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Zusammenfassung

Die numerische Wettervorhersage (NWP) auf konvektiven Skalen hat in den letzten Jahr-
zehnten große Fortschritte gemacht und ermöglicht bessere Vorhersagen des tagtäglichen
Wetters. Die inhärenten Unsicherheiten in NWP-Systemen, die sich aus den Anfangs-
und Randbedingungen (IBC), den Modellformulierungen und der Parametrisierung von
Prozessen auf der Subgrid-Skala ergeben, stellen jedoch eine Herausforderung für genaue
Vorhersagen dar. Die Einführung von Ensemble-Vorhersagesystemen (EPS), die mehrere
Vorhersagen mit leicht unterschiedlichen IBCs parallel durchführen, ermöglicht nicht nur
probabilistische Vorhersagen, sondern auch eine Schätzung des Vorhersagefehlers durch
die Ensemble-Variabilität. Allerdings wird der Fehler oft unterschätzt, weil die Modellun-
sicherheiten nicht ausreichend dargestellt werden. Die Einbeziehung von unterschiedlichen
Darstellungen der Unsicherheit ist für die Verbesserung der Zuverlässigkeit von EPS un-
erlässlich. In dieser Arbeit wird der Einfluss verschiedener Unsicherheitsquellen auf die
Vorhersagequalität und -variabilität in einem operationellen konvektionserlaubenden EPS
untersucht. Hierzu werden unterschiedliche konvektive Antriebsbedingungen unterschie-
den. Der Schwerpunkt liegt auf sommerlicher Konvektion über Deutschland. Die Studie ist
in drei miteinander verbundene Teile gegliedert:

Zunächst wird der relative Einfluss einzelner und kombinierter Unsicherheiten, insbe-
sondere derjenige von IBC und mikrophysikalischen Parameterstörungen (MPP), auf den
täglichen Niederschlag bewertet. Es wird gezeigt, dass insbesondere die IBC-Unsicherheit
die Niederschlagsvariabilität beeinflusst, während die MPP eine sekundäre Rolle spielen.
Während schwachem konvektivem Antrieb sind MPP wichtiger als während starkem An-
trieb. Die Kombination von MPP mit IBC-Störungen vergrößert die Breite der Vorhersa-
geverteilungen, während der Bereich der Interquartile kaum verändert wird, was auf eine
Redundanz der Unsicherheitskombination hindeutet.

Zweitens wird die räumliche Vorhersagbarkeit des stündlichen Niederschlags und die
Auswirkung der Unsicherheitsdarstellungen unter Verwendung einer skalenabhängigen Me-
trik und Beobachtungen untersucht. Es zeigt sich, dass die operationelle konvektiv-skalige
EPS des Deutschen Wetterdienstes eine unzureichende räumliche Variabilität aufweist, ins-
besondere bei schwachen Antriebsbedingungen. Das Hinzufügen von physikalisch basierten
stochastischen Störungen (PSP) in der planetaren Grenzschicht reduziert diese räumliche
’Overconfidence’. Die kombinierte Auswirkung von PSP und MPP in Gegenwart von IBC-
Störungen auf den räumlichen Fehler und die Streuung scheint additiv zu sein, wobei PSP
die Hauptquelle der Modellunsicherheit unter schwachem Antrieb für Konvektion bildet.
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Um die Redundanz bzw. Additivität von Unsicherheiten zu quantifizieren, wird drit-
tens eine neuartige „Variabilitätsbudget“-Analysemethode eingeführt. Hier wird die Ge-
samtvarianz in einzelne Varianzen und deren Korrelationen zerlegt. Die Anwendung dieser
Methode auf eine Fallstudie mit variierender Ensemblegröße für IBCs und PSP ergab, dass
nur wenige zusätzliche PSP-Member für die Konvergenz der Vorhersage erforderlich sind,
falls IBC-Störungen aktiviert sind. Um die Varianzen aus den drei Unsicherheitsquellen
nachzuvollziehen, wird die Methode auch auf Ensemblesimulationen angewendet, die einen
ganzen Sommermonat umfassen. Es wird gezeigt, dass sowohl PSP als auch MPP in Regio-
nen mit konvektiver Instabilität Variabilität einführen, allerdings auf kleineren Skalen als
die, die durch die IBC-Unsicherheit beeinflusst werden. Die Gesamtvarianz wird jedoch auf-
grund negativer Korrelationen zwischen den Störungen nicht signifikant verändert. Da die
atmosphärische Konvektion von Natur aus hochgradig intermittierend ist und sehr emp-
findlich auf alle Arten von Modellstörungen reagiert, führen schon geringe Verschiebungen
konvektiver Zellen zu gegenphasigen Beziehungen zwischen einzelnen Auswirkungen, was
zu einem ineffizienten Anstieg der Varianz führt. Die Korrelationscharakteristiken sind bei
wechselndem konvektivem Antrieb ähnlich. Der Einfluß der Modellunsicherheit ist im Ver-
gleich zur IBC-Unsicherheit bei schwachem Antrieb größer. Die stärkere Empfindlichkeit
der Modellunsicherheit bei schwachem meteorologischem Antrieb ist eher auf die größe-
re Varianz als auf die Korrelationseigenschaften zurückzuführen. Das „Variabilitätsbudget
“läßt sich zur Optimierung eines Ensembledesigns verwenden, um den relativen Einfluß
verschiedener Unsicherheitsquellen zu quantifizieren.

Alle in dieser Arbeit vorgestellten Ergebnisse unterstreichen die Notwendigkeit, ver-
schiedener Unsicherheitsquellen in NWP-Systemen zu berücksichtigen. Die neuentwickelte
„Variabilitätsbudget“-Analyse ermöglicht eine quantitative Beurteilung der verschiedenen
Unsicherheiten. Darüberhinaus zeigt eine strömungsabhängige Betrachtung einen deutlich
unterschiedlichen Einfluß von Modellunsicherheiten bei wechselnden atmosphärischen Be-
dingungen.



Abstract

Numerical weather prediction (NWP) on convective scales has made major advancements
in recent decades, enabling more precise forecasts of daily weather. However, inherent un-
certainties in NWP systems, stemming from initial and boundary conditions (IBC), model
formulations, and parameterisations of subgrid-scale processes, pose challenges for accurate
predictions. Introducing ensemble prediction systems (EPSs), which are running multiple
forecasts with slightly different IBCs in parallel, enables not only probabilistic forecasting
but also an estimate of the forecast error through the ensemble variability. However, the
error is often underestimated due to insufficient representation of model uncertainties. In-
cluding more uncertainty representations is essential for improving the reliability of EPSs.
This thesis explores the influence of various uncertainty sources on convective-scale fore-
cast variability using an operational EPS setting. The growth of variability introduced by
model uncertainty representations in the presence of IBC perturbations is examined under
varying convective forcing conditions focusing on summer convection over Germany. The
study is divided into three interconnected parts:

First, the relative impact of individual and combined uncertainties, specifically IBC
and microphysical parameter perturbations (MPP), on daily precipitation is evaluated. It
is demonstrated that IBC uncertainty predominantly influences precipitation variability,
while MPP play a secondary role with a larger impact during weak convective forcing.
Combining MPP with IBC perturbations extends the tail of the forecast distributions while
keeping the interquartile range barely changed, suggesting redundancy of the uncertainty
combination.

Second, the spatial predictability of hourly precipitation and the impact of uncertainty
representations are examined using a scale-dependent metric. It is found that the op-
erational convective-scale EPS at the Deutscher Wetterdienst exhibits insufficient spatial
variability, particularly in weak forcing conditions. Adding physically-based stochastic per-
turbations (PSP) in the planetary boundary layer reduces this spatial overconfidence. The
combined impact of PSP and MPP with IBC perturbations on spatial error and spread
appears additive, with PSP being the primary source of model uncertainty in weakly forced
conditions.

Third, a novel ”variability budget” analysis method is introduced to quantify such
redundancy or additivity of uncertainties by decomposing total variance into individual
variances and their correlations. Applying this method to a case study with varying en-
semble size for IBCs and PSP revealed that only few additional PSP members are required
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for convergence in the presence of IBC perturbations. This facilitates the optimisation
of an ensemble design that includes multiple sources of uncertainty. In order to trace
the variances from the three uncertainty sources, the method is also applied to ensemble
simulations encompassing an entire summer month. It is demonstrated that both PSP
and MPP introduce variability in regions of potential convective instability, but on scales
smaller than those represented by IBC uncertainty. However, the total variance is not
significantly altered due to negative correlations between the impacts. Since atmospheric
convection is highly intermittent in nature and reacts very sensitive to all kinds of model
perturbations, only slight displacements of convective cells lead to anti-phase relationships
between their individual impacts, leading to an inefficient variance increase. The correla-
tion characteristics are found to be similar in varying convective forcing, but with larger
model uncertainty variances relative to that from IBC uncertainty during weak forcing.
The stronger sensitivity of weak forcing conditions to model uncertainty is attributable to
the larger variance rather than the correlation characteristics.

All results presented in this thesis emphasise the importance of considering various
uncertainty sources in NWP systems and strongly suggest their evaluation in a full EPS
including IBC uncertainty. The novel variability budget analysis offers a framework for the
quantitative assessment of various uncertainties. A flow-dependent evaluation is desired to
highlight the variable impact of model uncertainties during varying atmospheric conditions.
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Chapter 1

Introduction

1.1 Numerical Weather Prediction (NWP)
1.1.1 Development of NWP
After humans discovered the equations of fluid motion, the idea of forecasting future atmo-
spheric conditions using them emerged. Bjerknes (1904) settled this idea as an initial-value
problem that can be solved with two conditions: the sufficiently accurate state of the at-
mosphere at a given time and the sufficiently accurate law according to which the state
evolves from a time to another. He successfully enticed people to support expanding ob-
servational networks and making a sound basis to realise numerical weather prediction
(Kalnay, 2003). However, it remained untried challenge until Richardson (1922) proposed
the practical method for the solution, which is numerically integrating the equations of
motion. Although his attempt was not successful (Lynch, 2008), he showed the problems
that future followers would have to cope with to turn NWP into a reality.

The historical, first success of NWP had to wait until the emergence of the first elec-
tronic computers (the Electronic Numerical Integrator and Computer, ENIAC). Charney
et al. (1950) computed a reasonable one-day forecast of the two-dimensional vertical mean
state of the atmosphere using ENIAC. Although the outcome was quite encouraging for
the future of NWP, they had already noticed the potentially great impact of motion at
too small scales to be resolved, as well as the impact of divergent flows that are not
taken into account in the two-dimensional vorticity equation used for the first forecast.
Charney already suggested in his subsequent work shortly coming after that including
parameterisations of some subgrid-scale physics to account for those unresolved processes
(Charney, 1951). At that time scientists already had a scent that there is an upper limit
of predictability due to deficiencies in models’ ability to resolve physical processes, which
are subjected to practical limitations such as insufficient observations and limited compu-
tational resources (Kalnay, 2003). In other words, the limit would be set by failing to fill
the two conditions presented by Bjerknes (1904), and if we could continuously improve a
model and initial conditions, there would be a boundless improvement. This scent was
appeared to be true as forecasts improved, but in theory the dream survived until Lorenz
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shows that a limit of predictability is rather imposed by the nature of the atmosphere,
even if the model is completely perfect.

Although we have never fully understood the real physics of the atmosphere, solutions
to the fluid equations evolve deterministically over time. That deterministic evolution had
given hope for an unlimited predictability of the atmosphere. However, Lorenz (1963)
showed using simplified thermodynamic equations that the deterministic state is diver-
ging from the trajectories initially nearby following the asymptotic rate. In his following
work (Lorenz, 1969a,b), he showed that tiny errors in the atmospheric state (i.e. initial
conditions, IC) grow rapidly and eventually spoil an entire forecast. The irremovable un-
certainties such as observing difficult variables like divergence and inevitable error due
to the mathematical truncation are now considered as a source of forecast failure across
scales; and that determines the intrinsic limit of predictability.

The necessity of a probabilistic forecast in order to break down this limit in a determin-
istic forecast was already foreseen half a century ago. The idea of probabilistic approaches
is to tell ourselves to what extent the forecast is uncertain in advance, in other words, how
large forecast error is expected. Ideally, estimated uncertainty should match average error.
The Monte-Carlo like technique was suggested by Leith (1974), which is currently called
”ensemble forecast”. The technique involves initialising forecasts with slightly perturbed
ICs and covering the space of forecast trajectories that are likely to occur. It also allows
for an assessment of the limits of predictability, which largely depend on the atmospheric
quantity analysed, the prevailing flow situation, the geographical location considered, as
well as the spatial and temporal scale of the predicted phenomena. Following the first suc-
cess for implementation of an operational ensemble prediction system (EPS) at ECMWF
in 1992 (Palmer et al., 1992), EPS has become a global-standard way to perform NWP.

1.1.2 Ensemble technique and sources of uncertainty
EPS is by its nature a technique that has to handle uncertainties in the system. The
’Ensemble’ must be generated as a group of forecasts that can represent forecast variability
introduced by uncertain factors (Chapter 1 and 18 in Palmer and Hagedorn, 2006). One of
those factors is the initial conditions of a model, which can be estimated only with a limited
accuracy. Another factor is the boundary conditions that are fed to a model to provide
information outside of the model. Moreover, uncertainties are introduced intrinsically by
a model itself that can only by differentiating governing equations represent the dynamics
and physics of the atmosphere. Those three kinds of uncertainties are referred to as the
initial condition uncertainty, boundary condition uncertainty, and model uncertainties,
respectively.

Initial condition uncertainty

As the NWP is an initial value problem, the ICs as a source of uncertainty has been of
importance from the emerge of predictability study in 1960s (Lorenz, 1963, 1969a; Epstein,
1969). Errors in the initial conditions are attributable to insufficient observations, error
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in observations, imperfect assimilation of observational data, and incorrect first guesses
used as prior conditions for estimation. Furthermore, it is known that the growth of error
depends on the initial condition itself (Slingo and Palmer, 2011). Therefore, appropriate
estimation of the initial condition error is crucial for any EPS.

To produce the best estimation of IC for forecasts, data assimilation (DA) techniques
are used. DA combines the short-range forecast with observations to generate the IC that
has the least error. Within DA algorithms observation errors as well as forecast errors are
considered to minimise errors in the generated IC. The estimate of those errors is crucial
for generating accurate ICs. While DA was initially used to generate the best ICs for
deterministic forecasts, it is now used to generate a plausible distribution of initial states
for ensemble forecasts. One method is performing an Ensemble of Data Assimilation by
repeating a deterministic DA with different observation subsets for each ensemble mem-
ber (e.g. Bonavita et al., 2016). While this method can take advantage of a pre-existing,
deterministic DA system, the computational cost is high and not easily scalable. Another
strategy is doing ’ensemble DA’ alongside which DA algorithms directly produce a set
of ICs by using a statistical approach. In Deutscher Wetterdienst (DWD)’s operational
limited-area EPS, for example, the initial conditions are produced using KENDA system
(Schraff et al., 2016) based on LETKF (Local Ensemble Transform Kalman Filter). With
LETKF, the ensemble distribution made up by ensemble first guesses are transformed using
a background forecast error covariance into the new distribution that represents the distri-
bution of the initial condition uncertainty. Since the background forecast error covariance
is updated at every DA step in both methods, the produced perturbations represent the
up-to-date distribution of uncertainty that reflects flow-dependent uncertainty structure.

Boundary condition uncertainty

Boundary conditions provide information about environment outside a model that is un-
known from ICs, such as surface topography and soil moisture, as well as lateral boundaries
for a limited-area model. The former type of boundary conditions are surface boundary con-
ditions, providing effects of oceans and lands on the atmosphere. As the surface boundary
conditions can continuously constrain the atmospheric state due to their relatively longer
time scale of change, accurate surface boundary condition could attain a longer predictab-
ility limit (Shukla, 1998). However, it has been often treated as external forcing that does
not or hardly change within a forecasting period. One remedy is accompanying a coupled
surface model with an atmospheric model such as a land surface scheme in DWD’s NWP
model (Schulz et al., 2016), sometimes with a perturbed inputs to that coupled model, but
not all models have such coupled model because of high development and maintenance
cost. Due to the lack of ability to represent uncertainty in the surface boundary condition,
we do not include them in consideration in this study.

The latter type of boundary conditions is the lateral boundary condition (LBC). LBCs
are provided by a forecast of a parent model, which is often a global model and has a coarser
resolution than the limited-area model. Thus LBCs work as essential input, providing
large-scale flow patterns encompassing the limited-area model’s domain, but suffer from
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lower resolution in time and space than the limited-area model. This could matter when
the domain of the limited-area model is small and could be more directly constrained by
the lateral boundaries (Vukicevic and Errico, 1990). For example, (Tang et al., 2013)
shows that the boundary forcing suppresses the spin-up of small-scale convection even if
the model’s resolution is sufficient to explicitly develop convection on such scales.

Since LBCs are from forecasts of a parent model, they also include forecast error, neces-
sitating perturbations also in LBCs (Vukicevic and Errico, 1990; Laprise, 2003; Hohenegger
and Schär, 2007; Vié et al., 2011). One way of producing perturbed LBCs is generating the
boundary conditions from different members of global ensemble forecasts. This method
can reasonably estimate the temporal increase in uncertainty in LBCs and has been used
in a number of limited-area EPS.

Model uncertainty

Uncertainty in model is attributed to unresolved or poorly represented physical processes.
One example of the unresolved process is turbulent eddies that occur at scales close to the
model’s truncation scale. This truncation error often produces too homogeneous states
on a grid-point scale and lead to a less active atmosphere due to missing variability. To
remedy this problem, model uncertainty representation have been developed to feedback
the effect of those uncertainties back to a resolved scale such as SPPT scheme (Buizza
et al., 1999; Shutts and Pallarès, 2014), SKEB (Berner et al., 2011a), stochastic convection
scheme (Plant and Craig, 2008), and boundary layer perturbation schemes (Kober and
Craig, 2016; Hirt et al., 2019; Clark et al., 2021).

Model uncertainty can also be attributed to poor representation of physics. An easy-to-
understand example is cloud and precipitation particles in bulk cloud microphysics schemes.
Those microphysics schemes classify water particles into handful of categories such as cloud
water, rain water and cloud ice, and predict quantities proportional to their moments such
as size distributions. The predicted quantities are converted to other categories based
on pre-defined conversion rates. While the state of water in the atmosphere is a spec-
trum and unable to be so simply categorised, many operational forecasting systems have
used those schemes not mainly due to the limitation of computational resources, but also
due to the fact that we still don’t know how those microphysical processes act and can
be modelled. Furthermore, parameters in microphysical schemes are often fixed in time
and space. The incomplete grasp of the physical processes in the real world renders the
inherent flaws equally applicable to parameterisations of other processes. There may be
processes still not discovered or modelled. Since rationale to model a representation of
this type of model uncertainty is not well established, the impact of the model uncertainty
has been investigated by performing sensitivity experiments by making ensembles with
multiple models or physics schemes (e.g. Cintineo et al., 2014; Marinescu et al., 2021) and
parameter perturbation experiments with a single physics parameterisation scheme (e.g.
Seifert et al., 2012; Igel and van den Heever, 2017b; White et al., 2017). In many of studies
the first objective was to identify important factors that we should invest more resources
to improve the accuracy of the factor by carrying out observation campaigns and assign
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additional computing resources for better resolution of that scheme. Recently stochastic
representation of this type of model uncertainty by perturbing parameters has emerged, for
example the SPP scheme (Ollinaho et al., 2017; Lang et al., 2021) and MPP (Thompson
et al., 2021). The advantages of the stochastic approach are that spatiotemporal hetero-
geneity can be introduced and the overall impact can be quantified without significantly
increasing the ensemble size. However, the detailed investigation using those stochastic
parameter perturbation scheme is still underway.

1.2 Predictability of Convection
The previous section provided a general overview of the development of NWP and the
treatment of uncertainty. There are a lot of evidence that different weather events dominate
weather variability at various temporal and spatial scales (as in Fig. 1.1). Furthermore,
these events set the limit of practical predictability for their respective scales. To better
understand the challenges in weather forecasting, it is necessary to discuss specific events
and their corresponding scales.

This thesis specifically explores predictability of short-range convection forecasts over
land, which are of particular interest due to the potentially large economic impact of
severe convective precipitation in Germany. Convective events, such as thunderstorms and
heavy rainfall, can cause substantial damage to infrastructure, agriculture, and human
life. Reliable forecasting of these events is crucial for mitigating their negative effects. As
a basis for the study, this section outlines studies about predictability of convection.

1.2.1 Synoptic- and convective-scale predictability
In short- and medium-range weather forecasting, the most important distinction in the
practical predictability limit is the scale separation between synoptic and convective scales,
which are dominated by different physical processes. Synoptic scales, which refer to large-
scale weather systems spanning hundreds to thousands of kilometres (Fig. 1.1), are domin-
ated by large-scale waves such as Rossby waves and cyclonic systems. These systems can
be approximated as mostly in the hydrostatic balance, meaning that the typical length
of their vertical motion is significantly small compared to their horizontal motion. The
resolution of current global NWP models, typically a couple of tens kilometres, is high
enough to explicitly resolve these synoptic-scale phenomena. Additionally, the density of
observations in the mid-latitude of the northern hemisphere is sufficient to adequately rep-
resent these events. As a result, the forecast skill limit for synoptic-scale weather systems
can extend beyond one week (Buizza and Leutbecher, 2015).

At convective scales, on the order of 10 kilometres (Fig 1.1), convective systems such
as thunderstorms are dominant particularly during summer. In deep convection, uplift
wind spans from the surface layer up to 10 km heights, making the scale of vertical mo-
mentum transport comparable to the scale of horizontal motion. As a result, equations
of three-dimensional fluid motion need to be computed for convective-scale forecasting.
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WORKING GROUP RECOMMENDATIONS 

xviii 

In Eqs. (2a,b), x and y represent the resolved and unresolved scales in space and time, and subscript ‘S’ 
denotes stochastic processes. The terms sF  and sG  are of ‘physical’ nature, e.g., they represent cloud 
processes or radiative-convective interactions. All other terms on the right-hand-side are ‘dynamical’ in 
nature. It is clear that the ‘physical’ terms are more irregular in space and time, and are more apt to be well 
approximated by stochastic processes with short decorrelation times. This approach is less obvious for the 
‘dynamical’ terms, but still worth exploring. 

Insight can be gained by treating the problem formalized in Eqs. (2a,b) in a systematic, rigorous way, on the 
one hand, and by numerical experimentation on the other. To attack the problem of stochastic 
parameterisation, formulations (1a–c) and (2a,b) appear to be useful at this time. The most fruitful 
formulation of the problem will only become obvious when, and if, it is solved. 

At this point, it is still open to discussion whether we need stochastic parameterisations in single simulations 
or forecasts. There is, however, evidence for the benefit of using stochastic schemes in ensemble systems.  

3.3.2. Scale separation and treatment of the small scales 

A key issue in stochastic parameterisation is that of scale separation, in space and time. There is considerable 
evidence for observed phenomena in the atmosphere lying along a diagonal in a graph whose axes are their 
spatial and temporal scales (Fig. 1). This association of scales is of considerable interest in defining resolved 
and un-resolved variables, but it is not accompanied by much evidence of a spectral gap. The absence of 
such a gap renders the problem at hand much more difficult. 

