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Dissertation
an der Fakultät für Physik

der Ludwig-Maximilians-Universität
München

vorgelegt von
Nathalie Gabriele Schäffler

aus München

München, den 17.10.2024



Erstgutachter: Prof. Dr. Joachim O. Rädler
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Zusammenfassung
DNA spielt eine grundlegende Rolle in lebenden Systemen, indem sie genetische In-
formationen speichert und reguliert. Neue Entwicklungen wie Prime Editing ermög-
lichen präzise Modifikationen der Basenpaare des Genoms und versprechen damit
verbesserte Therapien für genetische bedingte Krankheiten. Die gezielte Veränderung
einer genetischen Sequenz könnte außerdem eine wichtige Rolle bei der Entwicklung
DNA-basierter Rechensysteme spielen. Viele Publikationen konzentrieren sich aktuell
hauptsächlich auf die Verbesserung der Effizienz von Prime Editing durch Optimierung
von Proteinen, pegRNAs und Transfektionsmethoden. In diesen Studien wird die Ef-
fizienz eines Editing-Schritts meist jedoch erst nach mehreren Tagen gemessen, was für
Anwendungen wie biologische Computer zu ungenau ist. Um die Kinetik von Prime
Editing optimieren zu können, ist das Ziel dieser Arbeit sie erstmals mithilfe von
experimentellen Methoden und mathematischen Modellen präzier zu quantifizieren.

Im ersten Teil der vorliegenden Arbeit wird die ”Live Imaging on Single-Cell Ar-
rays” -Methodik benutzt, um Prime-Editing-Ereignisse anhand der Verteilung von
Einzelzelldaten zu charakterisieren. Zunächst wird gezeigt, dass der Beginn eines Flu-
oreszenzsignals nach Transfektion mittels mRNA-Transfektion 13 h schneller erfolgte
als über Plasmid-DNA (pDNA). Mit einer Zelllinie, die einen Fluoreszenzreporter ex-
primiert, welcher nur nach erfolgreichem Prime Editing grünes Licht emitieren kann,
wird die ”time-to-edit”, die Zeit von der Transfektion der Prime-Editing-Komponenten
bis zum Einsetzen der Fluoreszenz, bestimmt. Der Vergleich von mRNA- und pDNA-
Transfektion des Prime Editing Systems zeigt, dass die mRNA-Transfektion 7 h
schneller war als die pDNA-Transfektion, aber auch zu geringerer Effizienz führte. Die

”editing time”, also die Zeit von der Expression des Prime-Editing-Komplexes bis zum
Einsetzen der Fluoreszenz, ist bei mRNA-basierter Transfektion 15 mal langsamer als
über pDNA. In dieser Arbeit wird außerdem gezeigt, dass in Übereinstimmung mit
der ”branch-migration”-Theorie längere Edits quadratisch mit längeren Editing-Zeiten
korrelieren. Durch mathematische Modellierung wurden limitierende Parameter, wie
das Transfektionsverhältnis von pegRNA zu Prime-Editor-mRNA, extrahiert und die
Genauigkeit verschiedener Expressionsmodelle bewertet.

Basierend auf der ”search-and-replace” Operation, ermöglicht durch Prime Edit-
ing, wird abschließend ein theoretischer Rahmen für die Implementierung von Teilen
des SKI-Kombinator Kalküls, eine reduzierte Form des Lambda Kalküls, vorgeschla-
gen. Für diese theoretische Implementierung sind jedoch eine genaue Reihenfolge und
Präzision der Operationen notwendig. Inwieweit diese Voraussetzungen in einer ex-
perimentellen Implementierung sichergestellt werden können, muss verifiziert werden.

Insgesamt tragen die in dieser Arbeit erstmalig erstellten Prime Editing Modelle
und Vergleiche mit experimentellen Daten zum besseren Verständnis der Kinetik bei
und unterstreichen, wie wichtig es ist, bei der Optimierung dieser Technik nicht nur die
Effizienz, sondern auch die Kinetik zu berücksichtigen. Die hier präsentierten Ergeb-
nisse bieten mögliche Ansätze für Informationsverarbeitung mithilfe von DNA, was
eine Grundvoraussetzung für zukünftige, DNA-basierte Computer darstellt. Darüber
hinaus können diese Erkenntnisse zur Kinetik auch in weiteren Bereichen, beispiel-
sweise in der Arzneimittelforschung, von Nutzen sein.
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Summary

DNA plays a fundamental role in living systems for storing and regulating genetic
information. Recent scientific advancements such as prime editing allow precise mod-
ifications of base pairs on the genome, which promises to improve gene therapy. The
possibility of precisely changing DNA sequences may also play a significant role in the
development of advanced biological computing systems. Current research focuses pri-
marily on prime editing efficiency through better protein engineering, pegRNA design,
and delivery methods. In these studies, a single editing step is measured only after
several days, which is to inaccurate for applications like biocomputing. Quantifying
the kinetics of prime editing more precisely is therefore important for optimizing this
process. This thesis aims to address this gap using a combination of experimental
methods and mathematical models.

In the first study, the “Live Imaging on Single-cell Arrays” assay is used to char-
acterize prime editing events based on the distribution of single-cell data. First, it is
demonstrated that transfection of fluorescent reporters via mRNA is 13 h faster than
using plasmid DNA (pDNA). This approach is then used to monitor the kinetics of
prime editing in real-time by employing a modified cell line, capable of expressing
fluorescence only after successful prime editing. The time-to-edit is defined as the
time from transfection of the prime editing components to the onset of fluorescence.
The comparison between mRNA and pDNA delivery shows that mRNA delivery is
7 h faster than pDNA but resulted in reduced efficiency. Measuring the time from the
expression of the Prime Editing complex to the onset of fluorescence, so the editing
time itself, showed that this is 15 times slower for mRNA transfection than for pDNA
transfection. This study also indicates that longer edits correlated with longer edit-
ing times, consistent with branch migration theory. Through mathematical modeling,
limiting parameters were extracted for mRNA-based delivery, such as the initial ratio
of delivered pegRNA to prime editor mRNA, and the accuracy of different expression
models was evaluated.

Finally, based on the “search-and-replace” operation provided by prime editing, a
theoretical framework for the implementation of parts of the SKI combinator calcu-
lus, a reduced form of the lambda calculus, is proposed. However, this theoretical
implementation requires exact sequence and precision of operations. Whether these
requirements can be ensured in an experimental implementation should be verified.

In conclusion, the novel prime editing models developed in this study, alongside
comparisons with experimental data, contribute to a better understanding of prime
editing and highlight the importance of considering not only efficiency but also kinetics
when optimizing this technique. The results presented here offer possible approaches
for information processing using DNA, which is a prerequisite for future DNA-based
computers. In addition, these findings on kinetics can also be useful in other areas,
such as drug delivery research.
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and Joachim O. Rädler. “Quantifying Prime Editing Kinetics - Timelapse Flu-
orescence Data and Model Inference”. In: Molecular Therapy 32.4 (Apr. 2024),
Nr 686, p345. doi: 10.1016/j.ymthe.2024.04.020.
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1. Introduction

“DNA is the software and basis of all life.”
J. Craig Venter

DNA, often referred to as the “software of life” [1–3], plays a central role in living
systems. It acts as a storage medium for genetic information, regulates the transfer
of this information, and serves as a blueprint for cellular functions [4]. DNA has the
highest information density in the known universe, approximately 1019 bits/cm3, which
is significantly higher than standard flash memory at around 1016 bits/cm3 [5]. DNA
also functions as a blueprint for the synthesis of proteins, which are essential for the
structure and function of living organisms. The transcription and translation processes
of these DNA sequences are collectively known as gene expression, a fundamental
process tightly regulated by cells [4].

The ability to influence gene expression has opened new avenues for controlling
cellular processes [6], since the use of synthetic DNA enables the encoding of digital
data in living organisms [7]. Researchers can, for example, introduce plasmids to de-
liver new genetic material into cells, allowing the temporary expression of fluorescent
proteins or the development of resistance to specific antibiotics [8]. Similarly, mRNA
transfection can effectively silence genes or express proteins without permanently al-
tering the host genome [9]. These methods allow researchers to manipulate and study
specific pathways or cellular behaviors.

Nonetheless, cells extensively regulate their own gene expression. For example, the
presence of specific RNA molecules can lead to the suppression of particular genes
[10]. This has been likened to the function of logical gates. Scientists have replicated
these logic gate computations using strand displacement, mimicking how silicon-based
computers process information [11, 12]. Simple genetic computers and synthetic cells
have been constructed [13–15], laying the foundation for the design of more complex
systems.

In parallel, researchers have developed techniques to edit the genome of living sys-
tems directly, such as zinc finger nucleases, base pair editing, and CRISPR, opening
up new possibilities for designing biological computers [16]. However, these methods
face specific challenges, including double-strand break stress, off-target effects, low
efficiency, and logistical challenges in delivery [17]. Anzalone et al. proposed a new
method called prime editing, “a versatile and precise genome editing method that di-
rectly writes new genetic information into a specified DNA site” [18]. This expanded
possibilities for designing biological computers [19]. Still, efficiency remains one of the
main challenges [20]. This has been addressed in various studies, such as improving
pegRNA design [21], developing different prime editors [22] or using nicking single
gRNAs in combination with pegRNAs [23].
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1. Introduction

Despite these improvements, most time frames reported for prime editing are on the
order of days [18, 22, 24]. When a single computation step on a biological computer
using prime editing takes a day to compute, as noted in [19], scaling this up does
not compare well with contemporary high-performance computing systems. These
can achieve performance levels exceeding 1018 computations per second [25]. So,
increasing the speed of prime editing is crucial, but understanding the kinetics of prime
editing and developing methods to manipulate and optimise them is a prerequisite for
making biological computers feasible. Having control over these kinetics can also be
advantageous for the design of therapeutic treatments for gene therapies. It has been
shown that CRISPR systems tend to accumulate in the liver and have a high chance
of off-target effects [26], therefore, some therapies need short-lived yet efficient prime
editing [27]. However, this area of prime editing kinetics has not been extensively
studied.

With respect to kinetics, prime editing can be simplified as a standard transfer of
information: a process from DNA to RNA to protein, followed by the editing process
as described by Anzalone et al. [18]. This then leads to a second cascade of DNA-to-
RNA-to-protein. Both of these cascades are standard gene expression systems, similar
to the expression of fluorescent proteins. The kinetics of these reporters have already
been studied using empirical data and mathematical modelling [28–31]. Studies have
targeted different parts of the information transfer machinery. For example, tran-
scription speeds can vary widely [32], slow codons in mRNA can reduce the ribosome
translation speed [33], and proteins differ in maturation times [30]. These systems
are also highly regulated by sequences such as promoters for DNA and untranslated
regions (UTRs) for mRNA. Given the complexity of these systems, it is necessary to
simplify them and study only small variations.

In this thesis, our aim is to better understand the kinetics of prime editing using a
delivery-based as well as a modelling approach. Specifically, we compare the delivery
of prime editing components via plasmid DNA (pDNA) and mRNA. To do this, we
use a green fluorescent protein encoded in the genome of our cell line as a reporter for
successful editing. First, we estimate the parameters of this protein starting from the
protein level up to the delivery via pDNA. This allows us to determine delivery times
for our experimental setup and delivery methods. Next, we investigate the overall
kinetics of prime editing and define the “time-to-edit”. This time-to-edit comprises
the delivery time, which includes the delivery and expression of the prime editing
system, and the editing time itself. We then image the editing time to observe the
differences between mRNA and pDNA delivery using a second fluorescent reporter
co-expressing with the prime editor. Additionally, we examine the impact of editing
length on the editing time. Using similar models as for the parameter estimation of
mGL, we model prime editing expression and assess how single parameter variations
influence the expression kinetics of our prime editing system. Finally, we propose
ideas for establishing a computational system in living cells using DNA and prime
editing on the basis of the computational model of the Lambda calculus.

This thesis is structured to systematically build knowledge about the kinetics of
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fluorescent reporters and prime editing, culminating in the proposal of a DNA-based
biological computational system.

Chapter 2 explains the fundamental concepts, covering prime editing and how it
differs from the established CRISPR system. The chapter also discusses the general
structure of genes and their regulation, followed by an exploration of expression kinet-
ics using fluorescent reporter proteins. In addition, a brief introduction to chemical
reactions is provided. The chapter concludes with a short introduction to computer
science, offering definitions of key concepts such as computers, computation, and the
Lambda calculus.

Chapter 3 describes the experimental methods used in this thesis, including bright-
field, phase and fluorescence microscopy, nucleic acid delivery into cells, and a short
introduction to Live Imaging on Single-Cell Arrays (LISCA).

Chapter 4 provides an overview of kinetic studies, using the fluorescent protein
mGreenLantern (mGL) as an example to introduce kinetic rate equations in the form
of ordinary differential equations (ODEs) and the parameter estimation problem. It
demonstrates how parameters such as protein maturation and degradation can be
extracted using LISCA. The following section applies this approach to extract the
translation and mRNA degradation parameters by using mRNA transfection of mGL.
Then, pDNA transfection and LISCA are used to extract the transcription and pDNA
degradation rates. This allows us to determine and compare the delivery times for
pDNA and mRNA. The second half of the chapter explains how the LISCA approach
can be adapted to measure the kinetics of prime editing. We introduce a cell line
that stably expresses a variant of mGL, which is blue-shifted due to a mutation in
its DNA sequence. This change is targeted by our prime editing system and is first
validated using bulk measurements. The single-cell assay is then adapted to image
prime editing, and a new algorithm is developed to determine the onset of prime
editing.

Chapter 5 delves into the kinetics of prime editing, using the assay developed in
the previous chapter to compare pDNA and mRNA-based delivery of the prime editing
system. It then examines the differences in editing time for both pDNA and mRNA
using a second fluorescent protein, which is co-expressed with the Prime Editor (PE).
The chapter introduces a mathematical model to explain the previously measured
distributions and provides the first model for prime editing expression. Additionally,
it explores the correlation between the length of the editing frame and the editing
time using pDNA delivery.

Chapter 6 elaborates on the modelling approach for prime editing expression. It
begins with the simplest model and discusses its implications for the experimental
setup. Two additional model variations are then introduced, demonstrating their
influence on the kinetics of prime editing expression.

Chapter 7 lays the foundation for a living computational system, outlining the
necessary requirements and challenges that remain to be addressed. It builds an
analogy between Lambda calculus, as explained by Alonzo Church, and how this
computational model can be translated into DNA-based machinery using prime editing
and yeast cultures.
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1. Introduction

Chapter 8 provides an outlook for future research and proposes directions for
studies that build on this thesis.

Additional details on experimental protocols, material production, gene sequences,
and data evaluation are provided in Appendix A. Appendix B contains background
data and more detailed figures.
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2. Fundamental Concepts

This chapter introduces essential background information used in Chapter 4 to Chap-
ter 6 to study the kinetics of prime editing and their implications for biocomputing
as discussed in Chapter 7. First, prime editing and gene expression concepts are
introduced and followed by some basic concepts of computer science.

2.1. Gene Expression and Prime Editing
All living organisms rely on deoxyribonucleic acid (DNA), “without DNA there is
no life” [34]. DNA is used as a blueprint and regulator for ribonucleic acid (RNA)
and protein synthesis, for information storage and biological memory [35, 36]. Bacte-
ria, for example, store segments of DNA from previous viral infections — called the
protospacer — in their own genome in a sequence called Clustered Regularly Inter-
spaced Short Palindromic Repeat (CRISPR) [37]. These form part of the bacterial
immune system together with a CRISPR associated protein (Cas) and allow bacteria
to recognize and target specific viral sequences, enhancing their ability to neutralize
subsequent viral infections of the same or similar viruses [38, 39]. The principles un-
derlying this natural defense system are foundational to contemporary gene editing
techniques and will be thoroughly examined in the following.

2.1.1. Inherent and Exogenous Genetic Information Transfer
Cells and other organisms rely on functioning proteins, which are produced and reg-
ulated by gene expression. These expression processes are explained by the central
dogma of molecular biology, which can be modeled by kinetic rate equations as pre-
vious studies have shown [P3, 40, 41]. Before scientists were able to even manipulate
cells by changing its genome directly, they used various delivery methods to intro-
duce exogenous genetic information in form of plasmid, RNA and Ribonucleoproteins
(RNPs) [8].

The Central Dogma of Molecular Biology

The central dogma of molecular biology describes the directional flow of genetic infor-
mation within biological systems (Figure 2.1). It proposes that genetic information is
transferred from DNA to RNA to proteins, showing the sequential process fundamen-
tal to gene expression [35]. In a first step, DNA inside the nucleus is transcribed into
its RNA counterpart, which then diffuses into the cytosol. There it can get translated
by ribosomes to produce amino acids—folding into functional proteins. Each step can

5



2. Fundamental Concepts

Ribosome

TranslationTranscription

RNA
polymerase

DNA RNA Amino acids

Figure 2.1: The central dogma of molecular biology describes the directional flow of genetic infor-
mation from DNA over RNA to proteins.

be described by kinetic rates, but for various genes these can range over several orders
of magnitude, depending on factors like cell type, promoters, enhancers/silencers, and
more.

Modeling the Central Dogma

Previous studies showed that it is possible to model part of the central dogma with
kinetic rate equations and extract the rates on a single-cell level using transfected
fluorescent reporter [P3, 28, 41–43]. In a simplified view mRNA translation can be
described by two equations:

dRNA

dt
= −δRNA(t) (2.1)

dP

dt
= ktl · RNA(t) − βP (t) (2.2)

Protein (P) is produced from the current amount of mRNA present in the cell with
rate ktl. δ describes the degradation rate of transfected mRNA in the cytosol, where
as protein degrades with β. Solving these equations with m0 as starting concentration
of mRNA leads to the rate of protein production in a single cell:

P (t) = m0 · ktl

δ − β
· (1 − e−(δ−β)(t−t0)) · e−β(t−t0) (2.3)

With these equations and experimental single cell assays, we can estimate the param-
eters of different proteins, for example, fluorescent reporters.

2.1.2. Core Structures of Genes and Regulation of their
Expression Kinetics

Regulatory networks controlling the expression of genes and production of proteins,
enzymes and other important parts of the cell machinery, are vast and complex. Yet
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2.1. Gene Expression and Prime Editing

those networks — either as DNA or mRNA — are usually build with a overarching
structure of three key regions. A starting region to bind the transcription or trans-
lation machinery, the gene itself and then an ending region. Additionally, genes may
include other sequences that further contribute to the regulation and modification of
the gene expression.

DNA

Genes start with a promoter region, which always consists of a core promoter sequence.
This core promoter sequence offers a binding site for the RNA polymerase and different
sequences exhibit varying levels of transcription initiation activity, thus influencing
the overall transcriptional output of the gene. Additional sequences like enhancers,
silencers, insulators and repressors exist, which fine tune the regulation [44]. The
to-be-transcribed gene is located within the open reading frame (ORF), which can
usually be categorised in two types of sequences: Exons and introns. Exons are the
regions coding for the actual amino acids of a protein and are transcribed into mRNA,
depending on length and sequence varying widely in their kinetics [45]. Introns, which
are non-coding sequences, also have an influence on the kinetics by intervening with
the correct splicing of the DNA, but are removed during mRNA processing. The
transcription process concludes at the terminator region, a sequence that signals the
RNA polymerase to cease transcription. The sequence of these regions can also have
a significant effect on the efficiency of the overall transcriptional output [46].

