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Zusammenfassung

Astronomische Beobachtungen sind nicht nur für die Astrophysik und Kosmologie von
großer Bedeutung, sondern auch für die Physik im Allgemeinen. In den letzten Jahrzehnten
und Jahrhunderten wurden immer empfindlichere Teleskope entwickelt, um das Universum
immer genauer zu erforschen. Heutzutage ist die Astronomie eng mit der Statistik und
den Datenwissenschaften verbunden, um Beobachtungsdaten zu analysieren und das volle
Potenzial moderner Teleskope auszuschöpfen. In dieser Arbeit werden Algorithmen zur
Verbesserung der Rekonstruktion astronomischer Bilder aus den Rohdaten der Beobach-
tungen vorgestellt.

Die moderne Astronomie misst die Strahlung aus dem Universum im gesamten elek-
tromagnetischen Spektrum. Die Beobachtung von optischem Licht und Radiowellen spielt
jedoch nach wie vor eine einzigartige Rolle, da nur in diesen Frequenzen die Erdatmosphäre
transparent ist und somit Beobachtungen vom Erdboden aus möglich sind. Die in dieser
Arbeit vorgestellten Algorithmen wurden für bodengebundene optische Teleskope und Ra-
dioteleskope entwickelt, um den Einfluss atmosphärischer Fluktuationen auf die Bilder zu
reduzieren und die Verarbeitung großer Radiointerferometer-Datensätze zu verbessern.

Ohne genaue Korrektur führen atmosphärische Fluktuationen zu unscharfen Teleskop-
bildern mit reduziertem Kontrast. Der erste Teil der Arbeit befasst sich mit der Rekonstruk-
tion von Bildern in Gegenwart atmosphärischer Störungen. Insbesondere werden zwei Al-
gorithmen für optische und Radioteleskope entwickelt, die aus den Rohdaten der Teleskope
Schätzungen der Störungen zusammen mit dem ungestörten Bild rekonstruieren. Die Algo-
rithmen erhöhen die Auflösung und den Kontrast der rekonstruierten Bilder erheblich.

Moderne Radiointerferometer, die in den letzten Jahren gebaut wurden, erzeugen
wesentlich größere Messdatensätze als Teleskope früherer Generationen, und die Daten-
mengen werden bei zukünftigen Instrumenten weiter ansteigen. Diese Zunahme der Daten-
menge stellt eine Herausforderung für die Algorithmen zur Bildrekonstruktion dar, ins-
besondere wenn eine hohe Genauigkeit angestrebt wird. Der zweite Teil der Arbeit be-
fasst sich mit diesen Herausforderungen und stellt den fast-resolve Algorithmus vor,
der Konzepte des rechnerisch günstigeren, aber weniger genauen CLEAN Algorithmus nutzt
und dadurch die hochgenaue Rekonstruktion radiointerferometrischer Datensätze erheblich
beschleunigt.

Die in dieser Arbeit vorgestellten Algorithmen basieren auf der Bayes’schen Inferenz,
die eine Quantifizierung der Unsicherheit der Ergebnisse ermöglicht. Neben der hohen
Genauigkeit ist dies ein zusätzlicher Vorteil, da viele andere häufig verwendete bildgebende
Verfahren keine zuverlässigen Unsicherheitsabschätzungen erlauben.
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Abstract

Astronomical observations have an immense impact not only on astrophysics and cosmol-
ogy but also on physics in general. Over the past decades and centuries, increasingly sensi-
tive telescopes have been developed to study the universe in ever greater detail. Nowadays,
astronomy is closely connected with statistics and data science to analyze observational data
and to exploit the full potential of modern telescopes. This thesis contributes algorithms to
improve the reconstruction of astronomical images from raw observational data.

Modern astronomy observes radiation originating from the universe across the entire
electromagnetic spectrum. However, observations of optical light and radio waves continue
to play a unique role, as these are the only frequencies at which the atmosphere of the Earth
is transparent, such that ground-based observations are possible. The algorithms presented
in this thesis have been developed for ground-based optical and radio telescopes to reduce
the influence of atmospheric fluctuations on the images and to improve the processing of
large radio interferometer data sets.

Without precise correction techniques, atmospheric fluctuations lead to a blurring of
telescope images, reducing the resolution and dynamic range. The first part of the thesis
deals with the reconstruction of images in the presence of atmospheric perturbations. In
particular, the thesis contributes two algorithms for optical and radio telescopes that re-
construct estimates of the perturbations together with the unperturbed image from the raw
telescope data. The algorithms significantly increase the resolution and dynamic range of
the recovered images.

Modern radio interferometers constructed in recent years produce significantly larger
measurement datasets than previous generation telescopes, and the amount of data will
continue to increase with future instruments. This increase in data size imposes challenges
for image reconstruction algorithms, especially when aiming at high precision. The second
part of the thesis addresses these challenges and introduces the fast-resolve algorithm,
which uses concepts of the computationally cheaper but less accurate CLEAN algorithm to
significantly speed up the high-precision reconstruction of radio interferometric datasets.

The algorithms introduced in this thesis are based on Bayesian inference, enabling an
uncertainty quantification of the recovered results. Besides the high accuracy of the pre-
sented algorithms, this is an additional advantage, as many commonly used imaging meth-
ods cannot provide reliable uncertainty estimates.
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Chapter 1

Introduction

For thousands of years, humans have studied the sky. The origins of astronomy are closely
tied to religious and mythological beliefs, but already in ancient times, astronomy was used
for practical applications such as navigation and the determination of the calendar. Driven
by curiosity, people have sought answers to cosmological questions through astronomical
observations, leading from geocentric to heliocentric to our modern cosmological models.
Initially, astronomical observations were made with the naked eye. Modern astronomy is
closely linked to physics and engineering science, relying on telescope facilities for ob-
servations. With Karl Jansky’s discovery of radio emission originating from the cosmos
(Jansky, 1933), astronomy began to expand from observations at visible wavelengths to
the entire electromagnetic spectrum. Nowadays the universe is not only observed in the
full electromagnetic spectrum ranging from radio to gamma-ray, but also neutrinos, cosmic
rays, and gravitational waves are observed. However, observations around the visible spec-
trum and at radio wavelengths keep playing a unique role in astronomy, as these are the only
wavelengths at which ground-based observations of the electromagnetic sky are possible.

Observations with ground-based telescopes are affected by the atmosphere. Even with
the naked eye, the impact of the atmosphere is noticeable as twinkling or scintillation of
stars. When looking at the night sky the twinkling of the stars is very aesthetic, but for
astronomical observation these atmospheric effects impose serious challenges. In optical
astronomy, adaptive optics was developed to correct for atmospheric perturbations in real-
time. For radio interferometric observations, atmospheric fluctuations are corrected via
calibration steps during image synthesis. Nevertheless, the standard atmospheric correc-
tion techniques are not perfect, neither for radio interferometers nor for optical telescopes,
and residual perturbations degrading image quality remain. The first part of this thesis con-
tributes two novel reconstruction algorithms for optical telescopes and radio interferometers
that correct for atmospheric fluctuations. Specifically, a high-contrast imaging algorithm re-
constructs residual atmospheric perturbations after adaptive optics corrections of an optical
telescope together with the unperturbed image itself. Building on the radio interferometric
imaging framework resolve originally proposed by Junklewitz et al., 2016, the second
algorithm estimates direction and time-dependent corrections for all antennas in a radio
interferometer during the image reconstruction. Both algorithms are based on Bayesian
inference, enabling uncertainty quantification of the recovered images and estimated atmo-
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spheric perturbations.
The big advantage of ground-based telescope facilities over satellites is that the tele-

scopes can be significantly larger with moderate costs. Larger telescopes can achieve higher
resolution and better sensitivity, which is the primary reason why most optical and radio
telescopes are still ground-based despite the aforementioned challenges of atmospheric per-
turbations. However, especially for radio interferometers, the construction of larger next-
generation arrays leads to a massive increase in the data sizes. The increase in data vol-
ume imposes challenges for image formation, particularly for Bayesian and other advanced
reconstruction methods, which improve image quality often at the cost of increased com-
putational complexity. The second part of the thesis makes two contributions to address
the computational challenges. On the one hand, it contributes a software package JAXbind
allowing to bind high-performance code into the JAX machine learning framework. This is
particularly useful for radio interferometric imaging with Bayesian algorithms as the com-
putational structure of the Bayesian algorithm has many similarities with machine learning
methods, but the evaluation of the interferometer response requires high-performance codes.
Thus, JAXbind allows us to utilize the computational advantages of the modern JAX ma-
chine learning frameworks for Bayesian radio interferometric imaging. On the other hand,
the second part of the thesis contributes the fast-resolve algorithm. fast-resolve en-
ables for the first time Bayesian imaging on large radio interferometric datasets, building on
fast approximations of the radio interferometric imaging likelihood. fast-resolve opens
up the possibility of achieving similar improvements in image quality to those previously
achieved with Bayesian algorithms on small data sets (Arras et al., 2021a).

This thesis is centered around four articles (Roth et al., 2023a; Roth et al., 2023b; Roth
et al., 2024b; Roth et al., 2024a) contributing to enhance the observational capabilities of
current and next generation telescopes as briefly outlined above. Before introducing the de-
velopments in more detail, the following section highlights some exemplary science cases
of modern optical and radio telescopes underlining the need for advanced image recon-
struction algorithms as developed in this thesis. Of course, there are numerous other use
cases that would also benefit from unlocking the full imaging capabilities of ground-based
telescopes through advanced image reconstruction software.

1.1 Science cases

Science cases of modern optical and radio telescopes are extremely diverse, and this section
cannot provide a comprehensive overview. However, it highlights a some scientific applica-
tions for which the algorithmic improvements presented in the later parts of this thesis are
especially relevant.

1.1.1 Optical telescopes

Many exoplanets have been discovered in the last decades. This has led to a versatile sci-
ence branch of studying the characteristics and formation mechanisms of exoplanets (Perry-
man, 2018). However, although thousands of exoplanets have been confirmed with indirect
methods, only very few could be imaged directly, because direct imaging requires resolv-
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ing the extremely high brightness contrasts between the host star and the exoplanet at a
very small angular separation. Future telescopes with larger aperture diameters, such as the
Extremely Large Telescope (ELT, Gilmozzi et al., 2007), open the possibility of directly
imaging a growing number of exoplanets. Nevertheless, adaptive optics and advanced im-
age post-processing algorithms are required to resolve high contrast ratios and achieve near
diffraction-limited resolution. This thesis contributes such a post-processing algorithm out-
lined in chapter 5 and in the publication Roth et al., 2023a.

Imaging exoplanets is by far not the only science case of the ELT requiring near
diffraction-limited resolution. Another example is the analysis of the stellar population
in a galaxy, which can reveal many aspects of the galaxy’s history (van den Bergh, 1975;
Renzini, 2006). So far, resolving individual stars was only possible in the Milky Way and
nearby galaxies. With larger telescopes such as the ELT, this can also be done for galaxies
much further away if atmospheric perturbations degrading the image resolution can be sup-
pressed. Many other science cases exist that require high-resolution images, for example,
outlined in Hook, 2009 and Markus, 2010.

1.1.2 Radio interferometers

Radio astronomical observations are possible over a very large frequency range from
10 MHz to nearly 1 THz, and for this reason also the possible science cases are incredi-
bly diverse. MeerKAT (Jonas et al., 2016) is currently the flagship telescope for frequencies
around 1 GHz. With currently 64 antennas, MeerKAT has a large collecting area and high
sensitivity. Many science cases profit from the high sensitivity, and an overview is given
in Booth et al., 2009. One example is the MIGHTEE survey (Jarvis et al., 2016), which
observes in a few deep fields the galaxy formation and evolution to redshifts up to z ≈ 7. As
discussed in Heywood et al., 2022, direction-dependent effects in the antenna gains signifi-
cantly affect the observations and are a limiting factor if not reconstructed. Chapter 6, also
published as Roth et al., 2023b, contributes such a reconstruction algorithm.

The high number of antennas of the MeerKAT telescopes not only enables a high sen-
sitivity but also leads to large data volumes, especially for surveys. The large data sizes of
MeerKAT observations limit the applicability of novel advanced imaging algorithms as they
tend to have higher computational costs compared to the standard method named CLEAN.
With Roth et al., 2024b; Roth et al., 2024a, this thesis contributes to reducing the com-
putational cost of advanced imaging algorithms. Specifically, Roth et al., 2024a enables
Bayesian reconstructions of large MeerKAT datasets at moderate computational costs and
is a significant improvement compared to previous Bayesian reconstruction methods, open-
ing new data regimes for Bayesian radio interferometric imaging.

1.2 Overview

The following chapters of this thesis are structured as follows. Chapter 2 gives an overview
of the propagation of electromagnetic waves in the atmosphere and introduces the effects
perturbing ground-based observations. The measurement principles of optical and radio
telescopes are outlined in chapter 3 together with the impact of atmospheric fluctuations.



4 1. Introduction

In chapter 4, I briefly introduce Bayesian inference as the algorithms presented in subse-
quent chapters all build on Bayesian inference. Originally published as an article (Roth
et al., 2023a), chapter 5 introduces a high contrast imaging algorithm for optical telescopes.
Chapter 6, published as Roth et al. (2023b), introduces a radio interferometric imaging
algorithm with direction-dependent antenna calibration. Chapter 7 shifts the perspective
from atmospheric calibration to the computational challenges of imaging with large inter-
ferometers. Based on the publication Roth et al. (2024b), chapter 8 introduces the JAXbind
package for binding custom code into the JAX framework. Building on the JAX framework
and resolve, chapter 9 introduces the fast-resolve method and is also published as a
preprint (Roth et al., 2024a) which is currently under review. Chapter 10 gives a brief over
other contributions of this thesis. Chapter 11 summarizes this thesis and gives an outlook
on potential future developments.



Chapter 2

Atmospheric effects

This chapter introduces the propagation of electromagnetic waves in the Earth’s atmosphere.
Building on Saha, 2007 focusing on optical astronomy and Thompson et al., 2017; Wilson
et al., 2009; Burke et al., 2019 focusing on radio astronomy, this chapter gives a unified
description of atmospheric effects relevant to ground-based astronomy.

2.1 Atmospheric composition

The atmosphere is a mixture of many gases. In dry air at ground level, the main compo-
nents are nitrogen (78%), oxygen (21%), and argon (1%). However, astronomical seeing is
also affected by elements with much lower concentrations. Most notable are water vapor
(0 − 7%), ozone (0 − 0.01%), and carbon dioxide (0.01 − 0.1%). The atmosphere exhibits
a complicated vertical structure in terms of temperature and chemical composition. The
vertical structure is often categorized into five layers. The lowest layer is the troposphere,
where the temperature drops with altitude. At a height of about 12 km, the stratosphere be-
gins, and temperature increases as a function of altitude. The stratosphere is astronomically
relevant as it contains the ozone layer that absorbs UV radiation. Above the stratosphere,
there is the mesosphere (50 km to 85 km), and temperatures drop again with height. With
the next layer, the thermosphere extending to 600 km, the temperatures rise again and reach
1600◦ C. The thermosphere is highly relevant for radio astronomy as the free electrons of
ionized gas deflect radio waves. Above the thermosphere comes the exosphere, which is
gradually transitioning into space. The layers of the atmosphere containing free electrons,
thus mostly the thermosphere, are also called ionosphere.

The mixture of many different gases, together with the complex temperature distribu-
tion, makes the atmosphere opaque in most parts of the electromagnetic spectrum, making
ground-based observations impossible. In figure 2.1, the opacity of the atmosphere is plot-
ted as a function of the wavelength. The atmosphere is fully opaque for the entire spectrum
from gamma rays to ultraviolet radiation, and all radiation gets absorbed mostly by ozone,
oxygen, and nitrogen. At optical and near-infrared wavelengths (0.3 − 1.1 µm), the atmo-
sphere is transparent unless the sky is covered by clouds. For infrared radiation, there are
some windows through the atmosphere, in particular in the range between 8 − 14 µm. Nev-
ertheless, multiple vibrational transitions in water vapor and carbon dioxide absorb infrared
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Figure 2.1: Atmospheric opacity as a function of wavelength. The atmosphere is opaque in
most parts of the electrodynamic spectrum. All radiation with wavelengths shorter than the
optical-near-infrared window is absorbed. At the low frequency end of the spectrum, the
radio window permits ground-based observations over a large frequency range. Adapted
from Wikimedia Commons, 2023.

radiation. For even lower frequencies with sub-millimeter to millimeter wavelengths, ro-
tational transitions in water vapor absorb most of the radiation. Observations can still be
made at places with dry atmosphere, such as the South Pole or the Atacama desert in Chile.
At radio wavelengths starting in the millimeter range, there is a broad atmospheric window
with only minimal absorption. At the low-frequency end of the radio window, the iono-
sphere of the atmosphere becomes opaque to radio waves starting from around 30 m and
even longer wavelengths.

Although the atmospheric absorption is very low in the optical and radio windows, the
atmosphere still significantly perturbs observations even well inside these windows. Even
with the naked eye, atmospheric perturbations are visible as twinkling of stars. Without
advanced correction techniques, these perturbations severely limit the observational capa-
bilities of large optical and radio telescopes. The following section outlines the physical
theory of electromagnetic waves and their propagation to derive a more fundamental de-
scription of atmospheric processes.

2.2 Electromagnetic waves

Several theoretical models exist to describe the behavior of light or electromagnetic radia-
tion. The oldest and simplest theory is geometrical optics. Geometrical optics describes the
propagation of light in terms of ray tracing and covers effects such as reflection or refrac-
tion of light. Building on Maxwell’s equations, wave optics describes light as an electro-
magnetic wave and can additionally explain the phenomena of diffraction and interference.
Quantum optics provides the most fundamental description of light in terms of photons and
their quantum nature. For astronomy, all three theories are relevant. The spectral absorption
lines of water, carbon dioxide, ozone, and other molecules mentioned earlier are a quan-
tum phenomenon. Inside the atmospheric windows, where there are no absorption lines,
light propagation is most efficiently described in terms of Maxwell’s electrodynamic the-
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ory. Therefore we will analyze in the following the behavior of electric (E) and magnetic
(B) fields in the atmosphere.

In the atmosphere it can be assumed that within an macroscopic volume there is no net
free charge such than ϱ f = 0. With this assumption Maxwell’s equation in CGS units are
given by:

∇ · D = 0

∇ · B = 0

∇ × E = −
1
c

Ḃ

∇ × H = −
4π
c

J +
1
c

Ḋ,
(2.1)

with D the electric displacement, and H the magnetic H-field, and c the speed to light.
Under the assumption that the atmosphere is a linear medium, such that D = ϵE and H =
1
µB, and using Ohms law J = σE, the wave equations can be derived

∇2B =
ϵµ

c2 B̈ +
4πσµ

c2 Ḃ (2.2)

∇2E =
ϵµ

c2 Ë +
4πσµ

c2 Ė, (2.3)

with σ being the electric conductivity, ϵ being the electric permittivity, and µ being the
magnetic permeability. Both fields follow the same linear differential equation. The equa-
tions for E and B are decoupled and identical,1 and therefore we will for simplicity only
consider the electromagnetic field in the following, as the solutions for the magnetic field
are completely analogous.

2.2.1 Waves in non-conducting media

Outside of the ionosphere, the atmosphere is non-conducting. In this section, we consider
the propagation in the non-conducting part of the atmosphere. In the section 2.2.2, we will
deal with propagation effects in the ionosphere. Thus, for now, σ = 0, and the equation for
the electric field (and, of course, also for the magnetic field) simplifies to

∇2E −
ϵµ

c2 Ë = 0. (2.4)

We will not search for general solutions of the wave equation but instead investigate the
behavior of plane wave solutions. For that, we insert a monochromatic plane wave traveling
along the z-axis

E(z, t) = E0ei(kz−ωt) (2.5)

into the equation 2.4. From this, we get the following relation

k2 =
ϵµ

c2 ω
2 (2.6)

1In Maxwell’s equations, the electric and magnetic fields are coupled. The fields become decoupled only in
the wave equations, which can be derived from Maxwell’s equations. For this reason, E and B fields solving the
Maxwell equations necessarily also solve the wave equations, but the reverse does not hold. Specifically, it can
be derived from the Maxwell equations that the E and B fields of an electromagnetic wave must be orthogonal
to each other, which is not encoded in the wave equations.
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for the wave number k and the angular frequency ω. Furthermore, this implies that points
of constant phase move with a velocity of

v =
ω

k
=

c
√
ϵµ
. (2.7)

The values of ϵ and µ depend on the material properties and, therefore, determine the wave’s
phase velocity. In some materials, the values of ϵ and µ depend on frequency, making the
phase velocity frequency dependent. This leads to the phenomenon that a pulse containing
a package of waves with multiple frequencies moves through the medium with a velocity
different from the phase velocity. The propagation speed of such a pulse is named group
velocity and can be shown to be to first order

vg =
dω
dk
. (2.8)

If ϵ and µ are frequency-independent, the group velocity equals the phase velocity. The ratio
between the phase velocity v and the speed of light c is defined as the index of refraction

n =
c
v
=
√
ϵµ. (2.9)

In vacuum, the permittivity ϵ and the permeability µ are both equal to unity in CGS units,
and therefore the refractive index equals unity as well. In the atmosphere, the refractive
index slightly deviates from unity. The exact value of the refractive index in the atmosphere
depends on temperature, water vapor content, and atmospheric pressure, among other fac-
tors. Computing the refractive index of the atmosphere from the first principle is quite
involved as it requires a full quantum mechanical treatment of all gas molecules, their elec-
tronic transitions, and spectral lines. Instead, extensive studies have been made at on both
radio and optical wavelengths to find empirical relations between the refractive index and
atmospheric conditions. An overview is given by Rüeger, 2002. It was found that the em-
pirical relation

nradio = 1 + 10−6
(
77.7

pD

T
+ 71.3

pV

T
+ 375463

pV

T 2

)
(2.10)

describes to a good approximation the refractive index of radio waves in the atmosphere,
with pD and pV being the partial pressures of dry air and water vapor in units of millibar and
T the temperature in Kelvin. The last term in this relation scaling with 1/T 2 is attributed
to originate from infrared resonances of water molecules. At higher frequencies, these
resonances do not affect the spectral index. Therefore, an approximate description of the
atmospheric spectral index at optical wavelength is given by

noptical = 1 + 10−6
(
77.7

pD

T
+ 71.3

pV

T

)
. (2.11)

With these empirical relations, the refractivity of water vapor is at temperatures around
280◦K around 20 times higher at radio wavelengths than at optical wavelengths.

Both empirical relations for the refractive index of the non-conducting atmosphere in the
optical and the radio windows do not depend on the frequency of the wave. Also in reality,
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the refractive index of the non-conducting atmosphere turns out to be almost frequency-
independent within these atmospheric windows. For this reason, phase and group velocities
are equal, and waves of different frequencies travel at the same speed. As the next section
will show, this does not hold for the ionosphere, where the refractive index strongly depends
on frequency.

2.2.2 Waves in conducting media

In the previous section, we considered wave propagation in a nonconducting medium. As
outlined in section 2.1, parts of the atmosphere, called the ionosphere, are ionized and
contain free electrons and ions. In these atmospheric layers, the assumption of σ = 0 does
not hold, and therefore, the wave equation 2.2 does not simplify to equation 2.4.

As in the previous section, we do not attempt to find a general solution to the wave
equation but instead analyze plane wave solutions of equation 2.2. By inserting a plane
wave equation 2.5 into the general wave equation 2.2, we obtain the dispersion relation for
ionized media:

k2 =
µϵω2

c2

(
1 + i

4πσ
ωϵ

)
. (2.12)

In the following, we will relate the ionospheric electron density to the dispersion rela-
tion equation 2.12. Therefore, we study the equation of motion of electrons in a tenuous
plasma accelerated by the electric field of a wave. Of course, the ions in the plasma are
also accelerated, but due to their much higher mass, the resulting velocities are much lower,
so that they can be neglected. We assume that the electrons to move freely without colli-
sions and that we are in a thin medium such that ϵ ≈ µ ≈ 1. Under these assumptions, the
equation of motion of a single electron accelerated by the electric field of a wave is given
by

mev̇ = −eE0e−iωt, (2.13)

with me, e and v being the electron mass, charge, and velocity. Integrating the equation of
motion, we obtain

v =
e

imeω
E0e−iωt = −i

e
meω

E. (2.14)

This leads to an electric current density

J = −Nev = i
Ne2

meω
E, (2.15)

with N denoting the electron density. By comparison with the material equation J = σE
we conclude that the conductivity σ is given by

σ = i
Ne2

meω
. (2.16)
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Inserting this expression together with the assumption ϵ ≈ µ ≈ 1 into the dispersion relation
equation 2.12 we obtain

k2 =
ω2

c2

(
1 −

4πNe2

meω2

)
. (2.17)

Defining the plasma frequency ωp as

ωp :=

√
4πNe2

me
, (2.18)

the dispersion relation simplifies to

k2 =
ω2

c2

1 − ω2
p

ω2

 (2.19)

=
ω2 − ω2

p

c2 . (2.20)

Inserting into the equations for the phase (equation 2.7) and group velocity (equation 2.8),
we obtain

v =
c√

1 − ω2
p

ω2

, (2.21)

vg = c

√
1 −

ω2
p

ω2 . (2.22)

At frequencies significantly larger than the plasma frequency ω ≫ ωp, the phase and group
velocities are both approximately equal to the speed of light in vacuum v ≈ vg ≈ c. As
the frequency ω approaches the plasma frequency ωp, the phase velocity v becomes signif-
icantly larger than c, while the group velocity vg goes to zero. The group velocity becomes
zero at ω = ωp, and the wave can no longer propagate through the plasma. Thus, the plasma
frequency is a cutoff below which the plasma becomes opaque to electromagnetic radiation.

The electron density in the ionosphere is not constant, but depends on many factors,
such as the time of the day and the solar activity. However, typically, the free electron
density does not fall below 105 1

cm3 . Substituting this density into equation 2.18 gives a
plasma frequency of fp =

ωp
2π ≈ 9 MHz. For this reason, astronomical observations with

ground-based telescopes are usually not possible at frequencies below about fp ≈ 10 MHz.
Radio waves at slightly higher frequencies can pass through the ionosphere, but since the
refractive index

n =

√
1 −

ω2
p

ω2 (2.23)

significantly deviates from unity, they get refracted. At frequencies much higher than the
plasma frequency, the refractive index is approximately one, and the ionosphere has only
minor effects on the observation.
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2.3 Refraction

The propagation effects of electromagnetic radiation outlined in section 2.2.1 and section
2.2.2 affect astronomical observations in many ways. The simplest effect is that radiation
coming from space with a vacuum refractive index nvac = 1 is refracted as it passes through
the atmosphere with a refractive index different from unity. This leads to a change in the
angle of arrival at the Earth’s surface, and thus a change in the apparent position of the
sources.

In a simple model depicted in figure 2.2, the atmosphere can be assumed to consist of
plane parallel layers with different refractive indices, leading to a refraction of the wave at
the boundary of each layer. Snell’s law relates the angle of the incoming wave to the angle
of the refracted wave traveling to the next layer. If α0 is the angle of incidence at the top
layer and α1 the angle towards the normal at the next lower layer than Snell’s gives the
relation:

n0 sin(α0) = n1 sin(α1), (2.24)

with n0 and n1 being the refractive indices in the layers 0 and 1. If the first layer is the top
of the atmosphere, and the zeroth layer is the space, then n0 = 1. Analogously, for the next
layer the relation of the angles is:

n1 sin(α1) = n2 sin(α2). (2.25)

Consequently, the incident angle of the m-th layer can be computed to be nm sin(αm) =
sin(α0). Thus, in this simple model of plane parallel layers the angle at the bottom layer
αm, which determines the apparent position of the source, does not depend on the vertical
structure of the atmosphere, but only on the refractive index at the ground and the original
incident angle α0. This is a consequence of the simplifying assumption of plane parallel lay-
ers in the atmosphere, which does not hold in general. For example, in the model presented
in Smart, 1977 and depicted in figure 2.3 assuming spherical symmetric layers also the ver-
tical structure of the refractive index distribution is also relevant. Especially for diffraction
in high layers of the atmosphere, such as the ionosphere diffracting radio waves, a spherical
model is much more accurate than plane parallel layers.

2.4 Dispersion

The refractive index of the ionosphere (equation 2.23) is smaller than 1 and increases with
frequency towards unity. In contrast, the refractive index of the non-conducting part of the
atmosphere is larger than 1 and is within the optical and radio window nearly frequency in-
dependent as seen in the empirical relations equation 2.10 and equation 2.11. The frequency
dependence of the ionospheric refractive index causes radio pulses of different frequencies
to travel at different speeds, resulting in different arrival times. The propagation time of the
pulse is given by

tp =

∫ L

0

1
vg

dl, (2.26)
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Figure 2.2: Visualization of a plane parallel atmospheric refraction model. The solid line
shows the propagation path of the wave from the source to the observer. The waves are
refracted at the intersection of each plane layer. The dashed line indicates the apparent
direction of the source. The total deflection angle depends only on the difference between
the first and last layers.

with L being the physical path length through the ionosphere L. Taylor expanding 1
vg

in ωp
ω

gives

1
vg
≈

1
c

(
1 +

1
2

(ωp

ω

)2
)
, (2.27)

which is an accurate approximation at frequencies significantly larger than the plasma fre-
quency ω ≫ ωp. With this expansion, the propagation time of a pulse with frequency ω1
can be expressed as

tp =

∫ L

0

1
vg(ω1)

dl (2.28)

=
L
c
+

1
c

e2

2πm2
e

1
ω2

1

∫ L

0
N(l) dl, (2.29)

where the definition of the plasma frequency was inserted in the step from equation 2.28
to equation 2.29. The integrated electron density is called dispersion measure DM =∫ L

0 N(l) dl. With this definition, the arrival time difference between two pulses with fre-
quencies ω1 and ω2 is given by

∆tp =
1
c

e2

2πm2
e

 1
ω2

1

−
1
ω2

2

 DM. (2.30)
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Earth

Ionosphere

Figure 2.3: Visualization of a spherical atmospheric refraction model. The solid line shows
the propagation path of the wave from the source to the observer. The waves are refracted at
the intersection of each layer. The dashed line indicates the apparent direction of the source.
The thin dotted lines indicate the normal to the layer boundaries. To make the deviation
from the plane parallel layer more visible, the Earth and ionosphere are not displayed in
corrected proportions. As the ionospheric’s refractive index is smaller than one, the wave is
refracted away from the normal.

