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Zusammenfassung

Planeten bilden sich aus interstellaren Staubteilchen von Submikrometer Größen bis hin zu
Tausenden von Kilometern großen Gasriesen, die sich über zwölf Größenordnungen erstrecken.
Der vorherrschende theoretische Weg beginnt mit der Koagulation von mikrometergroßem in-
terstellarem Staub zu Kiesel. Die Streaming Instability kann dann dichte Filamente erzeugen
und der anschließende Gravitationskollaps bildet Planetesimale. Da die Planetesimale gravi-
tativ mit den Kiesel in der protoplanetare Scheibe interagieren, wachsen sie durch die Kiesel-
Akkretion zu Planetenkernen, die schließlich Gas akkretieren und zu Gasriesen anwachsen. Ob-
wohl jeder Schritt der Planetenentstehung im Detail untersucht wurde, bleiben viele Heraus-
forderungen bestehen, wenn es darum geht, diese Schritte zu einem Modell der Entstehung des
Sonnensystems oder der vielfältigen Population von Exoplanetensystemen zusammenzufügen.
Diese Arbeit präsentiert die Entwicklung von Planetenbildungsmodellen, die die Scheibenen-
twicklung mit der N-Körper-Gravitation kombinieren, einschließlich der oben genannten Entste-
hungsprozesse in verschiedenen Stadien. Zunächst zeigt ein glattes Scheibenmodell mit an-
fänglichen Planetesimalen, dass Planetenkerne eine signifikante Migration nach innen erfahren
werden, die die Entstehung von Riesenplaneten wie im Sonnensystem verhindert. Dieses Mod-
ell ging nicht auf das Problem ein, dass der Staub in der Scheibe möglicherweise nicht derart
konzentriert ist, dass er das durch die Streaming Instability vorgegebene Kriterium zur Bildung
von Planetesimalen erfüllt. Motiviert durch die jüngsten Beobachtungen von Staubringen in pro-
toplanetaren Scheiben wird ein vollständiger Scheibenmodell einschließlich der Staubentwick-
lung entwickelt und eine anfängliche Scheibenunterstruktur festgelegt. In diesem Fall wird die
Bildung von Planetesimalen durch das Modell erfasst, wobei der Staubring die erforderliche
Voraussetzung für die Streaming Instability bietet. Das anschließende Wachstum durch Kiesel-
Akkretion ist dank der erhöhten Staubdichte ebenfalls effizient. Das Migrationsproblem wird
verhindert und Planetenkerne bleiben in der Nähe des durch die Scheibenunterstruktur verur-
sachten Druckanhäufung. Am äußeren Rand der Lücke, die durch einen vollständig ausgebilde-
ten Gasriesen geöffnet wird, wird eine ähnliche Umgebung reproduziert, die die Entstehung der
nächsten Planetengeneration einleiten kann und somit ein Szenario der sequenziellen Planete-
nentstehung darstellt. Schließlich wird die Scheibenauflösung durch interne Photoevaporation
in das Modell aufgenommen. Die vorläufigen Ergebnisse zeigen einen Weg zur Bildung kleiner
Körper des Sonnensystems, wie sie im Kuiper Belt zu finden sind, während der Endphase der
Scheibe. Zukünftige Erweiterungen des Modells werden ebenfalls am Ende dieser Arbeit disku-
tiert.





Abstract

Planets form from interstellar grains of sub-micron to gas giants of thousands of kilometres,
which span over 12 orders of magnitude in size. The prevailing theoretical pathway starts from
coagulation of micron-sized interstellar dust to form pebbles. The streaming instability can then
induce dense filaments and the subsequent gravitational collapse forms planetesimals. As the
planetesimals interact gravitationally with the pebbles in the planetary disc, pebble accretion
grows them to form planetary cores, which finally accrete gas to form gas giants. Although
each step of planet formation has been studied extensively, many challenges remain in assem-
bling them to model the formation of the Solar System or the diverse population of exoplanetary
systems. This thesis presents the development of planet formation models that combined disc
evolution with the N-body gravity including the above formation processes at various stages.
First, a smooth disc model with initial planetesimals shows that planetary cores shall experience
significant inwards migration that prevent the formation of Solar-System like giant planets. And,
this model did not address the problem that dust in the disc may not be concentrated to fulfil the
criterion imposed by the streaming instability to form planetesimals. Motivated by the recent
observations of dust rings in protoplanetary discs, a more complete disc model including dust
evolution is adopted and an initial disc substructure is imposed. In this case, the formation of
planetesimals is captured by the model, where the dust ring provides the required condition for
the streaming instability. Subsequent growth by pebble accretion is also efficient thanks to the
enhanced dust density. The migration problem is prevented and planetary cores remain near the
pressure bump induced by the disc substructure. At the outer edge of the gap opened by a fully
formed gas giants, similar environment is reproduced, which can induce the formation of the
next generation of planet, demonstrating a scenario of sequential planet formation. Finally, the
disc dispersal by internal photoevaporation is incorporated to the model. The preliminary results
show a pathway to form solar system small bodies during the final stage of the disc. Future
extensions of the model are discussed as well at the end of this thesis.
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Chapter 1

Introduction

Since antiquity, continuous attempts have been made to explain the origin of the Solar System
and its evolution. While the earliest theories typically have religious and philosophical roots,
they marked the start of the understanding about our cosmic neighbourhood. Following the
scientific revolution in the early modern period, Kant published ‘Universal Natural History and
Theory of the Heavens’ in 1755. He proposed a general picture that stars and planets are formed
in rotating and collapsing gaseous clouds, which is known the nebular hypothesis. Laplace, in
1796, elaborated further on this hypothesis by considering angular momentum conservation. In
his model, the nebula begins as a rotating spherical cloud, which then collapses and flattens
along the spin axis into a disc. Centuries later in 1969, Safronov published ‘Evolution of the
Protoplanetary Cloud and Formation of the Earth and the Planets’, where he described the major
processes, marked the broth of the modern planet formation theory.

The next chapter (Chapter 2) reviews the prevailing understanding of planet formation, which
leads to the open questions that motivated this thesis. It is followed by three published works
that attempted to build a planet formation model by combining these processes (Chapter 3 to
5), which are arranged logically. Afterwards, Chapter 6 presents the on-going work on the final
stages of planet formation. Finally, Chapter 7 summarizes these works and presents an outlook
on possible pathways for further progress in modelling planet formation.
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Chapter 2

Theoretical Background

From the observations of extinction caused by the interstellar medium, Mathis et al. (1977) found
a good fit of the particle size distribution, commonly known as the ‘MRN distribution’, where the
maximum size is about 1 µm. Meanwhile, the radius of Jupiter is about 7 × 107 m. This implies
that planet formation spans over 13 orders of magnitude in length, which can be divided into
multiple stages. First, the next section introduces the current understanding of protoplanetary
disc, the birth place of planets. Then, the subsequent sections present the current theories in each
of the stages of planet formation respectively.

2.1 Protoplanetary disc

2.1.1 Young stellar objects

Well before protoplanetary discs were observationally resolved, the observations of the cores in
molecular cloud are consistent with the existence of accreting discs around young stars. From the
spectral energy distributions, the infra-red excess on top of the stars’ blackbody radiation sug-
gests heated dust near the star in the disc, while the ultra-violet excess indicates high-temperature
regions on the stellar surface suggesting accretion. Lada & Wilking (1984) surveyed the ρ Ophi-
uchi dark cloud and grouped them into three classes of young stellar objects based on the slopes
of the spectral energy distribution, or spectral indices, in the infra-red wavelengths, which can be
defined as

αIR ≡
d log(λFλ)

d log λ
(2.1)

for a wavelength λ between 10 and 1 µm, and Fλ is the flux per unit wavelength. The three classes
include: Class 0, in which there is no flux in the near infra-red wavelengths and the distribution
is effectively a reddened blackbody; Class I, in which αIR is positive to zero; and, Class II: in
which αIR is negative and the classical T Tauri stars belongs to this class.

Adams et al. (1987) further interpreted this as a theoretical evolution sequence. As a cloud
begins to collapse, the star and the protoplanetary disc are well embedded in a dust envelope with
continuous infalls. The flux from the star cannot be observed directly and is reprocessed through
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heating of the dust in the cloud, which results in the observed spectral energy distributions for the
Class 0 objects. As infall terminates due to stellar wind, the star becomes more apparent while
the disc remains, which observationally evolves to a Class I object and then to a Class II one.
Class III can be further defined for young stellar objects with little to no infra-red excess, which
indicates the depletion of the disc.

The prevailing planet formation theories, as present in the following, typically starts with the
Class II stage, where the protoplanetary disc is generally isolated from infalls. Nonetheless, there
are suggestions that planet formation may begin also in the Class I stage while a consensus has
yet been established.

2.1.2 Structure
The structure of the protoplanetary disc is crucial to planet formation. The following, the key
physical features are reviewed.

Vertical structure

Let us consider a protoplanetary disc that have the mass Mdisc which is much smaller than the
stellar mass M∗. The disc is also symmetric about the midplane and thin, where the height above
the midplane z is much smaller than the distance from the star r. Considering vertical hydrostatic
equilibrium, the pressure gradient with respect to z is

dP
dz
= −ρggz, (2.2)

where the gas density at z is ρg. And, gz is the vertical component of gravity at z, which is

gz =
GM∗

(r2 + z2)3/2 z ≈ Ω2
Kz, (2.3)

with the gravitational constant G and the Keplerian orbital frequency ΩK =
√

GM∗/r3. If we
further assume that the gas is ideal and is vertically isothermal, we can apply the equation of
state

P = ρgc2
s (2.4)

with the speed of sound cs. Eliminating P in Eq. (2.2) yields the solution

ρg = ρ0e−z2/2H2
g

with the vertical scale height
Hg ≡

cs

ΩK
. (2.5)

The gas density at midplane ρ0 can also be expressed as

ρ0 =
1
√

2π

Σg

Hg
(2.6)
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with the vertically integrated gas surface density Σg. From the definition of Hg, we can further
express the aspect ratio, or the reduced scale height, as

ĥg ≡
Hg

r
=

cs

3K
(2.7)

with the local Keplerian velocity 3K = rΩK. If the radial disc temperature profile is parameterized
by T ∝ r−qT , and cs ∝ T 1/2 for ideal gas, then

ĥg ∝ r(1−qT )/2. (2.8)

Therefore, for qT < 1, the disc is flared, which is also the typical case as shown below on the
temperature profile.

Temperature profile

Although it is oversimplifying, let us first assume that stellar irradiation dominates heating of the
disc, which is also called a passive disc. For r much larger than the stellar radius R∗, it is also
valid to assume that the star is a point source of radiation. Without a disc, the stellar flux at r is

F∗ =
L∗

4πr2 , (2.9)

where the luminosity of the star given by

L∗ = 4πR2
∗σSBT 4

∗ (2.10)

with the Stefan-Boltzmann constant σSB and the surface temperature of the star T∗. When a
disc is considered, assuming the inner edge is close to the stellar surface, a disc surface element
only receives half of this radiation since only half of the star is visible (Dullemond et al. 2001).
Therefore, the flux received by a unit area of the disc surface inclined at a small angle ϕ is

Q+ =
1
2
ϕF∗. (2.11)

And, the blackbody radiation emitted by a unit area of the disc surface is

Q− = σSBT 4 (2.12)

with the disc temperature T . By equating Q+ and Q−, it yields an expression for T that is

T =
(

ϕL∗
8πr2σSB

)1/4

∝ r−1/2. (2.13)

This is consistent with Eq. (2.8) for a flaring disc.



6 2. Theoretical Background

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r/r0

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Σ

g
π
r2 0
/m

Figure 2.1: The evolution of the surface density Σg due to the viscous spreading of an annulus of mass m initially
at r = r0 according to the solution by Pringle (1981). Each line corresponds to the dimensionless time log2 t̃ =
{−7,−6,−5,−4,−3,−2,−1} from the top down. The solutions show that mass flows inwards while the angular
momentum is carried by an infinitesimal amount of mass outwards to infinity.
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Figure 2.2: The self-similar solutions of a disc that initially has a characteristic size of r̃1 and is evolving with the
advection-diffusion equation. Each line corresponds to the dimensionless time t̃ν = {1, 2, 4, 8} with a decreasing
surface density at r̃1 = 1.
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2.1.3 Evolution

Solutions

The ultra-violet excess in the spectral energy distribution of young stellar objects implies accre-
tion. For a parcel of gas in the disc, the radial forces are gravity, the radial pressure gradient force
and the centrifugal force, which are balanced by

32g,ϕ

r
=

GM∗
r2 +

1
ρ0

dP0

dr
. (2.14)

In the case that the pressure in the midplane P0 can be parameterized by P0 ∝ rk, for some
constant k,

dP0

dr
= −

d log P0

d log r
P0

r
(2.15)

with the azimuthal velocity of the gas 3g,ϕ. With P0 = ρ0c2
s , Eq. (2.14) can then be rewritten as

3g,ϕ = 3K
√

1 − 2η (2.16)

with the midplane pressure gradient parameter, or the sub-Keplerity of the gas, defined by

η ≡ −
ĥ2

g

2
d log P0

d log r
. (2.17)

Although, typically, ĥg ≪ 1, the small deficit in the azimuthal velocity of the gas relative to
the Keplerian velocity shall become significant when considering the motion of dust in the disc,
which is discussed in the next section (Sec. 2.2). Limiting the discussion to the gas, the specific
angular momentum of the gas is well-approximated by that of the local circular Keplerian orbit,
which is

l =
√

GM∗r. (2.18)

Since it increases with r, the gas has to lose angular momentum to be accreted. This can be
achieved by the redistribution of angular momentum due to viscous torque.

Pringle (1981) provided a review on the steady accretion of discs and the analyses are sum-
marized in the following. First, let us consider an axis-symmetric disc with the surface density
Σg(r, t) and the radial velocity 3r(r, t) that depend on time t. The continuity equation reads

r
∂Σg

∂t
+
∂

∂r
(rΣg3r) = 0. (2.19)

And, the conservation of angular momentum yields

r
∂(Σgr2Ω)

∂t
+
∂

∂r
(rΣg3r · r2Ω) =

1
2π
∂Gν

∂r
(2.20)
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with the angular velocity of the disc Ω. The viscous torque acting on a disc annuli by the neigh-
bouring outer one Gν is given by

Gν = 2πr · νΣgr
dΩ
dr
· r (2.21)

with the kinematic viscosity ν.
To evaluate the steady accretion rate, we can apply the condition that the partial time deriva-

tives equal zero to the continuity equation and the angular momentum equation respectively.
With Eq. (2.19), this yields a constant accretion rate given by

Ṁdisc = −2πrΣg3r. (2.22)

With Eq. (2.20), this yields

−
Ṁdisc

2π
r2Ω = νΣgr3 dΩ

dr
+ k′, (2.23)

where k′ is a constant. Close to the star, the angular velocity of the disc has to decrease from
the Keplerian angular velocity to the spin angular velocity of the star. Therefore, there exists a
location r0 where dΩ/dr = 0 that can be taken as a boundary condition. Assuming Ω ≈ ΩK at r0,

k′ = −
Ṁdisc

2π
r2

0

√
GM∗

r3
0

(2.24)

and Eq. (2.23) becomes

Σg =
Ṁdisc

3πν

(
1 −

√
r0

r

)
. (2.25)

Far away from r0, this means a surface density is defined for a given accretion rate by Σg =

Ṁdisc/3πν.
Eliminating Gν and 3r and assumingΩ ≈ ΩK with Eq. (2.19) & (2.20), it yields the advection-

diffusion equation, which is
∂Σg

∂t
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(νΣgr1/2)

]
, (2.26)

implying

3r = −
3
Σgr1/2

∂

∂r
(Σgνr1/2). (2.27)

While ν likely depends on the local disc condition, or is a function of Σg, t and r, the advection-
diffusion equation can be solved analytically if ν is constant or is described by a power law in r.
In the former case of constant ν, if we define

x ≡ 2r−1/2 (2.28)

y ≡
3
2
Σgx, (2.29)
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then Eq. (2.26) can be rewritten as
∂y
∂t
=

12ν
x2

∂2y
∂x2 . (2.30)

It has the form of a diffusion equation with the diffusion coefficient

D =
12ν
x2 . (2.31)

The diffusion timescale is given by x2/D, which is, for a disc with length scale rdisc,

τdisc =
r2

disc

3ν
(2.32)

in physical quantities.
To illustrate the transportation of mass and momentum in the disc, Lynden-Bell & Pringle

(1974) considered the solution corresponds to an annulus of mass m at r = r0 initially, where the
initial surface density is given by

Σg(r, t = 0) =
mδ(r − r0)

2πr0
. (2.33)

In terms of
r̃0 ≡

r
r0

(2.34)

and
t̃ ≡

12ν
r2

0

t, (2.35)

the solutions reads

Σg(r̃0, t̃) =
m
πr2

0

1
t̃
r̃−1/4

0 exp
(
−

1 + r̃2
0

t̃

)
I1/4

(
2r̃0

t̃

)
, (2.36)

where I1/4(x) is the modified Bessel function of the first kind. Figure 2.1 shows the solutions for
log2 t̃ = {−7,−6,−5,−4,−3,−2,−1} with the peak decreases with increasing t̃. As the annulus
evolves in time, its mass flows towards the star while the angular momentum is carried by an
infinitesimal amount of mass towards infinity.

To illustrate the global evolution of a disc, the assumption of a kinematic viscosity is relaxed
and described by

ν ∝ rk (2.37)

with a constant k. In the case that the disc initially has a characteristic size r1 with a steady state
accretion in the limit that r < r1, a solutions at reads

Σg(r̃1, t̃ν) =
C

3πν1r̃k
1

t̃−(5/2−k)/(2−k)
ν exp

[
−

r̃2−k
1

t̃ν

]
(2.38)

where
r̃1 ≡

r
r1
, (2.39)
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t̃ν ≡
t
ts
+ 1, (2.40)

ν1 ≡ ν(r1) (2.41)

and

ts ≡
1

3(2 − k)2

r2
1

ν1
. (2.42)

Here, C is a normalization constant. This solution is also self-similar as the form as shown in Eq.
(2.38) can always be obtained at different times. Figure 2.2 shows the solutions for t̃ν = {1, 2, 4, 8}
with the surface density at r̃1 = 1 decreases with increasing t̃ν.

For the case of k = 1, Eq. (2.38) can be rewritten as

Σg(r, t̃ν) =
C

3πν1
t̃−5/2
ν

(
r
rc

)−1

exp
(
−

r
rc

)
(2.43)

with the time-evolving characteristic radius rc = r1 t̃ν. Integrating 2πrΣg with respect to r from 0
to∞ gives the disc mass

Mdisc =
2Cr2

1

3ν1
t̃−1/2
ν . (2.44)

With the radial velocity given by Eq. (2.27) and the solution given by Eq. (2.43), the radial
velocity of the gas in the disc can be expressed as

3r = −
3ν
r

(
1
2
−

r
rc

)
. (2.45)

This shows that the mass is moving inwards for r < rc/2 and outwards otherwise. The location
of transition also moves outwards as rc increases with time.

The Shakura-Sunyaev α-disc model

The molecular viscosity in a typical disc can be shown to be too small to account for the observed
evolution timescale. The kinematic viscosity of a gas with a mean free path λ can be estimated
by

ν = λcs. (2.46)

The mean free path is given by λ = 1/nσ with the number density n and the cross-section σ. As
an example, a disc around a Solar-type star typically has Σg = 103g cm−2 and ĥg = 0.03 at 1 au.
The cross-section of a hydrogen molecule is about 10−15cm2. Assuming a mean molecular mass
of 2.3 times of the mass of a proton, the above gives

ν ∼ 105cm2 s−1. (2.47)

With Eq. (2.32), the corresponding evolution timescale is

τdisc ∼ 1012yr, (2.48)
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which is more than 10 times the age of the universe.
To account for the required viscosity, Shakura & Sunyaev (1973) suggested that the turbu-

lence in the disc provides an effective viscosity. Since the maximum scale of turbulent cells is
that of the local disc scale height hg, and the maximum turbulent velocity is in the scale of cs, the
effective turbulent viscosity can be parameterized as

ν = αcsh, (2.49)

where α is a dimensionless parameter measuring the efficiency of the turbulence in transporting
angular momentum. From observations of discs around T Tauri stars, Hartmann et al. (1998)
estimated that α ∼ 10−2 for the typical evolution timescale of 1 Myr and the typical disc size of
100 au.

2.1.4 Disc dispersal
The self-similar solution (Fig. 2.2) show that the disc becomes larger and thinner gradually in
time. Meanwhile, Luhman et al. (2009) observed a disc population in the Taurus star formation
region and showed that there is a clear distinction between the young discs and the evolved
discs. Also, there are some discs that show a large cavity. Physically, this can be explained by
photoevaporation caused by the ionization of the gas molecules (Bally & Scoville 1982; Shu
et al. 1993; Hollenbach et al. 1994). Mass-loss occurs when the gas on the disc surface is heated
to a sound speed cs,heat that exceeds the local escape velocity, which occurs beyond the radius

rg =
2GM∗
c2

s,heat

. (2.50)

For example, the ionization due to extreme ultraviolet typically heats the disc surface to about
104 K resulting in a sounds speed cs,heat ∼ 10 km s−1. For a Solar-mass star, mass loss occurs
beyond rg ≈ 17 au. Alexander et al. (2006) presented a physical picture that mass loss due to
photoevaporation is not significant initially as the disc accretion rate is high. After a few million
years, when the disc accretion rate drops and becomes comparable to the mass loss rate, a cavity
is opened near rg. As the gas supply from the outer disc is shut off, the inner disc is quickly
accreted on the order of 0.1 Myr. When the inner disc is fully accreted, a large cavity is opened
and the inner edge of the outer disc is directly heated by the star, which rapidly disperses the
outer disc.

2.2 Dust

2.2.1 Radial drift
As discussed in Sect. 2.1.3, the azimuthal velocity of the gas in a disc has a slight deficit with
respect to the local Keplerian velocity due to the radial pressure gradient. Meanwhile, dust in the
disc is not supported by the gas pressure. Depending on the dust properties, it may experience a
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significant drag force from the gas. Weidenschilling (1977) evaluated this effect and the analyses
are summarized below.

For a spherical dust particle with a radius a and a relative velocity ∆3 with respect to the gas,
the aerodynamic drag force is given by

FD = −
1
2

CDπa2ρg∆3
2. (2.51)

The drag falls in the Epstein regime if the Knudsen number Kn ≡ λ/a > 4/9. The form of the
drag coefficient is given by

CD =
8
3
3̄

3
(2.52)

with the mean thermal velocity of the gas 3̄ = cs
√

8/π. For larger particles, where Kn ≤ 4/9, the
drag falls into the Stokes regime instead. The form of CD is a piecewise function of the Reynolds
number Re ≡ 2a∆3/ν (Whipple 1972), which is

CD =


24Re−1 for Re < 1;
24Re−0.6 for 1 < Re < 800;
0.44 for Re > 800.

(2.53)

Nakagawa et al. (1986) provided the equations of motion of the dust and the gas in the inertial
frame that read

∂3d
∂t
= −
3d − 3g

tstop
−Ω2

Kr (2.54)

∂3g

∂t
= − ϵ

3g − 3d

tstop
−Ω2

Kr −
∇P
ρg
, (2.55)

where the dust and gas velocities are 3d and 3g respectively, and the volumetric dust-to-gas ratio
is ϵ ≡ ρd/ρg. The stopping time of the dust is defined by

tstop ≡ |md∆3/FD| (2.56)

with the mass of a dust particle md. In the limit of a steady state and the azimuthal velocities
being close to the Keplerian velocity, the derivations yields the radial velocity of the dust that is

3d,r = −
2η3K

St + St−1(1 + ϵ)2
(2.57)

with the Stokes number St ≡ tstopΩK. The radial drift is the fastest for dust with St = 1. The
dust that experiences significant drift has typically grown beyond the micron-size regime, which
is also called pebble in the literature to emphasize its aerodynamical property. For example, in a
disc around a Solar-type star at 10 au, the sub-Keplerity of the gas η ∼ 10−3, which translates to
a radial drift velocity of 200 m s−1 or a decay timescale of 104 years.
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2.2.2 Growth
Due to the relative velocity between dust particles, collisions occur, which can lead to growth,
bouncing or fragmentation depending on the impact velocity and dust properties. From numerical
modelling, Wada et al. (2013) found a relation for the critical relative velocity below which
collision results in net growth. For icy dust particles, the critical relative velocity is

3frag ≈ 80
(

a
0.1µm

)−5/6

m s−1, (2.58)

and it is 10 times smaller for silicate dust particles. This is also in agreement with laboratory
experiments by, for example, Wurm et al. (2005); Güttler et al. (2010); Schräpler & Blum (2011).
The growth by coagulation is usually stopped at the centimetre- to metre-regime, which is also
the same regime for peak radial drift of dust. These limits are collectively known as the metre-
size barriers in the literature that prevents dust from growing in kilometre-sized planetesimals
simply by coagulation. Detections of a substantial amount of millimeter- to centimeter-sized
dust grains in discs (Testi et al. 2003; Wilner et al. 2005) is also consistent with such barriers.

To further quantify this, the barriers can be expressed as Stokes numbers. Typically, the
relative velocity is dominated by turbulent velocity. In the Epstein regime of drag and small St,
the turbulent fragmentation barrier is (Ormel & Cuzzi 2007)

Stfrag =
1

3α

(
3frag

cs

)2

. (2.59)

When the radial drift timescale is comparable to the growth timescale, the dust particle is readily
removed. This condition gives the radial drift barrier (Birnstiel et al. 2012)

Stdrift =
Z
2η

(2.60)

with the surface dust-to-gas ratio Z.

2.3 Planetesimals

2.3.1 Formation
Although dust growth is limited by the the metre-size barriers, gravitational collapse models
provide a leap from pebble to planetesimals. However, forming rocky planetesimals directly
from a gravitationally-unstable dust disc, or through the Goldreich-Ward mechanism (Goldreich
& Ward 1973), is unlikely in a typical disc environment. Such a dense dust disc shall trigger
the Kelvin-Helmholtz instability at the boundary between the dust, which rotates nearly at the
Keplerian velocity, and the gas above it, which rotates at a sub-Keplerian velocity (Cuzzi et al.
1993). The settling of a dense dust disc is prevented as a result.

The streaming instability (Youdin & Goodman 2005; Johansen & Youdin 2007) has been the
prevailing mechanism for planetesimal formation. It leads to dense filaments of dust in the disc
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that subsequently collapse gravitationally into planetesimals. To trigger this process, a midplane
dust-to-gas ratio of order unity is required. In support of this mechanism, Nesvorný et al. (2019)
further showed that the streaming instability can also produce a distribution of binary orientations
that is in good match to that of the cold classical binaries in the Kuiper belt.

Squire & Hopkins (2020) provided a physical picture, which is summarized in the following.
As a dust clump drifts inwards, the back-reaction drags gas along with it. In the frame of the
overall radial drift of the dust, the gas is then deflected azimuthally in the direction of disc
rotation due to the Coriolis force, which also pushes the dust azimuthally causing outwards
motion relative to the overall drift. This results in an enhanced dust density and the process
repeats.

For the resulting planetesimals, Johansen et al. (2015) conducted a series of local shearing
box simulations and fitted the mass distribution of planetesimals with a simple power law. The
differential distribution of planetesimal mass m reads

dN
dm
∝ m−p (2.61)

with p ≈ 1.6. Simon et al. (2016, 2017) and Abod et al. (2019) further tested the effects of res-
olution, the Stokes number of the dust particles, the relative strength of self-gravity with respect
to shear and the radial pressure gradient. They found similar fitting to the mass distribution of
planetesimals, which is also independent of these factors. Nonetheless, Abod et al. (2019) also
showed that a truncated power-law gives a better fit. In the cumulative form, the mass distribution
is

N(> m) = Cm−p+1 exp
(
−

m
m0

)
(2.62)

with the normalization constant C and the characteristic mass m0. In general, these works are
successful in forming planetesimals of 102 to 103 km in size under typical disc conditions.

2.3.2 Growth
Planetesimal accretion

Formation of planets through planetesimal accretion is a long-standing topic in the field. Kokubo
& Ida (1998, 2000) conducted a range of N-body simulations to study the evolution and growth
of a swarm of planetesimals. Their results showed a stage of runaway growth at the beginning,
where the more massive ones grow faster. As the protoplanets reach about 50 times the mass of
the planetesimals, significant dynamical heating occurs to the nearby planetesimals increasing
their velocity dispersion. This slows down accretion and the growth becomes oligarchic. Orbital
repulsion further causes the massive protoplanets to be separated by 5 to 10 Hill radii, which is
defined by

rH =

(
m

3M∗

)1/3

a(1 − e) (2.63)

with the semimajor axis a and the eccentricity e of the orbit. This results in a bimodal distribution
of bodies that consists of a few protoplanets and a swarm of planetesimals. Further estimation
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from the results shows that it requires ∼ 40 Myr at 5 au to form a 5 M⊕ core. As a core of about 10
M⊕ is required by the core accretion model to form giant planets, planetesimal accretion cannot
form such core within the disc lifetime to accrete gas. While the formation of terrestrial planets is
not constrained by disc dispersal, an alternative path to grow planetesimals efficiently is required
to form giant planet.

Pebble accretion

Instead of pair-wise accretion of planetesimals, Ormel & Klahr (2010) and Lambrechts & Jo-
hansen (2012) considered the scenario that the planetesimals co-exist with the leftover dust in
the disc. They showed that the growth is significantly more efficient than planetesimal accretion
and this mechanism is referred to as pebble accretion in the literature (see Johansen & Lam-
brechts 2017; Ormel 2017, for review). Physically, a dust particle in the disc experiences both
gas drag and the gravitational force during an encounter with a planetesimal. When the en-
counter is strong, the dust particle is deflected significantly from the gas streamline. As a result,
the particle experiences strong gas resistance, which then loses kinetic energy and settles onto
the planetesimal.