 

10

102

103

104

km

hour day week month season year

convection
thunderstorms

meso-scale 
variability

MCC

synoptic-scale 
variability
traveling 

             cyclones

low-frequency 
variability (LFV)* ENSO

blocking 
persistent 
anomalies

ho
riz

on
ta

l s
ca

le

time scale  
Figure 1. Characteristic time and spatial scales of observed atmospheric phenomena (loosely based on 
Fraedrich, K., and Boettger, H., 1978: Wavenumber-frequency analysis of 500 mb geopotential at 50-
degrees North, J. Atmos. Sci., 35, 745-750). 

Some recent work suggests that, instead of dividing the spectrum into resolved and unresolved scales, we 
should divide it into three parts: resolved, unresolved (‘fast’, stochastic, noise), and intermediate. The latter 
part may help mediate the interaction between the former two. 

 

 

Figure 1.1: Characteristic time and spatial scales of observed atmospheric phenomena.
Adopted from Craig et al. (2005).

This three-dimensional motion can no longer be resolved by global NWP models with grid
spacing of tens of kilometres. Therefore, models with grid spacing of a few kilometres
are required to accurately capture convective-scale phenomena. The rapid growth in com-
puting capability has allowed for the development of models with higher resolution and
more intricate parameterisations. These models, called convection-permitting models, have
been developed as limited-area models encompassing a target region of forecasts to save
computational resources.

Convection-permitting models have led to a step change in rainfall forecasting (Clark
et al., 2016). Substantial progress has been achieved with improved data assimilation tech-
niques introducing new types of observations and a better representation of atmospheric
convection dynamics through finer grid spacing that made it viable to turn off the para-
meterisation of deep convection. As a result, convection-permitting models provide on
average more spatially precise predictions compared to coarser-resolution models. How-
ever, despite these significant advancements, forecasting skill for convective scales is still
low compared to that for synoptic scales (Hohenegger and Schär, 2007). One reason is
strong non-linearity and local, intermittent character of convection, which leads a slight
displacement of convection in time and space to a complete miss forecast. Second, ob-
servation networks are too sparse to resolve convective events and we don’t have enough
observations to constrain model parameters related to convection. Furthermore, convective
activity and its predictability is strongly modulated by large-scale flow conditions encom-
passing the region. Thus, it is necessary to further address sources of uncertainties on
forecasting convection by considering their flow and scale dependence. Assessment of pre-
dictability using perturbations in IC and LBC has been performed (e.g. Kühnlein et al.,
2014) and those have been operationally implemented. This study focuses on unexplored
parts, model uncertainties, by combining IC and LBC uncertainties into the form of initial
and boundary condition (IBC) uncertainty and investigating the relationship between this
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and model uncertainties.

1.2.2 Sources of model uncertainties for convective-scale fore-
casts

To incorporate model uncertainties in EPS using convection-permitting models, approaches
analogous to those in global forecasts have been employed. Unresolved, subgrid-scale phys-
ical processes are being considered by applying stochastic perturbation methods, whereas
structural uncertainties arising from the formulation of physical processes are frequently
represented through multiple-physics or perturbed parameter approaches (e.g. Berner et al.,
2017; Fleury et al., 2022; Roberts et al., 2023, and references therein). Despite these ad-
vancements, current EPSs with convection-permitting models are often under-dispersive for
near-surface variables (e.g. Bouttier et al., 2012; Raynaud and Bouttier, 2017), highlighting
the ongoing challenge of adequately representing uncertainty at these scales. In this study,
we consider two sources of model uncertainty that have been considered primarily import-
ant sources (e.g. Cintineo et al., 2014; Johnson and Wang, 2020; Hermoso et al., 2021):
turbulence in the planetary boundary layer and parameter uncertainty in a microphysical
scheme.

Planetary boundary layer turbulence as well as cloud microphysics and their interac-
tion with aerosols are key physical processes that represent important sources of model
uncertainty in forecasts of convection (Clark et al., 2016). The initiation of convection is
predominantly linked to boundary layer processes, but those processes are not fully resolved
due to their intrinsic small scales. In many current boundary layer schemes the turbulent
processes are represented by a mean state within a grid box. This leads to insufficient
small-scale variability and inhibits or delays the initiation of convection especially when
convective forcing to trigger convection is missing (Kühnlein et al., 2014). In this study
we apply the physically-based stochastic perturbation (PSP) scheme (Kober and Craig,
2016; Hirt et al., 2019) that adds perturbations to the tendencies of T, w, and q in the
boundary layer to increase turbulence. Independently Clark et al. (2021) proposed a similar
stochastic boundary layer scheme representing turbulent eddies as random events following
a Poisson distribution inside a bulk model of the convective boundary layer. The variability
in precipitation rates introduced by the stochastic boundary layer scheme is beneficial for
better detecting potential risk of flooding, whereas the variability in spatial distribution
”fills the gap” left by insufficient representation of uncertainty by perturbations in initial
and lateral boundary conditions (Flack et al., 2021).

Microphysical processes constitute another major source of model uncertainty. Among
the large number of poorly constrained parameters used in current bulk microphysics
schemes, cloud condensation nuclei (CCN) concentrations (Barthlott and Hoose, 2018;
Glassmeier and Lohmann, 2018; Dagan and Stier, 2020) and the shape of the cloud droplet
size distribution (CDSD, Igel and van den Heever, 2017a,b) are known to be potentially in-
fluential parameters in precipitation forecasts. Thompson et al. (2021) and Barthlott et al.
(2022b,a) show that both CCN and CDSD uncertainty have non-negligible impact on accu-
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mulated precipitation using stochastic and perturbed parameter approaches, respectively.
They also find that the combination of CCN and CDSD uncertainties has a larger impact
than their univariate impact, although the synergistic impact is smaller than the simple
sum of them. Such microphysical parameter perturbations (MPP) are also incorporated
to assess the sensitivity of convective-scale forecasts to moist processes.

1.2.3 Flow- and scale-dependence of predictability of convection
Even if forecast uncertainty is sensitive to sources of those uncertainties, it does not mat-
ter if the response to them is constant or linear. Unfortunately, many studies have proven
that the response behaves quite non-linearly, heterogeneously, and flow-dependently (e.g.
Lorenz, 1963; Slingo and Palmer, 2011; Buizza and Leutbecher, 2015). The rate of con-
vection is controlled by a variety of factors. First is the contribution to generation of
instability by cooling of the troposphere, mainly by dynamically-driven ascent, but with
some contribution from radiation. The cooling aloft is complemented by heating and
moistening of the boundary layer by surface fluxes or advection, leading to the creation of
convective available potential energy (CAPE). However, the presence of CAPE does not
guarantee the occurrence of convection. Triggering by mesoscale and local features is often
required to overcome convective inhibition associated with a capping inversion at the top
of the planetary boundary layer. Triggering features include convergence lines and other
boundary layer structures, but can also include perturbations from previous generations
of convective clouds such as outflow boundaries and gravity waves. It is a challenge to
identify characteristics of the meteorological situation that impact predictability.

The impact of the dynamical forcing of convection in mid-latitudes is often described
in terms of strong or weak forcing. Typically this is identified based on the presence or
absence of synoptic or mesoscale dynamical features that can drive ascent and the creation
of CAPE. However, the identification of such features is usually subjective and it is useful
to have a more precisely defined measure of the influence of the convective environment.
For this purpose Done et al. (2006) proposed the convective adjustment timescale τc, which
is a measure of the extent to which the convection is in equilibrium with the larger-scale
forcing. The timescale is defined as the ratio of CAPE to the rate of its removal:

τc = CAPE
dCAPE

dt

. (1.1)

If the inhibition of convection is weak and triggering disturbances are plentiful, convection
will occur whenever instability is present and CAPE will be consumed as fast as it is created,
keeping τc close to 0. The amount of convection, measured by say mass flux or precipitation,
is in equilibrium with the forcing processes creating instability. On the other hand, if the
inhibition of convection is strong and the triggering disturbances are weak or absent, CAPE
can accumulate and potentially reach large values, i.e. convection is in non-equilibrium and
τc often reaches larger values. Equilibrium conditions often coincide with strong forcing
because dynamical ascent can weaken inversions while widespread convection provides an
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abundance of triggering disturbances to initiate new storms. But it is also possible that
a very strong capping inversion or other source of convective inhibition will prevent the
convection from reaching equilibrium and the strong forcing will lead to rapid increases
in CAPE. The convective adjustment time scale of Done et al. (2006) uses an estimate of
the ratio of CAPE to its rate of reduction by convection as a quantitative measure of the
degree of equilibrium, as well as of synoptic forcing required for such equilibrium. This
measure has been used by a number of studies to assess the flow-dependence of different
aspects of convection (Done et al., 2012; Craig et al., 2012; Flack et al., 2018; Keil et al.,
2019; Bachmann et al., 2020). For instance, Keil et al. (2014) and Kühnlein et al. (2014)
show that the summertime precipitation forecast skill during the non-equilibrium regime
in central Europe is below the average for all days of the convective season. The larger
forecast uncertainty under non-equilibrium situations due to microphysical uncertainty is
reported for Central Europe (Barthlott et al., 2022b,a) and for Eastern CONUS (Chen
et al., 2023).

The predictability of weather forecasts also depends on the considered spatial and
temporal scale. Generally, the forecast skill limit is considerably longer for spatially and
temporally averaged fields (Buizza and Leutbecher, 2015). Over the past decade, spatial
metrics besides simple averaging have become widely used to measure forecast skill of
convection-permitting models acting on kilometre scales and to estimate its uncertainty
(Ebert, 2009; Frogner et al., 2019; Casati et al., 2022). The scale at which convection-
permitting models demonstrate reasonable skill remains large compared to their horizontal
grid spacing and the typical extent of convective rain. Reasonable forecast skill for 24-
h forecasts is achieved at scales of several tens to over a hundred kilometres for models
(Mittermaier et al., 2013; Schwartz et al., 2009; Keil et al., 2020). A widely applied
spatial measure to inspect the scale dependence is the Fractions Skill Score (FSS, Roberts
and Lean, 2008) that relaxes the pointwise comparison, introduces a spatial tolerance and
rewards the location proximity of forecast convective cells and observed ones in increasingly
larger surroundings.

Some studies quantifying individual impact of boundary-layer and microphysical un-
certainties suggest potential benefit of combining representations for these two uncertainty
sources. Using a multiple-physics approach, Cintineo et al. (2014) find that the con-
tributions of perturbing boundary-layer and microphysics schemes act on various scales.
Boundary layer schemes have a greater spatial impact at the early stage of convection, fol-
lowed by an increasing impact of microphysical uncertainty. Keil et al. (2019) inspect the
relative impact caused by stochastic perturbations in the planetary boundary layer, varied
assumptions of CCN concentration and soil moisture heterogeneity on the uncertainty evol-
ution of hourly precipitation rates. While the total amount of daily precipitation is hardly
changed by the different perturbation approaches (less than 5%), the spatial variability of
precipitation exhibits clear differences. The stochastic boundary-layer perturbations lead
to the largest spatial variability from initial time onwards with an amplitude comparable
to the operational ensemble spread. Similarly, perturbed aerosol concentrations impact
spatial precipitation variability shortly after model initialisation, but to a smaller degree.

The presented importance of flow and scale dependence of predictability raised two
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research questions in this thesis about model uncertainty impact on convective-scale fore-
casts. The first one is understanding How does the relative impact of individual and
combined uncertainties vary under different forcing regimes? The second ques-
tion is related to the scale dependence, asking At what spatial scales do uncertainties
impact?

1.3 Methods to quantify uncertainty
Despite the positive impact of individual representations on improving underdispersion
as presented above, it is often found that combining multiple uncertainty representations
results in smaller variability than a simple sum of single source variability. The complex
interplay between uncertainty impacts slows down or suppresses the growth of forecast
variability and leads to a let-down spread increase given the length of forecast period.
This has been explained as ’filling the gaps’ (Flack et al., 2021), ’compensating effect’
(Baur et al., 2022), or simply ’generating not enough/sufficient spread’ (Jankov et al.,
2019; Hermoso et al., 2021; Frogner et al., 2022), providing qualitative insights for further
developments.

Coincidently, the working group of ECMWF Workshop on Model Uncertainty in May
2022 reported the need for further assessments of combinations of model uncertainty
schemes, with the aim of identifying a set of the most effective model uncertainty rep-
resentations for high resolution EPSs (i.e. R6 and R7 in Plant et al., 2022). There is a
need for a method that defines a perturbation design to quickly and efficiently improve
convective-scale forecast variability. Thus, having a framework to quantify how the impact
evolves, how interacts, and why not gain variance as effectively as expected is useful. A
statistical parameter sensitivity analysis appears effective to tackle these questions. This
section introduces methods commonly used for investigating parameter sensitivity.

By its nature, NWP is a model solving discretised physical equations of the atmosphere.
These equations are responding to inputs such as initial conditions and parameter values
in physics parameterisation schemes and producing the model output. As discussed former
in this section, this model cannot avoid being subject to three kinds of uncertainties ori-
ginated in those inputs, as well as responses to single uncertainty can change with different
conditions due to other uncertainties. A classical method to sample uncertainty impact
that perturbs one parameter at one time around a fixed control configuration is insufficient
in this case. Parameter sensitivity analysis intended for exploring high-dimensional para-
meter input space is making it possible to objectively prioritise sources of uncertainties in
order of importance for outputs.

Here I would like to introduce methods that intend to screen the effect of large number
of input parameters and to quantify the relative importance of them to the model output.
Presumably most common methods in the last 10 years is the Sobol’s method (Sobol’,
1990). The method involves the Monte-Carlo sampling to estimate the PDF of a target
variable when one or group of parameters are fixed at a certain point in the parameter
space. This allows us to get a full view of the distributions of the target variable and to
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understand the various statistics of the sensitivity conditional on any combinations of fixed
or perturbed parameters. One proposed analysis of the statistical property of the sensitivity
is to decompose the total ensemble variance into the sum of variance contributions due
to individual perturbed parameters, called the first-order Sobol’s index S (Sobol’, 1990;
Homma and Saltelli, 1996), which shows how much of the total variance can be reduced
by holding a parameter constant, as defined:

Si = V ar(E[f(X)|Xi])
V ar(f(X))

,

where f(X) is the model output and Xi is the ith input parameter. V ar(E[f(X)|Xi])
quantifies the variance of the ensemble mean of f(X) given by perturbing the parameter
Xi, thus Si indicates how much the ensemble mean is stabilised if the parameter Xi is
accurately known and thus fixed. While this index is very useful to understand which
parameter makes the ensemble mean most unstable, it does not provide detailed inform-
ation of the interaction between parameters. Additionally, the indices are designed for
identifying the most influential parameter on reducing the variance of the mean, rather
than on a contribution to increasing the ensemble variability, which is of interest to mit-
igate the underdispersion issue in EPS using convection-permitting models. Furthermore,
it requires huge sample size of optimally more than 10,000 for each perturbed parameter
(Iooss and Lemaître, 2015), which is almost impossible for NWP models. To comple-
ment that difficulty in sampling with a decent sample size, statistical surrogate models are
usually used to quantify the impact of uncertainty e.g. the Polynomial Chaos expansion
(Wimmer et al., 2022) and Gaussian process emulator (Ji et al., 2018; Ryan et al., 2018;
Wellmann et al., 2020). Despite that surrogate approach is an effective way to generate
thousands of simulations with a feasible computing effort, it deeply relies on a training
dataset and method to build the surrogate. It is might be able to well reproduce the best-
fit behaviour for the training dataset on average, but could have trouble with sharping the
flow dependence. It is desired to devise a sampling strategy that can be feasible for direct
numerical simulations.

Another widely used method is Morris method Morris (1991) that proposes an efficient
screening strategy to identify parameters that have trivial impact, i.e. that can be fixed
without changing the model outcome (e.g. Covey et al., 2013; Morales et al., 2019; Posselt
et al., 2019; Wimmer et al., 2022). The method screens the parameter space by sequen-
tially perturbing inputs ”One at a Time”, but with changing a starting point of a input
perturbation. This involves perturbing one parameter after another and takes the change
in the model output as the impact given by the perturbed parameter. The advantage of
this method is significantly cheaper computational cost than the Sobol’s method, but with
the disadvantage in less precision of the parameter’s impact. Therefore, the sensitivity
indices for the Morris method were designed to estimate relatively simple statistical prop-
erties such as the mean and standard deviation of the impact. So far the method has been
used to rank the importance of the parameters for roughly identifying parameters that
can reduce total variability (Campolongo et al., 2007; Covey et al., 2013; Ji et al., 2018;
Morales et al., 2019).
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Those methods were developed used to retrieve parameters influential on the variab-
ility of the ensemble mean, in order to ’reduce’ uncertainty in a model i.e. to identify
a parameter to be fixed. However, there is a room for further application of them in
identifying parameters that ’increase’ variability for improving the underdispersion prob-
lem. If a ’budget’ of variability due to sources of uncertainties is visualised, it can tell us
which combination of uncertainty representations is redundant or efficient. Whereas the
budget analysis of the departure of the ensemble mean from observations was developed
by Rodwell et al. (2016), it focuses more on separating effects embedded in an EPS as
a whole i.e. biases, forecast and observation uncertainties. As far as the author knows,
no analysis framework considering the interactions between uncertainty impact has been
developed. As described above, the Sobol’s and Morris methods seem promising as this
framework, but both have own deficiencies. Developing a new framework to quantify a
budget of variability inspired by these method will help investigate the uncertainty growth
and interactions.

Quantifying the sensitivity in a system that has a large degree of freedom like a NWP
system suffers from inevitable sampling uncertainty. Convergence behaviour of forecast
distributions have been investigated by bootstrapping a large ensemble perturbed by IBCs
(Craig et al., 2022). This study presents that ensemble standard deviations asymptotically
converge with sampling error scaling proportional to the inverse square-root of ensemble
size and necessary ensemble size is different among variables that have varying distribution
shapes. On the other hand, the behaviour for model uncertainty has apparently not been
explored yet. Model uncertainty representations are thought to be active within bespoke
weather processes, suggesting a possibility of distinct convergence behaviour from that
of IBC. Furthermore, sampling uncertainty of interactions in the context of NWP is also
waiting for a first investigation.

These facts posed the third research question building a basis for further exploration:
Does model uncertainty and its interactions converge as fast as IBC? Addressing
this question let us take a step forward to an original interest of quantifying the variability
growth, which answers the fourth question: How does forecast uncertainty from
different sources evolve and interact over time?

1.4 Research questions and outline
A lot of efforts have been taken to develop convective-scale EPS as we use today, as well
as to understand how a source of uncertainty plays a role in varying flow conditions and at
different scales. However, understanding how multiple uncertainties interplay in varying
flow situations, spatial scales, and times of day remains elusive. In particular, the impact of
these uncertainties on convective-scale forecasts warrants further investigation. This mo-
tivates this thesis, which aims to contribute to knowledge for improving forecast reliability
by addressing the overarching question of How do different sources of uncertainty
influence the variability of convective-scale forecasts in various flow situations?

Addressing this question involves answering the four questions posed, which are ar-
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ranged to trace uncertainty from large-scale averaged impact towards small scales close to
where the impact originates:

1. Flow dependence: How does the relative impact of individual and combined un-
certainties vary under different convective forcing regimes?

2. Scale dependence: At what spatial scales do uncertainties impact?

3. Model uncertainty convergence Does model uncertainty and its interactions con-
verge as fast as IBC?

4. Uncertainty evolution and interaction: How does forecast uncertainty from
different sources evolve and interact over time?

This thesis focuses on investigating summer convection over Germany. The region
clearly shows domination of distinct convective flow regimes, and DWD can provide a
state-of-the-art convection-permitting model and realistic representations of IC and LBC
uncertainties for the region, which are essential for this study. Model uncertainty repres-
entations for the boundary layer turbulence and microphysical parameters were available
in the model.

Three parts comprise this dissertation. The first part (Chapter 3) evaluates the daily
precipitation impact of MPP, in presence of IBC uncertainty. This study complements the
assessment of Keil et al. (2019); Barthlott et al. (2022b) to evaluate the combined impact of
MPP with IBC variability on a selection of August 2020 case studies. Particular emphasis
lies on changes in variability due to presence of other perturbations.

The second part (Chapter 4) investigates the impact on finer temporal and spatial
scales. Long-term simulations from the Deutscher Wetterdienst are used to assess the
combined impact of IBC perturbations and PSP. The FSS technique is employed to study
how adding the PSP scheme gains the spatial variability of hourly precipitation. Addition-
ally, representative case studies are used to showcase the systematic impact of adding PSP
and further demonstrate the combined MPP impact with IBC and PSP perturbations.

The third part consists of two chapters and introduces a novel framework to invest-
igate the sensitivity of variance to perturbations. Chapter 5 explores a variance increase
and convergence given by IBC and PSP. Sampling uncertainty of variances and correla-
tions is quantified as a function of the number of IBCs and random fields used for the
PSP scheme, employing a bootstrapped resampling approach (Craig et al., 2022; Tempest
et al., 2023). These analyses compare for the first time the variability growth of IBC and
model uncertainty variances and convergence behaviour of their interactions. By utilising
a suggested optimal ensemble design from this work, following Chapter 6 then evaluates
a one-month ensemble dataset for variance and correlations of IBC, PSP and MPP. The
proposed method allows us to trace the impact and interactions of the uncertainties to
their origin.

The outline of this dissertation is as follows: Chapter 2 gives an introduction of the
NWP model used in this study along with the various uncertainty representation methods.
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It further defines the flow-dependent and scale-dependent metrics employed. The last
step lays the theoretical foundation for a newly developed sensitivity analysis method.
Chapter 3 is the first part of the result analysing the impact of uncertainties on daily
accumulated precipitation. Chapter 4 focuses on changes in spatial distributions of hourly
precipitation. Chapter 5 constitutes the former part of the third part and examines the
convergence behaviour of model uncertainty and its interactions. Chapter 6 traces the
evolution of uncertainties to the origin. Finally, Chapter 7 presents the main conclusion
and the future research directions.



Chapter 2

Model and Methods

Chapter 2 introduces simulation techniques and analysis methodologies employed to ad-
dress this study’s research questions. Section 2.1‒2.2 provides an overview of the model and
perturbation approaches used for performing ensemble simulations to address the research
questions. Subsequent sections detail three key analysis measures: Section 2.3 introduces
the method for identifying convective flow regimes, used throughout the study to identify
flow dependence of the impact. Section 2.4 presents and explain Fractions skill scores
(FSS; Roberts and Lean, 2008), a method for investigating the scale-dependence of im-
pacts. Section 2.5 offers a theoretical foundation for the newly proposed variance-based
method designed for investigating budget of variance given by sources of uncertainties.

2.1 ICON-D2
All numerical simulations are performed with the ICON (ICOsahedral Non-hydrostatic)
model in its limited-area mode ICON-D2, which is used in operational weather forecasting
at Deutscher Wetterdienst (DWD) since February 2021 (D. Reinert et al., 2021). Given
our aim to assess the practical predictability of convective weather using a state-of-the-
art EPS, we needed to keep up with the evolution of the ICON model and its associated
ICON-D2-EPS implemented by DWD. This necessitated updating the model and dataset
used in the study. Thus, only a general description of the ICON model will be provided
in this section. Detailed configurations, tailored to specific datasets, will be introduced in
each subsequent results chapter.

