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Zusammenfassung

Wir betrachten die Klasse der Theorien, die „Mimetic Gravity“ (Mimetische Gravitation)
genannt werden. Diese sind Weyl-invariante und allgemein kovariante Modifikationen der
Allgemeinen Relativitätstheorie. Diese Theorien sind interessant, da manche von ihnen
Dunkle Materie (DM) auf großen Skalen nachbilden können und zu mimetischer DM wer-
den, während uns andere eine elegante Formulierung der Unimodularen Gravitation bieten
und zu mimetischer Dunkler Energie (DE) werden. Im zweiten Fall tritt die Kosmologi-
sche Konstante als eine Integrationskonstante auf und stellt einen globalen Freiheitsgrad
dar. Um mimetische DM zu generieren, wird ein Skalarfeld verwendet, wohingegen ein
Vektor- respektive Eichvektorfeld zur Konstruktion mimetischer DE benutzt wird. Mime-
tische Theorien können erzeugt werden, indem man der Raumzeitmetrik ihren Status als
dynamische Variable entzieht. In mimetischen Theorien ist die Raumzeitmetrik ein zu-
sammengesetztes Feld, das aus einer Hilfsmetrik und zusätzlichen Feldern besteht. Unter
Weyl-Transformationen der Hilfsmetrik ändern sich diese Felder dergestalt, dass die Raum-
zeitmetrik invariant bleibt, was Weyl-Invarianz in der resultierenden mimetischen Theorie
hervorruft. Diese Konstruktion kann äquivalent als Zwangsbedingung formuliert werden,
was in der Wirkung mithilfe eines Lagrangemultiplikators erreicht wird. Für die skalaren
mimetischen Modelle diskutieren wir auch die möglichen Erweiterungen mittels höherer
Ableitungen. In diesem Zusammenhang und unter Verwendung kosmologischer Störungs-
theorie besprechen wir die Schallgeschwindigkeit und Einschränkungen der Theorie.

Darüber hinaus wenden wir zum ersten Mal in der Literatur Noethers erstes und zwei-
tes Theorem auf mimetische Theorien an. Mittels des ersten Noethertheorems zeigen wir
für jede der Weyl-invarianten mimetischen Theorien, dass der Noetherstrom identisch ver-
schwindet und daher diese Symmetrie nicht zu einer nicht-trivialen Erhaltungsgröße führt.
Das zweite Noethertheorem wird dann verwendet um zu beweisen, dass die vorhandene
Weyl-Symmetrie entweder zu trivialen Identitäten führt oder die mimetische Zwangsbe-
dingung wiedergibt.

Im Fall der skalaren Theorien besprechen wir auch die Möglichkeit, diese im UV-Regime
zu vervollständigen. Diese Vervollständigung ermöglicht es, das Problem von Kaustiken zu
lösen, die auf nicht-linearen Skalen für flüssigkeitsartigen Staub auftreten. Die Vervollstän-
digung im UV wird durch die Einführung eines komplexen Skalarfeldes erreicht, für das der
Absolutwert die Energiedichte der mimetischen DM liefert und die Phase das Geschwin-
digkeitspotential.

Außerdem zeigen wir, wie man eine mimetische Theorie mit einem Eichvektorfeld in
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eine Yang-Mills-Theorie einbettet, die an ein Axion gekoppelt ist. Dies ist ein Versuch
zu verstehen, warum die Kosmologische Konstante so klein ist, ähnlich zum θ-Parameter
der Quantenchromodynamik. Wir betrachten allgemeine SU(N)-Gruppen und stellen de-
taillierte Konstruktionen für die Eichgruppen SU(2) und SU(3) vor, womit wir auch die
Existenz von Lösungen für die mimetische Zwangsbedingung in diesen Fällen beweisen.



Abstract

We consider the class of theories called Mimetic Gravity, which are Weyl invariant and gen-
erally covariant modifications of General Relativity. These theories are interesting because
some of them can emulate dark matter (DM) on large scales and become mimetic dark
matter while others can provide us with an elegant formulation of unimodular gravity and
become mimetic dark energy (DE). In the latter case, the cosmological constant appears
as an integration constant, representing a global degree of freedom. A scalar field is em-
ployed to build mimetic DM, whereas a vector or a gauge vector field are used to construct
mimetic DE. Mimetic theories can be induced by demoting the spacetime metric from its
role as a dynamical variable. In mimetic theories the spacetime metric is a composite field
given by an ansatz consisting of an auxiliary metric and additional fields. Under Weyl
transformations of the auxiliary metric, these fields change to leave the spacetime metric
invariant enforcing Weyl invariance in the resulting mimetic theory. This construction can
equivalently be reformulated in terms of a constraint, enforced in the action through a La-
grange multiplier. For the scalar mimetic models we also discuss the possible extensions via
higher derivative terms. There, using the framework of cosmological perturbation theory,
we discuss the speed of sound and limitations of the theory.

Moreover, for the first time in the literature, we apply Noether’s first and second the-
orems in the context of these mimetic theories. With the help of Noether’s first theorem
we show that for each of the Weyl invariant mimetic theories the Noether current vanishes
identically and therefore, this symmetry does not lead to a non-trivial conserved quantity.
The second Noether theorem is then used to prove that the Weyl symmetry either leads
to trivial identities or reproduces the mimetic constraint.

In the case of scalar theories we also discuss the possibility of the completion of the
theory in the UV regime. This completion allows one to solve the issue of caustics, present
on non-linear scales for fluid-like dust. The UV completion is achieved by the introduction
of a complex scalar field, for which the absolute value yields the mimetic dark matter
energy density, whereas the phase provides the velocity potential.

Furthermore, we show how to embed a mimetic theory with a gauge vector field into a
Yang-Mills theory coupled with an axion. This is an attempt at understanding the small-
ness of the cosmological constant, similarly to the smallness of the θ-parameter in quantum
chromodynamics. We consider general SU(N) groups and provide detailed constructions
for gauge groups SU(2) and SU(3), also demonstrating the existence of solutions for the
mimetic constraint equation in these cases.
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Chapter 1

Introduction

In the beginning, we will start with a brief overview over the most important mathematical
and physical concepts we will need later on, presenting the main ideas behind gravity and
general relativity, cosmology, dark matter and dark energy. This is mainly to introduce
conventions and notations, not to give the subject a thorough treatment. Our main sources
are a few of the classic textbooks, especially [1–8].

We stress here that we work in the following conventions: The metric signature we
use will be (+, −, −, −), similar to [4]. Moreover, Einstein summation convention over
repeated upper and lower indices will be used, where Greek indices appear for spacetime,
while Latin indices are only valid for space. Exceptions will be noted.

We will also use reduced Planck units c = 8πGN = h̄ = kB = 1 with c speed of light, h̄
Planck’s constant GN Newton’s constant of gravitation and kB Boltzmann’s constant. Note
that the “normal” Planck units are defined by c = GN = h̄ = kB = 1. For convenience and
completeness, we will add the base values of the (reduced) Planck units, namely length,
time, mass and temperature. Reduced Planck units will be denoted with a tilde ˜, Planck
units without. Then the Planck units are [5]

lPl =

(
GNh̄

c3

)1/2

≈ 1.161× 10−33 cm (1.1)

tPl =

(
GNh̄

c5

)1/2

≈ 5.391× 10−44 s (1.2)

mPl =

(
h̄c

GN

)1/2

≈ 2.177× 10−5 g (1.3)

TPl =

(
h̄c5

GNk2
B

)1/2

≈ 1.416× 1032 K = 1.221× 1019 GeV , (1.4)

while the reduced Planck units are

l̃Pl =
√

8πlPl , t̃Pl =
√

8πtPl , m̃Pl =
1√
8π
mPl , T̃Pl =

1√
8π
TPl . (1.5)
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1.1 Overview over formulae and conventions in GR and
cosmology

The theory of General Relativity (GR) was developed by Albert Einstein from 1907 to
1915, resulting in his seminal paper “Die Feldgleichungen der Gravitation” [9], where he
introduced the field equations describing gravity.

The main idea of his theory is a simple one: While electrodynamics and the other forces
of nature are described by fields, gravity is described by the geometry of spacetime, or rather
the curvature of spacetime. The mathematical concept behind spacetime is a differentiable
manifold : It looks locally like Minkowski spacetime, but globally its geometry might be
quite different [2, 3].

Let us reiterate that in this section only the most important concepts for the under-
standing of the thesis will be introduced, mostly based on the classic textbooks [1–8].

1.1.1 Geometry and curvature

A very important tensor in GR is the metric, a symmetric and nondegenerate tensor with
two lower indices, usually written as gµν in components. Directly connected to the metric
is the spacetime interval

ds2 = gµνdx
µdxν . (1.6)

This gives us the intuitive notion of an infinitesimal squared distance, now generalised to
work not only in space, but in spacetime. Notice that it may be positive (for timelike
separation), negative (for spacelike separation) and even zero for light. An inverse metric
gµν can also be defined, such that

gµαg
αν = δνµ . (1.7)

The metric and interval also define the proper time τ as

dτ 2 = ds2 (1.8)

in case the separation between them is timelike. It is interesting to consider a synchronous
reference frame associated with this proper time time [4]

ds2 = dτ 2 − γij(τ, xk)dxidxj (1.9)

with the purely spatial metric γij. This is useful for us in the sense that the coordinate
time equals the proper time, therefore the time coordinate provides a parametrisation of
geodesics for static observers and moreover, the time vectors are hypersurface orthogonal
to the spatial slices.

We will need a way to connect two nearby tangent spaces of the same manifold. The
crucial object in this context is the connection. A connection we can construct from the
metric of the manifold is called the Christoffel symbol, given by

Γαµν =
1

2
gαλ (∂µgλν + ∂νgλµ − ∂λgµν) (1.10)
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Note that this is not a tensor, although the notation might suggest so. Then we can define
a covariant derivative of a vector field vν by

∇µv
ν = ∂µv

ν + Γνµαv
α . (1.11)

This enables us to go from partial derivatives, which do not transform like tensors, to
covariant derivatives, which do. Apart from that, two more properties of the connection
are important: The connection is said to be torsion-free in case the two lower indices are
symmetric, and the covariant derivative is called metric compatible if

∇αgµν = 0 . (1.12)

Now we are equipped to talk about geodesics, the shortest path of a particle and the gen-
eralization of the concept of a straight line in a curved geometry. The geodesic extremises
the length of a curve ` parametrised by λ between two points P and Q

` =

∫ Q

P

dλ

√
±gµν

dxµ

dλ

dxν

dλ
. (1.13)

Under the square root, the positive (negative) signs account for timelike (spacelike) curves.
Using the action principle and the Euler-Lagrange equations for the above formulation, we
will get the geodesic equation

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 . (1.14)

What we have to keep in mind, though, is that the curve has to be affinely parametrised
in order for the geodesic equation to take this form. That is, the curve parameter λ has to
be related to the proper time (or proper distance for spacelike curves) τ by

λ = aτ + b (1.15)

for constants a and b. Another way to derive the geodesic equation is the following: we
have to parallel transport a tangent vector dxµ/dλ to a curve along the same curve and
ask that it does not change. This gives us

dxα

dλ
∇α

dxµ

dλ
= 0 . (1.16)

Expanding this equation with the help of the covariant derivative gives us the geodesic
equation (1.14) as above. Another important concept is the four-velocity uµ of a particle
along a curve, written as

uµ =
dxµ

dτ
. (1.17)

We also realise that it is normalised to 1, purely by looking at the definition of the proper
time (1.8). Then we can also write the definition of the four-acceleration

aµ = uα∇αu
µ . (1.18)
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Expanding this with the appropriate definitions, one realises that the geodesic equation
(1.14) is the equivalent expression of aµ = 0, i.e. vanishing acceleration. The geodesic thus
describes a freely falling particle [2, 6].

Another possibility to form a derivative which is a tensor is the so-called Lie derivative.
The Lie derivative is an even simpler construction than the covariant derivative, as it does
not require a connection. It is a generalisation of the directional derivative along a vector
field, so the form of the Lie derivative of a function is [2]

LV f = V λ∂λf . (1.19)

For a vector field Uµ meanwhile, the Lie derivative will be

LVU
µ = V ν∂νU

µ − Uν∂νV
µ ≡ [V, U ]µ , (1.20)

also defining the Lie bracket [V, U ]µ. For a one-form ωµ the Lie derivative looks like

LV ωµ = V ν∂νωµ + (∂µV
ν)ων , (1.21)

whereas we can combine both expressions for a rank two tensor Tαβ along a vector field V µ

to give
LV T

α
β = V λ∂λT

α
β − (∂λV

α)T λβ + (∂αV
λ)Tαλ . (1.22)

First note that these are indeed tensor expressions, even if it does not look like it at
the first glance, but if one substitutes the covariant derivative ∇µ (1.11) instead of the
partial derivative ∂µ, one can verify that the terms with the connection coefficients indeed
drop out. Second, this can easily be generalised to tensors of higher rank. And third,
in contrast to the covariant derivative, the Lie derivative of a vector does not produce a
tensor. Put another way, the Lie derivative does not increase the rank of the tensor it acts
on. Furthermore, if one chooses a coordinate system such that for example the vector V
has components V µ = (1, 0, . . . , 0) only along the first direction, or V = ∂/∂x1, the Lie
derivative describes merely the derivative along that direction x1, or

LVU
µ =

∂Uµ

∂x1
. (1.23)

Of course this also generalises to higher rank tensors [2].
The next important geometric object is the Riemann tensor, directly describing the

intrinsic curvature of the manifold. This comes about by parallel transporting a vector
around a closed loop. In flat spacetimes, this vector would be unchanged, as intuition tells
us correctly. But in curved spacetimes this is not the case. A good way to visualise this is
via the commutator of covariant derivatives of a vector field. The computation will show
that

[∇µ,∇ν ]v
α = Rα

βµνv
β (1.24)

where Rα
βµν are the components of the Riemann tensor. Expanded in Christoffel symbols

they are
Rα

βµν = ∂µΓανβ − ∂νΓαµβ + ΓαµσΓσνβ − ΓανσΓσµβ . (1.25)
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The Riemann tensor has certain properties, such as antisymmetry under exchange of either
the first two or the last two indices. Furthermore, you can swap the first two with the last
two indices and the Riemann tensor stays unchanged and the Bianchi identity follows from
the definition of the Riemann tensor:

∇αRβγµν +∇βRγαµν +∇γRαβµν = 0 . (1.26)

All of these properties restrict the number of independent components. In our usual four
dimensions, it has 20 components. By contraction of the first and third index of the
Riemann tensor one can form the Ricci tensor

Rµν = Rα
µαν , (1.27)

which is symmetric in its indices. One further contraction yields the Ricci scalar

R = Rµ
µ . (1.28)

Another combination which is very important for GR is the Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (1.29)

where one can check that contracting the Bianchi identity (1.26) twice is equivalent to

∇µGµν = 0 . (1.30)

This will be important later on, if we want to calculate the equations of motion [2, 3].

1.1.2 Energy-momentum tensor and Einstein equations

A simple way to model matter is via a scalar field. It is a function that assigns a single
number to every point in spacetime, real numbers in case of a real scalar field. It also does
not change under coordinate transformations, therefore is the same in every coordinate
system. The most general action for a real scalar field φ in a curved spacetime with metric
gµν is

S(φ)[gµν , φ] =

∫
d4x
√
−g
(

1

2
gµν∇µφ∇νφ− V (φ)

)
(1.31)

with the potential V (φ) depending only on φ. Meanwhile the first term in the action is
called the kinetic term. One special and often occurring case of the potential is the mass
term, such that the action becomes

S(φ)[gµν , φ] =

∫
d4x
√
−g
(

1

2
gµν∇µφ∇νφ−

1

2
m2φ2

)
. (1.32)

m describes the mass of the particles that would result from quantising the scalar field. The
equations of motion are easily determined using the Euler-Lagrange equations in curved
spacetime

∂L
∂φ
− 1√
−g

∂µ

(√
−g ∂L

∂(∂µφ)

)
= 0 , (1.33)
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resulting in the Klein-Gordon equation

2φ+
∂

∂φ
V (φ) = 0 . (1.34)

for the action with a general potential of the scalar field and the d’Alembertian is defined
as

2 = gµν∇µ∇ν . (1.35)

A very convenient formula which is used here is provided by rewriting the divergence of a
vector field Aµ as [6]

∇µA
µ =

1√
−g

∂µ
(√
−gAµ

)
. (1.36)

For a complex scalar field Ψ which is invariant under U(1) transformations, meanwhile, we
have the action

S(Ψ)[gµν ,Ψ,Ψ
†] =

∫
d4x
√
−g
(

1

2
gµν∇µΨ∇νΨ

† − V (ΨΨ†)

)
, (1.37)

where † denotes the Hermitian conjugate as usual [10,11].
We will also need an energy-momentum tensor T µν describing the matter contents of

our theory. If we use the variational principle for the action formulation, the definition of
the EMT will be

Tµν =
2√
−g

δSm

δgµν
. (1.38)

In that formula, Sm describes the action of all matter fields. For a real scalar field φ with
the form of the matter action (1.31) this results in

T (φ)
µν = ∇µφ∇νφ− gµν

[
1

2
gρσ∇ρφ∇σφ− V (φ)

]
. (1.39)

On the other hand, the EMT for the complex scalar (1.37) will be

T (Ψ)
µν = ∇µΨ∇νΨ

† − gµν
[

1

2
gρσ∇ρΨ∇σΨ† − V (ΨΨ†)

]
. (1.40)

In many important cosmological contexts a perfect fluid will suffice for homogeneous solu-
tions such as matter in local equilibrium. The perfect fluid form of the EMT is

T µν = (ρ+ p)uµuν − pgµν , (1.41)

where ρ and p are the energy density and the pressure of the matter, respectively. uµ is
the four-velocity in which observers travel that measure this energy density and pressure.
The general fluid dynamical definitions of these are [12–15]

ρ = Tµνu
µuν (1.42)

p = −1

3
T µνPµν , (1.43)
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where we used the projector Pµν to the hypersurface orthogonal to uµ, defined as

Pµν = gµν − uµuν . (1.44)

But in more general contexts, important for structure formation and non-linear gravita-
tional collapse, one will encounter more than just perfect fluids. The general fluid energy-
momentum tensor is

T µν = (ρ+ p)uµuν − pgµν + qµuν + uµqν + Πµν . (1.45)

In this case, we additionally need the definitions of the heat flux qµ and the anisotropic
stress Πµν

qµ = PµαTαβ uβ , (1.46)

Πµν =

(
PµαPνβ −

1

3
PµνPαβ

)
Tαβ . (1.47)

The decomposition of the full energy-momentum tensor (1.45) works for any observers and
any matter composition. One simply has to change the velocity to that of the desired
observer, let us call it Uµ, and repeat the process while also altering the projector (1.44),
of course. In particular what looks like a perfect fluid in one local rest frame may look
different from another observer’s perspective. Also, it may not even be possible to find a
frame where the fluid looks like a perfect one. As an instructive example, let us consider
the energy-momentum tensor (1.39) of the classical scalar field and decompose it according
to the full fluid-dynamic energy-momentum tensor (1.45). The derivative along the four-
velocity is defined as

φ̇ = uµ∇µφ . (1.48)

In conjunction with that, we will introduce a purely spatial derivative

Dµφ = Pνµ∇νφ . (1.49)

Then we can calculate the energy density (1.42), pressure (1.43), heat flux (1.46) and
anisotropic stress (1.47) as

ρ =
1

2

(
φ̇2 − PαβDαφDβφ

)
+ V (φ) , (1.50)

p =
1

2

(
φ̇2 +

1

3
PαβDαφDβφ

)
− V (φ) , (1.51)

qµ = φ̇Dµφ , (1.52)

Πµν = DµφDνφ− 1

3
PµνPαβDαφDβφ . (1.53)

In the case of ∇µφ being timelike gµν∇µφ∇νφ > 0 and future-directed, i.e. continuously
lying in the future half of the light cone [3], one can define a velocity

Uµ =
∇µφ√

2X
(1.54)
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with the usual kinetic term
X =

1

2
gµν∇µφ∇νφ , (1.55)

such that Uµ is properly normalised. Then one may choose the local rest frame of this
fluid moving with this velocity Uµ and define the projector into the spacelike hypersurface
orthogonal to it. As one can easily see, the spatial derivatives Dµφ in this case vanish and
so do the heat flux qµ and the anisotropic stress tensor Πµν . Therefore, in the local rest
frame moving with φ the fluid resulting from the canonical scalar looks like a perfect one.

Returning to the overall properties of the energy-momentum tensor, it is covariantly
conserved, i.e.

∇µT
µν = 0 . (1.56)

This yields the Euler equations of fluid mechanics in the appropriate Newtonian limit [2,16].
Now we are finally equipped to write down the famous Einstein field equations and put

them into context. They will replace the Poisson equation for the Newtonian gravitational
potential Φ for us, which looks like

∆Φ = 4πGNρ , (1.57)

with ∆ the spatial Laplacian. We also have restored the 8πGN for the moment. In our
conventions for the units the Poisson equation would rather look like ∆Φ = 1

2
ρ. Therefore,

the form of the new gravitational equation will be something like [∆g]µν ∝ Tµν . The first
term in this means that we will need second derivatives of the metric, which is encapsulated
by the Ricci tensor. To fit the number of indices and to account for energy-momentum
conservation (1.56), we will refer to the Bianchi identity (1.26) and finally write down
Einstein’s field equations of General Relativity

Gµν = Tµν . (1.58)

The proportionality factor between the two tensors is fixed by asking for the recovery of
the Newtonian limit [2].

Another way to formulate and derive the Einstein field equations is via the Einstein-
Hilbert action

SEH[gµν ] = −1

2

∫
d4x
√
−gR (1.59)

and the matter action Sm[gµν ,Φm] with Φm collectively denoting the matter fields present in
the theory. Variation of the total action SEH +Sm also yields the Einstein equations, using
the definition of the energy-momentum tensor from the action (1.38). For completeness,
let us also introduce the cosmological constant term Λ here, although we will talk more
deeply about it later in 1.2.2. Then the action will look like

S[gµν ,Λ] =

∫
d4x
√
−g
(
−1

2
R + Λ

)
. (1.60)

This results in the Einstein field equations looking like

Rµν −
1

2
Rgµν = Tµν + Λgµν . (1.61)
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There are a few subtleties concerning the so-called Gibbons-Hawking-York boundary term
[17,18] of the Einstein-Hilbert action, but we will choose to gloss over them here [2, 4].

1.1.3 Weyl transformations

Next, let us introduce the concept of Weyl transformations. A remark is in order for this:
Many people and textbooks use different definitions for conformal transformations, so we
will make an effort to distinguish them from Weyl transformations clearly, primarily based
on [19, 20]. Weyl transformations are local rescalings of the metric and the other fields,
such that it represents a physical change of the metric, as in

gµν(x)→ g̃µν(x) = Ω2(x)gµν(x) , (1.62)

where it is important to stress that the scalar function Ω(x) depends on the point of space-
time. Angles are not affected by this transformation, but distances change at each point.
Therefore, spacelike and timelike vectors change in length, but lightcones and therefore the
causal structure are unaffected. In contrast to Weyl transformations, conformal transform-
ations are a special set of coordinate transformations which leaves the metric unchanged
up to a conformal factor. We will talk about Weyl transformations here and the actual
change of geometry they cause. What it does not cause, however, are changes in the causal
structure. As angles are unchanged, lightcones stay the same, as well as the nature of
timelike and spacelike vectors. Geodesics however will change, so what is a geodesic for
gµν will not be a geodesic for g̃µν . Another difficulty lies in the question which metric to
choose for raising and lowering indices, as for example gαβgαµgβν ≡ gµν 6= gαβ g̃

αµg̃βν . We
will try to be clear about which metric has been used in every case. Furthermore, we will
list a few useful formulas for Weyl transformations of much used tensors and scalars, for
further convenience. Everything listed here is valid in four dimensions, although [2] does
use more general formulas. The new Christoffel symbols will be calculated from the old
ones to be

Γ̃ρµν = Γρµν + Ω−1
(
δρµ∇νΩ + δρν∇µΩ− gµνgρλ∇λΩ

)
. (1.63)

The Riemann tensor changes under (1.62) as

(1.64)
R̃ρ

σµν = Rρ
σµν − 2

(
δρ[µδ

α
ν]δ

β
σ − gσ[µδ

α
ν]g

ρβ
)

Ω−1(∇α∇βΩ)

+ 2
(

2δρ[µδ
α
ν]δ

β
σ − 2gσ[µδ

α
ν]g

ρβ + gσ[µδ
ρ
ν]g

αβ
)

Ω−2(∇αΩ)(∇βΩ) .

Antisymmetrisation of indices was used, e.g.

δρ[µδ
α
ν] ≡

1

2

(
δρµδ

α
ν − δρνδαµ

)
. (1.65)

The Ricci tensor and scalar meanwhile will look like

R̃σν =Rσν −
(
2δασδ

β
ν + gσνg

αβ
)

Ω−1(∇α∇βΩ)

+
(
4δασδ

β
ν − gσνgαβ

)
Ω−2(∇αΩ)(∇βΩ)

(1.66)
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and
R̃ = Ω−2R− 6gαβΩ−3(∇α∇βΩ) . (1.67)

Very important and useful will also be the Weyl transformations of the second derivatives
of a scalar field, as the first derivative is merely

∇̃µφ = ∇µφ = ∂µφ . (1.68)

But the second derivative will be

∇̃µ∇̃νφ = ∇µ∇νφ−
(
δαµδ

β
ν + δβµδ

α
ν − gµνgαβ

)
Ω−1(∇αΩ)(∇βΩ) (1.69)

while the d’Alembertian (1.35) will have the Weyl transformed form

2̃φ = Ω−22φ+ 2gαβΩ−3(∇αΩ)(∇βΩ) . (1.70)

Moreover, we will need the concept of a conformal weight for fields occurring in our
theories. We Weyl transform the action of our theory with the help of the Weyl trans-
formation (1.62) of the metric. Then we will look for the transformation of the occurring
scalar, vector, etc. fields, such that the action stays unchanged. In the case of a scalar
field, for example,

φ→ φ̃ = Ω−∆(x)φ . (1.71)

Then, ∆ is called the conformal weight [21]. One interesting example for a scalar-tensor
theory can be written as

S[gµν , φ,Φm] =
1

2

∫
d4x
√
−g
(
−ξφ2R + gµν∇µφ∇νφ

)
+ Sm[gµν ,Φm] (1.72)

with a parameter ξ to determine. Sm denotes the matter action which depends on the
metric and the collective matter fields Φm. The aim is to find the fitting value such that
the action is unchanged under Weyl transformations. To achieve that, we perform the
Weyl transformations of the metric (1.62), the Ricci scalar (1.67) and one for the scalar
field (1.71), where we want to determine the conformal weight of φ. It turns out that the
conformal weight should be ∆ = 1 in this case for the action to be unchanged. Later in
this work, we will encounter a vector field with the unusual conformal weight four. Within
the calculation of the Weyl transformation, we need to find the right ξ such that the rest
vanishes. This condition will leave us with

ξ =
1

6
(1.73)

and therefore the action

S[gµν , φ,Φm] =
1

2

∫
d4x
√
−g
(
−φ

6

2

R + gµν∇µφ∇νφ

)
+ Sm[gµν ,Φm] . (1.74)

This scalar-tensor action with non-minimal coupling between gravity and scalar field is said
to be conformally invariant. This conformal invariance also extends to the field equations of



1.1 Overview over formulae and conventions in GR and cosmology 11

the theory [22–24]. In the above example of the conformally coupled scalar the appropriate
Weyl transformation would be

gαβ =
6

φ2
ĝαβ , (1.75)

so with the help of the conformal transformation of the Ricci scalar (1.67) the action will
become

S[ĝµν , φ,Φm] =

∫
d4x
√
−ĝ
(
−1

2
R̂ +

12

φ2
ĝµν∇µφ∇νφ

)
+ Sm

[
6

φ2
ĝµν ,Φm

]
. (1.76)

Therefore we learn in the case of a conformally coupled scalar, a Weyl transformation
can revert the gravity term to Einstein-Hilbert (1.59), but now with a scalar field term,
although not the ususal kinetic term (1.55). And also note the coupling of matter not to
ĝµν we will discuss in the following subsection 1.1.4.

Furthermore, there are certain terms in actions which are not Weyl invariant by con-
struction. This can be the equations of motion derived from the EMT, i. e. ∇µT

µν = 0.
They are only Weyl invariant in the case that the trace T µµ vanishes, for example in the case
of light. Interesting for us, a cosmological constant spoils Weyl invariance, as it introduces
a scale into the theory [25]. Concerning the Weyl invariance of fields of certain spins and
spacetime dimensions: (massless) scalar and fermion fields are always Weyl-invariant, but
bosons require four spacetime dimensions for Weyl invariance [25,26].

1.1.4 Jordan and Einstein frames

After discussing Weyl transformations, it is useful to talk more about frames occurring
in GR. As we have seen in the action (1.74) above, the scalar field φ is directly coupled
to the Ricci scalar R. This frame in which the theory is formulated is called the Jordan
frame. Also a direct coupling of some arbitrary function of the scalar to field to the Ricci
scalar is possible. But this theory can be reformulated by a Weyl transformation, such
that the gravity part of the action looks like the Einstein-Hilbert action again, and the
direct coupling of the scalar field to the Ricci scalar is removed. This frame is then called
the Einstein frame. In the above example, this is (1.76).

The most important thing to notice about this transformation between the two frames
is the following: In the matter action, any kind of matter Φm will not be minimally coupled
to ĝµν , but to some product of the metric and the scalar field, e. g. 6

φ2 ĝαβ as in (1.76). This
is the price to pay for the Einstein-Hilbert form of the gravitational part of the action [25].

Let us illustrate this mechanism and its consequence with another example, using a
widely known scalar-tensor theory called Brans-Dicke theory [27], also called Jordan-Brans-
Dicke theory [28]. As an aside, it was found that a special case of Brans-Dicke theory,
namely singular Brans-Dicke theory, is connected to mimetic gravity [29]. The action for
Brans-Dicke theory looks like

SBD[gµν , ϕ,Φm] =
1

2

∫
d4x
√
−g
(
−ϕR +

ω

ϕ
gµν∇µϕ∇νϕ

)
+

∫
d4x
√
−gLm[gµν ,Φm] .

(1.77)
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In this notation, ϕ is the scalar field, Φm collectively denotes the matter fields, ω is the
so-called fudge factor, a dimensionless constant, and the pure matter Lagrangian is written
as Lm. The equation of motion for the scalar field and the modified Einstein field equations
follow

2ω

ϕ
2ϕ− ω

ϕ2
gµν∇µϕ∇νϕ+R = 0 , (1.78)

Gµν =
1

ϕ
Tm
µν +

ω

ϕ2

(
∇µϕ∇νϕ−

1

2
gµνg

αβ∇αϕ∇βϕ

)
+

1

ϕ
(∇µ∇νϕ− gµν2ϕ) . (1.79)

Covariant derivative, Ricci scalar and Einstein tensor are built with respect to the metric
gµν while Tm

µν denotes the energy-momentum tensor purely coming from the matter Lag-
rangian. To transform this to the Einstein frame, one uses the following redefinitions [25,30]

ϕ→ ϕ̃ =

(
2ω + 3

2

)1/2

lnϕ (1.80)

gµν → g̃µν = ϕgµν (1.81)

to arrive at the action

(1.82)
S[g̃µν , ϕ̃,Φm] =

1

2

∫
d4x
√
−g̃
(
−R̃ + g̃µν∇µϕ̃∇νϕ̃

)
+

∫
d4x
√
−g̃ exp

(
−
√

8

2ω + 3
ϕ̃

)
Lm[g̃µν ,Φm] .

As we can see, the gravitational part of the action is now no longer coupled directly to the
scalar field and has taken on the usual Einstein-Hilbert form. This transformation comes at
a price: the matter action is now coupled to ϕ2 and therefore non-minimally coupled [25].

