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Zusammenfassung

Ein in vielen Fachgebieten verbreitetes Problem ist die optimale Abschätzung eines Sys-
temzustandes aus der Kombination einer Vorhersage mit Messdaten. Diese Aufgabe ist
die zentrale Fragestellung auf dem Gebiet der Datenassimilation (DA). In diesem Zusam-
menhang sind die Unsicherheiten und Korrelationen einzelner Messungen in Form der
Beobachtungsfehlerkovarianzmatrix gegeben. Die analogen Größen für die Vorhersage sind
entsprechend in der Vorhersagefehlerkovarianzmatrix enthalten. Der Beobachtungsfehler
beinhaltet üblicherweise mehrere Komponenten. Diese rühren aus dem Messprozess, der
Abbildung des Zustandsraums, in dem das System modelliert wurde, auf den der Messun-
gen, sowie aus dem sogenannten Repräsentationsfehler her. Letzterer wird durch den Un-
terschied zwischen dem Modell, das zur Beschreibung des Systems verwendet wird, und der
physikalischen Realität verursacht und wird das Kernthema dieser Arbeit sein. Trotz der
entscheidenden Rolle der Beobachtungsfehlerkovarianzmatrix in der DA ist die Bedeutung
ihrer räumlichen Struktur und zeitlichen Entwicklung immer noch schlecht verstanden.
Darüber hinaus ist ihre genaue Bestimmung in den meisten praktischen Anwendungen ex-
trem schwierig. Deswegen werden häufig diagonale Beobachtungsfehlerkovarianzmatrizen
verwendet, wodurch unkorrelierte Daten benötigt werden. Dies führt oftmals dazu, dass
ein großer Anteil der verfügbaren Daten verworfen werden muss.

Zur systematischen Untersuchung der Rolle der Beobachtungsfehlerkovarianzmatrix in der
DA konstruieren wir in dieser Arbeit das Stochastische Partikelmodell (SPM), ein ein-
faches partikelbasiertes Spielzeugmodell für Wassergehalt und Anzahlkonzentration, das
über wohldefinierte Kovarianzen verfügt. Nach der Konstruktion des SPM berechnen
wir die zugehörigen Kovarianzmatrizen numerisch und erklären ihre Eigenschaften durch
gravitational sorting und Partikelgeometrie. Anschließend nutzen wir die aus dem SPM
gewonnenen Kovarianzmatrizen in einer Reihe von DA-Experimenten, in denen wir die
mit statischen und dynamischen, sowie mit kompletten, diagonalen und blockdiagonalen
Beobachtungsfehlerkovarianzmatrizen erlangten Ergebnisse vergleichen. In diesen Experi-
menten sehen wir, dass eine korrekte Beschreibung der zeitlichen Entwicklung der Beobach-
tungsfehlerkovarianzmatrix erheblich wichtiger als die Berücksichtigung ihrer räumlichen
Struktur ist.

Ein weiterer wichtiger Aspekt bei der Wahl zwischen diagonalen und nichtdiagonalen
Beobachtungsfehlerkovarianzmatrizen bei der DA ist die Nichtnegativitätserhaltung. Deswe-
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gen betrachten wir stark vereinfachte Beispiele, um zu zeigen, dass ein nichtnegatives
Ergebnis des Kalmanfilters (ein verbreiteter DA Algorithmus), bei der Verwendung von
nichtdiagonalen Vorhersage- und Beobachtungsfehlerkovarianzmatrizen, nicht garantiert
werden kann. Darüber hinaus führen wir eine Reihe numerischer Experimente durch, um
zu untersuchen, wie sich die Verwendung von nichtdiagonalen Beobachtungsfehlerkovari-
anzmatrizen auf die Häufigkeit von Nichtnegativitätsverletzungen auswirkt.



Abstract

In many disciplines, a common problem is to estimate the state of a system by combining
a forecast or prediction with observations. Addressing this issue is the central goal of Data
Assimilation (DA). In this context, the uncertainties and error correlations of individual
observations are encoded in the observation error covariance matrix, and those of the fore-
cast are encoded in the background error covariance matrix. The observation error usually
consists of multiple components, originating from the measurement process, the mapping
of the state space used to model the system to the observations and the so-called repre-
sentation error. The latter one originates from the difference between the model used to
describe the system and physical reality and will be the focus of this thesis. Despite the
fact that the observation error covariance matrix plays a crucial role in DA, the role of
its spatial structure and temporal development is still poorly understood and estimating
it is extremely difficult for most practical applications. Thus in many cases a diagonal
observation error covariance matrix is employed, requiring an uncorrelated data set and
often leading to a large percentage of the available data being discarded.

To be able to systematically study the role of the observation error covariance matrix
in DA, in this thesis we construct the Stochastic Particle Model (SPM), a simple particle
based toy model for liquid water content and number density with well-defined covariances.
After constructing the SPM, we numerically calculate the according covariance matrices
and relate their features to gravitational sorting and particle geometry. Subsequently, we
use the covariance matrices obtained from the SPM in a series of DA experiments, in which
we compare the results obtained when using dynamic and static, as well as full, diagonal
and block diagonal observation error covariance matrices. In these experiments, we find
that correctly specifying the temporal evolution of the observation error covariance matrix
is far more important than accounting for its spatial structure.

A further important aspect relevant for the choice between using diagonal or non-diagonal
observation error covariance matrices in DA is non-negativity preservation. Thus we con-
sider several strongly simplified examples to show that with non-diagonal background and
observation error covariances, we can not ensure that the analysis of the Kalman filter (a
common DA algorithm) is non-negative. Furthermore, we carry out a series of numerical
experiments to investigate, how using non-diagonal observation error covariance matrices
affects the frequency of non-negativity violations.
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Chapter 1

Introduction

A common problem in many fields ranging from numerical weather prediction and finance
over oceanography to navigation is estimating the state of a system by combining an un-
certain forecast (background) with uncertain observations. The discipline dealing with this
fundamental question is data assimilation (DA). In this context, the state space that we
would like to estimate consists of the values of one or more fields evaluated on a grid.
Information about the uncertainty of the forecasts at a certain grid point, as well as the
correlation between forecast errors at different grid points, is provided by the background
error covariance matrix Pb. The observation error covariance matrix R contains analogue
information about the observation error. The state estimate is called analysis and informa-
tion about its uncertainty is usually provided by the DA algorithm in form of the analysis
error covariance matrix Pa. Combining this procedure with a mathematical/numerical
model describing the temporal evolution of the dynamical system allows to iteratively
incorporate observations carried out at different times into the model. Furthermore, ap-
plying the model to the most recent estimate of the system state allows the prediction of
future system states. Commonly used DA algorithms on which this thesis will focus are
the Kalman filter and the Ensemble Kalman filter (EnKF), a version of the Kalman filter
representing uncertainty by an ensemble of states distributed around the estimated value.

The observation error covariance matrix R plays an important role in DA and its off-
diagonal elements can contain crucial information. Though the use of full R matrix can
significantly improve the results of DA (Weston et al., 2014), in practice the off-diagonal
elements of R are difficult to estimate and thus diagonal matrices are often used instead.
In this case, thinning, i.e. discarding observations to obtain an uncorrelated data set, is
often necessary to ensure that the observation errors are uncorrelated (Janjić et al., 2018).
This results in a large percentage of the available observations not being used during DA.
The R matrix can also depend on the time or the state of the system (Janjić et al., 2018).
Nevertheless, the influence of temporal and spatial variations in R on DA is still poorly
understood.

In this thesis, we will concentrate on numerical weather prediction, which is an impor-
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tant application for DA. In particular, we will research the assimilation of observations
of quantities describing hydrometeors, i.e. "product[s] of condensation or deposition of
atmospheric water vapour", such as rain, hail, graupel and ice crystals (AMS, 2022). A
possible approach to modelling the evolution of hydrometeors is shown in Wacker and
Seifert (2001). The authors construct their reference model describing the evolution of the
liquid water content L and number density N of spherical hydrometeors in the case of pure
sedimentation, i.e. in the absence of interactions between hydrometeors and of processes
that can create or destroy hydrometeors. Furthermore, Wacker and Seifert (2001) approx-
imate their reference model by a two-moment scheme, i.e. a model describing the state
of the system and its evolution by two different moments (here liquid water content and
number density) of the so called size distribution function of the hydrometeors (Wacker and
Seifert, 2001). Two- (or more) moment schemes are recommended to be used in numerical
simulations (e.g. Igel et al., 2015). Also Wacker and Seifert (2001) found a one-moment
scheme to produce solutions strongly differing from their reference model.

Among the possible reasons for non-diagonal R matrices is the representation error, i.e. the
part of the observation error originating from the model differing from the physical reality
(Janjić et al., 2018). In order to study the representation error, performing DA experiments
with analytically calculated covariances of a sufficiently simple physical model is desirable.
The covariances of the error originating from the stochastic initial conditions of the Wacker
and Seifert (2001) reference model are seemingly suitable for this task. However, we will
see that the covariances of the Wacker and Seifert (2001) reference model depend on a free
parameter without physical analogue, which is undesirable. Furthermore, as the models
provided by Wacker and Seifert (2001) are limited to spherical hydrometeors, an extension
to other geometries, such as cylindrical hydrometeors which are better suitable for mod-
elling ice crystals, is of great interest. This is especially of interest for investigating the
assimilation of measurements from polarimetric radars, which are influenced strongly by
the axis ratio of hydrometeors. Furthermore, as the Wacker and Seifert (2001) reference
model is designed for the parametrization of physical processes at length scales far larger
than the typical hydrometeor diameter, it is not realistic on very small length scales and
does not distinguish explicitly between stochastic and deterministic quantities. The latter
makes the calculation of covariances difficult and limits the model to applications with a
large amount of hydrometeors present. Though there exist models with available covari-
ance matrices, like those summarized in Onof et al. (2000), they rely on a priori assuming a
probability distribution for relatively complex large scale phenomena, such as the duration
of storms.

Also work regarding the impact of accounting for observation error correlations in DA
usually focusses on larger length scales or uses abstract models. E.g. Weston et al. (2014)
found that accounting for observation error correlations by employing a Desroziers method
(see Section 2.1.2 for description) in combination with reconditioning, i.e. decreasing the
condition number of the observation error covariance matrix, results in the assimilation
of infrared sounder data yielding a more accurate forecast (with respect to the standard
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forecast verification method of the Met Office). However, the observations and simulations
employed in their work had resolutions of several kilometres. Also Rainwater et al. (2015)
found improved prediction of small scale features, when using suitable non-diagonal obser-
vation error covariance matrices. Their experiments belonged to the so called observation
system simulation experiments (OSSEs), in which a more detailed simulation (refered to
as the nature run) is used to create "observations" (so called pseudo-observations), and
employed a modified Bishop and Hodyss (2009) model drawing pseudo-observations from
an idealized distribution. Also in other OSSEs usually either pseudo-observations drawn
from strongly idealized probability distributions (such as e.g. in Bishop, 2016) or generated
by simulations of comparatively large scale phenomena (such as e.g. in Simon and Bertino,
2009) are employed. To our knowledge, there is no work focusing on length scales of less
than 1m (which can be relevant e.g. for processes related to radar measurements) and
employing observation errors directly derived from a physical model. Of special interest
in this context is the work of Janjić and Cohn (2006b), which studied the advection of a
tracer on a sphere (i.e. under conditions typical for a global scale model), as they focused
on the impact of the error due to unresolved scales on DA. Similarly, in this thesis we will
study the error due to unresolved scales and processes (see Section 2.1.2 for details and
references).

Especially difficult is the estimation of quantities, that cannot become negative like the
liquid water content and number density. Their necessarily non-Gaussian distribution vi-
olates a key assumption of many DA algorithms. When conducting an OSSE, it is unclear
to what extent issues encountered during the assimilation of non-negative quantities can be
attributed to the non-Gaussianity of the observation or other peculiarities such as a need
for enforcing the positivity of the analysis before applying the model for time evolution.
A further topic of interest is the effect of correlated observation errors on non-negativity
preservation, i.e. the ability to guarantee non-negativity of the analysis when background
and observations are guaranteed to be non-negative. However, there is little systematic
research on this topic besides the work of Cohn (1997) and a generally known proposition
guaranteeing non-negative analysis for the Kalman filter, in case of diagonal background
and observation error covariance matrices.

To overcome the limitations of the Wacker and Seifert (2001) reference model, we construct
the Stochastic Particle Model (SPM), which is based on the underlying particle model of
the Wacker and Seifert (2001) reference model. The SPM features well-defined, physically
meaningful error covariances. Furthermore, it is also capable of describing cylindrical hy-
drometeors. In contrast to the more top-down oriented approach of the previous work, the
SPM allows to directly derive the covariances from the stochastic initial conditions of a
modern microphysics scheme. As it focuses on very small scales, it can link features in the
spatial structure of R to the geometry of hydrometeors and processes like gravitational
sorting.

Furthermore, the availability of detailed information about the according covariances makes
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the SPM suitable for studying the effect of ignoring the spatial and temporal structure of
R in DA using an observation error derived from a smaller scale model. To address this
question, we carry out a series of OSSEs employing pseudo-observations retrieved from a
nature run created by the SPM. In addition, we repeat these experiments with pseudo-
observations created by the Wacker and Seifert (2001) reference model with additive Gaus-
sian noise. The variance of the noise is set to the observation error variance assumed by
the DA algorithm and thus fits that of the SPM. For our experiments, we are going to use
an EnKF without further modifications, as it is simple to implement, stable and does not
need to be provided with an explicit background error covariance matrix. The ensemble
is evolved in all experiments by the Wacker and Seifert (2001) two-moment scheme (also
introduced in Wacker and Seifert (2001)), to keep the model error as small as possible. To
evaluate the performance of our DA experiments, we employ the root mean square error
(RMSE) despite the existence of more sophisticated diagnostics like the forecasts skill score
(FSS), which avoids multiply accounting for positional errors (Roberts and Lean, 2008).
Furthermore, we calculate the ensemble spread and the spread ratio to assess whether our
DA implementation correctly estimates the uncertainty of the analysis.

Furthermore, to study the estimation of quantities that for physical reasons should not
become negative, we consider a strongly simplified setup and try to identify scenarios in
which non-negativity violations occur in analysis. Subsequently, we use them as counterex-
amples to show that non-negative analysis for the Kalman filter can not be guaranteed in
case of non-diagonal background and observation error covariance matrices, without fur-
ther constraints (Janjić et al., 2014). Furthermore, we are going to discuss the influence of
using non-diagonal R on non-negativity preservation.

The remainder of this thesis will be structured as follows: We start by giving a summary
of the relevant background for the thesis in Chapter 2, starting with the equations for
the Kalman filter and the EnKF, and the role of covariances in DA. In Chapter 2 we will
also introduce the Wacker and Seifert (2001) reference model and two-moment scheme.
Subsequently, we construct the SPM in Chapter 3 by modifying the definitions of L and
N of the Wacker and Seifert (2001) reference model to a particle based formulation. In
Chapter 4, we obtain the covariance matrices of the error resulting from the stochastic
initial conditions for the SPM and the Wacker and Seifert (2001) reference model. These
matrices will then be used as observation error covariances in our DA experiments in
Chapter 5. In Chapter 5, we study the effect of spatial and temporal variations in R on
the performance of DA. These will consist of two parallel twin experiments, using pseudo-
observations obtained from the SPM and pseudo-observations obtained from the Wacker
and Seifert (2001) reference model. In Chapter 6 we investigate the effect of employing
non-diagonal observation error covariances for the assimilation of non-negative variables
with a Kalman filter. Finally, we provide an outlook on promising further research topics,
including possible applications and extensions of the SPM in Chapter 7 and summarize
the thesis in Chapter 8.



Chapter 2

Background

In this chapter, we introduce the methods and models later used in this thesis. Further-
more, we repeat some results from the literature, that allow to better motivate or interpret
our research and provide background information for later chapters.

A general introduction to DA is given in Section 2.1, starting with the equations of the
Kalman filter, which we will later investigate with respect to non-negativity preservation
in Chapter 6, and ensemble Kalman filter, which we will employ in our DA experiments
in Chapter 5. This is followed by the role of covariance matrices in DA in Section 2.1.2,
motivating our research and providing background information, allowing us later to con-
textualize our results. Finally, in Section 2.2 we introduce the Wacker and Seifert (2001)
reference model, which will be the basis for the construction of the SPM in Chapter 3 and
an important reference for our DA experiments in Chapter 5, as well as the Wacker and
Seifert (2001) two-moment scheme, which will be later used to evolve the ensemble in our
DA experiments in Chapter 5.

2.1 Data assimilation
In this section, we are going to give a short introduction to data assimilation (DA), focusing
on the following problem: Given a physical system modelled by (a system of) partial
differential equations (e.g. Cohn (1997)) or an ordinary differential equation (e.g. Hunt
et al. (2007)), a common problem is estimating the trajectory {x (t)} of the system from
observations. The set of observations can (e.g. Hunt et al. (2007)) be assumed to be given
by

{(
tj, yo

j , Hj, Rj

)
: j = 1, · · · , n

}
, with tj the time of the j-th observation, yo

j the values
of the observation at time tj, Rj the according observation error covariance matrix and
Hj the according observation operator, i.e. a map fulfilling

yo
j = Hj (x (tj)) + ϵj, with ϵj ∼ N (0, Rj). (2.1)

Furthermore, one defines Mt,t′ to be an operator evolving the solution of the underlying
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model from time t to t′ (e.g. Hunt et al. (2007)). Here Mt,t′ can either be assumed to
be perfect or afflicted with an error, resulting from differences between the model and
the dynamics of the actual physical system. Usually (e.g. Burgers et al. (1998)), this is
modelled as

x (tj) = Mt,t′ (x (t)) + ϵ̂t,t′ , with ϵ̂t,t′ ∼ N (0, Qt,t′), (2.2)

with Qt,t′ the according model error covariance matrix.

Now, assuming perfect model and employing a maximum likelihood approach to estimate
the state of the system at time t, using the observations only, yields the cost function

Jo
t (x) =

n∑
j=1

(
yo

j − Hj

(
Mt,tj

(x)
))T

R−1
j

(
yo

j − Hj

(
Mt,tj

(x)
))

, (2.3)

for the system being in the state x at time t (e.g. Hunt et al. (2007)).

In this chapter, we are going to give a short summary of some common approaches to this
problem in Section 2.1.1 and then discuss the importance of covariances in Section 2.1.2.

2.1.1 Equations for data assimilation
We are now going to give a short summary of two commonly used data assimilation meth-
ods, that will also be employed in this thesis. We start with the equations for the Kalman
filter in Section 2.1.1.1 and then move to the Ensemble Kalman filter (EnKF) in Sec-
tion 2.1.1.2.

2.1.1.1 Kalman filter

We now give a short derivation of the Kalman filter, which can be employed to solve the
problem described above, if the model and the observation operator are linear (Kalman
et al., 1960). A more detailed derivation from the estimation point of view can be found
e.g. in Cohn (1997). However our summary will be based on the description in Hunt et al.
(2007), due to their more compact approach.

Assuming perfect model, (like Kalman et al. (1960)) Hunt et al. (2007) start by noticing
that, if they are linear, one can rewrite the model and the observation operator as

Mt,t′ (x) = Mt,t′x (2.4)
Hj (x) = Hjx, (2.5)
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in terms of matrices Mt,t′ and Hj.

Now, they iteratively construct the Kalman filter by assuming that at time tn−1 the anal-
ysis (i.e. the part of the Kalman filter updating the estimate with new observations) has
resulted in a Gaussian distribution with mean x̄a

n−1 and covariance matrix Pa
n−1. Thus,

they can use Mtn−1,tn to evolve the distribution obtained in the analysis step to time tn,
resulting (as linear models map Gaussian distributions to Gaussian distributions) in a
Gaussian distribution with mean x̄b

n (background mean) and covariance matrix Pb
n (back-

ground covariance) given by

x̄b
n = Mtn−1,tnx̄a

n−1 (2.6)
Pb

n = Mtn−1,tnPa
n−1MT

tn−1,tn
. (2.7)

Now (still following the description in Hunt et al. (2007)), using (2.4), (2.5) and Mt,t = Id
allows to rewrite the cost function given in (2.3) for the time step tn as

Jo
tn

(x) =
n∑

j=1

(
yo

j − HjMtn,tj
x
)T

R−1
j

(
yo

j − HjMtn,tj
x
)

(2.8)

=
n−1∑
j=1

(
yo

j − HjMtn,tj
x
)T

R−1
j

(
yo

j − HjMtn,tj
x
)

+ (yo
n − Hnx)T R−1

n (yo
n − Hnx) .

Now, (following, but slightly shortening the argumentation in Hunt et al. (2007)), observing
that the first term is the cost function at time tn−1, allows to rewrite this in terms of the
analysis at tn−1 as

Jo
tn

(x) =
(
Mtn,tn−1x − x̄a

n−1

)T (
Pa

n−1

)−1 (
Mtn,tn−1x − x̄a

n−1

)
(2.9)

+ (yo
n − Hnx)T R−1

n (yo
n − Hnx) + c

=
(
M−1

tn−1,tn
x − M−1

tn−1,tn
Mtn−1,tnx̄a

n−1

)T (
Pa

n−1

)−1 (
M−1

tn−1,tn
x − M−1

tn−1,tn
Mtn−1,tnx̄a

n−1

)
+ (yo

n − Hnx)T R−1
n (yo

n − Hnx) + c

=
(
x − Mtn−1,tnx̄a

n−1

)T (
M−1

tn−1,tn

)T (
Pa

n−1

)−1
M−1

tn−1,tn

(
x − Mtn−1,tnx̄a

n−1

)
+ (yo

n − Hnx)T R−1
n (yo

n − Hnx) + c

=
(
x − x̄b

n

)T (
Pb

n

)−1 (
x − x̄b

n

)
+ (yo

n − Hnx)T R−1
n (yo

n − Hnx) + c,

with c constant. Now (again following Hunt et al. (2007)), noticing that (if at time tn the
analysis again results in a Gaussian distribution with x̄a

n and covariance matrix Pa
n) the

cost function could also be written as
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Jo
tn

(x) = (x − x̄a
n)T (Pa

n)−1 (x − x̄a
n) + c′, (2.10)

with c′ constant, equating (2.9) and (2.10) results in

Pa
n =

((
Pb

n

)−1
+ HT

n R−1
n Hn

)−1
(2.11)

from the terms of order x2 and

x̄a
n = Pa

n

((
Pb

n

)−1
x̄b

n + HT
n R−1

n yo
n

)
(2.12)

from the terms of order x. Finally (still following Hunt et al. (2007)), (2.11) and (2.12)
can be written in the form

x̄a
n = x̄b

n + Pa
nHT

n R−1
n

(
yo

n − Hnx̄b
n

)
(2.13)

Pa
n =

(
Id +Pb

nHT
n R−1

n Hn

)−1
Pb

n. (2.14)

We finally show, that this is equivalent to the more commonly used form (e.g. Cohn (1997))
of the Kalman filter equations

x̄a
n = x̄b

n + K
(
yo

n − Hnx̄b
n

)
(2.15)

Kn = Pb
nHT

n

(
HnPb

nHT
n + Rn

)−1
(2.16)

Pa
n = (Id −KH) Pb

n. (2.17)
The equivalence of (2.17) with (2.14) follows could be shown by proving that (Id −KH) is
the inverse of

(
Id +Pb

nHT
n R−1

n Hn

)
, that is1

(Id −KnHn)
(
Id +Pb

nHT
n R−1

n Hn

)
= (2.18)

= Id −KnHn + Pb
nHT

n R−1
n Hn − KnHnPb

nHT
n R−1

n Hn

= Id −
[
Kn − Pb

nHT
n R−1

n + KnHnPb
nHT

n R−1
n

]
Hn

= Id −
[
Pb

nHT
n

(
HnPb

nHT
n + Rn

)−1
− Pb

nHT
n R−1

n + Pb
nHT

n

(
HnPb

nHT
n + Rn

)−1
HnPb

nHT
n R−1

n

]
Hn

= Id −Pb
nHT

n

(
HnPb

nHT
n + Rn

)−1 [
Id −

(
HnPb

nHT
n + Rn

)
R−1

n + HnPb
nHT

n R−1
n

]
Hn

= Id −Pb
nHT

n

(
HnPb

nHT
n + Rn

)−1 [
Id −HnPb

nHT
n R−1

n − Id +HnPb
nHT

n R−1
n

]
︸ ︷︷ ︸

=0

Hn

= Id .

1We only show that it is a right inverse and forego the analogue calculation showing that it is also a
left inverse for simplicity.
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Now using (2.17), the equivalence of (2.15) and (2.16) with (2.13) follows from

Pa
nHT

n R−1
n = (Id −KH) Pb

nHT
n R−1

n (2.19)
= Pb

nHT
n R−1

n − KHPb
nHT

n R−1
n

= Pb
nHT

n R−1
n − Pb

nHT
n

(
HnPb

nHT
n + Rn

)−1
HPb

nHT
n R−1

n

= Pb
nHT

n

[
Id −

(
HnPb

nHT
n + Rn

)−1
HPb

nHT
n

]
R−1

n

= Pb
nHT

n

[
Id −

(
HnPb

nHT
n + Rn

)−1
HPb

nHT
n −

(
HnPb

nHT
n + Rn

)−1
Rn+

+
(
HnPb

nHT
n + Rn

)−1
Rn

]
R−1

n

= Pb
nHT

n

[
Id −

(
HnPb

nHT
n + Rn

)−1 (
HnPb

nHT
n + Rn

)
+
(
HnPb

nHT
n + Rn

)−1
Rn

]
R−1

n

= Pb
nHT

n

(
HnPb

nHT
n + Rn

)−1
RnR−1

n

= Pb
nHT

n

(
HnPb

nHT
n + Rn

)−1

= Kn.

2.1.1.2 Ensemble Kalman filter

As the Kalman filter relies on the linearity of the model (Kalman et al., 1960), its applica-
bility is limited and there have been constructed many generalizations of the Kalman filter,
that do not require this assumption, such as the ensemble transform Kalman filter (ETKF)
(Bishop et al., 2001), the local ensemble transform Kalman filter (LETKF) (Hunt et al.,
2007) and the ensemble Kalman filter (EnKF) (Burgers et al., 1998; Evensen, 1994). Due
to its easy implementation and stability, we will use the EnKF for the data assimilation
experiments in this thesis. Thus, we give here a short derivation of the ensemble Kalman
filter based on the description in Burgers et al. (1998), who developed it in the currently
used form. Their notation will be changed to the current standard notation described in
Ide et al. (1997), which is used throughout this thesis.

The EnKF uses two ensembles, one to describe the state estimate (i.e. background and
analysis) and one to describe the observations at time t, where the spread of the ensemble
corresponds to the uncertainty of the according quantity (Burgers et al., 1998). This has
the advantage, that the members of the ensemble representing the state estimate can be
propagated individually also by a non-linear model and the ensemble representation of
the observations prevents (for large enough ensembles) the underestimation of the anal-
ysis error covariance and problems arising from spurious correlations (Burgers et al., 1998).

Burgers et al. (1998) start their derivation with an ensemble Xb of N members, representing
the state estimate at time tn prior to analysis, i.e. with
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Pb
n ≈ Pb

n,e :=
(
Xb − Xb

) (
Xb − Xb

)T
(2.20)

x̄b
n ≈ Xb (2.21)

and create an ensemble Yo of N members, representing the observations at time tn , by
setting

yo(i)
n = yo

n + ϵi, with ϵi ∼ N (0, Rn), (2.22)
for i ∈ {1, · · · , N}. Then they uptate every member Xb

i of Xb individually with the
according yo(i)

n analogue to the Kalman Filter, yielding

Xa
i = Xb

i + Ke

(
yo(i)

n − HnXb
i

)
, (2.23)

with (note that this is equivalent to (2.15))

Ke = Pb
n,eHT

n

(
HnPb

n,eHT
n + Rn

)−1
, (2.24)

and finally

Xa = Xb + Ke

(
Yo − HnXb

)
. (2.25)

For the covariance, they obtain

Pa
n,e =

(
Xa − Xa

) (
Xa − Xa

)T
(2.26)

=
[
(Id −KeH)

(
Xb − Xb

)
+ Ke

(
Yo − Yo

)] [
(Id −KeH)

(
Xb − Xb

)
+ Ke

(
Yo − Yo

)]T
,

using (2.23) and (2.25), which they simplify to

Pa
n,e = (Id −KeH)

(
Xb − Xb

) (
Xb − Xb

)T

︸ ︷︷ ︸
=Pb

n,e

(Id −KeH)T + (2.27)

+ Ke

(
Yo − Yo

) (
Yo − Yo

)T

︸ ︷︷ ︸
=Rn+O

(
N− 1

2
) KT

e + (Id −KeH)
(
Xb − Xb

) (
Yo − Yo

)T

︸ ︷︷ ︸
O
(

N− 1
2
) KT

e +

+ Ke

(
Yo − Yo

) (
Xb − Xb

)T

︸ ︷︷ ︸
O
(

N− 1
2
) (Id −KeH)T

= (Id −KeH) Pb
n,e (Id −KeH)T + KeRnKT

e + O
(
N− 1

2
)

= (Id −KeH) Pb
n,e + O

(
N− 1

2
)

.
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Note that, (2.27) is equivalent to (2.17). Thus (as also mentioned by Burgers et al. (1998))
ensemble mean and (up to O

(
N− 1

2
)
) covariances update as in the Kalman filter. Finally,

Burgers et al. (1998) use Mtn,tn+1 to individually evolve the members of the analysis en-
semble Xa to the next time step, yielding the background ensemble for tn+1 and allowing
to repeat the procedure described above with the observations available at tn+1.

The limitations of the EnKF are according to Burgers et al. (1998) the assumption of
approximately Gaussian errors, potential uncertainties in the determination of Rn and (if
the model is not assumed to be perfect) Q as well as underestimation of the analysis error
covariances, when using a small ensemble.

2.1.2 Importance of covariances
Covariances play an important role in DA: While the background error covariance matrix
allows observations to impact the analysis at unobserved grid points, the observation error
covariance matrix can account for limited representativeness of observations in case of a
mismatch between the scales relevant for the observations and for the model (Janjić et al.,
2017). Thus, in this section we are going to discuss the covariance matrices relevant for
DA, as well as their composition, which we are going to shortly summarize in this section.
As the main focus of this thesis will lie on the calculation of the observation error covariance
matrix R and its use in DA, we start with a discussion of R and its components, closely
following the description in Janjić et al. (2018). According to Janjić et al. (2018), the
observation error consists of the following contributions:

• Measurement error: Error originating from the measurement process. Also denoted
instrument error or instrument noise. For satellite based observations, the distribu-
tion of the instrument noise can be accurately determined using calibration targets
(Weston et al., 2014).

• Representation error: Error originating from the model differing from the physical
reality. Its contribution can be significant (Janjić et al., 2018). According to Janjić
et al. (2018) it is consisting of:

– Error due to unresolved scales and processes: Error originating from processes
in physical reality occurring at scales (in space and/or time), which the model
is unable to resolve. This can e.g. be caused by the model only depending on a
averaged quantity or missing processes.

– Observation operator error: Error originating from the observation operator.
This can e.g. be caused by a lack of knowledge about the according physics
or the exact behaviour of the employed instruments, as well as by simplifying
approximations for the calculation of model equivalents for the observations (see
(2.1)).
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– Pre processing error/ Quality control error: Error originating from preprocess-
ing and quality control, such as retrievals or procedures to sort out unsuitable
observations, e.g. observations influenced by clouds, when employing a "clear-
sky radiative transfer model" (Janjić et al., 2018). Preprocessing and quality
control procedures (and thus the according error) differ between different DA
schemes, models and implementations.

