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Zusammenfassung
Rydberg-Atome zeichnen sich durch langreichweitige dipolare Wechselwirkun-

gen aus, welche optisch kontrolliert und eingestellt werden können, was sie zu
einem idealen Baustein für Quantenforschung und -technologien macht, mit An-
wendungsmöglichkeiten von Quantensimulation über Quantencomputer bis hin zu
Quanteninformation. In dieser Dissertation untersuchen wir diese langreichweitigen
Rydberg-Wechselwirkungen mittels eines Quantengasmikroskops mit Einzelplatzkon-
trolle und -auflösung unter Verwendung von bosonischen 87Rb-Atomen. Dies er-
möglicht es uns, die Dynamik von Vielteilchensystemen zu erforschen, in denen
langreichweitige Wechselwirkungen auftreten.

In einem ersten Experiment ordnen wir Atome in einem zweidimensionalen, optis-
chen Subwellenlängen-Gitter an. In solchen Anordnungen treten starke photonische
Wechselwirkungen auf wodurch sie effiziente Licht-Materie-Schnittstellen mit hohem
Reflexionsgrad bilden. Wir manipulieren diese Licht-Materie-Schnittstelle mithilfe
von kontrollierten Rydberg-Wechselwirkungen. Dazu nutzen wir elektromagnetisch
induzierte Transparenz in Verbindung mit einem Rydberg-Zustand und realisieren
dadurch zunächst eine für die Photonen transparente Konfiguration. Mit zunehmender
Rydberg-Population kollabiert das Transparenzfenster und das System wird aufgrund
der Rydberg-Wechselwirkungen wieder reflektierend. Durch die lokale Anregung
einzelner Rydberg-Atome, demonstrieren wir darüber hinaus kontrollierte "Rydberg-
Blockaden", welche der EIT entgegenwirken, und Schaltprozesse für einzelne Photonen
zulassen. Zudem demonstrieren wir Korrelationen zwischen einzelnen atomaren und
photonischen Zuständen, was ein erster Schritt auf dem Weg zur Erzeugung determin-
istischer Verschränkung zwischen den Atomen und Photonen ist.

In einem zweiten Experiment koppeln wir mittels sogenannter "Rydberg-Bei-mi-
schung" verstimmt an Rydberg-Zustände, was zu einer langreichweitigen Wech-
selwirkung führt. Mithilfe dieser realisieren wir ein eindimensionales erweitertes
Bose-Hubbard Model unter Verwendung eines stroboskopischen Protokolls, bei dem
die Rydberg-Wechselwirkungen periodisch gepulst werden, und erreichen so eine
wesentlich längere Lebensdauer, welche kompatibel mit den Tunnelzeitskalen des
Hubbard-Modellss sind. Mit dieser Technik können wir die Existenz abstoßend-
gebundener Zustände zweier Atome, sowie die Stabilisierung einer Ladungsdichtewelle
im Nichtgleichgewicht nachweisen. Schließlich beobachten wir korrelierte Dichteanord-
nungen innerhalb eines niederenergetischen Ensembles bei halber Füllung, wenn
dieses durch kontrolliertes Anschalten der langreichweitigen Wechselwirkungsstärke
einen Phasenübergang nahe dem Gleichgewicht durchläuft, was den Weg für die
Untersuchung komplexer Phasenübergänge einschließlich von Quantenfestkörpern
ebnet.
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Rydberg interactions in subwavelength
atomic arrays and Hubbard systems

Abstract
Rydberg atoms provide long-range dipolar interactions that can be tuned and

switched using optical coupling, rendering them an ideal choice for quantum science
and technologies, which encompass a range of applications from quantum simulations,
quantum computing, and quantum information. In this dissertation, we incorporate
long-range Rydberg interactions into a quantum gas microscope of bosonic 87Rb atoms
with single-site control and resolution. This approach allows us to explore the dynamics
of many-body systems that feature long-range interactions.

In a first set of experiments, trapped atoms are arranged in a two-dimensional
periodic array with subwavelength spacing. Such arrays give rise to photon-mediated
interactions and form strong light-matter interfaces with specular reflection. We
manipulate this light-matter interface using Rydberg interactions. We make use of
electromagnetically induced transparency (EIT) coupled to a Rydberg state, turning
the array transparent to probe photons. With increasing Rydberg population, the
transparency window collapses and the array becomes reflective again due to the
Rydberg interactions. We further demonstrate a controlled way of optical switching
using a single Rydberg atom. Here, the single Rydberg atom causes a controlled
"Rydberg blockade" within the array, which destroys EIT and renders the system
reflective. Moreover, correlations of the single atomic and photonic states are observed,
which is a precursor to creating deterministic entanglement between the atom and the
photons.

In a second set of experiments, we off-resonantly couple to the Rydberg states,
known as "Rydberg dressing", which results in a long-range interaction strength com-
patible with the itinerant Hubbard model. Here, we realize the one-dimensional
(1D) extended Bose-Hubbard model (eBHM) use a stroboscopic scheme, periodically
pulsing the Rydberg interactions, and demonstrate substantially enhanced lifetimes,
surpassing the timescales relevant for the Hubbard model. With this technique, we
observe the existence of repulsively-bound states of atomic pairs as well as the stabi-
lization of a charge density wave state in out-of-equilibrium dynamics. Finally, we
find density ordering of low-energy ensembles at half-filling when undergoing a near-
equilibrium phase transition upon ramping the long-range interactions, paving the
way to study complex phase transitions including quantum solids.
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Chapter 1

Introduction
The development of laser cooling techniques [1–5] has rapidly expanded the fields
of atomic, molecular and laser physics. The achievement of ultralow temperatures
required for making Bose-Einstein condensates (BECs) [6–8] and reaching Fermi de-
generacy [9–11] opens new avenues for research in the strongly correlated regime.
Ultracold atoms provide both excellent control and isolated systems for simulating
certain sets of strongly correlated quantum problems [12–14], which are relevant for the
field of solid state and condensed matter physics [15–20], high-energy physics [21, 22],
and cosmology [23, 24]. The advancement of quantum gas microscopy has facili-
tated the extraction of local information, giving access to correlations of the quantum
system [25–34]. Microscopic control down to the single-site level [35] offers further
benefits for preparing out-of-equilibrium states and studying their dynamics [36–41].

Interactions of ultracold atoms are typically short-range, which can be tuned using
Feshbach resonances [42]. Additional long-range interactions are predicted to host a
rich variety of novel phases and quantum phenomena [43, 44], prompting a focus of
recent research on exploring the influence of these long-range interactions. Several
experimental platforms have been developed to address these interests [44, 45]. Mag-
netic atoms provide permanent magnetic dipolar interactions at close distances [46–50],
whereas ground state molecules have a permanent electric dipole moment, featuring
strong dipolar interactions [51–56]. Furthermore, electronically-excited Rydberg atoms
offer the strongest electric dipolar interaction via optical coupling [57].

Rydberg atoms are uniquely suited for a range of applications in quantum many-
body systems [58–63]. In the regime of resonant optical coupling, the interplay between
long-range interactions and optical coupling strength leads to an excitation blockade,
known as "Rydberg blockade". This provides a nonlinear behavior that has been
utilized for quantum simulations [64–67], quantum computing [68–74], or quantum
optics [68–75]. In a first set of experiments in this dissertation, we combine the Rydberg
blockade with the strong light-matter interactions offered by subwavelength atomic
arrays [76–78]. Such arrays provide high-efficiency light-matter interaction in free
space, where scattered photons are restricted solely to the reflection mode. We tune
the array to transparent by coupling it to a Rydberg state using an electromagnetically
induced transparency (EIT). As the Rydberg population rises, the array becomes non-
linear and starts reflecting photons. However, a single ancilla atom can be employed
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to control the optical properties of the array through the Rydberg blockade mechanism.
We finally realize a switch for photons the between two strong scattering modes of
transmission and reflection by optically controlling the state of the ancilla.

The timescales related to the Rydberg interactions are generally faster than the
atomic motion by three orders of magnitude in the resonant regime. This limits most
of the research to the "frozen gas" regime[79, 80]. By operating off-resonantly from
the Rydberg states, known as "Rydberg dressing", the mismatch of both timescales
can be bridged. In a second set of experiments, we incorporate Rydberg dressing
into our quantum gas microscope to realize the one-dimensional (1D) extended Bose-
Hubbard model (eBHM). Here, we overcome the challenge of interaction-induced
avalanche losses [81], through stroboscopic Rydberg dressing where interactions are
periodically pulsed. Using this technique, we improve the atomic lifetimes to more
than one hundred milliseconds, which is ten times longer than the motional timescale
in Hubbard parameters, while maintaining comparable long-range interactions. We
then measure key features of the eBHM by probing the out-of-equilibrium dynamics
of repulsive-bound atomic pairs. We observe the stabilization of a charge density wave
(CDW) state during the dynamics due to the influence of nearest-neighbor interactions.
Finally, we observe density ordering of a low-energy ensemble resulting from the
interplay of dominant nearest-neighbor interactions over the tunneling energy.

Outline

This dissertation begins with an overview of the presented experiments in Chapter 1.
Chapter 2 introduces a brief of Rydberg atoms, the origin of their interactions, and
the most relevant properties. Then, two key mechanisms relevant for the experiments
performed in this dissertation, namely "Rydberg blockade" and "Rydberg dressing",
are explained in detail. Chapter 3 describes the experimental setup of our quantum
gas microscope, which is employed for microscopic control and read-out the quantum
system. After an overview of the new optical lattice setups that were constructed
during the framework of this dissertation, we present the various laser systems related
to the Rydberg excitations, along with the calibration of the most relevant parameters.
Furthermore, fast manipulation of hyperfine ground state is demonstrated using
Raman transitions. In Chapter 4, we utilize the Rydberg blockade to control the
strong light-matter coupling of subwavelength atomic arrays. Employing the Rydberg
blockade from a deterministically controlled single Rydberg atom, we counteract the
effect of Rydberg EIT, leading to the breakdown of transparency and changing the
properties of the array from reflective to transmissive. Finally, in Chapter 5, Rydberg
dressing is incorporated with itinerant atoms in an optical lattice, thus introducing long-
range interactions to realize an eBHM. We investigate the eBHM in one-dimension by
exploring the out-of-equilibrium dynamics of repulsively-bound pairs and the stability
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of a CDW under the effects of nearest-neighbor interactions. Moreover, we observe
long-range density-density correlations of a half-filled system in near-equilibrium
dynamics, indicators for the emergence of a novel quantum solid phase. We present a
summary with a brief perspective on extensions of the experiments presented here in
Chapter 6.
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Publications
The following articles have been published in refereed journals in the context of this
thesis. The articles most relevant to this dissertation are shown in bold font.

• Rydberg Molecules Bound by Strong Light Fields.
S. Hollerith, V. Walther, K. Srakaew, D. Wei, D. Adler, S. Agrawal, P. Weckesser, I.
Bloch, J. Zeiher.
PRX Quantum 5, 030335 (2024).

• Observation of brane parity order in programmable optical lattices.
D. Wei, D. Adler, K. Srakaew, S. Agrawal, P. Weckesser, I. Bloch, J. Zeiher.
Phys. Rev. X 13, 021042 (2023).

• A subwavelength atomic array switched by a single Rydberg atom.
K. Srakaew, P. Weckesser, S. Hollerith, D. Wei, D. Adler, I. Bloch, J. Zeiher.
Nat. Phys. 19, 714–719 (2023).

• Quantum gas microscopy of Kardar–Parisi–Zhang superdiffusion.
D. Wei, A. Rubio-Abadal, B. Ye, F. Machado, J. Kemp, K. Srakaew, S. Hollerith, J.
Rui, S. Gopalakrishnan, N. Y. Yao, I. Bloch, J. Zeiher.
Science 376, 716–720 (2022).

• Realizing distance-selective interactions in a Rydberg-dressed atom array.
S. Hollerith, K. Srakaew, D. Wei, A. Rubio-Abadal, D. Adler, P. Weckesser, A.
Kruckenhauser, V. Walther, R. van Bijnen, J. Rui, C. Gross, I. Bloch, J. Zeiher.
Phys. Rev. Lett. 128, 113602 (2022).

• Microscopic electronic structure tomography of Rydberg macrodimers.
S. Hollerith, J. Rui, A. Rubio-Abadal, K. Srakaew, D. Wei, J. Zeiher, C. Gross, I.
Bloch.
Phys. Rev. Research 3, 013252 (2021).

Preprints
• Realization of a Rydberg-dressed extended Bose Hubbard model.

P. Weckesser, K. Srakaew, T. Blatz, D. Wei, D. Adler, S. Agrawal, A. Bohrdt, I.
Bloch, J. Zeiher.
arXiv:2405.20128 (2024).

• Observation of Hilbert-space fragmentation and fractonic excitations in two-
dimensional Hubbard systems.
D. Adler, D. Wei, M. Will, K. Srakaew, S. Agrawal, P. Weckesser, R. Moessner, F.
Pollmann, I. Bloch, J. Zeiher.
arXiv:2404.14896 (2024).

http://dx.doi.org/10.1103/PRXQuantum.5.030335
https://doi.org/10.1103/physrevx.13.021042
https://doi.org/10.1038/s41567-023-01959-y
https://doi.org/10.1126/science.abk2397
https://doi.org/10.1103/physrevlett.128.113602
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Chapter 2

Rydberg atoms

2.1 Introduction
This chapter provides an overview of Rydberg atoms and their intriguing properties.
We cover concise calculations and derive the relevant scalings of Rydberg properties.
Next, we examine the interactions between two Rydberg atoms and demonstrate
the various interaction processes. We further introduce the important concepts of
"Rydberg blockade" and "Rydberg dressing", which become relevant in a quantum
many body system driven by light. Lastly, we highlight stroboscopic Rydberg dressing
and demonstrated its suitability for realizing long-range interactions in an itinerant
lattice-based quantum simulator.

2.2 Properties and scalings of Rydberg atoms
Rydberg atoms are an intriging quantum system where at least one valence electron
is excited to a high principle quantum number n far from the nucleus [57]. The
large separation between the ion core and the excited electron provides huge electric
dipole moments, making Rydberg atoms strongly interact with external fields and
display strong, long-range interactions with nearby Rydberg atoms. Importantly,
their unique properties can be controlled via optical coupling. These characteristics
make Rydberg atoms useful for quantum science applications [82] such as quantum
simulators or quantum computing [64, 83, 84], quantum information [85], quantum
nonlinear optics [86], quantum sensing [87–90], and single-photon sources for quantum
communication [91].

The valence electron of an alkali Rydberg atom resembles an electron in the hydro-
gen atom and can be calculated with high accuracy. Understanding the characteristic
properties of Rydberg atoms and their scaling is essential to estimate and design the
interaction for Rydberg experiments. The valence electron of a Rydberg atom is in an
orbit that is far away from the ion core. The closed inner electron shells and the ion
core can be viewed as a single positive charge, which features a hydrogen-like behavior
especially for large orbital angular momentum L > 3. For small L, the penetration and
polarization between the inner electron shells and the ion core cause deviations from
the simple hydrogenic model. In those cases, "quantum defect theory" is used to apply
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additional corrections to the hydrogenic model [92–95].

2.2.1 Binding energy
The principle quantum number dependent binding energy of the electron in the
hydrogen atom is given by En = −R∞/n2, where R∞ = e4me/16π2ϵ2

0h̄2 is the Rydberg
constant [57, 93]. Alkali atoms, featuring additionally closed shells, are described by a
corrected formula derived from quantum defect theory as

EnLJ = − R∗

(n∗)2 , (2.1)

where R∗ = mRb/(mRb + me) · R∞ is the modified Rydberg constant, mRb is the ionic
core mass of Rubidium, and me is the electron mass. For 87Rb, the modified Ryd-
berg constant is R∗ = h × 3289.821 194 66(2)THz [96, 97]. The binding energy is
parametrized by an effective principle quantum number n∗ = (n − δnLJ) with

δnLJ = δ0 +

(
δ2

n − δ0

)2

+

(
δ4

n − δ0

)2

+ ... . (2.2)

Here, δnLJ is the quantum defect, which depends on n, L, and the total angular mo-
mentum J = L + S with J is the spin-orbit coupling of L and the electron spin S.
The quantum defects are empirically determined by fitting the spectroscopy measure-
ments [94, 96, 97]. They depend significantly on L but weakly on n and J.

2.2.2 Rydberg wavefunction
The Rydberg state is defined by its quantum numbers of the valence electron |nLJmJ⟩
with their corresponding energy of EnLJ . Here, coupling between the total angular
momentum J with the nuclear spin I of the Rydberg state is usually negligible. As a
consequence, the fine-structure basis provides a set of well-defined quantum numbers
for the Rydberg states. Many Rydberg atom properties require detailed calculation
of the Rydberg state, such as the dipole moment and the coupling between Rydberg
states. Assuming a spherical symmetric potential for the electron, the Rydberg wave
function can be separated into a real space function and an angular-dependent function
Ψ(r, θ, ϕ) = RnLJ(r)YLJmJ (θ, ϕ). Here, RnLJ(r) represents the radial wavefunction while
YLJmJ (θ, ϕ) contains the angular-dependent part. With this assumption, the two terms
can be solved independently. Including the centrifugal barrier, one can derive the
following radial wavefunction from Schrödinger equation,[

− 1
2µ

(
d2

dr2 +
2
r

d
dr

)
+

L(L + 1)
2µr2 + Vmod(r)

]
RnLJ = EnLJ RnLJ , (2.3)
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Figure 2.1: Radial wavefunctions of Rydberg states. The Rydberg radial wavefunc-
tions are numerally calculated from the Schrödinger equation Eq. (2.3) and illustrated
as relative probability distributions |rRnLJ(r)|2. The plot illustrates the solutions for
R30,1,3/2 (blue), R44,1,3/2 (red), and R44,43,3/2 (orange). The wavefunction expands
farther away from the ion core with increasing n. The circular Rydberg state with max-
imum L = n − 1, see R44,43,3/2 (orange), has a vanish probability at a short distance.

with the reduced mass µ = mRbme/(mRb + me) and the binding energy from Eq. (2.1).
The atomic potential includes a species-dependent-modification [98, 99],

Vmod(r) = VC(r) + VP(r) + VS.O.(r). (2.4)

Here, VC(r) is the modified Coulomb potential capturing the screening of the core
charge by the inner electron shells,

VC(r) = −1 + (Z − 1)e−α1r − r(α3 + α4r)e−α2r

r
, (2.5)

with Z = 37 for 87Rb, and L-dependent parameters α1..4 [100]. The VP(r) describes the
core polarization due to the valence electron,

VP(r) = − αd

2r4

[
1 − e−(r/rcore)6

]
, (2.6)

where rcore is the effective core radius. Finally, the VS.O.(r) is the core polarizability and
the spin-orbit interaction [101] with effective expression

VS.O.(r > rcore) =

(
gs

4m2
e c2

)
L · S
r3 , (2.7)

where gs is the electron spin. However, this expression is only valid for r > rcore. For
a smaller distance, one has to derive this modification using the Dirac equation [99].
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Many Rydberg properties are based on the wavefunction of the Rydberg state. Since
the angular dependence of the wavefunction has an analytic solution, the calculated
accuracy of the Rydberg properties depends primarily on the numerical accuracy of the
radial wavefunction. Most available Rydberg calculations such as Pairinteraction [98]
and ARC [102] rely on the preceding approach to compute the Rydberg wavefunctions,
which are then used to estimate other Rydberg properties. Fig. 2.1 illustrates the
relative probability distribution of the radial wavefunction, which expands farther
away from the ion core with increasing n.

2.2.3 Dipole matrix elements
Transition dipole matrix elements play a crucial role in determining various properties
of Rydberg atoms, such as the optical coupling rate with the ground state, radiative
lifetimes, and interactions with other Rydberg atoms. The dipole operator is defined as

d̂ = er̂ = e ∑
q

rq êq. (2.8)

Here, the index q = (−1, 0,+1) labels the projection of r̂ on the spherical basis with
ê0 = êz and ê±1 = ∓ 1√

2
(êx ∓ iêy), corresponding to π, and σ± transitions, respectively.

The dipole matrix elements that couple between the initial state |i⟩ = |nLJmJ⟩ and
then the final state |j⟩ = |n′L′ J′m′

J⟩ are given by dji = ⟨j|d̂|i⟩. With the separability of
the radial and angular wavefunction, the dipole matrix elements can be expressed by

dji
q = ⟨n′L′ J′m′

J |erq|nLJmJ⟩

= eRnLJ→n′L′ J′(−1)J′+J+L′+S−m′
J+1
√
(2J′ + 1)(2J + 1)

{
L L′ 1
J′ J S

}(
J′ 1 J

−m′
J q mJ

)
.

(2.9)
The radial component of the dipolar coupling RnLJ→n′L′ J′ is a radial integral of the
initial and final radial wavefunctions, which is obtained by numerical calculation in
Sec. 2.2.2,

RnLJ→n′L′ J′ =
∫ ∞

0
r3RnLJ(r)Rn′L′ J′(r)dr. (2.10)

The angular component can be calculated using the Wigner-Eckart theorem [103, 104],
which involves the use of the Wigner-3J (Wigner-6J) symbol, denoted by a round (curly)
bracket. These result in the Clebsch-Gordan coefficients, ensuring the selection rules
for angular momentum conservation. For dipole transitions, the selection rules dictate
that the transitions are possible when ∆J = J′ − J = 0,±1 and ∆mJ = m′

J − mJ = 0,±1.
However, the transitions are forbidden when J = 0 ↔ J′ = 0 or mJ = 0 ↔ m′

J = 0 if
∆J = 0.



2.2 Properties and scalings of Rydberg atoms 9

2.2.4 Rydberg excitation from the ground state
Coherent coupling from the ground to the Rydberg states allows us to control the
atomic properties between two distinct regimes. For the ground state, the angular
momentum J couples with the nuclear spin I, resulting in the total angular momentum
F = J + I. Consequently, the ground state is best characterized by the total angu-
lar momentum F, which is expressed on the basis |nLJFmF⟩. It can be expanded to
an uncoupled spin basis in |nLJFmF⟩ = ∑mJ ,mI

|nLJmJmI⟩⟨nLJmJmI |nLJFmF⟩. Here,
⟨nLJmJmI |nLJFmF⟩ are the Clebsch-Gordan coefficients. Note that the Rydberg ex-
citation leaves the nuclear spin projection unaffected (i.e. mI = m′

I), as the Rydberg
state has negligible coupling to the nuclear spin. Finally, the optical coupling strength
between the ground states and the Rydberg state can be calculated by

h̄Ωji = E0⟨j|d̂ · ϵ̂|i⟩, (2.11)

where Ω is the Rabi frequency and E0 = (2I/cϵ0)
1/2 is the amplitude of the light field

with intensity I. The ϵ̂ = ∑q ϵqϵ̂q is the polarization vector of light on a spherical basis
with q = (−1, 0,+1). Following the expression in [59, 105], the Rabi frequency that
couples the ground state |i⟩ = |nLJFmF⟩ to the Rydberg state | f ⟩ = |n′L′ J′m′

Jm
′
I⟩ can

be computed as

Ωrg =
eE0

h̄ ∑
q
⟨n′L′ J′m′

Jm
′
I |rqϵq|nLJFmF⟩

=
eE0

h̄
RnLJ→n′L′ J′(−1)J+2J′+S+mF+m′

J−I+1+max[L,L′]

×
√
(2F + 1)(2J + 1)(2J′ + 1)max[L, L′]

×
{

L L′ 1
J′ J S

}
∑
q

ϵq
(

J I F
m′

J − q mF − m′
J + q −mF

)(
J′ 1 J

m′
J −q −m′

J + q

)
.

(2.12)
The same argument as in Eq. (2.9) holds, as the radial component determines the over
all coupling strength while the angular component captures the selection rules given
by the Clebsch-Gordan coefficients. The ground and the Rydberg states have small
spatial overlap between their wavefunctions. The coupling strength is thus smaller by
several orders of magnitude compared to the transition from the ground to the first
excited states.

2.2.5 Lifetime of the Rydberg atoms
One of the important and intriuging properties of Rydberg atoms is the extended
lifetimes compared to the first excited state. This timescale is crucial to estimate
the feasibility of a given Rydberg system. There are two main processes by which
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Rydberg atoms can decay [57]. The first process involves radiative decay from the
Rydberg state to the electronic ground state with a decay rate Γrad [106]. Alternatively,
microwave (MW) photons due to thermal black-body radiation can trigger transitions
to neighboring Rydberg of opposite parity with a rate ΓBB. Both processes contribute
to the final Rydberg decay rate of Γryd = Γrad + ΓBB, with the corresponding lifetime
τ = 1/Γrad.

Radiative decay is a depopulation mechanism due to available vacuum modes. This
causes a direct decay into lower-lying states upon emission of a visible or ultraviolet
(UV) photon. The radiative decay rate is obtained by summing all possible decay paths
using the Einstein-A coefficient [57, 59, 107] from an initial state |i⟩ = |nLJmJ⟩ to a
final state |j⟩ = |nLJFmF⟩ as

Γrad = ∑
j

Ai→j

= ∑
F′,m′

F

∣∣∣⟨n′L′ J′F′m′
F|d̂|nLJmJ⟩

∣∣∣2 ω3
nLJmJ→n′L′ J′F′m′

F

3πϵ0h̄c3 ,
(2.13)

where ωnLJmJ→n′L′ J′F′m′
F

is the transition frequency between the Rydberg and the re-
spective ground state. The ωnLJmJ→n′L′ J′F′m′

F
is approximately independent of n as the

energy splitting of the ground states is much smaller than the large energy splitting
between the Rydberg and ground states. As a consequence, the radiative decay rate
depends mainly depends on the radial integralRnLJ→n′L′ J′ ∝ (n∗)−3, see Sec. 2.2.4.
Therefore, the radiative decay rate scales as Γrad ∝ (n∗)−3. One can view this as the
overlap between the ground and Rydberg wavefunctions. As the principal quan-
tum number n increases, the Rydberg state wave function spreads further from the
ion core, leading to decreased overlap with the ground state wavefunction, which is
concentrated near the ion core.

The radiative decay to neighboring Rydberg states is comparably weak due to
the small energy differences between the states, which correspond to small transition
frequencies ωnLJmJ→n′L′ J′m′

J
∝ (n∗)−3. However, the black-body radiation at room

temperature contains photons at a frequency close to the transition frequencies of the
neighboring Rydberg states. These enhanced stimulated transitions cause black-body-
induced decay, which can be estimated by multiplying the transition rate with the
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photon density n(ωi→j, T) as

ΓBB = ∑
j

Ai→jn(ωi→j, T)

= ∑
n′,L′,J′,m′

J

∣∣∣⟨n′L′ J′m′
J |d̂|nLJmJ⟩

∣∣∣2 ω3
nLJmJ→n′L′ J′m′

J

3πϵ0h̄c3 × 1

e
h̄ωnLJmJ→n′L′ J′m′

J
/kBT

− 1
,

(2.14)
where kB is the Boltzmann constant and T is the black-body temperature. In the regime

where e
h̄ωnLJmJ→n′L′ J′m′

J
/kBT

≈ 1 + h̄ωnLJmJ→n′L′ J′m′
J
/kBT, the black-body-induced decay

rate scales as ΓBB ∝ R2
nLJ→n′L′ J′ω

2
nLJmJ→n′L′ J′m′

J
. Therefore, this results in a scaling of

ΓBB ∝ (n∗)4 · (n∗)−6 ∝ (n∗)−2 [57, 102, 107].
The estimated scaling of the Rydberg decay rate suggests that the Rydberg lifetime

τ = 1/Γryd generally increases with higher n. The Rydberg decay rate is influenced by
two distinct mechanisms, which determine the dominant decay process depending on
n. At low n, the radiative decay is the primary mechanism, while at high n, the black-
body-induced decay becomes more significant. For 87Rb, the two decay rates become
equal around n ≈ 29. Several methods are being explored to enhance the Rydberg
lifetime. By operating in circular Rydberg states, the radiative decay can be diminished
due to the vanishing transition dipole matrix elements to the ground state [108, 109].
Black-body-induced decay can be further suppressed in a cryogenic environment,
where the population of photon modes is drastically decreased [110–112].

2.3 Interactions between two Rydberg atoms
The standard treatment of two interacting Rydberg atoms is discussed discussed in
detail in the following references [98, 113–116]. Here, we summarize the most impor-
tant steps. Consider the case where the interaction between two atoms is dominated
by the strong Rydberg interaction, where the electrostatic Hamiltonian is described by
H(R) = H1 + H2 + Hint(R) with R being the interatomic distance. Here, the term H1,2
accounts for the individual Rydberg states while Hint(R) describes their interaction.
For the calculation, we introduce the pair basis |i, j⟩ = |n1L1 J1mJ1⟩ ⊗ |n2L2 J2mJ2⟩. We
assume that the interatomic distance is large compared to the electronic wavefunction,
such that the overlap of the electronic wavefunctions can be neglected. Therefore,
the two valence electrons can be treated as distinguishable particles. The resulting
electrostatic interaction Hamiltonian is given by

Hint(R) =
e2

4πϵ0

(
1
|R| +

1
|R + r̂2 − r̂1|

− 1
|R − r̂1|

− 1
|R + r̂2|

)
, (2.15)
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Figure 2.2: Interactions between Rydberg atoms. (a) Coordinate system. The
interatomic axis can be expressed by the angles θ and ϕ with respect to the quantization
axis z. (b) Resonant dipole-dipole interactions. Due to the degenerate energies of |i, j⟩
and |j, i⟩, both states are directly coupled by the interaction strength of |Vdd(R, θ)| =
|C3|D(θ)/R3. Two atoms that are initialized in |i, j⟩ thus undergo coherent oscillations
|i, j⟩ ↔ |j, i⟩ with a frequency of 2Vdd/h. (c) Off-resonant van der Waals interactions.
When two atoms are initialized in the same state |i, i⟩, these can interact by coupling to
a nearby pair state |m, n⟩ with the off-resonant Förster defect ∆F = Em + En − 2Ei. The
coupling only occurs through a second-order process, resulting in the characteristic
van der Waals interaction with strength |VvdW(R, θ)| = |C6|D(θ)/R6.

where r̂1,2 is the position of the Rydberg electrons. The first and second terms represent
the repulsive interaction of both ion cores and both Rydberg electrons, respectively.
The last two terms describe the attractive interaction between Rydberg electrons with
the ion core of the other Rydberg atom. The Hint(R) can be rewritten in the multipole
expansion form [117–119] as

Hint(R) =
∞

∑
κ1,κ2=1

Vκ1,κ2

4πϵ0|R|κ1+κ2+1 . (2.16)

Choosing the spherical multipole operators such that the quantization axis z points
along the interatomic distance R, the Vκ1,κ2 term can be expressed as

Vκ1,κ2 =
4πe2(−1)κ2√

(2κ1 + 1)(2κ2 + 1)

κ<

∑
q=−κ<

√(
κ1 + κ2
κ1 + q

)(
κ1 + κ2
κ2 + q

)
× r̂κ1

1 r̂κ2
2 Yq

κ1 (θ1, ϕ1)Y−q
κ2 (θ2, ϕ2) ,

(2.17)

where Yq
κ (θ, ϕ) are the spherical harmonics and κ< = min[κ1, κ2]. This expansion

simplifies the calculation to a single particle problem. In addition, the independent
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order κ can be evaluated separately depending on the desired accuracy for larger
regime. The higher order κ decreases rapidly with greater distance R. However,
higher order term are required to properly capture the strong mixing regime at shorter
distances. When the quantization axis z is not oriented along the interatomic axis R, see
Fig. 2.2a, the atomic states |nLJmJ⟩ can be transformed using the Wigner D matrices
D(θ, ϕ). In that way, the interatomic axis is aligned with the quantization axis and the
coupling can be calculated with a new rotated state D(θ, ϕ)|nLJmJ⟩.