Also, the two frames are widely regarded as mathematically equivalent, as also the
physical interpretation, if one takes all field redefinitions and the non-minimal coupling of
matter into account. This is valid at the classical level, which we will use and discuss here.
As an aside, at the quantum level things are not so clear and because of the lack of a full
theory of quantum gravity, unsolved as of now [25,27,31–34].

1.1.5 Cosmology

We take now a closer look at the Friedmann equations, the field equations resulting from
the Friedmann-Lemaître-Robertson-Walker (FLRW) metric (note that we may often simply
refer to it as the Friedmann metric) [2]

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(1.83)
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with the cosmological scale factor a(t) describing the expansion of the universe and the
curvature parameter k taking on different values for different homogeneous and isotropic
geometries, namely

k =


+1, closed (spherical)

0, flat
−1, open (hyperbolic) .

(1.84)

Including the cosmological constant Λ, from (1.60), the Friedmann equations will look like

H2 ≡
(
ȧ

a

)2

=
ρm

3
+

Λ

3
− k

a2
(1.85)

ä

a
= −1

6
(ρm + 3pm) +

Λ

3
, (1.86)

where the Hubble parameter H was defined, written here explicitly again [2, 35]

H =
ȧ

a
. (1.87)

The ˙ signifies a derivative with respect to coordinate time t here, while the energy-
momentum tensor has a perfect fluid form as is required by the form of the Einstein
tensor, with matter energy density ρm and matter pressure pm.

The EMT conservation equation

∇µT
µν = 0 (1.88)

results in
ρ̇

ρ
= −3(1 + w)

ȧ

a
. (1.89)

with the definition of the equation of state parameter w

p = wρ . (1.90)

Yet the energy conservation equation (1.89) and the Friedmann equations (1.85) and (1.86)
are not independent of each other. We only need two of the three, while the third one is a
consequence. An often used quantity in cosmology is the critical density ρcrit, the energy
density at which the universe is exactly flat, defined in reduced Planck units as

ρcrit = 3H2 , (1.91)

allowing us to define the density parameters Ωi for each matter component ρi, i.e. normal
matter, dark energy, etc separately. Then

Ωi =
ρi
ρcrit

(1.92)
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and we can write the first Friedmann equation (1.85) as

1 = Ωm + ΩΛ −
k

a2H2
. (1.93)

So we see that in the case of a flat universe (k = 0), the density parameters of the universe
should add up to unity [2].

In measuring cosmological times and distances, the cosmological redshift is fairly im-
portant. The wavelength of photons is stretched as the universe expands such that

λobs

λem

=
aobs

aem

(1.94)

where aem refers to the scale factor at the emission of the photon and aobs to the scale
factor at the observation of the photon. The redshift z itself is defined as the fractional
difference between the wavelengths, i.e.

z =
λobs − λem

λem

. (1.95)

So in terms of the scale factor, this results in

1 + z =
a0

aem

(1.96)

with a0 the scale factor at present day [5].
There is another way to define the Friedmann equations and the Hubble constant,

namely with the help of conformal time η, defined as

η =

∫
dt

a(t)
. (1.97)

To distinguish, we will often call t the physical time. It is also natural as a cosmological
time, as the that physical time is equivalent to the proper time, if one compares this with
a synchronous frame (1.9). While ˙( ) denotes differentiation w.r.t. physical time, ( )′

denotes differentiation w.r.t. conformal time. Therefore

d

dη
= a

d

dt
. (1.98)

The Friedmann metric (1.83) will change to

ds2 = a2(η)
(
dη2 − γijdxidxj

)
(1.99)

with spatial metric γij. We can see that this metric is Weyl transformed from a flat
Minkowski metric, compare (1.62), where a2(η) now plays the role of the conformal factor.
The conformal Hubble constant H can be written as [5]

H =
a′

a
= aH . (1.100)
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For the background flat Friedmann metric we cite the components of the Einstein tensor
as [5]

G0
0 =

3H 2

a2
= 3H2 (1.101)

G0
i = 0 (1.102)

Gi
j =

1

a2

(
2H ′ + H 2

)
δij =

(
2Ḣ + 3H2

)
δij . (1.103)

The transformations (1.98) and (1.100) between conformal and physical quantities were
used.

In cosmology we sometimes need perturbations of the metric, often as small deviations
around flat Friedmann space. The perturbed universe in the Newtonian gauge, only con-
taining the scalar perturbations, can be written as [5]

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)a2(t)δijdx
idxj (1.104)

with the Newtonian gravitational potential Φ. Note that this is similar to the conformal
metric used in [36], but the scalar potentials Φ = Ψ are set equal. This can be justified in
a case where the energy-momentum tensor does not have purely spatial off-diagonal terms,
i.e. the anisotropic stress tensor (1.47) vanishes [36].

So far, Einstein’s theory of gravity, the theory of general relativity, has stood the test
of time. There are Einstein’s three classical solar system tests [37], namely the perihelion
precession of Mercury, the deflection of light by the sun, and the gravitational redshift of
light in a potential well that support the theory. But also more modern observations like
the Hulse-Taylor binary pulsar [38], gravitational waves [39] and the direct observation of
the black hole in the center of the galaxy M87 [40] and the one at the center of the Milky
Way [41] offer more proof that GR is indeed the theory to describe gravity.

1.2 Introduction to Dark Matter and Dark Energy
But if we indeed consider GR as the valid theory of gravity, then other observations seem
to bring up contradictions, provided one assumes that all the matter is luminous. So our
next look will be into the dark universe and its consequences for observations and theory.

1.2.1 Dark Matter

One of the first examples of those observational contradictions appeared already in 1933 on
extragalactic scales, when Fritz Zwicky applied the virial theorem to the motion of galaxies
in galaxy clusters. The mass of the cluster inferred by estimating it via the velocity
dispersion of single galaxies and using the virial theorem was found to be much larger
than that of the luminous matter [42]. Something similar can be observed in the rotation
velocities of stars around the centres of spiral galaxies. Also here the luminous matter and
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the matter inferred by the rotation curves do not add up unless one adds a halo of matter
in the outskirts of galaxies [43]. For this invisible mass the name dark matter (DM) was
coined [42], matter which only interacts gravitationally, but not electromagnetically.

One model to explain the galactic rotation curves are “massive compact halo objects”
(MACHOs), astrophysical objects like brown dwarfs or black holes, too dark to be detected
by optical telescopes. Here the search has been unsuccessful so far. Microlensing observa-
tions have shown that there are not enough MACHOs to account for the amount of dark
matter present in our galaxy [44].

On larger scales of galaxy clusters, another effect becomes important, namely gravita-
tional lensing, the idea being introduced in [45,46], the first source being Einstein himself.
Light of background objects is deflected and curved around large matter concentrations
which distorts the image seen on Earth. The effect is especially noticeable on larger scales,
where the light of background galaxies is distorted by large dark matter concentrations
present in galaxy clusters and the filaments in between. This is the effect of strong gravit-
ational lensing, when one can observe the warped image of a galaxy with the naked eye.
On the other hand, weak gravitational lensing only shows up in statistical samples, when
images of the background galaxies are overall distorted in a preferred direction. One can
actually map the dark matter distribution by this, and reveal the large scale structure of
dark matter in the universe. Another scale of gravitational lensing is that of microlensing
around smaller dark objects even in our own galaxy, like brown dwarfs or stellar black
holes. There, no actual distortion of the image can be observed, as the involved masses are
too small, but gravitational lensing also increases the observed brightness of the object.
By monitoring the light curve of objects one can see a temporary brightening due to a dark
object transversing our line of sight [47].

An extremely important era of cosmological evolution which was affected by dark matter
was structure formation in the early universe. Matter — dark as well as baryonic —
started to cluster due to gravitational attraction. But at that time, the universe was still
hot enough that the baryonic matter was coupled to photons via Thomson scattering.
This provided enough pressure that any baryonic overdensities would have been erased
quickly. Therefore, before decoupling of baryonic matter from photons only dark matter
could form clumps in which the baryonic matter could fall into. Without this added time to
form matter structures the universe would not have had developed the large-scale structure
of clusters, filaments and voids we observe today [48].

A very important probe for the cosmological parameters and dark matter content of
the universe is the cosmic microwave background (CMB) and its anisotropies. The CMB
was formed at recombination, when electrons and nuclei formed the atoms and photons
decoupled from them, now travelling freely through the universe. Although the universe
at that time, approximately 380,000 years after the big bang, was extremely homogen-
eous, tiny temperature fluctuations of < 0.01% can tell us more about the contents of
the universe. The temperature fluctuations and their two-point correlation functions on
different angular scales θ give us information about physical processes happening on cer-
tain scales. The physical divide between the two scales is the Hubble radius, the causally
connected region, at recombination, corresponding to an angular scale of roughly 1◦ as
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seen on the CMB today. On scales larger than that, the primordial inhomogeneities from
the inflationary period have been conserved, while on the other hand we get information
on the gravitational instability and clumping of matter from smaller scales. The results
are displayed in the multipole moments Cl of the power spectrum. The Hubble radius at
recombination sits at a multipole of l ∼ 200. Some features like a plateau at low multipoles
l < 20 (or large angular scales), followed by oscillating peaks and valleys, which then decay
at very high multipoles, are universal and qualitative features, predicted by inflation. But
the exact form of the the power spectrum quantitatively constrains the cosmic paramet-
ers such as energy densities and curvature parameter to high accuracy. For example, the
locations of the acoustic peaks are sensitive to the matter density, as they are determined
by the angular size of the sound horizon at the time of recombination. And the size of the
sound horizon as seen today is equally determined by the baryon density, the dark matter
density and the spatial curvature. One very important observation based on the height of
the first acoustic peak (l ∼ 250) combined with the existence of the second peak (l ∼ 550),
is that the cold dark matter density is less than the critical density, and it is higher than
the baryon density [5, 49,50].

One more piece of evidence for dark matter comes from the observation of the bullet
cluster. It is a pair of galaxy clusters that has crossed through each other. The bullet
cluster has been observed by means of x-rays and gravitational lensing (among others).
The point is that the main mass distribution of the matter as observed by gravitational
lensing follows the observed stars and not the hot gas. The hot gas has interacted, as
expected, emitting x-rays, whereas the stars and indeed most of the mass has passed
through each other without colliding, strongly suggesting that the main component of the
matter is indeed dark matter, and not baryonic matter [8, 51, 52]. Although, there also
exist other well-founded sources which claim that the bullet cluster poses a challenge to
the ΛCDM model. In a cosmological N -body simulation set up according to the accepted
cosmological model the cluster infall velocities required to produce the observed x-ray
brightness were not found [53].

The technical definition of “matter” comes from the Friedmann equations and more
properly the energy conservation equation (1.89). The condition for being considered as
matter, be it dark or baryonic, is that its pressure is zero, i.e. the equation of state
parameter (1.90) is

w = 0 , (1.105)

resulting in the following behaviour for the energy density of matter

ρm ∝ a−3 . (1.106)

This behaviour can be intuitively understood as matter being diluted as the volume of the
universe expands, while the mass of the matter itself is conserved. The particles of dark
matter moreover have to obey the collisionless Boltzmann equation, as they should not
interact too much with each other [8]. Also, the velocity dispersion of cold dark matter
particles has to be quite small, as the resulting free-streaming would erase structures being
formed from gravitational collapse. This can be seen in the CMB and in the large scale
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structure of the universe and constrains the temperature to mass ratio of CDM particles
to T0

m
< 1.07× 10−14. This relates the CDM temperature T0 to the particle mass m and is

used as a measure for the velocity dispersion. In case this value is too large, the particles
are classified as “hot” dark matter and cannot clump and therefore form structures in the
universe [54]. Further requirements for the properties of dark matter can be inferred from
other observations. For example, the difference to baryonic matter is that dark matter only
interacts gravitationally and not with radiation, such that it cannot be observed by means
of any telescopes operating with electromagnetic radiation, at least so far it is known [8].

In general, particle dark matter can be subdivided into thermal relics and nonthermal
relics, depending on whether they were ever in a thermal bath before they decoupled or
were created through some other nonthermal process. The thermal relics can be further
divided into categories of hot and cold dark matter, or whether they were relativistic or
non-relativistic at their decoupling. Relativistic species dampen the clumping of matter
as they can free stream before they become non-relativistic. Therefore, structure would
first clump on large scales, which is not what is observed in galaxy surveys [5, 52]. The
natural conclusion is that hot dark matter can only make up a non-significant part of all
dark matter, most of it should be cold, so that the large scale structure can form from
smaller structures first. Neutrinos make up some of the hot dark matter as they are light
and decoupled from thermal equilibrium at relativistic speeds. One can constrain their
masses to mν < 5 eV in the case of three neutrino species, if one asks for the universe to
be flat and the dark matter not making up more than 30% of the energy density, but also
allowing the dark matter to consist entirely of neutrinos, which cannot be due to them
being hot dark matter [5]. More realistic assumptions lead to tighter constraints, heavily
backed by observational bounds from the Planck satellite [50], where it was found that
the sum of the neutrino masses should be

∑
mν < 0.12 eV. Thermal cold relics might

be found from supersymmetric models, in their lightest stable electrically neutral particle,
the so-called neutralino. Examples for nonthermal relics are axions, very light (sub-eV)
particles originating from QCD considerations. Their mass bounds may be even calculated
from cosmological and astrophysical observations, to be less thanma . 10−5−10−3 eV [55].
Their momentum is thought to be very small, so they make good candidates for cold dark
matter [5, 52]. Furthermore, they are weakly coupled to ordinary matter, therefore they
are thought to be stable on cosmological scales. Another property which makes them an
interesting DM candidate for us is the fact that as bosons they can have high occupation
numbers. This is crucial for axions to be feasible as DM candidates, as they are extremely
light and only through their high occupation numbers they can reach the densities required
to explain the observed DM mass. A consequence of this property is that they can interact
collectively, almost classically and like a fluid [56]. Our later fluid description of dark
matter is therefore very well suited. We will discuss them more in 6.2.

Formerly favoured DM particles were the so-called weakly interacting massive particles
(WIMPs). They should have the properties, as their name suggests, of being weakly inter-
acting with the standard model particles, non-relativistic, i.e. cold, and massive enough to
account for the observed mass. However, they also have fairly high cross-sections, higher
than some other DM candidates like axions, their supersymmetric counterpart axinos or
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the also supersymmetric gravitinos. Their cross-section are still smaller than neutrino
cross-sections, though. In theory this cross-section would make them good candidates to
be observed in experiments through recoil energy and scattering, but despite the efforts to
discover them in various colliders, x-rays, gamma rays and cosmic rays, nothing conclusive
has been found as of now. Moreover, the by now excluded parameter space is getting lar-
ger than the allowed parameter space for feasible DM candidates, therefore WIMPs look
like [57,58].

Two general DM production mechanisms are called freeze-out and freeze-in. The freeze-
out mechanism is one possible mechanism that describes how particles drop out of equilib-
rium with the thermal bath of the surrounding hot plasma in the early universe. At first the
DM particles are in thermal equilibrium, until the temperature of the universe has cooled
down so much due to its expansion that the annihilation and decay of the DM particles to
lighter particles become ineffective. Then the DM number density becomes fixed. In this
case, the final abundance decreases with interaction strength, as the annihilation becomes
more effective [5, 59].

On the other hand, the freeze-in mechanism is a newer suggestion [59]. This mechanism
assumes a thermal bath of particles on the one hand, and a DM particle on the other
hand, only feebly interacting with the thermal bath and in negligible abundance, which
is a crucial feature. Then the in initial production through collision or decay of standard
model particles at temperatures larger than the DM particle mass is very small. The
main production occurs around the point where the bath temperature is similar to the DM
mass. To sum up, the DM abundance freezes in, and increases with interaction strength,
as opposed to the freeze-out mechanism, and produces just enough particles to match the
observed dark matter density today [59]. There exist other theories where DM is modelled
as a real scalar which interacts with the Standard Model particles via a coupling to a
scalar field which is in thermal equilibrium with the standard model particles. This model
undergoes first a spontaneous phase transition in which the DM field acquires a non-zero
expectation value but the crucial point comes later: Due to cooling down the symmetry
gets restored and the system undergoes an inverse phase transition where the DM field
starts oscillating shortly before and consequently produces dark matter particles [60].

A good consistency test of the dark matter theory is to ask whether the equation of
state parameter for dark matter is actually observed to vanish. This has been tested by
using a general dark matter model, to see whether the actual CMB data at various times
really coincides with this theoretical prediction [61]. They found that the equation of state
parameter w of dark matter is consistent with zero, although it is much better constrained
around matter-radiation equality than at present times.

Another property is that it is non-baryonic, as has been mentioned before, i.e. it is not
comprised of neutrons and protons. Although, there exist speculations that dark matter
might be composed of a stable six quark state uuddss, hinted at by lattice QCD [62].
However, it has neither been detected in accelerators nor in dark matter searches yet.

Although there are many experiments set up for direct detection of dark matter particles,
especially WIMPs, they have been unsuccessful in their search so far [63, 64]. In the end,
whatever dark matter may be made out of, its general properties must be fulfilled in any
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case. As mentioned, dark matter must not interact with electromagnetism, it has to be
cold, and be able to reproduce the abundance we observe today [5, 8].

1.2.2 Dark Energy and Cosmological Constant

So far, we have accounted for only about one third of the energy content of the universe.
The remaining two thirds are even more elusive than dark matter and are aptly named
dark energy (DE) in its most general configuration. One of the most important forms of
dark energy is called the cosmological constant (CC), characterised by an equation of state
parameter (1.90) of w = −1. A cosmological constant refers to its energy density not
changing in time and space. Moreover, as we will discuss more later in 1.2.3, the CC can
be seen as a coupling constant which is added in the action, or as the consequence of the
quantum fluctuations of all the fields in the universe in the vacuum state.

The effects of dark energy mostly concern the expansion history of the universe and the
relation between redshift and distance. Furthermore, dark energy only started to dominate
recently, in cosmological terms, so that high-redshift observations are less important than
the phenomena in the relatively late evolution stages of the universe [65]. “Recently” in
cosmological terms means that the cosmological constant started to dominate over normal
matter at a redshift (1.96) of

zΛ dom =

(
1− Ωm

Ωm

)1/3

− 1 ≈ 0.28 . (1.107)

There the first Friedmann equation (1.85) was used, in terms of the cosmological density
parameters (1.92), while using the redshift (1.96) and setting a0 = 1. For the dominating
cosmological constant we assume H = H0. As the density parameter for matter we took
Ωm ≈ 0.32 and the assumption that the universe is flat, i.e. Ωm + ΩΛ = 1 [50]. To arrive
at the physical time in terms of the redshift, we need to differentiate (1.96) with respect
to time and reformulate it to

t(z) =

∫ ∞
z

dz̃

H(z̃)(1 + z̃)
, (1.108)

inserting the first Friedmann equation as above and integrating results in

t(z) =
2

3H0

· 1√
1− Ωm

arcsinh

(
1 + zΛ,,dom

1 + z

)3/2

(1.109)

or, by inserting z = 0 to calculate the age of the universe today t0 ≈ 13.8 Gyr,

t(z) = t0 ·
arcsinh

(
1+zΛ dom

1+z

)3/2

arcsinh
(

1−Ωm

Ωm

)1/2
. (1.110)

This translates to matter and CC densities being equal only 3.45 Gyr ago [5]. One can
also compare this to the time when the universe started accelerating. In this case, take the
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second Friedmann equation (1.86) in terms of redshift and density parameters and set it
to zero. Therefore,

zacc =

(
2(1− Ωm)

Ωm

)1/3

− 1 ≈ 0.62 (1.111)

for the above value of Ωm. Inserting zacc and zΛ dom in the formula for the time (1.110) gives
us the result that the universe started accelerating approximately 6 Gyr ago. Comparing
both values to the age of the sun, namely 4.6 Gyr [66], and the age of the universe, 13.8 Gyr
[50], we indeed see that dark energy became important only in approximately the last third
of the evolution of the universe.

Dark energy was first directly observed in the redshifts of so-called Type Ia supernovae.
They are believed to be standard candles with an intrinsic brightness range, such that
their distance from us can be inferred. Therefore, any deceleration or acceleration in the
expansion history of the universe can be detected. And it was found that the universe
not only expands, but that the expansion is accelerating [67, 68]. One important method
to probe the geometry of the universe is via the number density of galaxies in galaxy
clusters. This depends on the comoving volume in which the cluster is observed, i.e. the
geometry of the universe at that redshift, and also on the growth rate of the structures,
i.e. the history of the density perturbations. Large-scale galaxy surveys can detect this
and be compared with predictions from different cosmological models [65, 69]. Another
method to observe the effects of dark energy is looking at the baryon acoustic oscillations
(BAOs). Those describe sound waves in the early universe, when photons and baryons
were still coupled to each other. As the universe had cooled down enough, such that atoms
could form, the photons could travel freely and the distribution of the baryons at that
time was frozen. This clustering of matter at certain scales can be observed in the cosmic
microwave background and also in galaxy clustering surveys, providing us with a standard
ruler measuring the geometry of the universe. This preferred distance beween galaxies
shows up as a peak in the two-point correlation function of the observed galaxies. The
angular distance to the standard ruler can be measured at different redshifts, which in
turn gives us information about the expansion history and therefore the energy content of
the universe [65, 70]. One more possibility to probe the expansion evolution is via weak
gravitational lensing. For that, people look at the the statistics of the distortions in galaxy
surveys, which are caused by light bending around dark matter distributions. Similar to
the number count observation of clusters, the shape in which the background galaxies are
distorted due to the dark matter structures depends on the geometry and the growth rate
of said structures. From this one can also extract the impact of dark energy on structure
formation [65,71].

We can learn a few things from the Friedmann equations in the case of the cosmolo-
gical constant: Inserting the equation of state parameter w = −1 (1.114) into the second
Friedmann equation (1.86), also called acceleration equation, we see that the acceleration
is indeed positive for a universe filled with a positive cosmological constant. Moreover,
also inserting the equation of state into the EMT conservation (1.89), it becomes clear
that it is indeed a cosmological constant, as its energy density does not change under time



22 1. Introduction

evolution [2]. By now, the equation of state parameter w of dark energy has been measured
by the Planck satellite, with the current best fit to the cosmological models of

w = −1.03± 0.03 , (1.112)

so the observations are consistent with a cosmological constant [50].
The cosmological constant term Λ was first added by hand to the Einstein field equations

(1.61) by Einstein himself in 1917 [72]. This was his attempt to find a solution for a static
universe, as the velocities of stars were observed to be much smaller than the speed of light,
and the expansion of the universe was not yet discovered at that time. This particular form
of the field equations does not destroy general covariance and still enforces the conservation
of the matter energy-momentum tensor through the Bianchi identity for constant Λ. We
can compare this added term

TΛ
µν = Λgµν (1.113)

with the energy-momentum tensor of a perfect fluid (1.41) to realise that the equation of
state is, as expected [2, 4]

pΛ = −Λ ≡ −ρΛ . (1.114)

Approximately two months later, also in 1917, de Sitter [73] nevertheless found a solution
of the Einstein field equations which was apparently static but did not contain matter.
This was in contradiction to what Einstein had expected from setting up a static universe:
that matter should set inertial frames in the universe, therefore being directly connected
to the geometry of the universe [74]. And at the same time, Slipher [75] observed the
cosmological redshift of galaxies (which he called “spiral nebulae”), all but a few moving
away from the Milky Way. The explanation was found by Lemaître in 1927 [76, 77]. He
concluded from the data that the universe is expanding and from General Relativity he
found what was later called Hubble’s law, stating that the recessional velocities increase
with increasing distance. As his report was only published in a Belgian journal, not many
physicists ever read it. Even earlier than that, Friedmann already derived from general
relativity that the universe might be expanding [78]. Finally, Hubble [79] again found the
law which was later named after him, two years after Lemaître. Therefore they showed
that the universe is expanding and not static, as Einstein tried to set it up. Nevertheless,
the International Astronomical Union voted to rename the law to Hubble-Lemaître law in
order to honour Lemaître’s contribution [80]. In the light of those new observational and
theoretical discoveries, Einstein decided in 1931 [81] to abandon his cosmological constant,
but as we have seen, it came back [74].

There is a problem with the cosmological constant as it can be observed throughout
the cosmic history: Its energy density stays constant over time while the matter energy
density gets diluted with the volume increase of the universe. Therefore, there is only a
short time during the expansion of the universe where both of them are of the same order
of magnitude. As the matter comprises about 32% of today’s energy content while dark
energy is about 68% [50], this is the case today. So the question is: Why are the two
of comparable magnitude exactly during our lifetime? Or put differently: Why did dark
energy only fairly recently start to dominate? This is called the coincidence problem [82].
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When we talk about accelerated expansion, the early universe period of inflation comes
to mind [5]. Therefore, we will sum up what properties of inflation might be useful to
get an idea about the recent dark energy. A stage of accelerated expansion is thought
to greatly enlarge a homogeneous, causally connected patch to large sizes, explaining the
homogeneity and isotropy of the universe today. Also, inflation flattens the early universe
to large precision, such that small deviations from flatness at very early times do not blow
up in an un-accelerated Friedmann stage [5]. A crucial property of inflation is the exit from
the almost expontential expansion stage. An exact de Sitter stage, i.e. something akin to
a cosmological constant, as a consequence seems unreasonable, solely because the universe
would have not have dropped out of the exponential expansion stage at any time. Inflation
would have continued and hindered all gravitational clustering and structure formation [83].
But a dynamical model is a viable solution to a graceful exit from inflation. Often a scalar
field action like (1.31) is taken, with the scalar field called an inflaton. The corresponding
equation of motion in a Friedmann universe (1.83) can be calculated as

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 . (1.115)

This is of course nothing else than the Klein-Gordon equation (1.34) calculated in a Fried-
mann metric (1.83). Note that the scalar field should follow the geometry of the universe
and be homogeneous, i.e. bear no spatial dependence. The equation of state of the scalar
field, using the perfect fluid picture of energy density (1.50) and pressure (1.51) can be
written as [84]

wφ =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (1.116)

The spatial derivatives of the scalar field are zero, Dµφ = 0, as the universe is assumed to
be homogeneous on very large scales. One can easily see that for φ̇2 � V (φ), the equation
of state approaches that of a cosmological constant and produces accelerated expansion as
desired. For a general potential we see from the first Friedmann equation (1.85) that

H ∝
√
ε ∼
√
V , (1.117)

so a large potential also might lead to a large Hubble friction term 3Hφ̇. Together with
asking that the acceleration of the scalar field should be small compared to the Hubble
friction term 3Hφ̇ this produces the slow-roll conditions∣∣∣φ̇2

∣∣∣� |V | , |φ̈|� 3Hφ̇ ∼
∣∣∣∣∂V∂φ

∣∣∣∣ . (1.118)

With the help of (1.117) the slow-roll conditions can be rewritten as(
V,φ
V

)2

� 1 ,

∣∣∣∣V,φφV
∣∣∣∣� 1 , (1.119)
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where V,φ ≡ ∂V
∂φ

and V,φφ ≡ ∂2V
∂φ2 , respectively. For a scalar field potential

V (φ) =
1

2
m2φ2 (1.120)

the relation between H and the potential suggests, using (1.117), that H ∼ mφ. For any
power-law potential, the slow-roll conditions (1.119) are satisfied for |φ|� 1 [5]. Combining
these two relations yields

m� H . (1.121)

The mass of the inflaton should therefore be much smaller than the Hubble constant, which
is reminiscent of the cosmological constant problem for late stage accelerated expansion:
Why is the cosmological constant so small? We will talk about this more in 1.2.3. The
length of inflation to solve the horizon problem of causally connected regions is mostly
quoted with approximately 60 Hubble times (with the Hubble constant appropriate for the
time of inflation). In the context of inflation, one talks about 60 e-folds, i.e. the universe
expands by a factor of e60 [48]. For a relatively long time during inflation, the equation of
state is extremely close to −1, before dropping out of that de Sitter stage and exponential
expansion [5]. The details of how exactly inflation proceeds depends on the shape of the
potential, of course.

But in the end, how the problem of accelerated expansion is approached in the context
of inflation may be helpful in the consideration for dark energy problems as well. This
is especially true for the case of models with a dark energy equation of state of w 6= −1.
Some of them are referred to as quintessence [85]. It is modelled by a scalar field with our
already known action (1.31) and it is counted as new dynamical content of the universe,
in contrast to a cosmological constant [84]. In the case of quintessence, the accelerated
expansion in the late universe comes about by virtue of the potential of the scalar field.
The only requirement here is that the scale factor will evolve such that it provides us
with accelerated expansion. One possibility for an exact solution is similar to power-law
inflation with a scale factor

a(t) ∝ tr (1.122)

with the exponent r > 1 in order to get accelerated expansion. Then it can be shown that
the potential of the scalar field has to have the form

V (φ) = V0 exp

(
−
√

2

r

φ

mPl

)
(1.123)

with the constant V0 and where the Planck mass mPl has been restored [48, 84]. Another
possibility for the potential would be

V (φ) =
M4+α

φα
, (1.124)

where α ≥ 1 and M denotes a mass scale which is determined by the observed dark energy
density today. The scalar field can be shown to exhibit a tracker behaviour [86, 87]. This
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means that the quintessence field is drawn towards solutions where many initial conditions
lead to similar final solutions. Moreover, the tracking quintessence does not adjust to the
background equation of state, i.e. to that of radiation or matter, but stays away from that,
tending more to cosmological constant behaviour in the later cosmic history. This would
be a desired solution to the coincidence problem [86].

This accelerated expansion of the universe can only be accounted for by an equation
of state parameter of w < −1

3
, as it follows from the second Friedmann equation (1.86).

The cosmological constant lies at exactly w = −1, as already discussed. A very interesting
possibility of the DE equation of state lies in the region of w < −1, or in the so-called
phantom energy. As we have already seen in (1.112), observational data does not exclude
this possibility, even seems to slightly favour it. A recent analysis and comparison between
various data sources, such as the CMB, supernovae Ia, baryon acoustic oscillations or also
the evolution of massive old galaxies show that the dark energy equation of state is indeed

wDE = −1.0131+0.038
−0.043 . (1.125)

for the combination of those four data sets. The slight favour of phantom energy seems
to mainly come from the CMB, although the authors claim that there is no need to de-
viate from the standard assumption of a cosmological constant [88]. Furthermore, to fit
today’s observations, phantom energy should come to dominate later than a possible CC or
quintessence. This has consequences especially in the late universe, which should be even
observable in the future and aid us to distinguish which form of dark energy permeates our
universe. For example, the relation between magnitude and distance changes such that far
away supernovae would appear dimmer due to phantom energy [89]. The simplest solution
to get phantom energy lies again in a scalar field, but this time the kinetic term should
have the “wrong” sign, therefore representing a ghost field [84]. Phantom energy has an
interesting property concerning the future of the universe: Its energy density grows with
time as opposed to other forms of matter. As it can be shown, phantom energy reaches
infinite energy density within finite time, therefore overtaking all other forms of matter
and as the accelerated expansion continues, it rips apart galaxies, stars, planets and finally
molecules and atoms [84,90]. But note that the idea of the scale factor reaching an infinite
value within finite time was already put forward in 1999, see [91]. Phantom energy is also
thought to be able to alleviate the Hubble tension problem, that is the statistically signi-
ficant deviation of the Hubble constant observed from early universe sources such as the
CMB, and late universe measurements such as supernovae distances calibrated by variable
stars, e.g. Cepheids. Exemplary, we quote [92]

Hearly
0 = 67.27± 0.60 km/(s Mpc) (1.126)

H late
0 = 73.2± 1.3 km/(s Mpc) . (1.127)

The early universe value is taken directly from the Planck 2018 release [50], whereas the late
one comes from a SN Ia sample, with their distances calibrated with Cepheids [93]. This
difference seems to be persistent and there is much discussion how to resolve this problem.
Most likely this phenomenon is caused by systematics in one of the measurements. If that
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is indeed the case and there is a physical significance behind this difference, that gap might
be bridged by phantom energy. More correctly, it is phantom crossing we are searching
for, i.e. dark energy crossing the dividing line from non-phantom energy (wDE > −1) to
phantom energy (wDE < −1) [94]. The authors assume a general extremum of the dark
energy density before the present time and check this model against the available CMB,
BAO, lensing and supernova Ia data. As a result, they find that

Hphantom
0 = 70.25± 0.78 km/(s Mpc) (1.128)

for all data sets. This is still not in full agreement with the Hubble value found from
supernova data [95], but the tension is at least alleviated. Of course, phantom energy is just
one possibility of many under investigation which could solve the Hubble tension [92,96].