Of special interest for the further course of this thesis will be the representation error, as
the source of the error in the SPM will essentially fall into this category. Thus we will
take a closer look at it. Distinguishing between the components of the representation error
is often not easy (Janjić et al. (2018), see also Zeng et al. (2021)) and we will encounter
this issue also in the SPM. Furthermore, the contribution to the representation error of its
individual components can be influenced by the choice of the control variables, model and
observation operator. Also, the magnitude of the different components can depend on the
exact situation, e.g. if clouds are present for satellite radiances (Janjić et al., 2018) and we
will also encounter this state dependence in the SPM. Moreover, the representation error
plays a larger role "for coarse grids and point observations, as well as for finer scale fields
like [atmospheric water]" (Bannister et al., 2020). The former can also be seen in the SPM,
when changing the grid spacing and size distribution of the hydrometeors. Representation
error can lead to observation error covariance matrices becoming non-diagonal or changing
with time (Janjić et al., 2018). This will also be the case for the R matrices obtained later
for the SPM. Also, several examples of practical applications from different fields affected
by this phenomenon can be found in Janjić et al. (2018). This also motivates our DA ex-
periments that systematically research the impact of accounting for spatial and temporal
variations in R, using the SPM.

To better understand the problems encountered when separating the components of the
representation error for the SPM, we will now have a closer look at the according definitions
and their underlying assumptions. Janjić et al. (2018) assume, that the (space and time
dependent) state in physical reality and in the model can be described by the full state w
and the resolved state wr and that w and wr are elements of the same space. Furthermore,
they define the continuum observation operator hc, such that the observation y is given by

y = hc (w) + ϵm + ϵ′′′, (2.28)

with ϵm being the measurement error and ϵ′′′ being the preprocessing error, as well as the
discrete observation operator h, designed to act on wr such that

y = h (wr) + ϵ0, (2.29)

with ϵo being the observation error. This (together with the assumption of wr also lying
in the domain of h), allows them to define the error due to unresolved scales and processes
ϵ′ as

ϵ′ = hc (w) − hc (wr) (2.30)
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and the observation operator error ϵ′′ as

ϵ′′ = hc (wr) − h (wr) . (2.31)

We now conclude this topic by a short discussion of common approaches to obtain R
matrices, when analytical calculations are not possible. According to Janjić et al. (2018),
common methods to quantify the representation error include among many others:

• Comparison of observation equivalent from numerical models with different resolu-
tions. This method has e.g. been employed by Zeng et al. (2021).

• Comparison of observations of same quantity with different resolutions.

• The Hollingsworth-Lönnberg method, that estimates the observation error covariance
matrix from samples of y − h

(
wb
)

using

E
[(

y − h
(
wb
))

·
(
y − h

(
wb
))T

]
≈ HPbHT + R, (2.32)

with wb being the according background mean and H the linearization of h.

• The Desroziers method, that uses the Kalman Filter equations to derive

E
[(

y − h
(
wb
)

− HP̃bHT
(
HP̃bHT + R̃

)−1 (
y − h

(
wb
)))

·
(
y − h

(
wb
))T

]
≈ R,

(2.33)

with P̃b and R̃ being an initial guess for the background error covariance matrix
and the observation error covariance matrix. The method is iteratively applied to
estimate the observation error covariance matrix from samples. It has e.g. been
employed by Zeng et al. (2021) for estimating the observation error covariances of
radar reflectivity and radial wind and by Lange and Janjić (2016) for Mode-S data.
The (horizontal) representation error can be estimated e.g. by comparing the results
of the Desroziers method for DA experiments employing models with different spatial
resolutions (Weston et al., 2014). A drawback of the Desroziers method is its need for
a large amount of observations to compute the expectation value, often only allowing
for the calculation of a time averaged observation error covariances (Degelia and
Wang, 2022).

Here, the Hollingsworth-Lönnberg method and the Desroziers method rely on the assump-
tion that observations and background are unbiased and that there is no correlation be-
tween the observation error and the background error (Janjić et al., 2018). The Desroziers
method can yield negative observation error variances, as well as asymmetric or non pos-
itive definite observation error covariance matrices, if these assumptions are not fulfilled
(Weston et al., 2014). Due to numerical error, we will encounter a similar problem when
calculating the R matrices for the SPM.
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We now turn to the role of observation error covariances in DA. In DA, employing correlated
observation error covariance matrices on average decreases the impact of observations, but
can also have the opposite effect in some cases (Weston et al., 2014). Furthermore, under
the commonly employed assumption of diagonal observation error covariances, thinning
the observations is necessary, to ensure this assumption being valid, thus leading to the
loss of a large percentage of the observations (Gustafsson et al., 2018; Janjić et al., 2018;
Terasaki and Miyoshi, 2023). Therefore being able to use also non-diagonal observation
error covariances effectively during DA is highly desirable (Gustafsson et al., 2018; Janjić
et al., 2018). Weston et al. (2014) e.g. was able to achieve a "significant improvement in
forecast accuracy" by employing correlated observation error covariance matrices for the
assimilation of IASI data. This further motivates our experiments studying the impact of
using non-diagonal R matrices in DA using the SPM.

The decision whether diagonal or correlated observation error covariance matrices are used
in DA, is accompanied by a trade-off between possibly achieving significantly better re-
sults and computational efficiency (Janjić et al., 2018). A compromise often employed is
ignoring possible correlations between measurements from different measurement devices
(and potentially also correlations in space), yielding a block-diagonal observation error co-
variance matrix. We will also test this approach in our DA experiments with the SPM.

In the context of 4D-Var, the increased computational cost of using correlated observation
errors in DA is (for satellite data) predominately caused by a slower convergence of the
algorithm, while the increased cost for inverting R is insignificant (Weston et al., 2014),
though stability can become an issue (Terasaki and Miyoshi, 2023). The former is likely
caused by a large increase in the condition number of the correlated R compared to the
diagonal version, leading to the condition number of R becoming an important consid-
eration for DA (Weston et al., 2014). Using ill conditioned R matrices can even lead to
divergence of the DA algorithm (Terasaki and Miyoshi, 2023). There exist different meth-
ods for decreasing the condition number of a matrix (reconditioning) and depending on
the method used, reconditioning of R can (by increasing variances) strongly decrease cor-
relations (Weston et al., 2014). In our DA experiments with the SPM, we will see similar
results, also obtaining slower convergence, when using correlated R matrices.

In many cases, inflation of the instrument error is used to account for the representation
error (Courtier et al., 1998). In the experiments of Degelia and Wang (2022), when assim-
ilating data from atmospheric emitted radiance interferometers using an EnSRF, adaptive
inflation and the Desroziers method exhibited roughly the same performance, while static
inflation produced worse results. Nevertheless, in our experiments, we only test (static)
multiplicative inflation without seeing a significant impact.

Of particular interest are the results of Bishop (2019), who obtained better results, when
choosing R as "the ensemble mean of the observation error variances associated with each
member of an ensemble forecast", than when choosing it as "the true observation error
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variance associated with the (unknown) true state", which they attributed to the require-
ments for the EnKF yielding the best linear unbiased estimator. Thus repeating our DA
experiments with the according R matrices might be interesting for further work.

Finally, we shortly discuss background error covariance matrices, which will only be of
importance for our investigation of non-negativity preservation in Chapter 6, where we
show that non-negativity of analysis can not be guaranteed for non-diagonal background
error covariance matrices. Here, we will focus especially on the potential of background
error covariance matrices to cause problems in DA, to be later able to better understand
the issues observed in our simplified setup.

Background error covariance matrices only need to be modelled for variational (and some
hybrid) DA methods. They can also be flow-dependent and e.g. depend on the presence
(and strength) of an inversion (Bannister et al., 2020). This flow-dependence (especially
of the off-diagonal elements) can lead to the following problem: When assimilating e.g. the
specific humidity q, large off-diagonal elements in the background error covariance matrix
can lead to observations at locations with large values of q strongly increasing the analysis
at locations with small values of q (flooding) (Bannister et al., 2020). Also, errors in the
correlation between temperature and humidity in the background error covariance matrix
can lead to an underestimation of the temperature and consequently an overestimation of
precipitation (spin down) due to anomalous condensation (Bannister et al., 2020).

According to Destouches et al. (2023), obtaining background error covariance matrices for
quantities describing hydrometeors is particularly difficult, due to their high spatial and
temporal variability and non-linear dynamics. A special problem for these quantities is
that when derived from ensembles, the according background error covariance matrices
can have a high percentage of their diagonal elements equalling zero, causing the DA to
be unable to change the quantity at the affected grid points.

2.2 Reference model and two moment scheme
Here, we are going to review the models presented in Wacker and Seifert (2001), which will
be modified and extended to smaller length scales when defining the SPM in Chapter 3.
Further, these models will be used as reference and for the time evolution of the ensemble
in our DA experiments.

The central quantity on which the derivation in Wacker and Seifert (2001) is based is the
size distribution function f (D, x, y, z, t), where f (D, x, y, z, t) dD represents "the number
of drops per unit volume in the diameter interval (D, D + dD)", with x, y and z be-
ing spacial coordinates, t time and D the particle diameter. We note that Wacker and
Seifert (2001) do not explicitly state, if f (D, x, y, z, t) is to be interpreted as stochastic or
deterministic quantity, which is (due to the large number of hydrometeors and resulting
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convergence of stochastic quantities to their expectation value) not necessary on the length
scales ∼ 5km considered by their paper (as long as covariances do not need to be obtained).

We now introduce the assumptions made in their work:

• Hydrometeors are assumed to be spherical and moving with terminal fall velocity
which is assumed to be given by vT (D) = α

(
D
Dv

)β
, with α, β and Dv free parameters.

• The distribution of the hydrometeors is assumed to be constant in space and time
and to be given by n0e

−λD, with λ and n0 free parameters.

• Homogeneity in x- and y-direction is assumed and hydrometeors are assumed to be
initially contained in the interval [zl, zu].

• Hydrometeors are assumed not to be interacting with each other, they are not created
or destroyed and their diameter is constant.

The quantities described by the models of Wacker and Seifert (2001) are the liquid water
content L (z, t) and the number concentration N (z, t), which they define as

L (z, t) =
∫ π

6 ρwD3f (D, z, t) dD (2.34)

N (z, t) =
∫

f (D, z, t) dD, (2.35)

with ρw being the density of water.

We are going to review two of the models presented in Wacker and Seifert (2001), the
reference model, which is the most realistic model presented in their paper and thus will be
used as alternative truth run in our DA experiments, and the two-moment scheme, which
only requires knowledge of the L and N profiles at a given time to approximate their time
evolution and will thus be used to evolve our ensemble in the DA experiments.

The reference model is obtained by Wacker and Seifert (2001) by solving the "spectral
budget equation for the distribution function"

∂f (D, z, t)
∂t

− ∂ (vT (D) f (D, z, t))
∂z

= 0, (2.36)

under the assumptions summarized above, yielding

L (z, t) = πρwn0

λ4

[
e−λDl

(
1 + λDl + 1

2λ2D2
l + 1

6λ3D3
l

)
− (2.37)

−e−λDu

(
1 + λDu + 1

2λ2D2
u + 1

6λ3D3
u

)]
(2.38)
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with

Dl =

(

1
α

zl−z
t

) 1
β Dv , if z ≤ zl

0 , if z > zl

(2.39)

Du =

(

1
α

zu−z
t

) 1
β Dv , if z ≤ zu

0 , if z > zu

. (2.40)

This also allows for an analogue calculation of N (z, t) (Seifert, 2022).

The two-moment scheme is obtained by Wacker and Seifert (2001) by integrating the
spectral budget equation, yielding

∂

∂t

(
N (z, t)
L (z, t)

)
− ∂

∂z

(
FN (z, t)
FL (z, t)

)
= 0, (2.41)

with

FN (z, t) =
∫

vT (D) f (D, z, t) dD (2.42)

FL (z, t) =
∫

vT (D) π

6 ρwD3f (D, z, t) dD, (2.43)

which they approximate by

FN = χN x̄γN (2.44)
FL = χLx̄γL, (2.45)

with

x̄ = L

ρwD3
vN

(2.46)

χN = απ
1
3

2 (2.47)

χL = 35
16χN (2.48)

γ = β

3 , (2.49)

allowing them to rewrite (2.41) as
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∂

∂t

(
N (z, t)
L (z, t)

)
− A (x̄) ∂

∂z

(
N (z, t)
L (z, t)

)
= 0, (2.50)

with

A (x̄) =
(

χN (1 − γ) x̄γ χN x̄γ−1ρ−1
w D−3

v

−χLx̄γ+1ρwD3
v χL (1 + γ) x̄γ

)
. (2.51)



Chapter 3

Model (Toy model)

In this chapter, we introduce the stochastic particle model (SPM), which later will be
the foundation of our DA experiments in Chapter 5. Furthermore its covariances will be
studied in detail in Chapter 4. Before we construct the model in Section 3.2, we give a short
motivation in Section 3.1. The actual construction of the model consists of the extension
of the definitions of L and N to small length scales in Section 3.2.1, the introduction of
advection and stochastic initial conditions in Section 3.2.2 and the extension to cylindrical
hydrometeors in Section 3.2.3.

3.1 Motivation
As seen in Section 2.1.2, observation error covariance matrices are of great importance
for DA and can have complicated spatial structures and time dependences. However, in
practice the actual observation error covariances are often unknown and constant diagonal
matrices are used instead (e.g. Degelia and Wang (2022), Weston et al. (2014) or Janjić
et al. (2018)). This necessitates further research on the temporal and spatial structure of
observation error covariance matrices (Degelia and Wang, 2022).

One approach to investigate the importance of correctly specifying the spatial and tem-
poral structure of the observation error covariances is to analytically derive them for a
sufficiently simple model, that can then be used as truth in DA experiments (Janjić and
Cohn, 2006a). A relatively simple model seemingly suitable for this task is the reference
model constructed by Wacker and Seifert (2001), as summarized in Section 2.2, which is
designed for length scales far larger than the diameter of a typical hydrometeor and large
particle numbers. In this model, we will interpret the errors resulting from the stochastic
initial conditions as part of the representation error (and thus of the observation error), as
the stochastic initial conditions account for the lack of knowledge about the exact initial
positions and diameters of the hydrometeors. Thus the stochastic initial conditions would
make the model a suitable test case for experiments investigating the role of observation
error resulting from unresolved sub-grid scale processes.
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However, this model defines the liquid water content L as the mass of liquid water per
volume and the number density N as the number of hydrometeors per volume. To this
end, hydrometeors are assumed to be points and a free parameter ϵ describing the size of
the volume under consideration needs to be introduced (see upper panel of Figure 3.1). As
seen in Section 4.2, this free parameter can explicitly appear in the according covariance
matrices, which is problematic, as ϵ has no physical analogue.

z zjz-ε z+ε

z zjzj-dj zj+dj
Figure 3.1: Interval of points at which a hydrometeor can impact L or N at location z for
the model of Wacker and Seifert (2001) (upper panel) and interval of locations at which L
or N can be influenced by a hydrometeor of diameter dj centred at zj for the SPM (lower
panel).

However, we can construct a toy model, from here on denoted as stochastic particle model
(SPM), with well defined covariances by modifying the Wacker and Seifert (2001) model:
Instead of introducing a volume of arbitrary size, we drop the assumption of hydrometeors
being points and represent them by a sum over Dirac measures instead, as similarly em-
ployed e.g. in Semrau (2020) for a problem from theoretical ecology. This yields a situation
mathematically similar to Wacker and Seifert (2001) (see lower panel of Figure 3.1), with-
out the need for an additional free parameter, though the size of the interval considered
now depends on the diameter of the hydrometeor, which may vary in a realistic setup,
yielding much more complicated calculations.
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N(ℝ×ℝ+)
  w=η

h

fproj    C(ℝ)2

wr=(N,L)

hc

hc(η) h(N,L)hc(N,L)
ε' ε''

ε'''

εm

εR

εo

y

Figure 3.2: Relation between full and resolved state for the SPM analogue to Figure 1
of Janjić et al. (2018). The quantities indicated by dashed boxes or arrows are not well
defined for the SPM.

This modification however changes the state space from1 C (R)2 to the space N (R × R+)
of (locally) finite counting measures on R × R+. When using the SPM as truth and the
two moment scheme of Wacker and Seifert (2001) (which lives on the state space C (R)2, or
R2k when discretized to a grid with k points) to evolve the ensemble during DA, separation
of the error due to unresolved scales and processes and the observation operator error in
the way shown in Janjić et al. (2018) becomes impossible: If the true and the resolved

1Technically, the state space would be a Sobolev space, as the model accepts discontinuous initial
conditions and (at least the two moment scheme) requires differentiability. However, in our DA experiments
we are going to have long enough spin-up times for all profiles being continuous, so we ignore this detail.
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state belong to disjoint spaces, taking hc (wr) is not possible anymore2. Thus, also the
definition of the error due to unresolved scales and processes and the observation operator
error in (2.30) and (2.31) are not applicable here (see Figure 3.2). As this separation is not
possible in practical applications anyhow and only the total representation error is relevant
for common DA algorithms, this issue has no consequences for DA.

Note also, that the state space of the SPM contains more information than that of the
Wacker and Seifert (2001) reference model. The L- and N -profiles can easily be calculated
from the hydrometeor positions and diameters, however the converse is not true, as dif-
ferent hydrometeor configurations can yield identical profiles (see Figure 3.3 for example).
This further supports interpreting the resulting fluctuations as representation error.

Figure 3.3: Symbolic depiction of two different cases of horizontally oriented cylindric
hydrometeors, with initially identical L- and N -profiles and the according time evolution.

Due to its simplicity and as its covariances are well defined and can be obtained at least
numerically, the SPM allows to attribute individual features of covariance matrices to
physical processes such as gravitational sorting or the geometry of hydrometeors. This
results can also function as baseline for more complicated models encompassing (stochastic
or deterministic) particle interactions.

3.2 Stochastic particle model (SPM)
We now start with the construction of the stochastic particle model (SPM). To this end,
we will modify the Wacker and Seifert (2001) reference model, effectively extracting the
underlying particle model, and formulate the results in terms of stochastic geometry. An

2As we are working with a particle based model, also the labelling "continuum observation operator" is
slightly unsuitable here. For consistency however, we keep the according notation here.
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introduction to stochastic geometry can be found e.g. in Jansen (2018) and the references
therein. Throughout the thesis, we will use the same notation as Jansen (2018) with regards
to concepts from stochastic geometry. Although the employed concepts are relatively
common in the field of stochastic geometry, when employing them we will reference Jansen
(2018).

3.2.1 Particle definition of L and N
We will focus here on the liquid water content L and number density N in the case of pure
sedimentation, as discussed in Wacker and Seifert (2001). Assuming the considered volume
to be much larger than the diameter of the hydrometeors and containing a sufficiently large
amount of hydrometeors, usually the liquid water content L is defined as the mass of liquid
water per unit volume3 and the number concentration N as the number of hydrometeors
per unit volume. These definitions break down at length scales equal to or smaller than the
typical particle size, which still might be relevant for the definition of observation opera-
tors. Furthermore, when calculating covariances, using theses definitions introduces a free
parameter describing the size of the unit volume, which strongly complicates calculations
and might cause further problems.

However, it is possible to extend these definitions to smaller length scales, if we replace the
distribution function used by Wacker and Seifert (2001) to express the state of a system by
a locally finite counting measure (i.e. sum over Dirac measures) (see Jansen (2018)), effec-
tively reconstructing the underlying particle model and extending it to represent particles
of finite diameter by modifying the definitions of L and N accordingly.

Definition 3.2.1. The state η of a system consisting of n spherical hydrometeors with
diameters D1, · · · , Dn ∈ Rn

+ and positions (x1, y1, z1) , · · · , (xn, yn, zn) ∈ R3n is defined as

η =
n∑

j=1
δ(xj ,yj ,zj ,Dj). (3.1)

Remark 3.2.1. As long as we assume n to be constant (which is the case in this thesis)
and if dynamics and state dependent functions (e.g. to experimentally accessible quanti-
ties or variables of coarser models) are invariant under permutations (which should likely
be fulfilled in physically meaningful models), the state defined in Definition 3.2.1 is up
to permutations equivalent to (x1, · · · , xn, y1, · · · , yn, z1, · · · , zn, D1, · · · , Dn) ∈ R3n × Rn

+.
However, as soon as processes that destroy or create hydrometeors are involved resulting
in n varying over time, the use of (3.1) becomes necessary.

The notation introduced in Definition 3.2.1 is standard in the field of stochastic geometry
and point processes, which provides extensive theory allowing also to model the destruc-
tion or creation of hydrometeors. This provides a framework for easy generalization of the

3Note that identifying this volume with the grid box of a numerical model can become problematic
when measurements are involved, as these should be independent of the model.
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SPM (see e.g. Jansen (2018) for introduction and further references): States of the form
(3.1) belong to the (locally) finite counting measures N and random variables on N (point
processes) can be used to model uncertainty, e.g. from stochastic initial conditions. Fur-
thermore, marked point processes can be used to include multiple species of hydrometeors
and birth death and movement processes or Feller processes on N can be used to model
stochastic dynamics. Also, there is extensive research concerning the behaviour of these
quantities in the infinite particle limit.

z

zj Dj
2

z rint

Figure 3.4: Schematic depiction of hydrometeors with different relative positions with
respect to z, to illustrate the changing size of the intersection area with the (x, y)-plane
(left panel) and of the quantities employed in Definition 3.2.2 (right panel).

Now, assuming analogue to Wacker and Seifert (2001) homogeneity in the x- and y-
direction, we define:

Definition 3.2.2. Given a state η of a system consisting of n spherical hydrometeors and
assuming that all hydrometeors have the density ρH ∈ R+, let lη : R → R+, z 7→ lη (z)
with

lη (z) = ρH

n∑
j=1

∣∣∣∣Px,y (z) ∩ BDj
2

(xj, yj, zj)
∣∣∣∣
A

(3.2)

= ρHπ
n∑

j=1
1[

zj−
Dj
2 ,zj+

Dj
2

] (z)
[

D2
j

4 − (zj − z)2
]

be the liquid water content and nη : R → R+, z 7→ nη (z) with

nη (z) =
n∑

j=1

∣∣∣∣∣∣∣∣Px,y (z) ∩ 1∣∣∣∣BDj
2

(xj, yj, zj)
∣∣∣∣
V

BDj
2

(xj, yj, zj)

∣∣∣∣∣∣∣∣
A

(3.3)

= 6
n∑

j=1
1[

zj−
Dj
2 ,zj+

Dj
2

] (z) 1
D3

j

[
D2

j

4 − (zj − z)2
]
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be the number density. Here 1 denotes the indicator function, Px,y (z) the (x, y)-plane at
level z, |S|V volume and |S|A area of a set S.

Note, that as seen in Figure 3.4, r2
int = D2

j

4 − (zj − z)2. Thus the area of intersection of
the j-th hydrometeor with the (x, y)-plane at level z is π

[
D2

j

4 − (zj − z)2
]
. The indicator

functions ensure, that only hydrometeors actually intersecting the (x, y)-plane at level z
are counted. Furthermore, the remaining prefactors are chosen such that integrating nη (z)
over the whole domain yields the particle number, while integrating lη (z) yields the total
mass of all hydrometeors. Moreover, the implicit average over the (x, y)-plane in Defini-
tion 3.2.2 ensures continuity, though nη and lη are still not (strongly) differentiable. It also
facilitates re-expressing the problem in terms of measures and linking it to existing theory
from stochastic geometry, useful for further generalization.

A discussion of the relation between Definition 3.2.2 and the standard definitions of N and
L can be found in Appendix A. Furthermore, in Section 7.1.2, we will show the first steps
of constructing measures representing liquid water content and number density and show
how these relate to the standard definitions.

3.2.2 Advection and stochastic initial conditions
We now can formulate the dynamics for the case of the hydrometeors moving with their
terminal fall velocity. We assume here also for simplicity the hydrometeors being spherical
(however, we will extend the SPM to cylindrical hydrometeors in the next section) and
drag and gravity being the only involved forces.

Definition 3.2.3. Given a system of spherical hydrometeors in the initial state η0 at time
t0 = 0, with

η0 =
n∑

j=1
δ(x0

j ,y0
j ,z0

j ,Dj) (3.4)

and let Dj, xj and yj be constant for all j ∈ {1, · · · , n}, as well as

zj (t) = z0
j + vT (Dj) t (3.5)

vT (Dj) = α
√

Dj, (3.6)

with4 α < 0. We define the time dependent state

ηt =
n∑

j=1
δ(x0

j ,y0
j ,zj(t),Dj). (3.7)

4In all DA experiments, as well as in the simplified setup mentioned in Appendix E, we employ a value
obtained from equating gravitational force and drag for α. This is always α =

√
4ρH g

3ρAcW
, where g is the

gravitational constant, ρA is the density of air and cW is the drag coefficient of a sphere.
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In further notation the variables x0
j and y0

j will be dropped and z0
j will be referred to as zj

from now on to improve readability.

As nη and lη are entirely defined by η, the initial state η0 and the dynamics given by
Definition 3.2.3 suffice to determine them for all times t ≥ 0. This allows introducing the
following notation.

Notation 3.2.1. Given the assumptions of Definition 3.2.3, let

nη0 (z, t) = nηt (z) (3.8)
lη0 (z, t) = lηt (z) . (3.9)

Extending Definition 3.2.3 and Notation 3.2.1 to more complicated dynamics is easily
possible, but necessitate modifying Definition 3.2.1 to include additional variables (e.g.
velocity) in the definition of η.

To further simplify calculations we introduce a notation, having in mind Definition 3.2.2
and Notation 3.2.1:

Definition 3.2.4. Given the assumptions of Definition 3.2.3, let

f (Dj, zj, t, z) =
[

D2
j

4 − (zj (t) − z)2
]

(3.10)

=
[

D2
j

4 −
(
zj + α

√
Djt − z

)2
]

(3.11)

gL (Dj) = πρH (3.12)

gN (Dj) = 6
D3

j

(3.13)

and let

Zz,t =
n∑

j=1
1[

z−
Dj
2 ,z+

Dj
2

] (zj (t)) gZ (Dj) f (Dj, zj, t, z) , (3.14)

for gZ ∈ {gN , gL} and Z ∈ {N, L}.

We note that (3.14) generalizes (3.8) and (3.9). Furthermore, we have dropped the initial
state in the notation to increase readability. Analogue to (Wacker and Seifert, 2001), we
now assume the following stochastic initial conditions:

Assumption 3.2.1. Let the particles be initially uniformly distributed in the interval
[zmin, zmax] and their diameters exponentially distributed, as well as all quantities indepen-
dent, yielding the according probability densities being given by5

5The parameter n0 occurring in the analogue definitions of Wacker and Seifert (2001) differs from our
n, as it models a density rather than a particle number.
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ϱzj
(zj) = 1

zmax − zmin

1[zmin,zmax] (zj) (3.15)

ϱDj
(Dj) = λe−λDj . (3.16)

This defines a probability measure Pj on R3 × R+ (equipped with the Borel σ-algebra B)
for every hydrometeor and the according product measure P models the distribution of the
initial state of the system.

Remark 3.2.2. Now, according to Corollary 2.6 of Jansen (2018), equipping N with a suit-
able σ-algebra N, Φ :

(
R3n × Rn

+, Bn
)

→ (N ,N), (z1, · · · , zn, D1, · · · , Dn) 7→ ∑n
j=1 δ(zj ,Dj)

is measurable allowing P to define a point process.

This6 allows us later to calculate the expectation value of Zz,t and the according covariance
matrices. Interpreting the stochastic initial conditions as a lack of knowledge about the
initial positions and diameters of the hydrometeors, allows later to use these covariance
matrices as observation error covariance matrices in our DA experiments.

3.2.3 Cylindrical hydrometeors
We will now repeat the previous considerations for cylindrical hydrometeors7, in which
case Definition 3.2.1 will be replaced by

Definition 3.2.5. The state η of a system consisting of n cylindrical hydrometeors with
heights h1, · · · , hn ∈ Rn

+, radii r1, · · · , rn ∈ Rn
+, inclination angles φ1, · · · , φn ∈ [0, 2π] and

positions (x1, y1, z1) , · · · , (xn, yn, zn) ∈ R3n is defined as

η =
n∑

j=1
δ(xj ,yj ,zj ,hj ,rj ,φj) (3.17)

We will use the power laws given in Auer and Veal (1970) to link h and r for the according
hydrometeor type, effectively eliminating one degree of freedom and allowing the geometry
of the hydrometeor to be completely determined by its volume. Thus we can convert the
size distribution given in Assumption 3.2.1 to cylindrical hydrometeors, allowing for easy
comparison.

As the drag coefficients of an inclined cylinder are relatively complicated and not well
understood, instead of directly calculating simplified terminal fall velocities, we use those
given in Brdar and Seifert, 2018, also providing a more realistic velocity model. Now after
replacing the ball in Definition 3.2.2 by the according cylinder, expectation values and

6For simplicity, here we included the time evolution directly in the definition. For generalizations,
working with a separate time evolution operator might be necessary.

7This results in observations not being continuous anymore, which might create new mathematical
challenges for generalization.
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covariance matrices for liquid water content and number density can be obtained analogue
to the calculations in Section 4.1. The according equations are relatively complicated
and can be partially found in Appendix B. Furthermore, a discussion of different velocity
models for spherical and cylindrical hydrometeors can be found in Appendix E.

3.3 Summary
In this section, we have motivated and defined the SPM. To this end, we extracted the
particle model underlying the Wacker and Seifert (2001) reference model and expressed the
model state in terms of counting measures, allowing for easier generalization. Furthermore,
we modified the definitions of number density and liquid water content to be valid also at
length scales smaller than the typical particle diameter. Finally, we extended the model
to cylindrical hydrometeors.



Chapter 4

Expectation values and error
covariances

In this chapter, we investigate the expectation values and covariances for the SPM and the
Wacker and Seifert (2001) reference model. We start by deriving the covariance matrices
resulting from the stochastic initial conditions of the SPM in Section 4.1. Interpreting these
as a lack of knowledge about the initial positions and diameters of the hydrometeors, allows
later to regard them as a form of representation error and to use the according covariance
matrices as observation error covariance matrices in our DA experiments in Chapter 5.
Subsequently we repeat these calculations for the Wacker and Seifert (2001) reference
model in Section 4.2. As the reference model does not distinguish between stochastic and
deterministic quantities1, we again need to turn to its underlying particle model (interpret-
ing the N and L profiles predicted by the Wacker and Seifert (2001) reference model as an
implicit expectation value). However, this time we use a definition of N and L as close as
possible to that of Wacker and Seifert (2001), also introducing a free parameter ϵ. Finally,
in Section 4.3 we conduct a series of numerical experiments to illustrate the covariances
for the SPM. These allow us to link features in the covariance matrices to gravitational
sorting and the geometry of hydrometeors.

4.1 Expectation values and error covariances for the
SPM

Using our previous results, we can now calculate the expectation values and error covariance
matrices for the SPM. We start by providing a way to calculate the expectation value of
Zz,t in Proposition 4.1.1. To this end, we introduce the auxiliary quantities A, h2 and IZ .
Here A is a set summarizing the according indicator functions/integral boundaries, h2 is
an interim result encompassing the spatial integral over the zj-dependent terms, while IZ

1This leaves some ambiguity, so a different interpretation (yielding different covariances) might be
possible. However the interpretation used in this thesis is probably the most consistent one, requiring as
few changes as possible.
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(which is proportional to the contribution from an individual particle to the expectation
value) also includes the remaining terms and the integral over the particle diameter.

