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Zusammenfassung

Elliptische Zwerggalaxien (dE Galaxien) sind der häufigste Galaxientyp in den nahe gele-
genen großen Galaxienhaufen und werden oft als die grundlegenden Bausteine von großen
Galaxien betrachtet. Daher ist ihre innere Struktur von entscheidender Bedeutung für
unser Verständnis der Strukturbildung und der Galaxienentwicklung. Die Masse und die
Orbit-Struktur solcher Galaxien lassen sich mithilfe hoch entwickelter dynamischer Model-
lierungsverfahren ableiten. Aufgrund ihrer geringen Geschwindigkeitsdispersion und Flä-
chenhelligkeit sind sie jedoch schwer zu untersuchen. Hochauflösende Spektroskopie und ge-
naue, präzise Modelle sind erforderlich um ihre Form, die Verteilung ihrer dunklen Materie,
ihre 3D-Orbit-Struktur, ihre stellaren Populationen und ihre anfängliche Massenfunktion
zu untersuchen.

In dieser Arbeit wird eine Stichprobe von dEs des Virgo-Haufens mit Hilfe der Schwarz-
schild Modellierungstechnik untersucht, welche eine Galaxie als eine Überlagerung von
Orbits modelliert. Während diese Technik bereits mehrfach zur Bestimmung von Ga-
laxieneigenschaften wie etwa der Masse ihrer Schwarzen Löcher, ihres Masse-zu-Licht-
Verhältnisses, und ihrer kinematischen Struktur verwendet wurde, war die Auswertung der
Schwarzschild-Modelle nicht konsistent, da sie die variable Modellflexibilität nicht angemes-
sen berücksichtigte. In dieser Arbeit wird ein neuartiger Bootstrap-Ansatz vorgestellt, der
zum ersten Mal eine Schätzung der Flexibilität von Schwarzschild-Modellen ermöglicht, was
deren Bewertung innerhalb eines neuen, verallgemeinerten Akaike Modellauswahl Ansatzes
erlaubt. Der neue verallgemeinerte Ansatz ist vielseitig einsetzbar und nützlich im Allge-
meinen für eine optimierte statistische Modellierung von ‘penalized’ Modellen. Im Kontext
der Schwarzschild-Modellierung verbessert er den Mechanismus auf mehreren Ebenen. Er
ermöglicht eine unvoreingenommene Bestimmung des besten Orbit-Models, erlaubt die Op-
timierung der Model-Regularisierung, und verbessert die Bestimmung der LOSVDs (dem
Input für die dynamischen Modelle).

Der neue Ansatz dient der sorgfältigen Modellierung der dE-Galaxien, mit dem Ziel
ihre intrinsischen Eigenschaften zu ermitteln. Die wichtigsten Ergebnisse sind: die stella-
re Komponente von dEs ist räumlich homogen, da Masse-zu-Licht-Verhältnis, Alter, und
Metallizität innerhalb des untersuchten Radialbereichs nur wenig variieren. Im Gegensatz
dazu variieren diese Eigenschaften signifikant zwischen den verschiedenen dEs, was darauf
schließen lässt, dass die dEs zu unterschiedlichen Zeiten mit der Sternbildung aufgehört
haben. Im Vergleich zu normalen elliptischen Galaxien haben dEs einen unterdrückten
Drehimpuls und eine Scheiben-ähnliche Orbitstruktur. Im Durchschnitt stimmt die stel-
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lare Anfangsmassenfunktion von dEs weitgehend mit einer Kroupa Anfangsmassenfunk-
tion überein, eine detaillierte Analyse zeigt jedoch, dass ihre Anfangsmassenfunktion mit
dem Alter korreliert. Letzteres lässt sich durch eine Variation der Anfangsmassenfunktion
mit der Entstehungsepoche oder durch unterschiedliche Grade einer zeitlich ausgedehnten
Sternentstehungsgeschichte erklären. Die Dunkle-Materie Halos von dEs sind leicht ‘cored’
und haben eine runde Form, was auf einen milden Konflikt mit kosmologischen Standard-
simulationen hindeutet, welcher möglicherweise durch eine angemessene Behandlung der
baryonischen Rückkopplung in den Simulationen erklärt werden könnte. Die Korrelationen
mit den Eigenschaften der Galaxie-Umgebung, des Drehimpulses und der Sternpopulation
deuten darauf hin, dass die Halo Entstehung in dEs nicht universell ist und von den Um-
ständen während ihres Gravitationskollapses abhängt. Alles in allem deuten die Ergebnisse
darauf hin, dass die Stern-formenden Vorläufer von dEs unter extremen Bedingungen bei
hohen Rotverschiebungen entstanden sind. german



Abstract

Dwarf Elliptical (dE) galaxies are the most abundant type of galaxies in the nearby large
galaxy clusters and often considered as the fundamental building blocks of giant galaxies.
As such their intrinsic structure is crucial to our understanding of structure formation and
galaxy evolution. The mass and orbit structure of such galaxies can be inferred using
sophisticated dynamical modelling techniques. However, their low velocity dispersions and
surface brightness makes them difficult to study. High resolution spectroscopy and accurate
and precise models are required to study their shapes, dark matter distribution, 3D orbit
structure, stellar populations, and initial mass function.

This thesis sets out to study a sample of dEs located in the Virgo cluster by the use
of the Schwarzschild modelling technique, which models galaxies as a superposition of
orbits. While the technique has been used numerous times to constrain galaxy proper-
ties like black hole masses, mass-to-light ratios and kinematic structure, the evaluation of
the Schwarzschild models was not always consistent and accurate since it lacked a proper
accounting of the variable model flexibility. This thesis introduces a novel bootstrap ap-
proach that, for the first time, enables an estimation of the flexibility of Schwarzschild
models which allows their evaluation within a new generalized Akaike model selection
framework. The new generalized approach is versatile and useful for the optimized statis-
tical modelling of penalized models in general. In the context of Schwarzschild modelling
it improves the machinery on several levels: it allows an unbiased determination of the
best orbit model, it permits the optimization of the model regularization, and it improves
the recovery of line-of-sight velocity distributions (the input for the dynamical models).

The new approach is adopted to carefully model the dE sample with the goal to recover
their intrinsic properties. The main findings are: The stellar component of dEs is spatially
homogeneous, as mass-to-light ratios, age and metalicity vary little within the investigated
radial range. Conversely, these properties vary significantly between different dEs which
suggests that the dEs were quenched in different epochs. Compared to normal Ellipticals
dEs have a suppressed angular momentum and a disc-like orbit structure. On average, the
stellar initial mass function (IMF) of dEs are broadly consistent with a Kroupa IMF, but a
detailed analysis shows that their IMF is correlated with the age. This can be explained by
a variation of the IMF with formation epoch or varying degrees of extended star formation
history. The dark matter halos of dEs are mildly cored and have round shapes, suggesting
a mild tension with standard cosmological simulations, which could still be explained by
proper treatment of baryonic feedback in simulations. Correlations with environment,
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angular momentum and stellar population properties suggests that the halo formation in
dEs is not universal but depends on the circumstances during the gravitational collapse
phase. All together the results suggest that the star-forming progenitors of dEs are not
comparable to local star-forming dwarfs as the halos of dEs have formed in more extreme
conditions at high redshifts.



Chapter 1

Introduction

A mere 101 years ago, in 1923, our understanding of the Universe exploded. Or at least
humanity’s understanding of its size. Edwin Hubble identified and measured the periods
of Cepheid variables in the Andromeda Nebula (M31), which allowed him to measure their
absolute brightness and, consequently, their distance to Earth. The result, several hundred
kiloparsecs, settled the so-called ‘Great Debate’ held a few years prior. It confirmed that
our Milky Way galaxy was not the entirety of the Universe but just one of many galaxies
in the observable Universe. In the following century, countless such ‘external’ galaxies of
various shapes and sizes were discovered, establishing a huge diversity of galaxy morphology
which required classification and physical explanation.

By far the most well-known classification scheme is the ‘Hubble tuning fork’ (Hubble,
1927, 1936) illustrated in Fig. 1.1. It categorizes galaxies along a sequence according to
their appearance to the eye. Galaxies that have a smooth and featureless 3-dimensional
ellipsoidal structure, so-called Ellipticals (E), are located on one end of the fork. Galaxies
with a seemingly more complex substructure, so-called Spirals (S), populate the other end
of the Hubble fork. Spirals consist of a very flat stellar disc and often have spiral-arms and
central bulges embedded within said disc.

The Elliptical galaxies are sequenced according their flattening as they appear on the
sky. A suffix ‘n’ following after the ‘E’ indicates a galaxy’s ellipticity. The suffix is defined
as n = 10 · ϵ = 10 · (1 − b/a) where a is the semi-major and b the semi-minor axis of
elliptical isophotes that approximate the galaxy’s brightness profile. A spherical galaxy
will be denoted ‘E0’, while the flattest Ellipticals (found to have ϵ ≈ 0.7) are classified as
‘E7’.

The Spirals make up the ‘fork crown’ of the tuning fork by forming two parallel se-
quences. If the arms of a spiral galaxy are attached to a strong central bar it is categorized
as a ‘SB’. If a spiral galaxy has no prominent bar it is categorized as a normal (or ordinary)
‘S’. While the fraction of Spirals with bars may vary strongly with various properties such
as total mass or redshift, broadly speaking about 30% to 60% of Spirals are barred (e.g.
Erwin, 2018). Both of these spiral branches are further partitioned with suffixes ‘a’,‘b’,
and ‘c’ depending on the prominence of their central bulge component and how closely
wound and defined their spiral arms are.
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Figure 1.1: The classical Hubble tuning fork diagram classifying galaxies into Ellipticals
(E) and Spirals which occur barred (SB) and unbarred (S). Many galaxies are Irregular
(Irr) and can not be properly placed in this classification scheme. Image credits: https:
//esahubble.org/images/heic9902o/.

At the juncture between the Ellipticals and Spiral sequences are the lenticular galaxies
(or ‘S0’ galaxies). Like the spirals, they have a disc component, but without embedded
spiral arms. Instead, their stellar distributions are smoother, like that of the Ellipticals,
and they have a more prominent bulge component than Spirals.

1.1 The ETG-LTG dichotomy
The Hubble classification is often ambiguous, it neglects orientation effects which can make
the same galaxy appear very different depending on the viewing angles, and numerous
galaxies, so-called Irregular galaxies (‘Irr’), can not easily be placed in the Hubble cate-

https://esahubble.org/images/heic9902o/
https://esahubble.org/images/heic9902o/
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gories at all. The scheme is, first and foremost, a morphological one and not a physically
motivated one.

However, as observational capabilities increased in the decades after Hubble, several
physical properties were found to align with the Hubble ranking, making the classification
scheme and its more advanced modifications (Kormendy & Bender, 1996; Faber et al.,
1997) useful to this day. For example, investigations of the integrated colour of galaxies
(de Vaucouleurs, 1961) revealed that Ellipticals are redder than Spirals. The colour of a
galaxy is associated with the age of a galaxy’s average stellar population, as bluer stars
have a shorter lifetime. This makes the galaxies integrated colour redder over time, unless
new (blue) stars are constantly being formed.

This difference in age and colour is also why one could be misled to believe that the
Hubble tuning fork is an evolutionary sequence from left to right. This is the reason why
Ellipticals and S0 galaxies are commonly grouped as so-called Early-Type galaxies (ETG)
which have red stellar populations that have ceased star formation some time ago, whereas
Spirals and Irregulars which are bluer and still in the process of forming new blue stars are
grouped as Late-Type galaxies (LTG). In reality the picture is much more complex and
the Hubble fork is far from a strict evolutionary sequence going from left to right. Still,
the ETG/LTG naming convention is convenient to this day because it turns out that the
two galaxy classes distinctly differ in many of their intrinsic physical properties.

ETGs appear old and red because they have stopped active star formation, as they lack
a sufficiently large cold gas reservoir from which new stars could be formed. This lack of gas
is not necessarily because they have fully consumed all their available gas, but more likely
due to a so-called quenching process. Such a process can remove the gas from a galaxy,
or at least make it too hot to form new stars. Many different quenching mechanisms have
been proposed and it is likely that the dominant mechanism changes depending on the
total galaxy mass and environment. LTGs on the other hand still have large cold gas and
dust reservoirs that are mostly confined in their disc. This allows them to form new stars
to this day. As a result of this ongoing star formation, their interstellar medium also tends
to be fairly metal-enriched.

The ETG/LTG dichotomy is not confined to the properties of their stellar popula-
tions. Photometrically, the light distribution of ETGs usually follow steeper central surface
brightness profiles approximately described by the R 1

4 law (de Vaucouleurs, 1948), whereas
the discs of LTGs follow exponential brightness profiles (see details later, eq. 1.1). The
kinematic structure of ETGs is predominantly supported by their large stellar velocity dis-
persion (i.e. random motion of the stars), whereas the kinematics of LTGs is more ordered
(i.e. net rotation of stars) with a high angular momentum orientated perpendicular to
their disc. ETGs and LTGs are also known to follow a strong environment-morphology
dichotomy (Dressler, 1980; Binggeli et al., 1987; Geha et al., 2012). While the ETGs tend
to populate the denser environments of clusters, LTGs are usually more isolated. This sug-
gests that the environment has played a crucial role in whether a galaxy’s star formation
was quenched or not.

This thesis is concerned with a subspecies of ETGs: the dwarf ellipticals (dE) which
sometimes are also referred to under the umbrella term ‘spheroidals’. Even though the
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name suggests that dEs are simply dwarf versions of the brighter Ellipticals (in the follow-
ing ‘ordinary’ E) their surface brightness distributions are very distinct to them (Sec. 1.2.1)
and instead alludes to a much closer link of dEs to LTG dwarfs (Sec. 1.2.2). In this sense,
dEs occupy an interesting ‘intermediate’ spot between the classical ETG/LTG distinction.
Studying the intrinsic structure of these ‘transitionary’ objects could aid in our understand-
ing of the mechanisms responsible for the large morphological diversity of extragalactic
galaxies as a whole.

However, up until now, the faint surface brightness and low velocity dispersions of
these galaxies have prevented studies of their detailed intrinsic structure. Instead, existing
evidence is limited to ‘surface-level’ constraints on their observables (Sec. 1.3) and even
those were often biased due to the poor resolution of the instruments that were used to
observe them (Chapter 3). This thesis sets out to be the first dE study that is able
to employ sophisticated dynamical modelling (Sec. 1.4) which allow the recovery of the
3D mass (stars, dark matter, black holes) and orbit structure. This is made possible by
obtaining data with unprecedented spectral resolution and by improving the dynamical
modelling technique itself (Chapter 2) by embedding it in a powerful model selection
paradigm (Sec. 1.5). The detailed and comprehensive information about the stellar and
dark matter components obtained in this way allows the inference of the stellar initial mass
function (IMF) and its condition-dependent variability (Chapter 3), and points towards a
distinct formation path of dEs as remnants of high redshift late-type dwarfs (Chapter 4).
It is less their recent evolution that made the dEs appear the way they do today, but more
so the initial conditions and environment at the time they have assembled in.

1.2 Dwarf ellipticals

1.2.1 Dwarf ellipticals - A distinct subclass in the ETG sequence?
The structure of massive ETGs with stellar masses log(M∗/M⊙) ≥ 10 have been studied
extensively with dynamical models (e.g. Gebhardt et al., 2003; Thomas et al., 2007; Auger
et al., 2009; Thomas et al., 2011; Cappellari et al., 2011; Rusli et al., 2013; Neureiter et al.,
2023; Mehrgan et al., 2024). In comparison, little is known about the intrinsic structure of
dEs despite the fact that they are by far the most abundant type of galaxy in the nearby
galaxy clusters. In parts, this lack of dynamical studies is because they are fainter and have
very low velocity dispersions that require higher resolution spectroscopy to be measured
correctly.

There exists no ubiquitously accepted naming convention among dwarf galaxies, but
broadly speaking, dE-like galaxies are quiescent galaxies with total B-band magnitudes
fainter than −18 mag that have a relatively low central surface brightness (SB). This
distinction is made because the majority of ETGs below this magnitude tend to have
shallower surface brightness profiles than the more luminous ETGs1 which was first noticed
by Baade (1944).

1Though there are exceptions, like M32, which have steeper SB profile akin to the more massive ETGs.
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Among the dE-like galaxies, several subtypes and conventions exist in the literature.
For example, some authors differentiate between the even fainter dwarf Spheroidals (dSphs)
with MB ≥ −14 mag and brighter dEs (Gallagher & Wyse, 1994; van den Bergh, 2000; Seo
& Ann, 2022), while others purposely group them together, simply referring to them as
‘spheroidals’ (Ferguson & Binggeli, 1994; Kormendy & Bender, 2012; Zöller et al., 2024).
Since this thesis is concerned with a sample of relatively bright dwarfs (MB ≈ −17 mag)
this thesis sticks to the stricter sense of the definition unless stated otherwise. This means
dEs are the more luminous ‘spheroidals’ with absolute magnitudes between −18 mag and
−14 mag.

With a few exceptions (NGC 147, NGC 185, NGC 205) the majority of nearby dEs, if
defined as above, is not found within the local group, but in clusters like Virgo and Fornax.
Conversely, the majority of the fainter dSphs, at least those one is able to study with current
tools, are satellites of the massive local group galaxies (Milky Way and Andromeda).

As mentioned above, the distinct nature of dEs was first noticed in their surface bright-
ness and effective size. This is quantified and illustrated in Fig. 1.2. Ordinary Ellipticals
follow a tight scaling correlation: the Fundamental plane (Dressler et al., 1987; Djorgovski
& Davis, 1987) which relates their central velocity dispersion σo, effective radius re, and
mean surface brightness SBe to one another. If two of these parameters are known, the
other can be predicted using this relation. When projecting the fundamental plane to the
SBe-re subspace, it becomes the Kormendy-relation (Kormendy, 1977). This relation is
evident in the top panel of Fig. 1.2. As the effective radius increases, the ‘ordinary’ Ellip-
ticals (grey) become progressively fainter. Conversely, the ‘spheroidals’ (i.e. dEs, UDGs,
dSphs, dE) all fall outside the Kormendy relation as their surface brightness is much fainter
and their size much bigger at the same total Luminosity.

This disparity is clear when scaling SBe and re versus the total absolute magnitude
Mtot (bottom two panels of Fig. 1.2). The higher the total luminosity of an ‘ordinary’
elliptical, the fainter its surface brightness and larger its size, while the surface brightness
of the dwarfs tend to follow the opposite trend. In the small magnitude range [−16mag,
−18mag] where both ‘ordinary’ ellipticals and dEs coexist, the two types are clearly disjoint
with dEs being significantly fainter and more extended for the same total luminosity.

This difference in the mean surface brightness profiles of ‘ordinary’ ellipticals and dEs
is connected to a difference in the shape of their light profiles. This can be measured
by measuring a galaxy’s Sersic index n, which is a measure of the curvature of its sur-
face brightness profile. The surface brightness profile µ(r) is obtained by fitting elliptical
isophotes to the 2D galaxy image. Then the Sersic index is obtained by fitting the profile
with a Sersic function (Sérsic, 1963) which is defined as:

SB(r) = SBe · exp
(

−bn

((
r

re

)1/n

− 1
))

(1.1)

where SBe is the surface brightness at the effective radius re and bn is a normalization factor
which depends only on n. A low Sersic index n indicates a shallow profile, conversely a
high index indicates a steep profile. For n = 4 this equals the R 1

4 law (de Vaucouleurs,
1948) and for n = 1 the profile becomes an exponential one.
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Figure 1.2: Correlations of the mean surface brightness SBe at the effective radius versus
total magnitudeMtot and the effective radius re for various ETG types. The data is adopted
from Zöller et al. (2024). Here, dEs are grouped together with dSphs and ultra-diffuse
galaxies (UDGs) under the umbrella term ‘spheroidals’(orange). UDGs are sometimes
considered a separate galaxy class, as they are even fainter and more extended than the
dEs. dSphs occupy the low luminosity branch of the spheroidals. Ordinary ETGs follow the
Kormendy relation and are more concentrated at the same total luminosity. The brightest
cluster galaxies (BCGs) form the upper end of the massive ETG sequence and can be
considered its own ETG subclass (e.g. Kluge et al., 2020).

‘Ordinary’ ellipticals usually have high Sersic indices2 in the range of n ≈ 3 − 10, while
dEs have shallower profiles with n ≈ 1 − 2 (e.g. Binggeli & Jerjen, 1998; Janz et al., 2014).

This is illustrated in Fig. 1.3 which shows the Sersic indices of various ETGs types vs
absolute magnitude. While the Sersic indices of the early-type spheroidals (dEs, UDGs,

2The most massive ETG actually differ again as they are not well-fitted by a single Sersic profile
since they have cored profiles. Instead, a ‘core-Sersic’ profile is a better approximation for these galaxies
(Graham et al., 2003). This is one of the features of the well-studied ‘E-E dichotomy’ in the population
of ‘ordinary’ ellipticals (e.g. Kormendy et al., 2009). dEs and spheroidals do not belong to either of these
classes and should be thought of as an entirely different 3rd class of ETGs.
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Figure 1.3: Sersic index n vs absolute magnitude (V-band) for early-type galaxies. ‘Non-
UDGs’ include the dE and dSph galaxies. In green ‘ordinary’ elliptcials are shown. Early
type galaxies fainter than ∼ −16 mag are on average consistent with an exponential light
profile. Image credits: Zöller et al. (2024).

dSphs) do not appear to be particularly disjoint from the sequence of classical ellipticals
(green), it is still notable that almost all dwarfs below MB > −18 mag have very shallow
light profiles. In fact, they are nearly indistinguishable from the surface brightness profiles
of spiral galaxies, which are generally well-fitted by an exponential profile (n = 1).

Further indication that dEs are distinct from ‘ordinary’ ellipticals comes in the form
of their Luminosity function. The Luminosity function predicts the number of objects
within some volume as a function of total Luminosity or mass of these objects. Luminosity
functions of galaxy populations are typically well-fitted by a Schechter fit model (Schechter,
1976).

The Luminosity functions of dEs and ‘ordinary’ Es, as analysed by Sandage et al.
(1985), are shown in Fig. 1.4. They distinguish two classes based on the steepness of
their surface brightness profiles. Individually, the two galaxy classes are fitted well by
a Schechter model, but the number counts of the combined population (E + dE) differs
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significantly from a Schechter model. Furthermore, the individual Luminosity functions
of Es and dEs follow very different Schechter distributions and the two populations only
overlap for a small magnitude range Mtot ∈ [−18,−16] mag. In other wordss, there exists
essentially no very small Es or, vice versa, big dEs.

Figure 1.4: The Luminosity functions of E and dE galaxies as shown in Kormendy &
Bender (2012), who adopted it from Sandage et al. (1985). dEs and E were separated
based on the steepness of their surface brightness profile, i.e. essentially their Sersic index.
Separately, the E and dE populations are fitted well by a Schechter fit model (Schechter,
1976), but the combined population would not be fitted well by such a model.

1.2.2 Dwarf ellipticals - Remnants of spiral galaxies?

The disparity in their luminosity functions suggests that ‘ordinary’ Es and dEs must have
formed via different evolutionary channels. Since ‘ordinary’ ellipticals are believed to form
hierarchically from (successive) major mergers (e.g. Hopkins et al., 2008) a different scenario
would be needed for dEs and Sphs. The commonly proposed scenario is that the dEs are the
remnants of quenched late-type galaxies (specifically loose dwarf spirals Sc and irregulars
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Irr). This scenario is supported by several observed similarities that dEs have with those
late-type galaxies.

As mentioned above, the Sersic indices of dEs are nearly as shallow as that of exponen-
tial disc profiles (n = 1). This implies they follow similar light profiles, which is reflected in
their surface brightness scaling relations. This is illustrated in Fig. 1.5 which is the analog
of Fig. 1.2 but includes late-type galaxies. The late-type galaxies (blue) follow the same
trends as the dEs/spheroidals (green) and their distributions overlap such that they would
be indistinguishable if they were not colour-coded in the Figure.

The similarity of dE and Sc-Im galaxies goes well beyond just the overall shape and
surface brightness profile. When studied in detail, many dEs/Sphs are found to contain
photometric features that are typical for LTGs such as faint spiral arms, bars and discs
(Jerjen et al., 2000; Geha et al., 2003; Lisker et al., 2006a; Kormendy & Bender, 2012;
Penny et al., 2014). An example of this is shown in Fig. 1.6 which shows a dE that appears
smooth and featureless at first glance but after removing the elliptical light profile face-on
spiral arms are revealed.

Similarly, the presence of such faint discs can also be detected in some edge-on dEs, like
VCC 2048 (Fig. 1.7). Edge-on discs embedded in the dEs lead to distortions in elliptical
isophotes, making them appear more discy. This deviation from a perfect elliptical isophote
can be quantified using the fitting technique of Bender & Moellenhoff (1987) which quanti-
fies these deviations using a Fourier expansion. When the even Fourier coefficients (usually
termed a4 and a6) are positive, the isophotes are more discy, when they are negative, the
isophotes are more boxy. Both cases are illustrated in Fig. 1.8. Positive a4 have been
measured in many dEs indicating the presence of embedded discs in them (e.g. Kormendy
& Bender, 2012).

Beyond these small-scale photometric features, a significant portion of dEs also exhibit
blue centres that hint at recent star formation and show traces of dust and gas (Lisker
et al., 2006b) similar to late-type dwarfs. Investigations of the star-formation histories of
dEs (and dSphs) suggest that they have build up their stars over an extended period of
time via periodic bursts, spread out over several Gyrs (e.g. Weisz et al., 2011; Seo & Ann,
2023; Romero-Gómez et al., 2024). This suggests dEs have had gas available for prolonged
periods of time, making them indistinguishable from late-type dwarfs during these times,
until they were eventually quenched completely.

Further evidence of a connection of dEs to dwarf LTGs could come from a similarity
in their observed rotation signals. However, unlike the photometric results, the kinematic
similarities are far less conclusive. Some studies find significant rotation in dEs statistically
indistinguishable from that of late-type dwarfs (e.g. Simien & Prugniel, 2002; van Zee et al.,
2004), while others find surprisingly small rotation (e.g. Bender et al., 1991; Geha et al.,
2003). Therefore it could be that a significant portion of the dE population is ‘pressure-
supported’, which, in the context of galaxy dynamics, means their flattening is not due to
ordered stellar motion (net rotation) but due to an anisotropic, unordered motion (velocity
dispersion).

All together, it appears that the distinction between dEs and Irrs is not always unequiv-
ocal and that there likely is a fluent transition between the two. This similarity between
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Figure 1.5: Similar to Fig. 1.2, but including LTGs (blue). Again ‘spheroidals’ (green) is
used in the broader sense, which means dEs are included. Photometrically, dEs/spheroidals
behave very similar to late-type dwarfs and are clearly disjoint from the population of
‘ordinary’ Ellipticals. Image credits: Kormendy & Bender (2012).
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Figure 1.6: Left: R-band image of a dE (VCC 856). Right: The residual image after the
elliptical component is removed from the light. It reveals that this dE harbours face-on
spiral arms. Image credits: (Jerjen et al., 2000).

the two dwarf types has led Kormendy & Bender (2012) to place them in a revised version
of the physically motivated galaxy classification scheme of van den Bergh (1976). An il-
lustration of this alternative to the Hubble fork is displayed in Fig. 1.9. Instead of placing
S0 galaxies at the junction between ellipticals and spirals, the S0’s form a separate arm
that is parallel to the sequence of spirals (barred and normal spirals are grouped together).
For both arms the bulge-to-total light ratios decreases from left to right, and a galaxy is
attributed to either the S0 or the spirals arm depending on its gas content and star forma-
tion activity. Kormendy & Bender (2012) argue the dEs/Sphs form a continuous sequence
with the S0 galaxies, and they are the ‘bulgeless’ extension of the S0s.

The physical interpretation of this scheme is that some quenching process has trans-
formed the spirals to become the counterpart in the ‘red and dead’ S0 arm (e.g. an
Sb can be transformed to a S0b). Several transformation processes that have facilitated
this transformation have been proposed. For example, while progenitor Irr’s have entered
larger galaxy clusters, their interaction with the intra-cluster medium could have rapidly
stripped them of their remaining gas via a process called ram-pressure-stripping (Gunn
& Gott, 1972). Similarly, tidal interaction with larger cluster or group members (Moore
et al., 1999) could have suppressed the star formation of Irr’s turning them into the dEs
observed in the present. Both these scenarios are strongly supported by the environment-
morphology dichotomy, which is the observation that the majority of dEs are found within
the dense galaxy clusters whereas Irr avoid dense environments, but dominate the dwarf
population in the field (Binggeli et al., 1987; Geha et al., 2012).

Alternative to these externally induced quenching processes an internal mechanism
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Figure 1.7: Colour image of the dE VCC2048 from Kormendy & Bender (2012) which
was obtained from HST ACS images in g and z band. The galaxy contains a faint, near
edge-on, disc which leads to deviations of its isophotes from a pure elliptical form.

could also be responsible for the gas loss dEs must have suffered. The potential well of less
massive galaxies is naturally smaller than those of more massive ones, therefore dEs may
lose their gas more easily than ‘ordinary’ Es due to feedback from active galctic nuclei,
supernovae, or stellar winds (e.g. Dekel & Silk, 1986). While dEs/dSphs may have lost a
lot of their gas due to a more turbulent history, spirals have had a more gradual and slow
build up such that they were able to retain most of their gas.
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Figure 1.8: An illustration how a discy (top) and a boxy (bottom) isophote deviates from a
perfect ellipse with semimajor axis a. The discy isophote in the top panel has a4/a = +0.1.
The boxy isophote in the bottom panel has a4/a = −0.1. Image credits: Bender et al.
(1988).

Figure 1.9: The morphological parallel-sequence of galaxies from Kormendy & Bender
(2012) which is a revised version of the scheme by van den Bergh (1976). The definition of
spheroidal galaxies (Sphs) includes the dEs discussed in this thesis. In this classification
scheme, dEs are the quiescent counterparts of the star-forming Im/Irr galaxies.
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The above examples of plausible mechanisms is far from comprehensive, further ex-
amples include starvation (e.g. Larson et al., 1980), reionization feedback (Bullock et al.,
2000), dwarf mergers (e.g. Cloet-Osselaer et al., 2014), and tidal debris (Barnes & Hern-
quist, 1992). One of the goals of this thesis is to investigate which of these mechanisms are
the most likely ‘culprits’ that have led to the transformation of late-type progenitors. Con-
nected to this is the question of how dEs and dwarf LTGs can coexist in the local Universe
despite their similarities. The mechanism responsible for the cessation of star formation
has to be discriminatory: halting star formation in some, but not all dwarf galaxies.

By analysing the intrinsic structure, dark matter distributions and orbit occupations
of these galaxies one may gain deeper insight into what has stopped the star formation in
some dwarf galaxies. Information about the intrinsic structure is extracted by construct-
ing dynamical models of these galaxies. And this thesis presents the first attempt of this
undertaking for dE galaxies, which makes use of a technique (‘Schwarzschild modelling’,
Schwarzschild, 1979) that is sufficiently robust and accurate to recover the intrinsic struc-
ture in an unbiased manner. A total of 9 dEs, all located in the Virgo cluster, are modelled
using this technique. An image of the Virgo cluster with the 9 dEs investigated in this
thesis is shown in Fig. 1.10. Dynamical modelling in general, and the Schwarzschild tech-
nique specifically, is outlined in Sec. 1.4, the data preparation and input required for these
models is discussed in the following section.

1.3 The observables
To study the intrinsic structure of dEs dynamical modelling techniques, like they are
discussed in Sec. 1.4, are indispensable. The machinery employed in this thesis requires a
preparation of the available data sets from imaging and spectroscopy such that it can be
used as input by the models. This preparation is briefly outlined in the following.

1.3.1 Photometry
Advanced models of galaxies are usually comprised of several mass components such as
dark matter, stars, or black holes. While the dark mass components can only be inferred
dynamically, imaging data provide a direct boundary constraint on the luminosity dis-
tribution (but not the luminous mass). One can implement this boundary constraint by
describing the luminous mass density as ρ∗ = Υ · ν where Υ is the stellar mass-to-light
ratio and ν the 3D luminosity deprojection.

This requires a deprojection of the 2D surface brightness I(x′, y′) data, i.e. the inverse
of:

I (x′, y′) =
∫ ∞

−∞
ν(x, y, z)dz (1.2)

where the intrinsic coordinate system is defined such that z is orientated parallel to the
line-of-sight. Generally this inversion is only unique if the galaxy is assumed to follow
very strict symmetry assumptions (e.g. if it is spherical). However, even for less strict
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Figure 1.10: Image of the Virgo cluster obtained from the Sloan Digital Sky Survey (Blan-
ton et al., 2017). Marked in red are the location of the dEs analysed in this thesis. Green
shows the bright cluster galaxy M87 which is approximately in the cluster centre.

symmetry assumptions, like axisymmetric and triaxial galaxies, the allowed solution space
is restricted considerably. Under such symmetry assumptions, deprojection algorithms
exist that allow one to probe the available solution space (Magorrian, 1999; Cappellari,
2002; de Nicola et al., 2020).

In the axisymmetric case the 3D luminosity distribution ν is described fully by its
description in the 2D meridional plane (R,z) and a single viewing angle: the inclination i.
However, even if i is known, an inversion of eq. 1.2 is only unique if the meridional plane
coincides with the plane of the sky, i.e. if it is observed edge-on (Rybicki, 1987; Gerhard
& Binney, 1996). This is a consequence of the ‘Fourier slice theorem’ or ‘projection-slice
theorem’, which states that taking the Fourier transformation of the projection of a function
ν along the line of sight is the same as taking the Fourier transform of ν first and then
taking a slice of the Fourier transform along the line-of-sight. In the axisymmetric case,
this leads to a ‘cone of ignorance’ within Fourier space that has an opening angle 90◦ − i.
So-called ‘konus densities’ are densities whose Fourier transform are only positive within
this cone. Therefore, they vanish in projection. The further away a galaxy’s viewing angle
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is away from i = 90◦ the larger the cone of ignorance becomes and the larger the solution
space for ν becomes.

This thesis adopts the non-parametric, axisymmetric implementation of Magorrian
(1999) to explore plausible ν compatible with a given inclination (see Sec. 3). For ETGs
the inclination is usually an unknown, therefore one must probe several viewing angles
and compare the resulting dynamical models (Sec. 1.5). For a given trial inclination, the
deprojection algorithm fits the observed surface brightness on an elliptical grid. The algo-
rithm also includes several penalty terms that can be used to guide the solutions towards
specific shapes (e.g. a boxy or discy shape) and avoid unrealistic, unsmooth solutions.

1.3.2 Spectroscopy
The second input required for the dynamical modelling are the (spatially resolved) stellar
motions along the line-of-sight, known as the line-of-sight velocity distributions (LOSVD).
The LOSVDs can be recovered from spatially resolved spectroscopic data like long-slit
data or data from integral field unit (IFU) spectrographs. The latter is preferable because
it provides the full 2D kinematic information on the sky, thus, increasing the constraints
placed on the dynamical models. IFU data are stored in a 3D data cube (2D sky positions
and 1D wavelength). The spatial pixels are binned further using a Voronoi tessellation
method (Cappellari & Copin, 2003) with the goal to achieve a homogeneous and high
Signal-to-Noise for each bin.

The spectra contain information about the LOSVDs because they consist of the inte-
grated light/spectra of all stars in the galaxy. Each star has its own LOS velocity v and
spectrum with absorption and emission features which are shifted by the (non-relativistic)
Doppler effect following:

λ = λ0 · (1 + v/c) (1.3)

where λ0 is the rest-frame wavelength and λ the observed one. The superposition of all
shifted stellar spectra then gives the observed integrated galaxy spectrum. In general,
galaxy spectra can contain non-stellar features caused by interstellar gas or the accretion
disc of supermassive black holes. For the dEs analysed in this thesis, however, the con-
tribution from non-stellar features is negligible, and the spectra consist predominately by
stellar absorption lines only. An example of such an integrated galaxy spectrum is shown
in Fig. 1.11 with some of the most important absorption features marked.

The different velocities of the stars broaden and distort the shape of the absorption
features in the integrated spectra. The resulting spectrum can be described by the con-
volution of the LOSVD with a ‘template’ stellar spectrum that is typical for the stellar
population of the galaxy. To describe the template spectra of a galaxy, it is common to
use stellar libraries (a collection of stellar spectra) such as ELODIE (Prugniel et al., 2007)
or MILES (Falcón-Barroso et al., 2011).

To recover the LOSVDs a ‘pixel-fitting method’ can be used which involves fitting the
data pixel by pixel with a model spectrum generated by the convolution of a superposition
of weighted template spectra with a model LOSVD. Implementations of this technique are
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Figure 1.11: Top panel: Example of a kinematic fit to a Voronoi binned spectrum. In
this case for a central bin of VCC 1861 (see Chapter 3). Black dots: The observed data.
Green: The model spectrum. Orange: The continuum part of the model. Bottom panel:
The corresponding residuals. The grey regions indicate regions that are masked during the
fit. The location of the most important absorption lines is indicated.

pPXF (Cappellari, 2023) which allows the recovery of parametric LOSVDs (see below),
BAYES-LOSVD (Falcón-Barroso & Martig, 2021), and the MPL-technique of Gebhardt
et al. (2001) which characterize LOSVDs non-parametrically. The algorithm used in this
thesis is WINGFIT (Thomas et al. in prep.) which allows both parametric and non-
parametric descriptions of the LOSVDs.

Since both template spectra and model LOSVD are intertwined, it is crucial to provide
an accurate description of the galaxy’s typical stellar spectrum. If the description is not
accurate, this is called ‘template mismatch’. A detailed discussion of templates mismatch
effects and how to avoid them can be found in Mehrgan et al. (2023).

It is common to describe parametric LOSVDs using a Gauss-Hermite expansion (van
der Marel & Franx, 1993) up to an order ngh:

LOSVD (x) = γ0 · e− x2
2 ·

(
1 +

ngh∑
k=3

hkHk(x)
)

(1.4)

with the relative, normalized velocity x:

x = (v − vmean)
σ

, (1.5)
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and the Hermite polynomials defined as:

Hk(x) = (−1)k · ex2 dk

dxk
e−x2

. (1.6)

Such a Gauss-Hermite description has ngh+1 free parameters: a normalization constant γ0,
the mean velocity vmean, the velocity dispersion σ, and the Hermite parameters h3, h4, h5
etc. Using only the first 3 parameters (γ, vmean, σ) eq. 1.4 becomes the standard Gaussian
distribution which is enough to describe a simple net shift and broadening of the absorp-
tion/emission lines in the spectra. However, higher-order information is present in the
absorption line shapes, which can be described using the Hermite coefficients hk. The odd
coefficients h3, h5, ... characterize the skewness of the LOSVD while the even coefficients
h4, h6, ... its kurtosis. This is illustrated in Fig. 1.12. A positive h3 means more stars are
on prograde orbits (retrograde for negative h3) which makes the LOSVDs a-symmetric.
In ‘ordinary’ ETGs a non-zero h3 signal is often associated with an anti-correlated net
rotation signal vmean (Bender et al., 1994). A non-negative h4 on the other hand signals
symmetric deviations from a Gaussian: For a positive h4 the LOSVD is sharply peaked
in the centre and has significant high-velocity wings. For negative h4 the LOSVD is more
box-like with suppressed wings.

Figure 1.12: Illustration of the effect of a non-zero, odd Gauss-Hermite coefficient (left
panel) and a non-zero, even Gauss-Hermite coefficient (right panel). Image credits: van
der Marel & Franx (1993).

For ETGs the net rotation velocities3 are usually lower than their dispersions, which
can reach up to ≲ 400 km/s for the most massive ETGs and are ∼ 25−50 km/s for the dEs
that are the subject of this thesis. Therefore, one also speaks of dynamically hot systems.

3This means the velocity is measured within the rest frame of the ETG itself.
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Higher order moments like h3 and h4 are typically close to zero, rarely exceeding ±0.15.
Nonetheless, an accurate quantification of these deviations from a symmetric Gaussian
distribution is essential if one wants to infer the 3D mass structure of galaxies because the
mass and orbit structure are formally degenerate otherwise (see Sec. 1.4.1).

The prevalent approach in the literature is to parameterize LOSVDs up to the 4-th
order h4. But more recent studies started to analyse higher-order moments as well (e.g.
Liepold et al., 2020; den Brok et al., 2021; Thater et al., 2022; Quenneville et al., 2022) with
the goal to exploit the full information contained in the spectra, similar to what can be
achieved with non-parametric LOSVD model descriptions. However, it is not necessarily
the case that a higher-order is also always the best option, since they also make the LOSVD
models more prone to fitting noise that is prevalent in the spectra (see Sec. 1.5).

The same problem can happen for non-parametric LOSVD descriptions if the models
are not sufficiently smoothed. Smoothing in non-parametric models is implemented by
penalizing the goodness-of-fit χ2 with some additional penalty term P . The spectral fitting
algorithm used in this thesis employs a second derivative smoothing term:

P =
∑

(LOSVDj−1 − 2LOSVDj + LOSVDj+1)2 (1.7)

where the sum goes over all (equidistant) velocity bins j. This implementation correlates
each LOSVD point with its two neighbouring points, compelling the curvature between
them to be minimal. The strength of the penalty term and hence the amount of smoothing
is controlled by a smoothing factor αsmooth. A high αsmooth means the LOSVDs is smoothed
a lot, while αsmooth = 0 implies no smoothing is applied. Like it is the case with the
Gauss-Hermite parametrizations (with its maximum order ngh) it is not obvious which
value of αsmooth is best. Often these factors are fixed arbitrarily, other times Monte-Carlo
simulations are employed to calibrate and find an appropriate value. Both these approaches
are less than optimal, and it would be better to optimize the value of αsmooth from the data
set it is actually being applied to.

Such a ‘data-driven’ method was established in Thomas & Lipka (2022), which is
reprinted in App. A. The simple but versatile method allows one to optimize the penalty
strengths of statistical models in general. It does so by employing the model selection
tools that were first developed in Chapter 2 within the context of the dynamical mod-
elling. Mathematically, this ‘data-driven’ method is a generalization of the famous Akaike
model selection (see Sec. 1.5) and it is useful at several points in the modelling pipeline
employed in this thesis. For the LOSVD recovery presented here, it allows one to derive
the optimal values for ngh and αsmooth directly from the observed spectra. This allows
an optimal recovery for both Gauss-Hermite models and non-parametric LOSVD models
without fitting the noise, all the while still extracting the entire information contained in
the LOSVDs. A demonstration of this LOSVD recovery can be found in Thomas & Lipka
(2022). Its application to the dynamical modelling itself is shown in Chapter 2.

The specific spectra of the dE sample analysed in this thesis were obtained with the
VIRUS-W IFU spectrograph (Fabricius et al., 2008, 2012) mounted to the Harlan J. Smith
telescope at the McDonald Observatory. The instrument achieves unprecedented spectral
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resolution for dE galaxies. Thanks to this, the results presented in this thesis do not suffer
from biased velocity dispersions like previous dE studies. The higher kinematic moments
that this high resolution also allows to recover (for the first time for dEs) is essential
information for the dynamical models as demonstrated in the next section.

1.4 Dynamical Modelling
The observed stellar motions trace a galaxy’s gravitational potential Φ(x⃗, t) and, as such,
its 3D total mass distribution ρtot(x⃗, t). Given some assumptions (see below) one can
therefore employ dynamical modelling techniques to infer the, a priori unknown, mass
structure of various galaxy types.

Analogous to the treatment of gas in thermodynamics the large number of stars within
a galaxy are unfeasible to model on an individual level, but the stellar system as a whole
can be described well by its 6D phase-space distribution function (DF) f(x⃗, v⃗, t), such that
f(x⃗, v⃗, t)d3x⃗d3v⃗ is the probability that a star at time t has the velocity v⃗ in the position x⃗.

Unlike small star clusters, galaxies can be treated as ‘collisionless’ systems, since
their two-body relaxation times are much larger than the age of the Universe (Binney
& Tremaine, 2008). This implies that the stellar tracers are not severely affected by indi-
vidual two-body encounters with other stars, but instead are moving through the collective
galaxy potential as a whole. Keeping generality, one can therefore describe the distribution
function f using the collisionless4 Boltzmann equation (CBE):

df

dt
= ∂f

∂t
+ ∇xf · v⃗ − ∇vf · ∇xΦ != 0 (1.8)

where ∇ is the nabla operator.
The total mass density distribution ρtot is connected directly to the gravitational po-

tential by the Poisson equation:

∇2
xΦ (x⃗, t) = 4πGρtot (x⃗, t) (1.9)

where G is the gravitational constant. In ‘self-consistent’ systems, which are systems where
the potential Φ is generated solely by the particles that the DF f is describing (here stars),
the DF f can be inferred directly if the phase-space coordinates of every star are known
and the mass density ρtot can be inferred by integrating the DF over all velocities.

However, real galaxies are rarely treatable as ‘self-consistent’ systems: the observable
DF describes only the visible components (e.g. stars or gas) but the total density ρtot
is generated by both visible and dark components (e.g. dark matter or black holes).
Nonetheless eq. 1.8 and eq. 1.9 hold, since the DF of the visible components is still tracing
the total potential generated by the combined mass density. Consequently, the stars and
their corresponding phase-space distribution can be used to constrain the potential.

4Similar to the collision terms, external force and diffusion terms are zero for galaxies.
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On an abstract level, dynamical modelling essentially is the construction of DF models
that emulate the observables of a galaxy, with the goal to infer its intrinsic properties, e.g.
its 3D mass density ρtot. The most important observable in this context is the LOSVD of
the stars, which is fully determined by its DF:

LOSVD =
∫
f(x⃗′, v⃗′)dvx′dvy′dz′ (1.10)

where x⃗′ and v⃗′ are now the projected coordinates such that the line of sight is parallel to
the z′ axis. Knowing the observed LOSVD one can then construct a number of model DFs,
calculate and compare their model LOSVD to the observed one, and judge which model
DF (and therefore density ρtot) is the most likely representation of the observed galaxy.

Over the past decades several dynamical modelling approaches have been employed
to construct and represent the DFs of galaxies, starting from parametric DFs motivated
by symmetry assumptions and physical reasoning (e.g. King, 1966; Wilson, 1975; Toomre,
1982; Hernquist, 1990; Dehnen & Gerhard, 1993; Gieles & Zocchi, 2015) towards more
general approaches that will be discussed in the next two sections.

1.4.1 Jeans equations and the mass-anisotropy degeneracy
One can circumvent stipulating an explicit DF by approximating the CBE by taking its
n-th order velocity order moments. This results in the set of ‘Jeans equations’ (Jeans,
1922; Binney & Tremaine, 2008).

Given some coordinate system (x1, x2, x3) the zero-th order takes the form of a conti-
nuity equation:

∂ϱ

∂t
+

3∑
i=1

∂(ϱ ⟨vi⟩)
∂xi

= 0 (1.11)

where ϱ is the probability density of finding a star at a given position (i.e. the normalized
mass density ρ∗) and ⟨vi⟩ is the first order velocity moment at said position in the direction
of xi. These two properties are defined as

ϱ =
∫ ∞

−∞
fd3v , (1.12)

and
⟨vi⟩ = 1

ϱ

∫ ∞

−∞
vifd

3v . (1.13)

Taking the first-order moment of the CBE results in:

ϱ
∂ ⟨vk⟩
∂t

+
3∑

i=1
ϱ ⟨vi⟩

∂ ⟨vk⟩
∂xi

= −ϱ ∂Φ
∂xk

−
3∑

i=1

∂(ϱσ2
ik)

∂xi

(1.14)

for k = 1, 2, 3. This form of the Jeans equations takes advantage of the velocity dispersion
tensor, which is defined as σ2

ik = ⟨vivk⟩ − ⟨vi⟩ ⟨vk⟩.
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While the line of sight components of the velocity moments are easily observable, gen-
erally this is not enough to close the Jeans equations5 since it is a set of 4 equations with
11 unknown quantities (ϕ, ϱ, ⟨v⃗⟩, σ̂2). Therefore, when constructing dynamical models
for a galaxy (i.e. assuming some model form for ϱ and ϕ) one has to further restrict the
solution space, e.g. by assuming a spherical symmetry or a well motivated form/subset of
the velocity moments.

In a time-independent spherical system, for example, the Jeans equation simplifies (see
Binney & Tremaine, 2008) to:

d (ϱ ⟨v2
r⟩)

dr
+ 2β

r
ϱ
〈
v2

r

〉
+ ϱ

dΦ
dr

= 0 , (1.15)

where ⟨v2
r⟩ are the second order velocity moments (compare eq 1.14), and the spherical

anisotropy parameter β is defined by the velocity dispersions:

β(r) = 1 −
σ2

θ (r) + σ2
ϕ (r)

2σr (r) . (1.16)

Numerous modelling implementations/variations that make use of the Jeans equations
have been used in the past to constrain the intrinsic structure of galaxies (e.g. Magorrian
& Binney, 1994; Łokas, 2002; Cappellari, 2008; Loebman et al., 2012). The advantage of
this approach is that it is fast and involves easily observable quantities. However, beyond
the restricting assumptions about the velocity structure, solving the Jeans equations does
not ensure physically possible DFs as f may be negative, nor does it employ the full
observational information that may hide in the higher orders of the LOSVD.

Especially the latter is detrimental to an accurate and robust mass recovery. This is
because the Jeans equation suffer from a ‘mass-anisotropy degeneracy’, which follows be-
cause the ‘line-of-sight’ dispersions σLOS (i.e. the observables) are affected by the intrinsic
anisotropy distribution β and the 3D mass distribution ρtot in a degenerate manner (cf.
Binney & Mamon, 1982; Bender et al., 1994; Gerhard, 1993; Read & Steger, 2017). The
degeneracy implies that within the Jeans framework a change in the mass distribution of a
galaxy can be entirely compensated by a corresponding redistribution of the typical orbit
structure, i.e. by making the stars occupy more radial or tangential orbits on average.

To break this degeneracy, two things are required. Firstly additional information be-
yond just the line-of-sight dispersion and rotation, and secondly a more sophisticated dy-
namical modelling technique that is able to utilize this information.

Additional information can be proper motions of the stars (e.g. Strigari et al., 2007;
Watkins et al., 2013), or the identification (and parallel modelling) of multiple different
potential tracers (e.g. Walker & Peñarrubia, 2011; Napolitano et al., 2014). For the ETGs
where such information is usually not available, the higher-order LOSVD information (cf.
Sec. 1.3.2) provides a possible avenue to breaking the mass-anisotropy degeneracy (Ger-
hard, 1993; van der Marel & Franx, 1993). This is illustrated in Fig. 1.13 which shows

5Extending the equation system by taking higher velocity moments of the CBE does not solve this
problem (cf. Binney & Tremaine, 2008).
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the model LOSVDs for different anisotropy structures in identical potentials. The more
radial/tangential the orbit structure becomes, the more peaked/flat-topped the LOSVD
becomes. Measuring the kurtosis of the distribution (i.e. h4) allows one to distinguish
between models with different anisotropy structures, which narrows down the range of
compatible anisotropy-mass pairs6 further than a gaussian descriptions allows. Combined
with the spatial information (e.g. from IFU spectrographs) this allows meaningful con-
straints on the mass structure of galaxies.

Figure 1.13: Illustration of the effects different anisotropy structure have on the higher
moments of LOSVDs from Gerhard (1993). Left panels: For potentials with an outer
stellar density distributions with slope γ = −3. Right panels: For the slope γ = −4. Top:
Radially anisotropic orbit distributions. Bottom: Tangentially anisotropic distributions.
For details of the parametrization of these models (density and anisotropy) see Gerhard
(1993).

The second requirement to break the degeneracy is the use of dynamical modelling
techniques that do not work in the restrictive framework of velocity dispersions (like the
Jeans equations) but are defined more generally and are able to emulate the higher-order
information. A very general dynamical modelling technique is to create n-body simulations
that are tailored to the specific galaxy being investigated. In these made-to-measure (M2M)
models (Syer & Tremaine, 1996; de Lorenzi et al., 2007; Long & Mao, 2010) the particles
are given weights that are adjusted until the observations are matched by the corresponding

6For general systems there still exists no proof or guarantee that there is a unique mapping of LOSVDs
to a single, specific mass-anisotropy pair.
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n-body. The advantage of this technique is that it does not rely on restricting symmetry
assumptions and that it is highly adaptive to the observables that are available. However,
results can depend on the simulation setup (e.g. particle number, initial conditions) and
the modelling is computationally very expensive since the particles of each n-body are
evolved over several orbital periods. It is also not obvious when an M2M model is a good
representation of the galaxy or when it is overfitting the noise in the data.

The second state-of-the-art modelling technique that retains a similar level of generality
as the M2M technique but does not suffer from the same downsides is orbit-superposition
modelling, often also called Schwarzschild modelling (Schwarzschild, 1979). The orbit-
superposition modelling is able to use the full information contained within the LOSVDs
and break the mass-anisotropy degeneracy without imposing too many restrictive assump-
tions. Therefore, it is the technique employed in this thesis to infer the majority of results
for the dEs that are being investigated in Chapter 3 and 4. In the following, the basics of
this approach are discussed.

1.4.2 Schwarzschild models
Instead of adjusting particle weights, like in the M2M-technique, the DF of a Schwarzschild
model is modelled by a superposition of a set of orbits such that:

f =
∑

wifi (1.17)

where fi is the distribution function of a single orbit i.
To this end the technique takes advantage of the Jeans Theorem (Jeans, 1915; Binney

& Tremaine, 2008) which states that, in steady-state systems, the phase-space density
along stellar orbits is constant and that any DF that solves the CBE is a function of
the integrals of motions In alone. Integrals of motions are functions of the phase-space
coordinates that are conserved for all orbits. The most famous examples of such integrals
are energy E and angular momentum L, which are integrals of motion in time-invariant
and rotation-invariant systems.

From the Jeans Theorem it follows that in principle any steady-state solution of the
CBE can be approximated by eq.1.17 as long as the space of integrals of motions is sampled
sufficiently dense. This is accomplished by integrating a set of orbits (also known as an orbit
library) in a given trial potential, where the initial conditions of the orbits are carefully
chosen such that all plausible values for the integrals of motions are densely sampled.

This thesis makes extensive use of an advanced axisymmetric implementation of the
Schwarzschild technique, which is based on the code of Thomas et al. (2004). In axisym-
metric potentials Φ(r, θ, ψ) orbits follow three integrals of motion: Energy E, the angular
momentum in the z-direction Lz (if the z-axis is aligned with the symmetry axis), and a
third, non-analytic integral of motion I3 (Contopoulos, 1963).

The axisymmetry is exploited efficiently by computing the orbits in the 2-dimensional
meridional plane (r,θ) and extending the model in the ϕ direction a posteriori. Each orbit
model is then split and evaluated in spatial cells within said meridional plane. When
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integrating the orbits in a given trial potential, the fraction of time an orbit has spent
in a specific cell determines its contribution to the model’s properties like luminosity and
velocity moments in said bin (cf. Thomas et al., 2004).

Sampling E and Lz is achieved by tying it to the spatial library grid of the library.
For each set of radii ri and ro (with ri ≤ ro) of the spatial grid, one (or more) equatorial
orbits is generated that has as its pericentre in the inner radial bin and its apocentre in
the outer one (see also Richstone & Tremaine, 1988; Gebhardt et al., 2003; Siopis et al.,
2009). The combination of each ri and ro provides a dense probing of the plausible energy
and z-angular momentum space.

The third integral I3 is then sampled for each pair of E and Lz by initialising the
orbit integration from the zero-velocity-curve (ZVC) of the above grid points. The ZVC is
defined by vr = vθ = 0 and confines the phase-space region that is accessible to any orbit
with a given energy E and Lz (Binney & Tremaine, 2008).

This can be seen in the radial ‘surface of section’ (SOS) that is spanned by r and vr

for example. Every time an orbit crosses the equatorial plane from ‘below’ (i.e. at z = 0,
and vz > 0) it leaves a mark in the surface of section that must be contained within the
ZVC corresponding to the orbit’s E and Lz. Orbits following the third integral I3 do not
randomly fill out the region bound by the ZVC, but are distributed along defined invariant
curves. An example of such an invariant curve in the SOS is shown in Fig. 1.14.

From this, it becomes evident that in order to sample the third integral sufficiently
dense for a given pair of E, Lz one should aim to fill out the corresponding ZVC. This
can be achieved by iteratively filling gaps in a given SOS by adjusting the initial orbit
conditions of subsequent orbits (for details Thomas et al., 2004) until the entire available
phase-space is covered sufficiently.

For typical observations a total of several tens of thousands of orbits are generated
to form a discrete basis of individual orbit DFs fi from which principally any model DF
that is compatible with the trial potential Φ(r, θ, ψ) can be approximated by adjusting the
orbital weights wi.

In the context of dynamical modelling, one can use this DF-construction technique to
constrain the intrinsic structure of observed galaxies by following 4 general steps:

i) Establish a number of candidate mass models ρtot(r, θ) and calculate their corre-
sponding gravitational potential Φ(r, θ). Which and how many candidate models are
being probed for a given galaxy is the modeller’s choice and should be treated care-
fully (Lipka & Thomas in prep.). For ETGs for which gas and dust are negligible,
the most popular choice is a 3 component model of the mass density:

ρtot(r, θ) = Υ · ν(r, θ) + ρDM(r, θ) +M• · δ(r) (1.18)

where ν is the 3D stellar luminosity distribution and Υ its stellar mass-to-light ratio,
ρDM is the (usually parametric) description of the dark matter halo density and M•
is the mass of the central supermassive black hole (SMBH). In this 3 component
model the luminosity distribution serves as boundary constrain and is obtained by
deprojecting the observed photometry (see Sec. 1.3.1).
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Figure 1.14: Example of a SoS in an axisymmetric potential from Binney & Tremaine
(2008) who use the momentum notation pr instead of velocity notation vr. The dots show
the equatorial passings of an orbit, while the solid line marks the corresponding ZVC in
which any orbit with the same energy and z-axis angular momentum would fall.

ii) For each trial potential, a DF basis fi is constructed by integrating the orbits as
described above and storing their properties in an ‘orbit library’ which contains the
information of how much each orbit contributes to each spatial cell. Together with
the freely adjustable orbit weights wi the library determines all the model properties.
Most important of which, its LOSVD, which can be conveniently written in matrix
notation as:

L⃗ = w⃗ · Lorb (1.19)

where the vector w⃗ constraints the orbital weights wi and the matrix Lorb the con-
tribution of the i-th orbit to the j-th LOSVD bin. In this notation the index j goes
over all spatial and velocity bins of the observed data. Step ii) requires the definition
of several nuisance parameters that define an ‘orbit library’, most importantly the
number of orbits and its orientation in 3D space. The latter is defined by a set of
viewing angles which, in the axisymmetric case, is a single angle: the inclination
i ∈ [0◦, 90◦]. These nuisance parameters have not been treated with sufficient care
in the past (see Chapter 2) even though they are formally just as important as the



1.4 Dynamical Modelling 27

mass/density parameters.

iii) For each orbit library the optimum set of orbital weights w⃗ is obtained by fitting
the above model LOSVD vector to the corresponding observed one. However, in
most cases this is non-trivial because the dimension of L⃗ (i.e. the number of data
constraints) is much lower than the dimension of w⃗ (i.e. the number of free parame-
ters/orbits). Therefore, a simple χ2 fit would result in an overfitting of the data and
a very unsmooth distribution function. To avoid this issue a regularization term is
required which smooths the model DF and avoids overfitting. Following Richstone &
Tremaine (1988) the code used in this thesis achieves this with a maximum-entropy
term S. Instead of a simple χ2 fit to the observed LOSVD the code maximises the
quantity S − αχ2 where S is defined as:

S = −
∑

wi ln
(
wi

Vi

)
(1.20)

where the Vi are the phase volumes of the i-th orbit (see Thomas et al., 2004).
Choosing to use the phase volumes in the denominator ensures that all orbits are
a priori equally probable. However, one may use other bias factors instead to (a
priori) bias the solution towards a specific form (cf. Neureiter et al., 2021). The
regularization parameter α regulates the strength of this bias term. For small values,
the entropy term dominates and the solution will be so smooth that it is unlikely
to fit the observation well. For larger α on the other hand, the solution converges
towards the χ2 solution and the DF will be unsmooth and overfit the data.

iv) Steeps ii) and iii) are repeated for every candidate mass model that was established
in step i), i.e. one finds an optimum set of orbit weights for every candidate model.
Since the goal of dynamical modelling is to infer the intrinsic mass structure, one
aims to identify the candidate model that best represents the galaxy that is being in-
vestigated. In the past this was done by comparing the different mass models based
on their χ2, a by-product of the maximization of S − αχ2. The mass model that
achieved the smallest χ2 out of all candidate models is then deemed to be the best
representation of the observed galaxy. However, this χ2-approach neglects two fun-
damental issues. Firstly, α was often chosen rather arbitrarily and kept fixed for all
candidate models, even though α is a regulator of over-/under-fitting and therefore
strongly affects χ2. Secondly, different candidate models (step i) and nuisance pa-
rameter (step ii) result in different orbit trajectories. Consequently, every candidate
model also has a different model basis (the elements of Lorb) in the space of ob-
servables. On mathematical grounds, this means each candidate model establishes a
separate statistical model with its own unique flexibility in the space of observables.
And comparing the performance of different statistical models based alone on the
goodness-of-fit χ2 they achieved is not only wrong but biasing (Sec. 1.5). Funda-
mentally the Schwarzschild modelling technique is a model selection, therefore it is
necessary to evaluate the performance of candidate models within a robust statistical



28 1. Introduction

model selection framework. However, in the case of Schwarzschild models this is not
trivial and new statistical techniques had to be developed (see Chapter 2).

In the course of this thesis, every step i)-iv) of the Schwarzschild technique, as well as
the LOSVD recovery (Sec. 1.3.2), has been improved in preparation for the dE modelling.
The improvements for each step are:

i) A stellar mass-to-light ratio gradient Υ(r) was implemented (Chapter 3) which is a
novelty for orbit-superposition models and has recently been introduced by (Mehrgan
et al., 2024) for the modelling of giant ETGs. Allowing for a gradient in the stellar
component is essential because the typical stellar populations can be expected to
vary throughout a galaxy due to spatial changes in the star formation conditions
(e.g. Parikh et al., 2018). In such a case, keeping Υ constant not only biases ρ∗ but
it also has reverberating effects on the dark matter and black hole recovery biasing
those as well (via eq. 1.18). Similarly, a new model of the dark matter density ρDM
has been implemented (Chapter 4) that is far less restrictive than the models that
have been applied in the past. A non-restrictive Halo parametrization is essential
if one wants to determine the dark matter profiles and shapes unbiasedly (Lipka &
Thomas in prep.).

ii) The effects and choice of nuisance parameters have been investigated carefully by
applying various parameter setups to simulations (see Chapter 4) and by probing
different values for the nuisance parameters in the dE modelling. Most importantly,
this includes probing different inclinations i. In the past the vast majority of axisym-
metric models has been modelled only in its edge-on (i = 90◦) projection because
when probing different inclinations the edge-on projection generally resulted in the
best χ2. In Chapter 2 it is demonstrated that this is due to a strong bias that stems
from the naive application of χ2 to select the best candidate model (step iv). It is
shown how this inclination bias is not present if the orbit models are treated within
the model selection framework developed here in this thesis. Not only does this
enable dynamical inclination recovery, but it also improves the mass and anisotropy
recovery in general because the model is now projected to the space of the observables
using the correct viewing angle.

iii) Analogous to the penalty strength αsmooth in the LOSVD recovery, it is crucial to
find the optimal regularization strength of the orbit models α, such that both under-
and over-fitting are avoided. In past applications of the Schwarzschild technique, the
choice of this penalty strength was often made ‘by eye’ or, at best, using Monte-
Carlo simulations. Like it was the case for the LOSVDs smoothing, the ‘data-driven’
method that was developed within this thesis (Chapter 2) and Thomas & Lipka
(2022) allows the optimization of α directly from the data. This not only vastly
improves the constraining power of the Schwarzschild modelling technique but allows
for an unbiased recovery of the mass parameters (Chapter 2).
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iv) The model selection framework is not only useful for the correction of the inclination
bias and the smoothing optimization of αsmooth and α. In Chapter 2 it is demonstrated
that the selection of the best candidate model on a fundamental, statistical level is a
model selection problem and not a naive parameter estimation problem as thought
previously. When comparing the performance of different mass models established
in step i) one must take into account that their intrinsic flexibility is not identical.
A new approach was developed in this thesis that allows the quantification of this
intrinsic flexibility. This, for the first time, allows an evaluation of the Schwarzschild
models within a model selection paradigm. In statistics, various model selection
criteria have been proposed. For the application to Schwarzschild models and the
smoothing optimization, a new criterion had to be developed. The new AICp criterion
is a generalization of the Akaike criterion (AIC). The basics of the classical AIC are
presented in Sec. 1.5, the generalized criterion is the subject of Chapter 2 and Thomas
& Lipka (2022).

1.5 The Basics of Model Selection and Information
Theory

Scientific inquiry, like it is described in the last section, necessitates extracting hidden in-
formation (e.g. the 3D density ρtot) that is not directly observable by means of fitting a
model of the underlying process to the available observables. However, in many applica-
tions, it is a priori unclear which model is an adequate description of the physical process
that generated the data. In this case, several trial/candidate models can be established
and fitted to the same data. Then their performance can be evaluated and one can decide
which model is most suitable in the description of the physical process.

A model selection technique is a statistical tool to choose the best model out of a pool
of those trial models. A widely known philosophical example of this is ‘Occam’s razor’
which states that, generally, the simpler hypothesis (or model) that is able to explain
a phenomenon should be preferred over a more complicated one. This is an intuitive
principle. For example, when fitting the same set of data, once with a linear model and
once with a parabolic model, the latter will always achieve a nominally better fit (i.e. a
smaller χ2), but this doesn’t mean the underlying process is not a linear one.

Generally speaking, more complex models (i.e. with more free parameters) will always
be able to better adapt to any perturbation in the data. But this is only desirable if the
perturbation is caused by a real signal, not by random noise. This is illustrated in Fig. 1.15,
which shows the fits of 4 different statistical models to a mock LOSVD. The highly flexible
models in the top row fit portions of the noise. Using these models one would overfit the
data, i.e. detect artificial features in the LOSVD. Conversely, the models in the bottom
row ‘underfit’ as they are not flexible enough to recover the more complex truth.

The approach to selecting the best model which neither over- nor under-fits is therefore:

i) Determine the ability of each trial model to fit the data set, usually by calculating
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Figure 1.15: An exaggerated example of over- and underfitting for 4 statistical models
from Thomas & Lipka (2022). The grey curves are the truth (i.e. the noise-free data-
generating process). The grey dots are the noisy data. In blue are 2 parametric models
(Gauss-Hermite Fits) and in red 2 non-parametric models. Models in the top panels overfit
the data, while the models in the bottom underfit, meaning they are not able to recover
the complexity of the truth.

the χ2 of each model.

ii) Determine the complexity/flexibility of each trial model, usually quantified in terms
of its number of free fit parameters m.

iii) Judge each model using a model selection criterion that balances the above (χ2 and
m) and finds the sweet-spot between simplicity and fit quality.

Step i) is straight-forward and, in the context of dynamical modelling, the currently
accepted approach to ‘select’ the best dynamical model (cf. Sec. 1.4). This is a valid
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approach only if all trial models have identical model flexibility, i.e. if step ii) can be
neglected. Only then step iii) becomes redundant and a χ2-only selection is unbiased.

However, neither for Schwarzschild models, nor any other dynamical modelling tech-
nique, the assumption that all trial models have identical flexibility has actually ever been
investigated or verified. This has two reasons. Firstly, because it was not obvious that
Schwarzschild models should be treated in a model selection framework in the first place,
even though the different trial models consist of different orbits and thus different ba-
sis vectors. Secondly, and more importantly, because there was no known approach to
calculating, or at least estimating, the flexibility of Schwarzschild models. It is not as
straightforward to simply equate the number of orbital weights wi to that of the number
of free parameters, because, strictly speaking, this only holds for linear statistical models
without any a priori restrictions on the parameters (Burnham & Anderson, 2002; Andrae
et al., 2010). Schwarzschild models, however, are neither linear nor are their parameters
unrestricted. Instead, they are regularized models with a penalty term (eq. 1.20) and their
parameters wi are demanded to be non-negative (otherwise the DF could be negative).

For these reasons it continued to be unclear whether the assumption that all trial models
have the same flexibility is correct, and hints that different trial Schwarzschild models have
vastly different flexibility were noticed but remained unresolved. One such hint was that a
suspicious amount of times, edge-on orbit models provided a much better χ2 than inclined
models (e.g. Thomas et al., 2007; Onken et al., 2007). This could be explained if edge-on
models have higher flexibility than inclined models.

If one can establish an alternative approach to measuring the flexibility of the dynamical
models (as is done in this thesis) and find that the flexibility of the orbit models varies,
the obvious conclusion is that step iii) is imperative to select the best orbit/mass model.
But this raises a second question: which specific model selection criterion is most suitable
in the context of dynamical modelling?

A manifold of different model selection criteria exist in statistics (Burnham & Anderson,
2002). Among the most popular ones are the Akaike Information criterion (AIC) and the
Bayesian information criterion (BIC) (Akaike, 1973; Akaike, 1974; Schwarz, 1978). When
written in terms of goodness-of-fit7 χ2, the complexity m, and the number of data points
N , they read as

AIC = χ2 + 2m, (1.21)

and
BIC = χ2 + ln(N) ·m. (1.22)

Both criteria penalize the fit quality χ2 by the complexity m of the model, but they differ in
how much they weigh these two factors. BIC typically penalizes complexity more strongly
(a factor of ln(N) vs 2). Again, note that the complexity m only equals the number count
of fit parameters for linear models without prior restrictions. The two criteria hold for
maximum-likelihood models and large N , but a generalized Akaike criterion that extends
to penalized models can be derived (this is done in Thomas & Lipka, 2022).

7Note that using χ2 instead of the log-likelihood assumes errors follow a normal distribution.
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While BIC is (typically) derived within a Bayesian framework, AIC is an information
criterion in the stricter sense of the word because it is derived from an information theoret-
ical approach. Fundamentally, AIC is an attempt to minimize the information loss when
modelling the ‘truth’ f using a model g. In information theory the relative information loss
between two probability functions is quantified using the Kullback-Leibler-distance defined
as:

KB (f, g) =
∫
f(x) · ln

(
f(x)
g(x|θ)

)
dx ≥ 0 (1.23)

where g(x) is the model that one wants to approximate the truth f with. The smaller
KB (f, g) the closer is the model to truth. Therefore, the target of model selection should
be to minimize the Kullback-Leibler-distance between f and g.

However, calculating the Kullback-Leibler distance between the truth and the model
directly is impossible, because neither the truth f nor the true parameters θ0 of g that yield
the best approximation of f are known (one only estimates θ0 from noisy data). Therefore,
the ansatz of AIC is to minimize the expected, estimated information loss, which can be
approximated as eq. 1.21 as Akaike showed.

1.6 Goals and outline of this thesis
Dynamical modelling is the key to unveiling the mass and dynamical structure of galaxies.
This information, that goes well beyond a galaxies morphological appearance, provides
strong constraints on galaxy evolutionary mechanisms and structure formation in the Uni-
verse. This in turn may allow probing predictions from cosmological theories and ascertain
which processes are responsible for the large diversity in morphological appearance that
are being seen in the galaxies populating the Hubble diagram.

In the context of dwarf ellipticals, we aim to understand whether the apparent connec-
tion with dwarf spirals (e.g. in terms of their surface brightness distribution) is an indicator
of a deeper evolutionary connection and, if so, what has led some dwarf galaxies to end up
as the quiescent dEs while others are still actively forming stars. While direct observables
like the surface brightness distribution are well studied for dEs, little is known about their
intrinsic structure. It is still open question whether a connection between dEs and dwarf
spirals can also be found in their orbit structure (angular momentum and anisotropy),
their dark matter halo, and black hole masses.

This thesis sets out to answer these questions for a sample of dEs located in the Virgo
cluster. It is the first time that the structure of dEs is studied with sophisticated dynam-
ical models that are able to employ the full kinematic information hidden in the spectra
and do not suffer from intrinsic degeneracies and restricting assumptions. This required
an unprecedented IFU data set with very high spectral resolution. Only this enabled the
first measurement of the higher-order LOSVD moments for dEs, which is essential infor-
mation for the construction of the dynamical models. Numerous improvements to the
Schwarzschild modelling pipeline itself were developed throughout this thesis, ensuring a
robust and unbiased recovery of the structure of dEs.
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The goals of this thesis are two-fold. Firstly, improve the dynamical modelling inference
generally, by placing it in a rigorous statistical model selection framework. And secondly,
use these improvements in the modelling to address a set of science questions concerning
the origin and evolution of dwarf elliptical galaxies. Therefore, the thesis is structured as
follows:

■ Chapter 2 introduces the new model selection framework and applies it to the dynam-
ical modelling machinery. It lays out the arguments why Schwarzschild modelling
fundamentally is a model selection problem, and not a parameter estimation prob-
lem. Therefore, varying model flexibility between different Schwarzschild models can
bias galaxy constraints. The chapter presents a novel approach to estimate the flex-
ibility of the dynamical models using bootstrap iterations, and demonstrates how
their flexibility systematically changes with various model properties like inclination,
mass-to-light ratios or angular momentum. This leads to biases in the χ2 surfaces.
In the case of the inclination it even hinders any meaningful constraints. The chapter
shows how one can use the estimated flexibility to correct the χ2 values, achieving
an unbiased model evaluation. The new model evaluation is calibrated and tested on
10 different simulated galaxies. The chapter also shows the first application of the
new procedure to a real galaxy (NGC 3368). The inclination of this disc galaxy is
known to be i ≈ 53◦ from external constraints. While the old χ2 approach favours
the model to be edge-on (i = 90◦) the new model evaluation correctly recovers the
inclination. Finally, the chapter also presents how the regularization parameter α
of the Schwarzschild models can be optimized directly from the data using the new
model selection framework. This drastically improves the accuracy of the mass and
orbit structure recovery. The chapter was published in Lipka & Thomas (2021). A
thematically closely related article that explores some findings of Chapter 2 in a more
general, statistical framework and underpins its mathematical foundations is Thomas
& Lipka (2022).

