when tissues are in motion.  

We validated our software in its static and dynamic modalities with different in silico spatial patterns 

of tissue stresses using a cell-based computational model implemented in Surface Evolver 32, which 

we integrated into a Python package called seapipy 33. Our results show that ForSys can recover the 

ground truth in its static and dynamic modalities. Significantly, the dynamic modality improves the 

accuracy of the static modality. Unlike static inference, characterized by a unique scale contained in 

the stresses to be inferred, dynamic inference adds a viscous term proportional to the nodes’ 

velocities, which introduces an additional scale to the problem. The dynamic inference can thus be 

reformulated in terms of the Weissenberg number 16–18. The optimal value found for this number in 

silico indicates that elastic forces are an order of magnitude larger than viscous forces. Strikingly, 
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dynamic inference outperforms static inference even when elastic forces dominate over the viscous 

forces, pointing to a wide applicability of the dynamic modality. 

We then validated ForSys in the Xenopus embryonic mucociliary epithelium. We found a positive 

correlation between the inferred stress and cortical stress that was indirectly measured using 

variations in the intensity of myosin II. As the embryonic mucociliary epithelium progresses over 

several hours, continuous, direct probing of the mechanical forces is extremely laborious, likely to 

interfere with tissue development, and hardly compatible with single-cell resolution measurements.  

Therefore, using ForSys for non-invasive mapping of mechanical forces at the scale of an entire 

tissue across time could pave the way for a more comprehensive understanding of the mechanical 

forces that drive tissue development. 

We further demonstrated the power of ForSys by studying two aspects of organ development and 

homeostasis using the neuromasts of the lateral line in zebrafish embryos. Specifically, we addressed 

two processes that involve a complex collective cell behavior.  First, we applied Dynamical ForSys to 

the migrating lateral-line primordium. Although this process has been extensively dissected 

genetically, it is still unknown what forces play a role during migration and neuromast deposition 

34,35. Therefore, this process of collective cell migration will benefit from an accessible and non-

invasive method to estimate forces in a dynamical tissue. Two characteristics of this migratory 

primordium make it well-suited for applying ForSys: the tissue as a whole is migrating through the 

lateral line, and its membranes have a curved shape. We showed that ForSys can detect cell division 

and rosette formation. ForSys will be useful for testing various hypotheses about tissue mechanics in 

other dynamic cell systems, for instance, during tissue repair and organ regeneration. 

We also applied ForSys to address the still mysterious process of planar cell inversion, during which 

sibling cells rotate around their centroid after the mitotic division of their progenitor 30. We 

discovered that homotypic contacts between rotating cells have the most stress, whereas the 

contacts between the rotating pair have lower stress than the contacts of each hair cell with its 

neighbors. This strongly suggests that adhesion dynamics during rotation are based on a strong 

homotypic interaction of the sibling cells and a weak heterotypic interaction with the surrounding 

cells, enabling contact exchange during the inversion 30. 

ForSys provides a versatile and noninvasive tool for studying spatiotemporal patterns of mechanical 

stresses during tissue morphogenesis in vivo. This software makes stress predictions that can guide 

researchers in conducting further experiments, which can significantly contribute to understanding 

the mechanisms involved in development and regeneration. ForSys was built as open-source 

software in Python, thus allowing the community to participate in its development and 

maintenance. In our eyes, an interesting future perspective will be to extend the software to tissues 
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in non-equilibrium conditions and adapt the method to operate within a 3D geometry to generate 

4D mechanical stress inference.  
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Materials and Methods 

SF9 myosin II sensor intensity measurements 

Images of stage 16 to stage 20 Xenopus embryos expressing the SF9-3xGFP myosin II sensor were 

acquired in using a 3i spinning disk microscope with a Plan-Apochromat ×63 oil objective (N.A. = 1.4) 

mounted on an inverted Zeiss Axio Observer Z1 microscope (Marianas Imaging Workstation [3i—

Intelligent Imaging Innovations]), equipped with a CSU-X1 spinning disk confocal head (Yokogawa) 

and an iXon Ultra 888 EM-CCD camera (Andor Technology). From these images we obtained 

maximum intensity Z projections, which were then used to extract myosin intensity values of the 

epithelial junctions. For all vertices constituting a membrane in the segmentation, smoothed 

intensity values were first obtained by taking the median over first neighbors. The intensity value for 

each membrane is then defined as the mean of smoothed intensities at each of its constituting 

vertices. Then, to allow comparison with the inferred stresses, these values were normalized to a 

mean value of one for each embryo. 

 

Zebrafish primordium migration experiments 

Zebrafish carrying the Tg[-8.0cldnb:Lyn-EGFP]36 were kept under standard conditions at 28.5°C. At 

40-48 hours post-fertilization, larvae were anesthetized with MS222 and mounted in 0.8% low-

melting point agarose on a glass-bottom petri dish. Larvae were imaged in a custom-built Zeiss 

inverted spinning disk confocal microscope. 16 slices Z stacks of the migrating primordium II were 

acquired every two minutes with a 63X objective. Subsequently, one z-slice was manually selected 

from each frame, and the membrane image was segmented using Tissue Analyzer 37. The image 

segmentations were used for ForSys predictions, and the cells' centroids' X and Y coordinates, the 

time point (frame number), and the cell pressures were exported. The probability density function of 

the cell position along the anteroposterior axis was estimated via a Gaussian kernel in the R 

statistical software. The value of cell pressure was used as a weight in the density estimation. From 

this density curve, local maxima were determined through the second derivative. 

 

The conceptual model behind ForSys 

ForSys uses microscopy images as input to estimate the mechanical state of the tissue. The software 

extracts vertices, edges, and cells from the segmentation, which can be achieved through different 

software (see, for example, 8,22,38).  Although most vertices separate two edges, a number of them 

connect three or more edges and are central for stress inference. We call these pivot vertices or 

junctions. ForSys calculates the mechanical stresses operating on each edge while assuming 

mechanical equilibrium in each vertex. Conveniently, this creates a system of equations representing 
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the geometrical state of the tissue 10,12 . One equation per coordinate is built from every pivot vertex 

using force balance at the junction.  

In the dynamic modality, ForSys assumes that each vertex is in an overdamped regime, where a 

viscous damping force proportional to the velocity balances the mechanical stresses at that vertex. 

This creates a non-homogeneous system of equations where the inhomogeneity is proportional to 

the vertex velocity. In both Static and Dynamic modalities, the resulting system of equations is 

solved through a Least Squares minimization with the constraint that the average tension equals one 

(see “Solving the system of equations” in Materials and Methods for more details). 

Finally, ForSys uses the stress inferred as an input to estimate cellular pressure within the tissue. For 

this, a Young-Laplace equation is built at each cell-cell membrane, and the corresponding system is 

solved similarly to the stresses. However, this requires that the mean pressure of the system is equal 

to zero (see Section Statical stress inference for details). ForSys renders intercellular stresses as a 

color code of the cellular outlines, specifically at the edges. Similarly, intracellular pressures are 

depicted in a color code within the cytoplasmic area of the cells. Moreover, the numerical values of 

the inference and other observables are easily exportable, facilitating further analysis of the 

mechanical state of the tissue. 

 

seAPIpy: generation of in silico tissues to validate ForSys. 

To validate the accuracy of ForSys, we compared the intercellular mechanical stresses inferred by 

the software with a ground truth distribution of stresses within the tissue. To establish the ground 

truth, we employed a cell-based computational model to simulate tissues with known intracellular 

pressures and intercellular stress patterns. Specifically, we employed the vertex model, which is 

particularly suitable for mechanically evolving epithelial tissues 39,40. For the implementation of the 

vertex model, we utilized Surface Evolver software 32. To facilitate the integration and streamline the 

simulation process, we developed a Python-based software called seapipy 33. This open-source 

computational tool enables Python scripting to generate the desired initial tissue conditions and 

simulate them using a vertex model implemented in Surface Evolver. seAPIpy generates a Voronoi 

tessellation with a given geometry as a starting configuration and assigns initial stresses to the edges 

(Extended data figure 1). Through seAPIpy functions, the user may add Surface Evolver commands to 

create the desired conditions for evolution and generate the Surface Evolver-compatible file.  

By leveraging both ForSys and the capabilities of seAPIpy software, we implemented four conditions 

as examples that were later used to test ForSys stress inference in both its Static and Dynamic 

modalities. The first two conditions induce a furrow formation on vertical and horizontal strips, 

respectively. In the third condition, a central zone of elevated stress is introduced, which diminishes 
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radially. Lastly, a fourth condition assigns five different random stresses to edges, following a 

uniform distribution, with a 50 % spread in stress values. Each condition underwent twenty-five 

repetitions. These simulations served as the ground truths for validating ForSys in silico, as shown in 

the following two sections (Fig. 2 A, 3 A, and Extended data figure 2).  

We generated four examples to validate our software in silico. In all four cases, tissues evolve until a 

time zero is defined. The stresses are modified according to a prescribed condition, and the tissue 

evolves for shorter periods while it relaxes. 

We generated the initial condition in each example by creating a Voronoi tesselation from N = 64 

points in a rectangular grid. Each point in the grid is moved with a Gaussian noise centered at zero. 

Initial cell target areas are randomly assigned as A = 450 ±5 (mean ± std) from a normal 

distribution. The initial stress of each edge is also taken from a normal distribution centered at 1 

with a standard deviation of 0.1. From this state, the tissue evolved through several rounds of vertex 

averaging and T1 swaps with varying scales. 

We defined time as the number of steps elapsed, times the scale (𝑡 =  𝑛 𝛥𝑡), and call it Surface 

Evolver Time (SET). The first time point is generated after 3875 SET, after which the tissue is evolved 

for an additional 125 SET.  At this point, membrane stresses are changed according to each 

condition, and each simulation snapshot is saved every 0.25 SET.  

In the conditions corresponding to the horizontal and vertical furrows, the new tensions are 

generated by summing the value corresponding to the position of the center of an edge in the 

probability density function (PDF) of a normal distribution to the initial randomized value. The 

normal distribution has its maximum at the centroid of the tissue and a standard deviation of ~2 

cellular radii. Vertical furrows have the PDF on the y-axis, and horizontal furrows on the x-axis. 

Similarly, the circular furrow uses the distance of the edge's center to the tissue's centroid to 

calculate the new stress. Finally, in the condition corresponding to the “random examples”, tensions 

are assigned from normal distributions with a 50% spread around five possible values (1, 1.1, 1.2, 

1.3, 1.5) chosen uniformly.  