To summarize the equation, pulse travel times delay scales with the inverse of the frequency
squared and consequently the high frequencies arrive first.

For time-independent sources, the dispersion of the radiation does not affect astronomi-
cal observation. However, for rapidly time-variable sources, such as pulsars, the dispersion
leads to the effect that the high-frequency components of the radio pulse reach the telescope
before the low-frequency components. Thereby the observations of pulsars are not only
affected by the atmospheric dispersion, but also by dispersion in interstellar medium, which
can give indications on the distance of the pulsar or the density of the interstellar medium.
The algorithms developed in this thesis are primarily targeted to time-independent sources,
and for this reason do not consider dispersion.

2.5 Faraday rotation

In the equation of motion for the electrons (equation 2.13) in the derivation of the plasma
refractive index, we have assumed that there is no external magnetic field. Nevertheless, due
to the magnetic field of the earth, this assumption does not strictly hold in the ionosphere. In
the presence of an external magnetic field B, the Lorentz force − e

c v × B acts on the moving
electrons in the plasma, such that the equation of motion becomes

mev̇ = −e
(
E +

1
c

v × B
)
, (2.31)
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with E being the electric field of the wave. By solving the equation of motion similar to
the calculation in section 2.2.2, it can be shown that the external magnetic field leads to a
difference in the refractive index for left and right circular magnetic fields. An explicit cal-
culation can, for example, be found in Wilson et al., 2009, with the result that the refractive
index is

n± =
√

1 −
ωp

ω(ω ± ωc)
, (2.32)

with ± standing for right and left circular polarization, ω the frequencies of the wave, ωp

the plasma frequency, and ωc the gyro or cyclotron frequency defined as

ωc =
e

mc
B∥. (2.33)

Thereby, B∥ is the strength of the magnetic field along the line of sight or propagation path of
the wave. Thus, the refractive index of the plasma is lower for left circular polarized waves
than for right circular polarized waves if the magnetic field points along the propagation
direction.

When studying only the total intensity of astrophysical sources, as in the example ap-
plications of the algorithms proposed in the later chapters, the differences between the re-
fractive index for right and left circular polarization does not matter. Nevertheless, this does
matter for polarization imaging. A linear polarized wave can be decomposed into right and
left circular polarized waves with equal amplitude and a phase difference determined by the
linear polarization direction. When this waves travels through a plasma with a magnetic
field component parallel (or antiparallel) to the propagation direction the left and right hand
circular components will propagate at different speeds leading to a change in the phase dif-
ference and consequently a rotation of the linear polarization direction. This phenomenon
is called Faraday rotation. With a series expansion of equation 2.32 and by inserting the
definitions of the plasma and gyro frequencies, the rotation angle of the linear polarization
direction can be shown to be

∆ψ =
2πe3

m2c
1
ω2

∫ L

0
B∥(l)N(l) dl, (2.34)

where the integral goes along the path through the plasma. Summarizing equation 2.34, the
rotation angle is proportional to the integral of the parallel magnetic field component times
the electron density and scales with the inverse of the frequency squared.

Similar to dispersion, Faraday rotation is induced not only by the ionosphere but also
by the plasma and magnetic fields in the interstellar medium. Therefore, information about
the galactic magnetic fields and electron density can be obtained by studying the rotation
measures of polarized sources. Extensive studies of rotation measures have been done, for
example by Hutschenreuter et al., 2023. However, the imaging algorithms of this thesis
focus on total intensity imaging, and a calibration of the atmospheric Faraday rotation is
therefore not required.
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2.6 Turbulence

Meteorological processes such as evaporation, condensation, or crystallization constantly
change the water vapor content and exchange heat with the surrounding atmosphere, lead-
ing to local variations in the refractive index. Similarly, the heating of the sun and the
thermal exchange of the atmosphere with the ground or the sea constantly changes the air’s
temperature and refractive index. The air masses with a different refractive indices are not
stationary, but are distributed by winds. The atmospheric air flows are often at least partially
turbulent, causing turbulent changes in the refractive index. The situation in the ionosphere
is similar in the sense that the electron density, and therefore the refractive index , is not
homogeneous. The electron density is strongly influenced by solar activity, but also other
factors, such as volcanic activity (Roberts et al., 1982; Molina et al., 2023) and earthquakes
(He et al., 2022) also affect the ionosphere.

To summarize, the atmosphere is always affected by turbulent flows and other pertur-
bations leading to a constant partially chaotic change in the refractive index distribution.
Observations of all ground-based telescopes are affected by these refractive index fluctua-
tions. Compared to the previously discussed effects of a shift in the apparent position of
sources, a frequency-dependent propagation delay, and a frequency-dependent rotation in
the polarization direction, refractive index fluctuations are the most complicated effect in
the sense that it is the most difficult to correct. The following chapter will outline the exact
impact of refractive index fluctuations on observations with optical and radio telescopes.

In 1941 Kolmogorov developed a theory of turbulence (Kolmogorov, 1991 (transla-
tion)), describing turbulence as the transfer of kinetic energy from large scales to succes-
sively smaller scales until the Kolmogorov scale is reached, at which the fluid becomes
viscous and the kinetic energy is dissipated as heat. Tatarski et al., 1961; Tatarski, 1971
applied Kolmogorov’s theory of turbulence to atmospheric perturbations. In this model, the
refractive index structure function in a turbulent layer is given by

Dn(d) =
〈
(n(x) − n(x − d))2

〉
(2.35)

= C2
nd

2
3 , (2.36)

with d being the distance to an arbitrary location x, and Cn the strength of the turbulence.
With further assumptions, such as that there is only a single turbulent layer and that the
waves propagate through the turbulence without bending or refraction, a structure function
for the phase of the wave can be derived. Within these assumptions, the amplitude of the
wave is not affected. However, the assumptions of these atmospheric models are often only
partially satisfied. For example, water vapor, strongly influencing the refractive index, is
often poorly mixed with the air in the atmosphere and might, therefore, not accurately trace
the turbulence of the air. Also, ionospheric perturbations might not follow Kolmogorov’s
turbulence model. Furthermore, especially for ionospheric perturbations, the waves will de-
velop amplitude fluctuations in the propagation from the turbulent layer towards the ground.

Correcting for atmospheric turbulence is a major challenge in ground-based astronomy.
The chapters 5 and 6 of this thesis contribute novel algorithms to reconstruct sky images
from optical and radio telescopes jointly with the atmospheric perturbations. Before in-
troducing these algorithms, chapter 3 outlines the measurement principles of optical and
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radio telescopes and how they are affected by atmospheric turbulence. Furthermore, chap-
ter 4 describes the basics of Bayesian inference on which the reconstruction algorithms are
based.



Chapter 3

Ground-based telescopes

This chapter introduces the measurement equations of optical and radio telescopes and out-
lines how they are affected by atmospheric turbulence. The description of optical telescopes
is based on Saha, 2007. The description of radio telescopes follows Smirnov, 2011a and
Thompson et al., 2017.

3.1 Optical telescopes

A wide range of designs for optical telescopes exist. We will not discuss any of them in
detail, but will analyze the image formation and the impact of the turbulent atmosphere from
a more abstract mathematical point of view. For this purpose, we describe the telescope
as an abstract linear optical system. For the mathematical description, we introduce two
coordinate systems for the sky and the image. The first coordinate system are the Cartesian
coordinates in a tangential plane centered in the observed field onto which the spherical sky
is projected. The Cartesian coordinates of sky locations we denote with x0. With x1, we
denote the Cartesian coordinates in the telescope’s focal plane. These Cartesian coordinate
systems are parallel to each other, such that by choosing proper units, they become basically
equivalent. With E0(x0) we denote the electric field of the object at the location x0 in the
sky plane. Analogously, we denote the electric field of the image at the position x1 in image
plane with E1(x1). With these definitions, the response of any linear optical system relating
the sky and the image electric fields can be written in the form

E1(x1) =
∫

K(x0, x1)E0(x0) dx0, (3.1)

with K(x0, x1) being the transmission function of the optical system. Typically, optical
telescopes are designed such that their transmission function depends only on the difference
between x0 and x1, such that K(x0, x1) = K(x0 − x1). With this assumption, equation
3.1 turns into a convolution of the object’s electric field with the telescope transmission
function.

For optical wavelengths, only the intensity of the image I(x1) =
〈
E1(x1)E∗1(x1)

〉
and not

the electric field itself can be measured. Following equation 3.1, the intensity of the image
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is given by

I(x1) =
∫ ∫

K(x0 − x1)K∗(x′0 − x1)
〈
E0(x0)E∗0(x′0)

〉
dx0dx′0 (3.2)

=

∫
|K(x0 − x1)|2 O(x0) dx0 (3.3)

= |K(x0 − x1)|2 ∗ O(x0), (3.4)

assuming in the step from equation 3.2 to equation 3.3 that the object electric field is inco-
herent such that

〈
E0(x0)E∗0(x′0)

〉
= δ(x0 − x′0)O(x0), with O(x0) being the intensity of the

sky. Thus, summarizing equation 3.4, the intensity in the image plane of the telescope is
given by the sky intensity convolved with the modulus squared of the transmission function,
also called point spread function (PSF)

PSF(x0 − x1) = |K(x0 − x1)|2 . (3.5)

The exact form of the transmission function, and therefore the PSF, depends on the
technical details of the optical setup of the telescope. However, regardless of the technical
design, the diffraction pattern created by the telescope pupil always contributes to the over-
all transmission function. For high-quality optical telescopes aiming at diffraction-limited
imaging, the transmission function is well described by the diffraction pattern, and other
effects in the telescope optics do not significantly degrade the transmission function. There-
fore, the transmission function is given by the Fraunhofer diffraction pattern of the pupil

K(x0 − x1) =
∫

P(k)e−i2π(x0−x1)·k/λ dk, (3.6)

with λ being the wavelength and P(k) being the pupil function defined as

P(k) =

U(k) inside the pupil,
0 outside the pupil.

(3.7)

For a perfect telescope without external perturbations U(k) = 1.
The resolution of the telescope is determined by the width of the PSF.1 For a spherical

aperture, the diffraction pattern is given by the Airy function. The first minimum of the Airy
function occurs at an angle

θ ≈ 1.22
λ

d
, (3.8)

with λ being the imaging wavelength and d the diameter of the aperture.
If there are external perturbations, for example, from the atmosphere, U(k) will deviate

significantly from 1, distorting the pupil’s diffraction pattern. As I will discuss in the next
subsection, this can be the main limitation for the resolution of the telescope.

1Processing the images with deconvolution algorithms such as the algorithms presented in the chapters 5, 6,
and 9 allows to achieve higher resolution than the width of the PSF in regions with good signal-to-noise ratio.
Nevertheless, the width of the PSF is a good proxy for the expected resolution.
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3.1.1 Impact of turbulence on optical telescopes

Phase and amplitude distortions induced by atmospheric turbulence can be encoded in the
pupil function. Due to temporal variations of the atmosphere, the pupil function U(k, t), and
consequently the telescope PSF becomes time-dependent. For a given time t, equation 3.7
determines the instantaneous PSF of the telescope at that timestamp. The image obtained
in a long exposure is not be determined by the instantaneous PSF, but by the average PSF
during the exposure. Incorporating the average PSF into the image formation equation 3.4
leads to

I1(x1) = ⟨I1(x1, t)⟩ (3.9)

= ⟨PSF(x0 − x1, t)⟩ ∗ O(x0), (3.10)

with ⟨PSF(x0 − x1, t)⟩ being the time-averaged PSF and assuming that the object does not
dependent on time during the exposure.

The effect of atmospheric turbulence on the retrieved image depends strongly on the
meteorological conditions and the telescope used for the observation. Typical values for the
temporal coherence time of U(k, t) are around 20 msec at optical wavelengths and 100 msec
in the near-infrared. The spatial phase coherence length at optical wavelengths is typically
around 10 cm, and the amplitude coherence length is usually significantly longer. According
to equation 3.8 the resolution of a telescope with a 10 cm diameter is around 1 arcsec at a
wavelength of 400 nm. This is the typical resolution limit for an optical telescope without
using atmospheric correction techniques. Observations with optical telescopes with aperture
diameters larger than 10 cm will be strongly affected by the atmospheric perturbations, and
their resolution will not increase with aperture diameter as expected by equation 3.8, but
will remain at approximately 1 arcsec.

The Hubble Space Telescope2 (HST) and James Webb Space Telescopes3 (JWST) have
both a resolution around 0.1 arcsec. Achieving similar or better resolution with ground-
based optical telescopes is only possible by correcting atmospheric perturbations. The most
well-known atmospheric correction technique is adaptive optics. Adaptive optics measures
the wavefront deformations and counteracts them by deforming mirrors. The mirror defor-
mations create differences in the optical path length, that compensate for phase differences
induced by the atmosphere. The adaptive optics system corrects the wavefront on millisec-
ond time scales as this is the typical atmospheric temporal correlation. Adaptive optics can
significantly improve the image resolution of large telescopes. For example, the SPHERE
instrument (Beuzit et al., 2019) of the Very Large Telescope (VLT) archives with adaptive
optics a resolution of around 0.02 arcsec.

Nevertheless, adaptive optics does not fully correct for atmospheric perturbations. Es-
pecially the dynamic range of the acquired images is reduced, limiting the detectability of
fainter companions in the vicinity of bright sources. This, for example, severely limits the
ability to image exoplanets as they are always close to their host star, which is much brighter

2HST reaches the highest resolution with the Wide Field Camera 3. Technical specifications and the exact
resolution can be found in the handbook: https://hst-docs.stsci.edu/wfc3ihb (last visited 07-08-24).

3JWST achieves the highest resolution with the near infrared camera. Technical specifications and
the exact resolution are listed here: https://jwst-docs.stsci.edu/jwst-near-infrared-camera/
nircam-observing-modes/nircam-imaging (last visited 07-08-24).

https://hst-docs.stsci.edu/wfc3ihb
https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-observing-modes/nircam-imaging
https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-observing-modes/nircam-imaging
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than the planet itself, which only reflects the starlight. Fast cadence imaging was developed
to further enhance the image contrast of ground-based telescopes. In fast cadence imaging,
image sequences are acquired where the exposure times of the individual frames are on
millisecond timescales such that the atmospheric perturbations are essentially static during
the individual exposures. These frame sequences are then post-processed after the obser-
vation to retrieve a joint sky image with increased contrast. This thesis contributes a novel
post-processing algorithm for such frame sequences in chapter 5.

3.2 Radio telescopes

There are two main classes of telescopes used in radio astronomy, single dish telescopes
and interferometers. Single dish telescopes work similarly to optical telescopes, focusing
the incoming radiation onto a receiver. Therefore, as for an optical telescope, the resolution
of a single dish radio telescope is approximately determined by equation 3.8. Because radio
waves have much longer wavelengths than optical light, the resulting resolution is signifi-
cantly lower. For example, for a large single dish telescope with a diameter of 100 m and
a frequency of 10 GHz the resolution according to equation 3.8 would be only 1.26 arcmin.
While the shifts in the apparent positions of sources, dispersion, and Faraday rotation can
be observed with single dish radio telescopes, atmospheric turbulence can be neglected due
to the relatively low resolution.4 Nevertheless, the correction of atmospheric turbulence is
crucial for radio interferometers, archiving orders of magnitude higher resolution. The fol-
lowing subsections introduce the measurement principles of radio interferometers (section
3.2.1) and outline calibration approaches (section 3.2.2).

3.2.1 Radio interferometers

A radio interferometer is an array of multiple telescopes distributed over an area. Each in-
dividual telescope, also called an antenna, measures the phase and amplitude of the electric
field at its location. The electric field at the telescopes is a superposition of many different
sources. For simplicity, however, we assume for now that there is only a single source in the
sky. Following the derivation of Smirnov, 2011a, we denote the electric field of the radio
wave of the source with the vector

e =
(
ex

ey

)
. (3.11)

The components of the vector correspond to the polarization modes of the wave. Thus,
in a linear polarization basis, the first component is the phase and amplitude of the wave
along some direction x, and the second component describes the wave along the orthogonal
direction y. Alternatively e could also be expressed in a circular polarization basis. Under
the assumption of a linear propagation from the source to the antennas, the electric field at

4As described in the main text, atmospheric turbulence perturbing the phase and amplitude of the radio wave
can be neglected for single dish radio telescopes. Nevertheless, phase perturbations resulting from deformations
of the telescope reflector under its own weight can have significant effects and are sometimes corrected by
“active surfaces” as used for example by the Robert C. Byrd Green Bank Telescope (Lacasse, 1998).
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antenna p can be written as

ep = J pe, (3.12)

with J p being the Jones matrix encoding the propagation effects from the source to the
antenna p. The electric fields measured by a pair of antennas are then correlated with
each other by the correlator. For the pair of antennas p and q, the correlator computes the
visibility

Vpq = 2
〈
epe†q

〉
, (3.13)

with ⟨⟩ denoting component wise averaging over a small time interval and † standing for
transposition and complex conjugation. The factor 2 in the computation is a convention in
radio astronomy. Assuming that the Jones matrices are constant over the averaging time,
the visibility Vpq can be rewritten as

Vpq = 2J p
〈
ee†

〉
J†q (3.14)

= J pBJ†q, (3.15)

with B = 2
〈
ee†

〉
being the brightness of the source. In a linear polarization basis the

relation between the brightness matrix and the Stokes parameters can be shown to be

B = 2
〈
ee†

〉
= 2

(
⟨exe∗x⟩ ⟨exe∗y⟩
⟨eye∗x⟩ ⟨eye∗y⟩

)
=

(
I + Q U + iV

U − iV I − Q

)
. (3.16)

While the absolute phases of the electric fields cancel out in equation 3.14, the phase dif-
ference between the antennas matters. As visualized in figure 3.1, the path length from the
source to the individual antennas is different.

These path length differences create phase offsets between the electric fields at the an-
tenna locations, imprinting on the visibilities. The path length difference ∆Ppq is given
by

∆Ppq = Dpq · s, (3.17)

with Dpq being the vector from antenna p to antenna q and s pointing in the direction of the
source and being normalized to unit length. This geometric path length difference leads to
a phase difference in the electric fields at the antennas given by

∆ϕpq =
2π∆Ppq

λ
, (3.18)

with λ being the wavelength of the radio wave. In the idealized case that the radio waves
travel undisturbed from the source to the antennas, the Jones matrices will only phase shift
the radio wave according to the path length such that

Vpq = J pBJ†q (3.19)

= Be−i∆ϕqp (3.20)

= Be−i 2π
λ Dpq·s. (3.21)
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Antenna p Antenna q

Dpq

∆Ppq = Dpq · s

s

Figure 3.1: The red segment indicates the path length difference between the two antennas.
Dpq denotes the baseline vector from antenna p to antenna q, and the unit vector s denotes
the direction to the source. With these definitions, the path length difference, thus the length
of the red segment is given by Dpq · s.

In reality, the measurement of the electric fields at the antennas is affected by atmospheric
effects (chapter 2) and the antenna electronics. The atmospheric and antenna effects can
perturb the phase and amplitude of the measured electric field. For this reason, the Jones
matrices contain for each antenna one unknown complex valued factor called antenna gain
G. Therefore, the measurement equation of the visibility (equation 3.21) is modified to

Vpq = GpBG∗qe−i 2π
λ Dpq·s. (3.22)

So far, we have assumed that the sky consists of a single radio source. If we drop
this assumption, the electric fields measured by the antennas are a superposition of the
fields from many sources. Since the electric fields from different sources are incoherent,
their intensities are additive. By integrating over all directions with possible source the
measurement equation for the visibilities (equation 3.22) can be generalized to multiple
sources

Vpq =

∫
Gp(s, t)B(s)G∗q(s, t)e−i 2π

λ Dpq·sdΩ. (3.23)

Here, Gp(s, t) is the gain of antenna p which can depend on time t and direction s, and B(s)
is the direction-dependent sky brightness. The integration goes over all possible directions
of sources influencing the electric field measurement of the antenna, which is, in principle,
half of the unit sphere (since the other half of the Celestial sphere is below the horizon).

Instead of the spherical coordinate system of equation 3.23, usually a Cartesian coor-
dinate system is used in radio interferometry because it is easier to handle, and usually
the antennas are only sensitive within a field of view much smaller than the full sky. By
convention, the antenna locations and baseline coordinates are represented by the Cartesian
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coordinates u, v,w oriented such that the w-axis points towards the center of the observation.
In the Cartesian sky coordinate system, the l and m coordinates are aligned with the u and
w axis of the antenna coordinates. The sky coordinate n is aligned with the w axis. Since
l, m, n are parametrizing directions on the unit sphere, they are not independent but need to
fulfill the relation

l2 + m2 + n2 = 1. (3.24)

Therefore, n can be computed from l and m via n =
√

1 − l2 − m2. In this Cartesian coordi-
nate system, the phase factor is given by

Dpq · s = upql + vpqm + wpq

√
1 − l2 − m2. (3.25)

By an additional convention, the phase offset corresponding to the observation center, thus
the direction s0 = (l = 0,m = 0, n = 1), is usually removed from the visibilities during
correlation. Thus, the remaining phase factor is given by

Dpq · s̃ = upql + vpqm + wpq(
√

1 − l2 − m2 − 1), (3.26)

with s̃ = s − s0. Following all these conventions, the relation between the visibilities, the
sky brightness and the antenna gains is given by

Vpqt =

∫ ∫
Gp(l,m, t)B(l,m)G†q(l,m, t)e−i 2π

λ (upql+vpqm+wpq(
√

1−l2−m2−1)) dl dm
√

1 − l2 − m2
.

(3.27)

with 1√
1−l2−m2

being the Jacobian determinant originating from the coordinate transform
from the spherical to Cartesian sky coordinates.

The radio interferometric measurement equation 3.27 is very similar to a Fourier trans-
formation from the spatial coordinates l,m to the Fourier coordinates u, v,w. For small
fields of view, such that l,m ≪ 1,

√
1 − l2 − m2 ≈ 1 and all antenna gains being equal to

one, the measurement equation actually becomes a Fourier transformation from l,m to u, v.
Therefore, a radio interferometer measures the Fourier transform of the sky brightness mod-
ulated by the antenna gains and wide field effects where

√
1 − l2 − m2 cannot be approx-

imated by one. Nevertheless, the interferometer does not measure at all l,m,w locations
since it only has a finite number of antennas. For this reason, radio interferometric imag-
ing essentially requires recovering the sky brightness B from the partially sampled Fourier
transform. Mathematically, this means that the measurement equation 3.27 has no unique
inverse. Therefore, any algorithm reconstructing the sky brightness from the visibility data
needs to impose additional constraints.

A probabilistic approach to such reconstructions on which all algorithms of this thesis
are based will be discussed in chapter 4. The computational challenges of imaging will be
discussed in chapter 7. Subsequently, chapter 8 introduces a package allowing to bind high-
performance code for evaluating equation 3.27 into the machine learning framework JAX,
enabling radio interferometric imaging in a modern machine learning framework. Espe-
cially for radio interferometers with many antennas, as required for science cases such like
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the one presented in chapter 1.1.2, radio interferometric imaging is computationally very de-
manding, in especially in combination with the statistical techniques introduced in chapter
4. Chapter 9 addresses the these computational challenges and introduces a new algorithm
combining statistical accuracy with numerical efficiency, enabling accurate reconstructions
of large datasets.

3.2.2 Calibration of radio interferometers

Radio interferometric imaging is further complicated since the measurement involves the
unknown antenna gains G, which need to be determined for a reconstruction of the sky
brightness. Some factors influencing the gains, such as the shape and size of the antenna
reflectors, are known; other factors, such as atmospheric perturbations, are unknown. There-
fore, the exact antenna gains need to be measured and cannot be computed from first prin-
ciple. The gains are time-dependent, as many factors influencing them, such as the atmo-
spheric perturbations, are time-dependent. For this reason, the gains need to be measured
shortly before or during the actual science observation. Determining the antenna gain values
from measurement data is called calibration.

This subsection briefly outlines strategies to calibrate the antenna gains. A more com-
prehensive overview of different calibration strategies is given by Smirnov, 2011b; Smirnov,
2011c. The classical approach to calibration is to alternately observe the science target and
a calibrator source, of which the brightness distribution is assumed to be known. Further-
more, in the classical approach, the direction-dependence of the antenna gains is neglected
G(l,m, t) = G(t). Neglecting the direction-dependence allows to pull the gains out of the
integral in equation 3.27 such that the measurement equation is given by

Vpqt = Gp(t)
(∫ ∫

B(l,m)e−i 2π
λ (upql+vpqm+wpq(

√
1−l2−m2−1)) dl dm

√
1 − l2 − m2

)
G†q(t). (3.28)

The integral in equation 3.28 can be evaluated by substituting the assumed brightness dis-
tribution of the calibrator, allowing to fit the antenna gains to the calibration observation.
Afterwards, approximate antenna gains for the science target can be determined by extrapo-
lating the obtained gains from the calibrator to the time intervals of the science observation.

Because the antenna gains are extrapolated from the time intervals of the calibrator
observation to the science observation and direction-dependent effects are neglected, the
accuracy of the obtained gain solutions is limited. To increase the accuracy, the obtained
antenna gains are often used only as a starting point for an initial image reconstruction step
of the science target. This initial reconstruction is inserted in equation 3.28, and residual
fluctuations in the antenna gains are fitted. This scheme, called self-calibration, then iterates
between improving the current science target reconstruction and improving the antenna gain
calibration. Some approaches, such as Arras et al., 2019b, also combine calibration and
imaging in a joint optimization problem.

While self-calibration overcomes the limitations due to the temporal extrapolation of the
antenna gain solution, it still neglects direction-dependent effects. Incorporating direction-
dependent effects in the antenna gains makes a fast numerical evaluation of equation 3.27
significantly more challenging as the antenna gains can no longer be pulled out of the inte-
gral as in equation 3.28. Thus, in the presence of direction-dependent gains, the integral has
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to be recomputed for every antenna pair and time step. Besides the computational aspects,
incorporating direction-dependent gains is also challenging from a statistical point of view.
Already with fixed gains, the radio interferometric imaging problem is underdetermined in
the sense that the response cannot be inverted. This problem becomes even more challeng-
ing when the direction-dependent effects of the gains need to be reconstructed, adding many
more a priori unknown parameters. For this reason, most radio interferometric calibration
and imaging frameworks neglect direction-dependent effects of the antenna gains. Never-
theless, this can often be a limiting factor, as outlined in the science case in the introductory
section 1.1.2.

This thesis contributes a direction-dependent calibration and imaging algorithm pre-
sented in chapter 6, building on the inference techniques presented in the next chapter to
overcome the challenge of reconstructing an underdetermined problem.
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Chapter 4

Inverse problems and Bayesian
inference

Chapter 2 introduced the physics behind atmospheric electromagnetic wave propagation
and the effects perturbing observations. The previous chapter introduced the measurement
equation of optical and radio telescopes. Before developing image reconstruction methods
for such telescopes in the following chapters 5 and 6, this chapter takes a more abstract
perspective on inverse problems and Bayesian inference and introduces the fundamental
concepts on which the algorithms in the following chapters build on. This chapter does not
give a complete overview of Bayesian inference or inverse problems but only outlines some
fundamental ideas relevant for the following chapters. For an extensive introduction, see
for example, MacKay, 2003.

4.1 Inverse problems

We start with considering from a mathematical perspective the reconstruction of a quantity
of interest, called signal s, from a set of measurement data d. The measurement instrument
determines the relation between the signal s and the measurement data d. In chapter 3, we
derived the measurement relations between the sky brightness and the telescope data for
optical and radio telescopes. In this chapter, we assume a general measurement response
mapping from the signal s to the data d and denote it with R. Thus, a perfect measurement
without measurement errors can mathematically be written as

d = R(s). (4.1)

In realistic measurements, there will always be some noise. To cover the effect of noise in
the measurement, we can modify equation 4.1 to a more general measurement equation

d = R(s) + n, (4.2)

with n representing some (additive) measurement noise. Although the actual noise value n
is unknown, the statistic of n is usually known, at least for a well-characterized instrument.
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While equation 4.2 defines how to simulate for a given signal s potential measurement
data d, the inversion thus going from some data back to the underlying signal is often more
challenging. In the idealized noise-free case of equation 4.1, the signal could be recovered
from the data as

s = R−1(d), (4.3)

if the instrument response R is invertible. Nevertheless, when the response R is not invert-
ible, or the noise is not negligible, a simple inversion to recover the signal is no longer
possible. Non-invertible response functions are commonly encountered in physical mea-
surements, such as the response of a radio interferometer discussed in the previous chapter.
Thus, in the presence of significant noise and a potentially non-invertible response R, mul-
tiple potential signals s exist that are consistent with the data. This leads to the question
of how to find compatible signals s and how to discriminate between them or weight them.
This setting of a well-defined forward relation from the signal to the data without a unique
inverse, is commonly called inverse problem.

4.2 Bayesian inference

Probability theory provides a natural way to reason about unknown quantities. The prob-
abilistic answer to the inverse problem equation 4.2 is given by the probability of the sig-
nal conditioned to the measurement data P(s|d). Even with significant noise and a non-
invertible response, the conditional probability of the signal is conceptually well-defined.
Bayes’ theorem

P(s|d) =
P(d|s)P(s)

P(d)
(4.4)

relates the conditional probability of the signal, called posterior, to the likelihood P(s|d), the
prior P(s) and the evidence P(d). With the measurement equation 4.2, the likelihood can
easily be evaluated via P(d|s) = P(n = d − R(s)|s). Thus, evaluating the likelihood essen-
tially boils down to evaluating the instrument response. The prior P(s) encodes knowledge
and assumptions about the signal before conducting the measurement and is, therefore, very
much problem specific. Specific choices of prior models will be discussed in the chapters
5 and 6. The evidence P(d) acts as a normalization constant independent of the signal and
does not need to be evaluated in many applications.

For example, to compute the posterior maximum, the evidence can be ignored, and only
P(d|s)P(s) needs to be maximized. Statistically more robust techniques, such as posterior
mean ⟨s⟩p(s|d) estimates and many other summary statistics, require integration over the pos-
terior distribution. Many Bayesian inference algorithms have been developed for that. The
most widely used classes of algorithms are Markov Chain Monte-Carlo (MCMC, Brooks
et al., 2011) and variational inference (VI, Blei et al., 2017) methods. While MCMC-based
methods come with the theoretical guarantee of recovering the true distribution within the
limit of infinite runtime, VI methods are usually faster and scale better with the number
of dimensions of the posterior. The inference problems in this thesis all deal with the re-
construction of telescope images, where essentially every image pixel is a parameter of the
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posterior. Therefore, the inference problems are all high dimensional and, for this reason,
are all based on variational inference methods.