To quantify this, let us consider the three relevant timescales: a) the encounter time tenc be-
tween the planetesimal and the dust particle; b) the settling time tset required by the dust particle
to settle onto the planetesimal, and; c) the stopping time tstop that describes the strength of aero-
dynamics for the dust particle. For a dust particle approaching a planetesimal of mass m along
the gas streamline with impact parameter b and the approach velocity 3∞,

tenc =
2b
3∞
, (2.64)

and

tset =
b3

Gmtstop
. (2.65)

As it is more fundamental describe the dust particle with its aerodynamical size, or the Stokes
number, the stopping time is expressed as

tstop =
St
ΩK

. (2.66)

For pebble accretion, the conditions of tstop < tenc and tset < tenc are required.
In the limit that the planetesimal is in a circular Keplerian orbit and the dust is initially

following the gas streamline, the approach velocity 3∞ of a pebble is given by

3∞ ≈ η3K +
3
2
ΩKb. (2.67)

Depending on the relative magnitude of the two terms, this can be divided into two regime. For
large b or small m, the approach velocity is dominated by the Keplerian shear, which is referred
to as the shear or the Hill limit. For small b or large m, the approach velocity is dominated by the
sub-Keplerity of the gas instead, which is referred to as the headwind or the Bondi limit.
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In the shear limit, tenc is smaller than 1/ΩK. Therefore, for dust particles with St < 1, the
requirement of tstop < tenc is always satisfied. With tenc ∼ 1/ΩK and tset = tenc, this yields an
accretion cross section

bsh ∼ St1/3rH, (2.68)

which is about 22% of rH for St of 10−2 and is much larger than the planetesimal’s physical
radius.

In the headwind limit, with 3∞ = η3K, the requirement of tstop < tenc is not always fulfilled.
However, we have to use the second requirement of tset < tenc to retrieve the accretion cross
section bhw, which is given by

bhw ∼ a

√
2St
η

m
M∗

. (2.69)

Returning to the first requirement, it results in a critical planetesimal mass, or the pebble accretion
onset mass, mPA,hw, which is given by

mPA,hw =
1
8

Stη3M∗. (2.70)

For St = 10−1, η = 10−3 and a Solar-mass star, mPA,hw ∼ 10−5M⊕.
While the simple analysis above assumes that the planetesimal is in a circular orbit, which

may not be true in a swarm of planetesimals due to dynamical heating. The prescription by Liu
& Ormel (2018) and Ormel & Liu (2018) further relaxed such assumption. The consequences
are investigated and discussed in Chapter 3 (Lau et al. 2024b) and Chapter 4 (Lau et al. 2022).

As the planetesimal grows into a planetary core of substantial mass, a gap shall open in the
disc that causes a radial pressure maxima externally when rH ≳ Hg (Lin & Papaloizou 1986).
The supply of pebble from the outer disc is then interrupted and pebble accretion stops, which is
referred to as pebble isolation in the literature. From the gap opening condition that is approxi-
mated by m/M∗ > ĥg, the pebble isolation mass is

miso ≈ 40
(

M∗
M⊙

)  ĥg

0.05

3

M⊕. (2.71)

Lambrechts et al. (2014) and Bitsch et al. (2015a) further suggested a factor of 0.5 to miso based
on radiative hydrodynamical simulations. As pebble accretion terminates, gas can cool around
the planetary core and become gravitationally bound.

2.4 Planets

2.4.1 Gas accretion
To form giant planets, there are two prevailing theories: the core accretion model (Mizuno 1980;
Bodenheimer & Pollack 1986; Pollack et al. 1996), and the gravitational collapse model (Kuiper
1951; Cameron 1978; Boss 1997). In the context of the Solar system, the giants planets are
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very likely formed through core accretion due to their masses. In the disc, a planetary core of
about 10M⊕, which mainly consists of solid, is required to start accreting a gas envelope. At the
beginning, hydrostatic equilibrium is maintained in the envelope by the energy released by solid
accretion and the Kelvin-Helmholtz contraction envelope. This stage is also referred to as the
thermal contraction phase. When the core reaches a critical mass, the hydrostatic equilibrium can
no longer be maintained and the runaway gas accretion phase starts, where the envelop contracts
on its Kelvin-Helmholtz timescale. As it is a runaway process, gas accretion stops only when a
deep gap is opened in the disc, which limits the gas supply, or when the gas disc itself disperses.

The calculations by Bodenheimer & Pollack (1986) shows that the critical core mass equals
the envelope mass assuming a constant core growth rate. In a more detailed calculation by Ikoma
et al. (2000), they showed that there is no clear distinction, but a gradual transition between
the two phases as shown by the growth rates of the core mass and the envelope mass. They
further shows that the critical core mass depends on the core growth rate and the opacity of the
envelope, which is roughly a few times larger than the envelope mass for the adopted parameters.
Nonetheless, they also considered the case of halted core growth, which is applicable when both
pebble accretion and planetesimal accretion stop. And, they arrived at a similar critical core mass
as that in Bodenheimer & Pollack (1986).

For the gas accretion rate in the thermal contraction phase ṁcool, Bitsch et al. (2015b) ex-
tracted the calculation results in Piso & Youdin (2014) as

ṁcool ≈ 4.375 × 10−9
(

κ

cm2 g−1

)−1 (
ρc

5.5 g cm−3

)−1/6

×(
mc

M⊕

)11/3 (
men3

M⊕

)−1 ( T
81K

)−1/2

M⊕yr−1,

(2.72)

with the opacity of the gas envelope κ, the density of the core ρc, the core mass mc and the
envelope mass men3. As ṁcool ∝ 1/men3, the growth of the envelope is orderly.

In the runaway gas accretion phase, where men3 > mc, the envelope grows at the Kelvin-
Helmholtz timescale, which is (Ikoma et al. 2000)

τKH = 10b

(
m

M⊕

)−c (
κ

1 cm2 g−1

)
yr (2.73)

with b ≈ 8 and c ≈ 2.5. Meanwhile, in the literature, Bryden et al. (2000) gave b ≈ 10 and
c ≈ 3.0, and Ida & Lin (2004) adopted b = 9 and c = 3. The mass accretion rate is then given by

ṁrunaway =
m
τKH

. (2.74)

As ṁrunaway ∝ mc with c ≈ 2.5 or 3, the growth is runaway.
The gas accretion rates in both cases are proportional to the opacity envelope. In general, it

depends on the disc conditions and the dust processes within the envelope. This is still an active
field of research (e.g. Szulágyi et al. 2016; Lambrechts et al. 2019; Schulik et al. 2019; Ormel
et al. 2021; Brouwers et al. 2021) and the adopted values in the current planet formation models
span over a wide range, from ∼ 10−2 to 1 cm2 g−1.
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The above analyses only consider the ability of the planet in accreting gas, however, the
supply of gas may become a limiting factor especially when the planet becomes massive. With
two-dimensional hydrodynamical simulations, Tanigawa & Watanabe (2002) studied the accre-
tion flow fed to the planet providing an additional limit, which is

ṁhydro = 0.29Σgr2ΩK

(
m
M∗

)4/3

ĥ−2
g . (2.75)

In addition, with a semi-analytical model, Lubow & D’Angelo (2006) suggested that the gas
accretion rate should be limited at 0.75 to 0.9 of the disc accretion rate. Finally, the numerical
simulations in Dobbs-Dixon et al. (2007) showed that the planet would approach an asymptotic
mass at which rH ∼ Hg due to gap opening, which is discussed in the next subsection (Sect.
2.4.2).

2.4.2 Planet-disc interactions
Planet migration

A planet shall interact with the disc gravitationally and exchange torques. The effects on the
planet’s orbit are generally called planet migration in the literature (see Kley & Nelson 2012,
for review), which is first studied by Goldreich & Tremaine (1979, 1980) and Lin & Papaloizou
(1986). In general, the gas external to the planet orbits at a lower angular velocity and receives
angular momentum from the planet. Meanwhile, the gas internal to the planet orbits at a higher
angular velocity and loses angular momentum to the planet.

For a low-mass planet in a vertically isothermal disc, the torque can be evaluated through a
linear analysis of the perturbations in the disc Goldreich & Tremaine (1979, 1980) and Tanaka
et al. (2002). Assuming circular and planar orbit of the planet, the gravitational potential ψp is
azimuthally periodic and can be expanded into a Fourier series, which is

ψp(r, ϕ, t) = −
G

|rp(t) − r|
(2.76)

=

∞∑
k=0

ψk(r) cos k[ϕ − ϕp(t)] (2.77)

in the polar coordinate (r, ϕ) and at time t. The position of the planet is (rp, ϕp) and the coefficient
ψk corresponds to the k-th mode. The total torque exerted on the planet is then

Γtot = −

∫
Σ(r × −∇ψp)dA (2.78)

=

∫
Σ
∂ψp

∂ϕ
dA (2.79)

with a element of the disc surface dA. In the disc, waves are excited at locations where resonance
occurs between the orbital frequency of the planet and the epicyclic frequency, which is the
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local Keplerian frequency assuming the gas rotates at the Keplerian velocity. At these locations,
angular momentum exchange occurs. This includes the co-rotation resonance, which occurs in
the planet’s radial location, and the Lindblad resonances, which are at

rL =

(
1 ±

1
k

)2/3

rp (2.80)

for all integers k. The Lindblad resonances occur external to the planet are also called the outer
Lindblad resonances. And, those occur internal to the planet are called the inner Lindblad reso-
nances. If the radial gas pressure gradient is considered for the epicyclic frequency, Artymowicz
(1993) further showed that the total torque converges. For large k, the Lindblad resonance oc-
curs at rp ± 2Hg/3, which is also generally where the torque density peaks. Through the linear
analysis, Tanaka et al. (2002) and Tanaka & Ward (2004) derived a characteristic time of planet
migration

twa3 =

(M∗
m

) ( M∗
Σgr2

)  ĥ4
g

ΩK

 . (2.81)

However, Paardekooper & Papaloizou (2008) showed that if the disc is not locally isothermal,
which occurs if heat is not dissipated efficiently, the co-rotation torque becomes non-linear and
breaks the above analysis. Due to a finite width of the co-orbital region, there are gas that
travels in the horseshoe orbit around the planet that is not considered in the linear theory. Since
there exists an asymmetry in the change in density when the gas makes the two horseshoe turns
adiabatically, a net angular momentum exchange occurs. As the gas circulates in the co-orbital
region on the libration timescale, if the thermal diffusion timescale is longer than the libration
timescale, the co-rotation torque saturates eventually after some libration timescales. Otherwise,
a quasi-steady occurs that the co-rotation torque is saturated and can lead to a positive total torque
in a longer timescale. Paardekooper et al. (2010, 2011) provided a set of formulae describing total
torque Γtot exerted on the planet that is a sum of the Lindblad torque and the co-rotation torque.
The key parameters that determine the sign of the total torque are the surface density gradient
and the temperature gradient. Cresswell & Nelson (2008) and Coleman & Nelson (2014) further
modified the torque formulae considering the torque reductions due to finite eccentricity and
inclination of the planet’s orbit.

For the effects on the planet’s orbit, it is more insightful to describe planet migration with
timescales. Tanaka et al. (2002) defined a migration timescale as

τ ≡ −
rp

ṙp
, (2.82)

where inwards migration has a positive timescale. The rate of change of rp is given by

ṙp = L̇p
drp

dLp
(2.83)

=
2rpΓtot

Lp
, (2.84)
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with the angular momentum of the planet Lp. However, Muto et al. (2011) noted that, for non-
zero eccentricity of the planet’s orbit

Lp =
√

a(1 − e2), (2.85)

with the semimajor axis a and the eccentricity e, the migration timescale is, instead,

τm ≡ −
Lp

L̇p
(2.86)

=

(
1

2τa
−

e2

1 − e2

1
τe

)−1

. (2.87)

This can be rearranged as

τa =
1
2

(
1
τm
+

e2

1 − e2

1
τe

)−1

. (2.88)

The timescales for the rate of change in the semimajor axis and eccentricity are defined respec-
tively by τa ≡ −a/ȧ and τe ≡ −e/ė.

Tanaka & Ward (2004) provided the expressions for τe, as well as the timescale for the rate
of change in the inclination τi ≡ −i/i̇. Combining the results of torque reduction by Cresswell &
Nelson (2008) and Coleman & Nelson (2014), these timescales are

τe = 1.282twav(1 − 0.14ê2 + 0.06ê3 + 0.18ê2î2) (2.89)

τi = 1.838twav(1 − 0.30î2 + 0.24î3 + 0.14ê2î2) (2.90)

with the reduced eccentricity ê ≡ e/ĥg and the reduced inclination î ≡ sin i/ĥg.
To apply these timescales as a force exerted on a planet, a set of equations of motion is

required. More recently, Ida et al. (2020) noted that there exist discrepancies among the torque
formalisms and the equations of motion by different works in the literature and attempted to
unify these formalisms. They proposed that the acceleration experienced by the planet is

a = −
3K

2τa
eθ −

3r

τe
er −
3θ − 3K

τe
eθ −
3z

τi
ez (2.91)

in the cylindrical coordinates (r, θ, z) and the velocity of the planet is 3 = (3r, 3θ, 3z).
As mentioned in Sect. 2.3.2, when a planet is massive enough, the tidal interactions with the

disc causes the gas being pushed away from the planet and a gap is opened in this disc. In the
literature, the low-mass and the high-mass regimes are often referred to as Type-I migration and
the Type-II migration regimes respectively. By analytical modelling, Ward (1997) suggested that
the migration of the planet is in the viscous evolution timescale of the disc, where the Type-II
migration migration timescale is given by

τa,II =
2
3

a2

ν
. (2.92)
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Similarly with analytical methods, Hasegawa & Ida (2013) further suggested that there is a
planet-dominated regime when the planet’s mass is high and its migration is limited by iner-
tia.

To transit from the Type-I to the Type-II migration regime, Bate et al. (2003) provided an
empirical formula that the migration timescale for a general mass is given by

τa,I,II =
τa

1 + (m/Mt)3 +
τa,II

1 + (Mt/m)3 . (2.93)

The transition mass Mt is

Mt =
3

5MH
(2.94)

and the mass at which the Hill radius equals the local disc scale height is

MH = 3M∗ĥ3
g. (2.95)

However, recent hydrodynamic simulations by Dürmann & Kley (2015) and Duffell et al.
(2014) shows that a substantial amount of gas can pass through the planetary gap, where the
planet is not locked to the viscous accretion of the disc. Through a broad parameter study,
Kanagawa et al. (2018) proposed that the magnitude of the torque depends directly on the surface
density at the bottom of the gap. This treatment also implies a smooth transition between the
Type-I and the Type-II migration regimes.

Gap opening

Due to the importance of gap opening on planet migration, multiple works (e.g. Duffell & Mac-
Fadyen 2013; Fung et al. 2014; Kanagawa et al. 2015a, 2016; Fung & Chiang 2016; Duffell 2020)
have studied the relation between the gap structure and the planet mass. Empirically, Kanagawa
et al. (2015b) suggested that the ratio between the surface density at the bottom of the gap Σg,min

and the unperturbed value Σg,0 can be described by

Σg,min

Σg,0
=

1
1 + 0.04K

, (2.96)

where the gap opening factor K is

K =
(

m
M∗

)2

ĥ−5
g α

−1. (2.97)

While they focused on the depth and the width of the gap, the recent work by Duffell (2020)
further improved the empirical formula for the overall gap shape. Figure 2.3 shows the gap
shapes for planets in a disc with ĥg = 0.05 and α = 10−3. The ratios of the planet mass to
the central star’s m/M∗ = {0.1, 0.2, 0.5, 1, 2} × MJ/M⊙ and the surface density decreases with
increasing planet mass.
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Figure 2.3: The radial planetary gap profiles according to the empirical formula by Duffell (2020) shown in terms of
the ratio of the perturbed surface density to the unperturbed one Σg/Σg,0. The planet is at rp and each line corresponds
to the planet-mass to stellar mass ratio m/M∗ = {0.1, 0.2, 0.5, 1, 2} × MJ/M⊙ from the top down.

2.5 Motivation

2.5.1 Substructure in protoplanetary discs

In the planet formation theories reviewed above, the protoplanetary discs in the Class II stage
are generally assumed to be smooth. With the recent high-resolution interferometry observations
by the Atacama Large Millimeter/submillimeter Array (ALMA), substructure is likely common.
Multiple large surveys (e.g. Andrews et al. 2018; Long et al. 2018; Dullemond & Penzlin 2018;
Cieza et al. 2021) showed that most of the substructures are axisymmetric. Although the resolved
discs are general the large and bright ones, theoretical models and disc population synthesis
studies (Toci et al. 2021; Zormpas et al. 2022; Delussu et al. 2024) suggested that dust trapping
by substructures is required to explain the observations of the unresolved discs. Furthermore,
Teague et al. (2018a,b) showed that the dust rings coincide with the local pressure maxima in the
kinematic studies with ALMA. These observations have greatly changed planet formation theory
(see Drążkowska et al. 2023, for a recent review).

From the theoretical point of view, substructure in the disc also provides a favourable environ-
ment for planet formation. Streaming instability, which forms planetesimal from the subsequent
gravitational collapse, requires a significant enhanced midplane dust-to-gas ratio relative to the
Solar metallicity (Sect. 2.3.1), which is likely achievable in a dust ring (e.g. Drążkowska et al.
2016). In the meantime, planet migration is likely efficient for planetary cores of 1 to 10 M⊕ in
typical disc environment just before the transition to the Type-II or the high mass regime (Sect.
2.4.2). This poses the migration problem in explaining the location of Jupiter (e.g. Matsumura
et al. 2017; Liu et al. 2019; Bitsch et al. 2019), and these models assume a smooth disc in gen-
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eral. When a substructured disc is considered (e.g. Coleman & Nelson 2016a; Morbidelli 2020;
Guilera et al. 2020; Chambers 2021; Andama et al. 2022), the planetary cores can be retained
near the pressure bump due to the change in the slope of the surface density that causes a zero-net
torque region.

Based on these, Chapter 3 presents a published work (Lau et al. 2024b) in attempting forming
the Solar System’s giant planets in a smooth disc. This work further emphasizes the difficulty in
retaining planetary cores in a smooth disc. Although this work has failed the original attempt,
it explicitly compares two pebble accretion prescriptions: the one by Ida et al. (2016) and, the
one by Liu & Ormel (2018) and Ormel & Liu (2018). The former one assumed the eccentricity
of the planet is small when evaluating the pebble approach velocity, while the latter relaxed this
assumption that causes planetesimals that are stirred by early-grown planetary cores inefficient
in accreting pebbles.

Considering disc substructure, Chapter 4 presents a published work (Lau et al. 2022) that
studies the consequence of the presence of a pressure bump in the disc. This work combined a
disc model with dust evolution and an N-body code to start from micron-sized dust. The key
planet formation processes reviewed are also included up to the point that pebble isolation oc-
curs. This work found that planetesimals formed at the substructure can grow by pebble accretion
rapidly as the dust-rich environment required to form planetesimals is also a favourable environ-
ment for pebble accretion. The planetary cores produced are also retained from migration and
trapped near the pressure bump. When gas accretion and gap opening are further built into the
model, it becomes more involved in the recent observations and open questions about the Solar
System as discussed below.

2.5.2 The Solar System

Meteoritic dichotomy

The non-carbonaceous (NC) and carbonaceous (CC) dichotomy in the meteoritic records (see
Kleine et al. 2020, for review) shows that the inner Solar System (NC) reservoir had no sig-
nificant influx of outer Solar System (CC) reservoir for about 1.5 Myr. This also shows that
planetesimal formation spanned over a long period of time, likely until disc dispersal. Due to the
rapid inwards drift of pebbles due to aerodynamic drag in protoplanetary discs, as discussed in
Sect. 2.2, Kruijer et al. (2017) proposed that a significant exchange of the NC-CC reservoirs can
be achieved if Jupiter’s core formed rapidly and interrupted the inward drift of dust.

Architecture

In the meantime, the prevailing models that explains different aspects of the Solar System’s
architecture generally require the giant planet in a compact configuration initially. This includes
the Nice model and its variants (e.g. Tsiganis et al. 2005; Morbidelli et al. 2005), and the early
instability model (e.g. Clement & Kaib 2017; Deienno et al. 2018)

As a continuation of Lau et al. (2022), Chapter 5 presents a published work (Lau et al. 2024a)
that studied the formation of giant planets initiated by a substructure in the disc. This work
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shows that gas giant can form rapidly at a pressure bump that effectively prevents dust from
the outer disc from drifting through. The remaining dust is then accumulated at the outer edge
of the planetary gap and triggers the formation of the next generation of planets. A scenario
of sequential planet formation is demonstrated. The second generation of planets are formed
significantly later, which can explain the masses of the ice giants of the Solar System. Also, the
giant planets are in a compact configuration, which supports the initial conditions of the models
on the Solar System’s architecture from a formation point of view.

The Kuiper belt

As discussed in Sect. 2.3.1, the cold classical Kuiper belt objects are likely the direct product
of planetesimal formation. Since an enhanced dust-to-gas ratio is required by the streaming
instability, they should have formed in a dust-rich environment that also favours the growth by
pebble accretion. Therefore, other physical processes or conditions are required to prevent their
growth. Chapter 6 presents an on-going work that includes internal photoevaporation to disperse
the disc. Early results show that a ring of planetesimals can form from the expanding cavity in
the disc, where growth is prevented as the gas disperses rapidly near the end of the disc lifetime.

The planet formation model developed through these works connects the key planet formation
processes. At the current stage, it is still quite limited in terms of the parameter space due to the
computational cost. Also, the source of the substructure has not been studied in detail. These are
further discussed in Chapter 7 on the future outlook of this model to achieve a more complete
picture of planet formation.



Chapter 3

Can the giant planets of the Solar System
form via pebble accretion in a smooth
protoplanetary disc?

Tommy Chi Ho Lau, Man Hoi Lee, Ramon Brasser, and Soko Matsumura

This chapter was published in Astronomy & Astrophysics, 683, A204 (2024). A part of this
chapter was submitted in partial fulfilment of the requirements for the degree of Master of Phi-
losophy at The University of Hong Kong in June 2021 while a substantial amount of work was
conducted in the course of this thesis.

Abstract: Prevailing N-body planet formation models typically start with lunar-mass embryos
and show a general trend of rapid migration of massive planetary cores to the inner Solar System
in the absence of a migration trap. This setup cannot capture the evolution from a planetesimal
to embryo, which is crucial to the final architecture of the system. We aim to model planet
formation with planet migration starting with planetesimals of ∼ 10−6 – 10−4M⊕ and reproduce
the giant planets of the Solar System. We simulated a population of 1,000 – 5,000 planetesimals
in a smooth protoplanetary disc, which was evolved under the effects of their mutual gravity,
pebble accretion, gas accretion, and planet migration, employing the parallelized N-body code
SyMBAp. We find that the dynamical interactions among growing planetesimals are vigorous
and can halt pebble accretion for excited bodies. While a set of results without planet migration
produces one to two gas giants and one to two ice giants beyond 6 au, massive planetary cores
readily move to the inner Solar System once planet migration is in effect. Dynamical heating
is important in a planetesimal disc and the reduced pebble encounter time should be considered
in similar models. Planet migration remains a challenge to form cold giant planets in a smooth
protoplanetary disc, which suggests an alternative mechanism is required to stop them at wide
orbits.
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3.1 Introduction
Planet formation involves the growth from interstellar grains of sub-micron sizes to planets of
thousands of kilometres in diameter, which is a process through at least 12 orders of magnitude
in length scale. Details of the involved processes are still under ongoing research. Particularly,
the formation of solid cores which subsequently accrete gas is a crucial yet still unclear step.
This has been an active field of research for decades and requires further investigations.

Weidenschilling (1977) presented a classic problem in planet formation that, due to aerody-
namic drag in protoplanetary discs, solids of 10 cm to 1 m in size typically have a radial drift
timescale of ∼ 100 years, which is much shorter than the typical disc lifetime of 1−10 Myr. Fur-
thermore, laboratory experiments of collisions (e.g. Wurm et al. 2005; Güttler et al. 2010) also
show a general behaviour that millimetre-sized grains require extremely small relative velocities
to grow, so that fragmentation and bouncing are avoided. These barriers of particle growth are
often summarized as the ‘metre-size barrier’ in the literature. This implies that planetesimals of a
kilometre in size have to form rapidly through the metre-sized scale from dust via an alternative
process.

The Goldreich-Ward mechanism suggests the formation of planetesimals through gravita-
tional collapse of a very dense dust disc as a result of dust settling (Goldreich & Ward 1973),
where the dust disc needs to be ∼ 104 times thinner than the gas disc. However, Cuzzi et al.
(1993) showed that this cannot occur in a protoplanetary disc. The dense dust disc at the mid-
plane, along with the gas in it, rotates at the Keplerian velocity; however, the gas disc immedi-
ately above rotates at a sub-Keplerian velocity due to the radial pressure gradient. This results in
a steep vertical velocity gradient at the dust-gas interface, which induces the Kelvin-Helmholtz
instability, preventing the dust disc from settling and collapsing gravitationally.

However, settling a dust disc with a solid density comparable to the gas density is possible
without triggering the Kelvin-Helmholtz instability. Analyses in multiple works (e.g. Youdin
& Goodman 2005; Youdin & Lithwick 2007; Johansen et al. 2007, 2009; Bai & Stone 2010)
suggest this can induce non-gravitational clumping of dusts due to disc turbulence or streaming
instability. The over-densities of dust can subsequently collapse through gravity on an orbital
timescale. Recent hydrodynamic numerical simulations (e.g. Johansen et al. 2012, 2015; Simon
et al. 2016, 2017) further show that dense filaments of solid particles undergo gravitational col-
lapse and planetesimals up to about the size of Ceres are almost instantly formed. This process
is a viable pathway for planetesimal formation.

The classical core accretion model of gas giant formation (Mizuno 1980; Pollack et al. 1996)
requires a solid core of ∼ 10M⊕. Beyond the critical mass, hydrostatic equilibrium in the gas
envelope cannot be maintained, resulting in runaway gas accretion. The growth ends as the
supply of gas is terminated due to gap opening in the disc or gas dispersal as the disc evolves.

Through N-body simulations, Kokubo & Ida (1998, 2000) showed that pairwise accretion
of planetesimals results in runaway growth, where more massive bodies grow faster. As proto-
planets grow massive enough to interact with each other gravitationally, their orbital separations
remain larger than ∼ 5 Hill radii and growth becomes oligarchic, where the growth rate is slower
for more massive bodies. This results in a bimodal system of a few protoplanets and a popu-
lation of small planetesimals. Their extrapolation estimates that the growth timescale to reach
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5 − 10 M⊕ is of the order of 10 − 100 Myr beyond 5 au, which is much longer than the typical
disc lifetime. Since a solid core of ∼ 10M⊕ has to be formed before disc dispersal in order to
accrete gas, a more efficient planetesimal growth mechanism is required.

Large populations of grains ranging from millimetres to tens of centimetres in radius, or
pebbles, have been detected in protoplanetary discs by millimetre to centimetre observations (e.g.
Testi et al. 2003; Wilner et al. 2005). These observations are consistent with the metre-size barrier
mentioned above. The growth of these small particles is stalled and they remain throughout most
of the lifetime of the discs (Cleeves et al. 2016). This lays the foundation for the notion of
pebble accretion. In this scenario, a large population of pebbles, as leftover solids, co-exists with
planetesimals, in contrast to the classical scenario where pebbles are neglected for the growth
of planetesimals of the order of a kilometre and beyond. Planetesimals that are massive enough
to gravitationally deflect pebbles from the gas streamline and have a long enough encounter
time can accrete a significant fraction of the drifting pebbles. This emerges as a mechanism
for efficient planetesimal growth commonly called ‘pebble accretion’ (Ormel & Klahr 2010;
Lambrechts & Johansen 2012; Guillot et al. 2014; see Johansen & Lambrechts 2017; Ormel
2017, for review).

Kretke & Levison (2014) conducted a series of numerical simulations incorporating pebble
accretion with an initial mass spectrum of ∼ 106 planetesimals. The Lagrangian Integrator for
Planetary Accretion and Dynamics (LIPAD) (Levison et al. 2012), an N-body code, was de-
ployed, which utilizes statistical algorithms to follow a large number of particles represented by
tracers. As a result of oligarchic growth, the simulations generally form hundreds of ∼ M⊕ bodies
at 4 − 10 au but further growth is halted due to gravitational scattering. The scattered oligarchs
also pollute the inner Solar System with water and disrupt the outer Solar System.

To produce a Solar System analogue, the later work by Levison et al. (2015) modifies the
pebble formation model that the pebble formation timescale is lengthened to ∼ 1 Myr. This
allows viscous stirring among planetesimals, which is on a shorter timescale compared to the
growth timescale through pebble accretion. The less massive planetesimals are excited to orbit
with higher inclinations. As the pebble density is lower farther away from the midplane of the
disc, these inclined planetesimals are then starved of pebbles. This scenario yielded 1−4 planets
at 5 − 15 au from the Sun without a stage of oligarchic growth. However, as noted in their
work, gas accretion was cut off arbitrarily once the planet reaches the Jupiter mass MJ, instead
of employing physical laws to stall the growth. Also, the embryos started to accrete gas in the
simulations at around 8 Myr. The adopted gas accretion rate is likely unrealistically high as the
disc has only ∼ 4% of its initial surface density at this age in their model, which results in a
generous gas accretion rate. Finally, planet migration, which puts a critical time constraint on
planet formation, was not considered in the model either.