Therefore, seapipy facilitates testing multiple in silico examples and has an easy integration into the 

analysis pipeline. seapipy offers advantages over an existing package (python-evolver) 41 because it 

incorporates Surface Evolver syntax directly into the Python code, eliminating the need to write 

Surface Evolver commands manually into the input files. seapipy allows for a systematic and 

straightforward generation of in silico ground truths, enabling a better exploration of strengths and 

limitations in stress inference tools. 

 

Statical stress inference 
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We assume a 2D tissue with C cells, representing each cell as a polygon. The system consists of V 

vertices and E edges in total. Each edge is composed of two vertices. We define pivot vertices as 

those that correspond to junctions between three cells or are at the border of the tissue.  This 

method can be applied to junctions shared by more than three cells but at the risk of losing stability 

in the underlying model 42. All vertices between two pivots are regarded as virtual, and only pivot 

vertices are used to compute stresses. We then use Newton’s second law and assume mechanical 

equilibrium to assert that the sum of forces at each pivot vertex equals zero. We can calculate the 

force acting on each vertex as a sum of the contributions of the forces along the edges connected to 

it. Mathematically, the force at each pivot vertex will have an equation in the form 

𝐹⃗𝑖 = ∑ 𝜆𝑖𝑗 𝑟𝑖𝑗<𝑖𝑗>    (Eq. 1) 

Where i and j indicate the vertices i and j, 𝐹⃗𝑖 is the force on vertex i, 𝜆𝑖𝑗is the edge force modulus in 

that edge, and 𝑟𝑖𝑗 is the versor along the edge starting at vertex i. The sum is done over all j vertices 

connected to the vertex i. Note that 𝜆𝑖𝑗=𝜆𝑗𝑖. The directions of the 𝑟𝑖𝑗 versor is obtained by fitting a 

circle to the corresponding membrane, following other authors 10,12. 

Applying Eq. 1 to all the vertices in the tissue will translate into a homogeneous set of linear 

equations that have to be solved simultaneously with the edge tensions (𝜆𝑖𝑗) as unknowns. Hence, 

we write Eq. 1 and equate it to zero for each system vertex to guarantee that all the forces are 

balanced. Each of these V equations will be written as 

𝜆𝑖 𝑟𝑖1 + 𝜆2  𝑟𝑖2+ . . . + 𝜆𝐸  𝑟𝑖𝑗  =  0 (Eq. 2) 

this equation corresponds to the ith vertex, and the edge tensions 𝜆 are the unknowns. 

Similarly, it is possible to infer the pressures of each cell in the tissue by assembling a system of 

equations that connects the stress at each membrane with its curvature. The Young-Laplace 

equation relates these quantities with the pressure difference between two neighboring cells. 

Symbolically, 

𝑃𝑗  − 𝑃𝑖  =  𝜆𝑖𝑗𝜌𝑖𝑗  (Eq. 3) 

Where Pi is the pressure of cell i, 𝜆𝑖𝑗is the stress of the membrane shared by cells i and j, and 𝜌𝑖𝑗  is 

the curvature of the shared membrane. This leads to a system of E equations, one per edge, and C 

unknowns. 

 

The dynamic inference case 

The static inference algorithm assumes that vertices do not move. To perform stress inference in a 

dynamic tissue where all vertices are moving, we modified the static algorithm to include vertex 

movement. If the system has a low Reynolds number, viscous forces dominate the dynamics over 
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inertial components; Eq. 1 can be modified, assuming a constant viscosity throughout the tissue, to 

incorporate viscous forces as 

𝐹⃗𝑖 = ∑ 𝜆𝑗 𝑟𝑖𝑗<𝑖𝑗>  −  𝜂𝑣⃗𝑖  (Eq. 4) 

where 𝑣⃗𝑖 is the velocity of vertex i and 𝜂 the viscosity of the tissue. This would modify the coupled 

system of equations, which could be rearranged to get the ith vertex 

∑ 𝜆𝑗 𝑟𝑖𝑗<𝑖𝑗> =  𝜂𝑣⃗𝑖  (Eq. 5) 

To determine the scales correctly, we proceeded to make Eq. 5 nondimensional. For this, we 

redefine the stresses by using an unknown reference stress 𝜆′𝑗  =  
𝜆𝑗

𝜆̄𝑗
. We take this reference stress 

as the average stress in the system. We used a reference velocity defined as the time average over 

all the frames of the mean junction velocity 

𝑣̄  =
1

𝑁𝑓𝑟𝑎𝑚𝑒𝑠
 ∑

∑ ||𝑣𝑖⃗⃗⃗⃗
𝑡
|𝑖 |

𝑁𝑡
𝑣

𝑡𝑓

𝑡=𝑡𝑖
  (Eq. 6) 

Combining these equations gives a nondimensional expression for the force balance at each junction 

∑ 𝜆′𝑗𝑟𝑖𝑗𝑗 = (
𝜂 𝑣̄

𝜆̄
) 

𝑣⃗⃗𝑖

𝑣̄
  (Eq. 7) 

Importantly, this led to the nondimensional parameter 
𝜂 𝑣̄

𝜆̄
. Even though the right-hand side of 

equation 5 is not a viscosity but rather a damping coefficient, we can interpret it as such in this 

context. Therefore, as the stress of each membrane represents the elastic forces in the system, this 

parameter can be interpreted as the relation between the elastic and the viscous forces acting on 

the system, which is inversely proportional to the Weissenberg number (
1

𝑊𝑖
=

𝜂 𝑣̄

𝜆̄
). 

 

Solving the system of equations 

In static and dynamic cases, it is necessary to solve a system of linear equations with homogeneous 

and inhomogeneous conditions, respectively. In both cases, we will turn the system into its matrix 

form, add a constraint to the unknowns through a Lagrange multiplier, and convert it into a least 

squares problem. Finally, we will attempt to invert the resulting matrix, and if that is not possible, 

we will use a numerical algorithm to find the best solution. 

Given a two-dimensional tissue with V vertices and E edges, the system would have 2V equations, as 

each vertex has one equation per dimension and E unknowns, one for each edge. Following the 

method proposed by Brodland et al.10, the set of equations in Eq. 1 is then translated into matrix 

form as 

𝑀𝜆𝑋 =  𝐵  (Eq. 8) 

Where 𝑀𝜆 is a 2V x E matrix with versor coefficients, X is the unknowns column matrix of E x 1, and B 

is a 2V x 1 column matrix with either all zeros under static conditions or the velocity components for 
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each vertex in the dynamical case. To avoid the null solution in the static case, one further condition 

is added: The mean value for the unknowns, i.e., λs, is set equal to one, using the equation  

∑ 𝜆𝑘
𝐸
𝑘=0  = E (Eq. 9) 

where E is the number of edges and 𝜆𝑘  is the tension corresponding to the kth edge. In the matrix 

representation, this entails adding a Lagrange multiplier to the unknowns, a row and column of ones 

for the tension constraint, and a new row in the B matrix. Hence, the equations to be solved have 2V 

+ 1 equations and E + 1 unknowns. As this system might not always guarantee a solution, we 

transformed it using least squares. To this end, we apply the transpose matrix 𝑀𝑡𝑟
𝜆 to the equation, 

giving a new system 

𝑀𝑡𝑟
𝜆 𝑀𝜆𝑋 =  𝑀𝑡𝑟

𝜆𝐵  (Eq. 10) 

Symbolically, 

𝑀′𝜆 𝑋′ =  𝐵′  (Eq. 11) 

On the other hand, the B matrix in Eqs. 6 and 7 for the dynamic case has the corresponding 

nondimensional velocity component multiplied by the scale parameter (1/𝑊𝑖) described in Eq. 7 in 

each row. Its final element has the number of edges E to enforce the constraint. To quantify the 

movement present in the tissue, we calculate the 2-norm of the B matrix, removing the last row, this 

vector is referred to as |𝑣|2. Each vertex is tracked through time to obtain the vertex velocity, and 

the forward velocity is calculated in all but the last step, where the backward expression is used. If a 

vertex cannot be followed in a frame, i.e., due to significant changes in the tissue shape, it is 

assigned a null velocity for the frames where it cannot be tracked. 

Hence, to elucidate the acting forces within the tissue, the software attempts to solve it by inverting 

the 𝑀𝜆′ matrix, thus having a solution 

𝑋 = 𝑀′−1𝐵′  (Eq. 12) 

If the system is not invertible, i.e., M’ is singular, or if any of the edge tensions found are negative, a 

Least Squares algorithm can be used to find the stress values, such as a Non-Negative Least Squares, 

SciPy’s package or lmfit 43–45.  

After solving the system, the calculated stresses can be used to infer the pressures of the cells. As 

seen from the Young-Laplace equation (Eq. 3), pressures are expressed through an inhomogeneous 

system of linear equations. The left-hand side is a matrix with one column per cell and one row per 

membrane. Each row has two entries different from zero, one +1 and one -1,  representing the 

difference in pressure at that membrane. The right-hand side consists of a column matrix with the 

product of each membrane's stresses and curvatures ( 𝜆𝑖𝑗𝜌𝑖𝑗). Then, the equations are solved 

analogously to the stress case using the Least Squares with the constraint that the average pressure 

must be zero.  
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Evaluating goodness of fit 

We evaluated the goodness of fit of the inferred data to the ground truth using a tailored saturated 

score function. This score combines the Pearson correlation coefficient (p), the Mean Absolute 

Percentage Error (M), and the coefficient of determination (r) as  

𝑠(𝑀, 𝑝, 𝑟)  =  
𝛼

𝑀
 +  

𝛽

2

1 + 𝑝

1 − 𝑝
+

𝛾

1−𝑟
  (Eq. 13) 

where ⍺, ꞵ and ɣ are free parameters set to one. As this function is unbounded from above, we 

saturate the score at s = 299.5 for representation purposes in Figure 2, Figure 3 and Extended Data 

Figure 5. This value comes from an error of 1 %, i.e. 𝑠(0.01, 0.99, 0.99) = 299.5. 

 

Determination of the scale parameter 

We performed a sweep for the correct parametrization of the scale value (1/Wi) in the in silico 

examples, from 0 to 0.5. We calculated the score value for each of the five repetitions in the four 

examples at each time (Extended data figure 5A). We chose the best parameter as the median in 

each case (Extended data figure 5B). This value coincided with the mode in each case. We used 
1

𝑊𝑖
 =

 0.08 for the x-axis furrow, 
1

𝑊𝑖
 =  0.07 for the y-axis furrow, 

1

𝑊𝑖
 =  0.13 for the circular furrow, and 

1

𝑊𝑖
 =  0.18 for the random tensions. 

 

Comparing ForSys with other computational methods 

We tested the similarity of the static implementation of ForSys with two other established software: 

CellFIT10 and DLITE12. To this end, we applied the DLITE python package to solve the four in silico 

examples used throughout this work, taking advantage of its CellFIT modality. We found that the 

coefficient of determination is almost equal among the methods (Extended data Fig. 3A) and that 

the stress distributions emerging from the solution are roughly identical (Extended data Fig. 3B). 