When transferring genetic information using plasmids rather than stable integra-
tion into the genome, additional parts are needed for upkeep of the plasmid, such as
the origin of replication (ORI) and selection markers. The ORI is essential for the
replication of the plasmid, offering the starting point for DNA replication and there-
fore for duplication of the plasmids during cell division. Selection markers—often
carrying an antibiotic resistance—allow for the selection of cells that have successfully
incorporated the plasmid.

mRNA

Transcribed mRNA undergoes several modifications until it becomes mature mRNA.
After maturation it includes several distinct regions playing crucial roles in the regula-
tion of gene expression at the post-transcriptional level. As first modification a 5’cap
is added to the front of the primary mRNA transcript. This protects the mRNA from
degradation, facilitates the export of the mRNA from the nucleus to the cytosol and
assists in ribosome binding during translation. Next to the 5’cap and before the start
codon is the 5’ UTR, a non-coding sequence regulating translation [47, 48] and mRNA
stability [49]. The following coding region, flanked by the start and stop codons, is
the sequence that is translated into amino acids by the ribosome, forming the final
protein. Downstream of this is the 3’ UTR, which affects mRNA stability, localiza-
tion and translational efficiency, by offering binding sites for RNA-binding proteins or
small non-coding RNAs [50, 51]. The 5’cap together with the 3’ poly-A tail, a stretch
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of adenine nucleotides, greatly influence the half-life of mRNA [29, 52].
Since all these structural elements and regulatory sequences have different influ-

ences on the kinetics, it is crucial to maintain consistency for accurate comparison of
gene expression kinetics. Using fluorescent reporters provides a straightforward and
effective method to measure and visualize these kinetics by enabling real-time moni-
toring of gene expression dynamics in systems like LISCA as mentioned in previous
studies, which are explained in the following section.

2.1.3. Measuring Kinetic Rates Using Fluorescent Reporter
Proteins

Fluorescent reporter proteins are integral tools in biological applications to visualize
and track patterns of expressed proteins within living cells and organisms. These
proteins emit fluorescence when exposed to specific wavelengths of light, making them
crucial for a wide range of applications, including studying gene expression, protein
localization, and cellular dynamics. One well-known reporter protein is the green
fluorescent protein (GFP), originally derived from the jellyfish Aequorea victoria [53–
55]. GFP has a barrel structure composed of eleven β-sheets with an α-helix inside
that houses the chromophore. By altering this chromophore, scientists were able to
develop a range of differently colored fluorescent proteins, excited by different specific
wavelengths compared to GFP, like mScarlet, emitting a red fluorescence [56]. These
modifications involve changes in the amino acid residues surrounding the chromophore,
leading to shifts in the emission spectrum. These different amino acids are produced
by small edits in the DNA or mRNA sequence. Additionally modifying certain other
parts of the sequences can enhance its brightness and stability, like with mGL, which
shines 6x brighter than enhanced GFP (eGFP) [57, 58].

Leonhard et al. [59] compared mRNA and pDNA transfections of eGFP and showed
that the onset time for mRNA was usually within 5 h of transfection, where for pDNA
it ranged from 2 h up to 20 h. They introduced the simple reaction model already
mentioned in Equation 2.2 and the solution Equation 2.3. For eGFP mRNA they
extracted the average mRNA degradation rate of 6.2 × 10−2 h−1 and protein degra-
dation of 5.6 × 10−2 h−1. Ferizi et al. [51] compared different UTR combinations and
their influence on transgene expression. They used a d2eGFP construct, which pro-
duces a destabilized eGFP with a faster protein degradation than normal eGFP. Using
UTR-stabilized mRNAs of this d2eGFP lead to higher expression levels and longer
functional half-lives. Reiser [29] then used a three-stage model for eGFP, where a
maturation step for the protein was introduced, and found that longer polyA tail
lengths increased the expression of fluorescent protein. Finally Krzysztoń et al. [28]
also used the three-stage model to fit fluorescence traces of eGFP and CayenneRFP
mRNA transfections into cells to extract the mRNA expression kinetics. They found
mean protein degradation rates for eGFP and CayenneRFP to be 5.22×10−3 h−1 and
4.21 × 10−2 h−1 and maturation rates of 1.28 h−1 and 0.3 h−1 respectively. Kinetics
like these can be modeled using the Catalyst.jl package in the programming language
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Julia [60], which will be applied for mGL in Chapter 4.

2.1.4. Chemical Reactions and their Kinetics
Chemical reactions and their rates provide critical insights into how processes unfold
over time. The rate of a chemical reaction refers to the speed at which the concentra-
tion of reactants or products change over time. Different reaction types are defined
as follows, based on [61, 62].

First-Order Reactions

A first-order reaction is based on the conversion of substrate A into substrate B. For
example, the maturation of an amino acid chain (AA chain) into a functioning protein
is a first-order reaction. In this process, substrate A is consumed to produce substrate
B. Here, the production rate vmat of the protein is dependent on a rate constant kmat

and the concentration of available protein A.

A → B (2.4)

vmat = kmat · A(t) or − dA

dt
= k · A(t) (2.5)

The concentration of A decreases over time as it is used up to form B. The system
explained in Equation 2.2—for example—is set up of 3 first-order reactions.

Pseudo-First-Order Reactions

A pseudo-first-order reaction is similar to a first-order reaction, but the initial sub-
strate A is not used up to produce B and stays constant throughout the reaction.
Simplified to a single step of transcription, the central dogma can be described as
such a pseudo-first-order reaction rate law. The presence of the DNA A leads to pro-
duction of RNA B without the DNA being used up. The rate of production vtc of B
is still proportional to the concentration of A and has a rate constant ktc.

A → A + B (2.6)
vtc = ktc · A(t) (2.7)

Second-Order Reactions

Second-order reactions are given in a system, where two substrates (A, B) combine
to form a new product C. The two initial substrates are being depleted, leading to
a rate v, which is dependant on the concentrations of the two reactants and a rate
constant k:

A + B → C (2.8)
v = k · A(t) · B(t) (2.9)
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Catalytic Reactions

Generally, when a substance’s A presence (often enzymes) leads to the production of a
second substance B, one speaks of a catalytic reaction. A is called the catalyst and is
not used up by the production of B. Rate laws for one and two substrates are similar
to first and second order reactions, but A is generally constant, when not depleted
through another path.

2.1.5. Gene Editing

By leveraging the “search-and-cut” technique derived from bacteria [63] and combining
it with the knowledge about repair mechanisms inside different organisms, researchers
developed gene editing tools that enable precise modifications to an organism’s DNA
[64]. This advancement allows scientists to correct genetic defects, enhance traits, and
study gene function [16]. Techniques such as CRISPR/Cas and prime editing have
revolutionized gene editing by providing a highly efficient and versatile method for
targeted genetic alterations in a wide range of organisms [65].

Cas9

DSB

Cut DNA

NHEJ HDR
+ Template

gRNA

A: The CRISPR/Cas system consist of a gRNA
and a Cas protein to enable it to cut DNA. Af-
ter the DNA has been cut, the cellular machin-
ery repairs it again. This can either be done by
non-homologous end joining (NHEJ) to create
a frame-shift by indels or homology-directed
repair (HDR) when provided with some tem-
plate DNA shown in green.

Cas

Search
Replace

Base pair
change

Removed
sequence

Added
sequence

RT domain

pegRNA

PE {

B: In prime editing, the Cas protein is fused to
a reverse transcriptase (RT) domain to form
the PE. The second end of the gRNA contains
the edit. Using prime editing we can produce
all base pair changes, remove and add extra
sequences very specifically.

Figure 2.2: Comparison of CRISPR/Cas and prime editing
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CRISPR/Cas

As previously mentioned, the CRISPR/Cas system consists of two components. The
first component is the guide RNA (gRNA), which is produced from the CRISPR
region and is complementary to a specific DNA sequence. The second component is
the RNA-guided DNA-nicking domain or Cas protein, which has the ability to cut
DNA strands. This Cas protein contains nuclear localization signal (NLS) sequences
facilitating the transport of the protein into the nucleus towards the genome of cells.
There the Cas protein can bind to a protospacer adjacent motive (PAM) sequence,
which enables the gRNA to split open the target DNA into two single strands. The
Cas can then cut either both or just a single strand, depending on the specific protein
used (Figure 2.2A). The CRISPR/Cas complex then releases the DNA again and the
cellular machinery tries to repair the DNA. For double strand break (DSB), HDR is
performed, when the cell is supplied with a template DNA which it incorporates, this
way long edits with specific sequences can be accomplished. Otherwise the cell will
try to repair the DSB and in the process might loose or gain some base pairs at the
break, which leads to a frame-shift and can then disable following genes. This is called
non-homologous end joining (NHEJ).

Prime Editing

Prime editing is a new evolution of the CRISPR/Cas system developed by Anzalone
et al. [18]. Unlike traditional CRISPR/Cas techniques, prime editing creates a single
strand break (SSB) instead of a DSB. Additionally, it provides a template along with
the gRNA to enable every base pair edit, including the adding of missing sequences
at predetermined loci and the accurate deletion of specific sequences.

For this to work the Cas—here specifically SpCas9 (Streptococcus pyogenes Cas9)—
is fused to a reverse transcriptase (RT) domain (see Figure 2.2B) to form the PE. The
gRNA is expanded to include the template for the edit (Figure 2.3), and this modified
RNA is referred to as the prime editing guide RNA (pegRNA). Together, the PE and
the pegRNA assemble to build the prime editing complex. To perform an edit, the
following five steps are then carried out (Figure 2.3C). First the PE-pegRNA complex
binds the target DNA. The guide sequence of the pegRNA, which is complementary
to the part of the DNA, where the edit is supposed to happen, hybridizes to it. This
enables the Cas to cut the unbound strand. The primer binding site (PBS) of the
pegRNA binds the nicked strand and the template, following the PBS on the pegRNA,
is then reverse transcribed onto this nicked strand. Once the PE-pegRNA complex is
unbound again, the flap equilibration takes place. This is a thermodynamical process
and can be described as branch migration as explained in the following paragraph.
DNA repair then resolves the double flap and SSB to produce either an stably edited
DNA or the original sequence. Since the original sequence can be bound again by the
guide, if the edit was not incorporated and PE-pegRNA complex is still available, the
whole process can start anew, which results in high editing efficiencies over time [18].
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PBS' RT' w/o edit

PAM
Cut

Guide'

Target DNA

A: The target DNA strand has a PAM
sequence, where the Cas can at-
tach. The other sections of the DNA
are color coded complementary to
the prime editing guide RNA (pe-
gRNA).

pegRNA
PBS

PAM'

EditRT w/o edit

Guide
B: On one side of the pegRNA is the

guide sequence, which is comple-
mentary to the original DNA se-
quence. The other side contains a
primer binding site (PBS) to cap-
ture the nicked DNA strand and fol-
lows with the edit sequence.

Repair

Flap 
equilibration

Unbinding
of pegRNA

Reverse 
transcription

Target binding
& cut

Target DNA

C: The prime editing
process starts
with the complex
binding the target
DNA and nicking
the DNA strand.
The resulting 3’
end then hybridizes
to the PBS and
the RT transcribes
the template and
adds it to the
nicked strand.
Afterwards the
complex unbinds
from the DNA
and equilibration
between the edited
and the unedited
flap, cleavage of one
strand, ligation and
DNA repair then
result in stably
edited DNA.

Figure 2.3: Schematic overview of prime editing

Branch Migration

Branch migration is part of the strand displacement theory, which describes an input
and an output DNA strand competing for hybridization to a third complementary
strand. Branch migration specifically refers to the movement of the crossover point
during the base-pair-wise displacement of the incumbent strand by the invader strand.
Thompson et al. [66] described branch migration as a one-dimensional random walk
problem, where the branch point moves randomly in either direction with equal prob-
ability. Over N steps, this can be modeled by a binomial distribution:

P (k, N, p) =
(

N

k

)
pk(1 − p)N−k (2.10)

with k as the number of successes (e.g. displacing the incumbent strand) in N
independent steps, with each having the probability p of success. For large N , this
distribution approaches a normal distribution due to the Central Limit Theorem, high-
lighting the stochastic nature of branch migration. The mean squared displacement of
the branch point, ⟨x2⟩, scales linearly with time t, following the relation ⟨x2⟩ = 2Dt,
where D is the diffusion coefficient. The time t required for the branch point to
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Invader

Incumbent

Substrate Branch migration

Figure 2.4: Schematic of strand displacement and branch migration: The first base pairs of an
invader (green) strand can bind to a complementary region of the target strand (purple), which
is currently bound to an incumbent strand (blue). Afterwards the invader strand pushes the
incumbent strand away through a process called branch migration. Adapted from [67].

migrate a specific length L can be expressed as:

t(L) = L2

2D
(2.11)

Thus, the time required for the branch point to migrate a specific length scales linearly
with that length squared.

2.2. Definitions and Basics of Computer-Science
As we approach the physical limits of traditional silicon-based computing, as evi-
denced by the slowing progress of Moore’s Law — the observation that the number
of transistors on a chip doubles roughly every two years — new, innovative alterna-
tives are being sought [68, 69]. Two approaches currently being pursued are quantum
computing and biology-based computing [70, 71]. The latter, which leverages bio-
logical components like DNA and cellular machinery, offers the potential for massive
parallelism, energy efficiency, and the ability to solve complex problems where clas-
sical computers struggle. In this thesis, we aim to provide an outlook on how prime
editing could be the missing link in building a biocomputer. To set the stage, we will
introduce a few basic concepts of computer science.

2.2.1. Defining a Computer
Traditionally, the term “computer” first referred to humans performing calculations
[72], then to an electronic device designed to process, store and execute instructions
to perform a wide range of tasks. These “digital computers” operate by manipulating
data based on programmed instructions, enabling them to solve problems, perform
calculations, and manage information.

A computer can be divided into two main parts: hardware — the tangible parts
that make up the machinery and physical aspects of the device — and software —
the intangible programs and operating systems that run on the hardware.

Software relies on algorithms, which are well-defined, step-by-step instructions or
sets of rules designed to perform a specific task or solve a particular problem. Algo-
rithms have a finite number of steps that must be clearly and unambiguously defined.
They may have zero or more inputs, but they must produce at least one output. In
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principle, they should be simple enough, that a person with a pencil could reproduce
them.

Each step of an algorithm that manipulates data to achieve the desired output is
called an “operation”, such as arithmetic (addition, subtraction) or logical operations
(and, or).

2.2.2. Theory of Computation
When considering a biocomputer, one naturally encounters the theory of computation
and its central question: “What are the fundamental capabilities and limitations
of computers?” [73]. This theory examines how efficiently problems can be solved
using algorithms within a given model of computation. It is divided into three main
branches: automata theory, computability theory, and complexity theory. In the
following, we will focus on the first two:

Automata Theory

Automata theory studies abstract machines — automata — and provides a formal
framework for modeling and analyzing the behavior of systems and processes. The
most powerful type of automaton is the Turing machine, which can simulate any
algorithmic process and forms the foundation of the concept of Turing completeness.

Turing Completeness

A system is considered “Turing complete” if it can perform any computation that can
be described algorithmically, given enough time and resources. If it can simulate a
Turing machine and execute any algorithm that a Turing machine could, it is deemed
Turing complete.

2.2.3. The Lambda Calculus — A Model of Computation
A model of computation is a formal system used to describe how computation is
performed. It provides a framework for understanding the steps, rules and resources
required to carry out computation [74]. Models of computation can be classified
in three categories: sequential models, functional models, and concurrent models.
Examples of the first two will be discussed below:

Turing Machines

A Turing machine, introduced by Alan Turing in 1936, belongs to the category of
sequential models. It consists of an infinite tape divided into discrete cells, a tape
head that can read, write, and move along the tape, and a finite set of rules that
dictate the machine’s operations based on the current symbol being read [75, 76]. At
each step, the machine reads the symbol, modifies or leaves it unchanged according to
the rules, and moves to the next location. The Church-Turing thesis states, that any
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A: A Turing machine consists of an infinite tape divided
into cells, a read/write head, and a set of rules. The tape
is used to store and recover information, while the head
manipulates the symbols on the tape according to the
given set of rules.

λx.E

Lambda abstraction

Function parameter

Function
signifier

Function
Output

B: A Lambda calculus
abstraction, defining
the function signifier λ,
function parameter x, and
the function output E.

Figure 2.5: Two models of computation

function that can be computed algorithmically can be computed by a Turing machine,
linking the concepts of computation and decidability [77].

Basics of Lambda Calculus

As a function model, the Lambda calculus was first introduced in 1936 by Alonzo
Church, shortly before Turing machines [78, 79]. It is is based on function abstraction
and application and consists of three main components, also showed in Figure 2.5B:

• Variables are symbols that represent values or act as placeholders, usually
denoted by x, y, or symbols like ⋆

• Lambda abstractions represent function definitions. A variable is bound to
an expression and the general form of this is shown in Equation 2.12.

λx.E (2.12)

λ signifies the function, serving as a visual marker for defining a function. x is
the function’s parameter, and E is the expression that defines the output of the
function. The dot just separates the input from the function body.

• Function application refers to applying a function to an argument and evalu-
ating it by substituting the function parameter with the input argument. This
substitution is called beta reduction. For example, when an abstraction is ap-
plied to a number:

λx.x + 1(2)

We replace every occurrence of x in the function definition with the input,
performing beta-reduction.

2 + 1 → 3
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The Lambda calculus is a highly minimalistic model of computation, yet it is capable
of expressing any computable function and is therefore Turing complete. Lambda
abstractions, or functions, are of a higher order, meaning that functions can be passed
as inputs to other functions and also returned as output.

So far, we have only discussed single inputs, but Lambda calculus can also handle
multiple inputs through a process called “currying”. Currying transforms a function
that takes multiple arguments into a sequence of functions that handle these argu-
ments one at a time. Instead of providing all arguments at once, we provide them
sequentially. For example, a function f(x, y) is then written as f(x) → g ⇒ g(y) → h.
In Lambda calculus, a Lambda abstraction with multiple inputs can be written as:

λx.λy.x + y (2.13)
To evaluate this expression, we can write it as nested functions and then sequentially
apply beta reduction.

λx.λy.x + y → λx.(λy.(x + y))
λx.(λy.(x + y))(1)(2)

λy.(1 + y)(2)
1 + 2
3

Church Numerals in Lambda Calculus

In 1941 Church represented natural numbers in his Lambda calculus in the following
way, therefore named Church numerals [80, 81]: the natural number n is represented
by a function which recursively applies to itself n times, similar to the factorial func-
tion, which is defined as n! = n·(n−1)!. In Lambda calculus this then looks something
like this:

0 : λf.λx.x

1 : λf.λx.fx

2 : λf.λx.f(fx)
The church numeral 2 is not exactly the same as the number 2, it simply states that
any given function is applied 2 times to a value. It therefore only returns the number
2 if the applied function is the successor function (x + 1) and the value is 0.

2.2.4. SKI Combinator Calculus
Derived from Lambda calculus, the SKI combinator calculus is a simplified model of
computation that eliminates the need for variables, instead representing all functions
using three basic combinators: S, K and I [82]. Together, these combinators can
reproduce any Lambda expression. Since this calculus is Turing complete, it can
serve as the foundation of any computation [83].