Matsumura et al. (2017), in turn, employed the Symplectic Massive Body Algorithm (SyMBA)
(Duncan et al. 1998), a direct N-body code, with modifications to include pebble accretion, planet
migration and gas accretion. They explored the dependence on stellar metallicity, stellar accre-
tion rate and the viscosity parameter of the disc. Without migration, 1 − 3 gas giants are formed
at a few au in younger and less viscous discs. However, at the end of their 50 Myr simulations
with migration, none of the results is consistent with the Solar System, as there are no giant
planets left beyond 1 au. This shows that planet migration plays a crucial role in planet forma-
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tion. Another major difference between the works by Levison et al. (2015) and Matsumura et al.
(2017) is the number of particles simulated. Levison et al. (2015) use LIPAD, which simulates
a large population of particles employing a statistical algorithm making viscous stirring among
planetesimals possible. They also focused on growing gas giant analogous to the Solar System,
and the domain of simulation is 4 − 15 au. In contrast, Matsumura et al. (2017) focus on the
production of the observed exoplanetary systems, and the domain of simulation is 0.3 − 5 au
instead.

More recently, Bitsch et al. (2019) adopt the slower migration prescription in the high-mass
regime by Kanagawa et al. (2018). They employ the pebble and N-body code FLINTSTONE that
also includes planet migration, eccentricity and inclination damping, as well as disc evolution.
Their results show that with higher pebble mass flux and reduced planet migration rate, gas giants
can indeed survive at wide orbits; with the final semimajor axes sensitive to the pebble mass flux
and planet migration rate. Also, some of the resulting gas giants undergo scattering close to the
Sun and end at a few au from the Sun. However, in these simulations, there are also other planets
of a few to tens of M⊕ that migrate into the inner disc with less than 1 au, in contrast to the
Solar System. Similarly, Matsumura et al. (2021) is able to form cold giant planets but cannot
simultaneously avoid massive planetary cores migrating into the inner Solar System.

These works incorporating pebble accretion into global N-body simulations show intriguing
results that the formation of gas accreting cores is possible through pebble accretion. Yet, further
investigations are required to produce results that are consistent with the Solar System. The
present study aims at assembling the giant planets analogous to those in the Solar System. In
contrast to previous N-body planet formation models (e.g. Matsumura et al. 2017; Bitsch et al.
2019; Matsumura et al. 2021) that focus on a small number of lunar-mass embryos, we assume an
initial planetesimal disc with planetesimal sizes comparable to those formed via the gravitational
collapse induced by streaming instability. This is made computationally possible by employing
SyMBA parallelized (SyMBAp) (Lau & Lee 2023), which is a parallelized version of SyMBA.
In the following, Sect. 3.2 presents the methodology adopted in this work and the results are
presented in Sect. 3.3. The discussion of the results, the implications and caveats are in Sect.
3.4.

3.2 Method

We generally follow the model by Matsumura et al. (2017) where additional subroutines are cou-
pled with the symplectic direct N-body algorithm SyMBA (Duncan et al. 1998) to study planet
formation in a protoplanetary disc. To facilitate the integration of a self-gravitating planetesimal
disc in this work, we instead employ SyMBAp (Lau & Lee 2023). Further improvements are
also made on the models of pebble accretion, gas accretion and the transition to the high-mass
regime of planet migration. The following includes a summary of various parts of the model and
the modifications made in this work are described in detail.
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Figure 3.1: Time evolution of Ṁ∗ with the initial age of the disc t0 = 0.5 Myr. The value of Ṁ∗ is turned down
linearly when it drops below 10−9M⊙ yr−1 to mimic the effect of photoevaporation.

3.2.1 Disc model
We consider an axisymmetric protoplanetary disc around a Solar-type star of 1M⊙ in mass and
1L⊙ in luminosity undergoing steady gas accretion. The gas accretion rate can be expressed as

Ṁ∗ = 3πΣgν (3.1)

with Σg the gas surface density. For the viscosity ν, the Shakura & Sunyaev (1973) α-parametrization
is adopted such that

ν = αacccsHg (3.2)

with the viscosity parameter αacc = 10−3 set in this work. The isothermal sound speed is used
and given by cs =

√
kBT/µ with the Boltzmann constant kB, the disc midplane temperature T ,

the mean molecular weight of the gas µ = 2.34mH, and the hydrogen mass mH = 1.67 × 10−27

kg. The gas disc scale height Hg is defined by Hg ≡ cs/ΩK, where the local Keplerian orbital
frequency ΩK =

√
GM∗/r3 with the gravitational constant G, the mass of the central star M∗,

and the distance from the star r. Following Hartmann et al. (1998), the evolution of the disc is
propagated from the modulation of the stellar accretion rate by

log
(

Ṁ∗
10−8M⊙ yr−1

)
= −1.4 log

(
t + t0

Myr

)
(3.3)

with the time since the start of the simulation t and the initial age of the disc t0 = 0.5 Myr. Fig.
3.1 shows the time evolution of Ṁ∗. When Ṁ∗ drops below 10−9M⊙ yr−1, Ṁ∗ is linearly turned
down to zero at t + t0 = 5.5 Myr to mimic the effect of photoevaporation following Matsumura
et al. (2017). With this setup, the initial stellar accretion rate is about 2.64 × 10−8M⊙ yr−1 and
reaches 10−9M⊙ yr−1 when t ≈ 4.68 Myr.

In general, the inner part of the disc is dominated by viscous heating and the outer part is
dominated by radiative heating. Since this work focuses on the formation of the giant planets
in the Solar System, only radiative heating is considered for the disc, in contrast to the disc
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Figure 3.2: Adopted truncated power law initial planetesimal mass function as described by Eq. (3.8) based on
Abod et al. (2019). It is presented in the unit of the planetesimal gravitational mass mG.

model in Matsumura et al. (2017, 2021) where viscous heating is also considered. The midplane
temperature profile of the disc T is given by (Oka et al. 2011)

T = 150
( r
au

)−3/7
K. (3.4)

This setup yields the reduced disc scale height profile

ĥg ≡
Hg

r
≈ 0.024

( r
au

)2/7
. (3.5)

With Eq. (3.1) for the gas accretion rate, Eq. (3.2) for the α-parametrization, and Eq. (3.3) for
the evolution of the stellar accretion rate, Eqs. (3.4) and (3.5) yield the gas surface density in the
radiatively heated region

Σg ≈ 2.7 × 103
(
αacc

10−3

)−1 Ṁ∗
10−8M⊙ yr−1

( r
au

)−15/14
g cm−2. (3.6)

This disc model yields a profile of the midplane pressure gradient parameter, where P is the
midplane gas pressure,

η ≡ −
ĥ2

g

2
∂ ln P
∂ ln r

≈ 8.02 × 10−4
( r
au

)4/7
. (3.7)

3.2.2 Planetesimal disc
Instead of starting with lunar mass embryos as in Matsumura et al. (2017), a planetesimal disc is
generated from 5−20 au initially with an initial mass function implemented in a manner similar to
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Figure 3.3: Initial mass distribution of the realized planetesimal discs. One example is shown for each of the chosen
values of Nini. The width of each bin is 0.2 au.

Lau et al. (2022) as summarized in the following. Planetesimals are drawn from the cumulative
mass distribution in the work on planetesimal formation by Abod et al. (2019), which has the
form of an exponentially truncated power law. The number fraction of planetesimals above mass
m is given by

N>m

Nini
=

(
m

mmin

)−0.3

exp
(
mmin − m

0.3mG

)
, (3.8)

for m ≥ mmin, with mmin being the minimum planetesimal mass considered, N>m is the number
of particles with a mass > m, Nini is the initial number of particles, and mG is a planetesimal
gravitational mass. We have set mmin = 10−2mG in this work, which is well below the peak of the
distribution of the planetesimal mass in each logarithm mass bin as noted by Lau et al. (2022).
The upper limit of m is also artificially set at 3mG in the realization algorithm to avoid a math-
ematical singularity. This value is an order of magnitude larger than the characteristic mass of
the initial mass function (0.3mG), where Abod et al. (2019) also show that the maximum plan-
etesimal mass is about an order of magnitude more massive than the characteristic mass. In this
manner, only an insignificant number of massive planetesimals (∼ 8× 10−6Nini) is lost. The form
of the cumulative mass function is shown in Fig. 3.2.

For mG, we adopt the critical mass for gravitational collapse of a dust clump in the presence
of turbulent diffusion by Klahr & Schreiber (2020), which is given by

mG =
1
9

(
δ

St

)3/2

ĥ3
gM⊙ (3.9)

≈ 5.78 × 10−4
(
δ

10−5

)3/2 (
St

10−2

)−3/2  ĥg

0.038

3

M⊕

where δ is the small-scale diffusion parameter, which is independent of αacc, and St is the Stokes
number. In this work, we set δ = 10−5 and St = 10−2 exclusively for planetesimal realization.
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Figure 3.4: Time evolution of the pebble mass flux Ṁpf given by Eq. (3.11) with Z0 = 10−2 and αacc = 10−3 as set
in this work.

While the strength of the small-scale diffusion is an active research topic in the field, the adopted
value is motivated by the measurements of local diffusivity of dust particles in streaming insta-
bility presented in Schreiber & Klahr (2018).

In each simulation, the semimajor axis a of a new planetesimal is randomly drawn from 5−20
au, which implies a surface number density of planetesimals that scales with 1/r. The value of
mG is then evaluated with the local disc scale height. Afterwards, the mass m of this planetesimal
is drawn from the mass function given by Eq. (3.8) with the chosen value of Nini noted later in
Sect. 3.2.6. Figure 3.3 shows the initial mass distributions of the realized planetesimal discs with
one example shown for each of the chosen values of Nini. The eccentricity e is randomly drawn
from a Rayleigh distribution with the scale parameter 10−6. The inclination i in radian is also
drawn from a Rayleigh distribution but with the scale parameter 5 × 10−7 instead. Other angles
of the orbital elements are drawn randomly from 0 to 2π. The physical radius Rp is calculated
by assuming an internal density ρs = 1.5 g cm−3. The realization process repeats until the total
number of planetesimals reaches the chosen value. The planetesimals are then evolved under full
gravitational interactions between themselves and the central star, as well as additional effects
of pebble accretion (Sect. 3.2.3), gas accretion (Sect. 3.2.4) and planet-disc interactions (Sect.
3.2.5).

3.2.3 Pebble accretion

We implement the ‘pebble formation front’ model (Lambrechts & Johansen 2014) to estimate
the pebble mass flux ṁpeb. As dust particles coagulate and grow into pebbles, their velocities
are strongly influenced by the headwind. This causes a significantly inward drift of pebbles that
provide a solid mass flux to the inner part of the disc. Since the dust growth timescale increases
with radius in general, the source of the pebble mass flux, or the pebble formation front, evolves
outwards in time. The location of the pebble formation front rpf is given by (Lambrechts &
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Johansen 2014)

rpf(t) =
(

3
16

)1/3

(GM∗)1/3(ϵdZ0)2/3t2/3 (3.10)

with the initial dust-to-gas ratio Z0 and the particle growth parameter ϵd = 0.05. The pebble mass
flux Ṁpf is then calculated from the dust mass swept across by the pebble formation front per
unit time, that is,

Ṁpf = 2πrpfZ0Σg(rpf)ṙpf

≈
Ṁ∗

10−8M⊙ yr−1

( Z0

10−2

)5/3 (
αacc

10−3

)−1
×(

t + t0

Myr

)−1/3

102M⊕ Myr−1. (3.11)

A factor of r−1/14
pf is omitted for simplicity. We set Z0 = 10−2 in this work and Fig. 3.4 shows

the time evolution of Ṁpf for the chosen parameters. We note that at 4.5 Myr, briefly before disc
dispersal, rpf ≈ 350 au. This is comparable to the typical observed disc sizes, which is of the
order of 100 au (e.g. Andrews et al. 2018; Long et al. 2018; Cieza et al. 2021). In Matsumura
et al. (2017), Ṁpf is halved inside of the snow line. However, this treatment is not implemented
in the present work as it focuses on the outer Solar System where particles are removed before
they can reach the ice line in our model. The radial domain of this work is summarized later in
Sect. 3.2.6. On the other hand, we follow Matsumura et al. (2021) and adopt the pebble disc
scale height given by

Hpeb =

(
1 +

St
αturb

)−1/2

Hg (3.12)

with the Stokes number of pebble St. Following Ida et al. (2018), an αturb parameter is intro-
duced, which is about an order of magnitude smaller than αacc as evaluated by Hasegawa et al.
(2017). The latter is distinct from that in the classical α-parametrization, i.e. the αacc parameter
introduced in Sect. 3.2.1. In this work, we set αturb/αacc = 0.1. The αturb parameter is also used
for prescribing gas accretion (Sect. 3.2.4) and planet-disc interactions (Sect. 3.2.5) as described
in the respective sub-sections.

Furthermore, the pebble flux available to each body is subtracted by the total pebble accretion
rate of the superior bodies that are farther from the central star, if there are any. We define a
pebble accretion efficiency ϵPA such that the growth rate of a body i by pebble accretion is given
by

ṁPA,i = ϵPA max

Ṁpf −

N∑
n=i+1

ṁPA,n, 0

 , (3.13)

where bodies (i + 1) to N are all the superior ones.
In this work, we also compare the pebble accretion efficiency of Ida et al. (2016) with modi-

fications by Matsumura et al. (2021), ϵIGM16, and that by Liu & Ormel (2018) and Ormel & Liu
(2018), ϵOL18. In the derivation of ϵIGM16, the pebble-accreting body is assumed to be in a circular
orbit as noted in Sect. 3.2 of Ida et al. (2016) and shown in Eq. (33) of their work regarding
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the pebble relative velocity. In contrast, Liu & Ormel (2018) and Ormel & Liu (2018) do not
hold this assumption, and both the inclination and the eccentricity of the pebble-accreting body
contribute to the pebble relative velocity. The modifications of ϵIGM16 made by Matsumura et al.
(2021) considered the inclination of the body. However, it only plays a role in the calculation of
the pebble volume density as shown in Eq. (32) of their work but not in the calculation of the
pebble relative velocity. The differences between the two pebble accretion prescriptions and the
consequences are further discussed in Sect. 3.4.1.

When the planetesimals grow into massive cores, the process of pebble isolation occurs when
they perturb the gas surface density profile and stop pebbles from reaching the planet itself as
well as the inferior bodies that are closer to the central star, if there are any. We follow the
assumption in Matsumura et al. (2017) that the required mass, which is often called the ‘pebble
isolation mass’, is given by

miso =
1
2

ĥ3
gM∗ (3.14)

≈ 9.14
 ĥg

0.038

3

M⊕.

Once any planet reaches this mass, pebble accretion is stopped for this planet and all the inferior
ones if there are any.

3.2.4 Gas accretion

When a massive core has formed and its solid accretion rate is low, gas can contract and form an
envelope. We follow Ikoma et al. (2000) for the critical mass for runaway gas accretion, which
is given by, for planet i,

mg,crit = 10
(

ṁPA,i

10−6M⊕ yr−1

κ

1 cm2 g−1

)p

M⊕. (3.15)

In this work, we set the parameter p = 0.25 (Ida & Lin 2004) and the envelope opacity κ =
1 cm2 g−1. For cores that have reached this mass, we assume the gas envelope collapses on the
Kelvin-Helmholtz timescale τKH given by (Ikoma et al. 2000; Ida & Lin 2004)

τKH = 109
(

m
M⊕

)−3 (
κ

1 cm2 g−1

)
yr. (3.16)

There are two factors that limit the actual gas accretion rate considered in our model. First, the
gas supply is limited by the stellar accretion rate as well as the gas accreted by the superior
planets. Also, gap opening by the planet shall further limit the gas accretion rate. And, we
assume gas accretion is exponentially cutoff when the planet’s Hill radius equals the local disc
scale height, which is given by mHill = 3M∗ĥ3

g. These can be summarized as the expression for
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the gas accretion rate of planet i

ṁg,i = min
[

m
τKH

,

max

Ṁ∗ −
N∑

n=i+1

ṁg,n , 0

 flocal exp
(
−

m
mHill

)]
(3.17)

where planets (i + 1) to N are all the superior ones and the reduction factor flocal is given by (Ida
et al. 2018)

flocal =
0.0308ĥ−4

g (m/M∗)4/3α−1
acc

1 + 0.04K
. (3.18)

The gap opening factor K is given by Eq. (3.24) in the next subsection (Sect. 3.2.5).

3.2.5 Planet-disc interactions

Other than the N-body gravitational interactions, the bodies also experience the torques due to
the planet-disc interactions. We adopt the prescription based on dynamical friction by Ida et al.
(2020) and the transition from the low-mass to the high-mass regime by Ida et al. (2018) based on
the gap opening factor K by Kanagawa et al. (2015b). The timescales for the non-isothermal case
and finite inclination i, while i < ĥg, (Appendix C and D of Ida et al. 2020 and Matsumura et al.
2021) are implemented. The evolution timescales of semimajor axis, eccentricity and inclination
are defined respectively by

τa ≡ −
a

da/dt
, τe ≡ −

e
de/dt

, τi ≡ −
i

di/dt
. (3.19)

These timescales are given by

τa =
t′wav

2ĥ2
g

[
ΓL

Γ0

(
1 −

1
CM

ΓL

Γ0

√
ê2 + î2

)−1

+

ΓC

Γ0
exp

−
√

ê2 + î2

ef

]−1

, (3.20)

τe = 1.282t′wav

[
1 +

(ê2 + î2)3/2

15

]
, (3.21)

τi = 1.838t′wav

[
1 +

(ê2 + î2)3/2

21.5

]
, (3.22)

where ê ≡ e/ĥg, î ≡ i/ĥg, and we follow Fendyke & Nelson (2014) for the factor ef = 0.01+ ĥg/2.
The normalized Lindblad torque ΓL/Γ0 and corotation torque ΓC/Γ0 are described in detail by
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Paardekooper et al. (2011). The characteristic time including the transition to the high-mass
regime t′wav (Tanaka et al. 2002; Ida et al. 2018) is given by

t′wav =

(M∗
m

) ( M∗
Σgr2

)  ĥ4
g

ΩK

 (1 + 0.04K) (3.23)

with the gap opening factor K given by

K =
(

m
M∗

)2

ĥ−5
g α

−1
turb. (3.24)

As noted in Lau et al. (2022), it is more suitable to evaluate the value of ΩK at the instantaneous
distance from the star r of the body instead of its semimajor axis a in N-body simulations with
large number of particles due to potential frequent encounters. We follow Ida et al. (2018) and
introduce the αturb parameter set to αturb/αacc = 0.1 as described in Sect. 3.2.3. The three
timescales are applied to the equation of motion

a = −
3K · S a

2τa
eθ −

3r

τe
er −
3θ − 3K

τe
eθ −
3z

τi
ez (3.25)

in the cylindrical coordinates (r, θ, z) with the velocity of the embryo 3 = (3r, 3θ, 3z) and the
local Keplerian velocity 3K = rΩK. A switch for planet migration S a is introduced to toggle the
evolution of the semimajor axis, which is turned off and on respectively by setting S a to 0 and 1
in this work.

3.2.6 Numerical setups
To explore the dependence on the total number of planetesimals, three values of Nini =

{1000, 2000, 5000} are chosen. They translate respectively to a total planetesimal mass of about
{0.02, 0.04, 0.1}M⊕. We test two pebble accretion efficiency prescriptions ϵPA = {ϵIGM16, ϵOL18}

described in Sect. 3.2.3 and the two states of S a = {0, 1} described in Sect. 3.2.5 that switches
off or on the evolution of semimajor axis due to planet-disc interactions. Each simulation lasts
for 6.5 Myr to allow for further dynamical evolution due to gravitational interactions after disc
dispersal. Particles are removed if the heliocentric distance is less than 1 au or greater than 100
au. For each combination of the parameters, we conduct five simulations to sample the stochastic
variations in the outcome. Thus a total of 60 simulations are conducted in this work and presented
in the next section.

3.3 Results
The first part of this section (Sect. 3.3.1) presents the results with migration turned off, i.e.
S a = 0, followed by Sect. 3.3.2 where the results with migration turned on, i.e. S a = 1, is
presented.
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3.3.1 Simulations without planet migration (S a = 0)

Pebble accretion efficiency ϵPA = ϵIGM16

Figure 3.5 shows the results for Nini = 1000, S a = 0 and ϵPA = ϵIGM16. Each row presents a
snapshot of the simulations at t = {0.10, 0.75, 2.50, 4.00, 6.50} Myr respectively. For the first
three columns from the left, the total occurrences of particles across all five simulations are
shown by heat maps. The left-most column shows the mass m in M⊕ and the semimajor axis a.
The next two columns to the right show the eccentricity e and inclination i against m respectively.
The right-most column shows the differential mass distribution of the particles with each colour
corresponds to one of the five simulations. Particles in one of the five simulations (blue) is also
plotted with particles above 10−3M⊕ denoted by enlarged dots. For the last row (6.5 Myr), which
shows the end results, particles above 10−3M⊕ in all simulations are shown individually (with a
different colour for each simulation) without using heat maps.

The m–a plots show a rapid growth by pebble accretion in the inner part of the disc in the
first 0.1 Myr of the simulations. Some planetesimals in the massive tail of the distribution have
grown by more than 3 orders of magnitude dominantly by pebble accretion. The growth rate
has a strong dependence on the distance from the star, and particles closer to the central star
accrete pebble much faster, as predicted by Ida et al. (2016). This is also consistent with the
analysis which includes both pebble and planetesimal accretion in Coleman (2021), though our
simulations focus on the outer Solar System.

The e–m plots and the i–m plots show the early and fast growing bodies quickly heat up
their neighbouring planetesimals from the beginning of the simulations to 0.75 Myr, increasing
the eccentricities and inclinations of neighbouring planetesimals. The massive cores of ∼ M⊕
stop further growth of the neighbouring smaller bodies by viscous stirring, with about 20 bodies
having reached ∼ 1 − 10M⊕ by 0.75 Myr. This effect of viscous stirring on pebble accretion
is consistent with Levison et al. (2015) and further discussed in Sect. 3.4.1. The e and i of
these cores are also damped and remain low in contrast to those of the smaller bodies, which
allows these massive bodies to further increase in mass due to the proximity to the dense pebble
disc. This effect is more noticeable from the differential mass distributions, i.e. the rightmost
column, that only the particles in the massive tail of the initial planetesimal population can grow
significantly while the rest remain about the same mass. The growth of these massive bodies is
drastically different from the traditional oligarchic growth scenario, where the growth is slowed
down by viscous heating that clears nearby planetesimals. Here, the more massive bodies can
continue growth via pebble accretion until reaching the pebble isolation mass, which is a result
of the perturbations to the gas disc.

As the simulations progress forward, the massive cores grow further by gas accretion and
eject most of the small bodies from 0.75 − 4 Myr. At the end of the simulations, i.e. t = 6.50
Myr, some of the massive cores and gas giants (m > 102M⊕) formed have been ejected, and 1−4
gas giants remain but their locations vary greatly across the simulations. This indicates a strong
stochastic behaviour due to dynamical instabilities that result from the formation of multiple gas
giants in a short range of distance from the star. Also, ice giants (m ∼ 10M⊕) do not survive in
any of these simulations: they either became gas giants or were scattered out of the system by
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Figure 3.5: Results for the simulations with Nini = 1000, migration turned off (S a = 0), and the pebble accretion
efficiency ϵPA = ϵIGM16. Each row presents a snapshot of the simulations at the time indicated by the timestamp on
the left. For the first three columns from the left, the total occurrences of particles across all five random simulations
are shown by heat maps with 2×2 cells in each minor axis grid cell. The left-most column shows m and a. The next
two columns to the right respectively shows the e and i, respectively, against a. The right-most column shows the
differential mass distribution of all bodies with each colour corresponds to one of the five simulations. Particles in
one of the five simulations (blue) is also plotted with enlarged dots denoting particles above 10−3M⊕. For 6.5 Myr,
i.e. the end of the simulations, particles above 10−3M⊕ in all five simulations are shown individually without using
heat maps. Further descriptions are in the text.
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migration turned off (S a = 0), and the pebble accretion efficiency ϵPA = ϵIGM16. The two columns here correspond
to the left-most and the right most columns of Fig. 3.5, respectively. There is no qualitative difference in the end
results among the simulations with the chosen set of Nini = {1000, 2000, 5000}.
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other giants. On the other hand, the results with Nini = 2000 and 5000 do not show any qualitative
difference from the presented results with Nini = 1000 (Fig. 3.6).

Pebble accretion efficiency ϵPA = ϵOL18

Figure 3.7 shows the results for Nini = 1000, S a = 0 and ϵPA = ϵOL18. Compared to the results for
ϵPA = ϵIGM16, the growth by pebble accretion is generally slower, but still rapid. Some planetes-
imals grow by up to about 2 orders of magnitude in mass in the first 0.1 Myr and massive cores
(m ∼ M⊕) are formed at 0.75 Myr. At 2.5 Myr, the massive cores in the inner part of the disc
(∼ 5 − 10 au) have reached the local pebble isolation mass and gas accretion begins with less
than ∼ 10 bodies having gained mass between the ∼ 10M⊕ cores and the initial planetesimals. In
the previous simulations (Fig. 3.5), this stage is reached at 0.75 Myr. This delay is caused by the
change in the adopted pebble accretion efficiency ϵPA, where ϵIGM16 is more efficient than ϵOL18 as
also shown in Matsumura et al. (2021). A comparison between the two efficiency prescriptions
and the consequences are further discussed in Sect. 3.4.1. A more distinct dichotomy in mass
is produced with ϵPA = ϵOL18 as shown by comparing the differential mass distribution in Fig.
3.5 for 0.75 Myr and that in Fig. 3.7 for 2.50 Myr. A more significant number of planetesimals
has reached ∼ 10−3M⊕ in the former case while a sharper cut near the upper end (∼ 10−4M⊕)
of the initial distribution is shown in the latter case. At this stage, the intermediate-mass bodies
between these two groups, which have mass of about 10−5 − 10−1M⊕, are generally dynamically
colder, as shown by the e–m and i–m plots. As the simulations continue to 4.00 Myr, some bodies
have become gas giants in the inner part of the disc, with some bodies of ∼ 1 − 10M⊕ residing
outside of 10 au, in contrast to the results shown in Fig. 3.5 at the same time.

At the end of the simulations, one to two gas giants and one to two ice giants are formed as
well, which is the closest set of simulations in the work to reproduce the Solar System’s giant
planets. A significant number of the initial planetesimals remain, especially in the outer part of
the disc at around 20 au. This is distinct from the results with ϵPA = ϵIGM16, where no ice giants
are formed and most of the initial planetesimals have been scattered at the end of the simulations,
probably due to the higher number of gas giants. Nonetheless, the locations of the leftover bodies
still vary greatly across the simulations, so that the stochastic nature of the system remains.

Figure 3.8 shows the results for Nini = 2000 instead with the same pebble efficiency prescrip-
tion. Compared to Fig. 3.7, the differential mass distribution shows that the massive tail extends
for about twice as high in m. This leads to the formation of more massive cores in the subsequent
evolution of the simulations. At the end of the simulations, more gas giants and fewer ice giants
are formed in this case. Only two out of the five simulations has one to four ice giants, while this
class of bodies is absent in the rest of the simulations. With Nini = 5000, shown in Fig. 3.9, only
one simulation contains an ice giant at the end, which instead is located in the inner part of the
disc at about 6 au. Here, we find a dependence on the value of Nini, which is not present when
ϵPA = ϵIGM16 (Sect. 3.3.1). This is likely caused by the difference in the rate of pebble accretion,
which is further discussed in Sect. 3.4.1.



3.4 Discussions 41

3.3.2 Simulations with planet migration (S a = 1)

Figure 3.10 shows the results for Nini = 1000, with migration S a = 1 and ϵPA = ϵIGM16. The
snapshots of the m–a distribution show that once the cores reach ∼ M⊕, they migrate inwards
rapidly, even though αturb/αacc = 0.1. For the massive cores that grow from planetesimals in the
inner part of the disc, they have moved out of the simulation domain before runaway gas accretion
occurs. For the massive cores that remain by the end of the simulations, the depletion of the gas
disc stops both the migration as well as gas accretion. As a result, only cores of a few M⊕ are
formed and survive in the simulations. A large fraction of the initial planetesimal population
remains at the end as they are not scattered due to the absence of giant planets. Similarly, Fig.
3.11 shows the results for ϵPA = ϵOL18 with S a = 1 where only cores of a few M⊕ are formed and
survive. These cores are slightly less massive in this case compared to Fig. 3.10. The results with
Nini = 2000 and 5000 do not show any qualitative difference from this results with migration in
effect. Since the massive cores migrate rapidly and none reach the runaway gas accretion phase
by the end of the simulation, the dependence on Nini shown in the case without planet migration
for ϵPA = ϵOL18 (Sect. 3.3.1) is no longer present in this case here.

3.4 Discussions

3.4.1 Pebble accretion efficiency

Pebble accretion has been shown by the results of our model (Sect. 3.3) to be a promising way
to grow planetesimals efficiently such that massive cores of ∼ 10M⊕ can form well before disc
dispersal and accrete gas to become giant planets. Nonetheless, forming giant planets analogous
to those in the Solar System still requires further modifications to the model. In the presented
results without planet migration (S a = 0), ice giants are formed only in the simulations with
the pebble accretion efficiency prescription by Liu & Ormel (2018) and Ormel & Liu (2018),
i.e. ϵPA = ϵOL18, as presented in Sect. 3.3.1. The ice giants in these simulations stop accreting
gas because by the time they are massive enough to accrete a gaseous envelope the gas disc is
dispersed. In contrast with ϵPA = ϵIGM16, as shown in Sect. 3.3.1, massive cores of ∼ 10M⊕
are formed much earlier and the giant planets have enough time to reach the prescribed final
mass (Sect. 3.2.4) before disc dispersal. This shows that the timing of the formation of the
massive cores and the start of gas accretion plays an important role in the final architecture of the
planetary system.