2.3.1 Dipole-dipole interaction between two atoms
The lowest order in multipole expansion is given by κ1 = κ2 = 1, corresponding to the
dipole-dipole interaction. The interaction Hamiltonian in Eq. (2.16) reduces to

Hint(R) ≈ Hdd(R) =
d̂1d̂2 − 3

(
d̂1 · eR

) (
d̂2 · eR

)
4πϵ0|R|3

, (2.18)

where d̂1,2 are the dipole operators for each atom and eR = R/|R| is the unit vector
along the interatomic axis. The dipole-dipole interaction, represented by equation
Eq. (2.18), accounts for most of the interaction strength in the asymptotic region, where
the interaction shifts are smaller than the energy splitting between paired states. For
the special configuration of aligned dipoles d̂1 = d̂2 = d̂, having the same orientation
d̂1 · eR = cos θ, the Hamiltonian becomes

Hdd(R, θ) =
d̂2

4πϵ0|R|3
(

1 − 3 cos2 θ
)

. (2.19)

Since the interaction scales with the square of the dipole matrix elements, the dipole-
dipole interaction scales as Hdd ∝ (n∗)4. The complete description of the dipole-
dipole interaction is captured by H = H1 + H2 + Hint with the pair basis |i, j⟩. Here,
the isolated Rydberg states (H1 + H2) have eigenenergies ⟨i, j|H1 + H2|i, j⟩ = Ei +
Ej, where Ei,j is obtained from Eq. (2.1). The dipole-dipole interaction is given by
⟨i|Hint|j⟩ = Vdd. By introducing the new energy references Ei = 0 and Ej = ∆, we can
write the Hamiltonian as,

H =


⟨i,i| ⟨i,j| ⟨j,i| ⟨j,j|

|i,i⟩ 0 0 0 Vdd
|i,j⟩ 0 h̄∆ Vdd 0
|j,i⟩ 0 V∗

dd h̄∆ 0
|j,j⟩ V∗

dd 0 0 2h̄∆

. (2.20)

This matrix exhibits two possible processes depending on the initial state, which will
be discussed in the following sections.



14 2. Rydberg atoms

Resonance dipole-dipole interactions

Let first assume that the two atoms are initialized in a different states, such as |i, j⟩ or
|j, i⟩, where both states have the same energy E = h̄∆. The dynamics is restricted only
in the subspace of |i, j⟩ and |j, i⟩. Here, the Hamiltonian becomes

Hexchange =

( ⟨i,j| ⟨j,i|
|i,j⟩ h̄∆ Vdd
|j,i⟩ V∗

dd h̄∆

)
. (2.21)

The eigenstates are |±⟩ = 1/
√

2 (|i, j⟩ ± |j, i⟩). As a consequence, the initial state |i, j⟩
is not an eigenstate of the system. Its evolution can be obtained from Schrödinger
equation,

|Ψ⟩(t) = cos
(

Vddt
h̄

)
|i, j⟩+ i sin

(
Vddt

h̄

)
|j, i⟩. (2.22)

This shows that the initial state |i, j⟩ coherently oscillates between |i, j⟩ and |j, i⟩. The
probability of finding the system in |i, j⟩ is

|⟨i, j|Ψ⟩(t)|2 = cos2
(

Vddt
h̄

)
=

1
2

[
1 + cos

(
2π

2Vddt
h

)]
, (2.23)

with oscillation frequency 2Vdd/h [120–123], see Fig. 2.2b. Experimentally, this can be
achieved by preparing two neighboring Rydberg states of opposite parity, such as the
Rydberg S and P states (|S, P⟩).

Off-resonant Van der Waals interactions

Another situation arises when when both atoms are in the same Rydberg state |i, i⟩
or |j, j⟩. These two pair states have an energy difference by ∆F = 2Ej − 2Ei = 2h̄∆,
the so-called Förster defect. Here, the pair states are coupled via virtual second-order
processes, as illustrated in Fig. 2.2c. The Hamiltonian in this subspace is

HvdW =

( ⟨i,i| ⟨j,j|
|i,i⟩ 0 Vdd
|j,j⟩ V∗

dd 2h̄∆

)
. (2.24)

This hamiltonian only holds true for large detunings Vdd ≪ ∆, resulting in the fol-
lowing eigenenergies by E± = h̄∆ ∓

√
(h̄∆)2 + |Vdd|2. The energy shifts from the

noninteracting energy in this case are known as van der Waals interaction,

∆E = VvdW(R, θ) = − |Vdd|2
32π2ϵ0h̄∆R6 = −C6

R6 D(θ). (2.25)

The "C6-coefficient" quantifies the strength of the interaction, which contains all radial
matrix elements between the initial and intermediate states. The D(θ) contains all
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Figure 2.3: Rydberg interactions of the 30S1/2 and 30P3/2 states. Comparison
of the interaction strength expressed by the C6-coefficient versus three-dimensional
(3D) interaction angles. The length from the center to the plot surface indicates the
magnitude of the C6-coefficient. (a) For the 30S1/2 state, the interaction is nearly
symmetric for all interaction angles. Although the van der Waals interaction of an
individual channel is angular dependent, the aggregation of all possible channels
leads to an almost symmetric interaction for 30S1/2. (b) For the 30P3/2 state, there is
only one significant transition involved. Therefore, it shows an anisotropic interaction
with respect to θ while featuring a symmetric interaction along ϕ. The interaction is
maximum when θ = 90◦ and vanishes for θ = 0◦. Moreover, the maximum interaction
of 30P3/2 is much larger than 30S1/2 by a factor of 4.5.

the angular momentum properties of the states [124, 125]. The C6 scaling can be
deduced from the scaling of the Förster defect ∆F ∝ (n∗)−3 and the scaling of the
dipole-dipole interaction Vdd ∝ (n∗)4. Thus, the C6-coefficient exhibits an overall
scaling of C6 ∝ (n∗)11. Furthermore, the interaction depends on the sign of ∆ = Ej − Ei.
A positive value for ∆ = |∆| results in an attractive interaction, while a negative value
∆ = −|∆| results in a repulsive interaction.

The derivation in Eq. (2.24) only considers the two Rydberg states, |i⟩ and |j⟩. The
general expression of the van der Waals interaction accounts for all possible states with
comparable Förster defects ∆F of the same order. The van der Waals interaction of |i, i⟩
is given by

Vi,i
vdW(R, θ) = − ∑

m,n

|⟨i, i|Hdd|m, n⟩|2

∆m,n
F

= −C6

R6 D(θ) (2.26)

with ∆m,n
F = Em + En − 2Ei. For 87Rb, we can compare two interesting cases of van

der Waals interactions. First, the pair state |i, i⟩ = |nS 1
2 mJ , nS 1

2 mJ⟩ can couple to
|m, n⟩ = |nPJ′m′

J , (n − 1)PJ′′m′′
J ⟩. Due to a large Förster defect ∆m,n

F compared to the
splitting of the fine structure, all intermediate pair states with J′, J′′ = (1/2, 3/2) have
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Property Symbol Scaling

Binding energy EnLJ (n∗)−2

Energy splitting ∆EnLJ (n∗)−3

Radial coupling |g⟩ ↔ |r′⟩ R5S1/2→n′L′ J′ (n∗)−3/2

Radial coupling |r⟩ ↔ |r′⟩ RnLJ→n′L′ J′ (n∗)2

Radiative decay rate Γrad (n∗)−3

Black body decay rate ΓBB (n∗)−2

C6 -coefficient C6 (n∗)11

Rydberg blockade rb, rc (n∗)11/6

Table 2.1: Scaling of relevant Rydberg properties. Approximate scaling of the
relevant Rydberg properties with respect to the effective principle quantum number
n∗ = n − δnLJ , where δnLJ is the quantum defect.

approximately the same Förster defect. As a result, the sum of all intermediate pair
states results in close to angular-independent interaction VvdW(R) ≈ −C6D/R3 [124],
see Fig. 2.3a. In contrast, the specific pair state |i, i⟩ = |nP 3

2
3
2 , nP 3

2
3
2⟩ has only one

significant transition to |m, n⟩ = |nS 1
2

1
2 , (n − 1)S 1

2
1
2⟩. Other possible pair states have a

significantly larger Förster defect ∆F, resulting in negligible contributions to the inter-
action. This results in a strong angular dependence of VvdW(R, θ) ≈ −C6 sin4(θ)/R3,
see Fig. 2.3b. In conclusion, the choice of Rydberg state strongly affects the van der
Waals interaction, making it a suitable tool for various applications. The Rydberg S
state yields an isotropic interaction that is advantageous for experiments requiring
uniform interactions in all directions. Conversely, operating with the Rydberg P state
offers the possibility of customizing the interaction by adjusting a quantization field
relative to the interatomic axis θ [126].

Finally, we summarize all previously discussed effects and their respective scaling
with respect to the effective principle quantum number n∗ in Tab. 2.1.
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2.4 Rydberg interactions in the presence of a light field
Up until this point, the focus has been solely on the Rydberg interaction. In the fol-
lowing sections, we will extend this discussion by including optical coupling between
the ground and Rydberg states. This will lead to two important mechanisms of ex-
periments in this dissertation. First, we discuss the resonant coupling resulting in
the "Rydberg blockade". It causes a volume in which only one Rydberg atom can
be excited. The Rydberg blockade concept will be utilized in Chapter 4. Secondly,
off-resonant coupling to the Rydberg states, the so-called "Rydberg dressing", provides
long-range interactions between ground state atoms. Here, long-range interactions can
be exploited despite the atoms mostly in their electronic ground state, making them
suitable for itinerant long-range models explored in Chapter 5.

Consider the optical coupling from a single ground state |g⟩ to a single Rydberg
state |r⟩. The light field associated with this coupling has Rabi frequency Ω and a
frequency detuning ∆ to the Rydberg state. When multiple atoms are in the Rydberg
state, a van der Waals interaction appears as Vi,j(R) = −C6/R6

i,j with Ri,j = |Ri − Rj|.
For simplicity and without loss of generality, we assume an isotropic interaction which
can be experimentally obtained by applying a quantization field orthogonal to the
interatomic axis. We can write the Hamiltonian describing the two-level system of
N atoms in presence of a light field and the long-range van der Waals interaction
as [127–130]

H = HL + H0 + Hint

=
h̄Ω
2

N

∑
i
(|g⟩i⟨r|i + |r⟩i⟨g|i)− h̄∆

N

∑
i
|r⟩i⟨r|i +

N

∑
i<j

Vi,j(R)|r⟩i⟨r|i|r⟩j⟨r|j.
(2.27)

The size of the Hamiltonian’s Hilbert space increases exponentially with atom number
N, requiring heavy computational resources to derive an exact solution. For simplicity,
we first focus on the problem with N = 2 atoms, where the Hamiltonian becomes

H =


⟨g,g| ⟨g,r| ⟨r,g| ⟨r,r|

|g,g⟩ 0 h̄Ω/2 h̄Ω/2 0
|g,r⟩ h̄Ω/2 −h̄∆ 0 h̄Ω/2
|r,g⟩ h̄Ω/2 0 −h̄∆ h̄Ω/2
|r,r⟩ 0 h̄Ω/2 h̄Ω/2 −2h̄∆ + V(R)

. (2.28)

This matrix has the symmetric coupling from |g, r⟩ and |r, g⟩ to |g, g⟩ and |r, r⟩, mo-
tivating the symmetric and antisymmetric basis |±⟩ = 1/

√
2 (|g, r⟩ ± |r, g⟩). The

antisymmetric state is uncoupled and equivalent to a dark state with ⟨g, g|H|−⟩ =
⟨r, r|H|−⟩ = 0. However, the symmetric state experiences an enhanced coupling of
⟨g, g|H|+⟩ = ⟨r, r|H|+⟩ =

√
2h̄Ω/2. Making use of these states, one can simplify the
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Figure 2.4: Rydberg blockade and enhanced Rabi frequency. (a) Eigenenergies of
the Hamiltonian in Eq. (2.29) presented for ∆ = 2π × 0 MHz, Ω = 2π × 20 MHz, and
C6 = −1.3 GHz µm6. The blockade radius rb = 1.5 µm separates the non-interacting
(R > rb) and strong interacting (R < rb) regimes. The insets illustrate either that
both atoms are independently excited (see the right inset) or that only one atom can
be excited in the blockade volume at the strong interacting regime. (b) Enhanced
Rabi frequency in the Rydberg blockaded regime. For R > rb (yellow), the two atoms
independently oscillate between |g, g⟩ and |r, r⟩ with Rabi frequency Ω. For R < rb
(red), the large interaction prevents a subsequent excitation, so that only one excitation
is possible. The |g, g⟩ state is coupled to |+⟩ with the enhanced Rabi frequency

√
2Ω.

Hamiltonian as

H =


⟨g,g| ⟨+| ⟨r,r|

|g,g⟩ 0
√

2h̄Ω/2 0
|+⟩

√
2h̄Ω/2 −h̄∆

√
2h̄Ω/2

|r,r⟩ 0
√

2h̄Ω/2 −2h̄∆ + V(R)
.

 (2.29)

2.4.1 Rydberg blockade

Considering the case when ∆ = 0, diagonalizing the Hamiltonian in Eq. (2.29) results
in new eigenenergies, which depends on the interatomic distance R, see Fig. 2.4a. In the
limit of large interatomic distances R, where V(R) ≈ 0, each atom will undergo trivial
independent Rabi oscillations |g⟩ ↔ |r⟩. For small distances R where V(R) ≫ Ω, the
strong van der Waals interaction shifts the energy of |r, r⟩ out of resonance. The latter
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effectively forms an effective two-level system in the subspace of |g, g⟩ and |+⟩,

H =

( ⟨g,g| ⟨+|

|g,g⟩ 0
√

2h̄Ω/2 0
|+⟩

√
2h̄Ω/2 0

)
, (2.30)

with eigenstates 1/
√

2 (|g, g⟩ ± |+⟩). Starting at |g, g⟩, this yields a Rabi oscillation
between |g, g⟩ and |+⟩, with an enhanced Rabi frequency of

√
2Ω, see Fig. 2.4b. It can

be generalized to N atoms system where the enhanced Rabi frequency is
√

NΩ [131–
134]. Additionally, the dynamics is restricted with a maximum of one single Rydberg
atom, which is known as the "Rydberg blockade". The blockade radius rb characterizes
the transition point between the regimes of strong and weak interaction V(R), where
the power broadening Ω equals the magnitude of the interaction V(R),

rb =

(
|C6|
h̄Ω

)1/6

. (2.31)

The concept of Rydberg blockade has been observed experimentally [127, 132] and has
demonstrated substantial potential for various applications [63, 72].

2.4.2 Rydberg dressing

Here, we focus on the case of far-detuned off-resonant coupling |∆| ≫ Ω. In the
regime of large interatomic distances where V(R) = 0, the ground eigenstate is simply
a product of two independent dressed states that are coupled by the light field,

|g̃, g̃⟩ ≈ (|g⟩ − β|r⟩)⊗ (|g⟩ − β|r⟩) , (2.32)

where β = Ω/2|∆| ≪ 1 is the admixture with β2 being the probability to find the
dressed atom in the Rydberg state |r⟩ in the dressed state |g̃⟩. Diagonalizing the
Hamiltonian for variable interatomic distances results in Fig. 2.5a, where ∆ < 0 and
C6 < 0 are assumed. The |g̃, g̃⟩ state has a distance-dependent eigenenergy due to the
dipole interactions of the Rydberg state admixture. The additional energy, compared
with the non-interacting limit at large distances, is called "dressed interaction" U(R)
and can be approximated using a perturbative approach, as detailed in the works
of [105, 135–139]. This is based on the limit where ∆ ≪ Ω so that the light field can
be treated perturbatively. Then, determining the energy of |g̃, g̃⟩ from the correction
energies of |g, g⟩, as Eg̃g̃ = ∑i E(i)

gg , to the point where the interaction V(R) becomes
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Figure 2.5: Dressed interaction potential of two Rydberg atoms. (a) Eigenenergies of
the Hamiltonian in Eq. (2.29) calculated for ∆ = 2π ×−60 MHz, Ω = 2π × 20 MHz,
and C6 = −1.3 GHz µm6. The interatomic axis orients with θ and ϕ with respect to the
quantization axis z. (b) A zoom to the lowest eigenenergy. The dressed interaction
U(R) = Eg̃g̃(R)− Eg̃g̃(R = ∞) shows a distance-dependent potential. The dressed
interaction strength U0 = h̄Ω4/8∆3 is independent of the chosen Rydberg state but only
relates to the optical coupling parameters. The cut-off distance rc = (|C6|/2h̄|∆|)1/6

can be tuned by the choice of Rydberg state and detuning.

significant. The correction energies can be calculated as

E(1)
gg = E(3)

gg = 0

E(2)
gg =

|⟨g, g|HL|+⟩|2

−E+
=

h̄Ω2

2∆

E(4)
gg =

|⟨g, g|HL|+⟩⟨+|HL|r, r⟩|
E2
+ · (−Err)

− |⟨g, g|HL|+⟩|4

E2
+ · (−E+)

=
h̄Ω4

4∆2(2∆ − V(R)/h̄)
− h̄Ω4

4∆3 .

(2.33)
We can see that the correction up to fourth order contains the Rydberg interaction
V(R). The energy of |g̃, g̃⟩ is

Eg̃g̃(R) =
h̄Ω4

4∆2(2∆ − V(R)/h̄)
− h̄Ω4

4∆3 +
h̄Ω2

2∆
. (2.34)

The distance-independent offset potential corresponds to the light-induced AC Stark
shift of two independent atoms. The dressed interaction potential U(R) can simply be
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derived by subtracting asymptotic energy from Eg̃g̃(R), yielding

U(R) = Eg̃,g̃(R)− Eg̃,g̃(R = ∞)

=
h̄Ω4

4∆2(2∆ − V(R)/h̄)

=
U0

1 + (R/Rc)6 .

(2.35)

In the last step of Eq. (2.35), we assume that the Rydberg interaction is repulsive
V(R) = |C6|/R6 and the detuning is negative ∆ = −|∆|. This assumption ensures that
the resonant condition −2∆ + V(R) = 0 is avoided. The U(R) expresses a softcore
shape with a maximum of

U0 = 2h̄∆β4 =
h̄Ω4

8∆3 , (2.36)

with rc is the cut-off distance, defined when the Rydberg interaction V(R) equates with
the power broadening of

√
Ω2 + (2∆)2 ≈ 2|∆|,

Rc =

(
|C6|

2h̄|∆|

)1/6

. (2.37)

Fig. 2.5b shown the softcore shape of U(R) for ∆ = 2π ×−60 MHz, Ω = 2π × 20 MHz,
and C6 = h ×−1.3 GHz µm6. It is evident that the optical coupling Ω and the detuning
∆ are the sole determinants of the dressed interaction strength U0, with the Rydberg
interaction C6 having no effect. However, the range of dressed interaction Rc is dictated
by the magnitude of Rydberg interaction C6 and detuning |∆|. These two parameters,
U0 and Rc, are crucial to customizing the Rydberg-dressed interaction. Moreover, the
interaction strength can be tuned with the orientation of the quantization field due to
the orientation-dependent interaction of Rydberg P state [140].

Continuous vs stroboscopic Rydberg dressing

To combine long-range Rydberg interactions with an itinerant lattice based quantum
system, the Rydberg lifetime has to be longer than the timescale associated with
the atomic motion. However, the usual Rydberg lifetime of several microseconds
is significantly shorter than the few milliseconds characteristic of moving atoms in
optical lattices. Rydberg dressing is introduced to overcome this short lifetime of bare
Rydberg state. The off-resonant admixing of the Rydberg state into the ground state
effectively increases the lifetime, surpassing the motional timescale while providing a
substantial extended-range interaction on the nearest lattice site. In the limit of ∆ ≫ Ω,
we summarize the relevant scaling parameters for the Rydberg dressing, where the
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light field continuously drives the system,

UC = U0 =
Ω4

8∆3 = β3Ω

τC =
4∆2

Ω2 τryd =
τryd

β2 .
(2.38)

The important parameter to quantify the applicability is "quality factor" Q. It represents
the ratio between the coherent to incoherent portion of the coupling. For continuous
Rydberg dressing, the quality factor is given by [141]

QC = UC · τC = βΩτryd =
Ω2τryd

2∆
. (2.39)

This shows that larger Rabi frequency and smaller detuning give better quality factor
as soon as we are still in the limit of ∆ ≫ Ω.

One can further improve the quality factor and thus the effective lifetime by apply-
ing a "stroboscopic Rydberg dressing" by pulsing light into the system. Following the
derivation in [105], the dressed interaction strength of US, with the associated lifetime
of τS, is pulsed on for a duration t. The interval T between each pulse results in the
duty cycle D = t/(t + T) < 1. In a regime where the pulse period is much shorter than
the external timescale, e.g. the motional timescale in the optical lattice, the stroboscopic
dressed interaction and lifetime are simply become average properties over the duty
cycle,

US,avg = ⟨U0⟩t = DUS

τS,avg =
τS

D
.

(2.40)

The average interaction strength US,avg reduces as the duty cycle decreases, whereas
the average lifetime τS,avg extends proportionally. If the same parameters are used in
the stroboscopic dressing, ΩS = Ω and ∆S = ∆, the quality factor remains unchanged,

QS,avg = US,avg · τS,avg = βSΩSτS = βΩτryd = QC. (2.41)

This approach appears to offer no enhancement when utilizing the dressing pulses.
However, we can operate with a larger admixture βS > β where the stroboscopic
dressed interaction is equated to the continuous dressed interaction. Assuming the
same optical coupling ΩS = Ω but ∆S < ∆, we can find the admixture relation as

US,avg = UC

Dβ3
SΩ = β3Ω

βS =
β

D1/3

(2.42)
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This relation shows that the same dressed interaction can be reached by increase
admixture of the stroboscopic dressing by a factor of D−1/3. Applying this relation,
the lifetime of the stroboscopic dressing is expressed as

τS,avg =
τryd

Dβ2
S
=

τryd

D1/3β2 =
τC

D1/3 . (2.43)

Since the duty cycle is less than unity D < 1, the stroboscopic dressed lifetime is
longer compared with the continuous dressed lifetime despite offering the same inter-
action strength. Analyzing the quality factor in these configurations, we observe an
enhancement of

QS,avg = US,avg · τS,avg = UC · τC

D1/3 =
QC

D1/3 . (2.44)

In summary, operating with stroboscopic Rydberg dressing while having the same
time-averaged interaction strength, enhances the lifetime by a factor of D−1/3. This
extended lifetime is experimentally observed and then utilized to achieve extended-
range interactions between atoms in optical lattices, discussed in Chapter 5.

2.5 Summary
This chapter has discussed the physics of Rydberg atoms. We started from calculating
the energy and wavefunction on the basis of quantum defect theory. It provides an un-
derstanding of the Rydberg properties, such as coupling strength and lifetime. Tab. 2.1
outlines the relevant Rydberg characteristics that are proportional to the effective
principal quantum number n∗, which are essential for the planning of experiments.
Most calculations in this dissertation benefit from open source calculation scripts of the
ARC [102] and Pairinteraction [98] packages. In addition, incorporating light-matter
interactions within a Rydberg system introduces the concepts of Rydberg blockade
and Rydberg dressing. Due to their versatile control with external light fields, Rydberg
atoms play a crucial role in quantum simulation [64–67], engineering of the quantum
gate [68–74], and quantum optics experiments [142–146].
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Chapter 3

Experimental platform

3.1 Introduction

Ultracold atoms have become an established platform for quantum simulation of
interacting many-body system [13, 14, 147]. Ultracold atoms in optical lattices, particu-
larly, can realize a many-body Hamiltonian, the so-called Bose-Hubbard model (BHM)
which can be used to simulate problems in many fields such as condensed matter
physics, high energy physics, and astrophysics [14, 16, 148, 149]. They offer excellent
tunable and controllable system parameters while being isolated from the environment.
With quantum gas microscopes, accessibility to microscopic information can be reached
at the single-atom level [150–152]. This also provides local control over the system,
allowing one to study out-of-equilibrium phenomena [36, 37, 40, 153–155]. Moreover,
incorporating the strong and controllable interaction of Rydberg atoms into the system
introduces an additional energy scale over large distances. This makes the platform
versatile for a wide range of studies, including many-body physics in strongly corre-
lated regimes [61, 64, 65, 127, 140], quantum optics [86, 156], and quantum computing
applications [68, 85].

This chapter describes the experimental setup and protocol used in this dissertation.
The discussion starts with the preparation and detection of the quantum gas in an
upgraded optical lattice setup, which offers a larger system size and tunable lattice
geometry. Then, we benchmark our Rydberg single-photon and two-photon setups
and compare to the previous setup [105, 113, 128]. Finally, a Raman setup to achieve
fast ground state manipulation is presented. More technical information can be found
at an earlier dissertations [105, 113, 157–162].

3.2 Ultracold atoms in optical lattices

In our experiment, a 87Rb atomic gas is first cooled down to the quantum degen-
eracy. The atoms are trapped in a two-dimensional (2D) periodic potential formed
by interference with off-resonant laser beams. This realizes the 2D Bose-Hubbard
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Hamiltonian [163]

HBM = −J ∑
⟨i,j⟩

â†
i âj +

U
2 ∑

i
n̂i (n̂i − 1)− µ ∑

i
n̂i, (3.1)

where âi
(
â†

i
)

is the annihilation (creation) operator of an atom at site i, n̂i = âi â†
i is the

atom number operator at site i, and ⟨i, j⟩ denotes summing over the nearest-neighbor
site i, j. The hopping energy J describes the coherent tunneling rate of an atom from
site j to neighboring site i. The onsite interaction energy U is the interaction energy
shift of the interaction of two atoms at the same site i. A chemical potential µ describes
the spatial distribution of the site offset potential in the system, which is determined
by the trapping potential or can be engineered using the local control capability.

The BHM is not analytically solvable. However, we can still describe its properties
in the two extreme limits of J ≫ U and J ≪ U that feature the two quantum phases of
a superfluid (SF) and a Mott insulator (MI), respectively. Those two regimes can be
experimentally accessed by adiabatically tuning the lattice depth, revealing the SF-MI
phase transition [164, 165]. For the non-interacting limit where J ≫ U, the ground
state is given by a Bose-Einstein condensate (BEC). The hopping energy is dominant
and allows the atom to delocalize throughout the system. In the thermodynamic limit,
where the atom number is large, the ground state is described by a product of local
coherent states [147]

|Ψ⟩SF = ∏
i
|α⟩i = ∏

i

(
e−|α|2/2

∞

∑
n=0

αn
√

n!
|n⟩i

)
, (3.2)

where α2 = ⟨n⟩ is the mean occupation in one site, |n⟩i is the Fock state in site i, and
n is the single-site atom number. For the strongly interacting limit where J ≪ U, the
onsite interaction energy is much larger than the tunneling energy, thus, the hopping
processes to sites j with nj ≥ ni are negligible. The ground state is simply the tensor
product of all Fock states on the individual sites [147],

|Ψ⟩MI = ∏
i
|n⟩i =

1√
n!

∏
i

(
â†

i

)n
|0⟩. (3.3)

Each particle is restricted to an individual lattice site therefore the variance vanishes
σ2

i = 0 [166]. This described an isolating phase, called the MI.

3.3 The rubidium quantum gas microscope
The key feature of a "quantum gas microscope" is the microscopic accessibility of
the local occupation of particles in the system by collecting fluorescence light with a
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high-resolution objective [150–152, 167–173]. The results in this dissertation have been
performed with a quantum gas microscope using bosonic 87Rb [151]. In this section,
we will summarize the four main experimental protocols; preparing a cold ensemble
and unity-filled MIs in the optical lattices, the actual experimental sequences, and the
site-resolved detection. Moreover, we will discuss our capability to perform single-site
addressing of atomic configurations and the ability to tune our lattice geometries.

3.3.1 Preparation of cold atomic ensembles and 2D unity-filled
systems

To achieve ultracold temperatures of the atomic ensemble, we perform many cool-
ing stages. First, a thermal rubidium gas is loaded into a 2D magneto-optical trap
(MOT). This creates an atomic beam of 87Rb atoms, which travel through a differen-
tial pumping to an intermediate chamber with ultrahigh vacuum. At this stage, a
three-dimensional (3D) MOT is loaded, followed by a compressed MOT and molasses
cooling, respectively. The atoms are then loaded into a magnetic trap generated by
a quadrupole magnetic field. Using a microwave (MW) to transfer from trapped
|F = 2, mF = −1⟩ to untrapped |F = 2, mF = −2⟩ hyperfine ground states, we perform
a forced evaporation by sweeping the MW frequency to remove hot atoms from the
trap. After that, the cold ensemble is loaded to a focused far-detuned dipole trap, and
then a translation stage transports the atoms to the science chamber where the objective
and optical lattice are located. In the science chamber, we load the atoms into a crossed
optical dipole trap formed by blocking the retro-reflection of the horizontal lattice
beams. A subsequent evaporation by lowering the trap depth further decreases the
temperature of the ensemble. We transfer the atoms into |F = 2, mF = −2⟩ with a MW
Landau-Zener sweep that provides a vertical force that cancels gravity using a vertical
magnetic gradient. This keeps the atoms trapped at the center of the crossed dipole
trap before loading into the vertical physics lattice, retro-reflected at the lower vacuum
window, containing approximately 10 − 15 2D layers. We then transfer to the vertical
pinning lattice with a smaller waist and simultaneously ramp the magnetic gradient to
generate a Zeeman shift of 2π × 4.5 kHz between the adjacent layers with a spacing
of 532 nm. In the next step, the so-called "slicing", we apply a narrow MW frequency
sweep of 2π × 2 kHz to transfer only a single target layer to |F = 2, mF = −1⟩ and
remove the remaining layers of |F = 2, mF = −2⟩ by a resonant push-out. The final
evaporation step is performed by shifting the zero-field position of the quadrupole
field away from the optical trap along the horizontal direction but vertically aligned to
generate a maximum in-plane gradient. To increase the rethermalization rate during
evaporation, a small trapping volume of a dimple trap is added by passing through
the defocused objective. Lowering both the pinning lattice and dimple trap depths in
the in-plane gradient results in the 2D ultralow temperature ensemble near a BEC with
a tunable atom number upto 3000 atoms.
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We then proceed to the next step of preparing one atom per lattice site, which is
the essential starting point of all experiments performed in this dissertation. After
preparing the ultracold ensemble, two horizontal optical lattices are adiabatically
ramped up across the phase transition where the system changes from the SF to the MI
phase [164, 165]. The ramp is a double s-shape with a slow change at the transition
point until it reaches the atomic limit at a horizontal/vertical lattice depth of 40/60 Er.
After the ramp, we end up with a unity-filled atomic array of 200 − 2000 atoms in
|F = 2, mF = −1⟩ with a typical filling of 0.93 − 0.97.

3.3.2 Potential engineering and single-site addressing
Up to now, the explained procedure in the previous section generates a spin-polarized
state of |F = 2, mF = −1⟩ with the atomic array in a circular shape defined by the Gaus-
sian trap potential of the vertical lattice. We can further add off-resonant light together
with a digital micromirror device (DMD) to perform potential engineering [174, 175]
and single-site spin addressing [35]. Details of the procedure and the underlying
technology can be found in [157, 161, 162].

We engineer the optical potential using temporally incoherent light at a wavelength
of 670 nm to illuminate the DMD. The light is then overlapped with the imaging path,
passed through the objective lens, and is focused down to the atomic plane. Compared
to fluorescence imaging at 780 nm, the objective must be shifted by approximately
15.7 µm so that the focus is in the atomic plane due to chromatic shifts.

To compensate for chromatic shifts, the objective must be shifted by approximately
15.7 µm when switching from fluorescence imaging at 780 nm to potential engineering
light at 670 nm. Since the light is blue detuned from the D2 transition, the light
generates a repulsive potential onto the atoms. With DMD, we can engineer almost
arbitrary patterns with spatially variable potential strengths, up to three times the
onsite interaction potential U, during the SF-MI transition. Thereby, we can achieve
consistently filled atomic arrays in a well-defined shape by lowering the entropy in a
target region [174, 175].