■ Chapter 3 and Chapter 4 employ the new and improved modelling machinery to
tackle various science questions concerning dwarf galaxies. A total of 9 dEs associ-
ated with the Virgo cluster is modelled and analysed comprehensively. In the first
part of Chapter 3 the sample data is presented, and the modelling pipeline is dis-
cussed in detail. In the second part of Chapter 3 the stellar structure (3D mass
and orbit structure) is presented. In a comparison with the published literature,
the chapter also demonstrates that high resolution spectra are indispensable if the
low velocity dispersion are to be recovered unbiasedly. The study represents one of
the first IFU studies of dEs that analyses higher LOSVD moments, and dynamically
models dwarf ellipticals. Supplementing the constraints on the intrinsic structure
of the dEs provided by the dynamical models, a stellar population analysis is also
performed, providing information about the stellar age, metallicity, and abundance
ratios of the dEs. Combined with the dynamically recovered mass-to-light ratios (and
gradients) the population results pose constraints on the initial mass function of the
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stellar populations. Beyond the stellar mass distributions, their angular momentum
and intrinsic anisotropy structure is studied. The results shown in chapter 3 were
published in Lipka et al. (in press). Chapter 4 focuses on the dynamically recovered
dark matter halos and black holes of the dE sample and was originally published in
Lipka et al. (in press). In the chapter, it is described how one can optimize the con-
struction of halo models and how the dynamical results should be interpreted such
that potential biases from the modelling are avoided. Dark matter fractions, dark
matter slopes and, for the first time, the flattening of the halos are recovered. It is
investigated whether these observational constraints are in tension with predictions
from standard ΛCDM cosmology. Finally, combining the results from chapter 3 and
chapter 4, it is explored whether dEs are the remnants of transformed spirals and, if
so, which transformation processes are the most likely culprits.
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ABSTRACT
Orbit superposition models are a non-parametric dynamical modelling technique to determine the mass of a galaxy’s central
supermassive black hole (SMBH), its stars, or its dark matter halo. One of the main problems is how to decide which model
out of a large pool of trial models based on different assumed mass distributions represents the true structure of an observed
galaxy best. We show that the traditional approach to judge models solely by their goodness-of-fit can lead to substantial biases
in estimated galaxy properties caused by varying model flexibilities. We demonstrate how the flexibility of the models can be
estimated using bootstrap iterations and present a model selection framework that removes these biases by taking the variable
flexibility into account in the model evaluation. We extend the model selection approach to optimize the degree of regularization
directly from the data. Altogether, this leads to a significant improvement of the constraining power of the modelling technique.
We show with simulations that one can reconstruct the mass, anisotropy, and viewing angle of an axisymmetric galaxy with a
few per cent accuracy from realistic observational data with fully resolved line-of-sight velocity distributions (LOSVDs). In a
first application, we reproduce a photometric estimate of the inclination of the disc galaxy NGC 3368 to within 5◦ accuracy from
kinematic data that cover only a few sphere-of-influence radii around the galaxy’s SMBH. This demonstrates the constraining
power that can be achieved with orbit models based on fully resolved LOSVDs and a model selection framework.

Key words: methods: statistical – galaxies: individual (NGC 3368) – galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

Revealing the internal structure of external galaxies is a challenging,
yet essential task for a broader understanding of galaxy evolution.
Since observations of external galaxies are limited to the projected
kinematics and the surface brightness of the luminous galaxy
components the common approach is to establish dynamical models
of an observed galaxy and to compare their projections to the
corresponding observations. A collisionless galaxy component, such
as the ensemble of its stars, follows the collisonless Boltzmann equa-
tion and can be fully characterized by its phase-space distribution
function. Therefore a dynamical model can, at least in principal,
describe such a system of stars if it can sufficiently emulate the
real distribution function. If a galaxy could not be assumed to
be in equilibrium, dealing with all the freedom in the distribution
function during the modelling process would be hopeless. However,
in equilibrium the Jeans Theorem can be invoked (e.g. Binney &
Tremaine 2008) and the distribution function has a relatively simple
structure which can be expressed as a function of the integrals of
motion meaning it takes the form of an orbit superposition.

Even though stellar systems with a high degree of symmetry can
sometimes be modelled well using analytic distribution functions,
a more universal approach to dynamical modelling is generally re-

� E-mail: mlipka@mpe.mpg.de

quired to deal with the full range of compatible distribution functions.
Schwarzschild modelling is an efficient numerical approach based
on the superposition of stellar orbits to construct such dynamical
models. In its initial version, established by Schwarzschild (1979),
such orbit models were designed to replicate a given triaxial density
distribution in a self-consistent manner. In the subsequent decades
the Schwarzschild technique was extended to include the fitting of
kinematic observations (e.g. Levison & Richstone 1985; Rix et al.
1997; Cretton et al. 1999; Thomas et al. 2004; van den Bosch et al.
2008), making it possible to constrain the distribution function of an
observed galaxy more tightly and enabling the estimation of intrinsic
properties of stellar systems such as black hole mass (e.g. van der
Marel et al. 1998; Gebhardt et al. 2000, 2003; Cappellari et al. 2002;
Rusli et al. 2013), mass-to-light ratios (e.g. Thomas et al. 2005;
Cappellari et al. 2006; Thomas et al. 2011), dark matter haloes (e.g.
Thomas et al. 2005, 2007b, 2009b; Rusli et al. 2013; Leung et al.
2018), the velocity dispersion anisotropy and orbital structure (e.g.
van de Ven, de Zeeuw & van den Bosch 2008; Thomas et al. 2009a,
2014; Kowalczyk, Łokas & Valluri 2017), and the intrinsic shape of
the stellar distribution (e.g. Jin et al. 2020).

Several different implementations of the Schwarzschild method
with varying degrees of symmetry have been described (e.g. Rix
et al. 1997; Cretton et al. 1999; Gebhardt et al. 2000, 2003; Häfner
et al. 2000; Siopis & Kandrup 2000; Thomas et al. 2004; Valluri,
Merritt & Emsellem 2004; van den Bosch et al. 2008; Vasiliev &
Athanassoula 2015; Vasiliev & Valluri 2020; Neureiter et al. 2021),
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Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/3/4599/6244230 by M
ax-Planck Society user on 08 January 2024



4600 M. Lipka and J. Thomas

but the main steps of the method are rather general. Very briefly: If an
assumed gravitational potential is given, one needs to compute tens of
thousands of representative orbits in the available phase space. These
orbits are combined to a galaxy model, where each orbit can carry
an adjustable number of stars. These so-called orbital weights (or
orbital occupation numbers) together with each orbits intrinsic and
projected properties then determine the dynamical model. Through
optimization of the orbital weights, the model can be adapted to
the observations. In this sense, the orbital weights are the variables
of the model. While different algorithms are used for this weight
optimization, they are all tied to a χ2-minimization framework.

With the rise of integral-field spectrographs in the last decade,
the amount of kinematic data that can be used to constrain these
models has increased significantly. While many early studies had
to rely on line-of-sight velocity distributions (LOSVDs) that were
parametrized by Gauss–Hermite series expansions (Gerhard 1993;
van der Marel & Franx 1993) up to fourth order (often along a
1d slit; Bender, Saglia & Gerhard 1994), it is now often possible
to reliably obtain higher Gauss–Hermite moments (e.g. Krajnović
et al. 2009; Liepold et al. 2020) or measure the fully resolved, non-
parametric LOSVDs over the 2d sky area occupied by the galaxy
(Mehrgan et al. 2019). The number of measured data points per
galaxy has thus increased from a few dozen to several thousands.
Still, one of the characteristics of the Schwarzschild method is that
one is usually faced with a situation where the number of free model
parameters is significantly larger than the number of observational
data points, mainly because the number of orbits is typically very
large and each orbit is associated with a free orbital weight parameter.
For simple, linear models this would imply a negative number of
degrees of freedom of the resulting χ2 distribution (Press et al.
1992) and the solution of the χ2-minimization is non-unique (cf.
Valluri et al. 2004; Magorrian 2006; Neureiter et al. 2021). Under
the assumption that a model is generally detailed enough to deal
with all the structure in the data, one would consequently expect that
every data set is perfectly fitted due to the models comparatively huge
number of free parameters, resulting in a χ2 → 0. In practice, this
does not happen for two reasons. First, data with a realistic amount
of noise cannot be fitted perfectly when the orbital weights are
constrained to be non-negative (see Magorrian 2006 for a discussion).
Secondly, a perfect fit is suppressed when a regularization term is
applied in the weight optimization, e.g. via the commonly used
maximum penalized likelihood or maximum entropy approaches.
The smoothing induced by such a regularization term allows to
discard physically implausible solutions and prevents overfitting by
effectively reducing the flexibility of the dynamical model. Despite
the differences in the individual implementations of regularization,
the result is always the same: The χ2 of the regularized model is
significantly larger than zero even though the model’s parameters
typically outnumber the data points. This suggests that the effective
number of free parameters is smaller than the nominal number of
variables in the model, implying a reduction in the model’s flexibility
(i.e. its ability to fit noisy data). Beyond the regularization another
core aspect in reducing the flexibility of Schwarzschild models is the
prior constraint on the orbital weights to be non-negative to avoid
negative phase-space densities in the model.

The reduction of model flexibility is a generic property of
regularized models, of models with prior constraints imposed on
their free parameters, or in general of nonlinear models (cf. Andrae,
Schulze-Hartung & Melchior 2010). As a consequence, because the
effective number of parameters is an unknown, the interpretation of
the absolute value of χ2 becomes less obvious. This is particularly
important, because in most Schwarzschild applications, the primary

interest is not in the distribution of the orbital weights. Instead, one
aims to determine the mass composition of a galaxy, which requires
the comparison of a number of Schwarzschild models that were
obtained with different trial gravitational potentials. Traditionally
this comparison is done by evaluating the χ2 values inherited from
the orbital weight optimization of each trial model. Given the fact
that these χ2 values depend on the model flexibility (or its effective
number of free parameters) it may be important to take this into
account in the evaluation process.

The goal of this paper is threefold. First, we provide a method
to estimate the flexibility of Schwarzschild Models, or the ef-
fective number of free parameters respectively, that can robustly
deal with all the smoothing constraints, positivity constraints and
nonlinearities of the models. Secondly, we demonstrate that varying
model flexibilities lead to biased χ2 surfaces when evaluating orbit
models obtained using different mass distributions, viewing angles
or assumed regularization powers. Thirdly, we provide a model
selection framework that allows to overcome these biases that can
arise in the simple χ2 comparison framework. The new framework
not only improves the constraining power of Schwarzschild models
significantly, but also enables a new data-driven approach to optimize
the amount of regularization. All these considerations can probably
be generalized to other nonlinear, non-parametric, non-dynamical
models that involve regularization or prior constraints.

As the main application example, we investigate the reconstruction
of the viewing angle (or equivalently the intrinsic flattening) under
which an axisymmetric galaxy is observed. The question whether it
is feasible to constrain the inclination/intrinsic shape via dynamical
modelling is as of yet a point of contention. In early works Verolme
et al. (2002) argue that they constrained the inclination of M32 to
70◦ ± 5◦ using axisymmetric, three-integral, Schwarzschild models.
However, follow-up results of Krajnović et al. (2005), who tried
to recover the inclination of semi-analytic galaxy models with ax-
isymmetric models, suggest that different inclinations are degenerate
even under ideal conditions. Cappellari et al. (2006) confirmed these
results for a large sample of early-type galaxies in so far as they state
that Schwarzschild models with a wide range of inclinations are able
to fit the observed kinematics well within the errors. Onken et al.
(2007) modelled the bulge of the Seyfert 1 galaxy NGC 4151 edge-on
and with an inclination i = 23◦ obtained from the observed ellipticity
of the large-scale disc, with the result that the edge-on model provides
better fits to the kinematic constraints than the 23◦ model, suggesting
either that the bulge is not aligned with the disc or that the inclination
recovery using dynamical modelling is biased. Similarly, Thomas
et al. (2007b) found that a surprising amount of the 17 early-
type galaxies they dynamically modelled with axisymmetric three-
integral models are fitted best when the orbit model is viewed edge-on
and they argue there may be a small inclination bias favouring edge-
on Schwarzschild models. In this paper we will demonstrate that the
assumed inclination strongly affects the flexibility of orbit models
which could explain the observed edge-on preference of previous
studies. We will show that the inclination of axisymmetric galaxies
can be well constrained from typical observational data with the new
model selection framework as it considers the model flexibility in
the evaluation of the fitted models.

The paper is organized as follows: In Section 2 we outline our
motivation for using a model selection approach in the evaluation
of Schwarzschild models in detail. In Section 3 we lay out two
bootstrap methods which facilitate the quantification of a model’s
intrinsic flexibility. A discussion of an evaluation approach based
on model selection techniques follows in Section 4. We then test
the model selection with respect to the inclination reconstruction
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on a number of simulated galaxies in Section 5. In Section 6 we
extend the analysis to mass parameters. Section 7 further refines our
approach by including the regularization power. Equipped with all
these insights we model the disc galaxy NGC 3368 in Section 8 with
our refined model selection framework and set it into contrast to
the prevalent χ2-minimization. Section 9 discusses general aspects
related to modelling degeneracies and the inclination recovery. The
paper concludes with a summary in Section 10.

2 MOTIVATING A M O D E L SE L E C T IO N
APPROACH TO T H E SC HWARZSCH I L D
T E C H N I QU E

As mentioned in the Introduction above, we want to demonstrate
the power of the model selection framework using the example
of Schwarzschild orbit superposition models. The main reasons for
picking up Schwarzschild models are as follows: (i) This technique is
very general and allows to model any kind of galaxy without apriori
assumptions upon the orbital structure. (ii) The method is observa-
tionally not restricted to moments of the velocity distribution of the
stars but instead can deal with the full information contained in the
LOSVDs (e.g. Thomas et al. 2004; Mehrgan et al. 2019; Vasiliev &
Valluri 2020; Neureiter et al. 2021). The specific implementation of
the Schwarzschild method that we consider in this paper assumes
axially symmetric galaxies and is described in detail in Thomas et al.
(2004).

In Schwarzschild models, one first specifies a trial mass dis-
tribution and viewing angle via parameters like the stellar mass-
to-light ratio ϒ , black hole mass M•, dark-halo parameters and
inclination i. Then one calculates an orbit library with thousands
of orbits whose projected properties form the building blocks of the
superposition model. By computing the best-fitting orbital weights
one can assess how well the trial mass distribution allows to explain
the observational data. A systematic search through the space of
trial mass models then leads to the identification of a best-fit mass
distribution for each galaxy. This is only a very brief sketch of the
method (we provide a more detailed description in App. A and
Section 2.1) but it already demonstrates one important aspect: the
fact that one first needs to specify a set of mass parameters (and the
inclination) before the orbit distribution can be determined will turn
out to be significant. As a consequence it is helpful to conceptually
distinguish two distinct parameter layers that together define the
properties of every Schwarzschild model: Minimization parameters
(orbital weights wi) and selection parameters (all other parameters,
i.e. M•, ϒ , i...). It is the latter parameters that require an evaluation
using a model selection framework.

We present our reasoning for this distinction of parameter layers in
Sections 2.1 and 2.2. We also recapitulate our regularization approach
to finding the optimum minimization parameters (i.e. orbital weights)
in 2.2. The theoretically less interested reader may skip ahead to
Section 2.3 where we show that a simple χ2 evaluation where all
parameters are treated equally can lead to a bias, using the inclination
as an example. As we will show throughout this paper, other selection
parameters such as the stellar mass can also suffer from such a bias.

2.1 Selection versus minimization parameters

It is tempting to consider the question of identifying the best-
fit Schwarzschild model in terms of a huge χ2(M•, ϒ, i, . . . , wi)
minimization, where all the parameters are treated equally as free
parameters of a single ’global’ Schwarzschild model. This concerns
mass parameters like M• and ϒ , viewing angles like the inclination

i and the orbital weights wi (cf. App. A). It is therefore common
practice to assume that the best choice for M•, ϒ , i, . . . is given by
the trial set that resulted in the smallest χ2 without much concern of
the role of orbital weights.

Using a sophisticated Bayesian framework Magorrian (2006)
acknowledges that there often exist many possible combinations of
orbital weights (or equivalently distribution functions) that are con-
sistent with given observational data and an assumed trial potential.
Magorrian (2006) argues that a more appropriate approach sums
over all possible distribution functions for a given potential. This
is achieved by marginalizing over the orbital weights and weighing
the corresponding likelihoods by a suitable prior. Magorrian (2006)
argues that this approach allows a more accurate calculation of the
likelihood for a given potential, and that the odds of one set of trial
parameters (M•, ϒ , i, . . . ) over another can be evaluated by the ratio
of the likelihoods of the two potentials they generate.

The Bayesian framework of Magorrian (2006) does not specifi-
cally address the problem that the orbital weights are not independent
parameters of a single, global Schwarzschild model. Instead, the
orbital weights function as (linear) coefficients for the fundamental
building blocks of the model: the projected properties of the orbits
which are different for each trial potential and, thus, need to be
recalculated from scratch for each trial potential (cf. Appendix A).
In other words, the subjects to which the orbital weights wi refer
to, depend on the choice of the parameters M•, ϒ , i, . . . which
have to be specified to generate the orbits. This means there is
no straightforward way to define a single model with a common
parameter space (M•, ϒ, i, . . . , wi) as the basis for the comparison
of χ2 values obtained for different sets of trial parameters like M•, ϒ
or i. Instead one actually compares the goodness-of-fit of distinct
statistical models, each with its own individual space of orbital
weights wi .

On a more fundamental level, the Schwarzschild technique is an
exact method to find phase-space distribution functions f that obey
the Collisionless Boltzmann equation:

v · ∂f

∂x
− ∂φ

∂x
· ∂f

∂v
= 0 (1)

(where φ is the gravitational potential and f is the phase-space
distribution function of the system under study). We can formulate
the Schwarzschild technique by considering a partition of phase
space into a huge number of small cells. The distribution function f
is represented by the large number of phase-space densities fi in each
of these small local cells. The observables of the model, such as the
binned LOSVDs lmod of the model or its binned 3d luminosity density
dmod, can be derived from the fi by simple phase-space integrations,
e.g. the amount of light in bin k reads

dmod,k =
∫

Sk

f d3rd3v, (2)

where the integral goes over the whole velocity space and over the
subset Sk of the configuration space that represents bin k (cf. App. A
for the exact definitions and vector notation of lmod and dmod). One
could argue that these fi could be used as the fundamental parameters
in a single, global Schwarzschild model.

In fact, when we do a χ2 minimization, we assume a statistical
model for the data, specifically that each measurement lobs,k was
drawn from a Gaussian distribution. The width of this distribution
is commonly assumed to be known and approximated by the
observational error. Only the mean, which is given by lmod,k has
to be determined in the modelling process. Hence, our statistical
model is completely determined when the lmod are known, which is
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the case when the fi are specified. For this, we do not even need to
assume a gravitational potential or mass model. And up to this point
one could indeed formulate a single, global dynamical phase-space
model with the fi being independent free parameters.

However, one issue with such a phase-space model is that arbitrary
distributions of the fi are of little interest, because most of them will
be physically unrealistic or even unphysical. Besides the constraint
fi > 0 (positive phase-space density) another crucial requirement is
given by the fact that we are only interested in equilibrium solutions,
or more specifically, in solutions that represent a stationary state.
The Jeans Theorem then implies that two phase-space cells i and
j that happen to be located along the same orbit necessarily have
to carry the same fi = fj. It is this constraint – that the phase-
space density is constant along orbits – which gives equilibrium
solutions of equation (1) the form of orbit superpositions and allows
us to use orbits as building blocks for the models. In practice,
thus, the Jeans Theorem introduces many, many nonlinear equality
constraint equations for our statistical model if we formulate it on the
fundamental level of the fi. These equations require the assumption
of a gravitational potential and will change as soon as the parameters
of the assumed mass distribution (like M• etc.) will change: the
equilibrium distributions depend on the mass structure. Hence, the
set of feasible points, i.e. the set of fi that fulfil the constraint equations
will change as well. This shows that the selection parameters are not
free parameters in the same sense as the fi because they are required to
define the constraint equations that regulate the domain of the model.
In fact, when these constraint equations change, one effectively deals
with a different statistical model with a potentially different model
complexity.

The above chain of arguments can be applied to any parameter
that affects the gravitational potential and, thus, the stellar orbits,
e.g. the stellar ϒ or the DM halo parameters. It also holds for the
inclination i, or more generally, for the viewing angles. One reason
is that assuming different viewing angles changes the deprojection
and with it the stellar contribution to the gravitational potential. Even
if the latter is kept fixed, however, the (self-consistency) constraints
ddata = dmod imposed on the model’s stellar density do change (cf.
App. A). This, in turn, means that the set of feasible points changes
with the same consequences as discussed above.

Taking all this together it is clear that parameters like M•, ϒ , i and
the DM halo parameters on the one side and the orbital weights wi

on the other, do not ‘operate’ on the same level. It is conceptionally
helpful to categorize them into two different parameter classes:
selection parameters and minimization parameters. The selection
parameters define a family of models F (M•, ϒ, i, . . .). Each specific
set of selection parameters defines a member of this family, i.e.
a single statistical model for the measured LOSVDs. The free
parameters of such a member model, i.e. the parameters to be
minimized, are the orbital weights wi associated with the specific
set of selection parameters. From one model to another the wi

are assigned to different sets of orbits and they cannot be easily
interchanged with each other across different models.

As illustrated above treating the problem of finding the optimum
selection parameters as a selection of multiple distinct candidate
models is a straightforward approach, whereas a parameter es-
timation approach using χ2(M•, ϒ, i, . . . , wi) of a single global
Schwarzschild model is rather ambiguous due to the dependence
of the orbital weights on the selection parameters. Furthermore the
model selection framework is nothing but a generalization of the
parameter estimation via χ2 which would simplify to the latter if the
multiple (sub-)models would stem from a single, statistical model (cf.
Section 4). Similarly, the generalization of the Bayesian framework

introduced by Magorrian (2006) to a (Bayesian) model selection
framework is straight forward and model selection criteria such as
the Akaike criterion can be derived from it by choosing a suitable
prior which penalizes flexibility (cf. Burnham, Anderson & Burnham
2002).

2.2 Identifying the optimum minimization parameters

Finding the optimal set of minimization parameters (i.e. orbital
weights wi) for a given set of selection parameters is in principle
a direct parameter estimation problem. The goal is to minimize

χ2 =
Nkin×Nvel∑

j

(
lobs,j − lmod,j

�lobs,j

)2

. (3)

where Nkin is the number of spatially resolved bins and Nvel

the number of velocity bins in a single spatial bin. However, in
Schwarzschild models one is often faced with the problem that the
free parameters wi (i.e. the number of orbits calculated for a given
trial mass distribution) outnumber the observational constraints lobs,k .
The related optimization problem is therefore underconstrained. In
order to be able to decide on a set of unique wi and simultaneously
prevent overfitting it is common practice to introduce regularization
in the fitting process. We do this by maximizing the entropy-like term
proposed by Richstone & Tremaine (1988):

Ŝ = S − αχ2 (4)

where α is a regularization parameter and S is the Boltzmann entropy
defined by:

S = −
M∑

i

wi · ln

(
wi

Vi

)
. (5)

Here, Vi is the phase-space volume of orbit i such that wi/Vi is the
phase-space density along the orbit. The entropy term in equation (4)
guarantees that the optimization problem has a unique solution for
the orbital weights w (cf. the extensive discussion in Neureiter
et al. 2021). The choice of equation (5) as the smoothing function
is somewhat arbitrary though. The motivation behind maximizing
equation (5) is that it yields wi ∼ Vi and, hence, fi ≈ const (in the
absence of other constraints). In other words, it tends to smooth the
corresponding physical phase-space distribution function rather than
the distribution of the wi, which are only parameters. Neureiter et al.
(2021) discuss how the more general form

S = −
M∑

i

wi · ln

(
wi

ωi

)
(6)

can be used to explore the full range of all (possibly degenerate)
solutions for a given set of kinematic observations.

The regularization parameter α determines the smoothness of the
model distribution function, meaning a small α implies the entropy
term in equation (4) dominates and the phase-space density is smooth,
while a larger α leads to a better fit but increases the possibility of
overfitting. This raises the question which amount of regularization is
optimal to represent the phase-space density of the observed galaxy.
Using Monte Carlo simulations of isotropic rotator models Thomas
et al. (2005) describes an approach to estimate the optimum α for
NGC 4807. However, such simulations would be required for every
newly modelled galaxy as the optimum α depends on the obtained
data and the underlying galaxy structure. In Section 7 we will come
back to this issue and provide a method to determine a more optimal
amount of smoothing by treating α as a selection parameter. In
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general, all the intrinsic parameters that control the behaviour of
the models can be treated as selection parameters. Although we will
not discuss it in full depth in this paper, another important selection
parameter besides α is the number of orbits used in the models.

In conclusion, the modelling process can be described using two
fundamentally different parameter layers that together define the
properties of an orbit model. For the primary parameter layer the
modeller has to choose a set of selection parameters, including mass
and library parameters, which define the fundamental building blocks
of a Schwarzschild model. In contrast, the minimization parameters
that form the second layer, i.e. the orbital weights, are estimated
using a form of parameter estimation for the given observational
constraints. In our case this parameter estimation is performed by
maximizing the entropy-like quantity in equation (4). This estimation
process of the minimization parameters is only concerned with
finding a good set of orbital weights. In fact, it is only possible if all
selection parameters required for the calculation of the orbits are fixed
and established, i.e. if a specific model out of the family of all possible
models has been selected. Consequently one has to construct multiple
trial models, if the goal is to optimize the selection parameters. To
this end one has to sample the selection parameter space, estimate the
best set of wi for each of the resulting orbits (using equation 4), and
compare the properties of each model afterwards. Since these models
consist of different building blocks they are fundamentally distinct
and one has to establish a framework to evaluate which one of them
results in the best approximation of the galaxy’s underlying structure.

As already stated above, the common approach to evaluate
different models FA and FB with different selection parameters M•,
ϒ , . . . based on �χ2 = χ2

A − χ2
B (cf. equation 3) is not optimal.

We will show that judging models solely in terms of their goodness-
of-fit can induce biases in the recovered selection parameters. The
next section demonstrates such a case for a selection parameter that
is very heavily impacted by this: The inclination of axisymmetric
models.

2.3 Biases in selection parameters: the inclination as an
example

We tested the Schwarzschild technique described in the previous
section by applying it to a simulated spherical galaxy. For this purpose
we created a number of mock LOSVDs obtained from an N-body
model of an isotropic spherical galaxy (Hernquist 1990). We sampled
the sphere with N = 109 particles and added Monte Carlo noise to
the corresponding LOSVDs. The underlying Hernquist density we
used had a total mass M = 50 × 1010 M�, a mass-to-light ratio
ϒ = 1 and an effective radius of 10kpc. The stellar kinematics
of the N-body was projected to a grid of 80 angular and radial
bins reaching out to approximately 2.3 effective radii. In total we
simulated 10 independent observations of this spherical galaxy by
adding random uncorrelated Gaussian noise with a standard deviation
of two per cent of the maximum LOSVD value in the respective
spatial bin. Quantifying this noise in terms of the Gauss–Hermite
coefficients (cf. van der Marel & Franx 1993) this translates to an
average error of �σ/σ ≈ 2 per cent and �h4 ≈ 0.02. The resulting
Gauss–Hermite coefficients of one of these mocks are shown in
Figs B1 and B2 (Appendix B). Without the Gaussian noise the N-
body models follow the semi-analytic Gauss–Hermite profiles of (cf.
Baes, Dejonghe & Buyle 2005) very closely, which means that the
odd Gauss–Hermite coefficients are zero everywhere, the velocity
dispersion σ has a maximum at intermediate radii and h4 is slightly
negative but increases significantly for r → 0.

Figure 1. Axisymmetric Schwarzschild fits to a spherical N-body simulation.
Dashed, grey lines represent fits to different mock data sets obtained by adding
random noise to the same original spherical model kinematic. The solid line
is the corresponding arithmetic mean. The number of kinematic data points
is Ndata = 2640. Even though the input model is spherical, the χ2 varies as a
function of the inclination assumed in the fit.

We modelled the spherical mocks with differently inclined, ax-
isymmetric Schwarzschild models using the same spherical Hern-
quist density that was used to create the N-body in the first place.
Thus, effectively we used the same orbit library for all models, yet the
orbits were projected under different viewing angles. The resulting
χ2 values as a function of the inclination are shown in Fig. 1.

All 10 mocks exhibit a significant bias towards edge-on models,
implying that the ability of an orbit model to fit data depends
on the angle it is observed at. The reason for this behaviour is
the axisymmetry of our Schwarzschild models: Every orbit in our
model exists in a prograde and a retrograde version. In the case
of an edge-on model the LOSVD of the prograde and retrograde
versions have opposite signs and are each a unique contribution to
the model’s LOSVDs in equation (A1). This is contrasted by a face-
on model where the prograde and retrograde versions are identical
in projection, thus effectively reducing the number of unique base
functions in equation (A1). This weakens the flexibility of our model
LOSVDs to fit the observations and consequently leads to a higher
χ2 of face-on models when compared to their edge-on counterparts.
Since this effect is intrinsic to the modelling technique, the edge-on
bias will also be present when non-spherical galaxies are modelled,
thus diminishing the possibility of successfully constraining the
actual inclination of a galaxy. Therefore we should aim to quantify
the variable model flexibility and use that to correct our results for
the inclination constraints.

3 MODEL FLEXIBI LI TY

In Section 2 we showed that evaluating Schwarzschild models based
on their χ2 can suffer from a bias if models with varying flexibility
are compared. Therefore we introduce two methods in Section 3.1
with the goal to estimate this flexibility, followed by an outline of
three model selection approaches in Section 4 which exploit this
information to improve the constraining power of our models.

3.1 Estimating the model flexibility in Schwarzschild models

In statistical modelling a model’s general ability to fit data is
quantified by its number of free parameters m, because every free
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parameter reduces the degrees of freedom of the χ2 distribution. This
means if we assume uncorrelated Gaussian noise and quantify the
deviations of N observed data points to a statistical model with m
free parameters then the expectation value of the respective χ2 will
be E(χ2) = N − m with variance Var(χ2) = 2(N − m). Therefore
it is only appropriate to compare models using χ2 if they have the
same number of free parameters.

For linear models without prior constraints the number of free
parameters is a well-defined property that can be quantified using
a linear algebra framework (e.g. Hastie, Tibshirani & Friedman
2013). However, our Schwarzschild models are nonlinear due to
the entropy term introduced in the estimation process of the orbital
weights (equation 4). But even if they were linear the estimation
of the number of free parameters would be a non-trivial task
because we demand the orbital weights wi to be non-negative.
This requirement is a prior constraint that limits the accessible
parameter space and thus reduces the flexibility of the models in
an unpredictable fashion (e.g. Andrae et al. 2010). This is because
the amount by which priors reduce the flexibility of a model depends
on the data that are getting fitted, i.e. in this case on the structure
of the galaxy under study and on the noise pattern of the data.
Therefore we need a more generalized approach to quantify the
actual flexibility of our Schwarzschild models, like the definition
introduced by Ye (1998) which extends to nonlinear models (see
details below).

We call the quantity describing this flexibility the number of
effective free parameters meff. Both, the nonlinearity and the non-
negativity prior affect the flexibility of the Schwarzschild models
in a complicated fashion. This prevents a direct calculation of the
model flexibility and we rely on bootstrap iterations to estimate meff.
After having fitted a Schwarzschild model to the observed LOSVDs
we start a number of K bootstrap iterations. In each iteration we add
random Gaussian noise to the original fit lfit. The standard deviation
of this artificially added noise is based on the observational error �l.
When lfit is a statistically ‘good’ fit, i.e. if it can quantitatively explain
the actual data in line with the estimated observational errors, then
the new bootstrap data lbootdata should mimic the observed data: each
bootstrap data point is redrawn from the (assumed) same distribution
as the corresponding real data point. If the model is not a good fit
(e.g. if the mass parameters are completely wrong) this assumption
is not valid, fortunately such models can be discarded easily and
are of no further interest. Given this bootstrap assumption (i.e. the
bootstrap samples are representative of the observed data), we can
estimate the flexibility of the original fit model by fitting each of the
K bootstrap data sets with the same selection parameters that were
used for the original fit. We denote bootstrap fits as lbootfit. We tested
two independent methods to estimate meff based on these bootstrap
fits. The first one measures the reduction of χ2 directly by calculating
the χ2 before the bootstrap fit

χ2
prior =

N∑

j=1

(
lbootdata,i − lfit,i

�li

)2

(7)

and after it:

χ2
posterior =

N∑

j=1

(
lbootdata,i − lbootfit,i

�li

)2

. (8)

We can then exploit the expectation values E(χ2
prior) = N and

E(χ2
posterior) = N − meff to estimate meff by averaging over all boot-

strap iterations K:

meff = 1

K

K∑

k=1

mk = 1

K

K∑

k=1

(
χ2

prior,k − χ2
posterior,k

)
. (9)

An alternative approach to estimating meff is to calculate:

meff = 1

K

K∑

k=1

N∑

i=1

1

�l2
i

(
lbootfit,k,i − lfit,i

) (
lbootdata,k,i − lfit,i

)
. (10)

If we assume that the expectation values of the bootstrap fit and
data are given by E

(
lbootfit,i

) = E
(
lbootdata,k,i

) = lfit,i, equation (10)
equals the sum of normalized covariances:

meff = 1

K

K∑

k=1

N∑

i=1

cov
(
lbootfit,k,i, lbootdata,k,i

)

�l2
i

. (11)

In this form meff is equivalent to the concept of generalized
degrees of freedom for nonlinear models developed by Ye (1998).
The above bootstrap approach is versatile and can be adopted to
estimate the flexibility of very complex statistical models such
as orbit superposition models. However, it comes at the cost of
computational performance as it requires several additional model
fits, i.e. identifying the optimum orbital weights (cf. Section 2.2) for
each of the constructed bootstrap data sets. Fortunately, though, the
bootstrap iterations do not require additional orbit integrations as
one can reuse the orbit library of the original model fit.

As a first proof-of-concept we applied our bootstrap methods
to simple polynomial function models where the number of free
parameters (the number of polynomial coefficients to be recovered)
can be counted. We found that equations (9) and (10) are equivalent
within the adopted numerical precision: both can be used to calculate
the number of free parameters correctly. For the more complex
Schwarzschild models we found a slight offset, which is likely
because the condition E(fi) = lfit,i is not fulfilled for all data points
when the orbital weights are forced to be non-negative but the
bootstrap noise is assumed to follow a Gaussian distribution (which
sometimes implies negative LOSVD values). Fortunately, this offset
is approximately constant thus our results do not depend on the
chosen estimation approach. For the rest of the paper, we use the
covariance approach (equation 10). We applied both estimates to the
modelling of the spherical toy galaxy introduced in Section 2.3 using
K = 50 bootstrap iterations. The resulting meff as a function of the
inclination are depicted in Fig. 2. We found that the behaviour of
χ2 is mirrored by the number of effective parameters meff: where
the χ2 gets lower, meff increases. In fact, the χ2 variation in Fig. 1
can be entirely explained by meff. This supports our hypothesis that
the apparent edge-on bias is caused by the varying flexibility of the
axisymmetric models with the inclination. Using the above bootstrap
estimation methods we also identified a multitude of other factors
influencing the general ability of a Schwarzschild model to fit a
given set of data. The most dominant other selection parameter is
the regularization value α. In Fig. 3 meff is shown as a function
of α for three edge-on orbit libraries with different number of orbits
Norbit. All three libraries are constructed with the correct gravitational
potential that was used to create the mock observation they attempt
to fit. A decrease in α suppresses the freedom of the orbital weights
and, thus, restricts the model’s flexibility. In the limit of α →
0 the model becomes completely rigid resulting in χ2 ≈ N. For
very large values of α both, χ2 and meff, appear to converge to a
constant value. We will come back to the regularization in Section 7.
An increase in orbits typically leads to a (nonlinear) increase in
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Figure 2. The number of effective parameters meff as estimated by equa-
tion (10) of the models shown in Fig 1. The unexpected χ2 variation in Fig. 1
can be explained by the varying model flexibility.

Figure 3. Top panel: χ2 as a function of the regularization parameter α

for three orbit libraries with different number of orbits Norbit. A set of 782
kinematic data points of a single mock of an edge-on toy galaxy is being
fitted by the orbit models. All orbit models are viewed edge-on and employ
the correct density and gravitational potential that was used to create the mock
data in the first place. Bottom panel: The same as the top panel but for the
number of effective parameters meff. More orbits and less regularization lead
to an increase in the intrinsic model flexibility, resulting in correspondingly
better fits.

model flexibility, resulting in correspondingly smaller χ2 values.
However, for very small α the orbit library with only 6240 orbits
achieves a better χ2 even though its intrinsic flexibility meff is
consistently lower than that of the other libraries. This is because
all orbit models are very rigid for such small values of α and the

kinematic data of the toy galaxy shown in Fig. 3 was generated using
a maximum entropy Schwarzschild model with exactly Norbit = 6240.
We will describe the construction of such mocks in more detail in
Section 5.1.

4 SELECTI ON PARAMETER OPTI MI ZATIO N
VI A MODEL SELECTI ON

The effective parameters quantify the model flexibility that is synony-
mous with the size of the parameter subspace accessible to the orbital
weights. In principle any selection parameter can influence this
freedom, meaning models with different sets of selection parameters
should not be compared without taking into account their actual
flexibility. While we showed how we can estimate this flexibility
meff in the last Section 3 the question remaining is how we can use
this information to choose the model with the best set of selection
parameters. Since this means we need to choose the ‘best’ model
out of a pool of models with different flexibilities the only option
is to work within a model selection framework. We tested three
different model selection approaches. The first and what we call
intuitive approach is based on the following assumption: if we want
to treat all models a priori equivalent then we should demand that
the expectation value of our evaluation statistic should be identical
for all models. Therefore we should minimize:

χ2 + meff (12)

because E(χ2 + m) = Ndata holds for all models that are able to
emulate the observed data. The second, information based approach
is to maximize the Akaike information criterion (AIC) or equivalently
to minimize:

χ2 + 2meff . (13)

This means that the AIC approach penalizes flexible models more
than the intuitive approach in equation (12) does. Since both of the
above approaches differ only by the relative importance of the model
flexibility meff, our third, more generalized selection approach is to
minimize:

χ2 + wmmeff (14)

where the factor wm is a free parameter calibrated using a set of
simulations described in the following Section 5. Equation (14)
includes the intuitive approach (wm = 1) and the AIC approach
(wm = 2) as special cases.

5 A PPLI CATI ON: I NCLI NATI ON R ECOV ERY
I N SI MULATED GALAXI ES

We created a number of toy galaxies with different inclinations
to test the model selection framework proposed in the previous
section. The goal was to recover their true inclination. Analytical
distribution functions for non-spherical models are mostly not very
realistic in terms of the orbital anisotropy they imply. Consequently
we decided to create the noise-free LOSVDs of our toy galaxies
on the basis of Schwarzschild models in realistically flattened 3d
mass distributions. This approach is very flexible as modifications
to the entropy term can be used to generate almost any desired
orbital anisotropy (cf. Neureiter et al. 2021). We cross-checked
the validity of this toy model generation on the Hernquist sphere:
the modelling results obtained using either LOSVDs from the N-
body-particle sampled analytic distribution function (Section 2.3)
or from suitable Schwarzschild models in the Hernquist potential
did not show any significant differences. Using this Schwarzschild
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Table 1. Table of tested toy galaxies with different intrinsic axis ratios q, angular momentum biases λ, and inclinations i. Beyond
that, we varied the velocity resolutions �vlos of the LOSVDs for some models. We used three different spatial grids for the projected
kinematic of these galaxies that are typical for modern observations with IFU spectrographs. The wide field FoV covers at least the
kinematics within the galaxy’s effective radius. The other two grids have smaller FoVs; however, even the smallest field comfortably
covers a hypothetical sphere of influence of a black hole typical for the size of such a toy galaxy. Furthermore, all three spatial grids
have increased resolution in the centre where such a sphere influence would be located.

Name Density Axis ratio q Angular momentum bias λ Inclination �vlos (km s−1) Spatial grid

Galaxy A Early-type 0.6 0.0 60◦ 76 Wide field
Galaxy B Early-type 0.4 0.0 70◦ 76 Wide field
Galaxy C Early-type 0.6 0.0 45◦ 76 Wide field
Galaxy D Early-type 0.6 0.5 60◦ 76 Wide field
Galaxy E Early-type 0.6 1.0 60◦ 76 Wide field
Galaxy F Early-type 0.6 0.0 60◦ 65 Wide field
Galaxy G Early-type 0.6 0.0 60◦ 54 Wide field
Galaxy H Late-type ∼0.2 1.0 55◦ 30 Intermediate field
Galaxy I Late-type ∼0.2 0.0 55◦ 30 Intermediate field
Galaxy J Late-type ∼0.2 1.0 55◦ 30 Small field
Galaxy K Late-type ∼0.2 0.0 55◦ 30 Small field

model construction we simulated the kinematics of both, late-type
and early-type galaxies. The former with maximum-entropy models
of a realistic mass distribution obtained by deprojecting the surface
brightness profile of a real disc galaxy and the latter with models of a
flattened Hernquist distribution. Table 1 is a comprehensive list of all
toy galaxies we investigated and their most relevant characteristics.
To create realistic mock observations of these toy galaxies the stellar
kinematics of the resulting orbit model must be projected to the sky.
To this end we projected the kinematics to spatial grids borrowed
from real SINFONI and MUSE observations (e.g. Mehrgan et al.
2019) and convolved them with the corresponding seeing. For the
early-type galaxies we used a Voronoi grid that covers a large field
of view (FoV) and extends well beyond the toy galaxy’s effective
radius. To project the late-type galaxies we used regular grids with
a smaller FoV but higher spatial resolution. The FoV is still large
enough to cover the sphere of influence of a hypothetical black
hole with a mass typical for the respective galaxy. We simulated
10 independent observations of each toy galaxy by adding random
uncorrelated Gaussian noise with a standard deviation of two per cent
of the maximum LOSVD value in the respective spatial bin (cf. Sec-
tion 2.3). Since we generated rotation in some of the toy galaxies (see
below) not all of them intrinsically represent a maximum-entropy
state.

After the addition of noise, all resulting mock observations
were modelled with Schwarzschild models using 6240 orbits and
a regularization parameter of α = 1.67. For our toy galaxies this
regularization value was large enough to ensure that χ2(α) has
roughly converged to a constant value, in other words the flexibility of
the respective models has plateaued and a further increase in α does
not improve the goodness-of-fit significantly. To recover the mock
galaxies’ inclinations, we had to model them under different assumed
viewing angles. To do so, we projected the true intrinsic density
of each toy galaxy on the sky and deprojected the resulting mock
images assuming the various inclinations probed by the dynamical
models. For these deprojections we used the Metropolis-Algorithm
of Magorrian (1999). It is usually not required to probe every viewing
angle as not all inclinations are necessarily compatible with a given
photometry. In axisymmetric systems in particular the observed
flattening on the sky determines a minimum possible inclination
that corresponds to an infinitely thin distribution. But even for triaxial
galaxies the range of plausible viewing angles can be narrowed down
(cf. de Nicola et al. 2020).

5.1 Simulated galaxies

The early-type toy galaxies have a mass-to-light ratio ϒ = 1 and are
based on the flattened density profile:

ρ (a) = M

2π

ascale

q

1

a(a + ascale)3
(15)

which is similar to the Hernquist sphere (cf. Hernquist 1990). The
variable a parametrizes the spheroidal isodensity surfaces. While
not all early-type toy galaxies have the same intrinsic axial ratio q,
their total mass M = 5 × 1011 M�, effective radius reff = 10kpc and
distance d = 141.8Mpc are always the same. The density for the
late-type toy galaxies was obtained by deprojecting the photometry
of a real late-type galaxy (NGC 3489, cf. Nowak et al. 2010). Beyond
that we also borrowed the assumed inclination (i = 55◦), distance
(d = 12.1Mpc) and seeing from said galaxy for the set-up of the
late-type galaxies.

After establishing the density distribution for each galaxy
we generated its kinematics by constructing maximum-entropy
Schwarzschild models based on this density. The kinematics of
the models were then projected on to the sky and convolved with
realistic spatial point spread functions (PSF). The (non-parametric)
LOSVDs for the early-type galaxies were projected on to a set of
34 Voronoi bins using the method of Cappellari & Copin (2003). To
make the mock data as realistic as possible, this observational set-
up and the respective PSFs were borrowed from real SINFONI and
MUSE observations of a massive elliptical galaxy (ESO 325-G004).
The mock SINFONI observations cover the inner 1 arcsec with high
enough spatial resolution to resolve a central supermassive black
hole while the corresponding MUSE observations encompass the
larger-scale kinematics of the galaxy out to about 2 half-light radii.
The typical size of these Voronoi bins varies with radius from about
∼ 0.1 kpc (or ∼ 0.17 arcsec) in the centre to ∼ 3 kpc (or ∼ 4 arcsec)
in the outer bins. An example Gauss–Hermite map for the MUSE
grid of one of the resulting mock observations is shown in Fig. B3
(Appendix B). For the projection of the Schwarzschild kinematics
of late-type galaxies we tried two regular grids with differently sized
FoVs (cf. Table 1) resulting in 30 and 70 spatial bins respectively.
For the PSF convolution we borrowed the observed PSFs of the
same late-type galaxy NGC 3489 that we used to create the intrinsic
density distribution.

All maximum entropy galaxies display characteristic features of
non-rotating flattened systems such as smaller observed velocity
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dispersion σ and h4 on the minor axis, but overall they behave similar
to the spherical toy galaxy of Section 2.3 in that their LOSVDs are
symmetric and have no net rotation. Since this is not representative
of most real galaxies (cf. Emsellem et al. 2011), we also modelled
rotating toy galaxies with the goal to investigate how this affects
the inclination recovery. We introduced rotation by exploiting the
symmetry of our axisymmetric orbit libraries: each orbit of our
libraries exists in a prograde and a retrograde version. In a maximum-
entropy model, the weights of the two orbits in a prograde–retrograde
pair, denoted by w+

i and w−
i , are identical and consequently the orbits

cancel each other’s rotation signal. We can simply manipulate this
prograde-retrograde balance to create a toy galaxy with net rotation
by reassigning new orbital weights:

ŵ+
i = 1 + λ

2
· (w+

i + w−
i ),

ŵ−
i = 1 − λ

2
· (w+

i + w−
i )

(16)

where the free parameter λ ∈ [−1, 1] biases the total angular
momentum Lz along the library’s symmetry axis. For λ = 1, only
prograde orbits contribute to the observed kinematics, resulting in a
maximum positive rotation signal, while λ = −1 implies a maximum
negative rotation signal as only retrograde orbits are populated. We
can also recover our original non-rotating, maximum entropy model
by choosing λ = 0. Using this weight manipulation we created two
rotating mock galaxies (see Table 1) with an angular momentum
bias of λ = 1 (Galaxy E) and λ = 0.5 (Galaxy D). In addition to the
intrinsic axial ratio q, the inclination i and the angular momentum
bias of our toy galaxies we also experimented with a change of the
velocity binning �vlos by altering the maximum velocity vmax of the
LOSVDs while keeping the number of velocity bins nvel constant.

Qualitatively all simulated galaxies showed similar behaviour
when modelled under different assumed inclinations. Therefore we
first aim to outline this common behaviour using Galaxy D as a
generic case. This galaxy has an axial ratio q = 0.6 and was originally
projected at an angle i = 60◦, resulting in an apparent axial ratio
q′ ≈ 0.72. In axial symmetry then, inclinations i � 44◦ are not
compatible with the projected surface brightness and do not have to be
considered. When modelling the galaxy, we sampled the inclination
parameter linearly in the interval [50◦, 90◦] with a step size of
�i = 10◦.

Despite the fact that the galaxy is fairly inclined with a true
inclination i = 60◦, the χ2 of the Schwarzschild models suggest
that the edge-on model is the best fit on average (Fig. 4). This
undesired behaviour mirrors the situation in the Hernquist sphere
discussed in Section 2.3. It is caused by a drastic change in the
model’s flexibility with inclination, as can be seen in Fig. 5. The figure
shows that the number of effective parameters increases rapidly as a
function of inclination. Thus, the lower χ2 at higher inclination are
not necessarily an indication that the fits to the data are intrinsically
better at larger i. Rather, the χ2 gets lower because the model is
more flexible. In other words, the measure for which χ2 represents
a ‘good’ fit has shifted towards lower values. In fact, if we take the
varying model flexibility into account and compare the models within
our model selection framework, then the inclination bias disappears
(Fig. 6). For both, the intuitive and the AIC approach, we can recover
the galaxy’s true inclination on average very well. If any, then the
fits to the individual mock realizations seem to scatter slightly above
the true inclination for the intuitive approach and slightly below the
true inclination for the AIC approach, but on average any related
bias is very small, �i ∼ 5◦. Still, the distribution of the individual
fits suggests that even better results might be achieved with some

Figure 4. χ2 as a function of the assumed library inclination when modelling
toy galaxy D. Dotted lines: χ2 for the individual mocks. Solid line: The
arithmetic mean χ2 of all 10 mocks. The true inclination of the galaxy is i =
60◦. All models had 6240 orbits and a fixed regularization parameter α =
1.67.

Figure 5. As Fig. 4 but for the number of effective parameters meff of the
model fits to the mocks of Galaxy D that are shown in Fig. 4.

optimized wm ∈ [1, 2]. In fact, we repeated this analysis for all toy
galaxies of Table 1. For a representative subset of these simulated
galaxies, Fig. 7 shows the recovered inclination again averaged over
fits to ten mock data realizations (solid black lines) as a function
of wm. The figure shows that the behaviour of the fits to Galaxy
D described above is actually generic. For wm = 0 (simple χ2

minimization) we find that the ‘best-fit’ inclination is almost always
i = 90◦ or close to it. With increasing wm, the influence of the varying
model flexibility on the recovered inclination becomes stronger and
the ‘best-fit’ inclination moves away from i = 90◦.

For most early-type galaxies, the true inclination is very well
recovered with wm ≈ 1.5, while larger wm lead to a slight bias
towards too small inclinations. Similarly, the inclination recovery for
the late-type galaxies is improved when selecting models with wm >

1, however, optimum results are achieved in the Akaike regime (wm =
2). A bias towards too low inclinations is strongly suppressed for the
late-type toy galaxies as inclination angles significantly smaller than
the true i = 55◦ are excluded on the basis of the apparent flattening
in the photometric data.

Given the modelling results of all toy galaxies in Table 1 we
conclude that a simple χ2 minimization for the selection parameter i
leads to a very significant bias. This is caused by the fact that edge-on
models are much more flexible than models with a lower inclination
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4608 M. Lipka and J. Thomas

Figure 6. Similar to Fig. 4 but for a model selection framework. The absolute
minimum of χ2 + wmmeff has been subtracted for each mock, such that only
the relative differences � to this minimum is plotted. Top panel: Inclination
recovery using the ‘intuitive’ approach χ2 + meff → min (equation 12).
Bottom panel: Inclination recovery using the AIC approach χ2 + 2m →
min (equation 13). For both approaches we find that the apparent inclination
bias that results from a simple χ2 minimization (Fig. 4) disappears when the
changing model flexibility (Fig. 5) is taken into account. The true inclination
of Galaxy D is i = 60◦.

and, hence, yield much smaller minimum χ2 values. However, when
taking the differences in model flexibility into account by penalizing
each model with an additive term proportional to the effective number
of free parameters, the inclination recovery actually works very well.
With the new model selection framework, we could recover the
inclination of all toy galaxies to within �i = 5◦ on average.

The best results were obtained when weighting the influence of
the model flexibility with a proportionality factor of wm ≈ 1.5,
which is a value right between the ‘intuitive’ approach and the AIC.
We will come back to this in Section 7 where we also include the
regularization into the analysis.

5.2 Flexibility and underlying galaxy structure

A unique feature of the flexibility of nonlinear statistical models is
that the number of effective parameters can generally depend on the
underlying data generating process (cf. Ye 1998). In the case of our
dynamical models this means that the flexibility is not a universal
property of the model alone, i.e. a property of the orbit library, but
instead can additionally depend on the underlying galaxy structure.

This dependence becomes especially apparent when comparing
the dynamical modelling results of rotating and non-rotating galaxies.
We investigated this by fitting mock data sets of a sequence of toy
galaxies which were identical except for the angular momentum bias
λ (equation 16). One toy galaxy was generated with λ = 0.0 and
represents a non-rotating maximum-entropy galaxy (Galaxy A in
Table 1). The two other toy galaxies were constructed to be rotating

Figure 7. Inclination recovery as a function of the weight parameter wm for
some of the toy galaxies of Table 1. Solid Line: The recovered inclination
averaged over fits to all 10 mock observations of each simulated galaxy. Grey
area: The corresponding 1σ level estimated from the mock sample. Dashed
Line: The true inclination of each toy galaxy. All simulated galaxies suffer
from a dominant edge-on bias when evaluated with χ2 (wm = 0). For the
early-type galaxies we find that a model selection with an intermediate wm ∈
[1.2, 1.8] achieves an optimum inclination recovery. For the late-type galaxies
a slightly higher wm → 2 appears to be optimal. However, all these results
depend on the regularization α as we will demonstrate in Section 7.

by setting λ = 0.5 (Galaxy D) and λ = 1.0 (Galaxy E). The resulting
(noise-free) rotation maps of the latter two toy galaxies are shown in
Fig. 8. After having added noise we analysed the three toy galaxies
with an identical orbit library and estimated the flexibility of the fits
using the bootstrap calculations of Section 3.1 above. We repeated
this for five different inclinations from i = 50◦ to i = 90◦.

Fig. 9 shows the resulting estimated number of effective param-
eters. Note that for a given inclination, the mock data of the toy
galaxies with different λ were fitted with exactly the same orbit
library. Despite this fact, however, the model’s ability to fit the data
changes with λ. On the one hand, we again see how the overall
flexibility of the model increases with i. On the other hand, however,
we also see that the more net rotation is present in the underlying
galaxy, the less flexible the model appears. We argue that the reason
for this dependency is the fact, that with increasing rotation the light
in the observed LOSVDs is more and more concentrated on either
positive or negative velocities. While the amount of light on one side
of the LOSVD therefore increases, it decreases on the opposite side
and more and more velocity bins in each LOSVD tend to carry only
little or even no light when the angular momentum bias λ is strong.
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Figure 8. The (noise-free) rotation maps of two toy galaxies with angular
momentum bias λ = 1.0 (top panels) and an intermediate λ = 0.5 (bottom
panels). Panels on the left side show the centre with the higher-resolution
data, panels on the right show the simultaneously modelled wide-field data.

Figure 9. The number of effective parameters meff estimated for axisym-
metric Schwarzschild models of rotating toy galaxies with different angular
momentum bias λ. For each toy galaxy, the results are averaged over 10
mocks and the regularization parameter was set to α = 1.67. Even though
models at the same inclination i were obtained with identical orbit libraries,
the number of effective parameters meff does not stay the same but decreases
with the angular momentum bias. This is true at any inclination.

After the addition of Gaussian noise such (nearly) dark velocity bins
can formally even carry a negative signal. Since we require the orbital
weights to be positive, such formally negative LOSVD values cannot
be fitted. Thus, because with more rotation more LOSVD bins are
prone to carry a negative signal due to noise, the model’s flexibility
as estimated by the number of effective parameters will shrink.

This correlation of meff with the rotation implies that the flexibility
of Schwarzschild models depends on the underlying phase-space
distribution function of the galaxy under investigation. The same
orbit library can be more responsive to one data set than to another.
This is in contrast to the flexibility of linear models where the number
of free parameters is independent of the underlying data generating
process (as long as no constraints on the free parameters are applied).
We conclude that the number of effective parameters of a given orbit

model should be estimated individually for each new fit. When mod-
elling the kinematics in the different quadrants of the same galaxy
separately, for instance, even if one samples the mass parameters
from the same parameter grid, the number of effective parameters
needs to be estimated separately for each fit in each quadrant.

6 BIASES IN OTHER SELECTI ON
PA R A M E T E R S

The dependence of χ2 on the model flexibility is most prominent
for differently inclined models, however, in principle any selection
parameter can suffer from biases introduced by a variable model
flexibility. We investigated this by modelling toy galaxy E with
different model inclinations and mass-to-light ratios ϒ .

The result is displayed in the top two panels of Fig. 10, which
show contours of χ2 and meff as a function of the mass-to-light ratio
ϒ and the inclination i, averaged over 10 mocks. In the direction
of the inclination we observe the edge-on bias established in the
previous sections. However, the contours reveal an additional bias
along the mass-to-light ratio axis. A simple χ2-minimization does
not result in a minimum at the true mass-to-light ratio ϒ true = 1.0
but instead is biased towards slightly larger ratios. The fact that
the χ2 behaviour is mirrored by the number of effective parameters
meff suggests that this increase in model flexibility causes the bias.
While this bias of the mass-to-light ratio is present for all modelled
inclinations, it appears to be most significant towards i = 90◦. Thus,
a model evaluation based on a simple χ2-analysis would not only
overestimate the inclination but would also misjudge the total mass
of the system.

We argue that the reason for this ϒ-meff-correlation is due to the
higher escape velocity in models with larger total mass. Orbits with
a higher escape velocity can potentially occupy velocity bins that are
unattainable at lower masses. Models at higher masses will therefore
be able to fit more LOSVD bins (if the LOSVDs are sampled out to
sufficiently large velocities). This means that they have an increased
model flexibility when compared to their lower ϒ counterparts.

If we take this effect into account and judge the dynamical models
within the model selection framework, then the recovery of the
original mass-to-light ratio and inclination becomes highly accurate.
This is shown in the bottom panel of Fig. 10 which shows the
constraints obtained with the calibrated model selection approach
(i.e. wm = 1.5 equation 14). Both inclination and mass-to-light ratio
biases have disappeared and the constraints are now tightly centred
around the correct model with 60◦ model and ϒ = 1. Similar to the
inclination an intermediate calibration weight of wm ≈ 1.5 proves
to be most successful in recovering the correct mass-to-light ratio.
The intuitive and the Akaike approach also manage to select the
correct model on average, however, their contours are slightly skewed
towards larger ϒ for wm = 1 and smaller ϒ for wm = 2.

The orbit models shown in this and the previous Section 5 were
modelled with a fixed regularization α. However, the constraining
power of the model selection framework for ϒ and i can be further
improved by treating the regularization parameter as an additional
selection parameter, as we will demonstrate in Section 7.

7 R E F I N E M E N T: T H E RO L E O F T H E
REGULARI ZATI ON PARAMETER

As mentioned in Section 2.2 the regularization parameter α is
important to control the smoothness of the orbital weights. However,
up until now we have simply chosen α such that χ2(α) has roughly
converged. In the following we will denote such a regularization
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Figure 10. Top panel: The χ2 distribution averaged over dynamical fits to
10 mock data sets of the flattened toy galaxy E with itrue = 60◦ and ϒ true =
1.0. Middle panel: The corresponding distribution of the average number of
effective parameters. Bottom panel: The model selection distribution with the
calibrated approach (equation 14 with wm = 1.5). The green dot locates the
parameters of the best model. A simple χ2 minimization leads to a bias in i
and ϒ because models with larger i and larger ϒ are more flexible. Model
selection removes this bias and allows to clearly identify the correct model.

parameter that was chosen using this convergence criterion as α∞.
For the modelling of the toy galaxies in Table 1 this happens for
α � 1, which motivated our somewhat arbitrary choice of α∞ =
1.67. This means we almost only considered the most flexible
models as candidate models, since χ2(α) has roughly converged
at this regularization value, meaning a further increase in α does
not significantly reduce χ2 further and the corresponding number of
effective parameters has plateaued (cf. Fig. 3). While this choice
guarantees a good fit to a given kinematic data set, it may not
be suitable to restrict our test only to models with such a large
α as they are prone to overfitting the data. And this, in turn,
could potentially weaken the constraints on the selection parameters.
Moreover, the optimal weight wm of the meff in the model evaluation

(cf. equation 14) could depend on α, meaning that a calibration found
for one data set of one galaxy may not be applicable to another
data set of another galaxy. It is common practice to use Monte
Carlo simulations of the galaxy under investigation to determine
its optimal smoothing (e.g. Saglia et al. 2000; Cretton & Emsellem
2004; Thomas et al. 2005; Morganti & Gerhard 2012; Neureiter et al.
2021). In order to avoid smoothing-induced biases in the models,
the mock data should be as realistic as possible and adapted to
the particular data set at hand (resolution, signal-to-noise, etc.). In
addition, since the optimum value of α will depend on the underlying
galaxy structure such simulations need to be repeated for every galaxy
anew. However, a more targeted approach that optimizes α directly
from the observed data may be advantageous as it would not rely
on the choice of mock galaxy that is required for the Monte Carlo
simulations.

For this purpose we again employed the concept of selection
parameters. Section 2.1 characterized selection parameters as those
that need to be specified to single out an individual model out of the
family of models F (M•, ϒ, i, . . .). The respective orbital weights wi

are its free parameters. In general, there may exist many distribution
functions (or equivalently vectors w) that satisfy the observational
constraints posed by χ2(w) for a given set of selection parameters.
The reason is that χ2(w) is not necessarily strictly convex (cf.
Neureiter et al. 2021). In practice, this issue is circumvented by
adopting a penalized maximum-likelihood estimation by adding a
penalty function, such as the entropy term in equation (5) that
makes the solution for the orbital weights unique. However, this
means out of all the allowed and statistically viable DFs only a
single, privileged DF is identified, a possible issue already pointed
out by Magorrian (2006). In the following we will show that our
model selection framework facilitates an evaluation of multiple
distribution functions compatible with a single set of M•, ϒ , i, . . .
if we extend the selection parameters to include the regularization
parameter α.

Which distribution function out of all the compatible DFs (or
w) is privileged by a penalized maximum-likelihood approach is
determined by the specific value of the weight parameter used for
the penalty function (in our case α). In that sense the regularization
parameter α is a prior that, like the selection parameters, constraints
the parameter space available to the orbital weights. Furthermore, like
models with different selection parameters, models with different α

also have varying number of effective parameters. In fact, α plays the
dominant role in determining the flexibility of a dynamical model, as
demonstrated in Section 3.1. Consequently, we may attempt to extend
the concept of selection parameters to include prior parameters, such
as α, that push the orbital weights towards certain solutions. The
regularization does not necessarily have to be the only such prior
parameter that is used to identify a specific DF out all the DFs
compatible with a set of selection parameters (M•, ϒ , i, . . . ). For
example, it is not necessary to use the phase volumes Vi of the orbits
within the entropy-term. Instead one could use a free ωi to bias the
solution towards a specific solution (cf. Neureiter et al. 2021). In
that case the ωi are simply another set of selection parameters that
could potentially be constrained by the establishment of candidate
models with different ωi. However, in our case the phase volumes
are not themselves independent selection parameters as they are
completely determined by the other selection parameters (M•, ϒ , i,
. . . ) that were used to create an orbit library. Therefore we focus on
the regularization parameter α that is used to control the smoothness
via the entropy term in equation (5).

If α can be thought of as simply another selection parameter,
it may be possible to constrain it using the kinematic data by
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Figure 11. The total deviation in the intrinsic first and second velocity
moments (equation 17) of fits to the non-rotating Hernquist galaxy (Galaxy
A) for different values of the regularization parameter α. The inclination and
mass-to-light ratio were fixed at their true values (ϒ = 1.0, i = 60◦). Larger
α imply less influence of the entropy term and lead to an overfit of the noise.
This increases the discrepancy between input model and fit. The lowest α

allow an almost perfect reconstruction of the input model.

constructing candidate models with various α, analogously to any
other mass or library parameter. While a recovery using only the
kinematic goodness-of-fit is not sensible as it would always favour the
maximum α models, it may be possible to constrain the regularization
by evaluating the models within a model selection framework that
takes into account the number of effective parameters. To investigate
this possibility we modelled 10 mock data sets of toy galaxy A again,
but this time we varied not only the two selection parameters ϒ and
i, yet also the regularization α. Then, as described in Section 5, for
each model defined by (α, ϒ , i) we estimated meff and selected the
best model via the general model selection approach χ2 + wm meff .

Considering that Galaxy A was created using a maximum-entropy
Schwarzschild model with α = 10−10 we would expect that an
optimal model selection approach should return a model with the
same α = 10−10 as the best model. The reason is that the orbital
weights are uniquely determined if (α, ϒ , i) are given. In general,
models obtained with the same ϒ and i but different α will have
different orbital weights and so, by construction, α = 10−10 should
return the weights closest to the input model. The regularization
parameter itself is not a physically relevant parameter but simply
a choice of prior that restricts the freedom of the orbital weights.
However, as a consequence it significantly impacts the form of
the resulting distribution function of a dynamical model and its
respective kinematic moments. Therefore one should ideally use a
regularization parameter that allows the best possible approximation
of the true, underlying kinematic structure. To quantify this we
characterized the difference between the underlying true orbit model
and a fitted model by the average root-mean-square deviations
(RMSDs) of the first and second-order velocity moments. Apart
from the deviations of the individual moments we also define a total
kinematic deviation:

�kin = RMSDv + RMSDσr
+ RMSDσt

(17)

Here v is the mean stellar rotation velocity of the model around
its z-axis, while σ r and σ t are the radial and tangential velocity
dispersions.

Fig. 11 shows �kin versus α when the inclination i and mass-to-
light ratio ϒ are fixed at the correct values. Obviously, the input

Figure 12. The mean (red) and median (green) regularization parameter of
the best models to a non-rotating Hernquist mock galaxy (Galaxy A) as a
function of the model-selection calibration parameter wm. For every given
wm the α of the best model selected from all the possible candidate models
with free selection parameters α, ϒ and i is shown. The dashed vertical lines
locate the model selection using the intuitive (wm = 1) and the AIC (wm = 2)
approach (cf. equation 12 and 13). The case wm = 0 corresponds to a simple
χ2 minimization and returns models with large α as the best ones. When
the number of effective parameters is weighted by wm = 2 (AIC), then the
models identified as the best ones have much smaller α. For each of the 10
mocks AIC only selected models with α ≤ 10−5. Such an α implies a very
close match to the input model (Fig. 11).

model is exactly recovered for the lowest α. Larger α values lead
to a larger discrepancy between the fitted velocity moments and the
ones in the input model. The reason is that with increasing α the
model starts to overfit the noise incorporated in the mock data. In
analogy to Section 5, where we used the accuracy of the inclination
recovery as criterion to decide upon the optimal weight factor wm

in χ2 + wm meff we can now also include α in the optimization of
wm. Fig. 12 shows the median and mean α values of the selected
models for each mock of Galaxy A as function of the calibration
weight wm.

Unsurprisingly the simple χ2 minimization selects the model
with largest sampled α, in this case 1.67, meaning the best models
overfit the noise and the recovered distribution function has a higher
degree of irregularity than the smooth input model. For larger wm

we approximate the input model better as the median α shifts from
1.67 to 10−7 for 1 � wm � 2. In the regime of the Akaike approach,
the selection framework yields 10−10 � α � 10−5. In terms of the
quality of the reconstruction of the internal velocity moments, any α

in this regime leads to an almost perfect recovery of the input model
(Fig. 11).

While the model selection framework with a variable α seems
to work very well for the mocks of Galaxy A, in particular the
Akaike approach, it may not be the most realistic set-up. For one
because the generating model for Galaxy A is a maximum entropy
model without any rotation, but mainly because one can generally
not expect to have the ‘true’ generating model among the tested
models, which in the case of Galaxy A is the model with selection
parameters i = 60◦, ϒ = 1.0, α = 10−10. Furthermore, the generating
α = 10−10 model of Galaxy A is also the model with the smallest
number of effective parameters and consequently the selected model
is always the generating model one as long wm is chosen big enough,
meaning that we only establish a lower boundary for the calibration
weight wm.
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Figure 13. As Fig. 12, but for the rotating toy galaxy D. In contrast to the
non-rotating galaxy, the model selection framework avoids maximum entropy
models (α = 0) here because such models would not allow an accurate
reconstruction of the galaxy’s net rotation induced by its angular momentum
bias λ = 0.5 (cf. Fig. 14).

Figure 14. As Fig. 11, but for the rotating mock galaxy D. The recovery
of the intrinsic kinematic moments is best at α = 10−3. This is exactly the
value that the model selection framework identifies as best in the regime of
the Akaike approach (Fig. 13).

For these reasons we additionally tested the approach with a
variable regularization on the mocks of Galaxy D, which is a rotating
toy galaxy with an angular momentum bias of λ = 0.5. In this case
the best regularization parameter is not known in advance and the
generating model is not necessarily among the tested models.

Fig. 13 shows the median and mean regularization parameter of
the best model of Galaxy D as a function of the calibration weight
wm. We find large α for wm � 1 followed by a steep falloff that
turns into a stable plateau for wm ∼ 2, similar to Galaxy A. However,
the optimal α for the Akaike approach is now at an intermediate
α = 10−3 and not where the models have the smallest number of
effective parameters. (Only for wm � 4 the approach tends towards
models that simply have the smallest number of effective parameters.
However, such large wm can easily be discarded because they lead
to unreasonably large χ2 � Ndata, i.e. they are unable to fit the mock
observations of Galaxy D).

The model selection framework χ2 + wm meff with wm ∈ [1.5,
4] suggests that the optimal amount of regularization for Galaxy D
is achieved with α = 10−3. It becomes evident from Fig. 14 that

models with this regularization of α = 10−3 are indeed the models
that reproduce the intrinsic velocity structure of Galaxy D best. This
demonstrates that the model selection framework χ2 + wm meff with
wm ∈ [1.5, 4] leads to an optimal recovery of the velocity structure
of Galaxy D. Less regularized models, while nominally achieving
a better χ2, overfit the LOSVDs and do not improve the recovered
velocity moments. On the other hand more regularized models with
α < 10−3 are not sufficiently flexible to be able to describe the
underlying non-maximum entropy distribution function.

Treating the regularization as an additional variable selection pa-
rameter within our model selection framework, instead of arbitrarily
fixing it to some value, does not merely affect the recovery of the
intrinsic kinematics but also improves the constraining power of the
other involved selection parameters. This is illustrated in Figs 15
and 16, which show the average, recovered mass-to-light ratio and
inclination of Galaxy D for different model selection frameworks
for two cases: (i) the often adopted approach where the smoothing
parameter is fixed to some value (Fig. 15, where α is fixed to 1) and (ii)
the more general case where α is a variable model parameter (Fig. 16).

As established in Section 6, a simple χ2 minimization results in
an overestimation of the mass-to-light ratio of about 3–4 per cent
and an edge-on viewing angle for both, the modelling with fixed
and the one with variable α. Only when the varying number of
effective parameters of candidate models are accounted for with the
model selection framework χ2 + wm meff , one can find the correct
selection parameters ϒ and i . The constraining power of the model
selection framework significantly improves if the regularization is
treated as a selection parameter. In addition, the results are more
stable with respect to the calibration weight wm. In fact, compared
to the case with fixed regularization, the Akaike approach yields
unbiased results when the amount of regularization is optimized
during the fit. This is further illustrated in the top panels of Fig. 17,
where we show the average recovered selection parameters i and ϒ

against the calibration weight wm for Galaxy A (left) and Galaxy
D (right). With optimized regularization, the model selection results
are stable beyond wm � 1.5, while modelling runs where we kept
the regularization to a fixed value developed a bias to less flexible
models beyond wm > 1.5. For the modelling with variable α in the
Akaike regime we further note a significantly reduced scatter of both
ϒ and i that appears to become smaller than our sampling steps.

Given the strong improvements on the constraints for the global
selection parameters, we now investigate the intrinsic velocity
distributions (the orbital anisotropy) under optimized regularization.
In Fig. 18, we show the total kinematic RMSDs �kin of the best
models to Galaxy A and D with respect to the kinematics of the
generating model. The figure also includes the RMSDs of the net
velocity v and the anisotropy parameter β = 1 − σ 2

t /σ 2
r .

For both galaxies the approach with fixed and variable regular-
ization are initially congruent for small wm � 0.3 as the model
selection is dominated by χ2 and consequently, even in the case
of variable regularization, models with α values as large as the
one that we assumed for the fixed regularization case are favoured.
When α is fixed, an increase of wm beyond wm � 0.3 counteracts
the inclination and mass-to-light ratio biases, while the recovery
of the intrinsic kinematics does not improve. For α ∼ 1 a ‘sweet-
spot’ 1.2 � wm � 1.5 appears, where the correct inclination and
mass-to-light ratio are obtained on average. This is in line with our
calibration of the optimal wm in χ2 + wm meff for α = 1.67 described
in Section 5. A further increase of wm overcompensates the mass-
to-light ratio and inclination biases, suggesting that the choice of the
specific model selection framework would be crucial when modelling
real galaxies.
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Figure 15. Constraints on the selection parameters i and ϒ of Galaxy D
for different model selection frameworks. From top to bottom: Simple χ2

minimization, the ‘intuitive’ approach χ2 + meff, the calibrated approach
χ2 + wm meff where wm is determined from simulations (cf. Section 5) and
the Akaike approach. In all cases, the smoothing parameter was held fixed to
α∞, such that χ2(α) has approximately converged to a constant value. The
green dot locates the best model in the respective model selection framework.
The true values for Galaxy D are i = 60◦ and ϒ = 1.0. As expected, the χ2

minimization leads to a biased result, the calibrated approach is best (because
the simulations to calibrate wm were made under the same assumptions for
α). When α is fixed, the Akaike approach also leads to biases in the selection
parameters, though these biases are smaller than the ones resulting from the
simple χ2 minimization.

Figure 16. As Fig. 15, but the constraints on the selection parameters i
and ϒ of Galaxy D are shown for the case where α is treated as a free
selection parameter. Compared to the case of a fixed α (Fig. 15) two important
differences can be observed: (i) the constraints on the selection parameters
have improved significantly and (ii) the results are stable, irrespective of the
exact value of the weighting factor wm in the model selection. In particular,
the Akaike approach leads to an unbiased model selection now.

Remarkably, the choice of the calibration weight is simplified
when the candidate models are optimized with respect to the degree
of regularization: the correct selection parameters are recovered for
a wide range of wm, including the Akaike wm = 2.0. Moreover,
the recovery of the intrinsic kinematics, i.e. the rotation and the
anisotropy in the second-order velocity moments, of both toy galaxies
have significantly improved by treating the regularization as an
additional selection parameter in the construction of the candidate
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Figure 17. The recovered selection parameters of Galaxy A (left) and Galaxy
D (right) using different model selection frameworks χ2 + wm meff . Dashed,
black line: The correct values for i and ϒ . Solid, red Line: Recovered ϒ and
i averaged over the 10 mocks of the galaxy if the regularization parameter
α is optimized like the other selection parameters during the fit. Dotted, red
line: The corresponding ±1σ error intervals. Solid, grey line: Recovered
properties when modelling with a fixed regularization α∞. This α would
be used if one adopts the χ2(α) → const. criterion to choose the amount of
regularization. Grey regions: The corresponding ±1σ confidence regions. For
models with fixed regularization, there is a relatively small range of wm which
lead to completely unbiased results for both, Galaxy A and D. Specifically,
the Akaike approach is not the optimal choice for weighting the meff. When
the regularization is optimized, however, the model selection results become
unbiased for a wide range of wm above ≈1.5 and recover the correct selection
parameters for both mock galaxies. Only when wm � 4 the results become
biased again. This suggests that model selection is optimal in the Akaike
regime as long as the regularization is optimized as well.

models. With the right model selection, the intrinsic anisotropy
can be recovered more accurately with uncertainties no larger than
�β ∼ 0.04 in the mean.

Simply fixing the regularization complicates rather than simplifies
the selection of the best candidate model and in the worst case
may even skew the results for other selection parameters. Therefore
dynamical modelling of galaxies with an a priori fixed amount of
regularization should be avoided if possible. For example, Thomas
et al. (2007b) show for their sample of Coma galaxies that whether
a galaxy is radially anisotropic or tangentially anisotropic is rather
independent of the assumed regularization. However, the strength of
the actual anisotropy, i.e. how much radial or how much tangential
the orbit distribution is, does indeed depend on the amount of
regularization applied in the models.