Another theoretical model for dark energy is k-essence [97, 98], a scalar-tensor model
of gravity. In this scenario, it is the non-canonical kinetic term of the scalar field which
is responsible for the acceleration. It was actually already described in [99] as kinetically
driven quintessence. The action for the k-essence model looks like

S[gµν , φ] =

∫
d4x
√
−g p(φ,X) (1.129)

with the usual kinetic term X (1.55). The Lagrange density p(φ,X) is aptly named, as it
is at the same time a pressure density, which is often taken to be factorisable, i.e.

p(φ,X) = K(φ)p̃(X) . (1.130)

Then, the energy density can be calculated to be

ε(φ,X) = K(φ) (2Xp̃,X − p̃) , (1.131)

where ,X ≡ ∂X denotes the partial derivative with respect to the kinetic term X, such
that the equation of state for the k-essence is

wk =
p̃

2Xp̃,X − p̃
. (1.132)

This model also exhibits tracker and attractor behaviour. The solutions are called trackers
when the k-essence mimics either radiation or matter behaviour. On the other hand there
are attractors, when the scalar field runs towards a solution whose equation of state is
different from either matter or radiation. Those are important in the extreme cases when
the k-essence density is much larger or smaller than the matter or radiation density. For
the case that the k-essence density εk is much smaller than the matter density εm, those
attractors are called de Sitter attractors and they mimic a cosmological constant where
wk → −1. They are a generic feature of the theory. On the other end of the spectrum,
there exist k-attractors for εk � εm. The whole appeal of this theory is that the scalar
field evolves with time, with different possibilities for the scalar field to track and mimic
the energy contents of the universe. With this property it is possible for certain choices
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of parameters to explain the development of the energy density as we observe it. At
first, during radiation domination, it is sub-dominant and tracks the radiation energy
density. At the onset of matter domination, εk drops by several orders of magnitude,
whereas wk quickly approaches that of a cosmological constant, starting the accelerated
expansion we see today. And interestingly, εk starts to dominate a short time ago, as it
is observed. Therefore k-essence can be tweaked to model the behaviour of the observed
energy densities just by attractor dynamics, without needing many initial conditions. A
feature distinguishing k-essence from other models is the emergence of a speed of sound
cs [100], defined and calculated as

c2
s ≡

p,X
ε,X

=
p̃,X

p̃,X + 2Xp̃,XX
. (1.133)

Therefore, unlike in “normal” quintessence, the speed of sound can be quite different from
one. The speed of sound can even be larger than one, though without violating causality
[101]. As it can be very small, crucially k-essence can cluster and fall into the gravitational
wells formed by dark matter. This might produce results which are actually observable in
the CMB, therefore enabling us to distinguish between quintessence and k-essence [102].
But note that k-essence does not allow phantom crossing [103].

One more possible scalar-tensor model is called kinetic gravity braiding [14, 104]. This
builds up on the k-essence model in the sense that it deals with non-canonical kinetic
terms. Its Lagrangian is of the form

L = K(φ,X) +G(φ,X)2φ , (1.134)

where K(φ,X) and G(φ,X) are general functions of the scalar field φ and its kinetic term
X, compare (1.55). 2 denotes the d’Alembertian as usual (1.35). For G(φ,X) = 0 and
any function G(φ) which is independent from X we get back the k-essence from above.
But kinetic gravity braiding contains a non-trivial coupling between the scalar kinetic term
and the tensor kinetic term, schematically written as G∂g∂φ. Non-trivial meaning that it
cannot be undone by any field redefinitions. But still, it can be shown that kinetic gravity
braiding only leads to second order equations of motion, therefore making it a viable
theory containing no ghost fields. The important fact in that context is that the scalar
field monitors the external energy density and moves towards attractor solutions that act
as a cosmological constant for appropriately chosen functions K and G. One has to notice
that in this model the scalar does not behave as a perfect fluid, but an imperfect one [14].
The scalar from kinetic gravity braiding also tends towards phantom energy as an attractor
solution, therefore it is also an interesting model to solve the Hubble tension. Moreover, in
contrast to k-essence, kinetic gravity braiding can also cross the phantom divide without
ghosts and gradient instabilities [104]. Similarly to k-essence, kinetic gravity braiding also
does not change the speed of gravitational waves [105]. This fact is very important, as the
fractional difference between gravitational wave speed and light speed has been observed
to be

−3× 10−15 ≤ cGW − cEM

cEM

≤ 7× 10−16 (1.135)
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from the multimessenger observation of the gravitational wave event GW170817 and the
short gamma ray burst GRB 170817A [106]. So observations greatly constrain the deviation
of the gravitational wave speed from the speed of light and many models like the most
general Horndeski models [107] and beyond Horndeski models, e.g. [108, 109] have been
ruled out by this [105].

1.2.3 The Cosmological Constant problem

After we have described the cosmological constant and its properties and the observations
made to suggest its existence, we will discuss the so-called cosmological constant problem.
Because if we ask ourselves where dark energy actually comes from, quantum fluctuations
of the vacuum come to mind. If we view each mode present as a quantum mechanical
harmonic oscillator, their ground states, i.e. vacuum energies, are certainly not zero. And
as there are infinitely many of them, the total vacuum energy should be infinite. This is
not a problem in the absence of gravity, as only differences in energies play a role quantum
field theory in flat spacetime. Radiative corrections also appear, but in the framework of
QFT they are correctly dealt with an appropriate renormalisation method. The actual
cosmological problem is the following: As soon as we turn on gravity, the absolute value of
energy matters, as any kind of energy gravitates. We can try to renormalise the appearing
infinities as usual, but we will realise that although the renormalisation works, it predicts
a much higher value for the cosmological constant than it is observed [110].

As we have already discussed, the bare cosmological constant ΛB enters the action merely
as a free parameter of the theory, which we will repeat here for convenience

S[gµν ,ΛB,Φm] =

∫
d4x
√
−g
(
−1

2
R + ΛB

)
+ Sm[gµν ,Φm] , (1.136)

resulting in the Einstein field equations

Rµν −
1

2
Rgµν = Tµν + ΛBgµν . (1.137)

Then we have to take into account the vacuum state of the quantum fields which results
in

〈0|Tµν |0〉 = ρvacgµν (1.138)

with the energy density of the vacuum ρvac. Due to energy-momentum conservation (1.88)
and metric compatibility (1.12) we know that this must be a constant. Under the assump-
tion that this vacuum energy is affected by gravity (as all forms of energy are, according
to the equivalence principle), the Einstein field equations now look like

Rµν −
1

2
Rgµν = Tm

µν + Λeffgµν . (1.139)

We denote the EMT resulting from ordinary matter from now on as Tm
µν and have used the

expression for an effective cosmological constant

Λeff = ΛB + ρvac . (1.140)
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This sum of the bare cosmological constant term and the vacuum energy density is actually
the cosmological constant term which is observed in nature. The next problem is that this
effective cosmological constant receives corrections from various sources we will at least
mention in passing here.

The first possibility is a classical contribution, if we assume the cosmological constant
coming from a scalar field with a general potential, as already mentioned in (1.31). At
first, one part of the vacuum energy literally comes from the potential at its minimum,
such that ρvac = V (φmin). This cannot always be set to zero, as there may be a phase
transition in the early universe, causing the potential of the fields to be non-zero. And in
the presence of gravity this non-zero potential will contribute to the total energy density
and act like a cosmological constant. One such phase transition in the early universe is the
electroweak phase transition, another one the QCD phase transition. In the case of the
electroweak phase transition the potential our interest lies in is the Higgs potential. The
Higgs boson is a complex scalar and therefore can be denoted like we already did in (1.37).
Writing the Higgs field as χ, its potential is

V (χ, χ†) =
m2

2
χ†χ+

λ

4

(
χ†χ
)2
, (1.141)

with m as the mass of the Higgs and λ a coupling constant of its self-interaction. This
potential has two minima after the spontaneous symmetry breaking, in this case also called
Higgs mechanism, giving the gauge bosons mass. From ∂V/∂(χ†χ) = 0 one can derive the
non-zero vacuum expectation value (VEV) v after the phase transition

〈χ〉 = v =

√
−m

2

λ
. (1.142)

In case we set the minimum of the vacuum to zero before the phase transition, it will be

V (〈χ〉 = v) = −m
4

4λ
(1.143)

after. The second possibility is that we chose the value of the vacuum energy before the
phase transition to be m4

4λ
, such that it would vanish afterwards. In both cases, the main

point to take away is, that we cannot set the vacuum energy to zero before and after the
phase transition, so it will be affected by gravity. If one assumes the vacuum energy to be
non-vanishing after the electroweak phase transition, one can calculate it to be

ρEW
vac ≈ −1055ρcrit ≈ −1.2× 108 GeV4 , (1.144)

using the critical density ρcrit (1.91) that would yield a flat universe [110]. This prediction
contradicts various observations, as the measurement of the vacuum energy density of the
Planck satellite [50]. There one can see that the value is

Λ = (2.846± 0.076)× 10−122m2
pl (1.145)
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with Planck mass mpl. Using that

ρcosm
vac =

Λ

8πGN

= Λm̄2
pl (1.146)

with the reduced Planck mass (1.3) and (1.5) and the value for the Planck mass (rather
Planck energy or temperature) (1.4) we can finally calculate the vacuum energy density

ρcosm
vac = 2.517× 10−47 GeV4 . (1.147)

This is of course several dozen orders of magnitude smaller than the classical contribution
from the electroweak phase transitition (1.144). But even if we manage to fine-tune the
classical contribution to effective cosmological constant to the observed value, the problem
will come back to us on the level of quantum fluctuations.

Therefore, we will now discuss the quantum-mechanical contributions to the vacuum
energy, at the level of the zero-point fluctuations of the quantum fields which are present
in the universe. We will quickly discuss the main points of this to address a few miscon-
ceptions, at first only for a scalar field. Nevertheless, we keep in mind that one would
have to consider fermionic and vector fields as well as gravitons. We will skim the topic
of those other fields quickly after the scalar fields. Furthermore, for the high energy scales
we consider here, we can treat the spacetime as flat, as the high energy modes in the ul-
traviolet regime are only sensitive to the very local properties of the spacetime. Therefore,
curvature does not change those considerations. The whole discussion follows [110] if not
stated otherwise. For a scalar field φ of mass m the equation of motion is the Klein-Gordon
equation (1.34)

ηµν∂µ∂νφ+m2φ = φ̈− δij∂i∂jφ+m2φ = 0 . (1.148)

The ansatz for a free scalar field will be

φ̂(t,x) =
1

(2π)3/2

∫
d3k√
2ω(k)

(
âke

−iωt+ik·x + â†ke
iωt−ik·x

)
(1.149)

with the 4-momentum vector denoted as

kµ = (k0,k) (1.150)

and the (positive) frequency ω as defined in the dispersion relation

ω(k) =
√
k2 +m2 (1.151)

Moreover, the creation and annihilation operators satisfy the usual commutation relations[
âk, â

†
k′

]
= δ(3)(k − k′) . (1.152)
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Using the formula for the EMT calculated from the scalar field (1.39) and the energy
density (1.42) and pressure (1.43) of a perfect fluid, it can be derived that

〈ρ〉 =
1

2

∫
d3k

(2π)3
ω(k) (1.153)

〈p〉 =
1

6

∫
d3k

(2π)3

k2

ω(k)
. (1.154)

We will then transform the measure to be relativistically invariant, using [111]

d4k

(2π)4
2πδ(k2 −m2)θ(k0) =

d3k

(2π)32ω(k)
(1.155)

with the delta functional δ(k2 − m2) setting k2 = m2 and the Heaviside step function
θ(k0) selecting positive k0. k is understood as being the length of the four-vector kµ, i.e.
k =

√
kµkµ. Therefore we have

〈ρ〉 =

∫
d4k

(2π)3
k2

0δ(k
2 −m2)θ(k0) (1.156)

〈p〉 =

∫
d4k

(2π)3

k2
1 + k2

2 + k2
3

3
δ(k2 −m2)θ(k0) . (1.157)

explicitly writing out k2 = k2
1 + k2

2 + k2
3. As we can see from the formulae above, if we

perform a Wick rotation [112] on the spatial coordinates and therefore go to Euclidean
coordinates, the O(4)-symmetry of the problem becomes apparent. We observe that

〈p〉 = −〈ρ〉 (1.158)

for the Euclidean quantities, directly arriving at the equation of state for a cosmological
constant.

The usual course of action would have been to realise that the energy density (1.153)
goes with ∝ k4 for high momenta, impose a sharp cutoff scale µ, often taken at the Planck
scale and estimate the vacuum energy like that. It can be shown [110] that this causes a
problem: the equation of state parameter after this calculation would be 〈ρ〉/〈p〉 = 1/3 and
not −1, as expected from the cosmological constant. The upshot is: The regularisation
scheme to sharply cut off the infinities does not reflect the underlying Lorentz symmetry
of the theory, as it cuts off the spatial part of momentum alone. This is what would lead
to a result for the vacuum energy density of something like

〈ρ〉 ∝ µ4 ∼ m4
Pl ≈ 1076 (GeV)4 . (1.159)

Compare this to the observed cosmological constant value (1.147) and we arrive at the
often quoted difference of 123 orders of magnitude between observation and expectation
[110,113]. As mentioned, this is an artefact of the wrong regularisation scheme. Solutions
for this have been proposed, but some of them are to be treated carefully. The often used
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dimensional regularisation [110,114], where one goes from four to d spacetime dimensions to
regularise the integrals and find the correct relation between energy density and pressure,
does lose terms of the form

∫
ddk(k2)α for all powers of α [113]. Therefore, it is to be

avoided. More promising is starting from the vacuum expectation value of the trace of the
energy-momentum tensor and arriving at

〈ρ〉 =
1

4
m2〈0|φ2|0〉 =

m2

4

∫
d4k

(2π)4

i

k2 −m2 + iε
, (1.160)

Wick rotate and use a four-momentum cutoff scale µ [113]. This results in

〈ρ〉 =
1

64π2

[
µ2m2 −m4 ln

(
µ2 +m2

m2

)]
. (1.161)

As we can see, the vacuum energy density vanishes for massless fields, i.e. for the electro-
magnetic field as well, as the term quartic in the cutoff scale vanishes identically [113].

One thing to notice is that with this result the massless photons do not add any cor-
rection to the cosmological constant. Those “quantum” contributions to the cosmological
constant come from the so-called bubble diagrams of quantum field theory, where they are
no external legs, in contrast to loop diagrams. Bubble diagrams do not contribute to the
energy density in flat spacetimes, but as soon as gravity is taken into account, they will
matter. Equivalent to the scalar field, similar considerations lead to similar results in the
case of spinor and vector fields. The energy density will always look like

〈ρ〉 =
1

(2π)3

s

2

∫
d3k ω(k) (1.162)

with different s accounting for the number of the polarisation states and spin, namely s = 1
for the scalar field, s = −4 for the Dirac spinor field, s = 3 for the massive vector field and
s = 2 for the massless one [110]. Now we can make a simple order of magnitude estimation
of the vacuum energy density, based on the first term of (1.161), as the second term is
subdominant. We also use the cutoff scale µ = mPl and the mass of the top quark as the
heaviest standard model particle with mt ≈ 176.69 GeV [115]. We will take the factor of
|s|= 4 for the spinor field and arrive at

|〈ρ〉|≈ 1040 GeV4 . (1.163)

This is still much larger than observed value of ρcosm
vac ≈ 10−47 GeV4, but nevertheless much

smaller than the previous naive ρvac ≈ 1076 GeV4. So while the cosmological constant
problem is far from being solved, the proper regularization at least alleviates it.

Another observation can be made when looking at the vacuum energy density for fer-
mions in (1.162). It is negative, while it is positive for bosons. If one were now able to find
an almost exact copy of the standard model particles, with the only difference that the
fermions would have bosonic partners and the bosons fermionic partners, the cosmological
constant problem would be solved. This symmetry which relates bosons with fermions is
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called supersymmetry. In its original and simplest model in 3 + 1 dimensions standard
model particles and their superpartners have equal masses [116, 117]. Unfortunately we
know that supersymmetry must be broken, i.e. the masses of the standard model particles
and their superpartners cannot be the same, as supersymmetric particles have not been
observed in any accelerators yet [118]. Therefore it is not the solution to the cosmolo-
gical constant problem we have to look for. Finally, the vacuum energy density can be
summarised as

ρvac =
∑
i

ni
m4
i

64π2
ln

(
m2
i

µ2

)
+ ρB + ρEW

vac + ρQCD
vac + . . . . (1.164)

The contributions from the bare cosmological constant ρB and from the phase transitions
are also accounted for, with more possible phase transitions denoted in the dots. The i
accounts for the different particles present in the theory, the ni denotes the polarisation
states combined with the different signs for bosons and fermions, as stated above. Then one
inserts the particle masses of the standard model in eV, e.g. the Higgs boson with nH = 1
as a scalar, mH ' 125 GeV. Furthermore, we have the six quarks, each with nquark = −4,
the three fermions (without the neutrinos, as their masses are so small), and finally the
three massive gauge bosons Z and W±, each with ngauge = 3. The only question is what
to take as the regularisation scale µ, as it should not fundamentally influence the outcome
of the calculation. Also the author of [110] is not quite sure what to take, but in the end
argues that the result stays stable over many orders of magnitude for µ. So even if we now
take the mass of the top quark as a scale, practically only the Higgs boson and the gauge
bosons contribute, and the approximate result will be

ρvac ' −106 GeV4 + ρB + ρEW
vac + ρQCD

vac + . . . . (1.165)

[110] takes a different µ ∼
√
EγEgrav ' 3 × 10−25 GeV, resulting from the scale of the

Hubble constant Egrav ' H0 ' 3.7× 10−41 GeV and the photon energy Eγ at a wavelength
of λ ' 500 nm. A similar calculation will result in

ρvac ' −108 GeV4 + ρB + ρEW
vac + ρQCD

vac + . . . . (1.166)

The important takeaway message is that for both very dissimilar choices of the regular-
isation scale, the calculated vacuum energy density is far away from the often cited [35]
ρQFT

vac ≈ 1074 GeV4, but still much larger than the observed value of ρcosm
vac ≈ 10−47 GeV4

(1.147). Obviously, the observations are still in huge contradiction with the now more
carefully theorised value [110]. A very similar argument is made in [119,120]. The author
works with the Pauli sum rules, on exactly the degeneracy factors and polarisations we
called ni here of the bosons and fermions present in the theory, reaching the same vacuum
energy density for the zero-point energies as in (1.164). Then the author sets the energy
scale for the standard model by asking that∑

i

nim
4
i ln

(
m2
i

µ2

)
= 0 . (1.167)
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With the help of m̂ = m/mH the energy scale for the standard model will be

µ2 = m2
H exp

(∑
i sim̂

4
i ln m̂2

i∑
i sim̂

4
i

)
' m2

H(1.442)2 , (1.168)

resulting in
µ ≈ 180.25 GeV , (1.169)

not dissimilar to the value which was taken to obtain (1.165).
The discrepancy between cosmological, and therefore GR, measurements in eq. (1.147)

and QFT estimates in eq. (1.166), which are both well tested and accepted theories, is
called the cosmological constant problem. And even if one assumes that there is an extra
effect that would cancel the theorised high value of the vacuum energy, it is difficult to
imagine that it would cancel exactly to the observed value, a small but non-vanishing value.
This results in a fine-tuning problem, attracting a lot of interest among physicists [74,121].

1.2.4 Trace-free Einstein gravity and the cosmological constant
problem

One proposal by Einstein himself was to take the trace-free part of his field equations,
although in a slightly different version than we are going to use here [122]. More modern
but still pioneering treatments include [123–125]. We will use [126]

Gµν −
1

4
Ggµν = Tµν −

1

4
Tgµν . (1.170)

The Bianchi identity∇µG
µν = 0 (1.30) still holds, but now the energy-momentum conserva-

tion equation (1.56) is a separate assumption and not a consequence of the aforementioned
Bianchi identity anymore. An important point to stress is that the trace-free Einstein
equations do not contain any information about the cosmological constant. Taking the
covariant derivative of those new trace-free equations leaves us with a new integrability
condition

∇µG = ∇µT . (1.171)

In other words, the cosmological constant re-enters as a pure integration constant

4Λ ≡ G− T (1.172)

giving us back our well-known Einstein equations (1.61) with the cosmological constant
included [121,126].

On the one hand, this theory is no different to normal GR with an unspecified cosmo-
logical constant. It also contains the vacuum solutions (e.g. Schwarzschild and Kerr), but
with Λ = 0. Moreover, it does also not affect cosmological solutions such as the Fried-
mann metric and also the junction conditions used for stellar models remain valid [121].
And lastly, also its effect on inflation was checked and it was found that its outcome is
unchanged [127].
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On the other hand, equations (1.170) are unchanged under shifts of the vacuum energy
density ρvac of the form

Tµν → Tµν + ρvacgµν . (1.173)

So in the end, all values of the cosmological constant are mathematically valid at that point,
however fixing an effective value for it leaves us with the usual GR Einstein equations (1.61),
as the trace-free Einstein equations (1.170) are insensitive to those changes. So it seems
we just shifted the cosmological constant problem one step further away without actually
solving it. Although, this symmetry in the equations permits us to simply split the energy-
momentum tensor into the vacuum contributions and everything else. This might look like

Tµν = T̃µν + T vac
µν (1.174)

with the constant vacuum energy looking like

T vac
µν =

1

4
T vacgµν , (1.175)

where T vac is a constant throughout spacetime. Then we transfer all of the quantum cor-
rections into the part T vac

µν of energy-momentum tensor, while T̃µν receives none. Inserting
this into the traceless Einstein equations (1.170), we see that those quantum corrections
exactly drop out. At the very least, the cosmological constant is stable against the quantum
vacuum corrections. Summing up this part, the cosmological constant problem is not quite
solved, but we have gained more freedom in how to interpret the results by making the
cosmological constant not fixed from the beginning [126].

Another reformulation of trace-free gravity is so-called unimodular gravity, where the
name-giving unimodular constraint is [123,124]

√
−g = 1 . (1.176)

This has to be implemented directly into the Einstein-Hilbert action in order to modify
the dynamics of the theory. One possibility is to do so with a Lagrange multiplier, such
that

S[gµν , λ,Φm] =

∫
d4x

(
−1

2

√
−gR + λ

(√
−g − 1

))
+ Sm[gµν ,Φm] . (1.177)

There are several problems with this formulation. One, this direct implementation of
the unimodular constraint explicitly breaks diffeomorphism invariance, which changes the
symmetry group of the action to be merely invariant under transverse diffeomorphisms

∇µξ
µ = 0 (1.178)

generated by ξµ. Those transverse diffeomorphisms are characterised by preserving the
metric under variations like

δξ
√
−g = Lξ =

1

2

√
−g∇µξ

µ = 0 , (1.179)
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with the Lie derivative L (1.22). Moreover, the resulting Einstein equations are

Gµν + λgµν = Tµν . (1.180)

If we take the covariant derivative on both sides, this will result in the condition that

∇µλ = 0 , (1.181)

the reasoning being as follows: The Bianchi identity ∇µG
µν = 0 holds, of course, whereas

diffeomorphism invariance is still assumed to be valid for the matter sector, with the
result of EMT conservation ∇µT

µν = 0. So if we now provide initial conditions for the
cosmological constant λ, as it is fit for a dynamical variable of the theory, we end up with
the old cosmological constant problem, that we need to fine-tune its value. One could
again shift the quantum vacuum density ρvac to decouple from the theory. But this results
in a shift in the Lagrange multiplier and therefore in the value of the initial condition for
the cosmological constant. The conclusion is, we are back at fine-tuning the cosmological
constant at every loop order [126].

On the other hand, there is also the possibility of carrying out a Weyl transformation
of the metric of the form

gµν → ĝµν = gµν |g|−1/4 (1.182)

everywhere but the unimodular constraint term. The goal is to make the quantum vacuum
contributions ρvac decouple automatically. This will give us the resulting action

S[gµν , λ,Φm] =

∫
d4x

(
−1

2
R̂ + λ

(√
−g − 1

))
+ Sm[ĝµν ,Φm] . (1.183)

Varying this action with respect to the original metric gµν will lead to the following equa-
tions of motion

Ĝµν −
1

4
Ĝĝµν + λgµν = T̂µν −

1

4
T̂ ĝµν . (1.184)

But when reinserting the unimodular constraint (1.176), gµν = ĝµν so we can drop the hats.
From taking the trace of (1.184) we see that λ = 0 without giving any initial conditions
and λ does not play the role of the cosmological constant anymore. But as the matter
and gravity Lagrangians depend on the metric ĝµν , the vacuum contributions ρvac

√
−ĝ will

decouple automatically, as
√
−ĝ = 1 by construction, compare to (1.182). Furthermore,

this leads to the unimodular action being modified one step further to

S[gµν , λ,Φm] = −1

2

∫
d4xR̂ + Sm[ĝµν ,Φm] . (1.185)

The resulting equations of motion are the traceless Einstein equations. A remark about
the difference in the ways implementing the unimodular constraint is in order. When we
use the method with the Lagrange multiplier, initial conditions for the constant part of
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the Lagrange multiplier λ were implied, therefore not varying the zero mode by imposing
the constraint under the integral, see∫

d4x
√
−g =

∫
d4x . (1.186)

Therefore, the theory we are left with is still standard GR [126].
As an aside, in the Lagrange multiplier formulation of unimodular gravity one of the

problems was that a tensor density, the metric determinant
√
−g, was set equal to a scalar

quantity, namely unity, therefore breaking diffeomorphism invariance. This was finally
solved by Henneaux and Teitelboim [128], where they introduced a vector density V µ to
write the constraint in the action in the generally covariant form

SHT[gµν , λ, V
µ,Φm] =

∫
d4x

[
−1

2

√
−gR− λ

(
∂µV

µ −
√
−g
)]

+ Sm[gµν ,Φm] . (1.187)

The discussion on this follows the one above about the original unimodular constraint,
including the question on how to impose it, whether directly by a Lagrange multiplier or a
field redefinition of the metric, but now with the crucial difference about the theory being
diffeomorphism invariant [126,128].

1.2.5 The cosmological concordance model

After the overview of the contents of the universe we will sum up the main results in what
is commonly called the cosmological concordance model, the accepted standard model of
the universe. From observing the cosmic microwave background [50]: Only about 4% of the
matter content of the universe make up the usual luminous baryonic matter, about 28%
dark matter and the remaining 68% dark energy. This is the dark universe. In summary,
the currently accepted cosmological model for our universe is called ΛCDM, a universe
containing a cosmological constant Λ and cold dark matter (CDM). Furthermore, it is
most likely flat, i.e. the spatial curvature is zero, expressed by the curvature parameter k
(1.84) being zero [8].

But if most of our universe is invisible and not constituted by any particle in the standard
model, the question of its composition remains. For dark matter, often particles beyond
the standard model are suggested as solutions to that problem, but so far nothing has been
detected in experiments searching for new particles [129,130].

For dark energy, the idea that it is a consequence of the vacuum energy throughout the
universe is appealing. But as we have seen above 1.2.3, even with refining the underlying
ideas, the estimated orders of magnitude for the energy densities obtained from QFT do
not match at all. The cosmological constant problem remains challenging.

The spatial flatness of the universe, meanwhile, is well explained by an early period
of inflation. Quasi-exponential growth of the scale factor which flattens the universe as
well as initial quantum fluctuations which get amplified to provide seeds for later structure
formation are the commonly accepted model [5, 36,131].
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1.3 Aim and overview of the thesis

After having detailed the problem of the dark universe, we will come to the core topic of
this thesis: Mimetic gravity and its attempt at a solution. It is a modified theory of General
Relativity, generally covariant and Weyl invariant. In the original theory of mimetic dark
matter [132], GR was reformulated by splitting the metric with the help of a scalar field
such that the theory acquires an extra longitudinal degree of freedom which can mimic
dark matter, therefore providing the name. Note that backreaction of the mimetic dark
matter on the surrounding dark matter was never taken into account, which can be viewed
as mimetic dark matter not being counted as a full degree of freedom. Later, this original
theory was modified and generalised to describe dark energy in the form of a cosmological
constant. This can be achieved by using vector fields and gauge vector fields instead of a
scalar field.

This thesis aims at a deeper understanding of mimetic theories by investigating its
Noether currents and therefore its symmetries and conservation laws. It also provides
a placement of mimetic theories within other frameworks, such as embedding it into a
complex scalar field theory, or a theory with an axion, in order to address various open
questions.

In chapter 2 we will at first focus on the mimetic construction, from the original idea
towards more generalised extensions of how a mimetic theory can be built. We will reinforce
that it indeed comprises a new theory, not just a reformulation of Einstein’s General
Relativity.

In chapter 3 we will interrupt our discussion of mimetic theories in order to review
Noether’s theorems and their importance for theoretical physics in the context of connecting
symmetries of the theory with conserved quantities.

Chapter 4 is then dedicated to purely scalar extensions of mimetic gravity, be it via a
potential or the introduction of higher derivative terms. Gauge invariant representations of
the theory will be discussed, to reveal the different faces of mimetic gravity. Also, the results
from 3 will be applied to show that the Weyl symmetry present in the theory does not
introduce conserved quantities allowing us to split dynamics into different sectors. This
chapter continues in the discussion of an embedding of mimetic gravity into a complex
scalar field formulation, which serves to show that caustics can be avoided. Then we
continue into describing higher derivative extensions of scalar mimetic gravity. Finally, we
discuss a formula for the speed of sound which can be derived via cosmological perturbation
theory, with the novel application to models with limiting curvature.

Another modification of mimetic gravity will be introduced in chapter 5. The mimetic
construction from 2 can also be used to build a mimetic theory based on a vector field
of the unusual conformal weight four. Also for this theory we will discuss different gauge
invariant formulations, as well as the Weyl symmetry and the associated Noether currents.

Chapter 6 is another interlude, dedicated to a very short introduction to some con-
cepts of group theory, mostly Lie groups. Moreover, concepts borrowed from quantum
chromodynamics, especially the strong CP problem and its solution by the axion are also
discussed.
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In chapter 7 we continue with the construction of a mimetic theory out of gauge vector
fields and how it presents us with a cosmological constant. This formulation contains an
axionic coupling, as we will see, and will also be presented in gauge invariant variables.
Furthermore, the mimetic construction is also applied for the gauge vector theory, as well
as the calculations of the Noether currents associated with the Weyl symmetry. Moreover,
we can generalise the abelian formulation of the theory to a non-abelian one and prove the
existence of solutions for SU(N), while giving explicit constructions for SU(2) as well as
SU(3).

In the final chapter 8 we will summarise the thesis and provide a short outlook for future
research and challenges.

This thesis was typeset with LATEX, while Mathematica and TikZ were used to make the
plots and Mathematica was also used to check some of the longer calculations, whereas the
LATEX bibliography style from the Journal of High Energy Physics (JHEP) was adopted.



40 1. Introduction



Chapter 2

On Mimetic Theory and its
Construction

The theory of mimetic matter was introduced [132] via aWeyl transformation of the metric,
which was already summarised in 1.1.3. In this chapter we will start on discussing the
significance and details of it. At first, we will give an introduction to the origins of mimetic
dark matter, before continuing to the more general question: What are the conditions to
be met to change the content of the theory of General Relativity and when will a Weyl
transformation cause merely a reformulation of GR? Explicit calculations can be found in
5.3 for the mimetic theory with a vector field [133] and 7.3 for the case with a gauge vector
field [134].