Proposition 4.1.1. Given Assumption 3.2.1 and Definition 3.2.4, let

A (z, t, Dj, zmin, zmax) =
[
z − α

√
Djt − Dj

2 , z − α
√

Djt + Dj

2

]
∩ [zmin, zmax] (4.1)

=
[
max

(
z − α

√
Djt − Dj

2 , zmin

)
, min

(
z − α

√
Djt + Dj

2 , zmax

)]
,

h2 (z, t, Dj, zmin, zmax) =
∫

A(z,t,Dj ,zmin,zmax)
f (Dj, zj, t, z) dzj, (4.2)

IZ (z, t, zmin, zmax) =
∫ ∞

0
gZ (Dj) λe−λDj h2 (z, t, Dj, zmin, zmax) dDj, (4.3)

then

E [Zz,t] = n

zmax − zmin

IZ (z, t, zmin, zmax) . (4.4)

Proof. See appendix

An analogue approach yields a way to obtain the error covariances in Proposition 4.1.2.
This is facilitated by the introduction of the further auxiliary quantities B, K2 and JXY ,
which to some extent are analogue to A, h2 and IZ .

Proposition 4.1.2. Given Assumption 3.2.1, let Xx,t and Yy,s be as in Definition 3.2.4,
and define

B (x, y, t, s, Dj, zmin, zmax) =
[
x − α

√
Djt − Dj

2 , x − α
√

Djt + Dj

2

]
∩ (4.5)

∩
[
y − α

√
Djs − Dj

2 , y − α
√

Djs + Dj

2

]
∩ [zmin, zmax]

=
[
max

({
x − α

√
Djt − Dj

2 , y − α
√

Djs − Dj

2 , zmin

})
,

, min
({

x − α
√

Djt + Dj

2 , y − α
√

Djs + Dj

2 , zmax

})]
,

k2 (x, y, t, s, Dj, zmin, zmax) =
∫

B(x,y,t,s,Dj ,zmin,zmax)
f (Dj, zj, t, x) f (Dj, zj, s, y) dzj (4.6)

JXY (x, y, t, s, zmin, zmax) =
∫ ∞

0
gX (Dj) gY (Dj) λe−λDj k2 (x, y, t, s, Dj, zmin, zmax) dDj,

(4.7)

then

Cov (Xx,t, Yy,s) = n

zmax − zmin

JXY (x, y, t, s, zmin, zmax) − (4.8)

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax) .
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Proof. See appendix

The calculation of the expectation values and covariances can at least be carried out
numerically, obtaining an approximation for the covariances of the error originating from
the stochastic initial conditions. These can be regarded as a form of representation error
allowing the use of the according matrices as observation error covariance matrices in our
DA experiments in Chapter 5.

4.2 Expectation values and error covariances for the
reference model

Now, for comparison we also calculate covariances for observables defined more similar
to that considered in Wacker and Seifert (2001): We will assume every hydrometeor to
fully contribute to the liquid water content and number density at height z, if and only if
its centre zj is located within the interval [z − ϵ, z + ϵ], for some fixed ϵ. Thus we define
analogue to Definition 3.2.2:

Definition 4.2.1. Given an arbitrary but fixed ϵ ∈ R+ and a state η and assuming that
all hydrometeors have the density ρH ∈ R+, let Lϵ

η : R → R+, z 7→ Lϵ
η (z) with

Lϵ
η (z) = 1

2ϵ
ρH

n∑
j=1

1[z−ϵ,z+ϵ] (zj)
∣∣∣∣BDj

2
(xj, yj, zj)

∣∣∣∣
V

(4.9)

= 1
2ϵ

ρHπ

6

n∑
j=1

1[z−ϵ,z+ϵ] (zj) D3
j (4.10)

and N ϵ
η : R → R+, z 7→ N ϵ

η (z) with

N ϵ
η (z) = 1

2ϵ

n∑
j=1

1[z−ϵ,z+ϵ] (zj) . (4.11)

Analogue to the considerations in Section 3.2, we can introduce advection resulting in a
time dependence of the state η and generalize Definition 4.2.1 to

Definition 4.2.2. Given the assumptions of Definition 4.2.1 and Notation 3.2.1, let

Zϵ
z,t = 1

2ϵ

n∑
j=1

1[z−ϵ,z+ϵ] (zj (t)) gϵ
Z (Dj) , (4.12)

with

gϵ
L (Dj) = ρHπ

6 D3
j (4.13)

gϵ
N (Dj) = 1. (4.14)
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Similar to Section 3.2, assuming (analogue to Assumption 3.2.1) the probability of the
system being in a given state to be described by the product measure P of the probability
measures Pj, j ∈ {1, · · · , n} defined by the probability densities

ϱϵ
zj

(zj) = 1
zmax − zmin

1[zmin,zmax] (zj) (4.15)

ϱϵ
Dj

(Dj) = δD (Dj) , (4.16)

for2 D ∈ R, we can calculate the expectation value of Zϵ
z,t:

E
[
Zϵ

z,t

]
= 1

2ϵ
E

 n∑
j=1

1[z−ϵ,z+ϵ] (zj (t)) gϵ
Z (Dj)

 (4.17)

= 1
2ϵ

n∑
j=1

∫
1[z−ϵ,z+ϵ] (zj (t)) gϵ

Z (Dj) dP (zj, Dj)

= 1
2ϵ

n∑
j=1

∫
1[z−ϵ,z+ϵ] (zj + vT (Dj) t) gϵ

Z (Dj) dP (zj, Dj)

= 1
2ϵ

n∑
j=1

∫
1[z−vT (Dj)t−ϵ,z−vT (Dj)t+ϵ] (zj) gϵ

Z (Dj) dP (zj, Dj) ,

which can be further simplified to

E
[
Zϵ

z,t

]
= 1

2ϵ

n∑
j=1

∫ ∞

0

∫ ∞

−∞
1[z−vT (Dj)t−ϵ,z−vT (Dj)t+ϵ] (zj) gϵ

Z (Dj) ϱϵ
zj

(zj) ϱϵ
Dj

(Dj) dzjdDj

= 1
2ϵ

1
zmax − zmin

n∑
j=1

∫ ∞

0

∫ ∞

−∞
1[z−vT (Dj)t−ϵ,z−vT (Dj)t+ϵ]∩[zmin,zmax] (zj)︸ ︷︷ ︸

=1
Aϵ(z,t,Dj ,zmin,zmax)(zj)

·

· gϵ
Z (Dj) δD (Dj) dzjdDj

= 1
2ϵ

1
zmax − zmin

n∑
j=1

∫ ∞

−∞
1Aϵ(z,t,D,zmin,zmax) (zj) gϵ

Z (D) dzj

= 1
2ϵ

ngϵ
Z (D)

zmax − zmin

∫ ∞

−∞
1Aϵ(z,t,D,zmin,zmax) (zj) dzj

= 1
2ϵ

ngϵ
Z (D)

zmax − zmin

λ (Aϵ (z, t, D, zmin, zmax)) , (4.18)

with λ being the Lebesque measure.

2Here δD is the Dirac measure centred at D. Note, that other than in Section 3.2 and different from
Wacker and Seifert (2001), we now assume the diameter of all hydrometeors being identical, to facilitate
computations.



4.2 Expectation values and error covariances for the reference model 33

In a similar way, we obtain the covariance of two observables Xϵ
x,t and Y ϵ

y,s. By definition

Cov
(
Xϵ

x,t, Y ϵ
y,s

)
= E

[
Xϵ

x,tY
ϵ

y,s

]
− E

[
Xϵ

x,t

]
E
[
Y ϵ

y,s

]
, (4.19)

analogue to the proof of Proposition 4.1.2, becomes

Cov
(
Xϵ

x,t, Y ϵ
y,s

)
= 1

4ϵ2

n∑
j=1

∫
1[x−vT (Dj)t−ϵ,x−vT (Dj)t+ϵ] (zj) gϵ

X (Dj) · (4.20)

· 1[y−vT (Dj)s−ϵ,y−vT (Dj)s+ϵ] (zj) gϵ
Y (Dj) dP (zj, Dj) −

− 1
4ϵ2

n∑
j=1

∫
1[x−vT (Dj)t−ϵ,x−vT (Dj)t+ϵ] (zj) gϵ

X (Dj) dP (zj, Dj) ·

·
∫

1[y−vT (Dj)s−ϵ,y−vT (Dj)s+ϵ] (zj) gϵ
Y (Dj) dP (zj, Dj) .

= 1
4ϵ2
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j=1

∫ ∞

0

∫ ∞

−∞
1[x−vT (Dj)t−ϵ,x−vT (Dj)t+ϵ] (zj) gϵ

X (Dj) ·
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Y (Dj) ϱϵ
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(Dj) dzjdDj−

− 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2 λ (Aϵ (x, t, D, zmin, zmax)) λ (Aϵ (y, s, D, zmin, zmax))

= 1
4ϵ2

1
zmax − zmin

n∑
j=1

∫ ∞

0

∫ ∞

−∞
gϵ

X (Dj) gϵ
Y (Dj) δD (Dj) ·

· 1[x−vT (Dj)t−ϵ,x−vT (Dj)t+ϵ]∩[y−vT (Dj)s−ϵ,y−vT (Dj)s+ϵ]∩[zmin,zmax] (zj)︸ ︷︷ ︸
1

Bϵ(x,y,t,s,Dj ,zmin,zmax)(zj)

dzjdDj−

− 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2 λ (Aϵ (x, t, D, zmin, zmax)) λ (Aϵ (y, s, D, zmin, zmax)) .

This can be simplified to

Cov
(
Xϵ

x,t, Y ϵ
y,s

)
= 1

4ϵ2
1

zmax − zmin

n∑
j=1

∫ ∞

−∞
gϵ

X (D) gϵ
Y (D) 1Bϵ(x,y,t,s,Dj ,zmin,zmax) (zj) dzj−

− 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2 λ (Aϵ (x, t, D, zmin, zmax)) λ (Aϵ (y, s, D, zmin, zmax))

= 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
zmax − zmin

λ (Bϵ (x, y, t, s, D, zmin, zmax)) − (4.21)

− 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2 λ (Aϵ (x, t, D, zmin, zmax)) λ (Aϵ (y, s, D, zmin, zmax)) .

If we now assume x = y and t = s, we have
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Bϵ (x, x, t, t, D, zmin, zmax) = Aϵ (x, t, D, zmin, zmax) , (4.22)

which allows us to simplify (4.21) to

Cov
(
Xϵ

x,t, Y ϵ
x,t

)
= 1

4ϵ2
ngϵ

X (D) gϵ
Y (D)

zmax − zmin

λ (Bϵ (x, x, t, t, D, zmin, zmax)) − (4.23)

− 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2 λ (Aϵ (x, t, D, zmin, zmax))2

= 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
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λ (Aϵ (x, t, D, zmin, zmax)) −

− 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
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= 1
4ϵ2

ngϵ
X (D) gϵ

Y (D)
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[
λ (Aϵ (x, t, D, zmin, zmax)) − λ (Aϵ (x, t, D, zmin, zmax))2

zmax − zmin

]
.

If we now additionally assume3 [z − ϵ, z + ϵ] ⊂ [zmin + vT (Dj) t, zmax + vT (Dj) t], we ob-
tain

λ (Aϵ (x, t, D, zmin, zmax)) = λ ([z − vT (Dj) t − ϵ, z − vT (Dj) t + ϵ] ∩ [zmin, zmax]) (4.24)
= λ ([z − vT (Dj) t − ϵ, z − vT (Dj) t + ϵ])
= |z − vT (Dj) t + ϵ − (z − vT (Dj) t − ϵ)|
= 2ϵ

and can further simplify (4.23) to

Cov
(
Xϵ

x,t, Y ϵ
x,t

)
= 1

4ϵ2
ngϵ

X (D) gϵ
Y (D)

zmax − zmin

[
2ϵ − 4ϵ2

zmax − zmin

]
(4.25)

= ngϵ
X (D) gϵ

Y (D)
zmax − zmin

[ 1
2ϵ

− 1
zmax − zmin

]
= 1

2ϵ

ngϵ
X (D) gϵ

Y (D)
zmax − zmin

− ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2 .

Cov
(
Xϵ

x,t, Y ϵ
x,t

)
in (4.25) depends explicitly on ϵ and one possible way to get rid of this

dependence would be taking the limit ϵ → 0. If we however take the limit, we obtain
3We can obtain this e.g. for t = 0 and x ∈ [zmin + ϵ, zmax − ϵ].
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lim
ϵ→0

Cov
(
Xϵ

x,t, Y ϵ
x,t

)
= lim

ϵ→0

(
1
2ϵ

ngϵ
X (D) gϵ

Y (D)
zmax − zmin

− ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2

)
(4.26)

= lim
ϵ→0

1
2ϵ

ngϵ
X (D) gϵ

Y (D)
zmax − zmin︸ ︷︷ ︸

=∞

−ngϵ
X (D) gϵ

Y (D)
(zmax − zmin)2

= ∞,

yielding i.a. an infinite variance.

So, as seen in (4.25) using the unmodified definitions of Wacker and Seifert (2001) yields
covariance matrices that (at least in the variances of L and N , as well as the covariance
between L and N at the same grid point) explicitly depend on the free parameter ϵ for
the special case of all hydrometeors having the same diameter. This is problematic, as
ϵ is an arbitrary4 constant, that has no physical analogue and should not appear in any
measurable quantity. Especially its appearance in the variances is problematic for DA, as
use of these quantities cannot be avoided, e.g. by thinning the observations and using a
diagonal observation error covariance matrix.

As seen in (4.26), also taking the limit ϵ → 0 does not solve that problem, as it results in
divergence at least of the variances of L and N , as well as the covariance between L and
N at the same grid point. Again especially the variances are problematic, as this would
practically mean that no observation would carry any information in this case.

In general, we have seen that as soon as covariances are calculated, a collection of severe
problems occurs when using the unmodified definitions. However, none of these issues
occurs when using the definitions of Section 3.2. This motivates the changes made to the
Wacker and Seifert (2001) reference model when constructing the SPM.

4.3 Numerically calculated values
Now, we numerically calculate the expectation values and covariance matrices for some
exemplary cases, using a log-transformation to ensure the tails of distributions being ad-
equately sampled in numerical integration (Berry and Reinhardt, 1974). We perform a
series of numerical experiments, comparing the expectation values predicted by the SPM
for number concentration and liquid water content to the Wacker and Seifert (2001) refer-
ence model. Furthermore, we investigate the effect of particle geometry and velocity model
on the expectation values and covariances of number concentration and liquid water con-
tent. We employ the axis ratios for cylindrical hydrometeors determined by the according

4Note that the asymptotic behaviour of ϵ is different from what we would expect from the size of the
grid box of a model. Thus we can also not dispose of ϵ by identifying it with the model resolution.
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power laws given in Auer and Veal (1970) and terminal fall velocities calculated using the
results of Brdar and Seifert, 2018, as well as (for spherical hydrometeors) from a simplified
setup obtained from equating friction and gravitational force. The nomenclature of the
cylindrical hydrometeor geometries follows that of Auer and Veal (1970) throughout the
entire thesis.

The remainder of this section is structured as follows: In Section 4.3.1 we show profiles
obtained from the expectation values of the SPM for the liquid water content and number
density and compare them to the predictions of the Wacker and Seifert (2001) reference
model. Then in Section 4.3.2 we discuss the covariances obtained for the SPM, before
we investigate the impact of different velocity models on profiles and covariances in Sec-
tion 4.3.3. Furthermore, a summary of the employed velocity models, which might be
useful for interpreting the results can be found in Appendix E.

4.3.1 Profiles
We now discuss the liquid water content and number density profiles obtained from the
SPM in comparison to that obtained from the Wacker and Seifert (2001) reference model
in the same situation. Here we focus on large spherical hydrometeors, as the Wacker and
Seifert (2001) reference model is only defined for spherical hydrometeors and the SPM is
affected less by noise for larger hydrometeors.

Figure 4.1: Expectation values of number density (left panel) and liquid water content
(right panel) compared to the reference model of Wacker and Seifert (2001), for large
spherical hydrometeors with diameters following an exponential distribution with λ = 70 1

m

and initial positions given by zinit ∼ U ([8.99m, 9.00m]) at t = 0.039s. The scaled version
of E [L] is rescaled by a factor of 1

zinit
max−zinit

min

E[Vsphere]
E[Aintersect] , to account for differences of the

definition of L on smaller length scales.

Note 4.3.1. Number density per hydrometeor exceeding 1 (such as in Figure 4.1) could
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be explained by the geometry of the hydrometeors. A hydrometeor intersecting the in-
vestigated z-level with a larger portion than its average cross section can cause a number
density above 1 at that z-level.

In Figure 4.1, a comparison of the expectation values of number density and liquid water
content to the reference model of Wacker and Seifert (2001) is shown for large spherical
hydrometeors with diameters following an exponential distribution with λ = 70 1

m
and ini-

tial positions given by zinit ∼ U ([8.99m, 9.00m]) at t = 0.039s. Furthermore, we assume
the system consisting of n = 5000 hydrometeors with velocities equal to the terminal fall
velocity obtained from the simplified setup that equates friction and gravitational force
(see also Figure E.1).

The number densities predicted by both models agree relatively well. However, the liquid
water content differs in peak position and especially amplitude. This might be explained
by a different dependence of the liquid water content on the particle size: Whereas (3.2)
defines it using an area of intersection (i.e. in first order ∼ D2), Wacker and Seifert (2001)
defines it as mass per grid spacing (i.e. ∼ D3), which results in a stronger dependence
of the peak position on particle size and gravitational sorting, likely explaining the down-
ward shift of the expectation value of (3.2) compared to the model of Wacker and Seifert
(2001). Furthermore, approximately correcting the difference in the definitions by multi-
plying E [L] by a factor5 of 1

zinit
max−zinit

min

E[Vsphere]
E[Aintersect] = 1

zinit
max−zinit

min

2
λ

leads to the amplitudes of the
liquid water content profiles predicted by both models agreeing well. So we can conclude
that the difference in amplitude (and likely also that in peak position) of L is caused by
the different dependency on the particle size.

We now turn to cylindrical hydrometeors with different aspect ratios. In Figure 4.2, we
show a comparison of the expectation values of number density and liquid water content,
for a system consisting of n = 5000 cylindrical hydrometeors with different axis ratios
(corresponding to the ’hexagonal plate’ and ’thick plate’ type of Auer and Veal, 1970).
Particle volumes are assumed to be equal to that of spherical hydrometeors with diameters
following an exponential distribution with λ = 500 1

m
and initial positions to be given by

zinit ∼ U ([8.99m, 9.00m]) at t = 0.1s. Particle orientations are assumed to be constant,
with φ = 90◦.

The number density and liquid water profiles of the thick plates are both significantly
shifted downwards compared to the that of the hexagonal plates, which can likely be ex-
plained by the higher fall velocities of the thick plates (see Figure E.1). Furthermore, both
profiles are much narrower for the hexagonal plates, which is likely caused by weaker grav-
itational sorting due to the smaller dependence of the according velocities on particle size.
The small increase of the number density at the upper end of the domain is likely caused

5Note, that this factor does not explicitly depend on the hydrometeor diameter, as this quantity is
integrated out by the expectation value.
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Figure 4.2: Expectation values of number density (left panel) and liquid water content
(right panel), for cylindrical hydrometeors with particle volumes equal to that of spherical
hydrometeors with diameters following an exponential distribution with λ = 500 1

m
and

initial positions given by zinit ∼ U ([8.99m, 9.00m]) at t = 0.1s.

by very small and slow particles, that have not noticeably moved from their initial position.

So we have seen that the profiles predicted by the SPM (up to a different scaling behaviour)
agree relatively well with those obtained from the Wacker and Seifert (2001) reference
model. Furthermore, the profiles seem to be physically plausible, with their shape (as well
as the differences between different setups) well explainable by gravitational sorting.

4.3.2 Covariances and correlations
Now, we investigate the large (here: lenght scales much larger than typical hydrometeor
diameter) and small (here: lenght scales smaller than or equal to typical hydrometeor
diameter) scale structures of the covariance matrices obtained from our model. We will
also discuss the effects of gravitational sorting, particle geometry and orientation on the
covariances.

4.3.2.1 Covariance matrix for large spherical hydrometeors

We now calculate the covariance matrix for large spherical hydrometeors moving with the
terminal fall velocity predicted by Brdar and Seifert, 2018. The diameters are assumed
to be following an exponential distribution with λ = 70 1

m
, which should roughly describe

relatively large hail stones. We focus on larger hydrometeors here, because the according
covariances are less affected by numerical noise. Furthermore, the effects of gravitational
sorting are expected to be better visible for larger hydrometeors, as the covariance matrices
for smaller hydrometeors become diagonal, when the resolution is not increased substan-
tially. The initial positions are assumed to be given by zinit ∼ U ([8.99m, 9.00m]) and we
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consider the case t = 0.039s. The z-axis is selected such that both the liquid water content
and the number density are large enough to avoid division by zero when calculating the
correlations.

Figure 4.3: (N, N)-part (left panel), (L, L)-part (central panel) and (N, L)-part (right
panel) of the correlation matrix for large spherical hydrometeors with diameters follow-
ing an exponential distribution with λ = 70 1

m
and initial positions given by zinit ∼

U ([8.99m, 9.00m]) at t = 0.039s. The NN -and LL-part have been symmetrized for nu-
merical improvement.

The results obtained numerically using (4.8) are shown in Figure 4.3. All parts of the
correlation matrix exhibit a similar behaviour: The correlation length increases with de-
creasing z. This is likely caused by gravitational sorting, as larger hydrometeors which
are capable of connecting multiple grid points fall faster, resulting in them having moved
to lower z-levels than smaller ones already at the considered time step. Slightly negative
correlations with extremely low absolute values (not visible in the plot) obtained between
distant grid points are likely either a side effect of the fixed particle number, or a numerical
artefact.

4.3.2.2 Influence of particle geometry and orientation on correlations

To investigate the influence of particle geometry and orientation on correlations, we con-
sider cylindrical and spherical hydrometeors. To allow for easy comparison of the different
hydrometeor types, we assume all particle volumes to be equal to that of spherical hydrom-
eteors with diameters following an exponential distribution with λ = 500 1

m
, which should

yield particle sizes plausible for all considered geometries. For the cylindrical hydromete-
ors, we assume the diameter-hight-ratio to be equal to that of the ’hexagonal plate’ type
of Auer and Veal, 1970 and consider the cases ϕ = 90◦ and ϕ ∼ U ([0◦, 90◦]), to investi-
gate the effect of particle orientation. The initial positions are assumed to be given by
zinit ∼ U ([8.99m, 9.00m]) and we consider the case t = 0.1s. For numerical reasons, we
plot sections of the correlations at the position of a hydrometeor of median diameter, initial
position and orientation, as we expect a large number of hydrometeors present there. The
results are shown in Figure 4.4.
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Figure 4.4: Covariance profile centred at the position of a hydrometeor of median diameter,
initial position and orientation, for cylindrical hydrometeors (with diameter-hight-ratio
corresponding to the ’hexagonal plate’ type of Auer and Veal, 1970) and ϕ = 90◦ (left
panel), ϕ ∼ U ([0◦, 90◦]) (central panel) and spherical hydrometeors (right panel). Particle
volumes are assumed to be equal to that of spherical hydrometeors with diameters following
an exponential distribution with λ = 500 1

m
.

For the cylindrical hydrometeors with constant orientation, we see a triangular covariance
profile, whereas cylindrical hydrometeors with uniformly distributed orientation and spher-
ical hydrometeors show a more bell shaped profile. The finite support of the triangular
profile might be explained by gravitational sorting only allowing for hydrometeors up to a
certain size to be present close enough to the considered z-level.

4.3.2.3 Time dependence of variances for large spherical hydrometeors

We now discuss the time dependence of variances. To this end, we again (to reduce numer-
ical noise) focus on large spherical hydrometeors and calculate the according variances at
several time steps. The diameters are assumed to be following an exponential distribution
with λ = 70 1

m
. The initial positions are assumed to be given by zinit ∼ U ([8.99m, 9.00m])

and we consider the initial time t = 0.03s. Variances and profiles are calculated for the
initial time step and after additional 5, 10, 15 and 20 time steps of 0.001s (see Figure 4.5
for profiles).

The variance of the liquid water content follows a bell shaped curve that broadens over
time, while its mean quickly shifts to lower z-values. This might be explained by the vari-
ances of the liquid water content (like the liquid water content itself) being predominantly
influenced by the larger hydrometeors, which exhibit larger terminal fall velocities. Fur-
thermore, gravitational sorting causes the hydrometeors large enough to have a significant
effect on the liquid water content to spread out over a wider domain, leading to a broad-
ening of the profile and the variance curve.

In contrast, the variance of the number density is almost constant over time, with very
high values at the top of the domain, roughly exponentially decreasing with z. This might
be explained by the variances of the number density being predominantly influenced by
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Figure 4.5: Variances (upper panel) and profiles (lower panel) of liquid water content (left
panel), number density (central panel) and logarithm of number density (right panel) for
spherical hydrometeors with exponentially distributed diameters with λ = 70 1

m
and initial

positions given by zinit ∼ U ([8.99m, 9.00m]) at 0.03s (step 0) and after additional 5, 10,
15 and 20 time steps of 0.001s. Profiles normalized to total number of hydrometeors.

the smaller hydrometeors, which move very slowly, while the smallest hydrometeors stay in
the upper part of the domain for the entire period under consideration. Due to their small
size and the high weight assigned by the D−3

j -term in (3.3), even small fluctuations in their
position can strongly affect the number density, leading to them dominating its variance.
As seen in the logarithmic plot, the variances at lower z-levels increase very slowly, while
those at the top of the domain decrease minimally.

When comparing to the according profiles, the variances of the liquid water content follow
(despite somewhat shifted) those of the according expectation value to some extent, while
that of the number concentration remain relatively independent. However, in the logarith-
mic plots for the number concentration some correlation can be seen between variances
and profiles in the lower part of the domain.

4.3.3 Comparison of velocity models
Finally, we investigate the effect of different velocity models on expectation values and
covariances of number density and liquid water content. In Figure 4.6 expectation values
of number density and liquid water content, calculated using a simplified velocity model
(obtained from equating friction and gravitational force) and the McSnow model of Brdar
and Seifert, 2018 are shown for spherical hydrometeors with initial positions given by
zinit ∼ U ([8.99m, 9.00m]) and diameters following an exponential distribution, for λ = 70 1

m
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at t = 0.039s and λ = 500 1
m

at t = 0.1s.

Figure 4.6: Expectation values of number density (left panels) and liquid water content
(right panels), calculated using a simplified velocity model and the McSnow model of
Brdar and Seifert, 2018, for spherical hydrometeors with initial positions given by zinit ∼
U ([8.99m, 9.00m]) and diameters following an exponential distribution, for λ = 70 1

m
at

t = 0.039s (upper panels) and λ = 500 1
m

at t = 0.1s (lower panels).

In the case of the larger hydrometeors with λ = 70 1
m

, we see the peak of the liquid water
content profile calculated using the McSnow model shifted downwards compared to that
calculated using the simplified model, whereas the peaks of the number density profiles
agree relatively well. This might be explained by the McSnow model producing higher
velocities than the simplified model for larger hydrometeors (which predominantly shape
the liquid water content profile). On the other hand, in the case of the smaller hydrome-
teors with λ = 500 1

m
, the peaks of the liquid water content profiles agree relatively well,

whereas we see the peak of the number density profile calculated using the McSnow model
shifted upwards compared to that calculated using the simplified model. This might be
explained by the McSnow model producing lower velocities than the simplified model for
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smaller hydrometeors (which predominantly shape the number density profile). Further-
more, all profiles calculated using the McSnow model are wider than those calculated using
the simplified model, which might be explained by stronger gravitational sorting caused
by a (slightly) stronger dependence of the terminal fall velocity on hydrometeor size in the
McSnow model.

In Figure 4.7, we show the covariance profiles centred at the position of a hydrometeor
of median diameter and initial position, for spherical hydrometeors with initial positions
given by zinit ∼ U ([8.99m, 9.00m]) and diameters following an exponential distribution
with λ = 500 1

m
at t = 0.1s, calculated using a simplified velocity model and the McSnow

model of Brdar and Seifert (2018).

Figure 4.7: Covariance profiles centred at the position of a hydrometeor of median
diameter and initial position, for spherical hydrometeors with initial positions given
by zinit ∼ U ([8.99m, 9.00m]) and diameters following an exponential distribution with
λ = 500 1

m
at t = 0.1s, calculated using a simplified velocity (left panel) model and the

McSnow model of Brdar and Seifert (2018) (right panel).

Despite differences in the z-level considered, the correlations obtained using both models
have the same shape and width, so there seems to be no influence of the velocity model on
the small scale structures of the correlation matrix.

4.4 Summary
In summary, in this section we have seen that the SPM produces physically plausible
expectation values agreeing sufficiently well with those obtained from the Wacker and
Seifert (2001) reference model. Remaining differences between both models are likely
caused by a different dependence of L on the particle size. Noting that in our setup
(positive) correlations are only possible by a single hydrometeor intersecting multiple grid
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points, we found that the structure of the covariance matrices predicted by the SPM can
be explained (on length scales smaller than the typical particle size) by the geometry of the
hydrometeors and (on length scales larger than the typical particle size) by gravitational
sorting. As gravitational sorting causes larger hydrometeors to be present at lower grid
points, it results in correlation lengths increasing with decreasing height. We also found
that employing different velocity models did not visibly impact the covariance matrices at
small length scales.



Chapter 5

Data assimilation with SPM

In this chapter we use covariance matrices obtained in Section 4.1 in a series of DA ex-
periments, to research the role of temporal and spatial variations in observation error
covariances. We start with a general overview over the experimental design in Section 5.1,
before we discuss the details of the numerical implementation in Section 5.2. Finally, we
present the results of our DA experiments in Section 5.3.

5.1 Experimental design
We conduct a series of double twin experiments with two nature runs differing in the un-
derlying physics assumptions. One nature run is created employing the stochastic particle
model, while the other is obtained using the Wacker and Seifert (2001) reference model.
Thus, to improve readability we will label the according DA experiments as SPM and
WSRM during the entire section.

Prior to the DA experiments, the analytic observation error covariances for the SPM are
obtained by numerically integrating the according equations from Proposition 4.1.2, em-
ploying the same parameters as the according DA experiments. To this end, we calculate
the (N, N)-, (N, L)- and (L, L)-block of the matrix individually, employing a Monte Carlo
integral with 12, 000, 000 samples. The blocks are subsequently combined and the resulting
matrix is symmetrized by averaging it with its transposed1. To obtain positive semidefinite
matrices, we use the implementation of Croucher (2014) for the NCM method of Higham
(2002). Furthermore, it is possible to optionally apply ridge regression (see Tabeart et al.,
2020) to improve the condition number.

During the DA experiments, the data created from both truth runs will be assimilated
employing an EnKF and using the same nens = 100 member ensemble and parameters in
both experiments. The observed grid points can be specified to be e.g. every grid point or

1Note, that this effectively doubles the number of samples used to calculate the non-diagonal elements
of the matrix.
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every second grid point (in space). For evolving the ensemble members we always employ
the two moment scheme of Wacker and Seifert, 2001, using an upwind scheme (see Courant
et al., 1952a and Harten et al., 1983), and DA is carried out every 5th time step. Option-
ally, profiles of ensemble members can be smoothed after every model evolution, using a
running average (equally weighting all values within a range of 5 grid points) and negative
values are set to a small positive threshold (1 for N and 0.01 for L). The observation error
covariance matrix used by the EnKF can be specified to be either the full analytic obser-
vation error covariance matrix obtained for the SPM, a block diagonal version of the full
analytic observation error covariance matrix obtained by setting the correlations between
N and L to zero, or a diagonal matrix extracted from the full analytic observation error
covariance matrix.