ICON employs an unstructured icosahedral-triangular Arakawa-C grid in the horizontal
direction, formed by spherical triangular cells that seamlessly cover a simulation domain.
As described in Zängl et al. (2015), its dynamical core is based on the non-hydrostatic
equations for fully compressible fluids. The prognostic variables are the edge horizontal
wind speed, vertical wind speed, air density, virtual potential temperature, mixing ratios
and, when using the two-moment microphysics scheme (Seifert and Beheng, 2006), the
number density of hydrometeors. Time integration is performed using a two-time level
predictor-corrector scheme. The ICON-D2 domain covers Central Europe with a grid
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spacing of 2 km (542,040 grid cells roughly encompassing 1400 km x 1600 km) and 65
vertically discretised layers from the ground up to 22 km above mean sea level. Figure2.1
shows the simulation domain of ICON-D2 with the model orography. Its prognositc domain
covers the entire area of Germany, Austria, Switzerland, Denmark, Netherlands, Belgium,
Luxembourg, Slovenia and parts of the neighbouring countries. In this study, Hourly
ICON-D2 output data is interpolated onto an uniform, rotated pole coordinate consisting
of 651 x 716 grid points (466,116 in total) with a grid spacing of 2.2 km. The evaluation
domain in defined based on Baur et al. (2018).

Figure 2.1: ICON-D2 domain (outer black rectangle) and model orography. The inner black
rectangle indicates the fully prognostic domain where the lateral boundary conditions are
not interpolated nor nudged. The red rectangle shows the German domain used throughout
evaluations.

2.2 Uncertainty representation

Representing uncertainty is a key basis for answering research questions in this thesis.
This section provides the implementation overview of uncertainty representations in the
ICON-D2 model.
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2.2.1 Initial and boundary condition perturbations
IC and LBC are the backbone in limited area modelling and represent a major source of
forecast uncertainty. In the operational ICON-D2 ensemble prediction system (ICON-D2-
EPS) at DWD, IC uncertainty is provided by the ensemble data assimilation system ICON-
D2-KENDA (Kilometer-scale ENsemble Data Assimilation Schraff et al., 2016). In the 40-
member ICON-D2-KENDA the model state is updated hourly by assimilating observations
into 1-hour first guess forecasts. In 2021 only conventional observations (synoptic stations,
radiosondes, wind profilers and aircrafts) were operationally assimilated.

The uncertainty representation in LBCs stems from ensemble forecasts generated by
the coarser grid model: ICON-EU, nested within the global ICON model. The global
ICON-EPS has a horizontal grid spacing of 40 km (26.5 km since November 2022). An
ICON-EU nest simulation is embedded online in the global ICON simulation and covers the
entire Euro-Atlantic region with half the grid spacing. The ICON-EU ensemble provides
the ICON-D2 LBCs. Forecast variability in the global ICON-EPS and ICON-EU-EPS
is attained by 40-member IC perturbations generated by the ensemble data assimilation
with an assimilation cycle of 3 hours, and by ensemble physics perturbations where a
random combination of tuning parameters is set for each of the ensemble members and
fixed throughout the forecast horizon. As in DWD’s operational setup (D. Reinert et al.,
2021), ICON-EU ensemble forecasts initialised three hours before the initialisation time
of the ICON-D2 ensemble are used. Therefore, the LBCs are updated hourly using the
ICON-EU-EPS output at lead times 3—27 hours. Since we primarily focus on the impact
of model uncertainties we consider the impact of IC and LBC uncertainty together and
call it IBC uncertainty.

In this study, ensemble simulations were performed closely following the configurations
of operational ICON-D2-EPS. Operational analyses from ICON-D2-EPS archived in DWD
provided ICs. Note that ICON-D2-EPS was in a preoperational phase until February 2021,
and its data were used for the Case Study v1 (Sect. 3.2.1). LBCs were obtained from
operational ICON-EU-EPS data. Forecast experiments employed the first 20 members
of 40 ICs and 40 LBCs. Throughout the study, the number of IBCs used to make IBC
perturbations remained fixed at 20.

2.2.2 Physically based stochastic perturbations
Sub-grid scale uncertainty in the planetary boundary layer is represented here using the
PSP scheme presented by Kober and Craig (2016) and revised by Hirt et al. (2019). The
rationale of the PSP scheme is to improve the coupling between sub-grid variability and
convective initiation in km-scale models. In convection-permitting models, such as the
ICON-D2 model, deep convection is explicitly represented. However, processes that lead
to convective triggering often occur below the grid scale and are not sufficiently paramet-
erised. These sub-grid processes include boundary layer turbulence, sub-grid orography and
density currents resulting from convective downdrafts. The PSP scheme is re-introducing
the missing effects of boundary layer turbulence, most influential among the three effects,
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in a physically consistent manner. The revised PSP scheme contains modifications for
added tendencies: an autoregressive, continuously evolving random field, a limitation of
the perturbations to the boundary layer that removes artificial convection at night, and a
mask that turns off perturbations in precipitating columns to retain coherent structures
(Hirt et al., 2019).

The perturbations are given by adding stochastic disturbances on the model tendencies
of temperature, specific humidity and vertical wind within the planetary boundary layer
following:

∂tΦ|P SP = αtuningη
1

τeddy

leddy

5∆x

√
Φ′2 (2.1)

where Φ ∈ T, qv, w. η is a spatio-temporal structure of random eddy field correlated with
a time scale τeddy and number density leddy/∆x of eddy. This random field is generated in
each sub-region computed in parallel during time integration of the model. The generation
is based on a random seed given as a namelist parameter. αtuning is a scaling factor to
magnify the amplitude of the perturbations. However, the total amplitude is inherently
scaled by the standard deviation of the tendency

√
Φ′2. The length of eddies leddy is set to

1000 metres. The typical lifetime of convective eddies used for a temporal autoregressive
process is 10 minutes. The scaling factor α is 5.0. For all simulation using the PSP scheme,
the number of the IBC ensemble member is used as a random seed generating a stochastic
pattern, i.e. the seed for ensemble member 1 is 1, and for the member 20 is 20 (as in Puh
et al., 2023).

2.2.3 Microphysical parameter perturbations
To investigate the impact of microphysical uncertainty we use six combinations spanned by
three different CCN concentrations and two different shape parameters of CDSD, similar
to Matsunobu et al. (2022). These perturbations necessitate the use of the two-moment
bulk-microphysics scheme (Seifert and Beheng, 2006), that is currently used in the pre-
operational Rapid Update Cycle suite at DWD.

Perturbations in CCN concentrations consist of three pre-defined parameters: maritime
(NCN = 100 cm−3), continental (NCN = 1700 cm−3 ), and polluted (NCN = 3200 cm−3)
aerosol load based on Hande et al. (2016). ’Maritime’ emulates clean, pristine conditions
that have quite small numbers of CCN typical for the sea. ’Continental’ is the default set-
ting that represents the typical CCN concentrations for the European continental regions.
The ’polluted’ setting represents extremely polluted situations caused by, for example,
massive wildfires and considerable anthropogenic emissions.

We also vary the shape parameters of CDSD estimation. The CDSD is approximated
following the generalised gamma distribution

f(x) = Axν exp (−λxµ) (2.2)

where A is dependent on the number density of hydrometeor particles and λ is a coefficient
dependent on the average particle mass. The coefficients ν and µ are parameters that are
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pre-defined and fixed throughout a simulation. In this study we control the widths of the
CDSD by varying the shape parameter ν between 0 and 8 to cover a wide spectrum of the
possible shape parameter values (Barthlott et al., 2022b). Since the parameters describing
the CCN concentration and the shape of CDSD are kept temporally and spatially constant
throughout a simulation, the MPP represent a structural uncertainty mimicking rather
model error due to the incomplete knowledge of physical parameters than subgrid-scale
variability.

2.3 Flow-dependent measure: convective adjustment
time scale

Modulations of the convective environment are discriminated using the convective adjust-
ment time scale τc (Done et al., 2006; Keil and Craig, 2011) describing a time scale over
which CAPE is consumed by precipitation and convective equilibrium is established. This
objective measure to classify convective weather situations is defined as CAPE (Jkg−1)
over its removal that is expressed by the precipitation rate P (kgs−1m−2):

τc = CAPE

dCAPE/dt
= 1

2
cpρ0T0

Lvg

CAPE

P
(2.3)

where cp (specific heat capacity), ρ0 (reference density), T0 (reference temperature), Lv

(latent heat of evaporation) and g (gravitational acceleration) are constants.
As an example, fingerprints of representative precipitation patterns during different

convective forcing regimes are displayed in Fig. 4.1. During non-equilibrium conditions,
there is no general uplift and CAPE can accumulate until local processes trigger convec-
tion. Being controlled by local factors, the resulting precipitation field typically has an
intermittent spotty character (Fig. 4.1a). The area-averaged τc attains fairly large val-
ues, especially before the onset of convective precipitation around noon (Fig. 4.1c). On
the other hand, during equilibrium, ascending motions driven by a large-scale flow cause
widespread heavy rainfall (Fig. 4.1d). In such conditions CAPE generated by large-scale
processes is immediately reduced by convective activity and τc usually attains small values
of less than one hour (Fig. 4.1f).

2.4 Scale-dependent analysis: Fractions Skill Scores
Spatial error and spread

In this study, a variant of the Fractions skill score (Roberts and Lean, 2008) is used as a
metric to examine the scale-dependent forecast error and spread of precipitation. The FSS
is a fuzzy scoring technique quantifying the similarity between two binary fields (denoted
A and B, observation and forecast fields in error, or two distinct ensemble members in
spread) in terms of a predefined neighbourhood scale (Fig. 2.2).
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Figure 2.2: Binary field of precipitation after applying a threshold. Grey boxes show
grid cells with precipitation above a certain threshold and white boxes illustrate non-
precipitating grid cells or those with precipitation below the threshold. Two thick black
boxes show two different neighbourhood sizes. The figure is adopted from Roberts and
Lean (2008).

The definition of the FSS is given by

FSS = 1 −
∑(fA − fB)2∑

f 2
A + ∑

f 2
B

(2.4)

where fA and fB represent the fraction of rainy grid points in fields A and B, respectively,
at which the precipitation amount is above a certain threshold value. The second term
on the right-hand side is the ratio of the mean squared error (MSE) of the fraction fields
A and B to the maximum possible MSE. If the number of grid points with a value of
1 within a certain neighbourhood of a grid point is equal between two fields, the FSS is
1.0, which means the compared two fields are identical at the scale of the neighbourhood
window. The FSS becomes smaller as the difference between two fields gets larger, and it
becomes 0.0 when only one of the fields has values and the other has a complete miss in
the respective neighbourhood.

It is known that the FSS is quite sensitive to the fraction of precipitating grid points in
the entire field (Mittermaier and Roberts, 2010; Skok and Roberts, 2016, 2018). To remove
the effect of frequency bias, we use the 95th percentile values of hourly precipitation as the
threshold to generate binary fields. The percentile threshold keeps the number of grid
points used for the FSS calculation constant. Throughout the study, hourly forecast and
observed precipitation rates are used for the evaluation. If the number of rainy grid points
is less than 5% in the evaluation domain (Fig. 2.1), the field at that time is regarded as a
complete miss. If both compared fields are a complete miss, that combination of fields is
excluded from the analysis. The neighbourhood sizes are varied from 2.2 km (1 grid point)
to 336.6 km (153 grid points) with an interval of 2 grid points. The largest window size
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corresponds to half of the shorter side of the evaluation domain encompassing 294 × 341
grid points.

While the FSS was originally developed for comparing observations and forecasts, it
can also show the dispersion of two fields (Dey et al., 2014). In this study, spatial error
and spatial spread are defined based on Dey et al. (2014)’s method in order to evaluate
the spatial error-spread relationship. To enable the FSS to be directly comparable like
a classical error-spread analysis, spatial error and spread are defined as one minus the
ensemble mean of each FSS:

Spatial error = 1 − 1
N

N∑
i

FSSofi (2.5)

Spatial spread = 1 − 1
N(N − 1)

N∑
i

N∑
j ̸=i

FSSfifj (2.6)

where N is ensemble size and the subscript of and ff means that the FSS is calculated
between observation vs forecast and forecast vs forecast, respectively. Following Dey et al.
(2014), we calculate FSSff for all combinations of ensemble members belonging to an en-
semble. For instance, FSSff for a 20-member ensemble can be calculated 20 × 19/2 = 190
times, and for a 6-member ensemble 15 times. Given the robustness of the ensemble mean
FSS to ensemble size (Necker et al., 2024), we can compare mean FSS for ensembles of
different sizes.

The error-spread relationship of the FSS was first illustrated by Zacharov and Rezacova
(2009). Their result shows that FSS-based spread is smaller than FSS-based error for five
case studies. However, their FSS-based spread might be underestimated because their
ensemble spread calculation was centred on a single reference forecast. Here we apply the
method of Dey et al. (2014) to mitigate this problem.

Scale detection using displacement scale

Although the FSS is a powerful measure for quantifying spatial dispersion of intermittent
fields such as convective precipitation, it does not provide a direct measure in physical
space. To identify scales where there is a certain degree of error or spread, we use a
displacement scale (DS), defined as the smallest neighbourhood window size as

DS = min(FSS ≥ 0.5 + f0

2
) (2.7)

where f0 is the fraction of grid points considered in the FSS calculation (the 95th percentile
threshold gives f0 = 0.05). Statistically, the DS is the smallest scale at which the forecast
contains more useful information than a random forecast (Roberts and Lean, 2008). Half
of the DS roughly corresponds to the distance of a displaced object between two compared
fields with no frequency bias of binary fields (Mittermaier and Roberts, 2010; Skok and
Roberts, 2018). Although the actual displacement length depends on many factors such
as the sizes and shapes of an object (Skok and Roberts, 2018), we use the displacement
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scale as a reasonable estimate of the doubled displacement length in this study. The DS
can be considered directly as an estimate of displacement here because we use percentile
thresholds to calculate the scale for each combination of field comparisons. Note that the
DS is based on the same definition as the ’skillful’ (Mittermaier and Roberts, 2010) and
the ’believable’ scale (Dey et al., 2014; Bachmann et al., 2020).

In the remainder of this paper, we refer to the displacement scale of spatial error
and spread as eDS and sDS, respectively. The eDS is the smallest scale at which an
ensemble shows a better prediction than a random prediction. The sDS is the largest
scale at which significant spatial variability is achieved among ensemble members. If the
FSS never exceeds 0.5 + f0

2 , the displacement scale is set to be as large as the length
of the evaluation domain. However, this no longer represents the scale of misforecasts –
precipitation events are likely to be missed or false alarmed in this case. For this reason
we examine the ensemble displacement scales using the median rather than the mean.

2.4.1 Verification dataset: Radar observations
An assessment of the practical predictability of convection, in particular its scale-aware
component, requires a sound spatio-temporal dataset of precipitation measurements. The
observations used for verification in this study are obtained from the German weather ser-
vice (Deutscher Wetterdienst, DWD)’s observation network RADOLAN (Deutscher Wet-
terdienst (DWD), 2022). We used the RY product, whose valid observation domain covers
most of the verification domain, with the missing domains along the south-western bound-
ary (Fig. 4.1b,d). Near-surface reflectivities are observed every five minutes with 17 C-band
radars at a spatial resolution of 1 km. The reflectivities are converted to five-minute pre-
cipitation rates and calibrated with ground ombrometer measurements. They are then
accumulated to give hourly precipitation rates and regridded to the identical rotated pole
grid as the ICON-D2 outputs for evaluation. Thus, the radar precipitation data comprise
a synthesis of two data sources, radar and ground measurement network.

2.5 Variance-based analysis: variability budget
2.5.1 Sampling strategy
A sampling strategy basically follows the Morris method introduced in Sect 1.3. Morris’
sampling strategy is a ”One At a Time” method that iteratively perturb one parameter at
a time. Figure 2.3a shows an example of the Morris’ sampling strategy. Let us consider a
model f(pA, pB) with two uncertain input parameters pA, pB, assumed to be continuous and
bounded between 0 and 1. Discretising the parameters into np levels creates an interval
size of ∆ = 1

np−1 . This results in p2 possible combinations of pA and pB. The method
begins by selecting an initial point (pA, pB) and performing a simulation. Next, a random
parameter, say pA, is perturbed by ∆. Following this, the remaining parameter, pB, is
also perturbed by ∆. This process results in three simulations, forming a trajectory that
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captures the impact of parameter changes. Within the obtained trajectory, the changes in
the model output due to individual parameter perturbations are termed elementary effects
and defined as:

EEA = f(pA + ∆, pB) − f(pA, pB)
∆

EEB = f(pA + ∆, pB + ∆) − f(pA + ∆, pB)
∆

.

(2.8)

The mean and standard deviation of elementary effects are commonly used to assess sens-
itivity with the Morris sampling. Their stability with relatively small sample sizes reduces
the influence of sampling uncertainty arising from the limited number of simulations used
to calculate them. As each trajectory covers 1

np−1 of a parameter space, a minimal set
requires covering all paths between discretised values with r = (np − 1) repetitions. This
translates to a minimum of 3(np −1) simulations to generate a dataset suitable for deriving
sensitivity indices.

Figure 2.3: An example of Morris screening method (a) and pathways to add uncertainty
sources (b, c).

We adopt a simplified strategy to construct an ensemble design suitable for investigating
the impact of model uncertainty. The first simplification is to assume that ∆ = 1. Our
focus lies on the variability introduced by adding a new model uncertainty representation,
not on systematic biases that can be scaled by an amplitude of parameter perturbation.
Therefore, binary perturbations (’on’ or ’off’) are sufficient. Second, instead of screening a
starting point in the parameter space, we leverage IBC-perturbed members to define diverse
starting points for each trajectory. While the parameter starting point remains fixed, the
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varying atmospheric states introduced by different IBCs effectively sample the indirect
effects of starting point variation. Third, the repetition r is chosen as a configurable sample
size. Since binary perturbations necessitate a repetition r equal to 1 for each uncertainty
representation, the minimum set of trajectories is 1 and does not capture the variability
arising from different starting points. To imitate the variability due to the starting point
and derive statistics of the elementary effects, we sample trajectories by perturbing IBCs.
It is also possible to treat IBC perturbations as another uncertainty representation rather
than a random initial state. However, since model uncertainty’s impact depends on the
input atmospheric state, the choice of the control IBC significantly constrains the location
and intensity of model uncertainty’s impact. It is more reasonable to perturb model-related
inputs with IBCs to acquire correct understanding.

The above simplifications suggest a simple dataset design, consisting of a path of ac-
cumulated uncertainty representations (Fig. 2.3b). Let us consider a trajectory fi(xA, xB)
initiated with the i-th IBC (0 ≤ i ≤ r) and subjected to two model uncertainty represent-
ations, A and B. The elementary effects within this i-th trajectory are defined as follows,
adhering to the conventions of Eq. 2.8:

EEi
I = fi(0, 0) − f(0, 0),

EEi
A = fi(1, 0) − fi(0, 0)

EEi
B = fi(1, 1) − fi(1, 0),

(2.9)

where · means an average over IBCs and EEI is the IBC impact representing the variability
of the starting points for model uncertainty perturbations. Additionally, we can calculate
the mixed effect of multiple uncertainties, which is defined as a deviation from the ensemble
mean when more than one uncertainty representation is turned on:

EEi
IA = fi(1, 0) − f(0, 0)

EEi
IAB = fi(1, 1) − f(0, 0).

(2.10)

These mixed effects represent the synergistic impacts resulting from perturbing multiple
parameters simultaneously, and matches the sum of the individual elementary effects e.g.
EEi

IA = EEi
I +EEi

A. The ensemble statistics of these effects can be derived along the i axis
with sample size r. We only use variance for the evaluation as it converges as quickly as
standard deviation, which quickly converges with a small sample size compared to extreme
quantile values (Craig et al., 2022). An investigation of variance convergence and sampling
uncertainty is also performed in this thesis and the results are presented in Chapter 5.

Fédou and Rendas (2015) proposed a modified sampling strategy and another definition
of the elementary effect. The proposed method is forming a cyclic graph with pathways
for adding parameter perturbations to equitably consider the starting point dependence
of impacts. The method maintains a fixed order of parameter perturbations within each
trajectory. Then the sampling process is repeated with different orders until all possible
order combinations are covered, forming a quadratic cycle graph like Fig. 2.3c. Under this



2.5 Variance-based analysis: variability budget 25

strategy, the elementary effects of pA and pB can be calculated as

EEA = f(pA + ∆, pB) − f(pA, pB)
∆

EEB = f(pA, pB + ∆) − f(pA, pB)
∆

.

(2.11)

For the two-parameter case, covering one pathway requires 2×np simulations, and a total of
2×(2×np) simulations are needed to cover all pathways. The difference between the mixed
effect (Eq. 2.10) and the sum of elementary effects defined in Eq. 2.11 is considered as the
higher-order mixed effect that represents higher-order non-linear interactions. Accounting
for higher-order effects is crucial when the elementary effect depends on the sequence of
perturbations (i.e. the starting point). For example, Covey et al. (2013) pointed out
that the standard Morris elementary effect (Eq. 2.8) cannot differentiate impact arising
from parameter interactions and its higher-order effects (interactions with pre-existing
impacts). On the other hand, Awad et al. (2019) reported that the higher-order mixed
effects can produce unrealistic rank of parameter importance in highly complex models.
This is presumably due to insufficient sample size to estimate the higher order effect in
such models. Therefore, in our study of a complex NWP model, we retain the definition
in Eq. 2.8 but compare elementary and mixed effects across various pathways within the
cyclic graph. This approach avoid potential shortcomings associated with relying solely on
either approach. We can rewrite the elementary effect as a conditional elementary effect
upon pre-existing perturbations. For instance in Fig. 2.3c:

EEi
B|IA = fi(1, 1) − fi(1, 0)

EEi
B|I = fi(1, 0) − fi(0, 0).

(2.12)

The former is the elementary effect of parameter pB within the upper pathway and the
latter is within the lower pathway. Comparing EEB|IA and EEB|A allows us to understand
how the elementary effect varies depending on a pathway. If they show similar statistics,
uncertainty due to parameter pB acts independently from pre-existing uncertainty. If not,
the difference comes from the higher-order effects, meaning interactions with pre-existing
uncertainty.

2.5.2 A decomposition of variance
Definition of variance budget equation

Utilising the elementary effects defined in the previous subsection, this section presents
the rationale behind the budget decomposition of variance of the mixed effect. Let us
consider an ensemble comprising two uncertainty representations, A and B. For simplicity
their elementary effects defined as Eq. 2.8 are denoted as xA and xB and simply called
(individual) impact of A and B. Similarly, the mixed effect defined as Eq. 2.10 is denoted
as xAB and called combined or synergistic impact. The corresponding bias-removed impacts
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are x′
A, x′

B, and x′
AB, respectively. The variance of the combined impact (total variance),

x′
AB, can be decomposed into the sum of the variances of the individual impacts, and their

correlation term:

V ar(x′
AB) = V ar(x′

A) + V ar(x′
B) + 2

√
V ar(x′

A)
√

V ar(x′
B)Corr(x′

A, x′
B). (2.13)

This ’budget equation’ reveals the efficiency with which uncertainty representations A and
B contribute jointly to the total variance. A positive and large correlation coefficient
Corr(x′

A, x′
B) indicates that both representations perform similar tasks and enhance each

other, potentially rendering one redundant. Conversely, negative correlation suggests that
two representations cancel out each other. Correlation close to zero suggests orthognality of
representations that effectively attain variability likely through distinct physical processes
and the sum of individual variances becomes equal to the total variance in this case.