As noted by Matsumura et al. (2021), ϵOL18 is generally a few times less efficient than ϵIGM16

for the adopted value of αturb. And, in the present work, the simulations begin with a mass
spectrum of planetesimals which spans over two decades in mass, up to 10−4M⊕, instead of lunar-
mass embryos. This demonstrates the effect of the pebble accretion onset mass and the effect of
viscous stirring on pebble accretion efficiency more clearly as discussed in the following.



42 3. Can the giant planets of the Solar System form via pebble accretion in a smooth protoplanetary disc?

Pebble accretion onset mass

First, we focus on the limit that the eccentricity e of the pebble-accreting body is much lower
than the midplane pressure gradient parameter η ∼ 10−3. This is also an assumption held by Ida
et al. (2016) in the derivation of the pebble accretion efficiency. Since we are considering the
start of pebble accretion, the mass of the body is generally small and pebble accretion typically
operates in the Bondi regime. In this case, the pebble relative velocity is determined by the
headwind. For a high pebble relative velocity, the pebble encounter time is shortened so that
pebbles may not be deflected enough from the gas streamline and not have enough time to settle
onto the planetesimal. As such, the accretion is no longer in the settling regime. This reduction
effect is captured in the pebble accretion efficiency prescription by Ida et al. (2016) as well as
that by Liu & Ormel (2018) and Ormel & Liu (2018) but in slightly different manners.

Ida et al. (2016) adopt the reduction factor for the cross section in the settling regime of
pebble accretion proposed by Ormel & Kobayashi (2012). This reduction factor is given by

κIGM16 = exp

− (
St

min(2,Stcrit)

)0.65 (3.26)

with the critical Stokes number of pebble

Stcrit =
4m
η3M∗

. (3.27)

A similar reduction factor is also found in Liu & Ormel (2018), which is given by

κOL18 = exp
−1

2

(
∆3

3crit

)2 (3.28)

with the pebble relative velocity ∆3 and the critical relative velocity

3crit =

(
m

M∗St

)1/3

3K . (3.29)

In the head wind regime, ∆3 = η3K , and, with Eq. (3.28), the reduction factor can be expressed
as

κOL18,hw ≈ exp
− (

St
0.707 · Stcrit

)2/3 (3.30)

for a more insightful comparison with κIGM16 in Eq. (3.26). By inspection, the dependence on
the planetesimal mass m is virtually identical for both cases when m ≲ 2 × 10−4M⊕ for η = 10−3,
while a factor of about 0.707 is multiplied to m for κOL18,hw. Figure 3.12 shows the values of
κIGM16 and κOL18,hw with an assumed St = 0.1 and r = 5 au in our disc model. For m ≲ 10−5M⊕,
κOL18,hw is generally a few times smaller than κIGM16. This is in agreement with the findings by
Matsumura et al. (2021) and the early stage of the presented simulation results. When the bodies
are still dynamically cold, the growth by pebble accretion with ϵPA = ϵOL18 is generally slower.
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While restricting the discussion in the headwind regime with small e, a pebble accretion onset
mass mPA,hw can be defined (Visser & Ormel 2016; Ormel 2017) by setting ∆3 = 3crit, which yields

mPA,hw = St η3M∗. (3.31)

For m = mPA,hw, this means κOL18 ≈ 0.61 and κIGM16 ≈ 0.67. Figure 3.13 shows a comparison of
mPA,hw and the planetesimal gravitational mass of the adopted initial planetesimal mass function,
mG, at different locations of the disc. The increase with r for mPA,hw is steeper than that for mG.
This is in agreement with the results that the growth by pebble accretion is faster in the inner
part of the disc. Also, mG is about 5 − 10 times smaller than mPA,hw from 5 − 20 au. This means
the massive tail of the planetesimal population overlaps with the mass range for the sharp cut off
in the values of the reduction factors for both prescriptions (κIGM16 & κOL18,hw) as shown in Fig.
3.12. As a result, the randomness in the exact number of particles drawn near the top end of the
distribution as well as that in their locations play a significant role to the final architecture of the
modelled planetary systems.

This is more clearly shown by the difference in the results with Nini = {1000, 2000, 5000}
while all have S a = 0 and ϵPA = ϵOL18. As the number of planetesimal increases, the largest drawn
mass increases slightly as well due to the higher probability of getting at least one particle with
such mass. This leads to an earlier formation of massive cores, which are more likely to become
gas giants by the time of disc dispersal while fewer or no ice giants remain. Nonetheless, this
effect is not observed with ϵPA = ϵIGM16 likely due to a generally more efficient pebble accretion
such that gas accretion starts early for the massive cores with enough time to reach the mass of a
gas giant even with Nini = 1000.

Although our results show an apparent dependence on the initial number of particles Nini, we
emphasize that this can be a result of a statistical artefact. With the adopted initial mass function
by Abod et al. (2019), as shown in Eq. (3.8), there is no upper limit on the planetesimal mass.
Although an artificial upper limit of 10 times of the characteristic mass is imposed, this limit has
a negligible effect on the actual realized planetesimal populations, where only a number fraction
of planetesimals of ∼ 8 × 10−6 is lost. Therefore, the massive tail of the initial planetesimal
population drawn in this manner has a dependence on the number of particles, which sets the
normalization constant of the initial mass function. This means a physical upper limit of plan-
etesimal mass (e.g. Gerbig & Li 2023) is needed to remove this artefact for future investigations.
Nonetheless, our results show the upper end of the initial planetesimal population plays the most
important role in growth by pebble accretion while the rest of the small planetesimals do not
affect their growth significantly.

We note that in Lambrechts & Johansen (2012), the transition mass of an embryo mt is defined
as the mass at which the Hill radius is comparable to the Bondi radius, i.e.

mt =

√
1
3

(η3K)3

GΩK
≈ 0.578η3M∗. (3.32)

This mass is often adopted as the initial embryo mass in the works involving pebble accretion
(e.g. Bitsch et al. 2015b). The value of mt is a few times larger than mPA,hw from Eq. (3.31) for
St = 0.1. This indicates these initial embryos can always grow by pebble accretion efficiently.
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The evolution from the point of planetesimal formation to the onset of pebble accretion is miss-
ing in this approach. We also note that the characteristic mass (0.3MG) of the adopted initial
planetesimal mass function is about an order of magnitude less massive than mPA,hw, which is
comparable to the value adopted by Coleman (2021). However, in the expression for mG in this
work as shown by Eq. (3.9), the value of the small-scale diffusion parameter δ can be an order
of magnitude larger or smaller than the adopted value (Schreiber & Klahr 2018). This translates
to an even larger uncertainty in the initial planetesimal mass since mG ∝ δ

3/2, which shall greatly
change the results of our model and will require further investigations.

Pebble accretion and dynamical heating

However, as noted by Ida et al. (2016), the assumption of small e in the estimation of the pebble
relative velocity only holds when e < η ∼ 10−3. This condition breaks down quite early in the
presented simulations, with a majority of the particles having e exceeding 10−3 by 0.75 Myr in
all the presented simulations. Multiple planet formation models (e.g. Levison et al. 2015; Jang
et al. 2022; Lau et al. 2022; Jiang & Ormel 2023) have shown the effect of increased pebble
relative velocity due to dynamical heating on pebble accretion. Figure 3.12 also includes the
general form of κOL18 with ∆3 = max(0.76e, η3K) (Liu & Ormel 2018) for e = 10−2, where the
curve is shifted towards higher m by more than two orders of magnitudes, i.e. a much larger m
is required for efficient pebble accretion. Therefore, it is likely an important feature of a realistic
model to consider the effect of pebble accretion being interrupted when the eccentricities grow,
especially in the context of planet formation where massive cores and giant planets are formed
among planetesimals. However, once planet migration is in effect and cores of ∼ 1 − 10M⊕ are
readily removed, they cannot continuously excite and eject the planetesimals. Pebble accretion
in this case is not severely interrupted by dynamical heating as shown in the results (Sect. 3.3.2),
so that both pebble accretion prescriptions yield more similar results at the end of the simulations
when migration and removal is present.

We note that there are other works on the initial planetesimal mass function (e.g. Simon
et al. 2016, 2017; Schäfer et al. 2017; Gerbig & Li 2023), and this topic remains an active field
of research. Meanwhile, the outcome of the subsequent growth of the initial planetesimals is
sensitive to their initial mass as well as the distribution. Also, we assume a planetesimal disc as
a part of the initial conditions, but its formation is not investigated in this work, which is also
an active field of research (e.g. Drążkowska et al. 2016; Carrera et al. 2017; Schoonenberg et al.
2018; Lenz et al. 2019, 2020). These parts of the model concerning the initial planetesimals
require further investigations for a more robust planet formation model.

3.4.2 Planet migration
When planet migration is turned off in our model, i.e. S a = 0, the results with Nini = 1000 and
ϵPA = ϵOL18 (Sect. 3.3.1, Fig. 3.7) show one to two gas giants and one to two ice giants beyond
6 au. This is in general agreement with Levison et al. (2012) in forming the giant planets in the
Solar System without forming hundreds of massive cores in the process. In their work, planet
migration is not considered either.
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However, once planet migration is turned on in our model, i.e. S a = 1, the results (Sect.
3.3.2) show that cores of ∼ 1 − 10M⊕ rapidly migrate towards the inner part of the disc and
many leave the simulation domain as a migration trap is not implemented at the inner edge of the
disc. This is in agreement with previous works on planet formation that include planet migration
(e.g. Cossou et al. 2014; Coleman & Nelson 2016b; Matsumura et al. 2017; Jang et al. 2022).
Although the migration timescale in the high-mass regime in this work is already lengthened by
setting a turbulent-α parameter αturb that is only one-tenth of the classical α parameter αacc, it is
still not enough to retain these massive cores at wide orbit in our model to form Solar-System-
like giant planets. Further parameter search may be required to produce cold giant planets with
planet migration in effect but the current results suggest that some massive cores are inevitably
lost to the inner Solar System in the process as shown in other works (e.g. Bitsch et al. 2019;
Matsumura et al. 2021).

Figure 3.14 shows a heat map of the migration timescale τa in the m–r space at t = 0.5
Myr in our model. There is a region of rapid migration with τa ∼ 105 yr for m ∼ 1 − 10M⊕
across the planetesimal disc. This is in agreement with the results that the massive cores have
migrated significantly before runaway gas accretion can occur for them to enter the high-mass
regime of migration where τa ∼ 106 yr. For the surviving cores, migration only stops as the
gas surface density becomes very low that slows down migration but this also terminates gas
accretion as shown in the results. Also, it seems to be a general result that multiple massive cores
(∼ 1− 10M⊕) inevitably enter the inner Solar System with a smooth disc model where migration
trap is not present except at the inner edge of the protoplanetary disc. In contrast, other works
(e.g. Coleman & Nelson 2016a; Lau et al. 2022) have shown a possibility in retaining these cores
at wide orbit due to the presence of a substructure in the gas disc. These findings and the recent
observations of substructure in protoplanetary discs (e.g. Andrews et al. 2018; Long et al. 2018;
Dullemond & Penzlin 2018; Cieza et al. 2021) suggest that a substructure in the protoplanetary
disc is a promising way to interrupt rapid migration and prevent the formation of super-Earths
and hot Jupiters.

3.5 Conclusions
This work attempts to form the giant planets of the Solar System in a smooth protoplanetary
disc. An initial planetesimal disc is simulated with the parallelized N-body code SyMBAp with
additional subroutines to include the effects of pebble accretion, gas accretion, and planet-disc
interactions with the protoplanetary disc.

Our model starts from planetestesimals (each with m ≲ 10−4M⊕) instead of planetary em-
bryos (m ∼ 10−2M⊕). In this work, we demonstrate the difference between the pebble accretion
prescription by Ida et al. (2016) and that by Liu & Ormel (2018) and Ormel & Liu (2018). In
Ida et al. (2016), the pebble-accreting body is assumed to be in a circular orbit and the pebble
relative velocity, which sets the pebble encounter time, is set by the headwind in the disc. In
contrast, Liu & Ormel (2018) and Ormel & Liu (2018) do not hold this assumption and consider
the relative velocity due to eccentricity and inclination. In the case that the number of embryos
is small and they are well above the pebble accretion onset mass both prescriptions give similar
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results, as noted in Matsumura et al. (2021). However, in a planetesimal disc, viscous stirring
becomes important and can effectively terminate growth by pebble accretion due to the increased
pebble relative velocity and shortened pebble encounter time. This can occur when the incli-
nations of the bodies are small, and they are still well inside the pebble disc as also noted by
Lau et al. (2022). Therefore, to realistically model planet formation via pebble accretion starting
from planetesimals, it is crucial to consider the reduced pebble encounter time due to dynamical
heating.

When planet migration is not considered, our model can reproduce one to two gas giants and
one to two ice giants beyond 6 au, which is analogous to the giant planets in the Solar System.
However, we also note that the results have a dependence on the initial number of planetesimals.
Further studies on the processes involved in planetesimals formation is required to construct a
more realistic model.

Once planet migration is in effect, massive cores of about 10 M⊕ are readily removed as they
migrate towards the inner boundary of the simulations. This shows that the formation of the giant
planets in the Solar System requires an alternative and effective way to stop the migration of the
first massive body formed before reaching the inner Solar System. Multiple works (e.g. Coleman
& Nelson 2016a; Lau et al. 2022) have demonstrated that pressure bump in the disc can act as a
migration trap while some other works (e.g. Jiang & Ormel 2023; Chrenko & Chametla 2023) do
not support this scenario. Further investigations are required to characterize the disc conditions
that can retain massive planetary cores and allow the formation of cold gas giants.
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Chapter 4

Rapid formation of massive planetary
cores in a pressure bump

Tommy Chi Ho Lau, Joanna Dra̧żkowska, Sebastian M. Stammler, Tilman Birnstiel, and
Cornelis P. Dullemond

This chapter was published in Astronomy & Astrophysics, 668, A170 (2022)

Abstract: Models of planetary core growth by either planetesimal or pebble accretion are tradi-
tionally disconnected from the models of dust evolution and formation of the first gravitationally-
bound planetesimals. The state-of-the-art models typically start with massive planetary cores al-
ready present. We aim to study the formation and growth of planetary cores in a pressure bump,
motivated by the annular structures observed in protoplanetary disks, starting with sub-micron-
sized dust grains. We connect the models of dust coagulation and drift, planetesimal formation
in the streaming instability, gravitational interactions between planetesimals, pebble accretion,
and planet migration, into one uniform framework. We find that planetesimals forming early at
the massive end of the size distribution grow quickly dominantly by pebble accretion. These
few massive bodies grow on the timescales of ∼100 000 years and stir the planetesimals formed
later preventing the emergence of further planetary cores. Additionally, a migration trap occurs
allowing for retention of the growing cores. Pressure bumps are favourable locations for the
emergence and rapid growth of planetary cores by pebble accretion as the dust density and grain
size are increased and the pebble accretion onset mass is reduced compared to a smooth-disk
model.

4.1 Introduction

Recent high-resolution interferometry observations by the Atacama Large Millimeter/submillimeter
Array (ALMA) revealed that substructure may be common in protoplanetary disks, although we
are still limited to the largest and thus brightest ones. Nevertheless, there is increasing evidence
that disk substructures must be common even in unresolved disks coming from comparison of
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the observational data of disks population and theoretical models (Toci et al. 2021; Zormpas
et al. 2022). Multiple surveys, e.g. Andrews et al. (2018), Long et al. (2018) and Cieza et al.
(2021), have shown that most of the substructures are presented in the form of axisymmetric
rings. Through detailed analysis, Dullemond & Penzlin (2018) found that dust trapping in a
pressure bump is consistent with the rings sampled from the DSHARP survey. Kinematic stud-
ies with ALMA by Teague et al. (2018a,b) further showed that the dust rings coincide with the
local pressure maxima in the analyzed disks. However, the origin of such pressure bumps re-
mains uncertain, where the possible causes include disk-planet interaction due to an existing
massive planet (Rice et al. 2006; Pinilla et al. 2012; Dipierro et al. 2015; Dong et al. 2017), sub-
limation (Saito & Sirono 2011) and instabilities (Takahashi & Inutsuka 2014; Flock et al. 2015;
Lorén-Aguilar & Bate 2015; Pinilla et al. 2016; Dullemond et al. 2018).

Despite the uncertainties of the cause, the dust-trapping pressure bump is likely a favourable
environment for the formation and growth of planetesimals towards massive planetary cores
(Morbidelli 2020; Guilera et al. 2020; Chambers 2021; Andama et al. 2022). The locally enriched
dust-to-gas ratio could trigger streaming instability (Youdin & Lithwick 2007; Johansen et al.
2007, 2009; Bai & Stone 2010), which is the prevailing pathway to overcome the ‘metre-size
barrier’ of dust growth (Weidenschilling 1977; Güttler et al. 2010; Zsom et al. 2010) to form
planetesimals in the order of 100 km (Johansen et al. 2012, 2015; Simon et al. 2016, 2017). More
recently, Stammler et al. (2019) suggested that planetesimal formation by streaming instability,
where the midplane dust-to-gas ratio is regulated, can explain the similarity in the optical depths
of the DSHARP rings studied by Dullemond & Penzlin (2018). And, in the hydrodynamical
simulations with self-gravity by Carrera et al. (2021), a small pressure bump can already trigger
planetesimal formation by streaming instability with cm-sized grains, although this may not be
applicable to the case with mm-sized dust (Carrera & Simon 2022).

In the classical model, planetesimal accretion has been shown to quickly enter a stage of oli-
garchic growth with direct-N body simulations (Kokubo & Ida 2000). A massive planetary core
is unlikely to form and accrete gas within the typical lifetime of protoplanetary disks particularly
at wide orbits to form cold Jupiter with the minimum mass solar nebula, while multiple works
(e.g. Fortier et al. 2007, 2009; Guilera et al. 2010) have shown planetesimal accretion can be
efficient in a significantly more massive disk. However, planetesimals that are large enough to
gravitationally deflect dust from the gas streamline and have long enough encounter time can
accrete a significant fraction of the drifting dust or ‘pebbles’. This emerged as a mechanism for
efficient planetesimal growth often named ‘pebble accretion’ (Ormel & Klahr 2010; Lambrechts
& Johansen 2012; Guillot et al. 2014; see Johansen & Lambrechts 2017; Ormel 2017, for re-
view). In a pressure bump, pebbles are trapped and the locally enhanced dust surface density
also provides an elevated level of pebble flux compared to that in a smooth disk. The impeded
drifting speed of the pebbles also lengthens the encounter time with the planetesimal particularly
in the outer disk, where the pebble-carrying headwind is faster. Both of these factors increase the
rate of planetesimal growth by pebble accretion inside a pressure bump.

As planetesimals grow into more massive embryos, the gravitational torque exerted by the
disk becomes important. For low-mass planets that induce small perturbations in the disk, the
disk-planet interaction lies in the type-I (or low-mass) regime (Goldreich & Tremaine 1979;
Artymowicz 1993; Tanaka et al. 2002; Tanaka & Ward 2004; see Kley & Nelson 2012, for
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review). As shown in the recent N-body planet formation models, e.g. Matsumura et al. (2017);
Bitsch et al. (2019); Liu et al. (2019), this poses a challenge: embryos formed in the outer
Solar System should be stopped from entering the terrestrial planet region as they are needed
in the outer Solar system to form cold giant planets. However, Coleman & Nelson (2016a)
showed that radial substructures in the disk can trap embryos at the outer edges and allow the
formation of cold Jupiters. This suggests pressure bumps are not only favourable to the growth
of planetesimals, but also capable of retaining the massive planetary cores produced.

In this work, we model the formation and evolution of planetesimals in an axisymmetric
pressure bump of a protoplanetary disk numerically. We coupled the dust and gas evolution code
DustPy (Stammler & Birnstiel 2022) with the parallelized symplectic N-body integrator SyMBAp
(Lau & Lee in prep.) with modifications to include gas drag, type-I damping and migration, and
pebble accretion according to the disk model. As the disk evolves and accumulates dust at the
pressure bump, a fraction of the dust is converted into planetesimals according to the condition
for streaming instability. These planetesimals are then realized as N-body particles and evolve
through gravitational interactions as well as the additional processes mentioned. The details
of our models and initial conditions are presented in Section 4.2. The results of this work is
presented in Section 4.3, which are followed by the discussions in Section 4.4. The findings of
our work is summarized in Section 4.5.

4.2 Method
DustPy (Stammler & Birnstiel 2022), based on the model by Birnstiel et al. (2010), is employed
to simulate a protoplanetary disk, which includes viscous evolution of the gas, coagulation, frag-
mentation, advection and diffusion of the dust. It is coupled to SyMBAp (Lau & Lee in prep.),
which is a parallelized version of the symplectic direct N-body algorithm SyMBA (Duncan et al.
1998).

4.2.1 Disk model
Gas component

We considered a protoplanetary disk around a Solar-type star. The disk is assumed to be ax-
isymmetric and in vertical hydrostatic equilibrium. The initial gas surface density Σg,init is set
according to the self-similar solution of a viscous disk by Lynden-Bell & Pringle (1974) such
that

Σg,init =
Mdisk

2πr2
c

(
r
rc

)−1

exp
(
−

r
rc

)
(4.1)

with the distance from the star r, the initial mass of the disk Mdisk and the characteristic radius
rc. We have set Mdisk = 0.1M⊙ and rc = 100 au, which imply Σg,init ≈ 1400 g cm−2 at r = 1 au.
The gas disk is viscously evolved in time t according to the advection-diffusion equation

∂Σg

∂t
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(νΣgr1/2)

]
, (4.2)
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where the back reaction from the dust is neglected. The Shakura & Sunyaev (1973) α-parametrization
is adopted for the kinematic viscosity ν such that

ν = αcsHg (4.3)

with the speed of sound cs and the disk scale height Hg. The viscosity parameter α = 10−3 is set
in this work. The disk scale height is defined by Hg ≡ cs/ΩK, where the local Keplerian orbital
frequency ΩK =

√
GM∗/r3 with the gravitational constant G and the mass of the central star M∗.

The isothermal sound speed is used and given by cs =
√

kBT/µ with the Boltzmann constant kB,
the midplane temperature T and the mean molecular weight of the gas µ = 2.3mp. The disk is
assumed to be passively irradiated by the Solar luminosity, which gives a midplane temperature
profile

T ≈ 263.2
( r
au

)−1/2
K. (4.4)

This setup yields the dimensionless gas disk scale height

ĥg ≡
Hg

r
≈ 0.0326

( r
au

)1/4
. (4.5)

The midplane pressure gradient parameter η is then given by

η = −
ĥ2

g

2
∂ ln P
∂ ln r

(4.6)

with the midplane gas pressure P, which describes the degree of ‘sub-Keplerity’ of the gas. A
logarithmic radial grid is adopted that spans, for a disk gap at 10 au, from 1 to 100 au with 99
cells, and, for a disk gap at 75 au, from 10 to 100 au with 66 cells. Additional grid refinement is
imposed around the exterior pressure bump of the gap (see Section 4.2.2).

Dust component

The initial dust surface density Σd,init is given by

Σd,init = Z Σg,init (4.7)

with the global dust-to-gas ratio Z set at the Solar metallicity of 0.01. We follow the size distribu-
tion of the interstellar medium (Mathis et al. 1977) for the initial dust grain sizes. The maximum
initial size is set at 1µm and the internal density of 1.67 g cm−3 is assumed. A total of 141 dust
mass bins logarithmically spaced from 10−12 to 108 g are used. Each mass species is evolved in
time through transport with the advection-diffusion equation (Clarke & Pringle 1988) coupled
to growth and fragmentation with the Smoluchowski equation. The fragmentation velocity is
assumed to be 10 m s−1. At collision velocities above which, the dust aggregates are assumed to
fragment. The Stokes number Sti of each mass bin i is then calculated by considering the Epstein
and the Stokes I regimes. The dust scale height of each mass species Hd,i is calculated according
to Dubrulle et al. (1995)

Hd,i = Hg

√
α

α + Sti
. (4.8)
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Figure 4.1: The truncated power law cumulative mass distribution adopted following Abod et al. (2019).

Further details of the gas and dust evolution algorithm are described in Stammler & Birnstiel
(2022).

4.2.2 Disk Gap
A stationary Gaussian gap is created in the disk following the model in Dullemond & Penzlin
(2018). A pre-existing planet in the gap is not considered in this work. Since αΣg is a constant
in our disk model at a steady state, the disk gap can be created from a smooth disk by adopting a
modified α-parameter with radial dependence α′(r) given by

α′(r) = α/F(r), (4.9)

where the function

F(r) = exp
[
−A exp

(
−

(r − r0)2

2w2

)]
(4.10)

with the gap amplitude A, the location r0 and the gap width w. We fixed A = 2 and tested two
gap locations r0 = {10, 75} au. At r0 = 10 au, w is set to 2 au. At r0 = 75 au, w is scaled
by r13/16 yielding w ≈ 10.3 au. This is motivated by the radial scaling of the gap width given
by the empirical formula for the structure of a planet-induced gap in Kanagawa et al. (2017).
Combined with the disk model, the prescribed disk gap also results in a local maximum of gas
surface density at the outer edge, which is also a local maximum of pressure. We note that the
sign of η in Eq. 4.6 changes across the pressure maximum, where η > 0 implies sub-Keplerian
gas and η < 0 implies super-Keplerian gas.

4.2.3 Planetesimal formation
As dust accumulates at the exterior pressure bump of the disk gap, the dust is converted into
planetesimals based on the prescriptions in Drążkowska et al. (2016) and Schoonenberg et al.
(2018) with the adoption of the smooth planetesimal formation activation function Ppf in Miller
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Figure 4.2: The total mass in each logarithmic mass bin in the adopted planetesimal mass distribution. The mass in
the most massive bin is about 17.9 times more massive than the bin at 10−2MG.

et al. (2021). A smooth activation function that centres around a midplane dust-to-gas ratio
ρd/ρg of unity is expected to be more probable than a sharp activation of the streaming instability,
because the latter causes planetesimals to form in discrete pulses with sharp temporal fluctuations
in our tests. The smooth activation function is given by

Ppf =
1
2

[
1 + tanh

(
log(ρd/ρg)

n

)]
(4.11)

with the smoothness parameter n set to 0.03 in this work. Ppf is evaluated at each radial cell and
the local dust surface density in each mass bin i is removed by

∂Σd,i

∂t
= −PpfΣd,i

ζ

tset,i
= −PpfζΣd,iStiΩK (4.12)

with ζ the planetesimal formation efficiency per settling time, which we set to 0.05 corresponding
to a planetesimal conversion time of 40 settling times when the dust-to-gas ratio is unity. The
settling time tset,i of mass bin i is given by

tset,i =
1

StiΩK
. (4.13)

We note that ζ is not well-constrained while the effect of using a different value is not studied in
this work. Then, the local dust surface density loss is summed over all mass bins and added to
the local planetesimal surface density Σplts, i.e.,

∂Σplts

∂t
= −

∑
i

∂Σd,i

∂t
. (4.14)

Planetesimals are then realized from the radial profile of Σplts(r). We adopted the cumulative
mass distribution resulting from the fitting to the streaming instability simulations by Abod et al.



4.2 Method 61

(2019). This has the form of an exponentially truncated power law such that the number fraction
of planetesimals above mass m is given by

N>m

Ntot
=

(
m

mmin

)−0.3

exp
(
mmin − m
0.3MG

)
, (4.15)

for m ≥ mmin with the minimum planetesimal mass mmin and the characteristic planetesimal mass
MG. The form of Eq. (4.15) is shown in Fig. 4.1. Schäfer et al. (2017) noted that mmin is sensitive
to the spacial resolution of streaming instability simulation. Nonetheless, the total mass in each
mass bin in logarithmic scale can be estimated by

dM ∝ −
dN>m

dm
m2d ln m. (4.16)

We have set mmin = 10−2MG in this work, where the peak of dM is about 17.9 times of that at
mmin as shown in Fig. 4.2. Since Eq. (4.15)→ 0 only when m→ ∞, we artificially set the upper
limit of m at 3MG in the algorithm of realization, which implies that a small number fraction of
planetesimals of about 8.48× 10−6 is lost. Klahr & Schreiber (2020) considered the critical mass
for gravitational collapse of a dust clump in the presence of turbulent diffusion. We have adopted
this mass as MG, which is given by

MG =
1
9

(
δ

St

)3/2

ĥ3
gM⊙ (4.17)

≈ 7.22 × 10−3
(

δ/St
10−4/10−2

)3/2  ĥg

0.058

3

M⊕

with the small-scale diffusion parameter δ which is independent of α in our model. As noted
by Johansen et al. (2006), there exists discrepancy on the measurement of the relative strength
of turbulent viscosity and turbulent diffusion in the literature, which remains an active research
topic (e.g. Schreiber & Klahr 2018). We tested two values of δ = {10−4, 10−5}. This is motivated
by the measurements in streaming instability simulations by Schreiber & Klahr (2018). Depend-
ing on the box sizes, the values of the measured small-scale diffusion parameter in the radial
direction range from 10−6 − 10−4 for the midplane dust-to-gas ratio of 1. Since MG ∝ δ3/2, a
huge number of planetesimals are produced for the case with δ = 10−6 in our preliminary runs,
which is computationally unaffordable. Therefore, this value of δ is not tested in this work. The
potential effect is discussed in Section 4.4.3. And, St is evaluated by taking the density-averaged
value across all mass bins in the local radial cell. We note that Abod et al. (2019) also pro-
vided a characteristic mass based on the balance between the tidal force and self-gravity, which
has a dependence of ΣgΩ

−4
K and is independent of the local diffusivity. This would result in a

characteristic mass of ∼ 10M⊕ at 80 au in our disk model, which is unlikely to be physically
probable.