The combinators are specifically:
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• I, the Identify function, which returns its argument:

λx.x

• K, the Kestrel function, a constant function that takes two arguments and
always returns the first:

λx.λy.x (2.14)

• S, the Stirling function, also called the “substitution” function. It takes three
arguments and currys them by applying the first to the third, and this then to
the results of the second applied to the third:

λx.λy.λz.(xz(yz)) (2.15)

In SKI combinator calculus, variables are not needed. Everything can be expressed
using the three combinators. For 0, this can be represented as follows:

0 : KI (2.16)

At this point one might wonder whether KI works, as K is typically defined for two
inputs. However, in Lambda calculus, the number 0 is defined as a function that is
applied zero times to a value x. In SKI calculus, we therefore need a way to ignore
the function f and return x. This is achieved by using K with only one input. The
subsequent numbers are then encoded as follows:

1 : I (2.17)
2 : S(S(KS)K)I (2.18)

For a deeper understanding of the formulation of these numbers, Section B.2 provides
the explicit calculations for the Church numeral 2.

2.2.5. Current Biocomputing Approaches
Bellia et al. [71] described a theoretical system that uses a version of the SKI com-
binator calculus implemented with DNA-tiles. Each tile has a single-stranded DNA
(ssDNA) at each corner and can form complexes through hybridizing these to others.
The computation of a problem is carried out through the order of tile assembly. This
is similar to previous studies that used DNA strand displacement and logic circuits
to perform computations [84].

While Shapiro et al. [85] described DNA computers based on Turing machines, they
discussed utilizing various biological components with their inherent characteristics
— for example, using DNA as both a storage medium and a computational tool,
akin to the tape in a Turing machine. They proposed using cellular machinery like
the Fokl enzyme to recognize and cut DNA. However, this approach has only been
demonstrated in a cell-free system and not withing a living cell.
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Siuti et al. [86] demonstrated that DNA-encoded Boolean logic can be implemented
in Escherichia coli cells, with polymerase chain reaction and fluorescent reporters as
output. Although Boolean logic is commonly used, for example, in hardware like cen-
tral processing units, it is not Turing complete and is thus limited in its applications.

Despite various approaches to biocomputing, including those using Lambda calcu-
lus, many do not fully exploit the potential of both Lambda calculus and biological
systems, as most of these systems operate in cell-free systems. Additionally, many
approaches require predefined problems that are translated into predetermined DNA
strands, limiting their flexibility.
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3.1. Experimental Setup
3.1.1. Microscopy
Microscopes are key tools in biology and other research areas, particularly in studies
using living organisms. By allowing scientist to observe the structure, dynamics and
behaviour of cells, one can for instance gain insights into the kinetics of gene expression
[87]. There are a range of different microscopes and techniques depending on the
specific application and model system.

Brightfield and Phase Contrast Microscopy

A basic light microscope uses visible light to illuminate and a series of lenses to
magnify the desired sample. Here brightfield (BF) microscopy is the most common
techniques, which illuminates from the top or bottom of the sample. By guiding the
light through the specimen and focusing it with the use of lenses, the magnified image
is projected onto the eyepiece or camera. The real image can be further magnified
by the ocular and the contrast seen is dependant on the absorption of light of the
sample. BF microscopy is one of the simplest methods, but limited by low contrast
in weakly absorbing samples and blurring of 3D materials, when out-of-focus [89, 90].
Phase contrast (PC) microscopy addresses this issue by using non- and phase shifted
light to create constructive interference for converting those phase into amplitude

Image plane

Phase plate

Lenses

Condenser
annulus ring

Sample Scattered light

Background
signal

Light source

Phase shifted
background

signal

Figure 3.1: Phase contrast (PC) microscope guides light through an annular ring before passing
through the sample. The sample leads to diffracted and phase shifted light. Both the background
light and the diffracted are collected by a phase plate and projected onto the image plane. Adapted
from [88].
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shifts. Here light is directed through a condenser annulus positioned in the front focal
plane (Figure 3.1). Light then either passes through the sample undeviated creating
a background signal or is diffracted and phase-shifted by structures in the sample.
The contrast is then enhanced by passing the background light through a phase ring,
which shifts this light by one-quarter wavelength to create constructive interference
between undeviated and diffracted light. The image plane now shows the sample with
increased contrast depending on the phase-shift properties of the sample.

Fluorescence Microscopy

Fluorescence microscopy takes this a step further by using fluorescent dyes and pro-
teins to visualize specific structures or molecules within a sample. Light from a white
light source is passed through excitation filters, allowing only wavelengths capable of
exciting the fluorophore to reach the specimen. The light is then reflected by a dichroic
mirror and focused onto the sample via the objective lens. Upon excitation, the flu-
orescent molecules within the sample temporarily transition to a higher energy state.
Once returning to the ground state, photons of a longer wavelengths are emitted. A
portion of this emitted light is collected by the objective lens again, passes through
the dichroic mirror, is filtered through emission filters to remove residual excitation
light and passed to the camera or eyepiece for visualization. With a broad spectrum
of fluorescent proteins available and as many different excitation and emission filters
to excite and capture their emitted light, multiplexing of these proteins and their
simultaneous observation within the same sample enables for live imaging of cellular
dynamics [91, 92].

Using PC and fluorescence microscopy techniques provides a robust framework for
studying cellular and molecular processes. PC offers the possibility to visualize trans-
parent, live cells with enhanced contrast without a need for staining or similar tech-
niques, while fluorescence microscopy enables the specific labeling and tracking of
molecules through their unique excitation and emission properties. Then capturing
sequences of images of the same cells over an extended period of time, called time-
lapse microscopy, allows for insights into dynamic cellular behaviours [93, 94]. This
approach is particularly valuable for studies investigating gene expression and their
associated kinetics, since they allow for monitoring of dynamic changes in gene activity
and protein localization in real time [95].

3.1.2. Delivery of Nucleic Acids
To study the function of specific genes and their production, such as fluorescent pro-
teins, there often is a need to introduce this genetic information into the cells, this is
called transfection. There are various highly efficient transfection methods including
physical methods like electroporation and microinjection, chemical methods such as
liposomes and lipid nanoparticles (LNPs) or biological methods using viral and non-
viral vectors. The goal of transfection can be categorized into two types: for stable
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integration or for transient expression. Stable transfection involves integrating the ge-
netic material into the host genome and therefore leading to continuous or switchable,
long-term expression [8, 96–98]. In contrast, transient transfection involves temporary
expression of the introduced nucleic acids, commonly used with pDNA or messenger
RNA (mRNA).

Each transfection method has its own advantages, applications and limitations [98].
Physical methods, such as microinjection have efficiencies of almost 100 % and can
introduce any type of molecule (DNA, RNA, RNPs), but are limited by low cell num-
bers, high costs and are very labor intensive. Virus-based methods like using adeno-
associated viruses are limited to DNA transfection and offer not only no prolonged
expression, but also don’t integrate into the host genome. Chemical methods are the
most widely used methods. They rely on positively charged chemicals like LNPs,
which form complexes with the negatively charged nucleic acids. These complexes
are then attracted to the also negatively charged cell membrane, where the uptake
is likely due to processes including endocytosis and phagocytosis. The transfection
efficiency is highly dependant on factors such as the ratio between nucleic acid and
chemicals, solution pH, and cell membrane conditions. However compared to virus-
mediated methods, they offer more flexibility with cargo size, lower cytotoxicity and
no mutagenesis. Because of this high flexibility different chemical methods for pDNA
and mRNA transfection were chosen in this thesis.

In transient transfection the choice of nucleic acids also determines the transfection
method and the resulting expression. pDNA transfection involves the need for deliv-
ery into the nucleus, which often leads to a delayed and spread out (2 to 20 h) but
long-term, high-level expression of target genes [P3, 59]. In contrast, mRNA trans-
fection introduces mRNA directly into the cytosol, allowing for rapid expression of
the encoded protein (mainly within 5 h after transfection). However, mRNA is prone
to fast degradation with rates for eGFP in the scale of 0.30 h−1, resulting in a tran-
sient expression profile [28]. More details about this are discussed in the following
chapters 4-6.

3.1.3. Patterning
Cells live in a complex environment inside the human body, so to investigate single pa-
rameters scientist strive to replicate these in vitro in a controlled, but simplified man-
ner by creating micro-arrays where adherent cell lines are restricted in their movement
[99–101]. These controlled micro-environments allow for the precise study of cellular
processes such as migration, cell-cell interaction, and gene expression at the single-
cell level [102, 103]. Spatially constraining individual cells can significantly reduce
noise in single-cell assays and facilitate the acquisition of sufficient statistical data,
which is often challenging with bulk measurements due to the inherent movement and
variability of cells [51, 104].

In this thesis, a photopatterning approach was utilized to achieve a precise place-
ment and easy trackability of cells as previously reported in [105] — termed LISCA.
Initially, the slide is coated with a cell-repellent layer or purchased precoated. A pho-
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toactive compound such as PLPP is then applied to selectively remove this coating
upon activation by UV illumination. To attain a specific pattern, a mask is used;
for example, for single-cell adherence, squares of a size comparable to individual cells
arranged in a lattice grid can be used. After UV illumination, the resulting slide
predominantly features a cell-repellent surface with small, uncoated islands. These
islands can then be coated with various substances, such as laminin, poly-l-lysin, and
fibronectin, to provide tailored environments for different assays and cell types through
different shapes and coatings. Once cells are seeded into the slide’s channels, they mi-
grate along the substrate and adhere to the exposed, coated areas. Non-adherent cells
can be removed after an optimal adherence time specific to the cell line.

A photopatterning approach like this allows for fast, reliable sample preparations
and ease of reproducability, making it a valuable tool for creating consistent and
controlled patterns for single-cell studies. Although it offers high flexibility in using
various coatings, this technique requires a premade mask and quick handling of the
substances during the patterning process. It is also limited to adherent cell lines.
Despite these challenges it remains a powerful method predominantly used in this
thesis.

200μm

A: Brightfield B: Fluorescence channels

Figure 3.2: Cells on a single-cell pattern 50h after seeding. The pattern can be seen through the
empty spaces in Figure 3.2A. Not all cells were successfully transfected or edited as seen in
Figure 3.2B.

3.2. High-Throughput Processing of Time-Lapse
Microscopy Data

Studying gene expression on a single-cell level, a high-throughput of data is crucial
to detect subtle changes in cellular responses [P3, 105, 106]. Therefore one strives
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3.2. High-Throughput Processing of Time-Lapse Microscopy Data

to automate most of the evaluation process, for instance the background correction
and cell tracking, then store data in an easy to use format for subsequent analysis.
The in-house software PyAMA [107] automatically converts raw microscopy data into
quantifiable fluorescence and cell area metrics. First fluorescence data is background
corrected to remove any noise sources such as fluctuations of illumination, based on
a published algorithm for fluorescence time-lapse data [108]. Afterwards cells are
automatically tracked with a nearest neighbour tracking, made possible through the
patterned surface. Finally area, fluorescence signal and image data is shown for each
captured position and the user can deselect cells with unwanted behaviour through a
graphical interface (Figure 3.3). This data is then stored in an easy format for further
evaluation.

Figure 3.3: Graphical user interface of PyAMA. Channels are chosen on the left side. In the middle
is the corresponding image of cells, showing selected cells as green and deselected as blue. Area
and both fluorescence channels for all selected cells are shown on the right.
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4. Measuring Kinetics of Gene Expression
and Prime Editing

Gene expression dynamics have been extensively researched over the last few years
[105], as understanding these dynamics leads to deeper insights into cellular processes,
the ability to predict and manipulate biological responses, and the development of
targeted therapies for complex diseases such as cancer and genetic disorders. This
control and understanding becomes even more important when using gene editing
tools, due to their potential harmful off-target effects. To study kinetics, simple models
are often employed to simulate the production and flow of information by using ODEs
[109]. This approach has already been used in previous studies, highlighting various
factors that influence the kinetics of fluorescent reporter expression, as mentioned in
Subsection 2.1.3.

In this chapter, we first aim to reliably determine the kinetic parameters of the
fluorescent reporter mGL. Given that cell populations are inherently heterogeneous,
a substantial amount of cells is needed to capture the whole population through the
distribution of the kinetic parameters. This is achieved similarly to [28, 29, 105] by
using micro patterned single cell arrays and kinetic rate equations in the form of ODEs
to fit the extracted fluorescence traces. From these fits, we can then extract onset
times for two different transfection methods used in the prime editing comparison
studies later on.

Next, we introduce a new prime editing system, in which a HEK293T cell line,
hereafter referred to as “HEK”, stably expresses a modified mGL protein, expressing
blue fluorescence due to a change in its DNA sequence. Our prime editing system
targets this section in the genome and reverts it to the original mGL sequence, enabling
the cell to express green fluorescence. We first quantify this in bulk measurements and
then adapt the previously employed single-cell assays to image the prime editing event.
Since prime editing is a more complex process compared to gene expression studies
mentioned earlier, a new approach of determining the onset time of fluorescence was
necessary, as explained in the final section.

4.1. Measuring mGL Kinetics
To reduce the complexity of our pDNA transfection system, we step-wise measure and
model the central dogma. First, by using translation inhibition, we can determine the
maturation and degradation constant of the protein mGL. Secondly, when transfecting
mGL as mRNA, we can fit the extracted fluorescence traces with a slightly more com-
plex model and receive distributions for translation and mRNA degradation. Lastly,

25



4. Measuring Kinetics of Gene Expression and Prime Editing

using all the previously attained parameter values, we can use them to fit the fluores-
cence traces from pDNA transfection experiments, which will also be the structure of
the following sections.

4.1.1. Extracting Maturation and Degradation Rates of the mGL
Protein through Translation Inhibition Experiments

To measure the degradation of mGL, we used HEK-mGL cells. For this, HEK-bsmGL
cells (see Appendix A.2.2) were prime edited previously and then seeded on a slide
patterned for single-cell adherence as described in Subsection 3.1.3. To measure the
degradation of the protein, cells were treated with cycloheximide (CHX), which leads
to a complete stop of translation. Fully assembled AA chains can still fold and mature
into a functional protein, but no new AA chains are produced. Both, matured and
non-matured protein degrades as outlined in Figure 4.1. t0 here is the time point of

kmat
∅βProt ∅βProt

kTL

t0

Figure 4.1: Model sketching protein maturation with kmat and degradation with βP rot for mGL.
Translation was stopped through the addition of CHX, indicated by t0.

addition of the CHX. We extracted the fluorescence data using the software PyAMA
as described in Section 3.2 and then modeled the kinetics in Julia using mainly the
package Catalyst and it’s dependencies [60]. We used the package PEtab.jl [110] to
fit our experimental fluorescence traces with the model shown in Figure 4.1 and used
values from literature as starting parameters [28, 29, 59]. Here and in the following,
solving ODEs was done with the Rodas5P algorithm [111] and the parameter esti-
mation with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm [112]. In the PEtab model, βP rot was set to be always smaller than kmat, as
from a mathematical stand point both parameters could be switched (seen in [29]).
Since PEtab does not allow for direct dependencies between parameters, we defined
βP rot = kmat ·x with 0 < x < 1 and later calculated the true βP rot value with the same
equation. The corresponding code can be found in [113].

Figure 4.2 shows a set of single-cell fluorescence data with some exemplary cells
highlighted. In the first hour of the experiment the fluorescence increases slightly,
since the non-matured AA chains fold into matured protein as seen in Figure 4.2.
Afterwards, mGL protein degrades and therefore the fluorescence signal decreases
over time. The same selected cells from the top are shown in the middle, overlapped
with their respective fits. Here we can see that the fits of the model align well with the
experimental data, with reasonable variations in their residuals. We started with cells
stably expressing the fluorescent protein from its genome and therefore at a lower
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Figure 4.2: Single-cell fluorescence data from stably expressed mGL in HEK cells. Top shows
exemplary experimental data with 5 representative cells highlighted in orange. These are shown
with their corresponding green fits and residuals.

level than when starting from mRNA or pDNA transfection. This leads to a less
significant rise of the fluorescence signal at the start of the imaging period before it
starts decreasing than compared to previous research [28], which could explain why
the median maturation value of 0.698 h−1 is lower compared to similar measurements
done for eGFP of 1.28 h−1. The distribution of the maturation parameter is shown
in Figure 4.3A and the degradation in Figure 4.3B. Here, the histogram shows the
distribution of the extracted parameters from the fit, median and means respectively.
However, statistical tests for maturation and degradation parameters were performed
to compare the distributions of the fitted parameter values to log-normal, Gaussian
and Weibull distributions, but all tests rejected the null hypothesis, therefore only the
median and mean values are discussed further. The distribution of the degradation
parameter of mGL shows two populations, which suggests two different degradation
pathways with two mean values of 0.013 h−1 and 0.022 h−1 and respective standard
deviations of 1.68 × 10−3 h−1 and 0.003 h−1.
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Figure 4.3: Distribution of extracted rates from stably expressing mGL HEK cells after translation
stop through addition of CHX.

4.1.2. Determining the Translation Rate of mGL mRNA in HEK
Cells

Based on this, in the next step we want to measure the translation kT L and mRNA
degradation δRNA of mGL-RNA. Hence, we produced mRNA from a mGL template
as explained in Appendix A.1.2 and seeded HEK-bsmGL cells onto single-cell slides.
After incubation, cells were transfected with this mGL mRNA as detailed in Ap-
pendix A.2.3 and imaged over 30 h. Cells are tracked and fluorescence values ex-
tracted. The model in Julia (Figure 4.4) is expanded with two new parameters, kT L

and δRNA together with t0, the time where the mGL-mRNA reaches the cytosol and
can be translated. The previously attained parameters for kmat and βP rot are used as
additional starting parameter. Figure 4.5A shows exemplary expression lines. Resid-
uals can be found in Figure B.1. mRNA transfection starts in the first 5 h after
transfection, but also reaches a plateau at most 10 h after fluorescence onset.

As seen in Equation 2.3, the protein level depends on the product of m0, the starting

kmat
∅βProt ∅βProt∅δRNA

kTL

t0

Transfection

Delivery

Figure 4.4: Model for gene expression from mRNA transfection. Once the RNA reaches the cytosol
at t0, AA chains are produced with rate kT L. These fold into the fluorescent protein with kmat.
Corresponding degradation rates are δRNA and βP rot.

28



4.1. Measuring mGL Kinetics

5

2.5

0
0 10 Time [h]

Fl
uo
re
sc
en
ce
[a
.u
]

20 30

x106

A: Exemplary lines for mRNA transfection in grey. 5 are highlighted in orange together with their
corresponding fit in green.

150

200

100

50

0
5 6

kTL [h-1]

C
ou

nt

7 8 9

B: Distribution of extracted translation rate kT L

with a fitted normal distribution and mean
value of 6.54 h−1. Figures are cut off where
no values exist.

300

200

100

0
0 5.02.5 7.5 10.0

δRNA [h-1]

C
ou

nt

C: Distribution of mRNA degradation rate δRNA

with a log-normal distribution fit and a me-
dian of 0.68 h−1.