8 A R E A L G A L A X Y: DY NA M I C A L M O D E L L I N G
O F N G C 3 3 6 8

We now turn to the application of our model selection approach to
the real galaxy NGC 3368. This galaxy is part of the SINFONI black
hole survey (cf. Saglia et al. 2016) and was chosen by us as follow-up
of a previous analysis by Nowak et al. (2010).

Figure 18. Similar to Fig. 17, but for the recovery of the intrinsic velocity
moments of galaxies A (left) and D (right). Top panel: The total kinematic
Root-mean-square deviations �kin of the models selected with χ2 + wmmeff.
Middle panel: The corresponding RMSDs �β of the anisotropy parameter β.
Bottom panel: The RMSDs for the net rotation, �v . Both the anisotropy and
rotation are emulated well only if α is optimized simultaneously to the other
selection parameters and the best model is selected using χ2 + wmmeff with
a wm in the Akaike regime. For Galaxy D the Akaike approach with α as a
free selection parameter also selects models with intrinsic moments closer to
the true kinematics, albeit not as close as it is the case for Galaxy A.

Due to the fact that NGC 3368 is a disc galaxy, its inclination
can be estimated independently of the dynamical modelling. It is
therefore a useful test bed for the inclination recovery. The observed
ellipticity ε ≈ 0.37 of the outer disc implies a minimum inclination
of imin = 51◦ for an axisymmetric razor-thin disc. Assuming a typical
(intrinsic) disc axial ratio of q ≈ 0.2, NGC 3368 is expected to be
inclined at a slightly larger angle of i = 53◦ to project to the observed
ellipticity. Nowak et al. (2010) also estimated the inclination of NGC
3368 via the Tully–Fisher relation, which yields i ≈ 48◦.

In Section 8.1 we will provide a short overview of the imaging and
spectroscopy data. More details can be found in Nowak et al. (2010).
Section 8.2 reviews the modelling results obtained from a traditional
χ2 minimization at fixed regularization. Model selection results with
optimized regularization follow in Section 8.3.

8.1 Overview – photometric and kinematic data for NGC 3368

NGC 3368 is a double-barred spiral galaxy with a composite bulge
consisting of a larger pseudo-bulge and a smaller classical bulge (cf.
Erwin 2004). The galaxy is classified as a LINER2 (Ho, Filippenko &
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Sargent 1997). The activity is so weak that we do not expect it to
influence the dynamical modelling results. We assume that NGC
3368 lies at a distance of d = 10.4 Mpc (Tonry et al. 2001) where
1 arcsec corresponds to 50.4 pc.

The SINFONI kinematics of NGC 3368 were obtained with
the K-band grating in the 100mas resolution mode. The average
adaptive-optics corrected PSF had an FWHM of ≈0.165 arcsec.
Non-parametric LOSVDs were obtained from the CO bandheads
adopting the approach of Gebhardt et al. (2000). More details on the
data reduction process, AO correction, selection of template stars,
and the resulting kinematic maps of the galaxies can be found in
Nowak et al. (2010).

The photometry acquired for NGC 3368 is a combination of
different data sets: Sloan Digital Sky Survey observations (York et al.
2000) in the r-band were used to find the ellipticities of the outermost
parts of the galaxy’s disc. Intermediate radii of NGC 3368 are mostly
covered by a dust-corrected HST NICMOS2 F160W image and a K-
band (2.2 μm) image of Knapen et al. (2003) observed with the Isaac
Newton Group Red Imaging Device (INGRID). The photometry is
completed by the collapsed K-band data cube images taken with
the integral field spectrograph SINFONI at the Very Large Telescope
(VLT). For more detailed information on the image matching, seeing,
dust-correction and an isophote analysis see Nowak et al. (2010).

As noted before, the photometric bulge of NGC 3368 has a
composite structure. The central 2 arcsec are dominated by an
almost round and kinematically hot ‘classical’ bulge. Outside this
region a more flattened and kinematically cooler structure emerges:
the discy pseudo-bulge. Since the SINFONI FoV has a size of 3
arcsec × 3 arcsec, both components are relevant for the modelling. To
account for potentially different mass-to-light ratios in the respective
stellar populations, we deproject the classical bulge separately from
the pseudo-bulge and assign each deprojection its own mass-to-
light ratio ϒ . To this end, we adopt the photometric bulge–disc
decomposition of Nowak et al. (2010). It assumes that the discy
pseudo-bulge is the inner extension of the galaxy’s large-scale disc
and combines both to a single photometric disc component. The other
photometric component, respectively, consists only of the ‘classical’
bulge. In practice, the deprojections were again obtained using the
Metropolis-Algorithm of Magorrian (1999) without any shape prior.
Non-axisymmetric features in the photometric data, like bars and
spiral arms, are averaged over as described in Nowak et al. (2010).
We tested a grid of assumed inclinations ranging from i = 53◦ to i =
90◦. In the following we simply refer to the classical bulge component
as the bulge, and the pseudo-bulge + disc as the disc component.

8.2 χ2-modelling of NGC 3368

This section illustrates the results of the ‘traditional’ dynamical
modelling approach for NGC 3368, which is based (i) on evaluating
different mass models based on a pure χ2-analysis (i.e. assuming
meff = const) and (ii) on a fixed strength of the regularization. These
results are later contrasted to the model selection framework with
optimized regularization (Section 8.3).

For our final mass model we add a central SMBH to the two stellar
mass components:

ρ = M• · δ (r)

4πr2
+ ϒbulge · νbulge(i) + ϒdisk · νdisk(i), (18)

where νbulge(i) and νdisc(i) are the luminosity densities at assumed
inclination i. For the χ2 analysis of this section we considered only
two inclinations: i = 53◦ and i = 90◦. A denser inclination grid is
used for the model selection approach (Section 8.3). Even though

it seems likely that a considerable amount of the total galaxy mass
is contributed by a dark matter (DM) halo, the addition of a DM
component to this model of the galaxy centre is not required. Erwin
et al. (2018) demonstrated that the addition of a DM halo to a two-
component stellar model of (the inner parts of) a disc galaxy neither
improves the fit significantly, nor does it change the black hole mass
M• or bulge mass-to-light ratio ϒbulge drastically. It’s only that the
disc mass-to-light ratio ϒdisc of such a two-component model without
DM is larger than the ϒdisc of a mass model that does include DM
(and probably larger than the actual ϒ of the stars in the disc). This
is because the disc ‘absorbs’ the dynamical role of the ignored dark
mass, which leads to a ϒdisc that is biased high.

With the above mass model we constructed trial models by varying
the three traditionally relevant selection parameters that determine
the orbit library: the mass-to-light ratios of bulge and disc, and
the black hole mass. With the goal to achieve an efficient, yet
none the less sufficiently dense sampling of these parameters we
narrowed down the approximate location of the χ2 minimum with
an initial round of trial models that sparsely sampled a wide range of
mass parameters. Using the information gained from this initial χ2

minimization we decided for the following final sampling grid: The
black hole mass is sampled linearly in the interval [1.0 × 106 M�,
19.0 × 106 M�] with a stepsize of 2.0 × 106 M� and the bulge mass-
to-light ratio is linearly sampled 15 times in the interval [0.20, 0.90].
It turned out that the SINFONI FoV is too small (inner 3 arcsec of
the galaxy) to constrain ϒdisc. Therefore we decided to sample only
ϒdisc ∈ {0.2, 0.4, 0.6} to save computation time. This indeterminacy
of ϒdisc was already noted in Nowak et al. (2010). For the smoothing
we applied the old approach to set α = 1.67 guaranteeing that χ2(α)
has converged.

Estimating the statistical errors of the dynamical models is non-
trivial, mostly because unlike in our toy galaxies, the measurement
errors of real LOSVDs are strongly correlated (e.g. Houghton et al.
2006). If these correlations are unknown or neglected then the
calculated χ2 is systematically smaller than Ndata − meff (cf. Tables 2
and 3). The absolute χ2 values and, consequently, also the χ2 + 2 meff

significance intervals become inaccurate then. Ideally this issue could
be solved by taking the full covariance matrix of the observations into
account in the modelling, we plan to investigate this in the future.
Another way to circumvent the issue would be the modelling of
multiple observations of the same galaxy. Then one could calculate
the RMS of the recovered selection parameters, analogously to the
modelling of 10 different mocks of our toy galaxies (e.g. Section 5).
In practice, this is unfeasible. However, if the investigated galaxy is
perfectly axisymmetric then each quadrant provides essentially an
independent observation of the same underlying galaxy structure.
This simple approach of error estimation can also be adopted for
galaxies that deviate from axisymmetry, in which case the resulting
RMS will be increased by the systematic structural differences
between the quadrants (cf. Nowak et al. 2010; Rusli et al. 2013).

Fig. 19 illustrates the resulting χ2 constraints for the mass-to-light
ratios and black holes mass for both, the 53◦ models and the 90◦

models in the four galaxy quadrants. The models obtained under
an assumed inclination of i = 53◦ (motivated by the disc flattening
as described above) yield black hole masses M• ∈ [3 × 106 M�,
5 × 106 M�]. The formal average over the four quadrants is M• =
(4.0 ± 1.0) × 106 M�. However, in some quadrants black hole
masses of up to 13 × 106 M� are hardly ruled out when looking
at the detailed χ2 curves. The mass-to-light ratio of the bulge is well
constrained with an average value of ϒbulge = 0.59 ± 0.07. As already
mentioned, the disc mass-to-light ratio is essentially unconstrained
by the SINFONI kinematics. The χ2 constraints for the black hole
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Table 2. Best-fitting models according to a simple χ2 minimization. Columns 1 and 2: the modelled quadrant of NGC
3368 and the assumed inclination. Columns 3–5: K-band mass-to-light ratios ϒbulge, ϒdisc, and black hole mass of the
best-fitting model. Columns 6 and 7: the χ2 and χ2/Ndata of this model. Ndata = 945.

Quadrant i ϒbulge (M�/L�) ϒdisc (M�/L�) M• (106 M�) χ2 χ2

Ndata

1 53◦ 0.65 0.20 5.0 363.230 0.3844
2 53◦ 0.55 0.20 5.0 479.117 0.5070
3 53◦ 0.50 0.40 3.0 407.302 0.4310
4 53◦ 0.65 0.40 3.0 347.183 0.3674
1 90◦ 0.75 0.20 1.0 321.628 0.3403
2 90◦ 0.70 0.40 5.0 460.396 0.4872
3 90◦ 0.70 0.20 1.0 405.026 0.4286
4 90◦ 0.50 0.40 15.0 331.003 0.3503

Table 3. Selection parameters derived from the model selection approach with optimized regularization for each
quadrant of NGC 3368. The number of effective parameters meff has been weighted with wm = 2.0 as in the Akaike
information criterion and in accordance with the simulations in Section 7.

Quadrant α i ϒbulge (M�/L�) M• (106 M�) (χ2 + 2.0 meff )min

1 10−2 65◦ 0.7 3.0 861.02744
2 10−2 60◦ 0.4 11.0 934.158201
3 10−2 53◦ 0.6 3.0 882.207510
4 10−2 53◦ 0.5 5.0 812.338033

mass at i = 90◦ are much noisier than at i = 53◦. Averaged over the
four quadrants, we find M• = (5.5 ± 5.7) × 106 M� (with a more
than five times larger scatter than in the i = 53◦ case). In fact, neither
very small black hole masses M• < 1 × 106 M� nor very large ones
>15 × 106 M� can be ruled out at a significant confidence level.
While we do not observe such a strongly increased scatter in ϒbulge

we do see evidence for a slight shift towards larger mass-to-light
ratios when modelling the galaxy edge-on: ϒbulge = 0.66 ± 0.10.

In the case of NGC 3368 the observed disc ellipticity strongly
suggests that the models at i = 53◦ are more realistic than the ones at
i = 90◦, but we do not have such prior information about a galaxy’s
inclination in every case, in particular not if it is a generic early-type
galaxy. In that case one would be reliant on the χ2 values of the
differently inclined models. Table 2 shows the selection parameters
and corresponding minimum χ2 values of the best-fitting model for
each quadrant and inclination. In all quadrants, the edge-on models
have a lower χ2 value than the models at i = 53◦. In other words, if
NGC 3368 would be modelled without external knowledge about its
inclination a pure χ2 analysis would erroneously conclude that the
galaxy is seen edge-on, when, in fact, an independent inclination
measurement would indicate i ≈ 48◦–55◦.These results are not
surprising. In Section 5 we have seen that a simple χ2 minimization
tends to yield results that are biased towards i = 90◦. Moreover, in
Section 6 we have seen that this inclination bias comes along with
a noticeable mass bias (of the order of 10 per cent). Assuming that
NGC 3368 is seen under an inclination angle close to the expected
i = 53◦, than our χ2 analysis of NGC 3368 is fully consistent with
our expectations based on the simulated toy galaxies discussed in the
previous sections.

8.3 Model selection of NGC 3368

In Section 7 above, we have demonstrated that the most accurate
reconstruction of a galaxy’s mass distribution and internal structure is
achieved when using a model selection approach rather than a simple
χ2 minimization. Moreover, treating the regularization strength in a
similar way as other selection parameters turned out (i) to improve the

accuracy of the galaxy reconstruction and (ii) to reduce the sensitivity
of the results on the weight wm for the effective parameters meff. Here,
we transfer this approach to NGC 3368 and minimize χ2 + 2.0 meff .
The choice for the Akaike weight wm = 2.0 directly follows from the
results of Section 7. We adopt the same mass model (equation 18)
as for the χ2 analysis in the previous Section 8.2, consisting of a
central black hole, a disc and a bulge. Neglecting potential effects
of the deprojection degeneracy this implies that the orbit models
are completely determined by the five selection parameters M•,
ϒbulge, ϒdisc, i, α. However, in order to reduce the computation
time we restricted ourselves to models with a fixed ϒdisc =
0.4, since ϒdisc is almost unconstrained over the SINFONI FoV
(Fig. 19).

Fig. 20 shows that the optimal amount of regularization is well con-
strained by the data: within the Akaike model selection framework all
four quadrants of NGC 3368 are best modelled with an intermediate
regularization of α = 10−2. Fig. 21 shows the corresponding
constraints for ϒbulge, M• and i (all results are listed in Table 3).
Averaging the modelling results of the four quadrants we find that
the AIC estimation yields a black hole mass of M• = (5.5 ± 3.3) ×
106 M�, a mass-to-light ratio ϒbulge = (0.55 ± 0.11) M�/L�, and an
inclination angle i = (57.8 ± 5.1)◦. Compared to the results of the
simple χ2-minimization in Section 8.2 we immediately see that the
inclination bias has disappeared. The model selection approach with
optimized regularization yields an inclination that is consistent with
the inclination angle derived independently from the disc flattening.
This result was expected after the analysis of the toy galaxies above.
Still, it is somewhat astonishing given how small the FoV of the
SINFONI kinematic data actually is. However, this underlines the
power of the model selection approach to extract all the information
contained in the 945 measured LOSVD data points in each quadrant.
Another difference to the simple χ2 minimization is the fact that
the model selection approach yields a 10–15 per cent smaller ϒbulge.
Again, this is fully consistent with the toy galaxy results, where the
recovered masses were biased high by up to ∼10 per cent when a
simple χ2 minimization was performed, while there was no mass bias
in the model selection framework. The only significant difference to
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Figure 19. Left: χ2 constraints for the mass parameters of the orbit models
of NGC 3368 assuming an inclination of i = 53◦. Right: The corresponding
χ2 constraints assuming the galaxy is seen edge-on. We modelled the
kinematic data of the four galaxy quadrants separately [coloured curves;
the nomenclature of the quadrants is the same as in Nowak et al. (2010)].
For all four quadrants an edge-on model achieves a better fit than the more
inclined model.

the simulation results is that the scatter in ϒbulge of NGC 3368 is
not reduced in the model selection framework compared to the χ2

minimization. This could be caused by a multitude of issues:

(i) Systematic differences between the quadrants of NGC 3368
reflecting the galaxy’s intrinsic non-axisymmetry.

(ii) Inaccurate errors of the observed LOSVDs.
(iii) Negligence of the correlations between the measurements of

the same LOSVD at different line-of-sight velocities in the modelling
and bootstrap iterations.

(iv) A potential non-alignment of disc and bulge.

We used an updated version of our axisymmetric Schwarzschild
code for this analysis, compared to Nowak et al. (2010). Therefore,
the results of the pure χ2 analysis cannot be compared easily.
However, we note our black hole mass is slightly smaller than the
M• = (7.5 ± 1.5) × 106 M� quoted in that paper while our ϒbulge is
about 25 per cent larger. These small discrepancies could also partly
be caused by the different choice of mass parameter sampling and
regularization.

Figure 20. Constraints on the optimal smoothing for the orbit models of NGC
3368. At each α, we show the smallest achieved χ2 + 2.0 meff . Different
colours represent models of different galaxy quadrants and the minimum
χ2 + 2.0 meff of each quadrant has been subtracted. The optimal smoothing
is well determined in each quadrant.

After selecting a dynamical model with AIC one should always
confirm that the selected model can in fact reproduce the observed
data well as AIC only compares the models relative to one another but
makes no statement about their absolute quality. Fig. 22 demonstrates
this for the models of NGC 3368 by showing the major-axis
kinematics of the best AIC and χ2 models in relation to the observed
SINFONI data. The error bars for the SINFONI data are the 1σ

errors estimated from uncorrelated Monte Carlo realizations of the
non-parametric LOSVD data, thus, they are slightly underestimated.
Both, AIC and χ2 models, fit the data well. However, as one would
expect, the AIC model appears to be slightly smoother. It does not
react to outliers as much as the χ2 models do. Instead of a validation
by eye as done here for the major axis of NGC 3368, it may be
advantageous to cross-check the goodness-of-fit of AIC models more
systematically by confirming whether χ2 + meff ∼ Ndata holds for the
selected models (cf. the discussion in the next Section 9). However,
this is not a viable option as long as the correlations in the real
LOSVDs are not implemented in the calculation of χ2 and meff as
this causes both values to be underestimated.

9 D ISCUSSION

In the following we examine the statistical objective of AIC model
selection in the context of dynamical modelling and address potential
problems that may arise when estimating intrinsically degenerate
properties with AIC (Section 9.1). Subsequently we review ear-
lier studies attempting an inclination recovery using axisymmetric
models (Section 9.2) and discuss the implications for the mass
reconstruction when selecting models based on their χ2 alone
(Section 9.3).

9.1 Model selection and intrinsic degeneracies

The toy galaxy recoveries discussed in Sections 5 and 7 had in
common that the selection parameters under investigation had a
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Figure 21. Similar to Fig. 20, but here we plot the black hole mass (top),
bulge mass-to-light ratio (middle) and inclination i (bottom) against �(χ2 +
2.0 meff ).

unique ‘true’ value. In the model selection set-up, this true value
could be recovered in an unbiased way with high precision. In order
to assess how the model selection framework operates in a degenerate
case where such a true value does not exist, or where the data is
insufficient to constrain a selection parameter, it is useful to get back
to the example of the inclination recovery in a sphere (cf. Section 2.3):
in a kinematically isotropic sphere all viewing angles should be
equivalent. Fig. 23 shows χ2 + meff and χ2 + 2.0 meff versus the

Figure 22. The Gauss–Hermite coefficients along the major axis of NGC
3368. Grey: SINFONI observations (the error-bars are estimated neglecting
possible correlations in the LOSVD data; Red: Projected kinematics of the
best χ2; Green: Best model according to AIC.

inclination for the same N-body models as in Fig. 1 (cf. Section 2.3).
At each tested inclination we optimized the regularization strength
α as in Section 7. Apart from the regularization we only varied the
inclination, meaning that the orbit libraries are the exact same for all
models. In contrast to the non-spherical toy galaxies that we tested in
the previous sections, the AIC approach now appears to be biased, in
the sense that it prefers low inclinations although all viewing angles
should be equivalent (lower panel of Fig. 23). The ‘intuitive’ model
selection framework displays the degeneracy one would generally
expect for a spherical model: no inclination is preferred over the
other (upper panel of Fig. 23). We will come back to this below.

The reason why AIC assesses models of a spherical galaxy
differently depending on the inclination can be understood by
elaborating what the Akaike criterion is designed to achieve in a
more general, statistical sense. Coming from information theory
AIC estimates the information loss when modelling an underlying
structure/process with a statistical model and selects the model that
has the least information loss. The information loss of a statistical
model is generally quantified by the Kullback–Leibler divergence
(KLD) between the fitted model and the underlying (noise-free)
structure it is supposed to represent. Naturally, since the latter is
usually unknown, AIC is merely an estimate of the actual information
loss.

When transferring these considerations to the context of dynamical
models it is crucial to clarify what the statistical model and the
underlying structure actually are in this case. The data being fitted
by dynamical models are the observed kinematic data, implying
that statistically speaking the underlying structure are the noise-free
LOSVDs ltrue and not the galaxy’s distribution function or mass
structure. Analogously, the statistical model is not the orbit model
itself but is given by the LOSVDs lmod it produces (cf. Section 2).
The internal structure of the model, i.e. how one arrives at lmod, is
only of secondary concern when evaluating the models.
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Figure 23. Model selection results for the Hernquist sphere (cf. Fig. 1 for
the selection using only χ2). Dotted lines: The selected best models for the
individual mocks. Solid Line: The corresponding mean. Dashed line: The
number of kinematic data points. For this spherical galaxy AIC appears to
favour the models with the smallest inclination which also have the smallest
number of effective parameters. The χ2 + meff curves exhibit the inclination
degeneracy one would expect for a spherical galaxy: χ2 + meff ∼ Ndata.

What this means for the modelling of the isotropic N-body sphere
is that the AIC is supposed to minimize the differences between the
model LOSVDs and the true LOSVDs. As mentioned above, this
difference is quantified by the KLD from lmod to ltrue but can also be
illustrated more heuristically by the RMSD �l of the LOSVDs.

As shown in the top panel of Fig. 24, �l behaves indeed very
similar to χ2 + 2 meff (cf. Fig. 23): both have their minimum where
the orbit library is viewed close to face-on. In that sense the AIC
selection achieves exactly what it is intended to do, namely to select
the model that emulates the underlying LOSVDs best. That the true
LOSVDs happen to be represented slightly better at one inclination
than another is related to the design of our model. While the sphere
itself has no preferred viewing angles, our axisymmetric model does
have such a preferred axis. For example, while we have pairs of orbits
that only differ in the sign of Lz we do not have the equivalent pairs
of orbits that only differ in the sign of other angular-momentum
components. We expect that an orbit sampling using a 5d starting
space (Neureiter et al. 2021) will lead to a different behaviour with
respect to the assumed viewing angles in a sphere.

Irrespective of the question which particular inclination happens
to yield the best LOSVDs we can ask whether a selection parameter
(here: the inclination) is constrained by the data or not. As already
mentioned above, the top panel of Fig. 23 shows that χ2 + meff ∼
Ndata at all inclinations. This is exactly the expected behaviour when

Figure 24. Top panel: The LOSVD RMSDs of the orbit models for the
Hernquist sphere. Solid lines: The arithmetic mean of the 10 mocks. Dotted
line: The corresponding estimated 1σ errors. Models with α∞ are shown
in green and models where the regularization was optimized using AIC are
shown in black. These latter models are the same as in Fig. 23. Bottom panel:
As the upper panel but for the RMSD of the anisotropy parameter β. Selecting
models by their AIC values minimizes the information loss and leads to an
optimized recovery of the underlying LOSVDs, unlike a selection based on
χ2 alone which prefers edge-on models with α∞. For the spherical galaxy the
models that approximate the Hernquist LOSVDs best are at i = 10◦ and have
αoptimum = 10−2. However, at fixed regularization, improving the recovery of
the LOSVDs does not necessarily entail an improved recovery of the internal
kinematics as illustrated by the green lines.

the data does not constrain the exact value of i: For a viable statistical
model we expect E(χ2) = Ndata − meff (Section 3) and if this can be
achieved for all i, then the data does not constrain the inclination.
Among all these viable models the model selection picks up the one
with the smallest meff. This is a generic result, because when χ2 +
meff ∼ Ndata, then

χ2 + 2 meff ∼ Ndata + meff . (19)

In other words, when a selection parameter is not constrained by the
data and χ2 + meff ∼ Ndata over some extended interval, then the
model selection may be biased in the sense that it will pick up that
particular model inside the interval which has the lowest meff.

In terms of the selection parameter recovery such a bias is
undesirable. However, as we have seen above, it still comes along
with a reduction of the information loss in the statistical model.
One can therefore also ask how it affects other intrinsic properties
of the orbit model. Unsurprisingly, it does not necessarily entail an
improvement in these intrinsic properties either as they are also not
subject to the AIC optimization. However, in practice, it often does
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improve the situation. It should be noted that in general, a model’s
intrinsic properties (like the orbital anisotropy) are only meaningful
when a priori knowledge about a galaxy’s typical structure is added.
In principle, any lmod could be a good statistical model without the
need of secondary properties such as inclination, orbital weights
etc. (cf. Section 2). An improvement in such secondary properties
can only be achieved if a property correlates with an improvement
of the model LOSVDs, or in other words: if the property can be
constrained by ideal (noise-free) data. As an example, the bottom
panel of Fig. 24 shows the RMSDs of β analogous to the �l. Unlike
the model LOSVDs the anisotropy recovery does not necessarily
improve with the AIC model selection. For example, when α is not
optimized the anisotropy recovery worsens considerably by choosing
the more face-on models. However, as seen in Section 7, a substantial
improvement in the orbital recovery can be made by optimizing the
regularization, and in that case �β is approximately independent
of the inclination, as expected. In practice, therefore, intrinsic model
properties can be improved via the model selection even in a situation
where parts of the model are not well constrained.

We suppose that an approach similar to our model selection can
also be transferred to other modelling frameworks. For example, in a
Bayesian setting it may be worthwhile to marginalize over the entire
high-dimensional space of orbital weights (e.g. Magorrian 2006,
2014) and nuisance parameters (e.g. Bovy, Kawata & Hunt 2018)
given some suitable prior. In such a Bayesian setting the remaining
parameters which are not marginalized out, play a similar role as
the selection parameters do in our model selection framework. The
best set of (selection) parameters is then determined according to
the resulting marginalized likelihoods of different trial models and
will depend on the choice of the prior. Our results seem to make
a good case that a prior choice that aims to minimize the KLD of
the LOSVDs – such that the marginalized likelihoods rank models
equivalently to the Akaike model selection (KLD-prior, e.g. Burnham
et al. 2002) – is very powerful. It has the additional benefit of being
easy to implement even for complex models.

In summary, the AIC selection will always choose the model
with the least amount of effective parameters out of all models
that achieved a good fit. Often this can be very advantageous,
especially when determining the regularization parameter α from
the data (Section 7). However, in the case of degeneracies, when the
information contained in the LOSVD data is enough to constrain a
selection parameter only up to some interval, then the selection within
this degenerate interval can be biased with respect to the true values.
The fact that we never encountered any related bias in our flattened
toy galaxies for either i, ϒ , or α suggests that all these selection
parameters are well constrained by the kinematic observations of the
kind we tested: fully resolved LOSVDs over a field of view typical for
modern integral-field spectrographs. On top of that, secondary prop-
erties such as the anisotropy β are likewise well determined by this
kind of data. This is consistent with the recent findings of Neureiter
et al. (2021) in the triaxial case and shows how powerful orbit models
are if all the information contained in modern data is exploited.

9.2 Inclination recovery of axisymmetric galaxies

We are not aware of any systematic attempts yet to study the incli-
nation recovery of axisymmetric galaxies using orbit models. Early
works on M32, using a χ2 minimization, yielded promisingly good
constraints (i = 70◦ ± 5◦, Verolme et al. 2002). However, the galaxy’s
intrinsic axial ratio q = 0.68 ± 0.03 at this inclination is just slightly
different from the q′ = 0.73 expected for i = 90◦ and the errors were
estimated using the 3σ intervals of a �χ2 distribution with only three

degrees of freedom (one for each varied selection parameter). Hence,
the significance of the assigned inclination uncertainty is hard to
judge. A subsequent detailed modelling of the early-type galaxy NGC
2974 by Krajnović et al. (2005) yielded a similarly well constrained
inclination i = 65◦ ± 2.5◦ according to a χ2-minimization. Despite
the small statistical uncertainty, however, Krajnović et al. (2005)
concluded that the expected kinematic differences between models
at different inclinations are so small that systematics in the data
and/or in the models hamper a robust inclination recovery. Modelling
tests with a two-integral toy model designed to represent NGC
2974 also supported the conclusion that a determination of the
inclination is likely unfeasible. These studies did not exploit all the
information contained in fully resolved LOSVDs, but were based on
Gauss–Hermite expansions. Noteworthy, these early studies did not
exhibit an apparent edge-on bias that dominates the χ2 surfaces. In
comparison, our modelling of the toy galaxies and NGC 3368 were
visibly impacted by the greater flexibility of more inclined models.
Besides the galaxies/toy models presented in this paper, a dominant
edge-on bias was present in the axisymmetric modelling results of
NGC 4151 by Onken et al. (2007). They compared models at the
most likely inclination of the galaxy’s large-scale disc (i = 23◦) and
at i = 90◦. The edge-on models achieved a better fit. Gebhardt et al.
(2000) modelled NGC 3379 with inclinations ranging from i = 29◦

to 90◦ and found that the edge-on models are strongly preferred.
Thomas et al. (2007a) modelled mock data derived from a suite of
N-body binary merger simulations with differently inclined models
yet the edge-on model consistently fitted the mocks best. Thomas
et al. (2007b) modelled a sample of galaxies in the Coma cluster
assuming three different inclination angles per galaxy. Most of the
galaxies were found to be edge-on, but since the sample was selected
towards significantly flattened galaxies a potential inclination bias
was difficult to quantify. More recently Liepold et al. (2020) modelled
NGC 1453 using different assumed inclinations with the triaxial
Schwarzschild implementation of van den Bosch et al. (2008) in the
axisymmetric limit and found that the kinematics are fitted better the
closer the inclination is to an edge-on configuration.

The fact that some of the early studies did not experience a
noticeable edge-on bias could be caused by discreteness effects
or other systematics being more significant than the bias induced
by the model flexibility. For example, in early applications of the
Schwarzschild models less orbits were used than are typically used
now. Alternatively, the inclination bias could also depend on the
galaxy structure. For example, if a galaxy is highly flattened its
intrinsic structure might involve large intrinsic azimuthal velocities
(like in a rotating disc). Edge-on models might have trouble to
reach such large projected net velocities due to their rounder
intrinsic shapes unless the cos (i) factor in the velocity projection
overcompensates the lower intrinsic rotation (at fixed mass). In most
cases this would be no problem for edge-on orbit libraries as they
can usually follow the rotation signal by re-balancing the weights of
retrograde to prograde orbits or by increasing the mass. However,
if the edge-on model is already ‘at its limits’, for example if all
light contribution already comes from either retrograde or prograde
orbits, then it may become significant. We were able to construct
such extreme toy galaxies for which the edge-on bias (at fixed mass)
was weaker or even absent because the edge-on models were simply
not able to adequately fit the kinematic data and therefore the edge-
on bias was not a dominant feature in the χ2 surfaces. However,
we regard this explanation unlikely, since these extreme toy galaxies
came along with a positive (global) correlation between the projected
rotation velocity v and the Gauss–Hermite parameter h3, in contrast
to the observed anticorrelation between v and h3 in real galaxies
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(Bender et al. 1994; a positive correlation has only been observed
vary rarely and even then only in small areas of a galaxy, e.g. Guérou
et al. 2016).

Beyond the inclination in axisymmetric Schwarzschild implemen-
tations the viewing angles and associated shapes of triaxial systems
also often prove difficult to recover correctly unless the underlying
galaxy exhibits very distinct kinematic features (e.g. van den Bosch
et al. 2008). By modelling simulations using triaxial Schwarzschild
models Jin et al. (2019) find that the flattening of the intermediate
and minor axis are on average slightly overestimated, thus, biasing
the models to more spherical shapes. This bias may be responsible
for the large fraction of nearly spherical systems in a sample of 149
early-type galaxies modelled triaxially by Jin et al. (2020).

Unlike Schwarzschild models isotropic/anisotropic Jeans-models
often provide strong inclination constraints and kinematic maps
obtained from Jeans models are noticeably different when viewed
under different angles (cf. Cappellari et al. 2006; Cappellari 2008).
However, these constraints may be overly optimistic as Jeans models
only model the first and second velocity moments and are not as
general as Schwarzschild models as they rely on assumptions about
the velocity ellipsoid and anisotropy of the galaxy. The resulting
Jeans models are not guaranteed to correspond to non-negative phase-
space distribution functions and only a restricted subspace of all
possible non-negative distribution function compatible with a given
potential is sampled by Jeans models. These restrictions may be
advantageous in breaking the aforementioned inclination degeneracy
if the assumptions hold approximately valid for a given galaxy, but
if not then Jeans modelling could generate artificially constrained
inclination results.

While there do exist alternative methods to constrain the incli-
nation that are not based on dynamical modelling they are usually
only applicable to disc galaxies, meaning that the inclination and
consequently the intrinsic flattening of elliptical galaxies is often un-
determined. However, since viewing angles are necessary parameters
in the construction of any Schwarzschild model it is often simply
assumed that elliptical galaxies are viewed edge-on or one adopts
the inclination derived from Jeans models for the construction of
Schwarzschild models (e.g. Cappellari et al. 2006; Thater et al. 2019).
A successful recovery of the inclination with dynamical modelling
implies that the intrinsic 3d stellar mass distribution that corresponds
to the tested viewing angles results in gravitational potentials (and
thus the orbit models) that differ significantly enough to be detectable
in the model selection framework. This stellar mass/luminosity dis-
tribution is obtained by deprojecting the observed surface brightness
distribution for a given inclination. However, the deprojection of
axisymmetric systems is ambiguous as it is only unique in the special
case where the galaxy is viewed edge-on. For all other viewing
angles the luminosity density is underdetermined as there exists a
range of deprojections compatible with a given surface brightness
distribution and inclination (cf. Rybicki 1987; Rix & White 1990).
As demonstrated by Gerhard & Binney (1996) one can construct
many physically reasonable boxy and discy density distributions that
projected to the same surface brightness distribution for a given
inclination. This means there may exist many physically reasonable
deprojections that could be used for the construction of our orbit
libraries at a given inclination i < 90◦. Even though we obtained
the (non-parametric) deprojections used in this paper by applying
an Metropolis-Algorithm (cf. Magorrian 1999) which is able to
explore the full range of physically allowed deprojections, we only
picked a single ‘privileged’ deprojection per assumed inclination,
as is common in modelling applications to real galaxies. Given
our results are suggesting that it is possible to distinguish between

different inclinations and the differently flattened stellar distributions
associated with them, it may also be possible to further dynamically
discriminate between the many boxy/discy deprojections compatible
with a given surface brightness and inclination. This possibility of
breaking the (photometric) deprojection degeneracy using kinemat-
ics was explored before by Magorrian (1999) who has shown for two-
integral models that discs which are undetectable in the photometry
can leave easily detectable features in the corresponding kinematics.
We plan to investigate the deprojection degeneracy in the future using
our model selection framework.

9.3 Mass reconstruction

Similar to the inclination other selection parameters can be biased,
in particular mass parameters. For example we found the mass-to-
light ratios of the toy galaxies A and D to be biased high by about
3–4 per cent when evaluated with a χ2 minimization because their
intrinsic model flexibility is positively correlated with ϒ . In addition
to this explicit dependence on the meff we also expect that mass
parameters are implicitly affected if the galaxy is modelled assuming
the wrong viewing angles. Thomas et al. (2007a) discuss via the
tensor virial theorem how this depends on the intrinsic shape of a
galaxy. For example, the masses of oblate objects seen face-on are
typically underestimated, while the masses of prolate objects seen
end-on will be overestimated. In the triaxial modelling of the Milky
Way’s nuclear star, Feldmeier-Krause et al. (2017) find that the mass-
to-light ratio is positively correlated with the triaxial shape parameter
p (or the equivalent viewing angle) while the black hole mass only
varies slightly. However, the χ2 surfaces for both mass parameters
broaden as said shape parameter is increased. In the axisymmetric
case the dynamical modelling of NGC 4151 by Onken et al. (2007)
indicates a strong correlation of both, black hole mass and mass-
to-light ratio, with the assumed inclination. Our modelling of NGC
3368 only very tentatively exhibits such a correlation between the two
mass parameters M• and ϒ with the assumed inclination (Fig. 19),
however, we do notice an increased scatter when modelling the
galaxy edge-on. We generally expect that mass parameters which
are less constrained by the available kinematic data (often these
are the parameters of a dark matter halo or the mass of a central
SMBH) are more sensitive to varying model flexibilities and, thus,
are more likely prone to a bias. In multicomponent mass models
an additional complication arises from the cross-talk between the
various components (e.g. Erwin et al. 2018). Whether a specific
component could be over- or underestimated is therefore not entirely
clear. A more focused and systematic investigation with a large
galaxy sample or with multicomponent toy models could give better
insight. We plan to address these questions and also the triaxial case
in future papers.

1 0 S U M M A RY A N D C O N C L U S I O N S

When modelling the kinematic data of a galaxy to determine the
mass of its SMBH, the stellar initial mass function or the structure of
its dark matter halo, a huge number of trial dynamical models with
different assumed mass distributions have to be fitted to the data.
Then, based on the observations and the quality of the fit, one needs
to decide which of these models represents the true structure of the
galaxy best. We have motivated that the commonly used approach
to judge the models solely by their goodness-of-fit is often not well
defined. Moreover, we have shown that it can lead to substantial
biases in estimated galaxy properties. The reason is that the process
of identifying the best fit involves the comparison of different
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models with intrinsically different model flexibilities. In the case
of axisymmetric modelling this point is most apparent when trying
to recover a galaxy’s inclination, where it causes a dominant bias
towards edge-on models. If not corrected for, this effect inhibits the
possibility of constraining the inclination via dynamical modelling.
However, the issue of varying model flexibility is not contained to
the inclination alone, we demonstrated that it also introduces an
overestimation of galaxy masses.

Quantifying the flexibility of Schwarzschild models is non-trivial
due to various complications like nonlinearity or priors that restrict
the parameter space accessible to the orbital weights wi. We in-
troduced the concept of the number of effective free parameters and
presented two calculation methods which rely on bootstrap iterations.
Although computationally expensive, this bootstrap approach is
robust, flexible and can be applied to more general modelling
techniques. Once the model flexibility (i.e. the number of effective
parameters meff) is known, model selection techniques can be applied
to choose the best model out of a given set of fits.

We tested three different model selection frameworks, the ‘intu-
itive’ one, an information-based one using the Akaike Information
Criterion (AIC) and a more generalized approach with an adjustable
parameter wm. The only difference between the approaches is how
the model flexibility is weighted in the model selection process. The
‘intuitive’ approach considers models equivalent that have the same
reduced χ2 (χ2 + meff → min), the AIC weighs the effective param-
eters twice as large as in the intuitive approach (χ2 + 2 meff → min)
and yields the least flexible model out of all models with the same
reduced χ2. In the generalized approach (χ2 + wm meff → min) the
weight of the model flexibility is parametrized by wm. It includes the
other two approaches as special cases.

We applied these model selection schemes to realistic mock data
sets of a number of axisymmetric toy galaxies with the goal to
recover their inclination and mass-to-light ratio ϒ . We confirmed that
an evaluation based solely on χ2 always favours the edge-on orbit
models and is biased towards higher mass-to-light ratios. A model
assessment based on χ2 alone will limit the potential constraining
power of dynamical models, meaning that better kinematic data will
not lead to a corresponding improved accuracy in the estimated
galaxy properties. Model evaluation within a model selection frame-
work can correct these issues, enabling the recovery of the correct
galaxy inclination and mass with very small uncertainties.

In a second step we extended the model selection approach to also
encompass the strength of the entropy regularization that is applied
in the models. The amount of regularization is a crucial choice as it
can negatively affect the recovery of the intrinsic dynamics and the
stability of the calibration weight wm. This led to a further significant
improvement of the results. Based on the simulated toy galaxies we
found that

(i) the model selection not only returns always the correct masses
and inclinations but also returns the model that matches the toy
galaxy most closely in terms of its orbital dynamics;

(ii) while the best results of the model selection with fixed
smoothing required a wm ≈ 1.5 depending on the galaxy under study,
the best results with optimized smoothing were robustly obtained
always for the same wm = 2 (AIC);

(iii) the constraining power of the data improved, i.e. the confi-
dence regions of the derived galaxy masses, inclinations and orbital
anisotropies tightened significantly.

This suggests that, in order to achieve optimal results, one should
construct models by varying the degree of regularization among other

parameters and evaluate models with different selection parameters
using the information-based Akaike criterion.

With modern integral-field spectrographs on 10 m-class telescopes
it is possible to measure the LOSVDs of galaxies non-parametrically
at hundreds of positions spread over the galaxy on the sky (e.g.
Mehrgan et al. 2019). Our orbit models are designed to deal with the
full amount of information that is contained in these non-parametric
LOSVD fields. With the simulated toy galaxies that we used to
mimic such observations in a realistic fashion we could show that
orbit models allow to reconstruct galaxy inclinations, masses and
anisotropies with an uncertainty no larger than 1-2 per cent in mass
and �β ∼ 0.04 in the anisotropy. As long as the regularization is
optimized the viewing angle and consequently the intrinsic flattening
q of the toy galaxies are well constrained by an AIC framework with
an uncertainty smaller than the sampling size �i = 10◦ of the trial
models used here. This demonstrates the power of orbit superposition
models and the prospects of the model selection ansatz.

The edge-on bias in the χ2-minimization is also occurring for
the dynamical modelling of real galaxies, as demonstrated by the
modelling of the spiral galaxy NGC 3368. Even though the ellipticity
of the galaxy’s large-scale disc suggests a moderate inclination of
i = 53◦, edge-on models fit kinematic data obtained with SINFONI
systematically better than dynamical models constructed with i =
53◦. When the varying flexibilities are included, however, the
recovered inclination is in agreement with the observed ellipticity.
Specifically, when applying the full model selection with optimized
regularization, we find a black hole mass M• = (5.5 ± 3.3) × 106 M�,
a bulge mass-to-light ratio ϒbulge = (0.55 ± 0.11) M�/L� and an
inclination angle i = (57.8 ± 5.1)◦ in agreement with the independent
inclination estimation. The fact that we could recover the galaxy’s
inclination from just the SINFONI kinematics (which cover only
the inner ∼1 arcsec of the galaxy, roughly 5-10 times the sphere
of influence of the central SMBH) again underlines the prospect of
the model selection technique. The above Monte Carlo simulations
suggest that the accuracy of the involved selection parameters can be
significantly improved by modelling more extended, high-resolution
kinematic data. In addition, we suspect that a modelling that also
takes into account more accurate, correlated error patterns will further
improve the dynamical modelling. Thus, the obvious next step will
be to incorporate the full error correlation matrix of the observed
LOSVDs within the modelling procedure.

The model selection approach is versatile and may well be used to
optimize other intrinsic library parameters which impact the model
flexibility like, e.g. the number of orbits. We plan to investigate this
in a companion paper. Since the objective of the AIC selection is
to minimize the KLD of the statistical model (i.e. in our case the
LOSVDs) it does not rely on the internal structure of the underlying
model. Therefore the approach may be adopted for other dynamical
modelling techniques as well. It may even be possible that the
extension of the model selection ansatz to determine the optimal
smoothing based on data can be applied in other non-parametric
methods as well, e.g. in the recovery of non-parametric LOSVDs
(Thomas et al., in preparation), non-parametric deprojections (e.g.
de Nicola et al. 2020) and non-parametric source reconstructions in
strong gravitational lensing, etc.
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Guérou A., Emsellem E., Krajnović D., McDermid R. M., Contini T.,

Weilbacher P. M., 2016, A&A, 591, A143
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Thater S., Krajnović D., Cappellari M., Davis T. A., de Zeeuw P. T., McDermid

R. M., Sarzi M., 2019, A&A, 625, A62
Thomas J., Saglia R. P., Bender R., Thomas D., Gebhardt K., Magorrian J.,

Richstone D., 2004, MNRAS, 353, 391
Thomas J., Saglia R. P., Bender R., Thomas D., Gebhardt K., Magorrian J.,

Corsini E. M., Wegner G., 2005, MNRAS, 360, 1355
Thomas J., Jesseit R., Naab T., Saglia R. P., Burkert A., Bender R., 2007a,

MNRAS, 381, 1672
Thomas J., Saglia R. P., Bender R., Thomas D., Gebhardt K., Magorrian J.,

Corsini E. M., Wegner G., 2007b, MNRAS, 382, 657
Thomas J. et al., 2009a, MNRAS, 393, 641
Thomas J., Saglia R. P., Bender R., Thomas D., Gebhardt K., Magorrian J.,

Corsini E. M., Wegner G., 2009b, ApJ, 691, 770
Thomas J. et al., 2011, MNRAS, 415, 545
Thomas J., Saglia R. P., Bender R., Erwin P., Fabricius M., 2014, ApJ, 782,

39
Tonry J. L., Dressler A., Blakeslee J. P., Ajhar E. A., Fletcher A. B., Luppino

G. A., Metzger M. R., Moore C. B., 2001, ApJ, 546, 681
Valluri M., Merritt D., Emsellem E., 2004, ApJ, 602, 66
van de Ven G., de Zeeuw P. T., van den Bosch R. C. E., 2008, MNRAS, 385,

614
van den Bosch R. C. E., van de Ven G., Verolme E. K., Cappellari M., de

Zeeuw P. T., 2008, MNRAS, 385, 647
van der Marel R. P., Franx M., 1993, ApJ, 407, 525
van der Marel R. P., Cretton N., de Zeeuw P. T., Rix H.-W., 1998, ApJ, 493,

613
Vasiliev E., Athanassoula E., 2015, MNRAS, 450, 2842
Vasiliev E., Valluri M., 2020, ApJ, 889, 39
Verolme E. K. et al., 2002, MNRAS, 335, 517
Ye J., 1998, J. Am. Stat. Assoc., 93, 120
York D. G. et al., 2000, AJ, 120, 1579

APPENDI X A : BASI CS - CONSTRUCTI NG
S C H WA R Z S C H I L D M O D E L S

To derive the orbital structure of a galaxy or the mass of its central
supermassive black hole, stars and dark matter halo via dynamical
modelling, one starts from a set of photometric and kinematic
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observations. The photometric observations typically consist of mea-
surements of a galaxy’s surface brightness either from an isophote
analysis or directly from an image. Even though the photometric
information is intrinsically 2d in nature, we can always rearrange the
finite number of measurements into a 1d vector sbobs,i with i = 1,
. . . , Nphot data points and their corresponding errors �sbobs,i . The
kinematic observations consist of a large number of measurements
related to the LOSVDs lobs,ij ± �lobs,ij at i = 1, . . . , Nkin positions
spread over the galaxy on the sky (e.g. in Nkin Voronoi Bins). If the
LOSVDs are measured non-parametrically, which is the state of the
art today (e.g. Mehrgan et al. 2019), then in each bin on the sky we
have j = 1, . . . , Nvel data points that sample the respective LOSVD
over Nvel different line-of-sight velocities. For modern integral-field
spectrographs, the lobs,ij form a data cube and are 3d in nature. Still,
we can again rearrange the finite (though large) number of data points
into a 1d vector lobs,k or short lobs. Several modelling steps are required
to derive the mass distribution or internal structure of a galaxy from
an orbit superposition model based on these observations lobs and
sbobs.

First, a trial mass distribution has to be assumed. The correspond-
ing gravitational potential is calculated via the Poisson equation.
Then a set of orbits with representative initial conditions, called
the orbit library, is integrated in this potential and the properties of
all orbits are stored. It is necessary to sample the available phase-
space sufficiently dense with these orbits, thus their initial conditions
must be chosen with care. For a comprehensive description of
our orbit sampling, see Thomas et al. (2004). The orbits of the
library are then superimposed by giving each of them an adjustable,
non-negative orbital weight wi, akin to an occupation number that
represents the number of stars tracking the orbit. The non-negativity
constraint is imposed on these orbital weights to guarantee the
resulting phase-space distribution function of the orbit model is
positive everywhere. The adjustment of the orbital weights is done
such that the properties of the superposition emulate the photometric
and kinematic observations of the galaxy as good as possible in the
assumed trial potential. Here it turns out that the LOSVDs lmod,j of the
orbit superposition model are linear combinations of the individual
contributions of each orbit. In other words, if the contribution of
orbit i to the kinematic measurement j is ljorb,i , then the predicted
kinematics lmod,j of the whole orbit superposition model reads

lmod,j =
Norbit∑

i

wi l
j

orb,i (A1)

where the sum goes over the number of library orbits Norbit. In
compact matrix notation we can write lmod = Lorb · w, where Lorb

is the matrix with elements ljorb,i and w is the vector with the orbital
weights.

The 3d mass distribution ρ required in the first step is usually
unknown. A comprehensive trial mass distribution should include
the most important galaxy components. Commonly, the density is
composed as

ρ = ϒ · ν + M• · δ(r)

4πr2
+ ρDM (A2)

where the first term is the contribution of the stellar component
determined by the mass-to-light ratio ϒ and the 3d luminosity density
ν. The second term is a central supermassive black hole with mass
M• and the third term encompasses the contribution of the dark
matter halo, which can in itself be further parametrized, for example
by a Navarro–Frank–White profile (Navarro, Frenk & White 1996).
The 3d luminosity density ν is typically not a free parameter of this

mass model. Instead it is calculated by deprojecting the 2D surface
brightness distribution of the investigated galaxy, implying that ν

and consequently ρ depend on the galaxy’s assumed inclination.
Similarly as for the model LOSVDs it turns out that its intrinsic
3d luminosity density dmod is simply the linear combination of the
individual orbital contributions. In compact matrix notation we can
write dmod = Dorb · w, analogously to the model’s LOSVDs.

In detail, the few implementations of the Schwarzschild method
that have been developed differ considerably. Some, like ours, exploit
the information contained in the entire (though binned) LOSVDs
of the galaxy and orbit model, while others rely on Gauss–Hermite
expansions up to some finite Hermite order n (often n < 8). Likewise,
some implementations fit the observed surface brightness and/or the
deprojected density, while others – like ours – enforce full consis-
tency of the models through equality constraints for the deprojected
luminosity density ddata. Specifically, for our implementation, we
use a χ2 minimization to derive the best-fit orbital weights from
the lobs where the orbital weights must fulfil the equality constrain
ddata = dmod = Dorb · w to ensure self-consistency.

When modelling a galaxy, it is often one of the main goals to
determine its unknown mass distribution while the orbital weights are
not of primary interest. Therefore one typically postulates a number
of trial mass distributions and creates an orbit superposition for each
of them. Then, the final task is to pick up the ‘best’ model out of
this set of trial mass distributions. Usually, this is also done via a
χ2 comparison, which means that the model with the smallest χ2 is
considered to be the best representation of the galaxy.

APPENDI X B: EXAMPLES FOR K I NEMATIC
MAPS

Shown are the Gauss–Hermite coefficients up to h4 of the LOSVDs
of the spherical N-body (Figs B1–B2) and of toy galaxy D (Fig. B3)
which was created using Schwarzschild models with an angular
momentum bias λ = 0.5.

Figure B1. The mock Gauss–Hermite maps of a quadrant of the spherical
Hernquist N-body. Responsible for the deviations from spherical symmetry
is Gaussian distributed Monte Carlo noise that has been added to the N-body
data.
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Figure B2. As Fig. B1 but only the central 2 arcsec are shown. Towards the
centre the velocity dispersion drops while h4 increases (as expected for an
isotropic Hernquist galaxy, cf. Baes et al. 2005).

Figure B3. The kinematic map of the early-type toy galaxy D before the
addition of Monte Carlo noise. The spatial grid shown is typical for wide-field
kinematic data that extend beyond the galaxy’s effective radius. In addition
to the spatial bins shown here we simultaneously modelled bins with higher
resolution in the centre of the galaxy (cf. Fig. 8).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT

We analyse the stellar structure of a sample of dwarf ellipticals (dE) inhabiting various environments
within the Virgo cluster. Integral-field observations with a high spectral resolution allow us to robustly
determine their low velocity dispersions (∼ 25 km s−1) and higher-order kinematic moments out to the

half-light radius. We find the dEs exhibit a diversity in ages with the younger dEs being less enhanced
than the older, suggesting a complex star formation history for those dEs that recently entered Virgo
while others have been quenched shortly after reionization. Orbit-superposition modeling allowed

us to recover viewing angles, stellar mass-to-light ratios (with gradients), as well as the intrinsic orbit
structure. We find that the angular momentum of the dEs is strongly suppressed compared to ordinary
early-type galaxies and correlates with the environment. Flattened dEs are so because of a suppressed
kinetic energy perpendicular to their equatorial plane. Combining population and dynamical modeling

results, we find an age-dependent stellar initial mass function (IMF) or, alternatively, evidence for a
more extended star formation history for those galaxies that have had higher initial mass and/or
inhabited lower density environments. dEs appear to have a spatially homogeneous stellar structure

but the state they were ‘frozen’ in as they stopped forming stars varies dramatically according to their
initial conditions.

Keywords: Galaxy structure(622) — Galaxy formation(595) — Dwarf elliptical galaxies(415) — Virgo
Cluster(1772) — Stellar kinematics(1608)

1. INTRODUCTION

Dwarf galaxies with log10(LB/L⊙) ∈ [8 − 10] dom-
inate the galaxy census in the local Universe (Ohlson
et al. 2024). Within dense galaxy clusters, like Virgo

or Fornax, the quiescent dwarf elliptical galaxies (dE)
in this luminosity range are the most abundant type of
dwarfs (Sandage et al. 1985; Paudel et al. 2023). Still

their origin, evolution, cosmological role and relation to

Corresponding author: Mathias Lipka

mlipka@mpe.mpg.de

other galaxy classes still poses many questions. Like

their namesakes, the more massive elliptical galaxies,
dEs appear to be well approximated by featureless el-
lipsoidals without any substantial substructures which

have ceased star formation lacking sufficient gas reser-
voirs to form new stars. Furthermore, similar to these
giant early-type galaxies (ETGs) (Dressler 1980), the
dwarf early-types seem to follow a strong morphology–

environment dichotomy: dEs are found predominately
in dense cluster and group environments with fewer dEs
interspersed in the field. In contrast, late-type dwarfs of

comparable mass avoid these denser environments and
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inhabit almost exclusively lower density field environ-
ments (Binggeli et al. 1987; Geha et al. 2012).

Substantial evidence suggests that dEs (MB ≳ −18)
are physically distinct from the brighter giant ETGs and
should be thought of as a separate galaxy class with
its own unique formation channel. For example, dEs

differ in their location on the fundamental plane (Ben-
der et al. 1992), have almost exponential light profiles
(Kormendy 1985), and when investigated in detail of-

ten exhibit substructure such as faint spiral arms, blue
centers, or signs of tidal harassment (Jerjen et al. 2000;
Lisker et al. 2006b, 2007; Paudel & Ree 2014). In this

context dEs appear to be much more closely related to
the smallest galaxies in the ETG sequence: the dwarf
spheroidal galaxies (dSphs) with MB ≳ −13 which are
found as satellites of the Milky Way and M31 in the

Local Group.
These discrepancies to the giant galaxies in the ETG

sequence suggests a distinct formation scenario for dwarf

galaxies: dEs similar to their even less massive asso-
ciates dSphs, are believed to be the remnants of trans-
formed late-type galaxies (LTG), which have lost most
gas through quenching (Kormendy et al. 2009). In this

context some of the dEs may be better classified as Sphs
which form the extension of the S0-branch in parallel to
their irregular dwarf progenitors (Kormendy & Bender

2012).
This transformation from late-type to early-type may

have happened through a combination of processes in-

duced by interactions with the local environment such as
ram-pressure stripping (Gunn & Gott 1972; Lin & Faber
1983), starvation (Larson et al. 1980), and galaxy ha-
rassment (Moore et al. 1998), while some of the smallest

dwarf galaxies may even directly originate from tidal in-
teractions of more massive galaxies (Barnes & Hernquist
1992; Yang et al. 2014). Which and by how much these

processes are important is still a point of contention as it
is difficult to disentangle their effects. Furthermore, the
driving quenching mechanism may vary with the total
mass, age and environment.

To improve our understanding of where, when, and
how dEs have formed their intrinsic properties need to
be studied in more detail. For example, little is known

about the orbital composition of dwarf elliptical galax-
ies. Do they follow a similar correlation between flatten-
ing and anisotropy as intermediate-mass or very massive

early-type galaxies do (Cappellari et al. 2007; Thomas
et al. 2009b; Santucci et al. 2022)? Likewise, we do
not know much about the dark-matter (DM) content of
these galaxies. Do they follow the scaling relations of

disk galaxies (Kormendy & Freeman 2016) or do they
have denser DM halos, similar to ETGs (Gerhard et al.

2001; Thomas et al. 2009a)? Finally, new insight might
come from studying the shape of the initial stellar mass
function (IMF). In particular, comparison of the IMF

of dEs to that of LTGs could shed light on the ques-
tion whether the star-formation conditions in dEs and
LTGs were different from the beginning or whether their
evolutionary paths diverged only later after most of the

stars had already formed.
This study is part of a pair of papers with the over-

arching goal to recover the intrinsic mass and kinematic

structure of the dEs, investigate their formation, evo-
lution, and relation to other galaxy classes and what it
implies for cosmological structure formation in a broader

context. We have targeted a sample of dEs in the inter-
mediate magnitude range MB ∼ −17, i.e. fainter than
giant ETGs but still brighter than dSphs. All of them
are part of the Virgo cluster, but inhabit locally different

environments: ranging from the very center, over sub-
clumps, to the outskirts of the cluster. Primarily, we
analysed spatially resolved spectra obtained for these

dEs. Similar spectroscopic studies that are focused on
cluster dEs, studying their stellar population proper-
ties and projected velocities and dispersions, have been
conducted in the past (e.g. Geha et al. 2002; van Zee

et al. 2004; Paudel et al. 2010; Ryś et al. 2013; Toloba
et al. 2014; Scott et al. 2020; Bidaran et al. 2020). How-
ever, due to the low velocity dispersions and low sur-

face brightnesses of dEs previous spectra often had too
low resolution, covered the kinematics only along slits,
or had insufficient signal-to-noise to infer higher-order

kinematic moments beyond the rotation velocity and ve-
locity dispersion. Here, instead, we analyse spectra ob-
tained with the VIRUS-W spectrograph which achieves
sufficient spectral resolution (R = 7900 − 9000) and is

able to exploit the full 2D kinematic information avail-
able on the sky. The high signal-to-noise of our data
allows us to study the higher-order kinematic moments

beyond rotation and velocity dispersion in an unbiased
manner. This novel information is a requirement to go
beyond an analysis of the on-sky structure of the dEs

and infer their 3D structure with dynamical models. We
use sophisticated, orbit-based dynamical models to re-
cover the intrinsic structure of the galaxies (e.g. dark
matter halos, 3D orbit structure, black holes).

The current study presents the observational data we
obtained and outlines the information extraction tech-
niques we applied. In the second half of the paper we

present the first results which are focused on the stellar
component of the dEs. Among other things we examine
their stellar mass, stellar mass-to-light ratio gradients,
projected and intrinsic kinematic structure, ages and

metallicities as well as the form of the IMF. In a com-
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panion paper (in the following VW–II) we will present
the corresponding dark components of the dEs, i.e. the

dark matter halos and black holes, and discuss the im-
plications of our results in the broader context of ΛCDM
cosmology and galaxy evolution.

The current paper is organized as follows: In Section 2

we present the photometric and spectroscopic data sets
and describe how we processed them to obtain the input
for the dynamical models: the 3D luminosity distribu-

tion ν and the spatially resolved line of sight velocity
distributions (LOSVDs). We explain our SSP modeling
approach and we outline the dynamical modeling tech-
nique we employed, the Schwarzschild (1979) method,

and motivate our choice of its implementation and sam-
pling strategy. Then in Section 3 we present the on-
sky kinematic structure and SSP properties and investi-

gate their relation to the cluster environment. The 3D
stellar mass, mass-to-light ratio gradients, and intrinsic
anisotropy structure that was inferred using the dynam-

ical models are presented in Section 4. Finally, in Sec. 5
we use both the dynamical and SSP constraints in com-
bination to discuss their physical implications regarding
their IMF and star-formation history. The paper con-

cludes with a summary in Section 6. In App. A we
show an example of a typical LOSVD recovery from a
VIRUS-W spectrum. We compile and compare existing

kinematic and SSP results from the literature with our
results in App. B. In App. C and App. D we discuss the
robustness of the mass estimates from the SSP models

and show a supplementary IMF-metallicity relation. In
App. E we discuss each dE individually based on the
photometric and kinematic data we obtained. Two al-
ternative Figures to those in Section 3 are located in

App. F.

2. GALAXY SAMPLE AND DATA EXTRACTION

We investigate a total of 9 dwarf elliptical (dE) galax-
ies located in the Virgo Cluster which occupy the small

apparent magnitude range of mB ∈ [15.0, 13.5] mag
or in absolute magnitudes MB ∈ [−16.3,−17.8] mag.
Fig. 1 is a thumbnail gallery of the dE galaxies obtained

from the g, r, i images captured by the Sloan Digital
Sky Survey (Ahn et al. 2012). We follow the general
dE classification of Lisker et al. (2007), i.e. galaxies
that are sometimes classified as dS0 or have faint spi-

ral arms are also included in the dE class. The galaxies
were chosen such that (i) the sample includes as many
sub-classes of dEs as possible and (ii) different environ-

ments within Virgo are probed. Specifically, the sample
includes the more common nucleated dE(N) and non-
nucleated dE(nN) and the less common blue-centered

dE(bc) and disky dE(di) (Lisker et al. 2007). This

choice was done purposefully with the goal to identify
possibly different formation and evolution mechanisms
that may correlate with environment or morphological

substructure. Notably missing are visibly merging or
tidally disrupted dEs which are much rarer (Paudel et al.
2023). The sample dEs explore a range of g-band sur-
face brightnesses from µe ∼ 22.2 mag/arcsec2 down to

µe ∼ 23.3mag/arcsec2 measured at the stellar effective
radius re. The galaxy sizes range from re = 0.8 kpc
to re = 1.6 kpc (e.g. Ferrarese et al. 2006) which is

fairly representative of dEs in our magnitude range. Our
sample covers mostly the brighter end of the dE distri-
bution (e.g. Kormendy & Bender 2012; Paudel et al.
2023), missing fainter and more diffuse dEs, and, no-

tably, does not contain the even fainter ultra-diffuse
galaxies (UDGs) which sometimes are regarded as their
own subclass.

Table 1 lists some of the basic galaxy properties we
adopted for the dynamical modeling. The input data
required for the construction of the dynamical models

(Sec. 2.4) are the 3D stellar luminosity density ν and
the spatially resolved line-of-sight velocity distributions
(LOSVDs) of the stars. These need to be obtained from
photometric and spectroscopic data sets respectively. In

the following section we present the data sets we used
and outline the procedure to retrieve the luminosity den-
sity ν (Sec. 2.1) and the LOSVDs (Sec. 2.2). In Sec. 2.3

and Sec. 2.4 we briefly describe the (stellar population
and dynamical modeling) techniques we employed to ob-
tain the information about the structure of the dwarf

ellipticals.
In App. E we provide a summary of the morphologi-

cal peculiarities of each galaxy. To ease the identifica-
tion of individual galaxies we keep the same color-coding

scheme throughout the paper (see Tab. 1, Fig. 2, Fig. 15,
or Fig. 23 for the connection between color and Virgo
Cluster Catalog (VCC) labels). The basic properties we

derive throughout this work are tabulated in Tab. 2.

2.1. Photometry & Deprojection

To obtain a model for the deprojected luminosity dis-
tribution ν we draw on publicly available HST data. For

the majority of the galaxies we use photometry observed
with ACS/WCS in the F850LP and F475W filters cali-
brated in the AB system (cf. Sirianni et al. 2005). One

galaxy, VCC 308, has no recorded ACS data, and in-
stead we used WFPC2 observations available in F814W
and F555W filters. In the following we will abbreviate
these two filters with their very similar counterparts in

the Sloan Digital Sky Survey (SDSS) filter system: The
g- and z -band respectively. The HST data are not al-
ways as deep as one may wish, resulting in deprojections
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Figure 1. A imaging preview of the dE sample investigated in this study. Shown is the g, r, i image for each galaxy based on
publicly available SDSS data. We obtained the images with the help of Aladin (Boch & Fernique 2014).

that must be extrapolated to larger radii to cover the
full radial extent of a typical orbit model. Therefore,
in the case of VCC 1261 and VCC 2048, we chose to
re-utilize the more extended photometry of Kormendy

et al. (2009) and Kormendy & Bender (2012) instead of
the ACS data from the archives. These isophotes are
calibrated in the V -band and were extracted using a

combination of ACS and SDSS images.

Since the field of view (FoV) of ACS is significantly
larger than the size of the dEs, we were able to estimate
the background sky value within the science image by
calculating the median count in several sky boxes around

the galaxies. A good sky estimation is essential for the
recovery of the dark matter halos of the dEs. Since the
outskirts of the dwarfs are barely brighter than the typi-

cal sky background, a bad subtraction may significantly
distort the shape and slope of the resulting luminosity
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Table 1. Basic properties of the galaxy sample. From left to right: The Virgo Cluster Catalog (VCC) identification number
(Binggeli et al. 1985). The color identification used throughout this article. The morphological sub-classification following
Lisker et al. (2007) (bc: blue center, di: disk feature, N: classical dE with nucleus, nN: classical dE without nucleus). The
distance adopted from Blakeslee et al. (2009), if there are no distances available (other than from redshifts) we use the average
Virgo Cluster distance of 16.5 Mpc. The heliocentric velocity cz we measured from the spectra. The projected distance to M87
(assuming d = 16.5Mpc). The stellar mass we obtained. The photometric band we use for the modeling of the light distribution.
Effective radius (in the z-band), Sersic-index, and position angle all adopted from (cf. Ferrarese et al. 2006) who investigated
all galaxies in our sample except for VC 308 (for which we consulted Hyperleda (Makarov et al. 2014) instead). VCC 308 and
VCC 1861 appear almost perfectly round, therefore a robust PA is not given.

VCC ID Color Classification d [Mpc] cz[km/s] ∆rsky,M87[Mpc] log10(M∗/M⊙) Band re[”] ns PA [◦]

VCC 200 dE(N) 18.3 16 1.018 8.85 F850LP 13.12 1.933 −7

VCC 308 dE(bc) 16.5 1527 1.556 8.88 F814W 11.40 1.340 -

VCC 543 dE(nN) 15.8 962 0.905 9.37 F850LP 18.29 1.716 −53

VCC 856 dE(di) 16.9 1016 0.755 8.88 F850LP 16.70 1.317 80

VCC 1261 dE(N) 18.2 1861 0.466 9.44 V 20.13 2.135 −47

VCC 1528 dE(nN) 16.3 1614 0.343 9.01 F850LP 9.88 2.101 84

VCC 1861 dE(N) 16.1 636 0.795 8.88 F850LP 18.24 1.593 -

VCC 1910 dE(di) 16.0 241 0.818 8.85 F850LP 12.01 1.564 −49

VCC 2048 dE(di) 16.5 1096 1.320 9.38 V 12.64 1.973 19

Table 2. Some of the basic properties derived in this study (see text for details). Dark matter and super massive black hole
properties will be tabulated in VW–II. From left to right: The VCC identification of the galaxy. The stellar population age
(brackets indicate that value is the average of the two population ages we derived at around r = 2.5′′ and r = 7.5′′, respectively).
Similarly the average metallicity [Z/H], abundance ratio [Mg/Fe] and IMF parameter αIMF = Υdyn/ΥKroupa. The population
values for VCC 1910 are highlighted with a star because they may be compromised (cf. Sec. 2.3). The angular momentum
parameters λe/2 and λe within half and one stellar effective radius respectively. Values with a star had to be extrapolated beyond
the last kinematic data point. The total stellar angular momentum j∗. The inclination i derived via dynamical modeling. The
ellipticity ϵe/2 of the isophotes within re/2. The average cylindrical anisotropy parameters βz and γ.

VCC ID ⟨Age[Gyr]⟩ ⟨Z/H⟩ ⟨[Mg/Fe]⟩ ⟨αIMF⟩ λe/2 λe log
(
j∗[kpc km s−1]

)
i[◦] ϵe/2 βz γ

VCC 200 11.6 −0.67 0.23 0.485 0.208 0.211 0.957 90 0.189 −0.038 −0.193

VCC 308 4.3 −0.39 0.11 0.775 0.222 0.233 1.014 46 0.138 0.019 0.060

VCC 543 7.3 −0.39 0.24 1.319 0.375 0.352∗ 1.488 67 0.456 0.342 −0.005

VCC 856 8.8 −0.55 0.25 0.574 0.330 0.301∗ 1.719 32 0.093 0.333 −0.156

VCC 1261 7.5 −0.37 0.15 0.767 0.046 0.041∗ 1.085 65 0.275 0.410 −0.075

VCC 1528 6.0 −0.24 0.16 0.897 0.028 0.027 0.307 90 0.229 0.030 0.013

VCC 1861 9.6 −0.25 0.16 0.492 0.109 0.113 1.176 44 0.053 0.020 0.095

VCC 1910 3.6∗ 0.25∗ 0.12∗ 1.84∗ 0.126 0.101 1.020 90 0.199 0.135 0.012

VCC 2048 3.6 −0.20 0.22 2.80 0.256 0.225∗ 1.366 70 0.554 0.372 −0.401

distribution ν. In that case dark mass components of
the model will have to compensate for any missing or
excessive luminous mass in order to reproduce the cor-

rect combined gravitational potential. Furthermore an
accurate recovery of ν is important because it serves as
a boundary constraint for the stellar mass density in the
dynamical models (Sec. 2.4).

After subtracting the sky and masking problematic
regions we performed elliptical isophote fits for each

galaxy1. Where available we compared our isophotes
with previous measurements (Ferrarese et al. 2006) and
confirmed that we were reliably reproducing them.

The dynamical models we employ are axisymmetric
and therefore they require axisymmetric luminosity dis-
tributions that can reproduce the observed photome-

1 We implemented the isophote fitting using python, the code
made use of astropy routines (Astropy Collaboration et al. 2022).
While the isophote models allowed deviations from an ellipse, the
a4, a6 profiles were often quite noisy but consistent with zero for
the majority of the dEs.
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try. We deprojected each galaxy using the Metropolis-
Algorithm of Magorrian (1999), which allows us to ex-

plore the full range of axisymmetric solutions for any
given inclination i. For our sample, external inclination
estimates (e.g. using gas disks) are not possible and
we need to probe different inclinations in the dynamical

modeling itself. In practice one is limited to testing a
small number of deprojections otherwise the modeling
quickly becomes computationally unfeasible. To make

the modeling as efficient as possible we decided to choose
the inclinations i such that the corresponding intrinsic
flattening q(i) = b/a of the resulting luminosity densi-
ties are (roughly) spaced linearly in the stellar axis ratio

q. This maximizes the intrinsic physical differences of
the densities rather than the absolute difference in the
viewing angle itself. The strategy to sample the intrin-

sic shapes instead of viewing angles is not novel and has
found frequent use in triaxial modeling (van den Bosch
& de Zeeuw 2010; Walsh et al. 2012; Zhu et al. 2018; Jin

et al. 2019; Poci et al. 2019). For a thorough discussion
of this sampling choice see van den Bosch & van de Ven
(2009); Quenneville et al. (2022). We also took advan-
tage of the fact that the range of possible viewing an-

gles is a priori limited by the observed photometry (e.g.
de Nicola et al. 2020). In the axisymmetric case this
means we only need to sample the inclination starting

from some minimum allowed inclination imin (consistent
with a flat disk).

It is well established that axisymmetric deprojections

generally do not have a unique solution for a given view-
ing angle unless the inclination is exactly edge-on (cf.
Rybicki 1987) meaning different boxy and disky depro-
jections can result in the same projected photometry

(cf. Gerhard & Binney 1996). We decided to probe
one deprojection per inclination as the dynamical dif-
ferences between boxy and disky deprojections for our

dwarf galaxies are typically much smaller than they are
between deprojections at different inclinations. The de-
projections were chosen to be sufficiently smooth and
close to elliptical while still fitting the data adequately.

Table 1 shows the filter band we worked with to obtain
the deprojections for the dynamical modeling. Through-
out this paper we state all mass-to-light ratios, luminosi-

ties, etc. in this corresponding band.

2.2. Spectroscopy & LOSVD extraction

We took the spectra of the dwarf galaxies with
the integral-field-unit (IFU) spectrograph VIRUS-W

mounted to the Harlan J. Smith telescope at the Mc-
Donald Observatory. Table 3 summarises the various
observation runs. The 267 fibres of VIRUS-W, which

each cover a 3.2′′diameter on the sky, combine to a field

of view (FoV) of 105′′x 55′′. Since the velocity disper-
sion of dEs is generally very low, the instrument was
operated in its high resolution mode achieving a spec-

tral resolution of R = 7900 to 9000 (or 14 km s−1 to
16 km s−1) within the optical wavelength range from
4850Å to 5475Å (Fabricius et al. 2008, 2012). In App. B

we demonstrate that such a high resolution is essential
to study the low dispersions of the dEs. Previous stud-
ies with lower resolutions R < 5000 are often biased
towards too high dispersions (in some cases by up to

50%).
For each galaxy we obtained multiple dithered expo-

sures with a median seeing of 2.0′′. The offsets between

the different exposures in the dither pattern range from
1.7′′to 3.7′′. The small size of the dEs compared to the
FoV allowed us to perform the sky correction using the

science frames themselves. To reduce the data we used
a pipeline based on the ‘Cure’ and ‘Fitstools’ package
which was designed for the HETDEX project (Gössl &
Riffeser 2002; Hill et al. 2004; Goessl et al. 2006; Hill

et al. 2021).
From the dithered exposures a 3D data cube was gen-

erated, forming a regular grid of 1.6′′pseudo spaxels. We

binned the pixels further using Voronoi tesselation (Cap-
pellari & Copin 2003) with the goal of obtaining spa-
tial bins with an approximately uniform and sufficiently
large signal-to-noise ratio S/N . In the case of our dwarf

galaxies this proves to be difficult because they are rel-
atively small compared to the size of the fibres which
leads to a relatively large bin-to-bin S/N gradient even

after the Voronoi Binning. We found that bins with
a S/N ≲ 15 rarely provide stable and reliant LOSVD
shapes and exclude them from the further analysis. The

mean S/N of the useful Voronoi bins is listed in Table 3.
The stellar kinematics cover one effective radius re, the
sample median FoV size being 1.02 re (see also Fig. 2).