2.1 Original mimetic dark matter

At first we recap the main concepts of mimetic dark matter without any other modifica-
tions. The primary source of this section is the original paper [132], unless stated otherwise.

The idea was to covariantly isolate or revive the conformal degree of freedom in Ein-
stein’s theory of gravity. We start with the physical metric gµν , which is physical in the
sense that the geodesics of massive point particles are determined with respect to that
metric, as well as causal structure and curvature of that spacetime. To achieve that split
of the degrees of freedom, the physical metric gµν was decomposed into an auxiliary metric
hµν and the mimetic scalar field φ in the following form

gµν =
(
hαβ∂αφ∂βφ

)
hµν , (2.1)

such that as a result gµν(hµν , φ). In the end, this is nothing more than a Weyl transforma-
tion of the metric hµν . However now, under further Weyl transformations of the auxiliary
metric hµν , as in (1.62), i.e.

hµν → Ω2(x)hµν , (2.2)

the physical metric gµν stays invariant. We will explore this property and its consequences
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in the general chapter 3 and the more specialised ones for different mimetic theories in 4.4,
5.4 and 7.4 for the Noether currents and their consequence on symmetries.

As a direct consequence of the decomposition (2.1), the scalar field satisfies a constraint
equation with respect to the physical metric gµν , namely

gµν∂µφ∂νφ = 1 . (2.3)

Thus ∂µφ is a timelike unit vetor. If it is future-directed it can be used as a four-velocity

uµ = ∂µφ . (2.4)

Moreover, if we compare (2.3) with the relativistic energy-momentum relation

gµνpµpν = m2 (2.5)

with the four-momentum pµ and mass m of a particle, we can immediately conclude that
for mimetic dark matter [14]

pµ = m∂µφ . (2.6)

Equivalently, this constraint equation (2.3) can be viewed as the Hamilton-Jacobi equation
for a relativistic particle of unit mass. Furthermore, comparing with relativistic mechanics
we know that [4]

pµ = −∂µS , (2.7)

therefore the mimetic field takes on the role of the action, more precisely

φ = − S
m
. (2.8)

This can be compared with the definition of the action of the free point particle in relativ-
istic mechanics, namely

S = −m
∫

dτ (2.9)

with the proper time τ . Therefore,
φ = τ (2.10)

without loss of generality, i.e. the mimetic field plays the role of a “clock”, slicing the
spacetime into hypersurfaces of constant time [132,135,136].

The original theory of mimetic dark matter was then constructed by inserting this metric
decomposition (2.1) into the usual Einstein-Hilbert “seed” action SEH , such that

S[hµν , φ,Φm] = SEH [gαβ(hµν , φ)] + Sm [gαβ(hµν , φ),Φm] (2.11)

=

∫
d4x
√
−gαβ(hµν , φ)

(
−1

2
R (gαβ(hµν , φ)) + Lm[Φm, hµν ]

)
(2.12)
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including matter fields Φm, their Lagrangian Lm and action Sm. The equations of motion
resulting from variation with respect to the auxiliary metric hµν , i.e. the modified Einstein
equations, were found to be

(Gµν − Tµν)− (G− T )∂µφ∂νφ = 0 , (2.13)

with Gµν as the Einstein tensor (1.29), the Ricci tensor Rµν (1.27) and the Ricci scalar R
(1.28). The usual definition of the energy-momentum tensor (EMT) for matter fields is
used, cf. (1.38),

Tµν =
2√
−g

δSm

δgµν
. (2.14)

G = gµνGµν and T = gµνTµν are their respective traces. Correspondingly, the equation of
motion for the scalar field φ is

∇µ ((G− T )gµν∂νφ) = 0 , (2.15)

where ∇µ is the covariant derivative compatible with the physical metric gµν

∇µgαβ = 0 . (2.16)

The equation of motion can also be seen as a current conservation equation [15]

∇µJ
µ = 0 (2.17)

with current
Jµ = (G− T )∂µφ . (2.18)

Taking the trace of the new Einstein equations (2.13) yields

(G− T ) (1− gµν∂µφ∂νφ) = 0 , (2.19)

which is identically satisfied due to the mimetic constraint equation (2.3) even for (G−T ) 6=
0. For standard GR, in the absence of matter, i.e. T µν = 0, the Einstein equations would
imply vanishing curvature. However, in the case of mimetic dark matter this is changed.

One can view the modified Einstein equations as

Gµν = Tµν + T̃µν (2.20)

with an additional “matter term”

T̃µν = (G− T )∂µφ∂νφ . (2.21)

This was compared to the standard perfect fluid EMT as in (1.41)

Tµν = (ε+ p)uµuν − pgµν (2.22)
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with energy density ε, pressure p and normalised four-velocity uµ. Then the following
identifications were made:

p = 0 , (2.23)
ε = G− T , (2.24)
uµ = ∂µφ , (2.25)

which demonstrates that the system like fluid-like dust, confirming (2.4).
One can also show that in the fluid picture the vorticity vector [15, 137]

Ωµ(V ) =
1

2
εαβγµVγ∇αVβ , (2.26)

here defined for any timelike vector field V µ, vanishes. In our case, the timelike vector field
is uµ = ∇µφ and it follows that

1

2
εαβγµ∇γφ∇α∇βφ ≡ 0 , (2.27)

as covariant derivatives acting on a scalar are interchangeable, i.e. symmetric, while the
Levi-Civita tensor εαβγµ is totally antisymmetric and defined by

εαβγµ =
εαβγµ√
−g

(2.28)

with the Levi-Civita-symbol εαβγµ. The dust-like fluid is then called irrotational, as the
vorticity is equal to zero. The acceleration (1.18) for our form of the four-velocity vanishes
as well [15, 138]

aµ = uν∇νu
µ = ∇νφ∇ν∇µφ =

1

2
∇µ (∇νφ∇νφ) ≡ 0 (2.29)

because of the constraint equation (2.3). Moreover, from the conservation of the energy-
momentum tensor (2.21), namely

∇µT̃
µν = 0 , (2.30)

one can write

0 = uν∇µT̃
µν = uν∇µ (εuµuν) = ∇µ (εuµ) = uµ∇µε+ ε∇µu

µ . (2.31)

With the definitions

ε̇ ≡ uµ∇µε , (2.32)
θ ≡ ∇µu

µ (2.33)

of the proper time derivative ˙ and the expansion parameter θ we can write the conservation
of energy as

ε̇+ θε = 0 . (2.34)
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Shortly after mimetic dark matter was introduced in [132], in [139, 140] it was realised
that based on the constraint equation (2.3) there exists a more convenient formulation of
the dynamics for the system, namely

S[gµν , φ, ρ,Φm] =

∫
d4x
√
−g
(
−1

2
R(gµν) +

ρ

2
(gµν∂µφ∂νφ− 1)

)
+ Sm[gµν ,Φm] . (2.35)

where the constraint is directly implemented via the Lagrange multiplier ρ. This definition
of the Lagrange multiplier was chosen suggestively, as becomes apparent when this action
is varied with respect to gµν . The resulting Einstein equations are

Gµν = Tµν + ρ∂µφ∂νφ . (2.36)

By taking the trace we reproduce that ρ ≡ ε = G− T , i.e. the energy density of mimetic
dark matter (cf. eqs. (2.21) and (2.24)).

As we mentioned, the mimetic field plays the role of proper time. Therefore, we can
insert a general synchronous metric (1.9) into the e.o.m. for the scalar field (2.15). The
result is, using φ as time (2.10), from

1√
−γ

∂t
(√
−γ(G− T )gtt∂tφ

)
= 0 , (2.37)

the equation

ε = G− T =
C(xi)√
−γ

, (2.38)

with C(xi) a constant only depending on space. If we use the definition of the expansion
parameter θ (2.33) of a congruence of geodesic curves for such a synchronous frame, we
have [6]

θ =
1√
−γ

d

dt

√
−γ . (2.39)

Then we see that (2.38) solves the energy conservation equation (2.34).
In a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime we have

the special case
ds2 = dt2 − a2(t)δijdx

idxj (2.40)

with the scale factor a(t), from where it follows that the energy density is (2.38)

ε ∝ 1

a3(t)
. (2.41)

So the model really behaves as dark matter in an expanding universe, at least on cosmolo-
gically large linear scales. As it is well known, on smaller scales the mimetic model develops
caustic singularities, focal points at which the massive particles moving on geodesics come
together under gravitation being attractive [6].
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2.2 Disformal transformations and the mimetic construc-
tion

After this exposition and discussion on how mimetic matter was originally obtained, we
will introduce the more general formalism on how a Weyl transformation between Jordan
and Einstein frames 1.1.4 changes the physics proper. If we take General Relativity as a
“seed” action and perform a Weyl transformation (1.62) of the physical metric gµν to the
auxiliary metric hµν with the help of a function Ω which is only dependent on the field
φ but not its derivatives, it will become apparent that the resulting equations of motion
will not look like Einstein’s equations, but rather a scalar-tensor theory. If the inverse
conformal transformation is applied to them however, General Relativity is recovered and
and therefore this theory can aptly be named “veiled” GR as in [31]. There is now the
question: In which cases is this merely a reformulation of GR in other variables, while in
others it is a true transformation to another theory, like in mimetic gravity, as we know.

Therefore, we will at first use the generalization of Weyl transformations, the so-called
disformal transformation. Bekenstein [141] first introduced those also depending on the
kinetic term X (1.55) of the scalar field, described by

gµν = C(φ,X)hµν +D(φ,X)∂µφ∂νφ , (2.42)

where the functions C(φ,X) and D(φ,X) are general functions of the scalar field φ and
the kinetic term X. Applying this disformal transformation to the standard GR “seed”
theory, one can show that this can in some cases lead to new degrees of freedom on top
of the two graviton ones. One step was made in [142], which we will follow for the rest of
this section.

Starting from the Einstein-Hilbert action plus matter action

S = −1

2

∫
d4x
√
−gR + Sm[φm, gµν ] . (2.43)

we perform the disformal transformation (2.42). In the original mimetic dark matter model,
the occurring functions are C = 2X and D = 0 respectively. Varying the action to arrive
at the equations of motion results in the well-known expression

δS =
1

2

∫
d4x
√
−g (Gµν − T µν) δgµν (2.44)

with Einstein tensor (1.29) and energy momentum tensor (1.38). So the task is now to
vary the metric gµν in terms of its disformal transformations in order to find the equations
of motion. This will lead us to the expression

(2.45)
δgµν = Cδhµν −

1

2

(
hµν

∂C

∂X
+ ∂µφ∂νφ

)(
hαρ∂αφh

βσ∂βφδhρσ − 2hρσ∂ρφ∂σδφ
)

+

(
hµν

∂C

∂φ
+ ∂µφ∂νφ

∂D

∂φ

)
+D (∂µφ∂νδφ+ ∂µδφ∂νφ) .
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Multiplying with (Gµν − T µν) we can read off the equations of motion, first the modified
Einstein equations resulting from δS/δhµν = 0

C (Gµν − T µν) =
1

2

(
A
∂C

∂X
+B

∂D

∂X

)
hαµ∂αφh

βν∂βφ (2.46)

with A = (Gµν − T µν)hµν and B = (Gµν − T µν) ∂µφ∂νφ . (2.47)

The equation of motion for φ coming from δS/δφ = 0 is then

2√
−g

∂ρ

{√
−g∂σφ

[
D (Gρσ − T ρσ) +

1

2

(
A
∂C

∂X
+B

∂D

∂X

)
hρσ
]}

= A
∂C

∂φ
+B

∂D

∂φ
. (2.48)

As we are going to investigate whether the disformal transformation is invertible or not,
the Jacobian determinant will become useful. So we need to take the modified Einstein
equations (2.47) and project them along hµν and ∂µφ∂νφ, resulting in the two equations
depending on the functions A and B

f1(A,B) = A

(
C −X ∂C

∂X

)
−BX ∂D

∂X
= 0 , (2.49)

f2(A,B) = 2AX2 ∂C

∂X
−B

(
C − 2X2 ∂D

∂X

)
= 0 . (2.50)

Now we can easily calculate the determinant of this system as

D = det

(
∂f1

∂A
∂f1

∂B
∂f2

∂A
∂f2

∂B

)
= 2X2C

∂

∂X

(
D +

C

2X

)
. (2.51)

In order for this determinant to be non-zero, the only generic solution would be A = B = 0
in order to fulfill f1 = f2 = 0. Then, the equations of motion become

C (Gµν − T µν) = 0 and ∂ρ
[√
−g∂σφD (Gρσ − T ρσ)

]
= 0 , (2.52)

where it is clear that the e.o.m.s for the metric become the standard Einstein equations in
the (obvious) case of C 6= 0 and the e.o.m. for the scalar field as a consequence becomes
trivially equal to zero. This is exactly the point we wanted to reinforce: in the case of a
generic disformation, where the Jacobian of this transformation is invertible, the resulting
theory is nothing else than “veiled” General Relativity, a reformulation in variables that
nevertheless does not contain new information.

In contrast to that, we will now have a look at the case in which this Jacobian determ-
inant D is indeed singular. Then, there is from (2.51) the condition that

∂

∂X

(
D +

C

2X

)
= 0 , (2.53)

that is, there exists now a relation between the functions

D(X,φ) = −C(X,φ)

2X
+ l(φ) , (2.54)
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with l(φ) only depending on φ. This relation uniquely solves the system f1 = 0, f2 = 0,
yielding

B = 2XA . (2.55)

This in turn can be used to simplify the equations of motion (2.47) and (2.48), giving

Gµν − T µν =
A

2X
hαµ∂αφh

βν∂βφ and
2√
−g

∂ρ
(√
−gAlhσρ∂σφ

)
= 2XA

dl

dφ
. (2.56)

One can invert the metric gµν to arrive at

gµν =
hµν

C
+
C − 2Xl

4X2Fl
hαµ∂αφh

βν∂βφ , (2.57)

but only if l(φ) 6= 0. Using the substitutions

A =
G− T
2Xl

≡ gµν (Gµν − T µν)
2Xl

(2.58)

hµα∂αφ = 2Xl∂µφ ≡ 2Xlgµα∂αφ (2.59)

and a redefinition of the scalar field as ϕ, such that

dφ

dϕ
=
√
|h| (2.60)

will transform the equations of motion (2.56) to

Gµν − Tµν = ε(G− T )∂µϕ∂νϕ and ∇α [(G− T )∂αϕ] = 0 , (2.61)

where ε = ±1, depending on the sign of ∂µϕ. For timelike ∂µϕ, i.e. ε = +1, we can
immediately recognize those equations as the equations of motion (2.13) and (2.15) of
mimetic matter, as they were originally derived in [132]. Thus it was shown in [142], that
if the disformal transformation is of the special case that there exists a certain relation
between functions C and D (2.54), the theory reduces to the original mimetic dark matter.
Let us stress again that the Jacobian determinant of the disformal transformation needs
to be singular for that.

2.3 Extended mimetic construction

But later it was discovered that this argument and result is not the whole story. In [143]
they proved that there is a more general condition on the functions C and D, namely on
the solutions of the first order nonlinear partial differential equation

C =
∂C

∂Y
Y +

∂D

∂Y
Y 2 (2.62)
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for the scalar field φ to introduce novel degrees of freedom. They also show that mimetic
dark matter emerging from these constructions is much more common than previously
thought.

To prepare that discussion we will actually repeat the argument of the singular Jacobian
determinant, now looking more closely what causes the behaviour as described in the
previous section. Therefore, we study the Jacobian matrix and determinant of the above
disformal transformation (2.42), following [108,143]. The Jacobian is calculated as

J ρσ
µν =

∂gµν
∂hρσ

=
1

2
C
(
δσµδ

ρ
ν + δσν δ

ρ
µ

)
−
(
∂C

∂Y
hµν +

∂D

∂Y
∂µφ∂νφ

)
hσα∂αφh

ρβ∂βφ (2.63)

while its eigenvalue equation is
J µν
ρσ ξ

a
µν = λaξ

a
ρσ (2.64)

with eigentensors ξaµν associated with the respective eigenvalue λa. No sum is intended
over the index a which merely refers to the respective eigenvalues [143]. Similarly to [108],
the two eigenvalues and their eigentensors were found to be

λ0 = C , ξ0
µν = φ⊥µν , (2.65)

λ∗ = C − ∂C

∂Y
Y − ∂D

∂Y
Y 2 , ξ∗µν =

∂C

∂Y
hµν +

∂D

∂Y
∂µφ∂νφ (2.66)

with φ⊥µν a symmetric tensor perpendicular to ∂µφ∂νφ, explicitly

φ⊥µνh
µα∂αφh

νβ∂βφ = 0 . (2.67)

Those eigenvalues are called the conformal eigenvalue λ0 and the kinetic eigenvalue λ∗. As
setting the conformal eigenvalue equal to zero would result in the conformal factor being
zero, we will need to find the vanishing kinetic eigenvalue. In other words, gµν being a
valid metric tensor requires it to be invertible, i.e.

gµν =
1

C

(
hµν − D

C +DY
hµα∂αφh

νβ∂βφ

)
, (2.68)

which would not be the case for C = 0, obviously. Therefore, we necessarily need to use
the vanishing of the kinetic eigenvalue

λ∗ = C − ∂C

∂Y
Y − ∂D

∂Y
Y 2 = 0 (2.69)

in order to find the singular solutions. Those transformations where the Jacobian determ-
inant vanishes are then aptly called singular disformal transformations [143].

The value of the singular disformal transformations is that they do not only yield what
one might call “veiled General Relativity”, i.e. GR merely reformulated in another frame,
but an essentially new theory. This theory has equations of motion (2.61) other than the
standard GR field equations, as we have seen in the section above. In the coming paragraph
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we will try to illustrate that, following [108]. At first we note down that there is not only
the eigenvalue equation (2.64), but one can also write one for the dual or left eigentensors,
see

ζσρa J µν
σρ = λaζ

µν
a . (2.70)

Again, there is no summation over a, this again merely denotes conformal and kinetic
eigenvalues. The dual eigenvalues and eigenvectors are then

λ0 = C , ζµν0 = φµν> , (2.71)

λ∗ = C − ∂C

∂Y
Y − ∂D

∂Y
Y 2 , ζµν∗ = hµα∂αφh

νβ∂βφ , (2.72)

the dual eigenvalues being the same as the original eigenvalues, see (2.65) and (2.66). Also
the notation φµν> refers to any symmetric tensor orthogonal to ξ∗µν , i.e.

ζµν0 ξ∗µν = φµν> ξ
∗
µν = 0 . (2.73)

Now we can pose the actual problem. As mentioned above, we go from a seed action
Sseed[gµν ,Φm] (in our case the Einstein-Hilbert action) to an action which is reached by a
disformal transformation, such that

Sdis[hµν , φ,Φm] = Sseed[gµν (hµν , φ) ,Φm] . (2.74)

If this is varied, we will arrive at the following variation of the action required to be zero

0 =
δSdis

δhµν
=
δSseed

δgσρ
J µν
σρ . (2.75)

So the ultimate goal is to find the equations of motion for the disformed action, i.e.
(δSdis)/(δgσρ) = 0. There are two ways to achieve this: Either the Jacobian matrix is
invertible, J µν

σρ 6= 0, then (δSseed)/(δgσρ) = 0 which restores the Einstein equations of the
original seed theory, leading to “veiled GR”. The much more interesting possibility is for the
Jacobian determinant to be singular, such that the kinetic eigenvalue λ∗ = 0. Therefore,
(δSseed)/(δgσρ) 6= 0 and the equations of motion will not be the ones of GR. By the ei-
genvalue equation (2.70) we realize that (δSseed)/(δgσρ) must be proportional to ζµν∗ which
then results in

δSseed

δgµν
= ρ̄ζµν∗ = ρ̄∂µφ∂νφ , (2.76)

using the dual eigentensors and its definition. The right hand side of this variation no
longer vanishes, therefore signalling the appearance of a novel degree of freedom, written
here as the new proportionality factor ρ̄. As a consequence, the usual variation w.r.t. the
physical metric will produce the equation of motion

2√
−g

δSseed

δgµν
= Gµν − T µν . (2.77)
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After inserting (2.76) we arrive at

2√
−g

ρ̄∂µφ∂νφ+ T µν = Gµν . (2.78)

Let us merely notice the form of this equation, details can be found in [143]. This looks
quite like the side of the energy momentum tensor in the Einstein equations has gained a
term equivalent to pressure-less dust for uµ ∝ ∂µφ, i.e. the same phenomenon which was
found for the original mimetic dark matter.

In the case of the pure Weyl transformation, without the disformal part, i.e. D = 0,
which is used in mimetic theories, the kinetic eigenvalue and eigentensor reduce to

λ∗ = C − ∂C

∂Y
Y , (2.79)

ξ∗µν =
∂C

∂Y
hµν . (2.80)

One thing to notice here is that the associated eigentensor ξ∗αβ is proportional to the
auxiliary metric hµν , with the prefactor being unimportant (as long as it does not vanish),
as we will later set the equation to zero to find the singular solutions. We will use this fact
in the calculations following in 5.3 and 7.3. Moreover, not only solutions of eq. (2.79) set
to zero and treated as a differential equation will lead to solutions for C, but one can also
treat it as an algebraic equations and try to solve it. This approach will be outlined later
in 5.3.1.
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Chapter 3

Overview over Noether’s Theorems

Symmetries in physics are of paramount importance, be it internal or spacetime symmet-
ries. They can greatly simplify calculations and reveal a lot about the underlying structure
of the theory. One example we are going to discuss is Weyl symmetry, as it leaves the the-
ory unchanged under a local rescaling of the metric and if necessary, an appropriate and
similar scaling of the other fields of the theory, as already introduced in 1.1.3.

We have already seen in (2.2) that the original mimetic theory [132] is Weyl invariant,
so naturally the question arises whether this has any significance. A few years ago a
discussion arose whether this Weyl invariance can help in solving problems in cosmology,
i.e. whether it has any significance in further actions arising in cosmology and inflation,
e.g. [144, 145]. Yet others claim that this is just a fake Weyl symmetry [146–149] with no
physical consequences.

While discussing this issue, we consider the overall topic: When talking about sym-
metries and conservation laws, Noether’s theorems [150] lie at the heart of the matter.
Therefore, in this chapter we will review the Noether theorems in flat and curved space-
times and discuss their properties and consequences, before we will apply this principles
to different mimetic theories in 4.4 for the scalar mimetic theories [132,135], in 5.4 for the
vector case [133] and in 7.4 for the mimetic theory with a field strength term originating
from a gauge vector field [134].

3.1 Noether’s theorems — Symmetries and conserva-
tion laws

We will now investigate the question of the physical relevance of the occurring Weyl in-
variance. As those invariances are symmetries of the theory, we will have a closer look at
Noether’s theorems. Emmy Noether’s seminal paper “Invariante Variationsprobleme” [150]
was published in 1918. It contains an analysis of a variational problem and presents two
new theorems: The first applies to global symmetries, the second to local (or gauge) sym-
metries [151]. A few introductory remarks seem in order, concerning the general purpose
and statement of Noether’s theorems.
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Both theorems are concerned with the conditions under which an action is invariant,
allowing also for a boundary term. In general,

S =

∫
d4x L (x, ψ(x), ∂µψ(x)) (3.1)

with ψ collectively denoting all fields. Notice that the Lagrangian only depends on first
derivatives of the fields. This can be generalised, compare [150], but here we refrain from
it, preferring simplicity over completeness. Note that we will try to slightly modernise the
notation from Noether’s paper, but otherwise follow her discussion in the whole section,
occasionally also using [151]. Another comment: We have tried to avoid writing spacetime
indices, especially on the coordinates, for improved readability. They only appear wherever
needed to clarify Einstein summation.

We have to distinguish between two types of variations in the Lagrangian here. On the
one hand, there can be a coordinate or spacetime transformation which is also acting on
the field itself

x̃ = x+ ∆x (3.2)

ψ̃(x̃) = ψ(x) + ∆ψ . (3.3)

One the other hand, the field itself changes at one point, which is the proper field variation

δψ(x) = ψ̃(x)− ψ(x) . (3.4)

Taylor-expanding the scalar field as

ψ̃(x̃) = ψ̃(x+ ∆x) ≈ ψ̃(x) + ∂µψ̃(x)∆xµ (3.5)

and then employing eqs. (3.3) and (3.4) yields the combined expression

δψ(x) = ∆ψ − ∂µψ̃(x)∆xµ . (3.6)

So it is worth keeping in mind that there are two different effects at work when varying the
action. One generalising remark: So far we have treated ψ as a scalar field, but as stated
above, it denotes all fields present in the Lagrangian. Fields of spin 1 and 2 would change
under the same coordinate transformation as [131]

Ãα(x+ ∆x) ≈ Ãα(x)− Ãβ(x)∂α∆xβ − ∂βÃα(x)∆xβ , (3.7)

h̃αβ(x+ ∆x) ≈ h̃αβ(x)− h̃αρ(x)∂β∆xρ − h̃ρβ(x)∂α∆xρ − ∂ρh̃αβ(x)∆xρ . (3.8)

Of course, one can express the general rule more concisely as soon as one notices that those
are special cases of the Lie derivative L (1.22) along ∆xµ, so that overall

ψ̃(x+ ∆x) ≈ ψ̃(x) + L∆xψ̃(x) . (3.9)

Let us now retrace the steps to Noether’s theorems, before explicitly stating and dis-
cussing them. The basis is that the action is invariant under some transformation of the
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fields and the coordinates, represented by a Lie group G, be it a finite or an infinite group.
Here we just take the infinitesimal transformation of the coordinates (3.2) and of the fields
(3.3) resulting in

0 = ∆S =

∫
d4x̃ L

(
x̃, ψ̃(x̃) , ∂̃µψ̃(x̃)

)
−
∫

d4x L (x, ψ(x), ∂µψ(x)) . (3.10)

Next is a simple coordinate transformation of the first integral term by just using (3.2)
and a Taylor expansion. Also note that the integration measure changes as

d4x̃ = d4x+ d4∆x and d4∆x =

(
∂∆x

∂x

)
d4x (3.11)

with the Jacobian
(
∂∆x
∂x

)
of the coordinate transformation. After expanding to first order

in ∆x we will then get a boundary term∫
d4x̃ L

(
x̃, ψ̃(x̃), ∂̃µψ̃(x̃)

)
=

∫
d4x L

(
x, ψ̃(x), ∂µψ̃(x)

)
+

∫
d4x ∂µ (L∆xµ) ,

(3.12)

such that for the moment

(3.13)
0 = ∆S

=

∫
d4x L

(
x, ψ̃(x), ∂µψ̃(x)

)
−
∫

d4x L (x, ψ(x), ∂µψ(x)) +

∫
d4x ∂µ (L∆xµ) .

On the other hand, there is the field variation at one point xµ using (3.4) and partial
integration yielding

δS =

∫
d4x

(
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
∂µδψ

)
=

∫
d4x ∂µ

(
∂L

∂(∂µψ)
δψ

)
+

∫
d4x

(
∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

)
δψ

≡
∫

d4x L
(
x, ψ̃(x), ∂µψ̃(x)

)
−
∫

d4x L (x, ψ(x), ∂µψ(x)) ,

(3.14)

where the last line denotes just the definition of the field variation. So comparing this with
(3.13) and rearranging we can finally write the expression for the Euler-Lagrange equations
of motion (leaving out the integral, as the integrand should vanish)

δS

δψ
δψ = −∂µJµ (3.15)
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with the functional derivative of the action δS
δψ

(sometimes also called “Lagrangian expres-
sion” Ψ, also in Noether’s original paper) and the Noether current Jµ

δS

δψ
=
∂L
∂ψ
− ∂µ

∂L
∂(∂µψ)

(3.16)

Jµ =
∂L

∂(∂µψ)
δψ − L∆xµ ≡ Kµ −Xµ . (3.17)

Eq. (3.15) is the crucial expression on which Noether’s theorems are based.
A few comments about the form of the Noether current eq. (3.17): The second term

Xµ was derived without using the equations of motion. This is to be understood as a
boundary term which the Lagrangian picks up under the transformation it undergoes. On
the other hand, the first term of the current Kµ we received using the equations of motion.
This has to be reflected in the calculations we will do after the general introduction. Also,
the Noether current Jµ is just conserved on the equations of motion, i.e. in the case
Ψ = δS

δψ
= 0, as is obvious from eq. (3.15). One last remark: For multiple fields ψ, the

first term of this current should of course be a sum over the expressions for the different
fields. Equally clear, for fields occurring in higher derivatives than the first, this has to be
included in the pure variation and in the equations of motion in a straightforward way.

3.1.1 Noether’s first theorem

Noether’s first theorem concerning global symmetries is cited and discussed extensively
in every book about mechanics, field theory and quantum field theory, e.g. [16, 152, 153],
therefore it is often just called Noether’s theorem. It deals with global symmetries, i.e.
transformations under finite dimensional Lie groups GN with N parameters ε1, . . . , εN . As
the symmetry transformation is assumed to be linear in those εa (view them as infinites-
imally small parameters, in which coordinates and fields are expanded), all our relevant
expressions are linear in these parameters, such that

δψ = δψ(1)ε1 + · · ·+ δψ(N)εN ; Jµ = J (1)µε1 + · · ·+ J (N)µεN . (3.18)

Inserting that in our general expression for the Noether current (3.17), it splits in N
different expressions, one for each parameter

δS

δψ
δψ1 = −∂µJ (1)µ ; . . . ;

δS

δψ
δψN = −∂µJ (N)µ . (3.19)

So this is now Noether’s first theorem (compare [150,151]):

If the Euler-Lagrange field equations for all fields present are satisfied, i.e. δS
δψ

=
0, then there exist N conserved currents, one for each parameter of the finite
dimensional continuous symmetry group GN , representing a global symmetry.
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3.1.2 Noether’s second theorem

Noether’s second theorem, on the contrary, is cited much less. It deals with local sym-
metries, i.e. infinite dimensional Lie groups G∞N . In this case, δψ, its derivatives and Jµ
depend linearly on N arbitrary functions p(α)(xµ) with α = 1, . . . , N . Then, restricting
ourselves to first derivatives of p(α)(x) for convenience (as in [151])

δψ =
∑
α

(
a(α)(x, ψ, ∂µψ)∆p(α)(x) + b(α)µ(x, ψ, ∂µψ)∂µ

(
∆p(α)(x)

))
(3.20)

with infinitesimal ∆p(α)(x). Inserting in our general expression (3.17) and partial integra-
tion leaves us with

Ψδψ =
∑
α

(
a(α)Ψ∆p(α) + b(α)µΨ∂µ

(
∆p(α)

))
=
∑
α

(
a(α)Ψ− ∂µ

(
Ψb(α)µ

))
∆p(α) +

∑
α

∂µ
(
Ψb(α)µ∆p(α)

)
≡ −∂µJµ

using the “Lagrangian expression” Ψ = δS
δψ

for brevity here. Rearranging and writing an
integral gives∫

d4x
∑
α

(
a(α)Ψ− ∂µ

(
Ψb(α)µ

))
∆p(α) = −

∫
d4x ∂µ

(
Jµ +

∑
α

Ψb(α)µ∆p(α)

)
. (3.21)

As the right hand side is just a boundary term and the functions p(α) arbitrary, we are free
to choose them such that this boundary vanishes entirely. It follows that for each of the
N parameters p(α) the integrand on the left hand side has to vanish separately, so that we
eventually have N partial differential equations

a(α)Ψ = ∂µ
(
Ψb(α)µ

)
(3.22)

relating Ψ and its partial derivative. Therefore, Noether’s second theorem is

If an action is invariant under a local gauge symmetry, i.e. a Lie group G∞N ,
there exist N differential relations between the Lagrangian expressions and their
derivatives.