The basic idea of VI is to approximate the true underlying posterior with a simpler dis-
tribution. This approximation is found by minimizing the information theoretical distance
between the true posterior probability distribution and the approximation. The information
theoretical distance measurement is the Kullback-Leibler divergence (KL, Kullback et al.,
1951), defined as

KL(Q, P) =
∫

Q(x) ln
(

Q(x)
P(x)

)
dx. (4.5)

In variational inference, P is the true underlying distribution defined via Bayes theorem,
and Q the approximating distribution.1

The variational inference algorithms used in the applications of this thesis are Metric
Gaussian Variational Inference (MGVI, Knollmüller et al., 2019) and geometric Variational
Inference (geoVI, Frank et al., 2021). Both variational inference algorithms ultimately ap-
proximate the true posterior distribution P with a Gaussian distribution Q, although in dif-
ferent coordinate systems. Since the approximation error is smaller when the posterior
distribution does not deviate strongly from a Gaussian, we do not directly infer the dis-
tribution of s, the quantity of interest, but a reparametrized version of the signal s. This
reparametrization ξ is constructed such that the prior on ξ is a Gaussian and s = s(ξ) is dis-
tributed according to the desired prior distribution. This reparametrization was introduced
in the MGVI context by Knollmüller et al., 2018, but was well known in the statistics com-
munity under other names before, such as inverse transform sampling (Devroye, 1986) or
reparametrization trick (Kingma et al., 2013).

The Gaussian posterior approximation is optimized in MGVI and geoVI by minimizing
the KL (equation 4.5) with respect to the mean of the Gaussian. The approximation is not
explicitly optimized with respect to the covariance of the approximating Gaussian. Instead,
the covariance is parameterized by the inverse Fisher Metric, also called the inverse metric
tensor of the true distribution. The Fisher Metric of the posterior distribution P(ξ|d) is given
by

M(ξ) =
〈
∂H(ξ|d)
∂ξ

∂H(ξ|d)
∂ξ

†
〉

P(d|ξ)
, (4.6)

with H denoting the negative logarithm of P thus H(ξ|d) = − ln P(ξ|d). Via a short calcula-
tion, it can be verified that in case the posterior is a Gaussian distribution, the Fisher Metric
is the inverse covariance. Thus, in the Gaussian case the MGVI and geoVI techniques can
recover the posterior distribution without approximation error. For non-Gaussian posteriors,
MGVI is affected by an approximation error, as the approximating distribution is Gaussian.

1The KL is not symmetric in its arguments. As derived in Leike et al. (2017), the correct choice would
be that the first argument of the KL is the true distribution P and the approximation Q the second argument.
However, in (almost) all variational inference algorithms, the arguments of the KL are swapped, because in the
correct order, the evaluation and optimization of the KL involves an integration over the true distribution. If it
were be possible to integrate over the true distribution, there would be no need to use variational inference in
the fist place. Therefore, variational inference involves not only the approximation of the true posterior with a
simpler distribution but also an approximation due to neglecting the asymmetry of the KL.
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GeoVI can partially also cover non-Gaussian posteriors by constructing a coordinate trans-
formation in which the posterior becomes nearly Gaussian and performing the Gaussian
approximation in this new coordinate system. A detailed analysis of the use of the Fisher
information metric as a covariance of the approximating distribution is given in the original
publications Knollmüller et al., 2019 and Frank et al., 2021.

The following chapters show applications of Bayesian inference to reconstruct the sky
brightness or atmospheric perturbations. Of course, for numerical computations, the sky or
atmospheric perturbations are discretized into pixels, although in principle, these quantities
are field-like objects and assign a specific value to each direction on the sky or point in
time. Conceptually, the sky brightness and other field-like quantities can be thought of as
infinite-dimensional vectors. Mathematically, this discretization is not necessary for the
applicability of Bayes theorem. Information field theory (IFT; Enßlin et al., 2009; Enßlin,
2019) formalizes Bayesian inference on field-like quantities without discretization.

The software package NIFTy (Numerical Information Field theorY; Edenhofer et al.,
2024a; Steininger et al., 2017; Selig et al., 2013b) implements tools for the inference of
pixelated field-like quantities, such as an image of the sky. Utilizing the scalable varia-
tional inference algorithms described above, NIFTy allows the inference of high-resolution
images with millions of pixels. Following the spirit of information field theory, NIFTy is
constructed such that the inference models are (nearly) independent from the exact pixe-
lation of the images. The software package resolve provides additional functionality to
NIFTy tailored to radio interferometry.

To summarize this chapter, Bayesian inference is a conceptually clean way to solve
inverse problems. The posterior distribution encodes all knowledge about the signal that
can be obtained from the data, including uncertainty information. Via variational inference
algorithms, this posterior distribution can be accessed with some approximations even in
high dimensions, such as high-resolution images. The algorithms of the following chapters
are based on the NIFTy and resolve frameworks.



Chapter 5

Fast-cadence high-contrast imaging
with information field theory

I have published this chapter as first author in the Astronomical Journal as an article (Roth
et al., 2023a). This project originated from a part of my master thesis. My master the-
sis already included the basic idea of modeling the atmospheric phase perturbations as a
phase screen in the telescope aperture. Additionally, my master thesis already included a
prototype implementation of this basic model. In my PhD thesis, I followed up on this work
and refined the modeling of the detector, developed the phase jump mitigation technique,
implemented the final version of the algorithm, executed the benchmarking of the final al-
gorithm, and wrote this publication. Gianluca Li Causi and Vicenzo Testa contributed via
many discussions about the SHARK-VIS instrument and high-contrast imaging in general.
Gianluca Li Causi additionally executed the comparison methods in section 5.6.1. Philipp
Arras contributed via general help with the NIFTy software package. Torsten Enßlin con-
tributed with many discussions about Bayesian inference and modeling of the instrument.
All coauthors read, commented on, and approved the text. The text and figures were slightly
adapted for this thesis.

5.1 Abstract

Although many exoplanets have been indirectly detected over the last years, direct imaging
of them with ground-based telescopes remains challenging. In the presence of atmospheric
fluctuations, it is ambitious to resolve the high brightness contrasts at the small angular sep-
aration between the star and its potential partners. Post-processing of telescope images has
become an essential tool to improve the resolvable contrast ratios. This chapter contributes
a post-processing algorithm for fast-cadence imaging, which deconvolves sequences of tele-
scopes images. The algorithm infers a Bayesian estimate of the astronomical object as well
as the atmospheric optical path length, including its spatial and temporal structures. For this,
we utilize physics-inspired models for the object, the atmosphere, and the telescope. The
algorithm is computationally expensive but allows to resolve high contrast ratios despite
short observation times and no field rotation. We test the performance of the algorithm with
point-like companions synthetically injected into a real data set acquired with the SHARK-
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Figure 5.1: Left panel: Instantaneous PSF in the focal plane (rebinned to 100x100 pixels)
of the 5.5 mag star Gliese 777, acquired with the SHARK-VIS Forerunner instrument at
the LBT in a 1 ms exposure. The interference pattern shaped by the atmospheric fluctua-
tions (“speckles”) are well visible all around the star. Central panel: HCBI reconstruction
of the PSF convolved star for the corresponding frame, shown with the same logarithmic
colormap. Right panel: The reconstruction in the pupil plane of the optical path difference
field for that frame of the Gliese 777 sequence, which determines the reconstructed PSF
shown in the central panel.

VIS pathfinder instrument at the LBT telescope. Sources with brightness ratios down to
6 · 10−4 to the star are detected at 185 mas separation with a short observation time of 0.6 s.

5.2 Introduction

The direct imaging of exoplanets is challenging due to the high brightness contrasts between
a star and its potential exoplanets at angular separations of tiny fractions of an arcsecond,
a context called “high-contrast imaging” (HCI; see Marois et al. (2006)). The atmospheric
turbulence (section 2.6) that corrupts the incoming wavefront before entering the telescope,
thus producing a distorted point spread function (PSF) at the focal plane, makes it diffi-
cult to resolve these high brightness contrasts. This corruption, especially pronounced for
large telescopes, is nowadays mostly compensated by the extreme adaptive optics (ExAO)
technology (Esposito et al., 2010). However, the correction is not perfect, and the post-AO
PSF still shows high spatio-temporal variations, with typical times of a few ms and scales
of a few mas (see Stangalini et al. (2017)). This results in a spread of the star light into a
complex evolving pattern of spots, called “speckles”, surrounding the star (see figure 5.1,
left panel) and hiding the much fainter companions.

To further improve the achievable contrast ratios, data post-processing techniques have
become an essential part of HCI. Mathematically, such data post-processing is a reconstruc-
tion problem in which a subtle signal shall be retrieved that is affected by three disturbances:
i) a strong disturbing signal, i.e., the star’s PSF with its photon noise, ii) its strong spatio-
temporal variability, called “speckle noise”, and iii) the signature and read-out noise of the
detector. Many post-processing algorithms have been developed for HCI, like the classical
Angular Differential Imaging (ADI; Marois et al., 2006), the Speckle Free ADI (SFADI;
Li Causi et al., 2017), the Local Combination of Images (LOCI; Lafrenière et al., 2007),
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the Stochastic Speckle Discrimination (SSD; Walter et al., 2019), the Principal Component
Analysis ADI (PCA-ADI; Soummer et al., 2012, Amara et al., 2012), as well as the recent
NMF data imputation method (Ren et al., 2020). All of them estimate the time-dependent
PSF leveraging on the large field rotation in a sequence of pupil-stabilized images across
a long temporal interval. This model is then used to subtract the central star contribution
from the data.

Here we present a different approach, which works on fast-cadence frames sequences to
jointly reconstruct the static true brightness distribution of the source (i.e. star and compan-
ions) and the temporal evolution of the PSF. We use an explicit forward data modeling that
simulates the natural information flow from the signal to the detector (as recently done by
Hope et al., 2022 and, in a different way, by the MAYO (Pairet et al., 2021) and REXPACO
(Flasseur et al., 2021) methods). Thereby we exploit the statistical properties of the fast
cadence PSFs whose exposure time is comparable to the speckles timescale. In particular,
we do this by using information field theory (IFT; Enßlin (2019))

As outlined in chapter 4, IFT uses Bayesian probability theory and methods from statis-
tical field theories to infer fields, e.g., source distribution and PSF, from noisy data, allowing
to incorporate prior knowledge from physical constraints. In astronomy it has already been
used in a number of contexts e.g. in radio astronomy (Arras et al. 2021a, Arras et al. 2019b,
Arras et al. 2022), galactic dust tomography (Leike et al., 2020), or Faraday sky imaging
(Hutschenreuter et al., 2020). This is the first time IFT is applied to HCI and hereafter we
demonstrate its ability to reveal faint companions at one-tenth of an arcsecond separation
from the host star in a very short acquisition time and without the need for field rotation.
Since, at its core, our method rests on Bayesian inference, we name our algorithm High
Contrast Bayesian Imaging (HCBI). Our code is open source and publicly available at:
https://gitlab.mpcdf.mpg.de/ift/public/hcbi.

This chapter is organized as follows. In section 5.3 we briefly recapitulate the general
concepts and methods of Bayesian inference and IFT introduced in the previous chapter
and apply them to the HCI problem. In section 5.4 we develop a physically inspired prior
model for short exposure imaging. Section 5.5 outlines the symmetries in the likelihood.
Section 5.6 presents the results on real data, also in comparison with other methods. Finally
section 5.7 discusses the performance and planned improvements.

5.3 Information field theory and its application to HCI

IFT is a theoretical framework for the reconstruction of fields, i.e. continuous quantities
having a value at any location, from measurement data. In the HCI context, examples
for fields are the static source brightness distribution, which we call object, and the time-
variable PSF, which are both continuous in the sky or detector plane, respectively.

As fields are continuous quantities, they have an infinite number of degrees of freedom
(d.o.f.) unless we restrict them to be of a parametric from. Thus, reconstructing them non
parametrically from finite measurement data is impossible without additional information.
IFT provides the theoretical foundation to incorporate such necessary pieces of additional
information into field reconstruction algorithms building on Bayesian inference.

Many physical fields vary mostly smoothly in space and time as the physical processes

https://gitlab.mpcdf.mpg.de/ift/public/hcbi
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that govern them typically erase discontinuities quickly. Thus, values of the field at nearby
locations are correlated, and below a certain distance, no significant differences are ex-
pected. This effectively reduces the infinite number of d.o.f. to a finite number, enabling
the inference of the field from finite data sets. Hence the key concept for inferring infinite-
dimensional quantities is their correlation. Should the correlation structure be unknown a
priori, it can be inferred simultaneously with the field as described in section 5.4.2.3. On a
computer, these fields are sampled into pixels or voxels, requiring that the sampling is fine
enough to resolve all relevant structures. The open-source Python Bayesian field inference
package NIFTy1 (Arras et al., 2019a, Steininger et al. (2017), Selig et al., 2013a) is a nu-
merical implementation of IFT, on which the method presented in this chapter as well as the
other methods of this thesis built on.

From a mathematical point of view, HCI is described by the imaging equation derived
in chapter 3 and valid within an isoplanatic patch of the sky, for which the data vector
d = (d1, d2, ...), i.e. the pixel values of all acquired frames, are a convolution of the object s
with the PSF p to which some noise n is added

di(x) = (p ∗ s)(x, ti) + ni, (5.1)

where x is the detector grid coordinate and ti the acquisition time of frame i. The PSF p(x, t)
includes the atmosphere and the optics response and depends on the coordinate x and time
t, while the object s(x) is assumed to be static in time.

Our method computes from d a Bayesian estimate of s and p, i.e. it infers the posterior
probability distribution P(s, p|d) of s and p given the data d, following Bayes’ Theorem
(equation 4.4):

P(s, p|d) =
P(d|s, p)P(s, p)

P(d)
. (5.2)

Thereby the likelihood P(d|s, p) is the probability of the data d for a given realization of the
object s and the PSF p; P(s, p) is the prior, which encodes all previous knowledge about
s and p, like the correlation of s and p, and physical constraints, like the strict positivity
of those fields. Finally, the term P(d) is the evidence, which only acts as a normalization
constant that is not used in our algorithm.

In our case, we usually deal with frames sequences containing thousands of images,
each having in the order of 104 to 105 spatio-temporal pixels, so that s, p, and d are all very
high dimensional quantities, and equation 5.2 contains too many variables to be computed
directly. Thus a fast and scalable algorithm is needed to infer an approximate posterior
P(s, p|d) and get a solution for s and p.

5.3.1 Metric Gaussian Variational Inference

The simplest approximation of the posterior is to only compute its maximum so that the so-
lution for s and p corresponds to the highest probability density. This method is commonly
referred to as maximum a posteriori (MAP) probability estimation.
Several more accurate algorithms for approximating the posterior distribution exist. A suit-
able iterative algorithm for this work, capable of dealing with a very high dimensional pa-
rameters space, is Metric Gaussian Variational Inference (MGVI; Knollmüller et al., 2019

1https://gitlab.mpcdf.mpg.de/ift/nifty

https://gitlab.mpcdf.mpg.de/ift/nifty
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and chapter 4). The concept of MGVI is to iteratively approximate the true posterior with a
multi-dimensional Gaussian distribution. This Gaussian approximation is not directly per-
formed on the parameters of interest, e.g. p and s, but on some model parameters Θ. The
mappings p(Θ) and s(Θ) can be built according to physical considerations encoding prior
knowledge on s and p. In the next sections, these mappings are outlined in detail. Fur-
thermore, performing the Gaussian approximation in a latent parameters space instead of
directly on p and s enables the algorithm to capture the non-Gaussian statistics of s and
p. This more accurate approximation provides multiple advantages compared to the MAP
estimator.

First, similar to MAP, MGVI has a near to linear scaling with the problem size, which
makes it suitable for large problems with many free parameters.

Second, MGVI probes the phase space volume of the posterior, while MAP does not.
This ensures that differences in the prior volume are more properly reflected in the inference
with respect to MAP. This is of particular importance for our simultaneous object and PSF
reconstruction since we are dealing with a degenerate inference problem in which several
quantities are able to explain the same data feature. As only prior information (including its
phase space volume) can break many of these degeneracies, its more proper treatment by
MGVI is a clear advantage over MAP.

To summarize, IFT is a theoretical framework for Bayesian reconstructions of field-like
quantities. MGVI is a specific numerical algorithm for obtaining an approximation of the
actual posterior distribution for a given prior and likelihood model.

To apply MGVI to equation 5.2 we need a model of the prior P(s, p) and a model of
the likelihood P(d|s, p), that, in order to be meaningful, need to be derived using physically
motivated arguments, as we are going to describe in section 5.4 and section 5.5 hereafter.

5.4 Prior model

The MGVI algorithm requires the object prior and the measurement likelihood in the form
of a generative model to draw realizations of s(Θ) and p(Θ) out of their probability distri-
butions, starting from standard Gaussian distributed random variables Θ. In the following,
we build up such generative models for the object, the atmosphere, the telescope, and the
measurement instrument by following physical considerations.

5.4.1 Object model

Bayes’ Theorem quantifies how to update the prior knowledge with newly acquired data.
Therefore our prior probability model should include all knowledge about the imaged object
before evaluating the actual image data.

This means that the best generative model for the prior distribution is tailored to the
source under study and will be different if our target is e.g. a star with a companion, a
young stellar object with an accretion disk, a resolved object, or something else.

As in this work we focus our investigation on the detection of exoplanets or low mass
stellar companions next to a central star, we need a point source model for both the star
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Figure 5.2: Samples drawn from the prior generative model. Left: One prior sample for
the object, showing a random realization of the central star and the inverse gamma intensity
distribution in all other pixels. In the close vicinity of the star it is enforced that the pixels
have zero flux. This improves the quality of the reconstructed star PSF at the price of not
being able to detect planets there. Right: One prior sample for the wavefront at telescope’s
pupil, generated from a Gaussian process with a spatial covariance structure given by the
Matérn kernel of equation 5.6.

and its potential partners (which for the sake of simplicity we will call "planets" in the
following, disregarding to their physical nature). We also know that the brightness of these
sources and their locations in the sky do not vary across the short observation interval;
therefore, our model object is time independent.

We focus our present work on the most common case where the star’s apparent diameter
is smaller than the pixel size so that the prior for the central star is a fixed point source at
the center of the field of view. The only free stellar parameter of this model is the star
intensity since telescope jittering and pointing errors that shift the star’s apparent position
in the image will be included in the PSF model. The intensity of the star must be positive
and can vary on logarithmic scales, so we use a log-normal prior for it, which also ensures
strict positivity in the reconstruction.

In contrast to the star, the locations of the planets are unknown, so we model them by
inferring the intensity of every sky pixel, adopting for simplicity the same pixel grid of the
data. We also know that there are no planets at most locations. Therefore the reconstructed
intensity of most pixels should be very close to zero, given that the sky background has
been subtracted from the data. To account for this statistics, we adopt independent inverse
gamma priors for the brightness of any pixel. Consequently, the planet fluxes in the different
pixels are a priori uncorrelated with each other, and it is much more probable for any pixel to
belong to background than to host a planet. A prior sample for the object model is displayed
in figure 5.2, left panel.
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5.4.2 PSF model

Two separate effects contribute to a physical model for the evolving PSF. The first effect
is the fluctuation in the atmospheric path length (section 5.4.2.1), while the second is the
telescope optics (section 5.4.2.2). Because a typical high-contrast imaging observation has
a field of view of the order of a few arcseconds, or even smaller, the assumption of iso-
planatism of equation 5.1 is valid, so we consider both contributions constant across the
image.

5.4.2.1 Atmospheric fluctuations model

The light from a pointlike astronomical source approaches the Earth as a plane wavefront
but reaches the telescope’s aperture as a distorted wavefront after corruption by the rapidly
changing density fluctuations of the atmosphere. These distortions can be described by the
optical path difference ϕatm(t, u), between the actual wavefront and the ideal plane wave.
It depends on time t and position u in the aperture plane. When expressed in units of
wavelength, u corresponds to spatial frequencies in the image plane. The instantaneous
wavefront ψ entering the aperture is thus given by:

ψatm(t, u) = eiϕatm(t,u) (5.3)

5.4.2.2 Telescope model

The telescope’s adaptive optics introduces opposite phase shifts to partly remove the path
differences caused by the atmosphere. These phase shifts can be modeled in the same way
as the atmosphere. Hence we have only one path length field ϕeff describing the combined
effects of atmosphere and adaptive optics.

Due to wind and mechanical vibrations, the telescope can jitter, introducing a shift
in the detector’s field of view. A shift in the detector space is equivalent to a pointwise
multiplication of the Fourier transformed image by a phase gradient in the aperture space,
with the slope of the gradient being proportional to the shift length. Therefore we add for
both spatial directions a linear gradient ϕjit(t) with a time-dependent slope to the optical
path difference.

The geometry of the telescope aperture blocks parts of this incoming wavefront, select-
ing the spatial frequencies that reach the focal plane. In our equation, we can model this
with a multiplication factor A(u), being zero for locations outside the aperture.

Finally, variations in the adaptive optics response and lensing effects in high layers of
the atmosphere can change not only the phase but also the intensity of the wave. To also
model such effects, we allow for a scalar time-dependent intensity factor, which modulates
the amplitude in the aperture plane, which we write as an exponential parameter eα(t) to
guarantee the physical constraint of strict positivity.

To summarize, the resulting wavefront model in the optical pupil of the instrument can
be written as:

ψ(t, u) = A(u)eiϕeff (t,u)+iϕjit(t)+α(t) (5.4)
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The final instantaneous image of the PSF model point source produced at the focal
plane is the squared amplitude of the Fourier transform F of the wave in the optical pupil
as derived in chapter 3:

p(t, x) =
∣∣∣F x

u ψ(t, u)
∣∣∣2 = ∣∣∣F x

u A(u)eiϕeff (t,u)+iϕjit(t)+α(t)
∣∣∣2 . (5.5)

To this equation, we could add the dependence on λ, since the effects of atmosphere,
adaptive optics, and telescope are wavelength-dependent. In this work, though, we do not
make this explicit because we apply our method to narrow-band observations.

5.4.2.3 Correlation prior

In every space-time voxel, ϕeff(t, u), ϕjit(t), and α(t) can have different values. Nevertheless,
because of the physical mechanisms involved, not all values are equally likely. For example,
the path length field ϕeff(t, u) will evolve smoothly in time and space since also the real
atmosphere evolves smoothly. Similar, ϕjit(t) and α(t) will be correlated in time.

Modeling the correlations and using them as prior information substantially improves
the reconstructions. Especially for the path length ϕeff(t, u), the correlations are important
to deal with the degeneracy between object and PSF in the imaging equation (5.1). In
section 5.6, we demonstrate the benefits of accurately reconstructing these correlations.

We model all correlated fields as zero-centered Gaussian processes. The correlation
structures of ϕeff(t, u), i.e. its power spectrum, might be different in spatial and temporal
directions. Because we assume the spatial correlations not to change significantly during an
observation, we factorize the Gaussian process into a temporal and a spatial axis and write
the total correlation kernel as the outer product of spatial and temporal kernels. For both
axes we employ a Matérn kernel (Genton, 2002, Matérn (1986)). The Matérn covariance
is translation invariant and therefore diagonal in Fourier space. The Matérn kernel can be
parametrized in Fourier space

P(k) =
a2

(1 + (k/b)2)c , (5.6)

where P(k) indicates the power spectrum with k as frequency.
The parameters a, b, and c are a priori unknown and are simultaneously reconstructed

with the path length field. The parameter a determines the amplitude of the fluctuations, b is
a characteristic length scale, and c is the spectral slope of the spatial or temporal fluctuations.
For the temporal and spatial axis, the parameters of the kernel can be different.

For ϕjit(t) and α(t) a similar, but non-parametric, correlation model is used, whose de-
tails can be found in Arras et al., 2022.

Figure 5.2, right panel depicts one realization of the wavefront field ϕ(t, u) drawn from
the described generative model, showing its spatial correlations.

5.5 Likelihood model

For a given object s and evolving PSF p, the model described above determines the time
dependent intensity field in the focal plane. The detector’s readout and the photon count
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statistics are accounted for in equation 5.2 by the likelihood term P(d|s, p) by using Poisson
and Gaussian statistics, respectively.

For simplicity, the details of the detector signature like pixel-to-pixel bias non-
uniformities, frame-to-frame column bias variations, and pixel-to-pixel non-uniform re-
sponses are currently not included in the forward model but will be incorporated in the
future. For the current work, the images are pre-corrected for these effects before the actual
reconstruction (see section 5.6).

5.5.1 Symmetries of the likelihood

A given PSF p(t, x) does not uniquely determine the wavefront ψ(t, u), because several dis-
tinct path length functions will result in the same PSF. In other words, the PSF is symmetric
under specific transformations of the wavefront. A detailed review of these symmetries can
be found in Paxman et al., 2019, here we shortly outline them:

• Global phase offset symmetry: A global additive offset to the path length does not
change the PSF, since the absolute value in equation 5.5 remains constant.

• 2π ambiguity: One can locally add multiples of 2π to the path length field without
changing the PSF, since ei2πn = 1 for all n ∈ Z.

• Sign ambiguity of the symmetric part of the wavefront (for symmetric apertures):
If one writes the path length field ϕ(t, u) as the sum of a symmetric part ϕs(t, u) =
ϕ(t, u)+ϕ(t,−u) and an anti-symmetric one ϕa(t, u) = ϕ(t, u)−ϕ(t,−u), then ϕ+(t, u) =
ϕa(t, u) + ϕs(t, u) and ϕ−(t, u) = ϕa(t, u) − ϕs(t, u) both correspond to the same PSF.

Since the PSF model has these three symmetries also the likelihood has these symmetries
because the probability of a given frame in the data is the same for any realization of these
symmetries in the wavefront.

The symmetries are divided into two categories, continuous symmetries and discrete
symmetries. The first symmetry is continuous, while the second and third are discrete.
For the continuous symmetry, one solution of the phase screen can be transformed into
another solution by a series of local changes without ever changing the resulting PSF or the
likelihood. This is not possible for the two discrete symmetries. For example, to transform
the path length function ϕ+(t, u) into ϕ−(t, u) without changing the PSF, one has to entirely
change the sign of the symmetric part.

MGVI, our inference scheme, iteratively improves the current estimate by making local
changes. After performing a sequence of local optimization steps, it can happen that parts
of the path length function converged to ϕ+(t, u) and other parts to ϕ−(t, u). Similarly, parts
of the path length function can have phase offsets of multiples of 2π. This can be subop-
timal for exploiting the correlations of the path length function since 2π jumps and jumps
between ϕ+(t, u) and ϕ−(t, u) make the path length function appear less correlated. Even in
the presence of some artefacts, there are correlations in the path length function, which can
help to improve the reconstruction of the sky brightness.
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Figure 5.3: Path length functions in the pupil plane at different stages of the optimiza-
tion. The left panel shows the primary path length function before the auxiliary path length
function was removed. As described in the main text it only contains large scale structure
explaining the central peak of the PSF. The central panel depicts the auxiliary path length
function at the same stage of the optimization. In the right panel the final result of the path
length reconstruction is plotted. Many small scale structures form the auxiliary path length
function have been transferred to the primary path length function without introducing phase
wrapping effects.

5.5.2 Double path length function model

As outlined in the previous section, the phase wrap artefacts caused by the discrete sym-
metries of the likelihood are only hardly removed by the MGVI optimization. To reduce
these artefacts, we alter the model for the initial iterations of the optimization in order to
separate the smooth structures from the artefacts. We add an auxiliary path length function
for the initial iterations and superimpose the resulting image in the focal plane with the im-
age determined by the primary path length function. Thus each feature in the data can be
explained by either of the two path length functions.

For the auxiliary path length function, we tune the hyper-parameters of the Matérn ker-
nel towards favoring flatter power spectrum slopes, thus allowing less correlation for this
function. When starting the inference, the additional path length function will quickly ac-
cumulate many small-scale structures at the cost of having multiple symmetry artefacts. In
contrast, the primary path length function will be smooth, mainly explaining the central
peak of the PSF without modeling the small-scale features. Thus the primary path length
function reconstruction will be physically plausible, having only little artefacts, but lacking
small-scale structures. In figure 5.3 (left and central panel) the primary and auxiliary path
length functions are depicted for an intermediate stage of the optimization.

In subsequent iterations, we reduce the weight of the image resulting from the auxiliary
path length function in the superposition with the primary image. This forces the recon-
struction to explain an increasing amount of small-scale features by the primary path length
function, thus gradually transferring small-scale features back to the main path length func-
tion without creating phase wrap artifacts. In the right panel of figure 5.3 the path length
function is plotted after the transfer of the small scale features from the auxiliary path length
function.
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Figure 5.4: Left: Ground truth object: A central star surrounded by 12 injected planets with
contrasts ranging from 10−2 to 10−4, shown in the field of view of the frames. Center: HCBI
object reconstruction from 0.6 s of Gliese 777 data from 600 sequential frames. Right:
HCBI object reconstruction from using only 0.1 s of the data. The 0.1 s reconstruction
can only detect the brightest 3 companions. Furthermore the 0.6 s reconstruction has a
significantly lower background residual.

5.6 Application to a real data

We applied the described algorithm to real on-sky frames sequence acquired with the
SHARK-VIS pathfinder instrument, called Forerunner (Pedichini et al., 2017). SHARK-
VIS (Mattioli et al., 2018) is the upcoming visible band fast imaging camera for high-
contrast imaging at the 8-meter class Large Binocular Telescope (LBT).

The data were acquired on the 5.5 mag star Gliese 777, imaged at a frame rate of 1 KHz
through a 40 nm FWHM filter centered at 630 nm, and recorded by an Andor Zyla sCMOS
camera. The low read noise of this camera, of less than 2 electrons per pixel, and its small
pixels of 6.5µm allows to use an image scale of 3.73 mas/pix, and a frame exposure of 1 ms,
that was chosen to oversample the typical spatial and temporal scales of the speckles in the
visible band, as measured in Stangalini et al. (2017).

During the observation, the seeing was around 1 arcsec FWHM, and the LBT adaptive
optics system (Esposito et al., 2010) was correcting 500 modes in closed loop. An exem-
plary frame is shown in figure 5.1, left panel.

Fast cadence imaging allows for numerical re-centering of the frames and a frame se-
lection discarding the few frames whose peak is fragmented by strong turbulence. This
potentially yields two important advantages. First, it improves the planet’s detection due to
the increased flux concentration, and second, it increases spatial resolution.
As described in section 5.4 the presented method reconstructs the evolving instantaneous
PSF, which makes it suitable to utilize the full potential of such fast-cadence observations.