We derived LOSVDs from the binned spectra using

the spectral-fitting code WINGFIT (Thomas et al. in
prep.) which allows both a fully non-parametric and
also a Gauss–Hermite description of the LOSVDs (see

below). The LOSVDs are extracted from each of the
Voronoi binned spectra by convolving a model of the
LOSVD with a weighted sum of stellar templates. To
match the high-resolution of VIRUS-W we used the

ELODIE library of template stars in its low resolu-
tion version as they cover wavelengths from 3900Å to
6800Å with a resolution of R = 10000 (Prugniel &

Soubiran 2001; Prugniel et al. 2007b). The library con-
sists of spectra including stellar atmosphere parameters
with temperatures T ∈ [3000K, 60000K], surface grav-

ity log (g) ∈ [−0.3, 5.9], and [Fe/H] ∈ [−3.2, 1.4]. Indi-
vidual abundance ratios are not resolved in the library
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Table 3. Basic Information about IFU observation runs which we attained with the Harlan J. Smith telescope at the McDonald
Observatory (Sec. 2.2). From left to right: The Virgo Cluster Catalog (VCC) identification. The month and year of the
observation runs. The total exposure time. The total number of Voronoi-binned spectra that survived our restrictions (cf.
Sec. 2.2) and were dynamically modelled. The mean Signal-to-noise ratio S/N of said Voronoi bins.

VCC ID Runs (Month and year) Total exposure time[min] Nbin S/Nbin

VCC 200 Apr 2016, May 2017 1620 18 21.2 ± 7.1

VCC 308 Feb 2018, Mar 2018, Apr 2018 990 15 17.8 ± 3.3

VCC 543 Feb 2018 1410 16 27.0 ± 6.8

VCC 856 Feb 2014, Mar 2014 1050 18 21.9 ± 4.8

VCC 1261 Feb 2013, Apr 2013 630 45 33.2 ± 7.6

VCC 1528 Mar 2018 450 16 19.6 ± 5.1

VCC 1861 Mar 2014, Apr 2016 1050 29 22.0 ± 6.0

VCC 1910 Jun 2012 510 26 25.0 ± 7.0

VCC 2048 Apr 2012, Feb 2013 1050 36 42.9 ± 9.0

but expected to match the solar neighbourhood pat-

terns. This may result in template mismatch if both
metallicity and e.g. [α/Fe] differ significantly from solar
(Prugniel et al. 2007a). Fortunately dEs are expected

to have abundance patterns similar to those of LTGs
(Şen et al. 2018). Reassuringly, even the most non-solar
stellar population in our sample, e.g. the central popu-

lation of VCC 200 with [α/Fe] = 0.29 can still be fitted
well using the ELODIE library (see for example Fig. 21).
To minimize potential effects of template mismatch on
the LOSVD recovery we employed some of the strate-

gies discussed by Mehrgan et al. (2023), which includes
optimizing the number of polynomial orders for the con-
tinuum fit of the spectra and a preselection of template

spectra. For all dwarf galaxies we only fit absorption
features as we did not find any significant emission lines
within the VIRUS-W spectral range. We inspected each
spectrum individually and masked noise contaminated

regions near the edges of the spectral wavelength ranges
and near cosmic ray hits and sky lines that survived
the data reduction pipeline. Fig. 21 in App. A shows a

typical Voronoi-binned spectrum obtained with VIRUS-
W and the corresponding fit we obtained with the con-
volved model.

The aforementioned model of the LOSVD can be char-
acterized in two different forms. The first option is a
description using a suitable parametric function, typi-
cally a Gauss–Hermite series truncated at some high-

est non-zero order nGH (cf. van der Marel & Franx
1993). The second option is using a more general non-
parametric model with some smoothing penalty (e.g. a

second derivatives penalty). However, both cases suf-
fer from a similar problem: For Gauss–Hermite mod-
els it is unclear for which order nGH the series should
be truncated. While for the non-parametric models it

unclear how strong the smoothing penalty strength αS

should be. Both issues are essentially the same issue

of finding the right balance between overfitting and un-

derfitting the spectra: If nGH is too large (the penalty
strength αS too small) the model LOSVD can become
arbitrarily complicated, and the model will be overfit-
ting the noise in the spectra. In contrast, if nGH is

too small (the smoothing penalty αS too strong) the
LOSVDs will be overly smooth and will not emulate
the, perhaps more complex, structure of the underly-

ing stellar motions. Often this problem is passed over
by choosing a (hopefully) suitable nGH or αS or cali-
brating these factors with mock simulations (e.g. van

der Marel & Franx 1993; Ocvirk et al. 2006; Liepold
et al. 2020; Falcón-Barroso & Martig 2021). To avoid
this we derived a generalized information criterion AICp

(cf. Thomas & Lipka 2022) which provides a more sys-

tematic approach by minimizing the statistical informa-
tion loss. Defined as AICp = χ2 + 2meff it penalizes
the goodness-of-fit χ2 a model achieves with its effective

flexibility meff (see Lipka & Thomas 2021; Thomas &
Lipka 2022). One finds the optimum amount of model
complexity by comparing the AICp of model with differ-
ent degrees of smoothing αS (or nGH) with one another.

The AICp criterion is very general and allows us to com-
pare the performance of a Gauss–Hermite model directly
with non-parametric model descriptions, thus, allowing

us decide what the best way to describe the LOSVD for
each individual spectrum.

With this tool in hand we decided to employ the fol-

lowing strategy: For every Voronoi binned spectrum we
perform the kinematic extraction using both a Gauss–
Hermite parametrization and a non-parametric model
with various values of nGH and αS respectively. We

then calculate and compare the corresponding AICp for
each combination and choose the model that achieves
the minimum AICp to represent the LOSVD in the given

Voronoi Bin (cf. Thomas & Lipka 2022). To provide a
coherent input for the subsequent dynamical modeling
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we describe all models in the same velocity-binned form
no matter if the optimum model is a Gauss–Hermite

series or a non-parametric description. We estimated
the errors in the velocity bins for both model types
by re-fitting 100 Monte-Carlo realizations based on the
flux noise (assumed to be gaussian) in each wavelength

bin of the spectra. The errors in each velocity bin are
quantified as the standard deviation of these realiza-
tions. However, since a Gauss–Hermite expansion (by

construction) suppresses the error in the high-velocity
wings (cf. Fig. 22) we decided on the conservative ap-
proach to always adopt the larger error estimate of the
two (Gauss–Hermite error or non-parametric error) for

each of the velocity bins.
When comparing the non-parametric LOSVDs with

the corresponding ones derived from the optimized

Gauss–Hermite expansion in the same Voronoi Bin we
find that both are fairly consistent with each other, thus,
strengthening our confidence in the derived kinemat-

ics. A comparison of two typical LOSVDs derived from
the same spectrum once by fitting a Gauss–Hermite se-
ries and once by fitting a non-parametric description is
shown in Fig. 22. Only in the high-velocity tails, where

(depending on the maximum order nGH of the Gauss–
Hermites) the LOSVD signal tends to be suppressed,
we find minor differences between the models. This was

already recognized by Mehrgan et al. (2019). Broadly
speaking we find that in Voronoi bins with a relatively
high S/N the spectra are often preferred to be mod-

elled non-parametrically, while in bins with lower S/N
the AICp criterion tends to favor Gauss–Hermite expan-
sions with a smaller maximum order nGH (sometimes
even gaussian, i.e. nGH = 2). This is to be expected as

AICp is designed to prevent overfitting noise, i.e. if the
noise is more dominant than any underlying LOSVD
substructure it is preferable to obtain a smoother de-

scription of the main peak of the LOSVD than it is to fit
the noise. In Figs. 2 and 3 we show the Gauss–Hermite
representations of the final LOSVD data if one approx-
imates each LOSVDs a posteriori as a Gauss–Hermite

expansion2 with a fixed nGH = 4. This allows for an
easier comparison to literature values (App. B) which
usually only consist of the first two moments: the rota-

tion v and velocity dispersion σ. We note that the full
non-parametric LOSVDs that we used for the dynami-
cal modeling might differ slightly since moments higher

than h4 are not displayed. Similarly, Figure 3 shows the
Gauss–Hermite description of the LOSVD data when

2 We provide a supplementary table for each dE containing these
Gauss–Hermite moments, their errors, and pixel location.

compared to the corresponding kinematics of the best
dynamical model we found for each galaxy with the tech-
nique as described in Sec. 4. Within the errors, the dy-

namical models we constructed emulate the observations
well.

2.3. Single Stellar Population modeling

The stellar population analysis generally requires a
higher S/N spectrum than the kinematic extraction
we used to obtain the LOSVDs (Sec. 2.2). Since the

VIRUS-W Voronoi bins we used for the kinematics have
fairly low S/N (Tab. 3) we decided to re-bin the spec-
tra into two radial annulli centered around r = 2.5′′

and r = 7.5′′. This allows reliable global estimates of

the population quantities while still being able to no-
tice a possible radial variation in the stellar population
if present. We can also compare the mass-to-light ratio

gradients obtained from the population analysis with the
mass-to-light ratio gradients derived from the dynami-
cal models and identify a possible radial variation of the

IMF (e.g. Mehrgan et al. 2024; Parikh et al. 2024).
The majority of the Virgo dEs is known to host small

blue nuclei with core sizes of 0.2′′ − 0.4′′(Ferrarese et al.
2006; Hamraz et al. 2019). Paudel et al. (2011) sepa-

rated the nuclei from the galaxy’s main body and found
that the nuclei are often composed of a much younger,
more metal-rich stellar population compared to the main

body of the galaxy. For their nucleated dEs (including
VCC 308, VCC 856, VCC 1261, VCC 1861) they found
the contribution of the nucleus to the total light within
the centre r ≤ 0.375′′ usually does not exceed 50%. Even

though we mask the central 0.8′′ before adding the spec-
tra (i.e. the nuclei are not part of the r = 2.5′′ annulus)
the large VIRUS-W fibres with a diameter of 3.2′′ and

the atmospheric seeing of ∼ 2.0′′ could lead to a partial
contamination of the inner annulus with light from the
nuclei. We estimate an upper bound for this contamina-

tion by comparing the total luminosity of the blue nu-
cleus to the luminosity of the galaxy main body within
the circular area covered by the 2.5′′ aperture (incl. the
masked centre). The luminosities are obtained by fitting

a two-component model to the HST photometry, where
we assume a King model for the nucleus and a Sersic
model for the galaxy main body. For our dE sample we

find a median light contribution of 1.3% in the z -band
and 1.6% in the g-band with a maximum contribution
of 10% for VCC 856. This implies that, even if we were
not masking the central 0.8′′, the contamination from

the nucleus to the galaxy light within r = 2.5′′ would
be small to insignificant. Hence, our annulli are not af-
fected much by the central nuclei but are well suited to
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Figure 2. The kinematic maps of the LOSVDs approximated by Gauss–Hermite expansion with fixed nGH = 4, i.e. this does
not show potentially higher order deviations. In a few bins the recovered LOSVDs are essentially Gaussian because the optimum
nGH was 2. This makes them appear white in the h3,4-maps (the northern most bin of VCC 200 was excluded due to its poor
spectrum). We use a common spatial and color scale (see colorbars on the right sides of the panels) to enable an easy comparison
between different sample galaxies. Spatial variations within a given galaxy are more discernible in the radial profiles (Fig. 3).
In the velocity panels we indicate the North-East directions and the photometric 1.0 re aperture (dashed ellipse).
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Figure 3. The radial profiles of the Gauss–Hermite representations (up to h4) with 1σ-errors as derived from the spectroscopic
data (gray) and the corresponding fit of the best dynamical orbit model we found for each galaxy (colored). The 1σ-errors
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focus on detecting gradients within the main body of
galaxy.

The SSP models were derived from the absorption
line indices by modeling them with the index models
of Thomas et al. (2011a). Within the VIRUS-W spec-
tral range we model 4 notable Lick indices: Hβ, Mgb,

Fe5270, Fe5335 to obtain the light-weighted age, metal-
licity [Z/H], and the abundance ratio [Mg/Fe] of the
stellar population. The models were probed by sam-

pling a grid spanned by these 3 parameters and their
best fit values were derived by interpolating the grid in
χ2. The population models are resolution corrected to
match the data and the uncertainties are based on 100

Monte-Carlos simulations assuming gaussian noise for
the flux in each wavelength bin (more details in Parikh
et al. 2018). The best fit parameters and their relation

to each other are shown in Fig. 4. We find that old dEs
are metal-poor while younger ones have nearly solar-like
metallicity. Conversely the [Mg/Fe] ratios are slightly

over-abundant and show no clear correlation with the
metallicity.

VCC 1910 has an exceptionally high, super-solar
metallicity (see Fig. 4). We suspect that the SSP analy-

sis for this galaxy is compromised (especially for the in-
ner spectrum) because the most important age-sensitive
Lick index within our spectral range (Hβ) lies just at

the edge of the usable wavelength region which makes a
robust derivation of the Lick continuum difficult. While
we still show the results for VCC 1910 for the remain-

der of this work, one should take the SSP results for this
galaxy with a grain of salt. We refer to the literature
SSP values for VCC 1910 (App. B).

2.4. The Dynamical modeling technique

The dynamical modeling code we employ is the cur-
rent version of the axisymmetric orbit superposition
code of Thomas et al. (2004), which is continuously up-
dated and is based on the Schwarzschild orbit super-

position approach (Schwarzschild 1979). Schwarzschild
modeling is a versatile numerical approach and can in
principal be applied to any collisionless system. For a

detailed description of the modeling we refer to Thomas
et al. (2004).

To briefly summarize: The technique can be broken

down into a few steps. A manifold of trial density mass
models ρ is constructed and for each a corresponding
gravitational potential Φ is calculated. In each potential
a set of representative orbits is integrated which densely

sample the phase-space compatible with said potential
Φ. Each orbit is assigned an occupation weight and all
orbits are superimposed and the model properties are

determined by the weighted superposition. The best
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Figure 4. Correlations of the SSP parameters for the dE
sample. Shown are the results for the spectra in the two aper-
tures centered around r = 2.5′′ (left) and r = 7.5′′ (right).
Top: Age vs metallicity. Bottom: [Mg/Fe] vs metallicity.

set of weights is found by fitting a model’s observables

to the corresponding observations, which in our case
are the spatially resolved, non-parametric LOSVDs of
the stars. The number of orbits, and thus the number
of weights, is typically larger than the number of data

constraints. Therefore a regularization term is required
that prevents overfitting. In Lipka & Thomas (2021);
Thomas & Lipka (2022) we presented and applied a

novel data-driven approach to optimize the degree by
which the models should be regularized to avoid both,
over- and underfitting. This is the same AICp approach
we already utilized in the kinematic fitting procedure (cf.

Sec. 2.2). It can generally be used to optimize penalty
strengths in any penalized model fitting process. After
fitting the weights for each of the trial mass models, the

quality of each model can be compared by the AICp it
achieved: The single model which achieves the smallest
AICp is then deemed to be the best representation of the

galaxy that’s under investigation. In Lipka & Thomas
(2021) we demonstrated and discussed why the AICp se-
lection is more appropriate and unbiased in finding the
best model out of all the probed trial models when com-

pared to a simple χ2 selection. This is because AICp

accounts for the intrinsically varying model flexibility
across different orbit models whereas χ2 only evaluates

how well the data was fitted, making it prone to overfit-
ting.
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A reasonable approach is to describe the mass model
with a mass distribution consisting of 3 components:

ρ (r) = Υ∗ · ν + ρDM + M• · δ (r) (1)

Where M• is a central supermassive central black hole
(SMBH), ρDM is a description of the dark matter halo

(usually given in a parametric form), and Υ∗ is a stellar
mass-to-light ratio which together with the 3D luminos-
ity distribution ν describes the distribution of the bary-

onic matter. The luminosity distribution ν functions as
a boundary condition for the models and is obtained
from the photometry (Sec. 2.1).

For the construction of the trial mass models we fol-
low this standard 3-component mass description. We
find that to reliably decompose different mass compo-
nents, a flexible and generic description of the dark mat-

ter component is crucial. Otherwise the recovery of the
other mass components (stars and SMBH) may be neg-
atively affected as they may try and compensate for the

inflexibility of the halo model. In Lipka & Thomas (in
prep.), in the following abbreviated as LT, we will lay
out our arguments for why we believe that a sufficiently
unbiased, yet still computationally efficient, decomposi-

tion is achieved if we parametrize the dark matter with
a (flattened) Zhao-profile (Zhao 1996) where the tran-
sition width parameter is fixed. This means the halo

component of our mass models is described by the fol-
lowing elliptical profile:

ρDM(m, θ) =
ρ0(

m
rs

)γin

·
(

1 + m
rs

)γout−γin
(2)

where the ellipsoidal radius m and angle θ are the
(oblate) ellipsoidal coordinates within the meridional

plane. This model has an inner logarithmic density slope
γin and a corresponding outer slope γout. The scale ra-
dius rs locates the transition between the two slopes

while ρ0 sets the density scale. Together with the halo
flattening qDM, this means the halo is described by a 5-
parameter halo model, much more than the standard 1-
or 2-parameter models that are commonly used. Since

the dark matter component is the subject of VW–II, we
discuss our halo parameter sampling strategy in more
detail in that study.

We do not know a priori by how much the galaxy is
inclined, which not only affects the projection to the sky
of the entire model but also the photometric boundary

constraint ν. Therefore we sample differently inclined
orbit models and deprojections (see also Sec. 2.1). In
the past it was rather common to model only a single
(edge-on) deprojection per galaxy. This practice was

reinforced by the question whether it is even possible

to dynamically constrain the inclination of axisymmet-
ric galaxies because there appears to be a significant χ2

bias favoring edge-on models over less inclined models

(see Lipka & Thomas 2021 for an in-depth explanation
of the origin of this bias). In Lipka & Thomas (2021)
we demonstrated that the viewing angle of a galaxy can

be well constrained using dynamical models directly as
long as one follows the model selection approach we de-
veloped (cf. Lipka & Thomas 2021; Thomas & Lipka

2022) and described above.
Apart from the viewing angles, we also do not know

whether the assumption of a constant stellar mass-to-
light ratio is a reasonable one. For example the stellar

mass-to-light ratio could vary with radius because the
IMF (e.g. Mehrgan et al. 2024) or the age and com-
position of the stellar population could exhibit spatial

variations within the regions probed by our dynamical
models. Similar to an inflexible dark matter component,
an erroneous stellar component would also have effects

on the recovery of all other mass components as those
will try and compensate for this as much as possible to
emulate the overall gravitational potential well. For this
reason we allowed for another parameter that increases

the flexibility of the stellar model component. We allow
for a radial variation in the stellar mass-to-light ratio Υ∗.
This is implemented by independently sampling an inner

and outer mass-to-light ratio Υi, Υo at two fixed ellip-
soidal radii mi and mo. Between the two radii the mass-
to-light ratio is interpolated log-linearly, while outside of

it (m < mi and m > mo) the mass-to-light ratio is kept
constant at Υi and Υo respectively. The ellipsoidal co-
ordinates on which the mass-to-light ratios are stratified
have the average intrinsic axisymmetric flattening q(i)

inherited from the stellar luminosity deprojection ν(i)
at inclination i. For a more detailed explanation of the
gradient implementation see also Mehrgan et al. (2024).

The choice of radii at which one samples the two mass-
to-light ratios is non-trivial and several issues have to be
considered: Dynamical models have reduced constrain-
ing power at scales smaller than the spatial resolution

and in the areas not covered by data (see LT). There-
fore probing Υi at radii smaller than the resolution and
Υo outside the FoV is dangerous and, in the worst case,

biases the interpolation of Υ∗(r) between the two radii.
This issue should be accounted for in the modeling of
gradients for all types of galaxies. However, in the spe-

cific case of our dE sample we want to highlight two
further issues that could lead to misleading gradients
Υ∗(r) if not treated with care. Many of the dEs in our
sample host distinct blue nuclei (cf. App. E and Fer-

rarese et al. 2006) whereas the extended host galaxies
exhibit a g − z color that is almost spatially constant.
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This suggests a distinct, younger stellar population in
the nucleus embedded in a relatively homogeneous older

population (Paudel et al. 2011). If one were to sample
Υi within said nucleus, it could distort the results for
the entire galaxy since a log-linear interpolation over
the entire radial range would not be a good approxima-

tion of the locally much more concentrated young central
population. This could become a significant problem if
the nuclei are resolved (or just about resolved). Fortu-

nately, in our case the typical size of the blue nuclei is
much smaller than the fibre size of our observations and
the nuclei only contribute a small portion of light to the
central Voronoi bins (see discussion in Sec. 2.3).

Therefore the mass-to-light ratio variation Υ∗(r) we
derive should only reflect a (possible) stellar population
variation within the larger galaxy envelope itself. The

second issue we had to consider when modeling the stel-
lar gradients of the dEs is their relatively faint surface
brightness which reaches the level of the sky background

for r ⪆ 2 re. A small systematic mis-estimate of the sky
level will systematically increase/decrease the slope of
the measured surface brightness as the relative contri-
bution of the sky to the total light increases with ra-

dius. In turn, this affects the luminosity deprojection
and the associated dynamical mass-to-light ratios. To
be confident in the level of sky that we determined from

HST data (Sec. 2.1), we carefully checked how well the
reduced surface brightness profiles agree with the inde-
pendently obtained profiles by Ferrarese et al. (2006),

and avoided probing Υo at very large radii. Considering
the above arguments we decided to sample the mass-to-
light ratios of the dEs at mi = 1.5′′ (∼ 0.12 kpc) and mo

between 9′′ to 14′′ (∼ 0.7 kpc – 1.2 kpc) depending on

the FoV size. That is at about the size of the spatial res-
olution limit and near the edge of the FoV, i.e. we allow
the mass-to-light ratio to vary out to approximately 1

effective radius. This choice avoids the less constrained
regions at very small and large radii, mitigates possible
distortions by the nuclei or sky, and at the same time
still allows for a stellar variation over the entire radial

range that we believe is well constrained by the data.
For each galaxy we calculated 103 − 104 models on

the 9-Dimensional grid of candidate mass models that

is spanned by all probed parameters (Υi, Υo, i , M• ,
ρ0, rs, γin, γout, qDM) which determine the total mass
distribution of the model. Since we sample about 5-

20 values of each of these parameters, this huge grid can
only be probed partially. Therefore we searched the grid
efficiently by using the Nonlinear Optimisation by Mesh
Adaptive Direct search NOMAD (Audet & Dennis 2006;

Le Digabel 2011). We conducted multiple independent
NOMAD iterations to avoid biases due to the search

algorithm (see LT). We stopped the model calculation
when the fest best AICp models all had roughly congru-
ent mass distributions within the regions that are well

constrained by data, and when AICp had essentially con-
verged to a constant value. As we will discuss in LT, fur-
ther search might change the nominal values of some of
the (correlated) halo parameters significantly, yet such

a change in parameter values would only result in mi-
nuscule changes in the mass-distribution/composition
due these correlations. Consequently such parameters

should be thought of as nuisance parameters only em-
ployed to describe the mass distribution.

Error estimates in the data (here the LOSVDs) are of-

ten imperfect, non-gaussian, and correlated (Houghton
et al. 2006), whereas the modeling implementations as-
sume the errors to be independent and gaussian. As
long as these issues are statistically unaccounted for, the

absolute values of χ2, and consequently AICp, are not
meaningful statistically as they do not reflect the correct
level of noise. For example, correlated raw data suppress

the value of χ2 if independent gaussian noise is assumed.
In such a situation, the often applied χ2 criteria to gauge
the goodness of fit and to compute confidence intervals

becomes meaningless.
Ideally one would model independent measurements

of the same objects and evaluate the resulting scatter to
obtain a realistic measure of the error. We can achieve

this by modeling the quadrants of axisymmetric systems
independently, which has the benefit of not relying on
the perfect accounting of noise patterns and even in-

cludes possible systematic uncertainties (e.g. deviation
from axisymmetry, dust, etc.) in its calculation. While
this is our preferred approach, the number of spatial bins
Nbin which survived our S/N limit of 15 is fairly low for

the majority of the dEs (Tab. 3). Therefore we were
forced to model the FoV as a whole instead of individ-
ual quadrants. This has two side-effects: 1) Deviations

from axisymmetry across the different quadrants cannot
be emulated by the axisymmetric orbit models. 2) We
cannot use the scatter of the 4 independent quadrant

modelings to estimate an error for the galaxy properties
we infer from the modeling.

Therefore, in the case where one can only model a sin-
gle measurement with imperfect noise accounting, we

need to come up with an alternative noise estimation
(see details LT). Even if the absolute differences in AICp

(or χ2) between different models is not meaningful in it-

self, we can assume the model evaluation statistic (i.e.
AICp or χ2) is at least consistent and unbiased. In that
case the relative ranking of the orbit models can still

be used to gauge the significance of the resulting dy-
namical constraints. For example, if the differences in
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terms of AICp between the best few N models are low,
yet these models differ significantly in their recovered

M•, then the confidence in the M• measurement is cor-
respondingly bad. In order to not under -estimate the
errors this requires that enough models are included in
the calculation of the scatter. And in order not to over -

estimate it, enough models have to have been probed
globally for AICp to have approximately converged.

In practice, we tried to ensure an accurate error esti-

mation by probing so many models that neither AICp

nor the scatter of the N best models changes signifi-
cantly anymore. We then implemented the error estima-

tion by calculating all errors from the scatter between
the best 25 models we found for each galaxy. Given
the number of total models we calculated (see above)
this translates to a significance criterion where the best

∼ 0.5 − 1.0% of all probed candidate models or analo-
gously all models with roughly ∆AICp ≲ 10 are consid-
ered (see also Fig. 10). In conventional statistical mod-

eling a rule of thumb is that models with ∆AIC > 10
are so unlikely they can be excluded (cf. Burnham &
Anderson 2002).

We stress-tested the above dynamical modelling strat-

egy and code on a mock VIRUS-W observation of an
N-body dwarf simulation with stellar mass Mstar =
4 · 108 M⊙. The stress-test is setup such that stellar and

dark matter are distributed similarly in large regions of
space, which we expect to complicate the dynamical de-
composition of the two mass components. This allows

us to gauge how well we can recover dynamical stel-
lar mass-to-light ratios, dark matter distributions, black
holes, and the anisotropy structure even under particu-
larly bad conditions and whether the model parameters

could suffer from degeneracies. The results of the mock
test are shown in VW–II where we also present all the
dynamically recovered properties of the dEs (here only

the stellar component is discussed).

3. PROJECTED KINEMATIC STRUCTURE,
STELLAR POPULATIONS AND THEIR LINK

TO ENVIRONMENT

Before we discuss the dynamical models and intrinsic
structure of the dEs we first discuss their on-sky kine-
matic structure and stellar populations, and investigate

if and how these stellar properties depend on the local
environment the galaxies currently inhabit.

3.1. On-sky kinematic structure

Overall, the kinematic moments of the dEs display a
large diversity3 which suggests they took distinct evolu-
tionary paths, or are at least at a different stage of their

evolution which among other things could depend on
their initial mass and/or past interactions with their en-
vironment. We find that many dEs have radially increas-

ing velocity dispersions, while others have essentially flat
profiles, only two galaxies exhibit a steadily decreasing
σ that peaks in the center. The degree to which the dEs
are rotation- or pressure-supported also seems to vary

widely from galaxies with v/σ ∼ 0 (e.g. VCC 1261,
VCC 1528) to galaxies with a substantial amount of
rotation v/σ ∼ 0.5 − 0.8 (e.g. VCC 543, VCC 856,

VCC 2048). At least in the dwarfs where rotation is a
significant factor and the signal-to-noise is high enough
to reliably constrain higher moments, we find that the
higher Gauss–Hermite moments of dwarf ellipticals fol-

low the well established v − h3 anti-correlation known
from massive ellipticals (Bender et al. 1994). The h4

profiles we observe show surprising individuality. About

half the sample galaxies have a maximum h4 in their
center which steadily drops to 0 with increasing radius.
Other galaxies show no clear h4 trend with radius, i.e.

they either scatter stochastically or are consistent with
a gaussian LOSVD. Only VCC 856, and to some de-
gree VCC 308, are outliers in having a rising h4 profile
which is gaussian in the center. This peculiarity could

be linked to the fact that both these galaxies are found
to contain weak signatures of face-on spiral arms (cf.
App. E), and indeed we will find these two dEs to be

the ones that are closest to face-on (Sec. 4).
‘Ordinary’ early-type galaxies4 are known to come in

two types (Kormendy & Bender 1996), that are often

separated into ‘Slow-Rotators’ and ‘Fast-Rotators’ ac-
cording to their angular momentum parameter λ as de-
fined by Emsellem et al. (2007):

λ =
⟨r|v|⟩

⟨r
√
v2 + σ2⟩

(3)

Here the brackets indicate the flux-weighted sum over

all spatial bins within a given aperture (usually within
half or one stellar effective radius).

3 To highlight this diversity we sum up and discuss the kinematic
(and photometric) features of each galaxy individually in App. E.

4 In the following the term ‘ordinary’ ETG broadly refers to ETGs
with stellar masses log10(M∗/M⊙) ≳ 10. Galaxies classified as
dEs (or spheroidals) dominate the population of early types below
this mass threshold, while ‘ordinary’ (or classical) ETGs, which
differ in their surface brightness distribution (see Kormendy &
Bender 2012), are usually found above this mass (there is only
a small overlap of these two populations). The ‘ordinary’ ETGs
can be sub-classified further (Kormendy & Bender 1996) but this
distinction is not considered here.
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Galaxies can then be classified by comparing their λ
with their apparent ellipticity5 ϵ. This allows one to

quantify whether the flattening of a galaxy is mostly
supported by its angular momentum (i.e. ordered mo-
tion) or more by an anisotropy in its stellar velocity
dispersion tensor (though anisotropy and rotation can

easily go together, cf. Thomas et al. 2009a).
Generally speaking the angular momentum parame-

ter is highest for LTGs (particularly for those on the

star-formation main-sequence, Wang et al. 2020) as stars
tend to form in rotating gaseous disks. However, even
ETGs can have a high angular momentum support and
several studies have found a systematic change of λ in

the ETG sequence depending on total stellar mass and
environment (see below). Since the FoV of our dE sam-
ple does not always extend out to 1 re, we decided to

evaluate the angular momentum parameter within an
aperture of re/2. Fig. 5 shows λe/2 vs ϵe/2 for our dE
sample together with samples of ‘ordinary’ ETGs (Cap-

pellari et al. 2011; Mehrgan et al. 2023) and three dE
samples in a similar mass range as ours (Toloba et al.
2015; Scott et al. 2020; Bidaran et al. 2020). For Scott
et al. (2020) and Bidaran et al. (2020) the ellipticity was

not given in the re/2 aperture. However, the differences
between ϵe/2 and ϵe can be expected to be small (e.g.
from Toloba et al. (2015) who show both, the mean dif-

ference between the two is ∼ 0.019). An alternative to
Fig. 5 for the larger 1 re aperture is shown in App. F.
While it relies on using extrapolated λe values for some

of the dEs when the FoV is too small, none of the fol-
lowing conclusions change.

We estimate the statistical errors of our λe/2 values
using 100 Monte-Carlo realizations of the velocity and

dispersions maps. For each realization the values in each
Voronoi bin are perturbed according to their respective
measurement error and a new λe/2 is calculated from the

perturbed values. From the 100 λe/2 values we estimate
the statistical errors. We find the statistical errors of
λe/2 are quite small ∼ 0.01 (i.e. roughly the size of the
markers in Fig. 5). Differences between the λ parame-

ters from different studies are more likely to be driven
by systematic effects due to different spatial binning,
apertures and spectral resolution (App. B). We are able

to estimate the impact of such systematics if we com-
pare our values of those dEs that we have in common
with the sample of Toloba et al. (2015). We find that

5 The ellipticity is measured within the same aperture as λ. The
calculation (or definition) of ϵ is not always entirely consistent
across different studies. We follow the definition of Emsellem
et al. (2007) which means we are stating the flux-weighted ellip-
ticity within the considered aperture.
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Figure 5. The projected angular momentum parameter λ
vs ellipticity ϵe/2 within half the effective radius. The dashed
curve indicates the dividing line between the Slow- and Fast-
Rotator classification (Emsellem et al. 2007). Colored cir-
cles: Our data. Gray squares: The Virgo dEs of Toloba
et al. (2015). Gray X-marks: The Fornax dEs of Scott et al.
(2020). Gray triangles: The infalling Virgo dEs of Bidaran
et al. (2020). Light gray crosses: The massive Virgo cluster
ETGs (M∗ ∼ 1010−1012M⊙) of Emsellem et al. (2011) which
are part of the ATLAS3D-survey (Cappellari et al. 2011).
Light gray diamonds: The massive ETGs of Emsellem et al.
(2011) that are not part of Virgo. Light gray dots: The mas-
sive ETGs of Mehrgan et al. (2023).

our λe/2 are on average 0.077 higher than their 2D ex-
trapolations6. Our λe/2 are systematically higher than
those of Toloba et al. (2015) because of the poorer spec-
tral resolution of their spectra. Low resolution biases

the velocity dispersions high (we show this in App. B),
which itself results in an underestimation of the angular
momentum parameter. While this spectral resolution

effect results in a systematic bias we expect the impact
of spatial binning to be of a more random nature. And
indeed we find no correlation of λe/2 for our dEs with
the spatial binning (the spatial binning is not homoge-

neous for all dEs, see Tab. 3). By re-binning the spec-
tra of VCC 2048 into coarser bins and calculating λe/2

again we estimate the spatial resolution systematics to

be around ±0.02. Finally we gauge the systematics in
the ellipticity ϵe/2, again by comparing the dEs in com-
mon with Toloba et al. (2015), and find a mean differ-

ence of ∆ϵe/2 = −0.037.
Our dEs are distributed fairly similarly to the other 3

published dE studies, though our sample tends to have

6 The values of Toloba et al. (2015) are based on long-slit measure-
ments that were extrapolated to a 2D estimate using a correction
factor.
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lower ellipticity compared to some of the other studies7.
However, we note that this comparison is not always

straightforward. The λ values of Toloba et al. (2015)
are based on long-slit data that were transformed to
‘integrated’ λ values using a 2D-correction factor (see
Toloba et al. (2015) for details). The values in Scott

et al. (2020) were given only within the larger aperture
of 1 re and some of them are extrapolations using the
aperture corrections of van de Sande et al. (2017). We

applied the inverse of this correction to estimate λe/2

from the λe values stated in Scott et al. (2020). These
λe/2 are shown in Fig. 5. The dEs of (Bidaran et al.
2020) may be selection biased as they are all part of the

same, recently accreted, galaxy group and most of them
are classified as dE(di). Such dEs can be expected to
have a higher angular momentum parameter than the

average Virgo dE (see Sec. 3.2). Finally, as suggested
above, the poorer spectral resolution of Toloba et al.
(2015) has likely biased the λe/2 low. In comparison

the intermediate resolution of the samples of Scott et al.
(2020) with R = 4500 and Bidaran et al. (2020) with
R = 3000 may have been just enough to obtain unbiased
estimates if the S/N was high enough (cf. Eftekhari et al.

2022).
Compared to the global picture all the above differ-

ences between dE studies are minuscule. Taken together

all 4 dE studies (Toloba et al. (2015); Scott et al. (2020);
Bidaran et al. (2020) and ours) suggest that the angu-
lar momentum parameter of dEs is systematically lower
than those of the ‘ordinary’ ETGs. This was first noted

by Scott et al. (2020) and even the high spectral reso-
lution power of VIRUS-W does not change this result.
Very few dEs have a high angular momentum parame-

ter (λe/2 ≳ 0.3) and the angular momentum parameter
is almost independent of the ellipticity. In contrast, the
vast majority of ‘ordinary’ ETGs with M∗ > 1010M⊙
(excluding the most massive ones) are classified as fast-
rotators (Emsellem et al. 2011; Guo et al. 2020; Santucci
et al. 2022) and λe/2 tends to be more strongly corre-
lated with ϵe/2.

It is known that ‘ordinary’ ETGs are not homoge-
neous in λ either. Several studies of the massive ETGs
have previously noted a dichotomy in the angular mo-

mentum parameter as the total stellar mass increases
further: The slow-rotator regime is mostly dominated
by the most massive ETGs with M∗ ∼ 1012M⊙ whereas
the intermediate mass ETGs (1010−1011M⊙) tend to be

more rotation supported (e.g. Emsellem et al. 2011; Gra-

7 Considering Lisker et al. (2007) who analysed 413 Virgo dEs
(complete in the regime of our dEs) we would expect a blindly
selected Virgo dE to have ϵ ∼ 0.25 on average.

ham et al. 2018; Santucci et al. 2023). This dichotomy
in the ETG sequence has been well established for some
time now as several properties change in this regime (e.g.

Bender 1988; Bender et al. 1989; Kormendy & Bender
1996; Kormendy 1999; Kormendy & Bender 2013; Dekel
& Birnboim 2006; Nelson et al. 2018).

This behaviour of a decreasing λ with increasing stel-

lar mass found for ‘ordinary’ ETGs is opposite to what
we observe going from the regime of the dEs to more
massive ETGs: an increase of λ with mass. Conse-

quently, if we include the dEs in the ETG mass sequence
(i.e. a sequence spanning 5 dex from log10(M/M⊙) = 8
to 12) we would not find a dichotomy but a ‘trichotomy’
in λ as the total stellar mass changes: The angular mo-

mentum parameter is low in the mass regime of the dEs
but increases with stellar mass until it reaches a max-
imum for galaxies with 1010 − 1011M⊙ at which point

the trend reverses and the angular momentum parame-
ter decreases again with the most massive ETGs being
slow rotators again. Unfortunately, we are not aware

of a single study/sample that covers the ETG sequence
sufficiently well from log10(M/M⊙) = 8 − 10.5 to ob-
serve the increase in λ with mass directly and we rely
on comparison across different galaxy samples with pos-

sibly different systematics. See for example Scott et al.
2020 or Spavone et al. 2022 who also observed this tri-
chotomy, or ‘U-shape’, by showing the λ vs stellar mass

using a number of different studies. How the relation be-
tween stellar mass and λ continues for even lower masses
is less clear. The results of de los Reyes et al. (2023)
suggest that rotation support decreases even further for

galaxies below log10(M/M⊙) ≤ 8.
The λ correlation with mass could suggest that there is

a process that suppressed the total angular momentum

J of the dEs, or conversely, that dEs hide more angular
momentum at r > 1 re than ‘ordinary’ ETGs do. Fig. 6
shows the estimated stellar specific angular momentum

j = J/M (i.e. per mass) vs absolute magnitude for our
Virgo dE sample together with other galaxy samples
of various morphologies. An alternative version of the
Figure vs stellar mass M∗ instead of magnitude is shown

in App. F.
For LTGs such a diagram is a standard analysis tool,

but for ETGs it is much more difficult to determine

the total specific angular momentum j = J/M due
to the lack of (intrinsic) rotation measurements beyond
∼ 1−2 re and the frequent lack of information about the

viewing angles and intrinsic shape. Still it has been done
for ‘ordinary’ ETGs (e.g. Romanowsky & Fall 2012; Pul-
soni et al. 2023) using careful approximations and infor-
mation from non-stellar tracers at larger radii. However,
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where dEs (or dwarf ETGs in general) appear in these
diagrams has not been addressed yet.

One can obtain a rough estimate of a galaxy’s angular
momentum using j ≈ κ · vm · re where vm is the veloc-
ity around the maximum of the rotation curve, re the
effective radius, and κ a numerical factor that follows

from assumptions about the density and velocity distri-
butions of the stars. κ can have a range of values ∈ [1, 4]
depending on the galaxy morphology and assumptions

going into it (cf. Fall 1983; Scorza & Bender 1995; Ro-
manowsky & Fall 2012; Pulsoni et al. 2023).

Following Bender & Nieto (1990); Bender et al. (1991);
Scorza & Bender (1995) we analyse all ETGs using

κ = 1.03 which is an approximation of j enclosed within
5 re derived for de Vaucouleurs galaxies (Sersic index
n = 4). More intricate approximations of j exist that,

for example, account for variation of κ with Sersic index
(Romanowsky & Fall 2012). However, such 2nd order
corrections make it difficult to compare a large number

of galaxy samples of different morphologies and our in-
tention here is to investigate the transitional behaviour
of j as one goes from ‘ordinary’ ETGs to dEs as ‘fair’ as
possible. Relying on different a priori assumptions and

corrections for the two galaxy types could distort and
complicate this comparison. Still, we stress that an in-
clusion of such 2nd order corrections would strengthen

the evidence for the following conclusion rather than
weakening it. For example, dEs generally have lower
Sersic indices ns ∼ 2 than ‘ordinary’ ETGs (see Tab. 1
or Kormendy et al. 2009) and the correction factor κ is

rising monotonically with Sersic index. From the correc-
tion factor of Romanowsky & Fall (2012) we expect dEs
to have j overestimated by about 50% relative to ‘ordi-

nary’ ETGs which have a higher Sersic index (ns ∼ 4).
Other sources of uncertainty are the poorly known in-
clinations and the small FoV (i.e. the maximum of the

circular velocity curve may not be sampled yet). These
are errors expected to be of similar order as the κ correc-
tion (Scorza & Bender 1995; Romanowsky & Fall 2012)
but we can expect those to affect all ETGs alike (i.e.

relative differences remain mostly unaffected).
Nonetheless a comparison across different samples and

morphologies is not straight-forward. For the ETG sam-

ples shown in Fig. 6 we obtained the maximum of the
velocity curve vm and re as stated in these studies8, but
this does not mean the maximum of velocity curve has

actually been probed fully. For example, for our dEs
Fig. 3 suggests we are close to the maximum for some

8 For the ATLAS3D ETGs we used their kinematic maps (Cappel-
lari et al. 2011) and estimated vm from the median of the bins
around the maximum of the measured velocity.

of the dEs but others may still rise beyond the FoV.
In Fig. 27 we show one of the, currently most definite
j−M∗ scaling relations (Pulsoni et al. 2023) established

for ‘ordinary’ ETGs. Pulsoni et al. (2023) measured the
specific angular momentum of ETGs out to large radii
using planetary nebulae.

For our dE sample we are in the position to correct

the velocity curves for the inclination using the infor-
mation derived from dynamical models (see Sec. 4.1).
Fig. 6 shows both, inclination-corrected (filled circles)

and uncorrected (open circles) estimates for the angular
momentum of our dE sample. For LTGs with an ex-
ponential disk profile, a different approximation is used

j ≈ 2 · vmax · rdisk with the disk scale length (e.g. Fall
1983; Scorza & Bender 1995; Romanowsky & Fall 2012).
However, for LTGs j is also often inferred more directly
from outer gas disks which extend to several re and en-

able inclination correction.
Fig. 6 shows, as has long been known, that bright

ETGs and LTGs follow two near parallel, but offset, se-

quences (Fall 1983; Romanowsky & Fall 2012; Pulsoni
et al. 2023). This so-called ‘Fall-relation’ is usually ex-
pressed in terms of stellar mass M∗ and not MB (see

Fig. 27). It can be physically motivated from ΛCDM
structure formation as its slope is remarkably close to
what is expected from the angular momentum acqui-
sition of dark matter halos, j ∝ M2/3 (Peebles 1969;

Efstathiou & Jones 1979). Initially the gas (which later
forms a galaxy’s stars) is expected to follow this halo
relation, but the subsequent evolution, star formation,

environment, etc. may modify how much is inherited
from the stars (see also VW–II).

If we were to assume a magnitude-independent mass-
to-light ratio, the theoretical Fall-relation j ∝ M

2/3
∗

translates to log10(j) ∝ −0.2667 · MB in magnitude
space. In Fig. 6 we show linear fits to all LTG galax-
ies (blue) and to the ‘ordinary’ ETGs with magnitudes

∀MB ∈ [−18.5,−21] mag (black). Most of the latter
were classified ‘Fast-rotators’ (see above Fig. 5) and they
follow the halo-momentum relation very closely with

j ∝ −0.2673 ·MB . The LTGs are not far off either with
a slope of −0.2465. The fact that LTGs are distributed
on a slightly shallower curve may be because of the in-
clusion of dwarf LTGs in the fit. Dwarf spirals tend to

fall above versions of the Fall relation fitted to massive
spirals only (Chowdhury & Chengalur 2017; Butler et al.
2017; Kurapati et al. 2018). However, the full LTG se-

quence including dwarfs can still be described well by a
single power-law with a slightly shallower slope (Posti
et al. 2018; Mancera Piña et al. 2021).

In contrast, ETGs do not follow a single universal scal-
ing relation. The most luminous (cored) ETGs tend to
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Figure 6. Estimate of the stellar specific angular momentum j versus absolute magnitude (B-band) for various galaxy types.
For those studies where the magnitude was not stated we consulted Hyperleda (Makarov et al. 2014). For ETG samples we
estimated j from the the stated velocity curves (see text), and when velocity data were noisy we clipped outliers. For the LTG
samples we used the j directly from the source tables. Blue diagonal: Fit to all LTG points (log10 j = −0.2465 ·MB + const.).
Gray diagonal: Fit to ‘ordinary’ ETGs with MB ∈ [18.5, 21]mag (log10 j = −0.2673 · MB + const.). Massive ETG and LTGs

(M∗ ≳ 1010M⊙) are known to roughly follow the same relation (j ∝ M
2/3
∗ ), but LTGs are offset towards higher j (cf. Fall 1983;

Bender & Nieto 1990; Romanowsky & Fall 2012). Large, colored points: Our Virgo dE sample (inclination-corrected: filled,
not-corrected: open). Small green crosses: The dE satellites of M31 (NGC 147, NGC 185, NGC 205) inferred from individual
stars (Geha et al. 2006, 2010) with velocity curves out to ∼ 8 re. Studies of integrated light (smaller FoV) suggest significantly
smaller velocities Bender et al. (1991); Simien & Prugniel (2002). Gray squares: Long-slit dE observations from Toloba et al.
(2015). Gray dots: dEs from Geha et al. (2003) some of which have exceptionally low j (presumably because of a very small
FoV or a slit not aligned with the kinematic major-axis). Gray and light gray pentagons: ETG sequence (dwarfs and ‘ordinary’
ETGs) of Bender & Nieto (1990). Faint, red stars: dSphs of the Milky Way from Mart́ınez-Garćıa et al. (2021). For these, j is
from intrinsic velocities as they derived their values from the Gaia proper motions and radial velocities of individual stars.Light
gray diamonds: The ETGs of Emsellem et al. (2011). Light gray dots: power-law ETGs of Mehrgan et al. (2023). Light, red
dots: Giant cored ETGs of Mehrgan et al. (2023). Light blue diamonds: Dwarf irregulars of Kurapati et al. (2018) (j is of stars
only). Light, blue squares: Dwarf and massive spirals of Posti et al. (2018).

fall below the standard Fall-relation that fits the bulk of

‘ordinary’ ETGs much better. And, akin to what was
noticed for the suppressed angular momentum parame-
ter λ, nearly the entirety of dEs (and the dE satellites

of Andromeda) fall below what one would expect from
the Fall relation of ‘ordinary’ ETGs. At the low mass-
end the two data points for the biggest Milky Way dSph

(Fornax) still fall below the relation (similar to the dEs)

but the situation becomes more ambiguous for the small-

est Milky Way dSphs which on average have a angular
momentum in line with the Fall relation.

In parts this angular momentum suppression can be

explained by the smaller mass-to-light ratios that dEs
tend to have compared to ‘ordinary’ ETGs, but the
dEs remain in tension with the standard Fall-relation as
shown in the j vs M∗ diagram (Fig. 27). The decrease
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in j for the dEs could also be because the estimate for
dwarfs may not be 1:1 comparable to that of the ‘or-

dinary’ ETGs, particularly if the total angular momen-
tum of these galaxy types is distributed very differently
in space. A large portion of the angular momentum of
the dwarfs could ‘hide’ at larger radii. However, we ar-

gue the difference in j is too big to be explained by this
alone. While the velocity profiles of our dEs only extend
out to ∼ 1 re and likely still rise beyond that, none of

our dEs show signs of a rapidly rising velocity profile.
The velocity curves we found either start to plateau or
rise mildly at the FoV edge (Fig. 3). In comparison the
‘ordinary’ ETGs, to which the Fall relation in Fig. 6 is

fitted to, are actually much more suggestive of a rota-
tion curve maximum that has not been reached yet and
a detailed analysis of planetary nebulae tracers (Pulsoni

et al. 2023) shows that these galaxies already hide a lot
of angular momentum at large radii. This means for the
dEs to fall on the same relation they would have to hide

even more j at large radii than the ‘ordinary’ ETGs, all
the while having lower angular momentum parameters
λe in the centre.

To answer with more certainty whether dEs live be-

low the standard Fall relation, rotation curves sampled
out to much larger radii will be needed, e.g. by using
non-stellar tracers as was done for the brighter ETGs.

For the dEs of M31 the velocity profiles from stars alone
were probed out to 8 re (Geha et al. 2006, 2010), which
showed that rotation velocities reach their maximum sig-

nificantly beyond 1 re. However, even these higher veloc-
ities are still not sufficient to elevate the angular momen-
tum j of these dEs to the level that is expected from the
Fall relation of bright ellipticals (Fig. 6). For some dEs

an analysis of their globular clusters suggests rapidly
rising profiles beyond 1 re. Beasley et al. (2009) for ex-
ample have analyzed the two slow rotators VCC 1261

and VCC 1528 in our sample using globular clusters as
kinematic tracers. Their results suggest much higher
velocities which would be able bring the dEs onto the
standard Fall relation. However, the reported uncer-

tainties in the GC analysis are high and there is some
tension with the stellar rotation profiles, which suggest
a milder increase in velocity (Fig. 3).

In conclusion, while at least some of the initial angular
momentum of dEs may have just been redistributed to
larger radii (i.e. it is hidden at larger radii at 2 − 8 re)

we may still expect that a significant portion has been
lost entirely. The processes responsible for this can be
manifold and in superposition. They can be internal
(e.g. supernova outflows) or external (e.g. galaxy ha-

rassment) as discussed below, but the comparison to the
‘ordinary’ ETGs suggests an onset (of importance) of

these mechanisms for galaxies with stellar masses below
∼ 109.5M⊙.

A comparison with studies of LTGs is also interest-

ing. The finding that the average angular momentum
parameter λ increases as one is moving along the se-
quence of ETGs with stellar masses from 109M⊙ up to
1010M⊙ appears to be traced even by the star-forming

analogs (dwarf spirals). While the highest mass LTGs
(≳ 1010M⊙) have a relatively high λ that is more or
less independent of the total galaxy mass (i.e. un-

like ETGs with ≳ 1010M⊙), the amount of rotation
seems to start to drop for LTGs with masses below
log10(M∗/M⊙) = 9.3 (Falcón-Barroso et al. 2019; Wang

et al. 2020), similar to the low-mass behaviour in the
ETGs sequence. In other words: the process responsi-
ble for the change in λ that occurs somewhere between
109M⊙ and 1010M⊙ could be a common one for both

passive and star-forming galaxies. However, a compar-
ison of the total angular momentum j in the LTG se-
quence shows this behaviour in λ is not accompanied by

a similar behaviour in total specific angular momentum
j. This may suggest that the suppression of λ for LTGs
is more so because of a redistribution of the angular
momentum to larger radii without changing J globally.

This discrepancy between the behaviour of j in late-
type dwarfs and early-type dwarfs could suggest that
there is an additional mechanism removing the angular

momentum entirely. We take up this discussion again
in VW–II, where we analyse the relation between LTG
and ETG dwarfs in conjunction with our results for their

dark matter structure.

3.2. Correlations of angular momentum and stellar
population with environment

Beyond the above dependence of the angular momen-

tum on stellar mass, the environment could affect the
amount of ordered motion in galaxies. In fact, it may
even be the driving factor behind the suppressed j (and
λ) of dEs (compared to ‘ordinary’ ETGs) we found, since

they have lower stellar (or total) mass, their potential
well and their ability to withstand their environment is
reduced (Romero-Gómez et al. 2024). Similarly, the en-

vironment is often thought to be the main reason why
dEs have stopped forming stars as they lost their gas
reservoir due to external influences. In the following we

investigate whether the angular momentum parameter
and stellar population properties (age and metallicity)
are a function of the galaxy environment.

For the purpose of a quantitative analysis of past envi-

ronmental influences one must find a measure that quan-
tifiably traces the degree to which each galaxy has ex-
perienced interaction with its host cluster. Commonly



20 Lipka et al.

used tracers are: The projected cluster-centric distance,
the local galaxy number/luminosity density, distance to

nearest large neighbour, or the local density of the intr-
acluster medium. A priori it is not clear which tracer is
best used as a proxy for past environmental influences.
We argue one should treat all environment indicators

with some caution. Firstly because of the large uncer-
tainties in the distance along the line of sight and con-
sequently its actual 3D position within the cluster. And

secondly because a galaxy’s current location may not
be very representative of the past interactions it had
with the cluster and other galaxies. Some dEs might
have experienced multiple pericenter passages already,

or pre-processing in groups (Fujita 2004) which may not
be reflected in its current day position. For the Virgo
cluster this consideration might be especially crucial be-

cause it may be fairly young dynamically and still un-
relaxed (Binggeli et al. 1987). Sybilska et al. (2017)
have tested different environment proxies for a sample

of Virgo dEs (including some of our sample galaxies).
While the different proxies they tested may differ quan-
titatively, they agree at least qualitatively for the most
part, i.e. if a strong correlation was present, it is de-

tected in all proxies. Therefore we decided to use the
most common and simple proxy for our study: The pro-
jected distance ∆rsky,M87 to the central cluster galaxy

of Virgo, M87.
Using this environment proxy we find a strong corre-

lation of the angular momentum parameter λ with the

Virgo environment (Fig. 7). The galaxies near the clus-
ter center are slow rotators whereas galaxies in the clus-
ter outskirts tend to posses more angular momentum.
Similar results were found by Toloba et al. (2015) and

Scott et al. (2020) who studied Virgo and Fornax dEs,
respectively. Conforming with this environment corre-
lation are also the dEs of the recently accreted galaxy

group analyzed by Bidaran et al. (2020). As shown in
Fig. 7 their angular momentum parameters tend to be
higher than that of dEs deep in the cluster, although
their λe/2 display a wide range of values which they at-

tribute to the pre-processing of some of their dEs within
the group.

This dependence of the rotational support vs environ-

ment may well extend from cluster scales down to the
scales of individual galaxies. For example, within the
Local Group, the dE satellites of M31 (which are a few

magnitudes fainter than the Virgo dEs) that are closest
to M31 show signs of tidal heating and reduced rotation
due to their interaction with M31 (Bender et al. 1991;
Geha et al. 2006, 2010). For the even fainter dSphs of

the Milky Way, the correlation of angular momentum
with environment also exists but is comparatively weak
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Figure 7. The angular momentum parameter λ within half
the effective radius vs the environment proxy (the projected
cluster-centric distance to M87). To convert the projected
distance to Mpc we assumed a constant distance to Virgo of
16.5 Mpc, i.e. the position of the galaxy along the line of
sight is not considered. The angular momentum parameter
of dEs appears to decrease for the galaxies that have ex-
perienced stronger and longer-lasting interactions with the
cluster environment, which confirms previous trends of an-
gular momentum-environment relations in the Virgo-cluster
(Toloba et al. 2015) and Fornax-cluster (Scott et al. 2020).
Shown here are only the dEs of Toloba et al. (2015) and
Bidaran et al. (2020) since these also inhabit the Virgo-
cluster. Dashed line: The virial radius of the Virgo-cluster
(Ferrarese et al. 2012)

(Mart́ınez-Garćıa et al. 2021). We may expect that the

fainter and less massive satellites of individual galax-
ies have very different dynamical time scales than the
more massive dEs in galaxy clusters that infall into the

cluster at a higher speed. Some of the cluster dEs may
experience their first in-fall such that they only recently
started to become heated by their environment, while for
the small local satellite galaxies many close interactions

with their host may have ‘washed out’ any correlation
by now. Therefore the environment correlations we find
in our sample may not be simply transferable to any

environment or mass regime.
Contrary to the kinematics, there seems to be little to

no correlation of the stellar population properties with
the environment (Fig. 8). However, we do note that

all dEs within the central Mpc (two-thirds of Virgo’s
viral radius) are older9 than 6 Gyr while all dEs outside
this radius are considerably younger with ages of 3 to 4

9 We measure the average age of both apertures. For VCC 1910
we adopt the ages from the literature (cf. App. B).
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Gyr. The two youngest galaxies (VCC 308, VCC 2048)
are the galaxies furthest away from the cluster center10

and both are located in a region with significantly lower
projected number/luminosity densities than for the rest
of the dEs (see Sybilska et al. 2017).

The question whether the population properties of dEs

correlate with the Virgo environment is also debated in
some of the existing population studies (e.g. Geha et al.
2003; Michielsen et al. 2008; Sybilska et al. 2017) that

we discuss in App. B. Some find no correlation of envi-
ronment with stellar populations while others find mod-
erate correlations. In our dE sample it appears to be

the case that within a projected cluster-centric distance
of ∼ 1Mpc, the dEs can have a large variety in ages and
stellar populations, but at larger radii (near the virial
radius of Virgo around ∼ 1.5Mpc) the dE population is

dominated by much younger ages (which was also noted
by Michielsen et al. 2008). This could indicate that any
correlation with environment becomes quickly saturated

as the dEs experience their first infall into the cluster
and their stellar populations become homogeneous. The
young age of the galaxies outside the virial radius could
imply that they have formed stars up until recently (see

also Sec. 5.3), while the broader distribution of ages deep
within the cluster center is simply a stochastic imprint
of the epoch a galaxy was being quenched at. Instead

of a continuous correlation with cluster distance, one
would then expect a distinct cut-off at a certain cluster
radius. If this radius is indeed in the vicinity of Virgo’s

virial radius, our results favor a scenario where the driv-
ing quenching mechanism is a fast-acting mechanism like
ram-pressure stripping. Such a process could already be-
come efficient at the cluster’s virial radius and even at

the first infall a galaxy experiences. Stellar population
properties found in Fornax dEs seem to support this
hypothesis more strongly than Virgo dEs, as Romero-

Gómez et al. (2023b) found Fornax dEs exhibit no envi-
ronment correlation with age and metallicity but a sig-
nificant correlation with [α/Fe] that suggests at larger
cluster-centric distances the star formation periods are

more prolonged. A significant fraction of dEs may have
also been quenched before arriving in the cluster due to
pre-processing and, as they entered by the cluster, ram-

pressure stripping triggered a short period of new star

10 Note that VCC 1261 has a large line of sight distance measure-
ment (cf. Tab. 1). If correct VCC 1261 would be a further away
from cluster center than the projected distance to M87 suggests.
We have also checked whether the SSP properties are correlated
with the 3D distance to M87 using the distance estimates in
Tab. 1, but the population properties remained uncorrelated with
environment.

formation (Bidaran et al. 2022; Romero-Gómez et al.
2024).

Environmental effects on a galaxy’s stellar population

will be different at different radii. Spatially resolving
potential gradients is therefore important. We quantify
such a gradient as the log-linear change between the two

apertures of the population properties that were shown
in Fig. 8. In Fig. 9 we show these gradients for our dEs
as a function of their environment and compare them to
gradients from other IFU studies of Virgo dEs (Sybilska

et al. 2017; Bidaran et al. 2023). Overall the age and
[Mg/Fe] gradients are fairly flat for our dEs and exhibit
no discernible preference to positive or negative values,

but almost all dEs have moderately more metal-rich cen-
ters. Only VCC 308, which is the dE most distant from
M 87 and the only one classified as having an extended
blue center (Tab. 1), and a few (but not all) of the in-

falling dEs of Bidaran et al. (2023) show more noticeable
gradients. The centers of these few galaxies are younger,
more metal-rich and less α abundant. The location of

these galaxies near Virgo’s virial radius suggests that as
they fall into the cluster, the ram pressure exerted by
the intra-cluster medium may have rejuvenated star for-

mation in their centre (Boselli et al. 2022; Bidaran et al.
2023). For the galaxies that (presumably) entered the
cluster a longer time ago there is no detectable correla-
tion of the radial gradients with environment consistent

with the analysis of Sybilska et al. (2017); Bidaran et al.
(2023). The relatively flat age and abundance gradi-
ents suggests the galaxy’s main body is consistent with

a nearly spatially homogeneous stellar population11.
All together, the evidence for population-environment

correlations in the literature are (especially in Virgo)
still fairly tentative and exhibit, if any, only a moder-

ate correlation. The inclusion of genuine field dEs in
the population studies could help reveal a potential di-
chotomy of population properties as the global environ-

ment changes.
The more continuous and stronger correlation of the

angular momentum with environment, on the other

hand, suggests that the kinematic structure evolves
much more gradually than the stellar population charac-
teristics do. These results are consistent with dEs being
transformed late-type dwarfs that were quickly quenched

by their environment at the time of their first infall and,
afterwards, were (more slowly) dynamically heated, los-
ing their angular momentum in the process. In this

formation scenario there exist a manifold of mecha-

11 This does not hold for the small blue nuclei in the centre (cf.
Paudel et al. 2011) which are not resolved in our study.
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Figure 9. The log-linear population gradients versus en-
vironment for our sample together with the Virgo dEs of
Sybilska et al. (2017) and Bidaran et al. (2023). Both stud-
ies are based on IFU data and gradients are defined as the
fitted slope of log (age), Z/H, and [Mg/Fe] within one stel-
lar effective radius log(re). The gradients for our dE sample
are measured as the change between two apertures we have
spectra for, i.e. log(r = 7.5′′) and log(r = 2.5′′). VCC 1910
is excluded because of its poor inner spectrum.

nisms that can explain this behaviour when thought of
in superposition. At larger radii the quenching mech-
anism keeps the stellar rotation relatively intact (e.g.

starvation, ram-pressure stripping) but stops the star-
formation quickly. But at later stages, when the dEs are
deeper in the cluster, processes like tidal disruption and

harassment by more massive galaxies heat up the stellar
orbits, transforming the dE further. Furthermore, if the
dEs are still able to form stars during their first infall,

their remaining gas disks may become misaligned with
the already existing stellar distribution which could also

lead to a dispersion dominated system as time progresses
(Zeng et al. 2024).

However, we suspect that environmental effects are
only a part of the broader picture. This is because envi-
ronmental effects alone struggle to explain the dramatic
increase of λ with total mass that occurs in the ETG

sequence between 109M⊙ and 1010M⊙ (cf. Sec. 3.1)
because of two issues: Firstly, the LTG sequence ex-
hibits a similar sudden λ suppression in this mass regime

(though not in j). Secondly, genuine field dEs that re-
side far outside any cluster also seem to display only low
to intermediate angular momentum parameters (Janz
et al. 2017) and are still quiescent. Both observations

suggests that, regardless of external influences, low mass
galaxies in and of themselves have a low angular momen-
tum parameter and it is possible for late-type dwarfs

to be quenched even in low-density environments. Per-
haps the reduced potential well makes the dwarf galaxies
more susceptible to internally induced dynamical heat-

ing and quenching, e.g. by supernovae winds or stellar
bars, which causes an additional reduction of the angu-
lar momentum on top of the environmental influences.

4. CONSTRAINTS FROM DYNAMICAL

MODELING

In the following we present the stellar mass and kine-
matic structure of the dE sample with the modeling
setup we described in Sec. 2.4. We plot the line of sight

kinematic profiles of the best AICp model we found for
each galaxy together with the observed data in Fig. 3.
The best orbit models fit the observations well and re-

produce all discernible features in the first few Gauss–
Hermite moments despite the fact that we fit the entire
FoV as a whole (instead of quadrants individually). This

suggests that our sample galaxies do not show obvious
evidence for being non-axisymmetric. In fact, it is re-
markable that the kinematic moments of all dEs, fast
rotators and slow rotators, can be emulated this well by

oblate axisymmetric models. In contrast, the most mas-
sive, slowly rotating ETGs often display photometric
and kinematic signatures (e.g. Schechter & Gunn 1978;

Williams & Schwarzschild 1979; Binggeli et al. 1985; Ene
et al. 2018; Neureiter et al. 2023b) that require triax-
ial models and orbits to be emulated well. The fact
that this is not necessary for any of the dEs may be

another hint that they, unlike more massive ETGs, are
indeed the remnants of transformed (oblate, axisymmet-
ric) LTGs.

Fig. 10 presents the AICp-constraints for the outer
and inner mass-to-light ratios and the viewing angles
we obtained from all the orbit models that were cal-

culated. Together this 3 parameter set fully describes
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the 3D stellar mass distribution of the models ρ∗ =
Υ∗(Υi,Υo) · ν(i).

Instead of focusing only on the values of these nuisance
parameters that are merely used to construct the 3D
mass distribution, it is more meaningful to investigate
the mass distribution they describe directly (see also ar-

gumentation in LT). Fig. 11 illustrates the (spherically
averaged) densities of both the dark and stellar mass dis-
tributions of the best models we found for each galaxy,

i.e. with ∆AICp = 0 as shown in Fig. 10. We also
indicate the relative importance of both mass compo-
nents by displaying the cumulative dark matter fraction

fDM = MDM

MDM+M∗
against the radius in Fig. 11.

Apart from VCC 1261, the baryonic stellar mass of the
dEs seems to be distributed quite differently from their
dark matter. The stars dominate the center, but unlike

the halo their density falls off much more steeply fur-
ther outside, which results in the drastic and monotonic
increase in the dark matter fraction. At least within

the radial regime we analyse (≲ 1 re), the dark matter
seems to play a secondary role. We will analyse and con-
trast the radial density gradients and flattening of both

stellar and dark matter mass in a more detailed manner
in the companion paper (VW–II). For the remainder of
this work we focus on the interpretation of the recovered
baryonic properties.

4.1. Viewing angles

We sampled 5 different inclination angles (and their
corresponding deprojections) for each galaxy with the
strategy described in Sec. 2.1. The recovered inclina-

tion angles (Fig. 10) appear to be strongly constrained.
VCC 856 is the only galaxy where the viewing angle
reaches the lower sampling limit at i = 32◦. Axisym-

metric deprojections of this galaxy with a significantly
smaller inclination are inconsistent with the observed el-
lipticity profile. Therefore it seems the orbit model of
VCC 856 prefers to be as close to face-on as possible,

which would be in line with the faint near face-on, spi-
ral arm signature (given the arms are aligned with the
equatorial plane of the galaxy’s main body spheroid).

If the galaxy was closer to edge-on, we would not be
able to see the pattern in the photometry. Likewise, the
only other galaxy known to exhibit a hint of a visible

spiral pattern, VCC 308, is also constrained to be fairly
close to face-on (cf. App. E). This consistency of the
dynamically recovered viewing angles with independent
photometric signatures (the spiral arms are not explic-

itly accounted for in the orbit models) are strengthening
our confidence in the accuracy and importance of the in-
clination recovery which we first tested on simulations

in Lipka & Thomas (2021). The average intrinsic flat-

tening of the stellar mass distribution which is associ-
ated with the recovered inclination angle is shown later
in Fig. 14 together with the intrinsic stellar kinematic

structure. We will also compare the intrinsic stellar axis
ratios q∗ to the corresponding axis ratios of the dark
matter component in VW–II.

4.2. Stellar mass-to-light ratio gradients

Dynamically derived stellar mass-to-light ratio gradi-

ents are scarce in the literature (e.g. Oldham & Auger
2018; Mehrgan et al. 2024), as mass-to-light ratios are
often assumed to be spatially constant. However, even

for the seemingly smooth ETGs, some studies suggest
one may expect a spatial variation of Υ∗. For example,
for giant ETGs, several stellar population studies indi-
cate a variation of the IMF inside the effective radius

(Ferreras et al. 2012; van Dokkum et al. 2017; Parikh
et al. 2018, 2024) which entails a corresponding varia-
tion of Υ∗ there. Using the same axisymmetric modeling

technique as we use, Mehrgan et al. (2024) have detected
a similar increase of Υ∗ in the stellar bulges of 6 giant
ETGs. All of them show a central peak in Υ∗ with a gra-

dient happening on a sub-kpc scale (more concentrated
than previously anticipated).

These findings in the giant ETGs contrast with the
dynamically derived stellar mass-to-light ratio gradients

of the dE sample in our study (see also Fig. 15). The
dEs exhibit considerable diversity, with some galaxies
radially increasing in Υ∗, while others decrease. When

calibrated in the z -band12, the gradients of our dE sam-
ple are distributed around an average of zero.

Another difference with the large ETGs is that in
the dE sample all stellar gradients are more moder-

ate: the sample average of the absolute gradient is∣∣∣∂Υ∗,z [M⊙/L⊙]
∂ log10(r[kpc])

∣∣∣ ≈ 0.75. The most extreme gradient we

find is that of VCC 2048 with
∂Υ∗,z [M⊙/L⊙]
∂ log10(r[kpc])

≈ +1.62 (cf.

Fig. 12). In contrast, the bulges of the giant ETGs in

Mehrgan et al. (2024) have a much larger sample aver-

age13 of
∂Υ∗,z [M⊙/L⊙]
∂ log10(r[kpc])

≈ −4.37. Note though this av-
erage value is largely driven by two of the giant ETGs

with extreme gradients of around −8, while the rest of
the sample is more moderate with gradients of about
−2.5

12 To calibrate the mass-to-light ratios to a common band we used
a conversion factor derived from the stellar population models of
Maraston (1998, 2005) assuming a Kroupa IMF and a range of
metallicities and ages that are plausible for the dEs (Sec. 2.3).

13 The 3D gradients they found are stated in different bands but
we approximately calibrated their values into the z-band for a
comparison.
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Figure 10. The ∆AICp envelopes for the intrinsic inner and outer mass-to-light ratios envelopes and the viewing angle of all
the orbit models we probed for each dE. The stellar mass-to-light ratios are stated in their respective bands (Tab. 1). To obtain
a realistic estimate of the errors we compared the differences in the best 25 models. This is roughly equivalent to ∆AIC ≲ 10
criterion.

It appears that dEs are distinct from the more mas-
sive ETGs in having much lower spatial variation with

no systematic preference of rising or falling gradients.
Since the stellar population properties (age and metallic-
ity) are also approximately radially constant (Sec. 2.3),
the stellar component appears to be well represented by

a single homogeneous stellar population, at least at the
scales we investigated (i.e. between 0.1 kpc to 1 kpc).
However, we do note that the study of Mehrgan et al.

(2024) was probing IMF variation in the very center of
large ETGs. They choose to sample Υi and Υo at radii
more concentrated in the center and not over the entire

FoV like we did here. In other words, the gradients for
both giant ETGs and dEs are measured between radii
that are similar in physical scale (1 kpc scale) but rel-
ative to the overall galaxy size our gradients are sam-

pled on a much more extended radial range. Perhaps
one needs to probe the dwarf galaxies at much smaller
scales to observe mass-to-light ratio gradients as strong

as those found in giant ETGs. However, for the much
smaller dEs this is currently unfeasible because our kine-
matic data does not resolve the very central parts well.

The inner and outer mass-to-light ratios Υi and Υo

we sample with the orbit models determine the radial
behaviour of the stellar mass-to-light ratio Υ∗(r) in 3D-
space. In contrast, gradients recovered from a stellar

population analysis (Sec. 2.3) describe the stellar popu-
lation properties as observed on the sky. As such, mass-
to-light ratios derived from populations are actually the

ratios of the projected populations on the sky. The pro-
jected stellar mass-to-light ratios vs radius from both dy-
namics and population models are shown later in Sec. 5.

In projection the gradients appear even more moderate
than they are in 3D space.

Despite these overall only moderate mass-to-light ra-

tio gradients detected in the dEs, we still notice inter-
esting relationships between the dynamical Υ∗ varia-
tion and other properties. For instance, the two galax-

ies which exhibit distinctly strong and positive gradi-
ents, VCC 1261 and VCC 2048, also show distinctly
different kinematic signatures in σ and h4, with them
having strong central dispersion drops and negative h4-

gradients (cf. Fig. 2). At the same time these two galax-
ies are also the galaxies with the largest measured ve-
locity dispersion (σ∼50 km s−1). The dispersion drop

could be a result of recent central star formation where
the young and bright stars that were being formed in the
center have not been heated up yet. This lowers both the

central velocity dispersion and mass-to-light ratio com-
pared to the older, dynamically hotter main part of the
galaxy. Alternatively, it could be a signature of small
objects, like star clusters or minor galaxies, that were

accreted and disrupted within the galaxy’s extended en-
velope, increasing the random motions there.

This relation between the kinematic moments and the

dynamically determined Υ∗-gradient seems to extend to
the other galaxies: Fig. 12 shows the intrinsic 3D mass-
to-light ratio gradients of the best dynamical models

we found for each galaxy versus the observed velocity
dispersion gradients. The latter were determined from
the slopes of a simple linear regression fit to the radial
dispersions (Fig. 3). As the Spearman correlation coef-

ficient of pSpearman = 0.85 indicates, the radial variation
of the stellar mass-to-light ratio and the observed dis-
persion are strongly correlated. In fact if one were to
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Figure 11. Top panel: The (spherically averaged) matter
densities for the dE sample that we obtained from the best
AICp model found for each dE. Solid curves: The stellar
density (including the Υ∗ gradients). Dashed curves: The
corresponding dark matter halo density as modelled by the
Zhao-parametrization (eq. 2). Bottom panel: The cumula-
tive Dark matter fraction fDM within radius r. The dots
highlight the value of fDM at one stellar effective, the typical
radial extent of the kinematic data is 1.0 re.

exclude VCC 856 (for which the classification as a dE
and its kinematic recovery are questionable) from the
analysis, the evidence for this correlation becomes even
stronger with pSpearman = 0.95. Interestingly the rela-

tion between the dispersion and Υ∗ also seems to cross
the zero point, i.e. galaxies with essentially flat disper-
sion profiles also have flat stellar mass-to-light ratios.

It seems to be the case that the local stellar mass-to-
light ratio and line-of-sight dispersion increase in lock-
step. Such a positive correlation with the dispersion
could naturally arise through the change in potential

that comes with locally changing stellar mass-to-light
ratio Υ∗. However, the dispersion gradients, particu-
larly of VCC 1261 and VCC 2048, are very steep and

confined to the central 5′′. The steep dispersion drops
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Figure 12. The observed average velocity dispersion gra-
dients ∂σLOS(r)

∂r
, obtained from a linear fit to the observed

radial dispersion profile, plotted against the 3D, log-linear,
stellar mass-to-light ratio gradients of the dynamical models.
The gradients were calibrated in the z-band for a consistent
quantitative comparison.

of these two galaxies towards the centre (Fig. 3) could

therefore be of different origin such as: the past accre-
tion of smaller satellite galaxies, the presence and inter-
action with a bar, nucleus or embedded disk. However,
none of these scenarios appears to be strongly supported

by our analysis of the orbit structure that follows.

4.3. Intrinsic kinematic structure

The Schwarzschild models we employed yield con-
straints on the phase-space density of the stars. There-
fore the 3D intrinsic kinematic structure of the stars and

their associated velocity moments can be inferred from
the kinematics of the individual orbits of the model and
the recovered orbital weights (Thomas et al. 2004).

In spherical coordinates the anisotropy parameter β

is a convenient quantity that describes by a single num-
ber the dynamical structure of the stars. It relates the
second order velocity moments to one another as follows:

β = 1 −
σ2
ϕ + σ2

θ

2σ2
r

(4)

where σ are the velocity dispersions in spherical coordi-
nates (Binney & Tremaine 2008). A positive β means
the structure is radially anisotropic, i.e. the stellar ve-

locity dispersion is larger in the radial than in the tan-
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gential direction. A negative β on the other hand implies
the opposite.