Once the unity-filled atomic array is achieved, adding local control over the inter-
nal degrees of freedom of the atoms with single-site precision introduces numerous
features for the experiments. For example, it can be used for initial state preparation,
which is often employed in measurements discussed in this dissertation. To obtain
this, a spatially programmable light pattern, generated by the same DMD, is projected
to the atomic plane by the high-resolution objective. Starting from the spin polarized
state of |F = 2, m f = −1⟩, the "tune-out" wavelength of 787.56 nm with σ− polar-
ization creates AC-Stark shifts on |F = 2, mF = −2⟩ whereas |F = 2, mF = −1⟩ is
unaffected [35, 176]. The DMD generates differential AC-Stark shifts between the two
states of up to 2π × 200 kHz. At the same time, a MW sweep, on-resonant with the
differential shifts, is applied to only transfer the target atoms to |F = 2, m f = −2⟩. In
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the opposite way, applying a MW sweep on-resonant with the unshifted energy, can
transfer the non-targeted atoms to |F = 2, m f = −2⟩ while the targeted atoms remain
in |F = 2, m f = −1⟩. One challenge of this scheme is the relative phase drift between
the projected light and the optical lattice phase. We address this issue by finding the
lattice phase from the previous shots and feed-forward this to the projected on the
DMD. Therefore, slow relative phase drifts due to temperature and alignment changes
can be diminished.

3.3.3 Site-resolved fluorescence imaging and spin-selective
detection

To detect the atomic distribution after an experiment, the horizontal lattices and the
pinning lattice are simultaneously ramped up to a depth of ≈ 2000 Er per lattice. Then,
optical molasses cooling and repumping on the D2 transition in the σ+ − σ− configura-
tion along the horizontal axes and the vertical σ+ beam are applied to the atoms. Due
to light-assisted collisions [177–180], the imaging only has access to the parity of the
atom number on a single site of the lattice. The large lattice depth freezes the dynamics
of the atoms during the imaging. We collect the fluorescence light from the atoms using
our high-resolution objective with a numerical aperture (NA) of 0.68 and image the
atomic plane on the electron multiplying charge-coupled device (EMCCD). Afterward,
a reconstruction algorithm [159, 162] yields the number of local occupations in the
optical lattice. The resolution of the imaging system is approximately 700 nm, which is
larger than the lattice spacing of alat = 532 nm. However, the predetermined structure
of the lattice still allows for a full reconstruction. Since cooling and repumping light
scatters with all hyperfine states of atoms, the imaging detects atoms in both |F = 1⟩
and |F = 2⟩. We can selectively remove the atoms in |F = 2⟩ using resonant push-out
light on the D2 transition, so that only the |F = 1⟩ atoms are left for imaging. The
|F = 2⟩ atoms can be detected by applying a global MW transfer to flip the states
before the resonant push-out.

3.3.4 Enlarging system size

Quantum simulation in optical lattices is often limited by the small available system
size. A small system size restricts the dynamics to short timescales until the boundary
of the system affects the main phenomena. The size of the array trapped in the optical
lattices is given by the harmonic confinement of the Gaussian beam. An obvious way
to increase system size is to increase the beam waist, so that the harmonic confinement
is reduced. However, a higher power is required to retain the same trap depth when
enlarging the beam. We use two different approaches for the horizontal and vertical
lattices to achieve low confinement while using the same power budget. The upgrade,
implemented during this dissertation, is described in detail as follows.



30 3. Experimental platform

Faraday rotator

Fiber coupler

Mirror

Waveplate

Lens

PBS

Beam sampler

Dichroic mirror

Photodiode

Beam dump

Cam
era

250

λ/2
200

Cyl 400

Cyl 30

100

250

λ/2

λ/2

λ/2

Brewster

polarizer

λ/2
Picom

otor

L2

L1

10
0

Cam
er

a

λ/
2

20
0

Cyl 
40

0

Cyl 
30

25
0

Pico
m

ot
or

λ/
2λ/

2

λ/
2

Bre
wste

r

pola
riz

er

10
0

-5
0

75

Pico
m

ot
or

PBS

PBS
15

0

150

L1

L2

1 2

1

2

Figure 3.1: Optical layout of the horizontal lattices. The two horizontal lattices L1
(bottom) and L2 (top) are designed to generate an elliptic beam shape at the atomic
position. Both beams are aligned orthogonal at the science chamber and are retro-
reflected back to their original paths, forming a 2D periodic potential. The beams
have a slight frequency difference, such that the two orthogonal optical lattice axes
do not interfere. Changing to the folded scheme, the L1 is switched off while the
polarization of L2 is tuned from horizontal to vertical linear polarization. The L2 beam,
after entering the chamber, is altered to overlap with the incoming L1 beam path and
is retro-reflected. The opaque optical components denote the primary optical lattice
beam path, while the transparent optical components are used to monitor the power
and position of the beams. The inset illustrates the elliptical beam shape with a size
of 33 µm and 330 µm along the vertical and horizontal axis, respectively, forming the
square optical lattices.
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Horizontal lattice

For most of the experiments in our setup, we typically trap the atoms in a single
horizontal plane, while the atoms in the other layers are removed. Since the vertical
volume is insignificant, we introduce a strong ellipticity to the beam shape with a large
waist along the horizontal axis. Therefore, the confinement in the horizontal plane
is diminished without a strong intensity reduction. The horizontal beams originate
from a 50 W laser source (Mephisto, Coherent), operating at a wavelength of 1064 nm.
The beam is split into two paths for the two horizontal lattices (labeled L1 and L2)
which are designed to have almost identical optical elements. Each beam path is
frequency detuned by an acousto-optical modulator (AOM) before being guided to
the experimental setup by a photonic crystal fiber (LMA-PM-15, ALPhANOV). Note
that L1 and L2 do not interfere due to a frequency difference introduced by the AOMs.
On the experimental table, a 20 mm lens (HFTLSQ-12-20PF1, OptoSigma) out-couples
the beam with a circular beam waist of 500 µm. Two sets of Brewster polarizers and
optical rotators (PAVOS 1010-1080nm (EOT.189.22223), EOTech) are used to block the
retro-reflected light with a total isolation of 60 dB. Here, the polarization is set to the
linear polarization along the horizontal axis. Then, a 400 mm and 30 mm cylindrical
lens focus the beam along the horizontal and vertical axes respectively onto the same
image plane before being collimated with a 100 mm lens. A focusing lens with a focal
length of 250 mm focuses the beam into the chamber at the atomic position resulting in
an elliptic shape with a waist of 330 µm and 33 µm along the horizontal and vertical
axes, respectively. To form the optical lattice, a 250 mm lens in 4 f configuration
images the beam onto a mirror that retro-reflects the beam back with an identical
shape. Picomotor actuated mounts are used for fine alignment of the beam to the
atomic position. The optical layout of the horizontal lattices with respect to the science
chamber are illustrated in Fig. 3.1. To compare with the previous horizontal lattice with
a circular waist of 75 µm, our new cylindrical lattice has an area larger by a factor of
two. Therefore, the maximum lattice depth reduces from 3000 Er to 2000 Er at the same
laser power, which is sufficient to freeze the dynamics of the atoms during imaging.

With the same setup, we can switch from the non-interfering L1 and L2 to an
interfering folded lattice scheme [162, 181] that uses only L2. This can be achieved by
changing the polarization of L2 to linear polarization along the vertical axis using a
half waveplate. The beam, after passing through the chamber, is routed to a telescope
containing a 75 mm and a −50 mm lens to ensure that it maintains the same beam size
for focusing it onto the atoms. The beam is then overlapped with the L1 optical path,
which allows one to generate different optical lattice structures, see Sec. 3.3.5.

Vertical lattice

Unlike the horizontal lattices, the vertical lattice has to be enlarged symmetrically to
reduce the confinement over the whole system. This causes a significant reduction of
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the lattice depth given the same laser power. In addition, the low confinement reduces
the evaporation efficiency in the prior cooling step. Therefore, we set up a hybrid
solution having two vertical lattices with different beam size. The "physics lattice"
with a large beam waist is used when low confinement is required, such as for the
SF-MI transition and when probing dynamics, where we usually operate at low lattice
depth. The "pinning lattice" with a smaller waist is used when large confinement or
large lattice depth is needed during the evaporation and the imaging process.

The laser setup is designed to deliver switchable full power from a single laser
to both the physics and the pinning lattice. A 1064 nm laser (Mephisto, Coherent)
with a power of 40 W is passed through a shear mode AOM (I-M080-2S2G-3-LV11,
G&H) which is driven at a frequency of 80 MHz. This AOM is also used for intensity
stabilization for the physics lattice. The +1st order from the AOM is sent to a telescope
and then coupled to a fiber (LMA-PM-40, NKT) which afterward goes to the physics
lattice optical beam path. Note that the LMA-PM-40 fiber required to be in a fixed
and straight shape to avoid power loss after the fiber. The 0th order from the same
AOM is sent to a second AOM (3110-191, G&H), a telescope, and then coupled to a
fiber (LMA-PM-15, ALPhANOV) for the pinning lattice. The second AOM, driven at a
frequency of 110 MHz, is used for stabilizing the intensity of the pinning lattice. In this
way, switching full power between the physics and pinning lattice can be controlled
by the first AOM.

The fibers guide the beams to breadboards placed on top of the experimental
chamber. These breadboards contain five different beam paths, see Fig. 3.2, that are
combined before being sent to the atoms from the top:

• The physics lattice (red): a 40 mm lens (HFTLSQ-30-40PF1, OptoSigma) out-
couples the beam from the LMA-PM-40 fiber at the second layer of the bread-
boards, resulting in a beam waist of 500 µm. After that, two sets of Brewster
polarizers and optical isolators (PAVOS 1010-1080nm (EOT.189.22223), EOTech)
provide isolation of 60 dB before the beam is sent down to the lower breadboard.
The beam is then sent through a telescope containing lenses with focal lengths
of 150, 100, and 100 mm, respectively, before being focused down to 350 µm at
the atom position with a 400 mm lens. The bottom window, ≈ 5 mm below the
atoms, is coated for high reflection at the wavelength of 1064 nm, therefore, the
physics lattice is retro-reflected to the same path.

• The pinning lattice (orange): the beam from the LMA-PM-15 fiber is collimated
with a 20 mm lens (HFTLSQ-12-20PF1, OptoSigma), resulting in a beam waist of
500 µm. The beam passes through an optical isolator (FI-1060-5TI, Linos) with
60 dB isolation, and then through a telescope with 50, 100 and 150 mm lenses to
increase the beam waist to 1.8 mm. The pinning lattice has vertical polarization,
orthogonal to the physics lattice, allowing it to be combined with the physics
lattice using a Brewster polarizer.
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Figure 3.2: Optical layout of the vertical lattices. (a) The breadboards contain the
physics lattice beam (red), the pinning lattice beam (orange), the push beam (blue), the
probe beam (brown), and the vertical Raman beam (green). The 1064 nm physics and
pinning lattices are overlapped on a Brewster polarizer with orthogonal polarization
and focused on the atoms with waists of 350 µm and 75 µm, respectively. The 780 nm
push and probe beams, used for removing |F = 2, mF = −2⟩ and sending weak light,
respectively, are overlapped using a non-polarizing beam splitter (NPBS) before being
combined with the vertical lattices with a dichroic mirror. The 795 nm vertical Raman
beam is combined with the push and probe beams with a dichroic mirror. (b) The
breadboard for distributing the 1064 nm laser to the physics and pinning lattices. The
1st order of the first AOM is sent with full power to the physics lattice fiber. To switch
from the physics to the pinning lattices, the first AOM is switched off, so that the 0th

order passes through the second AOM and the pinning lattice fiber with full power.
The opaque optical components denote the primary optical lattice beam path, while the
transparent optical components are used to monitor the beams’ power and position.
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Finally, the 400 mm lens focuses the beam to a waist of 75 µm onto the atoms,
after which it is retro-reflected by the bottom window.

• The push beam (blue) and the probe beam (brown): the push beam, used for
removing |F = 2⟩ atoms, and the probe beam, used for sending weak light, have
a wavelength of 780 nm. Both beams are combined with a 50 : 50 NPBS before
passing through a telescope of 250 and −200 mm lenses. The beams are focused
with a 300 mm lens and combined with the physics and pinning lattice by a
dichroic mirror (FF930-SDi01, Semrock). The beam waists of the push and probe
beam in the atomic position are 55 and 20 µm, respectively.

• The vertical Raman beam (green): the Raman beam at a wavelength of 795 nm is
planned for driving D1 transition of the atoms. The beam is overlapped with the
push and the probe beams by a dichroic mirror (LPD02-785RU, Samrock). After
focusing with the 300 mm lens, the beam waist on the atomic position is 50 µm.

When ramping across the SF-MI transition to achieve unity-filled MI, the atoms will
explore and form the MI at the local potential minima. Therefore, the cloud shape
and size are strongly influenced by the beam shape and harmonic confinement of the
vertical lattice beam. For example, an ideal Gaussian beam results in a circular MI
shape. However, we found that the physics lattice beam with low confinement has
speckles caused by disorder due to scattered particles on the bottom window. These
speckles, with a typical size of 10 µm, are smaller than the confinement of the physics
lattice, resulting in many local potential minima with an energy scale comparable to
that of the BHM. This leads to the formation of multiple MIs with the same size as the
speckles, see Fig. 3.3a. In contrast, the pinning lattice has stronger confinement than
the speckles due to the smaller beam waist. The pinning lattice confinement remains
the dominant factor in the potential, ensuring a circular MI shape. To overcome
this speckles issue, we use the DMD to engineer the potential on top of the physics
lattice potential to realize an almost homogeneous system with the remaining speckles
potential smaller than the interaction energy scale U, see Sec. 3.3.2.

3.3.5 Tunable lattice geometries
The typical optical lattices in our setup are created by three retro-reflecting beams,
where the frequencies of each lattice axis differ by approximately 100 MHz to prevent
interference between the different axes. The lattice beams have a wavelength of
1064 nm resulting in 3D optical lattices with a lattice spacing of alat = 532 nm. In this
dissertation, we call this geometry the "square lattice" since the lattice structure orients
the optical lattice beams. For a novel approach, we fold the horizontal lattice beam L2
into the orthogonal axis of L1 before retro-reflecting it back through the same path,
thus realizing a bow-tie lattice [182], as discussed in Sec. 3.3.4. In this configuration, the
interference of the two arms forms a square lattice oriented at 45 degrees with respect
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Figure 3.3: Fluorescence images of the Mott insulator. (a) MI in the physics lattice
without any potential correction. The MI forms in separate sectors where the local
potential minima are. This disorder potential is caused by the scattering of scattered
particles in the bottom window. (b) MI of around 1500 atoms in the square lattice.
The square lattice with a lattice spacing of alat = 532 nm is formed by two orthogonal
independent retro-reflected beams. The orientation of the lattice structure aligns with
the direction of the beam. (c) MI of around 1000 atoms in the diagonal lattice. The
diagonal lattice is generated by a folded scheme, resulting in a 45◦ angle with respect
to the beam direction, with a lattice spacing of alat = 752 nm. The shape of the MI in
b and c is engineered by a repulsive potential of 670 nm light projected to the DMD
before focusing on the atoms with the objective.

to the beams’ direction, with a lattice spacing of alat =
√

2 · 532 nm = 752 nm, while the
vertical lattice spacing remains unchanged. A detailed analysis of the structural phase
stability of both lattice configurations is discussed in [162]. We refer to this folded
scheme as the "diagonal lattice" since the lattice structure orients diagonally compared
to the square lattice. Figs. 3.3 b,c show fluorescence images of MIs in the square and
diagonal lattice, respectively. With the imaging resolution of 700 nm, the square lattice
with the spacing of alat = 532 nm cannot be resolved during imaging. The diagonal
lattice has a larger spacing of alat = 752 nm, causing a clear separation between
each lattice site. The square lattice is predominantly used in most measurements in
Chapter 4, while the diagonal lattice is used in Chapter 5.
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3.4 Excitation of Rydberg S and P states
Exciting atoms from ground states to a target Rydberg state can provide long-range
and strong interactions that are essential for quantum science [82]. There are several
schemes that have been used for Rydberg excitation [59, 183–185]. We will focus on
the simplest schemes of using purely optical excitation. First, Rydberg single-photon
and two-photon excitation schemes will be compared, then experimental benchmarks
of both excitation schemes in our setup are discussed.

Due to the dipole selection rules, ground S states can be directly excited to Rydberg
P states with a single-photon excitation scheme, see Fig. 3.4a. In contrast, exciting
from ground S states to Rydberg S states requires a two-photon excitation scheme,
which is typically detuned from an intermediate state, see Fig. 3.4b. Both schemes
have various advantages and disadvantages, as well as technical and fundamental
limitations. For 87Rb, the single-photon excitation scheme is in the ultraviolet (UV)
regime with a wavelength of 298 nm. Such a laser system faces many challenges, such
as strong material degradation, unavailability of suitable fibers, and high loss at optical
components. In addition, the Rydberg P states have anisotropy and are more sensitive
to external perturbations than the Rydberg S states, therefore, experimental parameters
must be carefully selected [186]. However, the single photon coupling provides larger
achievable Rabi frequencies by up to an order of magnitude compared to the two-
photon coupling. This is essential for the Rydberg dressing interaction discussed in
Chapter 5 because the dressed interaction strength scales with V ∝ Ω4. In contrast,
the two-photon excitation scheme usually features more accessible wavelengths of
780 nm + 480 nm or of 420 nm + 1013 nm depending on the chosen intermediate state.
For the limit of large intermediate state detuning ∆ ≫ Ωr, Ωb, the intermediate can be
eliminated, resulting in an effective two-level system [159, 187, 188] with an effective
Rabi frequency of

Ωeff =
ΩrΩb
2 |∆| . (3.4)

Usually, the limitation to achieving high effective Rabi frequency is the upper transition
Ωb since its dipole matrix coupling is much smaller for the lower transition. Moreover,
the different coupling strength between the upper and lower transition causes an
AC-Stark shift on the Rydberg transition that can be described as an effective detuning

δeff = δ +
Ω2

b
4 (∆ − δ)

− Ω2
r

4∆
. (3.5)

Therefore, one has to take into account this AC-Stark shift when the lower and upper
transitions have different coupling strength. The effective dephasing Γdep of both
schemes can be described by

Γdep =
1
2

γdep +
3
4

Γdec, (3.6)
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Figure 3.4: Rydberg excitation schemes of 87Rb. (a) Single-photon excitation to
Rydberg P states use a wavelength of 298 nm. It has a high Rabi frequency coupling.
The main dephasing sources are laser noise and Rydberg decay. (b) Two-photon
excitation to Rydberg S states use two lasers at wavelengths of 780 nm and 480 nm that
off-resonantly detuned from the intermediate state |e⟩. The effective Rabi frequency
Ω = ΩrΩb/2∆ is usually limited by the upper transition due to smaller dipole matrix
coupling and available laser power. The dephasing sources include the off-resonant
scattering from the intermediate state ΓeΩ2

r /4∆2 in addition to laser noise and Rydberg
decay.

where γdep contains all dephasing sources and Γdec all sources of decoherence. The
single-photon scheme, see Fig. 3.4a, has γdep = γ and Γdec = Γryd. In comparison,
the two-photon scheme, see Fig. 3.4b, has γdep = ΓeΩ2

r /4∆2 + γr + γb and Γdec =

ΓeΩ2
b/4∆2 + Γryd. These show that the two-photon excitation scheme has additional

dephasing and decoherence from off-resonant scattering of the intermediate state
compared to the single-photon excitation scheme. This can be diminished by operating
with larger detuning. Higher laser power is then required to keep the effective two-
photon Rabi frequency the same.

In our experimental setup, we have both excitation schemes available. By locally
preparing the atoms in different hyperfine ground states and then using our addressing
technique described in Sec. 3.3.2, we can simultaneously address the Rydberg S and
P states. Therefore, we can exploit the strong interaction of Rydberg S and P states,
which is used in the experiments presented in Chapter 4.

3.4.1 Single-photon excitation scheme
The direct Rydberg excitation scheme, using a single-photon transition, can directly
couple ground states to Rydberg states. This solution eliminates the scattering of the
intermediate state, and significantly decreases the decoherence rate of the system. With
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a large dipole matrix coupling, single-photon excitation has a large Rabi frequency cou-
pling, which is beneficial for the Rydberg dressing experiments presented in Chapter 5.
Moreover, it allows access to Rydberg P states, which are inaccessible with the two-
photon excitation scheme, opening various research directions [189–192]. The UV laser
has been developed in several groups [192–198] but recently also high-power laser
systems have become commercially available. In this section, we briefly introduce our
UV laser setup focused on frequency and power stabilization protocols, spectroscopy
of Rydberg P states, driving Rabi oscillation, and the effect of stray electric charges on
Rydberg states.

Setup and operation of the single-photon excitation laser

Due to an unavailability of high-power commercial UV lasers at that time, we con-
structed a home-built laser system to meet our specific requirements. The laser system
had been built together with Simon Hollerith and Simon Evered. The design and
optical layout of the laser are discussed in details in [113]. The laser setup involves
frequency quadrupling a laser source operating at a wavelength of 1192 nm using two
stages of bow-tie type second harmonic generation (SHG) cavities [198, 199]. An exter-
nal cavity diode laser at 1192 nm is frequency-referenced to an ultra-low expansion
(ULE) cavity with a free-spectral range of 1496.66 MHz. A frequency-tunable radio
frequency (RF) source up to 750 MHz generates tunable sidebands via an electro-optic
modulator (EOM). An additional fixed 15 MHz RF source is combined with the tunable
RF source to create an error signal for locking the sideband of the laser to the ULE cavity.
Thus, the frequency of the 1192 nm laser is stabilized to the ULE cavity with tunable
frequency by varying the RF during experiments. The 1192 nm is then used to seed a
Raman fiber amplifier, amplifying the optical power up to 6 W. Next, the first SHG
cavity generates light at a wavelength of 596 nm with up to 3 W of optical power. The
beam is sent to an AOM and then to the second SHG cavity, thus achieving a 298 nm
laser with a maximum optical power of 1 W. Both SHG cavities are locked using the
Pound-Drever-Hall (PDH) technique [200] by modulating the current of the 1192 nm
laser with a 20 MHz RF. The reflected light from the cavity is collected by photodiodes
and mixed with the 20 MHz RF reference signal to generate the PDH error signal used
for cavity locking. In our setup, the modulated sideband of the first SHG cavity is
carried by the 596 nm laser and is large enough to generate the PDH error signal for
the second SHG cavity without requiring additional components. Two mirrors in each
SHG cavity are mounted with piezo stacks for fast and slow modulation at a resonant
frequency around 500 kHz and 50 kHz, respectively [113]. To lock the SHG cavity with
the error signal, a field programmable gate array (FPGA) (STEMlab 125-14, Red Pitaya)
processes the error signal digitally and applies a proportional-integral-derivative (PID)
filter which is then feedbacked to the cavity piezo stacks. FPGAs and microcontrollers
have become popular to employ as feedback controllers due to being universally
applicable and easily connectable to laboratory infrastructure [198, 201–203]. The
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Figure 3.5: Schematic of the 298 nm laser and locking scheme. The 1192 nm external
cavity diode laser is frequency stabilized to an ULE cavity and seeds the Raman
amplifier, which generates up to 6 W at 1192 nm. Two sets of the doubling cavities
sequentially double the frequency, yielding a 298 nm laser with a power up to 1 W.
Each doubling cavity is stabilized using the PDH technique with an FPGA for PID
feedback. The first cavity continuously operates in locked mode. The second cavity is
locked a few tens of milliseconds before use. The 298 nm laser is power stabilized by
altering the input power before entering the second cavity by PI feedback to the AOM
in the 596 nm path.

STEMlab locking device has a limited analog output voltage range of ±1 V, which is
insufficient to drive the piezo stacks. Therefore, two outputs from the locking device
are amplified with inverting operational amplifiers (OP07C) with gains of 5.6 and 10
for the fast and slow feedback channels, respectively, before driving the cavity piezo
stacks. The feedback bandwidth is currently limited by the operational amplifiers
to around 30 kHz and 750 Hz for the fast and slow channels. Future improvements
could be achieved by choosing faster operational amplifiers. The STEMlab locking
devices offer several advantages, including automatic cavity relocking and remote
operation capabilities. A beam sampler positioned at the cavities’ output monitors
the output power and initiates automatic relocking when the cavity is scanned to its
resonance or loses lock. An open-source software allows for tuning PID parameters
and configuring the automatic relocking threshold [204]. Throughout the operation of
the laser setup, the first SHG cavity consistently operates in a locked mode, ensuring a
stable output at 596 nm. In contrast, the UV lasers are known to cause degradation of
optics and nonlinear crystals [205–207]. Therefore, a shutter blocks the 596 nm light
going to the second SHG cavity. Just before the UV laser is required, the shutter is
opened, allowing the second cavity to autolock a few tens of milliseconds beforehand.
Once the second cavity is locked, we stabilize the output power using a photodiode
and provide feedback to the AOM in the 596 nm path to control the incoming power
into the cavity. An AOM in the 298 nm path is used for creating fast pulses with a rise
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Figure 3.6: Rydberg resonances of 30P3/2 state. Rydberg spectroscopy of the
30P3/2 state using a MI trapped in the optical lattices and initialized in |F = 2, mF =
−2⟩. The three Rydberg resonances of m′

J = [−3/2,−1/2, 1/2] have linewidths of
2π × [216(9), 111(13), 154(6)]kHz, respectively. The resonances are spaced equally
corresponding to the Zeeman shifts of the magnetic field. With the ground state of
mJ = −1/2, the σ+ − σ− polarization causes a strong coupling to the Rydberg state of
m′

J = −3/2 and m′
J = 1/2, whereas the m′

J = −1/2 coupling is weaker.

time of 100 ns. Finally, the 298 nm laser is sent to a pinhold for a spatial mode cleaning
before focusing onto the atoms with a maximum power of 500 mW.

Single-photon Rydberg spectroscopy

We spectroscopically probe Rydberg P states by observing atomic loss while the atoms
are trapped in the optical lattices. The UV laser is aligned within the atomic plane,
while the bias magnetic field is perpendicular to the plane. The polarization of the UV
laser is linear and perpendicular to the magnetic field, causing a σ+ − σ− polarization
configuration. The MI of around 100 atoms, initialized in |5S1/2, F = 2, mF = −2⟩ with
a hyperfine Zeeman sublevel of mJ = −1/2, can couple only to m′

J = −3/2 and m′
J =

1/2 with σ− and σ− polarization, respectively. To minimize power broadening, only
very low power is applied for 0.5 ms. Fig. 3.6 presents the 30P1/2 Rydberg resonance of
m′

J = −3/2, m′
J = −1/2, and m′

J = 1/2 where the m′
J = −1/2 coupling is diminished

compared to the other states. The frequency difference between each resonance of ∆z =
2π × 8.31(1)MHz matches the expected Zeeman energy splitting of the set magnetic
field. The extracted full width at half maximums (FWHMs) are 2π × 216(9) kHz,
2π × 111(13) kHz, and 2π × 154(6) kHz for m′

J = −3/2, m′
J = −1/2, and m′

J = 1/2,
respectively. The width of the resonances is still dominated by the power broadening
of the collectively enhanced coupling for many atoms, as seen in Sec. 3.4.2.
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Figure 3.7: Calibration of the 298 nm laser and single atom Rabi oscillations. (a) The
off-resonant 298 nm laser causes a spatial AC-Stark shift on the ground state, which
can be measured using MW spectroscopy. The spatial AC-Stark shift is employed to
align the laser in the center of the atomic cloud and to calibrate the Rabi frequency
and the beam waist of the laser. (b) Single atom Rabi oscillation to the 36P1/2 state.
The measured Rabi frequency is Ω = 2π × 3.42(1)MHz with an exponential decay of
9(3)µs.

Calibration of the UV Rabi frequency and beam waist

The AC-Stark shift of off-resonant light can be used to determine the Rabi frequency of
the single-photon excitation transition, as well as laser beam alignment. The energy
shift of the ground state atoms is given by ∆AC = Ω2/4∆ for a large detuning compared
with the Rabi frequency ∆ ≫ Ω. Therefore, it induces a differential shift between
two-ground states which can be probed by MW spectroscopy. Moreover, by expanding
the atomic could to a large size, we can spatially resolve the shift due to the intensity
gradient of the beam shape and use this to align the beam to the atoms. The UV laser
is detuned by ∆ = 2π × 720 MHz and 2π × 703 MHz from |30P3/2, m′

J = 3/2⟩ and
|30P3/2, mJ = −1/2⟩ for σ+ and σ− polarization, respectively. We expand the atomic
cloud in the 2D plane to larger than 20 µm before measuring the spatial differential shift
of the ground states |F = 2, mF = −2⟩ ↔ |F = 1, mF = −1⟩. The resonance appears
as two lines along the beam propagation between the beam center, see Fig. 3.7a. Here,
these two resonance lines are used to center the beam along the in-plane direction,
while the vertical direction is optimized for a maximum energy shift. With that, we
extracted a maximal Rabi frequency of Ω = 2π × 23.7(5)MHz and a beam waist of
11.6(6)µm from a Gaussian fit function.
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Figure 3.8: Influence of surface effects on Rydberg resonances. The resonance of the
Rydberg 44P3/2 state is shifted after illumination of the 480 nm laser, which hits the
bottom window, for more than 30 s. Once the 480 nm laser is turned off, the Rydberg
resonance slowly drifts back to its original position. The drift is most likely caused
by the accumulation path charges on the dielectrically coated window, located about
5 mm from the atomic position.

Single-photon Rabi oscillation

After identifying the Rydberg resonances and aligning the beam to the atoms, we
drive a single-photon Rabi oscillation to Rydberg the 36P states. The single atom
Rabi oscillation of the |5S1/2, F = 2, mF = −2⟩ ↔ |36P1/2, m′

J = −1/2⟩ transition is
shown in Fig. 3.7b. We extract a Rabi frequency of Ω = 2π × 3.42(1)MHz with an
exponential decay time of τ = 1/Γdep = 9(3)µs. Considering only the laser linewidth
γ and the decay of the Rydberg state Γryd as sources of dephasing for Eq. (3.6), we find
a maximum upper bound for the laser linewidth of γ = 2π × 30 kHz. Furthermore, the
quality factor, the ratio of coherent versus incoherent processes, of Q = Ω/Γdep = 193
is larger than the two-photon excitation scheme, see Sec. 3.4.2.

Influence of surface effects on Rydberg resonance

Rydberg states are highly sensitive to external fields due to their large electric dipole
moment. This makes them a good candidate for magnetic and electric sensors [87, 90].
However, any uncontrolled field or stray fields from nearby components can affect
measurements and Rydberg state properties. We observe stray field effects through the
resonance drift of Rydberg P state, see Fig. 3.8. Here, the resonance of |44P3/2, mJ =
3/2⟩ significantly shifts after the 480 nm laser is turned on for more than 30 s. By
spectroscopically probing the resonance over time, we observe the Rydberg resonance
to slowly relax to a stable point. This could be caused by accumulation of patch
charges [208] on the dielectric surface of the bottom window, as our optical lattice
position is located 5 mm away from the window. Simultaneously operating the single-
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photon and two-photon excitation lasers might encounter this issue. Nevertheless, the
resonance drift is slow and only happens after long illumination times of the 480 nm
laser. Operating with periodic sequences and short laser pulses should thus not affect
the Rydberg resonances.

3.4.2 Two-photon excitation scheme
The commonly used scheme to optically excite alkali atoms to Rydberg S states involves
two-photon excitation via an off-resonant intermediate state. For rubidium, there
are two possible intermediate states accessible with reasonable optical power. The
first intermediate state 5P3/2 requires lasers at a wavelength of 780 nm to couple
5S1/2 ↔ 5P3/2 and 480 nm to couple 5P3/2 ↔ n′S1/2, where n′ is the principal quantum
number of the targeted Rydberg state. This scheme is frequently used because 780 nm
is usually used for standard laser cooling. However, off-resonant scattering from the
intermediate state requires a large detuning and a high coupling strength of the 480 nm
transition to maintain the same two-photon Rabi coupling. Therefore, the alternative
intermediate state 6P3/2 is also often used [64, 209, 210]. The required wavelengths
are 420 nm for 5S1/2 ↔ 6P3/2 and 1013 nm for 6P3/2 ↔ n′S1/2. The advantages of
this scheme are reduced intermediate state scattering and significantly higher optical
power available for the 1013 nm transition.