The whole Gliese 777 data set consists of 1.2 ·106 sequential frames for an interval of 20
minutes, acquired without using the telescope de-rotator (pupil-stabilized imaging) to get
the necessary field rotation needed for the application of the standard angular differential
techniques mentioned in the introduction. These raw frames were pre-processed before
the HCBI reconstruction to reduce detector artifacts, like the frame-to-frame column bias
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Figure 5.5: Reconstructed amplitude variation of the PSF exp(α(t)) as a function of obser-
vation time.

variations and the pixel-to-pixel non-uniform response.
For testing the HCBI reconstruction we only use 600 sequential frames, corresponding

to the first 0.6 s of acquisition, in which we injected 12 synthetic planets between 185 mas
and 315 mas from the star and with contrasts ranging from 10−2 down to 10−4 (figure 5.4,
left panel).

The mock planets are produced by shifting and scaling each frame to the position and
intensity of the planets and adding the corresponding Poisson random counts to the data.
These frames have then been binned to a plate scale of 7.46 mas/pix in order to work with
100 × 100 pixel frames and reduce the high computational workload of the processing.

The MGVI inference process for the current algorithm starts by generating a set of
random prior samples from all input variables of the generative model (section 5.4), e.g.
the object, the optical path length, the telescope jittering, and the scale of the wavefront
amplitude. Afterwards the algorithm computes a model of the frames by a convolution of
the thereby generated object samples with the PSF samples and evaluates the likelihood
(section 5.5).

Then the MGVI algorithm optimizes the Gaussian posterior approximation with these
samples. In the following, this procedure is iterated until convergence, using samples from
the current estimate of the posterior instead of prior samples. During these iterations, the
weight of the auxiliary PSF is reduced until only the primary PSF is left.

Finally, the sample average can be computed for all quantities in the generative model
(section 5.4). Thus HCBI does not only reconstruct the astronomical object and the optical
path length but simultaneously calibrates for all the modeled effects, like e.g. the total flux
variation exp(α(t)) due to atmospheric scintillation, as shown in figure 5.5.

Figure 5.1, in central and right panels, shows the model frame and the model wavefront
for one data frame. All prominent data features are accurately reconstructed, indicating that
the model is sufficiently flexible to describe the data. Smaller structures are attributed to
noise and are not picked up in the reconstruction thanks to the prior favoring smooth path
length functions. A strong correlation is noticeable in the wavefront, as expected from our
physical considerations in section 5.4, and also following the prior model.

Figure 5.4, central panel, depicts the reconstructed object after convergence of the algo-
rithm. It is composed of the pointlike star at the center, the correctly reconstructed planets,
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and a background residual mainly consisting of isolated points between 5 · 10−3 and 10−4

intensity with respect to the star. The planets are all correctly reconstructed as pointlike
objects in the right locations down to a contrast of 6 · 10−4.

The residual background is not Gaussian, as we expect from the inverse gamma prior
that we adopted for the source field.

This result demonstrates that a 0.6s acquisition is enough for the HCBI to achieve a
detection limit of 6 ·10−4 on a 5.5 mag star without the need for field rotation. The measured
intensities of the reconstructed planets are correct within an error of 5% for the brightest
and 17% for the faintest with respect to the ground truth, while the identified planets less
or equal to 10−3 are comparable with the false positives of the same level in the residual
background.

It is worth noting that with fast-cadence imaging, the problem of quasi-static speckles
that can mimic a planet signal in long exposure frames is much less severe. Instead, our
false positives mostly come from noise.

5.6.1 Comparison with other methods

In order to directly compare the HCBI result with other methods, we convolved the object
reconstruction with a Gaussian of the same FWHM of the instrumental PSF. This produces
the image in figure 5.6, panel d.

Since field rotation is negligible on a 0.6 s short sequence, the common angular differen-
tial methods cannot be used to process these frames. So in figure 5.6 we made a comparison
with i) the simple average of the frames after co-registration (panel a), ii) the simple star
removal obtained by subtraction of average radial profile and local median (panel b), and iii)
the result of a multi-threshold Speckle Free Imaging (SFI; Li Causi et al. (2017), Mattioli
et al. (2019)), shown in panel c.

We see that the reconstruction from HCBI (panel d) unambiguously reveals all planets
down to 6 · 10−4 (indicated for reference in panel f) against a fainter background residual
than the SFI method, in which they are not distinguishable from the residual spots. Anyway,
these planets are present in the SFI result, which suggests that a combination of the two
results could even increase the detectability, since planets are correlated while residuals are
not, as shown by their geometric average (panel e).

Such comparison, however, is only possible for sufficiently bright stars, because the SFI
method is only efficient when speckles are well detectable in a single frame (Li Causi et al.
(2017)), while HCBI is less affected by the star being dim because it exploits the entire
information across the whole frames sequence.

It is worth noticing that for applying any ADI-based technique, like e.g., the PCA-ADI,
to these fast cadence data, at least 105 frames would be needed for having a sufficient field
rotation to avoid planet self-subtraction.
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Figure 5.6: Performances of different methods for the same 600 frames: a) simple average
after aligning; b) average of the original frames after subtraction of a radial profile and
a local median; c) multi-threshold SFI; d) HCBI reconstruction (namely, central panel of
figure 5.4) convolved with a Gaussian of the same FWHM of the instrumental PSF; e)
geometric average of results from SFI and HCBI; f) ground truth inserted into the data set.
All the panels from b to e are shown with the same linear color scale in order to facilitate
the comparison of the residuals.
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5.7 Discussion

This chapter describes a novel data modeling algorithm for obtaining direct high-contrast
images of extrasolar planets, or faint stellar companions, at sub-arcsecond distance from
their host star. The algorithm is based on the mathematical methods of information field
theory (IFT) and uses Bayesian inference to simultaneously reconstruct the true object and
the PSF evolution from a kHz-rate frames sequence acquisition. For the reconstruction,
it uses a set of prior information reflecting the physics of the object, the atmospheric per-
turbations, the telescope and detector response. The prior model resembles the observa-
tional effects present at fast-cadence imaging instruments such as SHARK-VIS, allowing
the method to unravel the full potential of fast-cadence frame sequences. Special care is
taken to deal with symmetries in the wavefront that are observationally indistinguishable
but may affect the inference. The wavefront is modeled with a Gaussian process whose
correlation power spectrum is learned from data as part of the inference process. Metric
Gaussian Variational Inference is adopted at the core of the present algorithm to get robust
convergence to an optimal Gaussian approximation of the posterior distribution, from which
the final reconstruction is computed.

The performance of HCBI is tested on real on-sky data with artificially injected faint
planets, and its detection limits are discussed in comparison with other methods. We show
that the HCBI algorithm outperforms the Speckle-Free Imaging (SFI), producing a smaller
residual and correspondingly increasing the planets detection limit. Moreover, in contrast to
SFI, which needs to detect speckles in each frame, the HCBI method is not limited to bright
stars because it uses the whole data cube at once. Finally it does not need field rotation,
which is needed by the ADI-based methods to avoid self-subtraction of the planet.

To study the sensitivity increase of the HCBI method as more frames are processed,
we also reconstructed a subset of the data consisting of only 100 frames corresponding to
0.1 s of observation. The result of this 100 frames reconstruction is depicted in figure 5.4
right panel. As expected, the sensitivity increases as more frames are processed. Hence
processing thousands of frames should improve detection limits further, with reduced back-
ground residuals and less false positives. In practice however, we are currently limited to
work with a few hundreds of frames, due to the high computational cost of the MGVI re-
construction, which took about 2 weeks to converge to the 600 frames result of figure 5.4,
using two 2.4GHz cores of an Intel Xeon Gold 6148 processor with a 20 GB RAM. To face
this problem, our plan for the continuation of this work is to study the possibility of splitting
large datasets into a number of smaller chunks, to be treated independently and processed
in parallel by adopting cloud computing, whose reconstructed information could be joined
incrementally. This is physically justified because the whole speckles pattern becomes fully
uncorrelated after ∼ 70 − 90 ms, as measured by Stangalini et al. (2017).

We expect to improve the performance of the method by including the detector signature
into the generative data model, which in this work has been corrected by a preprocessing
step. Incorporating the signature into the generative model would allow for a joint recon-
struction of the object, the PSF evolution, and the detector fluctuations. Also, we will
introduce more priors, specific for the cases of resolved stars or extended sources like cir-
cumstellar planet-forming disks, in order to enlarge the applicability of the method to all
the most common high-contrast imaging situations.
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Finally, we plan to ascertain the possibility of modeling long exposure frames, which
requires a completely different PSF prior model. Possible models are under investigation
but go beyond the scope of the present work.



Chapter 6

Bayesian radio interferometric
imaging with direction-dependent
calibration

I have published this chapter as first author in the journal Astronomy & Astrophysics as an
article (Roth et al., 2023b). Philipp Arras contributed via numerous discussions and helped
in the C++ implementation of the image domain gridder. With his enormous experience in
C++ development also Martin Reinecke helped in the implementation and optimization of
the C++ image domain gridder. Torsten Enßlin contributed via many in-depth discussions
on Bayesian inference. Richard Perly helped with the physical interpretation of the obtained
calibration solutions. The text was read, commented and approved by all coauthors. For
this thesis, the text and figures were slightly adapted.

6.1 Abstract

Radio interferometers measure frequency components of the sky brightness, modulated by
the gains of the individual radio antennas. Due to atmospheric turbulence and variations in
the operational conditions of the antennas, these gains fluctuate. Thereby the gains do not
only depend on time, but also on the spatial direction on the sky. To recover high-quality
radio maps, an accurate reconstruction of the direction and time-dependent individual an-
tenna gains is required. This chapter aims to improve the reconstruction of radio images, by
introducing a novel joint imaging and calibration algorithm including direction-dependent
antenna gains. Building on the resolve framework, we designed a Bayesian imaging and
calibration algorithm utilizing the image domain gridding method for numerically efficient
application of direction-dependent antenna gains. Furthermore, by approximating the pos-
terior probability distribution with variational inference, our algorithm can provide reliable
uncertainty maps. We demonstrate the ability of the algorithm to recover high resolution
high dynamic range radio maps from VLA data of the radio galaxy Cygnus A. We compare
the quality of the recovered images with previous work relying on classically calibrated
data. Furthermore, we compare the results with a compressed sensing algorithm also incor-
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porating direction-dependent gains. Including direction-dependent effects in the calibration
model significantly improves the dynamic range of the reconstructed images compared to
reconstructions from classically calibrated data. Compared to the compressed sensing re-
construction, the resulting sky images have a higher resolution and show fewer artifacts.
For utilizing the full potential of radio interferometric data, it is essential to consider the
direction dependence of the antenna gains.

6.2 Introduction

Over the last decades, many modern radio interferometers such as the Very Large Array
(VLA), the Atacama Large Millimeter Array (ALMA), the Low-Frequency Array (LO-
FAR), the Australian Square Kilometer Array Pathfinder (ASKAP), and MeerKAT have
been constructed and are now providing high-quality data. With LOFAR 2.0, MeerKAT+,
and the Square Kilometre Array (SKA), the future will bring even more instrumental
progress to radio astronomy. Utilizing the full potential of these instruments has become a
major challenge, not only because of the enormous data size but also because of the com-
plexity and variety of processes affecting the measurement.

This makes the accurate calibration of the antenna gains an important aspect for unrav-
eling all of the information from the measurement data, as introduced in section 3.2.1. The
antenna gains are complex-valued functions, describing the sensitivity of the individual an-
tennas of the interferometer, and depend on time and spatial direction on the sky. Tradition-
ally the direction-dependent effects (DDEs) were neglected, and only direction-independent
effects (DIEs) were considered, rendering the antenna gains only time-dependent.

Clearly, DIEs are the dominant contribution to the antenna gains; nevertheless, DDEs
exist, and neglecting them in the calibration procedure limits the image fidelity and dy-
namic range of the resulting sky reconstructions. From the instruments mentioned above,
especially LOFAR measurements are affected by DDEs in the antenna gains, making a DDE
calibration essential. However, correcting for DDEs is also beneficial for other instruments.

Historically, the first DDE considered in radio interferometry was the so called w-effect
resulting from non-coplanar baselines of the interferometer. Many algorithms have been
developed to account for the w-effect (as for example Cornwell et al., 1992, Perley, 1999,
Cornwell et al., 2008, Offringa et al., 2014, Pratley et al., 2019, Ye et al., 2021, Arras et al.,
2021b). Since the w-effect is purely geometrical, it can be computed form the antenna con-
figuration and, in contrast to DDEs arising form atmospheric fluctuations and operational
conditions of the antennas, it does not need to be reconstructed from observational data.
For the rest of this chapter, we focus on DDEs that are not known a priori but need to be
recovered from data, and that might also be time-dependent.

Calibration algorithms correcting for such unknown and potentially time-dependent
DDEs have been developed over the last years, initially building on such w-effect correction
techniques as for example proposed by Bhatnagar et al., 2008. Nowadays, DDE correction
is most commonly achieved via partitioning the field of view into small facets, assuming
piecewise constant DDEs. Within each facet, a DIE calibration is performed. This faceting
based approach was developed in Smirnov et al., 2015, Weeren et al., 2016, and Tasse et
al., 2018. Albert et al., 2020 extended this approach by proposing to infer a smooth phase
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screen within each facet.
Repetti et al., 2017 introduced a joint DDE calibration and imaging algorithm going be-

yond faceting and the assumption of piecewise constant DDEs. For regularization, smooth-
ness of the DDEs is enforced via modeling them as band-limited Fourier kernels. Addi-
tionally, the sky brightness is regularized via compressed sensing, assuming sparsity in an
orthonormal basis. This approach was generalized in Thouvenin et al., 2018, Dabbech et al.,
2019, and Birdi et al., 2020, adding the time dependence to the DDE correction and also
accounting for polarization. Building on this algorithm, Dabbech et al., 2021 demonstrate
the benefit of DDE calibration on a Cygnus A VLA dataset.

In Arras et al., 2019b, a joint Bayesian imaging and DIE calibration method is pre-
sented. Here we extend this approach to a joint Bayesian imaging and DIE as well as DDE
calibration method. Similar to Repetti et al., 2017, we a priori assume smoothness of the
DDEs. Nevertheless, we did not fix the degree of smoothness via a band-limited kernel but
used self-adaptive correlations priors described in section 6.4.1.3. Also for the DIE gain
solutions and the sky brightness we used self-adaptive correlation priors. As in Dabbech
et al., 2021, we also demonstrate the method presented in this chapter on Cygnus A VLA
data. This allows for insightful comparisons and validations of the two algorithms.

For computational efficiency, we utilized the recently developed image domain gridding
algorithm (Tol et al., 2018). Image domain gridding allows for an efficient evaluation of the
radio interferometric measurement equation in the presence of direction-dependent antenna
gains. Therefore, image domain gridding is a key component for correcting DDEs that do
not have band-limited kernels.

The remainder of the chapter is structured as follows. In section 6.3 we outline the
radio imaging and calibration problem, already introduced in section 3.2.2, in a Bayesian
setting. Section 6.4 describes our reconstruction algorithm. In section 6.5 we demonstrate
the algorithms performance and compare the image quality to existing work. Section 6.6
gives a conclusion and an outlook for future work.

6.3 The inference problem

The radio interferometric measurement equation, derived in Smirnov, 2011a and chapter 3,
relates a given sky brightness and antenna gains to model visibilities. To be more precise,
the model visibility Ṽpqt of antennas p and q at time t is given by

Ṽpqt =

∫
C(l,wpqt)I(l)Gp(l, t)G∗q(l, t)e−2πi(kpqt ·l)dl, (6.1)

with l = (l,m) being the sky coordinates, t the time coordinate, kpqt =

(upqt, vpqt) the baseline uv-coordinates in units of the imaging wavelength, C(l,wpqt) =

exp
(
−2πiwpqt

( √
1 − l2 − 1

))
/
√

1 − l2 the w-effect, I(l) the sky brightness, and Gp(l, t) the
gain of antenna p. Thus, model visibilities are Fourier components of the sky brightness I
modulated by the antenna gains Gp and Gq as well as by C, encoding the w-effect. The vis-
ibilities Vpqt actually measured by the interferometer are the noise less visibility Ṽpqt plus
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some additive noise nqpt

Vpqt = Ṽpqt + nqpt. (6.2)

While the w-effect C is known, the sky brightness I as well as the antenna gains G have to
be reconstructed. Recovering the underlying sky brightness I and antenna gains G from the
noisy measurement data is an inverse problem, as discussed in chapter 4.

As outlined in chapter 4 the inverse problems of the algorithms presented in this thesis
are addressed from a probabilistic perspective. Thus, we seek for an estimate of the posterior
distribution P(I,G|V), which is the probability distribution of the sky I and antenna gains G
conditioned on the measured visibilities V . Via Bayes’ Theorem (equation 4.4)

P(I,G|V) =
P(V |I,G)P(I,G)

P(V)
, (6.3)

this posterior distribution can be expressed in terms of the likelihood P(V |I,G), the prior
P(I,G), and the evidence P(V). While the likelihood and the prior actually depend on I and
G, the evidence only acts as a normalization constant. The prior P(I,G) encodes general
knowledge and assumptions about the sky brightness I and the antenna gains G before
considering the data. Based on these assumptions, the prior assigns a probability density to
each possible configuration of I and G. We discuss the prior assumptions of this algorithm
in detail in section 6.4.1.

For a given I and G, the model visibilities Ṽ can be computed via the measurement
equation 6.1. The likelihood P(V |I,G) = P(V |Ṽ) is determined by the statistics of the
measurement noise in equation 6.2. We discuss the likelihood and the noise model in section
6.4.3.

6.4 The algorithm

6.4.1 Prior model

The sky brightness I(l) is a largely continuous function of the spatial position l on the
sky, except for locations of point sources. Similarly, the antenna gains Gpt(l, t) are largely
continuous functions of position l and time t. Unless some parametric form is considered,
continuous quantities have an infinite number of degrees of freedom. Thus, reconstructing
them from finite measurement data is an ill-posed problem, since the measurement data
does not uniquely determine the solutions for I(l) and Gpt(l, t). To circumvent this problem,
some form of regularization is required.

Information field theory (Enßlin, 2019) gives the theoretical foundation for expanding
Bayesian inference to continuous quantities. In Bayesian inference, classical regularizers
do not exist. Instead, the prior allows one to discriminate between all solutions compatible
with the data. We make some mild assumptions about the involved quantities to derive
a reasonable prior distribution. The key prior assumptions are smoothness and positivity,
which we detail in sections 6.4.1.1 and 6.4.1.2, respectively.

We encode the prior probability distributions in the form of standardized generative
models (Knollmüller et al., 2018). Standardized generative models transform a set of inde-
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pendently distributed Gaussian random variables {ξi} via a nonlinear mapping to the desired
target distribution.

6.4.1.1 Smoothness

Almost all continuous physical quantities, called fields hereafter, are smooth functions of
their respective coordinates. Thus, the values of a field at nearby locations are not indepen-
dent of each other but are correlated. Exploiting such correlations enables the inference of
fields from finite measurement data.

We model all correlations via Gaussian processes. A priori we assume statistical ho-
mogeneity and isotropy of the Gaussian process, meaning that a priori there is no special
position or direction. According to the Wiener-Khintchine theorem (Khintchine, 1934) the
correlation kernels of homogeneous and isotropic processes are diagonal in Fourier space,
with the power spectrum on the diagonal. We reconstruct the power spectrum of the field
jointly with the field values themselves. For the power spectrum, we utilize a nonparametric
model, encoding mild prior assumptions, such as, it is falling and is itself a smooth function
of the Fourier frequency. The details of the correlation model can be found in Arras et al.,
2022.

As we already pointed out in section 6.4.1, we encode our prior distributions in the
form of generative models. Also, this correlation model has the form of a generative model.
Thus, it maps uncorrelated Gaussian random numbers ξ to a correlated Gaussian process
ψ(ξ).

6.4.1.2 Sky prior model

In the current version of the algorithm, we ignore polarization and only consider Stokes
I imaging. Since there is no negative flux, the sky brightness is constrained to be strictly
positive I(l) > 0. In our model, I(l) = Id(l) + Ip(l) consists of two components, with Id(l)
modeling the diffuse sky emission and Ip(l) modeling the point source emission. Both have
to obey the positivity constraint Id/p(l) > 0 individually.

The characterizing property of diffuse sky emission is that it is smoothly varying as a
function of sky direction. The brightness of the diffuse sky emission varies over several
orders of magnitude and is strictly positive. For these reasons, we model the logarithm of
the diffuse sky emission with a two-dimensional generative model for correlated Gaussian
process ψsky(ξsky). After exponentiation we get the generative model for I(l)

Id = eψsky(ξsky), (6.4)

encoding a correlated log-normal distribution. This satisfies the requirements of a strict
positivity and smoothness.

Also, the point source model should satisfy the positivity constraint. Furthermore, the
point source model needs to be flexible enough to capture extreme variations in the bright-
ness of point sources. Therefore, we choose to model point sources with pixel-wise inverse
gamma-distributed brightness values, as already done in Arras et al., 2021a and Selig et al.,
2015. We insert two such pixels with inverse gamma-distributed point source fluxes at the
locations of the two sources near the core of Cygnus A.
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6.4.1.3 Antenna gain prior model

At the current stage of the algorithm, we neglect polarization leakage. Therefore, the gain
of antenna p can be described as a diagonal matrix

Gp(l, t) =
(
Grr

p (l, t) 0
0 Gll

p(l, t)

)
, (6.5)

with Grr
p (l, t) and Gll

p(l, t) being the calibrations of the two antenna feeds ⟨ll⟩ and ⟨rr⟩. The
physical origin of the l, t and jointly (l, t)-dependent variations of the antenna gains can be
different. For example, the purely time-dependent variations arise from fluctuations in the
amplification of the antenna signals, as well as from atmospheric effects with angular scales
larger than the antenna beam. Only direction-dependent variation might arise from devia-
tions between the actual antenna power pattern and the assumed model. Finally, pointing
errors of the antennas and atmospheric effects with angular scales smaller than the antenna
beam cause joint time and direction-dependent gain variations.

Thus, the physical origins of the time and/or direction dependent variations are differ-
ent, and therefore, the statistics of the gain variations along these axes are expected to be
different. For this reasons, we separate the purely time and direction-dependent terms from
the joint direction and time-dependent term. Thus, we split Gll/rr

pt (l, t) into

Gll/rr
p (l, t) = gll/rr

p (t) · gll/rr
p (l) · gll/rr

p (l, t), (6.6)

with ll/rr standing for the two cases < ll > or < rr >. Splitting the antenna gain into these
three factors has the advantage that it allows one to encode different prior knowledge into
the generative models of the individual terms. For example, we can encode that the a priori
expected fluctuations of gll/rr

p (l) and gll/rr
p (l, t) are much smaller than that for gll/rr

p (t).
In order to avoid degeneracies between the three antenna gain factors in equation 6.6,

we suppress the only time t and only direction l dependent contributions in the generative
model for gll/rr

p (l, t) by following a similar idea presented in Guardiani et al., 2022 which
we outline below.

Each antenna gain term is a complex-valued function. Because the variations of phase
and amplitude of the antenna gains have different origins, the typical temporal and spatial
correlation length is expected to be different. This makes it a natural choice to have distinct
models for phase and amplitudes. We model the logarithm of the gain amplitude and the
phase with two distinct Gaussian processes. Thus, we have the following forward model

gll/rr
p (·) = eψ

ll/rr
p,logamp(·)+iψll/rr

p,phase(·)
, (6.7)

with (·) representing either (t) or (l).
As already mentioned we suppress the contribution of only time t or only direction l

dependent parts in the generative model for gll/rr
p (l, t) as they should be captured by gll/rr

p (t)
and gll/rr

p (l) respectively. To do so, we alternate the phase and amplitude models in equation
6.7 for the case of the joint (l, t)-dependence. Instead of directly using the output of the
Gaussian processes ψll/rr

logamp(l, t) and ψll/rr
phase(l, t) as a model for the jointly (l, t)-dependent
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amplitudes and phases, we first subtract the integrals over l and t. Thus, we use ψ̃ll/rr
(·) (l, t)

defined as

ψ̃ll/rr
(·) (l, t) = ψll/rr

(·) (l, t) − (voll)−1 ·

∫
ψll/rr

(·) (l, t) dl

− (volt)−1 ·

∫
ψll/rr

(·) (l, t) dt, (6.8)

for the amplitude and phase models, with (·) standing for (logamp) or (phase) respectively.
Thereby voll =

∫
1 dl and volt =

∫
1 dt are the volumes of the direction and time spaces.

Thus, the jointly (l, t)-dependent calibration factor can be summarized as

gll/rr
p (l, t) = eψ̃

ll/rr
logamp(l,t)+iψ̃ll/rr

phase(l,t)
, (6.9)

with ψ̃ll/rr
(·) (l, t) as defined in equation 6.8.

This definition of ψ̃ll/rr
(·) (l, t) reduces the contributions of only t or only l dependent

parts. To explicitly verify this, we can, as a test, add an only l-dependent contribution
ψ
′ll/rr
(·) (l, t) = ψll/rr

(·) (l, t) + ϕ(l). Then, the resulting ψ̃
′ll/rr
(·) (l, t) of the modified ψ

′ll/rr
(·) (l, t) is:

ψ̃
′ll/rr
(·) (l, t) = ψll/rr

(·) (l, t) + ϕ(l) − (voll)−1 ·

∫ (
ψll/rr

(·) (l, t) + ϕ(l)
)

dl

− (volt)−1 ·

∫ (
ψll/rr

(·) (l, t) + ϕ(l)
)

dt

= ψ̃ll/rr
(·) (l, t) + c. (6.10)

Thus, only l-dependent contributions, and similarly also only t-dependent contributions, in
ψll/rr

(·) (l, t) imprint on ψ̃ll/rr
(·) (l, t) only as a constant offset c. This guides the reconstruction

to capture only t or only l-dependent variations of the gain factor by gll/rr
p (t) and gll/rr

p (l),
respectively.

6.4.2 Forward model

Besides the science target, calibration sources are also observed. We combine the science
observation with the calibration observations into a joint forward mode as described in the
next three subsections.

6.4.2.1 Science target

For the science target observation, we use the antenna gain and sky models as described
above and compute the corresponding model visibilities via the measurement equation 6.1.
For the numeric evaluation of the measurement equation we use the image domain gridding
algorithm (Tol et al., 2018) as outlined in section 6.4.2.4.

6.4.2.2 Flux calibrator

For the flux calibration observation, we do not reconstruct the sky brightness but assume it
to be a point source with known flux in the center of the field of view. Thereby, we assume
the fluxes of the calibration sources reported in Perley et al., 2013.
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We use only the direction-independent factors in the antenna gain model, since
direction-dependent calibration cannot be performed with a single point source. Further-
more, the flux calibration antenna gains only share the amplitudes with the other observa-
tions while having a separate phase model. Thus, the flux calibration antenna gains share
the Gaussian process for the logarithm of the amplitude ψlogamp(t) but not the phase process
ψphase(t).

Additionally, we allow the flux calibration antenna amplitudes to have a small offset
to the amplitudes of the science target. We assume this offset to be a piecewise constant
function of time t with the breaking points at the time steps where the telescope switches
the target. To summarize, the antenna gain for the flux calibration is given by

gll/rr
p (t)Fcal = eψ

ll/rr
logamp(t)+αll/rr

Fcal (t)+iψll/rr
phaseFcal

(t)
. (6.11)

Here ψll/rr
logamp(t) is the only time-dependent Gaussian process modeling the logarithm of

the amplitude. This part of the gain model is shared with the other observations. αll/rr
Fcal(t)

is the piecewise constant amplitude offset, and ψll/rr
phaseFcal

(t) is the phase of the amplitude
calibration gain. We use a zero-centered Gaussian as a prior model for the amplitude offsets
αll/rr

Fcal(t). We do not assume a fixed variance of this Gaussian but simultaneously reconstruct
it from the calibration data. Thereby, we use an inverse gamma prior on variance. Via the
heavy tails of the inverse gamma distribution, we encode the prior knowledge that the offset
is probably small but can sometimes significantly deviate from zero.

6.4.2.3 Phase calibrator

Similar to the flux calibration observation, we assume the phase calibrator to be a point
source in the center of the field of view. Nevertheless, we do not set a fixed brightness of
this point source but reconstruct it from the data.

Again we only use the direction-independent factors of the antenna gain model, since
direction-dependent calibration can not be done with a single point source. In contrast to the
flux calibration, for the phase calibration not only the amplitude model but also the phase
model of the antenna gains is shared with the other observations.

As already introduced for the flux calibration model, we allow for small discontinuities
in the calibration solution at the timesteps where the telescope switches the observation
target. Since for the phase calibration observation, not only the amplitude model but also
the phase model is shared with the science target, we also allow for an offset in phases
between the two observations. Expressed as a formula, the antenna gain model for the
phase calibration is defined by:

gll/rr
p (t)Phcal = eψ

ll/rr
logamp(t)+αll/rr

Phcal(t)+iψll/rr
phase(t)+iβll/rr

Phcal(t). (6.12)

Here, ψlogamp(t) and ψphase(t) are the Gaussian processes modeling the phase and the log-
arithm of the antenna gains, which are shared with the other observations. αll/rr

Phcal(t) and
βll/rr

Phcal(t) are the piecewise constant offset functions. As a prior for the offsets αll/rr
Phcal(t) and

βll/rr
Phcal(t), we again use a zero-centered Gaussian with an inverse gamma distributed variance,

as already described for the flux calibrator offset function.
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6.4.2.4 Image domain gridding

The radio response R(I,G) maps a given sky brightness and antenna gains to model visi-
bilities as defined by the measurement equation 6.1. Essentially the radio response R is a
nonuniform Fourier transformation of the sky brightness modulated by the w-effect and the
antenna gains. These modulations by the antenna gains are different for every baseline and
timestep. They make classical algorithms for computing the radio response numerically
inefficient if one includes the direction-dependence of the gains. The novel image domain
gridding algorithm by Tol et al., 2018 overcomes this challenge and enables a fast evalua-
tion of R even in the presence of direction-dependent gains. We use image domain gridding
to compute the radio response R.