The budget decomposition also provides insights into factors influencing changes in
total variance. Let us think of two cases where V ar(x′

AB) has increased by adding uncer-
tainty representation B to the pre-existing one A. If V ar(x′

A) or V ar(x′
B) is increased but

Corr(x′
A, x′

B) is unchanged, that signifies an increase in the variability of individual per-
turbations contributes to the total variance increase. Conversely, if V ar(x′

A) or V ar(x′
B)

remain unchanged but Corr(x′
A, x′

B) increases, the total variance increase stems solely from
the modification in the correlation between x′

A and x′
B.

This decomposition of variance can be readily expanded to encompass n uncertainties:

V ar(xtotal) =
∑

i

V ar(xi) + 2
∑
i<j

√
V ar(x′

i)
√

V ar(x′
j)Corr(xi, xj). (2.14)

In this study, we applied this decomposition for the analysis of three uncertainties. The
detailed calculation steps for this specific case are presented in Sect. 6.1.

Derivation

The derivation of the budget equation in Eq 2.13 proceeds as follows. We consider
−→
x′

A and
−→
x′

B as vectors in a 2D space, where their linear combination matches
−−→
x′

AB with a certain
correlation, as illustrated in Fig. 2.4a. Using the cosine theorem, we obtain the following
identity:

|
−−→
x′

AB|2 = |
−→
x′

A|2 + |
−→
x′

B|2 − 2
−→
x′

A ◦
−→
x′

B, (2.15)

where | · | denotes the norm of a vector and ◦ denotes the inner product. Taking the mean
over ensemble members yields:

σ(x′
AB)2 = σ(x′

A)2 + σ(x′
B)2 + 2Cov(x′

A, x′
B), (2.16)

corresponding to a similar triangle, but with sides formed by the standard deviations σ(x′
A),

σ(x′
B), and σ(x′

AB). Through a trigonometric identity, we derive the following:

σ(x′
AB)2 = σ(x′

A)2 + σ(x′
B)2 − 2σ(x′

A)σ(x′
B) cos θ, (2.17)
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Figure 2.4: Trigonometric relationship of combined perturbations for (a) a single ensemble
member and for (b) ensemble spread correlated with a coefficient satisfying Corr(x′

A, x′
B) =

− cos θ.

where θ being the angle between the sides of x′
A, x′

B. Thus, the trigonometric relationship of
a single member shown in Fig. 2.5a can be extended to that of ensemble spread (Fig. 2.5b).

Using the relationship Corr(x′
A, x′

B) = Cov(x′
A,x′

B)
σ(x′

A)σ(x′
B) , we can rewrite Eq. 2.16 using stand-

ard deviations:

σ(x′
AB)2 = σ(x′

A)2 + σ(x′
B)2 + 2σ(x′

A)σ(x′
B)Corr(x′

A, x′
B), (2.18)

This is identical to Eq. 2.13. Comparing Eqs. 2.17 and 2.18, we obtain the following
relationship:

Corr(x′
A, x′

B) = − cos θ. (2.19)

When θ is a right angle π/2, the impacts of perturbing x′
A and x′

B are uncorrelated. When
θ > 90, the triangle becomes obtuse, indicating positive correlation. Conversely, θ < 90
corresponds to an acute triangle and signifies negative correlation.

Figure 2.5 visually demonstrates the impact of correlation on total variance. In Fig. 2.5a,
sides representing σ(x′

A) and σ(x′
B) intersect at an acute angle θ, indicating negative cor-

relation. As the angle θ widens in Fig. 2.5b (gets more uncorrelated while side lengths
remain the same), the total standard deviation σ(x′

AB) increases (grey solid and dashed
circles). Thus, correlation serves as an indicator of how efficiently two impacts contrib-
ute to overall variability. When negatively correlated, the combination has small impact
on forecast outcomes. Positive correlation suggests the perturbations are basically doing
the same thing, implying that amplifying one perturbation might achieve similar results
without additional computational cost.
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Figure 2.5: Trigonometric illustrations of ensemble spread increase. σ(x′
A), σ(x′

B) are in-
dividual spread and σ(x′

AB) is spread of mixed effect. θ is a crossing angle satisfying
Corr(x′

A, x′
B) = − cos θ. Black circles indicate ensemble spread purely due to x′

A. Grey
circles indicate enlarged spread by adding x′

B. (a) a reference relationship of σ(x′
A) and

σ(x′
B). (b) Further increased spread (grey dashed circle) when the correlation − cos θ is

weakened without a change in σ(x′
A) and σ(x′

B).

Comparison with Sobol’s variance-based analysis

As briefly mentioned in Sect 1.3, the variance V ar(x′
AB) can be decomposed into the sum

of the Sobol’s variances (Sobol’, 1990):

V ar(x′
AB) = V S

A + V S
B + V S

AB, (2.20)

where V S
A and V S

B are Sobol’s first-order variances of xA and xB, defined as V ar(E[x′
AB|x′

A])
and V ar(E[x′

AB|x′
B]), respectively. V S

AB is Sobol’s interaction term. Under the condition
V ar(x′

AB) ≥ V S
∗ , the total variance can be described as the sum of non-negative Sobol’s

variances in this measure.
Using the law of total variance, the variance V ar(x′

AB) can be written as a sum of
expectation of the conditional variance and variance of conditional expectations on x′

A

under the condition V ar(x′
AB) ≥ V ar(x′

A):

V ar(x′
AB) = EZ [V ar(x′

AB|x′
A = Z)] + V arZ(E[x′

AB|x′
A = Z]). (2.21)

In this two-variable example, the first term on the right-hand side means mean variance
given by x′

B while parameter A is fixed. Thus, the second term on the right-hand side
represents the net gain in total variance due to adding uncertainty representation of A to
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the pre-existing B. This term corresponds to Sobol’s first-order variance:

V S
A = V ar[E(x′

AB|x′
A)] = V ar(x′

AB) − E[V ar(x′
AB|x′

A)]. (2.22)

The Sobol’s first-order variance is a residual of the subtraction of the mean variance due
to all other impacts (only x′

B in this two-variable case) from the total variance. Thus,
the following relationship stands out between the Sobol’s index and the variability budget
method:

V S
A = V ar(x′

AB) − V ar(x′
B)

= V ar(x′
A) + 2Cov(x′

A, x′
B).

(2.23)

Consequently, the Sobol’s interaction term can also be related to the terms in Eq. 2.16:

V S
AB = V ar(x′

AB) − V S
A − V S

B

= V ar(x′
AB) − V ar(x′

A) − V ar(x′
B) − 4Cov(x′

A, x′
B)

= −2Cov(x′
A, x′

B).
(2.24)

In a two-variable case, both the Sobol’s interaction term and the variability budget method’s
covariance term represent the same underlying interaction. We can obtain identical amount
of the gain in the total variance from both methods.

One advantage of the variability budget method is that the individual variance (not
the Sobol’s first-order variance, which is conditional variance of ensemble mean) is already
known and correlation coefficient can be derived without additional computations. Another
advantage appears when the number of perturbed parameter become more than two, in
which case the variability budget method still can decompose interaction terms into all
pair-wise correlations, but the Sobol’s method treats such interactions as a black box.
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Chapter 3

Relative impact of MPP on daily
precipitation and hydrometeors

The following Chapter is adapted from the publication titled “The impact of microphys-
ical uncertainty conditional on initial and boundary condition uncertainty under varying
synoptic control”(Matsunobu et al., 2022).

3.1 Background

Impact of uncertainties on convective-scale forecasts varies greatly depending on the pre-
vailing flow conditions. A successful approach to classifying convective regimes is to focus
on the strength of forcing that is driving convection (e.g. Keil et al., 2014, 2020; Flack
et al., 2018). An objective measure of such a classification is the convective adjustment
timescale (Done et al., 2006), which provides an indicator of the convective equilibrium
measured as a timescale over which the convective available potential energy is consumed
by convective precipitation.

In order to answer the first question posed in Chapter 1, How does the relative
impact of individual and combined uncertainties vary under different convect-
ive forcing regimes?, this chapter assesses the impact of perturbations in IBC and
microphysical parameters (MP) on convective precipitation and cloud formations on daily
timescale. Five case studies are categorised into convective forcing regimes according to
the timescale (refer to Sect. 2.3 for the detail method).

In Sect. 3.2, the dataset and approach are presented. Sect. 3.3 and 3.4 examines a
case study for each forcing to quantify the relative impact on daily precipitation and cloud
components, respectively. Sect. 3.5 aggregates results over case studies for systematic
evaluation. Sect. 3.6 summarises the main results.



32 3. Relative impact of MPP on daily precipitation and hydrometeors

Figure 3.1: (a) Design of microphysically perturbed ensemble experiments. The colours
used throughout the article indicate the nine different 20-member IBC sub-ensembles shar-
ing the same combination of CCN and CDSD parameters. (b) Cloud droplet size distri-
bution with different shape parameter ν at fixed cloud water content (QC = 1 g m−3) and
cloud droplet number concentration (QNC = 300 cm−3). D denotes the diameter of the
droplets.

3.2 Data and sub-sampling approach

3.2.1 Case Study dataset v1: August 2020
Ensemble design

To investigate the influence of uncertainties on CCN concentration and the shape of the
CDSD in the presence of characteristic IBC uncertainty, we perform numerical experiments
using 20 different IBCs, 3 different CCN concentrations and 3 different shape parameters
of the CDSD yielding in total a 180-member ICON-D2 ensemble (Fig. 3.1).

The initial conditions are provided by pre-operational analyses produced by ICON-D2-
KENDA (Kilometer-scale ENsemble Data Assimilation (Schraff et al., 2016). In August
2020 conventional measurements like radiosonde, aircraft and ground-based observations
were assimilated in ICON-D2-KENDA using the local ensemble transform Kalman filter
(LETKF; Hunt et al., 2007). ICON-D2-KENDA produces 40-member ensemble analyses,
while the first 20 analyses are used as initial conditions for ICON-D2 ensemble forecasts
(as in operations at DWD) with 24 h lead time due to limited computational resources.
Lateral boundary conditions are based on ensemble ICON global and EU-nest simulations
initialised 3 h before the initial time of the ICON-D2 ensemble experiments. The initial
conditions for the global and EU-nest simulations are the operational analyses provided
by DWD with a grid spacing of 40 km for the global domain and 20 km for the nested EU
domain. Different from our ICON-D2 ensemble simulations the one-moment microphysics
scheme and the convection parametrisation for deep and mid-level convection are active in
the ICON global and EU-nest simulations. The lateral boundary conditions are updated
hourly using data from the EU-nest forecasts at lead times from 3 to 27 h.
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To examine the microphysical uncertainty we perturb the width of the CDSD and the
amount of aerosol in the atmosphere by altering the CCN concentration. In the Seifert
and Beheng (2006) scheme, CCN activation rates are calculated using a look-up table
of activation rates empirically estimated by Segal and Khain (2006). To take insoluble
CCN into account, certain portions of CCN are not activated depending on their particle
sizes (Seifert et al., 2012). Consistent with Barthlott et al. (2022a, b) we vary CCN
concentrations between pristine conditions and extremely polluted conditions. We employ
three CCN concentrations: maritime (NCN = 100 cm3), continental (NCN = 1700 cm3)
and polluted (NCN = 3200 cm3). The “maritime”emulates clean, pristine conditions that
have quite small numbers of CCN like over the sea. The “continental”is the default set-
ting that mimics the observed CCN concentrations for the European continental regions
(Hande et al., 2016). The “polluted”represents extremely polluted situations caused by, for
example, massive wildfires and considerable anthropogenic emissions. The different CCN
sub-ensembles that share the same CCN concentration are named with suffixes m(aritime),
c(ontinental) and p(olluted), as shown in Fig. 3.1a.

The size distribution of hydrometeors is approximated using the following generalised
gamma distribution:

f(x) = Axν exp (−λxµ) (3.1)

where A is dependent on the number density of hydrometeor particles, and λ is a coefficient
dependent on the average particle mass. The coefficients ν and µ are parameters that are
pre-defined and fixed throughout a simulation. For example, with µ = 1

3 and ν = −2
3 ,

we can obtain the so-called Marshall‒Palmer distribution of raindrops. In this study we
control the widths of the particle size distributions by varying the shape parameter ν (for
details see Barthlott et al., 2022a, b). With increasing ν the CDSD becomes narrower and
more skewed as shown in Fig. 3.1b, which means the number concentrations of particles
close to the mean size increase. In this study ν is varied between 0, 2 and 8 to cover a wide
spectrum of the possible shape parameter values (as in Wellmann et al., 2020; Barthlott
et al., 2022a, b). Note that the default setting is the broadest CDSD ν = 0. Since
the parameters describing the CCN concentration and the shape of the CDSD are kept
temporally and spatially constant throughout the simulation, they rather represent model
error due to the incomplete description of physical processes than subgrid-scale variability.

To address individual or combined impacts of forecast uncertainties mentioned above,
we employ a sub-ensemble approach. A simple selection of different sub-ensembles sharing
the same uncertainty allows us to quantify the relative impact of the various uncertainties.
To focus on the combined impact of the microphysical perturbations, for instance, we
can inspect 20 microphysical sub-ensembles consisting of nine members each sharing the
same IBC but different combinations of CCN and CDSD parameters (microphysical (MP)
sub-ensemble). To focus on the impact of the IBC uncertainties, we have nine IBC sub-
ensembles available consisting of 20 members each (IBC sub-ensemble).
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Figure 3.2: Daily accumulated precipitation on (a) a weakly forced day (11 August 2020)
and (b) a strongly forced day (17 August 2020). Ensemble mean daily totals of the IBC
sub-ensemble nu0c are shown. The black rectangles indicate the ICON-D2 simulation
domain, the red rectangles depict the German domain used for evaluation, and the blue
rectangle depicts the central western German domain used to inspect the spatial variability
in rainfall patterns in Fig. 4.3 The time series of area-averaged hourly precipitation (green)
and the convective adjustment timescale τc (red) complemented by the radar observed data
(black) illustrate the different characteristics of both days in panels (c) and (d).

Weather situation and convective regime classifications

Two typical cases are selected for an in-depth investigation of the relative importance of the
different uncertainties conditional on convective forcing. The distinct forcing situations are
identified based on the convective adjustment time-scale τc (Sect. 2.3). On 11 August 2020,
the precipitation texture shows a spotty distribution over southern Germany characteristic
of convective precipitation in weak forcing situations (Fig. 3.2a). In a weak potential
equivalent temperature gradient across central Europe (not shown), local trigger mechan-
isms (like convergence lines in the boundary layer caused by orography) initiate localised
intense convection. The diurnal cycle illustrates the typical development of convective
precipitation starting with little precipitation in the morning and peak precipitation in the
afternoon (green line in Fig. 3.2c). The daily maximum value of τc peaks at about 20 h
(red line in Fig. 3.2c), exceeding the 6 hour threshold used in previous work to distinguish
different synoptic control in Europe (Keil et al., 2014, 2019; Kühnlein et al., 2014; Baur
et al., 2018; Flack et al., 2018).

The 17 August 2020 represents a strong forcing situation associated with a weak low-
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Table 3.1: List of case studies for which 180-member ICON-D2 ensemble experiments were
performed, indicating the date, the type of synoptic forcing, the daily maximum convective
adjustment time-scale (τc) and daily precipitation of different IBC sub-ensemble means with
their microphysical configurations, respectively.

Date Forcing τc [h] Precipitation [mm/d]
default maximum minimum

11 August 2020 weak 20 2.67 (nu0c) 2.95 (nu8m) 2.42 (nu8p)
12 August 2020 weak 7 1.58 (nu0c) 1.73 (nu8m) 1.45 (nu8p)
13 August 2020 strong 3 3.72 (nu0c) 3.90 (nu8m) 3.60 (nu2p)
17 August 2020 strong 2 5.72 (nu0c) 6.00 (nu8m) 5.51 (nu8p)
18 August 2020 weak 6 3.79 (nu0c) 4.07 (nu0m) 3.51 (nu8p)

pressure system located over France that moved eastward towards Germany (not shown).
The cyclonic flow favoured large-scale ascent initiating convection, especially over the west-
ern part of Germany, resulting in widespread precipitation (Fig. 3.2b). There was rainfall
from the start of the forecast, and the heaviest rainfall occurred at night followed by a
gradual reduction in precipitation until noon (green in Fig. 3.2d). In the afternoon, there
was a secondary peak of convective precipitation between 11:00 and 18:00 UTC. The daily
maximum τc is less than 2 h on 17 August 2020 (Table 3.1, and red line in Fig. 3.2d). Such
low values indicate that CAPE was immediately consumed by a continuous triggering of
convection caused by synoptically forced ascending motion characteristics in a so-called
equilibrium regime.

The comparison of the precipitation time series with area-averaged radar observations
indicates the realism and fidelity of the ICON-D2 ensemble forecasts (Fig. 3.2c and d).
Characteristic values of the remaining three cases and their classification are presented in
Table 3.1.

3.2.2 Sub-sampling approach

We extract different sub-ensembles from the large 180-member ensemble. First we create
nine-member MP sub-ensembles in which each of the sub-ensemble members has different
combinations of CCN and CDSD parameters but identical IBCs to examine the relative
contribution of the combined MP perturbations on precipitation. Since there are 20 IBCs
in the entire ensemble, there are 20 different MP sub-ensembles with nine members each.
Likewise, we can make nine 20-member IBC sub-ensembles as well, with one fixed combin-
ation of MP parameters but 20 different IBCs. These different sub-sampling perspectives
allow conclusions to be drawn about the relative impact compared to IBC uncertainty.
Last, we also make 60 three-member CCN and CDSD sub-ensembles to further decompose
the impact into the contributions of each.
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3.3 Systematic impact on daily precipitation
To assess the relative contributions of the various uncertainties we extract different sub-
ensembles from the large 180-member ensemble. First we focus on 9-member MP sub-
ensembles in which each of the sub-ensemble members has different combinations of CCN
and CDSD parameters but identical IBC to examine the relative contribution of the com-
bined microphysical (MP) perturbations on precipitation. Since there are 20 IBC in the
entire ensemble, there are 20 different MP sub-ensembles with nine members each. Like-
wise, there are nine 20-member IBC sub-ensembles, with one fixed combination of MP
perturbations but 20 different IBC. This different subsampling perspective allows drawing
conclusions on the relative impact of IBC uncertainty. Lastly, there are sixty 3-member
CCN and CDSD sub-ensembles, respectively, that inform on their individual contribution.

To estimate the impact of the combined microphysical uncertainty we first focus on
nine-member microphysics (MP) sub-ensembles sub-sampled from the entire 180-member
ensemble. The relative differences in 24 h accumulated area-averaged precipitation forecast
of all 180 ensemble members to their combined MP sub-ensemble mean are shown in
Fig. 3.3 for a synoptically weak and a strong forcing case to contrast the flow-dependent
behaviour. Every dot represents the precipitation difference in a single ICON-D2 forecast
to its sub-ensemble mean. Since there are 20 different MP sub-ensembles composed of nine
microphysically perturbed members (colour coded as in Fig. 3.3), the 180 dots illustrate
the overall variability. Apparently the impact of microphysical uncertainty is larger during
weakly forced conditions, and there is surprisingly high variability between the different
MP sub-ensembles, in particular during weak control. The largest and smallest range of
precipitation differences amounts to 48 % (+23 % to 25 %) and 11 % (+7 % to 4 %),
respectively (compare members eight and nine in Fig. 3.3). During strong synoptic control
the differences amount to 16 % (+9 % to 7 %) and 4 % (+2 % to 2 %), respectively
(compare members 2 and 18 in Fig. 3.3).

Furthermore, it is possible to assess the different microphysical impact on precipitation.
The average precipitation differences caused by MP perturbations are displayed by coloured
lines in Fig. 3.3; for instance, experiment nu8m (narrow CDSD and maritime CCN content;
dark blue) exhibits the largest precipitation deviations in both regimes. More generally,
experiments with maritime aerosol load (low CCN content, blue) show an increase in
precipitation, while the experiments with high CCN concentrations (polluted, red) show a
decrease. Increasing the CCN concentration from maritime (nu8m) to polluted conditions
with narrow CDSD shape (nu8p) amplifies average precipitation differences to +11 % and
14 % in the weak forcing case, respectively (+5 % to 4 % in the strong forcing case).
A comparison between the lines having the same colours but a different darkness shows
that the shape parameter of the CDSD also exhibits a systematic impact in the weak
forcing situation (e.g. light red (nu0p) and dark red (nu8p) lines in Fig. 3.3a), whereas a
CDSD’s impact is hardly seen in the strong forcing situation. Narrower CDSD distributions
give less precipitation, particularly during polluted conditions (nu8p, dark red). The larger
sensitivity to CDSD during weak synoptic control and a systematic decrease in precipitation
with increasing shape parameters are consistent with Barthlott et al. (2022a, b). During
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Figure 3.3: Relative difference of daily area-averaged precipitation [%] with respect to
combined microphysical (MP) sub-ensemble means sharing the same initial and lateral
boundary conditions (IBC) for the (a) weak and (b) strong forcing case. The columns
below indicate absolute precipitation values of the 20 different MP sub-ensemble means.
The nine colours indicate all combinations of microphysical configurations (as in Fig. 3.1a).
The coloured lines show the averages.
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strong synoptic control the average relative difference is governed by the CCN concentration
(Fig. 3.3b).

The governing role of IBC perturbations on precipitation is evident when comparing the
sub-ensemble mean precipitation amounts of the 20 different MP sub-ensembles. During
weak control, the variability ranges between 1.9 and 3.6 mm d1, whereas it ranges between
5.0 and 6.6 mm d1 during strong synoptic control (lower panels in Fig. 3.3). This variability
is purely caused by IBC uncertainty driving the 20 different MP sub-ensembles. The
similar amplitude of the variability (1.7 versus 1.6 mm d1) suggests a larger impact of
IBC uncertainty during weak control when the absolute rainfall values are roughly only
half as large. There is no systematic relationship between the precipitation amount and
the amplitude of relative differences during both regimes. That means the microphysical
impact is not constrained by daily precipitation amounts.

Interestingly, a closer inspection reveals that different IBCs can completely reshuffle the
rank of the individual members in a specific MP sub-ensemble. For instance, experiments
with modest aerosol content but different shapes of the CDSD show extremes for member 11
during weak control (nu8c (dark green) shows the largest negative and nu2c (medium green)
shows the largest positive impact; Fig. 3.3a). This non-systematic and highly varying
response of precipitation to perturbed microphysical parameters of individual ICON-D2
experiments points towards a strong sensitivity to IBC. This finding illustrates the necessity
to be cautious when interpreting results based on a deterministic approach only to evaluate
uncertainty.