After a spin-up of 30 model iterations of 0.0002s, we carry out 20 assimilation cycles with
the time interval between assimilation cycles being 0.001s. The domain is chosen to be
[7m, 9m], while the grid spacing is set to 0.0375m. The number of hydrometeors is set
to 10.000 and they are initially distributed uniformly in the interval [8.99m, 9m], while
their diameters are assumed to be exponentially distributed with λ = 70 1

m
. These choices

are made to ensure that the profiles change noticeably over time, while remaining mostly
contained in the domain (though the L profile starts to extend beyond the lower boundary
of the domain at later time steps). Furthermore, the density of hydrometeors has to be
high enough to ensure that the profiles from the particle based simulations roughly resem-
ble those of the analytic model and the number of grid points has to be low enough to
ensure that the calculation of the analytical observation error covariances is possible with
the available computational resources.

The initial background is obtained by shifting the N and L profiles produced by the SPM
downwards by 10 grid points. This induces an initial positional error, avoiding the exper-
iments starting with a perfect estimate and providing a more challenging problem than
pure amplitude error.

Finally, we outline the implementation of the algorithm (without details or optional steps):

• Initialize the first nature run (employing the SPM) and create particles

• Evolve first nature run to spin-up time

• Use (3.2) and (3.3) to calculate L and N profiles on all grid points for first nature
run

• Create initial ensemble by evolving the profiles from the nature run for 0 to nens = 100
model time steps

• Initialize second nature run (employing the WSRM) with according data (including
the ensemble) from the first nature run
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• Shift profiles of all ensemble members down by 10 grid points (for both experiments),
to obtain a background ensemble at initial time that includes a positional error

• Iterate:

– Obtain "observations" from both nature runs
– Carry out DA for both experiments, employing the "observations" of the accord-

ing nature runs
– Plot snapshots of the profiles, the ensemble and the background and analysis

covariance matrices
– Calculate and store RMSE for both experiments
– Evolve both ensembles

• Plot RMSE over time

5.2 Numerical details
We now give an overview over the implementation of an upwind scheme used to evolve the
ensemble. Note that we will evolve each ensemble member separately and thus discuss the
application of the scheme to an individual ensemble member here.

Our goal is to use the methods from Courant et al. (1952b) to solve the two-moment scheme
from Wacker and Seifert (2001), which is given by (2.46), (2.47), (2.48), (2.49), (2.50) and
(2.51). We will focus on the case γ = 1

6 .

The Courant et al. (1952b) scheme is designed to solve systems of equations of the form

n∑
i=1

Aij (x, y, u) ui
x + Bij (x, y, u) ui

y = Cj (x, y, u) , (5.1)

for j ∈ {1, · · · , n}. Despite the scheme allowing more general2 initial conditions, we will
focus here on the special case

u (x, y0) = u0, (5.2)

for y0 ∈ R, u0 ∈ Rn and for all x ∈ R.

Note that we can rewrite (2.50) in the form (5.1), by setting n = 2, x = z, y = t, Aij = Aji,
Bij = Idn×n and Cj = 0. The initial conditions in this case are u1

0 = N0 and u2
0 = L0 with

2The scheme actually admits an initial curve y0 (x). This can be transformed in the form considered
here by choosing y0 (x) = y0 = const.
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N0 and L0 being the initial number density and liquid water content.

The first step of the Courant et al. (1952b) scheme is to transform the system of equations
given in (5.1) to the form

n∑
i=1

aij (x, y, u)
(
ui

y + cj (x, y, u) ui
x

)
= bj (x, y, u) , (5.3)

for j ∈ {1, · · · , n}. We will sketch this process for the Wacker and Seifert (2001) two-
moment scheme in this chapter, however details of the calculations can be found in Ap-
pendix F. In order to rewrite the Wacker and Seifert (2001) two-moment scheme in the
form (5.3), we set

c (x, y, u) =


c1 (x, y, u) · · · 0

... . . . ...
0 · · · cn (x, y, u)

 , (5.4)

and rewrite (5.3) in vectorial form as

aT (x, y, u) uy + c (x, y, u) aT ux = b (x, y, u) , (5.5)

with c (x, y, u) of the form (5.4), u ∈ Rn, a ∈ Rn×n and b (x, y, u) ∈ Rn, for all x, y and u.
Now assuming

(
aT
)

to be invertible, we can multiply (5.5) from the left by
(
aT
)−1

, which
yields

uy +
(
aT
)−1

caT ux =
(
aT
)−1

b, (5.6)

where we dropped the arguments of the functions from the notation to improve readability.
We now notice that (if A is diagonalizable) we can rewrite (2.50) in this form, by setting

x = z (5.7)
y = t (5.8)(

aT
)−1

caT = −A (5.9)
b = 0. (5.10)

Note also that in this case (5.9) guarantees the existence of
(
aT
)−1

, which we assumed
above. We can now retreive a and c by diagonalizing A: Employing Wolfram|Alpha (n.d.)
and explicitly making use of γ = β

3 = 1
6 , we obtain
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λ± = χN x̄
1
6

1
192

(
325 ∓

√
13785

)
(5.11)

v± =
(

165±
√

13785
420

N
L

1

)
(5.12)

and (see Appendix F.1 for explicit matrices)

A (x̄) = χN x̄
1
6 · S · J · S−1, (5.13)

Now, comparing (5.13) and (5.9) (assigning the minus to c) and using (F.19), we can read
off

aT = S−1 (5.14)

=
 14

√
15
919

L
N

1
2

(
1 − 11

√
15
919

)
−14

√
15
919

L
N

1
2

(
1 + 11

√
15
919

)
 , (5.15)

yielding

a =
 14

√
15
919

L
N

−14
√

15
919

L
N

1
2

(
1 − 11

√
15
919

)
1
2

(
1 + 11

√
15
919

) . (5.16)

Analogue, using (F.16) and (2.46) we get

c = −χN x̄
1
6 · J (5.17)

= −χN x̄
1
6 ·

 1
192

(
325 −

√
13785

)
0

0 1
192

(
325 +

√
13785

)
= χN x̄

1
6

192 ·
(√

13785 − 325 0
0 −

√
13785 − 325

)

= χN

192

(
1

ρwD3
v

) 1
6 ( L

N

) 1
6

·
(√

13785 − 325 0
0 −

√
13785 − 325

)

=:
(

c+ 0
0 c−

)
.

Now, we can insert our results into the Courant et al. (1952b) scheme, yielding

0 = A1j
kl

[
Nk,l+1 − Nk,l

∆t
+ Cj

kl

Nk+1,l − Nk,l

∆x

]
+ A2j

kl

[
Lk,l+1 − Lk,l

∆t
+ Cj

kl

Lk+1,l − Lk,l

∆x

]
,

(5.18)
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where Nk,l = N (zk, tl), Lk,l = L (zk, tl), Aij
kl = aij (zk, tl, Nk,l, Lk,l), Cj

kl = cj (zk, tl, Nk,l, Lk,l)
and Bj

kl = bj (zk, tl, Nk,l, Lk,l).

Note that, as here Cj
kl ≤ 0 always holds, no case distinction is necessarry. We now obtain

0 = 14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (5.19)

+ 1
2

1 − 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c+ (k, l) Lk+1,l − Lk,l

∆x

]
,

for j = 1 and

0 = −14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c− (k, l) Nk+1,l − Nk,l

∆x

]
+ (5.20)

+ 1
2

1 + 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c− (k, l) Lk+1,l − Lk,l

∆x

]
,

for j = 2.
Now, we can solve the according system of equations (for details see Appendix F.2): Adding
(5.19) and (5.20), yields after inserting c+ (k, l) and c− (k, l)

Lk,l+1 = Lk,l

1 − ∆t

∆x

χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6
(

s1

(
Nk+1,l

Nk,l

− 1
)

+ s2

(
Lk+1,l

Lk,l

− 1
)) ,

(5.21)

with

s1 := 420 (5.22)
s2 := −490 (5.23)

Analogue, setting

F :=

(
1 − 11

√
15
919

)
(
1 + 11

√
15
919

) (5.24)

s3 := −160 (5.25)
s4 := −32 (5.26)
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Subtracting F ·(5.20) from (5.19) yields after multiplying with 1
14

√
919
15

Nk,l

Lk,l

1
(1+F )

Nk,l+1 = Nk,l

1 − ∆t

∆x

χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6
[
s3

(
Nk+1,l

Nk,l

− 1
)

+ s4

(
Lk+1,l

Lk,l

− 1
)] .

(5.27)

Finally, we can write (5.21) and (5.27) as

Lk,l+1 = Lk,l

1 − K1

(
Lk,l

Nk,l

) 1
6
(

s1

(
Nk+1,l

Nk,l

− 1
)

+ s2

(
Lk+1,l

Lk,l

− 1
)) (5.28)

Nk,l+1 = Nk,l

1 − K1

(
Lk,l

Nk,l

) 1
6
[
s3

(
Nk+1,l

Nk,l

− 1
)

+ s4

(
Lk+1,l

Lk,l

− 1
)] , (5.29)

with

K1 = ∆t

∆x

χN

192

(
1

ρwD3
v

) 1
6

. (5.30)

This equations are implemented in the following way:

Lk,l+1 = Lk,l [1 − K1 · facLN · (s1 · incrN + s2 · incrL)] (5.31)

and

Nk,l+1 = Nk,l (1 − K1 · facLN · [s3 · incrN + s4 · incrL]) , (5.32)

with

facLN =
(

Lk,l

Nk,l

) 1
6

(5.33)

incrN =
(

Nk+1,l

Nk,l

− 1
)

(5.34)

incrL =
(

Lk+1,l

Lk,l

− 1
)

(5.35)
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5.3 Results
We are now going to present the results of our DA experiments. We start with the experi-
ments employing a diagonal observation error covariance matrix in Section 5.3.1, followed
by those using time averaged covariances in Section 5.3.2 and the initial or final covariances
in Section 5.3.3. Finally, in Section 5.3.4 we investigate the effect of only observing every
second grid point.

The RMSE values are always calculated with respect to the according nature run. Note
that this leads for the SPM to truth and observations being identical, which limits the
validity of the according RMSE especially in the case of observing every grid point. Fur-
thermore, all quantities are averaged over 50 experiments, to reduce noise.

Figure 5.1: Average observation error standard deviations for N (left panel) and L (right
panel) for the dynamic R matrices plotted against time, as well as for the time averaged
R matrix.

To evaluate the performance of our DA algorithms, in Figure 5.1 we show the average
observation error standard deviations for N and L for the dynamic R matrices, as well as
for the time averaged R matrix. While we see a steady decline in the standard deviation
for L over time, the standard deviation for N increases over time.

5.3.1 Dynamic observation error covariance
We start with the setup using a dynamic R matrix, individually calculated for the time
at which the according observations are assimilated, using the methods described in Sec-
tion 4.1. To investigate the effect of the spatial structure of R on DA, we compare the DA
results obtained for the case of using the full R matrix, a block diagonal version ignoring
the correlations between N and L, as well as a diagonal one. Furthermore, we consider
either employing an unmodified EnKF, or smoothing the ensemble after evolution with
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Figure 5.2: RMSE-values (averaged over 50 experiments) for DA of N with a time stepping
of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal (middle
panel) or diagonal (right panel) time dependent covariance matrix, with (upper panel) and
without smoothing of the ensemble (lower panel). The SPM (dotted line) and the WSRM
(dashed line) are used as truth.

the Wacker and Seifert (2001) two-moment scheme by applying a running average (equally
weighting all values within a range of 5 grid points). The according RMSE values (averaged
over 50 experiments) of background and analysis for N and L in the SPM and WSRM
scenario3 are shown in Figure 5.2 and Figure 5.3. The initial RMSE of the analysis for N
in the WSRM scenario reaches values of over 40000 when smoothing is applied and over
100000 without smoothing and thus lies outside of the plot range.

First, we note that the filter converges in all experiments. The speed of convergence how-
ever differs significantly between the different setups. Smoothing practically does not affect
the RMSE in the SPM scenario in all cases for both N and L. In the WSRM scenario, how-
ever we see a significantly improved performance for both variables and all possible choices
of R, when smoothing is enabled. Furthermore, in the unmodified case, the performance
in the WSRM scenario is always worse than that in the SPM scenario. When smoothing
is applied however, no clear pattern can be seen. Due to its positive effect in the WSRM
scenario, in the subsequent experiments, we are going to employ smoothing after evolution.

When comparing the full, block diagonal and diagonal R matrices in Figure 5.2 and Fig-

3To improve readability of the text, we speak of scenarios when comparing the results for the differ-
ent truth runs, while we speak of cases when distinguishing between experiments employing different R
matrices.
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Figure 5.3: RMSE-values (averaged over 50 experiments) for DA of L with a time stepping
of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal (middle
panel) or diagonal (right panel) time dependent covariance matrix, with (upper panel) and
without smoothing of the ensemble (lower panel). The SPM (dotted line) and the WSRM
(dashed line) are used as truth.

ure 5.3, the worst performance for N and L is obtained when using the full R matrix in
both the WSRM and SPM scenario, while the diagonal and block diagonal R perform sim-
ilarly. When using smoothing, in the final steps for the block diagonal and diagonal case,
the RMSE for the analysis of both quantities is significantly below the according average
observation error standard deviations. However, the background RMSE remains clearly
above the average observation error standard deviations for L in the WSRM scenario and
for N in both scenarios.

To evaluate whether the uncertainty of the analysis is estimated correctly in our DA ex-
periments, we are showing the spread of the analysis ensemble in Figure 5.4 for N and in
Figure 5.5 for L, as well as the according spread ratio (RMSE-values divided by ensemble
spread) in Figure 5.6 for N and in Figure 5.7 for L. The initial spread ratios in the WSRM
scenario reaches values of over 2500 for N and over 350 for L when smoothing is applied and
over 5000 for N and over 350 for L without smoothing and thus lie outside of the plot range.

In all cases (except for initial peaks in the unmodified EnKF in the WSRM scenario), the
spread initially is extremely low, but approaches a constant value over time (for N there
remains a slow increase for the unmodified EnKF in the WSRM scenario). This is likely
caused by large portions of both profiles becoming negative in the first analysis and being
set to a constant value, significantly reducing the ensemble spread. As the EnKF tries
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Figure 5.4: Ensemble spread (averaged over 50 experiments) for DA of N with a time
stepping of 5 × 0.0002s. DA is carried out using the full analytic (left panel), block
diagonal (middle panel) or diagonal (right panel) time dependent covariance matrix, with
(upper panel) and without smoothing of the ensemble (lower panel). The SPM (dotted
line) and the WSRM (dashed line) are used as truth.

Figure 5.5: Ensemble spread (averaged over 50 experiments) for DA of L with a time
stepping of 5 × 0.0002s. DA is carried out using the full analytic (left panel), block
diagonal (middle panel) or diagonal (right panel) time dependent covariance matrix, with
(upper panel) and without smoothing of the ensemble (lower panel). The SPM (dotted
line) and the WSRM (dashed line) are used as truth.
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Figure 5.6: Spread ratio (averaged over 50 experiments) for DA of N with a time stepping
of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal (middle
panel) or diagonal (right panel) time dependent covariance matrix, with (upper panel) and
without smoothing of the ensemble (lower panel). The SPM (dotted line) and the WSRM
(dashed line) are used as truth.

Figure 5.7: Spread ratio (averaged over 50 experiments) for DA of L with a time stepping
of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal (middle
panel) or diagonal (right panel) time dependent covariance matrix, with (upper panel) and
without smoothing of the ensemble (lower panel). The SPM (dotted line) and the WSRM
(dashed line) are used as truth.
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to compensate this, the spread increases again over time. This is in agreement with the
findings of Gleiter et al. (2022) who encountered the same issue in their experiments with
their skeleton model of the Madden-Julian oscillation. However, in their case it even led
to a divergence of the filter, while it still converges in our experiments.

The spread ratios start with relatively high values and decrease fast in all cases for both
scenarios. For N the initial spread ratios are lower for the SPM scenario in all cases,
however this changes over time in some cases. For L, no clear picture is seen. The final
spread ratios are (except for the full case) very low. Furthermore (again excluding the full
case), in the WSRM scenario smoothing improves the spread ratio for N at the cost of
deteriorating that of L in a similar magnitude. Also when smoothing is applied, the spread
ratio starts to slightly increase again in the later time steps, for all cases in the WSRM
scenario.

As for the RMSE, the ensemble spread and the spread ratio are not noticeably affected
by smoothing of the ensemble in the SPM scenario. In the WSRM scenario, smoothing of
the ensemble removes the initial peaks in the spread and significantly reduces the spread
for L. For N , the effect is weaker, however smoothing now leads to the spread clearly
approaching a constant. Without smoothing, the spread is always higher in the SPM than
in the WSRM scenario. However, smoothing of the ensemble reverses the situation for L.
The spread ratios converge to zero for both variables in all scenarios. This might be caused
by extremely low RMSEs obtained due to the relatively small error variances and observing
every grid point.

To better understand the these results, in Figure 5.8 and Figure 5.9 we show a series of
snapshots for the profiles of N and L taken at the time steps 1, 3 and 10 for a run of the
DA experiment, using the full R matrix and employing smoothing of the ensemble. The
time steps are selected to depict the initial situation, the time when the filter starts to
converge and a later time step, where the filter is relatively stable. In the run investigated,
the RMSE values (not shown) of the analysis for N are higher than that of the background
till time step 3 in the SPM scenario and at the timesteps 1 and 4 in the WSRM scenario.
Furthermore, in the SPM scenario, the RMSE values (not shown) of the analysis for L are
higher than that of the background till time step 3.

In the first time step, the analysis takes values below −40000 for N and values below −200
as well as above 300 for L, in the SPM scenario. In the WSRM scenario, the analysis
takes values above 150000 for N and above 600 for L. All these values lie outside the plot
range. Note also, that the large underestimation of N at the top of the domain is (despite
continuous improvements over time) not fully corrected even at time step 20 (not shown).
This is likely caused by the filter prioritizing the minimization of the error in L, which
results in initial errors in N being corrected only very slowly.

In the first time step, we see the analysis for N becoming (strongly) negative over large
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Figure 5.8: Example snapshots of the profiles of N at time steps 1, 3 and 10 for a DA
experiment using the setup of Figure 5.2 and Figure 5.3, using the full R matrix and
employing smoothing, with the nature run generated by the SPM (upper panel) and the
WSRM (lower panel).

Figure 5.9: Example snapshots of the profiles of L at time steps 1, 3 and 10 for a DA
experiment using the setup of Figure 5.2 and Figure 5.3, using the full R matrix and
employing smoothing, with the nature run generated by the SPM (upper panel) and the
WSRM (lower panel).
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Figure 5.10: Example snapshots of the profiles of N at time steps 1, 3 and 10 for a DA
experiment using the setup of Figure 5.2 and Figure 5.3, with the diagonal R matrix and
employing smoothing, with the nature run generated by the SPM (upper panel) and the
WSRM (lower panel).

Figure 5.11: Example snapshots of the profiles of L at time steps 1, 3 and 10 for a DA
experiment using the setup of Figure 5.2 and Figure 5.3, with the diagonal R matrix and
employing smoothing, with the nature run generated by the SPM (upper panel) and the
WSRM (lower panel).
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Figure 5.12: RMSE-values (left panel), Ensemble spread (middle panel) and spread ratio
(right panel) for DA of N (averaged over 50 experiments) with time stepping of 5×0.0002s.
DA is carried out using the full analytic time dependent covariance matrix, with (upper
panel) and without smoothing of the ensemble (lower panel), using multiplicative inflation
by a factor of 1.2. The SPM (dotted line) and the WSRM (dashed line) are used as truth.

parts of the profile in the SPM scenario, while in the WSRM scenario we see negative
values at a smaller percentage of the grid points and a large peak with extremely large
values. For L, we see a similar picture, but in less extreme form and the analysis in the
WSRM scenario already shows a slight tendency to approach the truth. This corroborates
our previous hypothesis of negative analysis values (like in Gleiter et al. (2022)) being
responsible for the initially very small ensemble spread.

As in a similar run employing a diagonal (Figure 5.10 and Figure 5.11) or block diagonal
(not shown) R matrix a negative analysis only occurs at very few grid points, this prob-
lem is likely caused by correlations especially those between L and N . This also explains
the slightly higher initial ensemble spreads found in the diagonal and block diagonal cases
when compared to that employing a full R matrix. Note however, that there is a degree
of randomness in these experiments, somewhat limiting the significance of snapshots from
a single run. Note also that in general the L-profiles tend to approach the truth a little
faster than the N -profiles. This agrees with the observation that the RMSE values also
seem to decrease faster for L than for N .

We also repeat our experiment for the full R matrix employing multiplicative inflation by
a factor of 1.2. However, besides removing the large peak in the ensemble spread of L
for the WSRM scenario without smoothing (see Figure 5.12), it has no significant effects
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Figure 5.13: RMSE-values (left panel), Ensemble spread (middle panel) and spread ratio
(right panel) for DA of L (averaged over 50 experiments) with time stepping of 5×0.0002s.
DA is carried out using the full analytic time dependent covariance matrix, with (upper
panel) and without smoothing of the ensemble (lower panel), using multiplicative inflation
by a factor of 1.2. The SPM (dotted line) and the WSRM (dashed line) are used as truth.

(see Figure 5.13). Thus we will not use inflation in the further experiments. We also do
not implement localization, which is often used to reduce the effect of observations on far
away grid points and combat harmful effects of spurious correlations, as sufficient results
are obtained without it.

Furthermore, we repeat our experiment applying an absolute value to the (Gaussian dis-
tributed) observations in the WSRM scenario (plots not shown). In the diagonal and
block-diagonal R case, there are no differences seen to the unmodified experiments, while
in the full R case higher initial RMSE values are found in the modified experiment, es-
pecially for the number density. However, the experiments in the full R case converge in
general relatively slow and the difference between the modified and unmodified WSRM
scenario might (due to the relatively small sample size of 50 experiments) be explained by
numerical noise. Thus issues encountered during the assimilation of non-negative quanti-
ties can likely rather be attributed to the need for enforcing the positivity of the analysis
before applying the model for time evolution, than to the non-Gaussianity of the observa-
tion errors. Though the modified WSRM scenario is more realistic than the unmodified
one, the non-Gaussian distributed pseudo-observation violate an important condition of
the EnKF. As the additional truth run employing the WSRM scenario is intended to stay
as close as possible to the assumptions of the DA algorithm, we will not employ this mod-
ification in the further experiments. We will also forego measures like thresholding or
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discarding negative pseudo-observations, which would introduce non-Gaussian distributed
pseudo-observations or impede comparability to the SPM scenario by assimilating a differ-
ent number of pseudo-observations.

In general, the strong difference between the SPM and WSRM scenario with regard to
smoothing might indicate that using OSSEs for estimating the usefulness of DA algorithms
(or of modifications thereof) in practical applications can be problematic. This is especially
the case, if the nature run is not able to completely resolve the according processes (which
usually is the case).

5.3.2 Time averaged observation error covariance
We repeat the experiments shown above, using time averaged R matrices. The according
full R matrix is obtained by averaging the (full) R matrices used above over all time steps
at which observations are assimilated. Subsequently, the block diagonal and diagonal R
matrices are extracted as previously.

In Figure 5.14, the RMSE values (averaged over 50 experiments) of background and anal-
ysis for N and L in the SPM and WSRM scenario are shown. The initial RMSE of the
analysis in the SPM scenario reaches values of over 2500000 for N and over 800 for L and
thus lies outside of the plot range.

In Figure 5.14, we see (with exception of an increase of the analysis RMSE of N in the
WSRM scenario with full R until time step 10) convergence of the filter in all experi-
ments. However (despite the final RMSE values being inconclusive), in comparison to the
experiments using a dynamic R, we see significantly higher initial errors, especially when
employing full R. Afrer 20 time steps, the errors become more similar to that obtained
when using a dynamic R, though they still are is still slightly higher. This indicates
that accounting for spatial correlations of R, while ignoring its temporal variations can
(especially in the beginning) have a strongly negative effect on DA. The relative good per-
formance in the WSRM scenario is owed to smoothing of the ensemble and repeating the
experiment without smoothing results in extremely bad performance (not shown). Again,
in the final steps for the block diagonal and diagonal case, the RMSE for the analysis
of both quantities is below the according average observation error standard deviations.
However, the background RMSE remains clearly above the average observation error stan-
dard deviations for L in the WSRM scenario and for N in both scenarios. Furthermore,
comparing the final steps to the experiments using a dynamic R matrix, we find a similar
performance for L, while the time averaged R matrix performs slightly worse for N (except
for the background in the SPM scenario).

The ensemble spread shown in Figure 5.15 behaves similar to the previous experiments
using a dynamic R. The spread ratios shown in Figure 5.16 are (with exception of N in
the diagonal R case) generally higher than in the dynamic R case. Especially when using
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Figure 5.14: RMSE-values (averaged over 50 experiments) for DA of N (upper panel) and
L (lower panel) with a time stepping of 5 × 0.0002s. DA is carried out using the full
analytic (left panel), block diagonal (middle panel) or diagonal (right panel) time averaged
covariance matrix. The SPM (dotted line) and the WSRM (dashed line) are used as truth.

Figure 5.15: Ensemble spread (averaged over 50 experiments) for DA of N (upper panel)
and L (lower panel) with a time stepping of 5 × 0.0002s. DA is carried out using the full
analytic (left panel), block diagonal (middle panel) or diagonal (right panel) time averaged
covariance matrix. The SPM (dotted line) and the WSRM (dashed line) are used as truth.
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Figure 5.16: Spread ratio (averaged over 50 experiments) for DA of N (upper panel) and
L (lower panel) with a time stepping of 5 × 0.0002s. DA is carried out using the full
analytic (left panel), block diagonal (middle panel) or diagonal (right panel) time averaged
covariance matrix. The SPM (dotted line) and the WSRM (dashed line) are used as truth.

full R in the WSRM scenario, extremely high values are obtained (that for L strongly
increase till time step 10), which despite eventually decreasing over time indicate a severe
underestimation of uncertainty by the ensemble during the entire timespan. The initial
spread ratio in the SPM scenario reaches values of over 12000 for N and over 800 for L
and thus lies outside of the plot range. Furthermore, in the SPM scenario, the spread
ratio for L rises above 350, leaving the plot range. Also note that in the diagonal and
block diagonal case, the spread ratio starts to slightly increase in the later time steps for
the WSRM scenario. This behaviour is similar to that observed in the experiments using
dynamic R without smoothing.

When looking at exemplaric snapshots of the profiles (not shown), we see similar problems
as in the previous experiments, however to a much larger extent. When using full R, the
initial negative values now can attain absolute values many times larger than the peak of
the true profile. Furthermore, in this case some profiles show a strong deviation from the
truth even in the final time steps. In the diagonal case, these problems are way smaller,
however the profiles still approach the truth slower than when using dynamic R. Note
again, that snapshots only provide limited informative value due to the large variations
between experiments.
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Figure 5.17: RMSE-values (averaged over 50 experiments) for DA of N with a time stepping
of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal (middle
panel) or diagonal (right panel) covariance matrix calculated for the initial (upper panel)
or final (lower panel) time step, with smoothing of the ensemble. The SPM (dotted line)
and the WSRM (dashed line) are used as truth.

5.3.3 Initial and final observation error covariance
We repeat the experiments shown previously, using the R matrix employed above for the
initial or final time step. The according block diagonal and diagonal R matrices are ob-
tained as above. We note that in practical applications compared to time averaging or
using dynamic R matrices, this is computationally much cheaper, as the according R ma-
trix only needs to be estimated for a single time step.

The according RMSE values are shown in Figure 5.17 for N and in Figure 5.18 for L. In
the initial R setup for the WSRM scenario, the initial RMSE of the analysis reaches values
of over 70000 for N and over 800 for L and the RMSE of the background reaches values
of almost 1000 for L in the second time step. Furthermore, in the final R setup for the
SPM scenario, the initial RMSE of the analysis reaches values of almost 400000 for N and
almost 800 for L and the RMSE of the background reaches values of almost 200000 for N .
All these values lie outside of the plot range.

We again see convergence for all setups, cases, scenarios and variables. However, for the
final R setup using full R, convergence is very slow for N in the SPM scenario and for L
in the WSRM scenario the analysis RMSE increases again between time step 4 and 10 to
slowly drop again. As in the previous experiments, using full R always yields the worst re-
sults, while block diagonal and diagonal R matrices perform similarly. Furthermore, using
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Figure 5.18: RMSE-values (averaged over 50 experiments) for DA of L with a time stepping
of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal (middle
panel) or diagonal (right panel) covariance matrix calculated for the initial (upper panel)
or final (lower panel) time step, with smoothing of the ensemble. The SPM (dotted line)
and the WSRM (dashed line) are used as truth.

the initial R matrix always results in better outcomes than using the final R matrix. This
is especially the case for the initial time steps, while the difference vanishes in the last steps.
This might hint to correctly specifying R being especially important when the background
differs strongly from the truth and an almost converged filter being better able to deal
with misspecified R. Furthermore, the final RMSE values in general are comparable to
that obtained in the setup using a time averaged R matrix. Thus the additional overhead
of this method does not pay off. In general, all tested methods employing a constant R
matrix perform suboptimally and there might not be an optimal choice for a constant R.
Thus (if possible) using a dynamic R is strongly advisable.

The according ensemble spread is shown for N in Figure 5.19 and for L in Figure 5.20. It
behaves relatively similar to the previous experiments without any peculiarities.
The according spread ratios are shown for N in Figure 5.21 and for L in Figure 5.22. In
the initial R setup for the WSRM scenario, the initial spread ratio reaches values of over
4000 for N and over 800 for L. In the final R setup for the WSRM scenario, the spread
ratio initial assumes values of over 2500 for N and reaches a peak over 300 for L at time
step 10, while in the SPM scenario it initially assumes values of almost 20000 for N and
of over 700 for L. All these values lie outside of the plot range.

We see generally higher spread ratios when using full R matrices, when compared to block
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Figure 5.19: Ensemble spread (averaged over 50 experiments) for DA of N with a time
stepping of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal
(middle panel) or diagonal (right panel) covariance matrix calculated for the initial (upper
panel) or final (lower panel) time step, with smoothing of the ensemble. The SPM (dotted
line) and the WSRM (dashed line) are used as truth.

Figure 5.20: Ensemble spread (averaged over 50 experiments) for DA of L with a time
stepping of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal
(middle panel) or diagonal (right panel) covariance matrix calculated for the initial (upper
panel) or final (lower panel) time step, with smoothing of the ensemble. The SPM (dotted
line) and the WSRM (dashed line) are used as truth.
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Figure 5.21: Spread ratios (averaged over 50 experiments) for DA of N with a time stepping
of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal (middle
panel) or diagonal (right panel) covariance matrix calculated for the initial (upper panel)
or final (lower panel) time step, with smoothing of the ensemble. The SPM (dotted line)
and the WSRM (dashed line) are used as truth.