Fig. 13 illustrates the spherically averaged anisotropy
of the best dE models as a function of radius together
with other ETG samples. Apart from VCC 856, the
only genuine fast-rotator (Fig. 5) and an outlier in many

regards (App. E), all dEs have a relatively homogeneous,
isotropic orbit structure at most radii, with signs of mild
radial anisotropy in the center (< 0.3 re). At large radii

near or outside the FoV and within scales smaller than
the central spatial resolution limit, the profiles diverge
more. However, this is expected as the inferred orbital
motions at these scales become less reliable due to the

lack of kinematic data constraints in these regions (see
also LT).

Despite the phenomenological diversity in the ob-

served Gauss–Hermite moments (Fig. 3), the intrin-
sic orbit structure of the galaxies seems fairly homo-
geneous. This lack of spatial anisotropy variations im-

plies a more direct connection between the observed dis-
persion profiles (Fig. 3) and the corresponding intrinsic
mass profiles, consistent with the strong correlation be-
tween mass-to-light ratio gradients and velocity disper-

sion gradients (Fig. 12).
An orbit structure that is essentially isotropic

throughout with a mild radial anisotropy in the cen-

ter is remarkable. In contrast, the β profiles of ‘or-
dinary’ ETGs can be quite heterogeneous. Power-law
ETGs (log(M∗/M⊙) ∼ 10 − 11) may on average be

nearly isotropic (Cappellari et al. 2007) but their pro-
files can vary strongly with radius and are generally far
from isotropic at any point (e.g. Thomas et al. 2007,
2009b, 2014; Santucci et al. 2022). The even more mas-

sive cored ETGs are distinct again. They are found to
be tangentially biased in their center and strongly radi-
ally biased further out (e.g. Thomas et al. 2014, 2016;

Mehrgan et al. 2019), which is believed to be a result
of a black hole core scouring process (cf. Kormendy &
Bender 2009; Kormendy et al. 2009; Kormendy & Ben-
der 2013; Thomas et al. 2014; Rantala et al. 2018). The

scouring may even be a protracted process (Frigo et al.
2021) which could also result in intermediate states be-
ing observed where the core is not yet tangentially biased

(e.g. Neureiter et al. 2023b). Conversely to both types
of ‘ordinary’ ETGs (cored and power-law) the structure
of the dEs is quite isotropic and homogeneous. Further-

more the tendency to be mildly radially anisotropic in
the centre appears to be unique to the dEs.

This orbit structure seems to suggest that the evolu-
tion of dEs is distinct and again we note the ‘trichotomy’

across the stellar mass sequence from 109− 1012M⊙ (cf.
Sec. 3.1). However, we do caution that a comparison be-

tween the two is not straightforward because we probe
different scales relative to the galaxies’ sizes. The mas-
sive cored ETGs in Fig. 13 indicate that the stars typi-

cally are on more tangential orbits within about 0.5 kpc
and become radial beyond 1.5kpc. However, the physi-
cal scale involved here is the sphere-of-influence radius
of the central supermassive black hole which happens to

be around 0.1−1 kpc for most of the massive core galax-
ies studied (Thomas et al. 2016). In the dEs, however,
we do not resolve the sphere of influence of any black

hole, i.e. we are not able to detect any scouring-related
effects in our sample galaxies.

The nearly isotropic structure (with mild radial

anisotropy in the center) may be more akin to that of
the less massive dwarf spheroidal galaxies (dSphs) and
the dEs in the Local Group for which the anisotropy was
studied. For example, De Rijcke et al. (2006) analyzed

the velocity dispersion tensor of the 3 dE satellites of
M31 based on slit kinematics and concluded all 3 galax-
ies are fairly isotropic within the central 0.8 kpc, the

region that is most constrained by their data. Kowal-
czyk &  Lokas (2022) used Schwarzschild models for the
resolved kinematics of the Fornax dSph and found an
anisotropy profile that remains fairly close to isotropy

at most radii with signs of radial aniostropy in the very
center. Jardel & Gebhardt (2012); Jardel et al. (2013)
found β profiles for the dSphs Fornax and Draco that

are slightly radial yet close to β = 0 with only a small
increase in β throughout the relevant radial range. Us-
ing a Jeans modeling technique, De Leo et al. (2023)

found a very radially constant and close to isotropic or-
bit structure for the Small Magellanic Cloud after re-
moving tidally disrupted interlopers from their analy-
sis. The finding that the Milky Way’s dSphs are fairly

isotropic at all radii may be explained as a consequence
of their tidal interactions with the Milky Way. N-body
simulations of dSphs in a Milky Way like potential sug-

gest that ‘tidal stirring’ (Mayer et al. 2001) could have
transformed the orbit structure of initially disky dwarf
galaxies to become fairly isotropic as a result of several

interactions with the Milky Way (cf. Klimentowski et al.
2009;  Lokas et al. 2010).

If this effect of isotropic transformation of dSphs via
tidal interactions can be transferred to the larger scales

of the more massive dEs, then the isotropic structure
we find for the dEs is not necessarily their primordial
state but a result of processing late-type progenitors via

interactions with the cluster environment. It could also
explain why VCC 856 does not conform to the homo-
geneous β structure of the rest of our sample, as it has
not yet been fully transformed (or is in the process of)

as evidenced by the face-on spiral arms found in VCC
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Figure 13. The spherical anisotropy parameter β (eq. 4) vs radius scaled by the effective radius. The typical size of the FoV
for our dE sample is about 1.0 re, and outside of the FoV the anisotropy is not well constrained. The same is the case for
radii smaller than the spatial resolution limit. Using our error estimation criterion (Sec. 2.4) we find a typical 1σ error of the
anisotropy parameter of ∆β = 0.065 (within 1 kpc), with VCC 856 being the most uncertain at ∆β = 0.11. Red curves: The
anisotropy profiles of giant cored ETGs (Thomas et al. 2014, 2016). Due to black-hole scouring these have formed tangentially
anisotropic cores (≲ 0.05 re) within a radially anisotropic envelope. Black dashed lines: ETGs from the sample of Thomas
et al. (2007) which mostly consists of ‘ordinary’ ETGs with magnitudes within MB ∈ [−18.8, 22.6] mag. Grey band: The 90th
percentile of the anisotropies of the 23 ‘ordinary’ ETGs of Cappellari et al. (2007). Note that these values are radial averages.
If the orbital structure changes from tangential to radial (as is often the case), then this averaging can make the galaxy appear
closer to β = 0 than it actually is. Green, dotted line: The Fornax dSph from Kowalczyk &  Lokas (2022).

856. Tidal stirring would also be a natural explanation
why dSphs and dEs tend to be predominantly pressure-
supported and with low or moderate angular momen-
tum (Fig. 5) specifically in the center of Virgo (Fig. 7).

While the tidal stirring hypothesis may be successful in
explaining the isotropic structure, the fact that our dEs
inhabit fairly different environments within the Virgo

cluster, and yet they all seem to have a similar isotropic
structure, is peculiar. We would expect the dEs in the
cluster center to have experienced on average more tidal
passages, in which case we may expect a correlation of

β with the cluster environment which we do not seem
to find.

Alternatively, if the isotropic structure we find is not

a result of interactions with the cluster, it may stem
from an internal secular process that has driven the
kinematic structure towards a specific configuration. In

large ETGs the effects of these internal processes may be
obscured by the more violent changes induced by merg-
ers.

We found the spherical anisotropy parameter β to be
almost constant with the radius and very homogeneous
across all dEs in our sample. However, this impres-
sion of a completely isotropic stellar structure changes

when looking at the anisotropy of the second velocity



29

moments14 in cylindrical coordinates defined as:

βz = 1 −
〈
v2z
〉

⟨v2r⟩
(5)

quantifying the anisotropy in the meridional plane. And
in the corresponding sagittal plane:

γ = 1 −

〈
v2ϕ

〉

⟨v2r⟩
(6)

Fig. 14 shows these anisotropies (averaged within a
sphere of radius 0.8 kpc ∼ 10′′) versus the average
intrinsic ellipticity ϵintr. For our dE sample both

anisotropy parameters appear to be correlated with the
intrinsic flattening. While the near spherical dEs are es-
sentially isotropic, the velocity ellipsoid deforms as the

stellar distribution becomes more flattened. The posi-
tive βz suggests that flattened dEs have a significantly
smaller kinetic energy perpendicular to the equatorial
plane, while the negative γ suggests a relatively large

azimuthal energy (only some of it comes from ordered
motion).

When compared to the angular momentum parameter

of the galaxies (Fig. 5) we find that most galaxies with
a higher angular momentum parameter λe/2 > 0.1 also
have a larger velocity dispersion in the equatorial plane
(βz ∼ 0.3) suggesting both pressure and rotation sup-

port play a role in their flattening. There are exceptions,
like VCC 1261, which is mildly flattened but has essen-
tially no angular momentum (at least within re/2) both

on the sky and also intrinsically in terms of ordered mo-
tion. Instead its flattening seems entirely supported by
its relative lack of velocity dispersion in the z-direction.

In Fig. 14 we also show the cylindrical anisotropies
of ‘ordinary’ ETGs (Cappellari et al. 2007; Thomas
et al. 2009b) which were obtained with axisymmetric
Schwarzschild models. While the flatter dEs overlap

with the ‘ordinary’ ETGs, they trace the upper bound-
ary in βz and the lower boundary in γ of the ETG distri-
bution. This may suggest that dEs are not heated like

many of the most massive ETGs which have likely expe-
rienced mergers that would erase ordered motion more
chaotically. Especially dry mergers are expected to make
the orbit structure radially anisotropic, which is notice-

able in a higher, positive γ (Thomas et al. 2009b). In
comparison our dEs have low, negative γ which makes
(dry) mergers unlikely. Instead the shape of their ve-

locity ellipsoid is still very much aligned with the ori-

14 In the axisymmetric models the second velocity moments equal
the velocity dispersions in all but the azimuthal direction as it
includes ordered motion as well.

entation of a potential disky progenitor. This is com-
patible with the scenario that dEs stem from quenched
LTG progenitors. A natural explanation for the large

βz is that their kinetic energy is a relic of dissipation
by a gaseous disk before the dEs were being quenched.
For the flattened dEs, imprints of the disk structure re-

mained in the orbit structure until today, while for the
large fraction of near-isotropic and spherical dEs, the
heating process has come to its conclusion expunging
any traces of its progenitor and its net angular momen-

tum.
Orbit modelling of ETGs, in a similar mass range

as our dEs, by Ding et al. (2023) has suggested that

the environment (cluster infall time) affects the orbits a
galaxy’s stars occupy. Galaxies that fell into a cluster
recently have a higher fraction of orbits with high z-

axis angular momentum than galaxies that entered the
cluster long ago. However, contrary to the case of the
angular momentum parameter λe/2 (cf. Fig. 7), we do
not find any strong correlation of the anisotropy and in-

trinsic velocity moments with the 2D (or 3D) distance to
M87. Instead we find examples of flattened/anisotropic
dEs but also spherical/isotropic dEs in both the cluster

center and in the periphery.
All in all, dispersion support appears to be a non-

negligible contributor to the dE flattening. Compared
to ‘ordinary’ ETGs the dEs have a lower amount of or-

dered motion (Sec. 3.1), yet their anisotropy structure
(high βz and low γ) that is not correlated with environ-
ment suggests their orbits are still very much aligned

with the potential progenitor disk. It is not obvious
why the ordered motion (i.e. angular momentum) of
dEs should be diminished by the environment more ef-

fectively, while the higher kinetic energy in the equato-
rial plane is mostly preserved. One would expect tidal
interactions that reduce the ordered motion to increase
σz and, hence, to reduce βz. Instead, it may be more

plausible that the suppressed angular momentum of dEs
is not a result of environmental processing, but simply
a feature of their different gravitational assembly. We

revisit this scenario in VW–II where the dark matter
constraints allow further insights into the assembly con-
ditions of dEs.

5. THE IMF OF DWARF ELLIPTICALS

Studies of the Milky Way and local late-type galaxies
convey the picture of a universal (Kroupa or Chabrier)
IMF (Kroupa 2001, 2002; Chabrier 2003; Brewer et al.

2012), yet the circumstances seem more complicated for
early-type galaxies (e.g. van Dokkum & Conroy 2010).
For the most massive ETGs the results often suggest
a more Salpeter-like IMF (Salpeter 1955) and evidence
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Figure 14. The average cylindrical anisotropies βz (left) and γ (right) vs the intrinsic, average stellar ellipticity ϵintr. The
anisotropies were averaged within the sphere of radius r ≤ 0.8 kpc (∼ 10′′) because values outside the FoV are poorly constrained
by the data. Squares: The massive COMA ETGs of Thomas et al. (2009b). Stars: The ETGs from Cappellari et al. (2007).
The dashed diagonal line indicates the empirical relation βz = 0.7 · ϵintr from Cappellari et al. (2007), where flatter galaxies
have higher anisotropy βz.

is mounting that the IMF varies with radius, age, or

metallicity, and abundance ratios (e.g. Smith et al. 2012;
La Barbera et al. 2013; van Dokkum et al. 2017; Parikh
et al. 2018). Determining whether the IMF of the dEs

behaves more like that of the large ETGs or that of
LTGs may allow us to distinguish between the formation
scenarios responsible for the dEs.

In our study we can compare two independent mea-

surements of the stellar mass-to-light ratios for each dE
obtained from one and the same set of VIRUS-W spec-
tra which allows us to probe the validity of an assumed

IMF. The first mass-to-light ratio measurement we ob-
tained is from the dynamical modeling (Sec. 4). The
second set of mass-to-light ratios stems from the stellar
population analysis (Sec. 2.3) where we assume a certain

form for the IMF as a reference. We decided to use the
Kroupa IMF as reference and calculated the present day
stellar mass-to-light ratios ΥKroupa from the SSP anal-

ysis for each of the analyzed spectra (i.e. at r = 2.5′′

and r = 7.5′′). In the following, unless stated other-
wise, we specify ΥKroupa in the same bands we used

for the dynamical measurements (cf. Tab 1). One can
then compare the ΥKroupa with the dynamically derived
mass-to-light ratios and conclude whether the assump-
tion of a Kroupa IMF is accurate or if the IMF should

be more sub-Kroupa or super-Kroupa.
In Fig. 15 we juxtapose the dynamical Υdyn and

the two corresponding population mass-to-light ratio

ΥKroupa which were obtained from the two spectra in
the annulli centered around r = 2.5′′ and r = 7.5′′. For

reference we also show the total, 3D dynamical mass-
to-light Mtot/L (i.e. including the dark matter, but
excluding the SMBH) and the projected mass-to-light

ratio obtained from a simple ad hoc dynamical model-
ing where mass follows light, i.e. a dynamical model
with neither dark matter, nor a stellar gradient.

As in other galaxy samples, we find there can be sig-
nificant discrepancies between the dynamical and popu-
lation mass-to-light ratios for some of the sample galax-
ies (e.g. Thomas et al. 2011b; Cappellari et al. 2013a;

Posacki et al. 2015; Mehrgan et al. 2024). Using the
relative differences ∆∗ = (Υdyn − ΥKroupa)/Υmean with
Υmean = (Υdyn + ΥKroupa)/2 we find values up to

∆∗ = ±1. An often used alternative to the IMF param-
eter ∆∗ as defined here is the mass normalization pa-
rameter αIMF = Υdyn/ΥKroupa. While the use of αIMF

does not change any of the following conclusions we give
values of this alternative parameter in Tab. 2.

Fig. 16 shows the IMF parameter and the SSP age
for our dE sample together with the ‘ordinary’ ETGs of

the ATLAS3D survey (Cappellari et al. 2011) scaled by
the central velocity dispersion (which is a proxy for the
total mass).

For giant ETGs the velocity dispersions are known to
be positively correlated with the IMF parameter (e.g.
Cappellari et al. 2013b; Cappellari 2016; Zhu et al.
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Figure 15. Comparison of the local mass-to-light ratio Υ as a function of radius r[′′] for all Virgo dEs as obtained from different
models. Each panel shows one dE, with the box showing its VCC-id and the band in which the mass-to-light ratio is measured
(cf. Tab. 1). The colored lines show the mass-to-light ratios we derived using dynamical modeling: Dashed: The projected Υ∗
of the dynamically decomposed stellar component. Solid: The total 3D dynamical mass-to-light ratio Υtot (i.e. including the
dark matter). Note that Υtot is not a projected quantity, as this would include all the dark matter along the LOS, i.e. even
the poorly constrained DM far outside a galaxy’s FoV. This can make the projected Υ∗ appear to be higher than the 3D Υtot

values at some radii, even though the latter is by definition the upper bound for the 3D stellar mass-to-light ratios. The gray,
dotted horizontal line shows the mass-to-light ratio of the best mass-follows-light model (i.e. a dynamical orbit model with no
dark matter and stellar Υ-gradient). The black dots with errorbars show the stellar mass-to-light ratio from the population
analysis (Sec. 2.3) in the two annuli centered around r = 2.5′′ and 7.5′′. We also draw a connecting line between the two points
to highlight a population gradient if it exists.

2024). At the high mass end ETGs are almost all
very old and their average IMF is Salpeter-like15. But

as the total galaxy mass decreases, galaxies often are
younger as well and the typical IMF becomes progres-
sively lighter, reaching Kroupa levels (i.e. ∆∗ = 0).
However, analogous to the break in the angular momen-

tum parameter λ at log(M∗/M⊙) ∼ 10.5 (or equiva-
lently log(σ) ∼ 2.1), there appears a break in these ETG
correlations. Above this mass threshold, ∆∗ and the age

are positively correlated with the dispersion and show
relatively little scatter. Below the threshold the scat-

15 Though this changes if spatial IMF gradients are considered
(Mehrgan et al. 2024).

ter between different galaxies increases dramatically and
the IMF and age become independent of total mass and
dispersion.

In this view our dEs are indistinguishable from those
‘ordinary’ ETGs with dispersions below log(σ) ∼ 2.1.
While our dEs can be both, substantially super-Kroupa

or sub-Kroupa, they are within the large scatter of the
‘ordinary’ low dispersion ETGs and they have Kroupa
or Chabrier (i.e. just below Kroupa) IMF on aver-

age. A similar result was found by Tortora et al. (2016)
who compared the IMF parameter of the dEs sample of
Toloba et al. (2014) with ‘ordinary’ ETGs. Their dEs
also exhibit remarkable diversity, suggesting both super-

and sub-Chabrier IMFs, with the average dE being con-
sistent with a Chabrier IMF. This diversity they mea-
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Figure 16. A comparison of the IMF parameter (left) and the single stellar population age (right) of dEs with those of
the ‘ordinary’ ETGs from the ATLAS3D-survey (Cappellari et al. 2011). All galaxies are shown versus their central velocity
dispersion (measured within re/8) which is essentially a proxy for their total mass. ATLAS3D ETGs that reside in Virgo are
highlighted using squares, the others are shown as circles. We calculated the ∆∗ for a Kroupa IMF by transforming the mass-
to-light ratios from Cappellari et al. (2013b) which were given for a Salpeter IMF. The SSP equivalent age of the ATLAS3D

galaxies was obtained from McDermid et al. (2015) and is stated within a 1 re aperture. For our dEs we show the results for
both apertures that we analyzed. Cappellari et al. (2013b) and McDermid et al. (2015) flag their galaxies depending on the
quality of the data and analysis. For details on the definition of these flags see the corresponding studies. We show galaxies
flagged with the best quality in black and ‘bad’ galaxies that may not be as reliable in red.

sured could have been due to the more simple, restric-
tive dynamical mass estimates they employed (spherical,

isotropic Jeans equations), but the much more advanced
Schwarzschild models employed in our work suggest a
similar degree of IMF diversity.

This substantial scatter of galaxies below log(σ) ∼ 2.1
poses the question whether it stems from a real non-
universality of the IMF or is simply due to an increased

statistical uncertainty in the dynamical or population
modeling. If the IMF scatter of the low mass galaxies is
a result of a non-universal IMF we may hope to identify
a physical reason for changes in the IMF by looking at

correlations of ∆∗ with other properties. The strongest
correlations we find are with the SSP age and metallicity.
It appears that the older and the more metal-poor a

stellar population is, the larger its ΥKroupa is relative to
Υdyn, which results in a smaller ∆∗. This correlation
with the stellar population properties is illustrated in

the left panel of Fig. 17 which displays the differences
∆∗ versus the SSP ages we derived from the VIRUS-
W spectra. For comparison we also show the points
one would get for ∆∗ if one would assume the ages and

metallicities published in the literature (cf. Fig. 24).
For the literature values we recalculated the mass-to-

light ratios ΥKroupa under the assumption of a Kroupa
IMF.

A similar Figure for the correlation with metallicity
is shown in App. D. Since the age of the dEs is anti-
correlated with metallicity (Fig. 4) the ∆∗ − [Z/H] re-

lation follows as a corollary. We can expect the aver-
age metallicity background for each cycle of star forma-
tion to increase with the formation epoch. This nat-
urally changes the initial conditions for star formation

over time and, possibly, the form of the IMF (e.g. Li
et al. 2023). In the following sections we explore whether
this correlation of the IMF parameter with age (and/or

metallicity) is real and, if so, what could explain it.

5.1. Are the dynamical models robust?

The mass-to-light ratio discrepancies ∆∗ could origi-
nate from an erroneous dynamical stellar mass-to-light

ratio estimate that is caused by a large statistical un-
certainty in the dynamical decomposition of dark and
stellar matter in which case the Υdyn would not be very
representative of the actual mass bound in stars. One

could even assume the worst case where the mass decom-
position is completely random and the Υdyn for the dif-
ferent dEs randomly scatter around some average value

depending on how much dark matter mass is mistakenly
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Figure 17. Left panel: The relative differences ∆∗ of stellar mass-to-light ratios derived from single stellar population analysis
ΥKroupa and dynamical modeling as a function of age of the SSP. Dots with error-bars: The differences of the two mass-to-light
ratios we derived from the VIRUS-W spectra binned at r = 2.5′′ and r = 7.5′′ (Sec. 2.3). Gray Dots: The differences when
ΥKroupa values are based on literature stellar population results (cf. App. B). The dotted, horizontal line indicates identical
population and dynamical results. Assuming the dynamical results are correct, galaxies that lie above this horizontal line would
require a super-Kroupa IMF while galaxies below it a sub-Kroupa IMF. Right panel: Similar to the left panel, but instead of
comparing ΥKroupa with the decomposed stellar component Υdyn, the population ratio is compared to the total dynamically
mass-to-light ratio Mtot/L, i.e. the dark matter component is included in the mass. Using VCC 2048 as an example the
diagonal arrow symbolizes how an (unrealistically) large error in the SSP age would shift ∆∗ and ∆tot. We measure VCC 2048’s
population to be young, but if it was actually twice as old (∼ 8 Gyr), ΥKroupa would be higher and the galaxy should actually
be at the arrow’s head if we measured its age correctly.

included. In that case we expect Υdyn to be completely

independent of age, yet the ∆∗ would still appear to
be anti-correlated with age at least qualitatively. This
is because by definition the ΥKroupa of the population

models are increasing with age, which auto-correlates
∆∗ and age. The direction of this auto-correlation is
indicated by the arrow16 in Fig. 17.

However, we find the correlation between ∆∗ and age

we observe can not be driven by uncertainties in the
mass decomposition alone. This can be seen in the right
panel of Fig. 17 which displays the differences ∆tot of

ΥKroupa relative to the total dynamical mass-to-light
ratios Mtot/L. The total mass-to-light ratio Mtot/L in-
cludes the dark matter halo and, thus, reflects the to-

tal dynamical mass constraints. Consequently ∆tot does
not depend on the merits of the mass decomposition but
instead compares the dynamically (required) mass to the

16 The arrow quantifies how a change in SSP age alone would shift
∆∗, i.e. Υdyn and metalicity are kept the same. The shift is
estimated assuming the single population models of Maraston
(2005) with a Kroupa IMF.

stellar population mass. Two issues are noticed: i) The

correlation of the IMF parameter with age persists even
if we include the dark matter; ii) Some of the galaxies
(VCC 200, VCC 1861) have a negative ∆tot, suggesting

that the stellar population models predict a higher (lo-
cal) mass than what is dynamically inferred. If correct
this implies a lighter than Kroupa IMF for these two dEs
or, alternatively, that there may be a systematic offset

between the two modeling techniques. We will discuss
the latter in App. C. The fact that the anti-correlation
with age persists even after including the dark matter

means that independently of any mass decomposition,
the total amount of dynamical mass relative to the ex-
pected stellar mass of a Kroupa IMF decreases system-
atically from younger to older galaxies.

As mentioned above, ∆∗ and population age are auto-
correlated through ΥKroupa, hence, one would expect to
‘see’ an anti-correlation of ∆tot with age even if the dy-

namical mass-to-light ratio are roughly constant for all
galaxies. We can remove this implicit dependence of the
IMF parameter on age if we only plot the dynamically

recovered mass-to-light ratio Υdyn versus age, which is
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shown in Fig. 18. In both dynamical mass-to-light ratios
(stars only, and total) the anti-correlation remains, al-

though it appears to be weaker than Fig. 17 indicated.
In fact, the total mass-to-light ratio seems to be even
more strongly anti-correlated then the stellar mass-to-
light ratio.

As a sanity check, we have also computed dynamical
models composed entirely of stars with a single, radi-
ally constant mass-to-light ratio optimised by fitting the

kinematics. The mass profiles of these models are fixed
by the light distribution. These models are worse fits
with much larger AICp values. In the sample median
they are worse by ∆AICp = 50. Such fits are deemed

as unacceptable models (cf. Sec. 4) and due to their
inflexible mass profile they often overestimate the mass
of the best model at some radius (e.g. in the centre)

and, in exchange, underestimate the mass at other radii
(e.g. further outside). Still, the overall mass scale of
these best mass-follows-light models as shown in Fig. 15

is consistent with the mass-to-light ratios recovered with
the more sophisticated dynamical models that included
dark matter and stellar gradients. The anti-correlation
with age remains even with the mass-follows-light mod-

els and all dynamical mass predictions seem to be fairly
robust and independent of the specific choice of the dy-
namical model.

5.2. Are the SSP properties robust?

As mentioned above, the anti-correlation of the IMF
parameter with age (Fig. 17) is not obvious to interpret
quantitatively because ΥKroupa, and therefore also ∆∗,

are a function of the derived age. If the derived ages
and metallicities are erroneous, or even completely ran-
dom, one would still expect to see an anti-correlation

because larger SSP ages always imply larger ΥKroupa

and vice versa. This effect is again quantified by the ar-
row shown in Fig. 17. If the population of a galaxy that
we measure to be young is actually twice as old, then

∆∗ and ∆tot would be reduced significantly. While such
an unrealistically large error in age quantitatively is still
not sufficient to bring all galaxies to a single universal

level of ∆∗, it makes it difficult to judge the strength of
the correlation by eye.

This is why a comparison of two independent measure-

ments (like Fig. 18) is essential to quantify the strength
or existence of such a correlation. Assuming the con-
ditions are comparable for all dEs, e.g. differences in
halo formation, environment, etc. are not a major fac-

tor in the measured Υ∗ differences, then one may expect
the dynamical mass-to-light ratios to be a function of
the stellar population age. When a galaxy has stopped

forming new stars and passively ages, we expect its Υ∗

and Mtot/Lz to gradually increase17. If we assume a
universal IMF we can quantify the expected change of
the mass-to-light ratio from this aging process by evolv-

ing a typical stellar population. This is illustrated for
a Kroupa IMF by the dotted line in Fig. 18. In terms
of strength this expected mass-to-light ratio change per

Gyr is roughly comparable to the trend suggested by the
measured Mtot/Lz vs age measurements, but its sign is
reversed. If we assume a universal IMF and robust dy-
namical measurements, this implies the actual age trend

is roughly opposite to what is measured with the SSP
models.

Even assuming the worst case for the SSP models,

which would be that they are entirely unconstrained
and the derived ages are completely random, it seems
strange that the dynamical and population measure-
ment conspired to produce exactly the opposite to what

one would expect from the mass-to-light ratio vs age
behaviour. For the anti-correlation of the IMF param-
eter to be meaningless and solely be a result of errors

in the SSP properties it would not be sufficient to ran-
domly re-draw ages. Instead it would require the dEs
we measured to be very old (∼ 12 Gyr) to actually be

very young (∼ 4 Gyr) and vice versa.
While such a coincidence can not be excluded, given

such a small sample, we also have no reason to believe
that the SSP properties are entirely random either. The

stellar population ages are a direct consequence of the
measured Hβ indices (the strongest age indicator in the
VIRUS-W spectra) which is shown in Fig. 19. As ex-

pected, the Hβ indices are anti-correlated with age and
have realistic values. This suggests that there is no sub-
stantial issue within the SSP modeling itself.

Of course an error could already happen at the level

of the index measurement. For example, unmasked
emission lines can partially fill up the absorption lines,
distorting the corresponding Lick indices, or similarly,

problems in the spectral continuum determination or
flux calibration could affect the indices. However, we
did not find any evidence of emission lines in the spectra.

Furthermore the comparison with previously published
SSP results shows the same relative trends in age and
metallicity we found (Fig. 24), e.g. if we measure one
galaxy to be younger and more metal rich than another,

17 Of course younger galaxies could still have dust/gas left which
could boost the mass-to-light ratio. However, none of the dEs in
our sample exhibit any signs of dust, and they all have a fairly
spatially constant color (Ferrarese et al. 2006) apart from the
negligibly small central nuclei (cf. App. E). If there still are small
undetectable differences in the dust content, we do not expect
them to be able to explain the large variation in mass-to-light
ratios across age we find (Fig. 18).
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Figure 18. Left: The dynamically recovered stellar mass-to-light ratios Υ∗(r) evaluated at radii r = 2.5′′ and r = 7.5′′ versus
SSP age in the corresponding annulli. Right: The same but for the total mass-to-light ratio (incl. dark matter). For this
comparison we calibrated all mass-to-light ratios to the z -band. The mass-to-light ratios appear to be anti-correlated with
age. If the IMF is assumed to be universal across formation epochs, then this trend is counter-intuitive because one would
expect mass-to-light ratio is positively correlated with the time passed since star-formation. The dotted line indicates the
expected present-day z-band mass-to-light ratio for a single stellar population with a universal Kroupa IMF and a metallicity
of [Z/H] = −0.3 (Maraston 2005) as a function of its age.

then this is also detected in the other results, even if
the absolute differences in age and metallicity may be
slightly offset.

In conclusion, for the anti-correlation of the IMF pa-

rameter to be solely a result of an uncertainty in the
derived SSP ages, a systematic error at the level of the
Lick indices present throughout the literature studies

would be necessary that is strong enough to be able to
change and reverse the derived trends with SSP prop-
erties. Or, alternatively, both SSP models and dynami-

cal models have very large uncertainties but coinciden-
tally produced the anti-correlation. A coincidence is not
necessarily excluded given the small sample size. To
tackle this, a larger number of independent and robust

measurements of the dynamical mass-to-light ratios will
be needed. However, as of now not many dynamical
constraints have been published and the existing ones

rely on rough virial mass estimates or mass-follows-light
models. These rough estimates are often further im-
pacted by the low spectral resolution of the data which
biases the inferred velocity dispersions (App. B).

5.3. Star formation history

An assumption that comes along with the SSP mod-

eling is that all stars have formed in a single rapid burst

of star formation. However, this may not be reflective

of the actual star-formation history (SFH) the dEs have
experienced. Two alternatives (or a mixture of both)
are conceivable: i) The dEs have a bursty history, i.e.

the galaxies are constituted of multiple distinct stellar
populations that formed violently in multiple, separate
bursts. ii) The dEs had a slow but prolonged star for-

mation over several Gyr before they were quenched.
A bursty SFH can happen if internal or external

processes (e.g. mergers, ram-pressure-stripping, re-
accretion, ...) are able to continuously trigger and stop

multiple star-formation bursts. A plausible scenario is
that after a violent initial burst, the resulting super-
nova feedback expels most of the gas temporally (but

not indefinitely) into the intracluster medium before the
galaxy re-accretes the gas again, triggering a secondary
star burst (Seo & Ann 2023). Such a process would de-
pend on both environment and total inital mass. For ex-

ample, a high mass dE in a low-density environment will
be able to hold onto more of its gas without expelling it
indefinitely and, thus, is able to trigger multiple bursts.

A slow and gradual SFH on the other hand can hap-
pen if the galaxy has a continuous supply of gas (e.g.
through wet minor mergers or further gas accretion).

Again high-mass dEs that inhabited low-density envi-
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Figure 19. The Hβ index vs. the SSP age derived from the two spectra at r = 2.5′′ (left) and r = 2.5′′ (left). The measurement
of the strong age-indicator Hβ appears to be a strong predictor of the age, which suggests the age we derived is a direct result
of the measured spectra and not a random modeling result.

ronments in their past and, thus, gravitationally domi-
nated their local environment are likely candidates for

such a prolonged SFH. The galaxies would have contin-
uously formed stars during their LTG progenitor phase
only stopping when quenched and transformed to a dE

(e.g. as they experience their first infall into the cluster).
In either case (bursty or continuous) the extended

SFH could lead to the anti-correlation of the dynami-
cally measured mass-to-light ratios with age (Fig. 18).

Supposing all dEs have formed in the same epoch (e.g.
12 Gyrs ago) but depending on their total mass and
environment, some of them (the ones we find to be

younger and metal-rich) were able to have an extended
SFH. Then the apparently young and metal-rich galax-
ies could have significant amounts of older stellar pop-
ulations with a higher mass-to-light ratio, which may

be overshined by the youngest component from the last
star-formation period. Moreover, they could host far
more stellar remnants (from long passed SF periods)

then the SSP models would predict. In that case the
mass bound in stars would be higher than the lumi-
nosity suggests and the actual mass-to-light ratio would

be higher than that of the most recently formed sub-
population which might dominate the SSP model.

Several of our findings support this SFH explanation
for the ∆∗-age anti-correlation. Firstly, the younger
galaxies appear to have almost solar-like metallicity
(Fig. 24), suggesting the youngest population has been

chemically enriched by the past SFH. Secondly, the two
youngest galaxies are also found in the lowest density
environments near the cluster’s virial radius (Fig. 8),

which may imply they have only recently been quenched.
Thirdly and lastly, the dEs generally have low, near
solar-like [Mg/Fe] ratios when compared to the higher
ratios of more massive ETGs18, which implies the SFH

of dEs were more gradual. This is not new and numerous
studies of several abundance ratios have found that dEs
have a chemical composition that indicate a prolonged

SFH (e.g. Geha et al. 2003; Michielsen et al. 2008; Şen
et al. 2018; Romero-Gómez et al. 2023b).

18 A lower [Mg/Fe] is an indication of a more extended SFH because
Mg (as an α element) is made predominately by supernova of type
II whereas Fe builds up more gradually via type Ia.
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If the SSP ages we find are more representative of
the epoch of last star-formation (i.e. of the time they

were being quenched) and less so of the galaxy’s time of
formation, then we may expect that the [Mg/Fe] ratios
are correlated with the SSP ages. Indeed we find signs of
such a correlation as illustrated in Fig. 20. Especially in

the center (r = 2.5′′), the abundance ratios are strongly
correlated with age (more so than with environment, see
Fig. 8).

If the dEs indeed have experienced a complex star-
formation history over several Gyr, then one may be
able to unravel the ∆-age anti-correlation by modeling
them with multiple populations (if one can get the de-

generacies under control). As mentioned in App. B,
Ryś et al. (2015) have tested the simplest form of ex-
tended star formation (2-burst models) on some of our

sample galaxies. Unfortunately, for most of those dEs
they often had trouble finding a solution for the older
population, in which case they fixed its age to 12 Gyr

to find a solution. Still, qualitatively, their results are
fairly supportive of a complex, extended SFH. For ex-
ample, while 70 to 80% of the light of VCC 2048 (SSP
age of ∼ 3-4 Gyr) comes from a young population (2 to

3 Gyr), about half the mass is currently found in the
second older 12 Gyr population. While we can expect
the IMF parameter of the dEs with old SSP ages (∼12

Gyr) are robust (the single population assumption is
correct), this is less clear for the dEs with younger SSP
ages. In a scenario like the above for VCC 2048 where

half the mass is bound in an older ‘hidden’ population,
a single-population-model would result in an underes-
timation of ΥKroupa and therefore an increase of ∆∗.
As such the observed ∆∗-age anti-correlation could be

an artifact originating from not accounting for the ex-
tended SFHs of dEs with younger ages. However, quan-
titatively it seems implausible that the SSP assumption

alone could be responsible for the variation in the IMF
parameter: to bring the very high ∆∗ of the youngest
dEs (e.g. VCC 2048) down to the sub-Kroupa level of
the oldest (e.g. VCC 200) their ΥKroupa would have

to be up to 5.77 times higher than what we estimated
with the SSP models. Nonetheless we may expect that
the assumption of a single population could artificially

increase the significance of the ∆∗–age correlation. A ro-
bust modeling of the (potentially) complex SFH of dEs
will be needed in the future.

It is likely that galaxies in the mass regime of our
dE sample are particularly prone to display a complex
extended SFH. More massive galaxies quench quickly
because of feedback from active galactic nuclei. Less

massive galaxies also quench quickly because they are
much more vulnerable to rapid quenching by their envi-

ronment or supernova feedback. However, in the inter-
mediate regime of the dEs there may be a ‘sweetspot’ at
which a galaxy is just about massive enough to hold onto

its gas reservoir for a prolonged period without ejecting
it due to violent internal feedback. For example, while
for the less massive galaxies gas could be removed in-
definitely and rapidly in a single quenching event, the

slightly more massive dEs could be able to reaccrete
some the ejected gas and rejuvenate their star forma-
tion. The results of Romero-Gómez et al. (2023a) in-

deed suggest that such a maximum-SFH sweetspot is
somewhere between 108 and 109M⊙. They analysed the
SFHs of 3 different galaxy samples (Local Group dSphs,

Fornax dEs, massive ETGs) and found that the dEs
formed their stellar mass more slowly than the galaxies
in the other two samples. Surveys that study the mass
regime between 106 − 1010M⊙ using a single cohesive

sample/analysis may be able to confirm the existence
and location of this sweetspot in the future.

5.4. IMF variation with formation time

If an extended SFH is not sufficient to explain the cor-

relations of ∆∗ with age and metallicity quantitatively
and the mass-to-light ratios from dynamical and SSP
modeling are indeed robust, the alternative physical ex-

planation is that the assumption of a universal Kroupa
IMF is wrong and instead the true IMF changes over
time and metal content. To be consistent with the dy-

namical masses, the galaxies with ∆∗ > 0 would require
a Super -Kroupa IMF, while galaxies with ∆∗ < 0 re-
quire a Sub-Kroupa IMF. In that case the correlation
suggests that the IMF changed from Sub-Kroupa IMF

in the early Universe to a Super-Kroupa IMF in the
present, while crossing the intermediate Kroupa IMF at
around 4-8 Gyr ago. Our results are not the first in-

dication that masses derived from SSP-modeling with
an assumed universal IMF maybe be overestimated for
older populations. For example, the anti-correlation ob-
served in ETGs between central dark matter fraction

and SSP age may well be explained by a lighter IMF
of older populations (cf. Napolitano et al. 2010; Tortora
et al. 2014). This is also not the first time a variation

of the IMF with time and metallicity content is pro-
posed (e.g. van Dokkum 2008; Li et al. 2023), with the
theory being that at early formation epochs the IMF

is more ‘bottom-light’, or analogously more ‘top-heavy’,
than present-day IMFs. Such IMFs may be caused by
the on average higher temperatures of the star forming
clouds in the early Universe (e.g. due to CMB heat-

ing) or more effective stellar feedback in the early, low
metallicity environments (Larson 2005; Chon et al. 2022,
2024).
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Figure 20. The abundance ratio [Mg/Fe] (a proxy for extended star formation) vs the single population age. Especially in
their center (r = 2.5′′), dEs that are young also have lower solar-like [Mg/Fe], which suggests they had a more extended star
formation history than older ones which (presumably) were quenched earlier.

Regardless, the large change in ∆∗ we observe across

our sample galaxies does require a significant change of
the IMF during the lifetime of the Universe. At this
point the variation (or universality) of the IMF with
time is still a hotly debated issue (for a review see Bas-

tian et al. 2010). While our dE sample does suggest a po-
tential variation of the IMF across formation epoch, the
evidence across the literature is still conflicting depend-

ing on the IMF measurement probe that is being used.
For example, while our dwarf models suggest a negative
correlation of the IMF parameter with age, observations

of ‘relic’ galaxies (which are assumed to be probes of
conditions in the early Universe) suggest the opposite
trend: a positive correlation with age (Mart́ın-Navarro
et al. 2023). (Parikh et al. 2018) who studied the IMF

of ‘ordinary’ ETGs with masses log(M∗/M⊙) ∼ 10− 11
find a similar, but stronger, metallicity trend as we do
but their trend with age is again the opposite. If on the

other hand we analyse the IMF parameters and SSP ages
of the ATLAS3D-survey (Cappellari et al. 2011) we find
no strong correlation with age in either direction. Only
the few young ATLAS3D galaxies with σ < 100 km s−1

tentatively show signs of ∆∗–age anti-correlation.

In conclusion, while some of the above discussed po-
tential causes for the ∆∗-age correlation we found ap-

pear more plausible than others, we believe a superpo-
sition of the discussed issues could be the most likely
explanation. To confirm the veracity of this correlation,

a larger sample will have to be investigated that ideally
includes a larger variety in total mass and environments
(e.g. field galaxies). At the current level of accuracy we

do not believe we can employ the SSP results to com-
plement or help improve the dynamical models of our
dE sample, e.g. by using them as additional constraints
to help decompose baryonic and dark matter (VW–II).

Neither do we deem the SSP results to be robust enough
to corroborate the veracity of the dynamical mass de-
composition. Future simultaneous population and dy-

namical analysis applied to the same data sets, such as
done in this study, may be very conducive to test current
modeling assumptions and confirm or deny our findings
regarding the IMF and/or a prolonged SFH.

A problem with investigating a potential non-
universality of the IMF due to age (or metallicity) is that
the single stellar population estimates are most sensitive

to the epoch when a galaxy has stopped forming stars
than to the epoch when the galaxy has actually formed.
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Complementary to more sophisticated population mod-
els which may be able to account for complex SFH one

may also look for probes of the galaxy formation epoch
that are independent of stellar activity. Studying galax-
ies’ dark matter halo densities (VW–II) could be such a
way to gauge the epoch of gravitational assembly inde-

pendently and to discriminate whether the dEs have as-
sembled in different epochs (implying a non-universality
of the IMF with age) or all at a similar, early epoch (im-

plying varying degrees of SFH and the IMF trend with
age to be an artifact).

6. SUMMARY AND CONCLUSIONS

We have presented new kinematic data for a sample

of 9 Virgo-Cluster dEs obtained with the high-resolution
IFU-spectrograph VIRUS-W. It is the first 2D kinematic
study of these objects with such a high spectral resolu-

tion which allows the recovery of velocity dispersions re-
liably down to σ ∼ 15 km s−1 and out to approximately
1 re. Previous observations with lower spectral resolu-
tion tend to yield dispersions that were biased high by up

to 20−50% (App. B). We also provide the first spatially
resolved measurements of the higher order non-gaussian
moments of the LOSVDs for these galaxies. The dEs

exhibit diverse but systematic kinematic signatures in
all Gauss–Hermite moments up to h4. We find dEs with
strong central dispersion drops as well as flat and slightly
decreasing dispersion profiles. Many of the galaxies fol-

low the same v − h3 anti-correlation known from more
massive galaxies. Some of the dEs also has a central
peak in h4 ∼ +0.1, whereas the profile decreases ra-

dially to ∼ 0 which is often associated with a central
dispersion drop.
Mild dynamical mass-to-light ratio gradients.

We have used the spatially resolved LOSVDs to con-
struct orbit-superposition models which allowed us to
dynamically constrain their 3D intrinsic mass and kine-
matic structure. This study is the first attempt to dy-

namically constrain stellar mass-to-light ratio gradients
on the scales of dEs. The gradients we recover are gen-
erally low to moderate but we find a strong positive

correlation of the stellar mass-to-light ratio gradients
with the observed line-of-sight velocity dispersion pro-
files. Galaxies that feature a radially increasing σ also

increase in their stellar mass-to-light ratio with radius
and vice versa, while dEs with a flat dispersion profile
are also flat in their mass-to-light ratio. Averaged over
the whole sample, the gradients are distributed around

zero.
SSP gradients. We also binned the spectra in two

annulii to perform a single stellar population analysis

with the goal to derive age, metallicity and abundance

ratios. Our SSP results are in broad agreement with
most of the existing literature, but the scatter and mea-
surement error are considerable. Unlike the case for the

LOSVDs, we have no reason to believe that our SSP
results are significantly more reliable than the already
existing measurements. We find little to no correlation

between SSP results and cluster environment. Com-
bining the SSP analysis with the dynamical results we
do not find any strong evidence of a spatial variation
of the IMF as found for the bulges of massive ETGs

(Mehrgan et al. 2024; Parikh et al. 2024). On average
dEs are consistent with a Kroupa-like IMF. Taken to-
gether, both SSP gradients and dynamical models paint

a spatially homogeneous picture of the luminous mat-
ter. Apart from some outliers for which the interaction
with the intra-cluster medium has presumably rejuve-
nated recently some central star formation, the stellar

population properties and stellar mass-to-light ratios of
dEs change at most only moderately. This suggests that
the bulk of a dE’s stars (within the apertures we inves-

tigated) has formed in parallel from the same IMF and
dEs were quenched all at once.
Anti-correlation between M/L and age. While

the stellar changes within a single galaxy might be small,
we find a much larger heterogeneity across the different
sample dEs. Dwarf ellipticals display a greater diver-
sity in age compared to the generally much older giant

ETGs, with dEs SSP ages ranging from 2 to 12 Gyr. We
find that their mass-to-light ratios are anti-correlated
with this single population age, i.e. the younger the

galaxy is, the more the dynamical mass-to-light ratio
exceeds what is expected for a Kroupa IMF. This either
suggests a dependence of the IMF on formation epoch,
or alternatively, a more complex, prolonged star forma-

tion history. The former scenario suggests the Virgo
dEs are constantly being produced in different forma-
tion epochs and environments, while the latter suggests

all dEs have formed at roughly the same time early in
the Universe, but the ones found to be young have had
prolonged, complex star formation history whereas older

galaxies were quenched early on. Compared to ‘ordi-
nary’ ETGs, little is known about the IMF of dwarf
ellipticals yet, but our results suggest that future IMF
studies will require more sophisticated population mod-

els than what was used for most ‘ordinary’ ETG studies.
To establish conclusively whether the IMF varies with
age or not will require sophisticated extended SFH mod-

eling.
Suppressed angular momentum. In terms of their

projected angular momentum, the majority of dEs are

either classified as intermediate rotators or slow rota-
tors. The result stands in opposition to the angular
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momentum parameter of more massive ETGs. A plen-
itude of large samples, which study ETGs in the high

mass ranges ∼ 1010 − 1012M⊙, have identified a transi-
tion in the kinematic structure of ETGs around 1011M⊙
(e.g. Emsellem et al. 2011; Jin et al. 2020; Santucci
et al. 2023) where angular momentum parameter and

orbit structure change dramatically. For the most mas-
sive ETGs, the angular momentum parameter is low,
more stars occupy more radial orbits, and they form

tangentially anisotropic cores due to black hole scour-
ing. In contrast ‘intermediate-mass’ ETGs (≤ 1011M⊙)
can often have more tangential orbit contributions and

higher angular momentum. However, the results for
the dEs suggest a second point of change in the kine-
matic structure that occurs in the ETG sequence at even
lower masses around M∗ ∼ 109.5M⊙, at which point

the amount of ordered motion is reduced again. This
trichotomy in the ETG mass sequence appears to be
traced by a corresponding behaviour in the total spe-

cific angular momentum j = J/M , such that dEs have
significantly less angular momentum than expected from
(dark matter only) structure formation models. The cor-
relation of the angular momentum of dEs with their en-

vironment suggests that external influences play a role
in this reduction. The galaxies become more suscep-
tible to tidal perturbations and ram-pressure stripping

as their total mass decreases. However, even the dEs
in our sample that are at the cluster’s virial radius ap-
pear to be only moderately rotating, which could sug-

gest that the environment can not be the sole driver of
the momentum reduction. Internally induced heating
processes could also play a significant role, and similar
to the external processes, their impact can be expected

to increase as the potential well of the galaxies becomes
shallower. Together both external and internal influ-
ences may play an important role in shaping the orbital

structure of dEs, but instead the suppressed angular mo-
mentum could also be more so a result of their distinct
gravitational assembly rather than the result of those
secular processes. This will be explored further in VW–

II. To investigate these different processes, future studies
that include genuine field dEs far outside any cluster or
group may be helpful to break this degeneracy.

A 3D orbit structure aligned with its star-
forming progenitor. The above ‘trichotomy’ in the
angular momentum of ETGs is also echoed in the intrin-

sic orbital structure. The dEs behave distinct from both
intermediate mass ETGs and the most massive ETGs.
In spherical coordinates the intrinsic anisotropy param-
eter β is close to isotropic or mildly radial. In contrast,

more massive ETGs typically exhibit an anisotropy
structure that varies more strongly with radius and is

far off from isotropy. Intermediate mass ETGs exhibit
a range of different orbital structures and can be both
significantly radial as well as tangential. The more mas-

sive cored ETGs are more homogeneous to each other,
but have tangentially anisotropic cores due to black hole
scouring. If we analyse the dEs in cylindrical coordi-
nates, we find that intrinsically flattened dEs have an

increased kinetic energy in their equatorial plane de-
spite their aforementioned suppressed angular momen-
tum. Flattened dEs in our sample tend to have a higher

σϕ in the equatorial plane rather than enhanced radial
motions which contributes significantly to their flatten-
ing by the (low) angular momentum. This orbit struc-

ture makes (dry) mergers very unlikely, and it may be
interpreted as a (partially) intact relic of their star-
forming progenitors. The low energy perpendicular to
the disk again poses the question of how efficient exter-

nal/internal heating mechanism really are, and whether
the low angular momentum is more so an expression of
dE assembly (VW–II).

All in all, dEs appear to be spatially homogeneous in
their stellar structure within the scales we investigated.
Any stellar sub-structure must be too weak to be de-

tectable on the macro level of the dynamical and pop-
ulation models. Still, detailed photometry studies (e.g.
Barazza et al. 2002) suggest dEs exhibit, even if only
faint, substructure (see also discussion App. E). In our

sample galaxies most notably are the unresolved blue
nuclei which seem to be more or less present in any dE,
even if initially classified as a non-nucleated dE. Fur-

thermore, some dEs may have weak embedded disks as
suggested by faint face-on spiral arms or disky isophotes.
Still, currently we do not find compelling evidence for
the need of 2-component model structure (e.g. disk,

bulge, bars,...) on a macro level. Perhaps future studies
with a higher resolving power and S/N may be able to
use the detailed photometric substructure in their anal-

ysis.
The homogeneous spatial structure we observe in the

dEs contrasts with significant heterogeneity across the

different sample galaxies. The dE population seems to
be very different in their stellar mass and kinematic
structure when compared to the rest of the ETG se-
quence. These differences may be explained by the very

different evolutionary channel the dEs follow when com-
pared to the more massive ETGs: For the latter a his-
tory of mergers and continued accretion of material has

played the dominating role in shaping the orbit and
mass-to-light ratio structure. Whereas for the dEs in-
ternal feedback process and external influences by the
environment may have changed them significantly. This

may have also left an imprint in the dark matter halos
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and shape of the mass distribution which we will inves-
tigate in VW–II.
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APPENDIX

A. EXAMPLE FOR A TYPICAL LOSVD RECOVERY

Fig. 21 shows an example for a VIRUS-W spectrum fit used to extract the kinematical and stellar population
properties as is outlined in Sec. 2.2. A comparison of the LOSVD recovery with a Gauss–Hermite model vs a non-
parametric model description of the LOSVD is shown in Fig. 22. In this case the Gauss–Hermite model is preferred
as it achieves a slightly smaller AICp. Still, generally both LOSVD model choices are fairly consistent with each other

for a given Voronoi bin.

B. COMPARISON TO EXISTING KINEMATIC AND STELLAR POPULATION STUDIES

In the last two decades, almost all of the galaxies in our sample were the subject of kinematic and stellar population
studies already. In the following we discuss and compare our kinematic and population results with the studies we

are aware of, discuss the significance of our results and highlight the need for a high resolving power. The published
studies we compare our results to usually include other dEs as well, but we will focus only on those galaxies that
are also part of our own sample. We plot the age, metallicity, rotation velocity and velocity dispersion from previous

measurements together with our results in Fig. 23 and Fig. 24 (for those studies where we were able to extract the
respective data in a consistent way).

As part of a larger sample of early-type galaxies with various sizes, the kinematics of VCC 543, VCC 856, and VCC
2048 were studied by Simien & Prugniel (2002) using a long-slit spectrograph, which achieved a resolving power of

R = 5050, or an instrumental dispersion that is just below, or at least at a similar level to, the minimum velocity
dispersion we measured for these galaxies. They measured the velocity and dispersion of the spectra out to ∼ 20-25′′,
finding velocity curves consistent with ours, although the scatter is considerable. The dispersions of VCC 543 and

VCC 856, however, show significant, qualitative and quantitative disagreements: they scatter a lot, show no clear
radial gradient and are generally much higher than the values we find for VCC 543 and VCC 856. For VCC 2048 the
dispersion profile agrees qualitatively with ours showing a dispersion drop in the center (albeit shallower). However,

again the dispersions are biased high on average. The discrepancies are likely caused by their larger instrumental
dispersion which is close to the velocity dispersions of these galaxies. An additional factor could be that Simien &
Prugniel (2002) did not include higher order deviations from Gaussian LOSVDs in their fits which could artificially
broaden the LOSVDs.

The spectral resolution was even lower in the studies of Caldwell et al. (2003), van Zee et al. (2004), Michielsen
et al. (2008) and Paudel et al. (2010) (R∼1500, R∼2200, σinstr∼170 km s−1 and σinstr∼280 km s−1, respectively).
Accordingly, when stated, the respective velocity dispersions measured in these studies are again higher than ours.

The dispersions of van Zee et al. (2004) are all offset by more than 10 km s−1 while those of Caldwell et al. (2003) are



42 Lipka et al.

4900 5000 5100 5200 5300

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

F
lu

x

Virus-W spectrum

Kinematic Fit

continuum model

4900 5000 5100 5200 5300

λ[Å]
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Figure 21. Top: Example of a typical Voronoi binned spectrum (one of the bins of VCC 200 within the central 5′′). Black:
The observed VIRUS-W spectrum. The green band around the data indicates the 1σ flux uncertainty. Red: The corresponding
Fit model. Orange: The continuum modelled by a 2nd order multiplicative polynomial. The gray regions indicate the parts
which were masked before the fit. Bottom panel: The Residuals between Fit and Data.

even outside the plot range of Fig. 23. Michielsen et al. (2008) and Paudel et al. (2010) only stated stellar population
properties and no kinematics. Caldwell et al. (2003) discussed both population properties and kinematics. The age

and metallicity Caldwell et al. (2003) determined for VCC 2048 agree with our results within the one sigma error
while their age for VCC 856 is significantly lower. However, they did not find old ages for any of the low σ-galaxies in
their sample. The SSP results of Michielsen et al. (2008) are based on a slightly higher resolution and seem to agree
better with our results. On the other hand Paudel et al. (2010) found systematically younger and more metal rich

populations than we (and other studies) do.
Chilingarian (2009) re-analyzed the data of Simien & Prugniel (2002) and van Zee et al. (2004) using a full spectral

fitting technique instead of Lick indices. The dispersions of VCC 543, VCC 856, VCC 1261 are relatively consistent

with those older studies in that their scatter is high and the average dispersion is significantly larger than what we find.
Only VCC 2048 does not appear to systematically offset high, and in fact it is the only example where a significant
portion of the literature dispersions fall below our values. While about half of the spatial bins of VCC 2048 fall close
to the dispersions we derived, the other half scatters to the low side. The fact that some of these bins have such a low

dispersion is peculiar and seems inconsistent with the dispersions from Simien & Prugniel (2002) which were derived
from the same raw data. The population properties Chilingarian (2009) derived were spatially resolved by separately
analysing the co-added spectra in two different radial bins along the slit: A circum-nuclear bin (excluding the central

blue nuclei) and an outer bin (near or just within ∼1 re). In Fig. 24 we plot both, the values of the circum-nuclear and
the outer region. The population properties agree well, and in fact, even the radial behaviour is (at least qualitatively)
consistent with our findings.
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Figure 22. Comparison of an optimized LOSVD model parametrized by a Gauss–Hermite series (left) and a non-parametric
description (right) for the same Voronoi Bin of VCC 200 (S/N = 26). Both are broadly consistent with one another. In the
case of this specific Voronoi Bin, the Gauss–Hermite representation is slightly preferred by AICp. The error suppression by a
Gauss–Hermite parametrization at high velocities is substantial which is why we readjusted the errors as described in Sec. 2.2.

Toloba et al. (2014) analysed the rotation, dispersion and population properties of a large dE sample using optical
long-slit spectroscopy from 3 different telescopes with the spectral resolution ranging from R∼1900 to 3300. As is
the case with most previous studies, the velocity curves are fairly consistent with our findings. However, unlike many

other low spectral resolution studies, they also found quantitatively consistent dispersions for some (but not all) of
the low-σ galaxies (specifically VCC 308, VCC 543, VCC 1861). This could be because they aimed for a very high
S/N for the purposes of a better dispersion recovery. High S/N can counteract low resolution effects as shown in the

recovery simulations of Toloba et al. (2011) and Eftekhari et al. (2022). We plot the ages and metallicity they derived
for the summed spectra within 1 re in Fig. 24 (some of their spectra include more Lick indices than ours, such as the
age-sensitive Hα line; e.g. for VCC 308, VCC 543, VCC 1528, VCC 1861 they include this index). We excluded VCC
856 from our plot as the age they derived is at the boundary of their grid (14.1 Gyr). Şen et al. (2018) reanalyzed the

data of Toloba et al. (2014) with a special focus on different abundance ratios in dEs. For this purpose they derived
ages and metallicities for the very central spectra (r < re/8) from a combination of 23 Lick indices. Overall their
results are in good agreement with Toloba et al. (2014) and with ours, not only in age but also in metallicity (Fig. 24).

Geha et al. (2003) is the only comparison study with better data in terms of resolution (R∼13000) and spectral
coverage (3900Å-11000Å) (highlighted in green in Fig. 23). Their dispersions for VCC 543, VCC 856, and VCC 1261
are quantitatively much more consistent with ours. We suspect that minor differences could be caused by the fact that
only Gaussian LOSVDs are fitted and because they only used K-type stellar templates.

With the advent of IFUs, 2D kinematic studies of dwarf galaxies have become more prevalent. In a series of papers
(Ryś et al. 2013, 2015) were the first to analyze the kinematics and stellar population of the galaxies in our sample
using an IFU: SAURON in its low resolution mode (R∼1300 within the spectral range of 4760Å-5300Å). The velocity

maps are fairly consistent in that VCC 1261 and VCC1861 are essentially non-rotators, while VCC 308 and VCC 2048
show intermediate to strong rotation respectively. Their dispersions on the other hand scatter significantly between
neighbouring Voronoi bins with differences of up to 100 km s−1. Therefore in Fig. 23 we only show their radially
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Figure 23. Literature comparison for the mean (line-of-sight) velocity and dispersion. In this paper we differentiate between
sample galaxies using the color-coding indicated by the background color of the label here. There is no published data available
for VCC 200 so we excluded it from this plot. The color-coding that is used for VCC 200 in all other Figures is dark blue. To
avoid overcrowding we do not show errorbars for the literature. For the studies where we did not find any raw data in a table
format we reverse engineered the approximate values from their Figures. A few literature data points are not displayed here
because they lie outside the plot boundaries. Blue with errorbars: Our kinematic data (see also Fig. 3). Gray triangles: Data
from Simien & Prugniel (2002). Green dots: Data from Geha et al. (2003). Gray Diamonds: Data from van Zee et al. (2004).
Red stars: Data from Chilingarian (2009). Gray dots: Dispersion from the IFU study of Ryś et al. (2013). Since they have
∼ 100 Voronoi bins we only plot the dispersion averaged within ellipticals bins as shown in Fig.5 of Ryś et al. (2013). This
reduces their high bin-to-bin scatter in the dispersion significantly, yet the higher dispersion remains. Their mean velocities
were not displayed in the same manner which is why they are not shown here. Gray squares: Data from Toloba et al. (2014).

averaged dispersions which reduces the bin-to-bin scatter, but still the dispersions seem systematically high. They
did not find dispersions below ∼ 40 km s−1. We excluded their ages and metallicities from Fig. 24 because they used
models with 2 distinct stellar populations, i.e. they are not directly comparable to single population models. Still,
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Figure 24. Literature comparison of single stellar population properties. We ordered the galaxies from left to right by the
average age we derived in the two apertures. (Top: Age in Gyr, Middle: Metallicity [Z/H], Bottom: Iron abundance [Fe/H]
for the studies that trace metallicity in terms of [Fe/H]. We use [Z/H] = [Fe/H] + 0.94 · [α/Fe] (Thomas et al. 2003) to convert
our metallicity [Z/H] to [Fe/H]. The blue errorbars show our results for the central spectrum at r = 2.5′′ (dark blue) and the
outer one at r = 7.5′′ (light blue). Studies with a spectral resolution of R ≳ 2000 are highlighted in orange, error bars from
the literature are not shown to avoid overcrowding (they are generally larger than our errors). Our results for the central
spectrum of VCC 1910 are not trustworthy (see Sec. 2.3). For the values of Chilingarian (2009) we plotted the values for the
circum-nuclear region and the outer region and indicate the region by the direction of the arrow. We excluded the results of
Ryś et al. (2013, 2015) from this plot as they are models composed of two different stellar population models, although we note
that they employed the same data as Sybilska et al. (2017). We are not aware of any existing analysis for VCC 200.
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such two-burst models are the first step to modeling a possibly more complex star formation history. In this context,
we will discuss their results in Sec. 5.3.

Sybilska et al. (2017) re-analyze the data of Ryś et al. (2013) using the same observation and reduction setup but
adding more dEs (including VCC 543, VCC 856, VCC 1528). Among other quantities, they derived global dispersions
of the integrated spectra within 1 re. Similar to the original results of Ryś et al. (2013), the dispersions are higher
than the average dispersions we measured, especially so for the lower-σ galaxies of our sample. Unlike Ryś et al. (2013,

2015), they derived population parameters using Lick indices with a single population instead of a two burst model,
which makes the comparison with our population parameters more meaningful. Compared to many previous studies
their results for the integrated spectra within 1 re yielded very high ages and lower metallicities. In fact, many of the

dEs that are also in our sample have no upper constraint for the age as the associated errors reach the edge of their
parameter grid (14 Gyr).

The kinematic comparison with the existing literature suggests LOSVDs from lower resolution spectra seem to
be artificially broadened especially when the galaxy’s actual dispersion is lower or at the level of the instrumental

dispersion. In some cases, low resolution effects may be mitigated by a very high signal-to-noise ratio (Toloba et al.
2011) but this requires that the true noise level in the data is estimated accurately in the first place. Furthermore a
too low signal-to-noise of the binned spectra leads to large bin-to-bin scatter which in turn blurs spatial any systematic

spatial signatures like the σ-drops present in VCC 1261 and VCC 2048.
We conclude that in the case of the dEs where the dispersion can be as low as 20 km s−1, a resolution R ≳ 8000

with a S/N ≳ 15 is required to obtain the width of the LOSVDs in an unbiased manner. For our Virgo galaxies

this study is the first to use high-resolution, high S/N , spatially resolved spectra. This allows an unbiased dispersion
recovery all the while covering the full 2D kinematic information. It reveals that many of the galaxies have significantly
lower dispersions than previous studies suggested. Given the resolution of VIRUS-W we should be able to measure
dispersions down to as low as ∼ 15 km s−1, yet the homogeneous dispersion profiles of some galaxies (VCC 200 and

VCC 308) could be suggestive that the limit may be reached already at ∼ 20 km s−1. We tested this two-fold. Firstly
by correctly recovering a (gaussian) toy LOSVD with σ = 15 km s−1 from a Monte-Carlo mock spectrum of a single
stellar population with the same resolution and S/N as the VCC 200 observations. And secondly by adding the real

spectra of VCC 200 and VCC 308 into larger bins, thus, doubling the S/N per bin. Fitting these spectra did not
change the dispersions as σ remained consistent within ≲ 0.5 km s−1 with the lower S/N spectra. From these two
tests we conclude the dispersions of these two galaxies are robust and the resolution limit is not yet reached.

Concerning stellar population properties, the results seem broadly in agreement with those of the literature as
long as we disregard our results for VCC 1910 (see Sec. 2.3). The metallicity values of the dEs are all sub-solar
[Z/H] ∈ [−0.75,−0.2] and span a large range in ages from 3 to 12 Gyr. Both age and metallicity appear to be
slightly correlated. Some of this correlation could still be an artifact of the age–metallicity degeneracy, however, the

independent measurements of the two spectra at 2.5′′ and 7.5′′ seem broadly consistent for a given galaxy suggesting
that they are robust and that the dEs have a radially homogeneous stellar population. Only VCC 308 seems to be
significantly younger and metal-rich in its center. This is expected because VCC 308 is the only galaxy in our sample

with an extended blue center and as such classified as a dE(bc), while the other dEs do not show color gradients (outside
their blue nuclei which are not well resolved; see App. E). We note, however, that many of the literature results have
large 1σ error bars and that Paudel et al. (2010), for example, found systematically younger and metal-rich galaxies,
whereas Sybilska et al. (2017) find the opposite: systematically older and more metal-poor populations. This may

suggest that the age–metallicity degeneracy is not always broken sufficiently. While the population studies with an
intermediate spectral resolution (highlighted in yellow in Fig. 24) tend to agree better with our results than those with
lower resolution, there is no strong systematic trend, e.g. that low resolution spectra would yield population properties

that are biased in a specific direction. We suspect the signal-to-noise of the spectra plays the more important role if
one wants to recover unbiased stellar population properties.

C. DO POPULATION MODELS OVERESTIMATE THE TOTAL DYNAMICAL MASS?

For a few of the galaxies in Fig. 17 the IMF parameter ∆tot is slightly negative which suggests that (locally) the total

mass predicted dynamically is lower than the population models imply. Assuming both mass-to-light ratio estimates
are accurate this implies that the IMF of these galaxies is lighter than Kroupa even if we assume they have no dark
matter. While this is not per se an issue this could hint at a problem in either the population or dynamical estimates

of the galaxies with negative ∆tot. In the following we will discuss possible issues.
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Firstly, the negative ∆tot does not necessarily imply that the total, cumulative with radius, dynamical mass is in
fact lower than the SSP predictions. The dynamical models we employ have much more flexibility to spatially vary

their Mtot/L-profiles thanks to the 5 halo parameters (eq. 2) and the log-linear stellar mass-to-light ratios. In contrast,
the SSP models are fixed to the light distribution at the integrated spectra around the two probed radii r = 2.5′′ and
r = 7.5′′. Consequently, the dynamical models are able to change the mass-to-light ratios at all other radii much more
easily which could (occasionally) produce negative ∆tot at the two radii evaluated by the inflexible SSP models. To

test this we have also dynamically modelled simple mass-follows-light models that have no dark matter component
and only a single global mass-to-light ratio sampled in ∼ 0.2 steps, and as such these dynamical models are much
more comparable in their flexibility to the SSP models. Overall the best mass-follows-light models, shown in Fig. 15,

are consistent with the mass-to-light ratios recovered with the more flexible dynamical models that included dark
matter and stellar gradients. For most of the galaxies (VCC 308, VCC 1861) that have negative ∆tot, this explanation
lifts some of the tension regarding the negative ∆tot. For the remaining galaxy (VCC 200) with ∆tot < 0, the total

mass recovery of the Schwarzschild models could be biased low, or the mass-to-light ratio obtained from the stellar
population analysis could be biased high.

None of our application of the dynamical modeling on simulations (e.g. Lipka & Thomas 2021; Neureiter et al. 2023a)
have suggested that the total dynamical mass could be systematically underestimated. If anything it would be easier to

bias dynamical masses higher instead of lower. For example, spectra with too low of a resolution would overestimate
the observed velocity dispersion (cf. App. B) and, as a consequence, also the inferred dynamical mass. Of course the
dynamical models assume the systems are in dynamical equilibrium, which could affect our mass inference if they are

not. However, given the old age and photometric structure of VCC 200 (Ferrarese et al. 2006) we have no particularly
strong reason to believe this galaxy is more out of equilibrium than the other dEs in the sample. Instead the very old
age of VCC 200 (12 Gyr) could be slightly overestimated, which could bias its SSP mass-to-light ratio ΥKroupa higher,
resulting in a negative ∆tot. Unfortunately, VCC 200 is also the only galaxy in our sample for which no reference SSP

results exist in the literature so we cannot confirm its age. However, considering its low Hβ index (≲ 2.0) the galaxy
is very likely older than 9 Gyr. In conclusion, we suspect the age of VCC 200 is either slightly overestimated by 1 or
2 Gyr and consistent with Kroupa IMF or, alternatively, the age is correct and the galaxy has a IMF slightly lighter

than Kroupa.

D. IMF–METALLICITY COUPLING

Fig. 25 shows the relation of IMF parameter with the metallicity. Apart from VCC 1861 the IMF parameter is
positively correlated with [Z/H]. If the ∆∗ we derived are robust, it could be that either age or metallicity (or both
together) are the physical reason behind the variety seen in the IMF of dEs. For ordinary ETGs strong, positive

correlation of the IMF parameter and the metalicity have been noticed before (e.g. Mart́ın-Navarro et al. 2015; Parikh
et al. 2018; Li et al. 2023).

E. PHENOMENOLOGICAL DISCUSSION OF EACH GALAXY - COLORS, SUBSTRUCTURE,
ENVIRONMENT, KINEMATIC SIGNATURES

In this section, we discuss each dE holistically based solely on the photometric and kinematic data we derived and
what we found in the existing literature. A detailed description of the HST photometry, isophotes and colors can be

found in Ferrarese et al. (2006) for all galaxies in our sample, except for VCC 308. In the following, unless stated
otherwise, all colors are stated in g − z bands.
VCC 200: Classified as a dE2(N), the ellipticity structure is actually fairly round for large parts of the galaxy,

only experiencing a double peak up to ϵ∼0.2 at 0.5′′ and 5′′ (Ferrarese et al. 2006). This signature may stem from
a ring structure inhabiting an otherwise rounder galaxy. Boxiness/diskiness parameters scatter but are otherwise
consistent with 0. The g − z color is constant with radius at 1.2 − 1.3 mag. Only in the center, it has a slightly

bluer (1.1 mag) and bright nucleus (cf. Hamraz et al. 2019). We find the galaxy exhibits intermediate rotation (≤ 10
km s−1) and a constant, low dispersion (∼ 25 km s−1) within the VIRUS-W FoV. While one may discern a hint of
v-h3 anticorrelation in the maps, even higher Gauss–Hermite moments scatter significantly (but stay within ±0.1). If
the heliocentric velocity and distance to us and M87 are to be believed, VCC 200 is at the backside of the cluster far

away from the center and is moving towards it. This stands in contrast to its very old SSP age (Sec. 2.3). Within
our sample, VCC 200 seems to be an outlier in regard to its stellar population, with it being very old (> 10Gyr) and
metal-poor compared to the rest of our results. Unfortunately, it is also the only galaxy for which we are not aware of

any existing kinematic or stellar population studies.
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Figure 25. Analogous to Fig. 17 but for the metallicity instead of the age. VCC 1910 is not in the plot range due to its ( likely
wrong ) super-solar metallicity. Due to the anti-correlation of age and metallicity (Fig. 4) of our dEs the positive correlation of
the IMF parameter and the metallicity is a corollary of the IMF and age relation.

VCC 308: VCC 308 is the only galaxy in our sample classified as a dE(bc) (cf. Lisker et al. 2007), meaning it is
significantly bluer in the center, showing an extended radial color gradient becoming redder further outside (i.e. not

just a distinct blue nucleus). However, in the case of VCC 308 this gradient is relatively small in terms of radial extent
and magnitude (cf. Lisker et al. 2006a). One could debate whether it is really that distinct to the rest of our sample
galaxies. Lisker et al. (2006b) also find the photometry shows weak signs of spiral arms that are seen face-on. The

kinematics of VCC 308 we measured is similar to that of VCC 200. It has intermediate rotation while having the lowest
dispersion values (20 − 25 km s−1) in our sample (still significantly higher than the resolution of VIRUS-W). Higher
Gauss–Hermite moments are noisy, but we identify a hint of a v − h3 anti-correlation and a positive h4 within the
vast majority of the Voronoi bins. VCC 308 is far away from the center in a very low projected density environment

(Sybilska et al. 2017).
VCC 543: VCC 543 appears to be fairly elongated, being classified as a dE5. While the designation by Lisker et al.

(2007) suggests no nucleus, we and Hamraz et al. (2019); Ferrarese et al. (2006) find a detectable, round, and slightly

bluer nucleus in the galaxies center. Other than that, the galaxy is quite regular, showing no preference for either
diskiness nor boxiness or any detectable substructures. The galaxy shows a strong, linearly rising, velocity signal that
is anti-correlated with h3. Within 10′′, h4 appears to experience a radial drop off, however, further outside the signal

becomes quite noisy, showing no clear trend. The dispersion increases with radius, showing no signs of plateauing
within the FoV. The galaxy is in the foreground of the cluster, moving slightly away from it, possibly because it has
previously passed the cluster center.
VCC 856: At first glance the galaxy appears to be a typical, fairly round dE (ϵ∼0.1) with a g-z -color of ∼ 1.2 mag

and a bluer (∼ 1.0 mag) nucleus that dominates its center. However, as first noted by Jerjen et al. (2000), one can see
a faint signature of face-on spiral arms in the galaxy and as such the classification of VCC 856 as a dE is debatable.
Perhaps we see the galaxy during its transformation from a dwarf spiral into a dE. Despite the presumably face-on

disk, the galaxy displays clears signs of rotation around its axis, suggesting at least some degree of inclination. The
dispersion is generally low, with a decreasing dispersion. It stands out significantly from the rest of the dE sample by
exhibiting a strongly rising h4 profile with comparatively larger error bars. The scatter in h3 is large, possibly due to

the spiral arms.
VCC 1261: VCC 1261 is the brightest galaxy in our sample. Despite its significant flattening (ϵ∼0.4) the galaxy’s

isophotes are regular ellipticals (a4 ∼ 0) showing no signs of an embedded disk. In its center it hosts a rounder,
bluer (1.0 mag compared to 1.2 mag) nucleus. Within ∼ 10′′ the kinematics show little rotation but a strongly rising
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dispersion reaching σ = 50 km s−1. Accompanied by this dispersion rise is a significant drop in h4 down to 0 at
10′′, suggesting a strong σ-h4-correlation. In the outermost radial bins the galaxy behaves quite differently with the

dispersion and h4 plateauing, while the rotation abruptly becomes more significant. The orbit of VCC 1261 within
Virgo may be odd, as it seems to be far behind the cluster yet is still moving away from Virgo relatively rapidly.