3.2 Noether’s theorems in curved spacetimes
Generalising Noether’s theorems to curved spacetimes will lead to a concept of symmetries
in GR which we will explore in the following, always drawing from [154], if not stated
otherwise. They start with a coordinate transformation

x̃µ = xµ + ξµ(x) (3.23)
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resulting in a change of a scalar field

δφ(x) = −ξν(x)∂νφ . (3.24)

The metric does also change, according to the usual tensor transformation law and the
above coordinate transformation (3.23)

g̃µν(x̃) =
∂x̃µ

∂xα
∂x̃ν

∂xβ
gαβ(x) = gµν(x) + ∂µξν + ∂νξµ . (3.25)

On the other hand, a Taylor expansion to first order yields

g̃µν(x̃) = gµν(x) + ξλ(x)∂λg
µν(x) . (3.26)

If we combine both, this gives us the variation of the metric under infinitesimal coordinate
transformations

δgµν = −ξλ∂λgµν + ∂µξν + ∂νξµ (3.27)
= ∇µξν +∇νξµ , (3.28)

where the definition of the covariant derivative of a tensor was used. As we are looking for
symmetries of the metric under coordinate transformations, it means that this variation
needs to vanish under them, or explicitly written

Lξgµν = ∇µξν +∇νξµ = 0 , (3.29)

using the Lie derivative (1.22) along ξµ. This is called the Killing equation and vector fields
ξµ which satisfy this are known as Killing fields. They describe the geometric symmetries
of a spacetime. So for an action depending on a metric, a scalar field and its first derivative

S[gµν , φ, ∂µφ] =

∫
d4x
√
−gL(gµν , φ, ∂µφ) (3.30)

we have the variation of said action

δS =

∫
d4x
√
−g
(
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
∂µδφ

)
+

1

2

∫
d4x
√
−g Tµνδgµν (3.31)

using the usual expression for the energy-momentum tensor Tµν (1.38), see also [4]. Insert-
ing (3.24) and (3.26) and simplifying gives

(3.32)
δS =

∫
d4x
√
−g
[
−ξλ

(
∂L
∂φ

∂λφ+
∂L

∂ (∂µφ)
∂λ∂µφ

)
−
(
∂µξλ + ∂λξµ

) ∂L
∂ (∂µφ)

∂λφ

]
+

1

2

∫
d4x
√
−g Tµνδgµν .
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With the help of the Killing equation (3.27), i.e. also using that δgµν = 0, this will be

δS = −
∫

d4x
√
−g ξλ

(
∂L
∂φ

∂λφ+
∂L

∂ (∂µφ)
∂λ∂µφ+ ∂λg

µν ∂L
∂ (∂µφ)

∂λφ

)
(3.33)

= −
∫

d4x
√
−g ξλ∂λL . (3.34)

Using the Killing equation (3.27) again it is clear that

∇µξ
µ = 0 , (3.35)

so that we can partially integrate (3.34) to give

δS =

∫
d4x ∂λ

(
−
√
−gξλL

)
. (3.36)

This is again the point in the derivation, where we have not used the equations of motion
in the variation of the action and it yields a surface term

δS =

∫
d4x ∂µK

µ , (3.37)

compare with eq. (3.17).
For the general case including the Einstein-Hilbert action, i.e.

S[gµν , φ, ∂µφ] =

∫
d4x
√
−g
(
−1

2
R(gµν) + L(gµν , φ, ∂µφ)

)
(3.38)

the corresponding variation is

(3.39)
δS =

∫
d4x
√
−g
[
−1

2

(
Rµν −

1

2
gµνR

)
+

1

2
Tµν

]
δgµν

+

∫
d4x
√
−g
(
ξλ∂λL −

∂L
∂ (∂µφ)

∂νφδg
µν

)
.

Therefore again, for ξµ being a Killing field the variation of the action is a surface term

δS =

∫
d4x ∂λ

(
−
√
−gξλL

)
. (3.40)

Following the construction in the flat spacetime example, we can calculate the Noether
current, but the second part we need is the variation of the action while using the equations
of motion. We first write the variation of the action as

δS =

∫
d4x
√
−g
[
−1

2

(
Rµν−

1

2
gµνR

)
+

1

2
Tµν

]
δgµν +

∫
d4x
√
−g
(
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
∂µδφ

)
(3.41)
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The equations of motion for gµν and φ are

Rµν −
1

2
gµνR = Tµν (3.42)

∂L
∂φ

=
1√
−g

∂µ

(√
−g ∂L

∂ (∂µφ)

)
(3.43)

and therefore the variation of the action reduces to

δS =

∫
d4x ∂µ

(√
−g ∂L

∂ (∂µφ)
δφ

)
. (3.44)

To assemble the Noether current at last, we subtract this from eq. (3.40) and get

∂µ

[√
−g ξλ

(
∂L

∂ (∂µφ)
∂λφ− δµλL

)]
= 0 (3.45)

with the Noether current in square brackets. The object within the parentheses is obviously
the energy-momentum tensor as defined in classical field theory, cf. [4], so finally

∂µ
[√
−gξλT µλ

]
= 0 . (3.46)

This is actually easy to guess, see the following calculation:

∇µ

(
ξλT

µλ
)

= ∇µξλT
µλ + ξλ∇µT

µλ (3.47)

=
1

2
(∇µξλ +∇λξµ)T µλ + ξλ∇µT

µλ . (3.48)

The first term is zero because of the Killing equation, and the second one is zero due to the
equation of motion, so energy-momentum conservation. Therefore the conservation law for
the Noether current is very obvious from those lines.



Chapter 4

Scalar Extensions of Mimetic Gravity

Now that we have introduced the original dark matter and the more general mimetic
construction in 2, we will discuss further variations of mimetic theories in more detail.
We will start by a general discussion on how to write a completion of mimetic theories
such that they are more well behaved in the ultraviolet regime 4.1. Then we will go on to
discuss the further modifications of mimetic dark matter, but all based on scalar fields 4.2,
an expression for the speed of sound for a general higher derivative theory 4.2.4. We also
include more in-depth calculations on Noether’s theorems for the formulations of mimetic
gravity with a scalar field 4.4.

4.1 UV completion through a complex scalar field

As some modified theories of gravity experience problems like caustics [155] and gradient
instabilities [156], there have been suggestions to embed those theories of gravity into better
behaved theories in the UV regime. This was attempted by promoting the real scalar field
φ of modified gravity to the phase of a canonical complex scalar field Ψ, such that in
general

Ψ = |Ψ|eiφ . (4.1)

As they also show in [156], the amplitude |Ψ| needs to be frozen out in order to recover
the original k-essence model, i.e. its dynamics have to be set to zero up to the point where
they should appear in order to alleviate the problems they should.

At first we follow [155] in order to see how the complex scalar could smooth out caustics
occurring in the original theory of gravity including a pressureless perfect fluid. The
Lagrangian for a complex scalar field Ψ with mass m is defined as

L =
1

2
|∂Ψ|2 − m2

2
|Ψ|2 . (4.2)

This is of course equivalent to the action (1.37), just in slightly different notation. To carry
on, we can employ a field redefinition similar (but not identical) to the so-called Madelung
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transformation [157] of the complex scalar field Ψ, to look like

Ψ =

√
ρ

m
exp(imφ) (4.3)

so that it is rewritten in two real scalar fields ρ and φ. It is worth mentioning that the
fields have non-standard mass dimensions [φ] = 1/M and [ρ] = M4, respectively. They are
already named appropriately, as we will see. Then, the Lagrangian (4.2) reads

L =
1

8

(∂ρ)2

ρm2
+

1

2
ρ
(
(∂φ)2 − 1

)
. (4.4)

In the formal limit m→∞ we reproduce the mimetic Langrangian (2.35) with constraint

gµν∂µφ∂νφ = 1 . (4.5)

Physically the complex scalar field Ψ is in this regimem→∞ when the following conditions
hold

(∂ρ)2

ρm2
� ρ, i.e.

|∂ρ|
m
� ρ , and (4.6)

(∂ρ)2

ρm2
� ρ(∂φ)2, i.e.

|∂ρ|
m
� ρ|∂φ| , (4.7)

such that the energy density ρ should not change on length scales 1/m. So in this regime
we have the usual pressureless dust with slowly changing energy density. On the other
hand, conditions for the inhomogeneous evolution of the complex scalar while still being a
pressureless perfect fluid can be stated, namely∣∣∣∣∂2

i

√
ρ

√
ρ

∣∣∣∣ ∝ 1

L2
� m2v2 ,

∣∣∣∣∂i√ρ√ρ
∣∣∣∣ ∝ 1

L
� mv , m

∣∣∂2
i φ
∣∣ ∝ m 1

m

L2
� m2v2 , (4.8)

so therefore in total
1

L2m2v2
� 1 . (4.9)

This is satisfied for sufficiently large m, so that the inhomogeneities in the scalar field are
small enough on cosmological scales. But when the inhomogeneities of the scalar field ρ
grow, the inequality (4.9) becomes less and less accurate and the complex scalar does not
resemble a perfect fluid anymore. Looking for an interpretation for the non-relativistic
regime, we can insert the Madelung transformation (4.3) in the Schrödinger equation

i
∂Ψ

∂t
= − 1

2m

∂2Ψ

∂x2
. (4.10)

After separating the real and imaginary parts of this equation and using

v = − ∂

∂x
φ (4.11)
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we end up with the so-called Madelung equations

∂v

∂t
+ (v · ∇)v = − 1

2m2
∇

∆
√
ρ

√
ρ

(4.12)

∂ρ

∂t
+∇(ρv) = 0 (4.13)

which allow a hydrodynamic interpretation of quantum mechanics. The important part
for us is the right hand side of eq. (4.12), which is called the quantum pressure. It depends
on the spatial derivatives of the energy density and becomes important at small scales and
this is what prevents caustics from forming when the following inequality is valid∣∣∣∣∣∣

∇∆
√
ρ

√
ρ

m2 (v · ∇)v

∣∣∣∣∣∣ ∝ 1

L2 ·m2 · v2
� 1 . (4.14)

This is exactly the same inequality as above (4.9), where the question was when the com-
plex scalar does not resemble a perfect fluid anymore. So mimetic matter or a pressureless
perfect fluid can be extended to a complex scalar field which mimics dust on large, ho-
mogeneous scales, while on small scales the arising quantum pressure prevents caustic
singularities to form.

Furthermore, also in the context of shift-symmetric k-essence [97,98] it has been shown
that one can again use a complex scalar field in order to remove gradient instabilities [156].
As a complex scalar field has two propagating degrees of freedom, there are two branches
ω+ and ω− in the dispersion relation derived from it. For momenta k → ∞ the standard
ω2 = k2 is recovered in both branches. On the contrary, for the low-momentum limit
k → 0 the dispersion relation should approach ω2 = c2

sk
2, which is recovered in only one of

the branches which is therefore being called the hydrodynamical branch of the dispersion
relation, whereas the other one is called the non-hydrodynamical branch. For the non-
hydrodynamical branch to be stable, the speed of sound must be subluminal, i.e. c2

s < 1. In
the superluminal case, the non-hydrodynamical branch of the dispersion relation develops
a tachyonic instability. The branches are associated with parameters M1 and M2 with a
mass gap in between them. Note that we will only look closer at the cases where c2

s < 1,
but in [156] also superluminality is discussed in more depth. At first we note down the
definition of the speed of sound in terms of the mass parameters:

c2
s =

M2
2

M2
1

. (4.15)

In the low-momentum limit and the case M2
1 > 0 we have the solutions in a cosmological

background for the frequencies

ω2
− =

M2
2

M2
1

k2 +
(M2

1 −M2
2 )

2

a2M6
1

k4 +O(k6) (4.16)

ω2
+ = M2

1a
2 +

2M2
1 −M2

2

M2
1

k2 +O
(

k4

a2M2
1

)
(4.17)
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for the hydrodynamical and non-hydrodynamical branches, respectively [156]. It is import-
ant for ω+ to be real, such that there are different cases to consider for the mass parameters
and the sound speed. We need

ω+ � ω− , (4.18)

meaning that both branches are widely separated from each other by a mass gap set by
M1. The non-hydrodynamical mode ω+ is obviously safe and stable for M2

1 > M2
2 . The

hydrodynamical mode however should be treated with more care and the question will be
whether M2

2 is positive or negative, leading to subluminal propagation or imaginary speed
of sound, going by the definition of it (4.15). One can use this definition of the sound
speed in terms of the mass parameters and rewrite those parameters in a cosmological
background, such that

M2
1 =

4ϕ̇2

1− c2
s

and M2
2 =

4c2
s ϕ̇

2

1− c2
s

. (4.19)

For |c2
s |� 1 it is obvious that M2

1 > M2
2 .

4.2 Modifying mimetic “dark matter” as a scalar-tensor
theory

The basic model (2.35) was later modified to account for more general and diverse beha-
viour, first in [135], where a potential V (φ) for the scalar field was introduced. Second, one
can also add a function f(2φ) of higher derivatives of φ. The generic form of the action
can therefore be written as

S[gµν , φ, ρ,Φm] =

∫
d4x
√
−g
(
−1

2
R(gµν) +

ρ

2
(gµν∂µφ∂νφ− 1)− V (φ) + f(2φ)

)
+ Sm[gµν ,Φm] .

(4.20)

The authors of this paper explain the implications of those further added functions. The
potential V (φ) accounts for non-zero pressure, so that this model can also mimic other
cosmological fluids, an inflaton or quintessence. The higher derivative term instead changes
the short-wavelength behaviour of the fluid and gives the theory a non-vanishing sound
speed. We will have a closer look at the consequences of those terms in the following
section.

4.2.1 Mimetic gravity with a potential

At first, we will have a closer look at the potential of the scalar field and how it modifies the
behaviour of mimetic dark matter to also imitate other cosmological fluids, following [135].
Therefore, we at first set the higher derivative terms of the scalar field in action (4.20) to
zero. The resulting equations of motion are

Gµν = (G− T − 4V )∂µφ∂νφ+ gµνV + Tµν (4.21)
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where Tµν is the EMT resulting directly from an external matter action Sm. Therefore,
the terms derived from the mimetic scalar field and its potential can be viewed again as a
perfect fluid, with energy density εmim and pressure pmim

εmim = G− T − 3V (4.22)
pmim = −V . (4.23)

As already described in (2.25), the scalar field acts as a velocity potential. It is obvious
that now also other equations of state can be described, with the scalar field potential
being the negative pressure.

To discuss the cosmological solutions we are mostly interested in, we will again fol-
low [135] and take a flat (k = 0) Friedmann universe (1.83) without ordinary matter,
therefore Tµν = 0. Once more as already discussed (2.10), the scalar field works as the
time coordinate, i.e. φ = t. Then the solution for the energy density reads as

εmim =
3

a3

∫
da a2V (4.24)

with the scale factor a as usual. The resulting constant of integration again plays the part
of mimetic dark matter, diluting with time as ∝ a−3, whereas a non-zero potential V can
mimic other cosmological fluids on top.

In the for us interesting case of quintessence, i.e. a scalar field producing dynamical and
time-varying dark energy, the potential of the scalar field is taken to be

V (φ) =
α

φ2
=
α

t2
. (4.25)

The universe itself is taken to be dominated by some other form of energy with a constant
equation of state, i.e. p = wε. The the mimetic component will have

εmim = − α

wt2
(4.26)

pmim = −α
t2
, (4.27)

therefore imitating the equation of state of the dominant matter component, while the
normal matter energy density is

ε = 3H2 =
4

3(1 + w)2t2
, (4.28)

such that the mimetic matter is subdominant if α
w
� 1. In the case that we will take the

more general solution for the scalar field as the time coordinate, i.e. φ = t+t0, the mimetic
matter will behave as

CC for t < t0

dominant matter for t > t0 .

This is not the only matter content mimetic matter can imitate, it can also be tweaked to
take on the role of an inflaton, or produce a bouncing universe [135].
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4.2.2 General higher derivative terms

For the sake of completeness and as a basis for further discussions, we will discuss the
action with just a general higher derivative term, following [158], i.e.

S[gµν , φ, ρ, B,Φm] =

∫
d4x
√
−g
(
−1

2
R(gµν) +

ρ

2
(gµν∂µφ∂νφ− 1) + f(B)

)
+ Sm[gµν ,Φm]

(4.29)
with external matter action Sm[gµν ,Φm]. Deriving the equations of motion (e.o.m.) from
the purely mimetic part of this action (without the Einstein-Hilbert term and the external
matter action) gives

δS

δφ
= −∇µ (ρ∇µφ−∇µf,B) ≡ −∇µJ

µ , (4.30)

δS

δB
= f,BB (2φ−B) , (4.31)

where f,B ≡ ∂Bf and f,BB ≡ ∂B∂Bf and the d’Alembertian 2 (1.35). From the e.o.m. for
B (4.31) it is obvious that we introduced a new field with definition

B ≡ 2φ (4.32)

in the case that f,BB 6= 0. Moreover, by the e.o.m. of φ, eq. (4.30), we defined a conserved
current Jµ.

The EMT of action (4.29) can be derived as usual and reads

Tµν ≡
2√
−g

δS

δgµν
= ρ∂µφ∂νφ− gµν (f(B)− ∂αφ∂αf,B − f,BB)− ∂µφ∂νf,B − ∂µf,B∂νφ .

(4.33)
Again, we will mostly look at synchronous coordinate systems (1.9), such that the

mimetic field takes on the role of a clock once more, as discussed in (2.10). Therefore, in
general

φ = ±t+ A (4.34)

with a constant of integration A. As a consequence, the higher derivative term B = 2φ
can be calculated as

2φ =
γ̇

2γ
(4.35)

with the spatial metric γij and its determinant γ. Also, (˙) = ∂0 denotes a derivative w.r.t.
time.

To determine the Lagrange multiplier ρ we can look at the equation of motion for φ
(4.30) and set it equal to zero. In the synchronous frame this results in

1
√
γ
∂0 (
√
γρ) = 2f,B =

1
√
γ
∂0 (
√
γf,BB∂0B) . (4.36)
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Integrating and solving for ρ yields

ρ =
C
√
γ

+ f,BBḂ . (4.37)

The first term in this reflects the already discussed mimetic dark matter with a purely
spatially dependent constant C (2.38), whereas the second term arises due to the higher
derivative terms, but only for f,BB 6= 0 [158].

In the original paper where they introduced this generic form of the higher derivative
terms in order to find functions f suited to avoiding cosmological [158] and black hole
singularities [159], as well as constructing asymptotically free mimetic gravity [160].

4.2.3 Quadratic higher derivatives

As we have seen above, only higher derivative terms with f,BB 6= 0 will result in a modifica-
tion of the mimetic theory. A reasonable and more specific function of the higher derivative
term

f(2φ) =
1

2
γ (2φ)2 (4.38)

was introduced in [135], such that the action looks like

Sγ[gµν , φ, ρ] =

∫
d4x
√
−g
(
−1

2
R(gµν) +

ρ

2
(gµν∂µφ∂νφ− 1) +

1

2
γ (2φ)2

)
, (4.39)

where γ is just assumed to be a numerical constant with γ � 1, which ensures the higher
derivative terms to be just a small correction. It was shown in [15] that the action can be
rewritten as

Sγ[gµν , φ, θ, ρ] =

∫
d4x
√
−g
(
−1

2
R(gµν) +

ρ

2
(gµν∂µφ∂νφ− 1)− γ

(
gµν∂µφ∂νθ +

1

2
θ2

))
.

(4.40)
Then the equations of motion for the two scalar fields are

δSγ
δθ

= 2φ− θ (4.41)

δSγ
δφ

= γ2θ − ρ2φ− gµν∂µφ∂νρ . (4.42)

The first equation of motion just shows that θ = 2φ. Therefore, the second equation of
motion can be rewritten as [15,29]

ρθ + gµν∂µφ∂νρ = γ2θ . (4.43)

As we notice, the theory is shift-symmetric under φ→ φ+ c with a constant c, there must
be a conserved current associated with it, due to Noether’s theorems [150]. We will discuss
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this topic of symmetries and conserved quantities more extensively in 4.4. For the moment,
let us write the Noether current associated with the shift symmetry [29]

Jµ = ρ∂µφ− γ∂µρ , (4.44)

such that the equation of motion (4.43) corresponds to

∇µJ
µ = 0 . (4.45)

And calculated just as above, the EMT for the “matter” part of this action is

Tµν = ρ∂µφ∂νφ+ γ

(
gµν

(
∂αφ∂αθ +

1

2
θ2

)
− ∂µφ∂νθ − ∂µθ∂νφ

)
. (4.46)

This energy-momentum tensor corresponds to the one for an imperfect fluid [15,29], and the
hydrodynamical quantities can be written in the local rest frame (LRF) with the velocity

uµ = ∂µφ (4.47)

and the projector Pµν (1.44) to the hypersurface orthogonal to this velocity. Then the
conserved Noether current (4.44) will look like

Jµ = nuµ − γPλµ∇λθ . (4.48)

In this formula we used the shift-charge density

n = ρ− γθ̇ (4.49)

with the derivative along the velocity uµ∇µ = ˙ . The energy-momentum tensor can also
be decomposed in the usual fashion like in (1.45). Then in the LRF the energy density
ε (1.42), the pressure p (1.43), the energy flux qµ (1.46) and the anisotropic stress tensor
Πµν (1.47) will be

ε = ρ− γ
(
θ̇ − 1

2
θ2

)
(4.50)

p = −γ
(
θ̇ +

1

2
θ2

)
(4.51)

qµ = PλµJλ (4.52)
Πµν = 0 . (4.53)

The anisotropic stress turns out to be vanishing in the local rest frame, whereas the energy
flux is equivalent to the spatial components of the Noether current Jµ [15].
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4.2.4 Mimetic dark matter and sound speed

In the original mimetic dark matter model [132] the mimetic scalar field provides us with
pure dark matter on a cosmological background, with a vanishing speed of sound cs. This
might become a problem in case we want to look at a mimetic scalar field in the context of
inflation. A vanishing speed of sound means that perturbations cannot propagate, which
is exactly the opposite of what we want from inflation. In that case of cs = 0, those initial
perturbations would not have been able to grow, therefore the dark matter would not have
been able to clump and provide us with the large scale structure of the universe we observe
today. If we merely want to mimic dark matter in today’s universe, a vanishing speed of
sound is well within the expectations. But a small cs might be helpful to prevent caustic
instabilities, i.e. geodesics of massive particles converging to a single point [161].

Moreover, one can also look at the speed of the tensor perturbations cT on that Fried-
mann background, in order to get the gravitational wave speed in this theory. Due to the
already mentioned observations (1.135) of it being extremely close to the speed of light,
any large deviations from cT = 1 are excluded [106]. As it was found, the quadratic higher
derivative term 1

2
γ (2φ)2 is in perfect agreement with this [161].

We will now start by deriving the sound speed for the theory with a general f(2φ),
from the action (4.29). To achieve that, we will use perturbation theory to the first order
for the energy momentum tensor (4.33), following the calculation as it was done in [135].
The background will be cosmological, a flat Friedmann universe (1.83). The equation of
motion for B allows us to calculate in this background

B = 2φ = 3H (4.54)

with the usual Hubble constant H (1.87). We will use that to first order in perturbations

φ→ φ+ εδφ (4.55)
B → B + εδB , (4.56)

where ε is a small number used to keep track of the orders in perturbation theory. Further-
more, as we know, the solution of the mimetic constraint equation (2.3) in a Friedmann
universe (1.83) is of the following form

φ(t) = t+ A , (4.57)

compare the discussion around (2.10) with a constant of integration A. Therefore, for the
first order perturbations of the scalar field

∂0φ = 1, ∂iφ = 0 (4.58)
∂0δφ 6= 0, ∂iδφ 6= 0 . (4.59)

As a convention, ∂0 denotes the derivative w.r.t. coordinate time, and ∂i the spatial
derivative. B = 2φ can be calculated as a background quantity (i.e. in a flat Friedmann
universe (1.83)) to be

B = 2φ = 3H . (4.60)
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Next, we need to determine ρ from the background Einstein equations. Calculating T 0
0 and

T ij from the EMT (4.33), equating them with G0
0 (1.101) and Gi

j (1.103) results in

ρ = 2
(
∂0f,B − Ḣ

)
. (4.61)

Recall the convention that f,B ≡ ∂Bf and f,BB ≡ ∂B∂Bf . Also notice that

∂if,B = 0 (4.62)

as f,B is a background quantity and therefore spatially homogeneous in a Friedmann uni-
verse. We will also need the relation for the first order quantities Φ and δφ. Calculating
the mimetic constraint equation (2.3) in the conformal Newtonian metric (1.104) up to
first order yields

Φ = δφ̇ . (4.63)

Another important first order quantity is

δB = δ(2φ) = −3δφ̈− 3Hδφ̇− ∆

a2
δφ (4.64)

with ∆ = δij∂i∂j. This is again derived from the Newtonian metric (1.104), while also
using the relation between Φ and δφ (4.63). The first order perturbation of the Einstein
tensor in this metric can be transformed to [36]

δG0
i = 2∂i

(
Hδφ̇+ δφ̈

)
(4.65)

with the help of (4.63) and the transformation from conformal to physical quantities (1.98).
Now we are well set up to calculate the first order in perturbation theory of the 0-i compon-
ent of the energy-momentum tensor (4.33). The 0-i component of the energy-momentum
tensor will look like

T 0
i →ρ∂i(φ+ εδφ)∂0(φ+ εδφ)− ∂0(φ+ εδφ)∂i(f,B + εf,BBδB)

− ∂i(φ+ εδφ)∂0(f,B + εf,BBδB) .
(4.66)

The first order in ε then follows from the expansions in φ (4.55) and B (4.56)

δT 0
i = ρ ∂iδφ− ∂0f,B ∂iδφ− ∂i (f,BBδB) . (4.67)

Expanding and inserting the already calculated quantity δB (4.64) and equating everything
to the Einstein tensor component (4.65) then yields up to first order, using also the ex-
pression for ρ (4.61)

∂i

(
Hδφ̇+ δφ̈

)
=

1

2
∂0f,B∂iδφ− Ḣ∂iδφ+

3

2
∂i

(
f,BBδφ̈

)
+

3

2
H∂i

(
f,BBδφ̇

)
+

1

2
∂i

(
f,BB

∆

a2
δφ

)
.

(4.68)
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The next step is noticing that this equation contains a total spatial derivative. We can
drop this and simplify this first order equation for δT 0

i to

δφ̈

(
1− 3

2
f,BB

)
+Hδφ̇

(
1− 3

2
f,BB

)
− 1

2
f,BB

∆

a2
δφ+

(
1

2
∂0f,B −

ρ

2

)
δφ = 0 . (4.69)

Inserting the already calculated ρ (4.61) will give us the equation of motion for δφ, i.e.

δφ̈+Hδφ̇+ Ḣδφ− 1

2

f,BB
1− 3

2
f,BB

∆

a2
δφ = 0 . (4.70)

The Laplacian appearing in this equation is obviously modified by the scale factor in an
expanding universe, such that ∆ → ∆

a2 . Comparing the equation of motion for δφ with a
general wave equation for u (e.g. [162])

ü− c2
s∆u = 0 (4.71)

we conclude that the sound speed squared for general f(2φ) is

c2
s =

f,BB
2− 3f,BB

. (4.72)

This result was already obtained in [163] and is consistent with the sound speed calculated
in [135] for the quadratic higher derivative function (4.38), which is

c2
s =

γ

2− 3γ
. (4.73)

Now that we have derived the form of the speed of sound for general functions of

B = 2φ , (4.74)

we can apply that to function already appearing in the literature. Namely, in [158] they
they sought solutions for the mimetic scalar field action which enabled them to avoid
cosmological (and black hole [159]) singularities by introducing a limiting curvature Bm.
They used the higher derivative function

f(B) = B2
m

[
1 +

1

3

B2

B2
m

−
√

2

3

B

Bm

arcsin

(√
2

3

B

Bm

)
−

√
1− 2

3

B2

B2
m

]
. (4.75)

Therefore, the second derivative of this function will be

f,BB =
1

3

1− 1√
1− 2

3
B2

B2
m

 (4.76)
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and the speed of sound, with the help of (4.72), is then found to be

c2
s =

1

3

(√
1− 2

3

B2

B2
m

− 1

)
. (4.77)

This only vanishes for for B = 0, as it is expected. In all other cases the sound speed
squared is strictly negative; for small B the expansion will be

c2
s = −1

9

B2

B2
m

− 1

54

B4

B4
m

+O(B6) . (4.78)

As the curvature invariants are required to be bounded by a maximal value according to
the original paper [158], we can also make the following observation: For B = Bm the value
of the sound speed squared will be

c2
s (B = Bm) =

1

3

(√
1− 2

3
− 1

)
≈ −0.14 . (4.79)

This value can still be considered reasonably small, therefore we can discuss the viability
of the theory with an imaginary speed of sound, which corresponds to gradient instabilities
[156].

As already described in 4.1, the UV completion by a complex scalar field may alleviate
that problem similarly as it was done in the case of k-essence. Both branches (4.16) and
(4.17) of the dispersion relation should be stable in UV. The non-hydrodynamical mode
ω+ can easily rendered to be real, as discussed, whereas there is also a possibility for the
hydrodynamical one ω− to become stable for small imaginary speeds of sound. Expressing
ω− in terms of the speed of sound, as in (4.19), this yields

ω2
− = c2

sk
2 +

(1− c2
s )3

4ϕ′ 2
k4 +O(k6) . (4.80)

As usual, ϕ′ denotes differentiation of ϕ w.r.t. conformal time (1.98). For our case c2
s < 0

the first of these terms would be negative and lead to gradient instabilities. But for certain
values of the momenta the second term is able to overcome the first and render ω− real
and stable. The range of momenta is

|M2|� k/a�M1 . (4.81)

The first condition comes from asking for the second term in (4.16) to be larger than the
first, while the second condition comes from asking that we are in the low-momentum limit.
The dispersion relation of that complex scalar field model then deviates from the one in
the k-essence model, as the k4-term dominates over the k2-term, but that modification of
the theory also removes the gradient instabilities. The authors of [156] conclude that a
small imaginary speed of sound does not necessarily make the affected theory implausible
or even impossible.



4.3 Gauge invariant representations 73

4.3 Gauge invariant representations
Based on the Weyl transformation of the original theory of mimetic gravity [132] (2.1)

gµν =
(
hαβ∂αφ∂βφ

)
hµν , (4.82)

one can set up different representations of the same theory, always using different gauge
invariant variables. In the following, we will summarise them for the scalar case.

Using the kinetic term X (1.55) while promoting it to a variable of the Weyl transformed
theory results in the action, cf. [29],

Sscalar[hµν , φ,X, λ] = −
∫

d4x
√
−h
[
XR(h) +

3

2

hαβ∂αX∂βX

X
+ λ

(
X − 1

2
hαβ∂αφ∂βφ

)]
(4.83)

with the Lagrangian multiplier λ enforcing the definition of X as a new dynamical variable.
As one can see from that action, it is invariant under the following set of transformations

hµν → Ω2(x)hµν , (4.84)
φ→ φ , (4.85)
X → Ω−2(x)X , (4.86)
λ→ Ω−2(x)λ (4.87)

with function Ω(x) dependent on the coordinates. From there it is obvious that the con-
formal weights of λ and X are two. In order to construct gauge invariant variables, one
needs to combine these transformations such that they do not change. One such possibility
is the following set of transformations

hµν = (2X)−1gµν ,

φ = φ ,

X = X ,

λ = 2Xρ .

(4.88)

Then, action (4.83) becomes

Sscalar[gµν , φ, ρ] =

∫
d4x
√
−g
[
−1

2
R(g) +

ρ

2

(
gαβ∂αφ∂βφ− 1

)]
. (4.89)

We recognize this as the action which has been described early on in the formulation of
mimetic gravity in [139,140], cf. (2.35), which had the mimetic constraint (2.3) enforced via
a Lagrange multiplier ρ, later identified with the energy density of reh resulting irrotational
fluid [15]. In this case, the matter is minimally coupled to the metric gµν . Moreover, another
way to view this set of transformations is the following: One could also simply gauge fix
(4.83) with the choice X = 1

2
[29].
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But, as it was found in [29], this set of transformations (4.88) is not the only possibility
to construct gauge-invariant variables. Namely, there also exists

hµν = λ−1ĝµν ,

φ = φ ,

X = λχ ,

λ = λ .