In this dissertation, we use the first scheme to couple a ground state |5S1/2, F =
2, mF = −2⟩ with a 780 nm (lower coupling) laser of σ− polarization to the intermediate
state |5P3/2, F = 3, mF = −3⟩. Then, a 480 nm laser of σ+ polarization couples the
intermediate state to the Rydberg states |n′S1/2, m′

J = −1/2, m′
I = −3/2⟩ (upper

coupling), with a typical used principle quantum number of n = 30 − 45. This choice
of "stretched" states ensures maximum coupling and is insensitive to the magnetic
field due to the identical angular momentum projection of mJ = m′

J = −1/2 and
mI = m′

I = −3/2.

Two-photon Rydberg spectroscopy

To perform spectroscopy of the Rydberg S state with a two-photon excitation, we
prepare a single atom or unity-filled MI trapped in the diagonal optical lattice. The
atoms are initialized in |F = 2, mF = −2⟩ with a bias magnetic field of Bz = 30G,
aligned perpendicular to the atomic plane. The intermediate state detuning is set
to ∆ = 2π × 200 MHz. The 480 nm laser is first turned on and sent to the atoms
from the bottom through the objective with a Rabi frequency of Ωb = 2π × 20.2 MHz.
Subsequently, the 780 nm laser is applied along the same direction with the same
Rabi frequency for a duration of 4 µs, which is longer than the two-photon Rabi
oscillation timescale. By varying the 480 nm laser frequency, a dip in the detected
atom number indicates resonances to the Rydberg state. Fig. 3.9 shows a Rydberg
resonance of |30S1/2, mJ = −1/2⟩ for a single atom and unity-filled MI of around 100
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Figure 3.9: Rydberg resonance of the 30S1/2 state. Rydberg spectroscopy of the
|5S1/2, F = 2, mF = −2⟩ → |30S1/2, mJ = −1/2⟩ transition starting with a single
atom (blue) or MI (red) trapped in the optical lattice. The resonance of a single atom
(blue) has a width of 2π × 2.0 MHz. Initiate with a MI (red), the resonance shifts
by 2π × 2.9 MHz and has a broadened width of 2π × 4.5 MHz, indicating a Rydberg
interaction induced shift and enhanced coupling.

atoms. The FWHM is approximately 2π × 2.0 MHz for a single atom, which is larger
than the expected two-photon Rabi frequency of Ω = 2π × 1.0 MHz. This discrepancy
could come from imperfect preparation of single atoms, where many atoms may
remain within the blockade radius. This results in Rydberg interaction-induced energy
shifts and collectively enhanced coupling, as also observed in [105]. For the MI, we
observed a shifted resonance of 2π × 2.9 MHz, which features a broader width of
2π × 4.5 MHz, which is a factor of 4.5 times larger than the expected single particle
width. Focusing on width broadening, we consider the enhanced Rabi frequency of

√
N

factor [68, 134, 211], where N is the atom number with in the blockade radius. Taking
into account approximately 20 atoms within the blockade radius, we can compare
using the theoretical expectation for the C6-coefficient of C6 = h × 26 MHz · µm6 for
|30S1/2, mJ = −1/2⟩ and a two-photon Rabi frequency of Ω = 2π × 1.0 MHz, which
gives an estimated blockade radius of rb = 2.9 µm. This corresponds to approximately
17 atoms in the blockade radius, in good agreement with the measurements.

Two-photon Rabi frequency calibration

Here, we present a method for calibrating the Rabi frequency of the 5S1/2 ↔ 5P3/2
(lower coupling) and the 5P3/2 ↔ nS1/2 (upper coupling) transitions. The lower
coupling calibration is based on light-induced AC-Stark shifts due to off-resonant
coupling. We measure the energy shift of the ground state atoms while applying an off-
resonant 780 nm laser, which is given by ∆AC = Ω2

r /4∆. We start with atoms in |F =
2, mF = −2⟩ and illuminate them with the laser detuned by ∆ = 2π × 742 MHz from
the |5S1/2, F = 2, mF = −2⟩ ↔ |5P3/2, F = 3, mF = −3⟩ transition. Simultaneously, we
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Figure 3.10: Rabi frequency calibration. (a) Rabi frequency calibration of the lower
transition. The AC-Stark shift ∆AC of the ground state is measured while the 780 nm
laser is detuned from the intermediate state |5P3/2, F = 3, mF = −3⟩ by ∆ = 2π ×
742 MHz. The AC-Stark shift can be mapped to the Rabi frequency using ∆AC =
Ω2

r /4∆. (b) The Rabi frequency of the upper transition is measured by splitting of
the resonance due to EIT. The 480 nm laser is tuned to resonance with the |5P3/2, F =
3, mF = −3⟩ ↔ |36S1/2, mJ = −1/2, mI = −3/2⟩ transition, causing the resonance to
split into two dips. The energy splitting between the two dips is equivalent to the Rabi
frequency Ωb.

apply a MW sweep to transfer the atoms from |5S1/2, F = 2, mF = −2⟩ to |5S1/2, F =
1, mF = −1⟩ before removing the atoms in |5S1/2, F = 2, mF = −2⟩ with a push-out
pulse. By scanning the MW frequency, we observe the energy shift as a function of the
optical power, which is used to estimate the Rabi frequency Ωr, see Fig. 3.10a.

The same method cannot be used with the 480 nm laser because its large de-
tuning to the 5P3/2 transition results in a tiny energy shift that is challenging to
measure accurately. Therefore, we exploit an electromagnetically induced trans-
parency (EIT) [212] to calibrate the Rabi frequency of the upper transition. The
atoms, initialized in |5S1/2, F = 2, mF = −2⟩, are simultaneously illuminated with
both the 480 nm and the 780 nm lasers. The 480 nm laser is set resonant to the
|5P3/2, F = 3, mF = −3⟩ ↔ |36S1/2, mJ = −1/2, mI = −3/2⟩ transition with high
power. In contrast, the 780 nm laser is spectroscopically scanned near the resonance
with very weak power to avoid many Rydberg excitations at the same time. The
illumination time is set such that the intermediate scattering causes atom loss from the
optical lattices. The 480 nm laser will cause the intermediate state resonance to split
into two distinct dips, with the splitting equivalent to the Rabi frequency Ωb of the
|5P3/2, F = 3, mF = −3⟩ ↔ |36S1/2, mJ = −1/2, mI = −3/2⟩ transition, see Fig. 3.10b.
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Figure 3.11: Two-photon Rabi oscillations and atom-laser dephasing. (a) Single atom
Rabi oscillations to the 30S1/2 state via two-photon excitation pulses. The measured
Rabi frequency is Ω = 2π × 4.50(8)MHz with an exponential decay of 0.9(4)µs. (b)
Ramsey measurement of the atom-laser coherence. The oscillation frequency of the
|g⟩ population is determined by the AC-Stark shift of the 480 nm light, which is kept
constant during evolution. The decay contrast with a time constant of 0.8(1)µs is
caused by laser frequency and intensity noise.

Two-photon Rabi oscillations

With known Rydberg resonances and proper calibration of the coupling strength, see
the previous section, one can measure Rabi oscillations with the two-photon excitation
scheme. We drive Rabi oscillations of a single atom between |5S1/2, F = 2, mF = −2⟩
and |30S1/2, mJ = −1/2, mI = −3/2⟩. The Rabi frequencies of the lower and upper
transitions are set to be identical at Ωr = Ωb = 2π × 42 MHz with an intermediate
state detuning of ∆ = 2π × 200 MHz. As for the loss of Rydberg atoms from the optical
lattices, we observe Rabi oscillations on the detected atom number, see Fig. 3.11a. We fit
the results with a sinusoidal with exponential decay function. The fitted Rabi frequency
of Ω = 2π × 4.50(8)MHz is in excellent agreement with the estimated two-photon
Rabi frequency of Ω = ΩrΩb/(2∆) = 2π × 4.41 MHz. An exponential decay rate can
be estimated by τ = 1/Γdep from Eq. (3.6), where γr = 2π × 20 kHz is the 780 nm laser
linewidth, γb = 2π × 15 kHz is the 480 nm laser linewidth, ΓeΩ2

r /(4∆2) = 2π × 70 kHz
is the off-resonant intermediate state dephasing, and Γryd = 2π × 10 kHz is the natural
linewidth if the Rydberg state. With these experimental parameters, we estimate the
exponential decay of τ = 2.7 µs. However, the extracted exponential decay of 0.9(4)µs
from the measurements is faster than the estimated value by a factor of 3. The model
does not take into account intensity fluctuations of the excitation pulses, which can
cause further dephasing. The coherent versus incoherent ratio Ω/Γdep = 25 from these
measurements is markedly improved by a factor of 4 compared to the one observed
in [159] with the same laser system, where the substantial gain is due to the higher
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Rabi frequency Ωb of the upper transition. However, the coherent versus incoherent
ratio is a factor of 2 lower than the single-photon excitation scheme, see Sec. 3.4.1.

Two-photon Ramsey spectroscopy

The dephasing of the atom-laser coherence due to laser noise can be determined with a
Ramsey experiment. A single atom is driven to a superposition of |g⟩ and |S⟩ with a
two-photon π/2 pulse t = π/(2Ω). Since the 480 nm beam switching time is very slow,
it remains in place during evolution. Then, the atom evolves under 480 nm light for a
variable duration before finishing with a second π/2 pulse, mapping the accumulated
phase to the atomic population. The oscillation of the |g⟩ population in Fig. 3.11b is
given by the AC-Stark shift of the 480 nm light. The results are fit with a sinusoidal with
Gaussian decay. The measured oscillation frequency of ∆AC = 2π × 2.33(6)MHz is in
agreement with the estimated AC-Stark shift of ∆AC = 2π × 2.2 MHz. The decay of
the contrast with a time constant of 0.8(1)µs is caused by laser frequency and intensity
noise. Here, the random intensity in each shot results in a random AC-Stark shift
for the Ramsey detuning. This dephasing time from the Ramsey measurements is
in good agreement with the dephasing time from the Rabi oscillation measurements,
confirming that the main dephasing channel is due to the lasers.
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3.5 Ground states manipulation via Raman transition
Fundamental units for exploring quantum science and technologies are quantum bits
(qbit). For trapped atoms, one can encode qubits in long-lived states where information
can be stored before loss. For this application, hyperfine ground state manifolds or
metastable states are commonly considered. Encoding in the hyperfine qubit is usually
chosen for alkali atoms because its splitting range is in the microwave regime. For 87Rb,
the hyperfine splitting between two ground states is around ωHF = 2π × 6.84 GHz.
The conventional driving with a MW field is typically limited by a MW coupling
strength on the order of a few ten kilohertz. Moreover, due to the large length scale of
the field, driving with a MW is a global operation that affects the entire system.

An alternative approach to manipulating hyperfine qubits is offered by exploiting
a two-photon Raman process. Here, two hyperfine ground states are optically coupled
via an off-resonant intermediate state. This increases the Rabi frequency coupling to
the megahertz regime and allows for local optical addressing of the individual qubits.
A typical Raman transition setup uses two lasers phase-locked with a frequency
difference equal to the hyperfine splitting. Another way is to use a single laser with
phase modulation from an EOM, generating sidebands resonant to the hyperfine
splitting. However, a cavity filter is additionally required to remove either a sideband
or a carrier to prevent destructive interference. All of these approaches are based on
active stabilization of phase-locked or cavity filtering.

In [213], a novel technique based on phase modulation with a highly dispersive
optical element was demonstrated. The phase difference of the modulated sidebands
is shifted by a dispersive element in a frequency-dependent fashion, such that the
destructive interference turns into constructive interference. Therefore, this realizes an
amplitude modulation that can be used for passively stable Raman transitions with
high efficiency.

3.5.1 Stimulated Raman transitions
Stimulated Raman transitions for hyperfine qubits are conventionally implemented
using a three-level atom in a Λ configuration. Two ground states, |g⟩ and |g′⟩, with
hyperfine splitting ωHF are coupled to an intermediate state |e⟩ by two laser fields,
E1 cos ω1t and E2 cos ω2t. The system can be described by the following Hamiltonian
in the rotating frame in the basis (|g⟩, |g′⟩, |e⟩):

H =
h̄
2

 0 0 Ω1
0 2δ Ω2

Ω∗
1 Ω∗

2 2∆

 , (3.7)

where ∆ = ω1 − ωeg is the detuning from the intermediate state |e⟩, ωeg is the atomic
transition frequency, and δ = (ω2 − ω1)− ωHF is the differential detuning. When far-
detuned from the intermediate state ∆ ≫ Ω1, Ω2, this results in an effective two-level



3.5 Ground states manipulation via Raman transition 49

system

HR =
h̄
2

(
0 Ωeff

Ω∗
eff 2δeff

)
, (3.8)

where Ωeff = Ω1Ω∗
2/2∆ is the effective Rabi frequency and δeff = δ +

∣∣Ω2
1

∣∣ /4∆ −∣∣Ω2
2

∣∣ /4∆ is the effective detuning. For the resonant case where δeff = 0, the Raman Rabi
frequency is ΩR = Ω1Ω∗

2/2∆ and couples |g⟩ and |g′⟩ with a negligible population in
|e⟩. For identical Rabi frequencies Ω1 = Ω2, the resonant condition is met when the
frequency difference between the fields matches the hyperfine splitting, ω2 −ω1 = ωHF.
In other words, two laser fields with the frequency difference of ωHF result in the
amplitude modulation of the combined field with oscillation frequency ωHF, driving
the Raman transition between |g⟩ and |g′⟩. Extending from two laser frequencies
to multiple frequency components, usually arises when the laser is modulated, is
discussed in detail in [209, 214]. Multiple laser frequency components with regular
frequency spacing can be described by Ω = Ω0 ∑n aneinωt, where the amplitude of all
components are normalized such that ∑n an = 1. The amplitude modulation of all
components is thus

|Ω|2 = |Ω0|2 ∑
n,m

a∗namei(m−n)ωt

= |Ω0|2 ∑
k

eikωt

[
∑
n

a∗nan+k

]
,

(3.9)

where the indices n, m are changed to n, k with k = m − n. Considering the resonant
condition when kω = ωHF (k = 1), the amplitude modulation driven by eiωHFt is thus
given by the usual expression [215, 216] as

Ω2
R =

|Ω0|2

2∆ ∑
n

a∗nan+1. (3.10)

The amplitude modulation depends on the distribution of power in the frequency
components and their relative phase. One can define a modulation efficiency ηAM =
|∑n a∗nan+1|, which is less than unity ηAM < 1. In Sec. 3.5.2, we will show that the
modulation efficiency vanished, i.e., ηAM = 0 for a laser with phase modulation and
how to address this issue using a dispersive optical component.

To consider the effect of the polarization of the laser field on the Raman transition,
one can treat it as a light-induced fictitious magnetic field [217]. Since the scalar
polarizability does not depend on the hyperfine structure F, the tensor polarizability
vanishes for the J = 1/2 states (the ground states of alkali atoms). The off-resonant
effective field of the Raman laser induces purely vector light shifts, acting as a fictitious
magnetic field Bfict ∝ Im [ϵ̂∗ × ϵ̂] with ϵ̂ = ∑q ϵqêq being the polarization vector of the
laser field [217–221]. For example, using circular polarization ϵ̂+ = − 1√

2
(ϵ̂x − iϵ̂x) for
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both lasers causes the fictitious magnetic field along −ϵ̂z, which can drive a π transition
with ∆mF = 0 between ground states. In contrast, using linear polarization for both
lasers results in a zero fictitious magnetic field Bfict = 0, making it impossible to drive
any transition. For our experiment, we want to drive the transition between |g⟩ =
|F = 2, mF = −2⟩ and |g′⟩ = |F = 1, mF = −1⟩, which has ∆mF = ±1. Therefore, each
laser component needs both circular and linear polarization so that the transitions with
∆mF = ±1 are possible. Since this setting allows for all ∆mF = 0,±1, we use a large
magnetic field to generate large Zeeman splitting such that each transition is isolated
from the others through a large energy separation.

3.5.2 Amplitude modulation with a volumetric chirped Bragg
grating

This section will demonstrate that sidebands from pure phase modulation cannot cause
amplitude modulation and highlight how a chirped Bragg grating (CBG) can lead to
amplitude modulation. The details of the derivation presented in the following can be
found in [209, 213].

The sidebands of the laser are generated by sinusoidal phase modulation from an
EOM. With a modulation frequency equal to the hyperfine splitting ωHF, the coupling
can be expressed using the Jacobi-Anger expansion as

Ω = Ω0eiβ sin ωHFt = Ω0

∞

∑
n=−∞

Jn(β)einωHFt, (3.11)

where Jn are the Bessel functions of the first kind and β is the modulation depth.
Following the same steps as in Eq. (3.9) and (3.10), the Raman Rabi frequency becomes

ΩR =
|Ω|2

2∆
=

|Ω0|2

2∆
· ηAM =

|Ω0|2

2∆
·

∞

∑
n=−∞

Jn(β)∗Jn+1(β). (3.12)

It can be seen that the amplitude modulation vanishes due to the fact that the sidebands
are destructively interfering since ηAM = ∑∞

n=−∞ Jn(β)∗Jn+1(β) = 0 [213]. Therefore,
a single laser with phase modulation cannot drive Raman transitions. Several methods
based on filtering out some components of phase-modulated light are commonly used
to avoid this destructive interference [72, 222–224]. Rather than filtering the spectral
components, we use a dispersive optical component to change the relative phase of

the spectral components. Due to its group delay dispersion (GDD) with GDD = ∂2ϕ
∂ω2 ,

this produces a quadratic frequency-dependent phase shift of the form:

Ω = Ω0

∞

∑
n=−∞

Jn(β)einωHFteiαn2
, (3.13)
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Figure 3.12: Raman laser with volumetric chirped Bragg grating. (a) The Raman
beam with circular polarization propagates perpendicular to a magnetic field and
thus has σ+, σ−, and π polarizations. These allow us to drive transitions from |g⟩
to |g′⟩ with ∆mF = ±1. There are two possible paths, π − σ− (orange) and π − σ+,
that contribute to the coupling. (b) Raman sideband spectroscopy. By varying the
EOM sideband frequency, we find a resonance at a frequency of ωHF − ∆Z. (c) An
amplitude modulation of the laser field as a function of the EOM modulation depth β
after passing through the CBG. The measured amplitude follows J1 (2β sin α), which
yields a fitted α = 0.68(1). The maximum amplitude modulation is at β ≈ 1.5. (d)
Amplitude modulation strength (blue) and optical efficiency (red) of the CBG versus
laser frequency. The efficiency is around 70 − 75 % in the range of 30 GHz. However,
the amplitude modulation has a sharp reduction for higher frequency, which could be
caused by non-uniform CBG dispersion over the bandwidth.

where α = GDD · ω2
HF/2 is the phase curvature. The result is an effective Raman

frequency of

ΩR =
|Ω0|2

2∆
· |J1(2β sin α)| . (3.14)

The modulation efficiency ηAM = |J1(2β sin α)| depends on the modulation depth β
and phase curvature α [213]. It has a maximum achievable efficiency of ηAM = 0.582
when β sin α = 0.92. In practice, the modulation depth of the EOM is limited at β ≲ π,
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and therefore a large GDD is required. For example, an EOM with modulation depth
of β = π/2 needs a GDD of GDD ≈ 7 × 108 fs2 to fulfill the maximum condition of J1.
This large GDD is typically hard to reach. Standard telecom fibers with zero dispersion
wavelength around 1310 nm have GDD = 4 × 104 fs2 per meter at 795 nm [225, 226].
To reach the target, one would need a fiber with a length of 20 km, which consequently
causes a significant power loss. Another dispersive element, called a chirped Bragg
mirror, has GDD = 1300 fs2 per reflection, so many reflections are needed to fulfill the
target GDD. Here, a volumetric chirped Bragg grating (CBG, CBG-795-90, OptiGrate) is
used [227]. Due to its grating period gradually changing over the spatial distance [228],
the CBG offers enormous GDD on the order of GDD ≈ 4 × 108 fs2 for a length scale of
≈ 10 cm. By reflecting twice on the same CBG, the GDD is doubled, giving close to
the target values. However, the CBG has a bandwidth of around 50 GHz and the GDD
not be uniform. Therefore, it is convenient to mount the CBG in a rotational mount,
allowing for better maximization of the amplitude modulation.

3.5.3 Raman laser setup
The Raman laser setup, constructed during this dissertation, is shown in Fig. 3.13.
A 532 nm laser (Verdi V18, Coherent) with optical power of 15 W pumps a titanium
sapphire (Ti:Sa) laser (MBR110, Coherent), giving a power of 2.2 W at a wavelength of
795 nm near the D1 transition of 87Rb. The beam is sent to an optical isolator before
it is guided to the Raman setup breadboard by an end-capped fiber (FC PM630HP
FC/APC EC FU, FiberCableConnect). After coupling out of the fiber, the beam with a
power of 1.2 W is phase modulated by an EOM (PM-Rb_6.8, QUBIG). A small portion
of the beam after the EOM is coupled out with a polarizing beam splitter and sent
to a Fabry-Perot cavity for characterization of the sidebands. The main beam is sent
to the CBG and retro-reflected back to the same path, experiencing twice frequency-
dependent phase shifts and converting phase modulation to amplitude modulation
of the laser field. The reflection from the CBG has an angle dependent on the laser
frequency. Hence, the CBG and a mirror are mounted on the rotational stage such that
the retro-reflection retains the same direction while tuning the CBG angle. A telescope
before the CBG expands the beam size, reducing the intensity at the CBG. After passing
through the CBG, a small amount of the power of the amplitude modulated beam is
fiber coupled to a fast photodiode detector (DXM12CF, Thorlabs) for analysis of the
amplitude modulation. The main beam is reshaped to its original size before being
focused down to an AOM (3080-125, Crystal Technology) for fast switching pulses.
Then, a second fiber guides the beam to the main experimental setup. The beam
propagates in the atomic plane with circular polarization and is focused down with
a 750 mm lens to a beam waist of 150 µm with a maximum power of 245 mW at the
atoms.

To drive the EOM sidebands, a RF signal generator at a frequency of 2.28 GHz is
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Figure 3.13: Schematic of the Raman laser system. (a) Laser source setup. The
532 nm laser with a power of 15 W pumps the titanium sapphire laser, generating a
795 nm laser with a power of 2.2 W. Then, the laser is guided to the setup shown in (b)
with an end-capped fiber. (b) The 795 nm laser is phase-modulated with the EOM
before converting to amplitude modulation by double passing through the CBG. Then,
an AOM is used for fast switching before sending the light to the atoms via an optical
fiber. (c) The RF circuits for driving the EOM. An RF at 2.28 GHz is frequency tripled.
The signal is then sent through a series of filters and amplifiers, resulting in a 6.84 GHz
signal with a power of up to 35 dBm. The circulator prevents back reflections of the
RF signal from the EOM. The back reflection can also be used to optimize the EOM’s
resonant circuit.

frequency tripled with a frequency multiplier. A series of filters filter out unwanted
frequencies, leaving a pure RF at 6.84 GHz to match the hyperfine energy splitting of
87Rb. A preamplifier and a high-power amplifier amplify the RF power up to 35 dBm.
The EOM has a tunable resonant circuit that offers a high Q factor, but has a narrow
bandwidth of 23 MHz. Applying the RF outside the bandwidth range will cause the
full RF power to be reflected back to the amplifiers and cause damage. Therefore,
the RF signal is passed through a circulator before being sent to the EOM so that the
reflected power is altered to an RF dump. Additionally, we can use the reflected power
to optimize the resonant circuit to maximize RF coupling to the EOM by minimizing
the reflection.

After this optimization procedure, we measure the dependence of the amplitude
modulation after the CBG on the EOM phase modulation depth β, see Fig. 3.12 c.
The amplitude modulation increases with the modulation depth β as a function of
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J1 (2β sin α) as expected. The maximum amplitude modulation is around β = 1.5
with an extracted dispersion coefficient of α = 0.68(1) rad. This is lower than in
other work [209, 213] where a coefficient of α = 0.93(1) rad was observed with a
maximum modulation at β = 1.2. By scanning the laser frequency, the CBG has a
stable reflection efficiency of 70 − 75% over a range of ≈ 30 GHz, see Fig. 3.12 d (red).
The amplitude modulation follows the reflection efficiency but has a sharp reduction
at higher frequencies, see Fig. 3.12 d (blue). However, we do not see a strong decrease
at the center of the bandwidth as observed in [213]. This observed variation of the
amplitude modulation with laser frequency could be caused by nonuniform dispersion
over the bandwidth of the CBG which can be differ for each CBG. The center frequency
of the CBG’s bandwidth can be changed by changing the alignment angle of the CBG.

The Raman laser can be coarsely aligned to the atoms using near-resonant light
to push out the atoms. Due to space constraints, the final mirror of the Raman beam
is ≈ 700 mm away from the atoms. This mirror is mounted on a picomotor-actuated
mirror mount which allows for fine-tuning of the beam alignment. Once the beam is
aligned to the atoms, the procedure in the following can be used to operate the Raman
laser:

1. Initial setup and pre-optimization: The laser is set to the target detuning ∆
with an estimated sideband frequency of ωHF − ∆Z, where ωHF is the hyperfine
splitting and ∆Z is the differential Zeeman shift of the target states. The next step
is to optimize the resonant circuit of the EOM by minimizing the reflected RF
power from the circulator. By monitoring on the fast photodiode, the CBG can be
pre-optimized to get strong amplitude modulation.

2. Searching for the EOM sideband resonance: First, the atoms are prepared
in |g⟩. The Raman beam is then sent to the atoms for a duration longer than
the estimated Rabi oscillation timescale so that the atoms reach the dephased
regime, which has the same population of both |g⟩ and |g′⟩. The |g′⟩ is detected
after applying a resonant push out to remove atoms in |g⟩. By varying the EOM
sideband frequency, we find the sideband resonance as shown in Fig. 3.12 b. If
the resonance cannot be found within the EOM resonant circuit bandwidth of
23 MHz, the first procedure has to be repeated to retain the high EOM sideband
coupling.

3. Optimizing the amplitude modulation with the CBG alignment: With the
correct sideband frequency, the EOM resonant circuit can be fine-tuned. Finally,
maximum amplitude modulation can be achieved by adjusting the angle of the
CBG and the modulation depth β of the EOM.

Once the amplitude modulation is optimized, Rabi oscillations between |g⟩ and |g′⟩
can be observed. Fine alignment of the Raman beam can be achieved by maximizing
the Rabi frequency while adjusting the beam alignment and focus of the Raman beam.
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Initially, we sent the Raman beam from the top of the chamber perpendicular to the
atomic plane. Unfortunately, this direction caused significant atomic loss from the trap
within < 10 ms. We also observed the loss in a spatially periodic pattern. Since sending
the beam from the top of the chamber means that the beam afterwards goes through
the imaging path which has a few filters that can reflect light at 795 nm, we believe
that this residual retro-reflection of the Raman beam causes interference in the atomic
plane. Therefore, we changed the direction of the Raman beam to the atomic plane,
oriented at 45◦ with respect to the optical lattice beams. In the absence of scattering in
the optical path, we successfully observed the Raman population transfer signal and a
much lower heating rate, which is discussed in the next section.

3.5.4 Fast ground states manipulation

To drive the transition between |g⟩ and |g′⟩, we set a circular polarization along
the atomic plane with the bias magnetic field applied along the vertical direction
perpendicular to the atomic plane. Since this configuration can drive all possible
∆mF = 0,±1, a large magnetic field is used to isolate all transitions through a large
energy separation so that each transition is decoupled. We spectroscopically probe
the Raman resonance of the sidebands by varying the EOM modulation frequency,
while the carrier is detuned from the D1 transition line of 87Rb by ∆ = 2π × 146 GHz.
The atoms are initialized in |g⟩ and then illuminated for 300 µs with a full power
of around 245 mW. The atoms in |g′⟩ are detected after atoms in |g⟩ are pushed
out. We found the sideband resonance at the frequency equivalent to the hyperfine
splitting subtracted by the differential Zeeman shift, see Fig. 3.12a. With Bz = 8.7G,
the hyperfine transitions splitting of 2π × 6 MHz is larger than the transition width
of 2π × 2.2(3)MHz, so that the atoms are forbidden to populate the other ground
state manifolds. Driving Raman Rabi oscillations between |g⟩ ↔ |g′⟩, we observe a
Rabi frequency of ΩR = 2π × 1.04(1)MHz with a high efficient population transfer of
≈ 99%, see Fig. 3.14b. Performing Rabi oscillations on a longer timescale, as shown in
Fig. 3.14a, we extract the exponential decay of 100(38)µs. Measurement of off-resonant
scattering of the Raman laser yields a scattering rate of Γsc = 2π × 7.8(2) kHz.

These results demonstrate highly efficient and fast population transfer using a
passively stable Raman laser setup based on an EOM and a CBG. This presents a
significant reduction in complexity compared with active frequency stabilization or
cavity filtering, making the setup more stable and reliable to operate with. Having this
upgrade paves the way for versatile future experiments. For example, integrating the
setup with a DMD would give access to local manipulation of hyperfine ground state
qubits on a fast timescale [229, 230]. Moreover, combining with the Rydberg dressing,
this could be used to realize a transverse-field Ising model [231–234], which typically
has a small transverse coupling limited by the low MW Rabi frequency.
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Figure 3.14: Hyperfine ground state transitions with the Raman setup. (a) Rabi
oscillations of the |g⟩ = |F = 2, mF = −2⟩ ↔ |g′⟩ = |F = 1, mF = −1⟩ transition,
averaged over 25 atoms trapped in the diagonal lattice. The laser is frequency detuned
by ∆ = 2π × 146 GHz from the D1 transition. The measured Rabi frequency is Ω =
2π × 1.26(1)MHz with a decay constant at 1/e of 100(38)µs. (b) Rabi oscillations at
a Rabi frequency of Ω = 2π × 1.04(1)MHz. we observe a highly efficient population
transfer of ≈ 99%. (c) Off-resonant scattering of the Raman laser. The measured
scattering rate of Γsc = 2π × 7.8(2) kHz is much slower than the Raman Rabi frequency.
There is negligible atomic loss throughout the Rabi oscillations below 20 µs. (d) Echo
measurement with Raman pulses. The dephasing kicks in at δtE ≈ 1 ms, originating
from magnetic field noise. This dephasing timescale agrees with an echo measurement
using MW pulses.

3.6 Summary

In this chapter, we presented the experimental setup and protocols. The single atom
control and detection of our 87Rb quantum gas microscope is explained, along with
the newly upgraded optical lattice that supports large system sizes and configurable
lattice geometries. Then, two Rydberg excitation schemes and setups were compared,
including the characterization of relevant parameters. These Rydberg excitation setups
offer independent optical control to two Rydberg states, enabling dynamic manipula-
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tion of long-range interactions. Both the quantum gas microscope and Rydberg state
control will be incorporated and used in subsequent experimental chapters. Finally,
the Raman laser setup was introduced for fast hyperfine ground state transfers with
passive operation, which is advantageous for future experimental work.
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Chapter 4

Subwavelength atomic array switched
by a single Rydberg atom

4.1 Introduction
In this chapter, we leverage the effects of the Rydberg blockade in conjunction with an
electromagnetically induced transparency (EIT) to demonstrate spatial control over the
optical response of subwavelength arrays. In the following, we describe the properties
of subwavelength arrays and their advantage towards realizing quantum interfaces.
We then explore the EIT nonlinearlity, identifying a regime where the transparent
window breaks down due to Rydberg interactions. Finally, we realize the switching
behavior of arrays using the Rydberg blockade via a single controlled ancilla atom.
Broad aspects such as spectroscopic signatures, coherent manipulation, distribution of
scattered photon number, and analysis of switching area are covered. The experimental
results presented in this chapter follow the publication [235].