For a fast optimization of the joint posterior estimate of I and G (see section 6.4.4), we
not only need to evaluate R(I,G) but also its derivative. More specifically, we implemented
the image domain gridding in such a way that we can also apply the Jacobian of R at the
position (I0,G0) to perturbations of the sky dI and the gains dG. Thus, we can compute:

DRI0,G0(dI, dG) =
(
∂R
∂I

∣∣∣
I0,G0

∂R
∂G

∣∣∣
I0,G0

) ( dI
dG

)
. (6.13)

Furthermore, we also need to apply the adjoint Jacobian to perturbed visibilities dV . Thus,
we can evaluate:

(
DRI0,G0

)† (dV) =

 ∂R
∂I

∣∣∣∗
I0,G0

∂R
∂G

∣∣∣∗
I0,G0

 (dV
)
. (6.14)

The Jacobian and its adjoint are implicitly evaluated, thus they are neither stored nor applied
as a full matrix.

6.4.3 Likelihood model

With the above forward model and the image domain gridding algorithm for the measure-
ment equation 6.1 the model visibilities can be computed. The statistics of the noise in equa-
tion 6.2 then determines the likelihood. We assume Gaussian measurement noise statistics.
Nevertheless, we do not assume a fixed noise covariance, but allow for an outliers correc-
tion by introducing a noise correction factor per data point. During the inference we jointly
reconstruct these correction factors with the calibration and sky brightness. For each cor-
rection factor we use an inverse gamma distribution as a prior, having a strong peak at 1.
Thereby, we can ensure that if the data is preferentially explained by the model, and only if
this is not possible is classified as an outlier. A similar procedure was introduced in Arras
et al., 2021a and was named “automatic weighting”. In essence, this automatic weighting is
equal to natural weighting, where the weights get updated during the reconstruction. More
specifically, if a visibility gets detected to be an outlier its weight gets decreased.

For all targets we compute the likelihood P(V |I,G) as described above. The overall like-
lihood is then the product of the individual likelihoods for calibration and science targets:

P(V |I,G) =
∏

i

P(Vi|I,G). (6.15)
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Because we include temporal smoothness into our model (see section 6.4.1.3) the like-
lihoods contribute information on the calibration solutions not only for the exact time inter-
vals of their observation, but also for other observations. Thereby, the temporal correlation
kernels, reconstructed for the gain factors, determine the extrapolation of the gain solution
of the calibration observations to the science observation (and vice versa). Therefore, jointly
inferring the calibration solution and the science image is beneficial.

6.4.4 Posterior

In the sections above, we have developed a likelihood model P(V |I,G) and encoded the
prior distribution P(I,G) via the generative form of I and G. To actually obtain an image I
and antenna gains G from the observed visibilities V , it is necessary to compute, or approx-
imate, the posterior distribution P(I,G|V). Directly computing the posterior distribution
via equation 6.3 is impossible since the model involves too many parameters and is highly
nonlinear. Instead, we approximate the posterior distribution via a two-stage algorithm.

In the first stage, we compute the maximum a posteriori solution (MAP) for the sky
I and the antenna gains G by maximizing the joint probability P(V, I,G) = P(V |I,G) ·
P(I,G) of visibilities, sky brightness, and antenna gains. This gives us already a decent
reconstruction of the sky brightness and the calibration solutions; nevertheless, it lacks a
reliable uncertainty quantification.

Therefore, in the second stage, we compute a more accurate approximation of the poste-
rior probability distribution of the sky brightness using the antenna gain solutions obtained
in the first stage of the inference. Thus, expressed as a formula, we approximate P(I|G,V).
We compute this posterior approximation using geometric variational inference (geoVI), a
technique developed by Frank et al., 2021. geoVI, as outlined in chapter 4, is an accurate
variational inference technique capable of capturing non Gaussian posterior statistics and
intercorrelation between the posterior parameters. The output of the geoVI inference is a
set of posterior samples of the sky brightness. The mean sky brightness and its standard
deviation can be computed from these samples.

Of course, ideally, not only the sky I but also the antenna gains G should be inferred
via geoVI to include calibration uncertainties into the uncertainty quantification of the re-
covered sky. However, the computational demand of the geoVI inference is significantly
higher than computing the MAP solution. This renders it at the current stage infeasible to
have a joint geoVI estimate of the sky and the antenna gains. Therefore, in this work, the
uncertainties on the sky brightness are only relative to the antenna gain calibration com-
puted by MAP. Nevertheless, we believe these uncertainty maps to be significantly more
accurate than noise estimates obtained from residual flux images of clean-like algorithms,
also because residual images are always conditional to the assumed calibration solutions.

6.5 Demonstration on Cygnus A VLA data

We demonstrate the performance of our algorithm on a VLA Cygnus A observation. We use
the S band data at 2.052 GHz in all four VLA configurations. In recent years the Cygnus A
VLA data has been widely used for presenting and benchmarking novel imaging and cali-
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bration algorithm (see, for example, Arras et al. 2021a, Dabbech et al. 2021, Sbokolodi et
al. 2020, Dabbech et al. 2018). This allows for insightful comparison and validation of the
imaging algorithms. In particular, we compare the results of this work with the resolve
reconstruction from Arras et al., 2021a and the compressed sensing reconstruction from
Dabbech et al., 2021. In the following two subsections we briefly summarize these two
algorithms. For completeness we also did a reconstruction using the algorithm of this work
but only included direction-independent calibration terms. The results of this reconstruction
are discussed in the appendix 6.8.1. The code underlying the shown reconstructions can be
found here.1 The results of the sky reconstruction are available in fits format at.2

We choose a FoV of 0.05 × 0.05 degrees and a grid of 1000 × 1000 pixels. Thus the
individual pixels have a side length of 0, 00005 degrees or 0.18 arcsec. The pixel of the
DIE antenna gains have a size of 20 s for all four VLA configurations. We use 32 × 32
spatial pixels for DDE gains, which get Fourier interpolated on the sky grid by the im-
age domain gridding algorithm Tol et al., 2018. For the temporal resolution of the jointly
direction-dependent antenna gains we choose 400 s. For this work we used the uncalibrated
Cygnus A data together with observations of the flux and phase calibrators to make a joint
reconstruction.

6.5.1 resolve with traditional calibration

The resolve reconstruction of Arras et al., 2021a uses the same underlying framework and
sky model as this work. Nevertheless, in contrast to this work, it uses traditionally calibrated
data as an input, ignoring direction-dependent effects. This comparison allows studying the
impact of direction-dependent calibration on Bayesian imaging.

In Arras et al., 2021a, the old resolve reconstruction without direction-dependent cal-
ibration was compared to single and multi-scale clean images, showing that the images
reconstructed with resolve had a higher resolution than the single and multi-scale clean
images. By comparing with higher frequency data, the small scale emission additionally
recovered by the resolve algorithm could be confirmed to be real.

6.5.2 Compressed sensing with direction-dependent calibration

Furthermore, we compare with the algorithm of Dabbech et al., 2021. Similar to our
method, Dabbech et al., 2021 also performs a direction-dependent calibration avoiding
faceting. In contrast to our algorithm this method takes the already classically calibrated
visibilities as an input, and performs the direction-dependent calibration and imaging on
top. Also the methodology of this method is quite different as it uses compressed sens-
ing for the regularization of the sky brightness and band limited Fourier kernels for the
direction-dependent gains. Since the methodology of this method is very different is it well
suited as a confirmation of the results of this work.

1https://gitlab.mpcdf.mpg.de/ift/public/cygnus_a_dde_cal
2https://doi.org/10.5281/zenodo.8178695

https://gitlab.mpcdf.mpg.de/ift/public/cygnus_a_dde_cal
https://doi.org/10.5281/zenodo.8178695
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6.5.3 Comparison of Cygnus A images

In figure 6.1, the Cygnus A image reconstructions of this algorithm and the two studies
mentioned above are displayed. All three algorithms deliver similar images of Cygnus A.
Especially the two Bayesian resolve reconstructions have only minimal artifacts in the
recovered images. The compressed sensing algorithm produces some artifacts at the hot
spots and the core of Cygnus A.

An important quantity for comparing the quality of radio maps is their resolution, thus
the smallest length scale at which features can still be imaged. While for classical CLEAN
images, this length scale is usually set by the size of the CLEAN bean, more advanced imag-
ing algorithms such as resolve and compressed sensing techniques can achieve super-
resolution (Arras et al. 2021a, Dabbech et al. 2018). Thus, for sufficiently high signal-
to-noise, these algorithms can recover features smaller than the intrinsic resolution of the
interferometer.

In high surface brightness regions, the resolution of both Bayesian images is slightly
higher. Already in Arras et al., 2021a, the very high resolution of the Bayesian reconstruc-
tion compared with clean was discussed, and its fidelity was confirmed by comparison
with higher frequency data. In order to depict the difference in resolution more clearly, the
right column of figure 6.2 shows a zoom-in on the western hot spot. Also, in the zoom on
the hot spots, the three algorithms yield very compatible reconstructions.

Figure 6.2 left column depicts the core, the jet, and regions of the lobes with lower
surface brightness. In low surface brightness regions, the resolution of the resolve re-
construction from Arras et al., 2021a using classically calibrated data is significantly lower
than the resolution of the reconstruction of this work and also lower than the resolution
of the compressed sensing reconstruction of Dabbech et al., 2021. Both algorithms utiliz-
ing direction-dependent calibration depict the sharp structures of the jet much more clearly
than the algorithm of Arras et al., 2021a building on classical calibration. That direction-
dependent calibration enhances the jet was already found in Dabbech et al., 2021 compared
to other methods building on classical calibration.

Besides the resolution, the sensitivity, specifying the dimmest recovered emission, is
the second important quantity determining the quality of a radio map. This sets the dy-
namic range of a radio map as the ratio between the faintest to the brightness emission.
By comparison of three images in figure 6.1, it is evident that the two algorithms perform-
ing direction-dependent calibration provide radio maps with high dynamic range, as they
recover structures with much lower surface brightness. The resolve reconstruction of Ar-
ras et al., 2021a without direction-dependent calibration has a significantly higher residual
background brightness. The dynamic range gain also manifests in figure 6.3, which depicts
as a histogram the fraction of the images with a given surface brightness. For a dynamic
range of about 2.5 orders of magnitude, all three reconstructions predict the same fraction
for the given surface brightness. For surface brightnesses lower than 50 mJy/arcsec2, only
the two algorithms, including direction-dependent calibration, deliver consistent results. In
contrast, the resolve reconstruction of Arras et al., 2021a utilizing classically calibrated
data deviates significantly from the other two methods. For surface brightnesses of less
than 1 mJy/arcsec2 also the two methods, including direction-dependent calibration, start
to deviate. These low surface brightness regions lie outside of Cygnus A, and no significant
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sources are detected there. The deviation in background intensity is due to the different
priors used for the sky brightness. For interpreting the off-source residuals, the plot of the
relative uncertainty of the resolve reconstruction in figure 6.5 is also helpful. As visible in
figure 6.5, the relative uncertainty of the resolve reconstruction is larger than 1 in regions
outside of Cygnus A, meaning that the reconstructed background intensity is statistically
compatible with 0 in these regions.

The accurate agreement of the resolve reconstruction of this work and the compressed
sensing reconstruction of Dabbech et al., 2021 can also be confirmed by the contour plots
in figure 6.4. The contour lines, spanning a surface brightness range of 4.3 orders of magni-
tude, are in close agreement between the two reconstructions. In contrast, the flux contours
of the resolve reconstruction from Arras et al., 2021a show significant deviations in the
low surface brightness regions.

Thus, to conclude, ignoring direction-dependent effects in the calibration solutions lim-
its the dynamic range of the recovered radio maps. The Bayesian resolve reconstructions
utilizing direction-dependent calibration significantly improve the dynamic range, and the
results are compatible with other work.

The geoVI algorithm used in the resolve framework outputs a set of posterior sam-
ples of the sky brightness (see section 6.4.4). The posterior mean sky brightness can be
computed from these samples, as shown in the previous plots. Besides the mean, also other
summary statistics of the sky brightness posterior distribution can be computed, such as the
uncertainty. The left column of figure 6.5 depicts the relative uncertainty. In the regions
of the hot spots of Cygnus A, the relative uncertainty is on the order of a few percent. To-
ward the fainter ends of the lobes, the uncertainty rises to 10% or even higher in the faintest
regions. Outside the contours of Cygnus A, the relative uncertainty is significantly larger
and exceeds 100%. This is expected since the surface brightness is negligibly small in these
regions. Also, the resolve reconstruction of Arras et al., 2021a provides uncertainty esti-
mates, which are compatible with the uncertainty estimates of this work. The compressed
sensing method of Dabbech et al., 2021 cannot estimate the uncertainty.

The posterior distribution can also be analyzed based on individual samples. A set of
four representative posterior samples is shown in figure 6.5 in the right column. While the
samples show only tiny variations in high surface brightness regions, they are more diverse
in regions with lower brightness, indicating higher posterior uncertainty.

In the appendix 6.8.2, we display the dirty image of the residuals between our recon-
struction and the data. Overall the residuals are very small, and only minor structures of the
source are left in the residuals, indicating a good fit to the data.

6.5.4 Calibration solutions

In this section, we briefly discuss the antenna gain solutions. As our antenna gain model
(section 6.4.2) factorizes the antenna gains into a purely time-dependent term gp(t), an only
direction-dependent gp(l), and a jointly direction and time-dependent term gp(l, t), we can
analyze the reconstruction of these terms separately. As it will turn out in the following
sections, the statistical properties of the three factors are very different. As we model each
of the factors with separate Gaussian processes, inferring their power spectra, the algorithm
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Figure 6.1: Comparison of Cygnus A images with three algorithms. Top panel: Cygnus A
image from Arras et al., 2021a obtained with resolve without direction-dependent cali-
bration. Central panel: The Cygnus A image reconstructed with the algorithm of this work.
Bottom panel: Cygnus A image from Dabbech et al., 2021 recovered by a compressed sens-
ing algorithm including direction-dependent calibration. The colorbar is clipped for better
visibility.
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Figure 6.2: Zooms into high and low flux regions of the reconstructions. Left column:
Zoom on the core and jet. Top panel: Arras et al., 2021a; Central panel: This work; Bottom
panel: Dabbech et al., 2021. Right column: Zoom on the hot spots of western lobe. Top
panel: Arras et al., 2021a; Central panel: This work; Bottom panel: Dabbech et al., 2021.
The colorbars of the left and right columns are clipped and adapted to the respective surface
brightness range.
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Figure 6.3: Histogram of surface brightness values of the resolve reconstruction with
direction-dependent calibration (green), the resolve reconstruction of Arras et al., 2021a
with classical calibration (orange), and the compressed sensing reconstruction from
Dabbech et al., 2021 also with direction-dependent calibration (blue). The histogram is
computed from the images displayed in figure 6.1 showing on the y-axis the fraction of the
image with this surface brightness.
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Figure 6.4: Flux contours of the Cygnus A reconstructions. The surface brightness lev-
els of the contours are logarithmically spaced and range from 1 mJy/arcsec2 to 4.25 ·
104 mJy/arcsec2. Top panel: In solid blue RESOLVE reconstruction from Arras et al., 2021a
without direction-dependent calibration. In dashed red RESOLVE reconstruction of this work
with direction-dependent calibration. Bottom panel: In solid blue compressed sensing re-
construct of Dabbech et al., 2021 with direction-dependent calibration. In dashed red again
RESOLVE reconstruction of this work with direction-dependent calibration.
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Figure 6.5: Uncertainty quantification of the resolve reconstruction. Left column: Rel-
ative uncertainty of the reconstruct sky brightness computed from posterior samples. Two
right columns: Four representative posterior samples of the geoVI reconstructions.

can capture the different statistics and exploit them to further constrain the reconstructions.

6.5.4.1 Only time-dependent gains: gp(t)

Figure 6.6 displays only time-dependent calibration solutions. Both the phase and the am-
plitude are largely stable over time, with some small-scale fluctuations. After approximately
one-third of the observation, the amplitude of several antenna gains suddenly decreases be-
fore returning to the old value. The phases of the gains constantly undergo some variations.

In figure 6.7, the absolute value of the only time-dependent part of the calibration solu-
tion is depicted for one baseline, thus in formulas abs(gp(t)g∗q(t)). To visualize the jumps in
the calibration solutions discussed in the previous section, we display the absolute value of
the visibilities of the flux calibrator as well as the science target Cygnus A projected to the
calibration space. More precisely, we divide the visibilities of the respective observation
by the model visibilities computed from the sky model without the only time-dependent
calibration factor gp(t)g∗q(t). Thus, as a formula,

Vprojected
pqt =

Vpqt∫
C(l,wpqt)I(l)G̃pt(l, t)G̃∗qt(l, t)e

−2πi(kpqt ·l)dl
, (6.16)

with Vpqt being the visibilities of the observation, C(l) the w-term correction factor, I(l) the
reconstructed sky model, and

G̃pt(l, t)G̃∗qt(l, t) = gp(l, t)g∗q(l, t)gp(l)g∗q(l) (6.17)

the calibration solution excluding the only time-dependent part gp(t)g∗q(t). The offset be-
tween the visibilities from the flux calibrator and the visibilities of the Cygnus A observa-
tion is clearly visible in figure 6.7, and is on the order of a few percent. The discontinuities
in the calibration solution, as described in section 6.4.2, were introduced to model these
offsets.
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6.5.4.2 Only direction-dependent gains: gp(l)

Figure 6.8 depicts the direction-dependent but time independent gain gll/rr
p (l) of one an-

tenna. The phase and amplitude variations are both on the level of a few percent. The
interferometer is only sensitive to variations of the gain solutions in directions with signif-
icant sky surface brightness since the antenna gains are a multiplicative effect on the sky.
Therefore, to indicate which regions of the reconstructed gains solutions actually affect the
likelihood, we superimpose the flux contours of Cygnus A on the plot of the calibration
solution.

6.5.4.3 Jointly time and direction-dependent gains: gp(l, t)

The absolute value of the jointly time and direction-dependent antenna gains gll/rr
p (l, t) from

which the only time and only direction-dependent variations are excluded is displayed in
figure 6.9. Similar to figure 6.8, the flux contours of Cygnus A are superimposed to indicate
which regions actually have a significant effect. The variations of the jointly direction and
time-dependent gains are less than a percent and therefore smaller than the only time and
only direction dependent effects. The spatial correlation length is, compared to the only
direction-dependent gain solutions, significantly larger. This result underlines that a split of
the antenna gains into an only direction and a jointly direction and time-dependent part can
be beneficial because the generative model for gll/rr

p (l, t) can exploit this longer correlation
length.

A direct quantitative comparison with the work of Dabbech et al., 2021, as done for
the Cygnus A sky images, is not possible for the calibration solutions, as the calibration
model in Dabbech et al., 2021 is different and the results are only published in the form
of images. Nevertheless, the scale of the amplitude and phase variations are comparable.
Also, the correlation length of the jointly direction and time-dependent gain solutions is
similar to the correlation length of the direction and time-dependent calibration solutions
in Dabbech et al., 2021. However, in the work of Dabbech et al., 2021, the spatial and
temporal correlation lengths are set somewhat externally by specifying the support size of
the corresponding Fourier kernels. In contrast, in this work, the correlation structures are
not fixed but reconstructed from the data.

Pointing errors are expected to be an important source of jointly time and direction-
dependent gains. The antenna beam is falling off with increasing distance to the center of
the field of view. This makes the sky to appear brighter in the direction of the pointing
offset and dimmer in the opposite direction, leading to a direction-dependent antenna gain.
Mathematically the direction-dependent antenna gain can be computed by

gp(l, t) =
Bp(δxt, δyt)

Bp(0, 0)
, (6.18)

with Bp(δxt)(δyt) being the beam of antenna p with an pointing offset of (δxt, δyt), and
Bp(0, 0) the beam of the nominal pointing. Using equation 6.18, we fit pointing offsets
to the absolute value of the direction-dependent gains, resulting in pointing offsets of up to
30 arcsec as depicted in figure 6.10. As visible in figure 6.10, the gains resulting from point-
ing offsets relatively closely follow the reconstructed gain. Nevertheless, some deviations
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Figure 6.6: DIE amplitude (left panel) and phase (right panel) of the calibration solutions
for all 26 antenna in VLA configuration A.

remain as pointing errors are not the only source for time and direction-dependent gains.

6.6 Conclusions

This chapter introduces a novel Bayesian radio interferometric imaging and calibration al-
gorithm based on the resolve framework. Calibration and imaging are performed jointly.
The calibration includes corrections for direction-dependent effects. To this goal, the an-
tenna gain solutions are split into three factors, a purely time-dependent term, a purely
direction-dependent term, and a jointly direction and time-dependent term. Having a sepa-
rate model for each factor of the gain solutions allows one to exploit the different statistics
of the individual factors.

We demonstrate the method on VLA’s Cygnus A observation, a widely used target for
benchmarking novel algorithms. In comparison with previous work (Arras et al., 2021a),
imaging Cygnus A also with the resolve framework but classically calibrated data, the
dynamic range is significantly increased. At the same time, in high and medium surface
brightness regions, the two reconstructions are closely consistent. When comparing with
Dabbech et al., 2021, a compressed sensing method including direction-dependent calibra-
tion, the results not only agree in high and medium surface brightness regions but also in
areas with very low flux. As the reconstruction algorithms of the sky radio maps of this
work and Dabbech et al., 2021 are based on very different methodologies, namely Bayesian
inference and compressed sensing, their close agreement is a strong indication of their reli-
ability even in low surface brightness regions. Furthermore, this underlines the necessity of
an accurate calibration model for obtaining high-fidelity radio maps with a large dynamic
range. An accurate calibration model will become a critical component for exploiting the
full potential of upcoming radio interferometers.
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Figure 6.7: Green: Absolute value of the reconstructed time-dependent, but direction-
independent, calibration for one baseline. The blue and orange dots are the absolute values
of the visibilities of the flux calibrator and target observations, projected to the calibra-
tion space by dividing out their respective sky models. More specifically, blue dots: Flux
calibrator visibilities divided by the model visibilities computed from the flux calibrator
sky model without time-dependent calibration factors. Orange dots: Cygnus A visibilities
divided by the model visibilities computed from the Cygnus A sky model, including the
direction-dependent calibration but excluding the purely time-dependent calibration. The
offset between the calibration data points and the target data points makes it necessary to
allow for possible discontinuities in the antenna gain reconstructions when switching the
observation target. Partly this offset might also be due to a oversimplified flux calibrator
model.



68 6. Bayesian radio interferometric imaging with direction-dependent calibration

1.00

1.01

1.02

1.03

1.04

1.05

1.06

ab
so

lu
te

 v
al

ue

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

ph
as

e 
[ra

d]

Figure 6.8: Phase and amplitude of the direction-dependent, time-independent gain factor
for one antenna. On top the flux contours of Cygnus A are indicated in white, since the
interferometer is only sensitive to direction-dependent effects in regions with significant
surface brightness. Thus, gain values outside the contours are neither accurate nor relevant.
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Figure 6.9: Absolute value of jointly time and direction-dependent gain of antenna 0, de-
picted at six timesteps of the observation. On top, the contours of Cygnus A are shown
since the interferometer is only sensitive to the direction-dependent gain variations in re-
gions with significant sky brightness. Gain values outside the contours are neither accurate
nor relevant.
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Figure 6.10: Top row: Absolute value of jointly time and direction-dependent gain of an-
tenna 0 (same as figure 6.9) restricted to sky region with significant flux. Bottom: Fit of
the antenna gain resulting from pointing errors to the reconstructed gain in the top row.
Except for minor differences, the gains resulting from pointing errors can reproduce the
reconstructed gains. The offset fit to the nominal pointing direction is specified as δx and
δy. As Cygnus A is less extended in y-direction than in x-direction, the gains are much less
sensitive to pointing offsets in y-direction.

The computational complexity of this method in its current version and the resolve
framework, in general, is significantly higher compared with the clean algorithm. The
higher computational costs partially arise from our inference algorithm (section 6.4.4) com-
puting not only a single estimate of the sky brightness but providing samples of the posterior
distribution allowing for statistically robust uncertainty quantification. Additionally to the
computational overhead of the posterior inference algorithm, it is in the current version
of resolve necessary to always degridd to the visibility space to evaluate the likelihood.
Despite fast gridding algorithms, this can, depending on the interferometer setup, lead to
significantly higher computational costs compared with the clean algorithm’s major/ mi-
nor cycle scheme. We plan to also introduce a major/ minor cycle scheme to the resolve
framework for speeding up the likelihood evaluations. Incorporating the major/minor cycle
scheme into a Bayesian imaging algorithm is nontrivial and is present in chapter 9 as the
fast-resolve algorithm.
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Figure 6.11: Cygnus A reconstruction with resolve using DIE calibration only.

6.8 Appendix

6.8.1 Only DIE calibration reconstruction

For completeness, we also reconstructed Cygnus A using the same imaging and calibration
setup described above, except that we removed the direction-dependent calibration terms.
Thus starting from the uncalibrated data, we jointly reconstructed Cygnus A and the cal-
ibration solutions, considering only direction-independent calibration. The result of this
reconstruction is depicted in figure 6.11. Overall, the result of this reconstruction is similar
to the reconstruction of Arras et al., 2021a (displayed in figure 6.1) building on classically
calibrated data.

6.8.2 Residual image

We computed the dirty image of the residuals between the data and our reconstruction with
direction-dependent calibration. As visible in figure 6.12, the amplitude of the residuals is
very small compared with the brightness of Cygnus A. Nearly no structures of the source
have imprinted on the residual image, indicating that the reconstructed sky model and an-
tenna gains model the data very well. The only structures of Cygnus A of which some
remnants can be found in the residual image are the hot spots of the lobes and the jet. In-
terestingly remnants of the jet are not only visible at the actual position of the jet but also
at various shifted positions. We believe this originates from the nature of our prior model
for diffuse emission. As outlined in section 6.4.1.1, we model the diffuse emission with
a Gaussian process represented in Fourier space. The Fourier mode corresponding to the
width and orientation of the jet should be strongly exited, leading to an oscillation with this
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Figure 6.12: Dirty image of the residuals between our reconstruction and the actual data.

width and orientation in the entire field of view. Nevertheless, the amplitude of this effect
is very small compared to the brightness of Cygnus A and its jet. Therefore, this oscillatory
effect cannot be seen in the reconstructions (figure 6.1).

Dabbech et al., 2021 reported the detection of three additional sources in the residual
image further away from Cygnus A. We cannot confirm these sources as they are not found
in our residual image.
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Chapter 7

Computational aspects of radio
interferometric imaging

7.1 Bayesian imaging with machine learning frameworks

Computationally and conceptually, the imaging algorithms presented so far in this thesis
(chapters 5 and 6) have many similarities with classic machine learning methods. A detailed
comparison can be found in Enßlin, 2022. Computationally, both machine learning methods
and Bayesian image inference minimize a scalar-valued cost function. In classical machine
learning, the minimized objective function is typically called “loss function”, while in the
Bayesian inference method presented here, the Kullback-Leibler divergence (see chapter 4)
between the true posterior and the approximation is minimized. Furthermore, in both cases,
the input domain of the cost function is high dimensional, and the evaluation of the cost
function requires a large number of floating point operations.

To address these computational challenges, dedicated programming frameworks, such
as TensorFlow, PyTorch, or JAX, have been developed for machine learning. While being
easy to use, these frameworks can automatically differentiate the cost function, allowing the
use of efficient gradient-based minimizers for the optimization. In addition, these frame-
works allow to seamlessly run the code on GPUs for a fast execution of a large number of
floating point operations.

To take advantage of modern machine learning programming frameworks for Bayesian
inference, NIFTy has been reimplemented in JAX. An overview of the reimplemented
NIFTy package is given in Edenhofer et al., 2024a. While most Bayesian inference algo-
rithms based on NIFTy can easily switch to the JAX-based version, this is more challenging
for radio interferometry and the resolve framework because the numerical evaluation of
the radio interferometric measurement equation (chapter 3, equation 3.27) is challenging.
Many high-performance C++ and CUDA codes, such as Arras et al., 2021b; Tol et al., 2018
or the implementation for direction-dependent calibration in chapter 6, have been developed
for an efficient evaluation of equation 3.27. A native reimplementation of these codes in a
machine learning framework like JAX is not easy, if not impossible, as JAX does not allow
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manual low-level optimization. For this reason, we developed the JAXbind package1 (Roth
et al., 2024b) allowing to easily bind high-performance codes into the JAX framework and
connecting them with the automatic differentiation engine of JAX. In chapter 8, the pack-
age is presented. Building on JAXbind, it is possible to connect the resolve frameworks
to the JAX version of NIFTy. JAXbind has also been used in other contexts, such as binding
spherical harmonic transforms of the DUCC library (Reinecke, 2024) to JAX and binding
the PICARD multi-grid solver (Kissmann, 2014) to JAX.

7.2 Imaging with large arrays

Section 3.2.1 introduced radio interferometers as a technique to overcome the resolution
limits of single-dish radio telescopes. The largest distance between a pair of antennas de-
termines the smallest angular scale to which the interferometer is sensitive. Similarly, the
shortest baseline determines the largest angular scale that the interferometer can probe.
Many baselines with intermediate lengths are required to image all angular scales in be-
tween. The interferometer’s sensitivity, thus its ability to detect faint emission, scales with
the total collecting area of the antennas. Thus, both resolution and sensitivity ultimately
require a large number of antennas.

The number of baselines NB, and therefore the data size, scales quadratically with the
number of antennas NA and is given by

NB =

NA−1∑
i=1

i =
NA(NA − 1)

2
. (7.1)

The Very Large Array (VLA), constructed in the 1970s, consists of 27 antennas and conse-
quently forms 351 baselines. Newer arrays often have more antennas for the reasons men-
tioned above. For example, the Australian Square Kilometre Array Pathfinder (ASKAP)
consists of 36 antennas, and the Atacama Large Millimeter/Submillimeter Array (ALMA)
has 66 antennas. MeerKAT, the most advanced array at GHz frequencies, currently has 64
(and soon 80) antennas, resulting in 2016 and, in the future, 3160 baselines. Next genera-
tion instruments such as the Square Kilometre Array (SKA) and the next generation Very
Large Array (ng-VLA) will have hundreds of antennas and well over 10000 baselines. The
DSA-2000 will have, if it is built in its full extension, 2000 antennas leading to enormous
1999000 baselines. In addition to the increase in the number of antennas, advancements in
receiver technology, which increase the number of frequency channels, also lead to growing
data sizes.