(4.90)

Then, the resulting action will rather look like

Sscalar[ĝµν , φ, χ] =

∫
d4x
√
−ĝ
[

1

2
ĝαβ∂αφ∂βφ−

(
χR(ĝ) +

3

2

ĝµν∂µχ∂νχ

χ

)
+ χ

]
. (4.91)

In this case the matter is no longer minimally coupled to ĝµν , clearly visible from the
coupling of the Ricci scalar to 2χĝµν , compared to the regular Einstein-Hilbert term. And
also here one could arrive at the action (4.91) via fixing the gauge in (4.83), this time by
setting λ = 1 [29].

4.4 Noether currents arising in scalar mimetic theory

After we reviewed Noether’s theorems in chapter 3, let us come back to our original prob-
lem, namely the question: What is the physical significance of the Weyl symmetry present
in the theory? And now we can follow the course of [146–149] and argue: We will show
that the Noether current vanishes.

So the following part is dedicated to calculating the Noether current for various actions
playing a role in mimetic theory. As hinted before, eq. (3.17) will come in handy. Therefore,
on the one hand, we will have to calculate the part of the current without the equations
of motion by just Weyl transforming the action and looking for the boundary. On the
other hand, we will have to find the part of the Noether current involving the equations of
motion.

4.4.1 The mimetic action with the Lagrange multiplier

The first task is to see that the mimetic action including the Lagrange multiplier term
(4.89) has a vanishing Noether current. We will take the form

S[hµν , χ, φ, λ] = −
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ∂αχ∂βχ+

λ

12
χ2 − λ

2
hαβ∂αφ∂βφ

)
(4.92)

directly from [29], their eq. (2.7), and redefine the kinetic term X (1.55), written w.r.t.
the metric hµν , as

X =
1

12
χ2 . (4.93)



4.4 Noether currents arising in scalar mimetic theory 75

The first two terms

S[hµν , χ] = −
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ∂αχ∂βχ

)
. (4.94)

are already discussed in [146]. The appropriate Weyl transformation is repeated here, cf.
subsection 1.1.3,

hαβ → e2θhαβ , δhαβ = 2θhαβ

χ→ eθχ , δχ = θχ , so therefore
√
−h→ e−4θ

√
−h

R(h)→ e2θ
(
R(h)− 6hαβ∇αθ∇βθ + 6hαβ∇α∇βθ

)
= e2θ

(
R(h)− 6hαβ∂αθ∂βθ + 6

1√
−h

∂α

(√
−hhαβ∂βθ

))
∂αχ→ eθ (∂αχ+ χ∂αθ) .

(4.95)

As the authors of this paper approach the calculation of the part of the Noether current
without using the equations of motion a bit differently, let us repeat that part. Inserting
this Weyl transformation (4.95) into the action (4.94) yields

S[hµν , χ] = −
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ (χ∂αχ∂βθ + χ∂αθ∂βχ) +

1

2
hαβ∂αχ∂βχ

)
−
∫

d4x

(
1

2
χ2∂α

(√
−hhαβ∂βθ

))
,

(4.96)

such that we just need to perform the partial integration on the integral in the second line
to give us

S[hµν , χ] =−
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ (χ∂αχ∂βθ + χ∂αθ∂βχ) +

1

2
hαβ∂αχ∂βχ

)
−
∫

d4x ∂α

(
1

2
χ2
√
−hhαβ∂βθ

)
+

∫
d4x
√
−h χ∂αχhαβ∂βθ

=−
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ∂αχ∂βχ

)
−
∫

d4x ∂α

(
1

2
χ2
√
−hhαβ∂βθ

)
.

So we see that the theory is indeed Weyl invariant up to a boundary term where L →
L+ ∂αX

α and we conclude that

δL = ∂αX
α (4.97)

Xα =
1

2
χ2
√
−hhαβ∂βθ . (4.98)
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Comparing this to the current in [146] we just re-derived their result by directly performing
the Weyl transformation and looking for the boundary term.

For the calculation of the term using the equations of motion we directly repeat what
was done in [146]. We need to consider the fields involved and then write the pure variation
of the Lagrangian

(4.99)δL =
∂L
∂χ

δχ+
∂L

∂(∂µχ)
∂µδχ+

∂L
∂hαβ

δhαβ +
∂L

∂(∂µhαβ)
∂µδh

αβ +
∂L

∂(∂µ∂νhαβ)
∂µ∂νδh

αβ .

Notice that this indeed generalises easily to the double derivative terms of the metric
originating from the Ricci scalar. But as we need the part of the current with the equations
of motion, we first write them down:

∂L
∂χ

= ∂µ
∂L

∂(∂µχ)
(4.100)

∂L
∂hαβ

= ∂µ
∂L

∂(∂µhαβ)
− ∂µ∂ν

∂L
∂(∂µ∂νhαβ)

. (4.101)

Therefore, inserting and rearranging with the help of total derivatives yields

δL = ∂µK
µ (4.102)

Kµ =
∂L

∂(∂µχ)
δχ+

∂L
∂(∂µhαβ)

δhαβ +
∂L

∂(∂µ∂νhαβ)
∂νδh

αβ − ∂ν
∂L

∂(∂µ∂νhαβ)
δhαβ . (4.103)

Following [146], we quote their result

Xµ = Kµ (4.104)

and therefore the total Noether current

Jµ = Kµ −Xµ = 0 . (4.105)

In [149] it is also shown that for this part of the action, which is obtained via a Weyl
transformation of the metric (see (1.74)), the Noether current for this Weyl symmetry
always vanishes. The author argues that this can be applied to any gravitational theory
which is locally conformally invariant. So it is further discussed that this Weyl symmetry
has no further dynamical consequences and only gives an advantage during the calculation.
One might also consider the conformally invariant theory with the scalar field as a more
fundamental theory, as GR can be derived by gauge fixing the scalar field. The equivalence
between different theories related by Weyl symmetries is established at least at the classical
level. Therefore, the question remains whether this equivalence carries over if one considers
quantum theories. In case a quantum system breaks a classical symmetry, one talks about
an anomaly [112]. In [149] they consider whether such a conformal anomaly might exist
in the case of unimodular gravity, which we have seen is similar to our model. They cite
further work [164–168] that suggests that anomalies do not show up if the local conformal
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symmetry is broken spontaneously, i.e. the vacuum expectation value of the field should
not vanish. But it remains to state that due to the trivial Noether current the dynamics of
the system cannot be reduced and the phase space of the system cannot be separated [169].

Then we do the same for the part of the action coming from the mimetic constraint
equation

Sφ[hµν , χ, φ, λ] = −
∫

d4x
√
−h
(
λ

12
χ2 − λ

2
hαβ∂αφ∂βφ

)
. (4.106)

Keeping the above Weyl transformation (4.95) we immediately see that we have to amend
it by adding

λ→ e2θλ , δλ = 2θλ ,

φ→ φ , δφ = 0 .
(4.107)

This Weyl transformation is trivial, in the sense that we do not have to perform a partial
integration in order to see this action is Weyl invariant. So we do not have a boundary
term and the current Xα

(φ) = 0.
For the total Noether current Jα(φ) = Kα

(φ)−Xα
(φ) we still have to calculate Kα

(φ) by using
the equations of motion

∂Lφ
∂φ

= ∂µ
∂Lφ
∂(∂µφ)

(4.108)

∂Lφ
∂χ

= ∂µ
∂Lφ
∂(∂µχ)

(4.109)

∂Lφ
∂λ

= ∂µ
∂Lφ
∂(∂µλ)

(4.110)

∂Lφ
∂hαβ

= ∂µ
∂Lφ

∂(∂µhαβ)
− ∂µ∂ν

∂Lφ
∂(∂µ∂νhαβ)

(4.111)

which simplify the variation of Lφ to

δLφ = ∂µK
µ
(φ) (4.112)

with

(4.113)
Kµ

(φ) =
∂Lφ
∂(∂µφ)

δφ+
∂Lφ
∂(∂µχ)

δχ+
∂Lφ
∂(∂µλ)

δλ+
∂Lφ

∂(∂µhαβ)
δhαβ

+
∂Lφ

∂(∂µ∂νhαβ)
∂νδh

αβ − ∂ν
∂Lφ

∂(∂µ∂νhαβ)
δhαβ .

The calculation is absolutely analogous to above. Evaluating this is trivial: All terms
vanish immediately, either by looking at the action or the Weyl transformations, such that
Kµ

(φ) = 0 identically. Therefore, the Noether current for this part of the action is indeed

Jµ(φ) = Kµ
(φ) −X

µ
(φ) ≡ 0 . (4.114)
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4.4.2 The higher derivative term

Next, we want to discuss the term originating from 1
2
γ(2gφ)2 cf. (4.39). We go the extra

step by Weyl transforming from the physical metric gµν to the auxiliary metric hµν and
the kinetic term X (1.55), defined w.r.t. the metric hµν , such that (with the help of [2]
and subsection 1.1.3)

gµν = 2Xhµν
√
−g = (2X)2

√
−h

2gφ =
1

2X
2hφ+

1

2X2
hαβ∂αX∂βφ .

(4.115)

Using the field redefinition

X =
1

12
χ2 (4.116)

the (2gφ)2-term of the action will be

Sγ[hµν , φ, χ] =
1

2
γ

∫
d4x
√
−h
(

2hφ+
2

χ
hαβ∂αφ∂βχ

)2

. (4.117)

Following the same argumentation as above, the variation of the Lagrangian without using
the equations of motion can be calculated. Use the Weyl transformations (4.95) and (4.107)
and keep in mind that

2hφ→ e2θ
(
2hφ− 2hαβ∂αθ∂βφ

)
. (4.118)

Then we see

Sγ[hµν , φ, χ] =
1

2
γ

∫
d4x
√
−h
(

2hφ− 2hαβ∂αθ∂βφ+
2

χ
hαβ∂αφ (∂βχ+ χ∂βθ)

)2

=
1

2
γ

∫
d4x
√
−h
(

2hφ− 2hαβ∂αθ∂βφ+
2

χ
hαβ∂αφ∂βχ+ 2hαβ∂αφ∂βθ

)2

=
1

2
γ

∫
d4x
√
−h
(

2hφ+
2

χ
hαβ∂αφ∂βχ

)2

.

(4.119)
So also this term is immediately Weyl invariant without a boundary term.

Therefore we just need to explicitly check the current with the equations of motion,
such that

δLγ = ∂µK
µ
(γ) (4.120)

and

Kµ
(γ) =

∂Lγ
∂(∂µφ)

δφ+
∂Lγ
∂(∂µχ)

δχ+
∂Lγ

∂(∂µhαβ)
δhαβ +

∂Lγ
∂(∂µ∂νhαβ)

∂νδh
αβ − ∂ν

∂Lγ
∂(∂µ∂νhαβ)

δhαβ

(4.121)

as above. Expressing the d’Alembertian 2hφ (1.35) in partial derivatives gives us

2hφ = −1

2
hµν∂νφhαβ∂µh

αβ + δµα∂µh
αβ∂βφ+ hαβ∂α∂βφ . (4.122)
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Also, we have to keep in mind

hαβ∂µhαβ = −hαβ∂µhαβ . (4.123)

Then we see that only the second and third term of Kµ
(γ) remain. The first one of them

evaluates to
∂Lγ
∂(∂µχ)

= γ
√
−hB 2

χ
hµν∂νφ

δχ = θχ

⇒ ∂Lγ
∂(∂µχ)

δχ = 2γ
√
−hθBhµν∂νφ

(4.124)

whereas the second one is

∂Lγ
∂(∂µhαβ)

= γ
√
−hB

(
−1

2
hαβh

µν∂νφ+ δµα∂βφ

)
δhαβ = 2θhαβ

⇒ ∂Lγ
∂(∂µhαβ)

δhαβ = −2γ
√
−hθBhµν∂νφ ,

(4.125)

always using that

B =

(
2hφ+

2

χ
hαβ∂αφ∂βχ

)
. (4.126)

So we see that those two remaining terms exactly cancel and Kµ
(γ) = 0 identically. Also in

this case we conclude
Jµ(γ) = Kµ

(γ) −X
µ
(γ) ≡ 0 . (4.127)

4.4.3 Noether’s second theorem in scalar mimetic gravity

Up to now, we have not yet applied Noether’s second theorem to the varied actions occur-
ring in mimetic theory. To understand the significance of this, we will simply start with
the pure Einstein-Hilbert action (1.59) of the physical metric, i.e.

SEH[gµν ] = −1

2

∫
d4x
√
−g R(g) . (4.128)

By varying this action as usual w.r.t. the metric, we get the known Einstein equations of
motion (1.58) (without external matter) [4]

δSEH

δgµν
= −1

2

√
−g
(
Rµν(g)− 1

2
gµνR(g)

)
≡ −1

2

√
−g Gµν(g) . (4.129)

To get to the purely gravitational action

S[hµν , χ] = −
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ∂αχ∂βχ

)
, (4.130)
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i.e. (4.94), the appropriate Weyl transformation is

gµν =
χ2

6
hµν . (4.131)

This fact can be used to derive the equation of motion for hµν in a simple way: Just
perform this exact Weyl transformation on Gµν(g), yielding (with 1.1.3 and [147])

Gµν(g) = Gµν(h) +
4

χ2

(
∂µχ∂νχ−

1

4
hµνh

αβ∂αχ∂βχ

)
− 2

χ
(∇µ∇νχ− hµν2χ) (4.132)

with the Einstein tensor Gµν(h) defined w.r.t. the auxiliary metric hµν , as well as the
covariant derivative ∇µ. This is also valid for the rest of the chapter. Moreover we observe

δS = −1

2

∫
d4x
√
−g Gµν(g)δgµν = −1

2

∫
d4x
√
−h
(
χ2

6

)2

(Gµν(h) + . . . ) · 6

χ2
δhµν

(4.133)
to get the factors of χ2

6
correct. The ellipsis is just there to simplify notation and signifies

the omitted terms from eq. (4.132). Therefore, the equation of motion for the auxiliary
metric is
δS

δhµν
=
√
−h
(
− 1

12
Gµν(h)χ2 − 1

3

(
∂µχ∂νχ−

1

4
hµνh

αβ∂αχ∂βχ

)
+
χ

6
(∇µ∇νχ− hµν2χ)

)
.

(4.134)
The equation of motion for the scalar field is found by straightforward variation of the
action (4.130), such that

δS

δχ
=
√
−h
(
−1

6
R(h)χ+ 2χ

)
. (4.135)

Now that we have derived the equations of motion, we will apply Noether’s second theorem.
Considering the necessary Weyl transformations and the definition of small variations of
the fields under their influences (3.20), we have

∆p(α) ≡ θ and therefore
hµν → e2θhµν ⇒ δhµν = 2θhµν ⇒ aµνh = 2hµν , bα µνh = 0

χ→ eθχ ⇒ δχ = θχ ⇒ aχ = χ , bαχ = 0 .

(4.136)

Therefore, Noether’s second theorem for this theory looks like

(4.137)

δS

δχ
δχ+

δS

δhµν
δhµν =

δS

δχ
· χθ +

δS

δhµν
· 2θhµν

=
√
−h
(
−1

6
R(h)χ2 + χ2χ

)
θ

+
√
−h
(
−1

6
G(h)χ2 +

χ

3
(hµν∇µ∇νχ− 42χ)

)
θ

≡ 0
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using R(h) = −G(h), so here Noether’s second theorem does not give us any new inform-
ation.

After this preparation for pure Einstein-Hilbert gravity we will discuss the remaining
terms in scalar mimetic gravity. At first we will look at the action with the Lagrange
multiplier λ. As we have already done the calculations for the Weyl transformed Einstein-
Hilbert term (4.130) and found that Noether’s second theorem amounts to zero, we will
concentrate on the remaining terms of the action including the Lagrange multiplier (4.106).
Using the Weyl transformations (4.95) and (4.107) the second Noether theorem for these
terms has the form(

δS

δhµν
+
δSφ
δhµν

)
δhµν +

(
δS

δχ
+
δSφ
δχ

)
δχ+

δSφ
δλ

δλ+
δSφ
δφ

δφ = 0 . (4.138)

The variations of the action (4.106) for the metric hµν and the scalar fields χ and λ can be
calculated as

δSφ
δhµν

=
√
−h
(
λ

2
∂µφ∂νφ+

1

4
hµν

(
λ

12
χ2 − λ

2
hαβ∂αφ∂βφ

))
(4.139)

δSφ
δχ

= −
√
−h λ

6
χ (4.140)

δSφ
δλ

= −
√
−h
(

1

12
χ2 − 1

2
hαβ∂αφ∂βφ

)
(4.141)

As δφ = 0, only the first three terms of (4.138) remain, which result in

−
√
−h
(

1

12
χ2 − 1

2
hαβ∂αφ∂βφ

)
· 2θλ = 0 . (4.142)

But this only means that
χ2

6
= hαβ∂αφ∂βφ , (4.143)

which reflects the constraint expressed via the Lagrange multiplier λ, see (4.141). This
is understandable, as in the original construction of the scalar mimetic theory [132] the
mimetic constraint equation is valid by construction and does not need the equations of
motion. Therefore, also in the reformulation via a Lagrange multiplier this constraint can
be seen as valid by construction. Moreover, as discussed in [151], Noether’s second theorem
is often found to reproduce already known or somewhat trivial results. The authors of this
paper also mention the possibility that the transformations of only the gauge fields depend
on ∂µ

(
p(α)(x)

)
, where the p(α)(x) are the arbitrary functions of the gauge transformations,

in our calculations named θ (compare (3.20)). They argue that local gauge symmetry and
the equations of motion for the gauge fields leads to a conserved current. The matter
field equations in this derivation of the current are not a necessary, although a sufficient
condition. In the set of Weyl transformations we use ((4.95) and (4.107)) there is no
dependence on ∂µθ to be found and as a consequence, this possibility does not apply to
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our calculation. Nevertheless, we stress that this result from Noether’s second theorem
discussed in [151] are worth mentioning.

If we view χ not as a new field constrained with the help of a Lagrange multiplier, but
only as a shorthand for

χ =
√

6hαβ∂αφ∂βφ , (4.144)

the action SHD expressed in higher derivatives of φ looks just like (4.130), but its variables
are actually hµν and φ. As φ does not transform under the Weyl transformation of the
auxiliary metric, Noether’s second theorem takes the form of

δSHD

δhµν
· 2θhµν = 0 . (4.145)

This can be reformulated as

δSHD

δhµν
δhµν =

(
δS

δhµν

∣∣∣∣
χ=const

+
δS

δχ

δχ

δhµν

)
· 2θhµν = 0 , (4.146)

where in the first term χ is taken to be constant. To simplify our calculation, we can take
δS
δhµν

(4.134) and δS
δχ

(4.135) from above. Additionally, it turns out that

δχ

δhµν
=

3

χ
hµν∂µφ∂νφ or

δχ

δhµν
hµν =

1

2
χ . (4.147)

In total,

δSHD

δhµν
· 2θhµν = 2θ

√
−h
[
− 1

12
Gχ2 − 1

2
χ2χ+

(
−1

6
Rχ+ 2χ

)
· 1

2
χ

]
= 0 , (4.148)

once more using that G = −R, which can be seen from the definition of the Einstein tensor
(1.29). Consequently, Noether’s second theorem does not give us any new information in
the case of SHD, where no constraint via a Lagrange multiplier is used in the action.



Chapter 5

Vector Mimetic Gravity

Mimetic theory has also been shown to be able to produce dark energy, be it in the form
of quintessence or a cosmological constant. For example, one of the earliest constructions
was to take the bare scalar field version of mimetic matter and add a suitable potential
term for it, as was done in [135,138] and in this thesis summarised in 4.2.1.

Another possibility to model dark energy with the mimetic formalism was discussed
in [135,161,170], making use of the higher derivative terms, compare 4.2.2 and 4.2.3. It is
compatible with the observational results of the gravitational wave event GW170817 [171].

So in this chapter we focus on one model which was detailed in [133]. (Note that this
ansatz has also been introduced in [172].) The authors of [133] devised a vector-tensor
theory with higher derivatives. The novel vector field V µ in the theory has the unusual
conformal weight of four and produces one new global degree of freedom, i.e. a constant
of integration. In the case of this theory, as we will see, it is not dark matter it mimics,
but a cosmological constant, the aforementioned new degree of freedom. The aim of this
mimetic construction was to find a mimetic theory with a vector field additional to the
usual metric. Moreover, it was found to reproduce unimodular gravity [122] (see also
(1.176)) in the formulation by Henneaux and Teitelboim [128] (1.187), which also contains
the divergence of a vector field.

This chapter also includes the proof that the Weyl transformation of the theory is the
only one possible to be consistent with the described mimetic construction 2, namely in
5.3. Moreover, also the Noether theorems are explicitly used and their currents calculated
5.4.

5.1 Constraint and equations of motion

For the general introduction to this theory we will use [133], so if not mentioned otherwise,
this reference will be the source.

The Weyl transformation which is the foundation of this mimetic theory is

gµν =

√
∇h)
ρ V ρ hµν , (5.1)
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where the covariant derivative ∇h)
ρ is metric compatible, see (1.12), but with the auxiliary

metric hµν . Moreover, under a Weyl transformation of the auxiliary metric

hµν = Ω2(x)h′µν (5.2)

with an arbitrary function Ω2(x) of the coordinates, while also transforming the vector
field as

V µ = Ω−4(x)V ′µ , (5.3)

the physical metric gµν will be unchanged. As we can see, comparing with its definition
(1.71), the conformal weight of this vector field is four. Then the new theory is implemented
by performing the Weyl transformation of the metric in the usual seed action of GR, the
Einstein-Hilbert action (1.59), such that

Svector[hµν , V
µ,Φm] = Sseed[gµν(hµν , V

µ) ,Φm] (5.4)

with the usual matter fields Φm. There also exists another gauge invariance

Vµ = V ′µ + ∂µθ with 2θ = 0 . (5.5)

This is similar to an unfree gauge symmetry as presented in [173], where the gauge trans-
formations leave the action unchanged, but only if the gauge parameters are constrained
by partial differential equations. The setup in our case is similar to the Lorenz gauge of
electrodynamics, where you can also define such a redundant scalar quantity like θ [174].

Performing this Weyl transformation (5.1) explicitly leads to the action (omitting the
matter action)

Svector[hµν , V
µ] = −1

2

∫
d4x
√
−h

(∇h)
α V

α
)1/2

R(h) +
3

8
·

(
∇h)
µ ∇h)

α V α
)2

(
∇h)
β V

β
)3/2

 . (5.6)

The equations for motion for this action can be written as

1√
−h

δSvector

δV µ
=

1

4
∂µ(T −G) = 0 (5.7)

for the vector field and for the Einstein field equations

1√
−h

δSvector

δhαβ
=

√
∇h)
µ V µ

2

[
Tαβ −Gαβ −

1

4
gαβ

(
T −G− V ν∂ν(T −G)

∇h)
µ V µ

)]
= 0 . (5.8)

The traces of Einstein tensor (1.29) and energy-momentum tensor (1.38) w.r.t the physical
metric gµν are again denoted by G and T , respectively. Inserting the equation of motion for
the vector field into the Einstein equations will result in the tracefree Einstein equations

Gαβ − Tαβ −
1

4
gαβ(G− T ) = 0 . (5.9)
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If we now define a cosmological constant Λ as in (1.172) by the e.o.m. for the vector
field, we see that Λ indeed emerges as an integration variable, see also the discussion on
trace-free Einstein gravity in 1.2.4. As a consequence, the mimetic Weyl transformation
provides us with Mimetic Dark Energy [133].

One can also define a vector field as

W µ =
V µ

∇h)
λ V

λ
, (5.10)

such that the new vector field W µ is Weyl invariant. One can then show that the action
in the new variables looks like

Svector[gµν ,W
µ,Λ,Φm] =

∫
d4x
√
−g
[
−1

2
R(g) + Λ

(
∇g)
µW

µ − 1
)]

+ Sm[gµν ,Φm] , (5.11)

with matter fields Φm and matter action Sm. This is exactly the Henneaux-Teitelboim
representation of unimodular gravity [128], also written in a covariant form and now with
manifestly gauge invariant variables. But again, let us stress that this vector field V µ which
was introduced here is not a U(1) gauge potential, but a vector field of conformal weight
four. What one can also easily see from the action is the presence of a constraint term,
namely

∇g)
µW

µ = 1 , (5.12)

equivalent to the already known mimetic constraint equation (2.3) in the original scalar-
tensor theory. This constraint term can also be directly derived using the definition of the
divergence of a vector field (1.36). We write

∇g)
µW

µ =
1√
−g

∂µ

(
√
−g V µ

∇h)
λ V

λ

)
(5.13)

while also using that √
−g =

√
−h (∇h)

α V
α) (5.14)

from the Weyl transformation (5.1) by which this theory is obtained. Therefore,

∇g)
µW

µ =
1√
−g

∂µ

(
√
−h (∇h)

α V
α)

V µ

∇h)
λ V

λ

)
=

1

∇h)
α V α

√
−h

∂µ

(√
−hV µ

)
≡ 1 , (5.15)

which proves the point.

5.2 Gauge invariant representation
Also for the mimetic theory with a vector field V µ of weight four [133], we repeat the
relevant Weyl transformation, namely (5.1)

gµν =

√
∇h)
ρ V ρ hµν . (5.16)
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At first, we need the definition of the scalar field

D = ∇h)
ρ V

ρ , (5.17)

such that after its promotion to a dynamic variable, the Weyl transformed action will be

Svector[hµν ,D , V
α, λ] = −1

2

∫
d4x
√
−h
[√

DR(h) +
3

8

hαβ∂αD∂βD

D3/2
+ λ

(
D −∇h)

ρ V
ρ
)]

,

(5.18)

again with a Lagrange multiplier λ. Even another representation of this action can be
written down, if one introduces another scalar field χ, this time of conformal weight one,
namely via

D =

(
χ2

6

)2

, (5.19)

therefore yielding

Svector[hµν , χ, V
α, λ] =

∫
d4x
√
−h
[
−1

2
(∂χ)2 − 1

12
χ2R(h)− λ

72
χ4 +

λ

2
∇h)
ρ V

ρ

]
. (5.20)

The first three terms in this action corresponds to Dirac’s theory of Weyl invariant gravity
[175]. Furthermore, it is worth stressing that the scalar field χ has a kinetic term of the
wrong sign, therefore is a ghost. The variables present in the action (5.18) change under a
Weyl transformation as

hµν = Ω2(x)h′µν , (5.21)
D = Ω−4(x)D ′ , (5.22)
V µ = Ω−4(x)V ′µ , (5.23)
λ = λ′ . (5.24)

Then a set of gauge invariant variables can be found, which are

gµν = D1/2hµν ,

W µ = D−1V µ ,

Λ =
λ

2
.

(5.25)

Inserting this into (5.18) will result in

Svector[gµν ,W
α,Λ] =

∫
d4x
√
−g
[
−1

2
R(g) + Λ

(
∇g)
ρ W

ρ − 1
)]

, (5.26)

being the Henneaux-Teitelboim form of unimodular gravity [128], as already discussed.
Moreover, here the matter is again minimally coupled to the metric gµν . Also here we can
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clearly see that Λ is a Lagrange multiplier, enforcing a constraint on the divergence of the
vector field W µ we have already encountered in (5.12).

The resulting equations of motion are

1√
−g
· δSvector

δW µ
= −∂µΛ = 0 , (5.27)

setting up the Lagrange multiplier as a (cosmological) constant, whereas

2√
−g
· δSvector

δgµν
= Tµν + Λgµν −Gµν = 0 (5.28)

are the Einstein field equations in this context. And finally, we have the e.o.m. for the
Lagrange multiplier

1√
−g
· δSvector

δΛ
= ∇g)

µW
µ − 1 = 0 , (5.29)

giving us back the constraint equation (5.12).
Also note that the equation of motion 5.29 or equivalently the constraint (5.12) can also

be viewed as a current non-conservation equation for the current W µ [133]. This leads to
a global charge

T (t) =

∫
d3x
√
−gW t(t,x) (5.30)

after an appropriate foliation of the spacetime. This global mode T of the charge is often
called cosmic time. One can calculate

Ṫ (t) =

∫
d3x ∂t

(√
−gW t(t,x)

)
=

∫
d3x

(√
−g − ∂i

(√
−gW i

))
=

∫
d3x
√
−g −

∮
B

dsi
√
−gW i

with the last integral in the second line taken over the boundary surface B of three-
dimensional space. In case that there is no flux going through that boundary, one can
write

T (t2)−T (t1) =

∫ t2

t1

dt

∫
d3x
√
−g , (5.31)

representing the invariant spacetime volume between times t1 and t2 [128, 133]. Further-
more, this cosmic time is a global degree of freedom present in the theory, additional to
the two graviton polarisations of standard GR. It is also canonically conjugated to the
cosmological constant. Moreover, T can be shifted by a constant

T (t) = T ′(t) + c , (5.32)

resulting from the gauge transformations (5.5) of the vector field V µ. As a consequence of
this shift symmetry of a coordinate, the corresponding canonical momentum, here Λ, is a
constant [134].
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5.3 Mimetic construction of the vector field theory
After having discussed the mimetic construction in 2, we will now confirm that it is indeed
the singular Jacobian determinant of the appropriate Weyl transformation (5.1) which
is responsible for introducing a new degree of freedom into the theory. Also, it is only
the exact functional form of the appearing derivatives of the vector field leading to a new
mimetic theory. To see this, we will calculate the appropriate derivative conformal coupling
in the case with the vector divergence term from [133] we will abbreviate as

D = ∇h)
ρ V

ρ (5.33)

with the vector field V ρ of conformal weight four and the covariant derivative ∇h)
ρ being

metric compatible with the auxiliary metric hµν . As a consequence we start with the
following Weyl transformation, a generalisation of (5.1),

gµν = C
(
∇h)
ρ V

ρ
)
hµν = C(D)hµν , (5.34)

C(D) being a general function of D , which we now want to determine by demanding that
the Jacobian determinant of this transformation is singular. The Jacobi matrix then looks
like

∂gµν
∂hαβ

= Cδαµδ
β
ν + hµν

∂C

∂D

∂D

∂hαβ
(5.35)

where we need to pay attention to the covariant derivative and also the derivatives of the
metric contained in it. To find ∂ψ

∂hαβ
, we use formula (3.4) of [133], for reference

δD = ∇h)
α δV

α +
1

2
hαβV λ∇h)

λ δhαβ . (5.36)

As we just need the variation with respect to the metric, we have

δD =
1

2
hαβV λ∇h)

λ δhαβ (5.37)

= ∇h)
λ

(
1

2
hαβV λδhαβ

)
− 1

2
hαβ∇h)

λ V
λδhαβ . (5.38)

The first term vanishes, as hαβδhαβ = 1
2
δ
(
hαβhαβ

)
= 0 and therefore

∂D

∂hαβ
= −1

2
hαβD . (5.39)

Inserting that in the Jacobi matrix (5.35), we have

∂gµν
∂hαβ

= Cδαµδ
β
ν −

1

2
hµν

∂C

∂D
hαβD . (5.40)

To evaluate the eigenvalue equation, we need to find the kinetic eigenvalue λ∗ (2.79), as
discussed there. We use that ξ∗αβ ∝ hαβ for convenience, as we will set the kinetic eigenvalue
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equation to zero anyways. Therefore we can simply multiply (5.40) by hαβ and extract the
kinetic eigenvalue

λ∗ = C − 2D
∂C

∂D
. (5.41)

As discussed, the Weyl transformation (5.34) is singular in the case that this kinetic ei-
genvalue vanishes, which gives us a simple differential equation for the unknown function
C(D). The solution is the expected

C(D) =
√

D =

√
∇h)
α V α , (5.42)

cf. (5.1), as stated in [133], finally proving that this indeed provides us with a new degree
of freedom as per the mimetic construction.