Figure 5.22: Spread ratios (averaged over 50 experiments) for DA of L content with a time
stepping of 5×0.0002s. DA is carried out using the full analytic (left panel), block diagonal
(middle panel) or diagonal (right panel) covariance matrix calculated for the initial (upper
panel) or final (lower panel) time step, with smoothing of the ensemble. The SPM (dotted
line) and the WSRM (dashed line) are used as truth.
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diagonal or diagonal R, though results for the final time steps are inconclusive. Also,
in the block diagonal and diagonal case very low spread ratios are achived in the later
steps. However spread ratios for L start to slightly increase towards the later time steps,
especially in the WSRM scenario. In the initial R setup we generally obtain lower spread
ratios, than in the final R setup, substantiating the better performance of the initial R
setup.

With respect to the options considered up to now, the previous results seem to indicate that
the EnKF copes relatively well with a single suboptimal choice, while multiple problematic
choices strongly deteriorate the results. So foregoing smoothing or time averaging the R
matrix had the strongest negative impact on the RMSE values, when employing a full R
matrix.

5.3.4 Modified observation operator
We repeat the experiments shown previously, again using the dynamic R matrix. The
according block diagonal and diagonal R matrices are again obtained as above. However,
in this experiment we only observe every second grid point by setting the according entries
of the observation operator matrix H (which was the identity in all previous experiments)
to zero.

The according RMSE values are shown in Figure 5.23. First, we notice that unlike in all
previous experiments, there is no noticeable difference in the performance between employ-
ing the full, block diagonal and diagonal R matrix. Furthermore, we see the RMSE-values
of the background and analysis for N converging to roughly 1000 (which is approximately
the time and space averageed observation error variance) in the WSRM scenario, while in
the SPM scenario, they approach 2000. The RMSE-values of the background and analysis
for L however converge properly only in the SPM scenario, where they approach 20 (which
is approximately five times as large as the time and space averageed observation error vari-
ance), while they show strong oscillations (around approximately 65 for the analysis and
around approximately 85 for the background), which only slowly decrease in amplitude, in
the WSRM scenario.

The according ensemble spread is shown in Figure 5.24. Here again the usual behaviour
is seen without any anomalies for N . For L the initial values are already relatively high
and (especially in the WSRM scenario) only a small increase is seen, before they start to
slowly decrease again.

The spread ratios are shown in Figure 5.25. For N , the spread ratio quickly decreases
in both scenarios, approaching values of about 0.75 in the SPM scenario and 0.5 in the
WSRM scenario. For L however, in the SPM scenario the spread ratio quickly drops to 2
and remains at that value, while in the WSRM scenario it strongly oscillates (due to the
oscillations in the according RMSE values) and tendencially increases over time, reaching
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Figure 5.23: RMSE-values (averaged over 50 experiments) for DA of N (upper panel)
and L (lower panel) with a time stepping of 5 × 0.0002s. DA is carried out using the full
analytic (left panel), block diagonal (middle panel) or diagonal (right panel) time dependent
covariance matrix, with smoothing of the ensemble, observing only every second grid point.
The SPM (dotted line) and the WSRM (dashed line) are used as truth.

Figure 5.24: Ensemble spread (averaged over 50 experiments) for DA of N (upper panel)
and L (lower panel) with a time stepping of 5 × 0.0002s. DA is carried out using the full
analytic (left panel), block diagonal (middle panel) or diagonal (right panel) time dependent
covariance matrix, with smoothing of the ensemble, observing only every second grid point.
The SPM (dotted line) and the WSRM (dashed line) are used as truth.
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Figure 5.25: Spread ratios (averaged over 50 experiments) for DA of N (upper panel)
and L (lower panel) with a time stepping of 5 × 0.0002s. DA is carried out using the full
analytic (left panel), block diagonal (middle panel) or diagonal (right panel) time dependent
covariance matrix, with smoothing of the ensemble, observing only every second grid point.
The SPM (dotted line) and the WSRM (dashed line) are used as truth.

a value of over 8 in the last time step. This indicates that the ensemble strongly underes-
timates the according uncertainty, which can negatively affect DA.

When again looking at snapshots (not shown) both in the diagonal R case and the full R
case, the main difference to observing every grid point is an amplitude error in L remaining
uncorrected throughout all time steps. Note again that the considered snapshots are only
examples and might not be representative for all experiments.

5.4 Summary
When comparing the covariances obtained for the SPM to those obtained for a model as
closely as possible following the Wacker and Seifert (2001) reference model, we found the
latter to explicitly depend on a free parameter without physical analogue, which we were
unable to dispose of. Thus in the context of DA, the changes made when introducing the
SPM appear to be warranted.

In our numerical experiments with the SPM, we found that correctly specifying the tempo-
ral evolution of R is far more important than accounting for its spatial structure. Employ-
ing a non-diagonal R matrix usually resulted in worse outcomes than a diagonal R matrix.
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Especially accounting for spatial correlations of R, while ignoring its temporal variations
can (particularly in the beginning) have a strongly negative effect on DA. Furthermore,
similar to Gleiter et al. (2022), we found an extremely small initial ensemble spread, likely
caused by negative values set to a constant value, to be common.



Chapter 6

Influence of correlated observation
errors on non-negativity of analysis

In this chapter, we look at a series of strongly simplified examples to better understand
non-negativity preservation and facilitate interpreting the results of chapter 5. Of spe-
cial interest is the influence of correlated observation errors. We start with a summary
of known theorems regarding preservation of non-negativity for the Kalman Filter in sec-
tion 6.1. Subsequently, in section 6.2 we illustrate the effect of non-diagonal observation
error covariances on non-negativity, employing simple examples. Then we carry out a se-
ries of numerical experiments and investigate the obtained distributions for the analysis in
section 6.3 and construct a series of counterexamples to disprove several possible generali-
sations of Proposition 6.1.1 in section 6.4.

Note, that this section (as it was intended to be consistent with the notation of Cohn
(1997)) uses a slightly different notation than the rest of the thesis, with x̄a, x̄b and yo

referred to as wa, wf and wo and the subscript n being dropped.

6.1 Preservation of non-negativity
We start by giving a short summary of established results on non-negativity preservation
for the Kalman filter. Except for section 6.3.3, where we want to study the effect of the
observation operator on non-negativity, we will from now on assume direct observation at
each grid point, i.e. H = Id, which greatly simplifies the according equations and also
gives us a best case scenario, in which the state is fully observed.

The following proposition about non-negativity conservation for diagonal error covariance
matrices is known:

Proposition 6.1.1. Let H = Id, Pf , R ∈ Mn diagonal and positive definite and let
wf

i , wo
i ≥ 0, for all i ∈ {1, · · · , n}, then wa

i ≥ 0, for all i ∈ {1, · · · , n}.
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Proof. Assuming

R =


r1 0 0
0 . . . 0
0 0 rn

 , (6.1)

Pf =


p1 0 0
0 . . . 0
0 0 pn

 , (6.2)

from (2.16) we get

K =


p1

p1+r1
0 0

0 . . . 0
0 0 pn

pn+rn

 , (6.3)

Thus (2.15) yields

wa
i = wf

i + pi

pi + ri

(
wo

i − wf
i

)
(6.4)

= wf
i

 1 − 1
1 + ri

pi︸ ︷︷ ︸
<1

+ 1
1 + ri

pi︸ ︷︷ ︸
>0

wo
i (6.5)

≥ 0, (6.6)

for all i ∈ {1, · · · , n}.

An analogue statement holds for positivity:

Proposition 6.1.2. If in the situation of proposition 6.1.1 we have wf
i > 0, for all i ∈

{1, · · · , n}, then wa
i > 0, for all i ∈ {1, · · · , n}.

Proof. Analogue to proposition 6.1.1.

As in practical applications non-diagonal elements of Pf and with increasing popularity
also of R commonly occur, an important question is when this incurs the risk of obtaining
negative analysis and if the conditions in proposition 6.1.1 can be relaxed.

Another well known statement (see Cohn (1997) for the case n = 2)) holds for observing
at a single grid point only:



6.1 Preservation of non-negativity 75

Proposition 6.1.3. Let H = ei = (0, · · · , 1, · · · , 0)T , R = r ∈ R+, Pf ∈ Mn positive
definite and let wo = wo ∈ R+ and wf

i ≥ 0, then wa
i ≥ 0.

Proof. From (2.16), we obtain

K = 1
Pf

ii + r


Pf

1i
...

Pf
ni

 (6.7)

and thus (2.15) becomes

wa = wf + 1
Pf

ii + r


Pf

1i
...

Pf
ni

 ·
(
wo − wf

i

)
. (6.8)

So we get for the i-th component

wa
i = wf

i + Pf
ii

Pf
ii + r

(
wo − wf

i

)
(6.9)

= wf
i + 1

1 + r

Pf
ii

(
wo − wf

i

)
(6.10)

=
1 − 1

1 + r

Pf
ii


︸ ︷︷ ︸

≥0

wf
i + 1

1 + r

Pf
ii︸ ︷︷ ︸

≥0

wo (6.11)

≥ 0 (6.12)

However (as shown by Cohn (1997) using a counterexample with n = 2), Proposition 6.1.3
does not guarantee the non-negativity of the analysis for i ̸= j, which we will illustrate in
the following remark.

Remark 6.1.1. In the situation of Proposition 6.1.3 let wf
j ≥ 0, for all j ∈ {1, · · · , n},

then for i ̸= j we have

wa
j = wf

j +
Pf

ij

Pf
ii + r

(
wo − wf

i

)
. (6.13)

If Pf
ij ≥ 0, this becomes
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wa
j = wf

j +
Pf

ij

Pf
ii + r

(
wo − wf

i

)
︸ ︷︷ ︸

≥−wf
i

(6.14)

≥ wf
j −

Pf
ij

Pf
ii + r

wf
i , (6.15)

where equality holds if wo = 0. Thus, non-negativity of the right hand side of (6.15) guar-
antees non-negativity of the analysis, whereas otherwise negative analysis at grid point j is
always possible, if wo is small enough. Thus, the danger of negative analysis is particularly
high at grid points with low values of wf

j that are strongly (positively) correlated to grid
points where observation is located that has high values of wf

i .
The conditions mentioned in Remark 6.1.1 are especially likely to be fulfilled by points in
the neighborhood of peaks, as Pf

ij typically decreases with increasing (physical) distance
between the grid points i and j. Thus in the vicinity of large peaks, we expect grid points
with negative analysis possibly occurring. We will further investigate this situation in
Section 6.2.

6.2 Illustration of the effect of non-diagonal observa-
tion error covariances on non-negativity

We now examine the possibility of obtaining negative analysis in a simple DA experiment
and identify concrete situations that can lead to negative analysis: We consider a quantity
defined on a grid with 10 points. As observations and for the creation of the background
we will use triangular profiles consisting of one point assuming the according maximum
value and the two adjacent points assuming half of the maximum value. Background mean
wf and covariance Pf will be given by an ensemble consisting of 3 triangular profiles of
height 2, centred at grid points 4 to 6 (see Figure 6.1).

Observations will be given by a triangular profile of height hobs centred at xobs and the
observation error covariance R will be given by a matrix of the form

R =



R0 R1 · · · R8 R9
R1 R0 · · · R7 R8
... . . . . . . . . . ...

R8 R7 · · · R0 R1
R9 R8 · · · R1 R0

 . (6.16)

Furthermore, a diagonal observation error covariance matrix Rdg, created by setting the
non-diagonal elements of R to zero, will be used for comparison.
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Figure 6.1: Background ensemble used in section 6.2, with the left panel showing ensemble
members (grey) and ensemble mean (red) and the right panel the according background
covariance matrix.

First we consider an example in which using a non-diagonal observation error covariance
leads to the appearance of negative analysis in presence of pure positional error resulting
from the observations being set equal to the last ensemble member.

Example 6.2.1. Consider the case hobs = 2, xobs = 6 and the only non-zero entries of R
being R0 = 2

3 and R3 = 0.33. In contrast to using the diagonal observation error covariance
matrix Rdg, this yields a negative analysis at grid point 3 (see Figure 6.2).

In the next example, we see the analogue effect for pure amplitude error:

Example 6.2.2. Consider the case hobs = 3, xobs = 5 again with the only non-zero entries
of R being R0 = 2

3 and R3 = 0.33. In contrast to using Rdg, this yields a negative analysis
at grid points 3 and 7 (see Figure 6.2).

In the next example negative analysis is also obtained for a diagonal observation error
covariance due to positional and amplitude error:

Example 6.2.3. Consider the case hobs = 3, xobs = 6 and R being diagonal with R0 = 2
3 .

This yields a negative analysis at grid points 3 and 4 (see Figure 6.3).

As previously predicted (see Remark 6.1.1), in all examples the negative values are located
at the foothills of the peak. In Example 6.2.2, they occur at both sides, while in Exam-
ple 6.2.1 and Example 6.2.3 they are found only on the left side.

The analysis covariance matrices for the DA experiments in examples 6.2.1 to 6.2.3 are
depicted in Figure 6.4. The non-diagonal observation error covariance yields lower values
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Figure 6.2: Forecast (red), observations (green circles) and analysis (blue dashed) for the
DA experiment of example 6.2.1 (left panel) and example 6.2.2 (right panel) and analogue
experiments with Rdg (blue continuous).

Figure 6.3: Forecast (red), observations (green) and analysis (blue) for the DA experiment
of example 6.2.3.
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Figure 6.4: Analysis covariance matrix for the DA experiments of examples 6.2.1 to 6.2.3
(left panel) and analogue experiments using Rdg (right panel).

of analysis covariances than the diagonal version.

Thus using a non-diagonal observation error covariance might, if negative analysis occurs
and is artificially set to physically plausible values, impede correction at later DA steps by
decreasing the corresponding variances, even if the according errors are not amplified e.g.
by application of a time evolution operator.

6.3 Numerical experiments and distribution of anal-
ysis

We now conduct a series of numerical two-component experiments to examine how frequent
and under which conditions (especially with regard to the properties of Pf ) negative anal-
ysis occurs for diagonal and non-diagonal observation error covariances. Furthermore, we
plot histograms of the according analysis for different scenarios. These are especially of in-
terest, as they allow to easily see to what extent positivizing would distort the distribution
of the analysis under different conditions.

Notation 6.3.1. We write

wa =
(

wa
1

wa
2

)
, wf =

(
wf

1
wf

2

)
, wo =

(
wo

1
wo

2

)
, ∆w =

(
∆w1
∆w2

)
=
(

wo
1 − wf

1
wo

2 − wf
2

)
, (6.17)

Pf =
(

a c
c b

)
=
(

a ϱ
√

ab

ϱ
√

ab b

)
, (6.18)

R =
(

r1 k
k r2

)
, (6.19)
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with −
√

ab < c <
√

ab and −√
r1r2 < k <

√
r1r2, −1 < ϱ < 1.

We draw n random samples for the components of wo, wf and R. R is subsequently
symmetrized and if necessary redrawn until a positive semidefinite matrix is achieved and
a diagonal version Rdg is created by setting its non-diagonal elements to zero. The com-
ponents of Pf are set to pre specified values. For each sample, a Kalman filter is applied
to obtain a analysis with both R and Rdg and the fraction of the samples yielding analysis
with at least one negative component of the total number of involved grid points for each
option is calculated.

Here we draw all random components from a uniform distribution on [0, 1] and allow for
multiplication of wo and wf by a constant factor co and cf , effectively sampling those
quantities from [0, co] and [0, cf ]. co and cf can be seen as a measure for the magnitude of
the observations and background. Despite these quantities also influencing the according
variance, this is probably the most simple setup. A further advantage of this setup is that
only the ratio co

cf
seems to be of importance, reducing the degrees of freedom and allowing

for easier interpretation of the results.

As a reference for the magnitude of the effects studied in this chapter, we use an example
employed by Cohn (1997) to show the possibility of negative analysis when observing only
a subset of the grid points:
Example 6.3.1. According to Cohn (1997), in the situation of notation 6.3.1 with H =
(1, 0) and R = r > 0 the analysis is given by wa

1 = 1
a+r

(
rwf

1 + awo
1

)
, wa

2 = wf
2 +

c
a+r

(
wo

1 − wf
1

)
.

For all experiments in this section, we run example 6.3.1 with the parameters used in the
according experiment, where r is selected to be the first entry of the according R, and
compare the obtained frequency of negative analysis. Note also that only example 6.3.1
does not observe every grid point, while all other experiments in this section employ H = Id.

Once co

cf
is fixed, there seems to be no explicit dependence on cf in all experiments shown

in this section as long as cf ̸= 0. Therefore for all experiments we only vary co

cf
. We

usually consider the cases co

cf
= 0.2, co

cf
= 1.0 and co

cf
= 5.0, corresponding to the back-

ground overestimating, correctly estimating and underestimating the truth. Note that
such large differences in the magnitude of background and observations can easily occur in
practice, e.g. due to positional error of a convective cell that is misplaced compared to ob-
servations due to model imperfections or simply missing a convective cell in model forecast.

6.3.1 Effect of background correlations
To investigate, how the effect of using non-diagonal R on non-negativity depends on back-
ground correlations, we start with a Pf with positive correlations:
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Example 6.3.2. Let

Pf =
(

0.33 0.25
0.25 0.33

)
,

then the fraction of experiments that yield at least one negative component of wa as a
function of co

cf
are shown in Figure 6.5. The histograms for the distribution of wa are

shown in Figure 6.6.

In the non-diagonal case, the probability of negative analysis has a minimum at co

cf
≈ 1

and increases strongly with decreasing co

cf
and moderately with increasing co

cf
, while in the

diagonal case it decreases with co

cf
. Here in general, for co

cf
> 1, the use of non-diagonal R

increases the probability of negative analysis, while for co

cf
< 1 it decreases it.

In the diagonal case, we find the distribution of wa noticeably extending to negative values
for co

cf
= 0.2 and co

cf
= 1. Using non-diagonal observation error covariances shifts the dis-

tribution to higher values for co

cf
= 0.2 and to lower ones for co

cf
= 5.0, whereas in the case

co

cf
= 1 it remains unaltered. For co

cf
= 5.0, this shift results in the distribution noticeably

extending to negative wa.

In the reference experiment, we see higher variances of the distribution of wa
2 for co

cf
= 0.2

and co

cf
= 1 leading to a higher fraction of experiments with negative analysis, whereas

we see no large difference to example 6.3.2 for co

cf
= 5.0. As expected, wa

1 is always non-
negative.

Figure 6.5: Fraction of experiments with at least one negative component of wa plotted
against co

cf
, when using R (orange) and Rdg (blue), in the situation of example 6.3.2 (left

panel) and the corresponding version of the reference experiment example 6.3.1 (right
panel). Note the difference in y-scale between the left and right panel.
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Figure 6.6: Histograms for the distribution of wa when using R (orange) and Rdg (blue),
for co

cf
= 0.2 (left panel), co

cf
= 1.0 (center panel) and co

cf
= 5.0 (right panel) in the situation

of example 6.3.2 (top row) and of wa
1 (green) and wa

2 (red) in the corresponding version of
the reference experiment given in example 6.3.1 (bottom row).

Now, we consider a diagonal Pf :

Example 6.3.3. Let

Pf =
(

0.33 0
0 0.33

)
,

then the fraction of experiments that yield at least one negative component of wa as a
function of co

cf
are shown in Figure 6.7. The histograms for the distribution of wa are

shown in Figure 6.8.

For the non-diagonal R case, we see the probability of negative analysis increasing with co

cf
,

while in the diagonal case it always remains zero. This is expected due to proposition 6.1.1.
Consequently, here the use of non-diagonal R increases the probability of negative analysis.
Furthermore, in the non-diagonal case the probability of negative analysis increases faster
than in example 6.3.2. In the non-diagonal case none of the distribution extends to negative
values as predicted by proposition 6.1.1. Using non-diagonal observation error covariances
results in increasing spread of the distribution, creating more Gaussian like profiles, and
its mean increasing for co

cf
= 0.2 and decreasing for co

cf
= 5.0. Consequently, the extension

to negative wa is negligible for co

cf
= 0.2, medium for co

cf
= 1.0 and significant for co

cf
= 5.0.

As expected, in the reference experiment, wa
1 and wa

2 are always non-negative.
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Figure 6.7: Fraction of experiments with at least one negative component of wa plotted
against co

cf
, when using R (orange) and Rdg (blue), in the situation of example 6.3.3. The

corresponding version of the reference experiment example 6.3.1 is not shown, as it is
constantly zero.

Figure 6.8: Histograms for the distribution of wa when using R (orange) and Rdg (blue),
and co

cf
= 0.2 (left panel), co

cf
= 1.0 (center panel) and co

cf
= 5.0 (right panel) in the situation

of example 6.3.3 (top row) and of wa
1 (green) and wa

2 (red) in the corresponding version of
the reference experiment example 6.3.1 (bottom row).

Finally we consider a Pf with negative correlations:
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Example 6.3.4. Let

Pf =
(

0.33 −0.25
−0.25 0.33

)
,

then the fraction of experiments that yield at least one negative component of wa as a
function of co

cf
are shown in Figure 6.9. The histograms for the distribution of wa are

shown in Figure 6.10.

Here, we see the probability of negative analysis increasing with co

cf
in the non-diagonal

and the diagonal case, where the increase is stronger for the non-diagonal case. Thus, here
the use of non-diagonal R increases the probability of negative analysis. Furthermore, the
frequency of negative analysis is generally higher than in example 6.3.3. In the diagonal
case, the distribution of wa extends to negative values for all co

cf
, negligibly for co

cf
= 0.2,

slightly for co

cf
= 1.0 and significantly for co

cf
= 5.0. Using non-diagonal observation error

covariances increases the variance of the distribution and thus the probability of negative
analysis for all co

cf
.

In the reference experiment, we see higher variances of the distribution of wa
2 for co

cf
= 0.2

and co

cf
= 1 and similar variances to example 6.3.2 for co

cf
= 5.0. Compared to example 6.3.2,

the mean of the distribution of wa
2 obtained for co

cf
= 0.2 is higher and that obtained for

co

cf
= 5.0 is lower. As expected, wa

1 is always non-negative.

Figure 6.9: Fraction of experiments with at least one negative component of wa plotted
against co

cf
, when using R (orange) and Rdg (blue), in the situation of example 6.3.4 (left

panel) and the corresponding version of the reference experiment example 6.3.1 (right
panel).
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Figure 6.10: Histograms for the distribution of wa when using R (orange) and Rdg (blue),
for co

cf
= 0.2 (left panel), co

cf
= 1.0 (center panel) and co

cf
= 5.0 (right panel) in the situation

of example 6.3.4 (top row) and of wa
1 (green) and wa

2 (red) in the corresponding version of
the reference experiment example 6.3.1 (bottom row).

Generally, in the histograms we see that the use of non-diagonal R, as well as correlations
in Pf lead to increased Gaussianity in the distribution of wa. Furthermore, for co

cf
> 1

the mean of the distribution is increased by positive correlations in Pf and decreased by
negative correlations in Pf , while for co

cf
< 1 positive correlations decrease the mean and

negative correlations increase it. Furthermore, increasing co

cf
increases the width of the

distribution.

In all examples in the case using a diagonal R the fraction of experiments yielding negative
analysis depends in a similar way on co

cf
, as in the corresponding version of example 6.3.1,

i.e. with increasing co

cf
it decreases in Figure 6.5, is constant in Figure 6.7 and increases

in Figure 6.9. The effect of using non-diagonal R on the probability of obtaining negative
analysis is summarized in Table 6.1.

We conclude our analysis of background correlations by directly varying the strength of
correlation, while keeping co

cf
fixed:

Example 6.3.5. Let Pf be in the form of (6.18) and a = b = 0.33, then the fraction of
experiments that yield at least one negative component of wa as a function of ϱ are shown
in Figure 6.11 for various values of co

cf
. Furthermore the moments of the distribution of wa

2
are shown in Figure G.1 for co

cf
< 1 and in Figure G.2 for co

cf
> 1.
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c > 0 c = 0 c < 0
co

cf
> 1 increases enables increases

co

cf
= 1 none enables increases

co

cf
< 1 decreases enables increases

Table 6.1: Effect of using non-diagonal R on the probability of obtaining negative analysis.
Here "enables" indicates that negative analysis is not possible, when a diagonal R is used,
but occurs when employing a non-diagonal R.

Figure 6.11: Fraction of experiments that yield at least one negative component of wa as a
function of ϱ for various values of co

cf
, when using R (upper panel) and Rdg (lower panel),

in the situation of example 6.3.5, with the left panels showing examples for co

cf
< 1 and the

right panels for co

cf
> 1.

We see that the fraction of experiments returning negative analysis has a minimum whose
position strongly depends on co

cf
and if diagonal or non-diagonal observation error covari-

ances are used. In the diagonal case, it is always located roughly at ϱ ≈ 0, while in the
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non-diagonal case its position varies strongly with co

cf
, where larger co

cf
move it closer to

ϱ ≈ 1. In both the diagonal and the non-diagonal case, when moving away from the mini-
mum, the fraction of experiments returning negative analysis increases stronger when ϱ is
increased for co

cf
< 1, while for co

cf
> 1 it increases stronger when ϱ is decreased. Overall,

in the non-diagonal case the fraction is reduced for high ϱ and increased for low ϱ. In
summary the effect of using non-diagonal observation error covariances on non-negativity
preservation is highly dependent on what ranges of observations, forecast and background
covariances are encountered.

We note that these examples are to some extent representative for convective scale data
assimilation: Due to the short localization lengths used, only a few neighboring grid points
influence the analysis at a given grid point (Tong and Xue (2005), Lange and Craig (2014)),
a situation similar to the two grid point examples considered here. Furthermore, imperfect
models can cause a large positional error for convective cells (see e.g. Roberts and Lean
(2008) and Keil and Craig (2009)), allowing for huge differences in the ranges of observa-
tions and forecast (especially for variables describing rain, graupel and other hydrometeors,
which are close to zero in most grid cells), as represented here by the relatively large range
of co

cf
. A possible explanation for our experiments underestimating the fraction of grid

points yielding negative analysis in convective scale data assimilation is the possibility of
multiple grid points being collectively responsible for negative analysis. Nevertheless, the
significant reduction of the probability for negative analysis by setting observations below
a certain threshold to a that threshold (Janjić and Zeng, 2021) could be explained by only
the tails of the distributions of analysis values protruding below zero, in most setups. Note
however that this is the best case scenario for radar data, as discarding the measurements
below the threshold is expected to result in more non-negativity violations (see e.g. Janjić
and Zeng (2021)).

The moments of distribution of wa
2 plotted as a function of background correlation can be

found in Figure G.1 and Figure G.2 in Appendix G.

6.3.2 Effect of background variances

We now investigate, how the diagonal elements of Pf and their ratio affect the probability
for negative analysis. To this end, we write Pf in the form (6.18) and fix ϱ. In this section,
we mostly consider modified versions of Example 6.3.2, for which we have a = b = 0.33
and ϱ = 0.25

0.33 . First we examine the effect of the magnitude of the variances by examining
the case of a and b being reduced by a factor of 10, while their ratio remains at 1:

Example 6.3.6. Let Pf be given by (6.18) with a = b = 0.033 and ϱ = 0.25
0.33 , then the

fraction of experiments that yield at least one negative component of wa as a function of
co

cf
are shown in Figure 6.12.
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Figure 6.12: Fraction of experiments that yield at least one negative component of wa

plotted against co

cf
, when using R (orange) and Rdg (blue), in the situation of example 6.3.6

(left panel) and the corresponding version of the reference experiment example 6.3.1 (right
panel).

The results are relatively similar to example 6.3.2, however the probabilities for negative
analysis are significantly lower. Thus higher background variances seem to result in higher
probability of obtaining negative analysis. Furthermore the co

cf
up to which diagonal R are

more likely to cause negative analysis than non-diagonal ones reduces to approximately 0.5,
while the minimum of the probability for negative analysis using non-diagonal R remains
at co

cf
≈ 1.

Now, we examine the effect of the ratio between the variances by reducing a by a factor of
10, while keeping b at 0.33:

Example 6.3.7. Let Pf be given by (6.18) with a = 0.033, b = 0.33 and ϱ = 0.25
0.33 then

the fraction of experiments that yield at least one negative component of wa as a function
of co

cf
are shown in Figure 6.13 (left panel) and the corresponding version of the reference

experiment example 6.3.1 (right panel). Note that also plots depicting single components
are normalized to the total number of grid points in this section, to facilitate comparison.
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Figure 6.13: Fraction of experiments returning negative wa
1 (upper left panel) and wa

2
(upper right panel), as well as the fraction of experiments that yield at least one negative
component of wa (lower left panel) plotted against co

cf
, when using R (orange) and Rdg

(blue), in the situation of example 6.3.7 and the corresponding version of the reference
experiment example 6.3.1 (lower right panel).

Here we also obtain for diagonal R an increase of the probability for negative analysis
with decreasing co

cf
, that is faster than in example 6.3.6 but slower than in example 6.3.2.

Furthermore the minimum of the probability for negative analysis using non-diagonal R is
significantly higher than in example 6.3.6 and example 6.3.2 and shifts to co

cf
≈ 0.5. The

co

cf
up to which diagonal R are more likely to cause negative analysis than non-diagonal is

even lower than in example 6.3.6.

However due to a ̸= b, we obtain different behaviour of wa
1 and wa

2 as shown in the
upper panels. The fraction of experiments yielding negative wa

2 always increases when
non-diagonal observation error correlations are used, whereas that of wa

1 follows a relative
similar pattern as the overall fraction.

The absolute number of experiments returning negative analysis is found to lie between
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example 6.3.2 and example 6.3.6.

Note that situations similar to example 6.3.7 can result e.g. from physical circumstances
or when assimilating quantities with strongly different orders of magnitude from numerical
errors.

Finally, Figure 6.14 shows the histograms of the examples presented in this section, Fig-
ure 6.15 that for the according control experiments and Figure 6.16 the histograms for the
components of example 6.3.7.

Figure 6.14: Histograms for the distribution of wa when using R (orange) and Rdg (blue)
in the situation of example 6.3.2 (upper panel), example 6.3.6 (middle panel) and exam-
ple 6.3.7 (lower panel), for co

cf
= 0.2 (left panel), co

cf
= 1.0 (center panel) and co

cf
= 5.0 (right

panel).
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Figure 6.15: Distribution of wa
1 (green) and wa

2 (red) in the reference experiments corre-
sponding to the experiments shown in Figure 6.14.



92 6. Influence of correlated observation errors on non-negativity of analysis

Figure 6.16: Histograms for the distribution of wa when using R (orange) and Rdg (blue)
in the situation of example 6.3.7 (upper panel) as well as for the distribution of wa

1 (center
panel) and wa

2 (lower panel), for co

cf
= 0.2 (left panel), co

cf
= 1.0 (center panel) and co

cf
= 5.0

(right panel).

We see for the case of example 6.3.6 that especially for low co

cf
we obtain a relatively uniform

distribution between 0 and 1, and only a small amount of results lying outside that interval.
However for co

cf
= 5.0, the support of the distribution widens considerably and also extends

noticeably to negative values if a non-diagonal R is used. In the case of example 6.3.7
we see a widening of the distribution for co

cf
= 1, while for co

cf
̸= 1 we get a more complex

distribution, likely resulting from the differences in the probability of negative analysis for
both grid points. Note also that the use of non-diagonal R significantly smooths the dis-
tribution and for co

cf
≥ 1 significantly increases the amount of negative analysis results. For

example 6.3.6, the distribution of wa is relatively similar to the reference example and no
large differences are seen between components or diagonal and non-diagonal case, though
in the reference example wa

1 is non-negative as always.

The distribution of wa
1 and wa

2 in the according reference experiment is similar to that in
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the diagonal case of example 6.3.7, except for the latter having a higher fraction of negative
analysis for co

cf
= 0.2.