Moreover, the coefficient of determination is similar for the accumulated data of all repetitions for 

each example at the last simulated frame (Extended data Fig. 3C). 

Moreover, we generated an artificial normal distribution to measure the relative differences with a 

first moment of 1 and a second moment equal to 0.2. We calculated the Wasserstein Distance 

between the in silico distributions and the normal generated randomly. Given two distributions, X 

and Y, the Wasserstein Distance is zero if and only if the two distributions are equal. The distance 

between two distributions can be arbitrarily large for increasingly different shapes. 

The Wasserstein Distance is almost zero in all cases, indicating that the distributions gathered from 

the three inference methods are similar. To compare its similarity, we used an artificially generated 
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normal distribution. Using this metric, we found that the methods among themselves are ~30 times 

closer in the x-furrow and y-furrow, 10 times closer for the circular case, and ~5 times closer in the 

random densities example than to the normal distribution. 

 

Statistical estimators 

To compare distributions, the Mann-Whitney U test was used with different alternative hypotheses, 

depending on whether we tested for stochastic ordering or whether distributions are different. In all 

in silico  cases, the number of samples is twenty-five, which is the number of repetitions per 

condition. The Pearson correlation coefficient (R) was used when we evaluated correlations. The 

number of samples in each case is indicated when reporting the p-value. 

Data availability 

All relevant data and materials will be made available upon request. 

 

Code availability 

The seapipy33 codebase is available on Github at https://github.com/borgesaugusto/seapipy. 

ForSys46 is available on GitHub https://github.com/borgesaugusto/forsys. 
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Figure Legends 

 

Figure 1. Force inference modalities of ForSys. (A) The static inference is performed on a microscopy image by 

creating a skeletonized tissue representation. Then, ForSys reads it and builds the system of equations 

according to the geometrical properties of the tissue, assuming that each vertex in the tissue is in mechanical 

equilibrium. Lastly, the system is solved, and the intracellular pressures and intercellular stresses are inferred. 

(B) Similarly, the dynamical inference uses a time series of images to add dynamical information to the system 

of equations used in the static case, by assuming an overdamped regime. A time mesh is generated from the 

succession of microscopy images, and pivot vertices are tracked through time. These are vertices at which 

three or more edges meet. Then, the velocity of these vertices from frame to frame is used to modify the 

system of equations, allowing non-static tissues to be analyzed by stress inference. 
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Figure 2. In silico validation of ForSys for tissues in static equilibrium. Four different conditions were 

generated with seapipy to benchmark ForSys under the static equilibrium condition. Each column shows a 

representative replicate per condition at the final frame (t=24). The ground truth (A) can be compared to the 

values for the DLITE predictions (B) and the Static ForSys (C). The three rows shown correspond to the final 

frame of the simulation. The color bar above the last two panels shows the order of the colormap for both the 

stresses and the pressures. Pressures in the cells are represented with transparency for improved visualization. 

The mean absolute percentage error (MAPE) (D) and the saturated score function (E) for all simulations (N = 

25) are represented in two boxplots, DLITE and Static inference with ForSys, paired by condition. (see 

Materials and Methods “Evaluating goodness of fit) Dots show the result for individual repetitions. 
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Figure 3. In silico validation of ForSys for tissues in dynamical equilibrium. We generated four examples with 

seapipy to test dynamical equilibrium conditions. Each column shows a representative repetition per example. 

The first row (A) shows the ground truth values for the stress and the pressures, the static inference made by 

ForSys is in the second row (B), and the dynamical ForSys inference is in (C). We show each example at one 

time point after the system’s tensions changed. The color bar above the last two panels shows the order of the 

colormap for both the stresses and the pressures. The mean absolute percentage error (D) and the saturated 

score function value (E) for all simulations are represented in two boxplots, Static and Dynamical inference, 

paired by condition. Dots show the result for individual repetitions. (F) Dependence of the MAPE with the 

velocity |𝑣|2. The scattered dots are the median for all experiments with a velocity corresponding to the 

current |𝑣|2 bin. Error bars in the y-axis are one standard deviation, and error bars in the x-axis represent the 

size of the velocity bin. (G) Dynamic to static score function ratio ( 𝑟 =   𝑙𝑜𝑔(
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑠𝑡𝑎𝑡𝑖𝑐
)) as a function of the |𝑣|2 

bin. A ratio bigger than zero shows that the dynamic solutions performed better (Red zone), and a negative 

value (Green Zone) favors the static solution. The black dashed line at y = 1 separates both zones. All velocity 

bins favor the dynamic solution. 
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Figure 4. Comparison of ForSys-derived stress with myosin II measurements in the Xenopus embryo 

mucociliary epithelium. (A) Scheme of the Xenopus embryo and position of the mucociliary epithelium. (B) 

Five examples of inference in Xenopus embryos. The microscopy image is shown alongside the myosin 

intensity map and the ForSys inference result. The color code in the maps represents the myosin sensor 

intensity and the stress prediction. The scale was saturated at tension values of two. The highlighted region in 

the microscopies shows the area that was analyzed. (C) Relationship between myosin sensor intensity and 

stress inferred for the five examples. Each scatter point shows the value for a particular membrane in that 

example. The dashed black line represents the y=x line. Each color coincides with the rounded rectangle 

around the embryo and its font color in panel (B). The average Pearson correlation coefficient is R=0.56 ± 

0.11; (mean±std)  (D) Quantification of stresses and myosin sensor intensity for the five examples. Inferred 

stresses and myosin intensities are not significantly different from each other (p=0.76; Mann-Whitney U test; 

N=154). 
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Figure 5. ForSys inference of a moving epithelium in the zebrafish lateral line at 2 dpf. (A) Schematic of the 

biological model. The neuromasts of the posterior lateral line are formed by detaching from a primordium that 

migrates from the anterior to the posterior of the fish. (B) Frames 0, 7, and 15 of the primordium migration in 

which cell membranes are fluorescently marked with Claudnb:lyn-EGFP. (B’) The membrane signal is used for 

segmentation, which ForSys can use to predict cell membrane tension and intracellular pressure. (C, C’) 

Consecutive planes show cell division. The membrane tension in the cell just about to divide is considerably 

higher than the surrounding membranes. After division, the dividing membrane retains a high tension. (D, D’) 

Schematic of the primordium orientation and the position of the optical planes. Constriction of the cell 

membranes in rosettes is evident in the apical plane. The asterisks show the anteroposterior location of rosettes. 

The cell segmentation was done on a Z-plane at a more basal plane (E) Ridgeline plots of Cell densities along the 

anteroposterior axis throughout 16 frames for a representative primordium. Time goes from bottom to top. The 

direction of primordium migration is to the right. The asterisks show the positions of the manually annotated 

rosettes. (F) Anteroposterior position of the manually tracked rosette against the inferred position by taking the 

local maxima of the density of pressure values from (E). The diagonal line marks y=x as a reference for comparing 

predicted and manually annotated values. 
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Figure 6. in vivo ForSys inference in an epithelium with rotating cells. (A) Schematic of cell composition in a 

zebrafish lateral line neuromast. Sensory hair cells are located in the center and are surrounded by support cells. 

(B) Image of a neuromast whose cells can be tracked by membrane-tethered EGFP. (B’) ForSys tension inference 

after membrane segmentation. (C) The tension inferred for membranes is classified by the type of cell-cell 

contact. The homotypic contacts between hair cells show the highest predicted tension, while the homotypic 

contacts between support cells show the lowest on average. Each data point is the mean of the predicted tension 

values for each membrane type in one frame. The frames come from N=7 time-lapse experiments. (D) Schematic 

of the planar cell inversions occurring in 50% of the nascent hair cell pairs: sibling hair cells perform a 180° 

rotation to exchange positions along the anterior-posterior axis. (E) Time-lapse frames showing the in vivo 

rotation process: around 100 minutes after mitosis, the nascent hair cells exchange anteroposterior positions 

by rotating in the epithelial plane. The sibling cells remain attached to each other during the rotation, while the 

surrounding cells do not actively participate in the movement. (F) Homotypic tensions between the young 

rotating hair cells are significantly lower than their contacts with the surrounding cells. 
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Extended data figures Legends 

 

 

Extended Data Figure 1. ForSys pipeline for validation. We used different conditions to generate example 

tissues with varied stresses and pressures. All examples are created through the seapipy package, which uses 

Surface Evolver as a backend (A). Then, ForSys is applied in any of its modalities to infer the stresses and 

pressures (B). 
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Extended Data Figure 2. ForSys general implementation. Forsys uses skeletonized images as input, which are 

read with the Skeleton() module of the software. Frames are collected in a dictionary and then passed to the 

ForSys() class to generate the corresponding mesh (A). Then, the matrices for the stresses and the pressures 

are built through different modules and solved individually (B). Stresses must be previously calculated to infer 

the pressures due to their dependence on the membrane stress. Finally, the inferred stresses and pressures 

are exported through the plot_inference() methods (C). 
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Extended Data Figure 3. Comparison between staticForSys and other force inference methods. We tested 

whether the static implementation of ForSys differed from the values of DLITE and CellFIT. Each column 

represents one of the examples. We show that the inferred stress versus the ground truth follows the y=x line, 

plotted as a solid black line as a visual aid, for the three methods at the last simulated frame (A). Moreover, 

the distribution of stresses of all methods has similar behaviors in the histograms (B).  Both panels (A) and (B) 

are for a selected representative simulation. Then, the result for all inferred tensions versus ground truth 

repetitions is shown for each condition at the last simulated frame. The black dashed line is the y=x line and is 

a visual aid. The score function’s values are in the lower right corner of each plot (C). ForSys, in its static 

modality, has better results in the three first examples and comparable results in the random tension case.  
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Extended Data Figure 4. Forsys dynamic at each example. Each column groups plots corresponding to the 

same prescribed conditions.  (A) The evolution of tissue movement for each example is shown. The orange 

scatter dots are the mean of the 2-norm of the velocities vector, with the uncertainty being one standard 

deviation. In all cases, the values are derived from each example's repetitions. (B) The inferred tension versus 

ground truth is plotted for all examples. Dynamical results are plotted in red, while static ones are in green. 