5.3.1 Mimetic theory emerging through an algebraic solution

This construction on how to get a new degree of freedom out of Weyl transforming a metric
is not the whole story, though. As the authors in [143] have argued, solving (5.41) set to
zero as a differential equation is not the only way for the kinetic eigenvalue to vanish. One
can also view these equations as algebraic equations and solve for certain values of D. The
result will also be a mimetic theory of gravity. In general, we are looking for any solution
of (2.79)

C = 2D
∂C

∂D
, (5.43)

which we will call D∗. Then, equivalent to the discussion of the case of mimetic matter
with a scalar field in [143], the constraint equation for the vector field V µ will be

∇h)
µ V

µ = D∗ . (5.44)

This leads to equation (5.43) having more than one solution.
In the following, we show concrete examples how this algebraic equation (5.43) could

be solved. We can make an ansatz for the function C, such that

C(D) = eaD (5.45)

with a general constant a. Then, inserting this ansatz into (5.43) will give us

D∗ =
1

2a
. (5.46)

An ansatz for a general polynomial of degree n looks like

C(D) = a0 + a1D + a2D
2 + · · ·+ anD

n , (5.47)

with constants ai, no Einstein summation convention intended. The equation (5.43) with
this ansatz will again give us a polynomial of degree n, namely

a0 − a1D − 3a2D
2 + · · ·+ (1− 2n)anD

n = 0 . (5.48)
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According to the fundamental theorem of algebra this polynomial has n complex roots, if
they are counted with the right multiplicity, but at least one [176]. Moreover, a polynomial
of odd degree has at least one real root. Whether there exist more real roots can be checked
with Sturm’s theorem, for example, but this should suffice to say that in most cases there
are solutions of this equation to be found [177].

There can also be found examples which do not admit (real) solutions, e.g.

C(D) =
√

1− a2D2 , (5.49)

as the solution of (5.43) results in 1 + a2D2 = 0, which does not have any solutions for
a, D ∈ R, not even for a, D ∈]0, 1[, when C(D) is real. But in the end, it is important that
the differential equation (5.43) does admit any solutions at all, be it general ones by directly
solving the differential equation, or specific ones by viewing it as an algebraic equation. All
of those examples serve to illustrate that there are many more ways to produce mimetic
theories than previously thought, like in [142].

5.4 Noether’s theorems and the vector field term
Now we will also investigate the question of the occurring Noether currents in the theory
with a vector field term from [133], with the basics discussed in 3.

5.4.1 First theorem

We start with the action with scalar field and vector field, cf. (5.20),

SV [hµν , χ, V
ρ,Λ] =

∫
d4x
√
−h
(
− Λ

72
χ4 +

Λ

2
∇αV

α

)
=

∫
d4x
√
−h
(
− Λ

72
χ4 +

Λ

2
∂αV

α − Λ

4
hµνV

α∂αh
µν

) (5.50)

with Lagrange multiplier Λ and a vector field V α with conformal weight four. Addition-
ally to the Weyl transformations (4.95) and (4.107), we can observe that (again following
subsection 1.1.3)

Λ→ Λ

V α → e4θV α , δV α = 4θV α

∇αV
α =

1√
−h

∂α

(√
−hV α

)
→ 1

e−4θ
√
−h

∂α

(
e−4θ
√
−he4θV α

)
= e4θ∇αV

α .

(5.51)

Inserting all this in (5.50), it is trivial to see that we again do not have a boundary term,
so Xα

(V ) = 0.
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And as usual, the current involving the equations of motion condenses to

Kα
(V ) =

∂LV
∂(∂αV µ)

δV µ +
∂LV

∂(∂αhµν)
δhµν . (5.52)

This can be easily calculated as

∂LV
∂(∂αV µ)

=
√
−h · 1

2
δαµ , δV α = 4θV α

⇒ ∂LV
∂(∂αV µ)

δV µ = 2
√
−hθV α

(5.53)

for the first term and

∂LV
∂(∂αhµν)

= −
√
−h · 1

4
hµνV

α , δhµν = 2θhµν

⇒ ∂LV
∂(∂αhµν)

δhµν = −2
√
−hθV α

(5.54)

for the second term, so that we see that they exactly cancel. And again the Noether current
for this Weyl symmetry is zero

Jµ(V ) = Kµ
(V ) −X

µ
(V ) ≡ 0 . (5.55)

5.4.2 Second theorem

We will have another look at the action (5.20), i.e. the action from [133]

(5.56)

SV, total[hµν , χ, V
ρ,Λ] = S[hµν , χ] + SV [hµν , χ, V

ρ,Λ]

= −
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ∂αχ∂βχ

)
−
∫

d4x
√
−h
(

Λ

72
χ4 − Λ

2
∇αV

α

)
,

recalling the definition of the action S[hµν , χ] (4.130) and the fact that Noether’s second
theorem is trivial for this part of the action, see (4.137). Noether’s second theorem for the
whole action SV, total[hµν , χ, V

ρ,Λ] looks like(
δS

δχ
+
δSV
δχ

)
· χθ +

δSV
δV α

· 4V αθ +

(
δS

δhµν
+
δSV
δhµν

)
· 2hµνθ = 0 , (5.57)

with the Weyl transformations (4.95) and (5.51) as appropriate. Note that the Lagrange
multiplier Λ is invariant under the Weyl transformations and does not enter. Again, we
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use for δS
δhµν

(4.134) and for δS
δχ

(4.135). The not yet calculated parts of the equations of
motion are

δSV
δhµν

=
√
−h
(

Λ

144
χ4 +

1

4
V α∂αΛ

)
hµν , (5.58)

δSV
δχ

= −
√
−h Λ

18
χ3 , (5.59)

δSV
δV α

= −1

2

√
−h∂αΛ . (5.60)

Evaluating Noether’s second theorem (5.57) results in all terms vanishing. This happens
in contrast to the case in the scalar mimetic theory, see (4.142). The reason for this is
that for the scalar theory, the Lagrange multiplier λ enters into Noether’s second theorem,
as it transforms under Weyl transformations of the auxiliary metric. Therefore, Noether’s
second theorem gives us back the constraint equation. Λ, the Lagrange multiplier in the
vector mimetic theory, is invariant under Weyl transformations and does not even enter
Noether’s second theorem.



Chapter 6

On the Strong CP Problem, QCD and
Axions

In the following chapter 7 we will discuss another form of mimetic theory [134], namely
with a gauge vector field. As we will see, the cosmological constant will turn up as an
integration constant again, but this time with a crucial axion-like coupling. This is similar
to the following concept in quantum chromodynamics, as Wilczek proposed [178]: “I would
like to briefly mention one idea in this regard, that I am now exploring. It is to do
something for the Λ-parameter very similar to what the axion does for the θ-parameter in
QCD, another otherwise mysteriously tiny quantity. The basic idea is to promote these
parameters to dynamical variables, and then see if perhaps small values will be chosen
dynamically.” So maybe this is a step in the right direction to resolve the question why the
cosmological constant is so small. Therefore, we will give a short exposition on theoretical
concepts of group theory, quantum chromodynamics (QCD) and axions we will need later
on.

At first, we will need to concentrate on a short introduction to group theory, as this
is crucial to understand the structure of non-abelian gauge theories. We will focus on
the concepts we need, mainly Lie groups and especially the special unitary group of N
dimensions SU(N).

6.1 A short introduction to group theory

The symmetries of laws of physics can be described by group theory and representation
theory of groups, especially those in quantum theories, particle physics and high energy
theory. And as we are going to borrow many concepts from quantum field theory, especially
quantum chromodynamics, we will give a short introduction to the ones relevant to this
work. This part is mostly summarized from [10,179].
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6.1.1 Lie groups and algebras

First and foremost, a group G consists of group elements {gα} which can be composed
together to form another element, see gγ = gα · gβ. This gγ will also be an element of the
group. Note that the order of the group elements matters. In the case that the group
elements commute, the group is called Abelian. This composition has to satisfy [10]

1. associativity, i.e. (gα · gβ) · gγ = gα · (gβ · gγ),

2. existence of an identity e, such that gα · e = e · gα = gα,

3. existence of an inverse g−1
α to every single element gα, such that gα ·g−1

α = g−1
α ·gα = e.

Another important concept is that of a representation D of a group. It provides a mapping
of the group elements onto linear operators, such that

1. the identity element of the group is mapped to the identity of the operation, D(e) =
Id,

2. and the composition of the group is transferred naturally to the multiplication in the
linear space of the group representation, i. e. D(g1 · g2) = D(g1)D(g2).

We will need the concept of a Lie group, where the group elements g(α) now depend
on one (or more) continuous parameter α, such that for α = 0 the group element reverts
to the identity, i.e. gα=0 = e. Now Sophus Lie’s idea was to look at infinitesimal group
elements Taylor expanded around the identity in a series. To get a finite group element,
infinitesimal elements have to be summed up, but only in linear order. This is of course
possible because the composition of two group elements comprise another group element.
In this Lie group, the representation of such an infinitesimal element dα looks like

D(dα) = 1 + i dαaTa , (6.1)

such that the representation of the finite group element α can be written as an exponential

D(α) = exp(iαaTa) . (6.2)

In both equations, the Ta are called the generators of the group. Those generators form
an algebra and can be shown to satisfy the following commutation relations

[Ta, Tb] = ifabcTc (6.3)

with the so-called structure constants fabc [179]. They are unique to the particular group
and describe its essential features near its identity. Note that a new group element is
formed by composition of two other group elements, while we get a new member of the
algebra by commuting two other members. Put more succinctly, a Lie algebra is a vector
space with the additional operation called the Lie bracket [·, ·]. The Lie bracket has to
fulfil certain properties, such as total antisymmetry and also the Jacobi identity

[Ta, [Tb, Tc]] + [Tb, [Tc, Ta]] + [Tc, [Ta, Tb]] = 0 . (6.4)
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But note that we do not need anything else than the structure constants. They com-
pletely determine the algebra, which in turn determines the Lie group, but only locally [10].
Also note that groups are normally written down with uppercase letters, like SU(N), but
the corresponding algebra is often called su(N), with lowercase gothic letters. Very often,
for reasons discussed above, we will omit the proper distinction and only refer to the group
SU(N).

6.1.2 Special unitary groups

Next, we will introduce the special unitary group SU(N) in N -dimensional space which
can be represented by matrices U by the condition

U †U = Id (6.5)

with † denoting Hermitian conjugation, i.e. the matrices U have to be unitary. Moreover,

detU = 1 , (6.6)

providing us with a subset of unitary matrices. Note that the bigger group U(N), the
unitary group without the condition (6.6), contains as subgroups SU(N) and U(1), the
Abelian group of phase factors eiα, which is for example important for charge conservation
in electromagnetism [10,179].

The group we will mostly need is SU(2). It occurs in quantum mechanics, especially in
the electron spin, but also in the electroweak interaction, where the symmetry group can
be written as SU(2)⊗U(1) [10,112]. Its algebra (6.3), which is sufficient to determine the
structure of the group locally, can be written as[

J j, Jk
]

= iεjklJ l (6.7)

with the generators J i of the algebra. This is the simplest structure we can write, with the
totally antisymmetric Levi-Civita symbol εjkl as the structure constants of the algebra [179].
Thus, the group SU(2) is locally isomorphic to the group SO(3) (an example of the special
orthogonal group), that is the group of rotations in three-dimensional space, meaning that
locally an element of SO(3) is related to an element of SU(2). There is one striking
difference though: this is only valid locally, as for a group element U ∈ SU(2) it is valid
that U and −U are mapped into the same element of SO(3). It is said that SU(2) is a
double cover of SO(3). Put differently: In SU(2) we need a rotation by 720◦ in order to
return to the original state. A rotation by only 360◦ leads to a minus sign. To give an
example of a representation of SU(2), we will need the Pauli matrices

σa =

(
0 1
1 0

)
, σb =

(
0 −i
i 0

)
, σc =

(
1 0
0 −1

)
. (6.8)

They satisfy the relation
σaσb = δab + iεabcσc . (6.9)
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Therefore we see that evaluating this gives us the commutator

[σa, σb] = 2iεabcσc (6.10)

and dividing by 4 on both sides results in[σa
2
,
σb
2

]
= iεabc

σc
2
. (6.11)

This shows us that the σi/2 ≡ Ji are the simplest possibility of representing SU(2). It
is the spin 1/2 representation and the defining one of SU(2). There exists another pop-
ular formulation of the SU(2) algebra, namely in raising and lowering operators J±, or
alternatively ladder operators. The corresponding set of operators are defined as

J± = Ja ± iJb and J3 = Jc . (6.12)

The corresponding commutation relations will be

[J3, J±] = ±J± (6.13)
[J+, J−] = 2J3 . (6.14)

The raising and lowering operators J± are constructed such that one can move between
the eigenstates of the J3 operator in discreet steps, mapping out the full spectrum from
the highest eigenstate to the lowest one [10].

Another important Lie group (and algebra) will be SU(3), the group of special unitary
matrices in three dimensions. Equivalent to the Pauli matrices of SU(2), there is a set
of matrices forming a representation of SU(3), called the Gell-Mann matrices [180], often
written as [10,179]

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0


λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0


λ3 =

1 0 0
0 −1 0
0 0 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(6.15)

As one can see, the λ1 to λ3 are just the Pauli matrices, written in 3 × 3 matrices. Also
note the non-intuitive order in which the matrices were summarised. This is because of
their properties and structure. λ3 and λ8 both are diagonal. λ1, λ2 and λ3 together form
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an SU(2) subgroup, as it is intuitive from them being extended Pauli matrices. λ4 and λ5

are similar to λ1 and λ2, but are found in the (1-3) sector of the 3×3 matrices, so to speak.
Similarly, λ6 and λ7 are in the (2-3) sector. Moreover, working out the commutators

[λ4, λ5] = i(λ3 +
√

3λ8) (6.16)

[λ5, i(λ3 +
√

3λ8)] = −4λ4 (6.17)

[λ4, i(λ3 +
√

3λ8)] = −4λ5 (6.18)

reveals that this new matrix generated of a linear combination of matrices λ3 and λ8

together with λ4 and λ5 provides us with a SU(2) subgroup. The same can be done for
λ6 and λ7 and another linear combination of λ3 and λ8. Therefore the conclusion is that
SU(3) contains three overlapping SU(2) subgroups. It is important to stress that they are
overlapping, though, because SU(3) 6= SU(2)⊗ SU(2)⊗ SU(2) [10].

Similar to the group SU(2), the generators of the algebra will be

Ta =
λa
2
, (6.19)

such that the Lie bracket of the su(3) algebra will be (cf. (6.3))[
λa
2
,
λb
2

]
= ifabc

λc
2
. (6.20)

The structure constants are not quite as trivial as the ones for su(2), but nevertheless they
retain their totally antisymmetric property. The non-vanishing structure constants are [10]

f123 = 1

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2

f458 = f678 =

√
3

2
.

(6.21)

To better understand the structure of SU(3), we will redefine the generators Ta, following
the idea of the raising and lowering operators of SU(2), see (6.12). This will give us [10]

I± = T1 ± iT2 (6.22)
U± = T6 ± iT7 (6.23)
V± = T4 ± iT5 (6.24)
I3 = T3 (6.25)

Y =
2√
3
T8 . (6.26)

Note that in particle physics, Y is known as the hypercharge, and I3 as the third component
of isospin. Commuting the now defined matrices with each other results in the following
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relations [10]

[I3, I±] = ±I± , [I3, U±] = ∓1

2
U± , [I3, V±] = ±1

2
V± (6.27)

[Y, I±] = 0 , [Y, U±] = ±U± , [Y, V±] = ±V± (6.28)
[I+, I−] = 2I3 (6.29)

[U+, U−] =
3

2
Y − I3 =

√
3T8 − T3 ≡ 2U3 (6.30)

[V+, V−] =
3

2
Y + I3 =

√
3T8 + T3 ≡ 2V3 (6.31)

[I+, V−] = −U− (6.32)
[I+, U+] = V+ (6.33)
[U+, V−] = I− (6.34)
[I+, V+] = 0 (6.35)
[I+, U−] = 0 (6.36)
[U+, V+] = 0 . (6.37)

The rest of the commutators can be derived from Hermitian conjugation. Furthermore,
from the equations (6.29), (6.30) and (6.31) one can also see that SU(3) indeed contains
three overlapping SU(2) subalgebras, with the I+ as the raising operator, I− as the lowering
operator and I3 as I-spin in the z-direction. This scheme is equivalent for the U and V
matrices.

6.2 About QCD, the strong CP problem and the axion
We will now give a short exposition to the strong CP problem and its resolution by axions,
as the terminology, method and idea behind it is an integral part of our topic. This is
mainly based on [5, 55,181,182].

At the heart of this discussion lies the more elaborate vacuum structure of non-abelian
gauge theories, alongside with the chiral anomaly. This anomaly comes about as follows:
Classically we would expect an axial symmetry of U(1)A, corresponding to a conservation
of the associated axial current Jµ5 which is expressed by

∂µJ
µ
5 = 0 . (6.38)

But experimentally the consequences of that symmetry were not observed, so it was sug-
gested that that symmetry did not truly exist in the first place [55,183]. This is now where
the chiral anomaly comes into play. In the quantum picture there are certain loop graphs
which modify the classical picture, such as the one-loop triangle diagram consisting of a
quark loop [181], shown in 6.1. Carefully calculating the current, analogously to [181], will
produce a different result than in the classical case, namely

∂µJ
µ
5 =

g2N

32π2
F µν
a F̃ a

µν (6.39)
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q

Figure 6.1: Schematic one-loop diagram of gluons responsible for the chiral anomaly, coup-
ling a chiral current φ to two gluons g via a quark loop [184]

where N is the number of flavours and g the coupling constant [55]. Also note that F̃ a
µν

describes the dual tensor
F̃ a
µν =

1

2
εµναβF

aαβ . (6.40)

So in the end, the chiral anomaly affects the action even under a U(1)A transformation

qf → qfe
iαγ5/2 , (6.41)

namely as

δS = α

∫
d4x ∂µJ

µ
5 = α

g2N

32π2

∫
d4xF µν

a F̃ a
µν . (6.42)

But then one notices that this pseudoscalar density F µν
a F̃ a

µν can be written as a total
divergence

F µν
a F̃ a

µν ≡ ∂µK
µ (6.43)

with the so-called Chern-Simons current [185,186]

Kµ = εµαβγAaα

(
F a
βγ −

g

3
fabcA

b
βA

c
γ

)
(6.44)

with the gauge field Aaα and the structure constants fabc of the relevant Lie algebra (SU(3)
in the case of the colour indices of QCD). But this means that the action can be written
as a total surface integral

δS = α
g2N

32π2

∫
d4x ∂µK

µ = α
g2N

32π2

∫
dσµK

µ. (6.45)

Under the boundary condition Aµa = 0 at spatial infinity one would assume that this surface
integral vanishes. But this turns out to be a bit too short-sighted and one really needs to
take into account that the vacuum can also be described by

A0 = 0, Ai =
i

g
(∂iU)U−1 (6.46)

with an arbitrary time-independent and unitary matrix U(x). These configurations are
called pure gauges [5, 55, 182]. But these U(x) are not all equivalent, instead they can
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be categorized into homotopy classes, depending on whether there exists a nonsingular
continuous transformation between them or not. One can prove that the vacua belonging
to different homotopy classes are topologically inequivalent. Indeed, using the concept of
winding numbers, one realises that

U(χ, e) = cos(nχ)1− i(e · σ) sin(nχ) (6.47)

with e = (e1, e2, e3) is the unit vector and σ = (σ1, σ2, σ3) the three Pauli matrices organ-
ized in a vector. n ∈ Z turns out to be the winding number [5].

But those topologically different n-vacua can be combined in the true vacuum, called
the θ-vacuum, as follows:

|θ〉 =
∑
n

e−inθ|n〉 . (6.48)

One can then calculate that the supposed boundary term measures exactly the difference
in winding number

n|t=+∞−n|t=−∞=
g2

32π2

∫
dσµK

µ|t=+∞
t=−∞ . (6.49)

Therefore, the non-trivial vacuum structure of the QCD vacuum necessitates the inclusion
of gauge field configurations with different winding numbers. So one has to incorporate the
supposed boundary term proportional to F µν

a F̃ a
µν into the QCD action such that [55,182]

Seff [A] = SQCD + θ
g2

32π2

∫
d4xF µν

a F̃ a
µν . (6.50)

This topologial term is not only CP-violating, but it also has observational consequences
on the electric dipole moment of the neutron (EDM). As so far no EDM has been found,
one can measure the upper bound on the parameter θ, which gives current best results as
|dn|< 0.18× 10−25e cm, such that the constraint on θ itself is θ . 10−10 [115]. It cannot be
exactly zero, because then CP would be conserved, so the question of why this parameter
should be so small is known as the strong CP problem. This is even made worse by the
fact that by including the weak interaction and quark masses with the help of the quark
mass matrix M , θ will change to the physically observable

θ = θ̄ + arg detM (6.51)

where θ̄ is the pure QCD θ-parameter. So the fine tuning problem even amounts to the fact
that θ̄ and arg detM need to almost precisely cancel against each other, both dimensionless
and originating from two different theories, which is highly unlikely [55].

In the search for a “natural” solution to this without any fine tuning involved, a dynam-
ical process has been suggested, resulting in a new particle called the axion. This comes
about by introducing a new global chiral symmetry U(1)PQ, the so-called Peccei-Quinn
symmetry [187], which is spontaneously broken and by the Goldstone theorem a massless
boson is produced, namely the axion a(x), which transforms under U(1)PQ as

a(x)→ a′(x) = a(x) + αfa (6.52)
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with the axion decay constant or order parameter fa and α a constant to be determined
[55,184]. Therefore, the Lagrangian has to be completed to

L = LSM + θ̄
g2

32π2
F µν
a F̃ a

µν +
1

2
∂µa∂

µa+ Lint

[
∂µa

fa
; Ψ

]
+ ξ

a

fa

g2

32π2
F µν
a F̃ a

µν (6.53)

with the anomaly coefficient ξ depending on the PQ charges of the quarks. The Standard
Model Lagrangian LSM and the following Chern-Simons term with QCD θ̄ is complemented
with the axion kinetic term, an interaction Lagrangian Lint between axion and matter Ψ
and the new term also representing a chiral anomaly

∂µJ
µ
PQ = ξ

g2

32π2
F µν
a F̃ a

µν , (6.54)

which is at the same time an effective potential for the axion field. Important to determine
is the θ dependence of the QCD vacuum expectation value (VEV) at the value of the shifted
axion a′. Therefore we need the expectation value of the effective potential evaluated over
the gauge fields Aµ in the state a′

Veff(〈a′〉) = − ξ

fa

g2

32π2
〈a′|a′F µν

a F̃ a
µν |a′〉 . (6.55)

Due to instanton effects in the QCD vacuum, i.e. the vacuum being a θ-vacuum (6.48),
the expectation value of the field strength tensor term can be approximated as a periodic
function [55,182]

Veff(〈a′〉) ∼ − cos

(
θ̄ + ξ

〈a〉
fa

)
, (6.56)

This vacuum is obviously minimised when the argument of the cosine vanishes, by definition
at 〈a′〉 = 0, which is, using (6.52),

〈a〉 = −fa
ξ
θ̄ . (6.57)

If we write the Lagrangian L (6.53) in terms of the physical axion value a′ = a + 〈a〉, we
see that the CP violating term proportional to θ̄ vanishes and therefore the strong CP
problem is solved dynamically [55,184].
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Chapter 7

Gauge Vector Mimetic Gravity

After the vector field of unusual weight four was introduced to model a cosmological con-
stant in a mimetic theory [133], other possibilities were investigated. Among them is the
topic of this chapter: A theory of mimetic gravity obtained by introducing a gauge vector
field, following [134]. The aim also in this case was to produce a theory with a cosmological
constant via the traceless Einstein equations, as discussed in 1.2.4.

Also for this model one can review the mimetic construction, indeed verifying that
the proposed Weyl transformation (7.1) is the only one 7.3. Also the Noether currents
were calculated 7.4. Moreover, this incarnation of the mimetic theories possesses a crucial
axionic coupling, as we will see, opening up new possibilities in constructing a cosmological
constant. This will be the topic of 7.2 and 7.5, building on the concepts of chapter 6.

7.1 Constraint and equations of motion
In this introduction to the theory we will follow [134] if not mentioned otherwise. The
proposed Weyl transformation is

gµν = hµν

√
FαβF̃αβ (7.1)

where
Fαβ = ∂αAβ − ∂βAα (7.2)

is the field strength tensor built out of the U(1) gauge field Aµ, whereas F̃αβ describes the
field strength tensor dual to Fαβ with definition

F̃αβ =
1

2
EαβµνFµν =

1

2

εαβµν√
−h

Fµν . (7.3)

We can see the Levi-Civita symbol εαβµν and the corresponding Levi-Civita tensor

Eαβµν =
εαβµν√
−h

, (7.4)



104 7. Gauge Vector Mimetic Gravity

defined w.r.t. the auxiliary metric hµν . One can also rewrite (7.1) as

gµν =
hµν

(−h)1/4

√
P (7.5)

with the Chern-Pontryagin density [185]

P =
1

2
εαβµνFαβFµν = 2εαβµν∂αAβ∂µAν (7.6)

which is obviously insensitive to the metric used. Furthermore, we can rewrite

FαβF̃
αβ = Eαβµν

(
∇h)
α Aβ

)
Fµν = ∇h)

α

(
EαβµνAβFµν

)
. (7.7)

This second equality holds because ∇h)
α

(
EαβµνFµν

)
= 0 merely is the Bianchi identity, cf.

(1.26). As one can see from the last equality in (7.7), one can actually view this as the
divergence of a vector field, the so-called Chern-Simons current [185]

Cα = EαβµνAβFµν = 2F̃αβAβ = 2EαβµνAβ∇h)
µ Aν = 2EαβµνAβ∂µAν , (7.8)

with a few more useful identities included. Comparing this with the original ansatz for
this mimetic theory with a gauge vector field, (7.1), this turns into

gµν = hµν

√
∇h)
α Cα , (7.9)

now reminiscent of the theory in [133], but now we know that the vector field V µ introduced
there can be viewed as the Chern-Simons current. Nevertheless, we have to stress that in
the theory with a gauge vector field the dynamic variables are in truth Aµ, hαβ and not
Cµ, hαβ, as it would have been in the theory with the vector field of conformal weight four.

Once more, the Weyl transformation (7.1) is performed on the Einstein-Hilbert action
(1.59) of General Relativity as a seed theory, i.e.

Sgauge[hµν , Aα,Φm] = Sseed[gµν(hαβ, Aρ),Φm] (7.10)

such that its gravitational part is

Sgauge[hµν , Aα] = −1

2

∫
d4x
√
−h

(FαβF̃αβ
)1/2

R(h) +
3

8
·

(
∇h)
µ

(
FαβF̃

αβ
))2

(
FσρF̃ σρ

)3/2

 , (7.11)

comprising a novel theory. The equations of motion for this theory can be derived in the
usual way, by varying the action

δSgauge =
1

2

∫
d4x
√
−g (Tµν −Gµν) δg

µν + boundary terms (7.12)
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with the Einstein tensor Gµν (1.29) defined for the physical metric gµν . Calculating the
equations of motion for the gauge field Aµ results in

1√
−h

δSgauge

δAν
= F̃ µν∂µ(T −G) = 0 . (7.13)

In case the inverse of the dual field strength tensor exists, this again means that G− T =
const, cf. (1.172). The modified Einstein field equations are then

1√
−g

δSgauge

δhαβ
=

2√
FαβF̃αβ

[
Tαβ −Gαβ −

1

4
(T −G)gαβ

]
= 0 . (7.14)

If one considers the e.o.m. of the gauge vector we get back the trace-less Einstein field
equations with the cosmological constant as an integration constant once more, if one
combines (7.13) and (7.14)

Gαβ − Tαβ −
1

4
(G− T )gαβ = 0 . (7.15)

Those are obviously symmetric under the following shifts of the energy-momentum tensor

Tµν → Tµν + Λgµν , (7.16)

therefore being equivalent to the equations of motion of unimodular gravity, as discussed
in 1.2.4. So also this theory provides us with Mimetic Dark Energy [134].

Concerning the built-in constraints inherent in mimetic theory, like (2.3) and (5.12), we
first need the definition of a Hodge-dual tensor of the field strength

F ?αβ =
1

2

εαβµν√
−g

Fµν , (7.17)

this time defined w.r.t. the physical metric gµν . Then, the corresponding mimetic con-
straint for the theory with a gauge field is

FαβF
?αβ = 1 . (7.18)

Also this constraint is an inherent quality of the theory which also holds off-shell, as can
be made obvious from the definitions of the quantities involved. Once more, from the Weyl
transformation (7.1) the square root of the metric determinant transforms as

√
−g =

√
−hFαβF̃αβ , (7.19)

where F̃αβ is defined w.r.t. the metric hµν , for emphasis. Then we can write, with the help
of the dual tensor (7.3) and the Hodge star dual (7.17)

FαβF
?αβ = FαβFµν ·

1

2

εαβµν√
−g

= FαβFµν ·
1

2

εαβµν
√
−h · 1

2
FρσFλκ

ερσλκ√
−h

≡ 1 , (7.20)
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thereby completing the proof. Further details about this theory and its axionic coupling
can be found in 7.2 and 7.5.

Another comment needs to be made on the Chern-Simons current (7.8) being not gauge
invariant under the usual U(1) gauge transformations like

Aµ = A′µ + ∂µθ . (7.21)

If applied to the Chern-Simons current, the current transforms inhomogeneously as

Cµ = C ′µ + 2F̃ µν∂νθ . (7.22)

Nevertheless, as
∇h)
µ

(
F̃ µν∂νθ

)
= 0 , (7.23)

the divergence of the Chern-Simons current stays unchanged by U(1) transformations. The
importance of this is the following: We recall that the gauge transformations (5.5) of the
vector field leads to the shift symmetry of the cosmic time (5.30), which is canonically
conjugated to the cosmological constant. So naturally, in our search for a cosmological
constant, we would like those gauge transformations work equally well in our theory with
the gauge field.

7.2 Gauge invariant representation and axionic cosmo-
logical constant

One can reformulate the gauge vector theory in a scalar-vector-tensor form, similar to how
it was already done in [133] for the vector field of conformal weight four. Also in this section
we will follow [134], if not mentioned otherwise. The appropriate Weyl transformation is,
as a reminder, (7.1)

gµν = hµν

√
FαβF̃αβ . (7.24)

And once more, similar to (5.17) and (5.19), we can redefine the scalar quantity FαβF̃αβ

with the help of

FαβF̃
αβ =

(
χ2

6

)2

. (7.25)

This will allow us to write the scalar χ as a dynamical variable and at the same time
eliminate the higher derivatives. At some point we will need to enforce the definition
(7.24) with the help of a Lagrange multiplier λ. Then, the action (7.11) will transform to

Sgauge[hµν , χ, Aρ, λ] =

∫
d4x
√
−h
[
−1

2
(∂χ)2 − 1

12
χ2R(h)− λ

72
χ4 +

λ

2
· FαβF̃αβ

]
(7.26)

As the original formulation was Weyl-invariant, this one should be, too. Moreover, as
another consequence, this also requires the Lagrange multiplier λ to be Weyl-invariant.
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In [133] it was already noticed that the first three terms are equivalent to Dirac’s Weyl-
invariant gravity [175]. But one should notice that the kinetic term of the scalar field has
the wrong sign, i.e. is a ghost. And furthermore, the Lagrange multiplier field λ has the
same coupling ∝ λFαβF̃

αβ as the one coupling the axion to the chiral anomaly in QCD.
Exploring the possibilities of that coupling will be the topic of 7.2 and 7.5.