In each simulation, the semimajor axis a of a planetesimal is first randomly drawn using
Σplts(r) as a radial distribution function and MG is evaluated at the local radial cell. Then, the
planetesimal mass m is drawn from Eq. (4.15). At each communication between DustPy and
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SyMBAp, if the total planetesimal mass accumulated in terms of surface density exceeds this value,
a planetesimal is then realized and subtracted from the accumulated mass. The eccentricity e is
randomly drawn from a Rayleigh distribution with the scale parameter 10−6. The inclination i in
radian is also drawn from a Rayleigh distribution but with the scale parameter 5 × 10−7. Other
angles of the orbital elements are drawn randomly from 0 to 2π. The physical radius Rp is calcu-
lated by assuming an internal density ρs of 1.5 g cm−3. Then, the planetesimal surface density is
subtracted according to the m and a of the realized planetesimal. If the total planetesimal mass
in the local cell is not enough, the planetesimal mass from the neighbouring cells is used for the
subtraction as well. Afterwards, another value of m is drawn immediately and a planetesimal
with mass m is realized until the remaining accumulated planetesimal mass is less than m. The
last drawn value of m is retained for the next communication step such that the realization is
not biased towards lower mass. Since this process does not guarantee that all mass in Σplts can
be realized, the residual is accumulated for the next communication step. Further details on the
communication step are in Section 4.2.5.

4.2.4 Planetesimal evolution
The realized planetesimals, and a Solar-mass central star, are then evolved by SyMBAp with full
gravitational interactions as well as additional subroutines to include gas drag, type-I damping
and migration, and pebble accretion. If two bodies collide, they are assumed to merge completely.
Hence, collisions are perfectly inelastic in this work. At each communication step, other than the
newly formed planetesimals in terms of surface density, the radial profiles of the gas component
and the dust component are passed to SyMBAp. The gas component includes

• the gas surface density Σg;

• the midplane temperature T ;

• the gas disk scale height Hg;

• the midplane gas density ρg, and;

• the midplane pressure gradient parameter η,

and the dust component, for each mass bin i, includes

• the Stokes number Sti;

• the dust disk scale height Hd,i, and;

• the dust surface density Σd,i.

The mass of the accreted pebbles is also passed to DustPy and subtracted from the dust surface
density as further discussed in Section 4.2.4. As the planetesimals gradually gain mass, they
are referred to as embryos, protoplanets or planetary cores in this work. Generally, planetesimal
refers to a body that has not gained mass significantly while embryo refers to a body that has
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grown by more than an order of magnitude. Protoplanet refers to a massive dominating body
in the context of viscous stirring among a crowd of planetesimals while planetary core refers to
a body which is massive enough and has the potential to accrete gas and form a giant planet.
Nonetheless, these bodies are not strictly distinctive and have no fundamental difference in the
simulations. They are all treated as fully interacting particles.

Gas drag and type-I torques

Planetesimals and planets experience the combined effect of the aerodynamic gas drag and the
type-I torques due to the planet-disk interaction in this work. Generally in typical disk environ-
ment at 10 au, gas drag (∝ m−1/3) is more dominant for small bodies while the type-I torques
(∝ m) gradually overtake for m ≳ 10−5M⊕. Since gas accretion and feedback are not considered,
the transition to the high-mass regime (type-II) is not included.

We adopted the aerodynamic gas drag by Adachi et al. (1976) that

adrag = −

(
3CDρ

8Rpρs

)
3rel3rel, (4.18)

with the drag coefficient CD and, the relative velocity between the planetesimal and the gas 3rel.
The gas flow is assumed to be laminar and cylindrical, where the magnitude is given by 3K(1−|η|)
with the local Keplerian velocity 3K. Since the planetesimals in this work are well larger than km
in size, the large Reynolds number case is generally applicable for CD, which we set the value to
be 0.5 (Whipple 1972). The gas density ρ at the planetesimal’s position z above the midplane is
given by ρ = ρg exp(−0.5z2/H2

g).
For type-I damping and migration, we adopted the prescription based on dynamical friction

by Ida et al. (2020). The timescales for the isothermal case and finite i, while i < ĥg, (Appendix
D of Ida et al. (2020)) are implemented. The evolution timescales of semimajor axis, eccentricity
and inclination are defined respectively by

τa ≡ −
a

da/dt
, τe ≡ −

e
de/dt

, τi ≡ −
i

di/dt
. (4.19)

These timescales are given by, with ê ≡ e/ĥg and î ≡ i/ĥg,

τa =
twav

CTĥ2
g

[
1 +

CT

CM

√
ê2 + î2

]
, (4.20)

τe = 1.282twav

[
1 +

(ê2 + î2)3/2

15

]
, (4.21)

τi = 1.805twav

[
1 +

(ê2 + î2)3/2

21.5

]
. (4.22)

The characteristic time twav (Tanaka et al. 2002) is given by

twav =

(M∗
m

) ( M∗
Σgr2

)  ĥ4
g

ΩK

 , (4.23)
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where Σg and ĥg are retrieved from the local radial cell of the disk model. Due to frequent close
encounters in the planetesimal belt, the semimajor axes may briefly depart greatly from the in-
stantaneous locations resulting in an unphysical twav, which is then evaluated at the instantaneous
r of the embryo instead of its semimajor axis, in contrast to the statement in Ida et al. (2020).
The coefficients CM and CT are given by

CM = 6(2pΣ − qT + 2), (4.24)

CT = 0.73 + 1.08pΣ + 0.87qT , (4.25)

with pΣ ≡ −d lnΣg/d ln r and qT ≡ −d ln T/d ln r, which are evaluated with the local radial cell as
well as the immediate neighbouring ones. The three timescales are then applied to the equation
of motion

a = −
3K

2τa
eθ −

3r

τe
er −
3θ − 3K

τe
eθ −
3z

τi
ez (4.26)

in the cylindrical coordinates (r, θ, z) that the velocity of the embryo 3 = (3r, 3θ, 3z). And, 3K is
evaluated at the instantaneous r of the embryo. Ida et al. (2020) noted that local uniformity on the
scale of Hg is assumed in the derivations. This condition is satisfied for the disk gap implemented
in this work, as described in Section 4.2.2, where the half-width is wider than the local Hg at both
locations of 10 and 75 au.

Pebble accretion

The planetesimals are formed in a dust-enhanced location, where significant growth by pebble
accretion is expected. We have adopted the pebble accretion efficiency ϵPA by Liu & Ormel
(2018) and Ormel & Liu (2018), which is defined as the mass fraction of the pebble flux accreted
by the planetesimal or planet. This prescription includes both the ballistic regime and the settling
regime of pebble accretion and, considers the local disk conditions and the orbit of the pebble-
accreting embryo. In particular, the e and i of the embryo are taken into account when evaluating
the relative velocity with respect to the pebble, which is critical in a planetesimal belt as viscous
stirring is significant. Since a substructured disk is considered in this work, the ‘pebble formation
front’ model by Lambrechts & Johansen (2014) cannot be applied as explicitly noted by the
authors, where a finite and positive η is assumed.

We note that η changes sign across the pressure bump and requires careful treatment. For
the relative velocity between the pebble and an embryo in circular orbit, the direction of the
Hill shear also changes sign for super-Keplerian pebbles drifting outwards from the inner orbits.
Therefore, the existing expression combining the headwind- and shear-dominated regimes is still
valid (Eq. (10) in Liu & Ormel (2018)) and the absolute value of η should be used in this case.
Since the radial profile of η is given in a radial grid from DustPy, to capture the narrow region
where η can be very close to zero, the value of η is interpolated at the radial position of each
embryo before the absolute value is taken.

Following Dra̧żkowska et al. (2021), the pebble accretion rate is calculated by summing the
respective rates for each mass bin i at the local radial cell, which is given by multiplying the
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corresponding ϵPA,i to the pebble flux Ṁpeb = 2πr3drift,iΣd,i. The pebble drift velocity 3drift,i of mass
bin i is given by (Weidenschilling 1977)

3drift,i = 2Sti|η|rΩK. (4.27)

The accretion rate can be summarized as

ṁ =
∑

i

ϵPA,i2πr3drift,iΣd,i (4.28)

=
∑

i

ϵPA,i4πr2Sti|η|ΩKΣd,i. (4.29)

Since η is expected to cross zero in our disk model, we note that this means 3drift = 0 when
η = 0 with Eq. (4.27) and ϵPA is undefined. In our implementation, this would give ṁ = 0 as
the supply of pebbles by headwind is halted. The mass of the accreted pebbles of each mass bin
in the respective radial cell is then subtracted from the dust component of the disk in the next
immediate communication step. Nonetheless, the contribution from the turbulence of the gas and
the diffusion of the dust on 3drift are neglected that only the pebbles supplied by the headwind is
considered, i.e., a more conservative pebble accretion rate is adopted. The possible implications
are further discussed in Section 4.4.1.

Since this work neglects the gas feedback from the embryos onto the disk, the simulation is
stopped once any particle reaches 1/10 of the local pebble isolation mass miso, which is given by
(Lambrechts et al. 2014)

miso = 20
 ĥg

0.05

3

M⊕. (4.30)

Nonetheless, (Sándor & Regály 2021) reported that the pebble isolation mass may be about 2−3
times larger at a pressure bump while the results presented in Bitsch et al. (2018) do not support
this conclusion.

4.2.5 Numerical set-up
The timestep in DustPy ∆tdisk is variable and determined by the rate of change of the gas and
dust surface densities while SyMBAp requires a fixed timestep ∆tnbod for the symplecticity. For all
the simulations in this work, ∆tdisk > ∆tnbod. Therefore, after ∆tdisk is evaluated in DustPy, it is
rounded down to the nearest integral multiple of ∆tnbod. With the timestep determined, DustPy
takes one step, and SyMBAp takes a number of ∆tdisk/∆tnbod steps in parallel. Then, commu-
nication is made via MPI, where the data of the newly formed planetesimals (Section 4.2.3),
the relevant gas and dust components (Section 4.2.4), and the rounded ∆tdisk are passed from
DustPy to SyMBAp, and, the data of the accreted pebbles (Section 4.2.4) are passed from SyMBAp
to DustPy. Afterwards, DustPy and SyMBAp take their respective step(s) again in parallel and
this process repeats until the simulation ends.

For the simulations with the disk gap at 10 au, ∆tnbod = 0.5 yr is used and particles are
removed if the heliocentric distance is less than 5 au or greater than 103 au. And, for the gap
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Table 4.1: Summary of the combinations of parameters, the times required for each combination to reach t0 that
the first planetesimal was formed as well as the time when 0.1miso is reached. As the mass of planetesimal is drawn
randomly, there are some variations in the time required among the simulations with the same parameters. Further
descriptions are in the respective sub-section.

r0 (au) δ Time to t0 (×105yr) Time to 0.1miso (t0 + ... × 105yr) Section
10 10−4 {1.05, 1.11, 1.14, 1.14, 1.15} {0.34, 0.26, 0.22, 0.24, 0.24} 4.3.1
10 10−5 {0.93, 0.98, 1.03, 1.05, 1.06} {0.51, 0.46, 0.37, 0.34, 0.37} 4.3.2
75 10−4 {4.9, 5.2, 5.3, 5.6, 6.0} {2.2, 1.9, 1.9, 1.4, 1.2} 4.3.3
75 10−5 {4.5, 4.6, 4.6, 4.6, 5.1} {3.1, 2.9, 3.0, 3.0, 2.4} 4.3.4

location of 75 au, ∆tnbod = 20 yr is used and particles are removed if the heliocentric distance is
less than 50 au instead. The additional subroutines for gas drag, type-I damping and migration,
and pebble accretion are added to SyMBAp following the integration step in Matsumura et al.
(2017) as

Pτ/2Mτ/2NτMτ/2Pτ/2, (4.31)

where the timestep τ = ∆tnbod, the operator P handles the effect of pebble accretion,M handles
the effect of gas drag, type-I damping and migration, andN is the second-order symplectic inte-
grator in the original SyMBAp. P andM operate in the heliocentric coordinates andN operates in
the democratic heliocentric coordinates, therefore, coordinate transformations are done at each
step.

In this work, two gap locations r0 = {10, 75} au and two values of the local diffusion parame-
ter δ = {10−4, 10−5} are tested. Five simulations for each combination are conducted to minimize
the statistical effect, i.e., a total of 20 simulations are conducted and presented in the next section.

4.3 Results

In each simulation, some time is required for the gap to attain the prescribed form and accumulate
enough dust to trigger planetesimal formation by streaming instability. We define the time that
the first planetesimal is realized as t0 and Table 4.1 summarizes the time required to reach t0

for each simulation. Since the masses of the planetesimals are drawn randomly, simulations
with the same parameter may not reach t0 at the same time and a small variation is recorded.
Simulations end when 0.1miso is reached and the respective times are also summarized in Table
4.1. Descriptions for each set of parameters are in the following sub-sections respectively.

4.3.1 Disk gap at 10 au and δ = 10−4

Fig. 4.3 shows the radial dust distribution of one of the five simulations at t0, where the heat map
shows the profile of the midplane dust density σd for difference dust mass md. The drift and the
fragmentation limits are shown by the green and blue lines respectively. It shows that the dust
mass is only limited by the fragmentation limit (≫ mm) at the pressure bump near 14 au. The
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Figure 4.3: The dust distribution at t0 of one of the five simulations for the disk gap at 10 au and δ = 10−4. The heat
map shows the radial profile of the midplane dust density σd for difference dust mass md. The white lines show the
md corresponding to St = 0.1 (solid) and 0.01 (dotted) respectively. The green and blue lines shows the drift and the
fragmentation limits respectively. The dust mass is shown limited by the fragmentation limit (≫ mm) at the dust
trap near 14 au.

inward drifting dust from the outer disk is trapped and coagulation continues. Planet formation
by streaming instability occurs as enough dust accumulates at the pressure bump.

Fig. 4.4 and 4.5 show the results of the five simulations for r0 = 10 au and δ = 10−4.
Figure 4.4a shows the radial profiles of the gas and dust surface densities as well as that of the
dust-to-gas ratio when planetesimals start to form in one of the simulations. We note that there
is no significant difference in the disk profiles among the simulations and the disk profiles did
not change drastically up to the end of the simulations. The disk gap is shown centred at 10
au as prescribed and dust accumulates at the outer edge of the gap. Across the local pressure
maximum, as shown by the radial profiles from one of the simulations in Fig 4.4b, both Ṁpeb

and η cross zero and switch sign, where the negative values are denoted by the dashed lines.
However, just outside of this narrow region, the peaks of Ṁpeb are almost up to 104M⊕ Myr−1

while η is still lower than 10−2 at the these two locations.
In Fig. 4.4c, panels i to iii show the mass and semimajor axis of the planetesimals at different

times. The colours show the results from each of the five simulations and the bodies that reached
10−2M⊕ are denoted with large dots. In this case, the characteristic planetesimal mass MG ≈

3 × 10−3M⊕ while there are small variations in time and distance as the disk is evolving slightly
and the planetesimals do not form at the same location r. We define t0 the time that the formation
of planetesimals has just started. At t0 (Fig. 4.4c i), just enough dust has accumulated at the
pressure bump and planetesimal formation starts around the local pressure maximum at about
14.2 au. Planetesimals continue to form and some grow rapidly through pebble accretion as in
Fig. 4.4c ii at t0 + 5 × 103 yr. The five simulations ended from t0 + 2.2 × 104 to t0 + 3.4 × 104

yr as 0.1miso ≈ 4.1M⊕ is reached respectively (Fig. 4.4c iii). The narrow region with low pebble
flux does not show significant effect in this setup. The coloured lines in Fig. 4.4c iii show the
trajectories of the most massive body in each simulation. The massive planetary cores remain
near the pressure bump with slight inward migration, which also started scattering the smaller
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Figure 4.4: Simulation results for the disk gap at 10 au and δ = 10−4, where MG ≈ 3 × 10−3M⊕. a) The radial
profiles in one of the five simulations of the dust and gas surface densities as well as the dust-to-gas ratio at t0 when
planetesimal formation starts. b) Pebble flux Ṁpeb and the pressure support parameter η around the pressure bump
from one of the five simulations, where the dashed lines denote negative values. c) Time sequence of mass m and
semimajor axis r of the planetesimals. Planetesimals that reach 10−2M⊕ by the end are denoted with large dots. Each
colour shows one of the five simulations, which ended from t0 + 2.2 × 104 to t0 + 3.4 × 104 yrs. Further descriptions
are in the text.
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Figure 4.5: Further simulation results for the disk gap at 10 au and δ = 10−4. a) Time sequence of planetesimals
eccentricity e and mass m. The coloured trajectories follow the most massive bodies and the grey trajectories follow
the most massive ones under 10−2M⊕ in each of the simulations. The dashed lines denote the pebble accretion onset
mass discussed in Section 4.4.2. b) Planetesimals inclination i and mass m at the end, where the i of most bodies
are still lower than the pebble disk scale height. c) The differential mass distribution at the end of the model with 10
mass bins in each decade. It shows only a few massive cores are formed while the simulations stop before a large
population of planetesimals are formed.
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planetesimals.
Fig. 4.5 shows further details of the effect of viscous stirring. Panels a i to iii show the

eccentricity and mass of the planetesimals at the respective times in Fig. 4.4c. In Fig. 4.5a, the
trajectory of the most massive body at the end of each simulation is shown by the coloured line,
and that for the most massive body with m < 10−2M⊕ is shown by the grey line. The dashed
line shows a pebble accretion onset mass assuming η = 10−3 and St = 10−1, which is further
discussed in Section 4.4.2. From Fig. 4.5a i to ii, the planetesimals formed early and close to
the massive end of the distribution grow rapidly by pebble accretion and stir the latecomers. In
Fig. 4.5a iii, the most massive body in each simulation has relatively low eccentricity throughout
the entire time. The latecomers, which are born after an embryo has already grown significantly
to ∼ M⊕, are being stirred to high eccentricity as shown by the grey trajectories. This halted
pebble accretion even though their inclinations are still lower than the pebble disk scale height
as shown in Fig. 4.5b. Meanwhile, the role of gas drag has not shown its significance in the
results likely due to the large (≳ 100km) size of the planetesimals in our model and the strong
dynamical heating due to the rapidly-formed massive cores. The role of viscous stirring and
pebble accretion is further discussed in Section 4.4.2.

The differential mass distributions at the end (Fig. 4.5c) show only a small number of massive
cores (≥ M⊕) are formed in each of the simulations. In this setup, the simulations are quickly
stopped as 0.1miso is reached shortly after only a small number of planetesimals were formed.
The form of the initial mass distribution is not clearly shown even though most planetesimals did
not grow significantly. We note that less than 10 mergers occurred in each of the simulations,
which have no significant effect on the growth and the final mass of the bodies.

4.3.2 Disk gap at 10 au and δ = 10−5

Another set of five simulations with r0 = 10 au and δ = 10−5 are conducted, in comparison
to the results where δ = 10−4. As suggested by Eq. (4.17), the change of δ means that MG is
103/2, that is about 32 times, lower. With the characteristic mass MG ≈ 9 × 10−5M⊕, the number
of planetesimals produced is much higher. The dust and gas surface densities, pebble flux and
η have no significant difference with respect to the case of δ = 10−4 as other parameters are
unchanged. The five simulations ended from t0 + 3.4 × 104 to t0 + 5.1 × 104 yr.

Fig. 4.6 shows the results of models with δ = 10−5. As previously, only the planetesimals
which are formed early and massive can start pebble accretion right after formation. Similar
to the case with δ = 10−4, these bodies grow efficiently and stir up the population of smaller
planetesimals. The grey trajectories in Fig. 4.6a iii show more clearly that some small bod-
ies could still grow briefly by pebble accretion from about 10−4M⊕ to just below 10−2M⊕ but
further growth is halted due to their high eccentricities. Although the inclinations of the small
planetesimals shown in Fig. 4.6b are not much higher than the pebble disk scale height, they
cannot still accrete pebbles. Figure 4.6c shows that the majority of the planetesimal population
did not grow significantly. The form of the initial mass distribution (Fig. 4.1) is retained and
only a small number of massive cores are formed. In each of the simulations, about 200 mergers
occurred, which is dominated by the massive cores accreting small planetesimals. The mass dif-
ference between the two populations is more than 4 orders of magnitude so these mergers have



4.3 Results 71

10−8

10−6

10−4

10−2

100

e

a i)

t0

10−8

10−6

10−4

10−2

100

e

a ii)

t0 + 104 yr

10−8

10−6

10−4

10−2

100

e

a iii)

End

10−8

10−6

10−4

10−2

100

i

b)

End

10−7 10−5 10−3 10−1 101

m (M⊕)

100

101

102

103

d
N

c)

End

r0 = 10 au, δ = 10−5

Figure 4.6: Simulation results for the disk gap at 10 au and δ = 10−5, which ended from t0+3.4×104 to t0+5.1×104

yr. a) The e-m time sequence shows only the planetesimals formed early and relatively massive can accrete pebbles
efficiently and stir up the latecomers. b) The i-m plot at the end of the simulations shows that the inclinations of the
small planetesimals are still not much larger than the pebble disk scale height. c) The differential mass distribution
at the end shows the majority of the planetesimal did not grow significantly by pebble accretion and retain the form
of the initial mass distribution as shown in Fig. 4.1. Only a small number of massive cores are formed in the
simulations.
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no significant effect on the final masses of the massive planetary cores.

4.3.3 Disk gap at 75 au and δ = 10−4

Figure 4.7 and 4.8 show the results of the five simulations for r0 = 75 au and δ = 10−4. Figure
4.7a shows the pressure bump centring at 75 au as prescribed and the outer pressure maxima is at
about 100 au. Compared to the setup with the disk gap at 10 au, Fig. 4.7b shows that the pebble
flux is only slightly lower near the pressure bump while η is a few times higher in general. The
five simulations ended from t0 + 1.2 × 105 to t0 + 2.2 × 105 yrs as 0.1miso ≈ 17.2M⊕ is reached
respectively. Similarly, the m-r time sequence (Fig. 4.7c) shows that the planetesimals formed
early accrete pebbles efficiently and reach the pebble isolation mass in about 0.1 Myr. We note
that MG is similar to that for the simulations with r0 = 10 au, which is due the increase in ĥg

being mostly offset by the increase in the mass-averaged St.
Figure 4.8 shows further details of the results, which is again similar to the case of r0 = 10 au

and δ = 10−4 (Fig. 4.5). In the time sequence (Fig. 4.8a), the planetesimals formed early grow
by pebble accretion at a slower but still rapid rate and stir the latecomers to eccentric orbits that
stopped pebble accretion. Figure 4.8b shows that the inclinations of planetesimals remain even
lower, which is around the values drawn at their realization. Nonetheless, the small bodies still
cannot accrete pebbles due to high relative pebble velocity and only a small number of massive
bodies are formed as shown in Fig. 4.8c.

4.3.4 Disk gap at 75 au and δ = 10−5

Figure 4.9 shows the results of the five simulations for r0 = 75 au and δ = 10−5. The five
simulations ended between t0 + 2.4 × 105 to t0 + 3.1 × 105 yr. Similar to the previous cases, only
the planetesimals that formed early and relatively large can accrete pebbles efficiently similar
to the case of r0 = 10 au and δ = 10−5. The results also confirm that growth is dominated
by the large embryos, which viscously stir the majority of the planetesimals. Pebble accretion
again cannot operate for these excited bodies due to high pebble relative velocities even though
their inclinations are much lower than the pebble disk scale height. In comparison to the case of
r0 = 10 au and δ = 10−5, a smaller numbers of larger embryos (≥ M⊕) are formed at the end.

4.4 Discussions

4.4.1 Pressure bump
The results presented in this work show that the environment in a pressure bump is favourable to
the rapid formation of massive planetary cores in numerous possible ways, which is in agreement
with the results by Morbidelli (2020); Guilera et al. (2020); Chambers (2021). First, dust drifting
from the outer disk is trapped and accumulated at the exterior edge of the disk gap. This way
a pebble passing the planet orbit without being accreted is not lost to the inner disk, but can be
accreted at later passages. This circumvents the issue of large required pebble masses (Ormel
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Figure 4.7: Simulation results for the disk gap at 75 au and δ = 10−4. a) The radial profiles of the disk when
planetesimal formation starts. b) The radial profiles of pebble flux Ṁpeb that it is still high around the pressure
bump, yet slightly lower compared to the models at 10 au shown in Fig. 4.4b. The pressure support parameter η is
generally a few times higher while the regions of low η still coincide with the peaks of the pebble flux. c) The m-r
time sequence also shows similar results except the planetesimals are formed later and the grow rate is slower. The
five simulations ended from t0 + 1.2 × 105 to t0 + 2.2 × 105 yrs.
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Figure 4.8: Further simulation results for the disk gap at 75 au and δ = 10−4. a) The e-m time sequence shows that
a small number of massive cores are formed, which excite and prevent the growth of the latecomers. This is similar
to the results to the case with r0 = 10 au and δ = 10−4. b) The i-m plot at the end of the simulations shows that the
inclinations remain very low for all bodies that is around the values drawn at their formation. c) The differential mass
distribution at the end also shows only a small number of mass cores are formed and the simulations are stopped
before a large population of planetesimals is produced. This is also similar to the case with r0 = 10 au and δ = 10−4.
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Figure 4.9: Simulation results for the disk gap at 75 au and δ = 10−5, which ended from t0+2.4×105 to t0+3.1×105

yrs. a) The e-m time sequence shows that a small number of massive embryos started growth early and stirred the
majority of the lately-formed planetesimals into eccentric orbits. b) The i-m plot at the end of the simulations shows
that the i of all bodies remain well lower than the pebble disk scale height and confirms that the pebble relative
velocity is critical. c) Compared to the case of r0 = 10 au and δ = 10−5, the differential mass distribution shows an
even smaller number of massive cores formed in these simulations.
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Figure 4.10: The radial profiles of the migration related parameters at the end of one of the simulations with r0 = 10
au. a) qT remains constant in our disk model while pΣ varies greatly and changes sign across the pressure bump.
b) The coefficients for τa also changes sign but at slightly different locations according to Eq. (4.24) & (4.25)
respectively. c) τa near the pressure bump for an embryo of different masses with e = 10−3 and i = e/2, where
inward migration is denoted by red and outward migration is denoted by blue. The migration rate slows down
and changes sign slightly interior (≈ 14 au) to the location of planetesimal formation (≈ 14.2 au). d) τe at the
same locations, which is ∝ twav ∝ m−1. This shows type-I damping starts to become efficient when the embryos is
≳ 10−1M⊕.
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2017). Secondly, as the mid-plane dust-to-gas ratio gradually increases, it can reach the critical
level for streaming instability. The grain sizes are also just limited by the fragmentation limit
(≫ mm). Therefore, planetesimal formation by streaming instability is possible in this specific
environment. The planetesimals are formed within the regions of high pebble density and can
accrete them efficiently.

Furthermore, the headwind, which carries the dust or pebbles, is slower around the pressure
bump. In the headwind regime, the pebble relative velocity is mostly determined by η3K, which
is applicable to a dynamically cold planetesimal belt. The pebble accretion onset mass in this
case can be estimated by (Visser & Ormel 2016; Ormel 2017)

MPA,hw = St |η|3M∗. (4.32)

In both cases of r0 = 10 au and 75 au, η at the location of the peak of the pebble flux is a few times
lower than the value of it in a smooth disk. This greatly decreases the required mass for efficient
pebble accretion particularly in the outer disk as η ∝ ĥ2

g. Combining the decreased MPA,hw and
the enhanced Ṁpeb, the planetesimals formed early that are well in the headwind regime can
easily initiate rapid growth by pebble accretion. In our setup, the growth timescale in the settling
regime at the pressure bump is ∼ 103 − 104 yr for r0 = 10 au and it is a few times higher for
r0 = 75 au.

We note that Ṁpeb is tiny in the immediate vicinity of the peak of the pressure bump in our
model, where the pebble drift velocity switches sign and crosses zero with η. This results from
our assumptions that pebbles are only supplied by radial drift due to the headwind in the disk.
In a more realistic scenario, pebbles are also transported by turbulent diffusion. This effect is
negligible when the headwind dominates the supply of pebbles. However, at the pressure bump,
the headwind changes direction and is weak within a narrow region (e.g. Fig. 4.4b & 4.7b). In
this case, turbulent diffusion can supply pebbles to this region such that the pebble flux is always
finite and smooth. Although these effects are modelled by DustPy in the disk, the prescription of
the pebble accretion efficiency by Liu & Ormel (2018) and Ormel & Liu (2018) is yielded from
a model with a finite headwind, which ranges from 15−60ms−1. It remains uncertain if the same
prescriptions can be applied to pebbles transported by turbulent diffusion as well as the relative
radial motion of the embryo. Therefore, in this work, we only consider the pebble flux due to
the headwind in the disk, which is proportional to |η|, which would result in a more conservative
pebble accretion rate.

Nonetheless, this region of small Ṁpeb did not show significant effect likely due to the finite
width and the dynamical spreading of the planetesimal belt. The value of Ṁpeb is also exception-
ally high (> 103M⊕ Myr−1) just outside of this region. However, the width of this low pebble
flux zone shall change with the shape of the disk gap, which may cause more significant effect
on the growth of the planetesimals with a different prescription.