4.2 Light scattering in subwavelength atomic arrays
When the interatomic distances within an atomic quantum system is small compared
to the emitted wavelength, the system can be described as a single composite entity as
the scattering coherently occurs across the entire ensemble. This causes cooperative
effects that can dramatically change the radiative properties of the ensemble [236]. In
this chapter, we focus on the coupling between two-dimensional (2D) atomic arrays
and an external near-resonant light field, particularly for the in-phase spin wave when
the light impinges perpendicularly to the array. Following the derivation in [77], the
identical pointlike atoms exhibit a linear and isotropic polarizability [237]

α(δp) = −α0
Γe

2δp + i(Γe + γloss)
, (4.1)

where α0 = 3
4π2 ϵ0λ3

eg. Here, δp = ωp − ωeg is the detuning between the angular
frequency of the probe laser ωp = 2πc/λp and the resonance frequency of the atoms
ωeg = 2πc/λeg, and Γe(γloss) is the natural radiative (loss) rate. For many atoms, a
single atom experiences a combination of a driving field with a radiation field from
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surrounding atoms, depending on the strength of the radiation field and its phase
relative to the atom. This can be intuitively interpreted as photons scattered on an
atom are re-scattered with different atoms in the array. The eigenstates of the atomic
array, which interacts with the radiation field, are given by the collective eigenmodes
of the spin waves [77, 238, 239]. Each mode has a different width and lamb shift,
which are modified by multiple scattering processes. Considering the atomic arrays
with small lattice spacing compared to the wavelength alat < λp, the eigenstate is
dominated by the lowest order of the collective eigenmodes. This is reminiscent of
a diffraction grating, where light diffracts to many diffraction orders. As the grating
spacing decreases, the higher order fractions also decrease. They eventually confine
to the lowest order when the grating spacing is sufficiently small. The scattering
amplitude S of the normal incidence photons is given by a self-consistent solution of
multiple scattering [77]

S(δp) = − i(Γe + Γ)
2(δp − ∆) + i(Γe + γloss + Γ)

. (4.2)

By comparing this with the form of Eq. (4.1), we can deduce that the dipolar interac-
tions among the atoms alter the width Γe and the resonance frequency ωeg through the
cooperative counterparts Γ and ∆p,

Γ = Γe
3

4π

(
λp

alat

)2

− Γe

∆ = −3
2

Γeλ ∑
n ̸=0

G (0, rn) +
i
2

Γ.
(4.3)

Here, G (0, rn) is the transverse (in-plane) component of the dyadic Green’s function
of electrodynamics in free space. This scattering amplitude specifies the scattering
strength between the photons and the array, which is related to the transmittance
(reflectance) as T = |1+ S|2(R = |S|2). Operating on the cooperative resonance δp = ∆
and choosing a closed cycling transition, where the loss rate is negligible γloss = 0,
one obtains the maximal scattering S = −1, resulting in a perfect reflection of the
photons R = 1. For a finite loss rate γloss ̸= 0, the scattering amplitude becomes
S = −(Γe + Γ)/(Γe + Γ + γloss). Therefore, condition Γe + Γ ≫ γloss needs to be
fulfilled to reach a high level of reflection. Since Γe + Γ ∝ (λp/alat)

2, strong interactions
can be achieved by choosing a sufficiently small lattice spacing. The experimental
measurements with our setup of λp/alat = 0.68 show strong couplings between
the photons and the 2D atomic array, resulting in the transmission and reflection of
T = 0.23(1) and R = 0.58(3), respectively [78]. Furthermore, the "subradiant state" has
been observed, as the cooperative width Γe + Γ of the arrays is significantly reduced
compared to the natural width Γe.
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4.3 Quantum interfaces with subwavelength atomic
arrays

Efficient and versatile light-matter interfaces are essential building-blocks for photon-
bases quantum information processing [236, 240]. The main challenge in achieving
strong light-matter coupling is the small interaction cross section between atoms and
photons. A tightly focused beam on an individual particle was demonstrated for a
molecule [241], an atom [242–245], and a quantum dot [246]. In those settings, the
highest reported absorption efficiency for a particle is up to 10%. Here, the limitation
is set by the diffraction limit of the focal area [247]. Several approaches have been
developed to overcome this challenge: for instance, high-finesse optical cavities [248–
254] increase the effective interaction strength by a number of photon round trips to a
single atom. Waveguides [236, 255–258] strongly confine optical fields and engineer a
dispersion and modal properties of light. In optical cavities, the optical response can
be altered from transmitting to reflecting for incoming photons depending on whether
a strongly coupled atom is present or absent. This serves as the foundation for robust
photon-photon gates [254, 259–261]. However, the cavities feature strong mode selec-
tion, accommodating only a single spatial mode for the photons, thereby restricting
their utility in spatial light shaping. Alternatively, high density ensembles [262–266]
improve the chance of atom-photon scattering. The probability of scattering has an
exponential attenuation due to scattering into other directions ∝ exp(−OD), where
OD is the optical depth that depends linearly on the number of atoms N. Such atomic
ensembles typically enable efficient light-matter interactions at the cost of making
the system highly linear. Strong nonlinear interactions can be achieved by coupling
electronically, highly-lying Rydberg states through EIT [212]. In the presence of many
photons, the strong interactions between two Rydberg atoms shifts the two-photon
transition out of resonance, resulting in absorption [86, 142–144, 267–269].

Recently, ordered subwavelength atomic arrays have emerged as an alternative
approach to realize strong light-matter coupling [76, 77, 238, 270–274]. Here, the
atoms are periodically arranged at distances below the transition wavelength of the
atoms, resulting in highly cooperative responses due to light-mediated dipole-dipole
interactions. This suppressed the scattering in unwanted directions and results in a
strong and directional light-matter interface [78]. Using such atomic arrays together
with the strong interactions of Rydberg states was recently proposed [156, 275, 276].
The cooperative arrays in free space significantly reduce mode restrictions, allowing
for the spatial manipulation of the modes of single photons interacting with the array.
Introduced in [156], the properties of the arrays can be altered through the excitation
of a single atom to a Rydberg state, realizing a "quantum-controlled metamaterial", in
which the optical response of the system can be changed in a spatially controlled way,
illustrated in Fig. 4.1. In contrast to schemes based on disordered ensembles, where the
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Figure 4.1: Illustration of photon switching with atomic array. The optical response
of the array, which is coupled through the Rydberg EIT, is controlled by the single
ancilla atom. (a) When the ancilla atom is in its ground state, the EIT transparent
window permits the transmission of photons. (b) When the ancilla atom is excited
to a Rydberg state, the EIT condition breaks down, resulting in the reflection of the
photons.

decay couples stochastically from the input mode into numerous modes through free-
space scattering, the cooperative array allows for coherent switching of the directional
modes, such as the transmission and reflection of the arrays. In addition, the strong
light-matter coupling of the arrays significantly reduces the number of required atoms
compared to that of disordered ensembles. For example, a 4 × 4 atomic array is
comparable with an optical depth of OD ≈ 600 to achieve the same efficiency for
photon storage, which requires around 106 − 107 atoms for disordered ensembles [275,
277], and can mitigate some known limitations at large optical depths [143, 278]. This
level of control opens up a novel method for engineering photonic states in free
space, with potential applications for quantum information processing [156, 279, 280],
photon storage [277], photonic gates [156, 275], and deterministic control of photonic
modes [281, 282].

4.4 Experimental protocol
As described in Sec. 4.2, the cooperative response occurs when the interatomic spacing
within the array is below the transition wavelength of the dipole oscillators. Our near
unity-filled atomic array trapped in the square lattice naturally results in subwave-
length regime.Comparing the D2 transition wavelength λp = 780 nm of 87Rb with
lattice spacing alat = 532 nm, we realize a ratio of alat/λp = 0.68 [78]. With the array
prepared, we use the single-site addressing technique [35, 36] to initially prepare a sin-
gle ancilla atom, located at the center of the array, in a |g′⟩ = |5S1/2, F = 2, mF = −2⟩
state while the remaining atomic array is prepared in a |g⟩ = |5S1/2, F = 1, mF = −1⟩
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Figure 4.2: Schematic of the experiment. Atomic array and laser light orientations.
The transmission (reflection) probe light is overlapped and co- (counter-) propagating
with the control light along −ẑ (+ẑ). The probe light is collected with the electron
multiplying charge-coupled device (EMCCD), while the control light is filtered out.
The inset shows an exemplary site-resolved fluorescence image of the atomic array
with approximately 1500 atoms.

state. More details of the state preparation are described in Sec. 4.4.1. The schematic of
the light orientations and couplings are shown in Fig. 4.2 and Fig. 4.3. We set a bias
magnetic field Bz = 28.5G perpendicular to the atomic plane. The probe light couples
the atomic array from |g⟩ to |e⟩ = |5P3/2, F = 3, mF = −3⟩ with Rabi frequency Ωp
and wavelength λp = 780 nm. The chosen states and polarization guarantee that the
population is confined only within |g⟩ and |e⟩, since we are driving a closed cycling
transition on the stretched states. In addition, we apply a control light at wavelength
λc = 480 nm, which couples the |e⟩ to |S⟩ = |44S1/2, mJ = −1/2⟩ states with Rabi
frequency Ωc. Applying both beams simultaneously, one creates a transparency win-
dow for the probe light via EIT. Transmission is measured by sending the probe light
co-propagating with the control light along the −ẑ direction through the atomic array.
In the end, the control light is filtered out by a combination of a FESH0850 (Thorlabs)
and two BLP01-594R-50 (Semrock) filters, allowing only the probe light to reach the
EMCCD. The reflection can be measured by reflecting the probe beam along the +ẑ
direction, counter-propagating it with the control light, and detecting the reflected light
from the array to the EMCCD. Both the probe and control lights propagate parallel to
the bias field Bz, setting an almost pure circular polarization. The probe light is chosen
to be larger than the array size, allowing the driving field to be approximated as a plane
wave. The UV excitation pulse with Rabi frequency ΩUV at wavelength λUV = 297 nm
couples the ancilla atom from the |g′⟩ to |P⟩ = |44P3/2, mJ = +3/2⟩ states. The large
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Figure 4.3: Electronic level structure and excitation scheme. The atoms are resonantly
coupled to the Rydberg states via the two-photon transition from |g⟩ = |5S1/2, F =
2, mF = −2⟩ to |S⟩ = |44S1/2, mJ = −1/2⟩ states via the intermediate |e⟩ = |5P3/2, F =
3, mF = −3⟩ state with σ−/σ+ polarized probe/control light. The ancilla atom, initially
prepared in |g′⟩ = |5S1/2, F = 1, mF = −1⟩, is coupled to the |P⟩ = |44P3/2, mj =
+3/2⟩ state using a σ+ polarization of ultraviolet (UV) light. The |S⟩ − |P⟩ Rydberg
states experience a strong interaction, creating a distance-dependent energy shift,
Uint(r).

hyperfine separation of approximately 2π × 6.8 GHz between |g⟩ and |g′⟩ ensures that
the UV light only couples with the ancilla without affecting the atomic array. Moreover,
the large Zeeman splitting of ∆z = 2π × 53.2 MHz in the 44P3/2 manifold isolates the
|P⟩ state from the other magnetic sublevels so that a clean polarization of the UV light
is not required. We choose |P⟩ over the other magnetic sublevels due to its strong
|S⟩ − |P⟩ interaction. With the quantization axis perpendicular to the interatomic
distance, the Rydberg interaction between the ancilla and the array atoms is spatially
homogeneous in the atomic plane.

4.4.1 Initial state preparation and experimental sequence
We start by preparing a near unity-filled MI trapped in the optical lattices with lattice
spacing of alat = 532 nm. The atom number in the array can be tuned to a small
array of approximately 250 atoms or a large array of up to approximately 1500 atoms
with a filling of η ≈ 0.96 and 0.92, respectively, see Sec. 3.3.1. The atoms are fully
polarized in |g′⟩. We then use the addressing technique, see Sec. 3.3.2,to transfer the
target ancilla atom to |g⟩. Finally, the global MW transfer flips the states of the array
into |g⟩ and the ancilla into |g′⟩, see Fig. 4.4a. However, the diffraction limit of the
addressing light leads to partial cross talk on neighboring sites [162], resulting in a
finite probability of having more than a single atom flipped to |g′⟩. Note that the effect
of having a few ancilla atoms on the switching response can be seen in Sec. 4.6.2. For
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Figure 4.4: State preparation and experimental sequence. (a) Starting with a near
unity-filled Mott insulator (MI) in |g′⟩, we use a microwave (MW) transfer combined
with a tightly focused addressing beam at a wavelength of 787.55 nm to transfer a
single ancilla atom to |g⟩. Then, a subsequent global MW sweep prepares the ancilla
atom in |g′⟩ and the array atoms in |g⟩. (b) Switching of the cooperative mirror is
then performed by exciting the ancilla to the |P⟩ state with the UV π-pulse, ΩUVt = π.
After switching on the control light and an additional waiting time of 4 µs, the probe
light is switched afterwards to monitor the probe signal on the EMCCD. Depending
on the state to be detected, the resonant push-out can be added to remove |g⟩ before
recording the fluorescence image.

the rest of the measurements, we tune the intensity of the addressing light and the
pattern on the digital micromirror device (DMD) to minimize the cross talk while
maintaining a substantial amount of the light shift so that the shift is larger than
the MW sweep frequency during the population transfer. For our square lattice, we
achieve an averaged efficiency of 0.83(4) to prepare the ancilla in |g′⟩ with a negligible
probability of having a few additional ancilla atoms.

After the initial state preparation, we ramp up all three lattices to a depth of 100Er to
reduce the spatial spread of the atomic wavefunction. Here one needs to keep in mind
that further increasing the lattice depth would cause spatial fluctuations, as our optical
lattice is anti-trapped for the excited state |e⟩ [78]. We then applied the UV light with
pulse area of ΩUVt = π to controllably excite the ancilla atom from |g′⟩ to the Rydberg
state |P⟩. After that, we turn on the control light, 4 µs before the probe light, with a
Rabi frequency Ωc. Then, the array is illuminated by the probe light for a duration of
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tp = 20 µs to collect the transmission (reflection) signal on the EMCCD. Subsequently,
we perform site-resolved fluorescence imaging, see Sec. 3.3.3, after removing the array
(|g⟩) by using a resonant push-out pulse to observe the presence of the ancilla atom
in |g′⟩. In the case of transmission and reflection probing, the EMCCD is operated
in a low-noise and short-duration setting, whereas fluorescence imaging collects the
scattered light over a much longer duration of approximately 450 ms. These very
different demands, we switch the EMCCD setting within the sequence, which requires
a switching time on the order of 500 ms. Thus, operating with a reconfigurable EMCCD,
we can simultaneously access both the photon properties and the ancilla states in a
single measurement. The sequence is summarized in Fig. 4.4b.

4.4.2 Detecting few photons with the EMCCD

Collecting a low photon signal requires a low noise detector. While a single photon
detector is capable of detecting single photons with high efficiency, it unfortunately
lacks spatial information on the detected field. To observe the switching area, we
use the EMCCD. We have optimized various settings of the EMCCD, for instance
the read out rate, the shift speed during readout, have operated with binned pixels
to improve the region of interest (ROI) ratio. our regular operation of fluorescence
imaging, the EMCCD is set to "external" trigger mode, meaning that it waits for a
trigger from the experimental control to take images. We found, however, that this
mode introduces significant noise to the images. Testing the external trigger mode
with a new, identical model, EMCCD shows the same results. However, we are able to
reduce the noise level close to the specification, stated in the data sheet, by operating
in "internal" trigger mode. With the previous observation, we are able to fully address
all challgens by using the "kinematic" mode and setting the trigger to the "external
start" trigger mode. In this setting, the EMCCD waits for the external trigger to take
the first image and subsequently takes additional images using its internal electronic
clock cycle. This results in high noise on the first image (unused) and low noise on
the following images (used for the measurements). Since the internal clock is used for
the trigger, approximately every (25 ms), we need to adjust the external trigger start
time so that the second image matches the activation of the probe light. We set the
exposure time to be 2 ms to avoid a time mismatch between the trigger and the probe
light. Under our measurement conditions, having a relatively long exposure time
of 2 ms compared to < 100 µs does not significantly increase the noise in the images.
The optical field at the atomic array is collected by a high-resolution objective with a
numerical aperture (NA) of 0.68 and then focused on the EMCCD. A series of filters
along the imaging path ensure that only the probe light reaches the EMCCD, while
other wavelengths are significantly suppressed. Taking into account all elements of the
imaging path along with the quantum efficiency of our EMCCD 0.8, our imaging setup
has a photon detection efficiency of approximately 0.61. Transmission and reflection
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measurements are evaluated over the 11 × 11 sites around the center of the array.
To measure the directional switching between reflection and transmission, choosing

the probe parameters is very critical. The three important factors that constrain the
probe parameters are as follows: First, the finite lifetime of the ancilla Rydberg state
|P⟩ is in the order of a few ten microsecond. This limits the maximum probe duration
of the array. Second, the maximum of the probe power is limited by the Rydberg
self-blockade, see Sec. 4.5. This constrains the incident probe Rabi frequency Ωp for a
given control Rabi frequency Ωc. However, it is not straightforward to increase both
Ωp and Ωc while keeping the ratio fixed because a larger Ωc reduces the switching
area, see Sec. 4.6.6. Lastly, the number of photons incident on the EMCCD has to
overcome the detector’s noise floor. To compromise all criteria, we set the probe
duration to tp = 20 µs, which is below the theoretical |P⟩ lifetime of 65 µs. The control
Rabi frequency of Ωc = 2π × 6.7(6)MHz is chosen to provide a large switching area of
rb = 4.63 µm, see Sec. 4.6.6. Then, we tune the probe Rabi frequency Ωp to minimize
self-blockade for a fixed control power while obtaining enough signal-to-noise ratio
in the EMCCD. We empirically end up with an optimum incident probe photon of
0.36(2) (0.44(8)) photons per lattice site for the transmission (reflection) probe light,
which corresponds to Ωp = 2π × 168(5) (189(16))kHz. It’s important to note that
incident photons of the transmission probe light can be directly measured with the
EMCCD. In contrast, the reflection probe light propagates in opposite directions away
from the EMCCD, therefore, the same calibration method cannot be applied. We
instead cross-calibrate with the probe light that used for transmission by comparing
the scattering-induced heating on the atomic array [78].

Camera signal to photon conversion

To measure the Rabi frequency of the probe light with the EMCCD, a conversion
from the detected signal to the actual impinging photon number is required. We
perform two independent calibrations to obtain the conversion factor α from the raw
signal c to the impinging photon number Np, with α = Np/c. In the first method,
we measure the amplification gain for a fixed intensity light illuminated on EMCCD
by comparing an increase of the signal with and without amplification. We found
that the set amplification of 800 in the software yields a measured amplification of
250, resulting in the conversion factor of α = 0.298(1) photon per count. This large
discrepancy originates from the well-known degradation of the EMCCD amplification
gain [283–285]. The second method exploits the scaling of the photon shot noise,
∆Np =

√
Np. We can derive the relation between the standard deviation of the signal

∆c and the signal c as
∆c =

√
2/α ·

√
c. (4.4)

Note that the factor of
√

2 represents additional noise originating from the amplification
process of the EMCCD [286]. By varying the incident light intensity, we capture the
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Figure 4.5: Calibration of the EMCCD conversion factor. Standard deviation (S.D.)
of detected signal versus mean number of the signal for an intensity-stabilized laser
impinging on the EMCCD. Fitting the expected square root scaling provides the
conversion factor of 0.32(3).

signal and the standard deviation of the signal. Fitting with Eq. (4.4), we obtain the
conversion factor of α = 0.32(3), see Fig. 4.5. Both independent calibration methods
are in agreement with each other, hence we use their average for analyzing our data.

4.5 Rydberg EIT and optical nonlinearity
Considering the three-level system under the two light fields, as shown in Fig. 4.3, the
optical properties of a medium can be dramatically modified in the presence of the
strong control light λc. This renders a transparent window for the weak probe light
λp, so-called EIT, which is a consequence of destructive interference between different
excitation pathways [212]. The linear response can be described by the first-order
susceptibility, which can derived from the polarizability χ = 2iα/kp. The susceptibility
of three-level atoms is given by [212]

χEIT = χ0
Γe

2iδp − Γe + Ω2
c
[
2i∆2 − Γryd

]−1 . (4.5)

Here, Γe and Γryd are the natural decay rate of the |e⟩ and |S⟩ states, respectively.
We define χ0 = 2α0/kp, and kp is the wave vector of the probe light. Moreover,
δp = ωp − ωeg and δc = ωc − ωse are the single-photon detunings of the probe
and control lights, respectively, and ∆2 = δp + δc is the two-photon detuning. The
imaginary part Im

[
χEIT] determines the optical response of the medium, whereas the

real part Re
[
χEIT] determines the dispersion relation. The optical response of the weak

probe light in the absence of the control light exhibits a Lorentzian absorption profile
with a width of Γe. When the strong control light is resonantly coupled, the absorption
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Figure 4.6: EIT nonlinearity due to Rydberg self-blockade. (a) EIT spectroscopy for
varying probe Rabi frequencies Ωp = 2π × 82(3), 252(8), 385(12), and 1245(40) kHz
with a vertical offset of 0.25 added to each data set for clarity. The incident probe
photons are fixed at 39(2) photons with Ωc = 2π × 13.4(6)MHz. (b) The fitted width
of each dips ΓEIT increases with an increase Ωp. The black dashed line indicates the
expected width at Γe/2 = 2π × 3.03 MHz for the single-particle weak-probe limit. (c)
The Rydberg fraction P|S⟩ extracted from the fits with increasing Ωp. The black solid
line represents the model presented in Eq. (4.8) for comparison. (d) The standard
single-atom EIT model in Eq. (4.5) (dashed line) and the Rydberg EIT model in Eq. (4.7)
(solid line) are fitted to the observed spectroscopic results at low photon flux of 0.32
photons/site. For the fitted Rydberg fraction of P|S⟩ = 0.16(2), we find good agreement
using the Rydberg EIT model. The data set was recorded for Ωp = 2π × 168(5) kHz
and Ωc = 2π × 6.7(6)MHz.

dip symmetrically splits into two dips with a separation equal to the control Rabi
frequency Ωc and a width of Γe/2. Therefore, the medium provides the transparent
window near the resonance of the probe light, resulting in transmission of the probe
photons. By coupling the control light to a Rydberg state, so-called Rydberg EIT, has
demonstrated that increasing probe powers lead to a breakdown of the linear optical
response in disordered ensembles [267, 287]. A higher probability of the atoms being
excited to Rydberg states due to increased probe powers introduces the excitation of
a delocalized Rydberg polariton, which results in an interaction-induced energy shift
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Uint(r) for subsequent excitations of the Rydberg states. Optical nonlinearity emerges
when this energy shift significantly breaches the EIT condition. This nonlinearity,
known as "Rydberg self-blockade", occurs when the Rydberg fraction, scaling as
Ω2

p/(Ω2
p + Ω2

c) in the single particle limit, becomes substantial.
In this section, we study the limit of the Rydberg EIT nonlinearity in subwavelength

atomic arrays. We record the EIT transmission for a variable probe Rabi frequency,
while maintaining the control Rabi frequency at a constant Ωc = 2π × 13.4(6)MHz.
The probe Rabi frequency is tuned by keeping the total incident photon fixed at
39(2) photons while varying the illumination time of tp = 10 ms, 1 ms, 400 µs, and
40 µs. This corresponds to the Rabi frequencies of Ωp = 2π × 82(3), 252(8), 385(12),
and 1245(40) kHz, respectively. We observe an increase in transmission dips and a
broadening of widths with larger probe Rabi frequencies, as seen Fig. 4.6a, consistent
with previous studies [288, 289]. The EIT gradually breaks down, most evidently at
Ωp = 2π × 1245(40) kHz, where the two EIT dips transform into a single dip at the
resonance of the probe frequency. To understand the results, we used an EIT model
including Rydberg interactions as described in [290, 291]. The model superimposes
the susceptibility of a standard two-level atom, which can derive from Eq. (4.1) as

χTA = χ0
Γe

2iδp − Γe
, (4.6)

with the EIT susceptibility in Eq. (4.5) with the modified two-photon detuning with
the Rydberg S state interaction ∆2 + USS

int. This yields the total susceptibility, weighted
by the Rydberg (ground) state fraction P|S⟩ (1 − P|S⟩) as

χREIT = P|S⟩χ
TA +

(
1 − P|S⟩

)
χEIT. (4.7)

The extreme limits of this model are easy to comprehend. If the Rydberg fraction
is P|S⟩ = 0, the only remaining term is χEIT, yielding an EIT spectra. Conversely if
P|S⟩ = 1, when the Rydberg state is fully blockaded, the coupling is shifted out of
resonance, retrieving only the two-level atomic response. To extract the spectroscopic
line shape, we consider the imaginary part of the total susceptibility, Im

[
χREIT]. We

fit the modified model of Eq. (4.7) with the amplitude, offset, P|S⟩, ΓEIT and USS
int as

free parameters. The best fitted results are shown as solid lines in Fig. 4.6a. The fitted
EIT width ΓEIT and the Rydberg fraction P|S⟩ both increase with larger probe Rabi
frequencies, see Fig. 4.6b,c. We compare the data with the calculated Rydberg fraction
derived from a model including the collective enhancement [290],

P|S⟩ =
nSAΩ2

pΩ2
c

nSAΩ2
pΩ2

c + [Ω2
c − 4δp∆2]2 + 4∆2

2Γ2
e

, (4.8)
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where nSA = (1/a2
lat) × π(rSS

b )2 ≈ 66 is the atom number in the blockade volume.

Here, rSS
b = 6

√
2CSS

6 Γe/h̄Ω2
c ≈ 2.44 µm is the EIT-blockade radius [292] and CSS

6 =

h × 3.15 GHz µm6 is the van der Waals coefficient between two atoms in the |S⟩ state.
Applying our experimental parameters to Eq. (4.8), this predicts the Rydberg fraction
to be below the results obtained from the fits, illustrated by the black solid line in
Fig. 4.6c. The discrepancy can be attributed to two main sources: First, the presented
model is developed for the weak-probe limit. This is supported in our data, as the
reduced Chi-square from the fits increase for larger Ωp. The model would require
further assumptions to capture the essential physics for larger Ωp, for example using
the model including dipole-dipole interaction of subwavelength arrays [293]. Second,
the measurements were performed with a relatively high incident photon flux of
39(2) photons/site. After the illumination of the probe light, the atomic filling in
the array decreases to approximately 0.7 due to the scattering-induced heating by
the probe light, which can influence the transmission detection. In future studies, it
would be interesting to repeat the measurements at much lower photon flux, down to
1 photons/site to avoid the heating issue.

Fig. 4.6d shows the EIT spectra at the parameters used in the following sections.
The control and probe Rabi frequencies are set to Ωc = 2π × 6.7(6)MHz and Ωp =
2π × 168(5) kHz, respectively. The total incident photons are 0.32 photons for the
probe duration of tp = 20 µs, where the atomic loss from scattering is negligible. In
this setting, the minor influence of the Rydberg self-blockade is still evident. The
dashed lines represent the fitted results from the simplified EIT model, Eq. (4.5). We
observe a noticeable discrepancy, especially at the transparent window near resonance,
where the transmittance falls below the fit. Fitting the data with the modified model of
Eq. (4.7), shown as solid lines, provides a better agreement with a low Rydberg fraction
of P|S⟩ = 0.16(2).
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4.6 Switching the subwavelength atomic array

The main concept for controlling our subwavelength atomic array involves transferring
the strong interactions between Rydberg states to the optical response of the coopera-
tive array using EIT [212]. We begin with a cooperative atomic array in which emitters
are approximately described as two-level systems with the ground state |g⟩ and the
excited state |e⟩. On-resonance photons efficiently reflect on the array, see Fig. 4.7a. To
induce EIT, the excited |e⟩ state is coupled with a control field Ωc to a highly excited
Rydberg |S⟩ state. Consequently, the cooperative optical response for a weak probe
field Ωp is altered, and the array becomes transparent in the presence of the control
field, see Fig. 4.7b. The control field Ωc inherits the long-range interaction of the |S⟩
state to the excited |e⟩ state. The population of the Rydberg state, determined by Ωc
and Ωp, is kept sufficiently small to prevent optical nonlinearity caused by Rydberg
self-blockade [267, 287]. In order to manipulate the characteristics of the cooperative
array, another atom, referred to as the "ancilla", is excited from the ground state |g′⟩ to
a neighboring Rydberg |P⟩ state. This results in strong Rydberg interactions between
|S⟩ and |P⟩, leading to an energy shift in |S⟩ by Uint(r). The interaction shift exceeds
half of the EIT spectral width within a "blockade disc" of radius rb [146, 294], centered
around the location of the ancilla. As a result, the EIT condition is disturbed within
the blockade volume, causing the optical properties to switch back to those of the
cooperative array, thereby reflecting the probe photons, see Fig. 4.7c.

4.6.1 Spectroscopy signature

In a first set of experiments, we probe the spectroscopic signature of switching the
cooperative mirror by the ancilla atom. The measurements are performed with an
array of approximately 250 atoms, where the array radius is comparable with the
expected blockade radius. We begin by reproducing our previously published results
on the cooperative nature of our atomic array by measuring the transmission and
reflection response of the probe beam frequency sweep near the |g⟩ ↔ |e⟩ transition.
In comparison to the previous work [78], where the experiment was conducted at the
incident photon flux of 20 photons/site, we operate at a much lower flux of 0.36(2)
photons/site to avoid Rydberg self-blockade, as discussed in Sec. 4.5. Operating in
the weak photon limit, we can reproduce the subradiant Lorentzian lineshape. The
extracted width is ΓM = 2π × 4.40(32)/3.75(14)MHz for transmission/reflection,
which is narrower than the natural linewidth of Γe = 2π × 6.06 MHz, as shown in
Fig. 4.8a. Next, we demonstrate the transparency of the probe light using the EIT. We
illuminate the atomic array with the resonance control field on the |e⟩ ↔ |S⟩ transition
simultaneously while collecting the probe light. We observed the characteristic EIT
signature, where the transmission dip splits into two dips with a spectral separation
on the order of the control Rabi frequency Ωc = 2π × 6.7(6)MHz. This results in
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Figure 4.7: Switching subwavelength array. The top, middle, and bottom rows show
a spatially resolved optical response in transmission, the atomic array with the relevant
light fields, and the corresponding experimental pulse sequences, respectively. (a)
The cooperative atomic array, consisting of 1500 atoms, strongly reflects the probe
photons, causing low transmission over the entire array. (b) When the coupling field
is activated, the array turns transparent as photons pass through without interacting,
leading to complete transmission. (c) The ancillary atom is excited to the |P⟩ state
using the resonant UV light, resulting in a significant energy shift Uint(r) that interrupts
the EIT condition. The probe photons are reflected within the blockade area of radius
rb.

a transparent window for the probe light near the resonance, which means that the
atomic array is transparent for the probe photons. Taking a closer look at the reflection,
the EIT doublet reveals signatures of a cooperative response with an enhanced high
reflectance of 0.37(2), exceeding the reflectance signal for isotropic scattering 0.16(3),
see Sec. 4.6.1. The width of each EIT doublet is ΓEIT = 2π × 2.95(17)MHz, consistent
with the expected width from the single-particle limit Γe/2. The parameters were
selected to maximize the contrast between the cooperative mirror and the EIT response
at the resonance of the probe detuning with a fixed probe duration of tp = 20 µs. At the
same time, the selected parameters must meet the constraints of minimizing Rydberg
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Figure 4.8: Cooperative response in absence and presence of the ancilla Ryd-
berg excitation. (a) Cooperative response of the atomic array with (blue) and
without (red) control field for a probe duration of tp = 20 µs, with the ancilla pre-
pared in |g′⟩. Without the control field, we reproduce the cooperative subradiant
response of the cooperative array with a reduced transmission/reflection width
of ΓM = 2π × 4.40(32)/3.75(14)MHz. With the control laser present, we observe
a splitting of the EIT doublet, where the width of each peak amounts to ΓEIT =
2π × 2.95(17)/3.01(28)MHz in transmission/reflection and a minimal/maximal trans-
mittance/reflectance of 0.35(2)/0.37(2) is observed. (b) When preparing the ancilla
atom in the Rydberg |P⟩ state, the spectrum (orange) changes dramatically and reveals
a triple-peak structure, featuring contributions of both the cooperative mirror and EIT
spectrum. By superimposing both spectra while having the ancilla Rydberg fraction
P|P⟩ and a global offset as free fit parameters, we find excellent agreement with our
data set, with P|P⟩ = 0.61(2)/0.45(2) in transmittance/reflectance. The dashed lines
illustrate the expected spectra assuming ideal ancilla preparation and substantially
shorter probe duration than the Rydberg lifetime (tp = 2 µs), thereby improving the
ancilla Rydberg fraction to P|P⟩ = 0.96.

self-blockade and ensuring a sufficient signal-to-noise ratio of the probe light on the
EMCCD, as detailed in Sec. 4.4.2. Finally, we demonstrate the switch mechanism using
the single ancilla atom by applying a pulse duration of t = π/ΩUV on the |g′⟩ ↔ |P⟩
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Figure 4.9: Reflectance under vertical Bloch oscillation. At half of the Bloch oscilla-
tion period (0.5TB), the cooperative response is disrupted as the atoms are vertically
displaced to their maximum extent, leading to isotropic scattering of the disordered
atoms. The dashed line shows the reflectance of 0.16(3) at the half oscillation period.

transition, and then probing in the same manner as in the EIT measurements. The
resulting spectrum consists of three peaks. This triple peak structure arises from a
combination of the cooperative array and EIT spectrum, which corresponds to scenarios
with and without the ancilla Rydberg atom present. We can fit a simplified model of a
statistical mixture of the switched and unswitched cases, weighted according to the
probability of finding the ancilla in the Rydberg or ground state, as represented by
the solid lines in Fig. 4.8b. From the fit of the transmission/reflection data, we extract
the ancilla Rydberg probability of P|P⟩ = 0.61(2)/0.45(2). The results are in a good
agreement with an independent reference measurement of P|P⟩ = 0.52(8). The two
major limitations in achieving a high ancilla Rydberg probability are attributed to an
imperfect initial state preparation of the ancilla in |g′⟩ (Sec. 4.4.1) and the decay of
the ancilla Rydberg state during probing (Sec. 4.6.3). Potential improvements could
be realized by upgrading the setup to have perfect ancilla preparation in |g′⟩ and
substantially shortening the probe duration of tp = 2 µs with better probe photon
detector so that the decay of the Rydberg ancilla becomes negligible. We illustrate the
ideal case of expected spectra with dashed lines in Fig. 4.8b assuming all improvements
are implemented.