Next, we further compress the data to directly compare and quantify the relative contri-
bution of the various sources of uncertainty conditional on the weather regime. The result-
ing relative daily area-averaged precipitation differences of various sub-sampling strategies
are displayed in Fig. 3.4. We again calculated the deviations with respect to a sub-ensemble
mean; for instance, the nine different 20-member IBC sub-ensembles are shown by orange
box and whisker diagrams depicting the medians, interquartile ranges, 5th and 95th per-
centiles, and outliers.

First, it becomes evident that the magnitude of the impact of the various uncertainties
largely depends on the synoptic control. The IBC sub-ensembles show a remarkable range
of +38 % to 30 % in daily precipitation sums during the weak forcing situation (filled
orange dots of IBC in Fig. 3.4). Although their medians and interquartile ranges have some
variability among the different microphysics configurations, no systematic dependence is
found, and the variability between the nine IBC sub-ensembles is statistically insignificant.
A corresponding behaviour is found for the strong forcing case with smaller amplitudes
between +15 % and 12 % (open orange dots in Fig. 3.4).

Secondly, the synergistic effect of microphysical perturbations (grey in Fig. 3.4) ranges
between +22 % and −25 % for the weak forcing case, and ±10% for the strong forcing
case. Note that the relative differencea of the 20 different MP sub-ensembles (with nine
members each), previously discussed in detail (Fig. 3.3), are collapsed into one column
here.

The individual microphysical perturbations consequently result in 60 sub-ensembles
(with three members each) denoted CCN sub-ensemble and CDSD sub-ensemble. Inter-
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Figure 3.4: Box and whisker diagram showing the relative differences of daily area-averaged
precipitation of individual ICON-D2 members belonging to various (sub-)ensembles. The
perturbations (x labels in colour) and different fixed configurations (grey x labels) are
indicated. 180 is the abbreviation of the entire ensemble, IBC, MP, CCN and CDSD for the
different sub-ensembles. The bars, boxes, whiskers and dots show medians, interquartile
ranges, 5th and 95th percentiles and outliers, respectively. Filled boxes represent weak
control (11 August) and open boxes strong synoptic control (17 August).

estingly, the impact of individual CCN perturbations shows a clear dependence on the
CDSD shape and vice versa. The CCN impact is smallest (±10%) with a broad distri-
bution (shape parameter ν = 0) and increases to a range of +22 % and −20 % with
narrower distributions (increase in shape parameter). The impact of CDSD perturbations
also increases with an increase in the CCN concentration. This steady increase in impact
is also found in the CCN concentrations during strong forcing, while the shape of the
CDSD shows a small sensitivity only. Precipitation reacts more sensitive to microphysical
perturbations during weak synoptic control. In this situation, the interquartile range of
the combined MP sub-ensemble (grey box) becomes smaller than those of the CCN sub-
ensembles with fixed shape parameters (cyan boxes for fixed ν = 2 and 8) corresponding
to a narrower CDSD. Thus adding CDSD perturbations to CCN uncertainty renders the
probability density function of the relative impact sharper and leads to an extension of the
tails of the distribution (grey dots of MP sub-ensemble).

Finally, the 180-member ensemble including IBC and microphysical uncertainty shows
the largest variability during weak control. Conditional on the weather regime the extremes
in daily precipitation of individual members deviate from the ensemble mean by +50 % to
40 % with an interquartile range of ±15 %. Interestingly the interquartile range and the
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Figure 3.5: Box and swarm plots for 24h-mean (a) domain-averaged total column cloud
water content, (b) cloud fraction and (c) domain-averaged total column rain water content
over Germany for the weak forcing case. The boxplots and dots illustrate the same data
set, but the dots represent individual IBC sub-ensemble members. The colours are based
on the various combination of microphysical perturbations shown in Fig. 3.1a. Boxplots
show medians, interquartile ranges as well as maximum and minimum values, respectively.

5th and 95th percentiles of the 180-member ensemble are similar to pure IBC uncertainty
(compare black and orange box and whiskers). Again, microphysical uncertainty particu-
larly affects the tails of the distribution (which are 10 % of the members represented as
dots in Fig. 3.4).

In summary, IBC uncertainties dominate the impact on precipitation, while microphys-
ical uncertainties play a secondary role. CCN has a larger impact than CDSD. Combined
perturbations of CCN and CDSD enhance each other and show larger extremes in precip-
itation than individual CCN and CDSD perturbations. While the interquartile range of
the 180-member ensemble and the individual IBC sub-ensembles is similar, the extreme
members in the full ensemble surpass the IBC variability by +15% and -10%. Thus, the
combination of IBC and microphysical uncertainty affects the magnitude of the extremes
while keeping the interquartile range fairly unaffected.

3.4 Systematic impact on cloud and rainwater content
To complement the assessment centred on the relative impact on precipitation, we now turn
to important precursors in the complex process chain to form precipitation and inspect the
contribution of the uncertainties to the cloud and rainwater content within a full convective-
scale EPS framework. Since we find similar systematic responses in both weather situations,
we show results for the weakly forced case only. In Fig. 3.5 we depict the variability caused
by IBC uncertainty in clouds and rainwater. The 24 h mean of hourly values is computed
for the nine different IBC sub-ensembles to examine the relative impact.

The vertically integrated cloud water content (TQC) increases significantly with higher
CCN concentration and CDSD shape (Fig. 3.5a). The medians of the ensembles with
different microphysics uncertainty vary by more than 400 % (TQC is amounting to 0.01
kg m2 in experiment nu0m and 0.044 kg m2 in nu8p). The comparison of sub-ensembles
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sharing identical CDSD shape parameters shows an increase in TQC of up to 300 % when
increasing CCN concentrations from maritime to polluted conditions (compare experiments
nu0m and nu0p in Fig. 3.5a). Similarly, the change from the broadest to the narrowest
CDSD enhances TQC by roughly 150 %. These values are more than an order of magnitude
larger compared to the impact of microphysical perturbations on precipitation (compare to
orange IBC sub-ensembles in Fig. 3.4). An important implication seen in Fig. 3.5a is that
IBC perturbations cannot encompass the variability caused by microphysical uncertainties
in cloud forecasts, which manifests by marginal (or no) overlap of the distributions which
have different CCN and CDSD configurations (differently colour-coded in Fig. 3.5).

The forecast cloud fraction also systematically increases with higher CCN and shape
parameters (Fig. 3.5b), in agreement with the increase in TQC. Cloudy grid points are
defined as grid cells where TQC > 50 g m2. The medians of the cloud fraction in IBC
sub-ensemble nu0m (light blue), nu8m (dark blue), nu0p (light red) and nu8p (dark red)
are 0.29, 0.39, 0.47 and 0.55, respectively. Thus, cloud fraction increases with higher CCN
and/or CDSD parameters by 35 %, 62 % and 91 % relative to experiment nu0m. Compared
to TQC, a change in CDSD shape parameters shows an only minor effect on cloud fraction
in continental and polluted CCN conditions (e.g. nu8c and nu8p in Fig. 3.5b). This
is presumably caused by ambient atmospheric conditions as, for example, humidity sets
an upper bound for total cloud cover. Hence microphysical uncertainty (CCN and CDSD
perturbations) becomes less important, and IBC uncertainty, which predominantly triggers
convection and determines the upper bound of cloud coverage, governs the variability in
spatial cloud distributions.

Finally, the vertically integrated rainwater content (TQR) averaged over Germany
shows a systematic but opposite response compared to TQC (Fig. 3.5c). TQR decreases
with increasing CCN and shape parameters of the CDSD and parallels the systematic
impact found for precipitation. Compared to TQC the variability caused by microphys-
ical perturbations becomes smaller; for instance, the TQR median of experiment nu0m
amounts to 0.033 kg m2 and nu8p to 0.014 kg m2, indicating a decrease by roughly 58 %.

The steady decreasing systematic impact of the microphysical uncertainty on cloud
water content, rainwater content and eventually precipitation hints towards some kind
of buffering effects or compensating processes that reduce the large, positive impact on
clouds and eventually even turn it into a negative impact with respect to rain production.
Companion work by Barthlott et al. (2022a, b) and Baur et al. (2022) shed light on those
processes. One major process is the reduction in warm rain processes. The suppression of
collisional growth of cloud droplets in polluted CCN conditions reduces the formation of
raindrops, and small droplets become more likely to evaporate. Moreover, cloud optical
properties are influenced as well through changes in the droplet’s effective radius. That,
in turn, can affect the radiative energy supply that triggers new convection.
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Figure 3.6: Relative differences of the 180-member ensemble (black), the averaged IBC sub-
ensembles (orange) and averaged combined microphysical sub-ensembles (grey) aggregated
over five days in August 2020 conditional on synoptic control. Relative differences of pre-
cipitation, total column rain water content (TQR) and total column cloud water content
(TQC) are displayed using filled boxes for weak forcing situations. Boxplots show boot-
strapped medians, interquartile ranges as well as the 5th and 95th percentiles, respectively.
For details see the text.

3.5 Flow-dependent impact aggregated over cases
Finally, we repeat the analysis and use 180-member ICON-D2 ensemble experiments per-
formed for 5 d in August 2020 to confirm the previous findings. The classification into
distinct weather situations with different synoptic control results in three weakly and two
strongly forced cases (see Table 3.1). The regime-dependent relative impact of the various
perturbations is computed as follows: first, the relative difference in every individual mem-
ber to its corresponding sub-ensemble mean is calculated separately for every day (as in
Sect. 3.3 and displayed in Fig. 3.4). Secondly, the median, the interquartile range, and the
5th and 95th percentiles are computed by aggregating the days for each synoptic forcing
separately (i.e. 540 samples for weak and 360 for strong forcing). Finally, the samples
are bootstrapped 100 times with replacement to get robust results, and the mean of the
100 medians, interquartile ranges and percentile values are finally depicted in Fig. 3.6.
This procedure takes into account the different mean values of distinct sub-ensembles on
different days (see Table 3.1) and allows a fair comparison. The 5th and 95th percentiles
of the relative difference then define the 90 % confidence interval (similar to Craig et al.
(2022)).

In the full 180-member ensemble, including IBC and combined microphysical uncer-
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tainties, the confidence interval of precipitation deviates for individual experiments from
the ensemble mean by +41 % to 32 %, with an interquartile range between +15 % to 18 %
during weak forcing. The corresponding impact of pure IBC perturbations shows a range
of +36 % to 29 % during weak forcing (orange boxes of IBC sub-ensemble in Fig. 3.6).
The variability is smaller and amounts to ±23 % during strong forcing. The medians have
a slightly negative bias for the weak forcing cases because the precipitation distribution
is slightly positively skewed; i.e. the mean is larger than the median. That might be an
artefact of the given sample size.

The impact of combined microphysical perturbations on the confidence interval of pre-
cipitation (grey bars in Fig. 3.6) varies between ±12 % and 13 % in weak forcing cases
and ±6 % during strong forcing cases. Thus precipitation amounts are twice as sensitive
to pure microphysical perturbations during weak control. Adding microphysical perturba-
tions to the IBC sub-ensembles (giving the full 180-member ensemble) shows a negligible
impact on the interquartile range (compare black and orange bars in Fig. 3.6) but extends
the tails of the distribution (black and orange whiskers in Fig. 3.6) by 5 % for weak forcing
conditions.

The same methodology is applied to convective clouds represented by averaged vertic-
ally integrated rainwater content (TQR in Fig. 3.6). Microphysical perturbations show a
larger impact than IBC perturbations. The confidence interval of the impact of microphys-
ical perturbations on TQR ranges between ±54 % and 30 % for strong forcing and between
+57 % and 35 % for weak forcing. Forecast variability is increased by +31 % compared to
the pure IBC impact when taking the microphysical uncertainties into account, too. The
relative impact of IBC perturbations on TQR ranges between +31 % and 25 % for weak
forcing and between +17 % and 16 % for strong forcing.

Finally, the impact on vertically integrated cloud water content (TQC in Fig. 3.6) shows
less dependence on synoptic control than those on rainwater or precipitation. Microphysical
perturbations show a large impact on TQC, and their impact exceeds the impact of IBC
uncertainty. The relative impact of microphysical perturbations on TQC ranges between
+80 % and 62 % for weak forcing and between +66 % and 60 % for strong forcing.
Forecast variability is increased by +47 % compared to the pure IBC impact when taking
the microphysical uncertainties into account. The variability in CCN and CDSD plays a
larger role in narrower CDSD or higher CCN conditions (not shown), similar to the impact
on precipitation discussed in Fig. 3.4.

Overall, microphysical uncertainty plays a more important role in the prediction of
cloud and rainwater content than IBC uncertainty, but the impact is buffered during
warm rain processes. The buffering effect that counteracts microphysical perturbations
discussed in the previous sections can thus be quantified. The microphysical impact on
the 95th percentile value decreases from +79 % for TQC to +57 % for TQR and to +12
% for precipitation. We find a systematically larger impact of the various uncertainties for
precipitation, TQR and TQC during weak forcing conditions.
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3.6 Summary and Conclusions
The relative importance of microphysical uncertainties on cloud and precipitation fore-
casts in a full convective-scale EPS framework is assessed on different spatial and temporal
scales conditional on synoptic control in central Europe. In the present study we perturb
two microphysical parameters that are poorly constrained by observations. Those consti-
tute the cloud condensation nuclei (CCN) concentration and the shape parameter of the
cloud drop size distribution (CDSD), both currently not perturbed in operational ICON-D2
ensemble forecasts. An examination of the synergistic effect of these microphysical per-
turbations necessitates the use of the two-moment bulk microphysics scheme of Seifert and
Beheng (2006) that predicts next to the mass concentration of different hydrometeors their
number density and thus allows the calculation of the particle size distribution. Their in-
dividual and combined relative impact is estimated in the presence of initial and boundary
condition uncertainty (IBC) available from operational ensemble forecasting at Deutscher
Wetterdienst. Nine different set-ups of such combined microphysical perturbations run
with 20 different IBC add up to 180-member ICON-D2 ensemble forecasts. The relative
impact of the various uncertainties is quantified by selecting different sub-ensembles that
are sharing a common uncertainty.

Based on five real summertime cases we find that the impact of the various uncertain-
ties on precipitation crucially depends on the synoptic control. It is larger during weakly
forced situations. The IBC uncertainty accounts for most of the precipitation variabil-
ity. The 90% confidence interval (that is given by the 5th and 95th percentile) of daily
area-averaged precipitation of individual ICON-D2 experiments ranges between +38% and
-32% during weak forcing and ±23% during strong forcing (Fig. 3.6). Combined microphys-
ical perturbations show a relative impact on the 90% confidence interval of precipitation
between +12% and -13% during weak forcing, and ±6% during strong synoptic control.
Thus precipitation amounts are twice as sensitive to microphysical perturbations during
weak control. The joint effect of IBC and microphysical uncertainty extends the tails of
the forecast distribution by 5% in weakly forced conditions. Individual ICON-D2 members
exceed the ensemble mean precipitation by 50%. However, the interquartile range of the
full ensemble only marginally deviates from the pure IBC sub-ensembles (Fig. 3.4).

Clouds react differently on the various uncertainties. The combined microphysical per-
turbations largely determine the variability of daily- and area-averaged vertically integrated
cloud water content (TQC in Fig. 3.6). Different from their impact on precipitation, the
increase of CCN concentration and shape parameter of CDSD has a large positive impact
on the production of cloud and rain water content forming horizontally larger clouds. Fur-
ther, this impact is fairly weather regime independent. Thus the considerable impact on
cloud variables does not directly translate into precipitation amounts. This suggests that
there are some microphysical processes or feedback mechanisms involved that compensate
and ultimately reverse the impact of microphysical perturbations on clouds and precip-
itation. The systematic behaviour of cloud variables is consistent with previous studies
(Seifert et al., 2012; Igel and van den Heever, 2017a; Wellmann et al., 2020; Zhang et al.,
2021), and further discussion about the detailed processes seen from the deterministic per-
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spective can be found in Barthlott et al. (2022b) and Baur et al. (2022). Note that we
compare rainfall accumulations at the ground with averages of 24 hourly snapshot scenes
of vertically integrated cloud and rain water to facilitate a comparison of the respective
contribution.

Importantly, a close inspection of the impact of microphysical uncertainties in the
presence of different IBC on precipitation indicates a strong sensitivity to IBC uncertainty
(Fig. 3.3). This illustrates the necessity to be cautious when interpreting results based
on a deterministic approach only to evaluate impact of uncertainty. The use of a full
ensemble modelling framework including various key sources of uncertainty as done in this
study is essential to assess their relative importance. Another major conclusion is the
necessity to take the atmospheric state into account when quantifying the contribution
of various uncertainties. Given that roughly 20 to 40% of the days with summertime
precipitation in central Europe are classified as being weakly controlled (Kühnlein et al.,
2014; Zimmer et al., 2011), the considerable impact during these conditions is usually veiled
when inspecting results independent of the synoptic control. A limitation of this study is
the limited dataset covering five days in August 2020 only. More robust results require a
larger database containing more cases that comprise different synoptic conditions. Based
on the five cases we cannot draw general conclusions. However, we believe that the findings
are robust enough to provide a scientific basis for future research.

Our results suggest that the consideration of CCN and CDSD uncertainties increases
precipitation variability and can contribute to the reduction of the long-standing issue of
underdispersion of near surface variables in convective-scale EPS forecasts (see references in
e.g., Keil et al., 2019) and thus ultimately benefit the improvement of NWP ensemble fore-
casting. It is beyond this study to assess to what extent the microphysical perturbations
contribute to a better probabilistic forecasting skill compared to observation. Given the
increasing importance of satellite observations used in convective-scale data assimilation
the systematic impact of microphysical uncertainties will attract interest in future. Micro-
physical uncertainties strongly influence forecasts of cloud coverage and droplet sizes, both
representing important ingredients used in satellite forward operators to compute synthetic
reflectances (e.g. Scheck et al., 2020) to be used in data assimilation algorithms.
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Chapter 4

Scale-dependent predictability and
impact

The following Chapter is adapted from the publications titled “The impact of microphys-
ical uncertainty conditional on initial and boundary condition uncertainty under varying
synoptic control”(Matsunobu et al., 2022) and “Flow- and scale-dependent spatial predict-
ability of convective precipitation combining different model uncertainty representations”
(Matsunobu et al., 2024).

4.1 Background
Upon the systematic impact on spatially and temporally averaged variables in the previous
chapter, the focus is extended to evaluating whether the impact helps to improve ensemble
forecasts at scales more useful for our daily lives. This chapter narrows the target down to
the impact on hourly precipitation forecasts in a scale-dependent manner, serving to answer
the second research question At what spatial scales do uncertainties impact? The
Fraction Skill Scores (Roberts and Lean, 2008) is employed to quantify the scale-dependent
predictability (Sect. 2.4).

The investigation consists of two steps. First, in Sect. 4.2, the individual and synergistic
impacts of IBC, MPP and PSP are assessed in a couple of case studies. This is followed
by a systematic analysis of the impact of PSP in a long-term forecast dataset covering
three months in the summer of 2021, presented in Sect. 4.3. The results are summarised
in Sect. 4.4.

4.2 Quantification of the individual/synergistic impact
4.2.1 Case Study dataset v1: August 2020
To perform in-detail investigation of the scale-dependent impact of MPP, we the Case Study
dataset v1 is used again for the results in Subsect. 4.2.4. Apart from that subsection all
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results are derived using the Case Study dataset v2 described in the following subsections.

4.2.2 Case Study dataset v2: June 2021
Ensemble design

Table 4.1: Overview of ensemble experiments performed to gauge the relative and syn-
ergestic impact of different sources of uncertainty: acronym, ensemble size and perturba-
tions.

Name Ensemble size IBC PSP MPP
IPM 120 ✓ ✓ ✓
IM 120 ✓ ✓
IP 20 ✓ ✓
I 20 ✓
P 20 ✓
M 6 ✓

To gauge the individual and synergistic impact of different formulations of model uncer-
tainty, the PSP scheme and parameter perturbations in the microphysics scheme, both in
the presence of operational IBC uncertainties, we designed a ’Grand Ensemble’ containing
IBC uncertainty and two different flavours of model uncertainty. The ’Grand Ensemble’
enables the inspection of the combined impact, but facilitates also an estimation of the
individual impact of the PSP scheme and MPP by applying sub-sampling (as in Craig
et al., 2022).

Here the ’Grand Ensemble’ is a 120-member ensemble consisting of 20 different IBCs,
the PSP scheme turned on and six realisations of microphysical uncertainty (denoted IPM ,
see Table 4.1). The IM ensemble lacks stochastic perturbations, while IP combines IBC
uncertainty and the PSP scheme where each of the 20 ensemble members has different IBCs
and different random seeds in the stochastic scheme as described in Chapter 2. Additionally
we performed three ensembles containing the different sources of uncertainty individually.
In the I ensemble IBC perturbations are the only source of uncertainty, the P ensemble
has one IBC realisation (ensemble member 1 of I) but 20 different random seeds in the
PSP scheme whereas the M ensemble solely includes six MPPs. The I ensemble can be
seen as the reference ensemble in this part of the work. In order to assess the impact
of microphysical uncertainty we used the two-moment bulk microphysics scheme (Seifert
and Beheng, 2006) and turned off random parameter perturbations to purely focus on the
impact given by the explicitly selected perturbations. Apart of these two differences the
model set-up is identical to the trial dataset used in the first part. Since such an approach is
a computationally expensive we restrict the numerical simulation to two cases representing
varying convective equilibrium regimes taken from the trial period.
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Weather situation and classification of cases

We chose two case studies from the period of the trial run in summer 2021 representing
both convective forcing regimes. Among the days characterised by weak convective forcing,
10 June was one of the most typical non-equilibrium days that showed a large impact of
the PSP scheme on precipitation. On that day, the atmospheric flow over Germany was
characterised by weak north-westerly winds due to a small geopotential gradient. Scattered
convection was triggered around noon and reached its maximum intensity around 1400
UTC. The daily accumulated rainfall exhibits a popcorn-like pattern typical for weak
convective forcing (Fig. 4.1a,b). In the evening the atmosphere was stable again, ending
the well-defined diurnal cycle of convection.
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Figure 4.1: Characteristic fingerprint of precipitation during different convective forcing
regimes in central Europe illustrated by daily accumulation of precipitation for a weak
forcing case on 10 June (a, b) and a strong forcing case on 29 June (d,e) of an ensemble
member of the TR ensemble (a, d) and radar observations (b, e). Vectors depict the wind
velocity at 850 hPa pressure level. The black rectangle indicates the verification domain.
The bottom row (c,f) shows hourly time series of ensemble mean precipitation (black) and
the convective adjustment time scale τc (green).
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In contrast, weather on 29 June represents a typical day of the strong convective forcing
regime, for a number of reasons. Although 29 June is not part of the equilibrium composite
of the trial period, it was one of the most representative meteorological situations of its kind,
with a strong geopotential gradient, strong south-westerly flow (Fig. 4.1c) and the largest
accumulated precipitation in the whole summer period, according to radar observations
(Fig. 4.9). The development of a mesoscale convective system along the cold front in
southern Germany caused an outbreak of high impact weather with severe winds, hail and
heavy precipitation. A mean daily area-averaged value of τc amounting to less than two
hours clearly classifies this day as being in equilibrium (Fig. 4.1f and 4.9). This case was
also part of an intensive observation period (IOP 5, 28-30 June) of the Swabian MOSES
field campaign (Kunz et al., 2022).