The y = x is plotted as a visual aid as a dashed black line. The score function values are in the lower right corner 

of each plot. In every case ForSys in its Dynamic modality gives a better score than its static counterpart. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.28.595800doi: bioRxiv preprint 



 

31 

 

Extended Data Figure 5. Scale parameter exploration. (A) Heatmaps show the saturated score function values 

for the sweep of the scale parameter proportional to the inverse of the Weissenberg number (𝑊𝑖)−1 for each 

example and all 25 repetitions as a function of the velocity of the frame. This velocity is defined as the norm of 

the vector containing the velocities in the x and y direction of each tracked junction in the tissue. The score 

function is calculated as described in Materials and Methods, with saturation at the corresponding value 

𝑠(0.01, 0.99, 0.99). (B) Shows the boxplots for the scale parameter corresponding to the highest score value for 

each time point and example. The median values of these four distributions are 𝑚𝑥−𝑎𝑥𝑖𝑠  =  0.08; 𝑚𝑦−𝑎𝑥𝑖𝑠  =

 0.07; 𝑚𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟  =  0.12; 𝑚𝑟𝑎𝑛𝑑𝑜𝑚  =  0.18. The corresponding examples for Figures 2 and 3 use these values 

as scale parameters.  
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Supplementary video 1. ForSys dynamic inference in the migratory primordium. Top panel shows the time- 

lapse of the migrating primordium of figure 5 with cell membranes marked with EGFP. The primordium 

migrates from anterior (left) to posterior (right). The individual frames were segmented and used as input to 

Forsys. Bottom panel presents the corresponding values of intercelullar stresses and intracellular pressures for 

each frame as inferred by ForSys. The color of the cell borders and cell area represent the values of the stress 

and pressure, respectively. Warmer colors indicate higher values and cooler colors indicate lower values. 
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Abstract
Mutations in eya1 cause branchio-oto-renal syndrome (BOR) in humans and the equivalent condition in animal models. BOR
is characterized by multi-organ malformations. To better understand the role of Eya1 in organogenesis we used the zebrafish
posterior lateral-line primordium. This multicellular tissue moves from head-to-tail at a constant velocity via the simultaneous
action of two chemokine receptors, Cxcr4b and Ackr3b (formerly cxcr7b). We found that loss of eya1 strongly reduces the
expression of ackr3b, disrupting the coherent motion of the primordium and leading to lateral-line truncations. These findings
point to abnormal collective cell chemotaxis as the origin of organ dysmorphia in BOR.
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Figure 1. Loss of eya1 disrupts lateral-line development:
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(A,B) Plot of the distance (in μm) between the caudal limit of the otic vesicle and the average number of deposited neuromasts
in wild-type (E) and eya1-mutant (F) specimens at 3 dpf (mean ± s.d.). N= 4 for wild type and N=9 for eya1-/-. (C-F) Live
images of neuromasts of the transgenic lines Et(krt4:EGFP)sqet20 (C,E) and Et(krt4:EGFP)sqet4 (D,F) at 6dpf in wild-type
(C,D), eya1 mutants (E,F) revealing supporting cells (C,E) and hair cells (D,F). (G,H) High magnification confocal images of
a wild type (G) and mutant (H) primordium. At 195 minutes of migration, the wild-type primordium has deposited one pro-
neuromast, whereas the eya1(-) primordium failed to do so even after 440 minutes. (I) A transgenic gSAG181A larva at 30hpf.
This line specifically expresses EGFP in the posterior lateral line primordium. (J) The primordium and a pro-neuromast in a
SAGFF(LF)19A;UAS:RFP larva. SAGFF(LF)19A expresses a Gal4 protein in rear primordial cells, pro-neuromasts and inter-
neuromast cells. (K) Kymograph from a time-lapse movie focusing on the migrating primordium. The trailing RFP signal
driven by SAGFF(LF)19A signal is associated with pro-neuromast rosettogenesis. A few cells expressing 19A:RFP remain in
the trailing edge after pro-neuromast deposition. The leading edge advances linearly with a velocity of roughly 80 microns per
hour at 28°C. (L) Kymograph from a representative eya1 Crispant larva in the 181A;19A:RFP transgenic background. No
neuromast deposition is seen for the duration of the movie. The fish was confirmed to express 19A:RFP in older neuromasts
but barely any red fluorescence is seen in the trailing edge of the primordium. The curved shape of the trajectory indicates that
after stalling, the primordium performs a U-turn and starts backward migration. Black gaps in the solid green band reflect
transient splitting events of the primordium. Units on the x-axis are micrometers (μm). (M-T) Representative fluorescent
whole-mount in situ hybridizations (M,N) of cxcl12a (red), counterstained with DAPI (blue) to reveal the nuclei for better
identification of the primordium (white dotted outline). It shows that the cxcl12a gene is expressed along the horizontal
myoseptum in the wild type (M) and eya1 mutants (N). (O-T) cxcr4b (green) and ackr3b (red) gene-expression profiles in
wild type (O,Q,S) and eya1 mutants (P,R,T) The cxcr4b gene is strongly expressed in the leading region of primordium in both
in wild-type and eya1 mutants (O-R). The expression of ackr3b, however, is strong in the trailing region of the wild-type
primordium (overlapping with cxcr4b) (O,Q,S), but almost completely lost in eya1 mutants, as it is restricted to the very end
of the trailing region and never overlaps with cxcr4b (P,R,T). HCR conducted in al least 10 samples. Scale bars: C-F 10 μm;
G-H 100 μm; I 1mm; J, 100 μm; M-T 100 μm.

Description
DESCRIPTION

The coordinated action of multiple cells governs the development of tissue shape and pattern. Consequently, mutations in
genes driving collective cell behavior have profoundly deleterious effects on organogenesis. One gene of particular interest is
Eya1, whose loss in vertebrates disrupts the formation of several organs, including the kidney, inner ear, and the lateral line
(Kozlowski et al., 2005; Sahly et al., 1999; Seleit et al., 2017; Almasoudi and Schlosser, 2021). In humans, mutations in Eya1
segregate with 40% of cases of Branchio-Oto-Renal syndrome (BOR) (Abdelhak et al., 1997; Sánchez-Valle et al., 2010; Krug
et al., 2011). Standard treatments for BOR over the past 25 years have been kidney transplants, dialysis and hearing aids
(Smith, 1993; Tian et al., 2022). More innovative interventions are lacking in part because the cellular mechanisms that are
disrupted in BOR remain obscure (Soni et al., 2021). Here we combine forward- and reverse-genetic analyses with live
imaging to study a model of BOR in zebrafish.

Alterations of the Cxcl12a (formerly Sdf1a) chemokine receptors CXCR4b and Ackr3b (formely CXCR7b) lead to defects in
neuromast deposition during the formation of the lateral line (Venkiteswaran et al. 2013; Donà et al., 2013). Therefore, we
speculated that mutations affecting the number of neuromasts will identify factors involved in chemokine signaling. Following
this rationale, we analyzed zebrafish carrying a loss-of-function mutation in eya1 (Kozlowski et al., 2005; Nica et al., 2006).
Using somatic CRISPR/Cas9-mediated genome engineering we mutated eya1 and the fluorescent enhancer-trap line SqET20
to mark non-sensory supporting cells, and SqET4 to highlight the mechanosensory hair cells in neuromasts (Parinov et al.,
2004). We found that mutants produce fewer neuromasts within a truncated lateral line (Fig. 1A-B). However, the survival of
mutant neuromasts over the course of 4 days after their deposition was not affected by the loss of eya1 (Fig. 1C-F). These data
indicate that the lateral-line defects in eya1 mutants arise during development and not from post-embryonic degeneration of
neuromasts. When looking at early embryos, we found that loss of eya1 delayed the migration of primordium (Fig. 1G-H).

Next, we focused on primordium dynamics from the onset of migration by in toto videomicroscopy, combining two
fluorescent enhancer-trap lines, Tg[gSAG181A] and Tg[SAGFF(LF)19A] (Kawakami et al., 2004). Tg[gSAG181A] is unique
in that it is the only known line that expresses EGFP exclusively in the posterior lateral-line primordium (Fig. 1I). We found
that Tg[gSAG181A] is an insertion near the SAM and SH3 domain containing 1a (sash1a) locus on chromosome 20. The
Tg[SAGFF(LF)19A] is an insertion of a Gal4 transgene into ebf3 locus (Kuriki et al., 2020). When combined with a UAS-
driven RFP, it drives expression in the rear part of the primordium and in the deposited neuromasts (Fig. 1J). The combined
Tg[gSAG181A;SAGFF(LF)19A;UAS:RFP] showed that wild-type primordia move at a constant velocity of around 80
μm/hour (Fig. 1K and Supp. Movie 1), whereas eya1-deficient primordia undergo cycles of migration and stalling, averaging a
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markedly reduced speed of 14 μm/hour (Fig 1L). Moreover, primordia lacking eya1 sometimes make U-turns to move back
towards the head (Fig. 1L and Supp. Movie 2). Therefore, the loss of eya1 does not block primordium migration, but instead
creates pronounced defects in its otherwise coherent motion. The expression of cxcl12a chemokine along the migratory path,
and the chemokine receptor cxcr4b in the front of the primordium remained normal in eya1-mutant fish (Fig. 1M-R). By
contrast, the expression of ackr3b in the trailing part of the primordium was strongly diminished (Fig. 1O-P,S-T). Therefore,
loss of eya1 disrupts primordium migration due to reduced expression of ackr3b, which in turn may saturate the CXCR4b
receptor by maintaining abnormally high levels of Cxcl12a in the trailing part of the primordium.

Based on our findings, we propose that the Eya1 protein may also govern coherent collective cell movement during otic and
renal development mainly via chemokine signaling. Therefore, our results shed new light on the role of Eya1 on collective cell
migration and suggest potential avenues to explore novel therapeutic strategies for human patients. Given that the causative
mutation for over 50% of BOR cases is not yet known, we predict that the lateral line of zebrafish will remain a powerful
model to validate genomic polymorphisms from GWAS studies of BOR patients and generate novel cellular and molecular
insights with translational potential. On this regard, our findings raise the possibility that augmenting residual CXCR7 protein
activity may improve the outcome of eya1 mutations in humans (Jiang et al., 2021; Hughes and Nibbs, 2018). It also
encourages the development of tissue engineering approaches to control collective cell migration aimed at clinical applications
(Manivannan et al., 2012).
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Methods
MATERIALS AND METHODS

Zebrafish animals and strains

Fish used were maintained under standardized conditions. Experiments were performed in accordance with protocols approved
by the Ethical Committee of Animal Experimentation of the Helmholtz Zentrum München, the German Animal Welfare act
Tierschutzgesetz §11, Abs. 1, Nr. 1, Haltungserlaubnis according to the European Union animal welfare, and under protocol
number Gz.:55.2-1-54-2532-202-2014 and Gz.:55.2-2532.Vet_02-17-187 from the “Regierung von Oberbayern” (Germany).
Eggs were collected from natural spawning and maintained at 28.5°C. Embryos were staged by hours post fertilization (hpf).
The eya mutant allele used in this study is eya1^tm90b (Nica et al., 2006). Embryos were genotyped according to Kozlowski et
al. (Kozlowski et al., 2005). Transgenic lines used were Et(krt4:EGFP)sqet4 and Et(krt4:EGFP)sqet20 (Pinto-Teixeira et al.,
2015), Tg[Cldnb:lynEGFP]zf106Tg (Haas and Gilmour, 2006), gSAG181A (Gt(T2KSAG)nkgsag181A) and SAGFF(LF)19A
= Et(T2KSAGFFLF)nkSAGFFLF19AEt (Kawakami et al., 2004).