The fact that VCC 1261 appears to be a very flattened galaxy, yet having essentially no rotation in our and most
other kinematic studies (Geha et al. 2003; van Zee et al. 2004; Chilingarian 2009; Ryś et al. 2013; Toloba et al. 2014,

2015; Sybilska et al. 2017; Şen et al. 2018), seems to be in conflict with the hypothesis that that dEs are remnants
of more disky, gas-rich, late-type dwarfs. However, in our and other studies we observe a rise in velocity beyond 12′′

which could suggest that we simply do not probe the galaxy at large enough radii to see a more pronounced rotation

signal. The same could apply to the other non-rotator in our sample, VCC 1528. Both non-rotators are, perhaps not
coincidentally, the two dEs nearest to the cluster center (Tab. 1). Initially their mass and extent could have been
larger than the other dEs in our sample, but their increased likelihood of interactions via harassment and ram-pressure

stripping could have made the two dEs significantly fainter at larger radii, effectively ‘shrinking’ them to the regime
of our sample. This appears fairly plausible because we will find that these two galaxies have a significantly more
massive dark matter halo than the other dEs (cf. VW–II). This scenario is also suggested by Beasley et al. (2009) who
studied the kinematics of VCC 1261’s globular clusters (GC), which, unlike studies based on the galaxy’s integrated

light, allows constraints on v and σ much farther out at several effective radii. However, this also comes with fairly
large uncertainties and the assumption that the galaxy’s stars and GCs are closely kinematically associated. The GC
motions they found suggest significant rotation (v/σ > 1) at larger radii. Future IFU studies with deeper kinematics

may resolve whether the velocity of the stars is indeed rising further beyond 1 re for the two galaxies.
It could also be that VCC 1261 is an outlier. The E7/S0 galaxy NGC 4550 for example is known to host two

co-spatial, counter-rotating disks of equal mass which results in a net streaming motion that is extremely low, yet the

systems is very flat (Rubin et al. 1992; Rix et al. 1992; Emsellem et al. 2007). A sign that such a counter-rotating disk
could be embedded within the central ∼ 10′′ where v = 0 is the congruent decrease in σ and increase in h4 towards
the centre (Fig. 3). However, from its orbit structure obtained from the dynamical modeling (Fig. 13 and Fig. 14) we
do not find strong evidence in favor of this scenario.

VCC 1528: Despite being classified as non-nucleated dE in Lisker et al. (2007), we and Ferrarese et al. (2006)
find the galaxy to host a resolved, blue nucleus. Apart from this nucleus the galaxy is fairly red (∼ 1.35 mag) near
its center, progressively becoming bluer (∼ 1.2 mag) at larger radii. At large radii (> 10′′) the galaxy appears fairly

round (ϵ ∼ 0.1). However, it is significantly more elliptical in the center with ϵ ∼ 0.25. The shapes of the ellipses are
very regular. Within its small FoV, VCC 1528 is a non-rotator with a virtually flat (or very slightly rising) dispersion
profile. Higher Gauss–Hermite moments scatter, especially near the edge of the FoV, but are overall consistent with
(and close to) zero. Since the galaxy becomes flatter and bluer outside the FoV, a change in kinematics may be

expected. VCC 1528 is the dE closest to Virgo’s 3D center.
VCC 1861: Classified as dE0, the galaxy is very round and, as such, has no well constrained position angle. The

color of the galaxy (∼ 1.3 mag) and the bluer, very bright nucleus are typical for our sample. The isophote ellipses

are regular and we find no substructures in the galaxy. VCC 1861 shows intermediate rotation, and a slightly rising
dispersion profile within ∼ 10′′, plateauing at larger radii. The LOSVDs are roughly symmetric with only a tentative
sign of a v-h3 anti-correlation in the kinematic map. Similar to VCC 1261 and VCC 2048, the galaxy has strongly

peaked LOSVDs in the center (h4 ∼ 0.1) which steadily become more Gaussian(h4∼0) with increasing radius. VCC
1861 may be associated with a locally denser sub-clump of galaxies formed around the large elliptical galaxy M60.
VCC 1910: VCC 1910 is the reddest galaxy in our sample with g − z ≈ 1.4 mag, but has a typical blue nucleus

with g − z ≈ 1.0 mag. Akin to VCC 200, the ellipticity has two distinct and extended peaks at 0.8′′ and 6′′ reaching

ϵ∼0.2. VCC 1910 is an intermediate rotator which, together with VCC 856, stands out in that the dispersion peaks
in the center and then steadily drops of with radius. In the maps one can again see signs of v-h3 anti-correlation, but
overall higher moments scatter significantly and are consistent with zero. VCC 1910 might also be associated with the

M60 sub-clump, but its net velocity suggests it moves relative quickly towards us.
VCC 2048: Together with VCC 543 and VCC 1261 the galaxy is on the bluer end of our sample with a color of

1.2 mag and a blue nucleus at 1.0 mag. And, again together with VCC 543 and VCC 1261, it is significantly elongated
(ϵ ∼0.5 to 0.6). It also hosts a large disk that causes the isophotes to be disky over a large radial range. For a more

in-depth study of this galaxy’s photometry and a bulge-disk decomposition, we refer the reader to Kormendy & Bender
(2012). VCC 2048 shows very strong rotation around its minor axis and, very similar to the other flattened galaxy
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Figure 26. Alternative version of Fig. 5 analysed within 1.0 instead of 0.5 stellar effective radii. For some galaxies in the
VIRUS-W sample and in the literature this requires an extrapolation because the kinematic maps do not extend far enough.
The typical distribution of dEs does not change much with the increase in aperture apart from two of the infalling dEs of
Bidaran et al. (2020) becoming outliers.

VCC 1261, has a strongly rising dispersion profile that plateaus at ∼ 8′′ without signs of a drop-off within the FoV.
The velocity and skewness h3 are clearly anti-correlated, and h4 has a strong peak in the center which starts to drop
off with increasing radius, even becoming slightly negative in the outermost bins. Similar to VCC 308, VCC 2048 is

located at a very low projected cluster density (Sybilska et al. 2017).

F. ANGULAR MOMENTUM VERSUS STELLAR MASS AND λE

Fig. 26 and Fig. 27 are alternative versions to Fig. 5 and Fig. 6. The former shows the angular momentum parameter
within 1 re and the latter the specific angular momentum j against stellar mass instead of B-band magnitude. In

some of the studies shown in Fig. 27 the stellar masses were not stated, and we proceeded as follows. For the Toloba
et al. (2015) dEs we use the stellar masses obtained from Tortora et al. (2019). For the Mart́ınez-Garćıa et al. (2021)
dSphs we adopted stellar masses from Hayashi et al. (2020). For the Local Group dEs (Geha et al. 2006, 2010) we used

values from Mateo (1998). For the ‘ordinary’ ETGs of Bender & Nieto (1990) we estimate a mass from the B-band
magnitudes and an assumed mass-to-light ratio of 5; for their dwarfs we again used the values from Mateo (1998)
and Hayashi et al. (2020). For the dEs of Geha et al. (2003) we convert from magnitudes and assume the median
mass-to-light ratio that was given for a sub-sample of these dEs (see Geha et al. 2002). To estimate the stellar masses

of Emsellem et al. (2011) we use eq. 28 of Cappellari et al. (2013a) and the values stated therein
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Figure 27. As Fig. 6 but versus the total stellar mass M∗. Gray diagonal: Standard j − M∗ scaling relation from Pulsoni
et al. (2023) for fast rotators, i.e. this is not a fit to any of the galaxies shown here. Blue diagonal: Standard scaling relation
for massive LTGs (Di Teodoro et al. 2023).
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2Universitäts-Sternwarte München, Scheinerstrasse 1, D-81679 München, Germany

3Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748, Garching, Germany

Submitted to ApJ

ABSTRACT

We analyze the dark matter (DM) halos of a sample of dwarf Ellitpicals (dE) and discuss cosmological
and evolutionary implications. Using orbit modeling we recover their density slopes and, for the first
time, the halo flattening. We find the ‘cusp-core’ tension is mild, on average dEs have central slopes
slightly below the Navarro–Frenk–White (NFW) predictions. However, the measured flattenings are

still more spherical than cosmological simulations predict. Unlike brighter ETGs the total density
slopes of dEs are shallower, and their average DM density does not follow their scaling relation with
luminosity. Conversely, dE halos are denser and the densities steeper than in LTGs. We find average

DM density and slope are strongly correlated with the environment and moderately with the angular
momentum. Central, non-rotating dEs have dense and cuspy halos, whereas rotating dEs in Virgo’s
outskirts are more cored and less dense. This can be explained by a delayed formation of the dEs in

the cluster outskirts, or alternatively, by the accumulated baryonic feedback the dEs in the outskirts
have experienced during their very different star formation history. Our results suggest halo profiles
are not universal (they depend on assembly conditions) and they evolve only mildly due to internal
feedback. We conclude dEs in the local Universe have assembled at a higher redshift than local spirals.

In these extreme conditions (e.g. star-formation, halo assembly) were very different, suggesting no new
dEs are formed at present.

Keywords: Galaxy structure(622) — Galaxy formation(595) — Dwarf elliptical galaxies(415) — Virgo
Cluster(1772) — Galaxy dark matter halos(1880) — Dark matter distribution(356)

1. INTRODUCTION

In the standard cosmological model (ΛCDM) struc-
tures like galaxies have assembled from collapsing dark

matter (DM) over-densities as baryons followed them to
build the galaxies observed today. In the hierarchical
formation scenario the largest galaxies are thought to

have formed via mergers of smaller galaxies, i.e. smaller
DM halos, which has dramatically changed their mass
and kinematic structure. The smaller dwarf galaxies
on the other hand, which avoided merging to this day,

Corresponding author: Mathias Lipka

mlipka@mpe.mpg.de

should have pristine halos which makes them an ideal
probe of the initial DM over-density collapse.

In this framework, dwarf ellipticals (dEs) that inhabit

an intermediate mass regime (log10(M∗/M⊙) ≈ 7 − 9)
are often thought to be the largest fundamental build-
ing blocks within the sequence of the quiescent early-

type galaxies (ETGs) that have not formed via merging.
However, while they may have avoided merging to this
day, they are also much more exposed to their environ-
ment due to their much shallower potential wells. Over

time internal feedback processes like star-formation,
and/or environmental processes like ram-pressure strip-
ping RMS (Gunn & Gott 1972; Lin & Faber 1983) and

galaxy harassment (Moore et al. 1998), could have mod-
ified the distribution of baryons and as such also that of
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the DM. Therefore the present-day structure of dE dark
matter halos may not only be an excellent probe of the

underlying cosmology but also an avenue to investigate
the effect cluster environments and/or internal feedback
has had on the dark matter as time passed.

While overall quite successful in explaining the ob-

served clustering of mass on large scales (Croft et al.
2002; Spergel et al. 2003; Springel et al. 2006), ΛCDM
predictions are much harder to reconcile with observa-

tional evidence on the smaller galaxy scales. Firstly,
the statistical occurrence and distribution of the dwarf
galaxies in the local universe differ from cosmological
predictions, which is known as the ‘missing satellite-

’ and the ‘too big to fail’-problem (e.g. Klypin et al.
1999; Boylan-Kolchin et al. 2011, 2012). Secondly, ob-
servational constraints on the individual DM halo dis-

tributions suggest they are closer to spherical than
ΛCDM simulations anticipated (e.g. Allgood et al. 2006;
Hayashi et al. 2007; Chua et al. 2019; Bovy et al. 2016;

Wegg et al. 2019). And thirdly, the steepness of the in-
ner DM distribution conflicts with predictions, which is
known as the ‘cusp-core problem’ and was first reported
by Moore (1994) (For a review see de Blok 2010; Del

Popolo & Le Delliou 2021). Simulations of halo forma-
tion suggest cuspy central density profiles for the halos of
dwarf galaxies. Examples are the Navarro–Frenk–White

profile (NFW), which has a central logarithmic slope of
−1, or even cuspier halos with slopes of ∼ −1.5 (e.g.
Diemand et al. 2004; Diemand & Moore 2011; Moore

et al. 1998, 2001; Klypin et al. 2001, 2011; Navarro et al.
2010). This stands in contrast to the majority of obser-
vational findings, which often find cored density distri-
butions. For example, the rotation curve modeling of

HI disks suggests that at least the smaller dwarf galax-
ies have a strong preference towards cored halos (e.g. de
Blok & Bosma 2002; de Blok et al. 2008; Donato et al.

2009; Oh et al. 2011b; Plana et al. 2010).
If these discrepancies between ΛCDM predictions and

observations are quantified accurately, then one may be
able to identify the reason behind it: be it an exotic

nature of dark matter particles (Spergel & Steinhardt
2000; Marsh & Silk 2014; Elbert et al. 2015) or the
feedback of baryonic physics on the dark matter (de

Souza et al. 2011; Gnedin & Zhao 2002; Governato et al.
2010; Madau et al. 2014; Navarro et al. 1996a; Oh et al.
2011a). However, the majority of observational evidence

for cored halos stems from dynamical modeling using
gas as tracer of the gravitational potential and is thus
mostly restricted to late-type galaxies. Observational
constraints on the degree of sphericity of halos are even

more scarce, and the majority of evidence comes from
Milky Way studies.

For early-type galaxies, i.e. for galaxies without sig-
nificant amounts of gas, stellar-based dynamical mod-
els can be employed to infer the structure of their DM

halos. However, the existing literature is mostly re-
stricted to the very small but near-by dwarf spheroidals
(dSphs) within the Local Group or to very massive
ETGs (log10(M∗/M⊙) ≳ 10) that inhabit the more dis-

tant massive galaxy clusters (Coma, Virgo, Fornax ...).
In contrast, the DM structure of dEs (i.e. the interme-
diate mass regime) is scarcely probed even though they

are by far the most common type of galaxy found in the
nearby clusters. This deficiency of observational con-
straints in the dE regime is mostly because the Local

Group only has a few dEs, while the dEs in the nearby
clusters are faint and require a very high spectral reso-
lution to be analyzed using stellar dynamical models.

This paper is part of a series aimed at studying the

mass distribution, stellar populations and dynamical
composition by analyzing a sample of 9 such dEs in the
Virgo cluster. The first paper, Lipka et al. (2024), in

the following VW–I, is a comprehensive analysis of the
stellar structure of the dEs. There we also discuss ba-
sic properties of the dE sample, all the data sets we ob-
tained, and describe the dynamical and population mod-

eling techniques we employed to infer the intrinsic 3D
structure. The current paper is focused on the dark mat-
ter structure and its interpretation in the broader cos-

mological and galaxy evolutionary context. It is aimed
to fill the gap in our understanding of dark matter in
the intermediate mass regime of early-type galaxies.

The current paper is organized as follows: In Section 2
we briefly describe the dE sample we obtained and reca-
pitulate some of the main findings of VW–I. In Section 3
we explain how we specifically modified our dynamical

modeling technique to optimally recover the 3D density
distributions of the dark matter halos. In preparation
for this study we stress-tested this modeling approach by

applying it to an N-body simulation, the results of which
are discussed in App. A. Section 4 shows the dynamical
constraints and recovered dark mass distributions of the

dEs sample. Using these modeling results we then ex-
amine whether the slopes and flattening of the halos of
dEs are in tension with ΛCDM predictions or not (Sec-
tion 5). Under the umbrella of the ΛCDM paradigm we

then discuss what our results imply regarding the for-
mation and evolution of dEs and how they are related
to other galaxy types (Section 6). The paper concludes

with a summary in Section 7.

2. THE VIRUS-W DWARF SAMPLE

The sample we analyze in this paper consists of 9 dEs
with stellar masses log10(M∗) ∈ [8.5, 9.5] which inhabit
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different environments within the Virgo cluster, ranging
from its center to just beyond its virial radius. The basic

properties (like distance) of the galaxies we adopted for
the dynamical modeling can be found in Table 2 of VW–
I. To distinguish the individual galaxies in our sample,
we keep the same color-coding we used in VW–I. The

VCC-Catalog ID of each galaxy and its corresponding
color can be inferred from Fig. 1 or Tab. 1 which shows
some of the most important quantities we measured in

this paper.
The main data set we obtained with the integral-

field-unit (IFU) spectrograph VIRUS-W (Fabricius et al.
2008, 2012) at the Harlan J. Smith Telescope (McDon-

ald Observatory). VIRUS-W’s very high spectral reso-
lution (R = 7900 to 9000) is essential to measure the low
velocity dispersions of the stars in dEs, because spectro-

graphs with a lower resolution tend to overestimate σ by
a significant margin (cf. VW–I) which would inevitably
bias any dynamical mass reconstruction. As one of the

first IFU studies of dEs the VIRUS-W data allow us to
access their full 2D spatially-resolved on-sky kinematic
which vastly improves the constraints of the dynamical
modeling required to infer the 3D density distribution

of the dark matter halos analyzed here.
To obtain the line-of-sight-velocity-distributions

(LOSVDs) of the stars we employed the spectral-fitting

code WINGFIT (Thomas et al. in prep.) which allows
us to retrieve the full extent of the information con-
tained in the spectra well beyond just the mean velocity

and dispersion. Higher moment information is crucial to
break the mass-anisotropy degeneracy (e.g. Merrifield &
Kent 1990; van der Marel & Franx 1993) and conversely
enable a robust recovery of the dark matter distribu-

tion. To ensure a robust recovery of the LOSVDs we
binned the spectra with the Voronoi tesselation method
(Cappellari & Copin 2003) and excluded any bins that

did not fulfil our S/N requirement. The remaining data
covers the kinematic out to approximately 1 effective
radius.

For a detailed description of the data reduc-

tion/preparation and the final resulting LOSVDs we
refer to VW–I, in it we also show our results from
stellar population modeling and the stellar density re-

construction we obtained from our dynamical model-
ing implementation (which is also used here). In short
we find: stellar populations are spatially homogeneous,

but display a larger variety in age with some having
stopped forming stars only recently while others did
so 12 Gyrs ago. Dynamically, the dEs have a more
isotropic orbit structure and a suppressed angular mo-

mentum compared to other galaxy types (see also Scott
et al. 2020). We find that their mass-to-light ratios are

anti-correlated with their single stellar population (SSP)
age and we identify two possible explanations: i) In the
Virgo cluster dEs have been formed continuously start-

ing 12 Gyrs ago until now and their initial mass func-
tion (IMF) changed with their formation epoch, ii) or
the bulk of Virgo dEs has formed early on in the same
epoch, but (subject to internal/external influences) have

experienced varying degrees of extended star formation
history (SFH) with some dE being quenched shortly af-
ter gravitational collapse while others were able to sus-

tain several Gyrs of continuous or bursty star formation
until they were eventually quenched. These processes
could have left imprints in the distribution of the dark

matter, which we will investigate in this work.

3. RECOVERING DARK MATTER WITH
DYNAMICAL MODELS

The modeling code we employ is a state-of-the-art ax-
isymmetric implementation of the Schwarzschild orbit
superposition technique (Schwarzschild 1979; Thomas

et al. 2004). In short, the modeling principle is simple:
For a given galaxy a number of candidate mass models
is established, and then a set of representative orbits in

each of the corresponding potentials is integrated. Each
of the orbits is given a weight, and the weighted su-
perposition determines the stellar phase-space density
of the orbit model. Given a set of observed data, e.g.

LOSVDs, an optimal set of orbit weights can be deter-
mined by fitting a candidate model’s LOSVDs to the
data1. To find the candidate mass model that best rep-

resents a given galaxy, the fit of each candidate model
to the data is then compared using an evaluation statis-
tic. A popular choice for this statistic is χ2, however,

in Lipka & Thomas (2021) we demonstrated that χ2 is
biased due to the varying fit flexibility of different can-
didate models. We developed a new model selection ap-
proach (Thomas & Lipka 2022) that takes this flexibility

into account in its evaluation. The corresponding evalu-
ation statistic is an extension of the Akaike information
(Akaike 1973, 1974) criterion and called AICp. Analo-

gous to a χ2 approach, the mass model with the mini-
mum AICp is deemed to be the best representation of
the galaxy under investigation. Beyond the AICp which
improves modeling constraints in general, we made some

adjustments in the setup of the candidate models and
the analysis of results with the specific goal to ensure an

1 This involves a regularization to avoid overfitting since the num-
ber of weights is typically larger than the number of data con-
straints. In Lipka & Thomas (2021) and Thomas & Lipka (2022)
we introduced a novel data-driven approach that allows the de-
termination of the optimum amount of regularization to avoid
both over- and under-fitting.
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Table 1. Table with some of the important quantities we measured. From left to right: The average DM density within 1re in
M⊙/kpc3, the mass-weighted slope (eq. 6) of the total density, the volume averaged slope ηDM within 0.8kpc (eq. 4), the axis
ratio of the halo, the (mean) axis ratio of stars, the dark matter fraction within 1re, the SSP age in Gyrs, metallicity, [Mg/Fe]
ratio at r = 2.5′′, stellar angular momentum in [kpc · km/s], the angular momentum parameter. Total stellar mass and distance
to M87 are tabulated in VW–I.

VCC ID Color log10(ρDM) γMW ηDM q∗ qDM fDM Age [Gyr] [Z/H] [Mg/Fe] log10(j∗) λe/2

VCC 200 7.324 -1.944 -1.113 0.895 0.9 0.33 11.2 -0.63 0.28 0.957 0.208

VCC 308 7.295 -1.540 -0.521 0.826 1.0 0.24 2.8 -0.24 0.08 1.014 0.222

VCC 543 7.138 -1.791 -0.715 0.612 0.9 0.17 6.3 -0.34 0.21 1.488 0.375

VCC 856 7.724 -1.282 -0.713 0.609 1.0 0.56 7.8 -0.49 0.23 1.719 0.330

VCC 1261 7.756 -1.660 -1.426 0.713 1.0 0.53 6.6 -0.30 0.16 1.085 0.046

VCC 1528 8.048 -1.815 -1.414 0.839 0.7 0.35 6.7 -0.28 0.19 0.307 0.028

VCC 1861 7.616 -1.388 -0.719 0.897 0.9 0.54 10.0 -0.24 0.18 1.176 0.109

VCC 1910 7.591 -2.067 -1.111 0.865 1.0 0.25 2.0 0.35 0.19 1.020 0.126

VCC 2048 7.199 -1.805 -0.421 0.423 0.5 0.07 3.5 -0.20 0.17 1.366 0.256

unbiased and accurate recovery of the dark matter. In
the following section we discuss those modifications. A
stress-test of this entire modeling procedure applied to

an N-body simulation that is placed under similar con-
ditions as the VIRUS-W dE observations can be found
in App. A.

3.1. A flexible halo mass model

The choice which candidate mass models are being
probed in the first place lies in the modellers choice, but
it is crucial as it may distort the dynamical constraints.

We plan to investigate this on a general methodical level
in Lipka et al. (in prep.). In the following this paper will
be referenced as LT, but it is not part of the VIRUS-W
dE survey as it is not concerned with dEs in particular.

For early-type galaxies where gas contribution is neg-
ligible, it is common to describe the models with a 3-
component density distribution:

ρ(r) = Υ∗ · ν + ρDM + M• · δ(r) (1)

Here the stellar component is determined by the stellar
mass-to-light ratio Υ∗ and the 3D luminosity distribu-
tion ν. The latter is obtained from the deprojection
of the observed photometry (see VW–I). The mass M•
of the supermassive central black hole (SMBH) and the
dark matter halo density ρDM form the non-visible com-
ponents of the system.

We also followed this 3 component approach for the
modeling of the dE sample. However, for our dE sam-
ple an extension of e.g. the M• − σ relation (Ferrarese

& Merritt 2000; Gebhardt et al. 2000; Hu 2008) sug-
gest black hole masses with a sphere of influence that
are well below the spatial resolution of our data which
would imply the black holes are undetectable. Neverthe-

less, in the very-low mass regime of spheroidal galaxies

some observations (Bustamante-Rosell et al. 2021) and
simulations (Weller et al. 2023) suggest the possibility
of a presence of ‘over-massive’ black holes that signif-
icantly exceed typical relations. Stripping of baryonic

mass could move galaxies above the M• − M∗ relation
(Pacucci et al. 2023). The degree to which such effects
play a role in the more massive dEs is yet to be de-

termined as little is known about black holes in this
galaxy regime. Therefore we still decided to equip our
candidate models with a variable black hole mass, even

though we expect to only find an upper limit.
The stellar densities we probed allow for different (ax-

isymmetric) flattenings and a radially variable stellar
mass-to-light ratio Υ∗. We achieve this by sampling dif-

ferent viewing angles in the deprojection, and probing
models with different inner and outer mass-to-light ra-
tios (Υi at radius r = ri and Υo at radius r = ro).

Within one effective radius we find a sample mean of
the stellar mass-to-light ratio Υ∗ of ∼ 1.3±0.4 (z-band),
a value fairly consistent with color-based stellar mass-
to-light estimates for dEs (e.g. Eftekhari et al. 2022).

For details on the implementation of the stellar mass-
to-light ratio gradients and a detailed analysis of the
stellar mass-to-light results see VW–I.

The halo density ρDM is most susceptible to the mod-
eler’s choice as it is usually obtained by probing a para-
metric description motivated by simulation results such

as for example a Navarro-Frenk-White profile (Navarro
et al. 1996b, 1997). In LT we will argue that it is impor-
tant to adopt a description that is highly flexible. Halo
parametrizations that are too restrictive in their profiles

can bias the results towards specific configuration inher-
ited from said halo model. Only a flexible halo allows
one to probe a variety of different halo densities and to

accurately gauge the actual constraining strength of the
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dynamical models in an unbiased manner. Therefore,
for the modeling of the dEs our fiducial halo model is:

ρDM(m, θ) =
ρ0(

m
rs

)γin

·
(

1 + m
rs

)γout−γin
(2)

where m and θ are elliptical coordinates. γin and γout
are the inner and outer logarithmic slopes separated by

the scale radius rs. The halo normalization ρ0 is sampled
by probing different values of ρ1kpc which is the density
of the halo at m = 1.0kpc. They are related to each

other by:

ρ0 = ρ1kpc

(
1kpc

rs

)γin

·
(

1 +
1kpc

rs

)γout−γin

(3)

Equation 2 is essentially a Zhao-profile (Zhao 1996) in
elliptical coordinates where the parameter that describes

the transition width is fixed to unity. To probe the flat-
tening of the halo component (independently of the stel-
lar flattening) we additionally endowed the above halo

model with a (globally constant) spheroidal flattening
parameter qDM.

3.2. Nuisance parameters and sampling strategy

A naive interpretation of the parameters that establish
parametric model descriptions can be very deceiving and
biased as they are often correlated with each other which

makes a comparison of models with different sets of pa-
rameters non-trivial (see LT for a comprehensive discus-
sion). For example, for our choice of the halo model the
nominal values of the asymptotic slopes γin and γout de-

scribe the density gradients at r → 0 and r → ∞. But
these are not actually the radii responsible for constrain-
ing the values of these two parameters. This is because

they are global parameters, and it is the combination of
γin, γout and rs that fully determine the slope at any ra-
dius of the halo model. Therefore the constraints on the

density slopes at every radius indirectly constrain the
value of said model parameters. Instead of interpreting
the halo parameters as physically meaningful parame-
ters we treat them as nuisance parameters that simply

serve us in setting up different trial mass distributions.
Consequently, instead of interpreting and evaluating the
nuisance parameters we should focus on the evaluation

of the actual mass distributions they generate.
With this is mind we can also optimize the parame-

ter sampling. The parameters in our mass model that
have the strongest inter-correlations are those describ-

ing the DM halo. Inter-correlations imply that one may
probe nominally very different halo parameters without
actually changing the mass distribution in a meaning-

ful way, essentially probing the same dynamical model

multiple times. Therefore to keep the available grid of
candidate models efficiently small and avoid repeated
sampling of essentially identical mass distributions we

set up the halo parameter grid as follows: i) qDM is
sampled from spherical qDM = 1.0 down to 0.6 and 0.7,
thus covering the range of intrinsic flattenings observed

in the respective stellar systems. Only for VCC 2048 we
extended the range down to 0.3 as the AICp showed im-
provements down to qDM = 0.5. ii) The scale radius rs
is probed between 0.1kpc and 5.0kpc, i.e. starting from

a fraction of the spatial resolution out to radii several
times the size of the FoV. iii) The asymptotic inner slope
γin is varied between 0.0 and 1.5, whereas γout is sam-

pled for a broader range from -1.0 to 3.0. This broadens
the space of possible models, allowing even unrealistic
halo distribution with a positive radial density gradient

(e.g. if rs → 0 and γout = −1) or a sign reversal in the
mass gradient. The goal of this sampling choice is to
allow as many different mass distributions as possible,
retaining generality, all the while maximizing the differ-

ences between individual candidate models as much as
possible to avoid redundant sampling.

An illustration of the variety of halo models that are

probed by this sampling choice is shown in Fig. 1. The
profiles and shapes range from galaxies with halos much
more massive than their baryonic component to galaxies

with virtually no Dark matter contribution. Including
the flattening qDM, the space of probed Zhao halos en-
compasses 105−106 different halos, densely covering the
entire physically plausible density space ρDM.

The entire space of candidate models (eq. 1) is even
larger and spans a 9D grid where each parameter (Υi,
Υo, i , M• , ρ0, rs, γin, γout, qDM) is probed with 5–20

values. A full grid search is obviously unfeasible, which
is why we search the grid by employing the Nonlinear
Optimization by Mesh Adaptive Direct search NOMAD
(Audet & Dennis 2006; Le Digabel 2011). We estimate

the errors of all dynamically derived galaxy properties
by evaluating the scatter between the best 25 AICp mod-
els, which is roughly equivalent to a ∆AICp ≲ 10 crite-

rion2. For details regarding this choice of error estima-
tion see VW–I.

3.3. Where are dark matter halo constrained the best?

We expect the constraints on the mass models to be

most robust in the regions where the data coverage is
dense, conversely the mass recovery is uncertain and
possibly biased at the smallest scales where we lack
spatial resolution and at the largest scales where no

2 In statistical modeling the models with a ∆AIC > 10 are consid-
ered extremely unlikely (Burnham & Anderson 2002).
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Figure 1. Representative illustration of all the candidate dark matter profiles (gray) we probed for each of the dEs in the
sample. The color-coding for each dE we us in this study is indicated in the bottom right panel. The candidate models are
obtained by sampling the Zhao-like mass description (eq. 2) on the parameter grid discussed in Sec. 3.2. In detail, the exact
value of the sampling steps differed slightly from galaxy to galaxy, which is not shown here. To show the diversity in allowed
profiles, we separated the candidate models into the different panels shown here according to their respective γin and γout. For
simplicity we only plotted the spherical models (qDM = 1.0). For comparison, we also overlay the stellar density distribution
that we found for each of the dEs in our sample (colored lines).
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data is available (cf. Gerhard et al. 1998; Thomas et al.
2005). This is also observed in the simulated stress-test

in App. A, which is why we decided for the more cau-
tious approach to trust and analyze the mass recovery
only in the regions where data coverage is good. This
implies for the dEs in our sample we should trust the

mass recovery mostly in between ∼ 3′′ and ∼ 15′′ (see
data coverage in VW–I), which at the distance of the
Virgo cluster corresponds to ∼ 0.25kpc and ∼ 1.2kpc.

This relation of constraining power and data cover-
age applies to the distribution of total mass in general.
However, the goal of this paper is to determine the distri-
bution of the DM halos which requires a decomposition

of the individual mass components that make up the
total mass (eq. 1). For a mass component to be dynam-
ically detectable, this requires a significant contribution

of the individual mass component to the total enclosed
mass (see LT). For the DM component this implies the
constraining power scales with the enclosed dark mat-

ter fraction fDM. If the galaxy has a high dark matter
fraction it means the halo may well be constrained by
the data because the contribution to the total dynamical
mass is an essential requirement for the models to em-

ulate the dynamics of the whole system. In contrast, if
the dark matter fraction is negligible (e.g. in the center)
the relative uncertainty of the DM profile becomes very

large. For example, one could easily double the DM den-
sity without changing the total mass and gravitational
potential of the model in a dynamically detectable man-

ner. In other words: the exact shape and profile of the
halo gets very uncertain within the regions where the
models suggest fDM ≈ 0.

Unfortunately for the majority of galaxies the very

central parts are expected to be dominated by the bary-
onic/luminous matter (and/or M•) such that fDM is a
monotonically rising function eventually dominating the

total mass at larger radii. If that is indeed the case for
our dEs, a dynamical measurement of their central dark
matter density and their slope becomes extremely am-
biguous. Instead it is preferable to focus the analysis on

the DM properties near the edge of the FoV where fDM is
significant and the total mass is still well constrained by
the data coverage (see also LT). As discussed in VW–I,

the contribution of the blue central nuclei to the cen-
tral VIRUS-W bins is dynamically negligible, such that
it is not worth treating them as a separate dynamical

component and trying to recover their properties.

4. MODELING RESULTS

In the following we present the halo density structure
that we were able to find with the dynamical model-

ing setup as described above. We continue with the

discussion and interpretation of these dark matter re-
sults in the subsequent sections. We discussed the stellar
and kinematic structure in a detailed manner in VW–I.

There we also showed how well the dynamical models
are able to reproduce the observations: the spatially re-
solved features in the mean velocity, dispersion but also

the higher-order Gauss–Hermite moments of the dEs are
well reproduced by the best axisymmetric model found.
The 3D deprojected luminosity density is a boundary
constraint in the orbit modelling technique we use (cf.

Thomas et al. 2004), i.e. it must be reproduced by each
orbit model we probe. This ensures that the 2D surface
brightness is reproduced as well.

4.1. Constraints on the (nuisance) parameters

Fig. 2 shows the AICp-constraints we obtained from
all the orbit models that were probed on the 9D-
parameter mass model grid. The stellar mass-to-light

ratios, the dark matter normalization ρ1kpc, and the in-
clination appear to be the most strongly constrained as
indicated by sharp lower and upper boundaries in AICp.

These parameters exhibit the sharpest constraints, be-
cause they directly dictate the scale of the global mass
distribution. The asymptotic slopes and the scale radius
of the halo profile show much more diversity and scat-

ter, with some AICp constraints even reaching the edges
of the explored parameter space. These parameters (rs,
γin, γout) are strongly inter-correlated and change the

radial behavior of the mass distribution within the dy-
namically relevant range more indirectly.

In LT we demonstrate that, because the FoV with the
kinematic constraints is always limited in radius, the

values of the halo parameters themselves should not be
interpreted physically. Instead these parameters should
be viewed as nuisance parameters only, that allow us to

construct flexible, yet smooth, halo mass distributions
(cf. Fig. 1). Neither the larger scatter in AICp in these
parameters nor the fact that some of these parameters

can reach grid sampling limits is necessarily an issue.
The halo of VCC 1261, for example, reaches the grid
sampling limits at γin = 0.0 and rs = 0.1kpc. However,
an even lower rs or γin would have essentially no im-

pact on the total mass distribution at the scales where
we can probe it with the models, because that would
change the mass and slope predominantly at radii that

are much smaller than the resolution of the VIRUS-W
data (∼0.13kpc). In that case the inner slope γin = 0.0
becomes obsolete as rs shrinks and instead the outer
γout ∼ 1.7 (which is well constrained in AICp) is the

important parameter that determines the actual slope
behaviour of the halo mass distribution. An approxi-
mately identical profile could be generated by setting the
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Figure 2. The ∆AICp envelopes of the orbit models probed for each dE. The upper 3 panels that are concerned with the
luminous model components were discussed in VW–I. The gray-colored panels show the parameters that describe the ‘dark’
components of the orbits models, i.e. the black hole and dark matter. As argued in Sec. 3.2 the parameters that generate the
halo distribution should be treated as nuisance parameters, specifically γin, γout, and rs are very inter-correlated when the FoV
is limited (as is always the case).
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γin∼1.7 and moving the scale radius far outside, reach-
ing the upper limits rs, and consequently rendering γout
irrelevant. Likewise, it is not very concerning that the
outer asymptotic slopes γout appear to be implausibly
shallow: the best models we found have γout ∈ [0.2, 2.0],
and that would mean the models have an infinite total

mass when integrated out to r → ∞. However, due
to the degradation of the constraining power outside
the FoV, mass models that differ only far outside the

FoV are virtually indistinguishable for dynamical mod-
els. The γout constraints we measure instead describe,
at best, the slope in the vicinity of the FoV edge, and

even then only if the rs is small enough for γout to be
relevant. We will investigate the variability of the con-
straining power with radius on a methodological level in
LT. To some degree this behaviour has been noted in the

past several times, as it manifested as an overestimation
of the total mass and uncertainty of the kinematic struc-
ture at large radii outside the FoV (e.g. Gerhard et al.

1998; Thomas et al. 2005).

4.2. Halo densities and dark matter fraction

Instead of interpreting these nuisance parameters we
now focus on directly evaluating the mass distributions

they generate. The left panels of Fig. 3 show the (spher-
ically averaged) mass densities of the dark matter halo,
the stars, and their combined density of the best dynam-

ical models we found for each dE. In other words the
Figure shows the actual mass distribution of the model
with ∆AICp = 0 in the nuisance parameter grid (Fig. 2).
The stellar density shown here incorporates the spatially

variable stellar mass-to-light ratios Υ∗(r) we equipped
the models with, meaning it’s not merely a deprojection
of the photometry at some viewing angle. Fig. 4 displays

the total enclosed mass Mtot = MDM(< r)+M∗(< r) vs
radius in the left panel and in the right panel we quantify
the relative contribution of the dark matter by display-

ing the cumulated dark matter fraction fDM = MDM(<r)
Mtot

as a function of radius. As a visual guide we also indi-
cate the location of the stellar effective radius re in the
mass profiles.

Despite the huge variety in candidate halo profiles we
probed (see Fig. 1) the recovered density profiles ρDM

show that the DM halos of the dEs behave qualitatively

similar to each other, but, at the same time, are dis-
tinct from their baryonic counterparts. Dark matter is
much less centrally concentrated and contributes only

little to the total mass within the center, but its density
profiles fall off less steeply. As such, the dark matter
contribution to the total mass budget becomes increas-
ingly more important with radius, as the dark matter

fraction is surging outside radii greater than about 1re.

In and of itself this is of course nothing new as numer-
ous studies in the past decades have found this to be the
case (starting from Rubin & Ford 1970). However, our

results extend on the majority of previous studies in
that we relax the assumption that the baryonic matter
component follows the light distribution. Instead, we

allow for a spatially variable stellar mass-to-light ratios
(similar as Mehrgan et al. 2024 did for massive ETGs).
This has the advantage that ‘missing’ mass, i.e. any dif-

ference between light and total dynamical mass is not
necessarily counted as DM but that we can also account
for changes in the stellar populations. The fact that we
still see the self-similarity between the recovered halos

and a systematic difference to the baryonic mass distri-
butions is encouraging and increases the significance of
the DM detection. If the stellar matter and dark matter

components were completely degenerate, or if the miss-
ing mass was caused solely by a complex variability of
the underlying stellar population, then we would expect
a larger variability in the recovered halo masses, given

the huge variety of candidate models that we probed
(Fig. 1). For example, halos that increase in density
with radius or halos that are congruent with the baryons

(mass-follows-light) appear to be strongly ruled out by
the dynamical modeling. All in all, the nuisance param-
eters that set up the halo may be fairly noisy (which is

amplified by the large flexibility we allow in the mass
models), but the need for an additional non-baryonic
mass contribution that is distributed in a certain way is
evident.

4.3. Density gradients - Dark matter vs Baryons

To quantify the degree to which the baryonic and dark
matter differ we can evaluate their local density gradi-
ents as a function of radius. To this end we should focus

on the density gradients in the regions where we believe
the masses to be robustly constrained. As discussed in
Sec. 4.3 the dynamical constraints are strongest where

data coverage is good, and the dark matter fraction is
high (see also LT). Therefore, to measure the slope in the
most robust way, one could measure it within the aper-

ture defined by the FoV and then weigh the local density
gradient by the local fDM. However, this turns out to
be dangerous because the true fDM itself is unknown
and is a property that we estimate from the modeling

itself. Therefore it relies on an accurate decomposition
of baryonic and DM. Furthermore we may well expect
that other galaxy types (e.g. ‘ordinary’ ETGs or dwarf

spirals) have intrinsically very different dark matter frac-
tions than dEs. Therefore if we would link fDM and the
definition of the slope we could find artificial correlations
because both are not independent anymore.
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Figure 3. Left side: The (spherically averaged) matter densities ρ of each dE obtained from the best dynamical model we
found. From top to bottom: dark matter density, stellar density (including the Υ∗(r)), total mass density. We indicate the
location of the (stellar) effective radius of each dE (cf. VW–I) by the point that overlap the corresponding curve. Right side:
The corresponding (volume) averaged slopes η within spheres of radius r (see eq. 4) as a function of r. While the halo slopes
stem from a parametric Zhao-description (i.e. the slopes are smooth by definition) the stellar component is non-parametric
and is completely determined by the photometric deprojection, the inclination and the Υ∗-gradient of the best fit model. At a
radius of 10′′, i.e. within the region where we expect the DM to be constrained best by the data (Sec. 3.3) the typical statistical
1σ-error of ηDM is ση = 0.26. The individual errors resolved for each dE can be inferred from Fig. 9 and Fig. 8.
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Figure 4. Left panel: The total enclosed mass of each dE vs radius (solid lines). Dashed Lines: The corresponding black hole
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M• ≲ 5 · 106M⊙. Right panel: The cumulated dark matter fraction within radius r. With some exceptions, the potential within
the central few arcseconds of the dEs is dominated by the stellar mass.
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To overcome these issues, we decided to calculate the
volume averaged radial (logarithmic) slope within the

sphere of radius rev:

η(< rev) =
3

r3ev
·
∫ rev

0

drr2
∂ ln(ρ)

∂ ln(r)
(4)

where rev is the ‘evaluation’ radius. Several similar
but not identical definitions and aperture conventions
have been used in the past (e.g. Poci et al. 2017; Dut-

ton & Treu 2014; Derkenne et al. 2023) to estimate the
slopes of total matter densities. To place our results in a
broader context and compare them to previous studies,

we also analyzed the total slopes of our dE sample using
some of the existing slope conventions (see Sec. 6.1).

We plot η as a function the r = rev in the right panels
of Fig. 3 for the dark matter and stellar components,

as well as for the combined mass distribution. For the
latter two the volume averaged slope is not an urgently
needed measure since the constraints of total mass and

baryonic mass do not scale with fDM but we nonethe-
less display them here to enable a fair comparison be-
tween the different mass components3. The local den-

sity gradients of the two components show very differ-
ent radial behavior. While both components have sim-
ilar gradients in the galaxy centers, the curves diverge
with increasing radius as the dark component barely gets

steeper at larger radii. This is dynamically required as
the models prefer total density gradients within the ef-
fective radius which are relatively shallow (notably shal-

lower than an isothermal profile). However, the models
achieve this without forcing the halo profiles to be ex-
tremely flat/cored (ηDM ≲ −0.5).

4.4. Black holes - Are the centers dominated by

luminous or ‘dark’ mass?

For the majority of the galaxies in our sample the
halo contribution in the center is small to insignificant
(Fig. 4) which suggests that the luminous baryons dom-

inate the dynamics within the center. Still, the models
formally also include a second ‘dark’ component, a cen-
tral black hole that could affect the orbits of the stars

tracing the center. The AICp constraints for the black-
hole mass (Fig. 2) suggest a strong upper limit, with
M• ≲106M⊙. The weaker constraints towards lower

black hole masses are within our expectations since the
spatial resolution we achieve with the VIRUS-W data

3 This line of argumentation is of course also true for the stellar
component, i.e. we expect the constraints on the stars to be-
come worse where fDM ∼ 1. However, for our dE study this is
not relevant since the baryonic contribution is sufficiently large
throughout the entire FoV.

would only allow us to resolve the sphere-of-influence
of black holes with masses larger than 107M⊙. This
is illustrated in Fig. 4 which shows the enclosed mass

of the total mass in comparison to the recovered black
hole mass (horizontal lines). Adding or removing the
recovered black hole masses to the total mass budget

essentially has no impact on the total cumulated mass
within our resolution limit (≈ 2′′) that always exceeds
107M⊙.

Our results suggest that neither DM nor black holes

are a particularly relevant contribution to the potential
in the center of most dEs (with some exceptions, e.g.
VCC 1261). Instead the luminous matter distribution

dominates the inner dynamics where the mass distri-
bution is well approximated by the light without any
need for additional ‘dark’ components (on the scales
that we probed). Therefore we believe that the up-

per limits we obtained for black hole masses are rela-
tively accurate and robust. All in all the results seem
to suggest that over-massive black holes in dEs with

M• ≳5 · 106M⊙ are strongly ruled out by the dynami-
cal modeling. In the context of the cusp-core problem
(see below, Sec. 5.2) this already has implications since

lower black hole masses are less likely to have affected
the dark matter halos significantly, e.g. via Active galac-
tic nuclei (AGN) feedback. Even though the fraction of
dwarf galaxies that exhibit detectable activity is small

in the local Universe, AGNs in dwarfs could have been
more important at higher redshift (Mezcua et al. 2019;
Sharma et al. 2022). Future studies with significantly

higher resolution may even better constrain how impor-
tant black holes are in dwarf galaxies. Our upper limits
M• ≈ (105−106)M⊙ suggest that their influence on the
DM distribution can not have been dramatic.

5. DARK MATTER IN QUIESCENT DWARFS - IN
TENSION WITH STANDARD COSMOLOGY?

Apart from some notable exceptions (van Dokkum

et al. 2018; Shen et al. 2021; Comerón et al. 2023)
the vast majority of galaxies are known to require a
dark matter halo (or a modification of gravity). In
line with this, the dEs we investigated also exhibit a

dynamical necessity for an additional dark component
that increases the total mass budget (particularly at
larger radii) beyond what the luminous mass distribu-

tion seems to suggest. However, with our advanced mod-
eling technique, we attempt to go beyond merely demon-
strating the dynamical necessity of dark matter in dEs:
We try to accurately recover the exact profile, flatten-

ing and amount of dark matter in these galaxies. In
principle, such distributions could even allow us to infer
information on the underlying cosmology in which the
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halos have formed. Within standard cosmology model
(ΛCDM) structure formation on large scales is gener-

ally explained well but several problems and tensions at
smaller scales were reported that seem to conflict with it
(cf. Sec. 1), which will be investigated in the following.

5.1. Properties to analyze the DM structure

To address whether our dynamical constraints for the
dEs are in tension with the standard ΛCDM paradigm,
we first need to establish a set of properties that describe
the halo succinctly. As discussed in Sec. 4 the DM halo

is best constrained at radii where fDM is large and within
the FoV. For most of our sample this is roughly around
10′′ as the majority of dEs have negligible or low dark

matter contribution in the center and our FoV covers
radii out to 10′′-15′′ (cf. VW–I). Since we intend to
compare the halos of each dE to one another and inter-

pret their physical origin and evolution consistently we
want to measure the average density and slope evalu-
ated within a distance-independent, identical aperture
for all galaxies. Therefore we decided to evaluate each

halo within a circular aperture of the same intrinsic ra-
dius rev = 0.8kpc ≈ 10′′ which is at around one effective
radius for the dEs.

Given such an aperture, we can then characterize the
dark matter halos using the following three quantities:

i) The average density ρDM of the dark matter en-

closed within the aperture:

ρDM =
3

4π
· MDM (r < rev)

r3ev
(5)

ii) The volume averaged logarithmic slope ηDM of

the halo within the aperture, as given by equation eq. 4
evaluated at rev = 0.8kpc.

iii) The halo flattening within the aperture rev =
0.8kpc which, in our case, is aperture independent and

identical to the nuisance parameter qDM because the
models only allow for spatially constant axisymmetric
dark matter flattenings.

5.2. The cusp-core problem in dEs

From Fig. 3 it is evident that the dark matter slopes
of the dEs exhibit a similar diversity (sample scatter)
as the slopes of their luminous stellar distributions do.

But the dark matter distribution is (on average) shal-
lower and changes less drastically with increasing radius
than the stars. First and foremost, this result high-
lights the well known requirement of galaxies having a

total mass that decreases less steeply with radius than
the luminosity distribution would suggest (e.g. Rubin &
Ford 1970). For many observed galaxies that are being

studied with dynamical modeling this expresses itself in

the need for an almost entirely flat/cored halo model
component that flattens the overall mass gradient. The
resulting halo models are often times so cored that they

are in tension with the ΛCDM simulations of structure
formation which predict cuspier distributions, particu-
larly in the regime of small dwarf galaxies and late-type

galaxies (see Sec. 1).
However, in the regime of dEs the question whether

the cusp-core problem persists, and if so how strong, is
far from settled. While the dark matter in our dE mod-

els falls off less steeply with radius than the baryons (as
expected), the halo density models are not completely
flat either. There is no unequivocal preference of the

halos being either very cored, or particularly cuspy. In-
stead, we find the slopes ηDM to be mostly moderate but
with considerable scatter across the different dEs in our

sample (Fig. 3). The most cored dEs have ηDM ∼ −0.5
while the most cuspy ones have ηDM ∼ −1.4. This sam-
ple scatter is larger than the typical 1σ-error σDM = 0.26
we find for the dark matter slopes and larger than the

radial change in DM slope within one effective radius.
Therefore we argue this sample scatter of the halo slopes
is not a measurement uncertainty but displays the real

diversity of the halos. In fact, we may expect exactly
this level of diversity considering the corresponding level
of variety in slopes of the stellar matter (middle panel

of Fig. 3) which stems from the deprojection of the ob-
served photometry (and indirectly its gradients). If the
luminous matter exhibits this level of diversity, then it
may be reasonable to expect that the halos of dEs can

also exhibit a similar diversity in slopes.
Compared to the sample scatter across different dEs

the radial change in slope is slightly smaller within the

investigated radial range. Within one effective radius
the change in slope is similar in scale to the 1σ error
and, thus, barely statistically significant. Conversely,
the slopes of the baryonic matter display a significant

and systematic decrease over the entire range covered
by kinematic data. Under the assumption that the true
distribution of dark matter follows a profile with a single

distinct scale radius, these results imply that the scale
radii are dynamically unconstrained by our data. They
must be located either far outside the FoV or in the very

center where a negligible dark matter contribution (e.g.
if fDM∼0) could prevent a change in slope to be dynam-
ically detectable by the models as it barely changes the
net potential. The former case is more likely because the

total enclosed mass would be infinite otherwise. While
the detailed size of halos relative to their stellar half-light
radius may depend on various factors (e.g. redshift, an-

gular momentum, etc.), we can anticipate the halo size
to be generally much larger than the stellar half-light
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radius (e.g. Somerville et al. 2018). Consequently, we
expect the scale radius to be far outside the 1re FoV,

and we argue the nearly constant slopes we measure in-
side our FoV are mostly representative of the true inner
logarithmic halo slopes. Strictly speaking, of course, this
holds only if the true dark matter distribution has only

a single scale radius. One could easily imagine a sec-
ond or multiple slope transitions (i.e. scale radii). For
example, a very small core within the regions where we

measured, fDM ≈ 0 which we would not be able to detect
dynamically with our current observations.

Given the above arguments, we interpret the dark

matter density slopes we measured within the 0.8kpc
aperture to be representative of the central slopes of
the dark matter distributions. If we analyze the density
slopes within this distance-independent aperture rev the

sample average for the halo component is ηDM = −0.91±
0.35, which is contrasted by a much steeper luminous
matter slope with a sample average of η∗ = −2.04±0.40.

While we believe the slope within 0.8kpc is the most ro-
bustly constrained measure of the central dark matter
slopes we can obtain from the dynamical models, the val-
ues are not very sensitive to the exact aperture that we

use. For example, if we were to evaluate the dark mat-
ter slopes within rev = 0.2kpc (i.e. close to the spatial
resolution limit of our data) we would obtain an average

dark matter slope of ηDM(r = 0.2kpc) = −0.73 ± 0.38.
These slope estimates allow us to address the cusp-

core problem from a new perspective, as detailed mea-

surements of halos in this mass regime mostly stem from
rotation curve modeling. This has a strong selection bias
towards LTGs since it relies on the existence of a rotat-
ing HI disk. The dynamical models we employ here can

complement these constraints, as they use stars as trac-
ers of the gravitational potential instead. While stellar
dynamical modeling has been employed to measure the

halos of ETGs before, most studies are confined to more
massive ETGs or smaller dwarf galaxies (dSphs) within
the Local Group. Studies of early-types in the interme-
diate mass regime of the dEs are rare and, even then, do

not attempt to explicitly measure the slope of the de-
composed dark matter component but instead the total
density slope (which we will also compare in Sec. 6.1).

While a direct comparison to ETGs in the same mass
range of our dEs galaxy is difficult, we can place our re-
sults in the context of the measured DM slopes of LTGs

and the smaller resolved early-type dSphs of the Local
Group.

While DM slopes for the most massive spirals are of-
ten ambiguous (some are cored other cuspy) the major-

ity of studies of dwarf LTGs (MB ≳ −19mag) tends to
favor cored dark matter distributions (McGaugh & de

Blok 1998; Côté et al. 2000; de Blok & Bosma 2002;
Gentile et al. 2004; de Blok et al. 2008; Donato et al.
2009; Plana et al. 2010; Oh et al. 2011b). For exam-

ple, the dwarf irregulars (dIrr) analyzed by Oh et al.
(2015), which are in the mass regime of our dEs, suggest
a typical DM slope ∼ −0.29, and the dwarfs sample of
Adams et al. (2014) has a mean DM slope of ∼ −0.58.

In contrast, in the quiescent counterparts of the dIrr,
the dSphs, the circumstances are much more ambigu-
ous. First results of Walker & Peñarrubia (2011) using

a chemo-dynamical approach seemed to have ruled out
NFW-like halos for Fornax and Sculptor, though Gen-
ina et al. (2018) later showed that the models can pos-

sibly lead to mis-identification of cusps as cores. In a
series of papers Jardel & Gebhardt (2012); Jardel et al.
(2013); Jardel & Gebhardt (2013) have modelled dSphs
of the Milky Way (Carina, Draco, Fornax, Sculptor,

and Sextans) using Schwarzschild models. They found
a diverse range of central DM profiles, with some being
cuspy while others being cored. They concluded that (at

least on average) the central halo slope scatters around
an NFW-like profile. Similarly, Hayashi et al. (2020)
found that the halos of 8 dSphs show a significant vari-
ety but tend to favor more cuspy density distributions.

Recently, De Leo et al. (2023) analyzed resolved stel-
lar motions in the Small Magellanic Cloud using Jeans
modeling and found a cuspy structure that is more con-

sistent with theoretical predictions.
Taking into account the results of our dEs and the

ambiguity in the dSphs samples, it appears the results

for ETGs samples are not as suggestive of a core-cusp
problem as the observational constraints for LTGs are.
This disparity between LTG and ETG samples could be
an artifact from systematic differences between the mod-

eling methods that are being employed. Many studies
test parametric models such as NFW-profiles, or non-
singular isothermal/logarithmic profiles, which may or

may not be flexible enough to capture the structure of
real DM halos. The effects of halo parametrization have
not yet been investigated systematically, and it could be

the case that some cored halo models nominally provide
a better fit but underestimate the central DM density
considerably. In LT we will investigate the effects of halo
parametrization on a methodical level. Apart from this

parametrization issue that likely extends to all dynami-
cal modeling techniques, the observations of cores could
also be facilitated by the fact that the majority of LTG

studies are conducted using gas rotation curves whereas
ETGs are constrained using stars as tracers. However,
for a sample of late-type dwarfs Adams et al. (2014) in-
vestigated whether dynamical models that use gas as

tracer for the gravitational potential recover different
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DM slopes than Jeans models (with stars as tracers).
Using generalized NFW (gNFW) models they find both

approaches to be fairly consistent with the gas models
having a sample averaged central slope γ = −0.67 ± 0.1
and the stellar models γ = −0.58 ± 0.24. This sug-
gests that the apparent difference in dark matter slopes

of early- and late-types does not stem from an intrin-
sic bias/difference between the stellar vs gas dynamical
models. Still, further comparisons of different modeling

techniques applied to the same galaxy are required to
judge about modeling systematics.

If for now we assume systematics are negligible and
results for LTGs and ETGs can be trusted equally, this

slope-morphology dichotomy may well be genuine be-
cause the two classes can be expected to follow very
different evolutionary paths. The correspondingly dif-

ferent baryonic feedback and/or environmental effects
could have driven initially identical dark matter halos
to diverge over time. In other words, even if all DM

halos had initially NFW-like slopes, we may expect that
LTGs observed today are on average more cored than
the dEs. Since we argue the amount of diversity in mea-
sured slopes within our dE sample is not driven by noise

or systematic errors but reflects the true diversity that
dEs exhibit (see above), the even larger slope difference
to the LTG studies strongly suggests that there must be

mechanisms (ab initio or secular ones) that discriminate
between different galaxies, leading to some halos being
shallower than those of others (see also Sec. 6).

The situation whether dark matter in quiescent dwarfs
is, in fact, cored enough to be considered in tension with
standard cosmology appears to be much more ambigu-
ous than it is for the LTGs. A considerable amount

of ETGs studies suggest mildly cored and near NFW
slopes. Still, the typical central slopes that we mea-
sured ∈ [−0.7,−0.9] are in mild to moderate tension

with the vast majority of DM-only simulations (DMO)
of ΛCDM structure formation. Early DMO studies pre-
dicted (often universal) cuspy halo profiles with central
slopes ranging from −1 to −1.5 (Navarro et al. 1996a,

1997; Moore et al. 1998; Fukushige & Makino 2001),
and even more recent DMO simulations with higher res-
olution struggle to reach slopes much flatter than −0.8

(Gao et al. 2008; Stadel et al. 2009). While the tension
between the DM slopes of simulations and observations
is significantly mellowed in the quiescent dwarfs, the ex-

istence of galaxies with DM slopes of −0.5 nonetheless
rejects DMO simulations, suggesting at least some re-
quirement for modification. Hydrodynamic simulations
which include the response of the DM to baryon physics

and friction appropriately may (possibly more comfort-
ably than for LTGs) explain these remaining differences

(e.g. El-Zant et al. 2001; Mashchenko et al. 2006; Del
Popolo 2009; Governato et al. 2010; Cole et al. 2011;
Governato et al. 2012; Nipoti & Binney 2015; Orkney

et al. 2021).
All in all, neither the simulation nor the observation

side seem to be entirely decided whether the halos of
dwarf galaxies are cuspy or cored. In the last decades

several solutions have been proposed to reconcile the ob-
servations with simulations (for a review see Del Popolo
& Le Delliou 2021). Broadly speaking, solutions can

be categorized as follows: i) Baryonic feedback/outflows
which transfer to the DM. For example, star formation
bursts could have removed parts of the baryons, and in

the course of that also some of the dark matter, leading
to the observed cores (e.g. Navarro et al. 1996a; Gnedin
& Zhao 2002; Governato et al. 2010; de Souza et al.
2011; Oh et al. 2011a; Madau et al. 2014). Similarly,

interactions with the environment such as mergers, ha-
rassment or ram-pressure stripping (directly and indi-
rectly by regulating star formation) could have affected

the dark matter profiles (e.g. Del Popolo 2012). ii) Cos-
mological solutions: Theoretical concepts such as self-
interacting dark matter, fuzzy dark matter, superfluid
dark matter, could naturally produce cored halo profiles

(e.g. Spergel & Steinhardt 2000; Harko 2011; Robles &
Matos 2012; Elbert et al. 2015) iii) Modifications of New-
tonian gravitation can make cuspy halos appear to be

cored in a Newtonian analysis (e.g. Benetti et al. 2023).
Overall we conclude that the cusp-core tension for

dEs is not as severe and standard ΛCDM simulations

that accurately model the effects of baryons may well
be able to explain the halo distributions without the
need for invoking more exotic physics. In Sec. 6 we will
explore (under the umbrella of standard ΛCDM cosmol-

ogy) whether our results point towards a specific bary-
onic mechanism that is driving the diversity in measured
DM slopes of the dEs and the systematic difference to

LTGs.

5.3. Are DM halos spherical?

Numerical Simulations of DM halo formation not just
predict their central slopes but also their 3D shape.

Therefore the axisymmetric flattening qDM we measured
for the dEs (Fig. 2) puts us in the position to probe cos-
mological predictions and halo assembly further. The

flattening of dark matter halos (other than the Milky
Way’s halo) is rarely probed by dynamical modeling
studies. In App. A we demonstrate that dark matter
flattening is detectable using our dynamical modeling

setup and, in fact, plays a significant role in determin-
ing the overall quality of the model. Even though the
N-body simulation in App. A is slightly triaxial and
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changes shape with radius the constant, axisymmetric
flattening qDM = 0.8 we recovered approximates the av-

erage shape of the halo (to first order) well and unbiased.
For dEs we find that dark matter and stars are not

only different with regard to their radial distributions,
but they also have systematically different flattenings.

Fig. 5 compares the average intrinsic axis ratios of the
luminous matter q∗ with that of the dark matter qDM.
For all galaxies, but VCC 1528, the halo appears to be

rounder than the stellar component it hosts. In fact,
the majority of the DM halos are spherical or close to
it. The only halo that exhibits a strong amount of halo
flattening is that of VCC 2048. However, VCC 2048

also has the flattest stellar distribution (q∗≃0.4) and the
lowest dark matter fraction with fDM < 0.1 throughout
the entire investigated radial range (cf. Fig. 4), hence,

the central halo shape may not be very well constrained.
DMO simulations usually predict complex halo shapes

that can be prolate or triaxial with significant shape

variation at different radii (e.g. Frenk et al. 1988; All-
good et al. 2006; Hayashi et al. 2007), therefore it may
be surprising that almost the entirety of the dE sample
is fitted best with nearly spherical dark matter halos.

However, these DMO predictions are also in tension with
most observational results for the Milky Way’s DM halo
(e.g. Ibata et al. 2001; Law & Majewski 2010; Vera-Ciro

& Helmi 2013; Bovy et al. 2016; Wegg et al. 2019). These
suggest a nearly spherical, oblate dark matter structure
despite the Milky Way’s much flatter stellar structure.
For example, by analyzing the Gaia proper motions of

RR Lyrae stars Wegg et al. (2019) have found an ellip-
soidal flattening qDM = 1.0±0.09 of the Milky Way halo
out to radii of 20kpc.

Similar to the cusp-core problem, this tension with the
DMO simulations is significantly mellowed when bary-
onic interactions are included in the numerical simu-

lations: the halo shapes are transformed by the inter-
actions with baryons to be more spherical/oblate (e.g.
Katz & Gunn 1991; Chisari et al. 2017; Chua et al. 2019;
Chua et al. 2022; Cataldi et al. 2023; Orkney et al. 2023).

This reflects that DM particles that reach the center on
box orbits are gravitationally affected by the conden-
sating baryons such that their orbits change and be-

come more tube-like and circular (cf. Debattista et al.
2008). This modification of the flattening caused by the
baryons is most dominant in the center of the galaxies:
while DMOs predict prolate distributions in the cen-

ter which only become more spherical at large radii the
baryon inclusion make the center more spherical which
overall leads to a more radially constant and close-to-

spherical halo distribution (Abadi et al. 2010). Hydro-
dynamical simulations not only predict that the result-
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Figure 5. The intrinsic axisymmetric flattening of the DM
halo qDM vs the corresponding (radially averaged) q∗ of the
stars for the dEs. Also included are the dynamically recov-
ered axis ratios of the dSph of the Milky Way (gray squares)
from Hayashi et al. (2020). We indicate the expected qDM

from the Illustris simulations (Chua et al. 2019) for their
DMO runs (gray bar), for the full hydrodynamical run in
the dE regime M∗ ∼ 109M⊙ (red bar) and for higher masses
(1011M⊙) at which their halos are roundest (green bar).
They describe the halo triaxial by minor/intermediate axis-
ratios q and s, to compare it to our axisymmetric values, the
mean of q and s is shown here. The bar height represents the
25th-75th percentiles of their galaxies. The placement of the
bars on the q∗-axis is arbitrary because they do not resolve
q∗, but from the analysis of more massive ETGs in Illustris
TNG100 by Pulsoni et al. (2021) we may expect qDM ≥ q∗
with a large range of stellar flattening 0.2 ≤ q∗ ≤ 0.9. Con-
gruent with these simulations, our dEs have qDM ≥ q∗, but
have even rounder halos than statistically expected.

ing halo becomes more spherical, but also that they end
up to be rounder (by about ∆q ∼ 0.2) than the bary-

onic distribution they host (e.g. Tenneti et al. 2014; Pul-
soni et al. 2021). This is congruent to our finding that
the dark matter is more spherically distributed than the
baryonic mass (Fig. 5).

In Fig. 5 we indicate the range of halo flattenings we
may expect from numerical ΛCDM simulations by show-
ing the median flattening of galaxies in the Illustris sim-

ulation analyzed by Chua et al. (2019). The inclusion
of baryons typically changes the axis ratios of the sim-
ulated galaxies by about +0.1 to +0.2 which makes the
average halo to have qDM ≈ 0.75. Like it is the case for

the Milky Way’s halo, the inclusion of baryons does lift
some of the tension, but our observational constraints
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still suggest surprisingly spherical dark matter distribu-
tions. 7 out of 9 dEs have a qDM larger than the 25-75th

percentile of the Illustris simulated galaxies. The anal-
ysis of Chua et al. (2022) suggests that the effect of
baryon-induced dark matter flattening becomes smaller
as the total halo mass is decreased and/or as baryonic

feedback parameters, such as stellar wind or black hole
feedback strength, are increased. The former implies
that we may expect galaxies in more massive halos to

be even more spherical, while the latter implies that
galaxies with stronger baryonic feedback are more pro-
late as they decrease the stellar mass fraction. Still, the
observational constraints of our dE sample suggest that

even halos in quiescent dwarfs are similar to the Milky
Way in that they follow a nearly spherical distribution.
Whether one can detect a dependency of the sphericity

on the total mass or morphology (like it seems to be the
case with the density slopes) remains to be seen at this
point, as observational constraints need to be extended

to more galaxies.
The fact that some statistical tension between hydro-

dynamic simulations and our observation persists could
be explained by the approximations and assumptions

that were made to obtain the observational constraints.
Firstly, our small sample of dEs may not be overly rep-
resentative for the average galaxy in this mass regime.

The majority of our sample is observed to have a fairly
round light distribution already (cf. ellipticities in VW–
I) which could also favor more spherical DM halos, i.e.

qDM could be selection biased. Furthermore, consider-
ing baryons are a driving factor in determining the halo
shape, we may also expect there to be significant dif-
ferences between different galaxy morphologies4. Sec-

ondly, the dynamical models assume an axisymmetric
shape with a radially constant flattening, while real ha-
los are probably triaxial with radially changing shape.

This could bias our results for qDM to be more spherical,
though the test on the N-body simulation (App. A) does
not suggest so. Thirdly, especially for low mass halos,
the baryon distribution and its embedding dark mat-

ter halo may be misaligned significantly (Chisari et al.
2017), an effect which our dynamical models can not
emulate at this point.

If, on the other hand, the observational constraints are
robust and the hydrodynamical simulations accurately
model baryonic interactions, the measured shapes of DM

halos could be a strong indication of a deviation from

4 E.g. between ETGs and LTGs of the same mass. Though we
may expect from the comparison of central slopes (Sec. 5.2) that
qDM of late-type dwarfs is even more spherical than early-type
dwarfs.

ΛCDM cosmology. The excess in sphericity could be a
direct consequence of non-CDM particles. For example,
self interactions of the dark matter particles can heat

up their orbits as they pass through the dense halo cen-
ter and interact with each other (e.g. Peter et al. 2013;
Vogelsberger et al. 2016; Brinckmann et al. 2018). As

a result, the halos become rounder in the center, which
is where we constrain the dE halos. Similarly to self-
interacting dark matter, Fuzzy Dark matter particles
can also produce more spherical halo shapes (Marsh &

Silk 2014; Dutta Chowdhury et al. 2023).
At this point in time, observational attempts at mea-

suring the intrinsic shape of DM halos are still in the

beginning stages. The few constraints that exists are
for nearby spirals using edge-on rotation curve fitting
(e.g. Peters et al. 2017), for Local Group dSphs using
Jeans modeling (e.g. Hayashi et al. 2020), or are for the

Milky Way’s halo inferred from globular cluster and stel-
lar streams (e.g. Ibata et al. 2001; Law & Majewski 2010;
Vera-Ciro & Helmi 2013; Bovy et al. 2016; Posti & Helmi

2019; Wegg et al. 2019). While gravitational lensing can
provide independent shape estimates at larger distances,
it can only directly constrain the projected flattening

of the mass distribution. Constraining the halo shapes
with stellar dynamical modeling could therefore be an
invaluable additional probe for early-type galaxies and
further our understanding of cosmology.

Our dynamical constraints corroborate the observa-
tional results found for the Milky Way’s halo in that
the dark matter is distributed close to spherical even

though the stars occupy orbits in a more flattened dis-
tribution. However, as outlined above, several simula-
tions and theories may explain such observations. To
draw definite physical conclusions on the implications of

the measured dE halo shapes, larger sample sizes with
FoVs beyond 1re and dynamical models that are triax-
ial and/or allow radially changing shapes are required.

Similarly, galaxy samples at different mass and redshift
scales could also be helpful in our understanding. We
only probe dEs with M∗ ∼ 109M⊙ in this study, but

the ability/efficiency, e.g. of baryonic feedback, to make
the halos more spherical is expected to vary with to-
tal mass, stellar mass fraction and redshift (e.g. Allgood
et al. 2006; Chua et al. 2019; Chua et al. 2022). Investi-

gating these features of the halo shape may allow us to
differentiate between the different cosmological scenar-
ios in the future.

6. HALO STRUCTURE - AN IMPRINT OF

GALAXY FORMATION AND EVOLUTION?

The discussion in Sec. 5 has shown that the ΛCDM
cosmology is not strongly ruled out by the observational
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shape and slope constraints we found for the dark matter
halos of dEs. While there remains some tension (par-

ticularly in the halo flattening) numerical simulations
that accurately model baryonic and environmental ef-
fects may well be able to explain the observations with-
out the need for invoking more exotic physics. In the

following few sections, we will explore what the recov-
ered dark matter distributions can tell us about the evo-
lution and formation of dEs, given we assume ΛCDM is

indeed an accurate description of underlying cosmology.
We will preface this analysis by a discussion of the total
densities (stars and DM combined) which complements
the discussion of the individual DM halos and facilitates

comparison with the existing literature.

6.1. The total density slopes of dEs

The DM density slopes we reported in Sec. 5 rely on
a robust decomposition of the DM halo from the stars
and stellar remnants. While we stress-tested this on

a simulation (App. A) there is of course no guarantee
that this always works for real galaxies. However, under
the assumption the ΛCDM paradigm is correct, we can

also investigate galaxy evolution and differences between
different morphologies without the explicit requirement
for an accurate decomposition if we analyze the total
mass distribution. The total mass is more strongly con-

strained by the dynamical models than the individual
mass components are (see LT) and its recovery is not re-
liant on a successful decomposition. The same will hold

true for the corresponding total density slopes. Further-
more, compared to the analysis of decomposed DM, a
manifold of published studies exist that investigate the

total densities but not the dark matter component on
its own. In the following, we complement our analysis
of the DM slopes (Sec. 5.2) by comparing the total den-
sity slopes of our dEs to those of published literature.

This has the goal to place the dEs in a broader context,
compare them to different galaxy classes and investigate
possible formation mechanisms. Various conventions of

measuring the total slopes (calculated within different
apertures) are used in the literature. To make the com-
parison straightforward, we calculate the slopes for our
dEs as they are defined in the studies that we compare

them to in the following section.

6.1.1. Comparison with ‘ordinary’ ETGs

In Fig. 6 we display γtot, the mean logarithmic density
slope of the total mass within the effective radius (see
Poci et al. 2017), vs the effective velocity dispersions

σe and the dark matter fraction fDM for our dE sample
and studies of ‘ordinary’ ETGs (M∗ ≳ 1010M⊙). For the
latter, we show three different samples, each based on

a different modeling technique: i) Lensing models, ii)

Schwarzschild models, and Jeans anisotropic modeling
(Cappellari 2008). Independently of the applied model-
ing method, the density slopes of the ‘ordinary’ ETGs

congregate at γtot ≈ −2.1 on average. In stark contrast,
the slopes of our dEs are noticeably shallower (with a
sample average of γtot = −1.51 ± 0.24) and concentrate

outside the scatter of ‘ordinary’ ETGs.
In the high mass range ∼ 1010 − 1012M⊙ (i.e.

log10(σe) ≳ 2) it is well established that (with little scat-
ter) galaxies have around isothermal total density pro-

files at one effective radius. Because the steeper baryonic
and shallower dark matter components seemingly ‘know’
of each other so as to always produce a nearly isother-

mal density together, this is also known as the ‘bulge–
halo conspiracy’ (e.g. Gerhard et al. 2001; Thomas et al.
2007b; Koopmans et al. 2009; Auger et al. 2010; Dutton
& Treu 2014). However, this ‘bulge–halo conspiracy’

actually only seems to hold in a limited mass regime.
Several studies (Poci et al. 2017; Tortora et al. 2019; Li
et al. 2019) have noticed that below log10(σe) ∼ 2.1 the

total slope and velocity dispersion (or stellar mass) of
a galaxy are anti-correlated (i.e. less massive ETGs are
shallower). As the total mass is increased, the galaxy

profiles become steeper until near log10(σe) ∼ 2.1 the
typical slope reaches a minimum at γtot ≈ −2.3, at
which point the γtot-σe breaks and flattens or arguably
even reverts as galaxies with even higher masses become

slightly more shallow again.
This break point near log10(σe) = 2.1 and γtot = −2.3

can also be identified in Fig. 6 as more massive galaxies

do not become cuspier. If, on the other hand, the γtot-σe

correlation of the ETGs with log10(σe) ≤ 2.1 is extended
to the lower dispersions of our dE sample, then, the dEs

are arguably exactly where one would expect them to be.
This may suggest that the dEs, together with slightly
more massive ETGs (log10(σe) ≲ 2.1), form a continuous
sequence for which the total slope γtot systematically de-

creases with increasing velocity dispersion σe. Whether
continuously connected or not, the dEs have much shal-
lower density distributions than ‘ordinary’ ETGs.

Conversely to the ‘ordinary’ ETGs, the total slopes
of dEs do not fall on the same correlation of the dark
matter fraction fDM with the density slope (right panel
of Fig. 6) as their shallower slopes would require a much

higher dark matter fraction around fDM ∼ 0.8 than what
is measured. In other words, the shallow γtot of dEs is
not solely a result of an increased contribution of the

halo to the total density within the effective radius.
The strong correlation of total slope and DM fraction
in ‘ordinary’ ETGs may be expected. Simulations sug-
gest both γtot and fDM increase with stellar mass (e.g.