Figure 4.5: Transfection of mGL mRNA into HEK-bsmGL cells. Figure B and C are cut off where
no values exist.

concentration of delivered mRNA and kT L. In our model, we set m0 = 1 to simplify
the fitting and only estimate kT L. This distribution is shown in Figure 4.5B fitted
with a normal distribution and a mean value of 6.54 h−1. Various values for kT L · m0
were measured previously and range from 1 up to 200 h−1, therefore our value aligns
with current knowledge [51, 59, 114–116]. Figure 4.5C shows the distribution of the
extracted degradation parameter δRNA for the mGL RNA with a log-normal fit and
a median of 0.680 h−1. This is slightly higher than previously reported experiments
[28], but we also measure a different fluorescent protein here — mGL, not eGFP or
CayRFP — and use a different cell line than reported in those studies.

4.1.3. Estimating mGL pDNA Transcription and Degradation
Rate

As a final step, we aimed to measure the transcription and degradation rate of pDNA.
Therefore, the same experiments as before were carried out with mGL-pDNA as de-
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Figure 4.6: Model for gene expression from pDNA transfection. The pDNA must reach the nucleus,
where it is transcribed into mRNA at t0 with a rate constant kT C . Following this, the same steps
as in the mRNA model are applied. The corresponding degradation rates, δDNA, δRNA and βP rot,
are defined as previously.

scribed in Appendix A.2.3, and imaged for 30 h. Once again, the model was expanded
to incorporate the parameters of kT C for transcription from DNA to RNA and δDNA

for degradation of the plasmids, as shown in Figure 4.6. In this case, t0 was set to the
time point when the plasmid reached the nucleus, as only there it could be transcribed
into mRNA. We used the previously measured parameters but increased their bounds
to improve the fitting results.

As seen in Figure 4.7A pDNA transfection onset times are very broad distributed
and in the range of 2 to 20 h, also shown by Leonhard et al. [59]. In Figure 4.7A, we
can see that the fits align less than the ones for maturation and mRNA translation
(Figure B.1). This may be due to the increased number of parameters in the fit,
making it more challenging for the fit to converge. Additionally, this could result
from starting conditions, which were taken from the previous mRNA experiments
or the fact, that the kinetics could be altered due to the cell using different UTRs.
Producing the mGL-mRNA through in vitro transcription (IVT), allowed us control
over the UTRs, which are influential for the measured kinetics here, as explained in
Subsection 2.1.2. When transfecting pDNA, the cell itself controls the UTRs, and
therefore, the UTR dependent kinetic parameters can vary. The value of kT L was
also estimated again using the previously obtained value from the mRNA transfection
experiment as a starting parameter. In this parameter estimation, the median of
kT L resulted in a smaller value of 0.753 h−1, smaller than the value from mRNA
transfection with 6.52 h−1. Figure 4.7A shows, that the fitted curves start later than
the experimental data, but with a steeper slope, suggesting that kT C could have been
overestimated with a mean of 1.13×108 h−1 (see Figure 4.7B) and therefore leading to
an underestimation of kT L. It is important to note here, that in the previous case of
mRNA transfection in the ODE system kT L and m0 are not independent parameters
and m0 was set to 1, but in the case of pDNA transfection m0 is now combined with
the transcription kT C parameter instead of the translation parameter kT L and still set
to 1. The fits for pDNA could potentially be improved by using a fitting algorithm
that weighs different parts of the fit differently, thereby focusing more on the initial
part of the curve and less on the noisy part at the end, leading to a more accurate
estimate of kT C . The median degradation of the pDNA from the estimated model can
be seen in Figure 4.7C and is 0.680 h−1.
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A: Exemplary fluorescent traces for pDNA transfection. 5 lines are highlighted (orange) and dis-
played with their corresponding fit (green). More details in Figure B.2.
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Figure 4.7: pDNA transfection of mGL into HEK-bsmGL cells. Figure B and C are cut off where
no values exist.

4.1.4. Comparison of Fluorescence Onset Distributions for pDNA
and mRNA Delivery

In the next chapter we want to compare the timing of prime editing based on the en-
coding of its components either via pDNA or mRNA. Unlike RNA, which is translated
in the cytosol, DNA has to first enter the nucleus to be transcribed. Thus the delivery
time of DNA and RNA differ widely. To compare these distributions, we extracted the
parameter t0 for each fit from the mRNA transfection experiments in Subsection 4.1.2
and the pDNA experiments in Subsection 4.1.3. Figure 4.8 shows that the onset of
fluorescence for mGL-mRNA transfection occurs approximately 13 h earlier than with
the mGL-pDNA construct, with means of 1.4 h and 14.5 h, respectively. The large
standard deviation of 5.7 h for pDNA delivery indicates a much broader distribution
of fluorescence onset compared to mRNA delivery, which has a standard deviation of
0.5 h.
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Figure 4.8: Distribution of t0 extracted from fitting mGL fluorescence traces using pDNA and
mRNA transfection. Solid lines depict Gaussian fits with marked mean onset times (1.4 h for
mRNA and 14.5 h for pDNA). Figure adapted from [M4].

4.2. Measuring Prime Editing
We have now established, that we can efficiently measure fluorescence data for single
cells in a high-throughput manner by directly transfecting the blueprints for the fluo-
rescent protein. In the following chapter, we introduce a new system that enables the
measurement of prime editing kinetics using fluorescence as a readout. We begin by
getting a rough idea of the time frames using bulk measurements and then adapt the
previously used assay to better align with the time frames of prime editing and the
resulting fluorescence signal. Finally, we developed an algorithm to reliably determine
the onset time of these prime-editing-triggered fluorescence signals.

4.2.1. Edit Leads to Measurable Fluorescence Shift
In the following experiments, we continued to use the HEK-bsmGL cell line, because
it was engineered to incorporate a variant of mGL in its ATP1A1 locus. This vari-
ant of mGL contains two base edits, as shown in Figure 4.9A and Appendix A.1.3,
which shifts the fluorescence of the resulting protein “bsmGL” to blue. Our prime
editing system targets these base pairs and reverts them, so that the original AA
chain sequence can be produced by the cells, resulting in green fluorescence. Two
additional base-pair edits were introduced, which have no effect on the resulting AA
chain, but increase editing efficiency. To validate the fluorescence emission, we used a
spectrofluorometer with an excitation wavelength of 385 nm to excite cell lysate from
both HEK-bsmGL and HEK-mGL. Figure 4.9B shows that the fluorescence emis-
sion spectrum of bsmGL is successfully shifted to blue, but with a significant loss of
intensity compared to the original mGL.

4.2.2. From Bulk to Single-Cell Resolution of Editing Events
After validating the green fluorescence in cell lysates, we proceeded to living cells.
To do this, we seeded cells in a 24-well plate and transfected them with the two
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Figure 4.9: HEK cells with a blue-shifted mGL integrated in locus ATP1A1 can be edited to original
mGL using prime editing, regaining their ability to emit green fluorescence.

prime editing components: a plasmid encoding for the PE and a plasmid encoding
for the pegRNA. We chose to co-transfect two plasmids instead of using a single
plasmid for both components, as this approach allows for easier pegRNA replacement
in subsequent experiments, maintaining consistency with the current setup.

After a short incubation period, the fluorescence of each well was imaged over 60 h
using a heated plate reader (Tecan). Figure 4.10A shows the short incubation period
after transfection, followed by fluorescence traces collected from each well, with each
representing a large cell population. HEK-mGL cells, which were previously edited,
show only a slight increase in fluorescence, attributable to population growth. In
contrast, the fluorescence of HEK-bsmGL cells transfected with pDNA exhibited a
typical sigmoidal curve, with an onset of around 10 h and a plateau after another 10
to 20 h. The bulk fluorescence signal of HEK-bsmGL cells transfected with the prime
editing components showed a later onset of 20 to 30 h and a more gradual increase.

These results indicate that the prime editing step takes significantly more time
compared to direct transfection with mGL pDNA. In previous single-cell transfec-
tion experiments, cells were first seeded onto the pattern and then transfected within
the channels. This approach was used to capture the early moments of fluorescence.
However, this method did not work for prime editing. The increased stress associ-
ated with the editing event led to a significant loss of cells over time. Additionally,
cells proliferated, eventually crowding the slide before a fluorescence onset could be
detected. Furthermore, the experimental time window is limited by the availability
of nutrients in the medium and the slide’s reservoir to keep conditions stable. To ad-
dress these challenges, we first seeded the cells in 24-well plates and transfected them
there. To further reduce the stress on the cells, the media was exchanged after 4 h of
incubation. Following another incubation period, the cells were removed from the well
plate and seeded onto the slides, as detailed in Appendix A.2.5. The slide was then
transferred to a microscope and imaged over 30 to 48 h (see Appendix A.2.6). This
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B: Top: Fluorescence traces of single HEK cells after transfection with the prime editing system.
Bottom: Zoom in of the period from 0 h to 20 h. Imaging starts after a required incubation
period. The time-to-edit is defined as the time from transfection until the onset of mGL as shown
here.

Figure 4.10: Fluorescence data after transfection of HEK cells. Different experimental setups need
different incubation periods, here shown as grey boxes.

protocol reduces cellular stress, increases the likelihood of isolating single cells on the
pattern without excessive growth, but also results in a longer not measurable period.
Figure 4.10B shows exemplary single-cell fluorescence traces, including the incubation
time for the adapted assay. From these traces, we can now define the time-to-edit
as the time from transfection in the well plate to the onset of fluorescence signal of a
single cell.

4.2.3. Reliably Determining Onset Time for Prime Editing
Fitting the data with a standard exponential curve or one of the previously established
expression models turned out to be inadequate in this context because it failed to ac-
curately capture the initial time point (t0), leading to an incorrect shift to later time
points in the onset distribution for prime editing. Additionally, the noise present at
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the start of the experiment, when no fluorescence signal is present complicated the fit-
ting. This issue is particularly evident when the data is plotted on a logarithmic scale
as can be seen in Figure 4.11, where the onset time point becomes more pronounced.
Therefore, an alternative fitting approach was necessary to account for these factors
and provide a more accurate representation of the data. We employed an algorithm
written in the programming language R (see Appendix A.4.2), which uses a sliding
window approach with three main parameters and is executed for each trace indepen-
dently. The algorithm takes six consecutive values of a single-cell fluorescence trace,
fitting a linear model to them and evaluating the slope of the fit against a predefined
slope-threshold. Should this threshold be exceeded for six consecutive windows, the
time of the first data point from the first window exceeding the threshold is recorded
as t0, otherwise the threshold is adjusted downwards, and the algorithm re-commences
with the first window, as detailed below:

Slope-threshold = 1.0
Window-size = 6
Window-counter = 0

Loop through the data points, starting at the first:
Window = Choose <window-size> continuous values starting at the

current data point

Fit a linear curve through window values

If the slope of the fit is bigger than the Slope-threshold
Increase Window-counter by 1

Else
Reset Window-counter to 0

If Window-counter > 6
Record the first time point of the first window

(Window-counter = 1) as t_0
export a plot of all data points, the first fit and t_0
End the program for this cell

Else
Go to next loop iteration

If no t_0 was found and the Slope-threshold is greater than 0.1
Decrease Slope-threshold by 0.1
Retry with lower Slope-threshold

Afterwards fluorescence traces are manually checked and wrongfully detected t0 are
removed following the exclusion criteria described in Figure A.2. Figure 4.11 shows
at the top the image exported by the algorithm, t0 and the respective fit through the
next 6 values. The bottom plots show intermediate iterations of the sliding window,
the corresponding slope and the increasing counter.
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Figure 4.11: Algorithm used for determining the onset time of prime edited fluorescence. Top:
Complete fluorescence trace of a single exemplary cell. The determined t0 is marked in orange
with the corresponding slope. Bottom: Window 58 to 63 have a slope bigger than the threshold
(0.9). After 6 consecutive windows like this t0 is determined by the first point of the first window
58.

4.3. Discussion
In this chapter, we aimed to establish a system for tracking prime editing events at
the single-cell level. To better characterize mGL, we first extracted kinetic rates for
maturation and degradation of the protein, then mRNA and pDNA transfection. We
observed that mGL degradation appears to have two distinct pathways, as indicated
by the double distribution seen in Figure 4.3B, which may be the result of using stably
expressing HEK-mGL cells rather than mRNA transfection as in previous studies [28].
This difference is noteworthy and warrants further investigation and could lead to
different values of kmat, as the modest fluorescence increase observed in the stably
expressing cells in Figure 4.2 could have impacted our results.

The transition to Julia and the packages Catalyst.jl and PEtab.jl for modeling
and parameter estimations has facilitated the testing of various model variations and
provided greater access to established algorithms for optimization and parameter es-
timation. This enabled us to fit the pDNA system, though further optimization
is required, and additional constraints, such as the βP rot < δRNA used in Subsec-
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tion 4.1.2, are likely necessary. Overall, these fits were instrumental in determining t0
for mRNA and pDNA transfections. Instead of relying solely on data from previous
studies, we repeated the measurements with mRNA, pDNA, and mGL, as we used
different transfection reagents optimized for the prime editing system and a different
fluorescent protein. Additionally, we included pDNA transfections, which have not
been extensively studied in this context before.

As mentioned before, our primary interest lies in the kinetics of prime editing.
To this end, we developed a system to image prime editing events at the single-cell
level by targeting a blue-shifted fluorescent protein sequence in the cell genome and
reverting it to its green variant. Bulk measurements indicated that green fluorescence
in prime-edited cells takes significantly longer to express compared to cells transfected
directly with pDNA-mGL. At the single-cell level, the previous fitting method failed to
accurately identify the t0 time point, leading us to develop a sliding window algorithm
to determine it. This allowed us to then define the time-to-edit.

In prime editing research, the primary method for assessing successful editing is
next-generation sequencing (NGS) [117], which allows for the quantification of editing
frequencies, precise identification of edits and off-target effects. However, NGS cannot
be performed on live single cells and is limited to a single time point, making it
unsuitable for kinetic studies like ours. Previous studies have used fluorescent proteins
with a fluorescence shift caused by single base edits [118, 119] or modifications of
start codons [120], for validation of base editing systems, but these measurements
were typically made at one specific time point and followed by NGS. Our approach,
involving single-cell tracking, has not been used with prime editing before and offers
the unique capability to precisely determine the onset of mGL fluorescence at the
single-cell level.

37





5. Defining Prime Editing Time Frames

The introduction of prime editing added a new level of precision to CRISPR-based
gene editing, enabling efficient “search and replace” of specific DNA sequences with
minimal off-target effects [18, 65]. This technique, which uses a Cas9 nickase fused
with a RT and a specialized guide RNA — the pegRNA, has expanded the potential
for gene therapy, leading to the first FDA-approved treatments and several ongoing
clinical trials [24, 121, 122]. The pegRNA guides the edit by providing a RT template
and a primer binding site for the targeted DNA.

Prime editing is a complex cascaded process that includes the co-delivery of PE
and pegRNA vectors, protein expression, complex formation, and finally the editing
process itself, as shown in Figure 5.1. Although numerous studies have examined the
efficiency of prime editing, it is typically evaluated from 24 to 72 h after transfection
at a single time point [18], so the overall kinetics and their own specific time frames
are still poorly studied.

Therefore, in this study, we analyze these editing durations and divide them into
different time frames. The aspect of pDNA and mRNA-based delivery was already
addressed in Subsection 4.1.4. In this chapter, we first compare the efficiency and
timing when delivering the prime editing components via pDNA and mRNA. We then
introduce a new PE construct that co-expresses a red fluorescent protein along with
the PE, enabling direct measurement of the editing time for both pDNA and mRNA-
based delivery. This data is then combined with models to explain the experimental
results for mRNA transfection. Finally, we examine the editing process itself and its
dependence on the length of the edited window by using different pegRNAs in our
pDNA-based system. The majority of the results presented in this chapter are content
of [M4].

Delivery Expression Edit

Figure 5.1: Overview of prime editing time frames. After delivery of the components for prime
editing, they are expressed inside the cell. Once the prime editing complex is build and transported
into the nucleus, the editing step itself can take place.
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5. Defining Prime Editing Time Frames

5.1. Measuring Delivery Dependant Time-to-Edit
To compare pDNA- and mRNA-based delivery for prime editing, we used our de-
veloped protocol as explained in Subsection 4.2.2. For pDNA, the prime editor and
pegRNA were encoded on different plasmids, pre-mixed before addition of the trans-
fection reagents, and then added to the cells. mRNA was produced in advance as
detailed in Appendix A.1.2 and both parts, PE mRNA and pegRNA, were also pre-
mixed, similarly to the pDNA solution, before the addition of the transfection reagent.
For comparison purposes, pDNA and mRNA transfection experiments were always
performed together. The extracted fluorescence traces were sorted by hand following
the exclusion criteria described in Appendix A.3.

We compared the efficiency of our transfection using the last recorded fluorescence
value for all tracked cells. Figure 5.2A shows this for pDNA and mRNA. Two distinct
populations are evident: “on” for successfully transfected cells at higher fluorescence
values and “off” for unedited cells. Accumulative prime editing was more efficient
using pDNA delivery with 79 % fluorescing cells, compared to 15 % fluorescing cells
for mRNA delivery. Cells transfected with pDNA also showed an overall higher mean
logarithmic fluorescence value of 17.7 compared to 15.8 for mRNA. This could be
attributed to the more stressful transfection process for mRNA. After three passages,
cells were indistinguishable by fluorescence intensity.

We previously established that the onset of mRNA-based delivery occurs within 2 h,
while the onset of pDNA-based delivery is more widely distributed, as seen in Sub-
section 4.1.4. We expected a similar time difference for prime editing because, once
the complex is assembled, there should be no difference in editing time between both
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A: Fluorescence intensity distribution of 10.000
cells 60 h after transfection showing two clear
populations of “on” and “off”. pDNA delivery
has a higher efficiency with 79 % compared to
mRNA with 15 % fluorescing cells.
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Figure 5.2: Prime editing efficiency and kinetics of pDNA- vs. mRNA-based delivery. Figure
adapted from [M4].
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delivery methods. To compare the time-to-edit between pDNA- and mRNA-based
delivery, we extracted the time-to-edit as detailed in Subsection 4.2.3 and fitted it
with a log-normal distribution, as shown in Figure 5.2B. For pDNA, this resulted in
a median onset of 20 h, and for mRNA-based delivery, 12.9 h. The peak of the dis-
tribution shows a difference of only 4.5 h and the median difference is 7 h. Although
mRNA-based delivery was earlier than pDNA, the difference was less than the pre-
viously measured median onset difference for direct mGL transfection for pDNA and
mRNA delivery, which was 13.1 h. We also found that the overall efficacy of the edit-
ing, as shown by the area under the distribution curve, is lower for mRNA, consistent
with the lower efficiency shown in Figure 5.2A.