Somatic CRISPR gene knock-out

Crispr somatic mutagenesis of eya1 was done with 4 sgRNAs (Wu et al., 2018). A 1 mg/ml equimolar mixture of 4 sgRNAs,
transcribed with MEGAshortscript T7 (Thermo Fischer), 5 mM Cas9 protein (Sigma), and 300 mM KCl, was injected into
one-cell stage embryos. The sequences in the eya1 gene targeted by each sgRNA are the following:
CTTCCACTTACTCGGCTGTG,TTGTCAATGTTGGGACCGTT, GACGTACCTTCAGTGCCATT,
AGAGCCGTCTGCTACAGAGG

Whole-mount in situ hybridization (ISH)

For ISH, antisense digoxigenin- and fluorescein-labeled riboprobes were synthesized according to manufacturer’s instructions
(Roche) by using T7/SP6/T3 RNA polymerases. Probes used were: cxcl12a, cxcr4b, ackr3b. Whole-mount two-color
fluorescence ISH was performed using anti-DIG and -fluorescein POD antibodies (Roche) and Tyramide Signal Amplification
(TSA, PerkinElmer) to detect the riboprobes. Briefly, samples were fixed in 4% paraformaldehyde (PFA) for 24h at 4°C,
permeabilized with methanol and cooled to 20°C. Next day, samples were rehydrated, treatment with proteinase K and post-
fixed in PFA for 20 min at room temperature. The samples were washed with PBST between the steps. Probe hybridization
buffer was used for the prehybridization for 30 min at 37°C and the samples were incubated in the probe solution, prepared
following the manufacturer’s instructions, overnight at 37°C. After removing the probe solution, washing the samples and
incubating them in the pre-amplification buffer, the samples were incubated in the hairpin mixture overnight in the dark at
room temperature. Finally, after several washes with SSCT, the cell nuclei were stained with DAPI (40,6-diamidino-2-
phenylindole, Sigma) 1 hour at room temperature.

Imaging and time-lapse video microscopy
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For whole-mount ISH, embryos were de-yolked, flat mounted and photographed with an Olympus BX61 microscope using
20X or 40X dry objectives with transmission light. Whole embryo images were acquired on a Leica MZ10 stereomicroscope.
Fluorescent images were acquired using either a Leica SP5 or SPE microscope using 20X dry objective or 40X oil immersion
objective. Images were processed using Imaris and/or ImageJ software packages, and assembled with Adobe Photoshop CS2,
Adobe Illustrator CS2, and Macromedia FreeHand MX. For time-lapse imaging, staged and de-chorionated embryos were
anesthetized with Tricaine and mounted in 0.8-1% low-melting-point agarose on a glass-bottom culture dish (MatTek) as
previously described (Torres-Mejía et al., 2020). Z-stack series were acquired every 4-10 min using a 20X dry objective of
Leica SPE or SP5 confocal microscope. All movies were processed with the Imaris or ImageJ software packages. An unpaired
two-tailed T test with Welch’s correction was used to compare the position of neuromast L4 in eya1 mutants and wild-type
siblings. Statistics were performed using the GraphPad Prism software and Excel running QI Macros.
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Extended Data
Description: Movie 1. Resource Type: Audiovisual. File: media-1.avi. DOI: 10.22002/h880t-ea128

Description: Movie 2. Resource Type: Audiovisual. File: media-2.avi. DOI: 10.22002/d6d9v-09443

References
Abdelhak S., Kalatzis V., Heilig R., Compain S., Samson D., Vincent C., et al., Leibovici M.. 1997. A human homologue of
the Drosophila eyes absent gene underlies Branchio-Oto-Renal (BOR) syndrome and identifies a novel gene family. Nat.
Genet. 15: 157.

Almasoudi S.H., Schlosser G.. 2021. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of
Eya1. Front. Neuroanat. 15: 722374.

Donà E., Barry J.D., Valentin G., Quirin C., Khmelinskii A., Kunze A., et al., Huber W.. 2013. Directional tissue migration
through a self-generated chemokine gradient. Nature. 503: 285.

Haas P., Gilmour D.. 2006. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev.
Cell. 10: 673.

Hughes C.E., Nibbs R.J.B.. 2018. A guide to chemokines and their receptors. FEBS J. 285: 2944.

Jiang C., Li R., Xiu C., Ma X., Hu H., Wei L., et al., Zhao J.. 2021. Upregulating CXCR7 accelerates endothelial progenitor
cell-mediated endothelial repair by activating Akt/Keap-1/Nrf2 signaling in diabetes mellitus. Stem Cell Res. Ther. 12: 264.

Kawakami K., Takeda H., Kawakami N., Kobayashi M., Matsuda N., Mishina M.. 2004. A Transposon-Mediated Gene Trap
Approach Identifies Developmentally Regulated Genes in Zebrafish. Dev. Cell. 7: 133.

Kozlowski D.J., Whitfield T.T., Hukriede N.A., Lam W.K., Weinberg E.S.. 2005. The zebrafish dog-eared mutation disrupts
eya1, a gene required for cell survival and differentiation in the inner ear and lateral line. Dev. Biol. 277: 27.

Krug P., Morinière V., Marlin S., Koubi V., Gabriel H.D., Colin E., et al., Heidet L.. 2011. Mutation screening of the EYA1,
SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic
role of SIX5 mutations. Hum. Mutat. 32: 183.

Kuriki M., Sato F., Arai H.N., Sogabe M., Kaneko M., Kiyonari Kawakami, et al., Sehara-Fujisawa A.. 2020. Transient and
lineage-restricted requirement of Ebf3 for sternum ossification. Development. 147: 186239.

Manivannan S., Gleghorn J.P., Nelson C.M.. 2012. Engineered Tissues to Quantify Collective Cell Migration During
Morphogenesis.

Nica G., Herzog W., Sonntag C., Nowak M., Schwarz H., Zapata A.G., Hammerschmidt M.. 2006. Eya1 is required for
lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis. Dev. Biol. 292: 189.

Parinov S., Kondrichin I., Korzh V., Emelyanov A.. 2004. Tol2 transposon-mediated enhancer trap to identify developmentally
regulated zebrafish genes in vivo. Dev. Dyn. 231: 449.

Pinto-Teixeira F., Viader-Llargués O., Torres-Mejía E., Turan M., González-Gualda E., Pola-Morell L., López-Schier H.. 2015.
Inexhaustible hair-cell regeneration in young and aged zebrafish. Biol. Open. 4: 903.

Sahly I., Andermann P., Petit C.. 1999. The zebrafish eya1 gene and its expression pattern during embryogenesis.
Development Genes and Evolution. 209: 399.

 

9/23/2024 - Open Access



 

Sanchez-Valle A., Wang X., Potocki L., Xia Z., Kang S.-H.L., Carlin M.E., et al., Brundage E.K.. 2010. HERV-mediated
genomic rearrangement of EYA1 in an individual with branchio-oto-renal syndrome. Am. J. Med. Genet. 152A: 2854.

Schumacher L.. 2019. Collective Cell Migration in Development. Cell Migrations: Causes and Functions: 105.

Seleit A., Krämer I., Ambrosio E., Dross N., Engel U., Centanin L.. 2017. Sequential organogenesis sets two parallel sensory
lines in medaka. Development. dev.142752

Smith R.J., Adam M.P.), Mirzaa G.M.), Pagon R.A.), Wallace S.E.), Bean L.J.), Gripp K.W.), Amemiya A.. 1993.
Branchiootorenal Spectrum Disorder.

Soni U.K., Roychoudhury K., Hegde R.S.. 2021. The Eyes Absent proteins in development and in developmental disorders.
Biochem. Soc. Trans. 49: 1397.

Tian L., West N., Cayé-Thomasen P.. 2022. Cochlear implantation in Branchiootorenal syndrome – case report and review of
the literature. Coch. Imp. Internat. 23: 52.

Torres-Mejía E., Trümbach D., Kleeberger C., Dornseifer U., Orschmann T., Bäcker T., et al., Desbordes S.C.. 2020. Sox2
controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 10

Vasilyev A., Liu Y., Mudumana S., Mangos S., Lam P.-Y., Majumdar A., et al., Korzh V.. 2009. Collective Cell Migration
Drives Morphogenesis of the Kidney Nephron. PLoS Biol. 7: 1000009.

Venkiteswaran G., Lewellis S.W., Wang J., Reynolds E., Nicholson C., Knaut H.. 2013. Generation and Dynamics of an
Endogenous, Self-Generated Signaling Gradient across a Migrating Tissue. Cell. 155: 674.

Wu, RS., Lam II, Clay H, Duong DN , Deo RC , Coughlin SR. (2018). A Rapid Method for directed Gene Knockout for
Screening in G0 Zebrafish. Dev. Cell 46(1):112-125.e4.. 2018. A Rapid Method for.

Funding:

HL-S and JRM-R received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 840834, and by the New York University Abu Dhabi. KK received funding
from JSPS KAKENHI JP24K02008 and NBRP from MEXT.

Author Contributions: Augusto Borges: investigation, writing - original draft, formal analysis. Filipe Pinto-Teixeira:
investigation. Indra Wibowo: investigation. Hans-Martin Pogoda: resources. Matthias Hammerschmidt: resources. Koichi
Kawakami: resources. Hernán López-Schier: conceptualization, formal analysis, funding acquisition, project administration,
writing - review editing. Jerónimo Roberto Miranda-Rodríguez: investigation, supervision, formal analysis.