Under the Weyl-transformation of the hµν the variables transform like

hµν = Ω2(x)h′µν , (7.27)
χ = Ω−1(x)χ′ , (7.28)
Aµ = A′µ , (7.29)
λ = λ′ . (7.30)

Depending on that information, one can introduce a set of new independent variables
{gµν , Aµ,Λ, χ} with the relations

gµν =
χ2

6
· hµν ,

Λ =
λ

2
.

(7.31)

which are now gauge-invariant. Inserting them in the action (7.26) will result in

Sgauge[gµν , Aρ,Λ] =

∫
d4x
√
−g
[
−1

2
R(g) + Λ

(
FαβF

?αβ − 1
)]

, (7.32)

where the constraint (7.18) with respect to the Hodge dual F ?αβ is now directly enforced
by the Lagrange multiplier, while we recall that this version of the Hodge dual is defined
using the physical metric gµν , see (7.17).

In this action (7.32) we also encounter the axionic coupling of the Lagrange multiplier
Λ to the field strength term Fµν and its Hodge star dual. But note that there is no kinetic
term for the gauge field present in the action, unlike for the normal QCD axion. The
equations of motion can also be calculated for action (7.32), such that for variation w.r.t.
Λ we get

FαβF
?αβ = 1 , (7.33)

so exactly the constraint equation (7.18), of course. The equation of motion for the gauge
field Aµ yields

1√
−g
· δSgauge

δAν
= −4∇g)

µ

(
ΛEαβµν∇g)

α Aβ
)

= 4F ?νµ∂µΛ , (7.34)

with Eαβµν being the Levi-Civita tensor as defined in (7.4), but with the metric determinant√
−g instead of

√
−h. Meanwhile, the corresponding variant of the Einstein field equations

is
2√
−g
· δSgauge

δgαβ
= Tαβ + Λgαβ −Gαβ = 0 , (7.35)
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with the Lagrange multiplier being the cosmological constant. From the e.o.m. for the
gauge vector field (7.34) we can conclude that Λ = const, if the dual F̃αβ is invertible,
which we need if the constraint (7.18) holds.

7.3 Mimetic construction of the gauge vector term

Now we can again explicitly use the mimetic construction discussed in 2 to check that
this indeed leads to the proposed Weyl transformation (7.1). In this case, we will use the
abbreviation

Ξ = FαβF̃
αβ (7.36)

with the field strength tensor Fαβ (7.2) in terms of the gauge vector Aα and its dual F̃αβ

(7.3). Then the general Weyl transformation we want to investigate is

gµν = C
(
FαβF̃

αβ
)
hµν (7.37)

with C a general function of Ξ. The calculation of the Jacobian determinant of this Weyl
transformation (7.37) is straightforward, starting from

∂gµν
∂hαβ

= Cδαµδ
β
ν + hµν

∂C

∂Ξ

∂Ξ

∂hαβ
. (7.38)

Equivalent to the calculation above, cf. (5.38), we have

∂Ξ

∂hαβ
= −1

2
hαβΞ . (7.39)

Inserting this in (7.38) results in

∂gµν
∂hαβ

= Cδαµδ
β
ν −

1

2

∂C

∂Ξ
Ξhαβhµν . (7.40)

To find λ∗ we follow the same steps as above, i.e. multiplying by hαβ, yielding the kinetic
eigenvalue

λ∗ = C − 2
∂C

∂Ξ
Ξ . (7.41)

Setting this to zero again and solving the differential equation exactly produces what we
were looking for, namely

C(Ξ) =
√

Ξ =

√
FαβF̃αβ , (7.42)

just like it was expected from [134]. The discussion of algebraic solutions of (7.39) follows
the same path like the one in 5.3.1, just with D replaced by Ξ.
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7.4 Noether’s theorems and the field strength term
Also for this theory, Noether’s theorems can be discussed, while the general introduction
to the concepts can be found in 3.

7.4.1 First theorem

We need the action involving the gauge field term, from [134], cf. (7.26),

SF [hµν , χ, Aρ,Λ] =

∫
d4x
√
−h
(
− Λ

72
χ4 +

Λ

2
FαβF̃

αβ

)
(7.43)

with the field strength tensor Fαβ (7.2) of some gauge vector field Aα and its dual tensor
F̃αβ (7.3). The definition of th scalar field χ, meanwhile, is enforced via the Lagrange
multiplier Λ to be (7.25)

χ4

36
= FαβF̃

αβ . (7.44)

The action can be rewritten as

SF [hµν , χ, Aρ,Λ] =

∫
d4x

(
− Λ

72

√
−hχ4 +

Λ

4
εαβµνFαβFµν

)
. (7.45)

As εαβµν stays the same in all frames, we can infer that

Fµν → Fµν

⇒ Aµ → Aµ .
(7.46)

So the explicit Weyl transformation yields the exact same action, without needing a bound-
ary term, so Xα

(F ) = 0.
Finally, the explicit calculation of the current using the equations of motion is trivial in

this case, as there are not even first derivatives of transforming quantities in this action.
In the end,

Jµ(F ) = Kµ
(F ) −X

µ
(F ) ≡ 0 . (7.47)

7.4.2 Second theorem

Next, we want to examine whether Noether’s second theorem for this action with the gauge
vector term gives us any new information. As we have done it for the theory with the vector
field, see (5.56), we decompose the action with the field strength tensor Fµν into

(7.48)

SF, total[hµν , χ, Aρ,Λ] = S[hµν , χ] + SF [hµν , χ, Aρ,Λ]

= −
∫

d4x
√
−h
(

1

12
R(h)χ2 +

1

2
hαβ∂αχ∂βχ

)
−
∫

d4x
√
−h
(

Λ

72
χ4 − Λ

2
FαβF̃

αβ

)
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and repeat this calculation. Again, note that we will take S[hµν , χ] as in (4.130) with the
known consequence of Noether’s second theorem for this part vanishing, see (4.137). The
Weyl transformation is essentially the same as above, eq. (4.136), but the transformation
of the vector field V µ gets replaced by

Aµ → Aµ , (7.49)

so Noether’s second theorem for the total action SF, total[hµν , χ, Aρ,Λ] simplifies in this case
to (

δS

δχ
+
δSF
δχ

)
θχ+

(
δS

δhµν
+
δSF
δhµν

)
· 2θhµν = 0 . (7.50)

We remind ourselves that the action term explicitly including the field strength tensor
is
∫

d4x Λ
4
εαβµνFαβFµν , using the definition of the dual field strength tensor (7.3), and

therefore contains neither the metric nor the scalar field χ, so we can neglect this term in
our further calculations. The relevant parts of the equations of motion are

δSF
δhµν

=
√
−h Λ

144
χ4hµν , (7.51)

δSF
δχ

= −
√
−h Λ

18
χ3 . (7.52)

Again, we notice that Noether’s second theorem is trivially satisfied, for the same reason
that was discussed in 5.4.2 for the theory with the vector field.

7.5 Axionic cosmological constant — non-abelian gen-
eralisation

The next task will be to generalize our theory to non-abelian gauge symmetries, especially
with SU(N) gauge groups. We will sum up the reasons why this is indeed a natural
idea [134].

1. The vacuum structure in non-abelian gauge theories is much more intricate, giving
rise to new degrees of freedom.

2. Axionic couplings, like we have in our theory, are much more common in non-abelian
gauge theories.

3. Standard couplings of the gauge field to matter are much easier to introduce with
the now more usual gauge field Aµ instead of the vector field V µ.

So at first we will discuss the general structures of a non-abelian theory. As usual, the
non-abelian gauge field is expanded in the group generators Ta, such that

Aµ = AaµTa . (7.53)
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We will also need a covariant derivative

Dµ = ∂µ + igAµ (7.54)

with self-coupling constant g. Then we can define the usual field strength tensor

Fµν = DµAν −DνAµ = ∂µAν − ∂νAµ + ig[Aµ,Aν ] (7.55)

alongside its Hodge dual (compare to (7.3))

F̃ µν =
1

2
EαβµνFαβ (7.56)

with the usual definition of the Levi-Civita tensor (7.4). The Weyl transformation of the
physical metric is then generalized to

gµν =

√
TrFαβF̃ αβ · hµν , (7.57)

very similar to the abelian theory (7.1), with the trace Tr over the colour indices. The
Chern-Simons current

Cµ = TrEµαβγ

(
FαβAγ −

2ig

3
AαAβAγ

)
(7.58)

follows, equivalent to the abelian theory (7.8), but note that the second term arises due
to the non-abelian nature of the theory. Similar to the cases with the vector and the
abelian gauge vector, we can look of gauge transformations of the non-abelian gauge vector,
namely [5]

Aµ → UAµU
−1 +

i

g
∂µU U

−1 (7.59)

with a Hermitian matrix U(x). Also note that the field strength tensor is gauge invariant,
i.e. it will transform homogeneously as

Fαβ → UFαβU
−1 . (7.60)

Then, the Chern-Simons current will change as

Cµ → Cµ +
2i

g
TrEµαβγ∂αAβU

−1∂γU ≡ Cµ + εµ (7.61)

using the cyclicity of the trace and the properties of the Levi-Civita symbol. The last
equality defines the vector εµ, which should be divergenceless. We see with the help of the
formula (1.36) for the divergence and the definition of the Levi-Civita tensor (7.4) that
indeed

∇µε
µ =

2i

g

1√
−g

∂µ
(
Trεµαβγ∂αAβU

−1∂γU
)

= 0 , (7.62)
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as all occurring combinations of double partial derivatives, e.g. ∂µ∂αAβ, are symmetric,
therefore they are cancelled by contraction with the totally antisymmetric symbol εµαβγ.
As already discussed for the abelian case in 7.1, the Chern-Simons current will change
under gauge transformations, but the divergence will stay the same. Furthermore, the
generalisation of the action in gauge invariant variables is straightforward and results in

S[g,A,Λ,Φm] =

∫
d4x
√
−g
[
−1

2
R(g) + Λ

(
TrFαβF

?αβ − 1
)]

+ Sm[g,Φm] (7.63)

with matter fields Φm and the Hodge star dual now defined w.r.t. the metric gµν , just as
in (7.17) [134].

At first, we will explain the general ansatz for a field strength tensor of non-abelian
gauge fields, defined as

Fµν = ∂µAν − ∂νAµ + ig[Aµ,Aν ] (7.64)
= ∂µTaA

a
ν − ∂νTaAaµ + ig[Tb,Tc]A

b
µA

c
ν (7.65)

= Ta
(
∂µA

a
ν − ∂νAaµ − gfabcA

b
µA

c
ν

)
(7.66)

≡ TaF a
µν . (7.67)

with the group generators Ta and the commutation relation for them, namely

[Ta,Tb] = if cabTc , (7.68)

with the structure constants f cab of the Lie algebra, see (6.3).

7.5.1 Existence of solutions for SU(2)

So far this discussion has been valid for all groups, but let us now specialize to the special
unitary group SU(2), see also the discussion in 6.1.2. This part is taken and expanded
from [134,188]. We will set up a general basis eαa in our spacetime. The greek indices will
denote the usual spacetime indices, while a describes the index reserved for the internal
group space, i.e. it refers to the generators of the Lie group. Also note that a 3 + 1 split
of spacetime into a time function t and several spatial hypersurfaces for each moment in
time. In every coordinate system the following is valid [6]

Lte
α
a = 0 . (7.69)

In this equation, Lt describes the Lie derivative (1.22) w.r.t. time t. Note that although
the Lie derivative is usually defined along a vector field, one can view this as Lie derivative
along a curve parametrised by time. Also notice that from

0 = Ltδ
b
a = Lt

(
eαae

b
α

)
= eαaLte

b
α + ebαLte

α
a (7.70)

it follows that this equation is also valid for one-forms, i.e.

Lte
a
α = 0 . (7.71)
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We can then choose that

ea0 = 0 , (7.72)
∂0e

a
µ = 0 , (7.73)

such that the time components are set to zero. Therefore we are left with the three spatial
components of the basis. So we can use the ansatz for the gauge field

gAaµ = αeaµ , (7.74)

where g is the coupling constant of the theory while α denotes a scalar field depending
on spacetime coordinates. Note that this equation is merely an identification in a certain
gauge, as the components of the gauge field Aaµ transform under SU(2), while the basis
vectors eaµ do not. Using this decomposition we can calculate the field strength tensor
(7.55), using the Levi-Civita symbol as the structure constants of SU(2) (6.7)

gF a
µν = ∂µ (αeaν)− ∂ν

(
αeaµ
)
− α2εabce

b
µe
c
ν (7.75)

= 2∂[µαe
a
ν] + 2α∂[µe

a
ν] − α2εabce

b
µe
c
ν (7.76)

where in the first term of the second line the derivative acts only on α and the antisym-
metrisation is defined as

∂[µe
a
ν] ≡

1

2

(
∂µe

a
ν − ∂νeaµ

)
. (7.77)

The Pontryagin class (7.6) can be calculated as follows

g2

2
εµνσρF a

µνF
b
σρδab = −2α2∂µαe

a
νe
b
σe
c
ρεabcε

µνσρ + 4α∂µαe
a
ν∂σe

b
ρε
µνσρδab (7.78)

= −2α2α̇eai e
b
je
c
kεabcε

ijk + 4αα̇eai ∂je
b
kε
ijkδab . (7.79)

The symmetry of the Levi-Civita symbol was used to simplify calculations. In the last
equality the dot ˙ is another way of writing the time derivative ∂0 and therefore the four-
dimensional Levi-Civita symbol reduces to the three-dimensional one, as those terms are
the only ones which remain, as per (7.72) and (7.73). Also notice that in the case of a
non-abelian gauge theory, it was used that [10]

Tr (TaTb) =
1

2
δab . (7.80)

One can then define a quantity β as

2eai ∂je
b
kε
ijkδab = −βeai ebjeckεabcεijk. (7.81)

So switching j and k indices on the left-hand side (but not for the Levi-Civita symbol)
gives:

2eai ∂ke
b
jε
ijkδab = −βeai ebkecjεabcεijk (7.82)

= +βeai e
b
je
c
kεabcε

ijk (7.83)
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after renaming j and k and using the antisymmetric properties of εijk. Therefore we can
write

eai
(
∂je

b
k − ∂kebj

)
εijkδab = −βeai ebjeckεabcεijk . (7.84)

At the same time we know by definition [189]

∂je
b
k − ∂kebj ≡ cbrse

r
je
s
k (7.85)

with the coefficients of anholonomy cbrs. Despite their appearance, note that they do not
form a tensor. Moreover, they are exactly zero when the basis is a coordinate basis. In
general, for the dual basis eα, all possible commutators between basis vectors have to
vanish

[eα, eβ] = 0 (7.86)

for a holonomic (coordinate) basis. Combining eqs. (7.85) and (7.84), we arrive at

eai e
b
je
c
kcabcε

ijk = βeai e
b
je
c
kεabcε

ijk . (7.87)

With the help of the determinant e of the frame fields

6e = eai e
b
je
c
kεabcε

ijk (7.88)

we can write β as

β =
1

6e
eai e

b
je
c
kcabcε

ijk . (7.89)

Inserting this together with (7.81) into (7.79) will then result in

g2

2
εµνσρF a

µνF
b
σρδab = −12α(α + β)eα̇ . (7.90)

If we use the mimetic constraint equation (7.18) we can combine the equations into the
result

−g2
√
−g = 12α(α + β)eα̇ . (7.91)

The general solution will be

α3 +
3

2
α2β = −g2

4e

∫ √
−g dt . (7.92)

We observe that this is a cubic polynomial, therefore we can try to find real solutions for
this. If we define the function

f(α, t) = α3 +
3

2
α2β +

g2

4e

∫ t

t0

√
−g dt̃ (7.93)

we can find solutions for t = t0 and t < t0. In fig. 7.1 we display the solutions for positive β,
while in fig. 7.2 the same is done for negative beta. In both cases, the solid line represents
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- 3 β

2

α

f (α, t)

Figure 7.1: Function f(α, t) for β > 0.
Solid line for t = t0, dashed and dotted lines
indicate time evolution upwards.

- 3 β

2
-β

α

f (α, t)

Figure 7.2: Function f(α, t) for β < 0.
Solid line for t = t0, dashed and dotted lines
indicate time evolution upwards.

the starting point at t = t0, showing two different solutions for α. If we increase time t,
while assuming that

g2

4e

∫ t

t0

√
−g dt̃ > 0 , (7.94)

we can schematically see in both figures the time evolution of the curve from solid over
dashed to dotted line. In other words, time evolution shifts the curve upwards. Notice
that for β > 0 the initial two solutions immediately reduce to only one, leaving us with
an unambiguous solution. For β < 0 this is not so easy however. We see in fig. 7.2 that
the initial two solutions will become three for a while, before reducing to two. This second
double root will happen for

g2

4e

∫ t

t0

√
−g dt̃ = −1

2
β , (7.95)

which can be found by calculating the local minimum of the function at α = −β. If
the whole integral expression finally becomes larger than −1/2 β, we will finally have
one unambiguous solution once again. On the other hand, note that we do not have a
continuous transition from one solution to the next. As soon as the two solutions for
positive α have merged into one, they vanish completely and the only solution left is the
one for negative α, but the jump between them is discrete. Also, if we consider also going
backward in time, in fig. 7.1 we will encounter a similar problem with the continuity
between solutions.

7.5.2 Existence of solutions for SU(3)

As we have seen, solutions of the mimetic constraint equation (7.18) exist in the case of
the non-abelian group SU(2). But now the question arises, whether this is also true for
other special unitary groups, so let us consider SU(3). As we have already seen in the
introduction to group theory 6.1.2, SU(3) contains three overlapping SU(2) subalgebras.
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For example, the SU(2) subalgebras consisting of the generators I3 (6.25), I+ and I− (6.22)
is formulated exactly as the spin in z direction, as well as its raising and lowering operators,
with the corresponding algebra (6.29). Similarly defined are the subalgebras for U (6.30)
and for V (6.31). Of course, as SU(3) has eight generators while three SU(2) subalgebras
would need nine independent generators, they are overlapping in the sense that in these
definitions they share their z direction spins, as it is obvious from (6.29), (6.30) and (6.31),
i.e. I3, U3 and V3 are constructed out of only two generators, T3 and T8 [10].

Following this idea, we can now choose two different SU(2) solutions from the full SU(3)
group. Same as above, we now construct two different solutions

gAaµ = αeaµ (7.96)

gÂaµ = α̂êaµ , (7.97)

where for example Aaµ corresponds to the solution of the I subalgebra (6.29) and Âaµ to
the U subalgebra (6.30). Note that the manifold we are basing this problem on is still the
same, so the bases eaµ and êaµ are related via a transformation, such that

êaµ = Jaj e
j
µ (7.98)

with transformation matrix Jaj . They will be used to connect the different subalgebras
with each other.

At first, we will expand the gauge field Aµ in the generators as we have already done
in the case of SU(2). Therefore, using the definitions of the raising and lowering operators
for the I spin subalgebra (6.22) and (6.25)

Aµ = AaµTa = A1
µT1 + A2

µT2 + A3
µT3 (7.99)

=
1

2
(A1

µ − iA2
µ)I+ +

1

2
(A1

µ + iA2
µ)I− + A3

µI3 . (7.100)

We then can use the identification of the Aaµ components with the basis vectors eaµ from
(7.74), such that

Aµ =
α

g

[
1

2
(e1
µ − ie2

µ)I+ +
1

2
(e1
µ + ie2

µ)I− + e3
µI3

]
. (7.101)

But notice that the algebra in the basis of I+, I− and I3 is more noticeably difficult and
the structure constants of the resulting SU(2) will not be the usual εabc, as in the basis of
T1, T2 and T3. So we can simply switch back to this basis via ((6.22) and (6.25))

T1 =
1

2
(I+ + I−)

T2 =
i

2
(I− − I+)

T3 = I3 .

(7.102)
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This can be analogously done for the U and V subalgebras with the help of ((6.23) and
(6.30))

T6 =
1

2
(U+ + U−)

T7 =
i

2
(U− − U+)

1

2

(√
3T8 − T3

)
= U3

(7.103)

as well as ((6.24) and (6.31))

T4 =
1

2
(V+ + V−)

T5 =
i

2
(V− − V+)

1

2

(√
3T8 + T3

)
= V3 .

(7.104)

Therefore, the three possible solutions for the gauge vector field can be written as

Aµ =
α

g

[
e1
µT1 + e2

µT2 + e3
µT3

]
(7.105)

Âµ =
α̂

g

[
e1
µT6 + e2

µT7 +
1

2
e3
µ

(√
3T8 − T3

)]
(7.106)

Āµ =
ᾱ

g

[
e1
µT4 + e2

µT5 +
1

2
e3
µ

(√
3T8 + T3

)]
, (7.107)

where the first one corresponds to the I subalgebra, the second to the U subalgebra and
the third to the V subalgebra. Furthermore, in each of these cases, the structure constants
of the SU(2) subalgebras are given by the Levi-Civita symbol, as can be verified with the
help of the structure constants of SU(3) listed in (6.21). To reiterate once more, notice
that the third component of Aµ, Âµ and Āµ is made up of only the generators T3 and T8.
Therefore, only two of the solutions for the gauge field are independent. As a consequence
of these discussions, the exact same solution for α, as detailed in 7.5.1, can similarly be
found for α̂ and ᾱ.

The next question is now, whether the solutions for the three possible subalgebras are
equivalent to each other, i.e. can be transformed into each other. Therefore, we try to do
a gauge transformation of the gauge field Aµ, as in (7.59), i.e.

Aµ →
α

g

[
e1
µUT1U

−1 + e2
µUT2U

−1 + e3
µUT3U

−1 +
i

g
∂µU U

−1

]
(7.108)

!
=
α̂

g

[
ê1
µT6 + ê2

µT7 + ê3
µU3

]
. (7.109)

If we simplify this for a rotation matrix U with constant numbers as entries, the term
∂µU U

−1 vanishes and the question is whether we can find a U such that its application
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to the gauge field results in a linear combination of generators T6, T7 and U3. So let us try
to solve the system of equations

UT1U
−1 = α1T6 + β1T7 + γ1U3 (7.110)

UT2U
−1 = α2T6 + β2T7 + γ2U3 (7.111)

UT3U
−1 = α3T6 + β3T7 + γ3U3 (7.112)

which includes neither the scalar fields α and α̂ nor the bases eaµ or êaµ. This would offer
us only more freedom on how to transform the two sets of generators into each other. In
case we write the prefactors of the linear expansion as a matrix, we can define

R =

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

 . (7.113)

Also setting the rotation matrix as the most general

U =

a b c
d e f
g h j

 (7.114)

results in multiple possible solutions, but to show the existence of only one, we will verify
that the following ansatz provides us with one solution to our problem. We will take

U =

0 0 c
0 e 0
g 0 0

 , R =

−β2 β1 0
β1 β2 0
0 0 −1

 . (7.115)

Of course, the matrix U has to be invertible, therefore in the simplified case

detU = −ceg 6= 0. (7.116)

Then we can show that under the condition

g = e(iβ1 − β2) (7.117)

this is indeed a solution of the system of equations (7.110) to (7.112). In case we want the
determinant of R to be equal to 1, we have the additional condition of

β2
1 + β2

2 = 1 . (7.118)

Furthermore, we have to show that U (7.115) is actually a matrix belonging to the group
SU(3), therefore we will discuss the conditions under which it is unitary and its determinant
is one. For the unitarity condition we have

U † = U−1 (7.119)0 0 −e (β∗1 − iβ∗2)
0 e 0
c 0 0

 =

0 0 −1
e

i
β1+iβ2

0 1
e

0
1
c

0 0

 . (7.120)
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As a consequence,

e2 = 1 , c2 = 1 and (β1 + iβ2) (β∗1 + iβ∗2) = 1 . (7.121)

The last of these conditions is solved for

β1 = ±1 + =(β2)− i<(β2) , (7.122)

where < and = denote real and imaginary parts of β2, respectively. The matrix U will
then be

U =

0 0 ±1
0 ±1 0
i 0 0

 . (7.123)

Notice that this matrix is unitary, but its determinant is −i, but not 1. Therefore, nor-
malizing this matrix will give us, dropping the ± option,

Unorm =

0 0 i
0 i 0
1 0 0

 , (7.124)

which can be shown to be Hermitian and of determinant 1, i.e. an element of SU(3).
Furthermore, the matrix R therefore turns out to be

Rnorm =

 0 −1 0
−1 0 0
0 0 −1

 , (7.125)

such that in other words, the system of matrix equations (7.110) to (7.112) reduces to

UnormT1U
−1
norm = −T7 (7.126)

UnormT2U
−1
norm = −T6 (7.127)

UnormT3U
−1
norm = −U3 . (7.128)

With this, we have shown that there exists at least one rotation Unorm, which is at the same
time an element of the group SU(3), which rotates the I subalgebra into the U subalgebra.
This can be viewed as a constant gauge transformation, and therefore the solutions from
these two SU(2) subalgebras are not distinct from each other.

So in the end let us summarise the main results of these discussions. As we have seen,
the gauge group SU(3) contains the gauge group SU(2) as a subgroup, therefore the results
of 7.5.1 are directly applicable, if we choose to set five of the eight components of the gauge
vector Aaµ to zero. It may first look like there are three possible solutions because of the
three overlapping SU(2) subalgebras, but it turns out that they are in fact equivalent to
each other. As far as general SU(N) groups, the exact same discussion applies, as they
also all contain SU(2) subgroups, therefore solutions of the mimetic constraint equation
can be found.
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Another comment is due on the number of spatial dimensions in our problem. In the
real four-dimensional spacetime, we are dealing with three spatial dimensions, therefore
we need three generators for the relevant subalgebra. This of course means that SU(2)
is a natural choice. Had we but two spatial dimensions, a gauge group with only two
generators would be harder to find and SU(2) would not be possible. One can, of course,
extend the discussion to speculative higher spatial dimensions, where more generators and
more complex gauge groups would be feasible. But nevertheless, notice that eight spatial
dimensions, in order to justify using all of the generators of SU(3), seems highly improbable
and artificial.
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Conclusions

In chapter 1 of this thesis, we introduced major concepts of general relativity, cosmology,
dark matter and dark energy. We dedicated chapter 2 to reviewing the mimetic con-
struction, beginning from the Weyl transformation of the physical metric, as it was was
introduced in the original paper [132] by Mukhanov and Chamseddine in order to construct
mimetic dark matter. This metric redefinition involves new dynamical variables, namely an
auxiliary metric and a scalar field. These variables are introduced in such a way as to keep
the physical metric invariant under Weyl transformations of the auxiliary metric. After
that, we discuss that mimetic theories are more widespread than previously thought and in
particular that they can be realised through metric redefinition without keeping the Weyl
invariance [143]. Noether’s first and second theorems were also reviewed in chapter 3, in
flat and curved spacetimes, in order to stress their importance in the context of occurring
symmetries and gauge degeneracies. Furthermore, the review in chapter 4 covers various
possibilities to extend the scalar mimetic models with higher derivative terms to include a
pressure and speed of sound [135]. Other mimetic setups in order to model mimetic dark
energy were discussed, such as a construction with a vector field [133], in chapter 5, as
well as a SU(N) gauge vector field [134], in chapter 7. Various gauge (Weyl) invariant
representations of all of the presented theories were discussed, to highlight the fact that
mimetic theories can appear in many different forms. Chapter 6 concerns an overview
over Lie groups, in particular special unitary groups, and over quantum chromodynamics
(QCD) and axions. This was in order to prepare for chapter 7 and embedding the mimetic
dark energy theory with a gauge vector field into a theory with an axion to address the
question of the smallness of the cosmological constant, equivalently to the smallness of the
θ-parameter of QCD.

In chapter 4, we discussed the UV completion of a scalar mimetic theory by embedding
it into a theory with a complex scalar field. There we provide a new and more direct
formulation (4.4) of this correspondence, coming from the transformation of the complex
scalar field (4.3). Under certain assumptions about its components on the scales of the
mass of the scalar field, the mimetic theory with a scalar field is reproduced. This UV
complection was introduced in order to avoid caustics which might otherwise appear in
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theories with fluid-like dust. We also presented the derivation of the speed of sound for
general higher derivative extensions of scalar mimetic theories with the focus on models
with limiting curvature, constructed to avoid cosmological and black hole singularities
[158,159]. For this we employed the corresponding cosmological perturbation theory. The
speed of sound in this special case was found to be imaginary, (4.77), and we speculated
under which conditions the theory might still be viable. This also shows the limitations of
mimetic theories modelling limiting curvature.

Another topic considered in this thesis was the application of Noether’s first and second
theorem in the context of mimetic theories. As the latter are Weyl invariant, it is natural
to ask whether this symmetry leads to any non-trivial conserved quantities. Noether’s first
theorem was used to calculate the conserved current in the case of scalar (4.105) (4.114)
(4.127), vector (5.55) and gauge vector mimetic theories (7.47). In all cases, the identically
vanishing current proves that the Weyl symmetry does not introduce separate sectors in
the phase space. Noether’s second theorem was used to show that there exist differential
relations between the respective equations of motion of the auxiliary metric and either the
scalar (4.142) (4.148), vector (5.57) or gauge vector fields (7.50). It was shown that these
relations are either trivially fulfilled or reproduce the mimetic constraint equation.

Moreover, in chapter 5, for the case of mimetic gravity with a vector field also algebraic
solutions of (5.43) were explicitly written for the first time. These other solutions of the
mimetic construction show even more clearly that mimetic dark energy is more widespread
and common than previously thought.

Following our paper [134], we proved in chapter 7 that solutions of non-abelian for-
mulations of gauge vector mimetic gravity do exist. We considered SU(N) groups and
provided explicit constructions for the gauge vector field in the gauge groups SU(2) (7.92)
and SU(3) (7.105) – (7.107). Indeed, as we discussed in chapter 6, the SU(3) algebra
has three distinct SU(2) subalgebras for which we can employ the SU(2) ansatz. Then
formally employing the SU(2) ansatz for each of the subalgebras we can get three different
solutions, however we showed that the three solutions can be transformed into each other
by gauge transformations. Furthermore, we also demonstrated that the solutions we found
for SU(2) cannot be extended either into the eternal past or the eternal future (7.93).
Thus, there is a singularity either in the past or the future. This non-abelian formulation
of mimetic gravity is interesting because it points towards a possible solution of the cos-
mological constant problem, similar to the dynamic resolution of the strong CP problem
in quantum chromodynamics. Via proving the existence of mimetic solutions within the
Lie group SU(3), we strengthened that speculation.

Remaining open questions concern, amongst others, whether one could quantise mimetic
theories. Of course, one can always employ the UV completion for this procedure, but it
is less clear for the limiting case of the dust-like fluid. As we have seen in the discussion of
caustics and the quantum pressure resolving that issue, this might be a fundamental step
closer to a better description, as in reality all fields are quantum.

As we have seen in chapter 4, the higher derivative theory modelling limiting curvature
leads to an imaginary speed of sound. Therefore, it is interesting to investigate whether
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there exists another function of higher derivatives such that one can ameliorate this problem
within the models of limiting curvature.

Moreover, as there exist mimetic theories for functions of scalar, vector and gauge vector
fields, one could speculate about a mimetic theory constructed with the help of a tensor
of rank two, or bimetric mimetic gravity. The mimetic theories discussed in the literature
so far yield mimetic dark matter, mimetic dark energy and also inflation. Therefore the
question is what bimetric mimetic gravity would produce instead, or indeed, if it is useful
to address open questions in cosmology.

Another open question concerns the solutions for mimetic dark energy within general
SU(N) Lie groups. One could ask, for example, whether solutions from more than one
SU(2) subalgebra could be constructed and whether they are topologically distinct from
the found solutions. Also, further properties of those already found solutions could be
studied, as for now we merely showed the existence of them. It would also be interesting to
study the aforementioned singularity of the solutions and discuss whether one could avoid
it by finding other, non-singular solutions. Furthermore, it would also be interesting to
understand what happens if one restores the kinetic term that was omitted in the limiting
procedure from the complex scalar field.
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