The development of ever larger arrays starts a new era in radio astronomy, vastly in-
creasing the observational capabilities of radio interferometers. Besides the need to deploy
and operate many antennas, this new era will dramatically increase the size of the measure-
ment data. The increase in data size is a challenge for all stages of the data processing.
Many high-accuracy imaging algorithms, such as the resolve framework, need to evalu-
ate the measurement response (equation 3.27) much more often than the standard imaging

1https://github.com/NIFTy-PPL/JAXbind

https://github.com/NIFTy-PPL/JAXbind
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method named CLEAN. Since the measurement response maps to the data space, the evalu-
ations become computationally increasingly demanding as the number of baselines grows.
Therefore, many advanced imaging algorithms are particularly affected by the increase in
data volume. With the resolve framework, imaging VLA data as presented in chapter 6
or Arras et al., 2021a already requires significant computational resources. Consequently,
imaging MeerKAT data over a broad bandwidth with many frequency channels is compu-
tationally infeasible for the resolve framework, and imaging data from next-generation
interferometers is even further out of reach with resolve.

The resolve framework not only increases the computational costs but also signif-
icantly increases the retrieved images’ accuracy. The previous chapter demonstrated the
high accuracy of resolve with direction-dependent calibration compared to another ad-
vanced imaging algorithm. Compared to the standard algorithm CLEAN, the advantages of
resolve in terms of accuracy are even larger, as presented in Arras et al., 2021a. Figure
7.1 shows a zoom on the eastern hot spot of Cygnus A from the resolve and CLEAN recon-
structions of Arras et al., 2021a at different frequencies. As clearly visible, the resolution
of the resolve reconstructions is significantly higher. Thus, the CLEAN algorithm compu-
tationally outperforms many imaging algorithms, but the accuracy of CLEAN results is fairly
suboptimal. For this reason, the design of scalable and accurate imaging algorithms is a
high priority in radio interferometric algorithm development.

The following two chapters outline developments contributing to fast accurate imaging
in radio interferometry. Chapter 8 presents the JAXbind package, allowing to bind a high-
performance implementation of the radio interferometry response into the JAX framework,
as already discussed in the previous section. Chapter 9 introduces the fast-resolve algo-
rithm. fast-resolve is a redesign of the classic resolve algorithm and aims to combine
the computational efficiency of CLEANwith the accuracy of resolve. As presented in chap-
ter 9, fast-resolve enabled a Bayesian reconstruction of a large MeerKAT dataset. To
the best of my knowledge so far, no other Bayesian radio interferometric imaging algorithm
ever reconstructed a similar-sized dataset.
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Figure 7.1: Reconstruction of the eastern hot spot of Cygnus A with resolve and CLEAN
at different frequencies from Arras et al., 2021a. The left column shows resolve, and the
right column shows CLEAN. The imaging frequencies are from top to bottom 2052, 4811,
8427, and 13360 MHz. As clearly visible, resolve can recover at a given frequency a
higher resolution image than CLEAN.



Chapter 8

JAXbind: bind any function to JAX

I have published this chapter in the Journal of Open Source Software as an article (Roth
et al., 2024b). This article is published with equal author contributions. Specifically, I
coded most of the interfacing with the JAX automatic differentiation engine and an initial
version of the binding of the C++ code to the JAX XLA backend. Gordian Edenhofer coded
most of the functionality for mapping over the input axis. Gordian Edenhofer and I jointly
designed the scheme for handling functions with an arbitrary number of arguments. Martin
Reinecke contributed most of the C++ code. Gordian Edenhofer wrote an initial version of
the Statement of Need section. I wrote the initial version of the rest of the paper. Afterwards,
all coauthors contributed to improving the text. For this thesis, the text was slightly adapted.

8.1 Summary

JAX is widely used in machine learning and scientific computing, the latter of which of-
ten relies on existing high-performance code that we would ideally like to incorporate into
JAX. Reimplementing the existing code in JAX is often impractical and the existing in-
terface in JAX for binding custom code either limits the user to a single Jacobian product
or requires deep knowledge of JAX and its C++ backend for general Jacobian products.
With JAXbind we drastically reduce the effort required to bind custom functions imple-
mented in other programming languages with full support for Jacobian-vector products and
vector-Jacobian products to JAX. Specifically, JAXbind provides an easy-to-use Python in-
terface for defining custom, so-called JAX primitives. Via JAXbind, any function callable
from Python can be exposed as a JAX primitive. JAXbind allows a user to interface the
JAX function transformation engine with custom derivatives and batching rules, enabling
all JAX transformations for the custom primitive.

8.2 Statement of need

The use of JAX (Bradbury et al., 2018) is widespread in the natural sciences. Of particular
interest is JAX’s powerful transformation system. It enables a user to retrieve arbitrary
derivatives of functions, batch computations, and just-in-time compile code for additional
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performance. Its transformation system requires that all components of the computation are
written in JAX.

A plethora of high-performance code is not written in JAX and thus not accessible from
within JAX. Rewriting these codes is often infeasible and/or inefficient. Ideally, we would
like to mix existing high-performance code with JAX code. However, connecting code to
JAX requires knowledge of the internals of JAX and its C++ backend.

In this paper, we present JAXbind,1 a package for bridging any function to JAX with-
out in-depth knowledge of JAX’s transformation system. The interface is accessible from
Python without requiring any development in C++. The package is able to register any
function and its partial derivatives and their transpose functions as a JAX native call, a
so-called primitive.

We believe JAXbind to be highly useful in scientific computing. We intend to use this
package to connect the Hartley transform and the spherical harmonic transform from DUCC
(Reinecke, 2024) to the probabilistic programming package NIFTy (Edenhofer et al., 2024a)
as well as the radio interferometry response from DUCC with the radio astronomy pack-
age resolve. Furthermore, we intend to connect the non-uniform FFT from DUCC with
JAX for applications in strong-lensing astrophysics. We envision many further applications
within and outside of astrophysics.

The functionality of JAXbind extends the external callback functionality in JAX. Cur-
rently, JAXbind, akin to the external callback functions in JAX, briefly requires Python’s
global interpreter lock (GIL) to call the user-specified Python function. In contrast to
JAX’s external callback functions, JAXbind allows for both a custom Jacobian-vector prod-
uct and vector-Jacobian product. To the best of our knowledge no other code currently
exists for easily binding generic functions and both of their Jacobian products to JAX,
without the need for C++ or LLVM. The package that comes the closest is Enzyme-JAX
(Moses et al., 2024), which allows one to bind arbitrary LLVM/MLIR, including C++, with
automatically-generated (Moses et al., 2020; Moses et al., 2021; Moses et al., 2022) or
manually-defined derivatives to JAX.

PyTorch (Ansel et al., 2024) and TensorFlow (Abadi et al., 2015) also provide interfaces
for custom extensions. PyTorch has an extensively documented Python interface2 for wrap-
ping custom Python functions as PyTorch functions. This interface connects the custom
function to PyTorch’s automatic differentiation engine, allowing for custom Jacobian and
Jacobian transposed applications, similar to what is possible with JAXbind. Additionally,
PyTorch allows a user to interface its C++ backend with custom C++ or CUDA extensions.3

JAXbind, in contrast, currently only supports functions executed on the CPU, although the
JAX built-in C++ interface also allows for custom GPU kernels. TensorFlow includes a
C++ interface4 for custom functions that can be executed on the CPU or GPU. Custom
gradients can be added to these functions.

1https://github.com/NIFTy-PPL/JAXbind
2https://pytorch.org/docs/stable/notes/extending.html (last visited 05-09-24)
3https://pytorch.org/tutorials/advanced/cpp_extension.html (last visited 05-09-24)
4https://www.tensorflow.org/guide/create_op (last visited 05-09-24)

https://github.com/NIFTy-PPL/JAXbind
https://pytorch.org/docs/stable/notes/extending.html
https://pytorch.org/tutorials/advanced/cpp_extension.html
https://www.tensorflow.org/guide/create_op
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8.3 Automatic differentiation and code example

Automatic differentiation is a core feature of JAX and often one of the main reasons for
using it. Thus, it is essential that custom functions registered with JAX support automatic
differentiation. In the following, we will outline which functions our package requires to
enable automatic differentiation via JAX. For simplicity, we assume that we want to connect
the nonlinear function f (x1, x2) = x1x2

2 to JAX. The JAXbind package expects the Python
function for f to take three positional arguments. The first argument, out, is a tuple into
which the results are written. The second argument is also a tuple containing the input to
the function, in our case, x1 and x2. Via kwargs_dump, any keyword arguments given to
the registered JAX primitive can be forwarded to f in a serialized form.

import j a x b i n d

def f ( out , a rgs , kwargs_dump ) :
kwargs = j a x b i n d . l oad_kwargs ( kwargs_dump )
x1 , x2 = a r g s
o u t [ 0 ] [ ( ) ] = x1 * x2 **2

JAX’s automatic differentiation engine can compute the Jacobian-vector product jvp
and vector-Jacobian product vjp of JAX primitives. The Jacobian-vector product in JAX is
a function applying the Jacobian of f at a position x to a tangent vector. In mathematical
nomenclature this operation is called the pushforward of f and can be denoted as ∂ f (x) :
TxX 7→ T f (x)Y , with TxX and T f (x)Y being the tangent spaces of X and Y at the positions x
and f (x). As the implementation of f is not JAX native, JAX cannot automatically compute
the jvp. Instead, an implementation of the pushforward has to be provided, which JAXbind
will register as the jvp of the JAX primitive of f . For our example, this Jacobian-vector-
product function is given by ∂ f (x1, x2)(dx1, dx2) = x2

2dx1 + 2x1x2dx2.

def f _ j v p ( out , a rgs , kwargs_dump ) :
kwargs = j a x b i n d . l oad_kwargs ( kwargs_dump )
x1 , x2 , dx1 , dx2 = a r g s
o u t [ 0 ] [ ( ) ] = x2 **2 * dx1 + 2 * x1 * x2 * dx2

The vector-Jacobian product vjp in JAX is the linear transpose of the Jacobian-vector
product. In mathematical nomenclature this is the pullback (∂ f (x))T : T f (x)Y 7→ TxX
of f . Analogously to the jvp, the user has to implement this function as JAX can-
not automatically construct it. For our example function, the vector-Jacobian product is
(∂ f (x1, x2))T (dy) = (x2

2dy, 2x1x2dy).

def f _ v j p ( out , a rgs , kwargs_dump ) :
kwargs = j a x b i n d . l oad_kwargs ( kwargs_dump )
x1 , x2 , dy = a r g s
o u t [ 0 ] [ ( ) ] = x2 **2 * dy
o u t [ 1 ] [ ( ) ] = 2 * x1 * x2 * dy

To just-in-time compile the function, JAX needs to abstractly evaluate the code, i.e.,
it needs to be able to infer the shape and dtype of the output of the function given only
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the shape and dtype of the input. We have to provide these abstract evaluation functions
returning the output shape and dtype given an input shape and dtype for f as well as for the
vjp application. The output shape of the jvp is identical to the output shape of f itself and
does not need to be specified again. The abstract evaluation functions take normal positional
and keyword arguments.

def f _ a b s t r a c t (* a rgs , ** kwargs ) :
a s s e r t a r g s [ 0 ] . shape == a r g s [ 1 ] . shape
re turn ( ( a r g s [ 0 ] . shape , a r g s [ 0 ] . d t y p e ) , )

def f _ a b s t r a c t _ T (* a rgs , ** kwargs ) :
re turn (

( a r g s [ 0 ] . shape , a r g s [ 0 ] . d t y p e ) ,
( a r g s [ 0 ] . shape , a r g s [ 0 ] . d t y p e ) ,

)

We have now defined all ingredients necessary to register a JAX primitive for our func-
tion f using the JAXbind package.

f _ j a x = j a x b i n d . g e t _ n o n l i n e a r _ c a l l (
f , ( f _ j v p , f _ v j p ) , f _ a b s t r a c t , f _ a b s t r a c t _ T

)

f_jax is a JAX primitive registered via the JAXbind package supporting all JAX trans-
formations. We can now compute the jvp and vjp of the new JAX primitive and even
jit-compile and batch it.

import j a x
import j a x . numpy as j n p

i n p = ( j n p . f u l l ( ( 4 , 3 ) , 4 . ) , j n p . f u l l ( ( 4 , 3 ) , 2 . ) )
t a n = ( j n p . f u l l ( ( 4 , 3 ) , 1 . ) , j n p . f u l l ( ( 4 , 3 ) , 1 . ) )
r e s , r e s _ t a n = j a x . j v p ( f _ j a x , inp , t a n )

c o t a n = [ j n p . f u l l ( ( 4 , 3 ) , 6 . ) ]
r e s , f _ v j p = j a x . v j p ( f _ j a x , * i n p )
r e s _ c o t a n = f _ v j p ( c o t a n )

f _ j a x _ j i t = j a x . j i t ( f _ j a x )
r e s = f _ j a x _ j i t (* i n p )

8.4 Higher order derivatives and linear functions

JAX supports higher order derivatives and can differentiate a jvp or vjp with respect to the
position at which the Jacobian was taken. Similar to first derivatives, JAX can not automat-
ically compute higher derivatives of a general function f that is not natively implemented
in JAX. Higher order derivatives would again need to be provided by the user. For many
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algorithms, first derivatives are sufficient, and higher order derivatives are often not im-
plemented by high-performance codes. Therefore, the current interface of JAXbind is, for
simplicity, restricted to first derivatives. In the future, the interface could be easily expanded
if specific use cases require higher order derivatives.

In scientific computing, linear functions such as, e.g., spherical harmonic transforms
are widespread. If the function f is linear, differentiation becomes trivial. Specifically for
a linear function f , the pushforward or jvp of f is identical to f itself and independent
of the position at which it is computed. Expressed in formulas, ∂ f (x)(dx) = f (dx) if f is
linear in x. Analogously, the pullback or vjp becomes independent of the initial position
and is given by the linear transpose of f , thus (∂ f (x))T (dy) = f T (dy). Also, all higher
order derivatives can be expressed in terms of f and its transpose. To make use of these
simplifications, JAXbind provides a special interface for linear functions, supporting higher
order derivatives, only requiring an implementation of the function and its transpose.

8.5 Platforms

Currently, JAXbind only supports primitives that act on CPU memory. In the future, GPU
support could be added, which should work analogously to the CPU support in most re-
spects. The automatic differentiation in JAX is backend agnostic and would thus not require
any additional bindings to work on the GPU.
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Chapter 9

fast-resolve: fast bayesian radio
interferometric imaging

I have submitted this chapter as first author to the journal Astronomy & Astrophysics as
an article. Currently, this article is under review. A preprint is available on arXiv (Roth
et al., 2024a). Philipp Frank contributed via numerous discussions on the response and
noise approximations. Herzog L. Bester contributed via many discussions and his profound
knowledge of the MeerKAT instrument and the MeerKAT data we use for benchmarking.
Oleg Smirnov contributed by calibrating the MeerKAT data. Torsten Enßlin contributed
via many in-depth discussions on Bayesian inference. The text was read, commented and
approved by all coauthors. For this thesis, the text and figures were slightly adapted.

9.1 Abstract

Interferometric imaging is algorithmically and computationally challenging as there is no
unique inversion from the measurement data back to the sky maps, and the datasets can be
very large. Many imaging methods already exist, but most of them focus either on the accu-
racy or the computational aspect. This chapter aims to reduce the computational complexity
of the Bayesian imaging algorithm resolve, enabling the application of Bayesian imaging
for larger datasets. By combining computational shortcuts of the CLEAN algorithm with the
Bayesian imaging algorithm resolvewe developed an accurate and fast imaging algorithm
which we name fast-resolve. We validate the accuracy of the presented fast-resolve
algorithm by comparing it with results from resolve on VLA Cygnus A data. Furthermore,
we demonstrate the computational advantages of fast-resolve on a large MeerKAT
ESO 137-006 dataset which is computationally out of reach for resolve. The presented
algorithm is significantly faster than previous Bayesian imaging algorithms, broadening
the applicability of Bayesian interferometric imaging. Specifically for the single channel
VLA Cygnus A datasets fast-resolve is about 144 times faster than resolve. For the
MeerKAT dataset with multiple channels the computational speedup of fast-resolve is
even larger.
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9.2 Introduction

Interferometric imaging is a versatile technique in astronomy that allows us to achieve enor-
mous sensitivity and resolution by combining multiple telescopes. The effective resolution
is roughly equivalent to that of a single telescope with a diameter equal to the largest dis-
tance between individual stations of the interferometer, which can be thousands of kilome-
ters. For the upcoming Square Kilometer Array (Labate et al., 2022; Swart et al., 2022), the
total collecting area might eventually approach one square kilometer, resulting in superior
sensitivity compared to any single-dish telescope. Overcoming the resolution and sensitiv-
ity limitations of single telescopes comes at the cost of making it more difficult to retrieve
images from the observational data.

Mathematically, the recovery of the sky images from interferometric data can be for-
mulated as an inverse problem. The forward relation that computes the corresponding mea-
surement data from a given sky image is known as the radio interferometric measurement
equation (Smirnov, 2011a). As discussed in detail in chapter 3 and recapitulated in sec-
tion 9.3, the measured data points are essentially noisy and undersampled Fourier modes of
the sky image. This makes direct inversion of the measurement equation to obtain the sky
image impossible, turning radio interferometric imaging into an ill-posed inverse problem.

Solving the inverse problem of radio interferometric imaging requires sophisticated al-
gorithms that impose additional constraints on the sky brightness and regularize possible
solutions to it. Historically, CLEAN (Högbom, 1974; Schwab et al., 1983) has been by far
the most widely used imaging algorithm because it is computationally efficient, simple, and
easy to use. Over the last decades, CLEAN-based imaging algorithms have been signifi-
cantly improved, especially for diffuse emission imaging, spectral imaging, and wide-field
imaging (Bhatnagar et al., 2004; Cornwell et al., 2008; Rau et al., 2011; Offringa et al.,
2014; Offringa et al., 2017). However, CLEAN-based algorithms have several drawbacks,
such as limited image fidelity, suboptimal resolution of recovered images, and lack of un-
certainty quantification (see eg. Arras et al., 2021a for a detailed discussion). To improve
these limitations, many other imaging algorithms have been developed.

A large class of new imaging algorithms builds on applying compressed sensing tech-
niques to astronomical data (Wiaux et al., 2009). Several incarnations of such algorithms
have shown significant improvements in terms of image fidelity and resolution over CLEAN
based reconstructions. Recent examples are Dabbech et al., 2018; Abdulaziz et al., 2019;
Dabbech et al., 2021 utilizing sparsity based regularizers in combination with convex opti-
mization. Birdi et al., 2018; Birdi et al., 2020 extended these approaches to full polarization
imaging. In Repetti et al., 2019 and Liaudat et al., 2023, some form of uncertainty quan-
tification was added. Dabbech et al., 2022; Thouvenin et al., 2023 parallelized the image
regularizer to distribute it over multiple CPUs. Terris et al., 2023a; Dabbech et al., 2022
presented a plug-and-play algorithm combining convex optimization with a deep-learning
regularizer. Terris et al., 2023b further explored neural network regularizers and studied the
influence of the training dataset on the regularizer.

Bayesian imaging algorithms are another important class of imaging algorithms ad-
dressing the uncertainty quantification problem. Early Bayesian imaging approaches such
as Cornwell et al., 1985 built on the maximum entropy principle. Other Bayesian imaging
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algorithms such as Sutton et al., 2006; Sutter et al., 2014; Cai et al., 2018; Tiede, 2022
rely on posterior sampling techniques. The Bayesian imaging framework resolve1 origi-
nally proposed by Junklewitz et al., 2016 builds on variational inference instead of sampling
based techniques for posterior approximation, reducing the computational costs. resolve
has already successfully been applied to VLA, EHT, VLBA, GRAVITY, and ALMA data,
providing high-quality radio maps with superior resolution compared to CLEAN, as well
as an uncertainty map. Recent examples are Arras et al., 2019b joining Bayesian imaging
with calibration. In Arras et al., 2021a resolve is compared with CLEAN, while in Roth
et al., 2023b (chapter 6), direction-dependent calibration is added and compared with spar-
sity based imaging results of Dabbech et al., 2021. In GRAVITY Collaboration et al., 2022
resolve is applied to the optical interferometer GRAVITY. In Arras et al., 2022 resolve
is applied to EHT data.

The improvements in imaging algorithms mentioned above come at the cost of increased
computational complexity. For Very Long Baseline Interferometer (VLBI) observations,
data sizes are typically small and the higher computational cost of advanced imaging meth-
ods is unproblematic. However, for large arrays such as MeerKAT (Jonas et al., 2016), this
limits the applicability of many of these algorithms. For this reason, only very few advanced
imaging algorithms have so far been successfully applied to data sets the size of a typical
MeerKAT observation. Dabbech et al., 2022 presents an application of imaging algorithms
using sparsity based and neural network regularizers to the MeerKAT ESO 137-006 obser-
vation. To handle the enormous computational complexity, Dabbech et al., 2022 massively
parallelize their imaging algorithm and distribute it across a high-performance computing
system, requiring hundreds to thousands of CPU hours to converge. In Thouvenin et al.,
2023, this approach of parallelizing the regularizer is extended to the spectral domain.

To the best of our knowledge, no Bayesian radio interferometric imaging algorithm
has so far been applied to a similar sized dataset. The goal of the resolve framework
has always been to enable Bayesian imaging for a wide range of radio telescopes, not just
VLBI observations. However, for instruments such as MeerKAT, imaging with resolve
becomes computationally prohibitively expensive. In this chapter, we present the algorithm
fast-resolve, which significantly reduces the computational complexity of classical
resolve and enables Bayesian image reconstruction for large data sets. Greiner et al., 2016
previously already named an imaging method fastRESOLVE. The goal of the fastRESOLVE
algorithm of Greiner et al., 2016 is the same as the new incarnation of fast-resolve pre-
sented in this chapter. However, although the new and the old variants of fast-resolve
share some ideas, there are significant differences. In section 9.4.4, we will highlight the
common concepts between the old the and the new fast-resolve. Note that the frame-
work behind both fast-resolve and resolve has evolved significantly since the time of
Greiner et al., 2016.

Machine learning-based imaging algorithms are a third relatively new class of imaging
algorithms. Once the underlying machine learning models are trained, the computational
cost for imaging is often lower than for other algorithms. Nevertheless, assessing image fi-
delity is challenging in such a framework given the lack of interpretability of machine learn-
ing models. Recent examples of such algorithms are Aghabiglou et al., 2024; Aghabiglou

1https://gitlab.mpcdf.mpg.de/ift/resolve
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et al., 2023; Connor et al., 2022; Schmidt et al., 2022.
The remainder of the chapter is organized as follows. In section 9.3, we discuss the

radio interferometric measurement equation and the imaging inverse problem in detail. In
section 9.4, we briefly review the existing resolve framework in its current form and out-
line the CLEAN algorithm. Building on some of the computational shortcuts of the CLEAN
algorithm, we derive fast-resolve, and in section 9.5, we show several applications of
it. In particular, in section 9.5.1 we compare imaging results of fast-resolve with the
classical resolve framework on VLA (Perley et al., 2011) data to validate the fidelity of
the resulting sky images, and in section 9.5.2 we present a fast-resolve reconstruction
of the ESO 137-006 MeerKAT observation to demonstrate the computational speedup.

9.3 The inverse problem

The radio interferometric measurement equation, derived, for example, in Smirnov, 2011a,
and outlined in chapter 3, relates the radio sky brightness to the datapoints, often called
visibilities. More specifically, via the measurement equation, model visibilities Ṽ can be
computed for an assumed sky brightness I and antenna sensitivity G. Under the assumption
of scalar antenna gains G, the model visibility Ṽpqt of antennas p and q at time t is given as:

Ṽpqt =

∫
C(l,wpqt)I(l)Gp(t, l)G∗q(t, l)e−2πi(kpqt ·l)dl, (9.1)

where

• l = (l,m) are the sky coordinates,

• t is the time coordinate,

• kpqt = (upqt, vpqt) are the baseline uv-coordinates in units of the imaging wavelength,

• C(l,wpqt) = exp
(
−2πiwpqt

( √
1 − l2 − 1

))
/
√

1 − l2 is the w- or non-coplanar base-
lines effect,

• I(l) is the sky brightness,

• Gp(t, l) is the gain of antenna p depending on time and potentially also direction.

The model visibilities are therefore Fourier-like components of the sky brightness I mod-
ulated by the antenna gains Gp and Gq as well as the w-effect C. The visibilities actually
recorded in the measurement are related to the model visibilities according to

Vpqt = Ṽpqt + n = R(I) + n, (9.2)

with n representing some unknown noise in the measurement, and R the mapping from sky
brightness to visibilities defined in equation 9.1. With equation 9.1 and equation 9.2, it is
straightforward to compute simulated visibilities for an assumed sky brightness I, antenna
gain G, and noise statistics. Inverting this relation is not possible without additional as-
sumptions, since first, the measured visibilities V are corrupted by the measurement noise
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n, and second, equation 9.1 is generally not invertible since in practical applications not all
Fourier components are measured.

The non-uniqueness of solutions to equation 9.2 means that additional regularisation
needs to be imposed to discriminate between all possible sky images compatible with the
data. This additional information is either an explicit prior or regularization term, or is
implicitly encoded in the structure of the imaging algorithm.

9.4 Methods

In this section, we derive the fast-resolve algorithm (section 9.4.3). Since
fast-resolve builds on the already existing Bayesian imaging framework resolve, we
start with a brief review of the classic resolve imaging method (section 9.4.1). As some
of the computational speedups of fast-resolve are inspired by the CLEAN imaging algo-
rithm, we also outline the basic concepts behind CLEAN (section 9.4.2).

9.4.1 resolve

The resolve imaging algorithm addresses the imaging inverse problem from a probabilis-
tic perspective. Thus, instead of reconstructing a single estimate of the sky brightness, it
infers the posterior probability distribution P(I|V) of possible sky images given the mea-
sured visibilities. Bayes’ Theorem

P(I|V) =
P(V |I)P(I)

P(V)
(9.3)

expresses the posterior probability P(I|V) in terms of the likelihood P(V |I), the prior P(I),
and the evidence P(V). resolve provides models for the likelihood P(V |I) and the prior
P(I). The posterior distribution can be inferred for a given prior and likelihood model
building on the functionality of the Bayesian inference package NIFTy2 (Selig et al., 2013b;
Steininger et al., 2017; Edenhofer et al., 2024a). In the next three subsections we briefly
outline the likelihood and prior of resolve as well as the variational inference algorithms
of NIFTy.

9.4.1.1 resolve prior

The resolve framework provides predefined prior models for the two types of radio emis-
sion, point sources and extended diffuse emission. Both priors encode that the brightness
must be positive, since there is no negative flux. Furthermore, both priors are very flexible
and allow for brightness variations over several orders of magnitude.

For the point source prior, pixels are independently modeled with an inverse gamma
prior for their intensity. The inverse gamma distribution is strictly positive and has a wide
tail, allowing extremely bright sources. In the example in section 9.5.1, such a prior is
applied for the two bright point sources in the core of Cygnus A. While the brightness of

2https://github.com/NIFTy-PPL/NIFTy



88 9. fast-resolve: fast bayesian radio interferometric imaging

point sources is reconstructed from the data, the locations currently need to be manually set.
This limits the applicability of the current point source prior, as discussed in the application
to MeerKAT ESO 137-006 data (section 9.5.2).

Besides positivity and possible variations over several orders of magnitude, the dif-
fuse emission prior also encodes correlations of the brightness of nearby pixels, which is
essentially the defining property of diffuse emission. The correlation of nearby pixels in
the diffuse emission prior is modeled by Gaussian processes. The result of the Gaussian
process is exponentiated to ensure positivity. Detailed explanations of the resolve prior
models can be found in Arras et al., 2021a. An important aspect of all the prior models in
resolve is that they are fast and scalable to very large numbers of pixels. For example,
in Arras et al., 2021a a 4096 × 2048 pixel Gaussian process-based diffuse emission prior is
used to image Cygnus A at various frequencies.

9.4.1.2 resolve likelihood

The likelihood is evaluated in resolve using equation 9.1. More specifically, using equa-
tion 9.1, we can write the likelihood as P(V |I) = P(V |R(I)) = P(V |Ṽ). The noise statistics
in equation 9.2 then determines the likelihood. In resolve, Gaussian noise statistics are
assumed. For numerical reasons, resolve works with the negative logarithm of the likeli-
hood, named the likelihood Hamiltonian, instead of the likelihood itself. With the Gaussian
noise assumption, the likelihood Hamiltonian is given by

H(V |I) =
1
2

(V − R(I))† N−1 (V − R(I)) +
1
2

ln |2πN |, (9.4)

with † denoting complex conjugate transpose and 1
2 ln |2πN | coming form the normalization

of the Gaussian, which can be ignored in many applications. Different possibilities are
implemented for the covariance of the noise N. In the simplest case, the weights of the
visibilities are used as the inverse noise covariance. Alternatively, the noise covariance can
also be estimated during the image reconstruction.

The computationally important aspect of the likelihood in the classic resolve frame-
work is that for every update step where the likelihood is evaluated, also R(I) and thus
equation 9.1 need to be computed. This can be computationally expensive, especially for
datasets with many visibilities, as we will discuss in detail later.

9.4.1.3 resolve posterior inference

resolve is built on the probabilistic programming package NIFTy, which provides varia-
tional inference methods (Knollmüller et al., 2019; Frank et al., 2021) to approximate the
posterior distribution for a given prior and likelihood function. The advantage of variational
inference techniques over sampling techniques such as MCMC or HMC is that they scale
better with the number of parameters, which is the number of pixels in the imaging context.
For example, the variational inference method of NIFTy has recently been used in a 3D
reconstruction with 607 million voxels (Edenhofer et al., 2024b). While the variational in-
ference algorithms scale very well with the number of parameters, they still need to evaluate
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the likelihood very often. This means variational inference is fast as long as the evaluation
of the likelihood and prior is fast.

As discussed in section 9.4.1.2, evaluating the likelihood in resolve boils down to eval-
uating the radio interferometric measurement equation (equation 9.1). To do so resolve
relies on the parallelizable wgridder (Arras et al., 2021b) implemented in the DUCC3 li-
brary. Nevertheless, evaluating the measurement equation becomes computationally inten-
sive for data sets with many visibilities. For example, for the MeerKAT data set considered
in section 9.5.2, evaluating equation 9.1 on eight threads takes about 45 seconds. This be-
comes prohibitive for algorithms which require many thousands of likelihood evaluations.