Reviewed By: Anonymous

Nomenclature Validated By: Anonymous

History: Received August 8, 2024 Revision Received August 28, 2024 Accepted September 6, 2024 Published Online
September 23, 2024 Indexed October 7, 2024

Copyright: © 2024 by the authors. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Citation: Borges, A; Pinto-Teixeira, F; Wibowo, I; Pogoda, HM; Hammerschmidt, M; Kawakami, K; López-Schier, H;
Miranda-Rodríguez, JR (2024). Incoherent collective cell chemotaxis underlies organ dysmorphia in a model of branchio-oto-
renal syndrome. microPublication Biology. 10.17912/micropub.biology.001342

 

9/23/2024 - Open Access



Peeking into the future: Inferring mechanics in dynamical tissues

Borges Augusto1, 2 & Chara Osvaldo3,4,5

1) Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, Munich, Germany
2) Graduate School of Quantitative Biosciences, Ludwig Maximilian University, Munich, Germany
3) School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12,
UK
4) Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires, Argentina
5) corresponding author: osvaldo.chara@nottingham.ac.uk

Abstract

Cells exert forces on each other and their environment, shaping the tissue. The

resulting mechanical stresses can be determined experimentally or estimated

computationally using stress inference methods. Over the years, mechanical stress

inference has become a non-invasive, low-cost computational method for estimating

the relative intercellular stresses and intracellular pressures of tissues. This

mini-review introduces and compares the static and dynamic modalities of stress

inference, considering their advantages and limitations. To date, most software has

focused on static inference, which requires only a single microscopy image as input.

Although applicable in quasi-equilibrium states, this approach neglects the influence

that cell rearrangements might have on the inference. In contrast, dynamic stress

inference relies on a time series of microscopy images to estimate stresses and

pressures. Here, we discuss both static and dynamic mechanical stress inference in

terms of their physical, mathematical, and computational foundations and then

outline what we believe are promising avenues for in silico inference of the

mechanical states of tissues.



Introduction
Tissue morphogenesis is driven by changes in cell numbers (in turn caused by mitoses,
apoptosis, and cell extrusion), collective movements of cells, and changes in cellular
mechanical properties together with alterations of the constraints imposed by the
environment onto the epithelium [1–10]. Hence, tissue mechanics needs to be addressed to
understand the remarkable morphogenetic processes that shape embryonic tissues during
development and the outgrowth of tissues in species capable of regeneration [11].

The study of forces in embryo morphogenesis can be traced back to the
Entwicklungsmechanik (developmental mechanics movement), which emerged during the
19th century [12]. Later, D’Arcy Thompson enlightened his time with a revolutionary concept:
the size and shape of body organisms could also be interpreted as a map of the acting and
driving mechanical forces [13], in the same way in which Faraday conceptualized that iron
particles in his experiments were a map of the invisible magnetic fields underneath [14]
(Supplementary Figure 1A-C). Thus, D’Arcy Thompson transformed our way of perceiving
living organisms: The geometrical features of organisms, tissues, and cells reflect not only
gene regulatory networks but also a vivid manifestation of mechanical forces at work (Figure
1A). This idea re-emerged and crystallized into a mathematical method to infer mechanical
stresses in tissues during the late part of the last century.

Tissue shape is not solely a product of biochemical signalling, but results from the collective
interactions between constituent cells [15–19]. Changes in the mechanical interactions
between cells and their environment/substrate, reflected in tissue stiffness, can promote
epithelial-mesenchymal transitions (EMT), which promote tissue repair and development
[20–23]. In tumourigenesis, increased stiffness can lead to tumour progression and
metastasis [21,24,25]. Spatial and temporal changes in stiffness can influence the cell-to-cell
stresses that arise in tissues. Interestingly, tissue stress distribution is not temporally
invariant during complex biological processes such as development [26–28]. For example,
tissue stress fluctuations have been shown to play a key role in facilitating tissue
reorganisation in the developing zebrafish [29]. Mechanical stress also plays a critical role in
tissue regeneration by promoting cell functions such as proliferation, differentiation and
migration [30–32]. Mechanical stimuli can improve bone fracture healing by promoting the
growth and differentiation of bone-forming cells [30].

This mini-review1 first describes the computational methods of static stress inference, their
advantages over the standard experimental stress determination, and their limitations. Next,
we discuss how these limitations lead to the alternative computational methods of dynamic
stress inference, which essentially use the topology of the tissue in the "present" combined
with its "future" state to predict the stresses therein. We explore the similarities and
differences between the dynamic and static counterparts and highlight their advantages and
disadvantages. We have summarised all stress inference algorithms that exist to the best of

1 In the present review, we will not address continuous methods for stress inference. They
include methods that rely on hydrodynamic calculations to convert cell displacements into
stress maps [33–36] or using displacement from photopatterned substrates, such as Traction
Force Microscopy [37,38].



our knowledge in Table 1. We conclude this review with what we believe are exciting future
perspectives of stress inference in tissues.

Determining stress statically: The Geometrical
Stress Inference
Computational estimation of the mechanical forces at play in biological systems was
originally called Force inference, even though the calculated magnitudes are scalars. Here,
as pointed out by other authors [35,39,40], we will use the term stress inference. This
inexpensive technique approximates the relative stresses and pressures operating in a given
system using a microscopy image as sole input, exploiting the information in the tissue
topology to obtain the apparent distribution of stresses therein [35,41–46].

The contact angle among cells can serve as a proxy for cell-cell junctional tension, a concept
imported from wetting phenomena to study cell interfaces [47] (Figure 1B). Thus, it can be
used for stress determination between cells in monolayers, as it depends on the relative
forces along the interfaces [48,49]. The cell-cell junctional tension might arise from different
sources, such as actomyosin contraction due to myosin accumulation at the cortex or
cell-cell adhesion through cadherin binding [2,50]. The membrane stress will be equal at a
tricellular junction where all cells meet with the same contact angle ( )α = β =  γ =  120º
(Figure 1C, upper panel). On the other hand, when there is a near-straight angle between
two membranes, the stress in the third one will be almost zero (Figure 1C, lower panel). As
determining the contact angles at each junction is paramount, membrane segmentation
needs to be precise to avoid angle misrepresentation. New image segmentation software is
appearing [51–53], and constant efforts are being made to standardize their applicability
[54].

Therewith, the intracellular pressure can be inferred using the Young-Laplace Law (Figure
2A) by combining the intercellular stress and the local cell membrane curvature.
Conceptually, more convex cells will have a higher pressure than concave ones (Figure 2B).
Pressure differences arise from an interplay between the hydrostatic pressure in the cell’s
environment and the osmotic pressure due to the cell’s semipermeable membrane. Only
recently have the osmotic contributions to the intracellular pressure been determined in vivo
in zebrafish [55].

Static stress inference requires the tissue of interest to be in mechanical equilibrium,
allowing each cellular junction to be associated with a force balance equation. Using
Newton’s second law, each equation will have the sum of forces acting on a given vertex
equal to zero,

(1)
𝑗

∑ 𝐹
𝑗

→
 =  0

where j identifies the different edges in the junction. The absence of inertial terms is justified
by assuming that the system behaves as a viscous fluid. Thus, these components are
negligible compared to viscous ones [56].



The precise mathematical form of the forces at each edge must also be decided. The most
frequent choice is to consider the force in the direction of the edge scaled by its stress
[57–60], similar to what is done in vertex models [39,44,61–63]. The force at each
membrane would be associated with the vectorial equation:

(2)𝐹
→

𝑗
 = λ

𝑗
𝑟𝑖
→

𝑗

Here, represents the stress of membrane j, the unitary vector in the direction of theλ
𝑗

𝑟𝑖
→

𝑗

edge j from junction i. Importantly, although choosing a model for the stress on the edge is
necessary, it is not a unique choice [58].

Determining edge shape and estimating pressure.
The proper determination of the membrane’s shape is crucial for stress inference. Noisy
images might lead to numerical errors that get amplified down the pipeline, reducing the
accuracy of the inference. Several methods can be used to estimate the membrane’s shape
contribution to the geometrical matrix defined in Equation 2. Straight edges, though easy to
estimate from microscopy images, have the inconvenience of making the system less robust
[35,60]. This can be visualized, for example, by taking an edge and realizing that the force
will have the same components at each end, with an opposite sign (Figure 3A). On the
contrary, curved edges will have a distinct value at each end of the edge, adding
independent information to the system of equations (Figure 3B). In this case, each edge's
direction (vector) could be determined from the tangent to the limiting angle to the cell
membrane [60].

Early methods inferred cortex stresses and cell pressures simultaneously and used the
straight-edge approximation [35,57,58]. These methods assume that the cell's mechanical
energy will depend only on the length of the edges and the cell’s area to derive the system of
equations from a potential energy [39,59]. Having the pressure and stress intermixed in the
same expression increases the number of unknowns per equation while maintaining only
one equation for each space component. Moreover, tissue boundaries and fourfold vertices
give fewer equations than unknowns, leading to an underdetermined system. Due to the
constraints mentioned, this type of system has been solved using Bayesian methods
[19,45,59]. These constraints are not unavoidable, as was demonstrated by the Cellular
Force Inference Toolkit: CellFIT [60]. This method allows considering curved edges and
makes stress and pressure inference independent. Pressure is modeled using the
Young-Laplace equation. This equation relates the shape and stress of an interface with the
difference in pressure between both sides (Figure 2A). As the stress in an edge is required
to calculate the pressure, this inference needs to be performed subsequently, effectively
decoupling both magnitudes.

Finding the solution to the inference problem
Each microscopy image (Figure 4A) is segmented (Figure 4B) and then converted to a
system of equations (Figure 4C) when performing stress inference (Figure 4D). Each spatial



dimension will contribute an equation per junction and one unknown per membrane: the
stress. The most common case is to have triple junctions, i.e., junctions with three
connecting membranes [64,65] (Figure 1B). In two dimensions, each new junction will
contribute two equations and, at most, three unknowns, as some membrane stresses will be
repeated.
This is commonly written in matrix form as

(3)[𝑀
λ
][λ] =  [𝑏]

In the following sections, quantities that appear in brackets [] are to be interpreted as
matrices. in Eq. 3 summarizes all the geometrical information of a tissue, as it contains[𝑀

λ
]

all components of the versors and their relationship to one another. Each column represents
edge stress, and each row is the equation at a junction for one of the spatial coordinates (x
and y in the 2D case). We call this matrix the geometrical matrix of the system since it
reflects all the geometrical features of the edges connecting the junctions of the tissue under
study (Figure 4C).

In geometrical stress inference, where no movement of the junctions is considered, the
right-hand side of Eq. 3 is set to the null matrix, i.e., . If all the junctions are at rest, a[𝑏] =  0
possible solution to the system of equations would be that no stresses are acting on the
system ( . Two methods are prevalent in the literature to avoid this unrealistic andλ

𝑗
 =  0 ∀𝑗)

trivial solution. We and other authors have included a constraint linking all the stresses in the
tissue, such as a particular value for the average stress [57,58,60,66]. Fixing a value has the
advantage of adding one more equation to the system without any new unknowns, thus
increasing its stability. Another method consists of changing the cost function associated
with the method, adding a regularizer [67] that penalizes the null solution. More generally,
this could allow tailoring of the cost function to the specific needs of the problem at hand by
enabling the addition of new terms, such as penalizing wider distributions of stresses.