In other works adopting a smooth disk model, as the embryos become massive, the rapid
type-I migration has been shown causing these bodies to quickly move to the inner disk. How-
ever, in our model with the pressure bump, these massive planetary cores are retained similar to
the results of planet migration in structured disk in Coleman & Nelson (2016a). In the adopted
migration prescription for an embryo with low eccentricity and inclination the sign of τa is de-
termined by the coefficient CT in Eq. (4.20). And, CT is given by Eq. (4.25), which depends on
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pΣ and qT . Figure 4.10 shows the migration parameters at the end of one of the simulations with
r0 = 10 au as an example, where τa and τe are calculated assuming e = 10−3 and i = e/2. In our
disk model, qT is constant throughout the disk while pΣ varies greatly and switches sign across
the pressure bump as shown in Fig. 4.10a. This implies that CT also switches sign and is negative
slightly interior to the pressure maximum (Fig. 4.10b). As the migration direction changes from
inward to outward going into the pressure bump from the exterior (Fig. 4.10c), this helps retain-
ing the massive embryos at wide orbits as shown in our results in Section 4.3. Nonetheless, we
note that the mass dependence of the migration trap (e.g. Chrenko et al. 2022) is not studied in
our work since gas accretion and gap opening, which shall occur upon the formation of massive
planetary cores, are not considered in our model.

4.4.2 Pebble accretion and viscous stirring
When a planetesimal is in an eccentric orbit, the pebble relative velocity is no longer dominated
by the headwind but by the planetesimal’s orbital velocity instead. In the adopted pebble accre-
tion prescription by Liu & Ormel (2018) and Ormel & Liu (2018), the azimuthal pebble relative
velocity is given by

∆3y = max(3cir, 3ecc), (4.33)

where 3cir combines the headwind and the Hill regimes in the circular limit. And, 3ecc corresponds
to the eccentric limit that 3ecc = 0.76e3K. For small planetesimals, pebble accretion mostly does
not operate in the Hill regime. Therefore, the pebble accretion onset mass in Eq. (4.32) can be
refined into a more general form that

MPA = St [max(|η|, 0.76e)]3M∗. (4.34)

This mass is denoted by the dashed line in the e-m plots in Section 4.3 assuming St = 0.1 and
η = 10−3.

The shear-dominated (low-energy) regime of viscous stirring (Ida & Makino 1993) is appli-
cable as the em and im of the newly-born latecomers are very low before reaching the equilibrium
values. The stirring timescale for eccentricity is much shorter than that for inclination and dy-
namical friction is ineffective (Ida 1990). This is more significant in the results for δ = 10−4

where e ≪ i in general even at the end of the simulations. And, in the results for δ = 10−5, the
excitation in e occurred much earlier than that for i as well while the equipartition of energy is
only reached in some of the simulations. In this regime, the protoplanet-planetesimal viscous
stirring timescale for eccentricity is given by (Ida & Makino 1993)

τM−m
vs,e = 7.20 × 103

(
M
M⊕

)−1/2 ( a
10 au

)3/2 ( em,rms

5 × 10−3

)3
yr, (4.35)

with em,rms the root-mean-square value of em and the mass of the protoplanet M. When a massive
embryo has formed, the latecomers are stirred to high eccentricities within a very short timescale.
Any newly formed planetesimals are excited to high eccentricity quickly, which results in a
MPA ≫ MPA,hw for them. As a result, pebble accretion cannot operate even if the latecomers have
mass greater than MPA,hw.
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Figure 4.11: The differential mass distribution from one of the simulations with r0 = 10 au and δ = 10−5 at
t0 + 5 × 104 yr (top), t0 + 2 × 105 yr (middle) and t0 + 3.7 × 105 yr (bottom) with 10 mass bins in each decade.
The red line in each panel shows the corresponding estimation of the pebble accretion timescale τPA with respect
to mass for the instantaneous erms of all bodies. The grey histogram in the bottom panel shows the initial mass of
all planetesimals produced throughout the simulation. The evolution shows a window period exists that significant
growth by pebble accretion is possible. This period starts from the time of the formation of the first planetesimal
with m > MPA,hw and ends at the time when it becomes massive enough to excite the less massive bodies to high
eccentricity in a short timescale.
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Meanwhile, the e of the massive bodies are being damped efficiently by the type-I torques as
τe ∝ twav ∝ m−1, which enable continuous pebble accretion. In the example for r0 = 10 au as
shown in Fig. 4.10d, type-I damping gradually becomes significant (≲ 106 yr) for m ≳ 10−1M⊕.
Thus, the latecomers are prevented from pebble accretion as a result of both viscous stirring from
the massive planet formed earlier and the inefficient type-I damping.

This also implies that a window period exists between the time of the formation of the first
planetesimal with m > MPA,hw and the time when it becomes massive enough to halt pebble
accretion for the less massive bodies. During this window period, a few of the planetesimals
formed with m > MPA ∼ MPA,hw can still grow by a few orders of magnitude in mass as shown in
our results.

For example, Fig. 4.11 shows the evolution of the differential mass distribution of one of the
simulations with r0 = 10 au and δ = 10−5. The red line in each panel shows the corresponding
pebble accretion timescale τPA ≡ m/ṁ with respect to m. τPA is estimated near the centre of
the planetesimal belt at 14.2 au using the root-mean-square eccentricity of all bodies erms. The
estimation also assumes Ṁpeb = 103M⊕ Myr−1 and St = 0.1. The top panel, at t0 + 5 × 104

yr, shows that when a massive body has not formed and erms is low, MPA = MPA,hw is about
10−4M⊕ where τPA ∼ 104 yr. Rapid growth is possible for the bodies in the massive end of the
planetesimal mass distribution. As a few embryos grow significantly in mass and excite erms

to above 0.76η, the eccentric limit of pebble accretion becomes applicable. The middle panel,
at t0 + 2 × 105 yr, shows that MPA starts to shift away from the majority of the planetesimals.
The leading bodies dominate growth and the bottom panel, at t0 + 3.7 × 105 yr, shows that the
small planetesimals are further excited and MPA increases drastically. The grey histogram shows
the distribution of the initial mass of all planetesimals produced throughout the simulation. The
bodies of ≳ 10−3M⊕ were born within the window period such that the masses had grown by at
least an order of magnitude before MPA overtook them.

The exact number of massive cores formed by the end of the simulations is then also deter-
mined by the rate of planetesimal formation, which has not been explored in this work. Since
the transition between the headwind and the eccentric limits becomes critical in this scenario,
the expression for ∆3y in Eq. (4.33) merits further refinements for a smoother and more physical
expression.

We note that this mechanism is conceptually different from the ‘viscous stirring pebble ac-
cretion’ in Levison et al. (2015), where pebble accretion for smaller bodies is stalled due to high
inclinations. In our model, the pebble disk scale height for each dust species is given by Eq.
(4.8), which is about 0.32Hg for α = 10−3 and St = 0.1. And, in the results presented in Section
4.3, the inclinations of the small bodies have not been stirred greatly away from the pebble disk
in general but pebble accretion is already effectively stopped by the increased pebble relative
velocity.

4.4.3 Characteristic mass MG

The characteristic mass of the initial planetesimal mass distribution given by Eq. (4.17) is sen-
sitive to the small-scale diffusion parameter that MG ∝ δ3/2. We only tested the values of
δ = {10−4, 10−5} due to computational limit while the measurements by Schreiber & Klahr (2018)
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range from 10−4 − 10−6. A strong dependence on the simulation domain size is also shown in
their work.

Since planetesimal accretion is inefficient in our parameter space, pebble accretion is only
possible for the planetesimals with large enough mass initially. For the results of δ = 10−4 shown
in Section 4.3.1 & 4.3.3, MG > MPA,hw. In this case, planetesimals that are formed slightly later
than the first one can still accrete pebble and grow by at least an order of magnitude in mass.
And, 0.1miso is reached only after a small population of planetesimals have formed. The form of
the initial mass distribution cannot be retrieved from the end results. In contrast, for δ = 10−5

shown in Section 4.3.1 & 4.3.3, MG ∼ MPA,hw. Fewer bodies are formed with mass between the
most massive cores and the vast population of small planetesimals. The distinction between these
two classes is much clearer. As a result, the initial planetesimals distribution is mostly presented
and preserved in this case.

Although the rapid formation of massive planetary cores are possible in the parameters tested,
we expect that for a very low δ, pebble accretion may not occur as MG ≪ MPA,hw. And, the
timescale of runaway planetesimal accretion is given by (Ormel et al. 2010)

τrg = 5.45 × 107
(

m
10−5M⊕

)1/3 (
M∗
M⊙

)−1/2 (
Σplts

10 g cm−2

)−1

×(
ρs

1.5 g cm−3

)2/3 ( a
100 au

)3/2
yr. (4.36)

Planetesimal accretion is also unlikely to be efficient enough to reach MPA,hw within the typical
disk lifetime particularly at the outer disk. This will likely result in a population of planetesimals
with the initial mass distribution preserved. This consequence is also consistent with the recent
work by Lorek & Johansen (2022) that the seeds for pebble accretion are unlikely to form through
planetesimal accretion beyond 5-10 au within the typical disk lifetime.

4.4.4 Potential effects of a planet in the disk gap

In this work, a planet in the disk gap is not considered while the results show the growth of
planetesimals by pebble accretion is also sensitive to viscous stirring. This implies that if there
exists a planet in the gap, the planetesimal belt formed at the pressure bump may be heated and
prevented from growth by pebble accretion. For instance, the fitting of a planet-induced gap in
the simulations by Kanagawa et al. (2017) has a half width ∝ m2. Meanwhile, the half width of
the heated zone of a planet (Ida & Makino 1993) scales with its Hill radius that ∝ m1/3. This
implies that there may exist a regime transition as the gap-opening planet grows in mass because
the gap expands faster than the heated zone. However, the exact width of the heated zone also
depends on the e and i of the planetesimals as shown in Ida & Makino (1993). This requires
further modellings that include gas accretion and feedback onto the gas disk. For instance, our
model neglects the effect of the recently proposed thermal torque mainly due to heat released
from solid accretion (Benítez-Llambay et al. 2015; Masset 2017; Guilera et al. 2021) and the
effect of the dust torque (Benítez-Llambay & Pessah 2018).



82 4. Rapid formation of massive planetary cores in a pressure bump

4.4.5 Other recent works

Planet growth by pebble accretion in substructured disk is also studied by Morbidelli (2020). In
this work, the dust ring is assumed to be in a steady-state, which is described by a Gaussian distri-
bution. It shows that planet may migrate slightly inwards but out of the dust-concentrated region,
where growth by pebble accretion is significantly slowed down. In comparison, the dust-to-gas
ratio in our model is much higher at the outer edge of the disk gap (e.g. Fig. 4.4a & 4.7a). Since
the disk gap is only prescribed towards the gas component, the dust component evolves around it
and results in a much higher dust density at the pressure bump. Also, Morbidelli (2020) adopted
a migration prescription for a non-isothermal disk, in contrast to our model. Since the coeffi-
cients of the migration torque are different between the isothermal and non-isothermal cases, the
planet trap locates at a different location. Further investigations on the effect of migration in the
context of substructured disks and planetary growth are required.

In the work by Guilera et al. (2020), planet formation in an ice-line (∼ 3 au) induced pressure
bump is also studied with a model that includes dust growth, planetesimal formation by streaming
instability, pebble accretion and planet migration. In this model, a uniform initial radius of
100 km for the planetesimals is adopted. When an embryo reaches lunar mass, the effects of
pebble accretion, gas accretion and planet migration are enabled for it. The rapid formation of
massive planetary cores is also demonstrated and the pressure bump acts as a planet trap for
planet with mass ≲ 10M⊕. In comparison, we adopted a distribution of initial planetesimal mass
and demonstrated the effect of viscous stirring on pebble accretion by full N-body simulations.
However, the initial planetesimal mass adopted in our work is generally much larger. The effect
of planetesimal accretion is not noticeable due to the greater distance from the star. Once a
massive core is formed, the neighbouring planetesimals are likely scattered and a new gap should
form due to the planet-disk interactions, which changes the location of pressure bump.

Chambers (2021) studied the formation of cold Jupiter in a substructured disk starting with
embryos of ∼ 10−4M⊕. A series of 8 pressure bumps is prescribed and the embryos are placed
at the respective locations of ‘pebble trap’. In addition to pebble accretion, gas drag and the
type-I torques, gas accretion and gap opening are also included in this model. Their results also
show that massive planetary cores can form rapidly in pressure bump, which acts as a migration
trap as well. Meanwhile, the production of planetesimals is not considered in this model, which
is also favoured in pressure bump, and pebbles are added to the disk locally after 400 orbital
periods. Since planetesimals are formed in a dust concentrated region, the ones above MPA can
immediately start pebble accretion as shown in our model.

In the recent work by Jiang & Ormel (2023), planetesimal growth in a clumpy ring and a
pressure-induced dust ring are studied respectively. In their case, a constant mass flux is supplied
from the outer disk and a single Stokes number is assumed for the pebbles. In contrast, in this
present work, we modelled the dust and gas evolution of the entire protoplanetary disk where
mass is conserved globally. We also include the variation in the Stokes numbers of different
mass species at different locations, which is critical to the initial planetesimal mass distribution
and the pebble accretion efficiency.

A similar pebble accretion efficiency prescription is adopted in their work. We note that
the factor of 1/η from ϵPA is eliminated for the pebble accretion rate while η = 0 at the local
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pressure maximum. This implicitly assumed that the pebble flux due to the radial motion of the
planet, turbulence in the disk and diffusion of the dust is equivalent to that due to the headwind.
We discussed in Section 4.4.1 that the prescription of ϵPA is yielded from models with non-zero
headwind. Therefore, we have taken a more conservative approach by considering only the
pebble flux due to the headwind for accretion in our work.

A migration prescription for a smooth disk with an artificial migration strength prefactor is
adopted in their work. Meanwhile, in the prescription by Ida et al. (2020) adopted in this work,
the local slopes of the surface density and temperature profiles are taken in account, which natu-
rally stop inward migration slightly interior to but not exactly at the pressure bump. Nonetheless,
we note that these prescriptions assume a local uniformity on the scale of Hg. Further studies are
required for a sharp pressure bump.

Their work also showed that pebble accretion is efficient with low eccentricity, which is
consistent with our results for the massive planetary cores formed. In addition, with a mass
spectrum of planetesimals, the smaller or lately-formed planetesimals are excited significantly
and pebble accretion is halted as demonstrated in this work.

Jang et al. (2022) also studied the subsequent evolution of planetesimals formed by streaming
instability in a smooth disk with a constant pebble flux. They modelled a planetesimal belt with
a width of ∆r = ηr respectively at different locations of the disk. Their results show that rapid
growth by pebble accretion is not possible at the outer disk due to the strong headwind, which
drastically increases the pebble accretion onset mass. In the results with type-I migration, they
also show rapid inward migration for the embryos that reach ∼ 1M⊕. In contrast, as discussed in
Section 4.4.1, planetesimals can still accrete pebbles efficiently in our results due to weakened
headwind in the pressure bump. They are also retained near the pressure bump due to the change
in the slope of the gas surface density.

4.5 Conclusions
This work demonstrated that the rapid formation of massive planetary cores in a pressure bump
is possible starting from ISM-sized dust. The dust and gas evolution code DustPy is used to
model a protoplanetary disk consistently. It is coupled to the parallelized N-body code SyMBAp
to integrate a large number of planetesimals. According to the evolving disk, the planetesimals
also experience the effects of gas drag, type-I migration and pebble accretion.

As the micron-sized dust particles coagulate up to the cm-m regime, the pressure bump traps
the dust drifting from the outer disk. The locally enhanced dust-to-gas ratio can then trigger
planetesimal formation by streaming instability. These km-sized planetesimals are naturally born
in a location where the pebble flux is exceptionally large and the headwind is weakened. This
allows the planetesimals which are formed early and relatively massive to grow efficiently by
pebble accretion even in the outer disk. Only a small number of massive cores (∼ M⊕) are formed
as the later-formed planetesimals are excited into eccentric orbits, where pebble accretion is
halted. The massive embryos are retained near the dust trap as the direction of migration switches
to outward migration slightly interior to the local pressure maximum. A natural continuation of
this work is including gas accretion and feedback onto the protoplanetary disk in the model.
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This shall provide further insights on the open questions regarding the architecture of the Solar
System as well as those of other exoplanetary systems.

Nonetheless, the characteristic masses of the planetesimals adopted in this work are limited
by computational costs. Since pebble accretion is unlikely to be efficient for even smaller plan-
etesimals, it merits further analyses on the initial mass distribution of planetesimals resulting
from streaming instability, which has been an active research topic, e.g. Simon et al. (2016,
2017); Schäfer et al. (2017); Abod et al. (2019); Li et al. (2019); Rucska & Wadsley (2020).

As pebble accretion may not operate in a heated planetesimal belt due to high pebble relative
velocity, a pre-existing planet in the gap may immediate excite the newly formed planetesimals.
This depends on the width of the gap and that of the heated zone. A planet-induced gap is not
considered and the shape of the disk gap is also not explored in this work. These ingredients of
our model require further investigations.
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Abstract: Planet formation models are necessary to understand the origins of diverse planetary
systems. Circumstellar disc substructures have been proposed as preferred locations of planet
formation, but a complete formation scenario has not been covered by a single model so far.
We aim to study the formation of giant planets facilitated by disc substructure and starting with
sub-micron-sized dust. We connect dust coagulation and drift, planetesimal formation, N-body
gravity, pebble accretion, planet migration, planetary gas accretion, and gap opening in one
consistent modelling framework. We find rapid formation of multiple gas giants from the initial
disc substructure. The migration trap near the substructure allows for the formation of cold
gas giants. A new pressure maximum is created at the outer edge of the planetary gap, which
triggers the next generation of planet formation resulting in a compact chain of giant planets. A
high planet formation efficiency is achieved, as the first gas giants are effective at preventing dust
from drifting further inwards, which preserves material for planet formation. Sequential planet
formation is a promising framework to explain the formation of chains of gas and ice giants.

5.1 Introduction

Planet formation is a multi-step process spanning over 40 orders of magnitude in mass. In recent
years, there has been significant progress in the understanding of this process driven by the
numerous discoveries of exoplanets and observations of protoplanetary discs (see Drążkowska
et al. (2023) for a recent review). The formation of the first gravitationally bound building blocks
of planets, the planetesimals, which used to be a major bottleneck of the planet formation theory,
was addressed by the streaming instability (Johansen et al. 2007). The properties of planetesimals
formed in the streaming instability broadly match comets and the Kuiper belt objects (Blum et al.
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2017; Nesvorný et al. 2019). The growth timescale of giant planet cores, which was prohibitively
long in the classical planetesimal-driven paradigm (Lissauer 1987; Kokubo & Ida 2000, 2002),
has been addressed by introducing pebble accretion (Ormel et al. 2010; Lambrechts et al. 2014).
Despite these new developments, a consistent model covering all the stages of planet formation
does not exist yet. Formation of the cores of giant planets remains a challenge, particularly at
large orbital distances (Voelkel et al. 2020; Coleman 2021; Eriksson et al. 2023).

Current planet formation models in general fail to meet both the physical and cosmochemi-
cal constraints required to explain the Solar System (e.g. Matsumura et al. 2017; Liu et al. 2019;
Bitsch et al. 2019; Lau et al. 2024b). The main challenge remains to be the ‘migration prob-
lem’, where rapid migration occurs for planetary cores of 1 to 10 M⊕, resulting in the formation
of super-Earths and hot Jupiters. While the above models generally assume a smooth plane-
tary disc, multiple works (e.g. Coleman & Nelson 2016a; Morbidelli 2020; Guilera et al. 2020;
Chambers 2021; Andama et al. 2022; Lau et al. 2022) have modelled the formation and evolution
of planetary cores retained at the migration trap near a pressure bump in the disc. Nonetheless,
the origin of such pressure bumps remains uncertain, the proposed non-planetary causes include
late-stage infall of material (Gupta et al. 2023), sublimation (Saito & Sirono 2011), instabilities
(Takahashi & Inutsuka 2014; Flock et al. 2015; Dullemond et al. 2018), and the edge of the dead
zone, where the magneto-rotational instability (MRI) is suppressed (Pinilla et al. 2016).

More recently, the high-resolution interferometry observations by the Atacama Large Mil-
limeter/submillimeter Array (ALMA) have shown that substructures are typical in protoplane-
tary discs. Multiple surveys (e.g. Andrews et al. 2018; Long et al. 2018; Cieza et al. 2021), have
shown that most of the substructures are presented in the form of axisymmetric rings. While
these observations are limited to large and bright discs, disc population synthesis and theoretical
models (Toci et al. 2021; Zormpas et al. 2022) have demonstrated that disc substructures may be
common in unresolved discs as well.

Chatterjee & Tan (2013) presented an analytic model demonstrating the ‘inside-out’ planet
formation scenario, where planet formation starts at the outer edge of the MRI active zone around
the star. Although this work focuses on explaining the tightly packed chains of planets commonly
seen in exoplanetary systems, the model suggests the possibility of planet formation being trig-
gered by the planet formed in the previous generation. A similar idea was also proposed for the
formation of Saturn after the completion of Jupiter (Kobayashi et al. 2012), in which the core of
Saturn grows rapidly without significant inward drift in the pressure bump induced by the plane-
tary gap of Jupiter, although they did not consider planetesimal formation from dust and pebble
accretion.

Motivated by the current models and observations, a substructure in a protoplanetary disc
has recently emerged as an ideal location for planet formation (Chambers 2021; Lau et al. 2022;
Jiang & Ormel 2023). Lau et al. (2022) modelled the formation and evolution of planetesimals
in an initial axisymmetric disc substructure by coupling the dust and gas evolution code DustPy
(Stammler & Birnstiel 2022) with the parallelised symplectic N-body integrator SyMBA par-
allelised (SyMBAp; Lau & Lee 2023). As the disc evolves and satisfies the condition for the
streaming instability and the subsequent gravitational collapse, a fraction of the dust is converted
into planetesimals as N-body particles. On top of the full N-body gravitational interactions, ad-
ditional subroutines are gas drag, planet-disc interactions, and pebble accretion. Lau et al. (2022)
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showed the rapid formation of planetary cores thanks to the concentrated dust, which are also
retained due to the migration trap near the pressure bump. However, this work did not attempt
to form giant planets, as the authors focused on the formation of planetary cores, where gas
accretion and planetary gap opening are missing in the model.

In this work, we further developed the model in Lau et al. (2022) for the formation of giant
planets initiated by a disc substructure and found a scenario of sequential planet formation. In the
following, Sec. 5.2 summarises the methods adopted in Lau et al. (2022) and the new components
implemented in this work. The results are presented in Sect. 5.3, which are followed by the
discussions in Sect. 5.4. The findings of this work are summarised in Sect. 5.5.

5.2 Method

We employed the dust and gas evolution code DustPy v1.0.3 (Stammler & Birnstiel 2022) and
the symplectic N-body integrator SyMBAp v1.6 (Lau & Lee 2023), a parallelised version of the
Symplectic Massive Body Algorithm (SyMBA; Duncan et al. 1998). The coupling of the two
codes to construct a consistent planet formation model was first presented in Lau et al. (2022),
which only modelled the formation of planetary cores. In this work, we added gas accretion and
planetary gap opening to model the subsequent evolution of the embryos formed at a pressure
bump. The following summarises the employed method in Lau et al. (2022) and describes the
new components in detail.

5.2.1 Disc model

DustPy simulates the viscous evolution of the gas, coagulation, fragmentation, advection, and
diffusion of the dust in a protoplanetary disc. The different parts of the disc model are described
in this section.

Gas component

We considered a protoplanetary disc around a solar-type star, which is axisymmetric and in
vertical hydrostatic equilibrium. The initial gas surface density Σg,init is given by

Σg,init =
Mdisc

2πr2
c

(
r
rc

)−1

exp
(
−

r
rc

)
, (5.1)

with the distance from the star r, the initial mass of the disc Mdisc, and the characteristic radius
rc. We set Mdisc = 0.0263M⊙ and rc = 50 au, which imply Σg,init (r = 5 au) ≈ 134.6 g cm−2.

The gas disc viscously evolves in time t according to the advection-diffusion equation

∂Σg

∂t
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(νΣgr1/2)

]
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(Lüst 1952; Lynden-Bell & Pringle 1974), while the backreaction from the dust is neglected. The
Shakura & Sunyaev (1973) α-parametrisation was adopted for the kinematic viscosity ν such that

ν = αcsHg, (5.3)

with the speed of sound cs and the disc scale height Hg. The viscosity parameter α = {3, 5}×10−4

was set in this work. The disc scale height is defined by Hg ≡ cs/ΩK, where the local Keplerian
orbital frequencyΩK =

√
GM⊙/r3 with the gravitational constant G. The isothermal sound speed

was used and given by cs =
√

kBT/µ with the Boltzmann constant kB, the midplane temperature
T and the mean molecular weight of the gas µ = 2.3mp. The disc was assumed to be passively
irradiated by the solar luminosity at a constant angle of 0.05, which gives a midplane temperature
profile

T ≈ 221
( r
au

)−1/2
K. (5.4)

We note that the normalisation is about 0.84 of that in Lau et al. (2022), which is the result of a
correction made to DustPy since v1.0.2. This setup yields the dimensionless gas disc scale height

ĥg ≡
Hg

r
≈ 0.0299

( r
au

)1/4
. (5.5)

The midplane pressure gradient parameter η is then given by

η = −
ĥ2

g

2
∂ ln P
∂ ln r

, (5.6)

with the midplane gas pressure P, which describes the degree of ‘sub-Keplerity’ of the gas. A
logarithmic radial grid was adopted with with 133 cells from 3 to 53 au and with an additional
42 cells from 53 to 1000 au.

Dust component

The initial dust surface density Σd,init is given by

Σd,init = ZΣg,init (5.7)

with the global dust-to-gas ratio Z set at the solar metallicity of 0.01. We followed Mathis
et al. (1977), that is, the MRN size distribution of the interstellar medium, for the initial size
distribution of the dust grains. The maximum initial size was set at 1 µm with the internal density
of 1.67 g cm−3 assumed. A total of 141 dust mass bins logarithmically spaced from 10−12 to 108 g
were used. Each dust species was evolved in time through transport with the advection-diffusion
equation (Clarke & Pringle 1988) coupled to growth and fragmentation with the Smoluchowski
equation. The fragmentation velocity was assumed to be 5 ms−1. At collision velocities above
which, the dust aggregates are assumed to fragment. The Stokes number Sti of the dust in each
dust species i was calculated by considering the Epstein and the Stokes I regimes. The dust scale
height of each dust species Hd,i was calculated according to Dubrulle et al. (1995),

Hd,i = Hg

√
α

α + Sti
, (5.8)
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assuming Sti < 1. Further details of the algorithms for the disc model are described in Stammler
& Birnstiel (2022).

Initial disc gap

An initial axisymmetric gap was introduced to the disc following the model by Dullemond &
Penzlin (2018), which is motivated by the commonly observed substructures in protoplanetary
discs. To modify the gas profile, we applied a modified α-parameter with radial dependence
α′(r) = α/F(r), where the function

F(r) = exp
[
−A exp

(
−

(r − r0)2

2w2

)]
(5.9)

with the gap amplitude A = 1, the location r0 = 5.5 au and the gap width w = 0.5 au. The
initial gap is removed when the first planet has the gap opening factor K (Kanagawa et al. 2015b)
of 250. The K factor is further described in Sect. 5.2.3 on planetary gap opening. This value
translates to a perturbation towards the gas disc of about 1/10 of the unperturbed gas surface
density.

Since we do not study the physical cause of the initial disc gap, the modified α′(r)-parameter
only serves the purpose to attain a target gas profile and does not change the actual turbulence in
the disc. Therefore, the modified α-parameter α′(r) is exclusively experienced by the gas, while
dust diffusion, dust scale height and turbulent collision speeds are set by α. Nonetheless, the
dust evolves according to the resulting gas profile. We note that this treatment is not consistent
with the substructure formation scenarios where the actual turbulence is changed, for example,
the edge of the dead-zone, but consistent with the cases where the turbulence is unchanged, for
example, infall of material.

Planetesimal formation

Lau et al. (2022) adopted the truncated power-law cumulative mass distribution from the fitting
by Abod et al. (2019). However, the upper end of the distribution is not limited and Lau et al.
(2024b) noted that the largest planetesimal in the actual realisation depends on the total number
of planetesimals. Therefore, here we adopted the Toomre-like instability criterion Qp for the
gravitational collapse of the dense filament induced by streaming instability and the initial mass
function from Gerbig & Li (2023). The criterion for collapse is Qp < 1 with

Qp =

√
δ

Sta3g

csΩ

πGΣd,local
, (5.10)

and the mass-averaged Stokes number of the dust in the cell Sta3g. The local dust surface density
Σd,local was assumed to be 10 times of the averaged Σd of the cell. Motivated by the streaming
instability simulations in Schreiber & Klahr (2018), the small-scale diffusion parameter δ was
set at 10−5. The model converts dust into planetesimals based on the prescription by Drążkowska
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Figure 5.1: Differential mass distribution of the planetesimals formed near the initial disc substructure for the set of
simulations with α = 5 × 10−4 drawn from the adopted initial mass function by Gerbig & Li (2023). There are 10
bins per decade in mass m and ∆N is the number of planetesimals in each bin. Each colour corresponds to one of
the five simulations.

et al. (2016) and Schoonenberg et al. (2018). The Qp criterion was combined with the smooth
planetesimal formation activation function from Miller et al. (2021), which is given by

Ppf =
1

1 + exp [10 × (Qp − 0.75)]
, (5.11)

and evaluated at each radial grid cell. If any cell also satisfies the criterion of ρd/ρg ≥ 1, the local
dust surface density for each dust species i is reduced by

∂Σd,i

∂t
= −PpfΣd,i

ζ

tset,i
. (5.12)

The planetesimal formation efficiency per settling time is ζ = 10−3 and the settling time of dust
species i is tset,i ≡ 1/(StiΩK).