Inducing spatial disorder through Bloch oscillations

We compare the cooperative response with the dissipative free-space scattering from
disordered atoms by inducing vertical Bloch oscillations, which introduce a position
spread along the propagation direction of the probe light. In this way, the probe
light experiences the same optical depth, ensuring that the observed change in the
optical response of the array is caused by spatial disorder. We begin with a 2D ordered
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array at a depth of 15 Er and 20 Er in the vertical and horizontal lattices, respectively.
The combination of a magnetic field and gravity gradient creates a potential energy
difference between adjacent lattice sites of ∆z = h × 360 Hz along the vertical axis. By
instantaneously reducing the vertical lattice depth to 4Er, the ordered array spreads
vertically and refocuses after the Bloch period of TB = h/∆z ∼ 2.8 ms. At half period
(0.5TB), the atoms are maximally displaced with a displacement of dz = 4Jalat/∆z ∼
3.6 alat, where J is the tunneling rate in the vertical direction. At this point, we measure
the reflectance of 0.16(3) at resonance, which is equivalent to the expected isotropic
scattering of approximately 0.13 for a single particle, given our objective’s NA of 0.68.

4.6.2 Coherent control of cooperative response
After demonstrating the switching capabilities and studying the spectroscopy signature
in the previous section, we proceed to the next step by emphasizing the capability to
dynamically alter the optical properties of the array via coherent manipulation of the
ancilla atom. Here, we drive the ancilla atom from |g′⟩ to the Rydberg state |P⟩ for
variable pulse durations. This results in a coherent Rabi oscillation with Rabi frequency
of ΩUV = 2π × 1.22(2)MHz, see Fig. 4.10a. We measure the population of the ancilla
atom in the ground state |g′⟩ after applying the driving field, under the assumption that
the Rydberg state is untrapped in the optical lattice. In the same sequence, the recorded
transmission/reflection of the probe light shows strong correlation with the ancilla
Rabi oscillation. The properties of the array switch from transmitting to reflecting when
the ancilla is driven from |g′⟩ to |P⟩ and resume transmitting when the ancilla is driven
back to |g′⟩. The solid lines in Fig. 4.10b,c show fits of the transmission and reflection
dynamics with a damped sinusoidal function, which is in a good agreement with the
data. For these fits, the oscillation frequency is fixed using the fitted result of the ancilla
the ancilla Rabi oscillation, while the amplitude and offset are left as free fit parameters.
However, we notice some small distortions in the transmission data. We attribute these
to a non-vanishing probability of initially having two ancilla atoms before exciting to
the Rydberg state, as discussed in Sec. 4.6.2. In particular, the oscillating reflectance
is above the single-particle limit of (0.16(3)), which we measured experimentally by
introducing vertical disorder through Bloch oscillations, see Sec. 4.6.1. This emphasizes
that the cooperative response of the mirror is preserved during the oscillation.

Enhanced Rabi oscillations

We investigate the distortions in Fig. 4.10b more thoroughly by examining the ancilla
Rabi oscillation in this dataset. By analyzing the histogram of the fluorescence counts
at the position of the ancilla atom, we identify three separated peaks. These peaks
represent an occupation of Ng′ = 0, 1, 2 atoms in |g′⟩ from low to high signal counts,
respectively, see Fig. 4.11a. The separation of the rightmost peak (Ng′ = 2 atoms) is
smaller than the expected equal separation of the discrete atom number. This is because
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Figure 4.10: Cooperative response while coherently driving the ancilla atom. (a)
Ancilla |g′⟩ ↔ |P⟩ Rabi oscillations obtained from ground state |g′⟩ fluorescence
detection through varying the length of the UV pulse before probing. Applying a
damped sinusoidal fit, we find a Rabi frequency of ΩUV = 2π × 1.22(2)MHz and a
decay constant of τdecay = 6(3)µs. We observe the transmittance (b) and reflectance
(c) data to follow the Rabi oscillation of the ancilla. The solid lines in b and c represent
the best fit results, with the amplitude of the oscillation and overall offset as the only fit
parameters, while the oscillation frequency and decay time are fixed and taken from a.
The three insets in c display spatially-averaged reflection images for ΩUVt = 0, π and
2π, respectively, with an indicated ROI of 5 × 5 µm. The dashed line in c illustrates the
expected transmission signal for an ancilla Rydberg fraction of P|P⟩ = 0.96. The gray
solid line represents the resonance reflection signal (0.16(3)) from isotropic scattering.

the Ng′ = 2 atoms occupy different adjacent sites in the vertical lattice, originating
from imperfect preparation of MI in the early stages before ancilla preparation. The
adjacent sites are out of focus of the objective, leading to a diminished fluorescence
signal during imaging. We verify this by intentionally preparing atoms to occupy
two layers at the adjacent site of the vertical lattice, which results in a histogram with
an identical distribution spacing. The reduction of the fluorescence signal from the
different planes cannot discriminate Ng′ = 2 by our reconstruction script, as it only
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Figure 4.11: Rabi oscillations and related fluorescence histograms. (a, left) The
average detected atom number in |g′⟩ during the ancilla Rabi oscillation using the new
thresholds from a, right to differentiate atom number (gray) and the corresponding
transmittance oscillation (green). A finite population in Ng′ = 2 gives rise to a beating
oscillation between the single-atom frequency and two-atom enhanced Rabi frequency.
(b, left) The average detected atom number in |g′⟩ during ancilla Rabi oscillation with
new thresholds from b, right to differentiate atom number (gray) and corresponding
reflectance oscillation (brown). This dataset has a negligible population in Ng′ = 2,
resulting in clean oscillations featuring a single frequency. (right) The histograms of
the fluorescence signal, evaluated from ancilla Rabi oscillation data, are shown on the
left. These histograms provide the thresholds for differentiating the number of atoms,
used in the Rabi oscillation analysis. The transmission dataset has a probability of
0.28(5) for initially having two ancilla atoms. In contrast, the reflection dataset, with its
improved preparation fidelities, presents a negligible fraction of two-atom instances.

accounts for the equal spacing of the histogram to identify Ng′ = 2 atoms. Therefore,
the Ng′ = 2 peak on the histogram was considered as a single atom occupation. Based
on this new histogram in Fig. 4.11a, we defined new thresholds to differentiate between
Ng′ = 0, Ng′ = 1 and Ng′ = 2. We obtain ancilla probabilities of 0.42, 0.44, and 0.14 for
Ng′ = 0, 1, 2, respectively. Note that the probabilities throughout the entire oscillation
experiences a 50% loss due to the Rydberg state being untrapped. We, thus, reevaluate
the atom numbers contributing to the Rabi oscillation ⟨Ng′(t)⟩ shown in Fig. 4.11a. The
new evaluation exhibits a deviation from a pure sinusoidal single-frequency oscillation,
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which significantly improves the agreement with the observed transmittance. Based on
the observation of Ng′ = 2 for the ancilla atoms, we extend our model accounting for
the additional frequency, which is enhanced by

√
Ng′ [131, 134]. The fit model leaves

relative amplitudes, which directly connect to the probability of Ng′ = 0, 1, 2 as free
fit parameters The fit, represented by the black solid line in Fig. 4.11a, is in excellent
agreement with the data. We obtain the initial probability of P2(t = 0) = 0.28(5) for
Ng′ = 2. This initial probability averages to ⟨P2(t)⟩ = 0.14(3), taking into account a
50% loss pf the untrapped Rydberg state during the dynamics, and provides excellent
agreement with the population obtained from the histogram. The same model from the
Rabi oscillation fit of ⟨Ng′⟩ is fitted to the transmission data with a global amplitude and
offset rescaling, where the oscillation frequency and relative amplitude remain fixed.
The presence of the second ancilla atoms manifests itself in the enhanced oscillation
frequency and inherits to the atomic array properties. Repeating the measurements
with an imrpoved initial state, where Ng′ = 2 from adjacent vertical occupation is
suppressed, we obtain a pure single frequency, as seen in Fig. 4.11b.

4.6.3 Detecting the Rydberg ancilla lifetime
After demonstrating the working principle of the switching, we reverse the argument
and use the scattered probe photons as a non-destructive detection of the ancilla
Rydberg states. After applying the excitation pulse with a duration of t = π/ΩUV ,
exciting the ancilla to the Rydberg |P⟩ state, we vary the time interval δt between the
ancilla excitation pulse and the detected transmission of the probe. A schematic of the
sequence is shown in Fig. 4.12. We observe an increase in transmittance with a longer
delay time δt. This is caused by the Rydberg decay which reduces the Rydberg fraction
P|P⟩, so that the properties of the array change from reflecting to transmitting. We can
estimate the Rydberg fraction P|P⟩ by

P|P⟩(δt) =
ηinit

tp

∫ δt+tp

δt
e−t′/τdt′, (4.9)

where ηinit is the efficiency of initially preparing the ancilla atom in |P⟩. By fitting
Eq. (4.9) to the transmission data, we leave the initial preparation efficiency ηinit and
the Rydberg lifetime τ as free fit parameters. The two limits in the fit, at long interval
δt > 120 µs and short interval δt = 4 µs, are constrained by the transmittance of the
EIT and cooperative mirror, respectively. The fitted initial preparation efficiency of
ηinit = 0.85(10) aligns with the independent measurement to prepare the ancilla in |g′⟩,
assuming a perfect excitation pulse from |g′⟩ to |P⟩. We extract the Rydberg lifetime of
τ = 27(5)µs from the fit. Comparing the Rydberg lifetime τ with a theoretical estimate
of 65 µs at T = 300 K from the "ARC" package [102] and an experimental measurement
of 64.2(26)µs of 85Rb atoms in a magneto-optical trap [295], our measured lifetime is
lower by approximately a factor of two. We investigate two potential factors that might
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Figure 4.12: Rydberg ancilla lifetime. The transmission signal for variable delay
time δt between Rydberg excitation and probe pulse. We extract the Rydberg lifetime
τ = 27(5)µs from an exponential fit (solid line). The dashed line is the expected
transmission signal for an ancilla Rydberg fraction of P|P⟩ = 0.96.

contribute to this discrepancy: photoionization from the optical lattice light and the
motion of the ancilla atom. A previous observation in [113] measured photoionization
via the loss rate of the dilute atomic cloud by off-resonant dressing to the Rydberg
state, δUV ≫ ΩUV. The results show a negligible effect of photoionization up to lattice
depths of 1000 Er. With regard to the motion of the ancilla atom, we numerically solve
the time evolution of the initial wave packet under one-dimensional (1D) optical lattice
at a depth of 100 Er. Due to the anti-trapping of the Rydberg state, the initial wave
packet initially localized at a single lattice site expands approximately up to 5.3 µm
within t = 120 µs. This expansion of the ancilla moves the blockade volume out of the
analysis region, resulting in a slightly increased measured transmittance. Due to the
momentum kick of the excitation photon, the in-plane motion has a larger influence
compared to a vertical expansion. However, the ancilla motion alone can only explain
the lifetime shortened of approximately 20 − 30%. As a consequence, further possible
effects need to be investigated in the future.

4.6.4 Distribution of detected photons
Until now, we have focused on the average properties of the detected photons. In
addition, it is also interesting to observe the statistics of the scattered photons, as they
provide a further understanding of the correlation between the states of the ancilla
and the states of the probe photons. In an ideal case, we expect photons within a
detection area to either be only reflected or transmitted, depending on whether the
ancilla is excited to the Rydberg state |P⟩ or remains in its ground state |g′⟩. We monitor
the reflected photons for a duration of tp = 60 µs, expecting that the histograms of
the two cases will be clearly distinguishable. The observed histograms are shown
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Figure 4.13: Distribution of detected photons. The distribution of detected reflection
photons, relative to the mean background photon numbers, in the ROI of 5 × 5 µm.
For the ancilla in the |g′⟩ state (blue histogram), we obtain a Poissonian distribution
corresponding to the photon counts in the EIT configuration (blue solid line). When the
ancilla is prepared in |P⟩ (orange histogram), the histogram acquires a tail toward high
photon numbers. This histogram is a combination of photons due to Rydberg-induced
reflection (orange dashed line) and photons at low photon numbers due to imperfect
Rydberg preparation and Rydberg decay. A Monte-Carlo simulation that includes our
experimental uncertainties reproduces the essential features observed in the histogram
(orange solid line and shaded region). The orange dashed curve represents an expected
histogram which assumes an absence of Rydberg decay and perfect ancilla preparation,
providing a clear separation of histogram.

in Fig. 4.13. These have been subtracted with a background of µ = 16.0(7) photons
independently measured without the array. The blue histogram represents the case
when the ancilla atom remains in its ground state |g′⟩. We model the probability
distribution of the detected photons with a Poissonian distribution, with a variance
exceeding the photon shot noise by a factor of two due to the stochastic EMCCD
amplification process [286]. The best fit has µ = 18.3(7) photons, which is slightly
higher than the photon background. When the ancilla atom is excited to the Rydberg
state |P⟩, we find a broad asymmetric histogram, represented in orange, exhibits a long
tail at high photon numbers in addition to a peak at low photon numbers. To explain
the detected shape, we repeatedly run the following steps to generate a simulated
histogram. We assume the histogram is a combination of two distinct Poissonian
distributions corresponding to two ancilla states, |g′⟩ and |P⟩. The first Poissonian has
a mean fixed at µ = 18.3(7) photons, while the second "switched" Poissonian remains
to be determined. The relative weight between these two contributions is defined
by the preparation fidelity of 0.85(10), see Sec. 4.4.1, and the Rydberg |P⟩ lifetime of
τ = 27(6)µs, see Sec. 4.6.3. We perform a Monte-Carlo simualtion, where we randomly
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sample the initial Rydberg fraction and the Rydberg decay within their respective error
bars for each instance from a Gaussian distribution. After running the aforementioned
procedure for 105 independent realizations, we varying the mean photon number of
the second Poissonian until the simulated histogram is best reproduces our data. The
best agreement shows that the second "switched" Poissonian has a mean value of 65(2)
photons. By performing 5000 independent runs, each containing 104 independent sets
of photon numbers, we derive a predicted histogram and standard deviation, shown in
the orange solid curve and shade area in Fig. 4.13, using the experimental parameters.
The orange dashed curve, as a reference, represents an expected histogram which
assumes an absence of Rydberg decay and perfect ancilla preparation, providing a
proper separation between the Poissonian distributions. Here, the preparation and the
short Rydberg lifetime of the ancilla atom are the limitations factor for achieving better
switching performance.

4.6.5 Precursor of ancilla-photon correlations
In Fig. 4.10, we coherently drive the Rydberg fraction of the ancilla before probing the
optical response of the array. We find, as expected, that the reflection/transmission
properties are entirely controllable using the ancilla state. In fact, after applying a
pulse area of ΩUVt = π/2 on the ancilla, and subsequent measurement of the optical
properties and the ancilla state, we would expect a correlation of the measured ancilla
state and the reflection/transmission of the photons. This is due to the entanglement
between the ancilla state and the photon,

|Ψ⟩ancilla−photon =
1√
2

(
|g′⟩ ⊗ |T⟩+ |P⟩ ⊗ |R⟩

)
, (4.10)

where |g′⟩/|P⟩ represents the Rydberg/ground state of the ancilla and |T⟩/|R⟩ repre-
sents the transmitting/reflecting photonic state. We can clearly see a first indication
of this correlation in our data, as illustrated in Fig. 4.14. Here, we post-select for the
absence the ancilla atom, denoted as the Rydberg |P⟩ state, revealing the expected
increase in reflectance. Conversely, post-selecting on the presence of the ancilla atom,
labeled as the ground state |g′⟩, shows the reduction in reflectance. The imperfect
correlation signal after applying post-selection can be attributed to the imperfect prepa-
ration of the ancilla and the decay of the Rydberg ancilla after probing. For example,
a vacant site at the target ancilla due to imperfect preparation can cause false events
labelled as |P⟩, as a missing ancilla atom is mapped to the Rydberg state, leading to
incorrect labeling of |P⟩ ⊗ |T⟩. In a second instance, the decay of the Rydberg ancilla
to the ground state after probing leads to incorrect labeling of |g′⟩ ⊗ |R⟩. Therefore,
future work on atom-photon correlation with an upgraded setup will be intriguing to
observe the degree of signal improvement. Therefore, future work on atom-photon
entanglement might become visible when operating with an upgraded setup, such as
an improved photon detector and a better initial state preparation.
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Figure 4.14: Correlation of the ancilla and photonic state. For the presented data
set, we first apply the UV π/2-pulse, preparing the ancilla in a coherent superposition
between the ground and the Rydberg state. We then apply the 60 µs probe pulse
while detecting the reflection signal, followed by the push out pulse to remove the
array atoms. Finally, the ancilla state is detected by fluorescence imaging. Without
post-selection ("All data"), we find a reflectance of 0.129(2), which is approximately
half the reflectance obtained after the ancilla is excited to the Rydberg state. With
post-selection, we can divide the same data into two subsets, where either the presence
("|g′⟩") or absence ("|P⟩") of the ancilla atom at the end of the sequence was observed.
Performing this analysis, we observe the correlation, where the ancilla in the |g′⟩ (|P⟩)
state resulted in a lower (higher) reflectance, hinting a first indication for atom-photon
entanglement.

4.6.6 Spatial switching area
The subwavelength array naturally achieves high cooperative properties from dipolar
interactions, where the free space strongly relaxes the mode selection. Our fundamen-
tally new approach can spatially control the mode of single photons that interact with
the array over the position of the ancilla atom. In this section, we probe and demon-
strate the finite spatial switching area due to the finite Rydberg interactions, discuss the
tuning ability of the switching area, and the possible solution to mitigate limitations. To
estimate the blockade radius, we assume a van der Waals interaction of Uint = C6/r6

with C6 being the interaction strength. The blockade radius rb = (2C6Γe/h̄Ω2
c)

1/6

is defined at the point where the interaction strength equals the width of the EIT
transparency window Ω2

c /(2Γe) [292, 294]. With that, we theoretically estimate the
blockade radius of rb = 4.6 µm for our experimental parameters. Interestingly, a more
complex model, including all relevant interaction potentials from neighbor states,
agrees with this simplified model, see Sec. 4.6.6. We measure the switching area by
monitoring the area around the ancilla atom by evaluating a radial average of the
transmittance, see Fig. 4.15. We compare the optical response of a small atomic array of
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Figure 4.15: Spatially resolved switching area. The radially averaged transmittance
over the size of the switched array, centered around the ancilla atom. The solid lines
depict the estimated radial profile, taking into account the |S⟩ − |P⟩ blockade, array
size and Rydberg fraction of the ancilla P|P⟩. The insets in the upper left corner show
the spatially-averaged transmission images. The solid and dashed gray lines mark the
array radius ra and the estimated blockade radius rb, respectively. (a) The transmittance
of the array, which contains 250 atoms and is comparable in size (ra ≈ 4.7 µm) to the
blockade radius, aligns well with the estimated radial profile. (b) The array of
1500 atoms with a radius ra ≈ 12.5 µm, which is large compared to blockade radius,
shows a gradual change of the transmittance, deviating from the solid line. This can
be explained by long-range exchange processes, where the |P⟩ excitation undergoes
|S⟩ − |P⟩ exchange, resulting in the transportation of the excitation and hence a shift
of the switching area, as illustrated by the sketch.

radius ra = 4.7(7)µm, comparable to an expected blockade radius rb, and a larger array
of radius ra = 12.5(5)µm, exceeding the expected blockade radius. In the small array,
we observe a relatively sharp edge where the transmission abruptly changes from its
central value of 0.48(2) to a full transmission. This is attributable to the combination
of the finite size of the array ra and the blockade radius rb. Unlike the small array,
the large array exhibits an increased transmittance at the center and a more gradual
increase in transmittance beyond the blockade radius. This reveals the presence of
long-range exchange processes between the |S⟩ and |P⟩ state during probing, which
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has previously been studied in [292, 294]. These exchange processes delocalize the
ancilla |P⟩ excitation over the entire system, resulting in a smooth transmittance signal.
The derivation and discussion of the exchange processes are explained in more detail
in Sec. 4.6.6. Notably, these exchange processes can be mitigated by either operating
with shorter probe timescales or reducing the probe Rabi frequency, as the relevant
exchange process scales with ∝ Ω2

p [292]. Access to this regime can be achieved by
upgrading to a single-photon detector array, which maps each spatial mode of the light
field to an individual detector within the detector array while maintaining spatially
resolved parallel detection.

Derivation of the EIT-blockade radius

To estimate the blockade radius, we first calculate the interaction potentials for the
|SP⟩ and |PS⟩ pair states under a bias field of Bz = 28.5 G used in the measurements.
We use the "Pairinteraction" software [98] that performs an exact diagonalization of the
electrostatic interaction hamiltonian of numerous pair states |r′, r′′⟩ that are coupled
with the target state |SP⟩. Fig. 4.16a shows the distance-dependent interaction energies
Ur′r′′

int (r) and the relative overlap of the coupling strength |Cr′r′′(r)|2 with the target |SP⟩
pair state, given by the blue coloring. For the pair states composed of opposite parity,
the interactions are typically described by resonant dipole-dipole interactions following
a scaling of ∝ 1/r3, as discussed in Sec. 2.3.1. However, our chosen Rydberg states of
|S⟩ = |44S1/2, mJ = −1/2⟩ and |P⟩ = |44S1/2, mJ = +3/2⟩ have vanishing first-order
dipole-dipole matrix elements due to the magnetic quantum numbers differing by
∆mJ = 2. Instead, the interactions are described in second-order perturbation theory by
van der Waals interactions ∝ 1/r6, which arise from off-resonant coupling to pair states
formed by neighboring Zeeman sublevels, as discussed in Sec. 2.3.1. To compare with
the simple van der Waals interactions Uint = CSP

6 /r6, we fit the interaction potential for
r > 4 µm and find the van der Waals coefficient of CSP

6 ≈ h × 35 GHz µm6, as shown
by the red dashed line in Fig. 4.16a,b. Next, we derive the EIT-blockade radius rb by
analyzing the single-particle optical response Im[χ] of the probe transition using the
calculated interaction potentials. The model includes all relevant Rydberg pair states
|r′r′′⟩ with respect to Rydberg interaction of Ur′r′′

int (r) at δp = δc = 0,

H =
h̄
2

Ωp|e⟩⟨g|+ h̄
2 ∑

r′,r′′
ΩcCr′r′′ |r′r′′⟩⟨e|

+ ∑
r′,r′′

Ur′r′′
int (r)|r′r′′⟩⟨r′r′′|+ h.c..

(4.11)

Here, Cr′r′′ = ⟨r′r′′|SP⟩ is the overlap of |r′r′′⟩ with the bare pair state |SP⟩. By con-
sidering only the Rydberg pair states with |Cr′r′′ |2 > 0.05 and Ur′r′′

int < h × 100 MHz,
we calculate the steady-state solution of the probe transition density matrix (ρeg) us-
ing the "QuTiP" package [296]. The results for the distance-dependent optical probe
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Figure 4.16: Interaction potentials and optical response. (a) Potential energy
curves relevant for |r′r′′⟩ pair state coupling the 44S1/2 and 44P3/2 Rydberg states in
an external magnetic field of Bz = 28.5 G. The intensity of the blue coloring indicates
the relative optical coupling strength |Cr′r′′ |2. The red ticks at a large distance mark
the magnetic sublevel splittings. The red dashed curve resembles the fitted van der
Waals potential CSP

6 /r6 with CSP
6 ≈ h × 35 GHz µm6. (b) Potential energy curves

in the close vicinity of the EIT-blockade radius rb (vertically-dashed line). The red
ticks mark the asymptotic state |SP⟩ and |S̃P̃⟩, where |S̃⟩ = |44S1/2, mJ = +1/2⟩ and
|P̃⟩ = |44P3/2, mJ = +1/2⟩. The splitting ∆U/h between the curves marked as |+⟩
and |−⟩ gives rise to the dipolar |S⟩ − |P⟩ exchange. (c) Imaginary part of the probe
susceptibility (|g⟩ ↔ |e⟩) for variable interatomic distance assuming δp = 0. The
blue curve takes the four most relevant Rydberg pair potentials with |Cr′r′′ |2 > 0.05
into account, resulting in the EIT-blockade radius of rb = 4.63 µm (vertically-dashed
line) where Im[χ/χ0](rb) = 1/2. Approximating the potentials by the van der Waals
potential with CSP

6 ≈ h × 35 GHz µm6, we find excellent agreement of the optical
response, as shown by the red dashed curve. Note that the dipole-dipole interaction
coefficient C3 becomes negligible for r > 4 µm, as resonant dipole-dipole coupling
between |S⟩ and |P⟩ is forbidden due to the difference in magnetic quantum number
of ∆mJ = 2.

response Im[χ](r) with χ = −2χ0γeρeg/Ωp are presented in Fig. 4.16c. Defining the
EIT-blockade radius rb as the distance at which Im[χ/χ0] is reduced to half of its maxi-
mum value, we find the EIT-blockade radius of rb = 4.63 µm. The red dashed line in
Fig. 4.16c corresponds to a simplified calculation, where we only consider a single pair
state with the fitted van der Waals coefficient of CSP

6 ≈ h × 35 GHz µm6. Interestingly,
the simplified model of the pure van der Waals interaction already provides a good
explanation of the optical response of the system. Moreover, calculating the blockade
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radius using the pure van der Waals interaction yields a good agreement with the
derived model, with rb = (2C6Γe/h̄Ω2

c)
1/6 = 4.6 µm.

Estimating the |S⟩ − |P⟩ dipolar exchange rate

In Fig. 4.15b, the spatial transmission profile for the large atomic array gradually
changes over the radius, deviating from the expected sharp blockade radius. In addi-
tion, we observed a "halo" of reduced transmittance at the distance beyond the blockade
radius rb. We attribute these observations to dipolar exchange processes between the
ancilla atom in the |P⟩ state and the surrounding atoms dressed to the |S⟩ state. The
exchange process has been observed in previous works [292, 294, 297], which cause
resonant dipole-dipole coupling of different Rydberg parity. In contrast, our chosen
Rydberg states cause the exchange by a second-order process, as discussed in Sec. 4.6.6.
In this section, we will provide a theoretical model of such processes and a quantitative
estimation of the exchange rate for our system. Considering the interaction potentials
in Fig. 4.16b, there are two pair-potentials that are relevant for distances r > 4 µm.
These potentials can be decomposed into the symmetric |+⟩ = 1√

2
(|SP⟩+ |PS⟩) and

anti-symmetric |−⟩ = 1√
2
(|SP⟩ − |PS⟩) superposition of the |SP⟩ pair basis. Therefore,

initializing the atoms in the bare state |SP⟩ = 1√
2
(|+⟩+ |−⟩) causes a coherent ex-

change to the |PS⟩ state. The coherent exchange dynamics of two particles is described
by

|Ψ⟩(t) ≈ cos(Jext) |SP⟩+ eiϕsin(Jext) |PS⟩, (4.12)

where ϕ is a global phase. We can derive the exchange coupling Jex = 2π∆U/(2h),
where ∆U is the energy splitting of the two pair-potentials (Ur′r′′

int and Ur′′′r′′′′
int ), as shown

in Fig. 4.17a. The exchange is restricted to two pair states (|SP⟩ ↔ |PS⟩) for larger
distances, but a multitude of states are contributing for shorter distances, resulting in
strong dephasing and possible coupling to other states (|SP⟩ → |r′r′′⟩) depending on
the overlap of the pair states, |Cr′r′′Cr′′′r′′′′ |2. In the next step, we estimate the Rydberg
probability P|S⟩(r) of finding atoms around the ancilla atom in the |S⟩ state, which can
be quantified using Eq. (4.8). Due to the distance-dependent interaction shift of the
Rydberg states, P|S⟩(r) becomes negligible within the blockade radius rb and high at
large distances, see Fig. 4.17b. Combining the exchange rate Jex(r) with the Rydberg
probability P|S⟩(r), we get an effective exchange rate by Jeff

ex (r) = P|S⟩(r)× Jex(r) [294].
The effective exchange rate shows a maximum two particle exchange rate of Jeff

ex ≈
2π × 3.2 kHz, peaked at a distance around r ≈ 3.7 µm, as shown in Fig. 4.17c.

To this end, the derivation of the effective exchange rate is for a two-particle model.
We extend this to a many-particle description to account for the entire array, where the
ancilla atom can coherently exchange with all surrounding atoms, by numerically solv-
ing the Lindblad master equation. Here, many particles cause a collective enhanced
exchange coupling. We find that the dynamics of the ancilla is well described by an
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Figure 4.17: Dipolar exchange rate. (a) |S⟩ − |P⟩ exchange rate Jex. The rate is
calculated from the splitting between neighboring interaction potentials (Ur′r′′

int and
Ur′′′r′′′′

int ), while the intensity of the blue coloring indicates the overlap |Cr′r′′Cr′′′r′′′′ |2 with
the bare state |SP⟩. (b) |S⟩ Rydberg fraction as calculated from Eq. (4.8). (c) Effective
exchange rate, given by the product of the upper and middle graph Jeff

ex (r) = P|S⟩(r)×
Jex(r). For larger distances r > 4 µm, the effective exchange rate is predominantly
given by the difference of the symmetric and antisymmetric pair states |+⟩ and |−⟩,
respectively. For smaller distances r < 4 µm however, a multitude of pair states
contribute, resulting in strong dephasing.

effective exchange rate of Jcol
ex ≈ 2π × 30 kHz. With this rate, a single exchange event

occurs at t = 1/(2 × 30 kHz) ≈ 16 µs, which is comparable to our probe duration of
tp = 20 µs. Therefore, the ancilla |P⟩ delocalizes to a distance around r ≈ 3.7 µm, caus-
ing the transmittance to decrease at the center of the original position. The exchange
processes can be suppressed by reducing the probe duration or decreasing the probe
power, as the exchange process scales with ∝ Ω2

p in the limit Ωp ≪ Ωc [292].