4.2.3 Area-averaged precipitation amount and spread
First, we inspect the impact of IBC, PSP and MPP on ensemble mean precipitation
and ensemble spread. Figure 4.2 shows ensemble- and area-averaged hourly precipita-
tion amounts and its area-averaged spread for four experiments: the pure IBC perturbed
ensemble (I), the combined IBC and PSP ensemble (IP ), the IBC and MPP perturbed en-
semble (IM) and the ensemble containing all uncertainty representations (IPM). On the
non-equilibrium day, the onset of precipitation is earlier and the peak of precipitation in-
tensity is enhanced when adding PSP compared to pure IBC uncertainty (Fig. 4.2a). This
is attributable to the more effective trigger mechanisms introduced by the PSP scheme.
The addition of PSP enhances also the spread. Combining IBC and MPP (IM ensemble)
gives the larger and prolonged spread. The spread is largest for the IPM ensemble during
convection, followed by the IP and IM ensemble, respectively. The I ensemble exhibits
the lowest spread and the peak is reached about one hour later than in ensembles IP and
IPM . The effect of both model uncertainties, PSP and MPP, complement one another
in terms of ensemble spread. During strong convective forcing the area-averaged precip-
itation amount is governed by IBC and only marginally influenced by any kind of model
uncertainty representation. Such a dominant role of IBC on precipitation forecasts was
previously shown, for instance, by Johnson and Wang (2020). Spread is hardly changed
by adding PSP to IBC, and is even slightly reduced in the late afternoon (Fig. 4.2b), while
adding MPP enhances the spread considerably. Similar to the non-equilibrium case, the
change in spread given by adding PSP and MPP shows a qualitatively additive character
in IPM . Both cases illustrate that the synergistic impact of PSP and MPP (IPM en-
semble) can be beneficial since both model uncertainty representations partly compensate
the respective deficiencies.

To assess whether the earlier onset of convection due to PSP and the prolonged spread
due to MPP are caused by their individual impact rather than the interaction with IBC
perturbations, two additional ensembles are examined: the P and M ensembles. In the
P ensemble, the only source of uncertainty is the PSP scheme, whereas the M ensemble
contains only MPP. Both ensembles are run with one set of IBC (member 1 of the I
ensemble), which does not allow for a quantitative comparison in Fig. 4.2. However, the
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reader can qualitatively compare these ensembles in Fig. 4.7. The P ensemble shows an
earlier intensification of precipitation and spread (not shown), which is in line with Leoncini
et al. (2010), who found that large perturbations in the planetary boundary layer lead to
an earlier growth of perturbations in precipitation. The M ensemble shows a smaller but
slower decay of spread at later stages of convection, as shown by Barthlott et al. (2022a).
This indicates that PSP and MPP act independently at different stages during the diurnal
cycle of convection.

Figure 4.2: Ensemble- and area-averaged hourly precipitation (solid) and its area-averaged
spread (dashed) over Germany for a weak forcing case on 10 June (a) and for a strong
forcing case 29 June (b) representing varying convective forcing regimes.

4.2.4 Spatial variability given by MPP
To address the question of how IBC and microphysical uncertainties affect convective
precipitation on different spatiotemporal scales we now move from area averages to the
kilometre scale and from daily to hourly accumulations. The fractions skill score (FSS;
Roberts and Lean, 2008) and its variant believable scale (Dey et al., 2014; Bachmann
et al., 2020) are used to objectively assess differences in spatial variability caused by dif-
ferent sources of uncertainty. But first we apply subjective visual inspection on selected
precipitation fields to illustrate differences.

In Fig. 4.3 a snapshot of hourly precipitation over central western Germany (blue box
in Fig. 3.2a) for the weak forcing case (11 August) at 16 UTC exemplifies the different
impact of IBC and microphysical perturbations. This day is chosen because of the stronger
impact of the perturbations during weak synoptic control, and 16 UTC represents the time
of maximum afternoon precipitation within the diurnal cycle of convective precipitation
(see Fig. 3.2c), and the displayed subdomain clearly depicts the typical popcorn-type pre-
cipitation structure. In Fig. 4.3 the transient character of individual cells is juxtaposed
for four different experiments: three of them share the identical IBC (panels a, b and c),
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CCN concentration (panels a, b and d) and shape parameter of CDSD (panels a, c and d),
respectively.
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Figure 4.3: Snapshot of hourly precipitation at 16 UTC for the weak forcing case (11
August). Member 2 of IBC sub-ensembles (a) nu8p, (b) nu0p, (c) nu8m and (d) member 1
of nu8p in the central western part of Germany (see blue box in Fig. 3.2). Black contours
indicate grid points that have a larger value than the 99th percentile value in the nu8p
sub-ensemble of member 2. The red circle in (a) indicates single convective cells discussed
in the text.

At first glance, it becomes evident that the microphysical perturbations result in a
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similar rainfall distribution (Fig. 4.3a, b, c), whereas the member driven with different
IBC shows a considerably different rainfall field (Fig. 4.3d). The direct comparison of
the location of intense precipitation caused by the different perturbations relative to the
99th percentile of simulation nu8p (black contours in Fig. 4.3) shows that convective cells
of simulations nu0p (broad CDSD, polluted) and nu8m (narrow CDSD, maritime) are
either at the same location or in close vicinity. Some weak rain cells (e.g. southeast of
Luxemburg, red circle in Fig. 4.3a) are intensified by decreasing CCN and shape parameters
of CDSD, thus in agreement with the spatiotemporal integrated rainfall signal discussed
in the previous section. Positions of strong rain cells are shifted by the CCN perturbation
at a scale of 20-30 kilometres, whereas an increase in the shape parameter of CDSD hardly
shows a clear impact. The visual inspection of many scenes of hourly rainfall caused by
convective cells confirms the systematic behaviour of microphysical perturbations with
stronger precipitation with low CCN concentration and broad CDSD shapes (not shown).

To briefly summarise the visual inspection, we can state that in polluted CCN con-
ditions both CCN and CDSD perturbations impact the spatial variability at almost the
same scale. While microphysical perturbations keep the general spatial structure, IBC per-
turbations largely alter the position of convective cells. Thus microphysical perturbations
primarily impact the precipitation amount by changing their precipitation intensity rather
than by feedback on dynamical fields and triggering new cells. Visual inspection of rainfall
patterns of the strong forcing case results in similar findings: minor shifts of rain cells in
microphysics sub-ensembles and a smaller impact of CDSD perturbations (not shown).

To quantify the spatial (dis-)agreement of hourly precipitation fields in the various
simulations we employ the FSS, a spatial score that shows the similarity between two
binary fields (denoted A and B, two distinct sub-ensemble members in our case), within a
predefined neighbourhood scale. The definition of the FSS is given by

FSS = 1 −
∑(fA − fB)2∑

f 2
A + ∑

f 2
B

(4.1)

where fA and fB represent the fraction of rainy grid points in fields A and B, respectively,
at which the precipitation amount is above a certain threshold value. The second term on
the right-hand side is the ratio of the mean squared error (MSE) of the fraction fields A
and B to the maximum possible MSE (Roberts and Lean, 2008). If the number of grid
points with a value of 1 within a certain neighbourhood of a grid point is equal between
two fields, the FSS is 1.0, which means the compared two fields are identical. FSS becomes
smaller as the difference between two fields gets larger, and it becomes 0.0 when only one of
the fields has values and the other has a complete miss in the respective neighbourhood. In
this study, we use the 99th percentile of hourly precipitation as the threshold to generate
a binary field to take into account the strong diurnal cycle of rainfall intensity and to
keep the number of grid points used for FSS calculation constant. The 99th percentile is
useful to capture the position of convective cells (see contours in Fig. 4.3). The FSS is
calculated over Germany with neighbourhood sizes varying from 2.2 km (1 grid point) to
563.2 km (256 grid points). Since FSS is a score calculated between two fields, we need
to carefully consider how to compute an ensemble FSS. Following Dey et al. (2014), we
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calculate the FSS for all combinations of ensemble members belonging to a sub-ensemble.
For instance, FSSs for an IBC sub-ensemble (with 20 different IBC) can be calculated 20
* 19 / 2 = 190 times. Since there are 9 IBC sub-ensembles in this study, the number of
overall FSSs that shows the impact of IBC perturbations is 190 * 9 = 1710. Accordingly,
the numbers of FSSs for combined microphysics, CCN and CDSD sub-ensembles are 720,
180 and 180, respectively. Mean values of the FSSs are shown in Figs. 4.4 and 4.5 to
objectively represent the spatial variability given by various kinds of uncertainties.

Figure 4.4: Ensemble mean FSS values of hourly precipitation calculated across scales
ranging from 2 to 560 km in the German domain for the weak forcing case 11 August.
The IBC sub-ensembles’ mean FSS is depicted in panel (a) and the combined microphysics
sub-ensembles’ mean FSS in panel (b). The black lines show believable scales of mean
FSS. The red lines (right axis) show the time series of mean 99th percentile value of hourly
precipitation.

In addition, we use the believable scale (Dey et al., 2014; Bachmann et al., 2020) to
characterise a typical length scale that estimates the spatial difference between two fields.
The believable scale is defined as the neighbourhood size when the FSS exceeds a threshold
defined by FSS ≥ 0.5 + f0

2 , where f0 is the fraction of grid points considered in the FSS
calculation (the 99th percentile threshold gives f0 = 0.01). Since the FSS is applied on
precipitation fields above the 99th percentile values, the believable scale can be considered
in this study as a scale showing how large a mismatch of intense convective cells is.

Time-space diagrams of the ensemble mean FSSs given by IBC and combined micro-
physical uncertainty are depicted in Fig. 4.4 for the weak forcing case. Low FSS values
represent large spatial deviations between the location of intense convection, hence a lar-
ger spatial variability. The variability due to the IBC perturbations is considerably larger
than the one forced by combined microphysical perturbations. However, and typical for
days with weak control, convective precipitation only forms in the late morning (see e.g.
time series in Fig. 3.2c and red line depicting the 99th percentile of hourly precipitation in
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Fig. 4.4). The value of the 99th percentile of hourly precipitation amounts to 1 mm/h at 12
UTC and precipitation is mostly negligible before. Interestingly, at the onset of convective
precipitation at 12 UTC the believable scale exhibits a dip and the spatial variability de-
creases to slightly less than 100 km and thereafter continuously increases throughout the
convective period until the evening. The reduction of the spatial variability in the after-
noon, representing co-locations of convective cells, is constrained by steady, non-perturbed
factors forcing the dynamical fields involved in cloud and precipitation formation like oro-
graphy. After 22 UTC the hourly precipitation rates amount again to less than 1 mm/h
and the corresponding believable scale exceeds 200 km like before the onset of convection
at night and in the morning. In contrast, the spatial disagreement caused by combined
microphysical perturbations is smaller and the mean believable scale amounts to only 16
km at the peak of precipitation at 16 UTC (Fig. 4.4b). Apparently, the impact of micro-
physical perturbations on precipitation acting on many pathways needs time and starts at
a much lower spatial scale than IBC perturbations.

At first sight, individual perturbations of CCN and CDSD show a similar growth of
FSS as the combined microphysical perturbations (Fig. 4.4b and Fig. 4.5). Close inspection
reveals that the believable scale of precipitation caused by CCN perturbations (black line in
Fig. 4.5b) starts to increase at the onset of the precipitation (at 12 UTC), one hour before
that of the CDSD perturbations (Fig. 4.5a). The CDSD believable scale grows more slowly
and is always smaller (roughly 50%) than that of combined microphysical perturbations.
Since changes in CCN have a direct influence on the cloud condensation process, while
the shape parameter of CDSD affects ensuing microphysical processes, this time shift is
plausible. Interestingly, the CCN perturbed believable scale reaches 40 km after 22 hours,
the same length scale as the believable scale of the combined microphysical perturbations.
In contrast to the impact on precipitation amount, combining two sources of microphysical
uncertainty does not increase the spatial variability.

The uncertainty of CCN concentrations has a larger impact than the shape parameter
of CDSD on the spatial variability of intense precipitation cells. Now we can ask if this
behaviour is by chance and if this finding holds for other thresholds or percentiles, respect-
ively. For this reason, we performed additional white noise (WNoise) ensemble simulations
with 20 different IBC but only for the ’default’ microphysics configuration (nu0c) to ex-
amine whether the spatial variability caused, for instance, by microphysical perturbations
differs from the impact of random, tiny differences in the temperature field. Following
the method of Selz and Craig (2015) the virtual potential temperature field is perturbed
by a non-biased Gaussian noise with a standard deviation of 0.01K at all grid points of
the entire model atmosphere at an initial time. The comparison of the microphysically
perturbed ensemble with a pure white noise (WNoise) experiment shows a similar onset
and increase of spatial variability (Fig. 4.5c). The spatial variability caused by CCN and
CDSD perturbations is, however, larger than the effect of the WNoise perturbations. At
16 UTC, the mean FSS of WNoise simulations is close to 1 at scales larger than 80 km,
and the believable scale is about 5 km. Thus the effect of microphysical uncertainty on
the spatial precipitation fields is systematically exceeding the effect of tiny errors at the
initial time in the WNoise experiment. Less intense precipitation cells detected by the
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Figure 4.5: As Fig. 4.4, but for the (a) CDSD, (b) CCN and (c) WNoise sub-ensembles.

95th percentile threshold indicate a similar albeit slightly smaller variability due to IBC
and microphysical perturbations (not shown). Using a 90th percentile threshold on hourly
precipitation results in values lower than 0.1 mm at all forecast hours and gives no extra
information.

To further elucidate the combined microphysical perturbations and the interdependence
of one perturbation (say CCN) when the other (CDSD) is kept constant in the presence of
IBC uncertainty, time series of all believable scales calculated between every combination
of ensemble members are illustrated in Fig. 4.6. The bold lines in Fig. 4.6a clearly reveal
that CDSD perturbations result in spatial variability at different length scales depending
on a certain fixed CCN concentration during weak synoptic control. In clean air conditions
(maritime aerosol content, dark blue lines in Fig. 4.6a), the mean believable scale attains
10 km roughly 3 hours after the onset of the believable scale’s growth. At 22 UTC, towards
the end of the diurnal cycle, the value increases to 15 km. On the other hand, for polluted
conditions (dark red and green lines), the mean believable scales attain larger values, 15
km at 16 UTC and 30 to 40 km at 22 UTC. The mean length scale of disagreement given
by the CDSD perturbations in polluted conditions (high CCN concentrations) is twice as
large as in clean conditions (low CCN concentrations). Note, however, that there is big
variability among pairs of ensemble members, hence the IBC dependence is larger than the
impact of the background CCN condition. A similar systematic dependence can be found
for the CCN perturbations’ impact with different fixed CDSD shape parameters. The mean
believable scale with the broadest CDSD (lightest grey lines in Fig. 4.6b) reaches 10 km at
16 UTC and 50 km after 22 hours of lead time. With the narrowest CDSD (black lines),
the mean believable scale of CCN perturbations is 20 km at 16 UTC and increases to 100
km later. Interestingly, the mean believable scale with the narrowest CDSD is by a factor
of 2 larger than the broadest CDSD. This relationship is similar to that found in spatially
averaged precipitation amounts, namely polluted CCN and narrow CDSD conditions lead
to larger variability (Fig. 3.4).

In strong synoptic control, the situation is slightly different (Fig. 4.6c,d). The believ-
able scales only start to grow from 7 UTC onwards, and the mean values finally reach a
neighbourhood size of 30 km at 22 hours lead time. This monotonic pattern of the per-
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Figure 4.6: Time series of FSS believable scales of hourly precipitation for every combina-
tion of (a) the CDSD and (b) CCN sub-ensemble for the weak forcing case in the German
domain. In (a) blue, green and red lines indicate simulations with maritime, continental
and polluted CCN content, respectively. In (b) light grey, dark grey and black lines indic-
ate scales with the broad, intermediate and narrow CDSD. Bold lines with circles indicate
mean values of FSS believable scales sharing the same perturbation. The red lines (right
axis) show time series of mean 99th percentile value of hourly precipitation. Panels (c)
and (d) show the results for the strong synoptic-forcing case.
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turbation growth is similar to the weak forcing case. However, the mean believable scale
for clean CCN conditions is larger than for the weak forcing case at 22 UTC (dark blue
bold lines in Fig. 4.6a and c). There is no systematic difference in the mean believable
scale caused by CDSD perturbations in the presence of various, yet fixed CCN concen-
trations (Fig. 4.6c). On the other hand, given narrower CDSD, the CCN perturbations
cause a slightly larger spatial variability (Fig. 4.6d). Nevertheless, the difference between
the broadest and narrowest CDSD simulations is less pronounced in comparison to the
weak forcing case (10-15 km difference in strong control versus 30 km in weak control at
22 UTC). It is interesting to note that the impact of the microphysical perturbations on
the spatial precipitation pattern only starts to appear in FSS after 7 hours of lead time,
although there is continuous rainfall since forecast initialization during the strong forcing
case. In the first hours of the simulation spin-up effects and the adjustment to the driv-
ing coarser-scale model are still at work, which dampens the impact of the microphysical
uncertainties (see, e.g., Barthlott et al., 2022b). Thus, microphysical perturbations need
a longer spin-up time than IBC perturbations to modulate dynamical fields eventually
resulting in precipitation at different locations (see Fig. 4.6c,d).

Note that there is a difference between the believable scale of a ’mean FSS’ (e.g. black
line in Fig. 4.4) that represents a scale of (dis-)agreement given, say, an ensemble mean
FSS value and the mean over many believable scale values of paired member-to-member
comparisons (Fig. 4.6). The ensemble mean FSS is useful for an intercomparison of the
average impact given by different perturbations in general, whereas the mean of member-
to-member believable scales (Fig. 4.6) provide a scale of actual (dis-)agreement of certain
scenes, for example, the precipitation patterns shown in Fig. 4.3.

4.2.5 Spatial variability given by PSP
Building upon the beneficial impact of the PSP scheme shown in the systematic assessment,
we strive to inspect the influence of additional sources of model uncertainty inserted into
the full CPEPS. Due to computational constraints, we limit the analysis on selected cases
representative of different flow situations.

To set the scene for the scale-dependent examination of the relative influence of three
uncertainty representations in the ’Grand Ensemble’ (IPM , see Table 4.1) we first display
the time series of spatial spread due to the individual uncertainties (I, P and M ensembles)
for both cases in Fig. 4.7. The weakly forced case exhibits a typical diurnal cycle with the
most intense rainfall occurring soon after noon. The characteristic upscale error growth
caused by displacements of convective cells is quantified by the spatial spread. Its temporal
evolution confirms this steady increase (coloured tiles in Fig. 4.7a). In the equilibrium
regime, IBC clearly represents the dominant source of uncertainty in terms of amount
(solid lines in Fig. 4.2b) and in terms of location of heaviest precipitation (Fig. 4.7d). The
spatial spread of precipitation grows upscale shortly after model initialisation fuelled by
strong nighttime rainfall and exhibits large displacements throughout the day.

The spatial spread of model uncertainty represented by pure PSP is displayed in
Fig. 4.7b,e. During weak convective forcing the impact of PSP is in general stronger
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and conditioned by the daily cycle of convection. The perturbations added in the bound-
ary layer start having an impact on precipitation at the onset of convection, when thermals
start to trigger convective cells. As soon as that happens, the spatial scale of spread quickly
grows upscale and reaches the maximum extent in the evening when forecast precipitation
ceases. The magnitude of displacements in the P ensemble at the peak time of precipita-
tion (12–14 UTC) is in parallel with the impact of the SBL scheme found by Flack et al.
(2021). In strong convective forcing the effect of PSP is comparatively small but grows
continuously at a slower rate driven by continuing rainfall.

The M ensemble shows different growth patterns depending on varying convective
forcing regimes. During weak forcing of convection, spatial spread grows from the smallest
scale towards larger scales as for P , but the amplitude is smaller (Fig. 4.7c). During strong
forcing MPP impact the spatial spread at small scales from the early morning onward
but this impact is largely comparable with that of the PSP scheme thereafter (Fig. 4.7f).
However, after 19 UTC the MPP impact spreads across scales in contrast to the PSP
impact that stays below 80 km. Compared to the impact of PSP, MPP induce similar
upscale growth in the weak convective forcing case, but at a slightly later stage, after the
onset of convection, since MPP only start acting when convection is ongoing, as shown in
Matsunobu et al. (2022).

4.2.6 Synergistic impact on spatial error and spread
Finally, the impact of combining PSP and MPP with IBC on the spatial error and spread
can be discussed by analysing differences of the IP , IM , and IPM ensembles from the
I ensemble (Fig. 4.8). Results are displayed for the weak convective forcing regime. To
begin with, the time series of the 95th percentile of precipitation for the ensembles show
again that both model uncertainties compensate each other in the afternoon (compare
blue bold lines in Fig. 4.8a,c,e), similar to the time series of spread depicted in Fig. 4.2a.
Turning towards the spatial pattern of hourly precipitation, we find that the contribution
of the PSP scheme (Fig. 4.8a, b) resembles the one discovered in the composite analysis
(Fig. 4.11a, b). The diurnal cycle of precipitation is shifted earlier by the PSP scheme,
leading to a significant error reduction at the onset of convection (1000 UTC) at all scales.
However, there is a slight spatial error increase in the afternoon. A similar signal can also
be found in Fig. 4.11a discernible as slightly lighter colors at 1600–1700 UTC, presumably
due to the earlier decay of convection. However, on average the PSP scheme systematically
improves the spatial skill as shown in Fig. 4.11a. The PSP impact on spatial spread, on the
other hand, is systematically increasing and growing upscale from about 10 to 80 km after
the onset of precipitation, in agreement with earlier findings (see Fig. 4.10). The impact
of adding MPP on spatial error is opposite from that of PSP. Including MPP reduces
precipitation intensities on average and also indicates a detrimental impact on spatial error
that is largest at the early stages of convection (1000–1200 UTC) rather uniform across
all scales (Fig. 4.8c). Subsequently, the change in spatial error is still slightly positive on
scales larger than 80 km and neutral on scales below 50 km. On the other hand, adding
MPP increases the spatial ensemble variability almost throughout the forecast at all scales
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Figure 4.7: Spatial spread in ensemble I (top), P (middle) and M (bottom) on 10 June
(left) and 29 June (right). The blue lines indicate the 95th percentile values of hourly
precipitation of I (a,d), P (b,e continuous; c,f dashed) and M (c,f continuous) ensemble.
Masking is applied when the observed or forecast precipitation amount is below 0.01 mm/h.
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Figure 4.8: Time series of difference in spatial error (top) and spread (bottom) between
combined ensembles and the I ensemble for 10 June. Panels show the change given by
adding PSP (a,b), by adding MPP (c,d) and by adding both PSP and MPP (e,f). Blue (red)
shading indicates a reduction (increase) in spatial error and spatial spread, respectively.
The blue lines indicate the 95th percentile values of hourly precipitation of the reference I
ensemble (dashed) and IP (a,b), IM (c,d) and IPM (e,f) ensembles (bold).

(Fig. 4.8d). In this case, the up-amplitude effects of MPP are relatively independently of
scales, potentially improving the location of the strongest precipitation (the 95th percentile)
on scales below 50 km but do not propagate towards larger scales as seen with PSP.