In summary, higher background variances seem to result in higher probability of obtaining
negative analysis. Furthermore, they yield a smaller range of co

cf
values, for which using

non-diagonal R reduces the chances for negative analysis. Also, when using a Pf with a ̸= b
the distributions of wa

1 and wa
2 can differ strongly, which renders assessing the probabilities

for obtaining negative analysis more complicated.

6.3.3 Effect of unobserved grid points

Finaly, we examine the effect of not observing every grid point on non-negativity preser-
vation. To this end, we consider an example with three grid points, in which only the first
two are observed, using a notation analogue to Notation 6.3.1, with

wa =

wa
1

wa
2

wa
3

 , wf =

wf
1

wf
2

wf
3

 , Pf =

a c d
c b e
d e f

 . (6.20)

In this case, the analysis for the first two components equals that obtained in the two grid
point example discussed in the previous sections, while the analysis at the unobserved grid
point is obtained by

wa
3 = wf

3 + 1
(a + r1) (b + r2) − (c + k)2 [(d (b + r2) − e (c + k)) ∆w1+ (6.21)

(e (a + r1) − d (c + k)) ∆w2]

Example 6.3.8. Let Pf be given by a = b = f = 0.33 and c = d = e = 0.12 and let

H =
(

1 0 0
0 1 0

)
, (6.22)

then the fraction of experiments that yield at least one negative component of wa as a
function of co

cf
are shown in Figure 6.17.
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Figure 6.17: Fraction of experiments yielding negative wa
2 (left panel) and wa

3 (right panel)
plotted against co

cf
, when using R (orange) and Rdg (blue), in the situation of example 6.3.8.

wa
1 is not shown here, as it behaves exactly as wa

2 .

Example 6.3.9. Let Pf given by a = b = f = 0.33 and c = d = e = 0 and let H be given
by (6.22), then the fraction of experiments that yield at least one negative component of
wa as a function of co

cf
are shown in Figure 6.18.

Figure 6.18: Fraction of experiments yielding negative wa
2 plotted against co

cf
, when using

R (orange) and Rdg (blue), in the situation of example 6.3.9. wa
1 is not shown here, as it

behaves exactly as wa
2 and wa

3 is not shown as it is constantly zero.

Example 6.3.10. Let Pf given by a = b = f = 0.33 and c = d = e = −0.12 and let
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H be given by (6.22), then the fraction of experiments that yield at least one negative
component of wa as a function of co

cf
are shown in Figure 6.19.

Figure 6.19: Fraction of experiments yielding negative wa
2 (left panel) and wa

3 (right panel)
plotted against co

cf
, when using R (orange) and Rdg (blue), in the situation of exam-

ple 6.3.10. wa
1 is not shown here, as it behaves exactly as wa

2 .

As expected, for the observed grid points wa
1 and wa

2 we obtain similar results in examples
6.3.8 to 6.3.10 as in the analogue experiments in the previous section. For the unobserved
grid point wa

3 we see no non-negativity violation in example 6.3.9, i.e. when Pf is diagonal,
regardless of observation error correlations, as in absence of background correlations wa

3 =
wf

3 ≥ 0 follows directly from (6.21). In example 6.3.8 the fraction of experiments yielding
negative wa

3 decreases with co

cf
, while it increases with co

cf
in example 6.3.10. In both

experiments, for the unobserved grid point non-negativity violations are less frequent in
the presence of observation error correlations. This can be explained by calculating the
ratio of the analysis increment at the unobserved grid point obtained with diagonal R to
that obtained with non-diagonal R, which employing (6.21) yields

wa,k=0
3 − wf

3

wa
3 − wf

3
= (6.23)

=
(

1 − (c + k)2

(a + r1) (b + r2)

)
︸ ︷︷ ︸

always < 1

[
1 + ek∆w1 + dk∆w2

(d (b + r2) − e (c + k)) ∆w1 + (e (a + r1) − d (c + k)) ∆w2

]
︸ ︷︷ ︸

depends on ∆w1 and ∆w2

.

While the magnitude of the second term in (6.23) depends on the observations (and is
probably roughly equally likely to be smaller or larger than 1), the first term is always
smaller than 1. Thus, when employing non-diagonal R we can expect on average higher
analysis values (and thus less non-negativity violations) at the unobserved grid point.
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In example 6.3.10 non-negativity violations are more common in wa
3 than in wa

1 and wa
2

regardless of observation error correlations, while in example 6.3.8 in the diagonal case, we
obtain generally higher rates for wa

3 , whereas in the non-diagonal case the rates of non-
negativity violations are higher for wa

3 only for low co

cf
, while for high co

cf
we obtain higher

rates for wa
1 and wa

2 . Generally, the behaviour of wa
3 is relatively similar to that seen for

wa
2 in example 6.3.1 in the previous section.

6.4 Analytical examples and use as counterexamples
In order to better understand the processes that can lead to negative analysis, as observed
in the previous sections, we consider a series of simple examples employing wf , wo and wa

consisting of only two components. Furthermore, the examples presented in this section
can help the efforts to generalize proposition 6.1.1 by serving as counterexamples to quickly
disprove conjectures.

6.4.1 Examples illustrating the effect of observation error covari-
ances on non-negativity preservation

For the reminder of the section, we assume H = Id and that notation 6.3.1 holds. Using
(6.17) and (6.19), (2.16) becomes

K =
(

a c
c b

)(
a + r1 k + c
k + c b + r2

)−1

(6.24)

= 1
(a + r1) (b + r2) − (k + c)2

(
a (b + r2) − c (k + c) −ak + cr1

cr2 − bk −c (k + c) + b (a + r1)

)
. (6.25)

Together with (2.15), we obtain for the second component of wa

wa
2 = wf

2 + 1
(a + r1) (b + r2) − (k + c)2 [(cr2 − bk) ∆w1 + (b (a + r1) − c (k + c)) ∆w2] .

(6.26)

We first look at the special case of R being diagonal:

Example 6.4.1. Let k = 0, then as shown in appendix H.1, we have wa
2 ≥ 0, if

(a + r1) wf
2 + br1

r2
wo

2 + c∆w1 ≥ 0. (6.27)

As we have seen in Example 6.4.1, e.g. c∆w1 ≥ 0 would be sufficient when employing
diagonal R. However this bound can become too weak to reliable exclude negative wa

2 in
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presence of observation error correlations.

We want now to see, if we can still obtain a lower bound for wa
2 for positive wf

2 and positive
wo

1 and wo
2. To this end, despite being very specific, we consider the example ∆w2 ≈ 0, i.e.

∆w2 ∈ (−ϵ, ϵ), due to its advantages in illustrating the effects of interactions between grid
points and its versatility as counterexample resulting from excluding this case analytically
being virtually impossible.

Example 6.4.2. Assume ∆w2 ∈ (−ϵ, ϵ), then wa
2 < 0 holds, if

0 > wf
2 + cr2 − bk

(a + r1) (b + r2) − (k + c)2︸ ︷︷ ︸
=:−g1

∆w1 + b (a + r1) − c (k + c)
(a + r1) (b + r2) − (k + c)2︸ ︷︷ ︸

=:−g2

∆w2 (6.28)

⇔ g1∆w1 > wf
2 − g2∆w2. (6.29)

Due to ∆w2 ∈ (−ϵ, ϵ) it is sufficient, if

g1∆w1 > wf
2 + |g2ϵ| (6.30)

Now, we distinguish the cases

• ∆w1 > 0: Here (6.30) becomes

g1 >
wf

2 + |g2ϵ|
∆w1

(6.31)

This is fulfilled for |∆w1| large enough (this can be achieved, as observations can take
values way larger than the forecast, e.g. in case of a misplaced convective cell), if g1
is positive.

• ∆w1 < 0: Here (6.30) becomes

g1 <
wf

2 + |g2ϵ|
∆w1

(6.32)

This can be fulfilled, if g1 is negative for |∆w1| large enough (however the requiro-
ment wo

1 > 0 can render this impossible for small values of wf
1 ).

Note that ∆w2 = 0 is a special case of this example, in which the ϵ in (6.31) and (6.32)
can be set to zero. Furthermore, ∆w2 ≥ −wf

2 always holds due to the definition of ∆w2.
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In Example 6.4.2, we have seen that negative wa
2 can be achieved in similar conditions as

present in convective scale data assimilation for positional errors of convective cells.
We now construct an example illustrating the possible influence of observation error vari-
ances on non-negativity preservation:

Example 6.4.3. Assume k = −c > 0, then

wa
2 = wf

2 + 1
(a + r1) (b + r2)

[− (kr2 + bk) ∆w1 + b (a + r1) ∆w2] (6.33)

= wf
2 − k

(a + r1)
∆w1 + b

(b + r2)
∆w2 (6.34)

= wf
2 − k

(a + r1)
∆w1 + 1(

1 + r2
b

)∆w2. (6.35)

Here, negative wa
2 can be achieved analogue to Example 6.4.2. Note however that in situa-

tions with very small wf
2 , ∆w2 can be expected to have a high probability of being positive

and thus, due to its positive prefactor in (6.35), is expected to increase wa
2 . Thus over-

estimating r2 can increase the probability for negative analysis, if it reduces the effect of
∆w2. This can be caused e.g. by numerical error in situations where the components of w
represent different quantities with strongly differing scales, rather than different grid points.

Furthermore, as increasing the observation error variances is a common practice of ac-
counting for the representation error (Courtier et al., 1998), Example 6.4.3 might also play
a role in this context. However, such a procedure would affect both r1 and r2, which occur
in terms with different signs. Thus estimating the effects on non-negativity preservation is
complicated and the result might depend on the exact circumstances.

Finally, we consider an example demonstrating that negative wa
2 can be obtained even

without any direct contribution from ∆w1. This will be shown in Appendix H.2. Note
that this problem can only occur if non-diagonal R is used and further conditions on the
ratios of background and observation error variances are met.

Despite their lack of relevance for practical applications, these examples are still valuable as
counterexamples for analytical conjectures regarding non-negativity preservation, as seen
in the following section.

6.4.2 Consequences for generalisation of proposition 6.1.1
In this section, we show how the examples presented in the previous section can be used
to determine constraints to a possible generalisation of proposition 6.1.1. We first use
example 6.4.2 to show that requiring Pf and R to be diagonal in proposition 6.1.1 can not
be dropped:
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Proposition 6.4.1. We can not drop the condition of diagonality of Pf in proposition 6.1.1.

Proof. Assuming proposition 6.1.1 would hold without demanding diagonality of Pf , in the
case of example 6.4.2, positivity of analysis would be guaranteed. However, due to c ̸= 0
we have f ̸= 0 and (6.30) can still be fulfilled. Thus both cases outlined in example 6.4.2
yield wa

2 ≤ 0.

Proposition 6.4.2. We can not drop the condition of diagonality of R in proposition 6.1.1.

Proof. Analogue to proposition 6.4.1.

Furthermore, as example 6.4.2 provides examples for obtaining negative analysis for both
positive and negative g1, relaxing the condition of diagonality for Pf or R to constraining
the sign of the correlations does not seem promising. However, as the proofs of propo-
sition 6.4.1 and proposition 6.4.2 depend on (6.30), a possible strategy for generalizing
proposition 6.1.1 could be trying to replace diagonality of Pf and R by further constraints
on wo, linking positivity preservation and quality control. E.g. if we observe at every grid
point, we can show for bounded ∥∆w∥∞ and strictly positive wf

i , that also for Pf and R
with sufficiently small non-diagonal elements, non-negativity of analysis is guaranteed:

Proposition 6.4.3. Let H = Id, and let wo
i ≥ 0 and wf

i > 0, for all i ∈ {1, · · · , n}.
Furthermore let ∥∆w∥∞ ≤ cw , for some cw ∈ R+ and P̂f , R̂ ∈ Mn diagonal and positive
definite. Then exists a ϵ, such that for all Pf ∈ Mn and R ∈ Mn with

∥∥∥Pf − P̂f
∥∥∥

∞
< ϵ

and
∥∥∥R − R̂

∥∥∥
∞

< ϵ we have wa
i ≥ 0, for all i ∈ {1, · · · , n}.

Proof. Follows from proposition 6.1.2, using continuity of sum, matrix multiplication and
inversion. For details see appendix H.4.

Note that for special cases much stricter versions of proposition 6.4.3 should exist, as the
above proof uses relatively coarse approximations. However, we cannot relinquish the strict
positivity of wf

i :

Proposition 6.4.4. We can not relax wf
i > 0 to wf

i ≥ 0 in proposition 6.4.3.

Proof. Example 6.4.2 with wf
2 = 0 and ∆w2 = 0 provides a counterexample to a general-

ization of proposition 6.4.3 with wf
i > 0 replaced by wf

i ≥ 0, as (6.30) becomes

f∆w1 > 0, (6.36)

which can be fulfilled if Pf or R are non-diagonal, as then c ̸= 0 or k ̸= 0 and thus f ̸= 0.
Then sgn (f) = − sgn (∆w1) is sufficient.

Finally we note that (also considering the results of section 6.3) finding a statistical bound
limiting P ({wa < 0}) might be practically more relevant, especially for high dimensional
problems, as an analytical condition would be determined by the (increasingly unlikely)
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worst case scenarios. Just the probability of the signs of all ∆wi aligning in the worst
possible way is 2−n for a system with n measurements, making the according worst case
scenario extremely unlikely (and thus practically irrelevant for a stochastic approach) for
large n. However, there are already several other promising approaches to tackling non-
negativity preservation, such as the QPEns filter of Janjić et al. (2014) and approaches
involving truncated Gaussians (Lauvernet et al., 2009).

6.5 Summary
In summary, we have seen that there exists a wide range of scenarios yielding negative
analysis, ranging from (the already known effects of) positional and amplitude error of
peaks to more abstract cases. Despite their limited practical relevance, the latter ones
can be used as counterexamples to show that relaxing the requirement of Pf and R being
diagonal for Proposition 6.1.1 is not possible. Furthermore, we have seen that the effects
of employing non-diagonal R in DA on non-negativity-preservation are highly situation
dependent. Thus we summarized the according results in Table 6.1.



Chapter 7

Future work

In this chapter, we outline promising directions of future work. We start by discussing
different options to extend to the SPM in Section 7.1, such as including a more realistic
observation operator in Section 7.1.1, a generalization to variable particle numbers in
Section 7.1.2, as well as possible interaction models in Section 7.1.3. Thereafter we consider
possible applications of the SPM in Section 7.2. In Section 7.3, we give a short outlook on
the possible use of neural networks trained with output from the SPM.

7.1 Extensions to the SPM
We are now going to discuss possible extensions of the SPM, from more complicated ob-
servation operators in Section 7.1.1 over a generalization to a variable particle number in
Section 7.1.2 to possible interaction models in Section 7.1.3.

7.1.1 Observation operators
As directly observing number density and liquid water content at every grid point is un-
realistic for practical applications, employing a more realistic observation operator to the
SPM would be of interest for future work.

7.1.1.1 General setup and constraints

We now discuss possible options for defining observation operators on the continuum and
particle based state spaces and the according challenges. Possible setups for defining simple
observation operators are shown in Figure 7.1: An absorption based observation operator
can be defined on the continuum model as well as on the particle based one, as it (if suf-
ficiently simplified) will only depend on the liquid water content. Thus, despite loosing
some information about the variation of the resulting intensity in the x- and y-direction,
both models will yield comparable observations.
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?
Figure 7.1: Possible setups for definitions of strongly simplified observation operators for
particle based (left side) and analogue continuum models (right side). An absorption based
observation operator is depicted in the upper panels, with the colour of the arrows indicat-
ing the according intensity and horizontal lines constant levels of the liquid water content.
The lower panels show a reflection based observation operator, whereas the missing panel
on the right side illustrates that a definition for the continuum model is not easily possible
due to the loss of relevant information.

On the other hand a very simple reflection based observation operator can (assuming ge-
ometrical optics and the hydrometeors to be perfectly reflecting spheres) still be easily
defined for the particle based model, whereas finding an analogue definition for the con-
tinuum model is problematic, as here information about the exact hydrometeor positions
and diameters is not available (however some information might be inferred e.g. from the
derivatives of the liquid water content and number density profiles).

In general, an observation operator defined for the continuum model can be easily extended
to the particle based one, as it only needs to be concatenated with the according map (see
(3.2) and (3.3)), whereas extending observation operators from the particle based model
to the continuum model can be (as these maps usually are not invertible) difficult or even
impossible.
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7.1.1.2 Kernel based observation operators

It is common (see e.g. Janjić et al. (2018)) for observation operators on continuum models
to be defined as a convolution of the state with a kernel κ, i.e.

H (Zz,t) =
∫

κ (z′ − z) Zz′,tdz′, (7.1)

which can using (3.14) be extended to the according particle based model.

One can also (at least numerically) calculate the expectation values and covariances for
this observation operator: The expectation value is given by

E [H (Zz,t)] = E
[∫

κ (z′ − z) Zz′,tdz′
]

(7.2)

= E

∫ κ (z′ − z)
n∑

j=1
1[

z′−
Dj
2 ,z′+

Dj
2

] (zj (t)) gZ (Dj) f (Dj, zj, t, z′) dz′


= E

 n∑
j=1

gZ (Dj)
∫

κ (z′ − z) 1[
zj(t)−

Dj
2 ,zj(t)+

Dj
2

] (z′) f (Dj, zj, t, z′) dz′


= E

 n∑
j=1

gZ (Dj)
∫ zj(t)+

Dj
2

zj(t)−
Dj
2

κ (z′ − z) f (Dj, zj, t, z′) dz′

 .

Now, by considerations analogue to Assumption 3.2.1 we obtain

E [H (Zz,t)] =
∫ n∑

j=1
gZ (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (z′ − z) f (Dj, zj, t, z′) dz′dP (z, D) (7.3)

=
n∑

j=1

∫
gZ (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (z′ − z) f (Dj, zj, t, z′) dz′dP (zj, Dj)

=
n∑

j=1

∫ ∞

0

∫ ∞

−∞
gZ (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (z′ − z) f (Dj, zj, t, z′) dz′ρD (Dj) ρz (zj) dzjdDj

=
n∑

j=1

∫ ∞

0
gZ (Dj) ρD (Dj)

∫ ∞

−∞

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (z′ − z) f (Dj, zj, t, z′) dz′ρz (zj) dzjdDj

= n ·
∫ ∞

0
gZ (Dj) ρD (Dj)

∫ ∞

−∞

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (z′ − z) f (Dj, zj, t, z′) dz′ρz (zj) dzjdDj.

Some further simplification of (7.3) might still be possible by interchanging the integrals.
However from this point likely a numerical approach is necessary.
We now turn to the the covariances, which can be obtained in an analogue way. We have
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Cov (H (Xx,t) , H (Yy,s)) = E [H (Xx,t) H (Yy,s)] − E [H (Xx,t)]E [H (Yy,s)] , (7.4)

which we can further simplify by calculating (similar to Section 3.2)

E [H (Xx,t) H (Yy,s)] = E
[∫

κ (x′ − x) Xx′,tdx′
∫

κ (y′ − y) Yy′,sdy′
]

(7.5)

= E

 n∑
j=1

gX (Dj)
∫ zj(t)+

Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′·

·
n∑

k=1
gY (Dk)

∫ zk(s)+ Dk
2

zk(s)− Dk
2

κ (y′ − y) f (Dk, zk, s, y′) dy′


=

n∑
j=1

n∑
k=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′·

· gY (Dk)
∫ zk(s)+ Dk

2

zk(s)− Dk
2

κ (y′ − y) f (Dk, zk, s, y′) dy′dP (zj, Dj, zk, Dk)

and splitting the sum into

E [H (Xx,t) H (Yy,s)] =
n∑

j=1

n∑
k=1
k ̸=j

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′· (7.6)

· gY (Dk)
∫ zk(s)+ Dk

2

zk(s)− Dk
2

κ (y′ − y) f (Dk, zk, s, y′) dy′dP (zj, Dj, zk, Dk) +

+
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′·

· gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′dP (zj, Dj)

=
n∑

j=1

n∑
k=1
k ̸=j

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′dP (zj, Dj) ·

·
∫

gY (Dk)
∫ zk(s)+ Dk

2

zk(s)− Dk
2

κ (y′ − y) f (Dk, zk, s, y′) dy′P (zk, Dk) +

+
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′·

· gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′dP (zj, Dj) ,
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where we used the independence of the properties of the individual hydrometeors. Now,
we obtain

E [H (Xx,t) H (Yy,s)] =
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′dP (zj, Dj) ·

·
n∑

k=1

∫
gY (Dk)

∫ zk(s)+ Dk
2

zk(s)− Dk
2

κ (y′ − y) f (Dk, zk, s, y′) dy′P (zk, Dk) −

−
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′dP (zj, Dj) ·

·
∫

gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′P (zj, Dj) +

+
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′·

· gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′dP (zj, Dj) , (7.7)

which becomes

E [H (Xx,t) H (Yy,s)] = E [H (Xx,t)]E [H (Yy,s)] − (7.8)

−
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′dP (zj, Dj) ·

·
∫

gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′P (zj, Dj) +

+
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′·

· gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′dP (zj, Dj) ,

together with (7.4), yielding
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Cov (H (Xx,t) , H (Yy,s)) =
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′· (7.9)

· gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′dP (zj, Dj) −

−
n∑

j=1

∫
gX (Dj)

∫ zj(t)+
Dj
2

zj(t)−
Dj
2

κ (x′ − x) f (Dj, zj, t, x′) dx′dP (zj, Dj) ·

·
∫

gY (Dj)
∫ zj(s)+

Dj
2

zj(s)−
Dj
2

κ (y′ − y) f (Dj, zj, s, y′) dy′P (zj, Dj) .

Again, employing considerations analogue to Assumption 3.2.1 allows some further simpli-
fications (not shown here) after which the according integrals can be computed numerically.
However, it is yet to be determined, which formulation is the numerically most efficient.

We assumed H = Id in all our DA experiments. However when using a different observation
operator, Cov (H (Xx,t) , H (Yy,s)) can again be used as proxy for the observation error
covariance matrix potentially now also incorporating an observation operator error besides
the error due to unresolved scales and processes.

7.1.2 Generalization to variable particle number
A major restriction of the SPM is the assumption of a fixed particle number. Thus we will
now employ standard techniques from stochastic geometry, to take the first steps towards
constructing measures L̂ and N̂ from nη and lη that represent liquid water content and
number density, while allowing for a variable particle number. Furthermore, in the end of
this section we discuss the relation of L̂ and N̂ to the standard definitions of L and N , as
this is easier than relating nη and lη to L and N directly.

Definition 7.1.1. Given the assumptions of Definition 3.2.2, let1 µN (η, ·) : B (R) → R+,
A 7→ µN (η, A) and µL (η, ·) : B (R) → R+, A 7→ µL (η, A), with

µN (η, A) =
∫

A
nη (z) dz (7.10)

µL (η, A) =
∫

A
lη (z) dz, (7.11)

for all A ∈ B (R).

Proposition 7.1.1. µN (η, ·) and µL (η, ·) defined in Definition 7.1.1 are measures on
B (R).

1B (R) denotes the Borel σ-algebra on R.
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Proof. Follows directly from the definition.

To take care of the stochastic initial conditions, we assume the distribution of η being given
by a probability measure P.

Definition 7.1.2. Given the assumptions of Definition 7.1.1, let P be a probability measure
on N (equipped with a suitable σ-algebra). Furthermore, let N̂ : B (R) → R+, A 7→ N̂ (A)
and L̂ : B (R) → R+, A 7→ L̂ (A), with

N̂ (A) = E [µN (·, A)] (7.12)
L̂ (A) = E [µL (·, A)] , (7.13)

for all A ∈ B (R).

Existence and uniqueness of L̂ and N̂ can likely be shown using known results on intensity
measures (see e.g. Jansen (2018)). We however leave this proof (as well as showing that L̂
and N̂ actually are measures on B (R)) for further work and assume the according state-
ments to hold. Note, that Definition 7.1.2 does not necessarily require the particle number
to be constant and thus is a first step to generalizing the SPM. Furthermore, quantities in
the form of (7.12) and (7.13) are relatively common in stochastic geometry and extensive
theory for them exists.

We now (up to boundary issues) can relate L̂ and N̂ to L and N .

Remark 7.1.1. Given the assumptions of Definition 7.1.2, let ϵ be the free parameter of
the Wacker and Seifert (2001) reference model and z ∈ R+. Furthermore, assume that
non-zero probability is only assigned to states containing exactly n particles and that n is
large. Then (neglecting hydrometeors at the boundary), we can approximate

N (z) ≈ 1
2ϵ

N̂ ([z − ϵ, z + ϵ]) (7.14)

≈ 1
2ϵ

µN (η, [z − ϵ, z + ϵ])

and

L (z) ≈ 1
2ϵ

L̂ ([z − ϵ, z + ϵ]) (7.15)

≈ 1
2ϵ

µL (η, [z − ϵ, z + ϵ]) ,

using an η drawn from P.

Note, that a discussion of the direct relation between nη and lη to L and N (including the
treatment of hydrometeors at the boundary) is shown in Appendix A.
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7.1.3 Interaction models
An further interesting addition to the SPM would be interactions between particles, like
collisions or processes that create or destroy hydrometeors. With respect to the overall goal
of studying the structure of the covariance matrices derived from the SPM, the following
classes of processes would especially be of interest:

• Deterministic collisions

• Stochastic collisions

• Deterministic creation and/or destruction of hydrometeors

• Stochastic creation and/or destruction of hydrometeors

Here stochastic interactions would induce a new source of randomness and combining them
with stochastic or deterministic initial conditions would also be of interest. Another inter-
esting direction would be comparing relatively similar interaction models with deterministic
and stochastic dynamics. A very simple example would be deterministically joining hy-
drometeors that overlap sufficiently or assign them a probability of merging proportional
to the volume of intersection (see Figure 7.2).

vi

vi > v

vi

vi < v

~vi

~vmax-vi

Figure 7.2: Simple deterministic (left panel) and stochastic (right panel) interaction mod-
els. Hydrometeors are either merged, when their intersection volume vi exceeds a threshold
v, or with a probability proportional to vi.

However, when interactions are added to the SPM, the according equations become far
more complicated. Thus, to obtain the according covariance matrices probably a more
numerics based approach would be necessary and computational cost would significantly
increase. Furthermore, the results can depend on the time step of the model and the order
in which particles are merged. Thus ensuring a sufficiently small time step and consistent
merging procedure are required before implementing an according extension to the SPM.
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More realistic interactions can be introduced by a kernel based approach (see e.g. Murrell
et al. (2004) for an example from theoretical ecology). Rewriting the according equations
in the language of stochastic geometry (see e.g. Semrau (2020) for an according rewriting
of the equations of Murrell et al. (2004)), would then allow to calculate the according error
covariance matrices, or even employ more advanced concepts from stochastic geometry like
factorial moment measures.

7.2 Possible applications of the SPM
As the stochasticity in the SPM originates purely from the stochastic initial conditions,
it is particularly suitable to study that aspect. This is e.g. of interest, as according to
Morrison et al. (2020) uncertain initial conditions are one of the major challenges in their
suggested Bayesian approach to scheme development. However, to be useful in this context,
extending the SPM with more complex dynamics (see Section 7.1.3) might be necessary,
as Morrison et al. (2020) consider this problem in the context of chaotic systems. Imple-
menting more complex dynamics would also be of interest on its own, as it would allow
to identify the features of observation error covariance matrices caused by these dynamics.
In this setup, the covariances obtained from the current form of the SPM can function as
a baseline showing only the effects of particle geometry and gravitational sorting.

When extending the SPM with an interaction scheme that allows for particles to change
their diameter, it also might be of use for studying eddy hopping, i.e. "the role of mixing of
different droplet populations that have undergone different growth histories on [size distri-
bution] broadening" (Morrison et al., 2020). Here again, the current implementation can
function as baseline.

As the SPM allows to perturb the initial fall velocities and to relatively easily implement
different dynamics, it can also be used to study the effect of different assumptions on the
hydrometeor velocities. This is of interest, as according to Zeng et al. (2021), wrongly
specified terminal hydrometeor fall speeds are a potential source of error when predicting
radial wind.

Furthermore, repeating the DA experiments from Chapter 5 for cylindrical hydrometeors
(or a mixture of spherical and cylindrical hydrometeors) is easily possible with only minor
modifications to the existing code.

7.3 Neural network
Two modern approaches to modelling hydrometeors are neural networks and Lagrangian
particle models. In this section, we sketch a possible option for combining these concepts
to calculate the time evolution of the L and N profiles. A commonly used Lagrangian par-
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ticle model is the superdroplet approach of Shima et al. (2009), describing the system by n
superdroplets with the i-th superdroplet representing ni identical copies of hydrometeors
with position zi and diameter Di. We suggest an architecture for a NN, that only contains
the connections necessary for evolving the L and N profiles by approximating them using
the superdroplet approach.

Before we discuss the architecture, we give the necessary background information on neural
networks following the description and (a slightly modified) notation of Bishop (2006)
(equation (5.2) and (5.3)): The output x′ of a layer of a neural network with input x is
given by

x′
j = h

(
D∑

i=1
wjixi + wj0

)
, (7.16)

for all j ∈ {1, · · · , M}, with D and M being the dimension of x and x′, h the activation
function, wji the weights and wj0 the biases.

Now, we turn to the construction of the architecture (see Figure 7.3 ) mimicking the super-
droplet approach: The input layer consists of the initial liquid water content and number
density values for each gridpoint. These are decomposed in n superdroplets in the first
(fully connected) hidden layer. Subsequently, we evolve the superdroplets by a part of the
neural network containing only the connections necessary for the superdroplet approxima-
tion. As in absence of processes, which destroy or create hydrometeors or change their
diameter, ni and Di stay constant over time, they can be directly be passed to the penul-
timate layer. Furthermore, as Di can have an influence on the dynamics of zi, it needs to
be passed (together with zi) to NNvel, the part of the network which calculates the time
evolution of zi. The architecture of NNvel is depicted in Figure 7.4 and will be discussed
in more detail in the next paragraph. Finally, the time evolved super droplets are again
combined to discretized liquid water content and number density profiles in the output
layer. Also note, that only the first and last layer of the network are fully connected, while
information about the structure of the problem is directly encoded in the remaining part
of the architecture.
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N1 L1

z1 D1 Dn

z1 D1 zn Dn

N1 L1
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NN LN

NN LN

NNvel NNvel

Figure 7.3: Archirecture for a neural network encompassing the structure of the super-
droplet approach of Shima et al. (2009). The architecture of the part of the network
evolving the position of the superdroplet (NNvel) is depicted in Figure 7.4.

To construct the architecture of NNvel, we note that the dynamics of the superdroplets are
(under the assumptions of the SPM and the Wacker and Seifert (2001) reference model)
equal to those of normal hydrometeors and thus given by (3.5) and (3.6). So, for NNvel

we chose an architecture composed of a (possibly pre trained) network NNsqrt that only
processes Di and calculates its square root (see Eisman (1990) for a suitable architecture)
and another layer that processes the output of NNsqrt together with zi to calculate the
time evolved position of the super droplet. Choosing the ReLU, which has also been used
e.g. by Ruckstuhl et al. (2021) for the rain variable, as activation function should lead to
it having no effect, as long as zi > 0 holds. Assuming the output of NNsqrt actually being
the square root of Di, this yields

z′
i = ReLU

(
wzzi + wD

√
Di + w0

)
. (7.17)

Comparing (7.17) with (3.5) and (3.6) allows to identify conditions for the trained network
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having learned the superdroplet approach correctly: The weights and biases for all copies
of NNvel should be equal and fulfil

wz = 1 (7.18)
wD = αt (7.19)
w0 = 0. (7.20)

Di

zi

zi

NNsqrt

h(wzzi+wDsqrt(Di)+w0)

Figure 7.4: Archirecture of the part of the network evolving the position of the superdroplet.