Stress inference methods do not need to make any assumptions about the specifics of the
force generation mechanism. However, stress inference may yield negative results if the
inference method allows it or null stresses if not. In static stress inference, this usually
means that the particular shape of a membrane is incompatible with the underlying model.
Sometimes, it is possible to identify these issues and avoid problematic junctions or
membranes. Typical pathological junctions include near right angles, curvy membranes, or
junctions higher than three-fold [35,68,69].

Once stress is inferred, pressure can be determined by the curvature of the cell’s
membrane, as stated in Young-Laplace Law (Figure 2A). The equation can be made more
explicit as

(4)𝑃
𝑗
 −  𝑃

𝑖
 =  λ 𝐾

Here and are the pressures of cells j and i, respectively, is the membrane’s stress,𝑃
𝑗

𝑃
𝑖

λ

and K is the curvature. Therefore, an inhomogeneous system of equations can be
assembled where the unknowns are each of the , in matrix form𝑃

𝑖

(5)[𝑀
𝑃
] [𝑃] =  [𝑏

𝑃
]

Each row of the matrix represents an interface between two cells, with a 1 at the site of[𝑀
𝑃
]

the first cell and a -1 at the site of the second cell, and each column relates to one of the



rows in the [P] vector of unknowns. The matrix has the corresponding curvature of the[𝑏
𝑃
]

membrane and its stress in each row. As with the stresses, an additional equation is
commonly incorporated as a Lagrange multiplier to set a relationship between the pressures,
usually making the sum of the pressures equal zero [66,69].

A system is said to be overdetermined when there are more equations than unknowns,
meaning there is no exact solution in almost all cases. Generally, stress inference pipelines
encounter overdetermined systems, with some exceptions [35,59]. A popular method to
address this is to find an approximate solution through the Least Squares Method, which
works by creating a new system of equations using the transpose of the matrix as

(6)[𝑀
λ
]𝑇𝑟[𝑀

λ
][λ] =  [𝑀

λ
]𝑇𝑟[𝑏]

and then inverting the new square matrix . The approximate (least squares)[𝑀
λ
]𝑇𝑟[𝑀

λ
]

solution to the problem is then found by minimizing the difference between both sides of the
equation using a Non-Negative Least Squares or a Least Squares solver [70–72]. An
alternative method to solve the system of equations is to use the Moore-Penrose
pseudoinverse [39,73,74]. The generalized inverse of a matrix [A] is defined as

(7)[𝐴]‡ =  ([𝐴]𝑇𝑟[𝐴])−1𝐴𝑇𝑟

Then, given a system of equations as represented by Equation 3, the stresses would be
expressed as

(8)[λ] =  ([𝑀
λ
]𝑇𝑟[𝑀

λ
])−1[𝑀

λ
]𝑇𝑟[𝑏]

The mechanical inference pipeline is finally built as one system of equations coupling
stresses and pressures, or two when decoupled, with the stresses and pressures as
unknowns. Each system is built and solved for a single microscopy image (Figure 4D).
However, if a specific problem has a time series of images, how can we incorporate the
information about its evolution?

Dynamic Stress Inference
Tissues in a quasistatic regime may be encountered during adult tissue homeostasis or late
embryonic development. However, tissues are often found in a more dynamic state in early
embryonic development where cell motility and rearrangements cannot be neglected [75,76].
During development, morphogenetic flows shape the organisms into functional forms, such
as in Drosophila [77–80] and Zebrafish [81–85]. Therefore, accurate prediction of
mechanical forces in these tissues requires inference algorithms that work optimally in the
presence of significant motion. This modality of stress inference is called Dynamic Stress
Inference [35].

A key challenge in Dynamic Stress Inference is to follow the tissue’s evolution reliably
through time, yet not all tissue elements have to be tracked. The elements can be divided
into two categories: passive elements, which dissipate energy, and active elements, which



generate work [57,58]. Brodland and colleagues suggest that the forces generated by active
elements, such as the actomyosin network and cell membranes, deform the passive
elements, including the cytoplasm, organelles, and extracellular matrix [58]. The inference
method requires selecting an optimal level of detail, as the relevant elements need not only
be the cellular cortex but could also be subcellular structures [57,58]. The selected
structures must be defined in detail in the microscopy to allow tracking throughout the
experiment.

The second challenge is also found in static inference and was mentioned above, the need
to choose an underlying model for membrane stress: to the best of our knowledge, all
currently available software uses a derived version of the stress model described by
Equation 2. The choice depends on the specifics of the system of interest and the desired
level of complexity. For example, in systems where the contractility of the actomyosin cortex
is particularly relevant, a perimeter term may be necessary to account for the desired
quantity.

Finally, the third key challenge relates to the question of the scales involved in the processes
studied. In Static Inference, only the spatial scale is relevant, as it relates to the positions of
the membranes among themselves and is ultimately used to find the angles. Importantly, in
Dynamic Inference, the time scale comes into play, which implies that, in this formalism, the
relation between scales of space and time affects the inference.

In summary, to successfully incorporate cell movement information into the inference
process, the dynamic inference pipeline requires 1) faithful tracking of relevant elements of
the tissue through time, 2) an underlying model for the stress at each membrane, and finally,
3) knowledge of the relationship between the scales involved in the process under study.

To the authors’ knowledge, three different methods have been proposed to deal with time
series of data: DLITE [67], Video Force Microscopy [57], and ForSys [66]. Only DLITE and
ForSys are currently available. In the following sections, we explore the virtues and
limitations of these three methods.

DLITE: Time series as an initial condition
The use of movement information, also reviewed in [35], allows tracking of the nodes
through time, dealing with the first issue presented at the start of the previous section. DLITE
(Dynamic Local Intercellular Tension Estimation) [67] assumes mechanical equilibrium at
each junction (Eq. 1), similar to CellFIT [60]. DLITE takes membrane tensions in the
direction of the edge joining the junction, with no additional terms (Eq. 2). Moreover, it uses a
regularizer that penalizes small stress values to avoid the null solution. Though time series
tracking of tissues is involved, as Roffay et al. [35] pointed out, this is not a dynamic
inference method per se. In fact, DLITE only tracks all nodes, edges, and cells through time
to use the inferred solutions of the previous time as an initial guess for the current frame
(Figure 5A). Importantly, the authors show that this is sufficient to improve performance on in
silico data and maintains better robustness over time than CellFIT [67]. Moreover, unlike
CellFIT, DLITE is an open-source project, allowing users to examine the details of its
implementation.



VFM: Dynamic stress inference in a mesh
Brodland and colleagues reported the first dynamical stress inference of tissues to study the
mechanics of ventral furrow invagination in Drosophila [57]. It was called Video Force
Microscopy (VFM) and previously cinemechanometry [58]. They developed this method in a
series of papers spanning more than fifteen years [86–89]. VFM successfully identified
stresses during ventral furrow failure due to reduced myosin II activity [57]. The authors built
a finite element mesh over the tissue of interest’s active landmarks (Figure 5B). This
meshing need not correspond precisely with all the cell’s hallmarks, namely the cell
membranes, and could have subcellular details. Brodland and colleagues chose the mesh
so that its nodes correspond with the elements they categorize as active. Therefore, it could
be the case that the polygons enclosed by the mesh are not cells but rather subcellular
domains (Figure 5B, upper panel).

They assumed that all passive elements’ contributions could be subsumed in generating an

effective viscosity [57]. In this model, the forces of the active components ( ) are equal to𝑓𝐴
𝑡
 

the velocity of the nodes ( ), mediated by a damping matrix ( ) with viscosity information,𝑣
𝑡

𝐷
𝑡

so at each time-point t

(9)𝑓𝐴
𝑡
 =  𝐷

𝑡
 𝑣

𝑡

In contrast to the previously mentioned CellFIT method [60], VFM calculates the contribution
of each force from a geometrical matrix using a straight-edge approach, which combines
both the stresses and the pressures. Importantly, unlike DLITE and ForSys (discussed in
the next section), VFM is not currently available.

ForSys: Dynamic inference on the vertices
Most recently, we proposed the ForSys method, which builds upon the advancements in the
field and integrates them into an open-source pipeline [66]. This software allows Static and
Dynamic Stress Inference in curved geometries, which is achieved by fitting a circle to the
segmented edges [66], as in CellFIT and DLITE [60,67].

ForSys benefits from the viscous forces prevalent in the tissue and modified Equation 1 to
include a damping term as

(10)
𝑗

∑ λ
𝑗
𝑟𝑖
→

𝑗
 =  η𝑣𝑖

→

where is the damping constant and the velocity of the vertex i. Implementing anη 𝑣𝑖
→

overdamped regime mathematically transforms the system into an inhomogeneous system
of equations, as the [B] term present in equations 3, 6, and 8 is now different from the null
matrix. This matrix now includes the velocity components of all junctions in the calculation.
An immediate advantage of this method is that it is no longer necessary to avoid the case
where all forces in the junction are zero.



As shown in Equation 1, the left-hand side has dimensions given by the stress . However, λ
in Dynamic Stress Inference, while the left-hand side still has this dimension, the right-hand

side now has units of , as shown in Equation 10. Thus, correctly determining the scalesη𝑣
→

involved is crucial, as pointed out at the beginning of the “Dynamic Stress Inference” section.
Equation 10 can be transformed into a non-dimensional form with one free parameter
proportional to the Weissenberg number's reciprocal [66]. This well-known non-dimensional
quantity relates the elastic and viscous forces through a reference stress , velocity , andλ‾ 𝑣‾
damping coefficient asη

. (11)1
𝑊

𝑖
 =  η𝑣‾

λ‾

Therefore, the force at each junction is

(12)
𝑗

∑ λ'
𝑗
𝑟𝑖
→

𝑗
= ( η𝑣‾

λ‾
) 𝑣'𝑖

→

where and . The scale relation introduced by this work might extend λ'
𝑗
 =  λ

𝑗
/λ‾  𝑣'𝑖

→

 =   𝑣𝑖
→

/𝑣‾

beyond the particularities of ForSys and could be used in other dynamic measurements,
such as in Transverse Fluctuation (TFlux) [90,91].
When tested using in silico tissue movies, this method outperforms other software when the
junctions move significantly and negligibly [66]. Furthermore, this method opened a window
into using force inference technology in migratory structures. When applied to the mobile
Zebrafish lateral line primordium, the method detected zones of high pressure/tension that
indicate the presence of rosettes predating the separation of the neuromast organs [66].