Then, the removed dust is summed over all dust species and added to the local planetesimal
mass surface density. We first draw the location of a new planetesimal using the radial profile
of the planetesimal mass surface density. Then, we draw the planetesimal mass according to the
initial mass function given by Gerbig & Li (2023), which is resulting from the stability analysis
of the dispersion relation for dust influenced by turbulent diffusion (Klahr & Schreiber 2021).
The maximum and minimum masses associated with the unstable modes are given by
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9
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5.2 Method 91

and the fastest-growing mode is given by
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MCeres, (5.15)

assuming isotropy in the small-scale diffusion. We refer the readers to Eq. (20) in Gerbig & Li
(2023) for the expression of the probability density function. Figure 5.1 shows an example of
the differential mass distribution of the planetesimals formed at about 6.5 au near the initial disc
substructure for the set of simulations with α = 5 × 10−4.

As described in Lau et al. (2022), the eccentricity e and the inclination i in radian are ran-
domly drawn from two Rayleigh distributions with the scale parameters 10−6 and 5 × 10−7 re-
spectively. The rest of the angles of the orbital elements in radian are drawn randomly from 0
to 2π. The physical radius Rp is calculated by assuming an internal density ρs of 1.5 g cm−3.
The drawn mass is subtracted from the surface density from the nearest radial grid cells and the
realisation stops when the total remaining mass is less than the drawn mass. Any residue of the
planetesimal mass surface density and the last drawn value of planetesimal mass is retained for
the next time step to avoid bias towards the lower mass, that is, the drawn mass will be realised
as soon as enough planetesimal surface density is available.

5.2.2 Planetesimal evolution
The realised planetesimals, and a Solar-mass star, were then evolved by SyMBAp with full grav-
itational interactions as well as additional subroutines to include gas drag, the planet-disc inter-
actions, pebble accretion, gas accretion and planetary gap opening. If two bodies collide, they
were assumed to merge completely, that is, collisions are perfectly inelastic. At each communi-
cation step, on top of the newly formed planetesimals, the radial profiles of the disc were passed
to SyMBAp. This included the gas components:

• the gas surface density Σg;

• the midplane temperature T ;

• the gas disc scale height Hg;

• the midplane gas density ρg, and;

• the midplane pressure gradient parameter η,

and the dust component, for each dust species i,:

• the Stokes number Sti;

• the dust disc scale height Hd,i, and;
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• the dust surface density Σd,i.

Also, the feedback to the disc was also passed to DustPy including

• the dust mass loss due to pebble accretion (Sect. 5.2.2);

• the gas mass loss due to gas accretion (Sect. 5.2.2), and;

• the change in gas surface density due to planetary gap opening (Sect. 5.2.3),

which are further described in the respective subsections.

Pebble accretion

The treatment for the pebble accretion rate of each planetesimal is identical to that presented in
Lau et al. (2022) and summarised below. First, the pebble mass flux of dust species i at any
location is given by

Ṁpeb = 2πr3drift,iΣd,i. (5.16)

The pebble drift speed of dust species i is 3drift,i = 2Sti|η|rΩK (Weidenschilling 1977). Then, we
implemented the pebble accretion efficiency factor ϵPA,i by Liu & Ormel (2018) and Ormel & Liu
(2018) to calculate the fraction of the local pebble mass flux being accreted by each planetesimal
or planet for dust species i. The pebble accretion rate by a planetesimal or a planet is then given
by summing the contributions from all dust species, which is

ṁpa =
∑

i

ϵPA,i2πr3drift,iΣd,i. (5.17)

The mass of the accreted pebbles is then subtracted from the respective dust species and radial
cell of the dust disc at the next immediate communication step.

We did not implement the pebble isolation mass explicitly with a prescription (e.g. Lam-
brechts et al. 2014) in this work. Instead, as dust and gas evolve consistently in this model, the
planetary gap opening by a planet (Sect. 5.2.3) can interrupt the pebble flux capturing the process
of pebble isolation within the model.

Gas accretion

We followed Piso & Youdin (2014) and Bitsch et al. (2015b) to prescribe the gas accretion rate
with the modification by Chambers (2021) to account for the energy released from pebble accre-
tion. Gas accretion generally begins when the energy released from pebble accretion decreases
enabling the cooling of the gas envelope. The gas accretion rate in this phase is

ṁcool =max
[
0, 4.375 × 10−9

(
κ

cm2 g−1

)−1 (
ρc

5.5 g cm−3

)−1/6

×(
mc

M⊕

)11/3 (
men3

M⊕

)−1 ( T
81K

)−1/2

M⊕yr−1 − 15ṁpa

] (5.18)
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with the opacity of the gas envelope κ and the density of the core ρc = 5.5 g cm−3. We note that
the solid mass accreted from planetesimal accretion is negligible compared to pebble accretion
in our simulations. We followed Brouwers et al. (2021) for the grain size near the Bondi radius
of the gas envelope to calculate its Rosseland mean opacity. Assuming the Epstein regime, the
incoming solids converge to the size

R =
ρg3th3frag

gBρ•
, (5.19)

with the midplane gas density ρg, the thermal velocity 3th, the gravity at the Bondi radius gB and
the monomer density ρ• = 1.67 g cm−3. The Rosseland mean opacity is given by

κ =
3Qeffρd

4ρ•Rρg
(5.20)

with the midplane dust density ρd. The extinction efficiency is Qeff = min(0.6πRs/λpeak, 2) with
the peak wavelength of the emission given by

λpeak =
0.29 cm

T/K
, (5.21)

where the temperature T is assumed to be the local disc midplane temperature.
When the gas envelope men3 exceeds the solid core mass mc, gas accretion enters the runway

phase following the treatment by Bitsch et al. (2015b). The gas accretion rate in this phase is
determined by the gas stream flowing towards the planet (Tanigawa & Tanaka 2016), which is

ṁrunaway = 0.29Σgr2ΩK

(
m

M⊙

)4/3

ĥ−2
g (5.22)

with the planet mass m. The accreted gas is then subtracted from the gas disc assuming the
half-width of the accretion zone equals twice the Hill radius of the planet.

Physical radius

As the planetesimals or planets grow by many orders of magnitude in mass, the physical radius
Rp is evaluated correspondingly. For mass m less than 0.1 Earth mass, we assumed an internal
density ρs of 1.5 g cm−3, which is the same when the planetesimals are formed. For m above
0.1 M⊕ but less than 5 M⊕, we followed Seager et al. (2007) for the mass-radius relationship of
rocky planets, which is

log
(

Rp

3.3R⊕

)
= −0.209 +

1
3

log
(

m
5.5M⊕

)
− 0.08

(
m

5.5M⊕

)0.4

(5.23)

with the radius of Earth R⊕. For m above 5 M⊕, we followed the mass-radius relationship applied
in Matsumura et al. (2017), which is

Rp = 1.65
√

m
5M⊕

R⊕. (5.24)
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5.2.3 Planetary gap opening
For all planetesimals and planets, the non-dimensional gap opening factor (Kanagawa et al.
2015b) was evaluated, which is given by

K =
(

m
M⊙

)2

ĥ−5
g α

−1. (5.25)

Since the treatment in Sect. 5.2.1 to attain a target gas profile does not change the actual turbu-
lence experienced by the dust and we only consider the torque exerted on the gas disc, planetary
gap opening was applied through the modified α′-parameter. When K > 0.25, we impose a
planetary gap to the gas disc by dividing α′ by the ratio of the perturbed surface density to the
unperturbed one Σg/Σg,0. In other words, the planetary gap is imposed when the change caused
by the corresponding body is more than about 1% of the unperturbed surface gas density.

The effects on α′ were multiplied when more than one planet can open a gap, that is, for all
gap opening planets i

α′ =
α

F ·
∏

i

(
Σg/Σg,0

)
i

, (5.26)

with the function to impose the initial disc gap F (see Eq. (5.9)).
We note that some small but short-period chaotic movements of massive planets can prevent

the disc from converging to a quasi-steady state and the speed of code is significantly reduced.
Therefore, we allowed α′(r) to reach the target value exponentially on a relaxation timescale of
250 × (10−3/α) years, which is below the viscous evolution timescales of the disc in the adopted
radial domain of the simulations.

We adopted the empirical formula by Duffell (2020) for the gap profile, which is

Σg

Σg,0
=

1 + 0.45
3π

q̃2(r)

αĥ5
g

δ(q̃(r))

−1

(5.27)

with ĥg evaluated at the planet’s location. The radial profile function q̃(r) is defined by

q̃(r) ≡
q{

1 + D3
[
(r/rp)1/6 − 1

]6
}1/3 (5.28)

with the mass ratio q ≡ m/M⊙, the planet’s radial distance from the star rp and the scaling factor
D ≡ 7ĥ−3/2

g α−1/4. The function δ(x) is given by

δ(x) =

1 + (x/qw)3, if x < qNL√
qNL/x + (x/qw)3, if x ≥ qNL

(5.29)

with the factor qNL = 1.04ĥ3
g and the factor qw = 34qNL

√
α/ĥg. We note that there is a mi-

nor discrepancy in the form of δ(x) for the case of x < qNL between the text and the Python
code presented in Duffell (2020). We confirm that the expression given above by Eq. (5.29) is
consistent with the mentioned Python code, which is continuous and more appropriate (private
communication, Duffell, 2022).
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5.2.4 Gas drag and planet-disc interactions
All bodies experience the combined effects of aerodynamic gas drag and the planet-disc inter-
actions. For low-mass planet without gap opening, the treatment for gas drag and planet-disc
interaction are identical to that presented in Lau et al. (2022) and summarised below.

We adopt the aerodynamic gas drag by Adachi et al. (1976), which is

adrag = −

(
3CDρ

8Rpρs

)
3rel3rel (5.30)

with the drag coefficient CD and, the relative velocity between the planetesimal and the gas
3rel. The gas flow is assumed to be laminar and cylindrical, where the magnitude is given by
rΩK(1 − |η|). As the planetesimals in this work are well larger than a kilometre in size, the large
Reynolds number case is generally applicable, that is, CD = 0.5 (Whipple 1972). The gas density
ρ at the planetesimal’s position z above the midplane is given by ρ = ρg exp(−0.5z2/H2

g).
For type-I damping and migration, we adopted the prescription based on dynamical friction

by Ida et al. (2020). The timescales for the isothermal case and finite i, while i < ĥg, (Appendix D
of Ida et al. (2020)) were implemented. The evolution timescales of semimajor axis, eccentricity
and inclination are defined, respectively, by

τa ≡ −
a

da/dt
, τe ≡ −

e
de/dt

, τi ≡ −
i

di/dt
. (5.31)

These timescales are given by, with ê ≡ e/ĥg and î ≡ i/ĥg,

τa =
twa3

CTĥ2
g

[
1 +

CT

CM

√
ê2 + î2

]
, (5.32)

τe = 1.282twa3

[
1 +

(ê2 + î2)3/2

15

]
, (5.33)

τi = 1.838twa3

[
1 +

(ê2 + î2)3/2

21.5

]
. (5.34)

The characteristic time twa3 (Tanaka et al. 2002) is given by

twa3 =

(M⊙
m

) ( M⊙
Σgr2

)  ĥ4
g

ΩK

 , (5.35)

where Σg and ĥg are retrieved from the local radial cell of the disc model. The normalised torques
CM and CT are given by

CM = 6(2pΣ − qT + 2), (5.36)

CT = 2.73 + 1.08pΣ + 0.87qT , (5.37)

with pΣ ≡ −d lnΣg/d ln r and qT ≡ −d ln T/d ln r. The three timescales were then applied to the
equation of motion

a = −
3K

2τa
eθ −

3r

τe
er −
3θ − 3K

τe
eθ −
3z

τi
ez (5.38)
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in the cylindrical coordinates (r, θ, z) that the velocity of the embryo 3 = (3r, 3θ, 3z). And, the local
Keplerian velocity 3K was evaluated at the instantaneous r of the particle.

As the planet grows and opens a gap in the disc, Kanagawa et al. (2018) suggested that
the magnitude of the torque scales linearly with the local surface density providing a smooth
transition to the high-mass (type-II) regime of planet migration. Since the dependence of twa3 on
Σg as in Eq. (5.35) is retrieved from the local grid cell, the above treatment combined with gap
opening (Sect. 5.2.3) can already capture this transition.

We note that planetary gap opening (Sect. 5.2.3) and planet migration are the results of
planet-disc interactions, which are physically coupled by the action-reaction pair. However, we
have adopted two independent prescriptions for each of them since a prescription for a torque
profile which is suitable for a one-dimensional model and a general planet mass is still missing.
Further discussions on the adopted treatments are in Sect. 5.4.4.

5.2.5 Numerical setup
The time step for SyMBAp τ = 0.2 yr was used and particles were removed if the heliocentric
distance is less than 4 au or greater than 100 au. The additional subroutines for the evolution of
the N-body particles were added to SyMBAp as

Pτ/2Mτ/2NτMτ/2Pτ/2. (5.39)

The operator P handles the effect of pebble accretion, gas accretion and gap opening,M handles
the effect of gas drag and planet-disc interactions, andN is the second-order symplectic integra-
tor in the original SyMBAp. The operators P andM operate in the heliocentric coordinates and
N operates in the democratic heliocentric coordinates so coordinate transformation is required
at each step.

Since disc dissipation is not included in this work, all simulations stop at 2 Myr, which is
the typical timescale that internal photoevaporation becomes significant to the disc (e.g. Owen
et al. 2010, 2011; Picogna et al. 2019; Gárate et al. 2021). We note a numerical difficulty when
multiple giant planets are produced, which causes multiple deep planetary gaps in the disc and a
small integration time step is required for the disc. Each simulation requires a wall-clock time of
2 to 4 weeks. We tested two values of α = {3, 5} × 10−4 and five simulations were conducted for
each to evaluate the statistical effect.

5.3 Results

5.3.1 The case of α = 5 × 10−4

Formation and evolution of massive bodies

Figure 5.2 presents one of the simulations with α = 5 × 10−4 with the panels showing the six
key timestamps. The solid and dashed lines show the profiles of the gas surface density Σg and
the dust surface density Σd respectively. The dots show the mass m and the semimajor axis r
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Figure 5.2: Six key timestamps demonstrating sequential planet formation in one of the simulations with α =
5 × 10−4. Each panel shows the radial profiles of the gas surface density Σg (solid line), the dust surface density
Σd (dashed line) and, the mass m and the semimajor axis r of the massive bodies (dot) at the noted time. The final
panel also shows the massive bodies from the rest of the simulation set with each colour showing one of the five
simulations.
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Figure 5.3: Tracks of the massive bodies in the simulation with α = 5 × 10−4. Each colour shows one of the five
simulations corresponding to those in the final panel of Fig. 5.2, where the key timestamps are also denoted along
the time axis on the right. The solid lines show the semimajor axis of the bodies reached 10 M⊕ by the end of the
simulations. The shaded areas indicate the extents of the lower and upper quartiles of the semimajor axes of all
bodies when the total number is above 50.



5.3 Results 99

of the massive bodies, with the error bar indicating the extent of the apoapsis and periapsis for
those above 10 M⊕. The final panel (vi), which presents the end results at 2 Myr, also includes
the massive bodies from the rest of the simulation set with each colour showing one of the five
simulations.

Figure 5.3 presents the evolution of the semimajor axis of the massive bodies with each
colour showing one of the five simulations corresponding to those in the final panel of Fig. 5.2.
The solid lines show the ones reaching more than 10 M⊕ by the end of the simulations. The
shaded areas indicate the extents of the lower and upper quartiles of semimajor axes, which is
only shown when the total number of bodies is above 50 for a meaningful representation.

At 0.05 Myr (i), the imposed initial substructure has reached the target shape and dust has
started to accumulate. At 0.17 Myr (ii), the midplane volumetric dust-to-gas ratio of the disc
at about 6.5 au reaches the criteria and planetesimal formation starts. Since these bodies are
naturally born in a dust-rich environment, where the dust surface density is more than an order
of magnitude higher than the unperturbed case, they can grow rapidly by pebble accretion. The
core has also migrated towards the migration trap, which is slightly interior to the peak of the
pressure bump, but not further inside as shown by the track in Fig. 5.3.

At 0.34 Myr (iii), the first massive core has entered the runaway gas accretion phase and
opened a significant gap in the disc as it becomes a gas giant (> 100M⊕). The less massive core
and planetesimals, which are also formed from the initial pressure bump, are being scattered
mainly to wider orbits as shown by the tracks in Fig. 5.3. While most planetesimals have been
scattered out of the system, the orbit of the second-most massive planetary core is circularised
near 8 to 9 au, and it continues to grow.

At 0.86 Myr (iv), the second core also starts runaway gas accretion but at a much later time
relative to the first one. When the second gas giant opens a gap in the disc, the dust near its
location follows the sudden change in the gas profile and is pushed away from the forming gas
giant to both inner and outer part of the disc. This corresponds to the formation of a small batch
of planetesimals near 11 au shown in Fig. 5.3.

At 1.5 Myr (v), the second gas giant also reached approximately one Jupiter mass with an-
other planetary gap fully opened. A new pressure bump is steadily formed at the outer edge
of this gap and dust re-accumulates at about 13 to 14 au, which contains a part of the leftover
dust from the initial dust trap and the dust drifted from the outer disc. Another generation of
planetesimals is formed at this location. A minor instability occurred between two newly formed
massive cores at around 1.75 Myr that widens their radial separation.

Due to the late formation of the second generation of planetary cores, which ultimately form
a pair of ice giants (10 − 100M⊕), they remain in the thermal contraction phase of gas accretion
at the end of the simulation at 2 Myr (vi). A compact chain of giant planets is produced spanning
from 5 to 15 au, with a pair of gas giants formed from the initial pressure bump and a pair of ice
giants formed over 1 Myr later from the edge of the planetary gap opened by the outer gas giant.
The orbital periods of the inner pair are in near 2:1 commensurability and those of the outer pair
are in near 4:3 commensurability.

Across the five random simulations, the final panel of Fig. 5.2 and Fig. 5.3 show very similar
results for the gas giant pair formed in the first generation. For the next generation of planet
formation, further stochasticity presents. Two (blue and green) simulations produce a pair of ice
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Figure 5.4: Evolution of the solid mass in the simulation with α = 5 × 10−4 that corresponds to the one presented
by the colour blue in Fig. 5.2 & 5.3. The six timestamps in Fig. 5.2 are also denoted on the time axis. a) Solid mass
budget. The solid mass is divided into four categories: the dust mass Md inside and outside of 5 au, solids bound
in massive bodies and ejected massive bodies. It shows a high planet formation efficiency that the majority of solid
mass (85% of the initial dust mass beyond 5 au) are converted into massive bodies. b) Cumulative inflow of dust
entered 5 au after 0.5 Myr. A total of about 1.6 M⊕ of inflow to the inner disc is recorded over the next 1.5 Myr up
to the end of the simulation.

giants and another two (red and purple) produce only one ice giant. One simulation (orange)
shows no ice giant at 2 Myr but a swarm of still-growing planetesimals and planet embryos.

Dust mass budget

Figure 5.4a shows the solid mass budget throughout the simulation presented by the colour blue
in Fig. 5.2 & 5.3. The solid mass is divided into four categories, which are the dust mass Md

inside and outside of 5 au, solids bound in massive bodies, and massive bodies ejected out of the
simulation domain. The six timestamps in Fig. 5.2 are also denoted here on the time axis.

After the initial substructure is imposed, the dust mass between 3 au and 5 au (inner disc)
decreases sharply due to the inward drift of dust, while the dust supply from 5 au and beyond
(outer disc) is stopped at the pressure bump. At 0.05 Myr (i), the pressure bump is saturated
with dust and the dust mass in the inner disc increases due to leakage by turbulent diffusion.
Planetesimals start to form and grow by pebble accretion at 0.17 Myr (ii), which start converting
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dust into massive bodies. The conversion is paused when the first core starts to perturb the disc
and stops pebble accretion.

Shortly after 0.2 Myr, there is a spike in the dust mass inside of 5 au. This is caused by
the gap opening in a dust rich location as the first planetary core reaches the mass of 10 M⊕.
Similarly, another spike occurs at about 0.34 Myr (iii) when the first core enters the runaway
gas accretion phase but it is much smaller as dust is already depleted around the planet. Pebble
accretion resumes for the second core at about 0.4 Myr after its orbit has been circularised, which
also causes the change in the dust mass.

Planetesimal formation occurs again at 1.5 Myr (v) and pebble accretion continues to convert
the remaining dust to massive bodies. The final (vi) masses of the four categories show that the
majority of solids, or 85% of the initial dust mass beyond 5 au, are eventually incorporated into
massive bodies.

Figure 5.4b shows the cumulative inflow of dust that crossed 5 au after 0.5 Myr, which is
the time when the first gas giant has reached approximately one Jupiter mass. The subsequent
dust inflow to the inner Solar System is, on average, 0.5 to 1 M⊕Myr−1 or, in total, about 1.6 M⊕
including two significant episodic inflows to the inner disc.

The first one occurs shortly at about 0.86 Myr (iv) as the second planetary core enters the
runaway gas accretion phase and opens a gap in the disc. The dust near its location follows the
sudden change in the gas disc and is pushed by the forming gas giant to both inner and outer part
of the disc, which is also shown in the profiles of the surface densities (Fig. 5.2 iv). The second
one corresponds to a small instability occurs between the two newly formed massive cores at
around 1.75 Myr and perturbs the disc (Fig. 5.3).

5.3.2 The case of α = 3 × 10−4

Figure 5.5 presents the tracks of the massive bodies for the set of simulations with α = 3 × 10−4

in the manner of Fig. 5.3. Figure 5.6 presents the end results to the final panel of Fig. 5.2. The
radial profiles of the surface densities are also shown for the whole set of simulations. Compared
to the case of α = 5 × 10−4 in Sect. 5.3.1, a larger variation across the simulations is shown. For
all simulations, planetesimal formation occurs at about 0.25 Myr, which is about 0.1 Myr later
than the case of α = 5 × 10−4.

In the simulations denoted by the colour red in Fig. 5.5, a massive core is scattered through
the migration trap by another core and is lost to the inner simulation boundary. Later at about 0.6
Myr, the next generation of planetesimals are formed resulting in two massive cores. Similarly,
in the simulations denoted by the colour green, only one core is formed from the initial pressure
bump and two is formed from the subsequent generation.

In the simulations denoted by the colour blue and purple, two cores are formed from the
initial bump. The second generation of planet formation occurs at about 1.75 Myr for the former
one, while only a concentrated dust ring presents at the outer edge of the planetary gap for the
latter one at the end of the simulation. And, the simulation denoted by the colour orange forms
three gas giants from the initial pressure bump and no further planet formation occurs before the
simulation ends.
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Figure 5.5: Tracks of the massive bodies in the simulations with α = 3 × 10−4 presented in the same manner as in
Fig. 5.3.
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surface density profiles are shown for all simulations.
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Figure 5.6 summarises the final architecture of the planets where three out of the five simula-
tions form three gas giants and the remaining two (blue and purple) form two. Also, a significant
dust ring remains respectively for all simulations external to their outermost gas giant.

5.4 Discussions

5.4.1 Sequential planet formation

The results presented in Sect. 5.3 demonstrate a complete scenario of sequential planet forma-
tion. In the case of α = 5 × 10−4 (Sect. 5.3.1), two gas giants are formed from the initial disc
substructure. As the outer gas giant has reached its final mass and a steady planetary gap is
opened, dust re-accumulates at a later time near the new pressure bump triggering the next gen-
eration of planet formation. The case of α = 3 × 10−4 shows similar trend despite of the greater
degree of stochasticity.

Comparing the results with the ‘inside-out’ planet formation scenario by Chatterjee & Tan
(2013) for Kepler systems, we note that gas giant that has reached its final mass is more likely
to trigger the next generation of planet formation. For low-mass planets that cannot open a
significant gap in the disc (≲ 100M⊕), dust leakage from the pressure bump at the outer edge
of the gap is significant and requires a large supply from the outer disc to reach the conditions
for planetesimal formation. Even if planetesimals may form, they are under greater gravitational
influence of the planets as the width of the gap scales with m1/2 (Kanagawa et al. 2016; Duffell
2020) while the Hill radius scales with m1/3. In this case, the perturbation from the planet is
more likely to prevent the growth of the planetesimals as pebble accretion, particularly when the
planet continues to grow, is sensitive to the relative velocity as noted in Lau et al. (2022). These
planetesimals will likely be scattered out of the system as well, if the planet enters the runaway
gas accretion phase to become a gas giant. Therefore, the outer edge of the planetary gap opened
by a steady gas giant is a much more favourable environment for the next generation of planet
formation.

Architecture of the resulting systems

In the case of α = 5 × 10−4 (Sect. 5.3.1), the delay in the formation of the second generation
of planets directly shortens the time available for their growth. Therefore, they remain at about
10M⊕ by the end of the simulations. Although disc dissipation is not included in the current
model, the sequential planet formation scenario provides the delay in formation time of the ice
giants required by the models explaining their masses (e.g. Lee et al. 2014; Ogihara et al. 2020;
Raorane et al. 2024). At the end of the simulations, the second generation planetesimals and
embryos formed still remain in the system as the ice giants are not able to scatter them. This
results in a system with diversity that consists of gas giants, ice giant(s) and small massive bodies.

Since the radial separation of the two generations of planets is determined by the gap width,
the resulting system is compact with the four giants planets from 5 to 15 au. The gas giants
formed from the initial substructure are also commonly in the 2:1 mean-motion resonance. While
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a further test with a larger sample size is required, this may justify the compact chain of giant
planets adopted in the initial conditions of the Nice model (e.g. Tsiganis et al. 2005; Morbidelli
et al. 2005) and the early instability model (e.g. Clement & Kaib 2017; Deienno et al. 2018) from
the formation point of view.

Due to the computational cost, only two values of α are tested in this work where a larger
degree of stochasticity is presented for the case of α = 3 × 10−4 (Sect. 5.3.2). Other than
α, which determines the evolution timescale of the disc, the resulting planetary system should
also be sensitive to the initial disc mass Mdisc, the characteristic radius rc and the location of
the initial disc substructure. Upon the availability of TriPoD (Pfeil et al. submitted), which
is a simplified three-parameter dust coagulation model, a more extensive parameter study shall
become computationally feasible to study the diversity of planetary systems.

Dust mass budget

The resulting solid mass budget (Fig. 5.4a) shows a high planet formation efficiency for the
presented simulation with α = 5 × 10−4. The common gap opened by the two gas giants is very
effective in preventing dust from drifting through. As a result, the remaining dust is retained in
the disc for a prolonged period of time and preserved solids for the subsequent planet formation.

After the formation of the first gas giant, the quasi-steady inflow and the episodic inflows
result in a total of about 1.6 M⊕ of outer disc dust flowing into the inner disc over a time period of
1.5 Myr (Fig. 5.4b). The leftover planetesimals formed from the initial disc substructure are also
generally scattered outward by the rapid formation of the first gas giant (Fig. 5.3). This indicates
the chemical division caused by the first gas giant is robust. While further tests with the correct
masses of the giant planets and their time of formation are required, this formation scenario
may provide the required rapid formation of Jupiter’s core to prevent significant exchange of the
non-carbonaceous and carbonaceous reservoirs in the early Solar System (Kruijer et al. 2017).

Stammler et al. (2023) studied the efficiency of dust trapping by planetary gaps correspond-
ing to different planetary masses and values of α. Their results show a dust leakage rate of about
1M⊕Myr−1 for a gap created by a Saturn-mass planet with α = 10−4. This is broadly consis-
tent with the presented leakage rate of about 0.5M⊕Myr−1 with the episodic inflows due to the
dynamical instabilities excluded, since the planetary gap prescription used here is about 30%
deeper than the one given by Kanagawa et al. (2016) (see Fig. 8 of Duffell (2020)) and the planet
is about three times more massive in our case.

The small inflow of dust from the outer disc is likely to be preferentially accreted by a proto-
Earth and proto-Venus as pebble accretion is more efficient for bodies with higher mass and
dynamically colder orbits. This may explain Earth’s chemical abundances relative to Mars and
Vesta (Kleine et al. 2023) without causing a significant growth to form super-Earth. This result
also suggests against the scenario of significant growth by pebble accretion in the inner Solar
System (e.g. Johansen et al. 2021).
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5.4.2 Comparison with the Solar System

We note that the results of α = 5×10−4 (Sect. 5.3.1) show a pair of Jupiter-mass giants, instead of
one Jupiter- and one Saturn-mass giants. Although the second gas giant entered the runway gas
accretion about 1 Myr later than the first one, there is no significant mass difference in the end.
This is likely due to the absence of disc dissipation, which results in a high gas surface density
throughout the simulation. Further developments of the model to include photoevaporation are
required to provide a complete scenario of the formation of the early outer Solar System and
planet formation in general. We anticipate that the remaining dust in the protoplanetary disc
will form a belt of planetesimals resembling the scenario proposed by Carrera et al. (2017). In
this case, these planetesimals will remain dynamically cold while growth by pebble accretion is
prohibited due to the depletion of gas and dust. After disc dissipation, the N-body part (SyMBAp)
can continue to model the long-term evolution of the system and show if a Nice model-like
instability can occur among the giant planets.

The formation of the gas giants in the results is likely too quick compared to the meteoritic
record (Kruijer et al. 2017, 2020). We note that the composition and the opacity of the envelope
of gas giant, which are critical to the gas accretion rate, are still an active field of research (e.g.
Szulágyi et al. 2016; Lambrechts et al. 2019; Schulik et al. 2019; Ormel et al. 2021). And,
different gas accretion prescriptions are adopted among recent planet formation models (e.g. Liu
et al. 2019; Bitsch et al. 2019; Matsumura et al. 2021; Chambers 2021; Lau et al. 2024b). Further
investigations on the different recipes and their consequences are required to match the formation
history of the Solar System’s giant planets.

While the source of the initial disc substructure is not investigated in this work, the water
ice line in the early Solar System has been proposed as a key feature in reproducing the Solar
System by multiple works (e.g. Morbidelli et al. 2016, 2022; Brasser & Mojzsis 2020; Charnoz
et al. 2021; Chambers 2023). Further investigations are required to determine the criteria at the
water ice line in the early Solar System to trigger planet formation, particularly, the change in
the surface density required.