5.2. Comparing Delivery Dependant Editing Time
We first quantified the delivery timings of our transfection reagents by directly trans-
fecting fluorescent protein pDNA and mRNA to compare it to literature [59], con-
firming the previously reported difference of around 13 h. We then measured the
time-to-edit for these two delivery methods using our prime editing system and ob-
served that the difference of the median was smaller than expected, at only 7 h. As
explained previously in Figure 5.1 the time-to-edit consists of delivery, expression,
and editing. We have already measured the delivery time of our transfection agents
in Subsection 4.1.4, and now we proceed to quantify the editing time. To this end,
we implemented another PE construct, first published by Anzalone et al. [18] the
plasmid pCMV-PE2-P2A-GFP (Addgene #132776), but replaced the GFP sequence
with mScarlet3 (Addgene #189753). The P2A sequence between PE2 and mScarlet
is a short self-cleaving peptide that allows co-expression of multiple proteins from a
single ORF [123, 124]. By enabling “ribosome skipping” during translation, multiple
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Figure 5.3: Exemplary fluorescence traces for three cells transfected with PE2-P2A-mScarlet. Cells
co-express mScarlet (red) and PE leading to an additional red fluorescence signal, which can
be tracked simultaneously to mGL (green). Subtracting the mScarlet onset time from the mGL
onset time allows one to determine the time it took from expressed PE to a successful edit. Figure
adapted from [M4].
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5. Defining Prime Editing Time Frames

AA chains can be translated without being attached to each other, leading to the
co-expression of the PE protein and the mScarlet fluorescent protein. This approach
allows us to determine the time point at which PE is expressed by measuring the flu-
orescence of mScarlet. We produced the plasmid pCMV-PE2-P2A-mScarlet and the
mRNA PE2-P2A-mScarlet as detailed in Appendix A.1.1 and Appendix A.1.2. To
compare, if the co-expression of mScarlet influenced the time-to-edit, we performed
control experiments with the original PE2 and the co-expressing PE2-P2A-mScarlet
plasmids and mRNAs, finding no notable differences in the mGL onset distributions
(see Figure B.3).

With these new constructs, the editing time can be defined as the time from the on-
set of PE expression t0mScarlet to the onset of mGL expression t0mGL. Figure 5.3 shows
three exemplary cells that first express mScarlet and therefore PE, followed by mGL
expression. The onset times of mScarlet and mGL were determined using the same
algorithm as before, and the editing time was calculated for each cell independently:

tediting = t0mGL − t0mScarlet

We repeated the experiments as explained in Section 5.1 using the PE2-P2A-mScarlet
constructs, but included a second fluorescence channel to image the red fluorescence.
Cells with a negative editing time were removed from the data after confirming that
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Figure 5.4: Distribution of editing times for pDNA and mRNA transfection using the PE2-P2A-
mScarlet sequence and the same pegRNA design. Dashed lines denote the median editing time,
showing that mRNA editing is slower with a median of 5 h compared to pDNA with 3 h. Figure
adapted from [M4].
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5.3. Missing Delay in mRNA Time-to-Edit

our algorithm had not identified the correct onset time by checking the images ex-
tracted from the algorithm as explained in Subsection 4.2.3. This experimental setup
and evaluation resulted in a median editing time of 3 h for pDNA, which increased
to 5 h for mRNA, as shown in Figure 5.4. This result was unexpected and will be
discussed in further detail in the next section.

5.3. Missing Delay in mRNA Time-to-Edit
With our findings on the delivery and editing time frames for pDNA- and mRNA-
based delivery, we now aim to reproduce our measured time-to-edit. We hypothesize
that the time-to-edit, defined as the period from delivery to the expression of the
edited fluorescent protein, can be mathematically represented as a convolution of the
two previously measured distributions, as shown in Equation 5.1.

PEdit(t) = CDelivery(t) ⊗ KEditing(t) (5.1)

The delivery time, measured in Subsection 4.1.4, represents the period from transfec-
tion to the beginning of protein expression in cells. The editing time begins when PE
is expressed for the first time and continues until editing occurs and mGL is expressed,
as described in Section 5.2. The convolution of these two distributions should result
in the observed time-to-edit and is shown in Figure 5.5. The experimental values
are the same as in Figure 5.2B, but with a higher bin resolution of 1 h. The solid
line represents the convolution PEdit of the histogram data of Figure 4.8 (CDelivery)
and Figure 5.4 (KEditing). This convolution was calculated using the conv() function
from the Julia package DSP.jl. The convolution aligns well with the time-to-edit
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Figure 5.5: Experimental time-to-edit distributions for pDNA and mRNA delivery. Solid line
denotes theoretical model. Grey areas show incubation period outside of the microscope. Figure
adapted from [M4].
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5. Defining Prime Editing Time Frames

distribution for pDNA delivery, but not as closely with the mRNA-delivery distri-
bution. To simulate possible differences, we built a expression model similar to the
one used previously for mGL expression. More details about the model will be ex-
plained in Chapter 6. Values from earlier experiments and literature were used for the
model parameters (see Table B.2), and we compared the expression model starting
the expression from either the pDNA or mRNA stages. In both models, t0 is set to
the specific time point when either pDNA or mRNA have reached their processing
location, so for pDNA the nucleus and mRNA the cytosol.

In Figure 5.6, we can see that after pDNA enters the nucleus and transcription
begins, both PE and pegRNA are produced extremely quickly and in such large
quantities that complex formation occurs rapidly, primarily due to sheer numbers.
This is especially evident in the top frames of Figure 5.6, where the scale of the y-
axis shows that the PE complex from pDNA reaches up to 1 × 106 counts, while the
count starting from mRNA peaks at 0.5 × 105 counts. When zoomed in (bottom of
Figure 5.6), we observe that it takes 2 h to reach the same concentration of complexes
after mRNA transfection, while for pDNA it takes only 8 min, after which the concen-
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Figure 5.6: Model of PE complex concentration over time starting from mRNA(left) or
pDNA(right). The scale of the y-axis is shown in the top left corner. Bottom: Zoom into
concentrations up to count = 5 × 103 shows, that mRNA takes 15 times longer to reach the same
concentration of assembled PE complex than pDNA. Figure adapted from [M4].
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5.4. Editing Time, Branch Migration and their Consequences on Edit Length

tration of complexes continues to increase rapidly. This measurable delay, either due
to complexation or slower target loci finding caused by low concentrations of assembled
complex, following mRNA transfection will be further discussed in Chapter 6.

From this model, we can also extract the following: one of the limiting factors
for the maximal concentration of complex after mRNA transfection is the amount of
pegRNA transfected as seen in Figure 5.6, bottom right. We hypothesize that the
starting ratio of PE mRNA to pegRNA may influence this and will be discussed in
the following chapter.

5.4. Editing Time, Branch Migration and their
Consequences on Edit Length

In the previous section, we observed how quickly the prime editing complex forms
when starting from pDNA transfection. This setup, involving a short and highly
efficient pegRNA using pDNA delivery, resulted in an editing time of around 3 h. This
editing time likely represents a combined duration for the transport of the complex
into the nucleus, the identification and binding of the target sequence, and the editing
process itself, including reverse transcription, flap exchange, and repair as explained
in subsubsection 2.1.5. When using the same PE and comparable pegRNA but with a
longer editing frame, the transport and target identification times should be similar,
so we assume that the time this takes remains constant. However, the flap exchange
process is not the same when modeled as a strand displacement process, as explained
in subsubsection 2.1.5. This suggests that the editing time depends on the length of
the edit.
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To test this hypothesis, we designed two additional pegRNAs. We maintained
the original editing sequence to target the bsmGL-to-mGL edit but extended it with
synonymous edits in the direction of the previous PBS. The new PBS therefore shifted
to a complementary sequence further upstream of the 5’ genome sequence, but retained
the same length as the original pegRNA’s PBS, leading to a longer RT template and
a longer editing frame. Since we used synonymous edits, the produced AA chain and
therefore the fluorescent protein remain the same.

We repeated our single-cell prime editing assay by transfecting the pCMV-PE2-
P2A-mScarlet plasmid and each of the three different pegRNA plasmids to extract
their respective editing time distributions. Figure 5.7A shows the editing time distri-
butions for medium and long pegRNAs. The editing frame is depicted in the small
insets of both plots. Comparing these data with Figure 5.4, we observe that the me-
dian editing time for an editing frame of 6 bp is 3.0 h, increasing to 4.25 h for 13 bp,
and then 7.5 h for 21 bp.

Following the strand displacement theory described in subsubsection 2.1.5, the time
should scale with the square of the length of the edit. Therefore, we plotted the
editing time against the edit frame length squared and fitted the results, as shown in
Figure 5.7B. The data and fit align well, supporting our hypothesis. We also note
that the median absolute deviation increases with longer editing length.

5.5. Discussion
This chapter focused on the differences in time-to-edit between pDNA- and mRNA-
based delivery methods. Using our previously established LISCA approach, we ob-
served that the median time-to-edit for mRNA-based delivery was 7 h earlier than for
pDNA. While this result was expected, the mRNA editing process was slower than
anticipated. To further investigate this, we designed a co-expression plasmid that
enabled the imaging of PE expression using an mScarlet protein. With this, we mea-
sured the editing time for both pDNA and mRNA delivery and demonstrated that
the median mRNA-based editing was 2 h slower than pDNA-based editing.

We then introduced a mathematical model that represents the time-to-edit as a
convolution of the delivery and editing times. Although the model accurately pre-
dicted the time-to-edit for pDNA delivery, it revealed a discrepancy for mRNA-based
delivery. To address this, we set up a prime editing expression model that highlighted
a difference in complexation and concentration dynamics, showing that the mRNA-
based prime editing system is approximately 15 times slower in reaching the same
complex concentration as the pDNA-based system.

Given the simplicity of our model — lacking, for example, compartmentalization,
relying on experimental ratios, and a limited set of known kinetic values for prime edit-
ing from the literature (see Table B.2) –— further studies are required to specifically
extract kinetic parameters for prime editing. Different model setups, such as compart-
mentalization could improve the precision of our model and will be discussed in more
detail in the next chapter. However, the kinetics of mRNA-based prime editing could
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potentially already be improved by employing mixed or sequential transfections of
mRNA and pDNA, as suggested by Nasr et al. [125]. Hybrid delivery strategies could
provide an effective way to improve both the speed and efficiency of prime editing.

The timing of prime editing is particularly relevant for researchers targeting specific
tissues or regions of the body. Especially since studies have shown that CRISPR
systems tend to accumulate in the liver and therefore could lead to increased off-
target effects [26, 126]. Alternative delivery agents, such as LNPs, are also intensively
researched. LNPs can carry larger cargo and may offer distinct delivery kinetics,
such as pH-dependent or sequential release for mRNAs of different sizes, while also
providing the potential for tissue-specific targeting and reduced off-target effects [127,
128]. In contrast, certain gene therapies can require sustained, long-term recurring
edits to maintain therapeutic efficacy [129], further underscoring the importance of
knowledge about kinetics when designing CRISPR-based systems.

In our work, we explored the kinetics of pDNA transfection and demonstrated a
correlation between editing length and editing time. Based on strand displacement
theory, one could argue that the editing time also depends on the specific sequence of
the edit [130]. Additional experiments targeting different loci, with varying lengths or
synonymous edits, could provide further insight into the accuracy of strand displace-
ment as a mechanism for determining editing time.

This consideration is particularly important when designing prime editing systems,
raising the question of whether to perform multiple edits at once or sequentially. Choi
et al. [19] introduced the concept of a “DNA typewriter”, where sequential edits are
used to track cellular lineage, with an estimated prime editing rate on the order of
days, aligning with our observations. They suggested that their typewriter — using
prime editing — is more suitable to track processes that unfold over several days
or weeks. In comparison, our pDNA system showed a median total editing time of
around 20 h, which increased to 30 h for edits of 21 bp. In such cases, a single pegRNA
would be advantageous over sequential edits for longer editing frames. However, we
did not perform NGS, and therefore cannot confirm whether the full sequence was
incorporated. It is possible that two smaller edits might result in higher efficiency
than a single larger one.

For the medium-length pegRNA, we observed an accumulation of editing times
similar to that of the shortest pegRNA, along with a higher onset count in the earlier
hours. This may indicate that the full edit was not incorporated, but only the first
few base pairs including the bsmGL-to-mGL shift. Since we did not perform NGS to
assess the extent of the editing, our system classified an edit as successful when the
blue-to-green edits were present, without confirming the incorporation of the entire
sequence. Future research could explore the use of NGS or a system where the blue-
green sequence is located at the end of the editing frame to better assess the length
and completeness of the incorporated edits.
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6. Modeling Beyond the Experimental
Results

Numerous computational models and simulations for prime editing have been devel-
oped, offering various tools for designing pegRNAs [131, 132], as well as optimizing
PBS and RT lengths [133], and predicting editing efficiencies [134]. However, models
describing the kinetics of prime editing have not yet been introduced. Previous re-
search has demonstrated that gene expression kinetics for fluorescent proteins can be
modeled using kinetic rate equations and ODEs [29, 61, 62]. In Chapter 4, we showed
that these equations can be applied to fit experimental fluorescence traces of single
cells using Julia, primarily utilizing the packages Catalyst.jl and PEtab.jl.

As previously mentioned, Catalyst facilitates easy model setup and modification
of parameters. In this chapter, we leverage this “ease of use” to model the kinetics
of prime editing expression and explore insights gained from our in silico approach
for our in vitro experiments [135]. We begin with the simplest model introduced
earlier (see Section 5.3), and by varying different parameters, we aim to guide our
experimental design.

Next, we examine the difference between a catalytic system and a first- or second-
order reaction system. This distinction relates to whether the resources are consumed
in the different steps of the prime editing process or merely act as catalysts for the
production of subsequent reactants as explained in Subsection 2.1.4.

Finally, we extend the simple model by introducing a barrier, representing the nu-
clear membrane, and incorporating a diffusion/transport parameter. We then perform
parameter variations and again compare the kinetics related to mRNA- and pDNA-
delivery.

6.1. Leveraging Prime Editing Expression Models to
Guide Experimental Design

We designed the simplest model of prime editing expression, as shown in Fig-
ure 6.1A. The two components of prime editing are encoded on two separate plasmids
in our experiments; therefore, we implemented two expression cascades for eachsepa-
rately. PE is transcribed from pDNA to RNA with a rate tcP E, then translated into
protein with tlP E. The pegRNA is only transcribed with a rate tcpeg. Both compo-
nents differ significantly in their DNA as well as RNA sequence length: PE-DNA is
approximately 6000 bp long, while pegRNA-DNA has 200 bp. As a result, we used
different transcription rates for each. The pegRNA and PE protein then assemble to
form the editing complex with a rate kcomp. All reactants degrade at their respective
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A: Graphical representation

1 PE_DNA = @reaction_network begin
2 tc_PE, PE_DNA --> PE_DNA + PE_RNA
3 tl_PE, PE_RNA --> PE_RNA + PE_prot
4 tc_peg, peg_DNA --> peg_DNA + peg_RNA
5 k_comp, PE_prot + peg_RNA --> PE_complex
6

7 d_DNA_PE, PE_DNA --> 0
8 d_RNA_PE, PE_RNA --> 0
9 b_PE, PE_prot --> 0

10 d_DNA_peg, peg_DNA --> 0
11 d_RNA_peg, peg_RNA --> 0
12 b_complex, PE_complex --> 0
13 end

B: Julia Catalyst implementation

Figure 6.1: Basic prime editing expression system starting from pDNA with separate rates for
transcription, translation and degradation of PE and pegRNA. The complex is build with PE
and pegRNA. Dashed arrows represent production, which does not consume the initial reactants.
Rates as explained in Table B.2.

rates δ and β. Processes shown with dashed arrows in Figure 6.1A do not consume the
initial reactants, meaning RNA is produced from pDNA without reducing the pDNA
concentration. Solid arrows depict processes where the reactants are consumed to
form new reactants. Figure 6.1B shows how this is implemented in Julia. All reac-
tants are set to an initial concentration of 0, except for the starting concentrations
of the plasmids PE DNA(t = 0) and peg DNA(t = 0). All parameters used for
this model are shown in Table B.2. This implementation leads to the following ODE
system:

dPEDNA(t)
dt

= − δDNA−P EPEDNA(t) (6.1)

dPERNA(t)
dt

= − δRNA−P EPERNA(t) + tcP EPEDNA(t) (6.2)

dPEprot(t)
dt

= − βP EPEprot(t) + tlP EPERNA(t) − kcomppegRNA(t)PEprot(t) (6.3)

dpegDNA(t)
dt

= − δDNA−pegpegDNA(t) (6.4)

dpegRNA(t)
dt

= − δRNA−pegpegRNA(t) + tcpegpegDNA(t) − kcomppegRNA(t)PEprot(t)
(6.5)

dPEcomplex(t)
dt

= − βcomplexPEcomplex(t) + kcomppegRNA(t)PEprot(t) (6.6)

Figure 6.2A shows how the concentrations of the different reactants evolve over
time. The scale of the y-axis is displayed in the top right corner of each plot. The
time point t = 0 marks the moment when pDNA has entered the nucleus and becomes
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Figure 6.2: Concentrations extracted from model for the different reactants. y-Axis scaling shown
in the corner for each plot. Left shows the production of the two components for prime editing:
PE and pegRNA. Right shows the concentration of assembled complex over time.

available for transcription. Our model shows that it takes approximately 4 h to reach
the maximum concentration of the assembled prime editor complex, starting from
the expression of pDNA. We observe that the pDNA concentrations are governed
solely by pDNA degradation, as described in Equation 6.1 and Equation 6.4. RNA
concentrations are initially determined by transcription from DNA. Once the pDNA is
fully degraded, PE-RNA is governed by RNA degradation, as shown in Equation 6.2.
The pegRNA does not reach the same maximum concentration as PE-RNA, since its
concentration is also affected by its use in complex formation (see Equation 6.5). In
the first few hours, the production of the complex is controlled by the production
rates of pegRNA and PE protein, as well as the complexation parameter. At later
times, it is governed only by the degradation parameter βcomplex.

To adapt this model for RNA delivery, the plasmid steps are removed from the
implementation, corresponding to the reactions written in line 2, 4, 7 and 10 in Fig-
ure 6.1B. Figure 6.2B shows how the kinetics change in this setup. PE-RNA and
pegRNA are only degraded from their initial concentrations. The production of PE
protein is slower, but reaches a higher maximum, as the transfected pegRNA is lim-
ited to the starting concentration. This also causes the maximum concentration of
the assembled complex to occur within the first hour after delivery and to be only
about half that of the pDNA system.

We then examined both delivery systems independently, varying one parameter at
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Figure 6.3: The most influential parameter for the time of maximal assembled complex. Dashed
lines mark the peak for each curve tpeak. Data for these simulations can be found in Table B.1.

a time to determine which had the greatest impact on the timing of the maximum
assembled complex.

Figure 6.3A shows the variation of the βcomplex parameter and the corresponding
concentrations of the assembled complex over time. The specific values of βcomplex and
the times of the peaks are listed in Table B.1a. We found that this parameter had
the greatest influence on the timing of the maximum. For βcomplex = 1, the maximum
complex concentration occurs at 1 h, but the peak value decreases to approximately
3 × 104 counts.

In the mRNA model, the most influential parameter was the initial ratio of PE-
RNA and pegRNA (see Figure 6.3B). The higher the initial pegRNA concentration
relative to PE-RNA, the later the maximum complex concentration is reached. This is
logical, as complex formation takes time, and during this period, the pegRNA already
degrades. Therefore, when more pegRNA is available, more complexes can form over
time.

6.2. Influence of Resource Depletion in Reaction
Networks

The previously introduced model of prime editing expression naturally assumed, that
assembling the prime editing complex consumes both components, PE and pegRNA.
As a result, we implemented this process as a second-order reaction. However, this
complicates the solution of the ODE system. To address this, we conducted an in
silico experiment to explore the possibility of using a simplified model. By considering
different chemical reaction types, as explained in Subsection 2.1.4, we simplified the
first- and second-order reactions to pseudo-first-order or catalytic reactions.