We hypothesise that this scale-independent effect of MPP is caused by the design of
the MPP being fixed in space and time (i.e. fully correlated) and not being scaled in direct
response to the occurrence and scales of physical processes. This is beneficial at smallest
scales where spatial error is large and the ensemble is overconfident, but at the same time
can deteriorate forecast skill at larger scales where IBC perturbations dominate and the
spread to skill ratio is already converging. Nevertheless, the present implementation of
MPP improves the overall spatial spread to skill ratio as it generally increases spatial
variability, which can add value in an overconfident ensemble. A refined configuration of
MPP, or a combination with other perturbations that better represents spatio-temporally
varying microphysical uncertainty ought to be pursued in future.

When comparing the contributions of PSP to those of IBC, we find that the gained
spatial variability remains below 50 km, at a smaller scale than the variability obtained
with IBC. This is similar to the effect of SBL in Clark et al. (2021) and Flack et al. (2021).
However, PSP changes the time evolution of precipitation and largely reduces the spatial
error at the time of the onset of convection. These improvements are key advantages of the
PSP scheme and cannot be achieved using current postprocessing methods. On the other
hand, MPP have a broad impact on the spatial spread throughout time and scales. They
are systematically shifting the model climate rather than sampling the impact of random



62 4. Scale-dependent predictability and impact

errors, as discussed in McTaggart-Cowan et al. (2022). Although this causes an increase
in spatial variability, other metrics should be used to assess whether such an approach
improves other aspects of the forecast, such as the bias in amplitude.

Overall, the joint impact of PSP and MPP in terms of spatial error and spread appears
to be additive (Fig. 4.8e, f) with PSP being the primary source of uncertainty. Precipit-
ation is triggered earlier and its intensity is higher. The earlier decay of precipitation is
attenuated by MPP. Spatial error is reduced at convection initiation, while spatial spread
is increased across time and scales. Hence the spatial error-spread relationship is signific-
antly improved compared to the pure IBC ensemble. These results imply that the impact
of both sources of model uncertainty (that is PSP and MPP) on spatial variability of pre-
cipitation are non-correlated and rather orthogonal suggesting that these perturbations
can effectively work together. However, alternative adaptive and statistical postprocessing
methods could be used instead to represent variability induced by the PSP scheme, and
might also remedy the undesired impact of MPP at scales larger than 100 km, as shown
in Blake et al. (2018) and Flack et al. (2021).

4.3 Systematic analysis of the flow-dependent predict-
ability and impact

4.3.1 The trial run in DWD
Ensemble design

The long-term assessment of the spatial predictability builds on the ensemble forecast
dataset of the trial run (Puh et al., 2023). This dataset facilitates a systematic evaluation
of the flow- and scale dependence during the three-month period June to August 2021.
The reference ensemble (denoted with trial reference, TR) is identical with the operational
20-member ICON-D2-EPS, driven by operational ICs provided by ICON-D2-KENDA and
LBCs provided by ICON-EU-EPS, using the one-moment bulk-microphysics scheme and
including the random physics parameter perturbations. In a second parallel ICON-D2
ensemble we use this ICON-D2 ensemble configuration and additionally turn on the PSP
scheme (denoted TP henceforth). All simulations were initialised daily at 0000 UTC with
24 hour forecast lead time and were performed on DWD’s High Performance Computer
(more details in Puh et al. (2023)).

Weather situation and classification of cases

The different convective environments during the three-month period are objectively classi-
fied with the convective adjustment time scale (τc) diagnostic (Section 2.3). After excluding
12 days without precipitation there remain 80 days to be arranged in distinct convective
forcing regimes. To be consistent with the original publication on the trial experiments
(Puh et al., 2023), we use the τc diagnostic in a relative sense and group days with daily
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mean τc values belonging to the upper (lower) 20 % of the distribution throughout the
summer season into the weak (strong) convective forcing regime, respectively. This results
in 16 days each falling into these two categories. The remaining 48 days in the middle of
the spectrum of τc values make up the intermediate category, for which a primary type
of convective forcing is not unequivocally detectable. Figure 4.9 depicts the classification
of the days along with daily accumulated and area averaged ensemble mean precipitation
amounts and radar-observed quantitative precipitation estimates. While the observed and
forecast daily precipitation amounts reasonably agree, there are large variations of daily
totals from day to day. Days governed by equilibrium conditions predominantly exhibit
larger rainfall accumulations than non-equilibrium days. To enable a fair comparison of
the spatial predictability we need to take these amplitude changes into account. That is
accomplished by using a percentile threshold in the FSS calculation as outlined in Sec-
tion 2.4a.

Figure 4.9: Time series of June, July and August 2021 illustrating the day-to-day variability
of 24-h accumulated precipitation (bars) and convective adjustment timescale τc (dots).
The colours of the dots represent weak (red), intermediate (white) and strong (blue) forcing
regimes (see text for details). Green bars depict TR ensemble mean and grey bars the
radar-observed daily area-averaged rainfall.

4.3.2 Flow-dependence of spatial predictability of hourly precip-
itation

Having objectively classified convective weather into different categories, we can inspect
the flow-dependent spatial error and spread now. The operational ICON-D2-EPS forecasts
(TR ensemble) show the typical diurnal cycle during weak convective forcing with the
95th percentile value of hourly precipitation attaining highest intensities in the afternoon
(0.3 mm/h, Fig. 4.10a). Not surprisingly the largest spatial errors occur on the smallest
scales (high error values shown in dark colours in Fig. 4.10a). However, the spatial error
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exhibits a clear diurnal cycle, having a maximum around 0900–1000 UTC at the time
of triggering of moist convection (eDS approx. 170 km) followed by a minimum at peak
afternoon precipitation (eDS approx. 70 km). Thereafter the spatial error increases again
as the afternoon precipitation fades. At first sight the spatial spread behaves similarly
as the spatial error (compare colours in Fig. 4.10a and b) but with lower values, that is
smaller spatial variability. There is a relative maximum of the spatial spread at the time of
convection initiation (0800–0900 UTC) followed by slight decrease in the afternoon during
strongest convective activity. In particular the spread at small scales grows slower than
the spatial error. In terms of the displacement scale, the sDS shows a modest temporal
evolution and amounts to about 40 km, hence smaller than the eDS (the bold line is below
the dashed line in Fig. 4.10b). A gap of several tens of kilometres between the sDS and eDS
is evident throughout the forecast, even after the precipitation maximum in the afternoon,
which indicates that the ensemble is spatially under-dispersive. Hence the ensemble forecast
is spatially overconfident, that is the spatial spread is too low compared with the spatial
error. This lack of spatial spread suggests that the perturbations in ICON-D2-EPS are
sub-optimal and that additional sources of model uncertainty ought to be added.

Figure 4.10: Weather regime-dependent, spatio-temporal variability of ensemble mean spa-
tial error and spread, based on 20-member operational ICON-D2-EPS hourly precipitation
forecasts, averaged over 16 weak forcing (a,b) and 16 strong forcing (e, f) cases. The centre
column (c,d) illustrates the intermediate cases. The black dashed lines show median eDS
of spatial error and the bold lines show median sDS representing spatial spread. The blue
lines indicate the 95th percentile values of hourly precipitation used in the FSS calculation.

Under strong convective forcing regimes, the composite precipitation time series shows
a continuous decay of intensities throughout the day. The maximum precipitation intens-
ity is six times larger (1.8 mm/h, Fig. 4.10e) than the maximum during non-equilibrium
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conditions and occurs at 0000 UTC (as in Puh et al., 2023). This temporal evolution is
dominated by a few strongly forced cases with nighttime maxima (e.g. the heavy pre-
cipitation causing the flooding in the Ahr valley on 14 July, not shown). The spatial
error (eDS) increases almost continuously from model initialisation onwards (with the ex-
ception of slight dip around 1200 UTC) but stays at smaller spatial scales than in the
non-equilibrium regime. Similar to the eDS, the sDS steadily increases, too (Fig. 4.10f).
The proximity of spatial error and spread curves suggests a smaller spatial overconfidence
compared to non-equilibrium. Moreover, the continual increase of spatial variability within
the ensemble (measured by the sDS) caused by larger and larger displacements of rainfall
patterns is a classic feature of error growth driven by scale interactions (Ying and Zhang,
2017).

For the intermediate-regime cases, time series of precipitation amount display a mix-
ture between equilibrium and non-equilibrium categories in terms of amplitude and the
diurnal cycle (Fig. 4.10c, d). The evolution of the DS for error (eDS) and spread (sDS)
is more similar to the equilibrium situation, but the values of the spatial error and spread
are systematically larger and closer to that of the non-equilibrium regime. This is not
surprising, as roughly two third of summer convective precipitation over Germany occur
in an equilibrium situation (Zimmer et al., 2011; Kühnlein et al., 2014). The weather-
regime independent spatial error and spread largely parallels the intermediate category
(not shown). Hence, only a flow-dependent examination of the evolution of spatial error
and spread unveils the contrasting behaviour in non-equilibrium conditions.

Overall, the spatial forecast skill is systematically higher (i.e. smaller spatial error,
compare dashed lines in Fig. 4.10a,c,e) indicating a superior forecast quality in equilib-
rium. Likewise, the spatial predictability is higher at most lead times (i.e. smaller spatial
spread) during this particular flow pattern (compare bold lines in Fig. 4.10f). However,
there is one important exception to this generalisation. During non-equilibrium, the spa-
tial predictability is higher at the time of afternoon precipitation (lowest sDS) at forecast
lead times of 12 to 18 hours (coinciding with time in UTC) that is strengthened by the
orographic effect exerting a source of predictability (not shown). Enhanced uplift induced
by orography promotes deep convection initiation and tends to organise convective cells
along the orographic gradient, demonstrating a higher likelihood of convective activity in
these regions. This structuring effect constrains the spatial variability of intense precipit-
ation and increases the predictability. This effect has a greater impact in non-equilibrium
regimes, where orographic triggering plays a more significant role, as observed over central
Europe (Bachmann et al., 2020; Keil et al., 2020) and the British Isles (Flack et al., 2018),
for instance.

4.3.3 Systematic impact of PSP
Building upon the flow-dependent assessment of the operational forecast system, we pro-
ceed to quantify the impact of incorporating a novel model uncertainty representation,
specifically the PSP scheme in the ICON-D2 ensemble. Usage of the PSP scheme shows
a large systematic impact on the diurnal cycle of precipitation in the weak convective for-
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cing regime (TP ensemble). Precipitation starts earlier, peak precipitation rates become
stronger and precipitation decays slightly earlier thereafter (Fig. 4.11a, b). Note that the
total daily rainfall is hardly affected by the PSP scheme (± 3 % relative difference). The
impact on spatial error and spread is discernible from 0900 UTC onwards, once convection
is initiated. For most of the time (0900–1900 UTC, including the convective most active
period) the PSP scheme reduces spatial forecast errors of precipitation at scales larger than
20 km (Fig. 4.11a). The spatial error increase after 1900 UTC is presumably linked to an
earlier decay of precipitation using the PSP scheme, a known issue applying the scheme
(Rasp et al., 2018). Despite this earlier reduction in precipitation intensity the general pre-
cipitation structure persists leading to the time lag between the decrease in precipitation
and the deterioration of spatial error.

Figure 4.11: Same as Fig. 4.10, but the composite of FSS differences of TP minus TR
ensembles. The blue lines indicate the 95th percentile values of hourly precipitation of TP
(bold) and TR (dashed blue) forecasts. The black dashed (bold) line shows the median
eDS (sDS) of the TP simulation.

In general, and similar to the spatial error, the impact of PSP on spatial spread shows
a distinct spread decrease at scales larger than roughly 50 km between 0900–1700 UTC
(Fig. 4.11b). Strikingly there is a steady increase of spatial spread on scales smaller than
50 km in this time window. By design the PSP scheme inserts perturbations at the effect-
ive model resolution (about 10km) which consequently cause increased variability in the
boundary layer impacting convective processes among others. Due to upscale error growth,
this affects larger and larger scales as time goes by and leads to a continual spatial spread
increase of hourly precipitation rates at spatial scales rising from the model’s effective res-
olution to some tens of kilometres. The reduction of spatial error and spread at scales
larger than 50 km can be attributed to the strong penalty associated with complete misses
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in forecasts when calculating the FSS. By fostering convection initiation in members of the
TP ensemble that failed to predict convection in the TR ensemble, the number of complete
misses is diminished and the FSS based spatial error and spread is reduced across scales.
Vice versa, this effect causes an increase in spatial error and spread across scales when
convection ceases earlier in the evening using the PSP scheme.

For the other forcing categories the PSP scheme shows characteristics similar to the
weak forcing (but at reduced levels). Figure 4.11b, d, f indicates that the spread shows
a similar behaviour across all regimes but at successively smaller amplitudes for stronger
forcing conditions.

4.4 Summary and Conclusions
The spatial predictability of precipitation strongly depends on the prevailing convective
forcing regime. For a systematic assessment, we condense three months of operational
ICON-D2-EPS forecasts into varying convective forcing categories applying the convective
adjustment time scale diagnostic. The scale-dependent aspect is assessed using spatial er-
ror (eDS) and spread (sDS) based on the FSS technique. During weak convective forcing,
corresponding to the non-equilibrium regime, the spatial error and spread largely depends
on the diurnal cycle of precipitation. The median eDS is about 70 km during the convect-
ively most active period (1200-1800 UTC) whereas the sDS amounts to only 40 km. The
scales between 40 and 70 km show no spatial skill and are under-dispersive. During strong
convective forcing, equivalent with the equilibrium regime, the large-scale flow constrains
convection patterns stronger and the gap of the median eDS and sDS becomes smaller.
The spatial forecast quality is superior in this weather regime, with the eDS fairly con-
tinuously increasing from model initialisation. The lack of spatial spread suggests that the
current perturbations in ICON-D2-EPS are sub-optimal and additional sources of model
uncertainty need to be added.

The application of the PSP scheme systematically shows the anticipated beneficial
impact. Whereas the total daily rainfall is hardly affected by the PSP scheme, it remarkably
reduces spatial forecast errors of precipitation at scales larger than 20 km, in particular
in the non-equilibrium regime during the diurnal cycle from 0900 UTC onwards. Whereas
the spatial spread is increased by PSP at scales less than about 50 km, the variability is
decreased at larger scales. For the other forcing categories the PSP scheme shows similar
characteristics but at successively smaller amplitudes for stronger forcing situations. The
PSP scheme is effectively representing subgrid-scale uncertainty in the boundary-layer
turbulence and reduces the systematic error as aspired by stochastic parameterisations
(Berner et al., 2017).

The effect of additionally including microphysical parameter perturbations is explored
for two representative weather situations by constructing prototype ’Grand Ensemble’
ICON-D2 experiments. Univariate and multivariate IBC, PSP and MPP ensemble simu-
lations for representative cases allow us to disentangle individual and synergistic contri-
butions of the sources of uncertainty. They confirm the strong flow-dependent impact of
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PSP, which has a significant impact on ensemble and spatial spread in non-equilibrium,
while its effects are negligible in equilibrium. The time and scale of the maximum differ-
ence is at the onset of convection and at the scale of the perturbations, which is beneficial,
because the operational ICON-D2-EPS struggles to introduce sufficient spatial variability
in the precipitation field at that time. In comparison, IBC represent the primary source
of variability in the ensemble in equilibrium. The joint impact of PSP and MPP in the
presence of IBC uncertainty regarding spatial error and spread is additive, with PSP being
the primary model uncertainty in non-equilibrium. Precipitation is triggered earlier and
its intensity is higher. The spatial error is largely reduced at convection initiation and the
spatial spread is increased across time and scales. Hence the spatial error-spread relation-
ship is significantly improved compared to the pure IBC ensemble. The conclusions on
the additive impact of MPP hold for these two cases and for this ensemble configuration.
However, longer term testing of the synergistic impact of model uncertainties is required
to achieve more robust results.

In summary, ICON-D2-EPS forecasts show insufficient spatial spread of precipitation
compared to spatial forecast errors. This agrees with earlier findings for other CPEPSs of
Rezacova et al. (2009) and Dey et al. (2014). Stratifying this shortcoming by convective for-
cing regimes reveals that the spatial under-dispersion emerges especially in non-equilibrium
conditions. The application of physically-based stochastic perturbations in the planetary
boundary layer considerably reduces the spatial overconfidence. This paper emphasises the
importance of the flow-dependent approach and supports previous results of variable pre-
dictability of area-averaged precipitation amounts (Keil et al., 2019; Barthlott et al., 2022b;
Matsunobu et al., 2022) and scale-dependent results (Flack et al., 2018, 2019; Matsunobu
et al., 2022). Tracing the varying sensitivity of uncertainty representations to different
origins using a ’Grand Ensemble’ with many formulations of model uncertainty will be
pursued in future work and is presently left as a challenging open question.



Chapter 5

Convergence of impact and
interactions of model uncertainties

The previous chapters have demonstrated how various sources of uncertainty act on dif-
ferent amplitudes, times, and scales. As discussed in Sect. 1, further assessments of the
model uncertainty impact are warranted to identify model uncertainty representations that
are effective in improving ensemble variability. To provide a handy framework for these
assessment, a variability budget method is proposed (Sect. 2.5). This method enables to
extract model uncertainty variances from total variance and thus to quantify a sensitivity of
ensemble variability to the model uncertainty. Such a sensitivity analysis in general suffers
from sampling error. On the other hand, utilising this method allows measuring conver-
gence of the model uncertainty variance, which is informative for optimising an ensemble
design, but has not been investigated in the context of NWP.

Motivated by this idea, this chapter investigates the minimum level of randomness
required for accurate estimation of model uncertainty impact, addressing the question
Does model uncertainty need as many ensemble size as IBC to accurately
estimate variability? The convergence behaviour of variance and correlations introduced
by the PSP scheme is examined with respect to the number of IBC (nIBC) and random
seeds (nRSD) in the PSP scheme. Utilising bootstrapping, directly sampled convergence
behaviour is compared with the scaling theory of sampling error for standard deviations
(Craig et al., 2022; Tempest et al., 2023) and correlation coefficients (Fisher, 1921).

5.1 Ensemble experiment and convergence measure

5.1.1 Ensemble dataset
The ensemble dataset was constructed as follows. We picked out one representative weak-
forcing case, 10 June 2021 as a case study. Initially, a 20-member ensemble was formed
with perturbations only in IBC, named the I ensemble. Next, for each member of the I
ensemble, 20 additional simulations with different RSDs in the PSP scheme were performed,
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resulting in the I × P ensemble comprising 20 × 20 = 400 members.
Bootstrapping (resampling with replacement) was used to assess the dependence of

variance on nIBC as well as nRSD. For the I ensemble, sub-ensembles of size s were ran-
domly drawn from the original 20 members 100 times, denoted as Is, where s is successively
increased from 1 to 20. Similarly, the I × P ensemble underwent bootstrapping consid-
ering both nIBC and nRSD. By randomly selecting s IBCs and t RSDs for each IBC,
sub-ensembles of size s × t were created, named Is × Pt. Impact of the PSP scheme is
derived by comparing RSD-perturbed members in Is ×Pt with the corresponding members
in Is sharing the same IBCs. The derived sub-ensemble of the PSP impact is denoted
as Pt|Is and depends on both nIBC (s) and nRSD (t). Finally, correlation coefficients
between IBC and PSP impact for any combination of nIBC and nRSD were calculated
using Eq. 2.13 (omitting the perturbation symbol x′ for convenience):

Corr(Is, Pt|Is) = V ar(Is × Pt) − V ar(Is) − V ar(Pt|Is)
2

√
V ar(Is) ∗ V ar(Pt|Is)

. (5.1)

5.1.2 Convergence measure
To understand how many ensemble members are required to obtain stable variance, we
analyse the saturation of variance values and confidence intervals (CI) of variance as a
measure of sampling error. We calculate variance for each bootstrapping repetition and
use the mean variance across repetitions as the most probable variance for a specific com-
bination of nIBC and nRSD. We use the standard deviation of variances across repetitions
as a measure of sampling uncertainty for variance. Given that the sampling distribution
of the summation of the random variables is expected to be normally distributed (Dekking
et al., 2005), the standard deviation corresponds to a half of the width of a 68.3 % CI.

When calculating CIs for correlation coefficient, a careful treatment is needed due to
their non-symmetrical nature and the 0-1 boundary. We employ a bootstrapping method
similar to that used for variance, which calculates the correlation coefficient for each repeti-
tion with the 68.3 % CI derived from the difference between the upper (84.13 %) and lower
(15.87 %) percentile values of the sampling distribution. This approach avoids assumptions
about the distribution shape and allows us to account for the potentially unequal influence
of nIBC and nRSD.

It is known that sampling uncertainty of variance (standard deviation) decreases pro-
portionally to n−1/2 with an increase in sample size (Craig et al., 2022; Tempest et al.,
2023). On the other hand, the estimation of sampling uncertainty for correlation coeffi-
cients needs a bespoke approach due to their asymmetry. It is convenient if there is an
available benchmark as to variance to assess if sampling uncertainty of correlation can be
extrapolated to larger ensemble size. One method to parametrically obtain an asymmetric
CI for correlation coefficients utilises Fisher’s r-to-z transformation (Fisher, 1921), which
transforms a sample correlation coefficient r into a z-score z through a logarithmic function:

z = 0.5 log 1 + r

1 − r
. (5.2)
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The transformed z-score assumes an approximately normal distribution with a known
standard deviation of 1/

√
n − 3 (Fouladi and Steiger, 2008). An expectation of z with

sufficient sample size is expected to be equal to the transformation of the true correlation
coefficient ρ. Thus, its z-score is ztrue = 0.5 log 1+ρ

1−ρ
. The distribution of z can be normalised

as:

z − ztrue

1/
√

n − 3
. (5.3)

Normalisation allows us to easily obtain quantile values of the sample distribution using a
look-up table, thereby enabling the calculation of the upper and lower bound of the α%
CI of ztrue:

−z 100−α
2

≤ z − ztrue

1/
√

n − 3
≤ z 100−α

2
. (5.4)

And

z − z 100−α
2

1√
n − 3

≤ ztrue ≤ z + z 100−α
2

1√
n − 3

. (5.5)

By applying inverse transformation of Eq. 5.2 to the calculated CI in z-space, one can
derive the upper and lower values of ρ:

ρ = e2z − 1
e2z + 1

. (5.6)

Fig. 5.1 illustrates how a Fisher-z’ value varies with the input correlation coefficient for
sample size of 20. As the correlation coefficient increases, the z values exhibit a monotonic
increase, with the rate of change reaching maximum near the correlation coefficient of -1
and 1, and its minimum around r = 0. When correlation coefficient indicates no correlation,
even a small change in the z value can result in a substantial change in the correlation
coefficient. A fixed width of the z value specified in Eq. 5.5 results in smaller CI widths
for large correlation coefficients and, in contrast, larger CI width for small correlation
coefficients, as depicted in the right panel of Fig. 5.1.
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Figure 5.1: Example Fisher’s z values and a half width of 68.3 % CI as a function of input
correlation coefficient.

To assess whether convergence of correlation coefficients obtained through bootstrap-
ping aligns with the theoretically expected convergence rate, we compare the width of the
68.3% CI between the bootstrapping and Fisher-z transformation methods. In the Fisher-z
estimation, the true correlation coefficient ρ is estimated from the repetition mean values
of the bootstrapped correlation coefficients. Note that since a 68.3% CI corresponds to
twice a standard deviation for variance sampling error, we present half the CI width to
facilitate easier interpretation of results.