Lovell et al. 2018; Mukherjee et al. 2022) for galaxies
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Figure 6. Left panel: The average logarithmic power-law slope γtot of the total mass distribution evaluated between 0.1re and
1re vs the luminosity-weighted velocity dispersion σe within one effective radius. Colored Dots: Our dE sample. Diamonds:
The massive ETGs, part of the ATLAS3D-survey (Cappellari et al. 2011), for which we obtained the slopes of model 1 in Poci
et al. (2017). Their aperture varies slightly for each galaxy since it depends on the FoV coverage. But for the majority their
γtot is essentially measured between 0.1re and 1re. Following Poci et al. (2017) we differentiate between ATLAS3D galaxies
with good data quality (Black diamonds) and poor quality (Red diamonds). This data quality for each ETG was evaluated in
Cappellari et al. (2013a). Green squares: The power-law slopes obtained from Auger et al. (2010) for the strong lensing ETGs
which are part of the SLACS survey (Bolton et al. 2008; Auger et al. 2009). Magenta crosses: The total slopes calculated from
the mass profiles of Thomas et al. (2007b) which were obtained with Schwarzschild which are based on an earlier version of the
axisymmetric orbit code we use in this study. Right panel:. The total slope γtot vs the dark matter fraction fDM enclosed within
1re for the same data that was shown in the left panel. For the SLACS survey we obtained dark matter fraction from Posacki
et al. (2014). For more published data of giant ETGs and comparison with cosmological simulations see also Fig.11 of Derkenne
et al. (2023).

with masses above ≳ 3 · 1010M⊙. If fDM and γtot both
correlate with stellar mass then they will also correlate

with each other as seen here. We conclude the total
density slopes of dEs arguably lie on the extension of
‘ordinary’ ETGs to lower masses, but their slopes and
dark matter fractions are not as strongly correlated as

those galaxies.

6.1.2. Comparison with quiescent and star-forming dwarfs

The above anti-correlation of total density slope and

stellar dispersion (or stellar mass) has also been noted
in LTGs, albeit with some offset/modification (Li et al.
2019; Tortora et al. 2019). In Fig. 7 we compare our

results to those of Tortora et al. (2019). They ana-
lyzed and compared the total density slopes of 3 differ-
ent galaxy samples: Another Virgo dE sample (Toloba
et al. 2014; see also VW–Ifor a comparison), a LTG sam-

ple which includes star-forming galaxies ranging from S0

to Im (Lelli et al. 2016), and ‘ordinary’ ETGs (La Bar-
bera et al. 2010; Tortora et al. 2012). They measured
the total density slope (within the one effective radius)

using the mass-weighted density slope γMW (cf. Koop-
mans et al. 2009; Dutton & Treu 2014; Tortora et al.
2014) which is defined as:

γMW =
1

M(r)

∫ r

0

−γ(x)ρ(x)4πx2dx (6)

where M(r) is the total cumulated mass, ρ the density
and γ the corresponding logarithmic slope. For a single
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power-law profile γMW equals γtot, but generally γMW ≥
γtot holds true5.

Similar to ETGs (Fig. 6) the star-forming galaxies also
become cuspier as the total stellar mass (or dispersion)
is increased but, in contrast to the ETGs, they exhibit
no clear correlation-break at higher masses. The total

slopes and dark matter fractions we recovered for our
dEs are in remarkable agreement with the dE sample
analyzed by Tortora et al. (2019). Consequently, dEs

of both samples are systematically offset compared to
LTGs of the same stellar mass, with dEs having steeper
slopes by about ∼ −0.5 on average. The total slopes
we measure are of course spherically averaged quanti-

ties. While we may expect both, ETGs and LTGs, to
sit in relatively spherical DM halos (Sec. 5.3) at least
the stellar density of LTGs can be expected to be flat-

ter than that of dEs. Still, if we assume the worst case
where both stars and DM are distributed in an exponen-
tial disk profile, we expect their intrinsic circular speed

curves vc(r) =
√

GM/r to always stay within 15% of
the purely spherical equivalent (cf. Binney & Tremaine
2008; Tortora et al. 2019). Compared to the large γMW

difference between LTGs and ETG this effect is minis-
cule.

dEs are also offset to LTGs in their dark matter frac-
tions. Most dEs have a dark matter fraction around

30 − 40%. While the LTGs explore the full range of
fDM their distribution is lopsided towards higher dark
matter fractions. Particularly LTGs in the mass regime

of the dEs have typical dark matter fractions of around
70 − 80% (see also Sharma et al. 2023a). In contrast to
the LTGs, the two dE samples occupy a narrow range

in γMW − fDM-space with both properties slightly corre-
lated.

Considering DM halos are generally thought to be
shallower than the stellar distribution (e.g. Sec. 4.3)

one could argue that the shallower total slopes of LTGs
compared to dEs are a result of their higher dark mat-
ter fraction, whereas stellar differences in two morpholo-

gies play a subordinate role. However, it may not be
as straightforward to draw conclusions from the total
slopes alone. Both, fDM and γMW, are measured within
one stellar effective radius and are therefore aperture

dependent, i.e. they depend on the concentration of the
stellar distribution. However, at the same stellar mass
the effective radii of LTGs may well be systematically

5 The mass-weighted slope is essentially the analog of the volume
averaged slope we introduced in eq. 4 but weighted by the local
density. We argue for the dark matter analyzed on its own the
volume averaged slope η is the safer choice (cf. Sec. 4.3), while
for the total density γMW is more suitable.

larger than those of the dEs (Tortora et al. 2019; Li
et al. 2019), which may impede a consistent fDM and
γMW comparison of dEs and LTGs at the same stellar

mass if the dark matter halo in LTGs is not similarly
extended.

6.1.3. The dichotomy in total slopes - A product of
baryonic in- and out-flows?

As discussed in Sec. 6.1.1 the total slopes of our

dEs are not in tension with the existing evidence (Poci
et al. 2017; Tortora et al. 2019; Li et al. 2019) for
a dichotomy in the early-type sequence below/above

M∗ ≈ 1010M⊙. It appears that below this mass thresh-
old the slopes become continuously shallower at least
until M∗ ≈ 108.5M⊙, whether and how this changes for

even lower mass remains open for now. The breaking
point of this dichotomy in the ETG sequence has long
been known to be a crucial point of change in many
other galaxy properties as well (e.g. Bender 1988; Ben-

der et al. 1989; Kormendy & Bender 1996; Kormendy
1999; Dekel & Birnboim 2006; Tortora et al. 2010; Kor-
mendy & Bender 2013; Cappellari et al. 2013b; Nelson

et al. 2018).
This dichotomy in the total slopes of early-type se-

quence and the offset (in slope and fDM) of dEs com-
pared to late-type dwarfs can be interpreted and ex-

plained by a coherent (but not necessarily comprehen-
sive) picture of galaxy formation and processing. De-
pending on the galaxy’s total (stellar) mass, several pro-

cesses could lose or gain in significance such as to pro-
duce the observed dichotomy in density distributions.
In the following we briefly summarize important effects

for different masses with an emphasis on the low-mass
regime occupied by the dEs:

i) The high-mass regime M ≳ 5 · 1010M⊙ at the
turnover/breaking point the ETGs are slightly sub-

isothermal (γ ∼ −2.3). ETGs with higher mass are
increasingly a product of (multiple) dry mergers, and
as these dry merger stack up, the slope of the merger

product gets more shallow and close to isothermal with
γ ∼ −2.0 (Remus et al. 2013, 2017). This reverts the
correlation of total slope and stellar mass and breaks

the correlation that is found for lower masses. In par-
allel to this merger effect, the feedback of AGNs could
play an additional driving factor in making the giant
ETGs shallower than ETGs at the breaking point. This

is because AGN feedback becomes more efficient in sup-
pressing star formation at higher masses (Tortora et al.
2010).

ii) In the intermediate mass-regime, near and around
the turn-over point, the situation is likely complex
as different mechanism are superimposed and possibly
counter-acting each other. Nonetheless, we want to
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Figure 7. The mass-weighted total density slope γMW (eq. 6) of dEs and LTGs within 1re vs stellar mass M∗ (left panel) and
dark matter fraction fDM (right panel). Colored Dots: Our dE sample. All the literature data shown here are from Tortora
et al. (2019) who analyzed the slopes of the following 3 galaxy samples. Blue stars: The LTG data originate from a subsample
of the SPARC survey (Lelli et al. 2016), it includes LTGs ranging from S0 to Im. Green squares: The dEs of the SMAKCED
sample (Toloba et al. 2014; Tortora et al. 2016) which are also part of Virgo cluster. As a reference we also include the location
of ‘ordinary’ ETGs in the left panel (gray diamonds), they stem from the ETGs of the SPIDER survey (La Barbera et al. 2010;
Tortora et al. 2012). For these ETGs only the sample medians binned in different mass bins are shown, the error-bars indicate
the 1σ percentiles of the more than 4000 ETGs (cf. Tortora et al. 2019).

highlight a process that may be specifically crucial in

this regime alone. This transition region of the above
correlations is located where the most massive of LTGs
are found. These massive LTGs likely experienced con-
tinuous gas supply from their environment. This contin-

ued dissipative infall of baryons could be accompanied
by an adiabatic contraction of the dark matter halo (e.g.
Blumenthal et al. 1986; Gnedin et al. 2004; Li et al. 2022)

which would lead to a cuspier halo and possibly also to
an overall smaller γtot within 1re. Since the total stellar
mass traces not only a galaxy’s ability to accrete and

hold on to new gas but also its past accretion history
we may expect the halo contraction to be more impor-
tant for massive systems, which could support the anti-
correlation of the total slope and M∗ in LTGs that was

observed by Tortora et al. (2019); Li et al. (2019).
iii) In the low-mass regime (i.e. M ∼ 109M⊙), both

dEs and LTGs, have similar light profiles and slopes (e.g.

dEs have nearly exponential Sersic indices (e.g. Ferrarese
et al. 2006), see also stellar distributions in VW–I). The
similarity in stellar profiles implies that the offset in to-
tal slope between the early- and late-type dwarfs stems

from a difference in their dark matter distributions. And
this does indeed seem to be supported by the dynami-

cally decomposed halo densities: the core cusp tension
usually is milder in early-type dwarfs than for late-types
counterparts (cf. Sec. 5.2).

In opposition to the galaxies in the intermediate mass-
regime the effect of adiabatic halo contraction could be
significantly diminished for the dwarfs. This is because

as the total mass and, thus the potential well, is de-
creased continued gas accretion is dampened or shut-off
early (e.g. by their environment) hindering the dark
matter halo to become more cuspy. As a result, the

dwarfs may not be able to reach the steep total slopes
of ≈ −2.3.

Conversely, to the reduced contraction adiabatic halo

expansion may be an important factor for dwarfs that
drives the anti-correlation of mass and total slope in the
low-mass regime: any outflow of mass, such as a gas
outflow caused by supernova feedback by newly formed

stars could force an initially cuspy DM halo to become
more cored as time passes (Read & Gilmore 2005; Gov-
ernato et al. 2010; Pontzen & Governato 2012; de Souza
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et al. 2011; Pontzen & Governato 2014; Madau et al.
2014; Read et al. 2016). The efficiency of this expansion

mechanism is expected to decrease as the total mass
of the systems is increased, again due to the ability of
the potential well to hold mass outflows. Consequently,
lower mass galaxies would become shallower than higher

mass galaxies, which could produce the γMW-M∗ corre-
lation that is seen in the low-mass regime.

In principle, this mechanism of adiabatic expansion

could also explain the offset between quiescent and star-
forming dwarfs that is observed in their slopes and dark
matter fractions (Fig. 7). The star-forming LTGs may
have had a more gradual, but prolonged, star formation

history as they continuously processed their surrounding
gas reservoir unaffected by the low-density environments
these galaxies typically inhabit. The continued super-

nova outflows that result from this star formation could
have gradually and gently expanded the galaxy’s size
(reducing its surface density, increasing re and therefore

also fDM), while overall making the density distributions
shallower (directly for baryons and indirectly for the DM
distribution).

In contrast, for the quiescent dEs adiabatic expan-

sion may have played less of a role because their star
formation was being quenched at some point in their
past. A manifold of potential quenching mechanisms

responsible for this have been suggested (see VW–I for
more discussion). Among them are external processes
induced by the environment (e.g. ram-pressure strip-

ping, galaxy starvation, and harassment (e.g. Gunn &
Gott 1972; Larson et al. 1980; Lin & Faber 1983; Moore
et al. 1998)) and internal processes like outflows caused
by rapid supernovae or AGN feedback (e.g. Dekel & Silk

1986; Silk 2017; Sharma et al. 2023b). These mecha-
nisms can be expected to act within different epochs and
on very different timescales, for example ram-pressure

stripping is expected to act on a few hundreds of Myrs
to a Gyr (Quilis et al. 2000; Steinhauser et al. 2016). If
the quenching mechanism that is responsible for the dEs
was fast acting and shortly after galaxy formation then

adiabatic expansion could have been suppressed for the
dEs leaving their density distributions more cuspy and
their effective radii smaller.

However, as established and discussed in VW–I (un-
like the more luminous, ‘ordinary’ ETGs) many of the
dEs likely had a complex star formation history, possibly

involving multiple rapid star formation bursts. Depend-
ing on their initial conditions (environment and total
mass) some dEs were quenched shortly after the reion-
ization epoch while others were able to form stars up un-

til just a few Gyrs ago. Therefore, if adiabatic expansion
is responsible for the shallower densities of star-forming

dwarfs compared to the dEs, we may also expect that
(within our sample) those dEs that have had prolonged
SFH also are more shallow than dEs that were quenched

prematurely (e.g. by a single burst). This could reveal
itself in a correlation of density slopes with markers of
SFH (see next section).

Given galaxies ab initio reside in halos with identical

profiles and shapes, but the amount of sustained star
formation evolves them in different ways we expect to
find the clearest imprint of this correlation in the slopes

of the dark matter (not the total density) as the halo’s
slope traces the gravitational impact of mass outflows
largely independent of the stellar morphology.

The dark matter fraction fDM and total slopes as de-
fined above are aperture dependent measurement be-
cause they are measured at 1re. This links stellar and
DM slopes indirectly and impairs an objective compar-

ison of their halos. For example, as stated above LTGs
tend to have higher re at the same mass, consequently,
for halos of LTGs the dark matter fraction is measured

at larger radii. Therefore, even if star-forming and qui-
escent dwarfs currently reside in identical halos, one
may measure very different slopes and dark matter frac-
tions. To eliminate these aperture-effect from the anal-

ysis, it may be preferable to analyze the dark matter
halos within a physically constant aperture, which of
course is only sensible if the galaxies are roughly in the

same mass regime. Therefore in the following section we
will again analyze the halo in the distance-independent
0.8kpc aperture we introduced in Sec. 5. This allows us

to assess the dark matter densities independent of the
stellar distribution they host and enable a more objec-
tive evaluation of the halos formation and subsequent
evolution.

6.2. What makes dE halos cored or cuspy?

The last sections showed that dEs tend to have shal-
lower total slopes than ‘ordinary’ ETGs, but still steeper

ones than star-forming dwarfs of the same total stellar
mass. To entangle whether these disparities are due to
differences in the DM distributions or differences in the

stellar distributions, we analyze the dynamically decom-
posed DM halos of our dE sample in an aperture that is
independent of the stellar extent. One of the goals of this
section is to explore whether the halos are initially uni-

versal but evolve over time due to their interactions with
baryons and environment (Sec. 6.2.1) or, conversely,
whether the initial condition of the DM halo determine

the morphological evolution of the stars/baryons while
the halo remains largely unchanged (Sec. 6.2.2).

6.2.1. Do the halos evolve due to internal feedback?
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As considered in Sec. 6.1.3 a plausible explanation for
the observed slopes are baryonic in- and out-flows (e.g.

by supernova feedback). In Sec. 5.2 we discussed that
the DM slopes of quiescent dwarf samples (dEs/dSphs)
show considerable diversity: some are relatively cored,
some are cuspier. Similarly, the periods of active star-

formation are expected to vary significantly across dif-
ferent dEs. Depending on their initial conditions, some
dEs were quenched shortly after halo formation while

others likely had a complex, prolonged SFH (see VW–I
or Seo & Ann 2023; Romero-Gómez et al. 2023a). If adi-
abatic expansion by supernova feedback is the predom-
inant factor in evolving the DM slopes of the dEs, we

expect to see a correlation of the halo properties with
their stellar population properties. Assuming the dEs
started out in an initially universal halo density, then

the DM halos that host young, metal-rich populations
(implying they were quenched recently) with a low α-
abundance6 should be more cored and less dense in the

center.
However, as evident in Fig. 8, we find only little to

no correlation of the volume averaged DM densities and
slopes with the stellar population parameters we derived

in VW–I 7. The dEs exhibit no correlation with metallic-
ity and α-abundance, and therefore an extended SFH.
Only the stellar age is tentatively anti-correlated with

the DM slope ηDM. Qualitatively this age–slope anti-
correlation is in agreement with the supernova feedback
scenario (younger dEs were quenched recently and pos-

sibly were able to form more stars before that), however,
the lack of correlation with the chemical enrichment pa-
rameters seems to indicate that adiabatic expansion by
supernovae feedback only plays a minor role for the DM

density distributions. Star formation seemingly does not
affect the average halo density and, if any, only very
moderately makes them more shallow over time. This

may not be a surprise because dEs are among the most
massive ‘dwarf’ galaxies which could make their halos
more resilient to internal feedback, however, even the
much smaller Milky Way dSphs exhibit no clear corre-

lation with SFH either (Hayashi et al. 2020). In conclu-
sion, if differences in SFH can not explain the diversity
of DM slopes that observed in quiescent dwarfs then it

6 A lower α-abundance (or equivalently the [Mg/Fe] we measured)
is a proxy for a prolonged SFH (e.g. Romero-Gómez et al.
2023b,a).

7 In VW–I we derived spatially resolved populations from spectra
that were binned in two annuli centered around r = 2.5′′ and
r = 7.5′′. Shown in Fig. 8 are the results for the central aperture
at r = 2.5′′ ≈ 0.2kpc. We omitted VCC 1910 because its SSP
properties are not very trustworthy due to the badly constrained
Hβ feature (cf. VW–I).

may be the case that the halos are not universal from
the start (or very early on).

6.2.2. Are halo profiles and shapes universal or a product
of the primordial conditions?

If the variance of DM slopes in dEs is not a product of
fluctuating degrees of internal feedback, then the halos
may be different ab initio (e.g. Ascasibar et al. 2004),
i.e. shortly after the gravitational halo collapse but be-

fore the majority of their stars has formed. While we
lack direct information about the halo structure of the
dEs at high redshifts (i.e. shortly after formation) we

can investigate correlations with properties that we ex-
pect to still hold information about the initial collapse
conditions.

We may assume that the current position the dEs in-
habit in Virgo is a reflection of their environment at
halo formation. Halos that formed in the cluster out-
skirts may have only recently fallen into the cluster as

they formed later, and/or formed in isolation within a
lower background density.

Similarly, if stellar orbits in dEs were only mildly

heated during their evolution (see VW–I), then the stel-
lar angular momentum measured today could still hold
information about the momentum of the primordial gas
disk the stars formed in. And this itself is a proxy for

the angular momentum8 of the dark matter halo (Fall &
Efstathiou 1980; Fall 1983; Romanowsky & Fall 2012).

In Fig. 9 we show the correlations of the DM with

the cluster environment and stellar angular momentum
that we obtained in VW–I. The environment is de-
scribed using a proxy parameter: the projected distance

to Virgo’s central cluster galaxy M87. Galaxies that
are in Virgo’s center (roughly where M87 is located)
are expected to have experienced longer and stronger
interactions with their environment. We either expect

them to have formed very early on and enter the cluster,
or they formed in-situ directly within the high density
background of the cluster’s halo. We describe the stellar

angular momentum using the approximate total specific
angular momentum j∗ = J∗/M∗ and the stellar angu-
lar momentum parameter λ within 0.5re (see VW–I for
details on the calculation).

Conversely to the stellar population constraints, we
find moderate correlations with the angular momentum
and strong correlations with the environment. Galaxies

8 While we measured most dEs to have near spherical halo shapes
(Sec. 5) qDM is likely not a good gauge for the non-radial motions
of DM particles in the primordial stage: We measure qDM ‘today’
(i.e. after baryonic feedback from AGNs or SF) and only within
the central one effective stellar radius (the halo is much more
extended and could change shape).
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Figure 8. Correlations of the DM halos with stellar population parameters. In the small boxes of each panel, we show the
corresponding Spearman correlation coefficient. Left panels: The average DM density ρDM (eq. 5) inside the sphere of radius
0.8kpc. Right panels: The average DM slope (eq. 4) inside the same sphere. Top to Bottom: The age of the stellar population.
The metallicity [Z/H]. A low abundance ratio [Mg/Fe] is an indicator for a prolonged star formation history (cf. VW–I).
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Figure 9. As Fig. 8 but for correlation of DM with cluster environment and stellar angular momentum. Top to Bottom: The
projected distance to the central cluster galaxy M87 ∆rsky,M87 (a proxy for the environment the galaxies inhabit, see VW–I).
The total stellar angular momentum j∗. The stellar angular momentum parameter λe/2 (see VW–I for details) within the half
the effective radius, which is not to be confused with the often used halo spin parameter (Peebles 1969).
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in the cluster center have about 1dex higher DM densi-
ties than galaxies in the Virgo outskirts. Furthermore

central dEs are super-NFW (η ∼ −1.4) whereas galax-
ies in the low-density outskirts of Virgo are almost as
cored (η ∼ −0.5) as what is found for LTGs (typically
η ∼ −0.3). Similarly, the halos of galaxies that have

low stellar angular momentum tend to be more dense
and cuspy9. Only the correlation of average DM density
with j∗ is relatively ambiguous, but this is mostly driven

by VCC 856 (green) and VCC 1261 (black)10

These angular momentum correlations may be under-
stood as an imprint of the joint gravitational collapse of
the DM and baryons. When a DM overdensity forms

it acquires baryons due to its gravitational pull, these
baryons condensate and infall towards the halo center,
as a response the halo undergoes contraction (Blumen-

thal et al. 1986; Gnedin et al. 2004). However, this
steepening of the halo profile during the formation phase
is counter-acted by processes that make the halo more

cored and less dense: i) Baryons may not be acquired
smoothly, particularly in the primordial gas-rich disks
the baryons fragment and form larger clumps (Immeli
et al. 2004; Aumer et al. 2010; Ceverino et al. 2010).

These clumps undergo dynamical friction and, in the
process, heat up and expand the DM halo (El-Zant et al.
2001; Del Popolo 2009; Inoue & Saitoh 2011). ii) DM

and baryons are not accreted radially but obtain angular
momentum from tidal torques (Peebles 1969). Depend-
ing on the strength of these torques, a halo and its pri-
mordial gas disk will have high or low angular momen-

tum. Halos with a higher angular momentum have been
linked to a flatter density profile, lower surface density
and larger extent/size in both, baryons and DM (e.g.

Ascasibar et al. 2004; Williams et al. 2004; Del Popolo
2009, 2012; Kim & Lee 2013).

These mechanisms may be the cause for the correla-

tions we found for the halo slopes with angular momen-
tum (Fig. 9). They could also explain the cuspier slopes

9 This correlation does not necessarily mean causation, in VW–I
we discussed the correlation of angular momentum with environ-
ment due to dynamical heating. Perhaps the halo profiles solely
depend on the environment, but the baryons were also dynam-
ically heated by interaction with the environment, resulting in
the observed correlation of angular momentum and DM.

10 The classification of VCC 856 as a dE may be debatable as it
could be a face-on spiral resulting in higher j∗ (cf. VW–I). VCC
1261 is actually known to have very little to no rotation within the
FoV in our data or in literature (Geha et al. 2003; van Zee et al.
2004; Chilingarian 2009; Ryś et al. 2013; Toloba et al. 2014, 2015;
Sybilska et al. 2017; Şen et al. 2018), but it is also the brightest
dE (j∗ increases scales magnitude) and has the largest effective
radius which could bias the coarse approximation of the total j∗
high compared to the other dEs (cf. VW–I).

(total+DM) and smaller effective radii of the dEs when
compared to LTGs (Fig. 7) since the angular momentum
of dEs is suppressed in comparison to LTGs (see VW–I).

Furthermore the reduced baryonic surface density that
comes along with the higher halo spin could be linked to
a higher observed dark matter fraction (Sharma et al.

2023a).
At first glance, this argument seems counter-intuitive

when combined with the observed environment correla-
tion. If the angular momentum grows via tidal torques

then one may expect that halos in the cluster center
have (on average) experienced more tidal interactions
with neighboring structures and, as such, have higher

angular momentum and shallower DM slopes (i.e. op-
posite to the observed ηDM−∆rsky,M87 correlation). But
perhaps the assumption that dwarfs in the cluster center
should have experienced more tidal torques is an over-

simplification and misses the complexity of the problem.
DM halos acquire angular momentum from tidal

torques mostly during the linear phase of gravitational

assembly (Porciani et al. 2002; López et al. 2019). Dur-
ing the comparatively short time of a halo’s assembly
epoch (i.e. at a higher redshift) the environmental cir-

cumstances may have been very different when com-
pared to the state of Virgo at z = 0. If the halos assem-
bled at very different formation epochs, their environ-
ment and, thus, their ability to acquire angular momen-

tum may change as well. Further complications arise be-
cause halos that assembled at early epochs are expected
to be denser on average due to a higher background den-

sity (see below) and because the geometry of the large-
scale surroundings is anisotropic (structures grow along
filaments) which affects the angular momentum acquisi-
tion of the galaxy halos (e.g. Codis et al. 2015). Perhaps

the duration of halo assembly also varies with the envi-
ronment and formation epoch. In a low density back-
ground DM halos may collapse on different timescales,

allowing the halos to gradually acquire angular momen-
tum.

In conclusion, while currently not obvious if and by

how much, we may presume that angular momentum
acquisition depends in a complex manner on a halo’s as-
sembly epoch and the geometry of its surroundings at
the time. As discussed in VW–I and Sec. 6.2.1, for the

dEs the derived stellar population ages are likely not a
good estimator of the halo’s formation epoch because
many of them probably had extended periods of star

formation. Therefore we rely on alternatives to gauge
when the dE halos have assembled. Such an alternative
is the average DM density we derived above: ρDM is
a proxy for the assembly epoch of a halo because it is
partly inherited from the average density of the Universe
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at the time of assembly, as shown with collapse models
and N-body simulations (Gunn & Gott 1972; Wechsler

et al. 2002; Springel et al. 2005; Gao et al. 2005). Con-
sequently, galaxies that have been assembled in an early
epoch where the average background density of the Uni-
verse was higher are also expected to have denser halos

than galaxies that formed during later stages of the Uni-
verse. While the proxy ρDM may be superimposed and
affected by the manifold of processes (e.g. feedback from

prolonged SFH, adiabatic contraction, etc.) the above
discussion suggests these effects play a secondary role.
They may affect the slopes to some degree, but they are

unlikely to be able to reduce the DM density by ∼ 1dex.
As evident from Fig. 9 the average density is most

strongly correlated with the environment, which is
very compatible with the assumption that the assem-

bly epoch (or more generally the average background
density at formation) is the primary determinant of
ρDM. Therefore dEs with a higher ρDM have formed in

a higher density background, e.g. ‘in-situ’ within Virgos
halos and/or when the Universe was young and more
dense in general which gave them enough time to sink

to Virgo center as seen today. Conversely, the dEs cur-
rently located in the outskirts have lower ρDM as they
have formed in a lower density background (in isolation)
and/or in a more recent epoch such that they only now

enter Virgo proper.
In this context, the correlations in Fig. 9 suggest that

dEs which have formed early (or in-situ) were less ef-

ficient in acquiring angular momentum than dEs that
have formed more recently or in isolation11.

Fig. 9 suggests that the average central DM density

and the central slope are both correlated with the en-
vironment. However, ρDM and ηDM are not entirely in-
dependent properties: a steeper central slope also en-
tails higher average central DM density and vice versa.

Therefore it is not obvious that the two environment
correlations with ρDM and ηDM are in fact two inde-
pendent correlations or just an imprint of one and the

same correlation combined with a correlated measure-
ment uncertainty. We explore this possibility in Fig. 10
which shows ρDM vs ηDM for the 25 best dynamical mod-

els for each dE (i.e. the number of models we used to
gauge the errors). As expected, the errors in ρDM and
ηDM are correlated: if the central slope scatters to steep
values, the average central density also often tends to

11 In terms of stellar population age VCC 200 (dark blue in Fig. 8)
has formed shortly after reionization (12 Gyrs) yet has moder-
ate ρDM, therefore we may suspect that the local background at
formation (in-situ or isolation) and not epoch plays the leading
role.
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Figure 10. Correlation uncertainty of the average enclosed
DM density ρDM with slope ηDM. Shown are the 25 best
dynamical models we found for each dE.

be higher. However, overall, the scatter for a given dE
is significantly smaller than the differences between the
dEs in our sample. In other words, the dynamical mea-

surements uncertainties are not enough to explain the
correlations we find in Fig. 8 and Fig. 9. And we con-
clude that the correlations of ρDM and ηDM are two in-

dependent and physically meaningful findings.

6.2.3. Has the environment disturbed the halos after
assembly?

In Sec. 6.2.1 we discussed the effects of internal feed-

back, but we only found tentative trends with SFH indi-
cators. The halos may become slightly more shallow if
SF is active for a long time, but this supernova feedback

scenario is unable to explain the larger differences in
ρDM and, consequently, the strong ρDM-∆rsky,M87 cor-
relation. Instead of a variability in primordial conditions
(Sec. 6.2.2) an alternative cause for the DM-environment

correlations could be tidal interactions with other cluster
members and interaction with the intra-cluster medium
that changed the halos after they assembled. This could

happen by regulating star-formation (and therefore in-
ternal feedback) or directly by tidally induced mass in-
and out-flows.

In principle, the ρDM-∆rsky,M87 and ηDM-∆rsky,M87

correlations could be a result of quenching via ram-
pressure stripping (RMS) due to it regulating SF. We

expect prolonged SFH to gradually make halos more
cored and reduce ρDM (Sec. 6.2.1), but RMS stops this
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process. If the dEs in Virgo’s outskirts were only re-
cently being quenched by RMS as they entered Virgo

they may have had more time between assembly and
quenching to hollow out their halo, producing the corre-
lations with ∆rsky,M87. In this scenario it is not the pro-
cess itself (RMS) that drives this but the ceasing of inter-

nal feedback 12. However, we found little evidence that
internal feedback is particularly important (Sec. 6.2.1).
Furthermore we may expect a significant fraction of dEs

to be quiescent even before entering Virgo for the first
time due to pre-processing in the groups they arrive in
(Bidaran et al. 2022; Romero-Gómez et al. 2024). There-
fore, if SFHs impacts the dE halos, we would expect

milder halo-environment correlations as those group dEs
would have retained their DM distribution.

Unlike ram-pressure stripping, we may suspect other

environment processes to affect the slopes of the dark
matter more directly. Examples include tidal harass-
ment by larger galaxies, and mergers with galaxies of

smaller or similar size. Galaxy harassment removes both
stars and dark matter from the potential well and dy-
namically heats their orbits. However, the dark matter
correlations (Fig. 9) stand in exact opposition to this

scenario, since tidal removal would be expected to re-
duce the dark matter density and flatten the halo.

Galaxy mergers violently change the mass structure

and orbits of dark and baryonic matter. Wet mergers
are unlikely in the cluster’s center, but could play a role
before the progenitors of the dEs enter Virgo by inducing

increased star-formation and rapid bursts. As is the
case with tidal harassment though, this effect would be
converse to our finding of more dense/cuspy halos in
Virgo’s center where the dry merger-rate is expected to

be higher 13.
Altogether the direct impact of the environment on

the dEs halos after assembly should be negligible, if any-

thing it affects the halos indirectly by regulating their
star formation and as a consequence internal feedback.

6.3. The formation of dEs - Are dEs transformed

remnants of spirals?

12 While RMS may displace dark matter (Smith et al. 2012) in the
initial quenching phase as the outflowing gas is being stripped, its
long-term impact on the slopes and halo density is probably low.
Since all dEs are quenched by now, RMS would have affected all
dEs equally and an environment correlation wouldn’t remain.

13 There are some simulations (for less massive dwarfs) that sug-
gest that dry major mergers can sometimes make halos cuspy
by importing additional dark matter to the center (Laporte &
Penarrubia 2015; Orkney et al. 2021) but this depends on ini-
tial conditions and would likely be a stochastic effect unable to
produce the strong environment correlations.

The synthesis of Sec. 6.2 is that the diversity in the
halo distribution of dEs are largely a result of the pri-
mordial conditions during halo assembly, but modified

(to a lesser degree) by the secular evolution caused by
the internal SF-feedback the galaxy was able to main-
tain before it was quenched. By comparing the halos of

different morphological types with one another, we may
be able to infer how dEs have arrived in their current
quiescent and homogeneous stellar state (cf. VW–I).

The prevalent formation scenario is that dEs are the

remnants of late-type progenitors that were, at some
point in their evolution, quenched by some internal or
external process (see discussion Sec. 1 and VW–I). How-

ever, the results discussed in Sec. 6.2 suggest that the
DM (especially ρDM) is unaffected by the quenching
mechanism itself and only mildly affected by feedback

from its SFH. Consequently, if dEs have formed from
late-type progenitors, we would expect their DM struc-
ture to be relatively robust and comparable to that of

spiral dwarfs that were able to avoid quenching. In
other words, differences in SFH may have made the LTG
dwarfs slightly more cored on average (see Sec. 5.2) but

we would expect ρDM to be similar as it is mostly deter-
mined by the background density during halo assembly.

Fig. 11 shows the average DM density of our dEs com-
pared to galaxies of various morphological types: ‘ordi-

nary’ ETGs in the Coma cluster (Thomas et al. 2009),
dSphs of the Milky Way (Burkert 2015), and the pre-
sumed progenitors of dEs: Sc-Im galaxies (Kormendy &

Freeman 2016). Since we now compare galaxies span-
ning a large range of magnitudes and effective radii, we
have opted to calculate ρDM within 1re instead of the

size-independent aperture we used in the last sections.
To compare the different samples consistently, we de-
cided to use the total, extinction-corrected luminosities
in the B band throughout.

Similar scaling relations of the average (central) DM
density with luminosity have been investigated before
and both, ETGs and LTGs, were found to have DM den-

sities that are anti-correlated with luminosity, though
the scaling relation for the ETG population is offset by
∼ +1dex suggesting an earlier halo assembly consistent
with their older stellar populations (cf. Gerhard et al.

2001; Thomas et al. 2009). In contrast, the quiescent
dSphs of the Milky Way fall on the extension of the
scaling relations of larger LTGs (Kormendy & Freeman

2016), i.e. they are compliant with the formation sce-
nario that they are the remnants of dIm galaxies. These
previous results are reproduced in Fig. 11 as indicated

by the dashed lines that are fitted scaling relation to the
ETG and Sc-Im galaxies. While the luminosity range of
our small dE sample is too narrow to establish a similar
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Figure 11. The B-band Luminosity vs average DM density within an aperture of 1 effective radius for different galaxy
morphologies. Colored with errorbars: Our dE sample. The effective radii we used to calculate ρDM are in the z-Band and
tabulated in VW–I. Red points: Large ETGs in the Coma cluster as measured by Thomas et al. (2009). Following Thomas
et al. (2009) we obtained their effective radii from Jorgensen et al. (1995); Mehlert et al. (2000) and assumed a Coma distance
of 100 Mpc. Yellow points: Sc-Im galaxies from Kormendy & Freeman (2016), this sample includes galaxies in different groups
within the local volume of 84 Mpc. Gray squares: The dSphs of the Milky Way from Burkert (2015). Dashed Lines: For the
LTG and ETG samples we also show fitted scaling relations in the same color. For the samples of Burkert (2015) and Kormendy
& Freeman (2016) we plot the core densities as they are stated in these studies instead of recalculating the averaged density
within the 1re aperture. This is a good approximation of ρDM because these studies all use halo models with a central core
(with minor differences in the model definitions) but find core radii that are considerably larger than one stellar effective radius.
Therefore, if we were to correct for the small radial decrease within 1re it would shift the density only slightly to lower values
which would not change our conclusions (see text). Between different studies we expect the systematic differences/uncertainties
in the measurement of re, and in the probed candidate halo models (Sec. 3) to have more of an impact. The dEs do not follow
the scaling relations suggested by large ETGs. While they are closer to the DM densities of Sc-Im galaxies, which (presumably)
are the progenitors of dEs, they are offset to higher densities. This could indicate that the progenitors of dEs have assembled
earlier and/or in a higher density background.
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scaling relation for dEs we can compare our galaxies to
the existing scaling relations.

The ρDM scatter within our dE sample stays within
1dex which is comparable to the scatter that was found
within the individual literature samples. As argued in
Sec. 6.2 we deem this scatter to be the genuine variety in

halo distributions with assembly environment, age and
feedback. The dEs follow neither the LTG nor the ETG
scaling relations well. The extension of ‘ordinary’ ETGs

would predict much higher densities for the dEs. The
comparison with the presumed progenitors of the dEs,
the Sc-Im galaxies, is less obvious. While they all fall

inside the distribution of LTGs of similar luminosity,
the dE sample average is offset higher by ∼ +0.5dex.
This 0.5dex offset is based on a comparison of LTGs and
ETGs at the same luminosity LB . But this does not ac-

count for the fact that LTGs will also be offset towards
lower stellar mass-to-light ratios due to their younger
populations. Consequently, if we were to compare the

LTGs at the same stellar mass, this offset between dEs
and Sc-Im would only increase further. Therefore a com-
parison at the same stellar mass would increase the fol-
lowing conclusions, however, considering the luminosity

is a more straight-forward measure and not depend on
correct mass-to-light ratios, we decided to compare ver-
sus the luminosity in Fig. 11.

Generally speaking, we expect the position of a galaxy
in the ρDM−LB-space to be determined by the assembly
conditions (i.e. formation epoch, environment, angular

momentum, ...) and the subsequent evolution (e.g. SF-
feedback, tidal interaction, ...). Since baryons and dark
matter are usually lost/expelled by the latter (e.g. Dekel
& Silk 1986) such evolutionary processes shift galaxies

diagonally to lower ρDM and LB , i.e. it could move dEs
closer to the LTG scaling relations. However, our results
suggest that, at least in the mass regime of our dEs, ρDM

is only marginally affected by the latter (Sec. 6.2) despite
the fact that some of the dEs seemed to have formed
stars actively over a very prolonged period. For the dEs

to fall onto LTG relations much more feedback would
be needed and it is not obvious why Sc-Im galaxies in
the same luminosity/mass regime should not be affected

similarly to the dEs.
The stripping scenario of dEs can, in principle, ‘fake’

higher average DM densities for dEs within 1re as we
may expect it to change the stellar distribution (and in-

directly the DM distribution) and thus affect the aper-
ture we measure ρDM in. To exclude this possibility, we
can compare the DM density in the very center of the

halo ρ0 = ρDM (r = 0). This is because we expect the
central density to be less susceptible to external influ-
ences and systematic aperture differences between the

LTG and dEs galaxy types. As Fig. 12 shows the off-
set of the dEs becomes even larger when comparing the
central DM densities which is no surprise because com-

paratively the Sc-Im have relatively cored halo profiles.
This confirms external influences like stripping are not
able to explain the higher DM density of the dEs. There-

fore it is not obvious how an Sc-Im galaxy with a lower
ρ0 could be transformed to a dE with a higher ρ0.

Considering all of the above reasons, we suspect the

offset between Sc-Im and dE galaxies is a genuine differ-
ence in their DM density. In that case, the offset sug-
gests two physical (and likely correlated) reasons: i) dEs
have assembled in a higher density background, because

they were formed at a higher redshift and/or in-situ in a
cluster’s dense environment. ii) Internal feedback (Su-
pernovae, AGNs, etc.) was different (stronger) in the

LTGs we see today which has shifted them away from
the dEs14. If LTGs were progenitors of dEs this would
imply that the strength of internal feedback must have

increased the later a galaxy has assembled, which poses
the question of why LTGs seen today (which reside in
lower density halos) were not self-quenched yet15.

6.4. Distinct formation channels of today’s quiescent

and late-type dwarfs.

In either case, i) or ii), the Sc-Im galaxies observed
today are not directly comparable to the supposed pro-
genitors of dEs because ρDM can not be increased after
assembly. Many theories of galaxy evolution attempt to
explain the links/similarities between late-type dwarfs

and dEs using processes (e.g. RMS stripping or SF feed-
back) that transform z = 0 late-types into z = 0 dEs.
But as already stated by Skillman & Bender (1995), per-
haps this is ”asking the wrong question” as such theories

assumes that the progenitors of dEs are comparable to
today’s Sc-Im galaxies. Often this makes these theories
struggle to explain the co-existence of dEs and Sc-Im

within the local Universe. Combined with the findings
of VW–I, which suggest that dEs have a suppressed stel-
lar angular momentum compared to z = 0 LTGs in the
same mass regime, we hypothesize two distinct forma-

tion channels for dEs and late-type dwarfs observed in
the z = 0 Universe.

14 The direct impact of external/tidal effects must also be negligible
because it would have affected the dEs more than the more iso-
lated LTGs (Dressler 1980). This is congruent with our findings
in Sec. 6.2.3.

15 If dwarfs in this luminosity regime are generally not self-
quenched, the dEs we observe must have been quenched solely
by the environment (cf. VW–I) but this is challenged by the ex-
istence of isolated dEs in the field (e.g. Janz et al. 2017; Paudel
et al. 2023).
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Figure 12. As Fig. 11 but for the central DM density ρ0 (i.e. the maximum of the DM density). For the dEs ρ0 is measured
as the average density within the central 100pc, for the massive ETGs (Thomas et al. 2009) within 1kpc. The dSphs and Sc-Im
galaxies remain unchanged relative to Fig. 11 because in both figures we show the parameter ρ0 = ρ(r = 0) of the cored halo
profiles that these studies employ to model the halos.

The progenitors of present-day dEs assembled at a
higher redshift within a much denser environment in

general. In these extreme conditions, angular momen-
tum acquisition may have been suppressed and/or star
formation was very different from today (e.g. higher

efficiency and very bursty because of the higher avg.
density). The former could have made the total density
slopes (Fig. 7) steeper, as baryonic contraction is more
efficient. The latter could have led to some of the dEs

being self-quenched after a single rapid SF burst (e.g.
VCC 200) while others were just massive and isolated
enough to be able to re-accrete some of the expelled gas

(rejuvenating SF) until they were eventually quenched
when they first entered the cluster (see VW–I). Addi-
tionally, under the extreme early assembly conditions

we may expect AGN activity to become more important
than in dwarfs that formed recently. AGNs could quench

galaxies, affect star-formation and affect the dark matter
dynamically (e.g. Koudmani et al. 2022; Arjona-Galvez
et al. 2024).

Conversely, the z = 0 late-type dwarfs have all as-
sembled more recently in an epoch where halo assembly
happens under different circumstances and SF is pro-
longed but less bursty (avoiding self-quenching). Their

lower average DM density makes them more suscepti-
ble to external forces like harassment, which could ex-
plain the lack of dwarf late-types in the cluster centers.

These distinct formation channels of today’s quiescent
and star-forming dwarfs could also resolve why the lat-
ter have higher DM fractions (Sec. 7) than the dEs. The
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first JWST observations of high-redshift dwarfs (z ≳ 6,
i.e. the progenitors of dEs in this scenario) and corre-

sponding simulations (de Graaff et al. 2023, 2024) sug-
gest that galaxies in this mass-regime have initially high
dark matter fractions fDM ∼ 0.8 but evolve to fDM ∼ 0.4
at cosmic noon as they form more and more stars. Per-

haps the star-forming galaxies at z = 0 are also still
within a dark matter dominated phase, as they are still
in the process of converting their gas into stars.

Still, there are caveats to the conclusions drawn from
Fig. 11: i) In our work, we have probed halo models
that are very flexible (Sec. 3) allowing for a variety of
profiles and shapes. Many studies use more restricting

assumption about the halo profiles (e.g. spherical NFW-
or cored profiles) which could bias ρDM. We plan to ex-
plore the effects of model choice in LT. ii) ρDM(< re)

is not an aperture independent quantity. At the same
stellar mass the effective radii of LTGs may be system-
atically larger than that of a dEs with the same stellar

mass. Then, if we assume an LTG and a dE sit in an
identical halo one measures a smaller ρDM for the for-
mer. We estimate we would have to increase the effective

radii (i.e. the aperture) of our dEs by a factor of ∼ 2.1
without changing the halo densities in order for them to
fall nicely on the LTG scaling relation. iii) We can not
easily distinguish between a difference in environment

and assembly epoch yet compare galaxies of different
groups and clusters, e.g. one cluster/group could have
formed later than another.

Virgo is believed to be a dynamically young cluster.
It has a loose, cross-shaped structure with several in-
tact sub-clumps (Binggeli et al. 1987) and an irregu-

lar distribution of its intra-cluster medium (Böhringer
et al. 1994). Furthermore Virgo’s members exhibit a
non-gaussian, unrelaxed velocity distribution (Conselice
et al. 2001) and a surprisingly high fraction of LTGs for

a cluster (Sandage & Binggeli 1984). The strong ρDM-
∆rsky,M87 correlation is also telling about the dynamical
state of the Virgo cluster. As a cluster relaxes and ag-

gregates nearby galaxy groups, these infalling groups are
expected to lose most of their smaller members within a
few Gyrs to the larger cluster body (cf. Choque-Challapa

et al. 2019). This process would gradually break down
any ρDM-∆rsky,M87 correlation as the smaller members
mix with the cluster. The fact that the ρDM-∆rsky,M87

correlation is still this strong supports this view of Virgo

as a dynamically young cluster.

7. SUMMARY AND CONCLUSIONS

This work presents the first dynamical analysis of a

dE sample (log10(M∗/M⊙) ∈ [8.5, 9.5]) which employs
orbit-superposition modeling and resolved, higher-order

LOSVD information to constrain the detailed structure
of their DM halos. One of the advantages of this ap-

proach is that it does not impose a priori restrictions on
the stellar anisotropy structure, allowing us to lift the
mass-anisotropy degeneracy and measure the halo pro-
files and shapes unbiased. The models incorporate stel-

lar mass-to-light ratio gradients (i.e. allowing for spatial
variances of stellar populations) and explore a large va-
riety of possible halo profiles. For the first time, we also

constrain the flattening of dark matter in dEs. We in-
vestigate whether the observational constraints are in
tension with the standard ΛCDM paradigm (cusp-core

problem and sphericity) and, if not, what they imply
regarding halo assembly, star formation, environment
feedback, and the progenitors of dEs. Our main conclu-
sions are:

dE halos are only mildly cored: We do not find
evidence for a strong tension of the DM slopes of dEs
with ΛCDM predictions. The average DM slope of our

sample is ∼ −0.9. While the dEs exhibit some diversity
with slopes ∈ [−1.4,−0.5] this is still within the range
of uncertainties in baryonic physics. These observations
are formally inconsistent with DMO ΛCDM simulations,

but we do not necessarily need to invoke exotic physics
as simulations that include baryonic feedback appropri-
ately may be able to explain the diversity and modest

preference to cored profiles.
Halos are very round: The tension with ΛCDM

may be more troubling in terms of the sphericity of ha-

los. Similar to spherical shape constraints found for the
Milky Way’s halo, the dark matter of dEs is distributed
nearly spherical (qDM ∼ 0.9 − 1.0) independently of the
shape of the stellar distribution. While the inclusion

of baryonic feedback in ΛCDM simulations is known to
make halos more spherical, easing some of the tension,
the constraints we measured still exceed expectation val-

ues from simulations. Still, unlike slope measurements,
few constraints on the flattening exist, and the field is
still in its infancy. More galaxies will need to be inves-

tigated.
Is baryonic feedback enough to explain the re-

maining tension? The jury is still out. It may be
surprising that the dE halos seem more in tension in

terms of their sphericity than they are in terms of slopes,
considering the same baryonic mechanisms are used to
explain both: halos becoming more spherical and cored.

Simulations (ΛCDM and more exotic physics) often at-
tempt and are successful in explaining individual aspects
in isolation (e.g. why are halos cored). The challenge
remains if simulations can explain multiple aspects at

once. Only then we may hope to narrow down the under-
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lying mechanisms if we consider all/more observational
constraints simultaneously.

dE centers are dominated by luminous matter:
We find upper limits for their central supermassive black
hole mass (M• ≲ 106M⊙) and dark matter fractions
within one stellar effective radii that are moderate. The

bulk of dEs have fDM ∈ [0.2, 0.5] which is slightly more
than what is typical for massive ETGs but considerably
less than what is found for most LTGs.

Total density slopes are shallower than those of
massive ETGs but still steeper than those of LTG
dwarfs: The slopes of the total density (baryons+dark
matter) in dEs are relatively shallow with γ ∼ −1.5.

This places them on the extended anti-correlation found
for stellar mass and total slope of ‘ordinary’ ETGs with
M⊙ ≲ 5 · 1010M⊙. Therefore dEs are shallower than

‘ordinary’ ETGs who have approximately isothermal
slopes, but still steeper than LTGs of the same total
stellar mass.

Halo densities and profiles are strongly cor-
related with environment, and moderately with
stellar angular momentum: In the cluster center the
DM halos are denser and cuspier than an NFW profile.

Conversely, in Virgo’s outskirts, the average halo den-
sity is reduced by ∼ 1dex and the profiles are moder-
ately cored (∼ −0.5). Similarly, dEs with lower stellar

angular momentum (and presumably low DM angular
momentum) have cuspier halos.
Halos of dEs evolve only mildly, and are not

universal: We find these correlations are difficult to

be explained by tidal interactions and quenching mech-
anisms like supernova feedback. While tidal interactions
and ram-pressure stripping are likely important quench-

ing mechanisms (cf. VW–I), they have little effect on the
halos. Tidal interactions with the environment are in-
congruent with the observed correlations. Internal feed-

back by supernovae winds is a second order effect that
may change the slopes of those dEs that have an ex-
tended SFH, but even then only moderately. In conclu-
sion, the dE halos have evolved only mildly after their

gravitational assembly.
This lack of DM evolution due to internal or

external feedback, the diversity in measured DM

slopes [−1.4,−0.5], and the correlations with environ-
ment/angular momentum suggest that halo profiles do
not have a universal shape after assembly. Depending on

the conditions during their halo formation epoch (envi-
ronment, angular momentum, baryon clumpiness, AGN
activity, etc.) some halos will turn out to be more
cuspy than NFW if baryonic contraction prevails, or

more cored if counter-acting process (e.g. dynamical
friction, tidal torques) dominate.

A different formation? dEs may have assem-
bled at higher redshift in more extreme condi-
tions than local star-forming dwarfs: Our results

suggest that the dE halos in Virgo have formed at a
higher redshift than LTG dwarfs of similar mass. During
this early assembly epoch star-formation, AGN activity,
and environment/formation conditions may have been

much more rapid and extreme than for the LTGs that
formed more recently. This may have led to additional
mechanisms that were able to quench some of the dEs

shortly after formation. Considering these extreme early
stages, local spirals which seemed to have formed in a
much more quiescent epoch of the Universe are not nec-

essarily representative of the star-forming progenitors of
dEs.

Our stellar population analysis in VW–I has left open
two plausible scenarios: i) dEs have been continuously

produced throughout Virgo’s history, but the IMF varies
with the formation age. ii) dEs have been formed very
early in Virgo’s history but depending on their mass and

environment some of them were quenched early while
others have been able to hold onto (or re-accrete) their
gas, thus, experiencing a more complex SFH. The results
presented here make scenario ii) more likely. This means

that if the IMF varies, then it probably varies less than
implied by taking the stellar masses of single-stellar-
population models at face value (see VW–I). However,

whether an early formation epoch is enough to make the
dEs’ dynamical stellar masses compatible with a Kroupa
or even sub-Kroupa IMF remains to be checked with

more sophisticated stellar population models.
Future observational constraints for local LTGs could

aid in further narrowing down the formation scenarios.
For example, we expect that assembly at higher redshift

resulted in rounder halos (Chua et al. 2019) than at
z = 0. While our dEs are indeed surprisingly round,
not enough constraints on the flattening of local LTGs

dwarfs exist to compare the dEs to.
Our comprehension of small-scale cosmological prob-

lems like the cusp-core problem is inextricably linked to

our understanding of galaxy formation and evolution.
Galaxies are unique objects with their own history of
assembly and evolution, resulting in different DM dis-
tributions. Our results suggest that there are consider-

able differences between dEs and comparable late-type
dwarfs in the local Universe, but many more galaxy
classes exist which may even be more divergent. Ultra-

diffuse galaxies, for example, are also quiescent and close
in magnitude to dEs, but they are very extended, have
a lower surface brightness, and some of them appear
to have essentially no dark matter while others have

much higher dark matter fractions than the dEs (e.g.
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van Dokkum et al. 2016; Danieli et al. 2019; Bar et al.
2022; Zöller et al. 2023). Precise and accurate dynami-

cal decompositions (App. A) of dark matter and baryons
for a manifold of different galaxy types is needed, and
a consistent comparison between them (e.g. in physical
units instead of aperture-dependent) will be essential to

investigate small-scale cosmology in the future.
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APPENDIX

A. HOW WELL CAN WE RECOVER DARK
COMPONENTS? - A STRESS TEST

The primary goal of this paper is to investigate the

shapes, slopes, and DM fractions of the halos of dEs by
use of dynamical orbit modeling. This requires a reli-
able decomposition of the dark components (black hole

and DM halo) from the stars. As preparation for this
study, we stress-tested our observational and modeling
setup on an N-body simulation. The goal of this test

was three-fold: i) Explore the general ability of the or-
bit models and our observational setup to constrain the
mass and kinematic distribution of the dE sample. ii) In-
vestigate how reliable one can decompose the individual

matter components. iii) Test whether we can constrain
the flattening of dark matter halos and gauge how much
the assumption of axisymmetry could bias our results.

In Sec. A.1 we explain how we generated the mock
observations for our modeling, then we continue with a
general evaluation of the mass recovery and decompo-

sition quality (Sec. A.2). We also gauge how much a
possible triaxiality of the galaxies could distort the re-
sults derived with axisymmetric modeling, specifically
the flattening of the dark matter halo (Sec. A.3).

We expect two circumstances to negatively affect the
dark matter recovery: i) If the local dark matter con-
tribution to the total mass is negligible, the recovered

halo distribution is poorly constrained in these regions
because it does change the gravitational potential sig-
nificantly. ii) If the dark matter follows the exact same

distribution as the luminous mass distribution (a mass-
follows-light distribution) the two components are de-
generate since it’s impossible to dynamically differen-

tiate between dark stellar remnants and genuine dark
matter. From an orbit’s perspective, one component can
be absorbed by the other (e.g. by up-scaling the stel-
lar mass-to-light ratio) without changing the combined

potential.
Point i) will be explored in detail in LT but we may

account for it for now by trusting the dark matter re-

covery in regions where the models suggest a significant
dark matter fraction more than where it doesn’t. While
a reliable decomposition is completely impossible in the

extreme case of point ii) we stress tested our modeling
procedure by applying it on an N-body simulation that
represents a tough case where at least some of the dark
matter distribution follows the luminous matter rather

closely within the center of the simulated galaxy. At
larger radii the two mass components start to differ in
their spatial distributions and amount, which, in princi-

ple, should allow the models to break the degeneracy.

A.1. The simulation setup

As a test for our modeling routines, we use the re-

sults from an idealized N-body simulation of merging
low mass galaxies similar to Partmann et al. (2023),
taking into account the gravitational dynamics of dark

matter, stars and black holes.
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The N-body simulations are run with the Ketju code
(Rantala et al. 2017, 2018; Mannerkoski et al. 2021),

a combination of the Gadget-3 tree gravity solver with
accurate regularized integration (Springel et al. 2005).
This method allows resolving the unsoftened forces be-
tween the star/DM components and black holes for an

accurate treatment of dynamical friction and scattering
of DM and stars by black hole binaries or multiples. The
coalescence of black holes by gravitational wave emission

is followed with Post-Newtonian corrections up to order
3.5.

The simulations follow the merger of five small galax-
ies (each with DM mass 4 · 108M⊙ and stellar mass

4 · 107M⊙) with a five times more massive central halo
(DM mass 2 · 109M⊙ and stellar mass 2 · 108M⊙). Each
of the galaxies consists of a DM halo (Hernquist pro-

file with r1/2 = 7.1kpc), a stellar component (Hern-
quist profile with r1/2 = 1kpc) and a black hole. By
construction, the six galaxies merge within the first

few Gyr and result in a galaxy with a total mass of
Mtot = 4.4 · 109M⊙, where MDM = 4 · 109 M⊙ are con-
tributed by dark matter and Mstar = 4 · 108 M⊙ by the
stellar component. In the state we ‘observe’ the sys-

tem, the central galaxy has experienced several mergers
in its past (7-10 Gyrs ago) and is now de facto in an
equilibrium state again.

Each of the merger progenitors carries a black hole.
While Partmann et al. (2023) explores various black hole
masses and merger orbits, for this study we choose an
extreme case with a central black hole mass of 107 M⊙
and 2 · 106 M⊙ black holes in the five infalling smaller
galaxies. For reasons explained later, highly overmassive
black holes can produce density cores with similar dark

matter and stellar densities in the galactic center. We
choose this scenario because it is expected to be the most
challenging for our modeling pipeline. The extent and

mass are typical for the dEs we observed in our Virgo
sample. However, beyond that we do not expect the N-
body simulation to be a very physical representation of
the circumstances in real dEs, i.e. we do not expect a

mass-follows-light distribution in dEs nor that they have
experienced several dry mergers with very massive black
holes.

During the merger process, most black holes sink to
the center of the central halo where they have complex
evolution paths that result in the formation of black
hole binaries or triples, the dynamical ejection of black

holes or black hole mergers. In the simulation consid-
ered here, three among the five black holes that were
brought into the central galaxy with the infalling smaller

galaxies were ejected by dynamical interactions. As a
result, black holes with a total mass of 1.4 · 107M⊙ re-

main in the center of the central galaxy. The system
of black holes in the center has a sphere of influence
of rSOI∼0.3kpc, where rSOI is defined as the radius at

which M∗(r < rSOI) = M•. This M• is barely resolved
as rSOI is close to the spatial resolution (∼0.25kpc) of
the observational setup of the real dE sample that we

adopted for this simulated test. As such we do not nec-
essarily expect to find strong constraints towards lower
black hole mass and possibly only an upper limit for M•.

In massive early type galaxies “black hole binary

scouring”, i.e. the ejection of stars from the galactic
center through slingshots with a black hole binary is an
important process that can convert an initially cuspy

stellar density profile into a profile with a flat density
core (e.g. Kormendy & Bender 2009; Kormendy et al.
2009; Kormendy & Bender 2013; Thomas et al. 2014;
Rantala et al. 2018; Mehrgan et al. 2019). As discussed

in Partmann et al. (2023), even in low mass galaxies the
combined effect of black hole sinking through dynami-
cal friction, black hole binary scouring and black holes

ejections can lead to the formation of large stellar and
dark matter density cores if the black hole masses are
large enough. For the large black hole mass used here,

this effect leads to the formation of a large core with a
size rc ∼ 0.4kpc (or about 5′′in our mock setup) and
an assimilation of the central dark and baryonic mat-
ter distributions where both matter components follow

approximately the same density distribution with a ra-
tio of ∼ 0.5 of dark and baryonic matter. This means
the two components are approximately indistinguishable

within the core. Only at larger radii where the scouring
had less impact on the mass distribution the two mat-
ter components begin to diverge with the dark matter
starting to dominate as the stellar density declines more

steeply than the dark matter. The mass-to-light ratio
of the single stellar population is a spatially constant
Υ∗ = 1.0, which means the total dynamical mass-to-

light ratio is Υdyn ∼ 2 within the scouring core. Υdyn is
reaching ∼ 5 (or a dark matter fraction of ∼ 70%) near
the edge of the mock field of fiew (FoV) at rFoV = 20′′.

Since the galaxy in the N-body simulation is a re-
sults of several mergers, the density distribution is not
expected to follow a particular symmetry, hence the ax-
isymmetric orbit models we employ are unlikely to be a

perfect fit. If we approximate the particle distributions
using a triaxial ellipsoid we find that, both the baryonic
and dark matter component, follow a very similar shape

profile with both components being triaxial and oblate
outside the core. However, within the core the shape of
both mass components becomes near spherical. Within
the core the particle distribution is also more complex

and neither an axisymmetric nor a triaxial approxima-
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Figure 13. The shape of the N-body simulation’s density
distribution approximated by an ellipsoid. Top: p = b/a,
Bottom: q = c/a where a is the semi-major axis, b the semi-
intermediate axis, and c the semi-minor axis of the triaxial
ellipsoid. The Orange Dots indicate the triaxial axis ratios of
the stellar particle distribution, the Orange Line shows the
corresponding axisymmetric approximation, which is also the
edge-on ‘pseudo’-deprojection that we used for the dynami-
cal modeling (but scaled by a variable mass-to-light ratio of
the stellar population). The blue diamonds show the triax-
ial ratios of the dark matter particle distribution, it follows
the shape of the stellar particles very closely even outside
the scouring core. The blue Line shows the spatially con-
stant Dark matter flattening qDM of the best axisymmetric
(oblate) orbit model we found. We sampled the axisym-
metric flattening within qDM ∈ [0.7, 0.8, 0.9, 1.0]. Similar to
Fig. 16 we mark regions smaller than the central spatial res-
olution and outside the FoV in red.

tion is ideal. We plot the triaxial axis ratios p and q
versus radius for both matter components in Fig. 13.

To obtain realistic mock observations of the N-body
simulation that emulates our observational setup used
for the real dEs we place the simulated galaxy at the

average distance of the Virgo cluster d = 16.5 Mpc and
projected its stellar kinematics along its intermediate
axis into a realistic Voronoi grid with a FoV of 20′′.
The number of bins and their resolution are typical for
one of the higher S/N observations we obtained in the
real sample. The central Voronoi bins are typically 3′′

large. This means our spatial resolution is just below

the sphere of influence rSOI ∼ 4′′ and the size of the
scoured core ∼ 5′′. The resulting mock observations are

shown on the left side of Fig. 14. These kinematic maps
are illustrated by a truncated Gauss–Hermite series up
to h4. However, the input for the dynamical models
are actually the fully non-parametric descriptions of the

LOSVDs as is the case for the dE modeling. The kine-
matic maps of the simulation show some interesting fea-
tures that are usually not observed in real galaxies: i)

A positive v-h3 correlation ii) and a negative h4 within
the scoured core. This discrepancy may tell us some-
thing about the significance of black hole scouring in

real galaxies and assumptions in N-body simulations,
however, an investigation is beyond the scope of this
paper.

Like we did with the dE sample we use the search

algorithm NOMAD and probe a total of approximately
5000 orbit models using the halo parametrization we also
used for the dEs (see Sec. 3). However, we only probed

a single deprojection (or inclination) for the stellar com-
ponent. As mentioned above the N-body simulation is
observed along its intermediate axis, therefore this de-
projection is assumed to be edge-on. The right hand

side panels in Fig. 14 illustrate the projected kinematics
of the single best orbit model we were able to find to
represent the simulated mock observation shown on the

left side of Fig. 14. As is the case for the modeling of the
Virgo dEs we opted to model the entire FoV with the or-
bit models, i.e. differences in individual quadrants can

not be reflected as easily by the axisymmetric model.
Nevertheless, the orbit model is able to reproduce all
important features of the mock observations well, giving
confidence that the orbit setup (e.g. number of orbits)

and mass model are adequate and flexible enough to em-
ulate the mass and kinematic of the N-body simulation.

A.2. Mass recovery and decomposition

In Fig. 15 we show the ∆AICp-curves for each of the

nuisance parameters that generate the mass model. The
stellar mass-to-light ratio Υ∗ = 1.0 is recovered by the
single best orbit model. The next best orbit models

AICp tend to have slightly larger Υ∗ but the scatter is
in the single digit percentage range. If one was to apply
the error estimation approach we employ for the dEs

sample, i.e. by calculating the spread of the 25 best orbit
models we estimate an uncertainty in Υ∗ of 6%. This
implies the stellar mass component is well decomposed
by the dynamical modeling even when the dark matter

is distributed similarly as the stars over some regions of
the galaxy. As long as there is a detectable difference
between stars and DM in some parts of the FoV (in

this case between 10′′ to 20′′) the models are able to
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Figure 14. Left: The mock observations for the triaxial
N-body simulation. Right: The corresponding best axisym-
metric model we found using our orbit modeling setup. Both,
mock and model LOSVDs are characterized here by a Gauss–
Hermite series truncated at h4, higher order deviations in the
actual binned LOSVDs (that are still being modelled dynam-
ically) are not shown.

‘recognize’ that a stellar component that is simply scaled

up or down is an insufficient description.
The black hole mass of the best model on the other

hand is underestimated with the best model only having

0.7·107 instead of the actual SMBH mass of 1.4·107. The
∆AICp-curves for the black hole are very a-symmetric
indicating that models with essentially no black hole and
models with M• ≤ 107 only show very little difference.

Without prior knowledge one would likely conclude an
upper limit at M•∼1 · 107 due to the sphere of influ-
ence of the best-fitting models being close to the central

resolution limit.
The parameters of the Zhao-profile suggest a scale ra-

dius rs∼0.5kpc, i.e. the profile transitions its slope in
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Figure 15. The minimum subtracted AICp-constraints for
the axisymmetric orbit models of the N-body simulation. In
total we calculated in the order of ∼ 5 · 103 orbit models.
The red dots indicate the parameters of the best few models
(ranked in AICp). The vertical dashed lines indicate the true
stellar mass-to-light ratio and black hole mass.

the vicinity of the scouring core radius. However, mod-
els with a lower or larger scale radius (e.g. 0.3kpc and

1kpc) are not much worse (∆AICp ≲ 5). Only for the
extreme values AICp begins to rise more rapidly. We
find similarly broad AICp valleys for the inner and outer

slopes γin and γout of the Zhao parametrization.
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Such broad AICp valleys in the parameters are not
surprising (particularly in the more correlated parame-

ters) and possibly even desirable if one wants to mini-
mize biases because of erroneous halo parametrization.
The dynamical models are sensitive to the actual mass
distribution that is described by the above set of pa-

rameters and not the specific set of parameters or the
halo parametrization itself. Therefore one should inves-
tigate how well the actual mass distributions are recov-

ered to gauge how well the recovery worked. This is
illustrated in Fig. 16 where we plot the recovered mass
and anisotropy profiles of the best axisymmetric orbit
model and the actual N-body simulation. We color ra-

dial regions that are within our spatial resolution or out-
side the FoV in red to highlight the regions where we ex-
pect the data do not impose strong constraints. We also

plot the next few best AICp model we found as dashed
lines and indicate their corresponding halo parameters in
Fig. 15. Even though the nominal values of the strongly

inter-correlated shape parameters (γin,γout,rs) can differ
significantly the actual mass distributions they describe
are very similar. Again we conclude the parameters that
‘generate’ the halo density should be treated as nuisance

parameters.
We find that the total enclosed mass Mtot (< r) is the

property constrained the best as it’s linked very directly

to the gravitational potential Φ which itself determines
all the orbits that constitute the orbit-superposition
model. In other words, the model selection is, first and

foremost, a predictor of the gravitational potential and
thus the total mass (regardless of composition). One
also sees that the next best few AICp models have very
similar enclosed masses to the single best AICp model,

though they are generally slightly further away from
the true N-body mass than the single best AICp model
which suggests that AICp is a consistent predictor of the

enclosed mass.
However, when plotting Mtot (< r) as a function of ra-

dius and comparing it to the actual enclosed mass of the
simulation we also observe that the systematic deviation

between the two varies with the radius it is measured at:
Within the unresolved center (inner red region) and out-
side the FoV (outer red region) the differences between

the ‘truth’ and the model predictions start to flare-up
and diverge. The next best AICp models also seem to
scatter a-symmetrically in these regions: Preferably un-

derestimating Mtot (< r) in the center and overestimat-
ing it at large radii outside the FoV (the latter was also
noted in Gerhard et al. 1998 and Thomas et al. 2005). It
seems the exact matter distribution far inside the spatial

resolution (or central Voronoi elements) and far outside
the FoV seems to be constrained less by the kinematic
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Figure 16. Mass and and anisotropy structure (spherically
averaged) of the simulation (dots) and the recovered profiles
of the best axisymmetric orbit model we were able to find
(solid line). The dashed lines show the next best models
when ranking all sampled models by their AICp, their nui-
sance parameters are indicated by the red dots in Fig. 15.
The inner red region indicates the typical size of our reso-
lution limit. The outer red region marks areas outside the
FoV. Panel a) the total enclosed mass within radius r, b) the
local DM density, c) the (cumulated) DM fraction (including
the black hole), d) the anisotropy β of the stars.
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data, as several models can be constructed that differ
significantly in these regions but produce essentially the

same model LOSVDs (Fig. 14) and AICp.
Considering Mtot (< r) is fairly well constrained

within the radial range covered by the data and the
fact that the models found the correct stellar mass-to-

light ratios Υ∗ = 1 (cf. Fig. 15) it is not surprising
that the recovery of the DM distribution (second panel)
also performs similarly well. Even though the underly-

ing dark matter distribution is more complex than the
Zhao-model and quasi-degenerate with the stellar mat-
ter within 5′′ due to the mass-follows-light core, both,

the dark matter density itself and its local slope ∂ρDM

∂r is
recovered well within the white regions where Mtot (< r)
is constraint.

The dark matter inside the unresolved center does not

become uncertain in a random fashion: Within the un-
resolved center it systematically scatters above the true
cored profile of the simulation. This can be explained by

a degeneracy of the two dark components of the model:
The dark matter halo and the central black hole. As
seen in Fig. 15 we find a sharp upper limit for the black

hole mass of ∼ 1 · 107 but only very little difference in
AICp for models with a lower black hole mass.

This underestimation of the black hole is comple-
mented by an overestimation of the central DM den-

sity with the sphere of influence. Both these errors
cancel each other if we examine the (enclosed) fraction
fDark of the combined dark components (i.e. DM halo

+ black hole) versus the total enclosed mass (third panel
in Fig. 16). Even in the very center the best orbit model
traces the true dark fraction of the simulation well, sug-
gesting that the separation of dark and luminous mat-

ter actually works well, merely the separation of the
two dark components proves difficult. A model with an
underestimated black hole mass can essentially achieve

the same LOSVD predictions by assigning the ‘missing’
mass to its central dark matter halo. On the other hand,
models with a much larger black hole than the true mass

M• = 1.4 · 107M⊙ are effectively ruled out because the
halo can only add additional mass in the center but not
subtract it.

We do not believe that previous black hole measure-

ments in real galaxies were affected significantly by such
a degeneracy, at least as long as their sphere of influ-
ence was resolved. This is because most evidence and

models of real galaxies suggest that the dark matter
halo fraction is almost 0 in the center, i.e. the dark
matter contribution to Mtot (< r) in unresolved scales is

negligible. Which indicates that the black hole is the
only significant mass in the resolved bins. Only in the
cases where the dark matter fraction within the central

scales is significant or if there is suspicion of distinct un-
resolved stellar population (i.e. variable Υ∗) it might
be worth to revisit existing black hole measurements as

they may have been affected by a decomposition degen-
eracy. For example, Mehrgan et al. (2024) have found
black-hole masses to reduced by 25% when allowing for

central mass-to-light ratio gradients in a sample of mas-
sive early-type galaxies.

Assuming the two dark components are indeed degen-
erate it nonetheless surprising that the AICp-envelopes

(Fig. 15) rapidly rise as M• > 1 · 107M⊙, effectively rul-
ing out the true mass M• = 1.4 · 107M⊙ as too high. If
the black hole constraints are degenerate but unbiased

AICp should only start to rise rapidly for masses beyond
1.4 · 107M⊙. In LT we plan to identify and discuss pos-
sible reasons for this discrepancy in the upper limit for

the black hole mass. As it turns out better but more
computationally expensive model parametrizations can
resolve this tension resulting in a better upper limit for
the black hole mass ∼ 1.5 · 107M⊙.

While there are no obvious signs that the dEs are tri-
axial (see also VW–I) the real dE galaxy could at least
to some degree be triaxial like the N-body simulation.

To gauge how deviations from axisymmetry could af-
fect the results for the dE sample we analyse the effects
the axisymmetry assumption had on the modeling of
the triaxial simulation. Two properties that we expect

to be very affected by such an erroneous symmetry as-
sumption are the intrinsic 3D kinematics of the stars
and the shape (flattening) of the mass distribution. The

former because the orbits of the model are restricted to
an axisymmetric potential, thus, its orbits may not be
as representative of the plethora of different orbits that

are possible in a more general potential, and the latter
because it is impossible for the model to emulate the
non-axisymmetric shape of the mass distribution. This
symmetry mismatch in the orbit structure and shape

may in turn then negatively affect the recovered mass
distributions as well (Thomas et al. 2007a).

We can examine the quality of the kinematic recovery

using the orbital anisotropy parameter β:

β = 1 −
σ2
ϕ + σ2

θ

2σ2
r

(A1)

where the σi are the velocity dispersion in spherical co-
ordinates (Binney & Tremaine 2008).

The spherically averaged β of the N-body simulation,

together with the β of the best orbit models, is shown
in the bottom panel of Fig. 16. Within the radial range
covered by the data the anisotropy structure is recov-
ered well within a few percent. Albeit the best AICp

models appear to be biased slightly more radial than
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the truth. This could be a an expression of the incom-
plete orbit representation forced by the axisymmetry as-

sumption. Similar to the mass recovery the β structure
of the dynamical models starts to deviate significantly
outside the FoV, again implying it is not important
for a model’s ability to fit the LOSVD data what ex-

actly the mass/kinematic structure is in unconstrained
regions outside the FoV.

The simulated tests show that the mass decomposition

and distribution at or below unresolved scales can be
misleading. In the N-body simulation this shows itself in
the correlation of M• and the central dark matter excess.
Density gradients (i.e. slopes) are recovered best for

radii larger than the resolution and smaller than the FoV
(white regions). The tests also shows that we can expect
to constrain the kinematic structure of the dE sample

well even if they are slightly triaxial. However, as was
the case with Mtot (< r), the kinematic recovery suffers
in areas where we have sparse or no data coverage.

A.3. Shape recovery

To evaluate the model’s ability to recover the intrin-
sic shape of a non-axisymmetric mass distribution we

approximate the N-body’s particle distribution directly
with triaxial ellipsoids (which is still a symmetry as-
sumption but less restrictive than the axisymmetry) and

determine its semi axis ratios p = b/a and q = c/a.
Where a,b, and c are the semi major-, intermediate- and
minor axis of the ellipsoid. We compare this to the flat-
tening q of the axisymmetric mass distributions which

have p = 1 by definition since b = a for the oblate,
axisymmetric models.

We compare the triaxial flattening of the simulation

and the dynamically recovered axisymmetric shapes of
the orbit models in Fig. 13. The true triaxial shapes
of the dark and baryonic components trace each other
closely for the entire radial range with minor differ-

ences at intermediate radii just outside the scouring core
(5 − 8′′). As mentioned above the N-body simulation is
viewed along its intermediate axis. As such, the flat-

tening of the edge-on axisymmetric deprojection that
represents the stellar component of the orbit models,
is essentially a direct approximation of the minor axis

flattening q(r). However, the information about the ad-
ditional flattening along the line of sight (p ∼ 0.8) is lost
due to the axisymmetry assumption.