This setup can also be extended to account for the interactions between hydrometeors, by
iteratively applying NNvel interlaced with layers describing the interactions of hydromete-
ors (see also Seifert, 2022).

Due to its relatively low computational cost and stochastic initial conditions, the SPM could
also be used to generate training data for this network. This would allow to evaluate, if
the suggested architecture is capable of learning the superdroplet approximation and how
its performance would compare to a fully connected NN.
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Conclusion

In many operational applications a large percentage of the available observations is lost
due to thinning, i.e. discarding of values to obtain an uncorrelated data set, which is
necessary because of the inability to successfully assimilate correlated observations (Janjić
et al., 2018). Thus, better understanding the spatial and temporal structure of observation
error covariance matrices and its impact on DA is highly desirable. A good starting point
for constructing a test case for studying observation errors arising from microphysics is
provided by the Wacker and Seifert (2001) reference model, which describes the evolution
of liquid water content L and number density N over time. The Wacker and Seifert (2001)
reference model features stochastic initial conditions, that can (by interpreting them as
a way to account for the lack of knowledge about the exact initial positions and sizes of
hydrometeors) be regarded as a form of representation error. Thus, assuming no other
sources of observation error being present, the Wacker and Seifert (2001) reference model
would provide a suitable setup for DA experiments, if the according covariance matrices
could be obtained.

However, as seen in Section 4.2, the covariance matrices of the Wacker and Seifert (2001)
reference model explicitly depend on a free parameter without physical analogue, that can-
not be easily disposed of. Thus, in Section 3.2 we construct a model (referred to as SPM)
with well defined error covariances by modifying the definitions of L and N . By this, we
effectively extract the particle model underlying the Wacker and Seifert (2001) reference
model, that allows us to calculate the according covariances in Section 4.1. The profiles
obtained from the SPM agree relatively well with those provided by the Wacker and Seifert
(2001) reference model, though the modified definitions cause a relatively strong difference
in the amplitude of the L-profile.

As the SPM (like the Wacker and Seifert (2001) reference model) only considers the case of
pure sedimentation, a (positive) correlation between the measurements at two points can
practically only be caused by hydrometeors simultaneously intersecting both grid points.
Thus gravitational sorting has a large influence on the covariance matrix (as it has on
the L and N profiles), leading to larger correlation lengths at lower z-levels (Figure 4.3).
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Furthermore, the geometry of the hydrometeors plays a large role in the shape of the covari-
ances: Cylindrical hydrometeors with constant orientation result in a triangular covariance
profile with finite support, while spherical hydrometeors and randomly oriented cylindrical
hydrometeors result in a more bell shaped covariance profile (see Figure 4.4). The width
of the support in the former case might again be determined by gravitational sorting.

When looking at their time evolution, one finds that the variances of L evolve similarly to
the according profiles, while the variances of N only minimally vary over time and always
exhibit extremely large values at the top of the domain. This can again be explained by
gravitational sorting and the different dependence of the definitions of L and N on the
hydrometeor diameter. While L and its variance are more strongly influenced by larger
hydrometeors, which move faster, N and its variance are dominated by very small hydrom-
eteors, which stay at the top of the domain for the entire duration of the experiment.

We also tested the impact of different velocity models by comparing a simplified velocity
model and McSnow of Brdar and Seifert (2018). However, we found (despite some impact
on the L and N profiles) no effect on the shape of the covariance profile.

As the SPM yields error covariances that have an interesting (but not too complicated) spa-
tial structure and change over time, we can employ it to asses the importance of accurately
quantifying these aspects during DA. To this end, we conduct a series of DA experiments
with an EnKF in Chapter 5. In these, we assimilate pseudo observations generated by the
SPM or the Wacker and Seifert (2001) reference model with additional Gaussian noise (de-
noted as WSRM) employing the same 100 member ensemble, initially shifted with respect
to the truth to introduce a positional error in the forecast. The ensemble is always evolved
by the Wacker and Seifert (2001) two moment scheme.

Furthermore, despite the filter converging in all cases, practically throughout all experi-
ments (except those not observing every grid point) we see higher root mean square error
values when using the full R matrix compared to a block-diagonal (ignoring the correlations
between L and N) or diagonal one. However, the dynamic R matrices perform better than
time averaged R matrices or those from the initial or final time step. This indicates that
accurately specifying the temporal development of R is more important, than precisely
representing its spatial structure by introducing non zero off-diagonal elements. The full
R matrices performing worse than diagonal and block-diagonal ones in our experiments is
in disagreement with the findings of Rainwater et al. (2015). However, as in the analogue
experiments of Weston et al. (2014) this is likely due to the high condition numbers of
the full R matrices. Thus repeating our experiments with appropriate reconditioning is of
interest for future work.

The ensemble spread is usually found to initially assume very low values (which is unde-
sirable) and to slowly increase over time before becoming more or less constant. A series
of exemplaric snapshots reveals that the initially low spread is likely caused by a large
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amount of grid points producing negative analysis values, which are all set to a small pos-
itive threshold. This is in agreement with the results of Gleiter et al. (2022).

We also note that repeating our experiments with an absolute value applied to the obser-
vations in the WSRM scenario yields (except for the poorly converging full R case) the
same results as the unmodified experiment. This hints that non-negative analysis originat-
ing from the DA algorithm and the need to positivize the analysis before time evolution
are more critical than the non-Gaussianity of observation errors for the EnKF. To better
understand the processes that lead to negative analysis, we consider several strongly sim-
plified examples in Chapter 6, employing the Kalman filter. First, we use simple triangular
profiles to demonstrate that negative analysis in the vicinity of large peaks can be caused
by pure positional or amplitude error, when using a non-diagonal R matrix.

Subsequently we conduct a series of two-dimensional experiments using random1 forecasts,
observations and observation error covariance matrices to obtain the distribution of the
analysis for diagonal and non-diagonal R for several different choices of the background
error covariance matrix. We find that the results only depend on the ratio co

cf
of the upper

bounds co and cf for the observation and forecast values, eliminating a degree of freedom.
Besides on co

cf
, the effect of using non-diagonal R on non-negativity preservation in our ex-

periments also depends on the sign of the background correlations, as shown in Table 6.1.
When varying the magnitude of the background variances, we found higher background
variances as expected resulting (at least for positive background correlations) in higher
probability of obtaining negative analysis. Furthermore, employing different background
variances for both grid points (as expected) resulted in the distributions of both compo-
nents of the analysis differing. This yielded strongly non-Gaussian (joint) distributions of
the analysis.

In an analogue three dimensional example with one unobserved grid point, we found the
use of a a non-diagonal R matrix reducing the probability of obtaining negative analysis
at the unobserved grid point, which might be explained by a reduced impact of the ob-
servations. Furthermore, in Appendix H.2 we show that when using a non-diagonal R,
non-negativity violation at a grid point is possible even if the measurements at all other
grid points exactly match the forecast.

Finally, we consider a series of special cases and use them as counterexamples to show that
we can neither drop the condition of diagonality of Pf , nor that of diagonality of R in
Proposition 6.1.1, which guarantees non-negative analysis for diagonal Pf and R. Further-
more, we use them to show that we can not relax the strict positivity of the background in
Proposition 6.4.3, which guarantees non-negative analysis for strictly positive background
when Pf and R are sufficiently close to diagonal matrices and the observations are suf-
ficiently close to the background. However we find that limiting the possible deviation

1All values drawn from independent uniform distributions on the intervals [0, cf ], [0, co] and [0, 1].
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of the observations from the background would allow to guarantee non-negativity of the
analysis, when using non-diagonal Pf and R with sufficiently small off-diagonal elements.
This indicates that quality control, which eliminates observations that deviate too much
from the background, can help to ensure non-negativity preservation.

For future work, extending the SPM by including a more realistic observation operator,
generalizing it to a variable particle number or allowing for interactions between or creation
and destruction of hydrometeors are of special interest, as these modifications would greatly
increase the number of possible applications for the SPM.
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Relation between the definitions of
SPM and WSRM

Now, we will examine how Definition 3.2.2 relates to the standard definitions of N and L
given in Wacker and Seifert (2001). To that end, we consider:

Definition A.0.1. Let η be a state of a system consisting of n spherical hydrometeors
as in Definition 3.2.2 and consider a domain Λ = [xmin, xmax] × [ymin, ymax] × [zmin, zmax],
with (xj, yj, zj) ∈ Λ and1 d ((xj, yj, zj) , ∂Λ) > Dj

2 , for all j ∈ {1, · · · , n}. We define

NΛ = n

(xmax − xmin) · (ymax − ymin) · (zmax − zmin) (A.1)

LΛ = l

(xmax − xmin) · (ymax − ymin) · (zmax − zmin) , (A.2)

with l being the total water mass contained in Λ, given by2

l = ρH

n∑
j=1

∣∣∣∣BDj
2

(xj, yj, zj)
∣∣∣∣
V

. (A.3)

Now, we note that given the assumptions of Definition A.0.1 integrating (3.2) and (3.3)
over [zmin, zmax] yields

n =
∫ zmax

zmin

nη (z) dz (A.4)

l =
∫ zmax

zmin

lη (z) dz. (A.5)

1∂Λ denotes the boundary of Λ.
2|S|V denotes the volume of set S.
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On the other hand, the particle number n and the total water mass l can be obtained from
the standard definitions of N and L by integrating them over Λ, yielding

n =
∫

Λ
N (z) dxdydz

= (xmax − xmin) (ymax − ymin)
∫ zmax

zmin

N (z) dz (A.6)

l =
∫

Λ
L (z) dxdydz

= (xmax − xmin) (ymax − ymin)
∫ zmax

zmin

L (z) dz. (A.7)

Now combining (A.4) and (A.6), we obtain

∫ zmax

zmin

nη (z) dz = (xmax − xmin) (ymax − ymin)
∫ zmax

zmin

N (z) dz (A.8)

⇔
∫ zmax

zmin

nη (z)
(xmax − xmin) (ymax − ymin) − N (z) dz = 0 (A.9)

⇔
∫ z̄+ ∆z

2

z̄− ∆z
2

nη (z)
(xmax − xmin) (ymax − ymin) − N (z) dz = 0, (A.10)

with zmin = z̄ − ∆z
2 and zmax = z̄ + ∆z

2 . This motivates assuming

N (z) = nη (z)
(xmax − xmin) (ymax − ymin) , (A.11)

though an exact proof is not possible this way due to the assumption of the hydrometeors
not protruding outside the domain and N (z) not being defined on small length scales. A
more rigorous approach is relating Definition 3.2.2 to the standard definitions of N and L
by constructing suitable measures, as outlined in Definition 7.1.1.

An analogue consideration is possible for the liquid water content using (A.5) and (A.7).
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Geometric considerations for
cylindrical hydrometeors

Despite this problem likely been already solved, we here derive the area of intersection of
a cylindric hydrometeor with the (x, y)-plane, as well as the area of its projection onto the
(x, y)-plane.

B.1 General description and case distinction
Making use of the according symmetries, a cylindric hydrometeor can be described by its
radius r, height h, the position of its centre zj and its angle φ relative to the x, y-plane.
Its rotation around its symmetry axis has no effect and a rotation around the z-axis does
not affect its area of intersection with the (x, y)-plane.

Figure B.1: Basic case distinction

We have to distinguish two cases: That where φ is so large that the area of intersection
of the hydrometeor at zj = z with the (x, y)-plane is a full ellipse and that where φ is
so small, that it is a sector of an ellipse, missing both ends (see Figure B.1 for borderline
case). The transition between both cases occurs at
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φ0 = arctan
(2r

h

)
, (B.1)

so we get (excluding the case φ = 0, which has probability zero in all our experiments) for
the area of intersection at zj = z:

1. Ellipse, for φ > arctan
(

2r
h

)
2. Sector of ellipse φ < arctan

(
2r
h

)
.

Now we can calculate the maximum distance dmax, a hydrometeor can have to the (x, y)-
plane while still intersecting it in at least one point, which is independent of the above case
distinction:

Figure B.2: Illustration of calculation of dmax for both cases

As illustrated in Figure B.2,

dmax =
(

h

2 + y1

)
sin (φ) (B.2)

and

r

y1
= tan (φ) (B.3)

⇒ y1 = r cos (φ)
sin (φ)

.
We obtain from (B.2) and (B.3)
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dmax =
(

h

2 + r cos (φ)
sin (φ)

)
sin (φ) (B.4)

= h

2 sin (φ) + r cos (φ)

Next we can calculate the distance dinner, below which the area of intersection becomes
(depending on the case) a full ellipse or ellipse sector with both ends cut off:

Figure B.3: Illustration of calculation of dinner for both cases

As seen in Figure B.3, in both cases we have

dinner = dmax − y3, (B.5)

which yields together with

y3 =
2r cos (φ) ,if φ > arctan

(
2r
h

)
h sin (φ) ,if φ < arctan

(
2r
h

) (B.6)

and (B.4) following formula for dinner

dinner =
dmax − 2r cos (φ) ,if φ > arctan

(
2r
h

)
dmax − h sin (φ) ,if φ < arctan

(
2r
h

) (B.7)

=


h
2 sin (φ) + r cos (φ) − 2r cos (φ) ,if φ > arctan

(
2r
h

)
h
2 sin (φ) + r cos (φ) − h sin (φ) ,if φ < arctan

(
2r
h

)
=


h
2 sin (φ) − r cos (φ) ,if φ > arctan

(
2r
h

)
r cos (φ) − h

2 sin (φ) ,if φ < arctan
(

2r
h

) .
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Figure B.4: Intersection between cylinder of infinite length and (x, y)-plane

B.2 Intersection areas
Excluding the case φ = 0, we start with looking at the intersection area Ainf of a cylinder
of infinite length with the (x, y)-plane, which is an ellipse:
From Figure B.4 we can read off

a = r

sin (φ) ,

which yields

Ainf = πar (B.8)

= πr2

sin (φ) .

If the length of the cylinder is finite, in some cases one or both ends of this ellipse are cut
of.
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B.2.1 The large angle case (full ellipse)
Making use of the area of the section of an ellipse (as in Figure B.5) being given (see e.g.
Bronstein Semendjajew (2008)) by

Asection = ar arccos
(

x

a

)
− xy (B.9)

and using the ellipse equation (see e.g. Bronstein Semendjajew (2008))

1 = x2

a2 + y2

r2 (B.10)

to reexpress y as

y = r

√
1 − x2

a2 , (B.11)

we obtain

Ashort
section = ar arccos

(
x

a

)
− xr

√
1 − x2

a2 . (B.12)

Figure B.5: Intersection between cylinder of length h and (x, y)-plane in the large angle
case

Finally reading off the expressions for y4 and y5 from Figure B.5, we obtain
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x = a − y4 − y5 (B.13)

= a − dmax − |z − zj|
tan (90◦ − φ) − dmax − |z − zj|

tan (φ) (B.14)

which yields from (B.12)

Ashort
section = ar arccos

a − dmax−|z−zj |
tan(90◦−φ) − dmax−|z−zj |

tan(φ)

a

−
(

a − dmax − |z − zj|
tan (90◦ − φ) − dmax − |z − zj|

tan (φ)

)
·

· r

√√√√
1 −

(
a − dmax−|z−zj |

tan(90◦−φ) − dmax−|z−zj |
tan(φ)

)2

a2 (B.15)

= ar arccos
(

1 − dmax − |z − zj|
a tan (90◦ − φ) − dmax − |z − zj|

a tan (φ)

)
−

−
(

a − dmax − |z − zj|
tan (90◦ − φ) − dmax − |z − zj|

tan (φ)

)
·

· r

√√√√1 −
(

1 − dmax − |z − zj|
a tan (90◦ − φ) − dmax − |z − zj|

a tan (φ)

)2

= ar arccos
(

1 − dmax − |z − zj|
a

(
tan (φ) + 1

tan (φ)

))
−

−
(

a − (dmax − |z − zj|)
(

tan (φ) + 1
tan (φ)

))
·

· r

√√√√1 −
(

1 − dmax − |z − zj|
a

(
tan (φ) + 1

tan (φ)

))2

,

for the case dmax − |zj − z| < r cos (φ), i.e. the area of intersection being less than a half
ellipse.

In the case (dmax − |zj − z| > r cos (φ)), we have

Along
section = Ainf − ar arccos

(
x′

a

)
+ x′y′ (B.16)

= πar − ar arccos
(

x′

a

)
+ x′y′, (B.17)

with (reading off the expressions for x′
1, x′

2, x′
3 and x′

4 from Figure B.5)
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x′ = x′
1 + x′

2 (B.18)

= x′
4 tan (φ) + x′

4
tan (φ)

= x′
4

(
tan (φ) + 1

tan (φ)

)

= (dmax − |zj − z| − x3)
(

tan (φ) + 1
tan (φ)

)

= (dmax − |zj − z| − r cos (φ))
(

tan (φ) + 1
tan (φ)

)
.

Using

y′ = r

√
1 − x′2

a2 , (B.19)

we get

Along
section = πar − ar arccos

(
x′

a

)
+ x′r

√
1 − x′2

a2 (B.20)

= πar − ar arccos
(dmax − |zj − z| − r cos (φ))

(
tan (φ) + 1

tan(φ)

)
a

+

+
(

(dmax − |zj − z| − r cos (φ))
(

tan (φ) + 1
tan (φ)

))
·

· r

√√√√
1 −

(
(dmax − |zj − z| − r cos (φ))

(
tan (φ) + 1

tan(φ)

))2

a2 ,

for the case dmax − |zj − z| > r cos (φ).

So, we have
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Alargeangle =


0 ,if |zj − z| > dmax

Ashort
section ,if dmax − |zj − z| < r cos (φ) and dlargeangle

inner < |zj − z| < dmax

Along
section ,if dmax − |zj − z| > r cos (φ) and dlargeangle

inner < |zj − z| < dmax

Ainf ,if |zj − z| < dlargeangle
inner

= 1(dlargeangle
inner ,dmax] (|zj − z|)

[
1[0,dmax−r cos(φ)) (|zj − z|) Along

section+

+ 1[dmax−r cos(φ),∞) (|zj − z|) Ashort
section

]
+ 1[0,dlargeangle

inner ] (|zj − z|) Ainf

= 1[0,dmax−r cos(φ))∩(dlargeangle
inner ,dmax] (|zj − z|) Along

section+ (B.21)

+ 1[dmax−r cos(φ),∞)∩(dlargeangle
inner ,dmax] (|zj − z|) Ashort

section + 1[0,dlargeangle
inner ] (|zj − z|) Ainf

for φ > arctan
(

2r
h

)
.

B.2.2 The small angle case (ellipse section)

Now, we look at the case of φ < arctan
(

2r
h

)
: We basically obtain the analogue equations

with the only difference being that instead obtaining the full ellipse at |zj − z| < dlargeangle
inner ,

we have to also remove a part of the ellipse on the other side at |zj − z| < dsmallangle
inner . To

calculate Acut, which has to be removed for |zj − z| < dsmallangle
inner , we use

Acut = ar arccos
(

x′′

a

)
− x′′y′′ (B.22)

and

y′′ = r

√
1 − x′′2

a2 (B.23)

to obtain

Acut = ar arccos
(

x′′

a

)
− x′′r

√
1 − x′′2

a2 . (B.24)

Now (reading off the expressions for x′′
1, x′′

2, x′′
3 and x′′

4 from Figure B.6),
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Figure B.6: Intersection between cylinder of length h and (x, y)-plane in the small angle
case

x′′ = a − x′′
1 − x′′

2 (B.25)

= a − x′′
4

(
tan (φ) + 1

tan (φ)

)

= a − (dmax − |zj − z| − x′′
3)
(

tan (φ) + 1
tan (φ)

)

= a − (dmax − |zj − z| − h sin (φ))
(

tan (φ) + 1
tan (φ)

)

yields
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Acut = ar arccos
a − (dmax − |zj − z| − h sin (φ))

(
tan (φ) + 1

tan(φ)

)
a

− (B.26)

−
(

a − (dmax − |zj − z| − h sin (φ))
(

tan (φ) + 1
tan (φ)

))
·

· r

√√√√
1 −

(
a − (dmax − |zj − z| − h sin (φ))

(
tan (φ) + 1

tan(φ)

))2

a2

= ar arccos
(

1 − (dmax − |zj − z| − h sin (φ))
a

(
tan (φ) + 1

tan (φ)

))
−

−
(

a − (dmax − |zj − z| − h sin (φ))
(

tan (φ) + 1
tan (φ)

))
·

· r

√√√√1 −
(

1 − (dmax − |zj − z| − h sin (φ))
a

(
tan (φ) + 1

tan (φ)

))2

,

for |zj − z| < dsmallangle
inner . So finally, we obtain

Asmallangle = 1(0,dmax] (|zj − z|)
[
1[0,dmax−r cos(φ)) (|zj − z|) Along

section+ (B.27)

+ 1[dmax−r cos(φ),∞) (|zj − z|) Ashort
section

]
− Acut1[0,dsmallangle

inner ] (|zj − z|)

= 1[0,dmax−r cos(φ))∩(0,dmax] (|zj − z|) Along
section+

+ 1[dmax−r cos(φ),∞)∩(0,dmax] (|zj − z|) Ashort
section − Acut1[0,dsmallangle

inner ] (|zj − z|) ,

for φ < arctan
(

2r
h

)
.

B.2.3 Complete formula
Combining the results of the previous sections yields for φ ∈ (0, 90◦)

A (zj, φ, r, h, z) = Alargeangle1[arctan( 2r
h ), π

2 ) (φ) + Asmallangle1[0,arctan( 2r
h )) (φ) , (B.28)

so given a state η of n hydrometeors in the form of (3.17), we have

lη (z) = ϱH

n∑
j=1

A (zj, φj, rj, hj, z) , (B.29)

and
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nη (z) =
n∑

j=1

1
πr2

j hj

A (zj, φj, rj, hj, z) . (B.30)

Now, our goal is to simplify the according expressions: Using the fact, that always φj ≤ π
2

and thus cos (φj) ≥ 0, we obtain

Asmallangle (zj, φj, rj, hj, z) = 1[0,dmax−rj cos(φj)) (|zj − z|) Along
section (zj, φj, rj, hj, z) +

+ 1[dmax−rj cos(φj)dmax) (|zj − z|) Ashort
section (zj, φj, rj, hj, z)

− Acut (zj, φj, rj, hj, z) 1[0,dsmallangle
inner ] (|zj − z|) . (B.31)

As cos (φj) ≤ 1, we obtain

dlargeangle
inner = dmax − 2rj cos (φj)︸ ︷︷ ︸

≥0

(B.32)

≤ dmax. (B.33)

Thus

Alargeangle (zj, φj, rj, hj, z) = 1[0,dmax−rj cos(φj))∩(dlargeangle
inner ,dmax] (|zj − z|) Along

section (zj, φj, rj, hj, z) +

+ 1[dmax−rj cos(φj),∞)∩(dlargeangle
inner ,dmax] (|zj − z|) Ashort

section (zj, φj, rj, hj, z)

+ 1[0,dlargeangle
inner ] (|zj − z|) Ainf (zj, φj, rj, hj, z) (B.34)

= 1(dlargeangle
inner ,dmax−rj cos(φj)] (|zj − z|) Along

section (zj, φj, rj, hj, z) +

+ 1[dmax−rj cos(φj),dmax) (|zj − z|) Ashort
section (zj, φj, rj, hj, z)

+ 1[0,dlargeangle
inner ] (|zj − z|) Ainf (zj, φj, rj, hj, z)
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Appendix C

Proofs for Chapter 4

We now give the proofs for the theorems shown in Chapter 4 and Appendix D.

C.1 Proof of Proposition 4.1.1

We now prove Proposition 4.1.1:

Proof. We start by taking the expectation value of Zz,t, as defined in (3.14), for an arbitrary
time t and height z, yielding

E [Zz,t] = (C.1)

= E

 n∑
j=1

1[
z−

Dj
2 ,z+

Dj
2

] (zj (t)) gZ (Dj) f (Dj, zj, t, z)


=
∫ n∑

j=1
1[

z−
Dj
2 ,z+

Dj
2

] (zj (t)) gZ (Dj) f (Dj, zj, t, z) dP (z, D)

=
n∑

j=1

∫
1[

z−
Dj
2 ,z+

Dj
2

] (zj (t)) gZ (Dj) f (Dj, zj, t, z) dP (zj, Dj)

=
n∑

j=1

∫
1[

z−
Dj
2 ,z+

Dj
2

] (zj + vT (Dj) t) gZ (Dj) f (Dj, zj, t, z) dP (zj, Dj)

=
n∑

j=1

∫
1[

z−vT (Dj)t−
Dj
2 ,z−vT (Dj)t+

Dj
2

] (zj) gZ (Dj) f (Dj, zj, t, z) dP (zj, Dj) ,

where we used (3.5). Employing the probability densities given in Assumption 3.2.1, this
can be further simplified to
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E [Zz,t] =

=
n∑

j=1

∫ ∞

0

∫ ∞

−∞
1[

z−vT (Dj)t−
Dj
2 ,z−vT (Dj)t+

Dj
2

] (zj) gZ (Dj) f (Dj, zj, t, z) ϱzj
(zj) ϱDj

(Dj) dzjdDj

= 1
zmax − zmin

n∑
j=1

∫ ∞

0

∫ ∞

−∞
1[

z−vT (Dj)t−
Dj
2 ,z−vT (Dj)t+

Dj
2

] (zj) 1[zmin,zmax] (zj)︸ ︷︷ ︸
=1[

z−vT (Dj)t−
Dj
2 ,z−vT (Dj)t+

Dj
2

]
∩[zmin,zmax]

(zj)=A(z,t,Dj ,zmin,zmax)

·

· gZ (Dj) f (Dj, zj, t, z) λe−λDj dzjdDj (C.2)

and finally using (4.1), (4.2) and (4.3) to

E [Zz,t] = 1
zmax − zmin

n∑
j=1

∫ ∞

0

∫
A(z,t,Dj ,zmin,zmax)

gZ (Dj) f (Dj, zj, t, z) λe−λDj dzjdDj

= 1
zmax − zmin

n∑
j=1

∫ ∞

0
gZ (Dj) λe−λDj

∫
A(z,t,Dj ,zmin,zmax)

f (Dj, zj, t, z) dzjdDj

= 1
zmax − zmin

n∑
j=1

∫ ∞

0
gZ (Dj) λe−λDj h2 (z, t, Dj, zmin, zmax) dDj

= 1
zmax − zmin

n∑
j=1

IZ (z, t, zmin, zmax)

= n

zmax − zmin

IZ (z, t, zmin, zmax) . (C.3)

C.2 Proof of Proposition 4.1.2

We now prove Proposition 4.1.2:

Proof. For two functions Xx,t and Yy,s by definition the covariance is given by

Cov (Xx,t, Yy,s) = E [Xx,tYy,s] − E [Xx,t]E [Yy,s] . (C.4)

Using the form (3.14) we calculate the first term in (C.4)
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E [Xx,tYy,s] = (C.5)

=
∫ n∑

j=1
1[

x−
Dj
2 ,x+

Dj
2

] (zj (t)) gX (Dj) f (Dj, zj, t, x) ·

·
n∑

k=1
1[

y− Dk
2 ,y+ Dk

2

] (zk (s)) gY (Dk) f (Dk, zk, s, y) dP (z, D)

=
∫ n∑

j=1
1[

x−
Dj
2 ,x+

Dj
2

] (zj + vT (Dj) t) gX (Dj) f (Dj, zj, t, x) ·

·
n∑

k=1
1[

y− Dk
2 ,y+ Dk

2

] (zk + vT (Dk) s) gY (Dk) f (Dk, zk, s, y) dP (z, D)

=
∫ n∑

j=1
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

·
n∑

k=1
1[

y−vT (Dk)s− Dk
2 ,y−vT (Dk)s+ Dk

2

] (zk) gY (Dk) f (Dk, zk, s, y) dP (z, D)

=
n∑

j=1

n∑
k=1

∫ ∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dk)s− Dk

2 ,y−vT (Dk)s+ Dk
2

] (zk) gY (Dk) f (Dk, zk, s, y) dP (zj, Dj, zk, Dk) .

Now, we can split the sum to make use of the independence for j ̸= k and obtain
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E [Xx,tYy,s] = (C.6)

=
n∑

j=1

n∑
k=1
k ̸=j

∫ ∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dk)s− Dk

2 ,y−vT (Dk)s+ Dk
2

] (zk) gY (Dk) f (Dk, zk, s, y) dP (zj, Dj, zk, Dk) +

+
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj)

=
n∑

j=1

n∑
k=1
k ̸=j

∫ ∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dk)s− Dk

2 ,y−vT (Dk)s+ Dk
2

] (zk) gY (Dk) f (Dk, zk, s, y) dP (zj, Dj) dP (zk, Dk) +

+
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) ,

which can be rewritten as

E [Xx,tYy,s] = (C.7)

=
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) dP (zj, Dj) ·

·
n∑

k=1

∫
1[

y−vT (Dk)s− Dk
2 ,y−vT (Dk)s+ Dk

2

] (zk) gY (Dk) f (Dk, zk, s, y) dP (zk, Dk) −

−
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) dP (zj, Dj) ·

·
∫

1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) +

+
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) .

Finally, using (C.2) together with Assumption 3.2.1, we obtain
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E [Xx,tYy,s] = E [Xx,t]E [Yy,s] − (C.8)

−
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) dP (zj, Dj) ·

·
∫

1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) +

+
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) ,

and thus

Cov (Xx,t, Yy,s) = (C.9)

=
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) −

−
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) dP (zj, Dj) ·

·
∫

1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) .

Analogue to the calculations for the expectation value in Appendix C.1, we get
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Cov (Xx,t, Yy,s) = (C.10)

=
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) −

− 1
(zmax − zmin)2

n∑
j=1

IX (x, t, zmin, zmax) IY (y, s, zmin, zmax)

=
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

] (zj) gX (Dj) f (Dj, zj, t, x) ·

· 1[
y−vT (Dj)s−

Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) gY (Dj) f (Dj, zj, s, y) dP (zj, Dj) −

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax)

=
n∑

j=1

∫
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

]
∩
[

y−vT (Dj)s−
Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) ·

· gX (Dj) gY (Dj) f (Dj, zj, t, x) f (Dj, zj, s, y) dP (zj, Dj) −

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax) ,

which can be (employing the probability densities given in Assumption 3.2.1) rewritten as
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Cov (Xx,t, Yy,s) = (C.11)

=
n∑

j=1

∫ ∞

0

∫ ∞

−∞
1[

x−vT (Dj)t−
Dj
2 ,x−vT (Dj)t+

Dj
2

]
∩
[

y−vT (Dj)s−
Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) ·

· gX (Dj) gY (Dj) f (Dj, zj, t, x) f (Dj, zj, s, y) ϱzj
(zj) ϱDj

(Dj) dzjdDj−

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax)

= 1
zmax − zmin

n∑
j=1

∫ ∞

0

∫ ∞

−∞
gX (Dj) gY (Dj) f (Dj, zj, t, x) f (Dj, zj, s, y) λe−λDj ·

· 1[
x−vT (Dj)t−

Dj
2 ,x−vT (Dj)t+

Dj
2

]
∩
[

y−vT (Dj)s−
Dj
2 ,y−vT (Dj)s+

Dj
2

] (zj) 1[zmin,zmax] (zj) dzjdDj−

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax)

= 1
zmax − zmin

n∑
j=1

∫ ∞

0

∫ ∞

−∞
gX (Dj) gY (Dj) f (Dj, zj, t, x) f (Dj, zj, s, y) λe−λDj ·

· 1[
x−vT (Dj)t−

Dj
2 ,x−vT (Dj)t+

Dj
2

]
∩
[

y−vT (Dj)s−
Dj
2 ,y−vT (Dj)s+

Dj
2

]
∩[zmin,zmax]

(zj) dzjdDj−

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax) .