This modification is easily implemented in Julia by altering line 5 of Figure 6.1B.
Figure 6.4A shows the catalytic system implementation on the left and the second-
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1 k_comp, PE_prot + peg_RNA -->
2 PE_prot + peg_RNA + PE_complex

1 k_comp, PE_prot + peg_RNA -->
2 PE_complex

A: PEcomplex implementation in Julia
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Figure 6.4: Prime editing expression from RNA. Left: Catalytic system. Right: Second-order
system with kcomp set to 1 × 10−5 h−1 for better illustration. pegRNA is shown as dashed purple
line, PE protein as grey line and the complex as orange line. y-Axis scaling shown in the corner
for each plot.

order reaction on the right.
For the mRNA model, the kinetics change significantly, as seen in Figure 6.4B.

The tpeak) of the complex for the catalytic reaction shifts to later time points, around
9 h, compared to the previous first hour peak. However, the amplitude increases
dramatically, reaching approximately 2.5 × 1010 counts compared to 3 × 104 counts.
This is expected because, in the second-order reaction, the limiting factor quickly
becomes one of the two prime editing components, as shown in Figure 6.3B. This is
particularly problematic in mRNA transfection. While PE is produced, pegRNA can
only degrade, as mentioned in Section 5.3, causing tpeak to be primarily determined
by the initial pegRNA concentration, as discussed in Section 6.1. In the catalytic
reaction for the mRNA model, pegRNA is no longer consumed but acts as a catalyst
for complex formation, reducing its influence on tpeak.

The initial ratio of PE to pegRNA was previously identified as a highly influential
parameter, so we now revisit this for both the catalytic and second-order systems,
comparing their effects on the pDNA and mRNA models. Figure 6.5 shows the con-
centration of the complex for different ratios, as listed in Table B.1b. For both models
— pDNA and mRNA — we keep the starting concentration of PE, either as plasmid
or RNA, constant and vary the corresponding concentration of pegDNA/RNA. The
plots use the same y-axis scale but have different x-axis scales to better illustrate the
early kinetics. The dashed line represents the second-order DNA maximum for the
previously used ratio and is extended across all plots.

In the catalytic pDNA system, shown in Figure 6.5 (top left), the dashed line is
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Figure 6.5: PEcomplex for different implementations of the prime editing expression. Different
colored lines depict different starting ratios of PE:pegRNA as listed in Table B.1b. The horizontal
black dashed line marks the maximum of the second-order pDNA system. Colored dashed lines
mark the time different implementations take to reach this level.

reached extremely quickly for the lowest concentration, after 54 min, and continues to
rise, as pegRNA and PE protein are produced almost exponentially. Higher pegRNA
concentrations have little effect on this time. The second-order system (top right)
reaches its maximum PE complex concentration at around 4 h for the experimental
ratio, but higher pegDNA levels yield more complex, with the peak occurring at
roughly the same time. The prime editing components are produced in such large
amounts that the ratio becomes less critical in both pDNA models. The abundance of
assembled complex leads to a high likelihood of rapid edits. Using a catalytic reaction
instead of a second-order one in the pDNA model simply results in more material
being produced over time (see additional Figure B.4).

As we know, the mRNA system forms the complex more quickly due to the absence
of the transcription step. This leads to extremely high early concentrations in the
catalytic mRNA system (bottom left). pegRNA is no longer a limiting factor and
can continuously “catalyse” PE protein until the pegRNA is degraded. In contrast,
the bottom right plot shows that pegRNA remains the limitation in the second-order
system. Some ratios do not even reach the threshold set by the pDNA model. In
summary, a catalytic system would distort the actual process by removing the pegRNA
limitation for both delivery models.
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6.3. Incorporating Nuclear Barriers: Delayed Prime
Editing Complexation for mRNA Expression

In Section 5.3 we observed a delay between our mathematical model and the experi-
mental values for mRNA transfection. We previously introduced a simple model and
demonstrated that a measurable delay exists, concluding that it could be due to either
complexation or slower target site localization, resulting from low concentrations of
assembled complex. In this section, we propose a third possible cause for this delay:
the nuclear barrier, a key difference between pDNA and mRNA delivery.

Each cell can be simplified into two compartments: the cytosol, which includes
everything inside the cellular membrane, and the nucleus, enclosed by a barrier that
not all molecules can pass through. Molecules can cross this barrier through various
mechanics, such as diffusion or active transport [136]. We modeled this by introduc-
ing additional reactants and corresponding parameters. As shown in Figure 6.6, for
PE and pegRNA, we now have two RNA reactants: RNAnuc inside the nucleus and
RNAcyto in the cytosol. These can be converted by the rate ntc in a first-order reac-
tion. PE-RNA and pegRNA have different transfer rates, similar to their transcription
rates, due to their different sizes. The PE protein and the complex are also divided
into cytosolic and nuclear reactants and can transfer into the nucleus at the rate ctn.
In this setup, the complex can form either in the cytosol or the nucleus. Since the
editing occurs inside the nucleus, we focus on the concentration of assembled complex
in the nucleus for this model. The additional transfer parameters were taken from
literature and are listed in Table B.3.

We now compare the nuclear barrier model to our simple model. Figure 6.7 shows
the concentration of the prime editing complex for pDNA and mRNA, with the simple
model represented by a dashed line and the nuclear barrier model by a solid line. On
the left, we see that after 10 h, there is no longer a difference between the two models.
However, the early time points are more interesting. The right plot, showing the time
from 0 to 6 h, includes a dashed horizontal line as a visual reference to better compare

Nucleus

ntcPE ctnPE

ntcpeg

Figure 6.6: Model starting from pDNA introducing nuclear barriers and therefore transition rates
ntcP E , ntcpeg and ctnP E .
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Figure 6.7: Comparison of simple model with the nuclear barrier model for pDNA and mRNA
delivery. The dashed horizontal line serves as a visual reference to facilitate comparison of the
different models.

the models.
In the simple model, mRNA leads to faster complex formation than pDNA, as

expected. The nuclear barrier model, however, results in a slower onset of com-
plex formation for pDNA. This is logical, as some complex forms inside the nucleus,
but others still need to be transported there, slowing the overall increase in nuclear
complex concentration and slightly reducing the peak concentration. However, the
difference for the pDNA model is minimal.

In contrast, the nuclear barrier model significantly impacts the mRNA system,
as shown in Figure 6.7. Whereas the complex was previously almost immediately
available and then degraded as pegRNA was used up, it now takes approximately
4.5 h longer to reach the dashed line. This delay is explained by the complex being
formed in the cytosol and then transported into the nucleus, as well as by PE protein
entering the nucleus without a pegRNA. These proteins cannot perform any edits on
their own and are thus unavailable for complexation, leading to a notable decrease in
peak complex concentration.

With this new model, we again tested parameter variations, focusing on the newly
established parameters ctnP E, ntcP E, and ntcpeg. The parameters and correspond-
ing tpeak values are listed in Table B.4. Varying the parameter ctnP E shows similar
behavior in both mRNA and pDNA models. The lower the rate of transport into
the nucleus, the less complex accumulates inside the nucleus, as some of the complex
degrades before being transported into the nucleus when ctnP E < βcomplex. This leads
to a shift in peak concentration times to later time points for both models, indicating
that a high transport rate is beneficial for greater efficiency. This can be achieved, for
example, by using multiple NLS sequences for the PE protein.

The ntc parameters can only be varied in the pDNA system, as shown in Fig-
ure 6.8. On the left, we see that increasing the rate ntcP E shifts the peak of the
complex concentration to earlier, from 24.6 h to as early as 5.4 h, while also increasing
peak concentration levels. This suggests that the concentration of PE-RNA in the cy-
tosol can limit the kinetics of complex formation. Interestingly, in the pDNA model,
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Figure 6.8: Parameter variations for nuclear barrier model. Green lines depict pDNA model, orange
ones mRNA model. Three different parameters are varied. Line color indicates a increase in the
value of the varied parameter, with lighter colors representing smaller values, and darker colors
representing larger values. Additional data is listed in Table B.4.

pegRNA levels have less influence on the peak concentration and timing of the com-
plex concentration, as seen on the right. A further range of ntcpeg values was tested
compared to ntcP E, but the model showed only a slight shift, from 6.87 h to 4.17 h.
This is likely because pegRNA is produced in greater quantities than PE-RNA, as it
is significantly smaller.

6.4. Discussion
This chapter explored simulating the kinetics of prime editing expression using a series
of models implemented in Julia. We began with a coarse-grained, simple model, which
helped identify key factors in experimental design. Notably, we found that the initial
ratio of transfected pegRNA to PE-RNA plays a crucial role in mRNA delivery. This
significantly impacted the efficiency and timing of complex formation.

Next, we explored the effects of different reaction types — catalytic and first/second-
order. Although catalytic reactions simplify ODE systems, they heavily distorted the
behaviour of our system. The expression dynamics and limitations inherent to a
first-order reaction were eliminated, highlighting the need to accurately define the
underlying chemical kinetics and processes.

Finally, we refined the model by introducing a nuclear barrier and transport param-
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eters. For the mRNA model, this addition shifted the timing of complex formation,
delaying the peak concentration compared to earlier models. The nuclear barrier
added complexity, as PE and pegRNA must pass through the nuclear membrane,
altering the overall kinetics.

The simple model allowed us to explore the basic dynamics of prime editing expres-
sion but did not capture the complexity needed to fully explain experimental results,
particularly for mRNA delivery. In contrast, while the catalytic model reduced the
complexity of the ODE system, it severely distorted the expression dynamics by re-
moving key limitations present in real systems. This indicates that catalytic models
are not suitable for this context.

The nuclear barrier model, while more accurate, introduced additional parameters
related to nuclear transport that increased system complexity. Although this model
provided more detailed insights into the dynamics of complex formation, it requires
further refinement by measuring transport parameters, which were only estimated
from literature for the scope of this thesis.

To better model our system, more of the parameters used here should be measured
directly in this system. For example, fluorescence resonance energy transfer could be
used to determine complex formation [137] or GFP-tagged Cas proteins for nuclear
transport rates [138].

As proposed in the experimental chapters, a hybrid system of pegRNA as pDNA
and PE as mRNA could first be tested in silico to guide design of such experiments
and determine whether sequential or simultaneous transfection would yield higher
efficiency and shorter timing. This demonstrates the usefulness of simulations in
guiding experimental design before running time- and resource-intensive experiments.

In conclusion, while modeling gene expression with differential equations is well-
established [40], the use of Julia offers a more efficient approach for implementing
chemical rate equations in the form of ODE systems [135]. Julia’s flexibility allowed
us to study the system at all stages of the experiment, from design to data analysis.
By iteratively using simulations to test hypotheses and guide experimental setups,
creating a feedback loop where experimental data informs simulations and vice versa.
This iterative approach offers a powerful method for understanding and optimizing
prime editing systems.
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7. Search-and-Replace Prime Editing as
Implementation for Biocomputing

Current implementations of biocomputers are based on Boolean logic, approximating
the operation of silicon-based computers. However, this approach “fundamentally
limits the types of computation that may be engineered inside the cells and fails to
exploit the rich and diverse functionality available in natural living system” [139].
One notable advantage, for instance, is DNA’s information density, which is orders
of magnitude greater than that of conventional storage technologies [140]. As early
as 1994, Fontana and Buss [141] proposed a biocomputer using the Lambda calculus,
which was explained in Subsection 2.2.3.

In the following, we present our approach on implementing a version of Lambda
calculus, specifically the SKI combinator calculus, using prime editing. We begin by
defining general requirements for the DNA system and demonstrate how the Lambda
calculus components can be translated into cellular machinery. Here, a computation
is encoded in the DNA as a Lambda expression. For evaluating (or beta-reducing) the
function applications within these expressions multiple predefined pegRNA sequences
together with PE are used. We then propose a system for implementing the I combi-
nator, but note that this quickly necessitates the introduction of a garbage collection
operator. Subsequently, we introduce a version of the K combinator. Finally, we
conclude with a discussion and outlook on the potential of a SKI combinator-based
cellular computer.

7.1. Defining the SKI Combinator Calculus on DNA
In Subsection 2.2.3, we introduced the Lambda calculus and its three components:
variables, Lambda abstractions and function application. In the following, we propose
a theoretical framework for implementing the SKI combinator calculus, as shown in
Subsection 2.2.4, derived from Lambda calculus. In this framework, the need for
variables is eliminated and replaced by three combinators: the identity function I,
the K combinator, and the S combinator with the following applications:

I x → x (7.1)
K x y → x (7.2)

S x y z → x z (y z) (7.3)

Manzoni et al. [142] proposed that a biocomputer requires three main elements:
inputs, computational module and an output. First, the system must be able to read
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KIK

I
β-reduction

A: In the SKI combinator calcu-
lus, the computation is repre-
sented by the expression KIK.
This expression is evaluated
through beta reduction, re-
sulting in I.

PE complex pool

Edit

B: The computation is encoded in the DNA. Colors are used to
represent the different combinators. Prime editing, using a pool
of various PE-pegRNA complexes, is employed to beta reduce
the expression to its beta-normal form.

Figure 7.1: Transfer from SKI combinator calculus to a DNA/PE-pegRNA system

and react to inputs, for example, using cellular sensors such as calcium ion channels
like TRPV1, which responds to temperature and chemical stimuli [143]. Second, a
computational module is needed to perform a desired function based on the input,
producing a change in the system. Lastly, the system must have a way to express the
result of the function application, the output.

Using the SKI combinator calculus, the input is defined by the expression to be
evaluated. This expression is stored as a sequence of combinators. x, y and z, as
seen in the definitions of the combinators, are variables, but they can only be drawn
from the set of combinators {I, K, S}. In Figure 7.1A, we see such a combination
of combinators (input), while Figure 7.1B shows the encoding of these combinators
on DNA. Function application and beta reduction provide the computational module,
reducing the expression KIK to a single I. To perform this beta reduction using the
biocomputer, we utilize the previously studied prime editing system. By designing
different pegRNAs, we form a PE-pegRNA pool that reduces the expression to its
beta-normal form, which can no longer be reduced.

This approach defines DNA as the storage medium for the expression to be evalu-
ated, the desired computation encoded as a specific DNA sequence. The DNA must
be stored in a way that allows editing by the PE-pegRNA complexes to perform beta
reduction. We, therefore, propose integrating it stably into the system, likely through
cloning, similar to how our fluorescent reporter was implemented in the HEK cell
line. The expression of the PE-pegRNA complex needs to be stable enough to ensure
high-efficiency edits, as the beta reduction depends on this process.

7.2. Implementing the I Combinator Utilizing Prime
Editing

We propose that a combinator can be encoded by a specific DNA sequence. The design
of our functions and edit lengths is guided by the requirements for prime editing and
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A: PE cuts (red) the DNA 3 bp upstream of the
PAM sequence (black). The pegRNA is de-
fined relative to this cut position. The guide
sequence has a variable length but is gener-
ally defined up to the PAM sequence. The
edit frame starts from the cut site and extends
downstream (green). The replace sequence of
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D: Beta reduction is performed using a single
prime edit. Step 1 shows the setup of an appli-
cation of the I combinator on the variable x.
The start codon doubles as the PAM sequence.
Step 2: the corresponding pegRNA, as defined
in C, hybridizes to the DNA, and the RT ex-
tends the DNA with the start codon directly
after the spacer. Step 4: the function call I is
deleted from the DNA sequence and beta nor-
mal form is reached, after flap equilibration
and DNA repair.

Figure 7.2: The I combinator is translated into DNA, and the corresponding beta reduction is
performed using prime editing.

pegRNA design. Section 2.1 briefly explained pegRNA design. Figure 7.2A shows a
target dsDNA with base pairs numbered from −n to 6. The PAM sequence, recognized
by the Cas protein, is located at base pairs 4−6. Three base pairs upstream, between
−1 and 1, the Cas protein cuts the upper strand of the DNA. The pegRNA has two
arms: one for the search operation and one for the replace operation (Figure 7.2B).
The guide/search sequence of the pegRNA is complementary to the bottom strand of
the target DNA from position −n up to, and possibly including, the PAM sequence.
A PBS, complementary to the −n to −1 bp of the upper strand, and the desired
edit sequence comprise the replace strand of the pegRNA. The edit frame is always
downstream of the cut site. To perform a deletion in this system, the edit sequence
needs to omit the desired base pairs from the DNA target sequence.

Figure 7.2C depicts the identity combinator in Lambda calculus, which returns the
input variable, meaning the application of Ix returns x. When translating this into
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Figure 7.3: Applying the identity function twice to a variable leaves a spacer between the next
identity operator and the variable. Even if the pegRNA hybridizes to this DNA sequence, reverse
transcription may be inhibited by the remaining function sequence. To resolve this, we introduce
a set of pegRNAs to clean up such remnants. After this step, the final beta reduction can proceed.

an I combinator pegRNA, we propose that the search sequence be encoded as SpIα
and the replace sequence as αSp. This leads to a simple deletion of the I combinator
from the DNA expression, independent of the true combinator for the x variable. We
introduced α and Sp here, which are encoded sequences used for hybridization of the
pegRNA to corresponding sequences in the target DNA. The reasoning for these will
be explained in the following.

α and Ω define the start and end of our expression to be evaluated and can be used
as primers when performing NGS as readout, for example. Figure 7.2D shows the
simple application of the identity operator on a variable x from the set of combinators
{I, K, S}, as encoded by ΩxSpIα (Figure 7.2D 1.). α also encodes for a PAM
sequence, which serves as the binding site for the PE and defines the cut site. The
expressions encoded in DNA are backwards compared to the standard SKI combinator
calculus because the DNA edit frame is always downstream of the cut site, toward the
PAM. The pegRNA hybridizes to the bottom DNA strand in step 2 (in Figure 7.2D
2), allowing the Cas protein to cut the upper strand. This, in turn, enables the second
half of the pegRNA to bind to the now exposed flap. These binding dynamics are
the reason for including Sp. The flap is then extended with α by the RT fused to
the Cas protein, as shown in Figure 7.2D 3.. After DNA repair, the I combinator is
successfully removed, and the variable x remains.

The I combinator is designed to remain completely flexible to any input, as the
input is not part of the pegRNA. Therefore, only one pegRNA is needed. Incorpo-
rating the variable x into the search sequence would instead require three different
pegRNAs, one for each combinator. While this is still feasible for the I combinator,
applying this approach to the S combinator would require at least 33 = 27 versions,
accounting for only the basic operators and no combinations. This would significantly
increase the required pegRNA pool, making it impractical.