9.4.2 CLEAN

In this section, we briefly outline some of the concepts behind the CLEAN algorithm (Hög-
bom, 1974; Schwab et al., 1983), as the computational speedups of fast-resolve over
classic resolve are partly inspired by CLEAN. We will refrain from delving into the details
behind the numerous improvements that have been made to the CLEAN algorithm over the
last decades (see Rau et al., 2009 for example) and focus only on the aspects which are
relevant to speeding up resolve. We refer the reader to Arras et al., 2021a for a detailed
comparison between CLEAN and resolve.
CLEAN is an iterative optimization algorithm minimizing the weighted square residuals

between the measured visibilities and the model visibilities computed from the sky bright-
ness model. Expressed as a formula, the objective function minimized by CLEAN is identical
to equation 9.4, the likelihood Hamiltonian of resolve. Minimizing equation 9.4 with re-
spect to the sky brightness I is equivalent to solving

R†N−1RI = R†N−1V, (9.5)

with R† being the adjoint operation of R, thus mapping from visibilities to the sky bright-
ness. Neglecting wide-field effects originating from non-coplanar baselines, the operation
R†N−1R is equivalent to a convolution with the effective point spread function of the in-
terferometer IPSF. R†N−1V is the back projection of the noise-weighted data into the sky
domain, called dirty image ID. This can be expressed with the formula

IPSF ∗ I ≈ R†N−1V = ID, (9.6)

with IPSF being the PSF of the interferometer and ∗ denoting convolution. Thus, the dirty
image ID = R†N−1V is approximately the true sky brightness I convolved with the PSF
IPSF of the interferometer. Radio interferometric imaging is, therefore, nearly equivalent to
deconvolving the dirty image.

As discussed in section 9.3, no unique solution to the imaging inverse problems exists.
The absence of a unique solution manifests as R†N−1R and IPSF∗ not being invertible op-
erations. While in resolve, additional regularization was provided via an explicit prior,
regularization of the sky images in CLEAN is implicitly encoded into the structure of the
algorithm. More specifically, CLEAN starts with an empty sky model as an initial estimate

3https://gitlab.mpcdf.mpg.de/mtr/ducc
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Im
0 for the true sky brightness and iteratively adds components, in the simplest form point

sources, to this estimate until a stopping criterion is met. This introduces the implicit prior
that the sky is sparsely represented by a finite number of CLEAN components.

In the following, we briefly summarize the algorithmic structure of CLEAN as relevant
for fast-resolve. The iterative procedure of adding components to the current model
image Im is split into major and minor cycles. In the major cycles, a current residual image
IRES = R†N−1(V − RIm

i ) is computed, with Im
i being the current model image. In the minor

cycle, additional components are added to the model, and their PSFs are removed from the
residual image. In the subsequent major cycle, the residual image is recomputed for the
updated model image, and in the following new minor cycle, more components get added
to the model. This scheme is iterated until a global stopping criterion is met.

From a computational perspective, the important aspect of the major/minor scheme is
that R and R† only need to be evaluated in major cycles. In minor cycles, the PSF of the
added CLEAN components is subtracted from the residual image, but for this, no evaluations
of R and R† are needed since the PSF can be precomputed once. Most of the computations
of the CLEAN algorithm are performed in image space, and only major cycles go back to the
visibility space. In contrast, resolve needs to map from image to data space by applying
R for every likelihood evaluation.

9.4.3 fast-resolve

As outlined in the previous section, evaluating the radio interferometric instrument response
(equation 9.1) contributes a substantial fraction to the overall runtime of a resolve image
reconstruction. Therefore, reducing the number of necessary evaluations of equation 9.1
has the potential for significant speedups. The basic idea of fast-resolve is to perform
most of the computations in image space, similar to CLEAN, and only evaluate the radio
interferometric instrument response once in a while.

9.4.3.1 fast-resolve measurement equation

The radio interferometric measurement equation in the form of equation 9.2 leads to the
likelihood Hamiltonian equation 9.4 of the classic resolve framework, which involves
an evaluation of the interferometric instrument response R. To get a likelihood Hamiltonian
that does not include evaluating R, one has to transform the measurement equation such that
all involved quantities live in image space, not data space. To project all involved quantities
to image space, we apply R†N−1 from the left to equation 9.2, and get:

R†N−1V = R†N−1RI + R†N−1n (9.7)

ID = R′I + n′, (9.8)

with R′ = R†N−1R, and n′ = R†N−1n. The quantities of the new measurement equation
are ID, I, and n′ and are all defined in image space and not in data space. The statistics of
the new noise n′ remains Gaussian as R†N−1 is a linear transformation. The corresponding
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likelihood Hamiltonian is given by:

H(ID|I) =
1
2

(ID − R′I)†N′−1(ID − R′I) +
1
2

ln |2πN′|. (9.9)

The covariance of the transformed noise is given by

N′ =
〈
n′n′†

〉
= R†N−1

〈
nn†

〉
N−1R = R†N−1R. (9.10)

This new noise covariance N′ is not invertible as R†N−1R is not invertible, which is prob-
lematic as the likelihood Hamiltonian contains the inverse noise covariance N′−1. To miti-
gate the problem of a singular noise covariance, we modify the measurement equation once
more by adding uncorrelated Gaussian noise with a small amplitude. This leads to a noise
covariance

N′ = R†N−1R + ϵI, (9.11)

with I being the unit matrix and ϵ a small number, which is the variance of the additional
noise. With this artificially introduced additional noise, the full noise covariance N′ is
invertible, and the new likelihood Hamiltonian equation 9.9 becomes well defined.

9.4.3.2 fast-resolve response R′

How large the speedup of using the new likelihood Hamiltonian equation 9.9 is compared
to the old Hamiltonian equation 9.4 depends on how much faster the new Hamiltonian can
be evaluated. The idea of fast-resolve is to approximate R′ = R†N−1R with a PSF
convolution R′ = R†N−1R ≈ IPSF∗, as it is done in a similar way in the CLEAN algorithm.
Approximating R′ = R†N−1R by a convolution with the PSF is only exact for coplanar
arrays. Corrections for the inaccuracy of the approximation are applied in some major
cycles in analogy to the CLEAN algorithm, as we describe in section 9.4.3.4.

The convolution with the PSF IPSF∗ can be efficiently applied via an FFT convolution.
For data sets with many visibilities, this FFT-based convolution with the PSF IPSF has the
potential to be significantly faster than an evaluation of the interferometer response R (equa-
tion 9.1). In section 9.5, we will compare the computational speedup of the new likelihood
for different data sets.

As the sky brightness I and the PSF IPSF are non-periodic, some padding of the sky is
needed for an FFT-based convolution. More specifically, to exactly evaluate IPSF ∗ I, the
PSF with which we convolve needs to be twice as big as the field of view we want to image
since some emission in the sky I could be at the edge of the field we are imaging. The sky
image needs to be padded with zeros to the same size as the PSF. As a formula, this can be
noted as

R′I = R†N−1RI (9.12)

≈ IPSF ∗ I (9.13)

= P†FFT−1
[
FFT[IPSF] · FFT[PI]

]
, (9.14)
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with P denoting the padding operation, and P† for slicing out the region not padded. By
neglecting PSF sidelobes and reducing its size, the necessary amount of zero padding can
be reduced. This, however, reduces the accuracy of the approximation R′ ≈ IPSF∗, which
might make it necessary to perform more major cycles in the image reconstruction.

9.4.3.3 fast-resolve noise model

To evaluate the likelihood Hamiltonian of fast-resolve, we need to apply both R′ =
R†N−1R and N′−1 = (R†N−1R + ϵI)−1. Similar to R′, we need to approximate N′−1 such
that we can apply it without having to evaluate R and R† every time. The basic idea of the
approximation of N′−1 is the same as for R′, thus replacing the exact operation with an FFT
convolution. Expressed as a formula, we compute the application of N′ to some input x via

N′(x) ≈ FFT−1 [K · FFT(x)] , (9.15)

with some appropriate Kernel K. The approximate noise covariance still needs to fulfill
the mathematical properties of covariances, because for our Bayesian model, the likelihood
is a probability and not just an arbitrary cost function. Therefore, the approximated noise
covariance matrix needs to be Hermitian and positive definite. Specifically, for the convo-
lution approximation, this implies that all entries of the convolution kernel K must be real
and strictly positive. To fulfill these constraints, we parameterize K as

Kξ = exp ξ + ϵ, (9.16)

with ϵ as defined in equation 9.11 and ξ being an implicitly defined real-valued vector.
We set this vector ξ such that it minimizes the square residual between the true and the
approximate noise covariance when applied to a test image with a point source in the center.
Thus ξ is set to

ξ̄ = argminξ
(
N′(Iδ) − FFT−1 [

(exp ξ + ϵ) · FFT(Iδ)
])2

(9.17)

with Iδ having a point source or delta peak in the center of the field of view and otherwise
being zeros. In words, we approximate the noise covariance N′ with an appropriate Kernel
K that yields a proper covariance by construction, is easy to invert, and minimizes the
squared distance to the effect that N′ has on a point source.

To evaluate the likelihood (equation 9.9) we need to apply N′−1. We do this by convolv-
ing with the inverse kernel:

N′−1(x) ≈ FFT−1
[
K−1
ξ̄
· FFT(x)

]
. (9.18)

This involves a second approximation, as we here implicitly assume periodic boundary
conditions. As long as the main lobe of the PSF is much smaller than the field of view, this
assumption does not create large errors.

9.4.3.4 fast-resolve inference scheme

The previous sections derived the approximate likelihood for fast-resolve inspired by
the CLEAN algorithm. In the same spirit, we adapt the major/minor cycle scheme of CLEAN
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to utilize it with Bayesian inference for a probabilistic sky brightness reconstruction. In
the minor cycles, we optimize the current estimate of the posterior distribution P(I|V) for
the sky brightness I using the above approximations for a fast likelihood evaluation. In the
major cycles, we apply, similar to CLEAN, the exact response operations to correct for the
approximation error.

The algorithm starts by initializing the dirty image ID = R†N−1V from the visibilities V
using the exact response function R. The dirty image is the input data d0 = ID for the first
minor cycle. The first minor cycle computes an initial estimate of the posterior distribution
P0 of the sky brightness using the measurement equation

d0 = IPSF ∗ I + n′, (9.19)

with the approximations discussed in section 9.4.3.2 and section 9.4.3.3. We will discuss
the exact algorithm used to estimate the posterior distribution in section 9.4.3.5. From this
initial estimate of the posterior distribution P0, we compute the posterior mean of the sky
brightness I0 = ⟨I⟩P0 . The posterior mean I0 is the output of the first minor cycle and the
input to the first major cycle. The first major cycle computes the residual d1 between the
dirty image ID and the posterior mean of the first minor cycle passed through the response
R†N−1R of the fast resolve measurement equation:

d1 = ID − R†N−1RI0. (9.20)

In contrast to the minor cycle, R†N−1R is here computed exactly and not approximated with
IPSF∗. The residual d1 is the output of the major cycle and the input to the second minor
cycle. In the second minor cycle, the posterior P1 of I for the measurement equation

d1 = IPSF ∗ (I − I0) + n′, (9.21)

is approximated. This approximation can be done efficiently by starting with the posterior
estimate of the previous minor cycle and refining this estimate. The output of the second
minor cycle is the updated posterior mean I1 = ⟨I⟩P1 which is the input to the next major
cycle computing the new residual to the dirty image using the exact response:

d2 = ID − R†N−1RI1. (9.22)

The new residual data d2 is the input to the next minor cycle. This scheme is iterated until
converged, thus until no significant structures are left in the residual dn and the posterior
estimates In are not changing anymore. In algorithm 1 the full inference scheme is summa-
rized as a pseudocode algorithm.

The overall structure of the fast-resolve major/minor scheme is very similar to the
major/minor scheme of CLEAN. The main difference is that fast-resolve updates in the
minor cycles a probability distribution for possible sky images instead of a simple model
image, as is the case for CLEAN. The algorithm for inferring the posterior distribution is
outlined in the following subsection 9.4.3.5.

9.4.3.5 fast-resolve minor cycles

In the minor cycles, we optimize the approximation of the posterior distribution P(I|V) using
the scalable variational inference algorithms (Knollmüller et al., 2019; Frank et al., 2021) of
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Algorithm 1 fast-resolve inference scheme.
# compute dirty image
ID ← R†N−1V

# initialize input with dirty image
d0 ← ID

# reconstruct n major cycles
for i in 0 . . . n − 1 do

# minor cycle
estimate Pi(I) from di = IPSF ∗ I + n′

# compute posterior mean
Ii ← ⟨I⟩Pi

# major cycle updating input data
di+1 ← ID − R†N−1RIi

# final result: Pn−1(I)

the NIFTy package already employed in the classic resolve algorithm. These variational
inference algorithms account for correlations between parameters of the model. While the
method Metric Gaussian Variational Inference (MGVI) of Knollmüller et al., 2019 relies on
a Gaussian approximation of the posterior distribution, the algorithm geometric Variational
Inference (geoVI) of Frank et al., 2021 can also capture non-Gaussian posterior distribu-
tions. Although fast-resolve relies for the minor cycles on the same inference algo-
rithms as resolve, updating the posterior distribution is much faster in fast-resolve
since the approximate likelihood described above is used instead of evaluating the exact
measurement equation.

Furthermore, the NIFTy package has also undergone a major rewrite, switching from a
NumPy based (Harris et al., 2020) implementation to a JAX4 (Bradbury et al., 2018) based
backend, allowing for GPU-accelerated computing. While resolve was so far building
on the old NumPy-based NIFTy, fast-resolve makes use of the JAX accelerated NIFTy
version, also named NIFTy.re (Edenhofer et al., 2024a). Especially the FFT convolutions
in fast-resolve have the potential for significant GPU acceleration. In section 9.5, we
compare the runtime of resolve and fast-resolve using the CPU and the GPU backend.

In the future, we also plan to port the classic resolve framework to JAX. Porting
resolve is more involved than porting fast-resolve because it requires binding a high-
performance implementation of the radio interferometric measurement operator to JAX. As
a preparatory work, we have developed the JAXbind5 package (Roth et al., 2024b, and
chapter 8) which allows to bind custom functions to JAX. However, since the wgridder

4https://github.com/google/jax
5https://github.com/NIFTy-PPL/JAXbind
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from DUCC6 is used to evaluate the radio interferometric measurement equation, the JAX
version of resolve will also be limited to run on the CPU.

9.4.4 Previous fastRESOLVE of Greiner et al., 2016

The algorithm named fastRESOLVE introduced by Greiner et al., 2016 was an earlier attempt
to speed up resolve. Similar to the fast-resolve of this work, Greiner et al., 2016 used
approximations of the likelihood avoiding applications of R in every step. More specifically,
Greiner et al., 2016 derived a maximum a posteriori estimator of the sky brightness using
the gridded weights of the visibilities as a noise covariance. Since fastRESOLVE had some
limitations, such as it could not account for the w-term and could not provide uncertainty
estimates, this approach was not followed up in subsequent developments of resolve in
Arras et al., 2019b; Arras et al., 2021a, or Roth et al., 2023b (chapter 6).

9.5 Applications

For verification, we demonstrate the proposed fast-resolvemethod on different data sets.
First, we reconstruct the Cygnus A VLA observation at four different frequency bands, and
second, we image ESO 137-006 using a MeerKAT observation. The Cygnus A data is
suitable to validate the accuracy as the fast-resolve images can be compared to pre-
vious results from Arras et al., 2021a and Roth et al., 2023b (chapter 6) obtained on the
same dataset. The Cygnus A reconstruction has a relatively small field of view, and wide
field effects should be negligible. The MeerKAT observation is significantly larger than the
VLA observation, and imaging with resolve is computationally out of reach, allowing to
demonstrate the computational advantages of fast-resolve over resolve. Furthermore,
the field of view of the ESO 137-006 observations is also significantly larger such that the
major cycles of fast-resolve correcting for wide field effects become more important.

9.5.1 Application to VLA Cygnus A data

9.5.1.1 Data and algorithm setup

For imaging Cygnus A, we use the exact same data already imaged in Arras et al., 2021a
with resolve and CLEAN. The data contains single frequency channels at 2052 MHz (S-
band), 4811 MHz (C-band), 8427 MHz (X-band), and 13360 MHz (Ku-band). Also, in Roth
et al., 2023b, an uncalibrated version of the S-band data was jointly calibrated and imaged
with resolve. In all observing bands, all four VLA configurations were used. Computa-
tionally relevant details of the observations, such as the number of visibilities and the grid
size of the reconstructed images, are listed in table 9.1. For details on the calibration of the
data, we refer to Sebokolodi et al., 2020.

As a prior model, we use the combination of the diffuse emission prior and the point
source prior described in section 9.4.1.1. This prior model is identical to the prior model
already used in the existing resolve framework. Specifically, in Arras et al., 2021a and

6https://gitlab.mpcdf.mpg.de/mtr/ducc
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Table 9.1: VLA Cygnus A observations. All observations are single channel and used all
four VLA configurations. For all frequencies the same field of view (Fov) is imaged.

Freq [MHz] Nrows image size Fov [deg]
2052 1281930 512 × 1024 0.025 × 0.05
4811 1281934 1024 × 2048 0.025 × 0.05
8427 2523954 2048 × 4096 0.025 × 0.05
13360 2544102 2048 × 4096 0.025 × 0.05

Roth et al., 2023b (chapter 6), this prior model was already used for Cygnus A reconstruc-
tions. For completeness, we summarize the main aspects of the prior model here. We refer
to Arras et al., 2021a for details on the prior model. We model the diffuse emission with an
exponentiated Gaussian Process spanning the entire field of view. For the two point sources
in the nucleus of Cygnus A, we insert two separate point source models at the locations
of these sources. For the brightness of these sources we use an inverse gamma prior. The
exact hyper-parameters for the Gaussian process and the inverse gamma prior are listed in
appendix 9.9.1. The number of pixels used to model the diffuse emission is listed in table
9.1 for the different frequencies.

In Arras et al., 2021a, the MGVI algorithm was used for inferring the posterior of the
sky brightness map. For direct comparability between the results of this work and the
previous resolve maps, we also use the MGVI in the minor cycles (section 9.4.3.5) for
the posterior approximation. For the imaging of the S-band data in Roth et al., 2023b,
the geoVI algorithm was used. However, we do not expect significant differences in the
resulting sky maps.

To summarize, Arras et al., 2021a and Roth et al., 2023b used the same prior model
setup as we use for imaging Cygnus A with fast-resolve. Furthermore, the posterior
inference algorithm is expected to produce similar results for a given likelihood. Therefore,
the previous resolve results of Arras et al., 2021a and Roth et al., 2023b are ideally suited
to validate the fast-resovle likelihood approximation in a direct comparison on a dataset
with negligible wide field effects. Furthermore, we compare with the multi-scale CLEAN
reconstruction of the S-band data from Arras et al., 2021a. For a more detailed comparison
with CLEAN, we refer to Arras et al., 2021a, where resolve was extensively compared to
single and multi-scale CLEAN for all frequency bands.

9.5.1.2 Comparison with previous resolve results

In the following, we compare the fast-resolve reconstructions with previous results to
validate the accuracy of fast-resolve. Figure 9.1 displays the resolve reconstructions
of Arras et al., 2021a and Roth et al., 2023b as well as the S-band data multi-scale CLEAN
reconstruction in comparison with the fast-resolve reconstructions of this work. The
overall quality of the fast-resolve maps is on par with the resolve results. The multi-
scale CLEAN reconstruction has a lower resolution in bright regions of the lobes than the
resolve based reconstructions. All bright emission features are consistently reconstructed
by all algorithms in all frequency bands. The fast-resolve and CLEAN maps have a
higher dynamic range than the results of Arras et al., 2021a. Nevertheless, this is not
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due to a conceptional problem of the resolve algorithm, but rather the reconstructions
of Arras et al., 2021a were not fully converged due to the very high computational cost
of resolve. resolve reconstructs the brightest emission of the field before modeling
fainter features. Thus, faint features are missing in the radio map when a reconstruction is
stopped before convergence. For fast-resolve, where the overall runtime of the algo-
rithm is much shorter, it is easier to ensure that the reconstruction is fully converged. In
section 9.5.1.3 the convergence of resolve and fast-resolve is analyzed in detail. The
resolve reconstruction of Roth et al., 2023b has a similar dynamic range compared to the
fast-resolve reconstructions.

In the comparison between CLEAN and resolve in Arras et al., 2021a, resolve pro-
duced significantly higher resolved maps than CLEAN in regions with high surface bright-
ness. A zoom into such a region, the eastern hot spot of Cygnus A, is depicted in figure 9.2.
In this region, the results are consistent, and fast-resolve achieves the same resolution
as the resolve based reconstructions.7 Furthermore, fast-resolve also shows minimal
imaging artifacts around the hot spot, as does resolve. The multi-scale CLEAN map from
Arras et al., 2021a is added again for comparison. As already discussed in Arras et al.,
2021a, the CLEAN reconstruction has a significantly lower resolution than the resolve re-
construction. These super-resolution capabilities were validated by comparing the morpho-
logical features of the resolve reconstructions with higher frequency observations under
the assumption of spectral smoothness.

Figure 9.3 zooms on the nucleus and jet of Cygnus A. In the zooms on the nucleus
the pixels modeling the two point sources are clearly visible. The fast-resolve S-band
reconstruction and the resolve reconstruction of Roth et al., 2023b show consistent results
depicting the nucleus and jet. In the S-band reconstruction of Arras et al., 2021a, the jet is
also visible, although due to the smaller dynamic range of the map, it is less pronounced.
In the higher frequency bands, the shape of the core of Cygnus A is consistent between the
reconstructions of resolve and fast-resolve. As the old resolve reconstructions are
not fully converged, their dynamic range is lower, and the fainter emission of the jet is barely
visible at higher frequencies. At the highest frequencies 13360 MHz, the jet is also barely
visible in the fast-resolve reconstruction. The CLEAN image of the jet is consistent with
the fast-resolve reconstruction and the resolve reconstruction from Roth et al., 2023b.
resolve as well as fast-resolve provide posterior samples of the sky brightness dis-

tribution. From these samples, not only the posterior mean but also other summary statistics
can be computed. As an example, we show in figure 9.4 the pixel-wise relative uncertainty
of the S-band data reconstruction of fast-resolve in comparison with the corresponding
uncertainty map of Arras et al., 2021a. The estimated uncertainty of resolve tends to be
slightly higher than the uncertainty estimate of fast-resolve. This difference might come
from the fact that the resolve reconstruction of Arras et al., 2021a was not fully converged
since the uncertainty estimate of resolve usually becomes smaller when the algorithm
converges. Nevertheless, we cannot exclude that this is related to the approximations of
fast-resolve.

7The pixelizations of the multi-scale CLEAN, the previous resolve, and the fast-resolve reconstructions
differ as they originate from different works.
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Figure 9.1: Comparison of fast-resolve Cygnus A reconstructions with resolve and
CLEAN reconstructions. The top left panel shows the multi-scale CLEAN map of the S-band
data form Arras et al., 2021a. The left column below the CLEANmap shows fast-resolve
reconstructions at four different frequencies indicated in the top left corner of each panel.
The right column shows resolve reconstructions of Roth et al., 2023b (chapter 6) and Arras
et al., 2021a using the same data. The dynamic range of the fast-resolve reconstructions
is higher than in some of the previous resolve reconstructions. This is because the old
resolve reconstructions were not fully converged due to their high computational cost.
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Figure 9.2: Zoom on the eastern hot spot of the Cygnus A reconstructions from figure 9.1.
The resolution of the fast-resolve maps in the left column is on par with the resolve
maps in the right column. The resolution of the CLEAN map is significantly lower than the
in the other maps.
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Figure 9.3: Zoom on the nucleus and jet of the Cygnus A reconstructions form figure 9.1.
In all resolve and fast-resolve reconstructions, the two point sources in the nucleus
are modeled with two pixels that are uncorrelated with the brightness of the neighboring
pixels. Since the resolve of Arras et al., 2021a are not fully converged due to their high
computational cost, their dynamic range is lower, and the jet of Cygnus A is not visible.
The multi-scale CLEAN map from Arras et al., 2021a is consistent with the fast-resolve
result and the resolve reconstruction from Roth et al., 2023b. At the highest frequency the
jet is hardly visible also with fast-resolve, with background artifacts having a similar
brightness.
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Figure 9.4: Pixel-wise relative uncertainty map of fast-resolve S-band reconstruction
compared to the resolve uncertainty map of Arras et al., 2021a. The relative uncertainty
is lower for both reconstructions in regions of high surface brightness. In the hot spot, the
relative uncertainty is around 10−3 to 10−2 and increases towards the lower surface bright-
ness regions. Outside of Cygnus A, the relative uncertainty fluctuates around 1, indicating
that the reconstructed intensity is statistically consistent with zero surface brightness. The
estimated uncertainty of resolve tends to be slightly higher than the uncertainty estimate
of fast-resolve. This might be due to the resolve reconstruction of Arras et al., 2021a
not being fully converged.

9.5.1.3 Computational time of fast-resolve

In the previous subsection, we compared the results of fast-resolve with resolve, con-
firming that fast-resolve can deliver the same high quality radio maps as resolve. In
this subsection, we want to analyze the computational speed of fast-resolve and com-
pare it to the existing resolve framework. To have a direct comparison between the run-
times, we imaged the S-band data with exactly the same hyperparameters for the prior
model with fast-resolve and resolve and saved snapshots of the reconstructions at
several points during the optimization. While resolve can only be executed on a CPU,
fast-resolve can also run on a GPU.

Figure 9.5 depicts the direct comparison between resolve and fast-resolve, with
both algorithms being executed on the same CPU. Specifically, the algorithms were run on
an Intel Xeon W-1270P CPU with 3.80 GHz clock speed and 8 cores. For the resolve re-
construction, the MGVI algorithm inferring the posterior distribution was parallelized with
4 MPI tasks, each using 2 cores for evaluating the radio interferometric measurement equa-
tion (equation 9.2), thus utilizing 8 cores in total. The fast-resolve reconstruction ran
on the single python process without manual threading, relying on JAX to parallelize the
computations over the cores. Thus, in addition to the algorithmic difference, differences in
the parallelization strategy and programming language might impact the reconstruction run-
time. Snapshots of the reconstructions after 10, 60, 300, 600, and 1440 min are displayed.
After 10 min, the hot spot and parts of the lobes are visible in the reconstructions of both
algorithms. Nevertheless, the core and the jet are missing, and both reconstructions have
significant background artifacts. After 60 min runtime, fainter parts of the lobes become
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visible, and the fast-resolve map shows significantly more details in the lower surface
brightness regions. After 300 min the fast-resolvemap also depicts the very low surface
brightness regions with high resolution, while in the resolve map, the outflow is still par-
tially missing, and the lower surface brightness regions of the lobes are reconstructed with
low resolution. After 600 min the fast-resolve map has only slightly changed compared
to the 300 min snapshot. At this point, we assume the fast-resolve algorithm to be fully
converged. In total we performed 20 fast-resolve major cycles. The resolve recon-
struction is also after 600 min not yet fully converged. The final snapshot of the resolve
reconstruction is after 1440 min. At this stage also the resolve reconstruction is nearly
converged. Only in the very low surface brightness regions of the lobes, the resolution is
still lower than in the fast-resolve reconstruction.

While figure 9.5 analyzes the convergence of fast-resolve on the CPU,
fast-resolve is mainly designed for GPUs. The performance of fast-resolve on the
S-band data using GPUs is shown in figure 9.6. Specifically, figure 9.6 displays snapshots
of the fast-resolve reconstruction after 1, 5, 10, 22, and 46 min using an NVIDIA A100
high-performance computing GPU compared with a reconstruction on a consumer-level
GPU, an NVIDIA GeForce RTX 3090. When comparing the results, one should consider
that the A100 GPU is on the order of 10 times more expensive than the RTX 3090. On
both GPUs, we executed the exact same fast-resolve reconstruction we ran on a CPU
in figure 9.5. Similar to the CPU run, the high surface brightness regions are reconstructed
first before the method picks up the low surface brightness flux. On both GPUs, the algo-
rithm is much faster than on the CPU. While on the CPU, the reconstruction was finished
after 600 min, the same number of major and minor cycles were finished on the RTX 3090
GPU in 46 min and on the A100 GPU in 22 min. Thus, the fast-resolve reconstruction
was 13 times faster on the RTX 3090 GPU and 27 times faster on the A100 GPU than the
CPU reconstruction. In comparison, the resolve reconstruction on the CPU was not fully
converged even after 1416 min.

To quantify the convergence rate of the reconstructions, we computed the mean square
residual between the logarithmic brightness of the final fast-resolve iteration on the
NVIDIA A100 GPU and earlier iterations of resolve and fast-resolve reconstructions.
We reran the fast-resolve reconstructions with different random seeds to be indepen-
dent of the random seed used for the NVIDIA A100 reconstruction with respect to which
the residuals are computed. Figure 9.7 shows the mean square residuals for resolve and
the three fast-resolve reconstructions as a function of wall time. The fast-resolve
reconstructions converge within the displayed time, and their curves of the mean square
residual flatten. The reconstruction’s final mean square residuals are not exactly the same
since the final maps are not numerically identical because of the different hardware, JAX,
and CUDA versions. The resolve reconstruction does not converge in the displayed time
interval and the residual error keeps falling until the end after 1416 min (1 day). Of course,
using the residual of the logarithmic brightness is an arbitrary metric for quantifying con-
vergence speed. Nevertheless, it can roughly quantify the speedups of fast-resolve.
After 1416 min, the mean square residual of the resolve reconstruction is around 10−3.
In comparison, the fast-resolve reconstructions reach the same mean squared residual
after around 10 min, 20 min, and 200 min for runs on the NVIDIA A100 GPU, the NVIDIA
RTX 3090 GPU and the Intel Xeon CPU, respectively. Thus, the indicative speedup of
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fast-resolve over resolve on the Cygnus A S-band data is a factor of 144 for the A100
GPU, a factor of 72 for the RTX 3090 GPU and a factor of 7.2 for the CPU run. The timings
reported above do not include the time needed to precompute the convolution kernels for
the response and noise of fast-resolve. Nevertheless, these are small compared to the
time needed for imaging. For the S-band data, for example, the computation of the kernels
takes only 0.6 min, which is much shorter than the imaging runtime, even on the GPU.

As indicated in table 9.1, the Cygnus A data has only a single frequency channel. For
datasets with more baselines and frequency channels, such as the MeerKAT datasets con-
sidered in the next section (see table 9.2), the algorithmic advantage of fast-resolve
of not having to compute the radio response in each evaluation of the likelihood is much
larger. Thus, for such datasets, the speedup of fast-resolve will be significantly larger
than for the Cygnus A single channel imaging. Indeed for the MeerKAT dataset of the next
section (section 9.5.2) imaging with resolve is computationally out of scope, while with
fast-resolve images can still be reconstructed with moderate computational costs.