4.7 Summary
We exploited the strong cooperative response of an array composed of ordered emitters,
spaced at subwavelength distances, to realize a photon switch. By utilizing the Rydberg
blockade, we manipulated the probe photons interacting with the array to either be
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transmitted or reflected. We demonstrated that the optical properties of the array
can be coherently altered by driving Rabi oscillations on the ancilla into the Rydberg
state. We attained spatial control around the ancilla atom, which is deterministically
placed within the array, and directly measured the spatial switching area. The residual
imperfections are primarily due to the finite Rydberg lifetime and preparation fidelity
of the ancilla. These issues are straightforward to address with future upgrades to the
experimental setup.
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Chapter 5

Extended Bose-Hubbard model using
Rydberg dressing

5.0.1 Introduction

The Hubbard model has become an integral part of condensed matter physics, de-
scribing the dynamics of strongly correlated particles in a periodic potential [298–
301]. Ultra-cold atoms in optical lattices are an ideal platform to realize Hubbard
systems [147, 148] due to their clean environment, precise control and tuning capa-
bilities, down to the microscopic level. However, so far the vast majority of work
has focused on systems with only on-site interactions [42]. Moving beyond local in-
teractions, including extended-range interactions stretching over several sites in the
Hubbard model, the so-called extended Bose-Hubbard model (eBHM), leads to a variety
of intriguing phenomena arising from the competition between the long-range, tun-
neling and local interaction energy scales [43–45]. Near equilibrium, this competition
gives rise to the emergence of non-local order [302], supersolids [303–308], spin liq-
uids [309], and exotic cluster Luttinger liquid phases [310–312], while the emergence
of repulsively-bound pairs has been predicted out-of-equilibrium [313].

In this chapter, we focus on realizing and studying itinerant Rydberg models. Here,
we combine Rydberg dressing, as described in Sec. 2.4.2, with the full capabilities of
single-site control and read-out of our quantum gas microscope. In the following
sections, an overview of experimental platforms featuring long-range interactions is
given. We then describe our experimental platform where we achieve itinerant one-
dimensional (1D) bosonic systems with extended-range interactions. Most importantly,
we demonstrate our findings on stroboscopic Rydberg dressing, which allows us to
improve the Rydberg-dressed lifetime by over two orders of magnitude compared
with previous measurements [140, 141]. Finally, we probe key features of the eBHM
evidenced by the observation of repulsively-bound pairs, quantum hard-rods, and
near-equilibrium density ordering. This chapter follows the publication [314]. The
theoretical description of the near-equilibrium density ordering was developed in close
collaboration with Tizian Blatz and Annabelle Bohrdt.
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5.0.2 Long-range interacting quantum systems
Realizing an itinerant long-range interacting quantum system with single-particle
control and single-particle read-out is an outstanding experimental challenge and
continues to be an active field of research. Over the past decades, considerable effort
has been devoted to experimentally incorporate long-range interactions into quantum
simulations for itinerant lattice gases [45, 315]. The following list provides an overview
of various platforms and their respective state-of-the-art:

• Light-mediated-interactions in cavity systems: Long-range interactions can be
harnessed from atoms in cavities. The light scattered from an atom into the
cavity mode can be rescattered by other atoms, with the photons carrying the
information between the atoms [316–319]. Combined with optical lattices, the
system captures the extended Hubbard model [320, 321]. The on-site interaction
is manipulated by the lattice depth, whereas the long-range interaction is tuned
by the resonance frequency of the cavity. The independent control over the short-
and long-range interactions allows to observe four distinct quantum phases,
including the superfluid (SF), supersolid (SS), Mott insulator (MI), and charge
density wave (CDW) [320], and the quench dynamics between two insulating
phases [322]. However, dissipation is the primary hurdle in achieving the strongly
correlated regime.

• Semiconductor quantum dots: Semiconductor quantum dots, formed by a semi-
conductor two-dimensional (2D) electron gas, are promising candidates to study
the Fermi-Hubbard model [323–326]. With long-range Coulomb interactions
and electronically tunable Hubbard parameters, the extended Fermi-Hubbard
model can be realized [327]. Local control and read-out have been active areas of
research. However, significant electrostatic disorder and the challenge to extend
the system towards larger systems sizes still persist.

• Dipolar excitons: An electron-hole pair in a semiconductor can form quasipar-
ticles [328] in a 2D lattice with spacing of 250 nm, which is created by an array
of electrodes. The dipole interactions of quasiparticles within this short lattice
are adequate to generate long-range interactions necessary for simulating the
eBHM [329]. Here, two Wannier states are confined in the lattice with large
on-site interactions compared to the tunneling energy U ≫ J, and achieve a
nearest-neighbor interaction of V/J ≈ 20. Two incompressible phases of the
MI and checkerboard are observed at unity- and half-filling, respectively. The
challenge is to perform a site-resolved analysis in the short spacing lattice.

• Polar molecules: Ultracold polar molecules feature a strong and tunable electric
dipole moment, making them a potential platform for the eBHM [52–56]. More-
over, the rich spectrum of rotational and vibrational degrees of freedom can be
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utilized for tunability and information storage. However, this complex internal
structure causes high collisional losses, known as "sticky collisions" [330]. The
latter poses challenges in preparing high phase-space densities near quantum
degeneracy, limiting lattice fillings. Nevertheless, there has been impressive
progress over the past decade. Recently, the first quantum gas microscopy of di-
lute molecular samples has been reported [55]. In addition, efficient electric field
and microwave (MW) shielding have been developed and implemented [331–
334], allowing the loss to be significantly reduced and resulting in the first
observation of a molecular dipolar Bose-Einstein condensate (BEC) [335]. In
parallel, molecules have been trapped and detected in optical tweezers, which
can be achieved by direct cooling of molecules [336–338] or assembly from sin-
gle atoms [339–342]. However, the pursuit of developing large-scale extended
Hubbard systems remains ongoing.

• Magnetic atoms: Magnetic atoms naturally have a permanent magnetic dipole
moment, which is tunable by an external magnetic field [46–48]. Due to the
relatively weak dipolar interaction strengths, achieving sufficiently strong nearest-
neighbor interactions requires very small lattice spacing. For example, the first
observation of an 168Er-based eBHM in optical lattices with a spacing of 266 nm
can reach a nearest-neighbor interaction of V/J = 10 [49]. Performing single-site
readout or manipulation with short spacing is extremely challenging. To cover
the various demands of short-spaced lattices for physics and the long-range
spacing for single-site imaging, the latter studies required an accordion lattice
with a tunable lattice spacing from 266 nm to 3 µm Here, the single-site detection
allows to observe different phases, such as dipolar quantum solids [50].

• Rydberg atoms: Rydberg quantum simulators, commonly used for simulat-
ing spin models [62] or quantum computing [60, 63] where motional dynam-
ics are frozen, have been employed to simulate itinerant hard-core interacting
bosons through a spin-boson mapping [61]. Rydberg dressing, off-resonant
optical coupling to Rydberg states, offers an alternative pathway to realize
extended-range interactions over micron-scale distances in quantum gas mi-
croscopes [137, 191, 311, 343–348]. The optical coupling provides a distinct mech-
anism for controlling interactions, including quenching the interaction strength
in sub-microsecond timescales, periodically modulating the interactions [349], or
switching interactions at a specific state of evolution. Furthermore, attractive or
repulsive interactions can be realized by employing blue or red detuning [136],
and the isotropy of the interactions can be controlled by the external field and the
polarization of the coupling light [140, 192]. So far, Rydberg-dressed interactions
have been successfully implemented in the absence of motional dynamics to
realize spin models [140, 141, 190, 192, 350–352]. Initial efforts have been made
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to employ Rydberg-dressed interactions for itinerant fermionic systems [197].
Nevertheless, the technique has faced significant challenges from substantial col-
lective losses [140, 353]. These losses result from off-resonant coupling to Rydberg
states of opposite parity whose interaction with the dressed state tunes the cou-
pling light into a resonance that can trigger an excitation avalanche [140, 353, 354].
This challenge can be overcome using stroboscopic Rydberg dressing, as detailed
in Sec. 2.4.2. Combined with the abilities of local control and single-site read-out
of a quantum gas microscope [152], this enables the realization of the eBHM
which has been demonstrated for both in- and out-of-equilibrium dynamics [314]
with nearest-neighbor interaction up to V/J ≈ 10.

5.1 Experimental protocol

Beginning with near unity-filled MI of up to 200 atoms in the diagonal lattice, we use
our addressing technique, see Sec. 3.3.2, to prepare three parallel atomic chains oriented
along the x-direction. We choose a separation distance of three lattice sites between
chains to suppress the interaction between the chains, ensuring pure 1D dynamics
without any influence from neighboring chains. The diagonal lattice has a lattice
spacing of alat = 752 nm with an approximately fixed repulsive on-site interaction of
U = h × 225 Hz. The single-photon light in the UV range off-resonantly couples atoms
from the ground state |g⟩ = |F = 2, mF = +2⟩ to the Rydberg manifolds |30P3/2⟩,
generating a dressed ground state |g̃⟩. The characteristic Rydberg properties in |g̃⟩
feature extended-range interactions with a softcore shape and a strength of V, see
Fig. 5.1a.

We choose to operate with the diagonal lattice due to a geometry constrain of
the UV propagation direction. Coupling a ground state to a Rydberg state with the
single-photon scheme usually generates a potential offset due to the AC-Stark shift. A
tightly focused beam of our single-photon coupling light, see Sec. 3.4.1, causes a strong
optical gradient orthogonal to its propagation direction, whereas the optical gradient
along the preparation direction is negligible. This prevents atomic dynamics in the
square lattice because the coupling light propagates along the diagonal direction of
the lattice axes. Therefore, we work with the diagonal lattice, as described in Sec. 3.3.5,
where the propagation direction aligns with one of the lattice axes, specifically the
x-direction, as seen in Fig. 5.1a. In this scenario, the dynamics in 1D are not affected
during illumination of the Rydberg dressing light because the potential gradient is
absent along the x-direction. However, the dynamics in the diagonal lattice turn into
2D when the coupling light is turned off, there is no independent tuning ability of
the tunneling rate between the two orthogonal lattice axes for the diagonal lattice. To
constrain the dynamics to 1D along the x-direction, we additionally apply a magnetic
gradient along the y-direction ∇By, see Sec. 5.1.1.
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Figure 5.1: Rydberg-dressed extended Bose Hubbard model and excitation scheme.
(a) Tilted lattice system and softcore interaction. The atoms are allowed to tunnel
along 1D chains with a tunneling energy J and experience on-site interactions U. Off-
resonant coupling to the Rydberg states generates softcore-shaped interaction with
tunable nearest-neighbor interactions V = Ω4/8∆3. The inset shows Rydberg-Rydberg
interaction potentials with their relative optical coupling strength indicated by the
intensity of the blue coloring. (b) The ultraviolet (UV) light at a wavelength of 297 nm
off-resonantly couples the atoms, initially prepared in the |g⟩ = |F = 2, mF = +2⟩
state, to the Rydberg manifold |30P3/2⟩ with Rabi frequency of Ω = 2π × 20 MHz
and detuning of ∆+ = 2π ×−(60 to 400)MHz. The UV laser propagates along the
x-direction, with a the bias magnetic field of B = 4.48 G. Setting a linear polarization
on the y-axis for the UV light, we off-resonantly couple to the Rydberg manifold with
both the σ+ and σ− polarizations.

Fig. 5.1b shows the relevant electronic states and the laser excitation scheme. A
magnetic bias field of B = 4.48 G, near z-direction, provides a Zeeman splitting
for the mJ Rydberg manifolds of ∆Zeeman = 2π × 8.36 MHz. Choosing the linear
polarization along the y-axis results in σ+ and σ− polarizations that couple |g⟩ to both
the |30P3/2, mJ = +3/2⟩ and the |30P3/2, mJ = −1/2⟩ states. With our parameters,
the coupling strength ratio of these two branches amounts to Ω+ : Ω− ≃ 1 : 0.577.
Despite the closer detuning for the σ− contribution (|∆−| < |∆+|), the nearest-neighbor
interaction V is predominantly given by the σ+ contribution, due to the strong scaling
(V ∝ Ω4) and the Rydberg-Rydberg interaction potentials at B = 4.48 G. Note that
we intentionally displace the center of the UV beam by a few lattice sites so that the
optical gradient from the AC-Stark shifts along the y-direction does not cancel with
the magnetic gradient due to drifts of the beam pointing.
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5.1.1 One-dimensional dynamics with magnetic gradient

The diagonal lattice is impractical for the independent control of the tunneling rate of
each lattice axis. To address this, we apply a potential gradient along one of the lattice
axes, generated by Zeeman shifts of a magnetic field gradient. This prevents dynamics
along the direction of the gradient, while dynamics in the orthogonal direction remain
unaffected. We employ a single coil, in conjunction with a vertical offset field, to
generate a quadrupole magnetic field with the magnetic zero set in the atomic plane.
Additionally, offset fields on the horizontal plane are used to counteract the quadrupole
field, aligning the magnetic gradient to one of the lattice axes. We characterize the
magnitude and orientation of the magnetic field gradient using Ramsey interferometry,
see Fig. 5.2a. Our procedure begins with a unity-filled 2D MI in the |↓⟩ = |F =
1, mF = −1⟩ hyperfine ground state. We then apply a MW π/2 pulse, coupling to the
|↑⟩ = |F = 2, mF = −2⟩ state, preparing the atomic ensemble in the superposition
state (|↓⟩ + |↑⟩)/

√
2. The superposition state undergoes spatially dependent spin

precession according to the local magnetic field strength. Finally, we apply a second
MW π/2 pulse to map the accumulated spatial phase to spin population. Subsequently,
we measure the |↑⟩ component using the push out to remove the |↑⟩ component before
imaging. As the magnetic phase is random, we analyze the connected correlator

Cd = ⟨n̂in̂i+d⟩ − ⟨n̂i⟩⟨n̂i+d⟩, (5.1)

where d is the correlate distance. For example, the connected correlator Cd=1 provides
the relative phase different with the nearest-neighbor site. The spatial 2D phase profile
is shown in the inset of Fig. 5.2a. By fitting a 2D sinusoidal function to the phase
profile, we can extract the orientation and strength of the magnetic gradient [355]. In
the measurements for this chapter, we operate with a magnetic gradient of ∇By =
h × 350(3)Hz/alat and ∇Bx = h × 2(2)Hz/alat. This allows tunneling along the
x-direction, while inter-chain tunneling along the y-direction is suppressed due to
the large potential gradient ∇By > U = h × 225 Hz. At this setting, the magnetic
field along the z- and y-direction is Bz = 4.28 G and By = 1.31 G, respectively, while
Bx is negligible. Furthermore, we find that the vertical potential gradient ∇Bz from
the magnetic field cancels the potential gradient caused by gravity. This results in
vertical tunneling out of the plane over long dynamical timescales for the atoms in the
|F = 2, mF = −2⟩ state. To overcome this issue, we apply a series of MW transfer to
transfer atoms to the |F = 2, mF = +2⟩ state, in which the vertical potential gradient
∇Bz combines with the potential gradient from gravity. With the optimized B field
settings, we verify 1D tunneling by performing single-particle quantum walks [35],
see Fig. 5.2b. We observe the characteristic quantum walk within the chain, while the
inter-chain tunneling is negligible.
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Figure 5.2: Calibrating the potential gradient and benchmarking the 1D dynamics.
(a) We use Ramsey interferometry to align and calibrate the potential gradient. The
spins are encoded in two hyperfine ground states that are coupled by a MW field. The
local spin precession accrues a spatially dependent phase due to the local magnetic
field. The phase is mapped to the population of the spins and analyzed with the
connected correlator Cd=2, as illustrated in the inset. (b) Starting with a single atom
within the tilted lattice, we observe quantum walk dynamics with the population
confined within the chain, whereas inter-chain tunneling is negligible.

5.1.2 Rydberg-dressed interactions
Theoretical estimation of the softcore interaction

We can estimate the softcore potential V given the set of parameters used in the
measurements and focusing solely on the σ+ coupling to the |r⟩ = |30P3/2, mJ = +3/2⟩
state. Following the calculation in Sec. 2.4.2 with an extension to multiple pair states,
we first calculate the distance-dependent interaction Vr′r′′

rr (R) between Rydberg pair
states using the "pairinteraction" software [98]. The relevant pair states and their
respective relative coupling to the ground states are illustrated in the inset of Fig. 5.1a.
We then diagonalize the two-atom Hamiltonian coupled to the ground state |g⟩ with
Rabi frequency Ω,

H(R) =
h̄
2

Ω(|rg⟩⟨gg|+ |gr⟩⟨gg|)− h̄∆(|rg⟩⟨rg|+ |gr⟩⟨gr|)

+
h̄
2 ∑

r′,r′′
ΩCr′r′′(|r′r′′⟩⟨rg|+ |r′r′′⟩⟨gr|)

+ ∑
r′,r′′

(−2h̄∆ + Vr′r′′
rr (R))|r′r′′⟩⟨r′r′′|.

(5.2)

Here, |r′r′′⟩ are the Rydberg pair states and Cr′r′′ = ⟨r′r′′|rr⟩ is the overlap of |r′r′′⟩
with the bare Rydberg pair state |rr⟩. We account for all Rydberg states, for which the
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absolute interaction energy Vr′r′′
rr is smaller than h × 3 GHz, as the overlap becomes

negligible for larger energies. The diagonalization results of Eq. (5.2) present both the
softcore height (interaction strength V) and the softcore shape (range of the interaction).
Given a Rabi frequency of Ω = 2π × 20 MHz, a detuning of ∆ = 2π × −60 MHz,
and a pulse duty cycle of D = 1/600, we obtain a nearest-neighbor interaction of
V = h × 94 Hz and a negligible next-nearest-neighbor interaction. This estimation
applies to the peak intensity at the center of the beam. Taking into account our small
beam waist of w0 ≃ 12 µm, measurements with parallel chains and the center offset
of the beam, we estimate an average nearest-neighbor interaction of V ≃ h × 80 Hz.
Repeating the same treatment for σ− coupling to the |r⟩ = |30P3/2, mJ = −1/2⟩ state,
yields a maximum softcore of V(σ−) ≲ h × 9 Hz. Therefore, the interaction due to the
σ− coupling is much smaller with a fraction of 0.1 compared to the σ+ coupling.

Softcore calibration with spin echo sequence

We follow previous studies [140, 192, 197, 356] which used a spin-echo sequence to
measure the nearest-neighbor interaction V. We operate with two hyperfine ground
states |↑⟩ = |F = 2, mF = +2⟩ and |↓⟩ = |F = 2, mF = +1⟩, coupled by a MW
field. As the UV light is only coupling the |↑⟩ state to the Rydberg state, the two
ground states experience differential phase shifts due to both the single-particle AC-
Stark shift ∆AC = Ω2/2∆ and the two-particle interaction shift V. However, an echo
pulse with a MW pulse duration of π removes single-particle phase shifts, providing
direct access to the two-particle interaction V. To solely probe the effect of the nearest-
neighbor interaction without higher-order effects from many particles [141], we prepare
isolated pairs using our addressing technique, see Sec. 3.3.2, as an initial state for the
measurement. For the spin-echo sequence, we start in the |↑⟩ state and prepare a
coherent superposition between the |↑⟩ and |↓⟩ states with a MW pulse with a duration
of π/2. We perform a triple spin-echo scheme with four dressing intervals alternating
with the three echo pulses, as illustrated in Fig. 5.3a. This scheme allows us to measure
for a longer dressing duration, and the dephasing time due to the magnetic fluctuation
also improves with more echo pulses. During each phase accumulation in the echo
sequence, we apply eight UV pulses using the stroboscopic scheme to avoid collective
losses. At the end of the sequence, we apply a final MW π/2 pulse to map the detected
phase shifts into spin population. In the absence of interaction V, all spins return to
the original |↑⟩ state, which is then subsequently removed by a push out pulse before
imaging. The interaction V can be derived from the correlated pair flips between the
pair states |↑↑⟩ ↔ |↓↓⟩. In the presence of dephasing, the spins will eventually align
randomly, resulting in a damped oscillation. Motivated by the recent observation of
damped pair oscillations between dipolar molecules in tweezers [356], we utilize a
similar model to derive the interaction V. This model accounts for particle loss τL
and dephasing τD due to Gaussian noise in the UV pulse area with a doubly damped
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Figure 5.3: Calibration of the nearest-neighbor interaction V using a spin-echo
sequence. (a) Spin-echo pulse sequence: We begin with spin-polarized isolated
pairs in the |↑⟩ state. The MW pulse with a duration of π/2 prepares a coherent
superposition of |↑⟩ and |↓⟩. We then alternate the application of UV pulses for
differential phase accumulation with MW echo pulses. This induces a phase shift due
to interaction while canceling out the phases acquired from the single-particle light
shift. For imaging, we apply a final MW π/2 pulse, remove the |↑⟩ atoms by a push
out pulse, and then detect the |↓⟩ atoms. (b) We consider the pair state probability
P↓↓, over varying total dressing durations. We observe that the spins are randomly
aligned, causing the oscillation to be damped at longer dressing durations. The solid
line illustrates the best-fit result of our empirical model, see Eq. (5.3). Examples of
single shots are displayed in the insets. (c) The atomic lifetime is measured during
the applied echo sequence. Fitting with an exponential decay, we find a lifetime of
838(213)µs. (d) We perform a Monte-Carlo simulation of the dephasing time τD
in the presence of fluctuating Gaussian noise in the UV pulse area. Comparing the
simulation (blue line) with our experimental result (red data point), we estimate an
upper bound for the fluctuations in the UV pulse area with a standard deviation of
≲ 1.8 %.

oscillation, given by

P↓↓ = Ae−t/τL

(
1 − e−t2/(2τ2

D) · cos
(

Vt
2h̄

))
. (5.3)
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Fig. 5.3b shows our experimental measurements of the correlated pairs and the fit
results of the model. We obtain a nearest-neighbor interaction of h × 34.1(13) kHz and
a dephasing of τD = 30(1)µs. With a duty cycle of D = 1/600, the nearest-neighbor
interaction is averaged to V = h × 57(2)Hz, whereas the theoretical estimation is
V = h × 80 Hz. The fit results indicate that atomic loss plays a negligible role for
the dephasing. This is consistent with the lifetime measurement of 838(213)µs, see
Fig. 5.3c. The majority of the dephasing is attributed to a shot-to-shot pulse area
fluctuations of the UV light. A few-percent of pulse fluctuations result in strong
variations of the induced phase shift ϕ = δ · t [141]. The difference in the accumulated
phase shifts between the various echo pulses will eventually dominate, leading to
randomly aligned spins in the end. We used a classical Monte-Carlo simulation to
simulate this phenomenon and estimate the dephasing time τD. The simulatiom
assumes the pulse area fluctuations follow a Gaussian distribution with standard
deviation σP. For each σP, we can compute the dephasing time τD, see Fig. 5.3d.
Consequently, we can establish an upper bound for the relative pulse area fluctuations
of σp ≲ 1.8 %.

5.2 Enhanced lifetime with stroboscopic Rydberg
dressing

Blackbody radiation can incoherently drive transitions between neighboring opposite
parity Rydberg states. This process dominates the natural radiative decay of the Ryd-
berg states for large principle quantum numbers [107]. The strong dipole interactions
between these neighboring Rydberg states and the target Rydberg state can tune pair
states into resonance with a detuned laser. This subsequently triggers an avalanche
excitation of the Rydberg population [81], which is not trapped in the optical lattice.
These collective losses are the main limitations to extending Rydberg dressing towards
many-body systems. Many experiments have observed substantial losses when driven
off-resonantly to the Rydberg states [140, 353, 354]. There is a direction of research that
shields the system from the blackbody radiation using cryogenic systems [110, 111, 357].
However, we choose an alternative approach by stroboscopically manipulating the
Rydberg dressed coupling, as demonstrated in [105, 140] and confirmed in another
study [358]. The long switch-off gaps in the stroboscopic scheme effectively suppress
the follow-up Rydberg excitation, minimizing the chance of avalanche excitation and
allowing the excited atom to decay before subsequent pulses occur. Therefore, the
collective losses are suppressed, as illustrated in Fig. 5.4. In addition, the stroboscopic
dressing allows to operate in a larger Rydberg admixture regime, improving the quality
factor Q ∝ Ω2/∆, see Sec. 2.4.2, while reaching the same interaction strength as the
continuous dressing. These two aspects highlight the advantages of the stroboscopic
dressing over the continuous dressing.
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Figure 5.4: Stroboscopic Rydberg-dressed lifetimes. (a) In continuous Rydberg
dressing, off-resonant scattering followed by blackbody radiation drives transitions
to neighboring Rydberg states |S⟩ or |D⟩. The interactions Uint between our target
Rydberg state and the neighboring Rydberg states can tune the state into resonance.
This leads to avalanche excitations, which results in significant losses. (b) In strobo-
scopic Rydberg dressing, the off-resonant light is periodically pulsed with a duration
of tp alternated with an off-time Toff. This results in an average interaction V = DVS,
where D = tp/(tp + Toff) is the duty cycle. The off-times Toff allow the contaminated
atoms to decay before the subsequent pulses occur, thus preventing the avalanche
excitation. Therefore, the strong losses are suppressed, while the same interaction V
can be achieved as in the continuous Rydberg dressing. (c) Atomic loss measurements
for different duty cycles with fixed interaction of V = h × 114(4)Hz in a unity-filled
1D chain of 11 atoms. Here, we apply stroboscopic pulses with pulse durations of
tp = 0.5 − 1 µs and tunable off-times Toff = 150 − 300 µs. As we decrease the duty
cycle from red to blue, the atomic lifetime improves. (d) The fitted lifetime for varying
duty cycles. Tuning the duty cycle from D = 1 (red), through D = 1/3 (purple), to
D = 1/450 (blue), the atomic lifetime increases by a factor of ∼ 7.2(3), following the
expected scaling 3

√
D−1. Averaged over all measurements, our experimental lifetimes

reach 54(3)% of their respective theoretical off-resonant Rydberg lifetime. Compared
with the bare Rydberg state lifetime τ, the stroboscopic dressing improves the lifetimes
by a factor of 4.
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In the following, we present the working principle of stroboscopic Rydberg dressing
as derived in Sec. 2.4.2. The goal is to measure the average dressed lifetime τS,avg
for varying duty cycles D while maintaining the same average dressed interaction
VS,avg = DVS, where VS is the Rydberg-dressed interaction if continuously dressed
with the same Rabi frequency and detuning. For that reason, we reduce the detuning
to increase the dressed interaction VS, ensuring that DVS remains constant while the
Rabi frequency Ω is fixed. Note that reducing the detuning is constrained by the
requirement to stay in the weak dressing regime ∆ ≫ Ω. Moving beyond this point
would cause higher-order many-body interactions to emerge. We experimentally
measure the lifetime of the dressed ground state |g̃⟩ by monitoring the atom number
for a variable illumination time of the stroboscopic dressing light.

We begin with 1D isolated chains of 11 atoms, trapped in the optical lattice at
a depth of 20Er at the |F = 2, mF = +2⟩ state. We pulse the UV light to couple
atoms to the |30P3/2, mJ = +3/2,+1/2⟩ state with durations of tp = 0.5 − 1 µs and
off-times Toff = 0 − 225 µs, corresponding to a duty cycle of D = 1 − 1/450. The
UV is operated at a Rabi frequency of Ω = 2π × 20.9(9)MHz and a detuning of
∆ = 2π ×−60 MHz (stroboscopic scheme) and 2π ×−400 MHz (continuous scheme).
This results in the average dressed interaction of VS,avg = DVS = h × 114(4)Hz.
Fig. 5.4c shows the atomic loss measurements for varying average dressing durations
and different duty cycles. The extracted lifetimes from the exponential decay fit are
correspondingly shown in Fig. 5.4d. For the continuous dressing (red), we measure
a lifetime of τ = 18.6(3)ms, which is 51(1)% of the expected single-particle lifetime
and consistent with previous observations in 1D [105, 141, 197]. With a reduction
in the duty cycle (from red to blue), the lifetime enhances, which is in the excellent
agreement with the expected scaling of τS,avg = τ/D1/3. Compared with the tunneling
timescale of approximately 10 ms in the Bose-Hubbard model (BHM) parameters, the
improved lifetime beyond 100 ms exceeds tens of tunneling events. For the first time,
this allows the incorporation of extended-range interactions into the BHM system
using stroboscopic Rydberg dressing. Note that the pulse timescale is much shorter
than the tunneling timescale. We typically apply more than 25 pulses during one
tunneling timescale.
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5.3 Probing key features of the extended
Bose-Hubbard model

In the following sections, we realize an effective 1D eBHM using stroboscopic Rydberg
dressing of 87Rb atoms in the optical lattice. We induce the nearest-neighbor interaction
V, which corresponds to the average stroboscopic dressed interaction V = VS,avg =
DVS, as depicted in Sec. 5.2. Our system is described by the Hamiltonian

Ĥ = −J ∑
⟨i,j⟩

â†
i âj +

U
2 ∑

i
n̂i(n̂i − 1) + V ∑

i
n̂in̂i+1, (5.4)

where the term V only acts on the nearest-neighboring site. Note that the enhanced
lifetimes exceed our typical tunneling times h̄/(2J) ≃ 4 − 7 ms at least by an order
of magnitude with a maximum interaction of V/J = 10. Compared with previously
reported lifetimes [141, 197], our method shows an improvement of approximately two
orders of magnitude. This allows us to experimentally probe the microscopic features
of the eBHM. With excellent control over the extended interaction strength V and
microscopic control over single atoms, we explore various in- and out-of-equilibrium
regimes, thereby highlighting the impact of this new energy scale on the emerging
many-body physics. First, we observe the existence and dynamics of repulsively-
bound pairs in which atoms occupying neighboring lattice sites are bound and exhibit
slower dynamics. Second, increasing to half-filling, we realize a gas of "hard-rods"
at large nearest-neighbor interaction. We find a striking difference in the density
relaxation between an initial charge-density wave of such hard-rods and the case of
hard-core bosons. Finally, we probe the nature of the low-energy states of the eBHM by
gradually increasing the nearest-neighbor interaction V and observing the emergence
of density-ordering.

5.3.1 Repulsively-bound pair states
In the 1D eBHM, bound pair states have been predicted for atoms in two adjacent
sites, when the nearest-neighbor interaction V exceeds a critical value. The complete
derivation of two-particle solutions in the 1D eBHM can be found in [313]. Here, the
two atom wavefunction can be expanded in a non-symmetrized basis |x1, x2⟩ as |Ψ⟩ =
∑x1,x2

Ψ(x1, x2)|x1, x2⟩, where xi is the atomic position of the atom i. We introduce
the relative coordinate x = x1 − x2 = alat∆x and the center of mass R = (x1 + x2)/2,
where alat is the lattice constant. The two atom wavefunction can be separated using
the ansatz Ψ(x1, x2) = eKRϕK(x), where K is the center-of-mass quasimomentum
K ∈ [−π/alat, π/alat]. This simplifies the problem to a single particle problem in the
relative coordinate. This yields the eigenvalue problem of the Schrödinger equation of
the Hamiltonian in Eq. (5.4),

JK [ϕK(x − 1) + ϕK(x + 1)] + [Uδx,0 + V(δx,1 + δx,−1)− EK] ϕK(x) = 0, (5.5)
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where JK = 2J cos Kalat/2. Eq. (5.5) can be divided into two cases: the scattering states
of free atoms and the bound states of atomic pairs.

Scattering states

The analysis of the scattering solution of Eq. (5.5) can be obtained with the ansatz
of plane wave scattering with phase shift δK,k, represented as ϕK,k(x ̸= 0) ∝ e−ik|x| +

e2iδK,k eik|x|. This generates eigenenergies EK,k = −2JK cos kalat, equivalent to the sum
of the Bloch bands of two free atoms [359, 360]. The energies EK,k form a continuum,
with the lowest value EK,0 = −4J and highest value EK,π = 4J at k = 0 and k = π/alat,
respectively (see gray curve in Fig. 5.5a).

Bound states

We now apply the exponential ansatz ϕK(x ̸= 0) ∝ α
|x|−1
K in Eq. (5.5) and obtain

JKVα3
K +

(
VU − J2

K

)
α2

K + JK(V + U)αK + J2
K = 0. (5.6)

The solutions of Eq. (5.6) have been proven in [313, 361] and there are at most two
bound states, ϕK(x = 0) and ϕK(x ̸= 0). We emphasize some of the interesting limits
for the existence of the bound states:

• For U = V = 0: The noninteracting particles do not have a bound state.