We previously saw a single application of the I combinator translated to DNA. Now,
we will run a few test cases to verify our implementation. First, we apply the I combi-
nator multiple times to a variable x , as shown in Figure 7.3. The initial step mirrors
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the previous beta-reduction, where the I between Sp and α is removed. However,
we then observe a leftover spacer in front of the next I. Even when the Cas protein
can bind to the DNA and the pegRNA hybridizes to it, the reverse transcription of
α may be blocked by the remaining combinator. Therefore, we introduce additional
pegRNAs to remove any leftover Sp between a combinator and the start codon α:

GCI: I Sp α → I α

GCK: K Sp α → K α

GCS: S Sp α → S α

In computer science, garbage collection refers to the process of automatically
identifying and removing unused or redundant data from memory, ensuring efficient
system operation and preventing clutter [144]. Similarly, since we are left with the
residual sequence Sp or “garbage”, which impedes the next evaluation steps, we term
these pegRNAs garbage collectors (GCs). Just as garbage collectors in computer
systems free up memory to allow for new operations, these GCs clear away unnecessary
or obstructive DNA sequences, enabling the next combinator to be evaluated. We can
now test three more variations:

Ω I x Sp α → Ω I x α : In this case, the previously introduced GCs remove the
spacer, depending on the variable x.

Ω I α → Ω I α : Since beta-normal form is already reached, no further action
occurs. The I combinator might bind to the DNA, but without a Sp, no edit is
happening.

Ω I Sp I x α → ? : This expression depends on the variable x, as the calculus is
a right-associative in our case, meaning x is evaluated first.

7.3. Designing a K Combinator Variant
The K combinator, compared to I , is slightly more complex as it takes two inputs,
x and y . It is typically defined to select the first of two inputs, but in our system,
we instead select the second input, reducing the K combinator to a deletion operation
using prime editing. As shown in Figure 7.4, Kyx reduces to x. This is encoded as
Ω x Sp y Sp K α in the DNA.

The K combinator encodes for a different PAM sequence than α, so to shift the
cut site further upstream, as illustrated in Figure 7.4. However, instead of simply
removing SpK, we replace it with a sequence K2. This sequence K2 is crucial because,
only removing the spacer and K combinator would lead to ΩxSpyα. The system would
evaluate y next and fail to remove it, thus not selecting x. For the first evaluation step
of K, we need the replace arm of the pegRNA to hybridize to the variable y, leading us
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Figure 7.4: The K combinator chooses one of two arguments, in our case always the second one.
The application uses a K combinator which contains a PAM sequence, therefore shifting the cut
site upstream (red). 3 different versions of K exist — K1I, K1S, and K1K depending on what the
variable y stands for. To then completely remove y a second edit step using the operator K2 is
needed. There are 3 different versions of K2 as well. The right side depicts, how the combinators
K and K2 are implemented as pegRNAs.

to a set of K combinators: {K1I, K1S, K1K}. The K2 sequence must also include a PAM
sequence to shift the cut site to the left of the variable y, ensuring the independence of
it. The K2 pegRNA then removes yK2 and reduces the expression to the beta-normal
form, x.

In the case of only getting one input, such as Kx, the computation becomes incom-
plete.

ΩxSpKα → ΩxK2α → ?

Here we see that our version of the K combinator breaks down when only one input
is provided. The first editing step is still possible, but the computation halts at the
second step due to the missing Sp. This issue will need to be addressed in further
research, as will be the implementation of the S combinator.

7.4. Discussion
In this chapter, we proposed a computational model based on the SKI combinator
calculus, implemented in DNA using prime editing for the crucial step of beta reduc-
tion. Similar to the CRISPR sequences found in bacteria and archaea, we introduced
a pool of pegRNAs to represent the three combinators, as summarized in Table 7.1.

The single application of the I combinator required one pegRNA, with the “search”-
sequence of SpIα and “replace” of Spα, resulting in a single editing step. However,
we observed that when an expression contains two applications of the I combinator,
additional pegRNAs are needed to clean up the DNA after each editing step. We
termed these additional pegRNAs garbage collectors (GCs).

Next, we introduced the K combinator, which requires two sequential editing steps.
Since the first step could not be designed with maximal flexibility, we opted to instead
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Family Name Search Replace

I combinator I SpIα → Spα

K combinator

K1I ISpKα → IK2α

K1K KSpKα → KK2α

K1S SSpKα → SK2α

K2 SpxK2α → Spα

Garbage collectors
GCI ISpα → Iα

GCK KSpα → Kα

GCS SSpα → Sα

Table 7.1: Overview of pegRNAs for the SKI combinator calculus.

provide three pegRNAs with a similar setup for each possible combinator. The second
editing step of the K combinator, however, only required one pegRNA.

Both a double application of the I combinator and the two-step K combinator ed-
its need to happen sequentially. As discussed in previous chapters, assuming PE and
pegRNAs are stably expressed from the genome, a single edit step could take approx-
imately 3 h, leading to a total computation time of around 6 h. This time increases
significantly if transfection, instead of stable integration, is used. For instance, based
on our results in Chapter 5, transfection with pDNA could take between 10 h and
80 h, with efficiencies around 60 %.

These estimates highlight the importance of efficiency and timing. While a standard
Lambda calculus implementation may not be highly dependent on timing due to
its ability to parallelize operations, our system requires strict left-association. This
limitation might be addressed by omitting the start-codon to increase flexibility and
enable parallelism. However, without this start-codon, ensuring the correct order of
computations remains necessary.

We designed our system using base pair sets of three, aligning with both the natural
codon structure and the cut-PAM distance of SpCas9. However, this is not strictly
required. Other Cas proteins with different distances could also be used for prime
editing, potentially simplifying the K combinator and aiding in the design of an S
combinator [145]. When implementing this system in vitro, these properties would
need to be carefully determined and optimized. As seen in Chapter 5, not only does
the delivery system matter for the duration of an edit, but also the length of the edit
frame. Using two editing steps for a single combinator could be reduced to one with
a Cas protein that has a longer cut-PAM distance.

In designing our pegRNA pool, we made several assumptions regarding how dele-
tions work and how the RT could be hindered. These assumptions should be verified
in a lab setting to ensure accurate design before further development.

Our experiments were conducted in mammalian cells, a well-established model for
prime editing. However, often integrating longer DNA sequences into these cells can

65



7. Search-and-Replace Prime Editing as Implementation for Biocomputing

be challenging [146]. A better approach for in vitro experiments could be to use
Saccharomyces cerevisiae, as it is easier to maintain and integrates given DNA stably
into its genome [147]. Creating a biocomputing yeast strain that constantly expresses
the PE protein and the pool of pegRNAs would be advantageous. A designated
homology region in the yeast genome could allow easy insertion of different encoded
expression, followed by NGS after a few generations to extract the solution.

There is also evidence suggesting that prime editing is dependant on the cell cycle
phase [23, 148]. Yeast has a shorter doubling time (90 −120 min under optimal con-
ditions) compared to mammalian cells like HEK293, which take 34 −36 h [147, 149].
This could further reduce computation times and should be considered when designing
an in vitro biocomputer.

Once a yeast system is established, cell-free yeast systems could also be considered.
There are already synthetic yeast systems available for different purposes [150], which
may be even easier to maintain and eliminate the need for cloning, as editing could
be performed directly on added dsDNA.

Another critical aspect is the readout process, we used a fluorescent reporter system,
which is limited to Boolean “on” and “off” results. While NGS was mentioned as a
possible readout, it could lead to multiple or undefined results unless a single-cell
isolation is performed beforehand. Alternatively, for a limited number of combinator
permutations, one could design a DNA origami with ssDNA docking stations that emit
different fluorescence signals when hybridized to a complementary strand. Adding a
solution of DNA in supposedly beta-normal form, one could then image the results
and determine their distribution [151]. This method could be faster and more precise
than a single fluorescent reporter [151].

On a more abstract note, Grozinger et al. [139] pointed out that the inherent
stochasticity and determinism of biological systems could be advantageous for specific
computational tasks. However, we must be careful not to oversimplify these processes
or equate them with electronic systems, as they are inherently less reliable and pre-
dictable. Therefore, extensive knowledge about the robustness, efficiency, timing of
these systems and a proper readout for biocomputers is essential.
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In this thesis, we set out to investigate and learn to control the kinetics of prime
editing to achieve faster genomic edits without a loss of efficiency. This is critical for
the development of therapies for genetic diseases and the foundations of biocomputers.
The ability to precisely control the timing and efficiency of prime editing is essential,
as some applications require rapid, accurate edits, while others benefit from prolonged
exposure [26, 27, 126].

Our study made several contributions to the field of prime editing. We began by de-
veloping a method to monitor prime editing events at the single-cell level using a HEK
cell line stably expressing a blue-shifted fluorescent reporter. A successful prime edit
in the genomic sequence of this reporter restored the fluorescence to its original green
color. By adapting the LISCA assay, we were able to define the time-to-edit, from
transfection to the onset of green fluorescence, with a median of 20 h for pDNA trans-
fection. Knowing from literature that mRNA-based delivery of fluorescent reporters
is typically faster than pDNA-based delivery, we compared the two approaches to de-
termine whether mRNA-delivery could speed up prime editing. While mRNA-based
prime editing was several hours faster than pDNA, it exhibited significantly lower ef-
ficiency, and the time difference was not as pronounced as expected. Although pDNA
offers higher efficiency, it leads to longer exposure and carries the risk of off-target
effects. mRNA, though less efficient and potentially requiring re-dosing, is compara-
ble to pDNA on the time scale for edits. Therefore, the choice between pDNA and
mRNA should prioritize factors like delivery vehicle or off-target effects, rather than
time-to-edit.

To investigate the unexpectedly slow mRNA time-to-edit further, we used a plasmid
that co-expresses a red fluorescent protein alongside the prime editor, allowing us to
track the expression of editing components and measure the editing time. We found
that median mRNA-based editing was two hours slower than pDNA-based editing. We
hypothesized that the time-to-edit depends on two separate time scales: from delivery
to the expression of the prime editing components, and the editing process until
the expression of the fluorescent reporter. We estimated this using a mathematical
convolution of these two time distributions. While our model accurately predicted the
pDNA time-to-edit, it showed a discrepancy for mRNA-based delivery, indicating that
reaching similar complex concentration takes 15 times longer starting from the mRNA
model compared to the pDNA model. Further simulations revealed that mRNA-based
prime editing is constrained by the initial ratio of prime editor mRNA to pegRNA,
limiting the speed of editing. This suggests that strategies like dual transfection or
re-dosing could improve the kinetics of mRNA-based editing.

We also explored the relationship between edit length and editing kinetics in the
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pDNA system, where longer edits correlated with slower editing times. This aligns
with the strand displacement theory, offering insights for designing more efficient edit-
ing strategies, such as determining whether two sequential edits might be more time
efficient than a single long edit. More studies about the kinetics of strand displace-
ment, also including mismatches like in the work of Irmisch et al. [130], could improve
models of timing and efficiency.

Our investigation into the use of mathematical models with ODEs to simulate
prime editing kinetics highlighted the power of simulations in experimental design.
We demonstrated that even simple expression models reveal the differences between
mRNA and pDNA delivery but require a nuanced understanding of reaction dynamics
and their mathematical implementation. These models are valuable tools for guiding
experimental setups but must be grounded on robust parameter estimations from
literature or independent experiments to avoid over-complicating or oversimplifying
the system.

Lastly, we proposed a theoretical framework for implementing parts of the SKI
combinator calculus using DNA and prime editing as a beta reduction machinery.
Although this concept demonstrates the potential of prime editing in synthetic biology,
the complexity of the kinetics indicates that more detailed knowledge of the editing
process is necessary before such systems can be reliably realized.

The experimental scope of this thesis was limited to a single editing locus in one
cell line to ensure consistency and comparability across delivery systems. However,
it is known that prime editing efficiency can vary widely between different loci, likely
affecting the kinetics as well. Design choices such as PBS length, guide sequence and
edit length, influence efficiency and likely kinetics, too.

Future research, particularly with the goal of drug delivery in mind, should explore
how these kinetic principles apply across a broader range of loci, cell types, and
editing designs. This could include delivery of the PE-pegRNA complex as fully
assembled RNPs or studying the impact of different UTR sequences on the expression
kinetics of the prime editing components delivered by mRNA. Hybrid delivery systems,
combining pDNA- and mRNA-delivery or using sequential transfection, could also be
of interest for drug delivery approaches.

Before testing the proposed biocomputer system, further studies are needed to un-
derstand the impact of variables such as mismatches, PAM sequences, and the use
of alternative Cas proteins for prime editing. We also proposed yeast as a potential
model organism for biocomputers. Thus, future research should repeat these kinetic
studies in yeast to validate our findings and explore the development of a yeast-based
biocomputer.

In conclusion, this thesis presents a kinetic study of prime editing at the single-
cell level. We initially explored the dynamics of different delivery systems for the
expression of the prime editing components, revealing an unexpected discrepancy,
when transfecting mGL-mRNA directly compared to the mRNA-based prime editing
time-to-edit. We introduced a new fluorescent reporter to measure the expression of
the PE protein and examined the kinetics of the editing time for both mRNA delivery
and different editing lengths in the pDNA system. Through the use of mathematical
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models, we evaluated their accuracy and the influence of model parameters, showing
that mRNA delivery is not always the best option for prime editing and that pDNA
should also be considered. Lastly, we proposed a framework for implementing part of
the SKI combinator calculus in DNA using prime editing for beta reduction.
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A. Experimental Protocols and Data
Evaluation Scripts

A.1. Manufacturing of Material
A.1.1. Plasmids
Plasmids were stored in NEB 5-alpha Competent E. coli (C2987H, NEB) cells at
−70 ◦C. These cells were transformed following the manufacturers instructions. For
plasmid multiplication, a single colony was picked from an LB agar plate and grown
over night in 5ml LB supplemented with the corresponding antibiotics at 37 ◦C shak-
ing with 250 rpm to ensure optimal growth and plasmid replication. The antibiotic
used was either ampicillin at a final concentration of 100 µg/mL or kanamycin at a
final concentration of 50 µg/mL, depending on the plasmid’s resistance marker. The
next day a plasmid extraction was performed using standard miniprep kits (Quiagen,
Thermo Fisher, NEB) accodring to the manufacturer’s instructions. The concentra-
tion of the final pDNA was measured using a spectrophotometer (Nanodrop) and
diluted to the specific stock solution required and stored at −20 ◦C.

Plasmid Promoter ORF Antibiotic From

mGL CMV mGreenLantern KanR Westmeyer Lab
mScarlet3 C1 CMV mScarlet KanR Addgene

#189753

pCMV-PE2 CMV PE2 AmpR Addgene:
#132775

pCMV-PE2-
P2A-mScarlet

CMV PE2 + P2A +
mScarlet

AmpR Cloned by
vectorbuilder

GA890 U6 pegRNA(short) AmpR Westmeyer Lab
L1135 U6 pegRNA(middle) AmpR Westmeyer Lab
L908 U6 pegRNA(long) AmpR Westmeyer Lab

Table A.1: Overview of plasmids for experiments requiring pDNA transfection

A.1.2. mRNA/IVT
The plasmids for IVT were kindly provided by the Westmeyer lab, transformed and
stored like the other plasmids. After using a maxi prep kit (Quiagen) following the
manufacturers instructions 3 µg of template plasmid were linearized by digestion with
AsiSI and purified by gel electrophoresis. IVT was performed using the Kit XY with
the following modifications:

• mGL/mScarlet: HiScribe T7 mRNA Kit with CleanCap Reagent AG (NEB:
E2080S), substituting UTP with Pseudo-UTP from Jena Bioscience (NU-1139S)
for increased stability of the resulting RNA
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• PE2, PE2-P2A-mScarlet: HiScribe T7 mRNA Kit with CleanCap Reagent
AG (NEB: E2080S) with Pseudo-UTP from Jena Bioscience, also for increased
stability, since the resulting RNA is of a larger order than usual RNAs

• pegRNA: HiScribe T7 Quick High Yield RNA Synthesis Kit (NEB: E2050S)
was used without modified NTPs

The DNA template was removed by DpnI digestion (NEB). mRNA isolation was
conducted using the Monarch RNA Cleanup Kit (NEB #T2050) following the man-
ufacturer’s instructions. The concentration of the RNA was then measured with a
nanodrop, diluted to the desired stock concentration and stored at −70 ◦C.

Plasmid Promoter ORF Antibiotic From

IVT-mGL T7 mGL AmpR

Westmeyer LabIVT-PE2 CAG PE2 AmpR
IVT-PE2-P2A-
mScarlet

CAG PE2, P2A, mScarlet AmpR

IVT-pegRNA T7 GA890 AmpR

Table A.2: Overview of plasmids for IVT for experiments requiring mRNA transfection

A.1.3. mGreenLantern DNA Sequence

1 ATGGT GAGCA AGGGC GAGGA GCTGT TCACC GGGGT GGTGC CCATC CTGGT CGAGC
56 TGGAC GGCGA CGTAA ACGGC CACAA GTTCA GCGTC CGCGG CGAGG GCGAG GGCGA

111 TGCCA CCAAC GGCAA GCTGA CCCTG AAGTT CATCT GCACC ACCGG CAAGC TGCCC
166 GTGCC CTGGC CCACC CTCGT GACCA CCTTA GGCTA CGGCG TGGCC TGCTT CGCCC
221 GCTAC CCCGA CCACA TGAAG CAGCA CGACT TCTTC AAGTC CGCCA TGCCC GAAGG
276 CTACG TCCAG GAGCG CACCA TCTCT TTCAA GGACG ACGGT ACCTA CAAGA CCCGC
331 GCCGA GGTGA AGTTC GAGGG CGACA CCCTG GTGAA CCGCA TCGTG CTGAA GGGCA
386 TCGAC TTCAA GGAGG ACGGC AACAT CCTGG GGCAC AAGCT GGAGT ACAAC TTCAA
441 CAGCC ACAAG GTCTA TATCA CGGCC GACAA GCAGA AGAAC GGCAT CAAGG CTAAC
496 TTCAA GACCC GCCAC AACGT TGAGG ACGGC GGCGT GCAGC TCGCC GACCA CTACC
551 AGCAG AACAC CCCCA TCGGC GACGG CCCCG TGCTG CTGCC CGACA ACCAC TACCT
606 GAGCC ATCAG TCCAA GCTGA GCAAA GACCC CAACG AGAAG CGCGA TCACA TGGTC
661 CTGAA GGAGA GGGTG ACCGC CGCCG GGATT ACACA TGACA TGGAC GAGCT GTACA
716 AGTAA

Original DNA sequence of mGreenLantern, specific location for shift to blue is marked in green.
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A.2. Protocols

A.2.1. Patterning and Coating
Passivation A bioinert µ-slide VI 0.4 (ibidi) is positioned on top of a mask, which
is patterned with squares with a side length of 25 µm and a lattice distance of 90 µm.
Then 100 µL of 2 % low-melting agarose (Roth) are mixed with 100 µL PLPP (Alveole)
with a concentration of 100 mM and stored in a 42 ◦C heat block. Calciumperoxid
(Roth) is diluted to a 6 M concentration with RNase free water and 62.5 µL are mixed
with the agar-PLPP mix. Each channel is then filled with 40 µL of patterning solu-
tion and illuminated with UV-light on highest settings for 8 rounds with each 1 min
illumination and 5 s break to allow for cooling of the slide and patterning solution.
The PLPP is activated by UV illumination and allows for removal of the polyol-based
coating of the slide, revealing the underlying periodic square-grid pattern provided
by the mask. All channels are then washed twice with 25 mL double distilled H2O
(ddH2O). To remove waste and residual chemicals the channels are additional washed
with 200 µL of 0.5 M HCl and again with 25 mL ddH2O. Consecutively all channels
are dried with pressured air and then sterilised by UV illumination for 20 min.