The same comparison as in figure 9.6 but for the C-band data is displayed in figure 9.8.
As indicated in table 9.1, the grid size we used for the C-band sky map is a factor of two
larger along both spatial axes. Thus, in total, we have four times more pixels, increasing the
computational cost of the algorithm. On the A100 GPU, the fast-resolve reconstruction
was finished after 56 min, while on the RTX 3090 GPU, the reconstruction took 165 min.
We believe that the larger difference between the two GPUs for the C-band data compared
to the S-band data might be because, for the smaller grid size of the S-band reconstruction,
the A100 GPUs were not fully utilized.

For completeness, we also display snapshots of the X and Ku-band reconstructions in
figure 9.9. These reconstructions were only carried out on the A100 GPU. After 132 min
both reconstructions were finished.

9.5.2 Application to MeerKAT data

In this section, we present an application of fast-resolve to an L-band (856−1712 MHz)
MeerKAT (Jonas et al., 2016) observation of the radio galaxy ESO 137-006. Originally,
this observation was presented in Ramatsoku et al., 2020. The observation utilized all 64
MeerKAT antennas and the 4k mode of the SKARAB correlator. The total on target ob-
servation time is 14 h in full polarization with 4096 channels. For the VLA Cygnus A
observations above, only a single frequency channel was used for each band. Here, we use
two sub-bands with each about 200 channels (after averaging) and a bandwidth of approxi-
mately 200 MHz. Consequently the MeerKAT datasets are more than 400 times larger than
the VLA datasets of the previous section, making an evaluation of the radio interferometer
response (equation 9.1) significantly more expensive. A resolve reconstruction, where
the exact response needs to be computed for each evaluation of the likelihood (equation
9.4.1.2), is computationally unfeasible for such a dataset.

Ramatsoku et al., 2020 detected hitherto unknown collimated synchrotron threads link-
ing the lobes of the radio galaxy ESO 137-006 in this observation. Since then, this data set
has also been used by Dabbech et al., 2022 for demonstrating convex optimization based
imaging algorithms. Dabbech et al., 2022 also published the results as FITS files, allowing
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Figure 9.5: fast-resolve and resolve reconstructions of the 2052 MHz Cygnus A data
at different stages of the reconstruction. The left column shows fast-resolve the right
column resolve. The rows display snapshots of the reconstruction after different amounts
of wall time indicated in the lower left of each panel. The fast-resolve reconstruction
was performed on two cores of an Intel Xeon CPU. The resolve reconstruction used eight
cores of the same CPU. The fast-resolve reconstructions in the last two rows are at iden-
tical time snapshots, since the fast-resolve reconstruction is considered to be converged
after 600 min. The resolve reconstruction is not fully converged even after 1416 min.
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Figure 9.6: fast-resolve reconstructions of the 2052 MHz Cygnus A data. The left
column displays snapshots of a fast-resolve reconstruction on an NVIDIA A100 GPU.
The right column shows snapshots of a fast-resolve reconstruction on an NVIDIA RTX
390 GPU. Both reconstructions ran the same number of major and minor iterations. Since
the reconstruction on the A100 GPU was finished after 22 min, the bottom left panel is
identical to the row above. On the A100 GPU fast-resolve is approximately twice as
fast as on a RTX 390 GPU, and 25 times faster than on the CPU displayed in figure 9.5.
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Figure 9.7: Mean square residual of the log brightness of resolve and fast-resolve
reconstruction as a function of time for the S-band data. The residual is computed to the
final iteration of fast-resolve on the NVIDIA A100 GPU depicted in figure 9.6, which
we believe to be converged. The fast-resolve reconstructions are recomputed with a
different random seed. The mean square residual of the fast-resolve reconstructions
falls until their curves flatten when they converge. Due to the different hardware, JAX,
and CUDA versions, the final results are numerically not exactly identical. The resolve
reconstruction (blue curve) does not fully converge in the displayed time range.
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Figure 9.8: Same as figure 9.6 but for the 4811 MHz data. On an NVIDIA A100 GPU
fast-resolve is 2−3 times faster than on an NVIDIA RTX 3090 GPU. The same number
of major and minor iterations are performed on both GPUs. Since the reconstruction on the
A100 GPU is finished after 56 min, the bottom left panel is identical to the row above.
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Figure 9.9: Snapshots of the fast-resolve Cygnus A reconstruction of the 8427 MHz and
13360 MHz data on a NIFTy A100 GPU. The wall time after which the snapshot was taken
is indicated in the bottom left of each panel.
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Table 9.2: MeerKAT ESO 137-006 observations. For both frequency bands the same field
of view (Fov) is imaged.

Freq [MHz] Nrows Nchan image size Fov [deg]
961-1145 4598424 220 3600 × 3600 2 × 2
1295-1503 4598424 248 3600 × 3600 2 × 2

us to use them as a reference for validating the fast-resolve algorithm for a MeerKAT-
sized reconstruction.

Technical details relating to the initial flagging and transfer calibration of the ESO 137-
006 data using the CARACAL pipeline (Józsa et al., 2020) are given in Ramatsoku et al.,
2020. As in Ramatsoku et al., 2020, the data is averaged from 4096 to 1024 frequency
channels and split into two sub-bands spanning 961−1145 MHz and 1295−1503 MHz that
are relative free from radio frequency intereference, known as the LO and HI bands respec-
tively. These subbands are then phase self-calibrated using WSClean multi-scale CLEAN
(Offringa et al., 2017) for imaging and CubiCal (Kenyon et al., 2018) for calibration. We
then image the data independently in the LO and HI band with fast-resolve. Computa-
tional relevant details of the calibrated data in the two bands are listed in table 9.2.

9.5.2.1 fast-resolve prior model

As for the Cygnus A observation, we built our prior model around the exponentiated Gaus-
sian process model described in section 9.5.1.1 and in detail in Arras et al., 2021a. Never-
theless, for the MeerKAT observation, there is, besides the main source, ESO 137-006, also
a second galaxy, ESO 137-007, in the field of view. Due to the nature of the generative prior
models in resolve, the full prior model can easily be composed of multiple components.
We model each of these sources with a separate exponentiated Gaussian process to decou-
ple the prior models. Furthermore, due to the high sensitivity of MeerKAT, many compact
background sources are detected. For the Cygnus A reconstruction, we placed two point
source models at the locations of the two point sources in the core of Cygnus A. However,
for the MeerKAT observation, the number of background sources is far too large to manu-
ally place point source models at their locations. Therefore, we use a third Gaussian process
model to represent all the background sources outside of the models for ESO 137-006 and
ESO 137-007. A sketch of the layout of the three models is shown in figure 9.10. The exact
parameters for all Gaussian process models are listed in appendix 9.9.2.

9.5.2.2 Imaging of Dabbech et al., 2022

In Dabbech et al., 2022, ESO 137-006 is imaged with WSClean (Offringa et al., 2014;
Offringa et al., 2017) and two convex optimization algorithms in the same bands 961 −
1145 MHz and 1295 − 1503 MHz using the same data as we do. The two convex optimiza-
tion algorithms of Dabbech et al., 2022 utilize two different regularizers. One regularizer is
named uSARA, promoting sparsity in a wavelet basis. The other regularizer, AIRI, origi-
nally presented in Terris et al., 2023a, is based on a neural network denoiser. The resulting
images for both regularizers are compared with results from WSClean, showing significant
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Figure 9.10: Reconstruction of the ESO 137-006 MeerKAT observation in the LO subband
(961 − 1145 MHz) with fast-resolve. The radio galaxies ESO 137-006 and ESO 137-
007, as well as the background sources, are modeled with independent Gaussian processes.
White boxes indicate the spatial extent of each Gaussian process. Zooms on the reconstruc-
tions of ESO 137-006 and ESO 137-007 for both subbands are shown in figure 9.11, 9.12,
9.13, and 9.14.



9.5 Applications 111

improvements in the image quality. The exact computational costs of all three imaging
algorithms are reported in Dabbech et al., 2022. Imaging with the sparsity promoting reg-
ularizer, uSARA needed about 1500 to 3000 CPU hours per band to converge. With the
neural network-based denoiser AIRI, around 900 to 1600 CPU hours plus around 5 GPU
hours were needed.

9.5.2.3 Imaging results

Figure 9.10 depicts the results of the fast-resolve reconstruction for the LO band data.
25 and 28 fast-resolve major cycles were executed for the LO and the HI band recon-
structions. Zooms on the two radio galaxies are shown in figure 9.11 and figure 9.12 for
the LO band and in figure 9.13 and figure 9.14 for the HI band. Thereby, figure 9.11 and
figure 9.13 display the ESO 137-006 radio galaxy while figure 9.12 and 9.14 show the radio
galaxy ESO 137-007 north of it. These figures also include the convex optimization recon-
struction results of Dabbech et al., 2022 for comparison and validation. The imaging results
of fast-resolve and Dabbech et al., 2022 are consistent. The fast-resolve maps have
higher background artifacts than the convex optimization maps. In Ramatsoku et al., 2020,
collimated synchrotron threads between the two lobes of the galaxy ESO 137-006 were
detected. Besides these already known threads, the fast-resolve map shows additional
threads north of the core of the galaxy. These additional threads are probably artifacts in the
image. With a lower intensity, similar features are also found in the maps of Dabbech et al.,
2022 and are mostly considered artifacts.

We believe these features are imaging artifacts and originate from suboptimal calibra-
tion. Due to the very flexible prior model, both fast-resolve and resolve are very
sensitive the data. In the case of suboptimal calibration, this leads to imaging artifacts. At
present, self-calibration with fast-resolve is not yet possible. For the future, the inte-
gration of a self-calibration routine into fast-resolve is planned, which could potentially
mitigate such artifacts. The appendix 9.9.3 presents an application of fast-resolve to
synthetic data with the same uv-coverage as the MeerKAT LO band data. The synthetic
data has no calibration inaccuracies, and the reconstructions do not show similar artifacts.

Additionally, a dedicated prior model for compact sources could improve the
fast-resolve reconstructions. At present, point sources can either be modeled by man-
ually placing inverse gamma distributed pixels at their locations (see section 9.4.1.1) or by
including them in the Gaussian process model. For the VLA Cygnus A reconstruction, the
point sources in the nucleus were modeled by manually placing inverse gamma distributed
pixels at their locations. Thereby, imaging artifacts around the two-point source could be
avoided, despite them being very bright. Due to the high number of background sources,
this is impractical for the ESO 137-006 reconstruction. Compact sources are therefore also
modelled using an exponentiated Gaussian process prior. The Gaussian process based prior
is very sensitive to diffuse emission but is less sensitive to point sources. For this reason,
many fainter point sources are not picked up by the model but left in the fast-resolve
residual data, which is shown in the appendix 9.9.4. A dedicated prior model that is also
applicable to observations with a very high number of background sources could improve
their reconstruction. Ideally, such a point source model should also be capable of recon-
structing the exact positions of the sources and not rely on error-prone manual placement
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of sources as in the current point source prior version. However, the development of an
improved point source model is left for future work.

Furthermore, in a close examination of the results, minor artifacts at the edges of the
prior models of the sources ESO137-006 and ESO137-007 are visible. These artifacts could
be avoided by an overlap between source models and the background model and interpolat-
ing between them.

9.5.2.4 Computational costs

Despite the high number of visibilities and frequency channels, the computational costs of
fast-resolve are still moderate since fast-resolve only needs to evaluate the full ra-
dio interferometric measurement equation (equation 9.1) in the major cycles. As outlined
above, 25 and 28 major cycles were executed for the LO and HI band. The fast-resolve
reconstructions of both frequency bands were done on an NVIDIA A100 GPU. Before the
actual fast-resolve imaging, the convolution kernels for the response and the noise were
constructed on a CPU. For both frequency bands, less than two hours were needed on a
single core of an Intel Xeon CPU to compute the convolution kernel. For imaging, 24 hours
using an NVIDIA A100 GPU and eight cores of an Intel Xeon CPU were needed. Since
most of the fast-resovle operators, except for the major update steps, are done on the
GPU, the CPU was mostly idle during imaging. A limitation of the current implementation
of the fast-resolve algorithm is the high GPU memory consumption, preventing appli-
cations with significantly larger grid sizes than those presented in this paper. We believe
these constraints can be softened with future improvements in the implementation.

A direct one-to-one comparison of the computational cost to the reconstructions of
Dabbech et al., 2022 is not possible, as the reconstructions of Dabbech et al., 2022 were
executed on different hardware and also the algorithms are implemented in different pro-
gramming languages. Nevertheless, the computational costs of the Dabbech et al., 2022
reconstructions tend to be significantly higher as they range between 900 and 3000 CPU
hours per band and algorithm. Dabbech et al., 2022 for comparison also presented a WS-
Clean reconstruction. For the WSClean reconstruction Dabbech et al., 2022 report a total
computational cost of 132 and 236 CPU hours for the two imaging bands. Although CPU
and GPU hours are not directly comparable, and hardware and programming languages dif-
fer, this underlines the computational performance and applicability of fast-resolve to
imaging setups with massive datasets.

9.6 Conclusion

This chapter introduces the fast Bayesian imaging algorithm fast-resolve.
fast-resolve combines the accuracy of the Bayesian imaging framework resovle
with computational shortcuts of the CLEAN algorithm. This significantly broadens the
applicability of Bayesian radio interferometric imaging. fast-resolve transforms the
likelihood of the Bayesian radio interferometric imaging problem into a likelihood of a
deconvolution problem, which is much faster to evaluate. Using the major/minor cycle
scheme of CLEAN, fast-resolve corrects for inaccuracies of the transformed likelihood
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Figure 9.11: Radio Galaxy ESO 137-006 in the phase center of the observation. The top
panel shows the fast-resolve reconstruction. For comparison the lower two panels dis-
play the reconstructions form Dabbech et al., 2022 with the AIRI and uSARA regularizers.
All reconstructions, but especially fast-resovle, are affected by the suboptimal calibra-
tion.
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Figure 9.12: Radio Galaxy ESO 137-007 north of the phase center of the observation. The
top panel shows the fast-resolve reconstruction. For comparison the lower two panels
display the reconstructions form Dabbech et al., 2022 with the AIRI and uSARA regular-
izers. All reconstructions, but especially fast-resovle, are affected by the suboptimal
calibration.
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Figure 9.13: Like figure 9.11 but at 1399 MHz.
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Figure 9.14: Like figure 9.12 but at 1399 MHz.
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and accounts for the w-effect. The accuracy of fast-resolve is validated on Cygnus A
VLA data by comparing with previous resolve and multi-scale CLEAN reconstructions.
The comparison shows that fast-resolve achieves the same resolution as resolve.
Likewise, the imaging artifacts are comparable and on a very low level.

Furthermore, the computational speed of fast-resolve is analyzed and compared to
resolve, showing significant speedups for the VLA Cygnus A data. As fast-resolve
is implemented in JAX, it can also be executed on a GPU, accelerating the reconstruction
compared to the CPU by more than an order of magnitude. For the single channel Cygnus A
VLA dataset, fast-resolve is at least 140 times faster than resolve when executed
on a GPU. For datasets with more frequency channels, the computational advantages of
fast-resolve can be even larger.

Additionally, we present a Bayesian image reconstruction of the radio galaxies
ESO 137-006 and ESO 137-007 from MeerKAT data with fast-resolve and compare
the results for validation with Dabbech et al., 2022. The MeerKAT dataset is significantly
larger than the VLA datasets, but the computational costs of fast-resolve remain moder-
ate due to the major/minor cycle scheme. A reconstruction of these sources with the classic
resolve algorithm using the same amount of data would be computationally out of scope.
To the best of our knowledge, no other Bayesian radio interferometric imaging algorithm
has been successfully applied to a dataset of similar size before.

9.7 Data availability

The raw data of the Cygnus A observation is publicly available in the NRAO data archive8

under project ID 14B-336. The raw data for the ESO137-006 observation is publicly avail-
able via the SARAO archive.9 (project ID SCI-20190418-SM-01) The fast-resolve re-
construction results are archived on zenodo.10 The implementation of the fast-resolve
algorithm will be integrated into the resolve algorithm.11
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Table 9.3: Prior parameters for Cygnus A reconstructions.
Cygnus A, band: S C X Ku
zero mode offset 18 21 20 20
zero mode mean 1 1 1 1
zero mode stddev 0.1 0.1 0.1 0.1
fluctuations mean 5 5 5 5
fluctuations stddev 1 1 1 1
loglogavgslope mean -2 -2 -2.2 -2.2
loglogavgslope stddev 0.2 0.2 0.2 0.2
flexibility mean 1.2 1.2 1.2 1.2
flexibility stddev 0.4 0.4 0.4 0.4
asperity mean 0.2 0.2 0.2 0.2
asperity stddev 0.2 0.2 0.2 0.2

Table 9.4: Prior parameters for ESO 137 reconstructions. For the two frequency bands,
the LO ( 961 − 1145 MHz) and the HI ( 1295 − 1503 MHz) band we used the same hyper
parameters.

ESO 137 006 007 background
zero mode offset 13 13 13
zero mode mean 1 1 1
zero mode stddev 0.1 0.1 0.1
fluctuations mean 3 4 4
fluctuations stddev 1 1 1
loglogavgslope mean -2.4 -2.4 -2.0
loglogavgslope stddev 0.1 0.1 0.1
flexibility mean 0.1 0.1 1.2
flexibility stddev 0.01 0.1 0.4
asperity mean 0.01 0.01 0.2
asperity stddev 0.001 0.001 0.2

9.9 Appendix

9.9.1 Prior parameters for Cygnus A imaging

In table 9.3 we list the hyper parameters of the Gaussian process model for the diffuse emis-
sion in the Cygnus A reconstructions. The exact definition of these parameters is explained
in detail in Arras et al., 2021a.

9.9.2 Prior parameters for ESO 137 imaging

In table 9.4 we list the hyper parameters of the Gaussian process model for the diffuse emis-
sion in the ESO 137 reconstructions. The exact definition of these parameters is explained
in detail in Arras et al., 2021a.
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Figure 9.15: The left panel shows the fast-resolve reconstruction of the synthetic
dataset. The right panel displays the underlying ground truth sky brightness. The field
of view (2 × 2 deg) and the uvw-coverage are the same as in the MeerKAT LO band obser-
vation (see table 9.2).

9.9.3 Application to synthetic data

For further validation, we applied fast-resolve to synthetic data for which we know the
underlying ground truth sky brightness distribution. The synthetic data mimics the setup of
the MeerKAT ESO137-006 observation in the LO band. As in the MeerKAT example, a
field of view of 2 × 2 deg is chosen. Furthermore, the uvw-coverage and frequency chan-
nels of the MeerKAT ESO137-006 LO band data (see table 9.2) are used. A prior sample
from the diffuse emission sky brightness model was drawn to the generate sky brightness
ground truth. The prior sample was multiplied with a taper function exponentially falling
towards zero at the edges of the field of view to ensure no bright emission is at the edges.
The resulting sky brightness distribution used as ground truth is displayed in figure 9.15.
Model visibilities were computed from this ground truth. Gaussian noise was added to the
mode visibilities using the weights of the real ESO137-006 observation for the inverse noise
covariance. The resulting dataset was reconstructed with fast-resolve.

The reconstruction results are displayed in figure 9.15. All bright emission features
are accurately reconstructed. Also, fainter features could successfully be reconstructed, al-
though with a lower resolution. Some very faint features could not be recovered. Overall,
no significant artifacts are visible in the reconstruction. Specifically, no artifacts similar to
the spurious synchrotron threads or the ripple around bright sources as in the real MeerKAT
data reconstruction are visible. As discussed in the main text, we assume that a subopti-
mal calibration creates these artifacts in the MeerKAT data reconstruction. The absence of
similar artifacts in the synthetic data supports this assumption, as no calibration errors were
added to the synthetic data.
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Figure 9.16: The left panel shows the fast-resolve residual data of the last minor cycle
in arbitrary units. On large scales, no significant structures of the source are left in the
residual, except for some small structures at the corners of the box containing the source
ESO137-006. The right panel shows a zoom into a representative region marked by the box
on the left. The zoomed image shows many point sources not fitted by the fast-resolve
reconstruction but left in the residual data.

9.9.4 Residual data

In figure 9.16, the fast-resolve residual data of the last major cycle of the MeerKAT
ESO137-006 LO band reconstruction is depicted. The residual data of the HI band recon-
struction looks similar. The left shows the residual for the full field of view. On large
scales, the edges of the box containing the discussed emission prior for the source ESO137-
006 (see figure 9.10) are visible. Otherwise, only very little structure of the primary sources
remained in the residual.

As discussed in the main text for the MeerKAT observations, only the diffuse emission
prior was used, which also modeled the flux of the point sources. The diffuse emission prior
is not tailored to point sources, reducing sensitivity. For this reason, many point sources
are not captured by the reconstruction but are left in the residual. The right panel of figure
9.16 shows a zoom into a representative region of the residual data image. As expected,
many faint point sources that were not (fully) captured by the reconstruction are visible in
the zoomed image. For observations like the ESO137-006 MeerKAT data, a dedicated point
source model for resolve and fast-resolve, capable of handling many sources, would
be beneficial but is left for future work.



Chapter 10

Other contributions

The previous chapters presented the results of my primary PhD projects. This chapter out-
lines contributions I made to other projects. The connecting element of all projects is their
methodology, building on Bayesian inference.

10.1 VLBI calibration

In the development of the radio interferometric imaging and calibration methods described
in the chapters 6 and 9, I concentrated on the application to GHz data of the single-site ra-
dio interferometers VLA and MeerKAT. Mathematically, very long baseline interferometry
(VLBI) with antennas distributed over much larger distances is equivalent to interferometry
with nearby antennas. The only difference is that the uvw-coordinates in the measurement
equation 3.27 are significantly larger. For this reason, very similar methods can be used
for the calibration and imaging of VLBI data. I contributed to the Bayesian calibration
and imaging of Very Long Baseline Array (VLBA) 43 Ghz data of the source M87, led by
Jong-Seo Kim and described in Kim et al., 2024. In contrast to the algorithm in chapter
6, this work neglected the direction-dependent effects of the antenna gains. Nevertheless, a
higher resolution and an improved reconstruction of the jet and counter-jet of M87 could be
achieved compared to the standard imaging algorithm CLEAN. By an analysis of simulated
data, the accuracy of the Bayesian calibration and imaging method was validated.

In the future, we plan to extend the algorithm for full polarization imaging and espe-
cially incorporate a calibration of the polarization leakage in the antenna receivers. How-
ever, this work is not yet published.

10.2 Bayesian imaging with ALMA

In addition to applying Bayesian imaging to VLBI data, I also contributed to the devel-
opment of new imaging methods for the Atacama Large Millimeter/submillimeter Array
(ALMA). ALMA is a single-site radio interferometer similar to VLA and MeerKAT, mea-
suring at significantly higher frequencies. This project aims at developing novel imaging
techniques for ALMA and builds besides other methods on the resolve framework. The
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project is led by Fabrizia Guglielmetti and an overview is given in Guglielmetti et al., 2023.
The part of the method development building on resolve is currently led by Vishal John-
son, aiming at obtaining spectrally resolved images from ALMA data.

10.3 Gravitational lensing

I was also involved in gravitational lens reconstruction projects. Gravitational lens recon-
structions are a challenging inverse problem, similar to radio interferometric calibration and
imaging. In radio interferometric data reconstructions, there is an ambiguity between the
antenna gains and the sky brightness. In gravitational lens reconstructions, there is an am-
biguity between the brightness distribution of the lensed source and the mass distribution
in the lens. Like all inverse problems, also gravitational lensing can be understood as a
Bayesian inference problem as outlined in chapter 4.

I contributed to two Bayesian gravitational lens reconstruction projects. Specifically,
I contributed to the development of the LensCharm framework led by Julian Rüstig and
Mattheo Guardiani. LenseCharm provides parametric and nonparametric lens and source
models and can reconstruct strong-lensing systems using the variational inference methods
discussed in chapter 4. In the publication Rüstig et al., 2024 LensCharmwas introduced and
validated on simulated data as well as real JWST observations. Furthermore, I contributed
to the work of Aymeric Galan, combining the HercuLens (Galan et al., 2022) package
with Bayesian inference. HercuLens combined with Bayesian inference was successfully
applied in Galan et al., 2024 to JWST data of a galaxy cluster lense.

10.4 Nested sampling

Besides the astrophysics projects mentioned above, I also contributed to a statistics project
improving the estimation of Bayesian evidence P(d) (see equation 4.4) from nested sam-
pling data. While the evidence does not need to be computed for many Bayesian infer-
ence applications, such as the ones presented in this thesis, accurate evidence estimates
are required for model selection tasks. The evidence estimate of nested sampling relies on
stochastic estimates of the prior volumes enclosed by likelihood contours. The prior vol-
ume estimation itself can be turned into a Bayesian inference problem. By incorporating
additional information as a prior into this Bayesian inference problem, the uncertainty on
the relation between likelihood and prior volume can be reduced. Specifically, the prior in-
formation we incorporate is that in many applications the likelihood prior volume relation is
a smooth function. Ultimately, this increases the accuracy of the nested sampling evidence
estimate. This project was led by Margret Westerkamp, and progress on this idea has been
presented in Westerkamp et al., 2023 and Westerkamp et al., 2024.

10.5 NIFTy

Furthermore, I contributed to the development of the Bayesian inference package NIFTy
(Selig et al., 2013b; Steininger et al., 2017; Arras et al., 2019a), on which the Bayesian
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inference applications of this thesis build. The original NIFTy implementation was built on
NumPy for numerical computations and included a custom automatic differentiation engine
in later versions to enable efficient gradient-based optimization. The use of our NumPy-
based automatic differentiation engine became unfavorable with the development of ma-
chine learning frameworks such as JAX that natively support automatic differentiation and
GPU-accelerated computing. For these reasons, NIFTy was reimplemented and modernized
in JAX and named NIFTy.re (Edenhofer et al., 2024a). The algorithms of the chapters 5 and
6 still build on the old NIFTy implementation, while the fast-resolve algorithm (chapter
9) utilizes the JAX accelerated NIFTy.re. I contributed to both the original NumPy-based
implementation and the JAX implementation NIFTy.re.
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Chapter 11

Conclusion

11.1 Summary

The Earth’s atmosphere is opaque to radiation for most of the electromagnetic spectrum.
However, the atmosphere is transparent to optical light and radio waves, allowing us to study
the cosmos at these wavelengths with ground-based telescopes. This thesis contributes soft-
ware and algorithms to improve the observational capabilities of ground-based telescopes.
The algorithms are based on Bayesian inference to reconstruct images of the sky with im-
proved resolution and dynamic range from raw telescope data. The probabilistic approach
to the imaging problem enables reliable uncertainty quantification for the reconstructed im-
ages.

The first part of the thesis addresses the reconstruction of images in the presence of
atmospheric perturbations. Specifically, chapter 5 contributes a high-contrast imaging algo-
rithm for optical telescopes. This algorithm can reconstruct faint companions, such as exo-
planets, at a sub-arcsecond distance from the host star. As shown in chapter 5, this algorithm
outperforms other reconstruction algorithms on short high-cadence frame sequences. The
direction-dependent calibration and imaging algorithm for radio interferometry presented
in chapter 6 goes in a similar direction. It can reconstruct direction and time-dependent
variations of the antenna gains simultaneously with the radio sky image. Incorporating the
direction-dependent effects leads to an increased dynamic range and resolution of the re-
covered images, also in comparison with another direction-dependent calibration algorithm
building on compressed sensing. The accurate calibration of direction-dependent effects is
important, especially in imaging modalities where very high dynamic ranges are required,
such as for very bright sources as Cygnus A or the deep field observations as presented in
the science case in the introduction (section 1.1.2).

The second part of the thesis focuses on the challenges of image reconstruction in the
era of modern radio interferometry with large data volumes. Chapter 8 presents the software
package JAXbind to easily bind external code into the machine learning framework JAX.
While JAXbind is useful for many projects, the use case for radio interferometry is to bind
high-performance implementations of the instrument response into the JAX framework.
This allows us to utilize the advantages of the JAX programming framework for resolve.
Additionally, JAXbind has already been used for binding spherical harmonic transformation
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of the DUCC package (Reinecke, 2024) to JAX, as well as binding the multi-grid solver
PICARD (Kissmann, 2014) for cosmic ray propagation to JAX.

The traditional CLEAN imaging algorithm has many limitations, such as, suboptimal res-
olution of the recovered images. Many advanced imaging algorithms, such as the resolve
framework, have been developed in recent years to improve radio interferometric imaging
capabilities. While resolve, and in particular the method presented in chapter 6, have
significantly improved the quality of the recovered images, these improvements come at
an increased computational cost compared to the standard imaging method CLEAN. This
increase in computational cost becomes prohibitively expensive for current flagship inter-
ferometers such as MeerKAT or future arrays. Similarly, many other advanced imaging
algorithms are computationally significantly more expensive than CLEAN. For this reason,
none of the novel imaging algorithms has yet been widely adopted to replace the traditional
CLEAN algorithm. fast-resolve presented in chapter 9 translates some of the computa-
tional shortcuts of the CLEAN algorithm into a Bayesian reconstruction algorithm. While
the accuracy of the fast-resolve reconstructions is on par with resolve, the runtime of
the reconstructions is reduced by orders of magnitude. Therefore, fast-resolve has the
potential to overcome the computational limitations of advanced imaging algorithms and
make Bayesian imaging applicable to a much larger range of datasets. As a demonstration,
chapter 9 presented a fast-resolve reconstruction of a large MeerKAT dataset. To my
knowledge, no other Bayesian imaging algorithm has previously reconstructed a similar-
sized radio interferometric dataset.

11.2 Conclusion and Outlook

The developments of this thesis demonstrate the impact of high-accuracy reconstruction
algorithms on the observational capabilities of telescopes. Such developments are critical,
as improvements in telescope hardware alone are not sufficient for many science cases,
as outlined in the examples in the introduction (section 1.1). Among the algorithms in
this thesis, fast-resolve probably has the largest potential to significantly impact the
future of imaging with a ground-based telescope. fast-resolve, or an algorithm based
on its methodology, has the potential to become a widely applicable radio interferometric
imaging algorithm, overcoming the limitations of the current CLEAN-based imaging, and
thereby significantly improving the observational capabilities. This is a major result of this
thesis.

Chapter 9 demonstrated the accuracy and scalability of the fast-resolve concept.
Additional capabilities are required to turn fast-resolve into a widely applicable imag-
ing algorithm. These include polarization and multi-frequency imaging. Furthermore, an-
tenna gain calibration methods should be added to fast-resolve, ideally incorporating
direction-dependent effects as presented in chapter 6 for the classic resolve framework.
These developments are left for the future, and I am curious to see which of them will
become reality, and how the algorithms for which this thesis has laid the foundations will
evolve.
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