Outlook
As with any technique, its falsifiability is an important aspect of stress inference. The
standard for validating the inference engine in static and dynamic modalities is based on in
silico validations, often generated using a cell-based computational model such as the
Vertex model [45,67,69,92]. Various experimental validations can be performed for static
inference by fluorescent measurements, such as with myosin intensity [59], antibodies
staining [93,94], and flipper probes [95], or through direct manipulation with methods
including laser ablation [45,59] and Atomic Force Microscopy (AFM). Complementary to
hydrostatic pressure measurement [96,97], methods for osmotic pressure determination
have recently emerged [55]. Pressure inference cannot distinguish between these
contributing factors; however, we expect the inferred pressure to be dominated by the
hydrostatic component, as osmotic pressure differences equilibrate rapidly across the tissue.
In contrast, experimental validation of dynamic inference by ground truth generation is rather
limited, as methods such as laser ablation or AFM irreversibly change the state of a tissue
and are likely to disrupt or alter the processes of interest. Therefore, dynamic stress
inference is typically calibrated using computational model simulations.
Thanks to advances in image segmentation, static stress inference can be performed in 3D,
as initially reported by Broadland and colleagues [98] and more recently by the Turlier lab
[92]. Incorporating the third dimension into dynamic inference will be a significant leap
forward. Reliable 3D stress maps that could be used to validate an inference technique are
experimentally challenging to produce, especially if the maps need to be time-dependent.



A desirable feature of future stress inference techniques is to couple the inference engine
with the computational packages for simulating tissues using cell-based models that rely on
mechanical information, such as the vertex model. This model requires the correct
parameterisation of the line tensions needed to simulate tissues that recapitulate the
phenomena they are intended to describe. In this way, the intercellular stresses obtained by
stress inference could be used to parameterise a model and generate predictions embodied
in model simulations.
Stress inference can uncover mechanical features of systems in various settings. It has been
successfully applied to investigate cell division [40], organogenesis [66], and
cell-type-specific mechanical anisotropies [39,66,99]. We expect that stress inference will
expand its applications to fields such as immunology [100] and cancer biology [101,102] in
the coming years, which could greatly benefit from this technique.
While stress and pressure inference allows the determination of local intracellular pressure
and intercellular stress, one might expect that this information could be integrated to provide
a whole tissue description of the mechanical state of the system. Recently, it was proposed
that local and tissue-level mechanical information could be combined with spatial omics
[103]. This will allow a deeper understanding of the connection between the mesoscopic
scale and the molecular details of the interactions.
Even though a machine-learning approach has recently been used to infer forces from
cytoskeletal protein distributions [104], a new avenue to explore could be using
machine-learning algorithms to infer stresses. This would involve curating microscopy
images and feeding them into a neural network, which in turn could learn to predict stress
distribution for a given topology. To our knowledge, this exciting possibility has not been
explored even in the static inference formalism.

Perspectives
● Dynamic stress inference provides a first computational approach to determine the

mechanical state of tissues and generate predictions that can guide future
experiments. This family of inexpensive tools can advance the study of tissues in
development and regeneration.

● While static stress inference from microscopy images allows the characterization of a
tissue's mechanical state at a single point in time, dynamic stress inference from
video microscopy represents the full spatiotemporal distribution of mechanical
stresses experienced by the tissue.

● A next logical step will be to combine dynamic inference with 3D geometric inference
to ultimately generate 4D stress inference. Another important step will be the
coupling of inference with cell-based models, which will allow direct testing of these
models in biologically relevant geometries. Finally, machine learning algorithms that
allow the training of networks on specific organisms may prove helpful in recognizing
specific patterns of stress distributions.



Code availability
The in silico image where generated using seapipy and ForSys. The seapipy codebase is
available on GitHub at https://github.com/borgesaugusto/seapipy and Zenodo [105]. ForSys
codebase is available on GitHub at https://github.com/borgesaugusto/forsys and Zenodo
[106].
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Table 1. Existing stress inference methods. Details all currently existing stress inference
methods, whether dynamic and/or static, 2D or 3D support and their algorithm, along with
their original application and current availability.



Method Stat
ic /
Dyn
ami
c

2D/
3D

Algorithm The biological
system to which
it was initially
applied to

Software
availabilit
y

Ref.
and
year

VFM Dyn
ami
c

2D Finite element mesh;
Straight edges;
Stress/pressure together;
Least Squares solver

Ventral furrow
formation in
Drosophila, in
vivo

Not
available

[57],
2010

Chiou et
al.

Stati
c

2D Straight edges;
Stress/pressure together;
Inverse solution

Ventral furrow
formation in
Drosophila, in
vivo

Not
available

[39],
2012

Bayesian Stati
c

2D Straight edges;
Stress/pressure together;
Bayesian solver

Drosophila pupal
wing, in vivo

Open
Source on
GitHub

[59],
2012

CellFIT Stati
c

2D Curved edges;
Stress/pressures
separated;
Least Squares solver

Dorsal closure
and imaginal disk
in Drosophila, in
vivo; Dragonfly
wing

Not
available.
It can be
found as a
binary file

[60],
2014

CellFIT-3
D

Stati
c

3D Curved edges;
Only stress;
Least squares solver

Murine embryos Not
available

[98],
2017

DLITE Stati
c*

2D Curved edges;
Stress/pressure separated;
Least Square solver

Human stem cell
colonies, in vitro.

Open
Source on
GitHub

[67],
2019

VMSI Stati
c

2D Fitted curved edges;
Stress/pressure separated;
Variational solver

Drosophila
embryogenesis,
in vivo

Not
available

[40],
2020

foambryo Stati
c

3D Curved edges;
Stress/pressure separated;
Least Square solver

Ascidian embryo
P. mammillata;
C. elegans
embryo

Open
Source on
GitHub

[92],
2023

ForSys Dyn
ami
c
and
Stati
c

2D Curved edges;
Stress/pressure separated;
Least-square solver

Zebrafish Lateral
Line, in vivo;
Xenopus
Mucociliary
epithelium, in
vivo

Open
Source on
GitHub

[66],
2024



Figures

Figure 1. Stress inference, conceptually. (A). Stress inference uses the shape of the cells
in a tissue (shown in D, upper) to estimate the stress acting on them (color code shown in C,
lower). Higher values are shown in red, and smaller values in blue (color code shown in C,
lower). The tissue model was generated using Surface Evolver [107] through the seapipy
software, generating a high-stress furrow in the center. Stress inference was performed by
using ForSys software [66]. (B) Cells A and C share a common edge between triple junction
1 and 2. At each of these junctions, the incoming membranes have a contact angle , ,α

1
β

1
and and , , for the mentioned junctions 1 and 2, respectively. (C) Contact anglesγ

1
α

1
β

1
γ

1
determine the relative tension of each membrane. For equal angles (upper panel), the forces
and the tensions will be similar. If an angle is a straight angle, the other membrane will have
a tension of zero. The color map represents the stress and pressure for panels A and C in a
relative scale from minimum to maximum.



Figure 2. Stress and pressure are determined by shape. (A) The pressure on the soap
bubble of the “Les Bulles de savon” (1867), Édouard Manet, Calouste Gulbenkian Museum,
Lisbon (Picture acquired by OC in the exposition Manet / Degas au musée d’Orsay), can be
determined by the Young-Laplace equation, relating pressure difference (ΔP = Pinternal -
Pexternal) with stress on the surface (𝜆) and curvature of its shape (K = 1/R). (B) Scheme
representing pressure differences for a given geometry. Cells with higher pressure will be
more convex, while lower-pressure cells will tend to be more concave. The color intensity
represents pressure values qualitatively on a relative scale from lower (orange) to larger
values (red).



Figure 3. Approximating the shape of the membrane. (A) If cells are polygonal, cell
membranes can be approximated in the system with straight lines joining the junctions, seen
here as , , , and , , . In this situation, the vector joining two junctions will𝑟

→

𝑎𝑏
𝑟
→

𝑏𝑐
𝑟
→

𝑎𝑐
𝑟
→

𝑐𝑎
𝑟
→

𝑎𝑑
𝑟
→

𝑐𝑑
have the same magnitude but opposite sign at each junction. (B) In contrast, curved edges
give a better approximation of the shape and more stability to the system of equations, as a
curved shape adds more independent information to the geometric determination. Note that
vectors and are no longer collinear in a curved shape approximation.𝑟

→

𝑎𝑐
𝑟
→

𝑐𝑎



Figure 4. General stress inference pipeline. Starting from an experimental image, such as
a primordium in the Zebrafish lateral line (A), a segmentation mask has to be generated (B)
to construct then a Geometrical Matrix encompassing the information about the shape of
cells, as described in the section “Finding the solution to the inference problem” (C). The
solution can be found by inverting the system, using a pseudoinverse, or using different
numerical methods. Intercellular stresses are inferred from these equations (D). The
intracellular pressures are inferred using the Young-Laplace equation (see Fig. 2A). The
primordium image in panel (A) was taken with a spinning disk confocal microscopy. The
green fluorescence marks cell membranes in green. The primordium membranes shown in
panel A were tagged using claudnb:lyn-EGFP. Stress inference was executed by using
ForSys [66].



Figure 5. Dynamic stress inference. (A) DLITE is not a dynamic method per se. It tracks
each junction of the system through time and assumes that the force ( ) is in the direction of𝐹

→

𝑖

the membrane ( ) and scaled by the membranes’ stress ( ). The system is compiled in a𝑟
𝑖𝑗

^
λ

geometrical matrix ( ) and solved using the solution at the previous time point as an initial[𝑀
λ

guess for the numerical algorithm. (B) VFM uses a Finite Element Mesh to evaluate the
system's movements. The mesh does not need to coincide with the cellular details. Stresses
and pressures are intertwined in the equations. The system to solve establishes a
relationship between the force ( ) and the velocity of the nodes ( ) through a damping[𝐹] [𝑣]
matrix ( ). (C) ForSys solves the equations by considering each junction's velocity[𝐷]

(incorporated in the matrix), mediated by the scale parameter ( ), which can be[𝑏] η𝑣‾

λ‾

interpreted as the reciprocal of the Weissenberg number. Through this number, the
relationship between viscous and elastic scales must be tuned. The neuromast’s
membranes shown in panel B and the primordium’s in panels A and C were tagged using
claudnb:lyn-EGFP.



Supplementary Figure1. Stress as a patterning guide. Iron filings are arranged by
magnetic fields (Credit: M0000164: Michael Faraday's iron filings diagram. Wellcome Library
has provided this material; GB CC BY 4.0). (A), a behavior that can be modeled
computationally (B). This arrangement is a consequence of the underlying field (C). To
create this, we simulated the magnetic field of 4 charges at different positions along the
y-axis. The black lines represent the direction of the field with a Gaussian noise of 10
degrees; only around 50 % of them are shown. Similarly, tissues are also shaped according
to the mechanical state to which they are subjected.
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