Laminin Coating The patterning removes the passivation to reveal a lattice of
squares, which can now be coated with cell adhesive substances. For the experiments
performed in this thesis, Biolaminin 521 LN (Lamina) was used. After transfecting
the cells the slides are coated by diluting 44 µL of laminin from a 100 ng/µL stock
with 176 µL of PBS. Each channel of the slide is washed with 5 mL of ddH2O and
35 µL of laminin mix are added to the channels. After incubation at 37 ◦C for 1 h the
channels are washed with 5 mL of PBS, filled with the respective medium and then
further incubated until seeding of the cells.

A.2.2. Cell Culture
A HEK293T cell line, which stably express a blue-shifted variant of mGreenLantern in
the ATP1A1 locus, was kindly provided by Prof. Dr. Gil Westmeyer from the Institute
for Synthetic Biology, Helmholtz Zentrum München. These cells are cultured at 5%
CO2 at 37 ◦C in DMEM medium (Gibco), supplemented with 10% fetal bovine serum.
For passaging cells are being washed and treated with trypsin for 1 min.

A.2.3. mGL Transfection
For fluorescent reporter experiments, cells from culture were treated with accutase for
1 min, centrifuged at 800 r c f and resuspended in medium. Approximately 25 000 cells
were seeded into a micro-patterned µ-slide and incubated for 30 min for adherence
to the pattern. Cells were then washed with medium to remove debree and not
adhered cells and again incubated for 30 min. After addition of the transfection mix
cells were incubated for 45 min to allow for endocytosis. Subsequently medium was

73



A. Experimental Protocols and Data Evaluation Scripts

changed to phenol red free L-15 medium supplemented with 10% fetal bovine serum
and transferred onto the microscope.

pDNA 37.5 µL of jetOPTIMUS buffer (polyplus) are mixed with 3.75 µL of mGL
plasmid with a stock concentration of 100 ng/µL. 0.375 µL of jetOPTIMUS are added,
mixed and incubated for 10 min at room temperature to allow for complex formation.
Next the lipoplex mix is diluted with 80 µL of DMEM and 20 µL of this is added to
each channel and mixed carefully by pipetting repeatedly from the back to the front.

mRNA Here, 0.9 µL of Lipofectamine MessengerMAX (LMRNA001, Thermo Fisher)
are diluted in 30 µL of OptiMEM (Gibco) and incubated for 10 min. During this
time 0.6 µL of mGL RNA are diluted from a stock concentration of 500 ng/µL in
30 µL OptiMEM. After sufficient incubation 30 µL of RNA mix are transferred to
30 µL of Lipofectamine MessengerMax mix and allowed to perform complexation into
lipoplexes by incubation at room temperature for another 5 min. This, too, is then
diluted with 60 µL OptiMEM and 20 µL are added per channel and mixed carefully.

A.2.4. Translation Inhibition Using Cycloheximide

The protocol for inhibiting translation was established previously and slightly adapted
for the HEK cell line [29]. HEK-bsmGL cells are prime edited before start of the exper-
iment to attain green fluorescing cells. Cells are then cultured for at least 3 passages to
recover from the possible transfection and editing stress on the cells, before being used
for the following experiments. These cells are seeded on a slide as explained previously
in Subsection A.2.3. Before the second wash cycle, the settings for the microscope
and the positions are adjusted. The second wash cycle is then performed with L15
supplemented with 10% fetal bovine serum and 15 µg/mL CHX(Sigma Aldrich).

A.2.5. Prime Editing Transfection

For prime editing experiments, 120 000 cells were seeded with 500 mL medium in 24 ibi-
Treat µ-plates (ibidi). About 16 h later cells when cells reached 70 % confluency, they
were transfected as explained below and incubated. After 4 h medium was changed
to remove remaining transfection mix and dead cells. Cells were then incubated an-
other hour to allow for sufficient recovery time and afterwards treated carefully with
accutase for 1 min. The cell solution was centrifuged at 800 r c f for 3 min and the cells
resuspended in medium. Approximately 25 000 cells are added into a micro-patterned
µ-slide and incubated for adherence for 45 min. A first washing step is performed with
medium to remove the non-adhered cells and any cell debree and the cells are incu-
bated another 30 min. The medium is then changed to phenol red free L-15 medium
supplemented with 10% fetal bovine serum for imaging.
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pDNA For one well of transfected cells 50 µL of jetOPTIMUS buffer were mixed with
2.5 µL PE plasmid (Stock 0.1 µg/µL) and 2.5 µL pegRNA plasmid (Stock 0.1 µg/µL).
After mixing 0.5 µL jetOPTIMUS were added and incubated for 10 min for complex-
ation. 55 µL were then added to a well containing cells in standard medium.

mRNA For mRNA transfection 22.5 µL Lipofectamine MessengerMAX was diluted
in 75 µL OptiMEM (Gibco) and incubated for 10 min to allow for building of liposomes.
During this time 10.58 µL of PE RNA (Stock 500 ng/µL) were mixed with 1.18 µL
of pegRNA (Stock 500 ng/µL) and diluted in 75 µL OptiMEM. Afterwards 75 µL of
mRNA mix were added to 75 µL of Lipofectamine mix and incubated for another
5 min at room temperature to allow for the formation of lipoplexes. 50 µL were then
added to cells in a well and carefully shaken for even distribution.

A.2.6. Time-Lapse Microscopy
Time-lapse measurements were conducted over a 30 to 48 h-period using a inverted
Nikon Eclipse Ti-E microscope with a 10x objective. The samples were maintained
in a heated chamber from Okolabs at 37 ◦C. Images were captured every 15 min
consisting of BF and the needed fluorescence channels. BF images were illuminated
with a LED 100 warm white (MHLED100W) and taken with a CMOS camera (PCO
edge 4.2). Fluorescence - either mGL, mScarlet or Cy5 - was captured using filter
sets for the corresponding wavelengths. Multiple positions per channel and slide were
captured in this 15 min window to facilitate high-throughput. The time-lapse was set
up and controlled using NIS-Elements Advanced Research software (Nikon) and the
perfect focus system (PFS) was used to keep the sample in focus.

A.3. Image Processing with PyAMA
As explained in Section 3.2 fluorescence images are background corrected, cells are
then tracked via the BF images and using PyAMA area and fluorescence curves are
plotted. Cells are then deselected by the user for the following reasons (see Figure A.1):

• multiple cells on one spot

• empty squares

• as cell detected dirt

• dirt on cells

• cells dying during the measurement
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A: Multiple cells B: Dirt C: A dying cell at multiple
time points.

Figure A.1: Example pictures for exclusion parameters of cells

A.4. Data Evaluation Scripts
Subsequent data evaluation was performed with R or Julia. Here presented are code
snippets of evaluation code.

A.4.1. Deterministic Models Coded in Julia
DNA-to-Protein Model in Julia

1 #Model in Catalyst
2 DNA_to_Protein_model = @reaction_network begin
3 @parameters t0
4 tc, DNA --> DNA + RNA
5 tl, RNA --> RNA + Protein_unfold
6 km, Protein_unfold --> Protein_matured
7
8 delta_DNA, DNA --> 0
9 delta_RNA, RNA --> 0

10 beta, (Protein_unfold, Protein_matured) --> 0
11 end
12
13 #Initial Conditions
14 u0 = [:DNA => 0.0, :RNA => 0.0, :Protein_unfold => 0.0, :Protein_matured => 0.0]

RNA-to-Protein Model in Julia
1 #Model in Catalyst
2 RNA_to_Protein_model = @reaction_network begin
3 @parameters t0
4 tl, RNA --> RNA + Protein_unfold
5 km, Protein_unfold --> Protein_matured
6 delta, RNA --> 0
7 beta, (Protein_unfold, Protein_matured) --> 0
8 end
9

10 #Initial Conditions
11 u0 = [:RNA => 0.0, :Protein_unfold => 0.0, :Protein_matured => 0.0]
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Fitting Experimental Data Using PEtab

1 #Observables
2 @unpack Protein_matured = DNA_to_Protein_model
3 obs_Pm = PEtabObservable(Protein_matured, 1)
4 observables = Dict("obs_Pm" => obs_Pm)
5 #Parameters
6 par_tc = PEtabParameter(:tc, lb=1e-10, ub=2e2, scale=:lin)
7 par_tl = PEtabParameter(:tl, lb=1e5, ub=1e10, scale=:lin)
8 par_km = PEtabParameter(:km, lb = 1e-10, ub=1e3, scale=:lin)
9 par_delta_DNA = PEtabParameter(:delta_DNA, lb=1e-10, ub=10.0, scale=:lin)

10 par_delta_RNA = PEtabParameter(:delta_RNA, lb=1e-10, ub=10.0, scale=:lin)
11 par_beta = PEtabParameter(:beta, lb=1e-10, ub=20.0, scale=:lin)
12 par_t0 = PEtabParameter(:t0, lb= 0.0, ub=30.0, scale=:lin)
13 params = [par_tc, par_tl, par_km, par_delta_DNA, par_delta_RNA, par_beta, par_t0]
14 #Measurements
15 measurements = DataFrame(obs_id="obs_Pm", time=t_vector,
16 measurement=convert(Array{Float64,1}, measured_parameter)
17 #Events
18 @unpack DNA = DNA_to_Protein_model
19 eventt0 = PEtabEvent(:t0, DNA + 1, DNA)
20 event = [eventt0]
21 #PEtabModel
22 petab_model = PEtabModel(DNA_to_Protein_model, observables, measurements, params;
23 state_map=u0, events=event, verbose=false)
24 petab_problem = PEtabODEProblem(petab_model, ode_solver = ODESolver(Rodas5P(), verbose=false),
25 verbose=false)
26 #Solution
27 res_ms = calibrate_model_multistart(petab_problem, LBFGS(), runs, optim_folder_path,
28 save_trace=true)
29 fitted_sol = get_odesol(res_ms.xmin, petab_problem)
30 residuals = petab_problem.compute_residuals(res_ms.xmin; as_array=true)
31 chi2 = petab_problem.compute_chi2(res_ms.xmin)

A.4.2. Algorithm for t0 in R

1 # Searches for t0 for one cell and plots the data with the fitted line
2 plot_t0_with_ slope <- function (time , y.vec , slope .th , count .th , window .width , cellnr )

{
3 df <- data. frame (time = time , y = y.vec)
4 df <- na.omit(df)
5 time <- df$time
6 y.vec <- df$y
7 t0 <- NA
8 count <- 0
9 # sliding window

10 for (i in 1:( length (y.vec) - window . width + 1)) {
11 y_sub <- y.vec[i:(i + window . width - 1)]
12 time_sub <- time[i:(i + window . width - 1)]
13 fit <- lm(y_sub ˜ time_sub)
14 slope <- coef(fit)[2]
15 # threshold check
16 if ( slope > slope .th) {
17 count <- count + 1
18 if ( count == 2) {t0 <- time[i]}
19 } else {
20 count <- 0
21 t0 <- NA
22 }
23 # plot t0 and fit
24 if ( count > count .th) {
25 p <- ggplot () + geom_ point (aes(x = time , y = y.vec)) +
26 geom_ abline ( slope = slope , intercept = coef(fit)[1] , color = "red") +
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27 geom_text(aes(x = 10, y = min(y.vec), label = paste ("t0 =", t0)), hjust = 0,
vjust = 0)+

28 geom_text(aes(x = 10, y = min(y.vec), label = paste (" slope =", slope )), hjust
= 0, vjust = -1)+

29 labs( title = paste ("Cell ", cellnr ))+
30 geom_ point (aes(x = t0 , y= y.vec[ which (time == t0)]) , color = "red")
31 return (list(t0 = t0 , plot = p))
32 }
33 }
34 # when t0 is not found
35 if (is.na(t0)) {
36 p <- ggplot () + geom_ point (aes(x = time , y = y.vec)) + labs( title = paste ("Cell "

, cellnr ))
37 return (list(t0 = t0 , plot = p))
38 }
39 }
40
41 # calls plot_t0_with_ slope for all cells in the dataset and saves plots as *.png and

t0 values in a *.xlsx in output _dir
42 plot_all_t0_with_ slope _ wouser <- function (time , df.y, cell_group , count .th , window .

width , count .exp , v.names , output _dir) {
43 df.on <- data. frame (Cell = character () , Time = numeric () , Group = character ())
44 if (!dir. exists ( output _dir)) { dir. create ( output _dir) }
45 group <- NA
46 for (i in 1: ncol(df.y)) {
47 print ( paste ("Cell number : ", colnames (df.y)[i]))
48 if (max(df.y[,i], na.rm=TRUE) < 7) {
49 next
50 }
51 group <- cell_ group $ Group [ which (cell_ group $Cell == colnames (df.y)[i])]
52 for ( slope .th in seq (1.0 , 0.1 , by = -0.1)) {
53 list <- plot_t0_with_ slope (time , df.y[ ,i], slope .th , count .th , window .width ,

colnames (df.y)[i])
54 if (is.na(list$t0) || is.null(list$t0)) { next } else {
55 png_ filename <- paste0 ( output _dir , "/", colnames (df.y)[i], ".png")
56 ggsave (png_filename , list$plot)
57 df.on <- rbind (df.on , data. frame ( cellnr = colnames (df.y)[i], t0 = list$t0 ,

group = group ))
58 print (list$t0)
59 break
60 }
61 }
62 }
63 xlsx_ filename <- paste0 ( output _dir , "/df_on.xlsx")
64 openxlsx :: write .xlsx(df.on , xlsx_ filename )
65 return (df.on)
66 }

Algorithm for determining t0 written in R

Exclusion Parameters

The presented algorithm saves pictures for each cell line in an output directory. The
user then has the possibility to check for wrongfully detected onsets and exclude them
from the data set for the following criteria:
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A: Correctly detected onset. B: Only background noise, no recognizable onset.

C: Faulty detection of onset. D: Two cells with different onsets in one spot.

Figure A.2: Example pictures of fluorescence signal for individual cells. Detected onset point is
marked red, fit shows first fit from sliding window. B-D were excluded from the dataset for stated
reasons.

79





B. Supplementary Figures and Tables

B.1. Additional Experimental Figures
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Figure B.1: Fit of single-cell fluorescence data from bs-mGL HEK293T cells transfected with mGL
RNA. Top shows exemplary experimental data. 5 cells are highlighted. These 5 are shown with
their corresponding green fits and residuals.
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Figure B.2: Fit of single-cell fluorescence data from bs-mGL HEK293T cells transfected with mGL
DNA. Top shows exemplary experimental data. 5 cells are highlighted. These 5 are shown with
their corresponding green fits and residuals.
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Figure B.3: Comparing onset distribution of mGL for the PE2 and PE2-P2A-mScarlet construct.

The corresponding lines show the mean of each distribution.

B.2. SKI Combinator Calculus - Example Calculations
In Subsection 2.2.4 we showed how Church numerals are defined in SKI calculus. To
better showcase the truth of our definitions, we here want to evaluate these expressions.
We start with the successor function defined in the SKI calculus as follows:

S(S(KS)K)
Now using that the SKI calculus is left-associative and we know that any number is
defined as n · functionf applied on our value x (so nfx), we can apply it to three
inputs and evaluate as seen on the left:
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Successor function applied to three
inputs:

S(S(KS)K)nfx

S(KS)Kf(nf)x
KSf(Kf)(nf)x

S(Kf)(nf)x
Kfx(nfx)

f(nfx)

Successor function applied to Church
numeral 2:

S(S(KS)K)Ix

S(KS)Kx(IX)
KSxKx(Ix)

SKx(Ix)
KIxxIx

IxIx

xx

The succ(nfx) is function f applied to nfx again. Knowing this, we can evaluate our
definition of the Church numeral 2 on the right, by applying it to Ix, with I being
the representation of 1 and x our value.

B.3. Additional Figures and Tables for Julia
Implementation

Value [h−1] tpeak[h]

βcomplex for pDNA
prime editor expression

1e-5 14.5
5.18e-5 12.8
2.68e-4 11.4
1.39e-3 8.46
7.2e-3 6.11
3.73e-2 4.19
1.93e-1 2.51
1 1

(a) pDNA expression

Value [h−1] tpeak[h]
pegRNA0

P E−RNA0
ratio for mRNA

prime editor expression

100 0.48
316 1.52
1000 4.82
3160 11.6
10000 11.8

(b) mRNA expression

Table B.1: Values and tpeak from parameter variations as plotted in Figure 6.3.
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Figure B.4: Catalytical implementation of prime editing expression. Lines show concentration of
complex for different ratios of PE0:pegRNA0. Left: mRNA. Right: pDNA

Parameter Description Value Units Source/Ref
pDNA-mediated diffusion from nucleus to cytosol
ntc PE for produced PE RNA 10 1/h Estimated from [155]
ntc peg for produced pegRNA 120 1/h [155]
Transport from cytosol to nucleus
ctn PE PE protein or complex 0.5 1/h [156]

Table B.3: Additional parameters for Section 6.3 combined with Table B.2.

tpeak[h]

ctnP E[h−1] pDNA mRNA

0.01 10.9 22.8
0.215 7.47 8.58
4.64 4.15 1.05
100 4.08 0.08

(a)

ntcP E[h−1] tpeak[h]

1e-3 24.6
2.51e-2 10.6
6.31e-1 6.64
1.58e1 5.58
3.98e2 5.41

(b) pDNA

ntcpeg[h−1] tpeak[h]

1e-4 4.17
6.31e-2 4.32
3.98e1 5.68
2.51e4 6.1
1.58e7 6.87

(c) pDNA

Table B.4: Values and tpeak from parameter variations for the nuclear barrier model as plotted in
Figure 6.8.
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BF brightfield. 19, 75

Cas CRISPR associated protein. 5, 10, 11, 12

CHX cycloheximide. 26, 28, 74

CRISPR Clustered Regularly Interspaced Short Palindromic Repeat. 5, 11, 64

ddH2O double distilled H2O. 73

DNA deoxyribonucleic acid. 5, 10, 11

DSB double strand break. 11

eGFP enhanced GFP. 8

GC garbage collector. 63, 64

GFP green fluorescent protein. 8

gRNA guide RNA. 11

HDR homology-directed repair. 10, 11

IVT in vitro transcription. 30, 71

LISCA Live Imaging on Single-Cell Arrays. 3, 8, 21, 46, 67

LNP lipid nanoparticle. 20, 21, 47

mGL mGreenLantern. 3, 8, 9, 25, 32, 74

mRNA messenger RNA. 21

NGS next-generation sequencing. 37, 47, 62, 66

NHEJ non-homologous end joining. 10, 11

NLS nuclear localization signal. 11, 56
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ODE ordinary differential equation. 3, 25, 26, 30, 49, 50, 52, 57, 58, 68

ORF open reading frame. 7, 41

ORI origin of replication. 7
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PBS primer binding site. 11, 12, 46, 49, 61, 68

PC phase contrast. 19, 20

pDNA plasmid DNA. xi, 2, 21

PE Prime Editor. 3, 10, 11, 33

pegRNA prime editing guide RNA. 11, 12

RNA ribonucleic acid. 5

RNP Ribonucleoprotein. 5, 68

RT reverse transcriptase. 10, 11, 12, 39, 46, 49, 62, 65

SSB single strand break. 11

ssDNA single-stranded DNA. 17, 66

UTR untranslated region. 2, 7, 30, 68
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