5.4.3 Other recent works

Predictions of planet formation at pressure bumps

Xu & Wang (2024) made theoretical predictions on the architecture of the planetary systems
assuming efficient planet formation at pressure bumps. They concluded three main pathways:
slow core formation, fast core formation but slow gas accretion and, fast core formation and gas
accretion.

While Lau et al. (2022) and Jiang & Ormel (2023) show that the high dust concentration at a
pressure bump will likely favour rapid growth of core, the slow core formation can be possible if
the planetesimals formed are dynamically heated to an extent that pebble accretion is halted but
they still remain close to there birthplace.

The case of fast core formation but slow gas accretion is suggested to form a chain of super-
Earths or potentially Saturn-mass planets over a prolonged period of time. This case is similar
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to the scenario proposed by Chatterjee & Tan (2013). As discussed in Sect. 5.4.1, the planetary
gap formed by super-Earths may not be able to trap a significant amount of dust and trigger
planetesimal formation. And, even if planetesimals could form, they are likely much closer to
the core and cannot grow efficiently by pebble accretion.

The case of fast core formation and fast gas accretion is suggested to form a chain of gas
giants. This prediction is the closest to the results shown in Sect. 5.3 while two to three gas
giants can form from the pressure bump in the presented work. We note that the number of cores
that can form from each pressure bump likely depends on the amplitude and the width of the dust
trap, while this has not been tested in the presented work. This requires an extensive parameter
study and more random simulations per set of parameters.

Although dust trap favours planetesimal formation, we emphasise that insitu planet forma-
tion at pressure bumps is unlikely a general solution to the diversity of exoplanetary systems.
In particular, for the observed compact planet chains in resonance, a more probable formation
scenario is that the cores are formed at a temporary pressure bump which migrate subsequently
through the disc. Multiple works have studied the scenario that the inner most planet can be
trapped at the disc edge (e.g. Terquem & Papaloizou 2007; Cossou et al. 2013; Brasser et al.
2018; Huang & Ormel 2023) and the subsequent inward-migrating planets can form a resonant
chain through convergent inward migration (e.g. Tamayo et al. 2017; Delisle 2017; MacDonald
& Dawson 2018; Wong & Lee 2024).

Sandwiched planet formation

With gas and dust hydrodynamics simulations, Pritchard et al. (2024) proposed the ‘sandwiched
planet formation’ scenario where planet formation can occur with the dust trapped between two
massive planets that each creates a pressure maximum. The authors already noted that formation
of the planets and dust fragmentation are not modelled, which may have critical effect to the dust
concentration between the planets. Furthermore, from the results presented above (Sect. 5.3), we
also note that if planetesimals could form between the planets, they are likely under a great grav-
itational influence from the massive planets. This will prevent them from growing efficiently by
accreting pebbles, or, more likely, scatter them. Nonetheless, their work confirms dust rings can
be created by massive planets with hydrodynamics simulations and these are preferred locations
of planet formation.

5.4.4 Caveats

Initial disc substructure

In this work, we studied the consequence of a substructure in the disc that can trigger planetes-
imal formation, with the location motivated by that of Jupiter. Although multiple non-planetary
mechanisms are proposed in the field as discussed in Sect. 5.1, the parameter space, including
the location, amplitude, width and lifetime, is not explored in this work and requires future in-
vestigations. For instance, from some test runs, we note that the amplitude of the substructure
needs to be large enough to trap dust effectively and trigger planetesimal formation, although
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non-axisymmetric features that may aid dust concentration such as vortices (e.g. Barge & Som-
meria 1995; Tanga et al. 1996) are not considered. Sequential planet formation also cannot occur
if the dust mass remaining is not enough to trigger the next generation of planet formation. We
emphasise that the criteria to form planetesimals are not trivial to satisfy in typical disc condi-
tions. This work only focuses on a case where planetesimal formation is possible. However, by
combining the unknowns in the shape and location of the initial disc substructure with differ-
ent disc parameters, we expect the model can produce a variety of planetary systems through a
parameter study, where sequential planet formation may not always occur.

Planet migration and gap opening

At the end of Sect. 5.2.4, we note that planetary gap opening and planet migration are treated
by independent prescriptions while they are both the results of planet-disc interactions and are
physically coupled. Also, multiple works (e.g. Lin & Papaloizou 1986; Armitage & Bonnell
2002; D’Angelo & Lubow 2010) have studied both effects consistently and provided formulae
for the torque density profile exerted by a planet on the disc. However, upon applying the formula
given by D’Angelo & Lubow (2010) in our 1-D model, we note that the gap opened by a Jupiter-
mass planet is much narrower than that described in Duffell (2020), which is also given by Eq.
(5.27). Since this gap profile is tested against a set of 2-D hydrodynamical simulations in a
general parameter space and is consistent with other works (e.g. Kanagawa et al. 2015b), we
have opted to prescribe the gap profile and planet migration separately. We also note that a
fixed temperature profile is adopted in this work, which implies that the effect of shock heating
(e.g. Zhu et al. 2015; Rafikov 2016) is neglected while its effect is likely more significant in the
outer disc where less irradiation from the star is received. Nonetheless, upon the availability of
a general torque formula applicable to a 1-D model, this part of the model shall be modified for
consistency, especially in the case of having multiple gap-opening planets in the disc.

5.5 Conclusions
This work demonstrates a scenario of sequential giant planet formation that is triggered by an
initial disc substructure. We further extended the model in Lau et al. (2022) by including the
effects of planetary gas accretion and gap opening. We employed DustPy to model a protoplane-
tary disc initially with micron-sized dust, and SyMBAp was employed to model the evolution of
the planetesimals upon formation.

Consistent with the previous results, planetary cores are formed rapidly from the initial disc
substructure, which can then be retained at the migration trap and start gas accretion. The results
show multiple (up to three) cores can form and grow into giant planets in each generation. As
the first generation of gas giants has formed and opened a steady gap, the new pressure bump at
the outer edge of the planetary gap becomes the next location of planet formation.

In the case of the higher value of α = 5 × 10−4, the second generation of planet formation
occurs about 1 Myr after the first one, and only ice giants were formed instead of gas giants.
This case also shows a high planet formation efficiency where more than 85% of the dust beyond
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5 au is converted into massive bodies. As the first generation of gas giants effectively prevent
dust from flowing through to reach the inner disc, the retained dust is then available for the next
generation of planet formation. In the case of a lower value of α = 3 × 10−4, a larger degree of
stochasticity was shown, while the general scenario of sequential giant planet formation remains.
In both cases, a compact chain of giant planets are formed at the end of the simulations. While
the simulations were stopped at 2 Myr, a natural continuation to the model would be to include
the effect of photoevaporation to physically dissipate the disc and stop gas accretion.

Although the formation mechanisms of disc substructure are beyond the scope of this work,
further investigations are required to study the possible shape and location produced by physical
processes. It is unlikely that any disc substructure can trivially provide the conditions required
for planetesimal or planet formation. Also, the parameter space and the number of random
simulations in this work are limited by the computational costs. Further code optimisation is
required to study the statistical effects and to model the diversity of planetary systems. And,
planetary gas accretion is still an active field of research. Further investigations specifically on
gas accretion are required to model the formation time of the Solar System’s giant planets.
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Chapter 6

Planetesimal formation during disc
dissipation through internal
photoevaporation

6.1 Introduction

As discussed in Chapter 2.1, disc dissipation due to photoevaporation rapidly removes the disc
and sets the end of the disc lifetime, which also terminates the gas accretion of growing planets.
And, in Chapter 5, the late formation of the Solar System’s ice giants needs to complete at a
specific time window before disc dispersal. If they form too early and continue to accrete gas,
runaway gas accretion occurs and gas giants are formed instead. On the other hand, if the cores
are not completed before disc dispersal, a rocky super-Earth is formed instead.

Furthermore, the cold classical Kuiper belt objects are likely the direct product of planetesi-
mal formation as discussed in Chapter 2.3. And, Carrera et al. (2017) showed that the enhanced
dust-to-gas ratio required by the streaming instability can be achieved at the outer edge of the
cavity opened by photoevaporation. While further modelling is required, applying this forma-
tion scenario to the cold classicals can explain why they did not grow significantly by pebble
accretion in a dust-rich environment.

The planet formation models in the previous chapters did not consider disc dissipation and
cannot physically terminate the growth of the ice giants. In this ongoing work, the X-ray pho-
toevaporation by the central star is considered as it has been suggested to dominate the mass
loss rate of discs (Ercolano et al. 2009). The prescription for the mass loss rate of the gas by
Picogna et al. (2019) and the prescription for dust mass loss through entrainment by Gárate et al.
(2021) are adopted. These components are added to the planet formation by Lau et al. (2024a)
as presented previously in Chapter 5 while some modifications are made to gas accretion. The
new model is described in the next section and the preliminary results are presented in Sect. 6.3.
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6.2 Method
The method in this work is developed upon the model in Lau et al. (2022) and Lau et al. (2024a)
(Chapter 4 & 5). In this model, the dust and gas evolution code DustPy v1.0.5 (Stammler & Birn-
stiel 2022), and the symplectic N-body integrator SyMBAp v1.6 (Lau & Lee 2023), a parallelised
version of the Symplectic Massive Body Algorithm (SyMBA; Duncan et al. 1998), are coupled.
In this work, the gas accretion and gap opening components are modified and a new component
to include the effect of internal photoevaporation is added. The changes to the method described
previously in Chapter 5.2 are detailed below.

6.2.1 Gas accretion
As noted in Sect. 5.4.2, planetary gas accretion is still an active field of research and the the
uncertainty lies in the envelope opacity. To better understand the consequence, we have opted to
treat the envelope opacity as a free parameter that can also encapsulate the general efficiency of
accretion. Furthermore, the models by Bitsch et al. (2015b) and Chambers (2021) have neglected
the limit on accretion imposed by the cooling of the envelope in the runaway accretion phase.
This is likely the cause of the rapid growth in this phase as noted in Sect. 5.4.2. Physically,
the gas accretion should be limited by both the cooling of the envelope and the supply of gas in
either phase.

In the existing prescriptions, the cooling-limited rate of gas accretion in the thermal contrac-
tion phase adopted by Bitsch et al. (2015b) based on Piso & Youdin (2014) with the modification
for pebble accretion by Chambers (2021) is still valid. While in the runaway gas accretion phase,
the Kelvin-Helmholtz timescale imposes a limit on the collapse rate of the envelope as shown by
Ikoma et al. (2000). On the gas supply, the prescription by Tanigawa & Watanabe (2002) based
on the gas flow to the planet applies. This is further restricted by the overall disc accretion rate
as Lubow & D’Angelo (2006) suggested that the gas accretion rate is limited to about 80% of
which. To summarize, the cooling-limited accretion rate in the thermal contraction phase is

ṁcool,cont =max
[
0, 4.375 × 10−9

(
κ

cm2 g−1

)−1 (
ρc

5.5 g cm−3

)−1/6

×(
mc

M⊕

)11/3 (
men3

M⊕

)−1 ( T
81K

)−1/2

M⊕yr−1 − 15ṁpa

] (6.1)

with the envelope opacity κ, the density of the core ρc = 5.5 g cm−3, the mass of the core mc the
mass of the envelope men3, the local disc temperature T and the pebble accretion rate ṁpa. And,
that in the runaway phase is

ṁcool,run =
m
τKH

(6.2)

with the the Kelvin-Helmholtz contraction timescale

τKH = 109
(

m
M⊕

)−3 (
κ

1 cm2 g−1

)
yr, (6.3)
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where the planet mass is m and the indices follow the adoption of Ida & Lin (2004). And, the
gas supply limits include the flow limit

ṁflow = 0.29Σgr2ΩK

(
m

M⊙

)4/3

ĥ−2
g (6.4)

with the local disc surface density Σg, the Keplerian orbital frequency ΩK and the local reduced
scale height ĥg, and the disc accretion limit

ṁacc = 0.8Ṁdisc (6.5)

with the local disc accretion rate Ṁdisc. The actual gas accretion rate of a planet is then, in the
thermal contraction rate for men3 < mc,

ṁcont = min
(
ṁcool,cont, ṁflow, ṁacc

)
(6.6)

and, in the runway gas accretion phase for mc ≥ men3,

ṁrun = min
(
ṁrun,cont, ṁflow, ṁacc

)
(6.7)

We note that the asymptotic mass proposed by Dobbs-Dixon et al. (2007) based on termination
of growth due to gap opening does not require explicit implementation in our model. This effect
is already captured when a gap is opened in this disc that limits the gas flow to the planet.

6.2.2 Gap opening
Previously in Lau et al. (2022) and Lau et al. (2024a) (Chapter 4 & 5), the initial gap and the
planetary gap are imposed to the gas by modifying the viscosity α-parameter. In this work, the
disc dissipation is modelled, where the gas surface density shall attain a low value and this imple-
mentation shall cause an unrealistically high gas velocity with a deep planetary gap. Therefore,
we imposed the initial gap and the planetary gap through the radial gas flux due to a torque pro-
file instead. From Lin & Papaloizou (1986) and Trilling et al. (1998), the advection-diffusion
equation under the influence of an axis-symmetrical torque deposition is

∂Σg

∂t
=

3
r
∂

∂r

[
r1/2 ∂

∂r
(νΣgr1/2) −

2ΛΣg

3ΩK

]
(6.8)

where ν is the α-viscosity and Λ is the angular momentum injection rate. As noted in Lau et al.
(2024a) (Chapter 5), there are other works (e.g. Lin & Papaloizou 1986; Armitage & Bonnell
2002; D’Angelo & Lubow 2010) provided formulae for the torque density profile exerted by a
planet on the disc, however, applying the formula given by D’Angelo & Lubow (2010) did not
produced a gap profile in the one-dimensional model.

Therefore, in this work, an equivalent profile for Λ is derived by assuming a steady state with
the target surface density profile and the accretion rate is not changed by the imposed profile.
Equation (6.8) can be rewritten as

∂Σg

∂t
=

3
r
∂

∂r

[
rΣg(3ν + 3Λ)

]
(6.9)
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with the accretion velocity

3ν = −
3ν
r
∂ log
∂ log r

(
Σgr1/2ν

)
(6.10)

and the additional velocity due to the torque injection

3Λ =
2Λ
ΩKr

. (6.11)

The condition that the disc accretion is not impeded by the planetary gap can be expressed as

Σg,eq(3ν,eq + 3Λ) = Σg,03ν,0, (6.12)

where Σg,eq and 3ν,eq are the gas surface density and accretion velocity at the steady state with
the imposed gap, Σg,0 is the unperturbed gas surface density and 3ν,0 is the unperturbed accretion
velocity. With the assumption of a constant disc accretion rate, ∂(Σg,0ν)/∂r = 0. And, with the
target surface density profile defined by

f (r) ≡
Σg,eq

Σg,0
, (6.13)

from Eq. (6.10),

3ν,eq = −
3ν
r
∂ log
∂ log r

(
fΣg,0r1/2ν

)
(6.14)

= −
3ν
r

(
∂ log f
∂ log r

+
1
2

)
, (6.15)

and,

3ν,0 = −
3ν
2r
. (6.16)

Then, from the steady state accretion condition given by Eq. (6.12), the additional velocity can
be evaluated by

3Λ =
3ν,0

f (r)
− 3ν,eq (6.17)

= −
3ν
r

(
1

2 f
−
∂ log f
∂ log r

−
1
2

)
. (6.18)

To implement this in DustPy, an external source is applied and calculated with 3Λ. For the profile
f , we applied the same initial gap profile and the planetary gap profile by Duffell (2020) as
described in Chapter 5.
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6.2.3 Internal photoevaporation
Mass loss in gas

Picogna et al. (2019) employed the three-dimensional gas photoionization and dust radiative
transfer code MOCASSIN (Ercolano et al. 2003, 2005, 2008b) to study the mass loss of a disc
that is under an X-ray and extreme ultra-violet spectrum of irradiation (Ercolano et al. 2008a) by
the central star. Both the case of a primordial disc and the case of a transition disc with a large
cavity are studied. In the former case, the total mass loss rate −Ṁg,pr is given by

log
(
−

Ṁg,pr

M⊙ yr−1

)
= AL exp

{
[ln

(
log LX

)
− BL]2

CL

}
+ DL (6.19)

with the X-ray luminosity of the star LX. The fitting parameters are AL = −2.7326, BL = 3.3307,
CL = −2.9868 × 10−3 and DL = −7.2580. The radial profile of the loss rate is

−Σ̇g,pr =
Ṁg,pr

2πr2
au

M⊙au−2yr−1 ×

6∑
k=1

kak logk−1 rau, (6.20)

where the radial mass loss factor is
Ṁr = Ṁg,pr10n (6.21)

with the index

n =
6∑

k=0

ak logk rau (6.22)

and rau ≡ r/au. The fitting parameters are a0 = −2.8562, a1 = 5.7248, a2 = −11.4721, a3 =

16.3587, a4 = −12.1214, a5 = 4.3130 and a6 = −0.5885. In the latter case of a transition disc,
the inner edge of the outer disc is directly illuminated by the central star. The radial profile of
the loss rate is then

−Σ̇g,tr =
b0bx

1xb2−1 (x ln b1 + b2)
rau

M⊙au−2yr−1 (6.23)

with the fitting parameters b0 = 0.11843, b1 = 0.99695 and b2 = 0.48835. And, the distance
from the outer edge of the cavity is

x ≡
r − rca3ity

au
. (6.24)

We followed the implementation by Gárate et al. (2021) that the cavity is considered open when
rca3ity ≥ 7.5au.

Mass loss in dust

Based on the results of the two-dimensional hydrodynamical gas model by Franz et al. (2020),
Gárate et al. (2021) implemented the criteria that only small dust particles of at most 10 µm and
is at least three scale height Hg above the midplane are entrained in the photoevaporative wind.
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For the implementation in DustPy, the mass loss rate for the dust species i that has size a < 10 µm
is

−Σ̇d,i = ϵent,iΣ̇g (6.25)

with the gas mass loss rate Σ̇g. And, the dust-to-gas ratio of the dust species above 3Hg is

ϵent,i =

∫ ∞
3Hg

ρd,i(z) dz∫ ∞
3Hg

ρg(z) dz
. (6.26)

The dust density of the species i is

ρd,i(z) = ρd,i(z = 0) exp

− z2

2H2
d,i

 (6.27)

with the dust scale height Hd,i and the gas density is

ρg(z) = ρg(z = 0) exp
(
−

z2

2H2
g

)
. (6.28)

The midplane densities and the scale heights are evaluated by DustPy for each radial grid cell.

Parameters

As a test for to the new model, the next section presents the preliminary results of a one-Myr
simulation, where the Solar-mass star has a relatively strong X-ray luminosity LX = 1030 erg s−1.
The disc is initially 0.025 M⊙ in mass with the characteristic radius Rc of 50 au and the α viscosity
parameter of 5 × 10−4. The initial dust mass is set by the Solar metallicity and the fragmentation
velocity is 5 m s−1. The initial Gaussian disc gap is centred at 5.5 au with the amplitude of 1.5
and the width of 0.5 au.

For planetesimal formation, the small-scale diffusion parameter δ is set at 5 × 10−6 and the
formation efficiency ζ is set at 10−3. And, only the dust with a Stokes number greater than 10−3

can participate in planetesimal formation. For gas accretion, a constant envelope opacity κ of
0.05 cm2 g−1 is adopted.

6.3 Preliminary results
Figure 6.1 presents the time sequence at 0.1 Myr intervals of the simulation as described in Sect.
6.2.3. In each panel, the eccentricity e and the semimajor axis r of the massive particles, and, the
radial profile of the dust and gas densities are shown at the denoted times. Planetesimal of less
than an Earth mass is denoted with a grey dot. And, planet above an Earth mass is denoted by a
dark grey circle with the radius proportional to the cube root of its mass.

After 0.1 Myr since the start of the simulation, the initial gap has started to trap dust drifting
from the outer disc while the criterion for planetesimal formation is not reached yet. At 0.2
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Figure 6.1: Time sequence of the simulation described in Sect. 6.2.3. The eccentricity e and the semimajor axis r of
the massive particles are shown by the grey dots for those less than an Earth-mass and, otherwise, by the dark-grey
circles with the radius proportional to the cube root of the mass. The gas and dust surface densities are shown by
the solid and dashed lines respectively. The results are further described in the text.
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Myr, planetesimals have been formed and a massive core has quickly formed through pebble
accretion at about 6.5 au and started gas accretion. Due to the gravitational interactions, the
smaller planetesimals are being scattered from their initial locations. At 0.3 Myr, a second core
has formed at about 8 au as its eccentricity is damped by the disc and pebble accretion resumes.
Next, at 0.4 Myr, the first planet has just entered the runaway gas accretion phase and opened a
significant gap in the disc. The second planet has also perturbed the disc and the dust-rich region
moved further outwards, which allowed gas accretion to start. At 0.5 Myr, the second planet has
also entered the runaway gas accretion phase.

A cavity started to open between 6 to 8 au in the disc at 0.6 Myr, this cleared the gas around
the first planet and stopped its growth at about 80 M⊕. Meanwhile, planetesimal formation
started again outside of the second planet at about 12 au. Their growth by pebble accretion
was inefficient due to the dynamical heating so massive cores could not form. At 0.7 Myr, the
inner disc was depleted and the second planet has been migrating outwards due the moving edge
of the disc and planetesimal formation continued further outside of it. At 0.8 Myr, the cavity
continued to grow and the second planet stopped at about 12 au as migration slowed down with
the dispersing gas. It has reached the mass of about 90 M⊕ due to the longer duration in the gas.
A clear gap in the planetesimal belt is formed at about 15 au, which is also near the location of
4:3 commensurability in orbital period with the outer planet. From 0.9 to 1 Myr, a small number
of planetesimals continued to form as the cavity was expanding. Although the eccentricities
of them gradually became lower, the dust surface density was also too low for efficient pebble
accretion.

6.4 Discussions

6.4.1 Formation

Prior to the opening of the cavity, internal photoevaporation had little effect on the disc. During
this period, the formation of the planets generally agrees with the results of rapid formation of
planets from the initial pressure bump as presented in the previous chapters. Meanwhile, the
growth rate in the runaway gas accretion phase is slower compared to that in Lau et al. (2024a)
(Chapter 5). As a results, the pair of planets only reached approximately the mass of Saturn when
the cavity opens.

Due to the strong X-ray luminosity of the star, a cavity started to open at 0.6 Myr and a
second generation of planet could not form. The planetesimals formed at the cavity edge were
either too close to the planet or formed when the dust surface density is low. This scenario
provide a pathway that planetesimals were formed due to an enhanced dust-to-gas ratio, while
the actual dust surface density cannot provide a large pebble flux. Also, once a cavity is opened,
it expands on the timescale of 105 years. This also terminates the pebble flux for the newly
formed planetesimals.
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6.4.2 Architecture
As the cavity was expanding, the outer planet experienced an episode of outward migration. As
the migration timescales was lengthening due to the decreasing gas density, the planet’s migration
stopped when it is slower than the expansion of the cavity and the planet is left in the cavity.
Furthermore, the rest of the planetesimals formed from the initial pressure bump are strongly
scattered by the planets, while some planetesimals remained near the planets. There is a distinct
class of planetesimals formed when the cavity edge has moved further from the planets at about
20 au, where they are dynamically colder. However, the simulated time is too short for the long-
term evolution on the Gyr timescale of the small bodies in the system. Longer simulations are
required to study if a two-stage formation of the small-bodies can explain the different classes in
the Solar System’s Kuiper belt.

6.5 Summary and outlook
The preliminary results show a promising pathway to form planetesimals where the subsequent
growth is prohibited, which can support the claim that the cold classicals in the Kuiper belt are
direct product of planetesimal formation. Also, the results show at least two classes of small
bodies due to different formation history. This can provide a possible explanation for the diver-
sity of the Kuiper belt objects. Meanwhile, only one set of parameters is adopted and further
investigations are required for a general picture for of final stage of planet formation.

6.5.1 Parameter space
A large X-ray luminosity was chosen for the purpose of testing the internal photoevaporation
component. Due to the early dispersal of the disc and fewer massive planets in the simulation,
the computational cost is much cheaper. Meanwhile, it is noted that this is near the lower end of
the typical disc life time. Therefore, the adopted value of 1030 erg s−1 for the X-ray luminosity
should the upper end of the parameter space. On the other hand, recent work by Sellek et al.
(2022) has suggested that there are discrepancies among the prevailing photoevaporation models.
They demonstrated the crucial role of the adopted X-ray spectrum. Therefore, the adopted value
would be specific to the model by Picogna et al. (2019).

The planets formed from the initial pressure bump are of Saturn mass, which is mostly de-
termined by the envelope opacity and the lifetime of the disc. For Solar System-like gas giants,
the adopted value is likely near the appropriate range and a parameter study should be conducted
around this value.

For the small bodies, the primordial Kuiper belt has been suggested to end at about 30 to 40
au. Furthermore, dust can drift inwards far from the outer disc. Therefore, the adopted initial
characteristic disc size of 50 au is likely the lower end to reproduce the Kuiper belt.

Finally, after the planetary system is formed, a long-term N-body simulation can further
show the subsequent dynamical evolution. This is required in attempting to explain the present
architecture of the outer Solar System.
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Chapter 7

Summary and Outlook

In the traditional N-body planet formation models, similar to the one presented in Chapter 3,
the protoplanetary disc is typically assumed to be smooth and dust evolution is not modelled in
detail. With the planetesimals as a part of the initial conditions, such setup cannot consistently
model the locations of planetesimal formation in the disc. And, planetary cores in a smooth
disc are shown to experience significant inward migration forming hot Jupiters instead of Solar-
System like giant planets. This assumption of an initial planetesimal disc also contradicts the
observations of meteorite dating that planetesimals formation spanned over millions of years in
the Solar System.

Motivated by the recent observations of dust rings in protoplanet discs, Chapter 4 presented
a model that consider a disc with an initial substructure as well as the evolution of dust in the
disc. The key planet formation processes are also included as in the prevailing planet formation
models. This permits the modelling of the location and the time of planetesimal formation. In
this case, planetary cores are formed at the pressure bump as the enhanced dust surface den-
sity favours both the formation of planetesimals and the growth by pebble accretion. This also
provides a solution to the migration problem that cores are retained at the zero-torque location
resulted from the change in the slope of the surface density.

As a continuation, Chapter 5 presented an additional component of the model that allows gas
accretion and planetary gap opening for massive planets. The results showed that two giant plan-
ets can form from the initial pressure bump. And, at the outer edge of the planetary gap, dust is
accumulated and the next generation of planetesimal formation can occur. The late formation of
the second generation of planetary cores limits the time allowed for gas accretion. This presents
the scenario of sequential planet formation and provides a possible pathway to form the Solar
System’s giant planets.

To terminate planet formation physically, Chapter 6 presented the new internal photoevap-
oration component of the model. The preliminary results further show a case that planetesimal
formation can be triggered by disc dispersal and significant growth by pebble accretion is pre-
vented. While a complete parameter study is required, this shows a promising pathway to explain
the formation of the Solar System’s Kuiper belt as the final stage of the evolution of the proto-
planetary disc.

Through the course of the development of the presented planet formation model, the interplay
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of different planet formation processes is shown to be critical to the final architecture of the
planetary systems. Meanwhile, there are various components of the model that merit further
investigations.

7.1 Future works

7.1.1 The initial substructure
The presented works focused on the consequences of an initial pressure bump that can trigger
planetesimal formation. However, the required size and amplitude of the pressure bump is not
studied, which likely also depends on the local disc condition. In particular, the water ice line
in the early Solar System has been suggested to be a critical location for planet formation by
multiple works (e.g. Morbidelli et al. 2016, 2022; Brasser & Mojzsis 2020; Charnoz et al. 2021;
Chambers 2023) while detailed modelling on planetesimal formation at the water ice line has
been studied, for example, by Drążkowska & Alibert (2017) and Lichtenberg et al. (2021). This
formation mechanism implies that pebble has been formed and drifting through the water line.
A model connecting these two proposals explicitly is required.

On the other hand, the interplay between magneto-hydrodynamical processes and dust evo-
lution has been suggested to induce spontaneous dust traps in the disc (Delage et al. submitted).
Test simulations have shown promising results that planetesimals can form from such dust trap
and grow rapidly to planetary cores. Further parameter studies shall allow forming a variety of
planetary systems.

7.1.2 Code optimisation
Due to the computational cost, the parameter space covered is limited preventing producing a
wide range of planetary systems. In particular, the bottleneck lies in modelling the disc especially
when multiple gas giants are formed. The time step become limited by the steep slopes of the
planetary gaps. This problem is expected to be alleviated when the TriPod algorithm (Pfeil et al.
2024) is implemented for the dust evolution. This shall greatly reduce the amount of computation
in simulating the dust evolution.

7.1.3 The inner Solar System
The formation of giant planets in the outer Solar System has been the focus as they are likely the
first planets formed. They also have the greatest dynamical influence on the disc and other Solar
System bodies. Meanwhile, the terrestrial planets have been suggested to form from a ring of
planetesimals (e.g. Lichtenberg et al. 2021; Woo et al. 2023). This scenario can be included in
the current model to present a full Solar System model through long-term N-body simulations.
With the dust evolution considered, the model can then study if an effective isotopic dichotomy
is established in the materials that formed the planets. The formation of the asteroid belt is also
possible with this model. On the other hand, it is anticipated that the computation will then be
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dominated by the N-body gravity among the planetesimals, which may require a GPU-powered
N-body code (e.g. GENGA; Grimm & Stadel 2014) or a super particle algorithm (e.g. LIPAD;
Levison et al. 2012).
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