Using (4.5) and (4.6), we obtain

Cov (Xx,t, Yy,s) = (C.12)

= 1
zmax − zmin

n∑
j=1

∫ ∞

0

∫
B(x,y,t,s,Dj ,zmin,zmax)

gX (Dj) gY (Dj) f (Dj, zj, t, x) ·

· f (Dj, zj, s, y) λe−λDj dzjdDj−

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax)

= 1
zmax − zmin

n∑
j=1

∫ ∞

0
gX (Dj) gY (Dj) λe−λDj

∫
B(x,y,t,s,Dj ,zmin,zmax)

f (Dj, zj, t, x) ·

· f (Dj, zj, s, y) dzjdDj − n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax)

= 1
zmax − zmin

n∑
j=1

∫ ∞

0
gX (Dj) gY (Dj) λe−λDj k2 (x, y, t, s, Dj, zmin, zmax) dDj−

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax) .

Finally, using (4.7) we obtain
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Cov (Xx,t, Yy,s) = (C.13)

= 1
zmax − zmin

n∑
j=1

∫ ∞

0
gX (Dj) gY (Dj) λe−λDj k2 (x, y, t, s, Dj, zmin, zmax) dDj︸ ︷︷ ︸

=JXY (x,y,t,s,zmin,zmax)

−

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax) .

= n

zmax − zmin

JXY (x, y, t, s, zmin, zmax) −

− n

(zmax − zmin)2 IX (x, t, zmin, zmax) IY (y, s, zmin, zmax) .



Appendix D

Simplification of auxiliary quantities
from Chapter 4

We now give two propositions that allow to further simplify auxiliary quantities defined in
for Chapter 4. These might be useful in further attempts to obtain analytical covariance
matrices.

First, we notice that we can explicitly calculate the integral in (4.2):

Proposition D.0.1. Given the assumptions of Proposition 4.1.1, let

h1 (z, t, Dj, zmin, zmax) =
(

D2
j

4 − z2 + 2zα
√

Djt − α2Djt
2
)

· (D.1)

·
(

min
(

z − α
√

Djt + Dj

2 , zmax

)
− max

(
z − α

√
Djt − Dj

2 , zmin

))
+

+
(

min
(

z − α
√

Djt + Dj

2 , zmax

)2
− max

(
z − α

√
Djt − Dj

2 , zmin

)2)(
z − α

√
Djt

)
−

− 1
3

(
min

(
z − α

√
Djt + Dj

2 , zmax

)3
− max

(
z − α

√
Djt − Dj

2 , zmin

)3)
,

then

h2 (z, t, Dj, zmin, zmax) =
h1 (z, t, Dj, zmin, zmax) ,if A (z, t, Dj, zmin, zmax) ̸= ∅

0 , else
. (D.2)

Proof. Using (3.5) and (3.10), we have
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f (Dj, zj, t, z) =
[

D2
j

4 − (zj + vT (Dj) t − z)2
]

(D.3)

=
[

D2
j

4 − ((zj − z) + vT (Dj) t)2
]

=
[

D2
j

4 − (zj − z)2 − 2 (zj − z) vT (Dj) t − v2
T (Dj) t2

]

=
[

D2
j

4 − z2
j + 2zjz − z2 − 2 (zj − z) vT (Dj) t − v2

T (Dj) t2
]

=
[

D2
j

4 − z2 + 2zvT (Dj) t − v2
T (Dj) t2 + 2zj (z − vT (Dj) t) − z2

j

]

and thus by employing (4.1) and (D.1)

∫
A(z,t,Dj ,zmin,zmax)

f (Dj, zj, t, z) dzj =
∫

A(z,t,Dj ,zmin,zmax)

[
D2

j

4 − (zj + vT (Dj) t − z)2
]

dzj

=
∫

A(z,t,Dj ,zmin,zmax)

[
D2

j

4 − z2 + 2zvT (Dj) t − v2
T (Dj) t2 + 2zj (z − vT (Dj) t) − z2

j

]
dzj

=
[(

D2
j

4 − z2 + 2zvT (Dj) t − v2
T (Dj) t2

)
zj+

+z2
j (z − vT (Dj) t) − 1

3z3
j

]zj=min
(

z−vT (Dj)t+
Dj
2 ,zmax

)
zj=max

(
z−vT (Dj)t−

Dj
2 ,zmin

)
=
(

D2
j

4 − z2 + 2zvT (Dj) t − v2
T (Dj) t2

)
·

·
[
min

(
z − vT (Dj) t + Dj

2 , zmax

)
− max

(
z − vT (Dj) t − Dj

2 , zmin

)]
+

+
[
min

(
z − vT (Dj) t + Dj

2 , zmax

)2
− max

(
z − vT (Dj) t − Dj

2 , zmin

)2]
(z − vT (Dj) t) −

− 1
3

(
min

(
z − vT (Dj) t + Dj

2 , zmax

)3
− max

(
z − vT (Dj) t − Dj

2 , zmin

)3)
= h1 (z, t, Dj, zmin, zmax) (D.4)

in the case A (z, t, Dj, zmin, zmax) ̸= ∅ and

∫
A(z,t,Dj ,zmin,zmax)

f (Dj, zj, t, z) dzj = 0, (D.5)

otherwise.
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Analogue, we obtain an analytic expression for (4.6).

Proposition D.0.2. Given the assumptions of Proposition 4.1.2, let

k1 (x, y, t, s, Dj, zmin, zmax) = (D.6)

=
[(

D2
j

4 − x2 + 2xα
√

Djt − α2Djt
2
)(

D2
j

4 − y2 + 2yα
√

Djs − α2Djs
2
)

zj+

+
[(

D2
j

4 − x2 + 2xα
√

Djt − α2Djt
2
)(

y − α
√

Djs
)

+

+
(
x − α

√
Djt

)(D2
j

4 − y2 + 2yα
√

Djs − α2Djs
2
)]

z2
j +

+ 1
3

[
4
(
x − α

√
Djt

) (
y − α

√
Djs

)
−
(

D2
j

4 − x2 + 2xα
√

Djt − α2Djt
2
)

−

−
(

D2
j

4 − y2 + 2yα
√

Djs − α2Djs
2
)]

z3
j − 1

2
((

x − α
√

Djt
)

+
(
y − α

√
Djs

))
z4

j +

+ 1
5z5

j ,

]zj=min
({

x−α
√

Djt+
Dj
2 ,y−α

√
Djs+

Dj
2 ,zmax

})
zj=max

({
x−α

√
Djt−

Dj
2 ,y−α

√
Djs−

Dj
2 ,zmin

})

then

k2 (x, y, t, s, Dj, zmin, zmax) := (D.7)

:=
k1 (x, y, t, s, Dj, zmin, zmax) , if B (x, y, t, s, Dj, zmin, zmax) ̸= ∅

0 , else
.

Proof. Using (3.5), (3.10) and (D.3), we obtain
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f (Dj, zj, t, x) f (Dj, zj, s, y) = (D.8)

=
[

D2
j

4 − (zj + vT (Dj) t − x)2
] [

D2
j

4 − (zj + vT (Dj) s − y)2
]

=
[

D2
j

4 − x2 + 2xvT (Dj) t − v2
T (Dj) t2 + 2zj (x − vT (Dj) t) − z2

j

]
·

·
[

D2
j

4 − y2 + 2yvT (Dj) s − v2
T (Dj) s2 + 2zj (y − vT (Dj) s) − z2

j

]

=
(

D2
j

4 − x2 + 2xvT (Dj) t − v2
T (Dj) t2

)(
D2

j

4 − y2 + 2yvT (Dj) s − v2
T (Dj) s2

)
+

+ 2
[(

D2
j

4 − x2 + 2xvT (Dj) t − v2
T (Dj) t2

)
(y − vT (Dj) s) +

+ (x − vT (Dj) t)
(

D2
j

4 − y2 + 2yvT (Dj) s − v2
T (Dj) s2

)]
zj+

+
[
4 (x − vT (Dj) t) (y − vT (Dj) s) −

(
D2

j

4 − x2 + 2xvT (Dj) t − v2
T (Dj) t2

)
−

−
(

D2
j

4 − y2 + 2yvT (Dj) s − v2
T (Dj) s2

)]
z2

j − 2 [(x − vT (Dj) t) + (y − vT (Dj) s)] z3
j + z4

j

which yields by employing (4.5) and (D.6)

∫
B(x,y,t,s,Dj ,zmin,zmax)

f (Dj, zj, t, x) f (Dj, zj, s, y) (zj) dzj = (D.9)

=
{(

D2
j

4 − x2 + 2xvT (Dj) t − v2
T (Dj) t2

)(
D2

j

4 − y2 + 2yvT (Dj) s − v2
T (Dj) s2

)
zj+

+
[(

D2
j

4 − x2 + 2xvT (Dj) t − v2
T (Dj) t2

)
(y − vT (Dj) s) +

+ (x − vT (Dj) t)
(

D2
j

4 − y2 + 2yvT (Dj) s − v2
T (Dj) s2

)]
z2

j +

+ 1
3

[
4 (x − vT (Dj) t) (y − vT (Dj) s) −

(
D2

j

4 − x2 + 2xvT (Dj) t − v2
T (Dj) t2

)
−

−
(

D2
j

4 − y2 + 2yvT (Dj) s − v2
T (Dj) s2

)]
z3

j − 1
2 ((x − vT (Dj) t) + (y − vT (Dj) s)) z4

j +

+ 1
5z5

j ,

}zj=min
({

x−vT (Dj)t+
Dj
2 ,y−vT (Dj)s+

Dj
2 ,zmax

})
zj=max

({
x−vT (Dj)t−

Dj
2 ,y−vT (Dj)s−

Dj
2 ,zmin

})
= k1 (x, y, t, s, Dj, zmin, zmax) ,
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for B (x, y, t, s, Dj, zmin, zmax) ̸= ∅ and

∫
B(x,y,t,s,Dj ,zmin,zmax)

f (Dj, zj, t, x) f (Dj, zj, s, y) (zj) dzj = 0, (D.10)

for B (x, y, t, s, Dj, zmin, zmax) = ∅.
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Appendix E

Velocity models

Here, we shortly discuss (besides our strongly simplified velocity model for spherical hy-
drometeors) the velocity models of Brdar and Seifert (2018) in connection with the axis
ratios provided by Auer and Veal (1970). Furthermore, we mention the experimental re-
sults of Heymsfield and Kajikawa (1987), for assessing potential model errors introduced
by the velocity model. This discussion of the different velocity models can facilitate in-
terpreting our results for different hydrometeor geometries (which employ these velocity
models), as gravitational sorting and thus the dependence of the terminal fall velocities on
hydrometeor mass and velocity have a large influence on the number density and liquid
water content profiles and correlations. Note that for this thesis we adopted the nomen-
clature for the hydrometeor types from the sources cited in this chapter.

Figure E.1 shows the terminal fall velocities obtained from the results of Brdar and Seifert
(2018), when combined with axis ratios determined by the according power laws given
in Auer and Veal (1970). Note that Brdar and Seifert (2018) obtained their results from
mathematical modelling, while Auer and Veal (1970) attained their results by fitting power
laws to experimental data. Furthermore, Figure E.1 shows terminal fall velocities obtained
by equating gravitational force and friction (refered to as simplified model), as well as
reference values from the power laws obtained for the terminal fall velocity by Heymsfield
and Kajikawa (1987) from experimental data. The curves can be useful to explain the
effect of gravitational sorting on our profiles and covariances. The (experimental) results
from Heymsfield and Kajikawa, 1987 are included to better asess the accuracy of the used
velocity models and evaluate how the differences between the McSnow model (Brdar and
Seifert, 2018) and the simplified velocity model compare to the model error, i.e. the dif-
ference between the model and physical reality. Terminal fall velocities in Figure E.1 are
shown for different hydrometeor geometries in the mass range [4.8 · 10−10kg, 3.8 · 10−6kg]
(left panel) and [4.8 · 10−10kg, 6.0 · 10−2kg].
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Figure E.1: Terminal fall velocities for different hydrometeor geometries in the mass range
[4.8 · 10−10kg, 3.8 · 10−6kg] (left panel) and [4.8 · 10−10kg, 6.0 · 10−2kg] (right panel). Axis
ratios are assumed to be determined by the according power laws given in Auer and Veal,
1970 and terminal fall velocities are calculated using the results of Brdar and Seifert, 2018
(McSnow), or by equating gravitational force and friction (simplified). The power laws
given for the terminal fall velocity in Heymsfield and Kajikawa, 1987 are used as reference.

In the left panel of Figure E.1, we see that that for hexagonal plates the velocities predicted
by the McSnow model (Brdar and Seifert, 2018) agree relatively well with the experimental
predictions from Heymsfield and Kajikawa, 1987. However for thick plates there are larger
differences, especially for higher hydrometeor masses. For the spherical hydrometeors,
we see that both the McSnow model (Brdar and Seifert, 2018) and the simplified velocity
model overestimate the terminal fall velocity for smaller hydrometeor masses, whereas they
underestimate it for larger hydrometeor masses. Here the differences between the McSnow
model (Brdar and Seifert, 2018) and the simplified velocity model are for most hydrometeor
masses smaller than the deviation from the experimental results from Heymsfield and
Kajikawa, 1987.
Differences between the predictions for the terminal fall velocity of hexagonal plates to the
reference model might be explained by using only the axis ratio of a hexagonal plate, but
for simplicity the cross section of a cylinder. Further reasons for differences to experimental
data might include density variations due to rhiming (we assume hydrometeors here to be
composed of massive ice), deviations of real hydrometeors from idealized geometries and
axis ratios, the effects of particle orientations varying over time and interactions between
hydrometeors.



Appendix F

Upwind scheme

F.1 Diagonalization
We can use (2.46), (2.47), (2.48) and (2.49) together with γ = 1

6 to rewrite (2.51) in a
simpler way:

A (x̄) =
(

χN (1 − γ) x̄γ χNγx̄γ−1ρ−1
w D−3

v

−χLx̄γ+1ρwD3
v χL (1 + γ) x̄γ

)
(F.1)

(2.46)=
(

χN (1 − γ) x̄γ χNγx̄γ ρwD3
vN

L
ρ−1

w D−3
v

−χLx̄γ L
ρwD3

vN
ρwD3

v χL (1 + γ) x̄γ

)
(F.2)

=
(

χN (1 − γ) x̄γ χNγx̄γ N
L

−χLx̄γ L
N

χL (1 + γ) x̄γ

)
(F.3)

= x̄γ

(
χN (1 − γ) χNγ N

L

−χL
L
N

χL (1 + γ)

)
(F.4)

(2.48)= x̄γ

(
χN (1 − γ) χNγ N

L

−35
16χN

L
N

35
16χN (1 + γ)

)
(F.5)

= χN x̄γ

(
(1 − γ) γ N

L

−35
16

L
N

35
16 (1 + γ)

)
(F.6)

γ= 1
6= χN x̄

1
6

(1 − 1
6

)
1
6

N
L

−35
16

L
N

35
16

(
1 + 1

6

) (F.7)

= χN x̄
1
6

(6
6 − 1

6

)
1
6

N
L

−35
16

L
N

35
16

(
6
6 + 1

6

) (F.8)

= χN x̄
1
6

(
5
6

1
6

N
L

−35
16

L
N

35
16

7
6

)
(F.9)

= χN x̄
1
6

(
5
6

1
6

N
L

−35
16

L
N

245
96 .

)
(F.10)
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Denoting e.g. k = L
N

, this becomes

A (x̄) = χN x̄
1
6

(
5
6

1
6

1
k

−35
16k 245

96

)
(F.11)

and can be passed to Wolfram|Alpha, n.d. for diagonalization, yielding

A (x̄) = χN x̄
1
6 · S · J · S−1, (F.12)

with

S =
(

165+
√

13785
420k

−
√

13785−165
420k

1 1

)
(F.13)

=
(

165+
√

13785
420k

165−
√

13785
420k

1 1

)
(F.14)

=
(

165+
√

13785
420

N
L

165−
√

13785
420

N
L

1 1

)
(F.15)

and

J =
 1

192

(
325 −

√
13785

)
0

0 1
192

(
325 +

√
13785

) , (F.16)

as well as

S−1 =

 14
√

15
919k 1

2 − 11
√

15
919

2
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√

15
919k 1

2 + 11
√

15
919

2 .
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√
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919k 1
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√
15
919
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15
919k 1

2
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1 + 11

√
15
919
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.

 (F.18)

=
 14

√
15
919

L
N

1
2

(
1 − 11

√
15
919

)
−14

√
15
919

L
N

1
2

(
1 + 11

√
15
919

)
.

 (F.19)

F.2 System of equations
Now, we can solve the according system of equations: Adding (5.19) and (5.20), yields
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0 = 14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.20)

+ 1
2

1 − 11
√

15
919
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+ c− (k, l) Lk+1,l − Lk,l
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we get
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6
(

Lk,l

Nk,l

) 1
6

·
(√

13785 − 325
)

− (F.32)

− 1
2

1 + 11
√

15
919

 χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6

·
(√

13785 + 325
)

= 1
2

χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6

·

1 − 11
√

15
919

(√13785 − 325
)

− (F.33)

−

1 + 11
√

15
919

(√13785 + 325
)

= χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6

· s2,

setting (using Wolfram|Alpha, n.d.)

s1 := 14
√

15
919 · 2 ·

√
13785 (F.34)

= 420 (F.35)

s2 := 1
2

1 − 11
√

15
919

(√13785 − 325
)

−

1 + 11
√

15
919

(√13785 + 325
) (F.36)

= −490 (F.37)
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After inserting c+ (k, l) and c− (k, l), (F.25) becomes

Lk,l+1 = Lk,l

1 − ∆t

∆x

14
√

15
919

 χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6

· 2 ·
√

13785
(Nk+1,l

Nk,l

− 1
)

+

(F.38)

+
 χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6

· s2

(Lk+1,l

Lk,l

− 1
)

= Lk,l

1 − ∆t

∆x

χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6
14

√
15
919 · 2 ·

√
13785

(
Nk+1,l

Nk,l

− 1
)

+

(F.39)

+ s2

(
Lk+1,l

Lk,l

− 1
))]

= Lk,l

1 − ∆t

∆x

χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6
(

s1

(
Nk+1,l

Nk,l

− 1
)

+ s2

(
Lk+1,l

Lk,l

− 1
)) .

Analogue, setting

F :=

(
1 − 11

√
15
919

)
(
1 + 11

√
15
919

) , (F.40)

(5.19)-F (5.20) yields
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0 = 14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.41)

+ 1
2

1 − 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c+ (k, l) Lk+1,l − Lk,l

∆x

]
+

+ 14
√

15
919

Lk,l

Nk,l

F
[
Nk,l+1 − Nk,l

∆t
+ c− (k, l) Nk+1,l − Nk,l

∆x

]
−

− F
1
2

1 + 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c− (k, l) Lk+1,l − Lk,l

∆x

]

= 14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.42)

+ 1
2

1 − 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c+ (k, l) Lk+1,l − Lk,l

∆x

]
+

+ 14
√

15
919

Lk,l

Nk,l

F
[
Nk,l+1 − Nk,l

∆t
+ c− (k, l) Nk+1,l − Nk,l

∆x

]
−

−

(
1 − 11

√
15
919

)
(
1 + 11

√
15
919

) 1
2

1 + 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c− (k, l) Lk+1,l − Lk,l

∆x

]

= 14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.43)

+ 1
2

1 − 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c+ (k, l) Lk+1,l − Lk,l

∆x

]
+

+ 14
√

15
919

Lk,l

Nk,l

F
[
Nk,l+1 − Nk,l

∆t
+ c− (k, l) Nk+1,l − Nk,l

∆x

]
−

− 1
2

1 − 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c− (k, l) Lk+1,l − Lk,l

∆x

]
,

becoming
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0 = 14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.44)

+ 1
2

1 − 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c+ (k, l) Lk+1,l − Lk,l

∆x

]
+

+ 14
√

15
919

Lk,l

Nk,l

F
[
Nk,l+1 − Nk,l

∆t
+ c− (k, l) Nk+1,l − Nk,l

∆x

]
−

− 1
2

1 − 11
√

15
919

[Lk,l+1 − Lk,l

∆t
+ c− (k, l) Lk+1,l − Lk,l

∆x

]

= 14
√

15
919

Lk,l

Nk,l

[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.45)

+ 1
2

1 − 11
√

15
919

[c+ (k, l) Lk+1,l − Lk,l

∆x

]
+

+ 14
√

15
919

Lk,l

Nk,l

F
[
Nk,l+1 − Nk,l

∆t
+ c− (k, l) Nk+1,l − Nk,l

∆x

]
−

− 1
2

1 − 11
√

15
919

[c− (k, l) Lk+1,l − Lk,l

∆x

]
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√

15
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[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.46)

+ 1
2

1 − 11
√

15
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 [c+ (k, l) − c− (k, l)] Lk+1,l − Lk,l

∆x
+

+ 14
√

15
919

Lk,l

Nk,l

F
[
Nk,l+1 − Nk,l

∆t
+ c− (k, l) Nk+1,l − Nk,l

∆x

]

and consequently
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0 = 14
√

15
919

Lk,l
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[
Nk,l+1 − Nk,l

∆t
+ c+ (k, l) Nk+1,l − Nk,l

∆x

]
+ (F.47)

+ 1
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∆x
+
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[
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]
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15
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∆t
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[
c+ (k, l) Nk+1,l − Nk,l

∆x
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+ 1
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1 − 11
√

15
919

 [c+ (k, l) − c− (k, l)] Lk+1,l − Lk,l

∆x
+
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√

15
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Nk,l

F
[
c− (k, l) Nk+1,l − Nk,l

∆x

]
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 [c+ (k, l) − c− (k, l)] Lk+1,l − Lk,l

∆x
. (F.49)

Now, multiplying by 1
14

√
919
15

Nk,l

Lk,l

1
(1+F ) , this becomes

0 = Nk,l+1 − Nk,l

∆t
+ 1

14

√
919
15

Nk,l

Lk,l

1
(1 + F )14
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√
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1
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,

yielding
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Nk,l+1 = Nk,l − ∆t

[
1

(1 + F ) [c+ (k, l) + Fc− (k, l)] Nk+1,l − Nk,l

∆x
+ (F.53)

+ 1
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∆x

[
1

(1 + F ) [c+ (k, l) + Fc− (k, l)] (Nk+1,l − Nk,l) + (F.54)
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As we have
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, (F.59)

we get
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1
(1 + F ) [c+ (k, l) + Fc− (k, l)] = (F.60)

= χN

192

(
1

ρwD3
v

) 1
6
(

Lk,l

Nk,l

) 1
6

·

(√
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with (using Wolfram|Alpha, n.d.)
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Now, (F.57) becomes
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Appendix G

Additional plots for Chapter 6

Figure G.1: Moments of the distribution of wa
2 for several examples of co

cf
< 1, in the

situation of Example 6.3.5, when using R (left panel) and Rdg (right panel), with mean
shown in the upper panel, variance in the central panel and skewness in the lower panel.
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Figure G.2: Moments of the distribution of wa
2 for several examples of co

cf
> 1, in the

situation of Example 6.3.5, when using R (left panel) and Rdg (right panel), with mean is
shown in the upper panel, variance in the central panel and skewness in the lower panel.

We see that the mean of the distribution of wa
2 increases with ϱ for co

cf
> 1 and decreases

with ϱ for co

cf
< 1, where this effect is weaker, when non-diagonal error covariances are
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used. Non-diagonal observation error covariances increase the variance of the distribution,
especially for large ∥ϱ∥. Furthermore, they decrease the skewness of the distribution for
co

cf
< 1 and increase it for co

cf
> 1, especially for large ϱ.



Appendix H

Additional calculations, proofs and
examples for Chapter 6

H.1 Calculations for Example 6.4.1

We have k = 0 and thus

wa
2 = wf

2 + 1
(a + r1) (b + r2) − c2

[
cr2∆w1 +

(
b (a + r1) − c2

)
∆w2

]
(H.1)

= wf
2 + 1

(a + r1) (b + r2) − c2

[
cr2

(
wo

1 − wf
1

)
+
(
b (a + r1) − c2

) (
wo

2 − wf
2

)]
= wf

2

[
1 − b (a + r1) − c2

(a + r1) (b + r2) − c2

]
+ 1

(a + r1) (b + r2) − c2

[
cr2

(
wo

1 − wf
1

)
+
(
b (a + r1) − c2

)
wo

2

]
= wf

2

[
(a + r1) (b + r2) − c2 − b (a + r1) + c2

(a + r1) (b + r2) − c2

]
+

+ 1
(a + r1) (b + r2) − c2

[
cr2

(
wo

1 − wf
1

)
+
(
b (a + r1) − c2

)
wo

2

]
= wf

2

[
(a + r1) r2

(a + r1) (b + r2) − c2

]
+ 1

(a + r1) (b + r2) − c2

[
cr2

(
wo

1 − wf
1

)
+
(
b (a + r1) − c2

)
wo

2

]
= 1

(a + r1) (b + r2) − c2︸ ︷︷ ︸
≥0

[
(a + r1) r2w

f
2 + cr2

(
wo

1 − wf
1

)
+

(
b (a + r1) − c2

)
wo

2︸ ︷︷ ︸
≥br1wo

2 , because ab ≥ c2 and wo
2 ≥ 0

]

≥ 1
(a + r1) (b + r2) − c2

[
(a + r1) r2w

f
2 + br1w

o
2︸ ︷︷ ︸

≥0

+cr2
(
wo

1 − wf
1

)]

= r2

(a + r1) (b + r2) − c2

[
(a + r1) wf

2 + br1

r2
wo

2 + c∆w1

]
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which yields wa
2 ≥ 0, if

(a + r1) wf
2 + br1

r2
wo

2 + c∆w1 ≥ 0. (H.2)

H.2 Analytical example for non-negativity violation
without influence from measurements at other
grid points

Example H.2.1. Assume ∆w1 = 0 and ∆w2 = −wf
2 , then

wa
2 = wf

2 + 1
(a + r1) (b + r2) − (k + c)2 [(cr2 − bk) ∆w1 + (b (a + r1) − c (k + c)) ∆w2]

(H.3)

= wf
2 − b (a + r1) − c (k + c)

(a + r1) (b + r2) − (k + c)2 wf
2 (H.4)

=
[
(a + r1) (b + r2) − (k + c)2 − (b (a + r1) − c (k + c))

] wf
2

(a + r1) (b + r2) − (k + c)2

(H.5)

= [(a + r1) r2 − k (k + c)]︸ ︷︷ ︸
:=g̃

wf
2

(a + r1) (b + r2) − (k + c)2 , (H.6)

thus wa
2 < 0 holds, if g̃ < 0, i.e.

0 > g̃ (H.7)
⇔ 0 > (a + r1) r2 − k (k + c) (H.8)

⇔ 0 > (a + r1) r2 − ρ̃2r1r2 − ρ̃ρ
√

r1r2ab (H.9)

⇔ ρ̃ρ
√

r1r2ab > (a + r1) r2 − ρ̃2r1r2 (H.10)

⇔
√

b >
1

ρ̃ρ
√

r1r2a

[
(a + r1) r2 − ρ̃2r1r2

]
(H.11)

b >

(
1

ρ̃ρ
√

r1r2a

[
(a + r1) r2 − ρ̃2r1r2

])2

(H.12)

This allows (if one choses 0 < ρ̃, ρ < 1 and a, b, r1, r2 > 0) finding positive semidefinite
Pf and R, that produce negative analysis without any effect from ∆w1 = 0. Note, that
this is only possible, if k ̸= 0, i.e. this problem can only occur if non-diagonal R is used.
Furthermore, even assuming the worst case of ρ̃, ρ = 1, it only occurs if b > a r1

r2
, e.g. if

quantities of strongly differing scales are assimilated.
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H.3 Analytical examples involving multiple grid points
We look at the conditions for obtaining negative analysis at grid point 2 in an example
involving 3 grid points. To this end, we consider an example with three grid points, in
which only the first two are observed, using a notation analogue to Notation 6.3.1, with

wa =

wa
1

wa
2

wa
3

 , wf =

wf
1

wf
2

wf
3

 , Pf =

a c d
c b e
d e f

 , R =

r1 k l
k r2 m
l m r3

 . (H.13)

We start with the case of the observations only differing from the forecast at grid point 1:

Example H.3.1. Let ∆w2 = ∆w3 = 0, then

wa
2 = wf

2 − F∆w1, (H.14)

with

F = −
c
[
(b + r2) (f + r3) − (e + m)2]+ e [(c + k) (e + m) − (b + r2) (d + l)] + b [(d + l) (e + m) − (f + r3) (c + k)]

(a + r1) (b + r2) (f + r3) − (a + r1) (e + m)2 − (b + r2) (d + l)2 − (f + r3) (c + k)2 + 2 (c + k) (d + l) (e + m)
.

(H.15)

Thus, we get wa
2 < 0, iff

F∆w1 > wf
2 . (H.16)

Now, we look at the case of grid points 1 and 3 having equal increments and correlations
to grid point 2:

Example H.3.2. Let ∆w2 = 0, ∆w3 = ∆w1, a = f , r1 = r3, k = m and c = e, then

wa
2 = wf

2 − 2F∆w1. (H.17)

Thus, we get wa
2 < 0, iff

2F∆w1 > wf
2 . (H.18)
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H.4 Proof of Proposition 6.4.3
Proof. Using H = Id, from (2.15) follows

wa = wf + K∆w, (H.19)
and from (2.16) follows

K = Pf
(
Pf + R

)−1
. (H.20)

Now setting

K̂ = P̂f
(
P̂f + R̂

)−1
, (H.21)

we can rewrite (H.19) as

wa = wf + K̂∆w︸ ︷︷ ︸
:=ŵa

+
(
K − K̂

)
∆w (H.22)

Now, using the strict positivity of the forecast and the diagonality of P̂f and R̂, from
Proposition 6.1.2 follows ŵa

i > 0, for all i ∈ {1, · · · , n}.
Now, we note that (H.20) is concatenation of matrix multiplication, addition and inversion
(which all are continuous functions) and thus continuous in Pf and R. Thus, we can pick
ϵ so that

∥∥∥K − K̂
∥∥∥

∞
≤ min

i

ŵa
i

ncw

(H.23)

Now, considering the components of (H.22) we get

wa
i = ŵa

i +
[(

K − K̂
)

∆w
]

i
(H.24)

≥ ŵa
i −

∣∣∣[(K − K̂
)

∆w
]

i

∣∣∣ (H.25)

≥ ŵa
i − n

∥∥∥K − K̂
∥∥∥

∞︸ ︷︷ ︸
≤mini

ŵa
i

ncw

∥∆w∥∞︸ ︷︷ ︸
≤cw

(H.26)

≥ ŵa
i − min

i

ŵa
i

cw

cw (H.27)

= ŵa
i − min

i
ŵa

i (H.28)

≥ 0, (H.29)
for all i ∈ {1, · · · , n}.
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