• For U ̸= 0 and V = 0: There is a bound state ϕK(x = 0) with αK = (U − EK)/2JK

and corresponding energy of EK = sgn(U)
√

U2 + 4J2
K. This is equivalent to

atoms located at the same site with additional energy U, which has been observed
before [362, 363].

• For any value of U and V ̸= 0: The first bound state is the same as the previous
case, where two atoms are located at the same site. The second bound state of
ϕK(x = −1, 1) exists only if W ≥ 2J with W = UV/(U + 2V). This corresponds
to two atoms located in adjacent sites with the additional energy V. In the
hard-core boson limit[363–365] where U ≫ J, the second bound state simplifies
to αK = −JK/V with the corresponding energy of EK = V + J2

K/V = V +
4J2/Vcos(Kalat/2). The condition for the existence of the bound state in this
case is V ≥ 2J, see the red lines in Fig. 5.5a. The bound states can be interpreted
as an isolated state separated from the continuum of free single-particle states
by the additional energy U (V) and featuring a bandwidth set by the reduced
tunneling energy Jb = J2/U (Jb = J2/V). This reduced tunneling energy of the
bound pair can be intuitively understood as a hopping of the bound state that
occurs perturbatively in J/U (J/V) through a second-order process that couples
off-resonantly to the continuum of free states.
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Figure 5.5: Repulsively-bound pair states in the extended Bose-Hubbard model.
(a) Two-particle energy spectrums of the 1D eBHM as a function of center-of-mass
quasimomentum K for the hard-core boson limit. The scattering state features an energy
continuum represented by the gray area. For V ≥ 2J, a bound state ϕK(x = −1, 1)
exists, shown by the red lines for different interaction strength V. (b) Symmetrized
two-particle density dynamics for V/J = [0, 1.0(1), 2.0(2), 3.3(1), 4.9(2)] (cases 1⃝- 5⃝,
respectively). We post-select on two atoms being present in the 1D system. For the
cases 1⃝ and 2⃝ when V < 2J, the atoms spread independently with a ballistic light-
cone velocity of 2Jalat/h̄, see black dashed lines. For V ≥ 2J, an additional slower
light-cone emerges. The best fitted results of the bound pair’s expansion according
to Eq. (5.8) are shown as red dashed lines for V/J = [2.0(2), 3.3(1), 4.9(2)]. (c) The
extracted tunneling energy of the bound pair Jb is shown for varying nearest-neighbor
interactions V. As V increases, the tunneling energy of the bound pair decreases,
demonstrating excellent agreement with the exact solution Jb = J2/V derived in [313],
illustrated by red dashed line.

To experimentally probe the existence of the bound state due to eBHM, we focus
on the hard-core boson limit of U → ∞ and the repulsive nearest-neighbor interaction
V > 0, where the occupation of two atoms in a single site is strongly suppressed. We
measure the out-of-equilibrium dynamics of the bound state by preparing two atoms on
neighboring sites in the 1D system and quenching the tunneling energy to finite values
J. We use our addressing technique, see Sec. 3.3.2, to prepare three atomic pairs in a
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separated chain, with each pair spaced three lattice sites apart. These pairs are aligned
along the x-direction with the dynamics axis, prepared by the magnetic gradient, see
Sec. 5.1.1. The atomic pairs are initially in the |1,−1⟩ state before applying a series of
MW transfers into the |2,+2⟩ state. The |2,+2⟩ state is chosen to eliminate the vertical
tunneling due to the magnetic gradient conditions. At this stage, the atomic pairs
are trapped in the optical lattices at the depth of 40/40/60Er (x/y/z-direction) where
their motional dynamics are frozen. To initiate the dynamics, we quench the depth of
the lattices to 12 − 13Er, corresponding to a tunneling energy of J = h × 17 − 20Hz,
which allows us to reach the hard-core limit U/J ≳ 11. Simultaneously, we apply
stroboscopic dressing pulses, enabling the atomic pairs to undergo dynamics with
the nearest-neighbor interaction V. Finally, we freeze the dynamics by quenching the
optical lattice depth to the atomic limit before imaging.

In the absence of nearest-neighbor interactions (V = 0; case 1⃝ in Fig. 5.5b), we
observe a characteristic light-cone indicating the free expansion of the two atoms.
This is expected for the hard-core boson limit [363–365]. The expansion speed of the
wavefront is consistent with the Lieb-Robinson bound given by 2Jalat/h̄, see black
dashed lines in Fig. 5.5b. When the nearest-neighbor interaction strength is introduced
beyond the critical value V ≥ 2J [313], a second light-cone with a slower wavefront
expansion emerges. Moreover, at higher interaction strengths V, the pair’s density at
the original position remains high. To qualitatively study the dynamics of the bound
pair, we introduce a model that describes the wavefront propagation. The coherent
interference of all pathways of the single-particle quantum walk results in a ballistic
expansion with a group velocity of 2Jt/h̄. Here, the probability density ρ is described
by ρi(t) = |Ji(2Jt)|2, where Ji is the Bessel function of the first kind on the lattice site i.
Initializing a pair state in the hard-core boson limit in absence of the nearest-neighbor
interactions, we describe the probability density by the incoherent sum of two Bessel
functions as

ρi(t) = (|Ji(2Jt)|2 + |Ji+1(2Jt)|2)/2. (5.7)

Here, the density continues to spread ballistically with 2Jt/h̄, but the central interfer-
ence pattern vanishes. This model is in perfect agreement with a hard-core bosons
simulation and is in good agreement with our experimental data in Fig. 5.5b (case
1⃝ and 2⃝). We extend the model to include the ballistic expansion of the bound

pair [37, 366, 367] by following Eq. (5.7) with a reduced tunneling energy Jb compared
to the tunneling energy of the free pair J f = J. To fit the model to our data, we further
incorporate the relative amplitude of the free pair A f and the bound state Ab with
A f + Ab = 1, resulting in:

ρi(t) = A f · (|Ji(2J f t)|2 + |Ji+1(2J f t)|2)/2

+ Ab · (|Ji(2Jbt)|2 + |Ji+1(2Jbt)|2)/2. (5.8)
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Figure 5.6: Symmetrized two-particle correlators. We analyze the two-particle
correlator Γi,j = ⟨a†

i a†
j aiaj⟩ for the datasets in Fig. 5.5c at a fixed evolution time of

t = 3.8 h̄/2J. The upper row shows the measured correlator, while the lower row is
the correlator obtained with exact diagonalization for comparison. For V = 0, we
observe strong anti-bunching on the off-diagonal due to the fermionization of the
hard-core bosons. However, for V ≥ 2J, the strong nearest-neighbor correlators on
the diagonal begin to appear, indicating correlated pair tunneling. These results are in
good agreement with the theoretical simulation. The gray dashed lines illustrate the
symmetrization axis of data averaging.

Increasing the nearest-neighbor interaction strength V/J = 2.0(2) − 4.9(2) (cases
3⃝- 5⃝), we find a reduced velocity for the bound pairs (red dashed lines in Fig. 5.5b)

while the light-cone of the free atoms remains stable (shown by black dashed lines).
Comparing the fitted bound pair tunneling energy Jb with the exact solution de-
rived in [313], we find excellent agreement with the expected bound pair tunnel-
ing energy of Jb = J2/V, see Fig. 5.5c. To definitively prove the existence of the
repulsively-bound pairs, we additionally examine the microscopic two-particle correla-
tors, Γi,j = ⟨a†

i a†
j aiaj⟩ [37, 363]. Fig. 5.6 shows the experimental data and the exact diag-

onalization simulation of the two-particle correlations Γi,j for varying nearest-neighbor
interaction V. In the absence of nearest-neighbor interactions V = 0, the hard-core
bosons effectively behave as noninteracting spinless fermions and show long-range
correlations on the anti-diagonal. This is a direct consequence of Hanbury Brown and
Twiss interference for fermions, leading to characteristic anti-bunching [363, 365, 368].
However, when the nearest-neighbor interactions are present, V ≥ 2J, we observe
correlated pair-tunneling, which results in strong nearest-neighbor correlations along
the diagonal [369].
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Figure 5.7: Repulsively-bound dimers and trimers. (a) Symmetrized probability
density of two-particle l = 2 and three-particle l = 3 dynamics at V/J = 4.9(2). The
vertical gray dashed lines show the symmetrization axis. (b) We analyze the atomic
density of the two (three) central sites for the string of length l = 2 (l = 3), shown in
red (blue). The three-atom bound state experiences an effective larger repulsion and
has a lower group velocity, resulting in larger density at the center positions.

Three-atom bound state

We extend the repulsively-bound atomic pair to larger many-particle bound states. The
dynamics of these strings are often referred to as "l-bits" or "l-strings" where l refers to
the length of the string. These strings have been extensively studied in theory [366, 367]
and have recently been observed experimentally with MW photons [370]. The exact
band structure of these larger many-particle bound states can be derived by using the
Bethe ansatz [367]. The tunneling dynamics of the strings is exponentially suppressed,
and follows Jb ∝ e−l, indicating that longer strings become increasingly localized.

In our measurements, we probe the dynamics of three-atom linear strings (l = 3)
and compare with two-atom linear strings (l = 2), which have been studied in the pre-
vious Sec. 5.3.1. For both cases, we operate with the same interaction of V/J = 4.9(2),
which gives us direct insight into the influence of l. Fig. 5.7a shows the symmetrized
probability density evolution for the string of length l = 2 and l = 3. For the strings
of length l = 2, a clear double light-cone was observed, featuring the free-particle
light-cone and the slowly spreading light-cone of the bound string. For the strings
of length l = 3, the double light-cone still remains. Given our measured timescale
of t < 12 h̄/2J, it is challenging to extract the light-cone velocity of l = 3 since their
dynamics are almost frozen on this timescale. Instead, we compare the probability
density at the origin of the string position by evaluating the time evolution of the
mean atomic density at their original sites ⟨ρ(0)ρ(t)⟩, see Fig. 5.7b. We observe that
the mean density for l = 3 is strongly localized on its original sites, as anticipated from
the theoretical predictions [366, 367] and prior experimental observations [370].
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5.3.2 Constrained "hard-rods" dynamics
We proceed from the two-particle low-density regime to the higher density of half-
filling. We use a CDW pattern, a periodic structure of atoms and holes, as an initial
state. The CDW state with a period of 2alat has the same energy, independent of the
nearest-neighbor interaction V. Therefore, we can measure the effect of the eBHM over
the BHM using the initial state, which has the same energy in both models. To keep the
density stable during the dynamics, we place repulsive potential walls with a height
larger than the on-site interaction U at the boundary of the system. These walls are
generated by off-resonant light at a wavelength of 670 nm, whose shape and potential
height can be fully controlled by a digital micromirror device (DMD). We prepare
the CDW pattern with a size of 18 lattice sites using our addressing technique, see
Sec. 3.3.2. We then subsequently quench the optical lattices and apply the stroboscopic
Rydberg dressing to the hard-core limit to examine the dynamics in 1D.

We first investigate the many-body dynamics of the CDW in the absence of the
nearest-neighbor interaction V = 0. In the hard-core boson limit, the local mean density
of the CDW exhibits an oscillatory phase during the dynamics while maintaining
the crystalline-like structure. The atomic density occupies the even or the odd sites
alternately over the dynamics, see top row in Fig. 5.8a. We quantify this oscillation by
introducing the imbalance, given by

I =
Ne − No

Ne + No
, (5.9)

where Ne (No) are the number of atoms occupying in the the even (odd) sites. Com-
paring our data to the exact diagonalization calculations, which includes a reduced
density n̄ = 0.44 − 0.50, we find excellent agreement, see Fig. 5.8b. For the strong
nearest-neighbor interacting V/J = 11.3(6), the hard-core bosons become "hard-rods".
The nearest-neighbor interaction V prevents the dynamics of the atoms, featuring
an extended exclusion volume and thus inhibiting the occupation of neighboring
sites [371]. This can also be explained by the energy gap induced by the bound state, as
discussed in Fig. 5.5a. The stabilized CDW under the eBHM has been experimentally
observed with the CDW of two-particle per period [197]. However, one can observe
the dynamics of a defect, beginning at the edge where the site is unoccupied, see the
left side of Fig. 5.8c. At this edge, the atom is unimpeded and can tunnel without
paying any extra energy, leaving an additional free volume for the subsequent atom to
propagate freely. As time evolves, the defect will propagate through the system to the
opposite edge, leaving behind a CDW density pattern phase-shifted by one site. This
is equivalent to flipping the sign of the imbalance I in a area through which the defect
propagates. We quantify this characteristic signature of the defect trace by evaluating
the imbalance I of two subsystems, separated by a maximum propagation distance
of the defect within our observation timescale, see the vertical dashed line of Fig. 5.8c.
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Figure 5.8: Charge density wave dynamics of hard-core bosons and hard-rods. (a)
Many-body dynamics of a CDW in the hard-core boson limit obtained from exact
diagonalization (left) and our measurements (right). The CDW exhibits oscillations
between two phases in the density over the course of evolution. The measurements are
post-selected for a mean desity of n̄ = 0.44 − 0.50 (b) The imbalance analysis of the
CDW in the hard-core boson limit oscillates around 0, resulting from the alternating
CDW phases. The shaded area is obtained from exact diagonalization calculations for
n̄ = 0.44 − 0.50. (c) The CDW evolution, under the nearest-neighbor interaction of
V/J = 11.3(6), preserves its initial phase, in agreement between both theory (left) and
measurements (right). The red dashed line highlights the defect dynamics through
the stabilized CDW, leaving a trace by flipping the phase of the CDW. (d) When
analyzing the imbalance on the left subsystem (x < 7), we observe a sign change
from positive to negative, indicating the phase flip due to defect motion. Whereas,
the imbalance of the right subsystem (x ≥ 7) remains positive, preserving the original
CDW phase. The shaded areas are obtained from the exact diagonalization calculations
for n̄ = 0.44 − 0.50.

The imbalance I of the left subsystem (x < 7) undergoes a sign change, resulting in
the switching of the CDW phase due to the defect motion. In contrast, for the right
subsystem (x ≥ 7), the imbalance I remains positive, preserving the original CDW
phase. The imbalance I of the left and right subsystems has a qualitative agreement
with exact diagonal calculations, see Fig. 5.8d. The remaining deviations are attributed
to Rydberg decay and imperfections in the CDW preparation and the trapping poten-
tial. These can cause individual atom loss, which generates many defects in the system,
leading to more complex dynamics.
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5.3.3 Near-equilibrium density ordering
In the previous sections, we have studied the eBHM features in out-of-equilibrium
dynamics. In this section, we examine the eBHM near equilibrium where we anticipate
numerous interesting quantum phases intimately connected to the long-range interac-
tions [50]. Specifically, we investigate atomic density ordering and the accumulation
of long-range density-density correlations when the nearest-neighbor interaction V
increases adiabatically from zero to V ≫ J, crossing the critical value V = 2J. As a
prerequisite, we initially establish a 1D low-energy state at half-filling in the absence of
long-range interactions.

Preparation of low-energy ensemble

We first describe and characterize the preparation of a half-filling low-energy ensemble
on a single 1D chain, which will subsequently be used for long-range equilibrium
dynamics. Beginning with a unity-filled MI in 2D, we utilize our site-resolved address-
ing technique to prepare a single chain of 9 atoms. To confine the system to a stable
half-filled system of 17 sites, we create repulsive potential walls at the system bound-
aries. Throughout the entire measurements, these walls remain stable, with a potential
height of approximately 1.4U, where U ≈ h × 250 Hz represents the on-site interaction.
Next, we implement repulsive tapered potentials on both sides of the chain, starting
from empty lattice sites next to the edge atoms and increasing towards the system
boundaries, as illustrated in Fig. 5.9a. The repulsive tapered potentials use a separate
set of off-resonant light and DMD, independent of the set used for the repulsive walls.
The tapered profile is empirically chosen so that the potential different of the adjacent
site approximates the band gap of 4J, thus potentials linearly escalate from 0 to 20J
over 5 lattice sites. At this point, the atoms remain pinned by the lattices, see stage 1⃝ in
Fig. 5.9. We continue by reducing the lattice depth from 60Er to the hard-core limit of
14.8Er corresponding to tunneling energy of J = h × 11.6(3). We then linearly decrease
the repulsive tapered potentials over a duration of δt, thereby connecting the atoms to
the vacant sites across the entire system, see stage 2⃝. Ideally, this procedure should
prepare the ensemble in the many-body ground state at a mean filling of n̄ = 0.53. We
characterize the efficiency of the preparation by observing the mean density of the
reverse process back to the original point, which should restore the original state of
the 9 atoms chain, see stage 3⃝. Fig. 5.9b shows the spatial density profile of the initial
state (gray, 1⃝), the expected many-body ground state (blue, 2⃝), and after the reversal
of the process (red, 3⃝). The corresponding mean atom number n̄ is shown in Fig. 5.9c.
After the preparation (stage 2⃝), the mean density profile is spread over the entire
system, leading to a reduced density from the initial state. The remaining density
modulation is attributed to local potential disoder. The reduced density observed at
the boundaries could be caused by the repulsive walls occupying the space within the
system due to phase drifts between the optical lattices and the walls over the course of
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Figure 5.9: Preparation and characterization of the low-energy ensemble. (a)
Simplified experimental protocol to prepare the low-energy ensemble. Beginning
with a 1D chain of 9 atoms in 17 sites within the potential walls, repulsive tapered
potentials are applied to the unoccupied sites. We then lower the lattice depth to the
hard-core boson limit, which allows the atoms to tunnel. Subsequently, the tapered
potentials are ramped down over a timescale of δttap ≈ 120 h̄/2J to adiabatically
delocalize the atoms, preparing the half-filling many-body state. Finally, reversing the
procedure, we estimate the preparation efficiency by the revival of its original density.
(b) The spatial density profiles during the three stages of the protocol. We start with
a uniform average density of 0.76(1). Lowering the repulsive tapered potentials, the
atoms delocalize over the entire system of 17 sites with a reduced density of 0.3(1).
Ramping up the repulsive tapered potentials, we observe the revival of the initial
density with an overlap of 0.78(2). (c) The average atom number at the three stages
of the protocol. The preparation in stage 2⃝ causes loss of 0.7(1) atoms. (d) The
density overlap with the original density for varying repulsive tapered ramp durations
δttap. The overlap increases for longer ramp durations and only slightly improves
after 400 ms. We operate with the repulsive tapered ramp duration of 800 ms for the
following measurements.

measurements. Reversing the process (stage 3⃝), the density distribution resembles its
original configuration of the 9 atom chain with lower mean density. Comparing the
mean atom number, before and after the preparation, we lose approximately 0.7(1)
atoms. The reduction in atom number is likely due to imperfections in the adiabatic
preparation, which consequently leads to the formation of doublons. These are then
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removed in our detection scheme due to parity projection [150–152]. We evaluate
the density overlap between the initial with the revived states for varying durations
of the tapered potential δttap, see Fig. 5.9d. The density overlap increases for longer
durations. However, the improvement is marginal once the duration exceeds 400 ms.
We decide to ramp the tapered repulsive potentials for δttap = 800 ms, corresponding
to ≈ 120 h̄/2J, in subsequent measurements. With this ramp, we find an overlap of
78(2)% after the reverse process (stage 3⃝). We estimate the overlap of the half-filled
state with the many-body ground state at stage 2⃝ to be approximately 88(2)%. Note
that a similar overlap has been reported when adiabatically connecting individual
atoms, localized in tweezer light, to the lattice ground state [372]. Excitations resulting
from imperfections in the preparation ramps contribute to a finite temperature of the
ensemble. By comparing our correlators Cd from Eq. (5.1) at post-selected densities
n̄ = 0.35 − 0.52 with an in-equilibrium density-matrix renormalization group (DMRG)
calculation, we are able to estimate an upper bound on the temperature to be kBT ∼ 2J.
One can obtain a similar energy scale that is introduced by initial holes. With our initial
filling of 76(1)%, we expect an average of 2 holes, with each localized hole carrying an
energy of 4J. Assuming a fully-equilibrated system after the half-filling preparation
protocol, the total energy of E ∼ 8J is evenly distributed among the 7 atoms. This
means that each atom carries an energy of E ∼ 1.1J. Additional heating might be
caused by imperfections of the shape of the tapered potential and the partially diabatic
ramp used during the preparation process. In the future, the low-energy ensembles
can be achieved by better optimization of the initial filling and the parameters of the
preparation ramp.

Experimental realizing of density ordering

Upon preparing the half-filled low-energy ensemble, we proceed to linearly increase
the nearest-neighbor interaction from V = 0 to V = 10.0(6)J over a timescale corre-
sponding to ≈ 2.9 h̄/2J. Matrix-product-state (MPS) simulations [373] predict that
this linear ramp-up of the interaction V results in a significant overlap with the final
many-body ground state of approximately 62 %, if the ensemble starts in the many-
body ground state before the interaction ramp. As the nearest-neighbor interaction
strength increases, non-local density-density correlations are expected to emerge, as
the strong nearest-neighbor repulsion results in crystalline-like structures. We inves-
tigate this effect by analyzing the connected correlator, see Eq. (5.1), for a distance d
at various points along the interaction ramp, see Fig. 5.10. With increasing nearest-
neighbor interaction V, both the nearest- (Cd=1) and next-nearest- (Cd=2) neighbor
correlation strengths decrease and increase, respectively, which signifies the devel-
opment of density-ordering in the system. The observed correlators Cd=1 and Cd=2
agree with time-dependent MPS calculations at kBT = 1.5J across most interaction
strengths, see Fig. 5.10b. Fig. 5.10c displays spatial correlators at various stages of the
ramp. We observe no significant correlations for distances d ≳ 3, which is expected
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Figure 5.10: Near-equilibrium density-ordering via long-range interactions. (a)
Illustration of the nearest-neighbor interaction ramp. Beginning with the low-energy
ensemble from the preparation stage, we linearly increase the nearest-neighbor inter-
actions up to V/J = 10.0(6) within t = 2.9 h̄/2J. After that, we freeze the dynamics
and evaluate the density-density correlations. (b) Observed correlations Cd for d = 1
(blue) and d = 2 (red) during the interaction ramp. The dashed lines (shaded areas)
represent the theoretical correlations for kBT = 1.5J (kBT = 1.3 − 1.7J) derived by a
simulation of time-dependent MPS. For the high temperature ensemble measurements,
the correlations remain unchanged over the course of the interaction ramp, see black
triangular plot. The gray squares are a reference in the absence of interactions V = 0, re-
sulting in no significant correlations. (c) Distance-dependent connected correlator Cd
for different stages during the interaction ramp. The measurements are post-selected
for mean densities n̄ = 0.35 − 0.52. The blue points (gray squares) show the respective
correlation strength in the presence (absence) of Rydberg-dressed interactions.

from the simulations for our mean densities of n̄ = 0.35 − 0.52 and the chosen ramp
duration. The energy ensemble is constrained by the initial state preparation, whose
energy is independently estimated to be at kBT ≲ 2J in Sec. 5.3.3. We also perform a
cross-reference measurement in which the ensemble starts at a high-energy. To generate
this state, the repulsive tapered potentials are excluded during the preparation stage,
while the rest of the protocol remains unchanged, see Sec. 5.3.3. As a result, the initial
product state cannot follow the many-body ground state adiabatically, resulting in a
substantial energy increase. Using this high-energy ensemble with an identical linear
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Figure 5.11: Dynamically-induced density-ordering for longer ramp durations. (a)
Illustration of the experimental protocol. We operate with different ramp durations
of δt = [2.9, 5.8, 9.7] h̄/2J, ramping up to the same nearest-neighbor interaction of
V/J = 10.0(6). (b) The correlations for d = 1 (blue) and d = 2 (red) for each ramp
duration at V/J = 10.0(6). We observe slightly decreasing correlations for longer
ramp durations. (c) The build-up of correlations during the ramp for a ramp duration
of δt = 5.8 h̄/2J. The dashed (dotted) lines represent the theoretical correlations for
kBT = 2.3J (kBT = 5.0J) simulated using DMRG, with the shaded areas specify a
range of kBT = 2.0 − 2.5J. (d) The build-up of correlations during the ramp for the
ramp duration of δt = 9.7 h̄/2J. The dashed (dotted) lines represent the theoretical
correlations for kBT = 2.5J (kBT = 6.0J) simulated using DMRG, with the shaded areas
specify a range of kBT = 2.3 − 3.0J. All measurements are post-selected for mean
densities n̄ = 0.35 − 0.52

increase of the interactions V, see the triangular plot in Fig. 5.10c, we find that the
correlations vanish.

We continue to investigate the influence of the nearest-neighbor interaction V for
longer ramp timescales. In the absence of any imperfection such as Rydberg-losses
and heating, we would expect a longer ramp duration to result in a larger overlap
with the many-body ground state. This would feature stronger nearest-neighbor (Cd=1)
and next-nearest-neighbor correlations (Cd=2). We extend our measurements to longer
durations for the ramp of the nearest-neighbor interaction V, specifically δt = 5.8 h̄/2J
and δt = 8.7 h̄/2J. The final interaction strength remains constant at V/J = 10.0(6),
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see Fig. 5.11a. We compare the correlators at the end of each ramp duration, shown
in Fig. 5.11b. Interestingly, the correlators are strongest for the shorter ramp duration
and decrease slightly for the longer ramps. This could potentially be explained by an
overall energy increase in the ensemble due to Rydberg losses. We observe an average
atom loss of approximately 0.9 atoms for the ramp duration of δt = 2.9 h̄/2J and
approximately 2.0 atoms for the longer ramp duration of δt = 8.7 h̄/2J. To quantify the
heating effect, we compare the experimental data with dynamical DMRG calculations
in Fig. 5.11c,d. From these observations, we can draw two main conclusions: First,
focusing on the nearest-neighbor correlation Cd=1, we see that the longer ramp agrees
with the calculation at an ensemble temperature of kBT = 2.5J. This indicates a
monotonic temperature increase with an extended duration. Second, we observe
a temperature mismatch between Cd=1 and Cd=2, where the Cd=2 agree better with
higher temperature calculations. This can be explained by the fact that the ensemble
does not fully re-thermalize when an atom-loss event occurs during the interaction
V ramp. There are several open directions to explore this processes in the future.
Experimentally, it would be worth investigating ramps with lower nearest-neighbor
interaction at the final of the ramps. An ideal point would be slightly above the critical
point at V = 2J where the nearest-neighbor interaction V remains dominant. Moreover,
improving the initial state preparation will increase the correlator strength due to a
better ground state overlap with the ground state of eBHM. On the theoretical side,
extending the model to include an open quantum system and Rydberg losses, would
offer more understanding and provide further insights to explain the results.

5.4 Summary
We exploited Rydberg dressing to introduce long-range interactions in a quantum
system. Through stroboscopic Rydberg dressing, the atomic lifetime can be extended
over 100 ms, surpassing the tunneling timescale in the BHM. Consequently, we real-
ized long-range interactions in the itinerant regime. Together with our quantum gas
microscope, which provides excellent single-site control and readout, we then demon-
strated key features of the eBHM using stroboscopic Rydberg dressing: We probed the
existence of two-particle repulsively-bound pair states in out-of-equilibrium dynamics.
In a half-filled system, we observed striking different dynamics for a CDW due to the
nearest-neighbor interactions and identify defect dynamics causing a phase shift of
the CDW pattern. Finally, we investigated the near-equilibrium state of the half-filled
ensemble. By slowly increasing the nearest-neighbor interactions, the density-density
correlations are observed.
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Chapter 6

Conclusion and outlook

Conclusion

In this dissertation, we have studied long-range interactions of Rydberg atoms in
strongly correlated systems of ultracold gases. Microscopic insights and controls over
quantum states due to our quantum gas microscope enabled the study of both in-
and out-of-equilibrium dynamics. The long-range interactions were controlled via
independent optical coupling schemes to two distinct Rydberg states.

We utilized strong Rydberg interactions to control a light-matter interface based on
subwavelength atomic arrays. The high-efficiency light-matter coupling of the array, a
prior resulting in strong reflection of probe photons, was altered to be transparent via
a Rydberg state electromagnetically induced transparency (EIT). Exploring the regime
of high Rydberg population, we observed that the transmissive array was restored
to reflective for the probe photons. The switching mechanism was also alternatively
demonstrated using a single controlled Rydberg atom. Here, the transparent array was
returned to being reflective for the probe photons around the controlled Rydberg atom
through the Rydberg blockade. By simultaneously detecting the controlled atom and
the probe photons, we observed correlations that are indications for the entanglement
between them.

Moving towards off-resonant coupling to Rydberg states, we tuned the long-range
interactions to the relevant parameters of the Hubbard model. Using stroboscopic
Rydberg dressing, we improved the Rydberg lifetimes to exceed Hubbard tunneling
timescales by approximately a factor of ten. This pioneering scheme allowed us to
merge long-range Rydberg-dressed interactions into itinerant Hubbard systems. We
then explored the out-of-equilibrium dynamics of this system and observed repulsively-
bound states of atomic pairs and the stabilization of a charge density wave (CDW) state.
In the near equilibrium when ramping the long-range interactions, the observation of
density ordering indicates a phase transition to the predicted quantum solid.
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Outlook

Switchable atomic arrays
We demonstrated the optical switching for single photons by manipulating individual
single atoms in a subwavelength array. The switching efficiency is limited by the long
required detection time of the EMCCD, a consequence of the low signal-to-noise ratio
(SNR), compared to the finite Rydberg lifetime and the dipolar exchange processes.
This could be improved by modifying the imaging system to map the photons within
the blockaded area to a detector with single photon sensitivity. Consequently, the
probe duration can be significantly shortened, suppressing the Rydberg lifetime and
dipolar exchange processes.

Our results demonstrate a fundamental component for high-efficiency control over
individual atoms and photons, thereby paving the way towards several applications:
the detection of atom-photon entanglement, generating entangled photonic states such
as multiple-photon entangled Greengerber-Horne-Zeilinger (GHZ) state [156], or using
single atoms to generate a spatial photon mode via dipole-dipole interactions [281, 282].
The same procedure can be utilized for the direct detection of Rydberg atoms, where
the reflected photon mode is mapped to the presence of Rydberg atoms. Given the
free space nature of the subwavelength arrays, scaling to multimode operation with
multiple controlled single atoms over the arrays is straightforward, enabling the
parallelization of quantum operations on multiple qubits [156]. In addition, coupling
the arrays to Rydberg states offers high fidelity for photon storage [275, 277] and
photon-photon gates [156, 275]. Furthermore, extending to three-dimensional (3D)
subwavelength arrays might provide further advantages [374].

Rydberg dressing
The combination of local microscopic control for initial state preparation, along with
temporal control over extended-range interactions and the flexibility in tuning Rydberg-
dressed interactions via external fields, provides numerous possibilities that are chal-
lenging to attain on other platforms. For example, we can extend to higher dimensions
using ladder systems [310]. Operating with two components, where only one compo-
nent has long-range interactions, presents the supersolid (SS) formation [375]. When
moving beyond the hard-core boson limit, the full V/J − U/J phase diagram of the
one-dimensional (1D) extended Bose-Hubbard model (eBHM) predicts the existence
of the Haldane insulator [302, 376]. Exploring low-energy physics of extended-range
interacting fermions could provide insights relevant for understanding 1D cuprate
chains [377]. Additionally, the constrained dynamics of the hard-rods model is an
intriguing area for exploration [371], and the ability to dynamically control the interac-
tion strength could open new opportunities towards mixed analog-digital quantum
simulation approaches [63, 348].
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In the frozen gas regime, the transverse field in Rydberg-dressed Ising models is
typically small due to weak microwave (MW) coupling between hyperfine states. Opti-
cal coupling between these states with a Raman setup, as mentioned in Sec. 3.5.4, offers
strong coupling of the transverse field to Rydberg-dressed Ising models, providing
for stability or melting of initial state dynamics [378, 379]. Finally, our capability of
parallel spin-dependent coupling to Rydberg states can be utilized to create multi-qubit
gates [380].
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body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017). (Cited
on pages 1, 5, 23, 25, and 43)

[65] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D. Bluvstein, R. Ver-
resen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vish-
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