While the dynamical models ‘know’ the axisymmetric
flattening of the stellar distribution from the deprojec-
tion they have no a priori knowledge of neither the q

nor p axis ratios of the dark matter distribution. In the
past a long-standing point of discussion was whether the
viewing angles of galaxies can be accurately recovered

using only dynamical constraints. However, recently
we have demonstrated that viewing angles, and conse-
quently the intrinsic shapes, of the luminous component
can in fact be accurately measured with dynamical mod-

els if one accounts for variation in model flexibility (e.g.
Lipka & Thomas 2021; de Nicola et al. 2022). Since dy-
namical models trace the gravitational potential, there

is no reason to assume that a flattening of the dark com-
ponent should not be detectable as well.

Despite this though, the shapes of the dark matter
component of the model are often simply assumed to

be spherical even when the stellar component is obvi-
ously flattened. This assumption could heavily bias the
entire mass recovery (in particular stellar mass-to-light

ratios and shapes) as the model would attempt to com-
pensate for the non-spherical halo by adjusting other
components in order to approximate the total gravita-

tional potential better. For this reason we equipped
the Zhao halos we test in this study with a (radially
constant) axis ratio qDM as an additional free param-
eter. In the case of the N-body simulation we probed

orbit models with four different axisymmetric flattening
qDM ∈ [0.7, 0.8, 0.9, 1.0]. As the AICp-curves in Fig. 15
suggest the orbit models show a strong preference to-

wards an intermediate flattening of qDM = 0.8, essen-
tially ruling out a spherical halo. In Fig. 13 we plot the
(constant) axisymmetric flattening qDM = 0.8 of the
best orbit model together with the true triaxial shapes

of the simulation. While it’s obvious that the halo model
is not sophisticated enough to describe the halo’s radial
variation in q or its triaxiality (p ̸= 1) one can see that

a qDM = 0.8 is the closest approximation for the aver-
age flattening in q and p within the radial range that is
constrained by the data (white region). This suggests

that we can place unbiased dynamical constraints on the
average halo shapes of galaxies, even if the true halo is
slightly triaxial or has variable flattening. In the future,
a more sophisticated halo description may allow an even

more accurate halo recovery. At present, however, this
appears computationally unfeasible. Nevertheless, the
simulated test implies that we can at least expect to in-

fer whether the halos of the dE sample are spherical or
show signs of flattening, even if they are triaxial.
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MNRAS, 352, 1109,

doi: 10.1111/j.1365-2966.2004.08005.x

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,

et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74

Audet, C., & Dennis, J. E. 2006, SIAM Journal on

Optimization, 17, 188, doi: 10.1137/040603371

Auger, M. W., Treu, T., Bolton, A. S., et al. 2009, ApJ,

705, 1099, doi: 10.1088/0004-637X/705/2/1099

—. 2010, ApJ, 724, 511, doi: 10.1088/0004-637X/724/1/511

Aumer, M., Burkert, A., Johansson, P. H., & Genzel, R.

2010, ApJ, 719, 1230,

doi: 10.1088/0004-637X/719/2/1230

Bar, N., Danieli, S., & Blum, K. 2022, ApJL, 932, L10,

doi: 10.3847/2041-8213/ac70df

Bender, R. 1988, A&A, 193, L7

Bender, R., Surma, P., Doebereiner, S., Moellenhoff, C., &

Madejsky, R. 1989, A&A, 217, 35

Benetti, F., Lapi, A., Gandolfi, G., Salucci, P., & Danese,

L. 2023, ApJ, 949, 65, doi: 10.3847/1538-4357/acc8ca

Bidaran, B., La Barbera, F., Pasquali, A., et al. 2022,

MNRAS, 515, 4622, doi: 10.1093/mnras/stac2005

Binggeli, B., Tammann, G. A., & Sandage, A. 1987, AJ, 94,

251, doi: 10.1086/114467

Binney, J., & Tremaine, S. 2008, Galactic Dynamics:

Second Edition (Princeton University Press)

Blumenthal, G. R., Faber, S. M., Flores, R., & Primack,

J. R. 1986, ApJ, 301, 27, doi: 10.1086/163867
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MNRAS, 413, 813, doi: 10.1111/j.1365-2966.2010.18174.x

Cappellari, M., Scott, N., Alatalo, K., et al. 2013a,

MNRAS, 432, 1709, doi: 10.1093/mnras/stt562

Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2013b,

MNRAS, 432, 1862, doi: 10.1093/mnras/stt644

Cataldi, P., Pedrosa, S. E., Tissera, P. B., et al. 2023,

MNRAS, 523, 1919, doi: 10.1093/mnras/stad1601

Ceverino, D., Dekel, A., & Bournaud, F. 2010, MNRAS,

404, 2151, doi: 10.1111/j.1365-2966.2010.16433.x

Chilingarian, I. V. 2009, Monthly Notices of the Royal

Astronomical Society, 394, 1229,

doi: 10.1111/j.1365-2966.2009.14450.x

Chisari, N. E., Koukoufilippas, N., Jindal, A., et al. 2017,

MNRAS, 472, 1163, doi: 10.1093/mnras/stx1998

Choque-Challapa, N., Smith, R., Candlish, G., Peletier, R.,

& Shin, J. 2019, MNRAS, 490, 3654,

doi: 10.1093/mnras/stz2829

Chua, K. T. E., Pillepich, A., Vogelsberger, M., &

Hernquist, L. 2019, Monthly Notices of the Royal

Astronomical Society, 484, 476,

doi: 10.1093/mnras/sty3531

Chua, K. T. E., Vogelsberger, M., Pillepich, A., &

Hernquist, L. 2022, MNRAS, 515, 2681,

doi: 10.1093/mnras/stac1897

Codis, S., Pichon, C., & Pogosyan, D. 2015, MNRAS, 452,

3369, doi: 10.1093/mnras/stv1570

Cole, D. R., Dehnen, W., & Wilkinson, M. I. 2011,

MNRAS, 416, 1118,

doi: 10.1111/j.1365-2966.2011.19110.x

Comerón, S., Trujillo, I., Cappellari, M., et al. 2023, The

massive relic galaxy NGC 1277 is dark matter deficient.

From dynamical models of integral-field stellar

kinematics out to five effective radii.

https://arxiv.org/abs/2303.11360



42 Lipka et al.

Conselice, C. J., Gallagher, John S., I., & Wyse, R. F. G.

2001, ApJ, 559, 791, doi: 10.1086/322373
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Chapter 5

Conclusions

In this thesis I have set out to improve the accuracy and precision of the statistical inference
with Schwarzschild models. As a first application of the new and improved modelling
machinery, I addressed several science questions concerning dwarf ellipticals.

In Lipka & Thomas (2021) and Thomas & Lipka (2022) the AICp model selection ap-
proach was introduced and tested. I presented how Schwarzschild modelling fundamentally
is a model selection problem and not a parameter estimation problem. As such, the model
flexibility of different trial models can not be ignored, because more flexible models will be
artificially favoured otherwise. I established a novel ansatz that allows one to measure the
model flexibility of Schwarzschild models, and more generally, non-linear statistical mod-
els. Using the inclination as an example, I demonstrated how the parameter estimation
paradigm has led to an edge-on bias in the modelling constraints, which can be corrected if
the variability of differently inclined models is accounted for with a suitable model selection
approach. I investigated which of the manifold of existing model selection criteria is most
suitable for our applications, and found that an Akaike selection provides optimal results.
I stress-tested the new approach on a number of simulations and the galaxy NGC 3368,
successfully recovering their viewing angles. Similarly, the accuracy and precision of the
mass recovery was improved. The applications of the new approach go well beyond just
selecting the best candidate model. Within the Schwarzschild modelling pipeline, we now
use it to optimize the recovery of LOSVDs from the spectra and the regularization of the
orbital weights. Outside our own modelling pipeline, the versatility of the approach may
prove to be useful for statistical modelling in general.

Using high resolution spectra obtained with the IFU spectrograph VIRUS-W, I anal-
ysed a sample of dwarf ellipticals with the improved modelling pipeline. Due to their
similar photometric structure, dwarf ellipticals are commonly believed to be the remnants
of transformed late-type dwarfs. In my thesis I presented the first study of dEs which
uses advanced dynamical models that are able to constrain their decomposed 3D mass and
orbit structure. The insights gained from the modelling has allowed a much more com-
plete comparison of possible connections (or differences) between dwarf LTGs and dEs.
The comparison suggests that dEs are not simply transformed late-type dwarfs, but, more
specifically, transformed late-type dwarfs that have assembled at high redshift. The anal-
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ysis of the stellar component of the dEs which was published in Lipka et al. (in press)
shows the following:

■ I showed that measuring the low velocity dispersions (20-30 km/s) of dEs accurately,
requires a very high spectral resolution (R ≳ 5000). Previous studies of dEs have of-
ten overestimated the dispersions significantly due to their lower resolution. The dEs
show diverse, but strong, higher-order kinematic features in their LOSVDs. Many
dEs have a central h4 peak and follow the v−h3 anti-correlation known from massive
galaxies.

■ Apart from some very small and unresolved central nuclei, the dEs are spatially
homogeneous. The dynamically measured mass-to-light ratio gradients are close to
zero throughout the galaxy, as are gradients in the age, metalicity and abundance
ratios. This suggests the main body of the dwarf galaxies consists of a single stellar
population that has formed uniformly, and star-formation has stopped more or less
simultaneously throughout the galaxy.

■ The spatial homogeneity stands in opposition to the heterogeneity between differ-
ent dEs. The analysis of their stellar populations suggest some dEs were quenched
rather recently within the last few Gyrs, while others were quenched shortly after
reionization. The abundance ratios suggest that many of them had complex, bursty
or prolonged star formation histories.

■ The initial mass function of dEs is on average consistent with a Kroupa function.
Within the dE sample the IMF parameter is anti-correlated with age which can be
explained by a variation of the IMF with the galaxy formation epoch and/or varying
degrees of extended star formation history.

■ The angular momentum of dEs is suppressed compared to more massive ETGs. This
leads to a trichotomy in the sequence of ETGs. Dwarf ETGs (log(M∗/M⊙) ≲ 9.5) and
giant cored ETGs (log(M∗/M⊙) ≲ 11.5) have small/moderate angular momentum,
while the angular momentum peaks in between, at around log(M∗/M⊙) ∼ 11.

■ The anisotropy structure of dEs is nearly isotropic in spherical coordinates and does
not change much with radius. When dEs have a flattenend stellar structure, they
are so because they have a higher kinetic energy (ordered + unordered motion) in
the equatorial plane, but less so in the radial and z-direction. This orbit structure
makes (major) mergers unlikely and may be interpreted as a relic of its discy late-type
progenitor.

The analysis of the dark matter and black holes, published in Lipka et al. (in press),
shows the following:

■ The halos of dEs are very round and have moderate central logarithmic slopes
∈ [−1.4,−0.5]. These two observational halo constraints are in tension with dark
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matter only ΛCDM simulations. For simulations that include baryonic physics, the
tension becomes milder and may be resolved completely in the future by improved
simulations. Therefore, there is no definite evidence that more exotic physics have
to be invoked to explain the results.

■ The total density slopes of baryons and dark matter are shallower (γ ∼ −1.5) than
those of more massive ETGs (γ ∼ −2.1). Still, the total density slopes of dEs are
significantly steeper than dwarf LTGs of the same stellar mass.

■ The central dynamics of dEs is dominated by the distribution of baryons. The black
hole masses of dEs are too small to be resolved with the VIRUS-W spectrograph,
but the dynamical models provide an upper limit of M• ≲ 106M⊙. Within one stellar
effective radius, the dark matter fractions are small to moderate (as opposed to the
fractions observed in dwarf spirals).

■ The average density and central slopes of the dE halos are strongly correlated with
the environment they reside in. In Virgo’s centre, the halos of the dEs are dense,
cuspy, and have low angular momentum. The opposite is the case for the dEs that
reside in the more isolated outskirts of Virgo.

■ The results suggest that the halos of dEs do not have a universal profile after gravi-
tational assembly. Depending on the conditions during their assembly, a halo turns
out to be more cored or cuspy. After assembly, internal feedback (e.g. from star-
formation) and external influences (e.g. by stripping) affect the halos to a lesser
degree.

All together, the results convey that today’s dEs can not be directly transformed from
today’s dwarf spirals. Instead, the spiral progenitors of today’s dEs have all formed at high
redshift in more extreme conditions than today’s dwarf spirals. In these extreme conditions,
some of them were quenched shortly after assembly, while others (the more isolated and
massive ones) were barely able to hold onto their gas such that they experienced multiple
star-formation bursts. However, even the latter were eventually quenched, likely as they
entered the denser part of the cluster.

In the mass regime of the dEs not many galaxies have been investigated with sophis-
ticated dynamical modelling techniques. Very isolated field dEs and other morphological
subtypes of quiescent and star-forming dwarfs will need to be modelled and compared to
in the future. At the same time, the modelling machinery and its analysis have to be
improved continuously, in parallel to the increasing capabilities of the next generation of
telescopes. Only robust and unbiased dynamical models that exploit the full information
that is present in the data will enable us to understand the diversity and origin of galaxies
more thoroughly.
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A B S T R A C T 

Information of interest can often only be extracted from data by model fitting. When the functional form of such a model cannot 
be deduced from first principles, one has to make a choice between different possible models. A common approach in such 

cases is to minimize the information loss in the model by trying to reduce the number of fit variables (or the model flexibility, 
respectively) as much as possible while still yielding an acceptable fit to the data. Model selection via the Akaike information 

criterion (AIC) provides such an implementation of Occam’ s razor . We argue that the same principles can be applied to optimize 
the penalty strength of a penalized maximum-likelihood model. Ho we ver, while in typical applications AIC is used to choose 
from a finite, discrete set of maximum-likelihood models, the penalty optimization requires to select out of a continuum of 
candidate models and these models violate the maximum-likelihood condition. We derive a generalized information criterion 

AIC p that encompasses this case. It naturally involves the concept of ef fecti ve free parameters, which is very flexible and can 

be applied to any model, be it linear or non-linear, parametric or non-parametric, and with or without constraint equations on 

the parameters. We show that the generalized AIC p allows an optimization of any penalty strength without the need of separate 
Monte Carlo simulations. As an example application, we discuss the optimization of the smoothing in non-parametric models, 
which has many applications in astrophysics, like in dynamical modelling, spectral fitting, or gravitational lensing. 

Key words: methods: data analysis – methods: numerical – methods: statistical – galaxies: kinematics and dynamics. 

1  I N T RO D U C T I O N  

Very often, the information one aims to extract from a set of data 
points is not an observable itself. Instead, one has to infer the 
information by fitting a model to the observed data. Sometimes, 
when one has a clear understanding of the processes involved in 
generating the data, the functional form of the model can be deduced 
from first principles. In this case, one is only faced with the problem 

of finding the optimal parameters of the model, whereas the form of 
the model is fixed. 

In other cases, ho we ver, one may not have such a clear picture 
that allows one to deduce the form of the model. Instead, one may 
have measured two quantities x and y that happen to be correlated 
without knowing the underling form of the relation of x and y . Then, 
the first question becomes how this correlation can be characterized: 
F or e xample, can it be described by a linear model (two parameters), 
a parabolic model (three parameters), a third-order polynomial (four 
parameters), etc.? A simple principle often followed in this task of 
model selection is Occam’s razor, which is to choose the model 
with the smallest number of free parameters (the ‘simplest’ one) that 
still describes the data well. Mathematical implementations of this 
principle are offered by information theory: One of them, the Akaike 
information criterion (AIC; Akaike 1973 , 1974 ), is frequently used 

� E-mail: jthomas@mpe.mpg.de 

to judge models based upon the increase of model complexity (and, 
hence, of information loss ) against the impro v ement in the goodness 
of fit (cf. Section 4 ). 

Many applications of model selection deal with categorically or 
structurally different models like in the order-selection problem 

briefly described earlier. The model selection character of such 
problems is evident, not least because the models that are compared 
are represented by different fitting functions . Ho we ver, a model is 
not only characterized by its fitting function. Equally important 
are the model parameters . Are the parameter ranges unlimited or 
subject to equality or inequality constraints? And can the parameters 
vary independently or are they subject to implicit correlations? The 
answers to these questions can change the behaviour of a model 
ef fecti vely as much as a change in the fitting function can do. 

Consider, for example, a third-order polynomial as briefly men- 
tioned earlier. It has four model parameters and its model complexity 
is much higher than that of a straight line with just two parameters. 
Suppose that for some reason the fit with this third-order model is 
subject to a penalty. A penalty proportional to the square of the second 
deri v ati ve is frequently used in non-parametric fits to keep a model 
smooth and to prevent it from overfitting the data, i.e. fitting the noise. 
Minimizing the second deri v ati ve – the curvature – means to make 
the model a straight line in our case. A penalty like this often comes 
along with one or more additional parameters that allow to adjust the 
relative strength of the penalty over the achie v able goodness of fit. In 
the abo v e e xample, when we choose the penalty strength such that 

© 2022 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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the weight of the penalty actually vanishes, then the model behaves 
like an ordinary third-order fit with four independent parameters. 
Ho we ver, if we choose the penalty strength such that it dominates 
the fit, then the same fitting function will ef fecti v ely behav e like a 
linear model with only two parameters. 

Classically, one considers the penalty as a modification of a specific 
model and the penalty strength as a nuisance parameter of that 
model. Ho we v er, the abo v e illustrates that for a model’s behaviour, 
a change of the fitting function or a change of the penalty strength 
can have equi v alent ef fects. It seems therefore promising to try and 
view penalized maximum-likelihood models from a slightly different 
perspective and to reinterpret the penalty as being a function that 
implicitly spawns a whole new family of different models . While 
different fitting functions will typically lead to a discrete set of 
candidate models, the penalty term allows to generate a continuum 

of models. The penalty strength is the natural parameter in this 
continuum to distinguish between different models. Treating the 
penalty strength as a parameter of a family of models transforms 
the task of optimizing this strength into a model selection problem. 
In other words, it allows to adopt model selection techniques to solve 
the optimization problem of the penalty strength. The main challenge 
when dealing with a continuum of models generated via a penalty 
term as described earlier is that the fitting function is constant. Thus, 
the number of fitted parameters is invariable and cannot serve as a 
measure of model complexity anymore. Hence, one needs to adapt 
the model selection strategy. 

The goal of this paper is to elaborate the abo v e outlined ideas 
in detail. We show how the classical ideas of model selection can 
be generalized to models that do not fulfil the maximum-likelihood 
condition. This includes penalized maximum-likelihood models in 
particular. Our generalization can be naturally formulated using an 
intuitive, generalized concept of free parameters. We show how the 
generalized model selection can be used to optimize the penalty 
strength of penalized models. As a specific example application, we 
provide a simple recipe that is based on information theory and that 
allows to optimize the smoothing of any model. The method is purely 
based on the measurement data at hand and does not require separate 
Monte Carlo simulations (e.g. for calibration of the smoothing). 
It is flexible and can be applied to linear as well as non-linear 
models and to models with or without constraint equations on their 
parameters. We will use the example of an emission line model 
to illustrate the method and the underlying concepts. It should 
be noted that the method is, ho we ver, not restricted to smoothing 
problems and can be applied to any penalized maximum-likelihood 
model. 

In Section 2 , we introduce the mock data set that is inspired by 
the problem of fitting the shape of an emission line. In Section 3 , we 
introduce two example models intended to describe these mock data: 
a non-linear parametric model and a linear non-parametric model. 
In Section 4 , we recall the basics of model selection for maximum- 
likelihood models without penalties. In Section 5 , we introduce a 
bootstrap method to compute the ef fecti ve number of parameters 
that can be applied to a large class of models. In Section 6 , we show 

how the number of effective parameters should be used within model 
selection and sketch the deri v ation of a generalized model selection 
criterion for penalized maximum-likelihood models. In Section 7 , we 
apply this generalized model selection criterion to our toy problem 

and show how it can be used to select the right order in the parametric 
approach or the optimal smoothing in the non-parametric models 
and how to choose between the two approaches. In Section 8 , we 
e xtensiv ely discuss the efficiency of the method. The paper ends 
with a summary in Section 9 . 

Table 1. The Gauss–Hermite coefficients of the generating (input) 
model. The underlying Gaussian function had μ = 0, σ = 350, and 
γ = 1. 

Order n 3 4 5 6 7 8 9 10 

Value 0.0 0.1 0.05 0.1 −0.05 0.0 0.0 0.2 

Figure 1. Example of simulated data y i = y ( x i ) (equation 1 ). The solid grey 
line is the noise-free normalised generating process y 0 ( x ). The grey dots 
simulate a noisy measurement, i.e. they represent a data sample y obtained 
from y 0 by adding Gaussian noise (indicated by the error bars). The amount 
of noise is assumed to be constant along the x -axis. The SNR at the peak of 
the signal is 10. The generating input model is a Gauss–Hermite series up to 
order n GH = 10 (cf. Table 1 ). We create N data = 71 data points evenly spaced 
between ±8 σ of the Gauss component. 

2  A  TOY  M O D E L  BA SED  O N  HERMI TE  

P O LY N O M I A L S  

To illustrate the abo v e outlined methods, we will try to reco v er a 
one-dimensional function y ( x ) from noisy mock observations. To 
this end, we define y 0 ( x ) as a Gauss–Hermite series 

y 0 ( x) = 

γ√ 

2 πσ
exp 

(
− ( x − μ) 2 

2 σ 2 

)

×
( 

1 + 

n GH ∑ 

i= 3 

h i H i 

(
x − μ

σ

)) 

, (1) 

where H i are Hermite polynomials. 1 The noisy mock data y ( x ) are 
obtained by adding Gaussian noise. The highest non-zero order of 
our generating model is n GH = 10 and the chosen coefficients are 
listed in Table 1 . The resulting (noise-free) generating input model 
y 0 ( x ) is illustrated by the grey line in Fig. 1 . 

1 Any finite and suitably smooth function F ( x ) with lim x 3 F ( x ) = 0 for x → 

±∞ can be expanded into a Gauss–Hermite series (Myller-Lebedeff 1907 ). 
When ( γ , μ, σ ) equal the parameters of the best-fitting Gaussian function 
(we assume γ and σ are positive), then h 1 = 1 and h 2 = 0, and the series 
expansion can be written in the form of equation ( 1 ) (e.g. van der Marel & 

Franx 1993 ). 
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This toy model is inspired by the problem of fitting the shapes 
of gas emission lines in galaxies. In that case, y would represent a 
galaxy spectrum with the stellar continuum being subtracted and x 
would be the logarithm of the wavelength. Usually, the shape of such 
emissions is close to a Gaussian but one could interpret the input 
model as a very complex emission line with several more or less 
separated Gaussian-like sub-components. Ho we ver, for the purposes 
of this work, one can also take this input model as an artificial 
mathematical model simply used to illustrate the capability of the 
model selection framework we propose. 

3  TWO  R E C OV E RY  M E T HO D S:  PA R AM E TRI C  

VER SUS  N O N - PA R A M E T R I C  FITS  

We want to reco v er the generating model (Table 1 ) from the mock 
data in two different ways. 

3.1 Parametric fits 

As our first set of models f ( � ) we use the Gauss–Hermite series of 
equation ( 1 ) itself, i.e. we fit f ( � ) = y ( x ; � ). The parameters of this 
fit are � = ( γ , μ, σ , h 3 , h 4 , . . . , h n ). We test different Gauss–Hermite 
models by varying n GH , the maximum order included in the series. 
In the following, only the case n GH � N data will be rele v ant and we 
call these fits parametric fits. We will derive the best-fitting values of 
the n GH + 1 free parameters � = ( γ , μ, σ , h 3 , h 4 , . . . , h n ) using a 
classical χ2 minimization between the data y and the model f ( � ), 

χ2 = 

N data ∑ 

i= 1 

( y i − f i ( � )) 2 

ε2 
i 

, (2) 

where f i ( � ) = f ( x i ; � ). Since the uneven Hermite polynomials are 
antisymmetric with respect to the y -axis and the even ones are 
symmetric, we will al w ays increase n GH in steps of two in our model 
fits. 

3.2 Non-parametric fits 

In addition to the parametric fits, we will also perform non-parametric 
fits where our model f consists of directly varying the f i ≡ � i of the 
signal at each of the N data = 71 values of ( x i − μ)/ σ where a data point 
has been simulated. Again, we will determine the 71 free parameters 
� i of this model from a classical χ2 minimization. The naive solution 
of this minimization problem would be trivial, as a non-parametric 
model can fit all the data (including the noise) perfectly when f i ≡
� i = y i , achieving χ2 = 0. Therefore, in this non-parametric case, 
we also include a penalty term to penalize our non-parametric model 
against arbitrarily unsmooth solutions. As penalty, we use the sum 

of the squared second deri v ati ves of the normalised non-parametric 
model with respect to x , i.e. we minimize χ2 + αS P with 

P = 

∑ 

( f i+ 1 − 2 f i + f i−1 ) 
2 . (3) 

The factor αS controls the strength of the smoothing constraints 
with αS → 0 implying no smoothness enforced on the fits while 
αS → ∞ implies strong smoothness constraints imposed on the 
model. By sampling different values of αS , we construct different 
non-parametric models from which we can select. For both, the 
parametric as well as the non-parametric fits, we use a standard 
Levenberg–Marquardt routine for the parameter estimation. 

Figure 2. Example fits to the mock data of Fig. 1 . The left-hand panels show 

parametric fits with too many polynomial components ( n GH = 30; top-left 
panel) and with too few polynomial components ( n GH = 4; bottom-left panel). 
The right-hand panels show non-parametric fits with a very low smoothing 
value ( αS = 10 ; top-right panel) and a very high smoothing value ( αS = 3 
10 3 ; bottom-right panel). The generating input model is shown by the grey 
line in each panel together with the noisy mock data realization (the same in 
each panel). The fits in the top panels do not reco v er the input model well 
because they overfit the data and follow the noise. The fits in the bottom 

panels do not reco v er the input model well either, but this time because 
they are o ver smooth and not flexible enough to capture the structure of the 
generating model. 

4  M O D E L  SELECTION  – BA L A N C I N G  

OV ERFI TTI NG  VERSUS  UNDERFI TTI NG  

Fig. 2 shows four example fits to the mock data set presented in 
Fig. 1 . The fits in the left-hand panels have been obtained with the 
parametric ansatz. In the top-left panel, n GH = 30 – larger than in 
the generating model ( n GH = 10, cf. Section 2 ). As a consequence, 
the model o v erfits the data and is too structured, compared to the 
generating input model. The opposite is true for the fit shown in the 
bottom-left panel, where n GH = 4. The resulting model is not flexible 
enough to capture all the structure of the generating model. 

The panels on the right-hand side show the analogous cases for the 
non-parametric fits. In the top-right panel, the smoothing constraint 
is very weak such that the model fits the noise almost perfectly. In the 
bottom-right panel, the model is instead o v ersmoothed and it cannot 
fit the data appropriately. 

The goal of the following sections is to outline a simple method to 
find the optimum degree of model flexibility for both – the parametric 
and the non-parametric fit. The optimum degree of smoothness will 
be somewhere between the examples of overfitted and underfitted 
models shown in Fig. 2 . 

Model selection provides the general framework to choose be- 
tween (not necessarily nested) models with different degrees of 
model flexibility. A commonly applied criterion used in this context 
is the AIC (Akaike 1974 ). If m is the number of free parameters in 
a fit and χ2 the achieved goodness of fit, then a model is preferred 
when it has a lower 

AIC = χ2 + 2 m. (4) 
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The AIC originally comes from information theory and provides 
optimal model reco v ery in the sense that it aims to minimize the 
(estimated) Kullback–Leibler divergence – a measure of the expected 
information loss – between model and the actual generating process 
(cf. Section 6 ). Intuitively, the AIC selects the model with the smallest 
number of variables m among all models that provide a statistically 
viable fit, i.e. among all models with χ2 + m ≈ N data . This is because 
for all these viable models, the AIC roughly reduces to AIC = N data 

+ m and, hence, becomes smallest for the lowest m . As such it’s akin 
to Occam’s razor. 

Our intuitive understanding that the information loss in a fit tends to 
increase with the number of fitted parameters is often – but not al w ays 
– sufficient to select an optimal model. An obvious requirement 
is that the number of parameters m has to be known. This seems 
to be trivial for parametric fits where one usually kno ws e very fit 
parameter explicitly and m can be determined by simply counting 
the variables of the fitting function. Ho we ver, e ven in the parametric 
case the determination of m can become non-trivial when the model 
is strongly non-linear or when the parameters are not allowed to vary 
arbitrarily but instead are subject to constraint equations (Andrae, 
Schulze-Hartung & Melchior 2010 ). 

The same applies to non-parametric models. Here, even more 
complications arise from smoothing penalties that often depend 
on one or several continuous smoothing parameters. Naively, the 
stronger the imposed smoothing constraints, the less flexible the 
model becomes. The invariable number m of fitted parameters 
can therefore no longer be a measure of a model’s flexibility or 
responsi veness to noise, respecti vely. This is important because noise 
– by definition – does not carry any information about the data 
generating structure. Hence, it is actually a model’s responsiveness 
to noise that determines the expected information loss. And if this is 
no longer encoded in m then the simple model selection criterion of 
equation ( 4 ) will no longer be sufficient. In fact, when penalties with 
a continuous parameter are present, the effective number of variables 
is expected to become a continuous variable as well. For example, in 
the abo v e smoothing case: the stronger the smoothing the less fle xible 
the model and the smaller the ef fecti ve number of variables. In the 
next two sections, we will demonstrate that the selection criterion 
equation ( 4 ) can still be used under such circumstances, provided, 
ho we ver, that the generalized concept of the effective number of 
parameters is applied to quantify a model’s flexibility. 

5  QUANTIFYIN G  M O D E L  FLEXIBILITY  – TH E  

NUMBER  O F  EFFECTIVE  FREE  PA R A M E T E R S  

In Lipka & Thomas ( 2021 ), we first introduced such a generalized 
concept of effective number of free parameters by using a flexible 
bootstrap method to estimate them. The following section is a brief 
re vie w of the concepts first shown in Lipka & Thomas ( 2021 ). 

Strictly speaking the number of free parameters m is well defined 
only for parametric models that depend linearly on their free param- 
eters (e.g. Hastie, Tibshirani & Friedman 2013 ) and have no a priori 
constraints imposed on their parameters (e.g. Andrae et al. 2010 ). 
Ho we ver, the concept of free parameters can be generalized formally 
to more complex statistical models without relying on such restricting 
assumptions about the underlying model structure (e.g. Ye 1998 ). In 
such generalized frameworks, the resulting degrees of freedom (i.e. 
the actual model flexibility) typically differs significantly from the 
number of variables of the fit model, and thus one cannot derive the 
model flexibility by simply counting the number of variables. 

Therefore, we employ bootstrap iterations to estimate the effective 
number of free parameters (in the following m eff ). To this end, we 

establish a number of N boot bootstrap data sets z for each fit model by 
adding random Gaussian noise (based on the observed noise estimate 
ε) to an initial fit f ( ̂  � y ) of said model to the observed data sample 
y . Thus, a set of bootstrap data z is generated at every data point i by 
z i = f ( ̂  � y ) + N (0 , εi ), where N (0 , εi ) is a Monte Carlo realization 
drawn from the Gaussian distribution with mean 0 and standard 
deviation εi . The goal of this bootstrap resampling technique is to 
emulate (or redraw) the observed data sample. As such bootstrapping 
assumes that the initial fit f ( ̂  � y ) represents the (noise-free) data 
generating process well enough such that the bootstrap data can be 
treated as a resample of the observed sample. 2 Each of the N boot sets 
of bootstrap data z κ (for κ = 1,..., N boot ) is then fitted by the same 
model for which one attempts to estimate the flexibility, denoted as 
f i ( ̂  � 

κ
z ). 

The flexibility m eff should be a measure of responsiveness of the 
model fit to noisy data. As such, a more flexible model should be able 
to follow more of the deviations in the data that were induced by the 
bootstrap noise than a less flexible model can. Therefore, a ‘natural’ 
measure of this responsiveness is the normalized correlation of the 
model fit and the noisy data it was fitted to 3 

m eff = 

N data ∑ 

i= 1 

Cov 
(
f i ( ̂  � z ) , z i 

)

ε2 
i 

≤ N data . (5) 

Moti v ated by this expression ( 5 ), we introduce 

m 

κ
eff = 

N data ∑ 

i= 1 

( 

f i ( ̂  � 

κ
z ) − f i ( ̂  � y ) 

εi 

) ( 

z κi − f i ( ̂  � y ) 

εi 

) 

, (6) 

where the sum goes o v er all data points N data and κ is the index of 
the bootstrap iteration. To reduce dependence on the specific noise 
realizations of the bootstrap data, one should ideally average the 
results of equation ( 6 ) o v er multiple bootstrap iterations κ = 1, . . . , 
N boot such that 

m eff = E( m 

κ
eff ) 	 

1 

N boot 

N boot ∑ 

κ= 1 

m 

κ
eff . (7) 

Of course multiple iterations can be very computationally expensive 
if the fitting procedure in itself is comple x. F ortunately, one can 
already achieve decent results without the need of that many bootstrap 
iterations as we will discuss in Section 8 . 

For linear models that are not subject to a penalty and for which 
the parameters are not restricted by equality/inequality constraints, 
the number m of fitted parameters happens to equal m eff and therefore 
a simple count of the number of parameter m is a viable measure for 
the responsiveness of the model to noise. We show this explicitly 
in Appendix A . Note that in standard linear theory m actually 
only equals the naive number count of parameters if all parameters 
are linearly independent (cf. Hastie et al. 2013 ). Nevertheless, the 
equality of m eff and m (given aforementioned preconditions) still 
holds for dependent parameters as long as m is calculated using 
standard linear theory instead of a naive counting of the number of 
parameters. 

2 If this approximation is too crude, e.g. if the initial fit model is very different 
from the actual data generating process, then the bootstrapping estimation of 
m eff is not legitimate. Ho we ver, such models can easily be rejected anyways 
due to their o v erall bad fit to the data (e.g. if χ2 / N data 
 1). 
3 Equation ( 5 ) can be shown to be equivalent to the definition generalized 
degrees of freedom of Ye ( 1998 ), which is a formal extension of the number 
of free parameters to non-linear models. 
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Figure 3. Estimated number of ef fecti ve parameters m eff for the parametric 
Gauss–Hermite models described in Section 3.1 . The blue dots show the 
numerically derived m eff with N boot = 500. For the Gauss–Hermite models, 
one can simply count the number of free parameters to m eff = n GH + 1 
(dotted line). All the blue points fall exactly on the dotted line: the numerical 
e v aluation of m eff is very accurate. 

Our non-parametric fits provide an example for such a linear model 
(with ∂ f i / ∂ � j = δij ) if no smoothing penalty is applied ( αS = 0). In 
that case, the model will al w ays yield χ2 = 0 with f j ≡ � j = y j such 
that 

m eff = 

N data ∑ 

i= 1 

Cov ( z i , z i ) 

ε2 
i 

= N data = m, (8) 

as expected. 
For non-linear models, the equality m eff = m might not hold 

in general, but under appropriate regularity conditions it will cer- 
tainly hold locally. In practice, models that change their properties 
significantly o v er the uncertainty re gion of the data will in most 
cases not be very useful. Hence, if the model changes only slowly 
o v er the re gion in data space sampled by the bootstraps then 
m eff = m will still hold (in the absence of penalties or parameter 
constraints). An example is the Gauss–Hermite series of Section 3.1 
where the parameter vector � = ( γ , μ, σ , h 3 , h 4 , . . . , h n ) has 
a well-defined number of n GH + 1 elements, or free parameters 
respectively. Fig. 3 shows the numerically obtained m eff of these 
non-linear models versus the (counted) number of free parameters. 
As expected, after N boot = 500 bootstraps the estimated ef fecti ve 
number of parameters is equi v alent to the counted number of free 
parameters. 

In model selection, the goal is to rank different models according to 
the estimated relative information loss between them. The classical 
AIC = χ2 + 2 m has been shown to be an unbiased estimator of 
this information loss, e.g. in the context of maximum-likelihood fits. 
Ho we v er, we hav e moti v ated abo v e that for penalized models, e.g. 
the ability of the model to adapt to noise depends on the strength 
of the penalty term and cannot be expressed by the invariable 
number m . By construction, m eff is a more general measure of 
the model’s flexibility, independent of the presence of a penalty or 
other constraints on the parameters. Therefore, we argue that model 
selection in a more general context should involve m eff rather than m 

(the latter only being a measure of the responsiveness to noise under 
certain circumstances). Section 6 is dedicated to such a generalized 
model selection that extends to penalized models and, as such, will 
involve m eff rather than m . 

6  PENA LIZED  L I K E L I H O O D :  M O D E L  

SELECTI ON  WI TH  EFFECTIVE  NUMBER  O F  

PA R A M E T E R S  

In Lipka & Thomas ( 2021 ), within the context of orbit superposition 
models for galaxies, we have tested model selection techniques 
using m eff rather than m . For a fixed gravitational potential, the said 
orbit models are linear, b ut ha ve a non-linear (maximum-entropy) 
penalty in our implementation (Richstone & Tremaine 1988 ; Thomas 
et al. 2004 ). Comparing different weighting schemes χ2 + w m m eff, 

we found that the AIC analogue (i.e. w m = 2) performs best in 
estimating underlying properties of the data-generating processes. 
Therefore, the results of Lipka & Thomas ( 2021 ) suggest that the 
AIC can be generalized to penalized models by the substitution m 

→ m eff . 
In the following, we will motivate how model selection can be 

generalized for penalized models in a more formal way. For the 
reader who wants to skip this rather technical discussion, we preempt 
the important results of this section: for penalized models, model 
selection indeed consists of minimizing the generalized AIC p = χ2 

+ 2 m eff . We derive this exactly for linear models. In Section 7 , we will 
apply the generalized AIC p to the toy model introduced in Section 2 . 

It is out of the scope of this paper to give a complete introduction 
to the foundation of model selection. A very good o v erview can be 
found in Burnham & Anderson ( 2002 ). We simply start by recalling 
that Akaike model selection consists of minimizing the expected , 
estimated information loss 

− E y E z ( log L ( z| ̂  � y )) (9) 

(e.g. Chapter 7.2, Burnham & Anderson 2002 ). Here, log L ( z| ̂  � y )) 
is the logarithm of the likelihood L of some fictitious data z (see 
below) at the maximum-penalized likelihood estimate ˆ � y of the 
model parameters � . The double e xpectation E y and E z deserv e 
some further comments. The outer expectation E y is meant to 
reflect that – conceptionally – we aim at minimizing the expected 
information loss o v er large samples of actual data y . In the context 
of our toy model (Section 2 ), this would correspond to averaging 
the results o v er sev eral mock data sets (we will come back to 
this in Section 8.4 ). Ho we ver, in most practical applications one 
has only a single data set and needs an unbiased estimate of the 
information loss based on the actual data at hand (see below). The 
inner expectation E z reflects that the Kullback–Leibler divergence 
– the measure of the information loss that underlies equation ( 9 ) 
– is an integral that happens to have the form of an expectation 
value. Hence, the integral over the integration variable z can 
be expressed and interpreted as an expectation value over some 
fictitious data samples z. Below it will turn out that the bootstrap 
iterations we introduced in Section 5 are ef fecti vely the computation 
of the inner e xpectation E z o v er this fictitious data sample z of 
equation ( 9 ). 

In the following – for simplicity – we restrict ourselves to a 
situation where the ‘truth’ corresponds to one model among our 
candidates, i.e. there is a parameter vector � 0 of the ‘true’ values 
of � . 4 If we would know � 0 we could use it in equation ( 9 ) to 
calculate the true information loss. Ho we ver, in reality we only have 
an estimate ˆ � y based on some noisy data y . Therefore, equation ( 9 ) 
only quantifies the expected , estimated information loss based on 
ˆ � y . 

4 Model selection does not depend on the true model being among the 
candidates. While this complicates the discussion (e.g. Burnham & Anderson 
2002 ), it does not change the conclusions in our context. 
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The standard deri v ation of AIC starts with the Taylor expansion 

log L ( z| ̂  � y ) ≈ log L ( z| � 0 ) + 

[
∂ log L ( z| � 0 ) 

∂� 

]T (
ˆ � y − � 0 

)

+ 

1 

2 

(
ˆ � y − � 0 

)T ∂ 2 log L ( z| � 0 ) 

∂� 

2 

(
ˆ � y − � 0 

)
, (10) 

around this true parameter vector � 0 . Here and in the rest of the 
paper, we use the compact notation ∂ 2 log L ( z| � 0 ) /∂� 

2 to denote 
the Hessian matrix of log L e v aluated at � 0 . For maximum-likelihood 
models, the expectation of the linear term obviously vanishes. In our 
case of linear penalized models, this holds true since E z ( z) = f ( � 0 ) 
(cf. Appendix B ). Even if the truth is not among the candidate models 
this holds true under very weak conditions because E y ( ̂  � y ) = � 0 . 

Then, using a second Taylor expansion the unknown log L ( z| � 0 ) 
in equation ( 10 ) is approximated as 

log L ( z| � 0 ) ≈ log L ( z| ̂  � z ) + 

[ 

∂ log L ( z| ̂  � z ) 

∂� 

] T (
� 0 − ˆ � z 

)

+ 

1 

2 

(
� 0 − ˆ � z 

)T ∂ 2 log L ( z| ̂  � z ) 

∂� 

2 

(
� 0 − ˆ � z 

)
. (11) 

Within the classical maximum-lik elihood framew ork the linear term 

vanishes exactly for each z – by construction. The expectations of 
the remaining second-order terms of equations ( 10 ) and ( 11 ) can 
then be shown to combine to (the ne gativ e of) the number of fitted 
parameters m which then leads to the classical form of the AIC (e.g. 
Burnham & Anderson 2002 ). 

In contrast, within a penalized maximum-likelihood framework, 
the linear term does not vanish and needs to be taken into account 
when combining equations ( 10 ) and ( 11 ). For linear models, a 
simplification arises from the fact that ∂ 2 log L /∂� 

2 is a constant. 
Furthermore, since we will take the double expectation E y E z and 
E y E z ( h ( y)) = E y E z ( h ( z)) for any function h , we can substitute ˆ � y by 
ˆ � z in equation ( 10 ). Combining all the abo v e, equation ( 9 ) becomes 

E y E z ( log L ( z| ̂  � y )) ≈ E y E z ( log L ( z| ̂  � z )) + E y E z ( h ( z| ̂  � z )) , (12) 

with 

h ( z| ̂  � z ) = 

[ 

∂ log L ( z| ̂  � z ) 

∂� 

] T (
� 0 − ˆ � z 

)

+ 

(
� 0 − ˆ � z 

)T ∂ 2 log L ( z| ̂  � z ) 

∂� 

2 

(
� 0 − ˆ � z 

)
. (13) 

In our bootstrap simulations, we use the estimate � 0 ≈ ˆ � y . Then, 
using equations ( B19 ) and ( B20 ), we find 

E z ( h ( z| ̂  � z )) = E z 

[ (
z − f ( ̂  � z ) 

)T 
 

−1 
(
f ( ̂  � y ) − f ( ̂  � z ) 

)

+ 

(
f ( ̂  � y ) − f ( ̂  � z ) 

)T 
 

−1 
(
f ( ̂  � y ) − f ( ̂  � z ) 

)] 
, 

(14) 

and it is straightforward to show that this expectation value equals 
(the ne gativ e of) m eff (cf. equation B21 ). 

In the common situation where one cannot perform the expectation 
E y ( log L ( y| ̂  � y )) or, equi v alently, E z ( log L ( z| ̂  � z )) one uses the esti- 
mate log L ( y| ̂  � y ), which for Gaussian errors reads −χ2 /2. Taking 
everything together, model selection under penalized likelihood 
conditions then consists of minimizing χ2 /2 + m eff or, equi v alently 

AIC p = χ2 + 2 m eff . (15) 

It is natural to assume that the extended criterion of equation ( 15 ) 
also holds (at least locally) for more general, non-linear models 

Figure 4. Illustration of varying model complexity in the Gauss–Hermite 
(parametric) fits (left-hand panels) and the non-parametric fits (right-hand 
panels). The generating model is the Gauss–Hermite series with n GH = 10 
shown as the solid curve in Fig. 1 . Each panel shows five grey lines, one 
for each of five different mock realizations of noisy data similar to the data 
shown in Fig. 1 but assuming an SNR of 100 at the peak of the model. From 

top to bottom the plot shows the goodness-of-fit χ2 , the number of ef fecti ve 
parameters m eff and χ2 + m eff . The number of data points, N data = 71, is 
illustrated by the horizontal dotted lines. A statistically viable model must 
have a χ2 + m eff ≈ N data . n GH is a discrete parameter of the parametric fits, 
its actually allowed values are highlighted in blue, the grey lines connecting 
the points have been added to better illustrate the trend. In the non-parametric 
case, αS is a differentiable parameter and m eff is a continuous function. For 
the parametric fits, the model flexibility increases with the maximum order of 
the Gauss–Hermite fit, n GH . For n GH ≥ 10, all fits become statistically viable. 
In the non-parametric case, the flexibility decreases as a function of the 
smoothing parameter αS , together with m eff . Below αS � 3 10 2 , all models 
lead to statistically acceptable fits. The middle-left panel confirms m eff = n GH 

+ 1, i.e. the expected number of parameters for the parametric case. 

under appropriate regularity conditions (which to derive is out of the 
scope of this paper). In fact, in the next Section 7 , we will see that 
AIC p works equally well for our linear non-parametric model and 
non-linear Gauss–Hermite model. In the absence of a penalty (or of 
constraint equations for the parameters), m eff = m (Section 5 ) and 
AIC p = AIC. 

We note that the difference between AIC and AIC p – i.e. the 
replacement m → m eff – arises because we do not assume that the 
models obey the maximum-likelihood condition in our deri v ation of 
AIC p as is the case for the classical AIC. Therefore, AIC p encom- 
passes penalized models as well. Ho we ver, we want to stress that 
our deri v ation is independent of the specific conditions for penalized 
maximum-likelihood models, meaning AIC p is not restricted to these 
models and may be applied in an even more general sense. 

7  EXAMPLE  RESULTS  

Fig. 4 shows the result for both the parametric method (left-hand pan- 
els) and the non-parametric method (right-hand panels) in terms of 
fits to five different mock data realizations. In the parametric case, as 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/4/6203/6605924 by guest on 11 July 2024



Smoothing via model selection 6209 

MNRAS 514, 6203–6214 (2022) 

Figure 5. The same models as in Fig. 4 . The top panels show the 
AIC p = χ2 + 2 m eff . The middle panels show the rms difference between the 
generating input model and the best-fitting reconstruction of this input model 
from the fit to the mock data. Finally, the bottom panels show the generating 
model (grey) and the fitted reconstructions (blue/red) at the minimum AIC p . 
The reconstruction of the input model is extremely good in both cases. In the 
parametric and non-parametric cases, the AIC p selection yields the model 
with the smallest rms difference to the generating input model. 

expected, the number of fit variables ( n GH + 1) increases with n GH and 
therefore the χ2 decreases with n GH (top-left and middle-left panels). 
In fact, as long as n GH < 10 – i.e. when the number of fitted variables 
is smaller than in the generating model – the fits do not yield a statis- 
tically viable fit to the data, because χ2 + m eff 
 N data (bottom-left 
panel). For n GH ≥ 10, while χ2 continues to decrease with increasing 
n GH , all fits actually provide statistically equi v alent representations of 
the data as χ2 + m eff stays roughly constant in this regime. Implying 
the impro v ement in the goodness-of-fit χ2 is not significant but just 
as large as expected from the increased model flexibility. 

The non-parametric fits (right-hand panels) behave similar, though 
m eff increases from left to right (opposite to the parametric case) 
in this representation of αS . For low values of αS , the models are 
essentially unaffected by the smoothing penalty. As a result, each 
model variable θ i becomes an entirely independent model variable 
and m eff = N data . In this regime, the model adapts perfectly to the 
noise in the data resulting in χ2 → 0. The larger αS the stronger 
the smoothing constraints become, meaning that m eff continuously 
decreases whereas χ2 accordingly increases. Over a large interval of 
αS this happens at constant χ2 + m eff ≈ N data . That is, while the model 
becomes smoother it still leads to a statistically viable representation 
of the data. At some point, ho we ver, the smoothing constraints 
become so dominant that χ2 and χ2 + m eff increase significantly 
abo v e N data . In that case, the model becomes so dominated by the 
smoothing function that it cannot yield a good representation of the 
data anymore. A noticeable difference between the parametric and 

the non-parametric fits is that the non-parametric χ2 / χ2 + m eff curves 
appear to be much smoother than the parametric fits. We will come 
back to this in Section 8.4 . 

Fig. 5 shows the AIC p (top panels), the reco v ery of the input 
model at the lowest AIC p (bottom panel), and the rms (root-mean- 
square) between the generating input model and reco v ery from the 
fit (middle panels) – again for both the parametric and the non- 
parametric fits. For the rms, we sum o v er the squared differences 
between the generating model and the fit at the N data argument values 
of the data points. Unsurprisingly, the AIC p of the parametric fits has 
a minimum at n GH = 10, the value used for the input model. For larger 
n GH , even though the goodness-of-fit χ2 improves, the AIC p increases 
again because the models do not lead to a significantly better fit. This 
behaviour of the AIC p is mirrored exactly by the rms. The fact that the 
rms worsens with increasing n GH even though fits with n GH > 10 are 
statistically viable is due to the fact that the models adapt more and 
more to the noise in the data, i.e. they start to o v erfit. The reco v ered 
model at the optimum n GH agrees very well with the input model. 

The good reco v ery of the input model with the parametric fits 
is not that surprising since the data generating model (equation 1 ) 
is among the candidate models in this case. Ho we v er, the reco v ery 
with the non-parametric models is almost equally good (right-hand 
panels) even though in this case the generating model is not among 
the candidates. Again, the change of rms and the behaviour of the 
AIC p are very similar and the minimum AIC p is found to be where 
the reco v ery of the model is best. This shows that one can identify the 
optimal smoothing, or equi v alently the optimum number of fit vari- 
ables, even in the non-parametric case using the AIC p optimization 
and our definition of effective free parameters (Section 5 ). 

These abo v e results and the fact that one can identify the model 
with the optimum number of fit variables from the AIC p and the m eff 

does not depend on the assumed signal-to-noise ratio (SNR). For 
the abo v e fits, the SNR at the peak of the model was set to SNR = 

100. Fig. 6 shows the results for SNR = 10. While the reco v ery of 
the model gets more difficult due to the increased noise in the data, 
one can still identify the model with the optimum degree of model 
flexibility with the above-described method. 

8  EVALUATI NG  T H E  EFFI CI ENCY  

It is common in non-parametric models to calibrate the smoothing by 
use of Monte Carlo simulations. With the abo v e bootstrap approach 
such simulations are not necessary anymore. Ho we ver, the ef ficiency 
of this approach will depend on the number of bootstrap iterations 
N boot necessary to obtain an accurate estimate of the optimum αS . 

In the AIC p framework, the best choice for αS follows from 

d AIC p 

d αS 
= 0 (16) 

or 

d χ2 

d αS 
= −2 

d m eff 

d αS 
, (17) 

respectively. Therefore, we actually only need an accurate estimate 
for d m eff /d αS , rather than for m eff itself, to determine the optimum 

degree of smoothing αS . 
In this section, we will compare the scatter in m eff itself and the 

scatter of its deri v ati ve d m eff /d αS with the goal to predict the number 
of bootstraps iterations N boot required to find the optimum αS . 
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Figure 6. Same as Fig. 5 but the data are significantly noisier with an 
SNR = 10. 

8.1 Bootstrap scatter in m eff 

To estimate the scatter in m eff it is convenient to define 

a i = 

f i ( ̂  � 

κ
z ) − f i ( ̂  � y ) 

εi 

(18) 

and 

b i = 

z κi − f i ( ̂  � y ) 

εi 

(19) 

and treat them as random variables. The products c i = a i b i define the 
individual contributions to m 

κ
eff (equation 6 ) such that 

Var ( m 

κ
eff ) = Var 

( 

N data ∑ 

i 

c i 

) 

. (20) 

From stochastic theory, we can use Bienaym ́e’s identity: 

Var 

( 

N data ∑ 

i 

c i 

) 

= 

N data ∑ 

i 

Var ( c i ) + 

N data ∑ 

i �= j 

Cov ( c i , c j ) (21) 

and 

Var ( c i ) = Cov ( a 2 i , b 
2 
i ) − [ Cov ( a i , b i ) + E ( a i ) E ( b i ) ] 

2 

+ 

(
Var ( a i ) + E( a i ) 

2 
) (

Var ( b i ) + E( b i ) 
2 
)

(22) 

to e v aluate equation ( 20 ). By construction, E( b i ) = 0 and Var ( b i ) = 1 
such that equation ( 22 ) simplifies to 

Var ( c i ) = Cov ( a 2 i , b 
2 
i ) − Cov ( a i , b i ) 

2 + Var ( a 2 i ) . (23) 

The quantities a i and b i (and c i , respectively) can be calculated during 
the bootstrap iterations. After all N boot bootstrap iterations, the scatter 

of m eff is 

Var ( m eff ) = Var ( m 

κ
eff ) /N boot (24) 

and can be estimated using the abo v e equations. 
The left-hand panels of Fig. 7 illustrate estimates of m eff based 

on different N boot (solid lines) together with the calculated scatter 
�m eff = 

√ 

Var ( m eff ) (dotted lines). We also include m eff for N boot = 

2500 as a reference (dashed line). Both, the estimate for m eff and 
for its scatter impro v e with increasing N boot such that they can be 
determined with any desired accuracy. In practice, already after a 
relati vely lo w number of bootstrap iterations N boot ∼ 10 the scatter 
from equation ( 24 ) captures the uncertainty in m eff very well and can 
be used to estimate the required N boot . 

The exact behaviour of m eff and � m eff will depend on the model 
function, the data, and the smoothing function. Ho we v er, in man y 
cases – as in Fig. 7 – the scatter � m eff can be presumed to increase 
with αS . Especially when the smoothing function biases the fit 
towards a single unique solution. If this fa v oured reference model 
is not well chosen and f ar aw ay from the true generating model 
(compared to εi ), the � m eff will be dominated by the E( a 2 i ) term (cf. 
equation 23 ) leading to a large scatter in m eff . 

In our case, the smoothing function does not prefer a single unique 
set of values for the fitted f i because any straight line with any 
combination of slope/intercept will minimize the penalty function. 
Still, the scatter in m eff increases noticeably with αS . As a rule of 
thumb we found that the scatter typically grows with χ2 ( αS ), i.e. the 
goodness of fit of the original model f ( ̂  � y ) at αS . Fortunately, this 
also means that the regions with the largest scatter are typically not 
of interest anyways. 

8.2 Bootstrap scatter in d m eff /d αS 

As stated abo v e, for the AIC p optimization of αS the scatter in 
d m eff /d αS , and not in m eff , is the more important quantity. Therefore, 
we will now evaluate the scatter in the derivative of m eff with respect 
to αS . 

Suppose we have two estimates of m eff at two neighbouring values 
of αS , m eff ( αS ) and m eff ( αS + d αS ). The v ariance of the dif ference 
d m 

κ
eff = m 

κ
eff ( αS + d αS ) − m 

κ
eff ( αS ) is 

Var (d m 

κ
eff ) = Var 

(
m 

κ
eff ( αS ) 

) + Var 
(
m 

κ
eff ( αS + d αS ) 

)

− 2 Cov 
(
m 

κ
eff ( αS ) , m 

κ
eff ( αS + d αS ) 

)
(25) 

and, in analogy to m eff , 

Var (d m eff ) = Var (d m 

κ
eff ) /N boot . (26) 

What matters here – beyond the scatter of m eff itself – is the 
correlation or covariance between neighbouring fits. For our penalty 
function (equation 3 ), the curves of the individual m 

κ
eff ( αS ) are a 

smooth function of αS (cf. Fig. 7 ). This is ensured if the penalty 
function is differentiable in αS , because then the correlation between 
neighbouring models is nearly maximal. F or e xample, if a specific 
noise pattern led to a bootstrap data set z that happened to result in 
a relative large m 

κ
eff at αS [compared to the mean m eff ( αS )], then this 

will very likely also be true for m 

κ
eff ( αS + d αS ). This holds locally 

if one uses the same noise pattern for neighbouring models. When 
comparing bootstrap fits at sufficiently different αS this correlation 
will be weaker or might disappear completely (i.e. some of the m 

κ
eff 

of Fig. 7 cross). 
In the middle column of panels of Fig. 7 , we plot d m eff ( αS ) for 

different N boot together with � d m eff = 

√ 

Var (d m eff ) . Due to the high 
degree of correlation between fits (and m eff ) at neighbouring αS , the 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/4/6203/6605924 by guest on 11 July 2024



Smoothing via model selection 6211 

MNRAS 514, 6203–6214 (2022) 

Figure 7. Scatter analysis of the models presented in Figs 4 and 5 . Left-hand panels: Number of ef fecti ve parameters m eff as a function of the smoothing factor 
αS for different N boot (labelled in each panel). The coloured solid curves show the mean m eff o v er the respectiv e N boot and the dotted lines indicate � m eff . For 
reference, the grey dashed line represents the case for N boot = 2500. In the three panels with N boot ≤ 50, the individual m 

κ
eff from each individual bootstrap 

iteration are included as well (thin solid lines). Most of the scatter in m eff comes from individual m 

κ
eff being scattered in the vertical direction as a whole in 

response to the particular noise pattern of each bootstrap iteration. The behaviour m 

κ
eff ( αS ) depends very little on the noise pattern, in particular locally. Middle 

panels: Similar as the left-hand panels but the deri v ati ve d m eff /dlog αS is shown instead of m eff . Rather than m eff it is this deri v ati ve that is crucial to find the 
minimum of AIC p . Because the scatter in m eff mostly results from vertical shifts in the entire curves m 

κ
eff ( αS ), the deri v ati ve d m eff /dlog αS is very easy to 

compute with a higher accurac y, ev en with small N boot . Right-hand panels: AIC p as a function of αS for different N boot . The vertical dotted line indicates the 
value of αS where the rms between the generating input model and the reconstruction fit is smallest. For all the shown N boot it is correctly reco v ered by the 
minimum of AIC p . In many situations even a single bootstrap iteration can be enough to get a decent optimization of the smoothing in a non-parametric fit. 

scatter in d m eff is very much reduced and even with less than N boot < 

10 bootstraps one can identify the characteristic behaviour of d m eff . 
Finally, the panels at the very right of Fig. 7 show AIC p ( αS ) 

for different N boot . For the optimization of αS , the χ2 ( αS ) term is 
significant as well. Similarly to m eff , we have 

Var (d χ2 
κ ) = Var 

(
χ2 

κ ( αS ) 
) + Var 

(
χ2 

κ ( αS + d αS ) 
)

− 2 Cov 
(
χ2 

κ ( αS ) , χ
2 
κ ( αS + d αS ) 

)
(27) 

and basically all the abo v e considerations about m eff can be taken 
o v er to χ2 ( αS ). As long as the penalty is differentiable in αS the 
function χ2 ( αS ) will be smooth (its actual behaviour is shown in the 
top-right panel of Fig. 4 ). Consequently, it is not surprising that the 
AIC p curves are very smooth even for very small N boot . 

The vertical dotted line in the right-hand panels of Fig. 7 indicates 
the value of the smoothing factor αS where the rms between the 
generating model and the fit has its minimum, i.e. the best model. In 
all the cases plotted in Fig. 7 – even for N boot as small as N boot = 5 –
this best model is correctly reco v ered by the AIC p . 

8.3 Is a single bootstrap iteration enough to optimize αS ? 

The small scatter in d m eff /d αS and χ2 ( αS ) that results from the high 
degree of correlation between models with neighbouring αS in case 
of a differentiable smoothing function make the model selection with 
m eff a very efficient ansatz to optimize the smoothing in any kind of 
fit. In fact, in many cases already a single bootstrap iteration can be 
enough to get a decent estimate of αS . 

We illustrate this in Fig. 8 that is similar to Figs 4 and 5 but the 
number of bootstrap iterations has been reduced to N boot = 1 and 
only AIC p , m eff , and the reco v ery of the input model are displayed. It 
is remarkable how well the reco v ery of the input model works: after 
a single iteration, without any separate Monte Carlo simulations to 
calibrate αS , the reco v ery with the smallest rms is identified. 

8.4 Model correlations 

It is worth looking at the differences between the non-parametric case 
and the parametric case. The parametric analogue to the differentiable 
smoothing factor αS is the order n GH of the parametric models. In 
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Figure 8. Similar to Figs 4 and 5 but the number of bootstrap iterations to 
calculate m eff has been reduced to N boot = 1. The figure only shows AIC p 

and m eff . The reco v ery of the input model is almost not affected by the highly 
reduced number of bootstraps. 

Figure 9. Left-hand panels: Same as the left-hand panels in Fig. 4 , but the 
results have been averaged over 20 mock data sets. For comparison, the thin 
lines show again the results of the left-hand panels in Fig. 4 . Right-hand 
panels: Same as the left-hand panels in Fig. 5 , but the results have been 
av eraged o v er 20 mock data sets. As in the left-hand panels, the results of 
Fig. 5 are shown for comparison as well (thin lines). This example shows how 

jagged χ2 curves that result from a lack of correlation between ‘neighbouring’ 
models are smoothed out in the average over repeated measurements. (Such 
an average corresponds to the expectation E y in equation 9 .) 

contrast to αS , n GH is not a differentiable parameter. Rather, it is 
discrete. Hence, even fits with ‘adjacent’ n GH , i.e. fits at n GH and 
n GH + 2 are considerably different and less correlated than models 
with adjacent αS are. This can be clearly seen from a comparison 
of the amount of scatter in the χ2 curves shown in the top panels 
of Fig. 4 . The discrete nature of n GH in the parametric models and 
the respective weaker correlation between models with similar but 
not identical n GH suppresses the covariance term in the analogue 
of equation ( 27 ) for the parametric case. This leads to the jagged 
χ2 ( n GH ) curves in the parametric case – in contrast to the smooth 
χ2 ( αS ) in the non-parametric case. When the degree of correlation 
between the models is low, then both χ2 and m eff become noisy. 

As we have seen in Section 8.1 , the noise in m eff can be made 
arbitrarily small with a sufficiently large N boot , i.e. by averaging over 
different noise patterns in the artificial bootstrap data. The noise in 
χ2 can be reduced in an analogous way, but this requires repeated 
measurements, i.e. av eraging o v er different noise patterns in the 
actual data. 

This is illustrated in Fig. 9 where some of the parametric fit results 
that were already shown in Figs 4 and 5 are plotted again. Ho we ver, 
in addition to the results for the five individual mock data sets, we 
also show the respective averages over fits to 20 mock data sets. As 
expected, these averages become perfectly smooth. 5 

Note that the non-parametric fits do not suffer from such a strong 
dependence on the mock noise since they depend in a differentiable 
way on the respective parameter αS . The high degree of correlation 
between neighbouring models makes both the χ2 and the m eff terms 
well behaved in this case. The model selection via m eff is therefore 
very efficient to obtain the optimal smoothing in non-parametric 
models. 

9  SUMMARY  

We have introduced a simple data-driven method to optimize the 
smoothing of parametric and non-parametric models without the 
need of separate Monte Carlo simulations. The method builds on 
a generalized concept of effective number of parameters (Ye 1998 ; 
Lipka & Thomas 2021 ) that can be easily computed for each model 
based on bootstrap simulations (cf. equation 7 ). It quantifies the 
complexity of a model in a very flexible way that can be used in linear 
as well as non-linear models, in models with or without constraint 
equations for the parameters, and in models with or without penalties. 
In the simplest situation of a penalty-free model, it reduces to the 
classical number of fitted parameters m . 

We have shown that the concept of effective number of parameters 
naturally emerges when the classical ideas of model selection are 
extended to models that do not fulfil the maximum-likelihood 
condition. In this case, the classical AIC = χ2 + 2 m can be 
generalized to AIC p = χ2 + 2 m eff . For linear models, this holds 
exactly. The generalized AIC p can be applied to the large class of 
penalized maximum-likelihood models in particular. 

As an application of the generalized model selection for penalized 
models, we have tested two classes of fits to some mock data loosely 
inspired by the problem of fitting the shape of an emission line in a 
galaxy spectrum. The first model class is parametric and we showed 
how the generalized model selection leads to the reco v ery of the 
correct order of the fitting function. In this case, the results of the 
generalized model selection and the classical AIC are supposed to 
coincide and they indeed do. In our second example, we showed how 

5 In the context of equation ( 9 ), we here perform the expectation E y . 
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well the generalized model selection works to optimize the strength 
of a smoothing penalty in a non-parametric model. Note that for all 
the reco v eries presented in this paper, the code was not provided a 
value for the smoothing factor but determined the optimal smoothing 
purely by itself and the data. 

We have discussed in detail the efficiency of the method. While 
it does not require separate Monte Carlo simulations to calibrate the 
optimal smoothing, it requires bootstrap simulations to compute the 
ef fecti ve number of parameters. A great advantage of the method is 
that for smooth model functions the number of required bootstraps is 
very low, of the order of 10 or even less. Each bootstrap represents a fit 
to a new – bootstrapped – data set, meaning that the extra cost to opti- 
mize the smoothing is to do 10 rather than 1 fit per smoothing value. 

The generalized model selection has probably many astrophysical 
applications. In a previous paper, we have already experimented with 
the generalized model selection in the context of orbit superposition 
models with tens of thousands of parameters and non-linear smooth- 
ing (entropy) constraints. There, the best generalized model selection 
criterion was the one derived here and model selection turned out 
necessary to obtain unbiased model results (Lipka & Thomas 2021 ). 

In a companion paper, we will introduce a new spectral fitting 
code that makes use of the concepts discussed here to measure 
non-parametric line-of-sight velocity distributions of stars in 
galaxies (Thomas et al., in preparation). We anticipate that the 
method can be applied in many other situations like non-parametric 
deprojections (Magorrian 1999 ; de Nicola et al. 2020 ) or any other 
situation where substructure has to be separated from noise like in 
strong gravitational lensing. Moreo v er, it is not tied to smoothing 
problems. The strength of any penalty function can be optimized in 
the same way as outlined here. 
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APPENDI X  A :  T H E  EQUI VA LENCE  O F  m A N D  

m EFF IN  M O D E L S  W I T H O U T  A  PENA LTY  

The bootstrap data are constructed by adding noise to the best-fitting 
model obtained from the actual data. The χ2 of the bootstrapped data 
with respect to the original model reads 

χ2 
prior = 

N data ∑ 

i= 1 

( 

z κi − f i ( ̂  � y ) 

εi 

) 2 

. (A1) 

We call this quantity χ2 
prior because it represents the residuals prior to 

the bootstrap fit. χ2 
prior follows a χ2 distribution with N data degrees of 

freedom, i.e. E( χ2 
prior ) = N data . 

After the bootstrap fit, the χ2 with respect to the best-fitting model 
obtained from the bootstrapped data reads 

χ2 
posterior = 

N data ∑ 

i= 1 

( 

z κi − f i ( ̂  � 

κ
z ) 

εi 

) 2 

. (A2) 

To contrast it from the abo v e χ2 
prior we call it χ2 

posterior because it 
represents the residuals posterior to the bootstrap fit. For a linear 
model with m independent variables χ2 

posterior follows a χ2 distribution 
with N data − m degrees of freedom implying E( χ2 

posterior ) = N data − m . 
With some simple algebraic conversions, equation ( 7 ) can be 

written as 

E( m 

κ
eff ) = E( χ2 

prior ) − E( χ2 
posterior ) 

+ 

N data ∑ 

i= 1 

E 

[ ( 

f i ( ̂  � 

κ
z ) − z κi 

εi 

) ( 

f i ( ̂  � 

κ
z ) − f i ( ̂  � y ) 

εi 

) ] 

(A3) 

and further transformed into 

m eff = E( χ2 
prior ) − E( χ2 

posterior ) 

+ 

N data ∑ 

i= 1 

E 

[ ( 

f i ( ̂  � 

κ
z ) − z κi 

ε2 
i 

) 

f i ( ̂  � 

κ
z ) 

] 

−
N data ∑ 

i= 1 

E 

[ ( 

f i ( ̂  � 

κ
z ) − z κi 

ε2 
i 

) 

f i ( ̂  � y ) 

] 

. (A4) 

In the absence of a penalty P the mean of the fit is invariant under 
the bootstrap iterations, E( f i ( ̂  � 

κ
z )) = f i ( ̂  � y ) (Appendix B ). Since 

by construction E( z κi ) = f i ( ̂  � y ) the last sum of expectation values 
therefore vanishes. Moreo v er, without a penalty function it can also 
be shown that 
N data ∑ 

i= 1 

E 

( 

z κi f i ( ̂  � 

κ
z ) 

ε2 
i 

) 

= 

N data ∑ 

i= 1 

E 

( 

f i ( ̂  � 

κ
z ) f i ( ̂  � 

κ
z ) 

ε2 
i 

) 

(A5) 

(Appendix B ) meaning that also the first sum of expectation values 
in equation ( A4 ) vanishes. 

Hence, for linear models without constraints and penalties 

m eff = E( χ2 
prior ) − E( χ2 

posterior ) = m. (A6) 

This means that in the absence of a penalty term, m eff behaves 
exactly as the classical number of variables m . In this case, m is a 
measure of the responsiveness of the model to noise. The equality is 
no longer guaranteed when the parameter estimation is subject to a 
penalty term. 

APPENDI X  B:  SPECIFIC  PROPERTIES  O F  

LI NEAR  M O D E L S  

A linear model with m parameters can be represented by a matrix 
A and the parameter vector � = ( � 1 , . . . , � m ) such that the model 
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vector f = A � or, in index notation, 

f i = 

m ∑ 

k= 1 

A ik � k . (B1) 

The matrix A consists of the partial deri v ati ves of the model f with 
respect to the parameters � , 

∂f i 

∂� k 

= A ik . (B2) 

For simplicity, we assume uncorrelated Gaussian errors such that 
the log-likelihood of the model reads log L ∼ −χ2 / 2, where 

χ2 = ( y − A � ) T  

−1 ( y − A � ) . (B3) 

Here, y is the data vector and  is the v ariance–cov ariance matrix. 
At the fitted parameter values ˆ � y , the model reads 

f i ( ̂  � y ) = 

m ∑ 

k= 1 

A ik ̂
 � y,k (B4) 

and the bootstrap can be written as 

z κi = 

m ∑ 

k= 1 

A ik ̂
 � y,k + �z κi (B5) 

where �z κi is the bootstrap noise of iteration κ . Finally, 

f i ( ̂  � 

κ
z ) = 

∑ 

k 

A ik ̂
 � 

κ
z,k . (B6) 

The χ2 minimization implies 

N data ∑ 

i= 1 

( 

2( z κi − f i ( ̂  � 

κ
z )) 

ε2 
i 

∂f i 

∂� j 

(
ˆ � 

κ
z 

)
) 

= 0 . (B7) 

which for the linear models translates into the m equations 

N data ∑ 

i= 1 

2 

ε2 
i 

( 

m ∑ 

k= 1 

A ik ( ̂  � y,k − ˆ � 

κ
z,k ) + �z κi 

) 

A ij = 0 (B8) 

for j = 1, . . . , m . Taking the expectation value of the above over many 
bootstrapped data samples z, we can simplify using E( �z κi ) = 0 and 
with 

B kj = 

N data ∑ 

i= 1 

A 

T 
ki A ij (B9) 

and A ij = A ij /εi these m equations read 

m ∑ 

k= 1 

B kj E( ̂  � y,k − ˆ � 

κ
z,k ) = 0 . (B10) 

When the m variables are independent, the matrix A has maximum 

rank and B is a m × m matrix of rank m . Then, the bootstrap 
assumption E( f i ( ̂  � 

κ
z )) = f i ( ̂  � y ) follows because the expectation 

values E( ̂  � y,k − ˆ � 

κ
z,k ) have to be zero and E( ̂  � 

κ
z,k ) = 

ˆ � y,k implies 
E( f i ( ̂  � 

κ
z )) = f i ( ̂  � y ). Multiplying the m equations of the maximum- 

likelihood condition 
N data ∑ 

i= 1 

( 

2( z κi − f i ( ̂  � 

κ
z )) 

ε2 
i 

∂f i 

∂� j 

(
ˆ � 

κ
z 

)
) 

= 0 , (B11) 

j = 1, . . . , m , each by ˆ � 

κ
z,j 

N data ∑ 

i= 1 

( 

( z κi − f i ( ̂  � 

κ
z )) 

ε2 
i 

∂f i 

∂� j 

(
ˆ � 

κ
z 

)
) 

ˆ � 

κ
z,j = 0 , (B12) 

then 
N data ∑ 

i= 1 

m ∑ 

j= 1 

( 

( z κi − f i ( ̂  � 

κ
z )) 

ε2 
i 

∂f i 

∂� j 

(
ˆ � 

κ
z 

)
) 

ˆ � 

κ
z,j = 0 . (B13) 

and, thus, for linear models 

N data ∑ 

i= 1 

( 

z κi − f i ( ̂  � 

κ
z ) 

ε2 
i 

) 

f i ( ̂  � 

κ
z ) = 0 , (B14) 

which means that 
N data ∑ 

i= 1 

E 

( 

z κi f i ( ̂  � 

κ
z ) 

ε2 
i 

) 

= 

N data ∑ 

i= 1 

E 

( 

f i ( ̂  � 

κ
z ) f i ( ̂  � 

κ
z ) 

ε2 
i 

) 

. (B15) 

Under the condition of a penalized maximum-likelihood, the 
penalty function P modifies equation ( B7 ) to 

N data ∑ 

i= 1 

( 

2( z κi − f i ( ̂  � 

κ
z )) 

ε2 
i 

∂f i 

∂� j 

(
ˆ � 

κ
z 

)
) 

− αS 

∂ P 

∂� j 

= 0 . (B16) 

Consequently, even for linear models neither E( f i ( ̂  � 

κ
z )) = f i ( ̂  � y ) 

nor equation ( B15 ) can be assumed to hold in this case. 
For linear models as above 

∂ log L ( y| � ) 

∂� 

= ( y − A � ) T  

−1 A (B17) 

and 

∂ 2 log L ( y| � ) 

∂� 

2 
= −A 

T  

−1 A . (B18) 

For some parameter vector ˜ � , this implies 
(

∂ log L ( y| � ) 

∂� 

)
˜ � = ( y − f ( � )) T  

−1 f ( ̃  � ) (B19) 

and 

˜ � 

T 

(
∂ 2 log L ( y| � ) 

∂� 

2 

)
˜ � = −f ( ̃  � ) T  

−1 f ( ̃  � ) . (B20) 

In particular, the last expression does not depend on � but only on 
˜ � . 

For linear models, the definition of m eff (cf. equation 6 ) can be 
written as 

m eff = E z 

[ (
f ( ̂  � z ) − f ( ̂  � y ) 

)T 
 

−1 
(
z − f ( ̂  � y ) 

)] 
. (B21) 

This paper has been typeset from a T E 
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X file prepared by the author. 
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