5.2 Temporal evolution of variance
Since the focus of this study is on sampling uncertainty of variability attained by the PSP
scheme, we should assess variables influenced by the scheme at lead times when the scheme
could be effective. To identify such variables and forecast times, the temporal evolution of
ensemble variances are shown in Fig. 5.2. The temporal patterns of variance are strongly
height-dependent, with upper-level variance (blue lines) increasing steadily with lead time
and lower levels (pink, green) exhibiting diurnal cycles peaking in the early afternoon, for
all variables except for geopotential. The 500 hPa level (orange) displays the patterns
like a mixture of the lower and upper levels except for vertical wind, where convective
updraft appears to be the primary source of variability and thus strongly associated with
the activity in the lower troposphere. This reflects the dominance of large-scale flows at
upper levels e.g. geostrophic balance and the strong influence of diurnal convective activity
at lower levels.
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Figure 5.2: Time evolution of ensemble variance of the I20 (solid) and I20 × P20 (dashed)
ensembles averaged over the German domain.

Comparing solid and dashed lines in Fig. 5.2 highlights five key points regarding the
impact of the PSP scheme on variance: 1) Lower levels (950 and 850 hPa) for temperature,
winds and humidity are generally sensitive to PSP as well as 500 hPa vertical winds which
is particularly sensitive. This is no surprise considering that those variables are strongly
disturbed by the convective activity which the PSP scheme is supposed to impact. 2)
In contrast, upper tropospheric levels (200 and 500 hPa) are insensitive. This is expec-
ted given the absence of synoptic-scale vertical motion over Germany on that day; 3) PSP
primarily increases variance associated with the diurnal cycle between 1000 and 1800 UTC;
4) Geopotential fields show little sensitivity to PSP, indicating overall insensitivity to local
convection; and 5) Overall, the net increases in variance given by PSP remain relatively
small compared to the variance of I. This small net effect of adding model uncertainty
representations on total variance aligns with existing literature on model uncertainty rep-
resentations (e.g. Buizza et al., 1999; Berner et al., 2017; Flack et al., 2021; Hermoso et al.,
2021; Frogner et al., 2022; Puh et al., 2023).

The results in the previous paragraph strongly suggest the investigation should be
guided by the diurnal cycle of the convective activity. For further examination of how well
the additional uncertainty are represented at different stages of convection, we examine
four specific time steps throughout the forecast: 0800 UTC (pre-convection), 1100 UTC
(convection onset), 1400 UTC (peak convection), and 2000 UTC (post-convection). Fig-
ure 5.3 shows the distribution of accumulated precipitation at these lead times for later
comparisons with variance distributions. Precipitation along the Alps occurs consistently
throughout the forecast, while strong localised convection appears in southern Germany
from 1100 UTC onwards. No convective precipitation is observed in northwestern Ger-
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many. In selecting variables for the analysis, we don’t include geopotential and vertical
wind due to its insensitivity to convection and lack of variance outside the convective time
period, respectively. U wind and V wind are expected to provide similar results. Thus, we
focus on temperature at the 850 hPa level, as it is in the levels sensitive to the scheme and
likely located above the planetary boundary layer, where tendencies are directly perturbed.
To provide a comprehensive result, we also present some results for u-wind and specific
humidity at the 850 hPa level.

Figure 5.3: Precipitation accumulation from 0000 UTC. The ensemble mean of the I20
ensemble is displayed.

5.3 Variance convergence for different perturbations

Figure 5.4 shows the evolution of mean variance and sampling uncertainty before convection
with an increase in nIBC and nRSD. The variance of Is and Is × P20 largely overlap and
rapidly increase as nIBC increases from 1 to 4, and afterwards slowly increase and become
almost saturated with nIBC of 15 (Fig. 5.4a). The variance of P20|Is remains low and has
negligible influence on the total variance Is × P20. Both variance of Pt|I20 and I20 × Pt

show no sensitivity to nRSD (Fig. 5.4b), indicating the PSP scheme’s inactivity before
convection.

Sampling uncertainty, as measured by the CI width, continuously decreases for the
variances of Is and Is × P20 with increasing ensemble size (Fig. 5.4c). This decline is
proportional to nIBC−1/2, consistent with the findings by Craig et al. (2022) and Tem-
pest et al. (2023). On the other hand, nRSD has no effect on the sampling uncertainty
(Fig. 5.4d). Increasing nRSD at this time is like making copies of identical nIBC-member
sub-ensembles, leading to constant variance and sampling error.
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Figure 5.4: Area-averaged variance (upper) and sampling uncertainty (lower) as a function
of nIBC (left) and nRSD (right) of temperature at 850 hPa pressure level before convection
(0800 UTC).

At the time of convection initiation (1100 UTC), the PSP scheme starts to act (Fig. 5.5a).
With only 1 IBC, the ensemble variability is solely attributed to the PSP scheme, resulting
in comparable variances for Is × P20 and P20|Is. Similar to the pre-convection case, the
variance of Is×P20 increases rapidly and attains values exceeding the Is variance by roughly
10%. The variances of P20|Is also increases as nIBC gets larger. This can be explained by
the PSP scheme’s influences on specific regions, where the atmospheric state needs to be
potentially uncertain, and multiple IBCs allow the PSP scheme to be active on different
grid points due to the difference in the initial state. However, its growth is slower than
the Is variance and saturates earlier with 6 nIBC at a lower level. Notably, nIBC of 15
remains a suitable sample size for estimating variances averaged over Germany, regardless
of the variance type. This number is only valid for a domain average. A grid-point variance
needs much more members to get converged because taking a domain average increases ef-
fective sample size, as shown in Craig et al. (2022). While nRSD’s impact becomes visible,
it plateaus sooner compared to nIBC (Fig. 5.5b). With only one RSD, both Pt|I20 and
I20 × Pt variances attain nearly 90% of the variance obtained with 20 RSDs. Subjectively,
using more than 3 RSDs offers no further benefit to variances.

The sampling uncertainty of the Is, Is × P20, and P20|Is variances all decrease propor-
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tionally to nIBC to the power of −1/2 (Fig. 5.5c). Whilst the smaller sampling uncertainty
for P20|Is likely arises from its smaller variance values, the Is × P20 variance shows smaller
sampling uncertainty than Is despite having a larger variance. The PSP scheme activation
likely enlarges the effective ensemble size of Is × P20. Interestingly, increasing nRSD mod-
estly reduces the sampling uncertainty, at a slower rate than the n−1/2 line (Fig. 5.5d). If
the impact of the PSP scheme exhibits perfect randomness, a sub-ensemble Is × Pt has a
normally distributed sample distribution, and its sampling uncertainty reduces according
to the central limit theorem, i.e. nRSD−1/2. This can be because, with 20 IBCs, the IBC
uncertainty to large extent covers a potential range of the PSP uncertainty, and further
increase in nRSD only adds insignificant information about the sample distribution.

Figure 5.5: As for Fig. 5.4, but at the time of convection initiation (1100 UTC).

The temperature variances at peak convection (1400 UTC) resemble those at 1100
UTC, with a larger variance of Pt|Is (Fig. 5.6, left column). After convection (2000 UTC),
the variances of Is and Is × Pt largely overlap, indicating that Is plays the dominant role
in determining the variance of Is × Pt similar to the pre-convection phase (Fig. 5.6, right
column). Whilst the variance of Pt|Is remains positive, it becomes substantially smaller
than the other variances. This suggests that the PSP’s impact persists in the model at-
mosphere even after convection has ceased, but it is negatively correlated with the IBCs
and does not contribute to the overall variance increase in Is × Pt (physical and statistical
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interpretations of this correlated impact are provided in Chapter 6). The sampling un-
certainty of the Pt|Is ensemble continues to decrease proportionally to nIBC−1/2, similar
to the behaviour during convective periods. It appears that the presence of preceding
convection, rather than being in a specific stage of convective events, is the primary factor
governing the PSP variance. While larger nRSD contributes to a decrease in sampling
error once convection occurs, the rate of decrease is considerably slower and overall less
effective compared to nIBC.

Figure 5.6: As for Fig. 5.4 and 5.5, but at the peak time of convection (1400 UTC; left)
and after convection (2000 UTC; right).

For U component of wind, the variance of Pt|Is (red solid) exhibits large values, indic-
ating stronger sensitivity to the PSP scheme (upper in Fig. 5.7). The curves of the Pt|Is

variance parallel the Is variance (blue solid) and appear to saturate around nIBC = 10,
which is larger than the case for temperature (nIBC = 6). This indicates that necessary
nIBC for variance saturation depends on variables, such as dynamics rapidly smooth tem-
perature fields and lead to quick saturation of the Pt|Is variance for temperature above the
boundary layer, but not as for U wind. Helped by the increase in effective sample size by
the PSP scheme, the variance of Is ×Pt (red dash) shows the smallest sampling uncertainty
and converges around 0.35 when nIBC = 20. Despite the distinct sensitivity of U wind
variance to nIBC compared to temperature, the sensitivity to nRSD is similar.

For nRSD, three members seems sufficient for adequate sampling of the PSP variance.
For sampling uncertainty, the convergence curve of Is×Pt (red dashed) starts slightly above
0.5 and shows steeper decrease than that for temperature with small nRSD, converging
around 0.35 with nRSD of 10 and larger. Variables responsive to the PSP scheme require
several random seeds to stabilise variance. Nevertheless, the convergence rate is smaller
than nRSD−1/2 and smaller nRSD does not significantly impair variance sampling. This
conclusion holds for specific humidity, the most sensitive variable to the PSP scheme (lower
in Fig. 5.7).

Former analyses show the dependency of the impact of PSP on the IBC impact on
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Figure 5.7: As for left column in Fig. 5.6 but for u component of wind and specific humidity
at the peak time of convection (1400 UTC).
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variance convergence. To compare the spatial distribution of the PSP impact with IBC,
the spatial pattern of the Is × Pt variance as a function of nIBC and nRSD at peak
convection (1400 UTC) is shown in Fig. 5.8. As expected, nIBC plays a more significant
role than nRSD in attaining larger variance. Increasing nIBC from 2 to 6 leads to an
area-averaged variance increase of approximately 50%, while increasing nRSD from 1 to
20 yields a gain of 40% for nIBC=2 and 10% for nIBC ≥ 10.

The variance bands in northern Germany and over the Alps exhibit distinct changes
with varying nIBC and nRSD. In these regions, increasing nIBC primarily intensifies the
variance, while increasing nRSD broadens the spatial extent of the variable region. In con-
trast, a careful comparison of plots within each row reveals that nRSD can structure small-
scale variability in southern Germany, apparently related to ongoing small-scale convective
activity in that region (Fig. 5.3c). As expected from its design, the additional random-
ness introduced by the stochastic fields in the PSP scheme selectively enhances small-scale
variability through local convection in a way that increasing nIBC cannot achieve. This
small-scale impact of model uncertainty representation is consistent with the recent work
by Hermoso et al. (2021) and Chen et al. (2024), with the latter showing that the model
uncertainty impact saturates at the 100 km scale in 48 hours. However, nRSD’s impact
on the spatially averaged variance remains small, only around 10% increase, when nIBC
is sufficiently large (> 10).

5.4 Effect of sampling uncertainty on estimating cor-
relation

This subsection examines how convergence and sampling uncertainty in the variance influ-
ence the estimation of correlation coefficients. Figure 5.9 depicts the spatial distribution
of variances and the correlation coefficient associated with the impact of IBC and PSP.
Comparing the variance patterns in Figs. 5.9a, b, and c reveals that adding PSP weakens
the magnitude of the I20 variance signal in northern Germany, consistent with the blurring
effect discussed in the previous section. In southern Germany, the variance of I20 × P20
exhibits a relatively smoothed pattern, whereas the I20 and P20|I20 variances show more
intermittent signals, with a broader distribution of weak variance for P20|I20. The PSP
scheme enhances variability in regions where the atmospheric state is potentially uncertain
in I20, as well as enhancing small-scale variability missed by the IBC uncertainty, resulting
in a smoothed variance field for I20 ×P20. Regarding the correlation (Fig. 5.3d), a negative
signal is evident wherever both P20|I20 and I20 exhibit some extent of variance, partic-
ularly extending from southwest to northeast Germany. This pattern closely resembles
the precipitation map in Fig. 5.3c. The analysis confirms a negative correlation between
the impacts of IBC and PSP, which is particularly pronounced in regions experiencing
convective precipitation.
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Figure 5.8: Total temperature variance [K2] map at 850 hPa at the peak convection as a
function of nIBC (rows) and nRSD (columns). Area-averaged variances are shown at the
top-right corner.
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Figure 5.9: Spatial distributions of iteration-mean variance of (a) I20 × P20, (b) I20, (c)
P20|I20, and (d) correlation coefficient for 850 hPa temperature at mid convection (1400
UTC).

Figure 5.10 shows the variation of sampling error in the correlation coefficient with
nIBC and nRSD. As evident from the area-averaged sampling errors, an increase in both
nIBC and nRSD significantly reduces the sampling uncertainty. Increasing nIBC from 2
to 20 leads to a fourfold reduction in sampling uncertainty, while increasing nRSD from 1
to 20 yields roughly half that reduction. Similarly to the variance increase in Fig. 5.5, the
impact of larger nIBC and nRSD on reducing sampling uncertainty is more pronounced for
smaller initial values, and diminishes for nIBC and nRSD greater than 10. For example,
increasing nIBC from 2 to 6 reduces uncertainty to 40%, while increasing from 10 to 20
only yields 24% reduction. Regions with high correlation coefficients in Fig. 5.9d, such as
southern Germany, experience faster convergence with both nIBC and nRSD. Conversely,
regions exhibiting noisy correlation patterns, like northwest Germany, suffer from persistent
sampling uncertainty even with the largest ensemble size. This necessary large sample size
for weak correlation aligns well with the expectation from the Fisher-z transform (Fig. 5.1).
Comparison of average sampling uncertainty between the same total sample size but with
different combinations of nIBC and nRSD shows systematically smaller uncertainty for
combinations with larger nIBC, except the combinations of (20, 1) and (10, 2). Having
more than one RSD is significant in reducing sampling uncertainty, especially in regions
with weak correlation (northwest in Fig. 5.9d). Thus, although increasing nRSD in order
to reduce correlation sampling uncertainty is less effective than increasing nIBC, it is
worth considering when the current nRSD is just one. This highlights the importance of
both NIBC and nRSD in reducing sampling uncertainty, especially in regions with weak
correlations.
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Figure 5.10: Sampling uncertainty map of the IBC-PSP correlation coefficient at 850 hPa
at the peak convection as a function of nIBC (rows) and nRSD (columns). Area-averaged
values are shown at the top-right corner.
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To assess whether the correlation convergence obtained above follows the theoretical
convergence rate, we compare the sampling uncertainty derived from the Fisher-z trans-
form with the quantile approach. Fig. 5.11 presents a theoretical estimate of correlation
convergence derived from the Fisher-z transform. The Fisher-z estimate shows s fairly
uniform reduction in sampling uncertainty with an increase in both nIBC and nRSD. As
the Fisher-z estimate only depends on the input correlation coefficient fields and sample
size, combinations with the same total size yield comparable results. For instance, the
combinations (2, 6) and (6, 2), as well as (2, 20) and (20, 2), exhibit comparable sampling
uncertainty. Thus in this estimate, increases in nIBC and nRSD are comparably effective
in increasing sample size.

Comparing the quantile approach (Fig. 5.10) with the Fisher-z approach (Fig. 5.11)
reveals that the sampling errors derived from the quantile approach are consistently larger.
Therefore, the Fisher-z theory underestimates the sampling error and is not applicable for
convective-scale EPSs. In particular, the Fisher-z theory overrates nRSD. In line with the
results in Sect. 5.3, increasing nRSD makes copies of samples retrieved by different IBCs
and do not contribute to adding information about the distribution of them.

Both approaches emphasise small sampling error in regions with strong correlations. In
these highly-correlated regions, the sampling error remains relatively low, around 0.2 for
ensemble sizes like (20, 1) and (10, 2), compared to the background correlation coefficient
values of approximately 0.7. The current ensemble sizes employed in many operational
EPSs (�20) appear sufficient to reliably determine the presence of correlations in these
highly-correlated regions. In these regions, the last term in Eq. 2.13 is stable, and hence
the estimate of total variance becomes reliable if variance sampling uncertainty is small.
In contrast, caution is warranted when interpreting regions exhibiting noisy coefficient
patterns. In such areas, the last term in Eq. 2.13 significantly varies, hence leading to
uncertain total variance. Stated another way, total variance sampling is uncertain if two
uncertainty impacts are uncorrelated and additive.

5.5 Optimisation of ensemble design to sample model
uncertainty with the smallest ensemble size

While increasing nRSD offers less reduction in sampling error compared to nIBC (as shown
in Subsections 5.2-5.4), it effectively captures fine-scale uncertainties not achievable with
IBC perturbations. This makes it valuable to find an optimal balance between nIBC and
nRSD for limited computational resources.

Start with a simple example. Figure 5.12 shows how the variance of Is×Pt changes with
the total ensemble size, which is made of a random combination of nIBC and nRSD. For
instance, an ensemble size of 10 can be achieved with two combinations of (nIBC, nRSD):
(2, 5) or (5, 2). With up to 20 members, the variance of Is × Pt grows in parallel with that
of Is but with systematically smaller values (Fig. 5.12a). This suggests that the variance
increase is mainly driven by IBCs, and increasing nRSD associated with decreasing nIBC
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Figure 5.11: As for Fig. 5.10, but for the width of CI estimated using the Fisher-z transform.
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systematically reduces the variance; RSD-perturbed members tend to resemble each other.
As for sampling uncertainty, the decreasing rates for Is × Pt and Ps|It are flatter than that
of Is. This is also a result of mixing IBC-perturbed members and RSD-perturbed members
equivalently.

Figure 5.12: As for Fig. 5.4, but as a function of total ensemble size at the time of peak
convection (1400 UTC).

A discontinuous change occurs in both the variance and sampling uncertainty at size of
21. From this size onwards, at least two IBCs are always included. This ensures variability
in regions where the PSP scheme is inactive, as exemplified by the right-hand side line
over northern Germany in Fig. 5.9b. It seems preferable to prioritise a sufficient number
of IBC as the foundation of the ensemble design and only increase nRSD when capturing
fine-scale variability is crucial.

To identify the optimal combination of (nIBC, nRSD), Figures 5.13 and 5.14 show how
variance changes with different combinations of nIBC and nRSD for pre-convection and
mid-convection, respectively. Before convection, vertical stripes in Is × Pt indicate that
only nIBC contributes to the variance (Fig. 5.13a). At this forecast lead time, replacing
IBC-perturbed members with RSD ones reduces the ability to capture the full range of
possible forecast variability. Once convection occurs, curved stripes in Is × Pt with small
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Figure 5.13: 2D variance convergence diagrams before convection (0800 UTC). (a) Total
variance and (b) PSP variance are shown in colour. White contours indicate 70 %, 80%,
and 90 % isolines of the 400-member variances. Black straight lines indicate combinations
of nIBC and nRSD with total ensemble size of 20.

nRSD values (Fig. 5.14a) indicate that nRSD can partially substitute nIBC, up to a nRSD
value of 3. There, the contour line of the 90% of the maximum variance parallels the
iso-ensemble-size line of 20 members (Fig. 5.14a). As for the variance of Ps|It, nRSD=2
or 3 shows the largest variance with the ensemble size of 20. (Fig. 5.14b). This suggests
potential optimal combinations like (10, 2), (6, 3) or (7, 3) for surely capturing the PSP
impact at mid-convection with an ensemble size of 20.

Crucially, while these combinations seem ideal for mid-convection, they might negat-
ively impact variance when convection is absent, highlighting a significant trade-off. In
addition, the increase in nRSD is not beneficial for more accurate sampling of strong cor-
relation. Finding the optimal balance between nIBC and nRSD necessitates accounting
for the forecast stage and its associated uncertainties. Considering that convection is not
active for most of time, optimal for long term assessment would be to keep nIBC as high
as possible with one RSD each.

5.6 Summary and Conclusions
This chapter serves to to add knowledge about convergence of ensemble variability when a
new model uncertainty source is introduced. We investigates sampling uncertainty of vari-
ance of model uncertainty using the variability budget method, which decomposes total
variance into sum of individual variances and their interactions. To assess the influence of



5.6 Summary and Conclusions 87

Figure 5.14: As for Fig. 5.13, but at the peak convection (1400 UTC).

ensemble size given by different perturbation methods, a large ensemble simulation with
400 members, a combination of 20 IBCs and 20 RSDs, is performed. Smaller ensembles
are made by bootstrapping (repeating sub-sampling with replacement) the large ensemble.
First, we estimate the necessary nIBC and nRSD to ensure the sampled variance closely
approximates true variability, in comparison with the scaling theory shown in Craig et al.
(2022) and Tempest (2023). Second, we investigate convergence of correlation coefficients
between IBC and PSP impacts. To find out whether sampling uncertainty of correlation
scales with an asymptotic theory as shown for variance, the direct sampling results by
bootstrapping are compared with the theoretical estimates based on the Fisher-z trans-
formation. Finally, we suggest optimal combinations of ensemble sizes for nIBC and nRSD
for effective variability sampling.

We begin by exploring the evolution of total variance as a function of nIBC and nRSD.
The necessary ensemble size for accurate variance estimation depends on variables under
consideration and the presence of convective activity. Temperature variance above the
boundary layer converges more rapidly, requiring around nIBC=6, while variables like U-
wind necessitate a larger ensemble size of approximately nIBC=10 to achieve saturation.
Both variance convergence exhibit a steady decrease in sampling uncertainty proportional
to nIBC−1/2, consistent with findings for convective-scale ensembles by Tempest (2023).
This difference can be attributed to the smoothing effects of atmospheric dynamics on
temperature fields, which lead to faster convergence compared to wind variables.

The impact of increasing RSD becomes evident only after the onset of convection, with
nRSD of 2-3 being sufficient to capture variance attributed to the PSP scheme. The ef-
fectiveness of increasing nRSD is limited compared to nIBC, as the latter can encompass
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the range of PSP uncertainty with a sufficiently large nIBC (> 10) used. Nevertheless,
increasing randomness in the PSP scheme introduces fine-scale variability that cannot be
achieved through IBC perturbations alone, particularly in regions dominated by local con-
vective activity. Increasing nRSD seems to selectively enhance convective-scale variances,
but it is inactive elsewhere and does not increase sample size as effectively as nIBC does.

The convergence of correlation estimates between IBC and PSP impact is significantly
influenced by the underlying correlation strength. Regions where the PSP scheme is active
exhibit strong negative correlations and faster reduction in sampling uncertainty. In con-
trast, areas with weak or noisy correlations require larger ensemble sizes to stabilise the
correlation estimates. Comparing sampling uncertainty obtained through bootstrapping
with the theoretical estimates based on the Fisher-z transform reveals that the convergence
of correlation in practice is slower than the theoretical expectations. Like the convergence
of the extreme percentile values in Craig et al. (2022), we need larger nIBC than the the-
oretical estimate to accurately sample the interaction between the IBC and PSP impacts.
Nevertheless, the benefit of nRSD in reducing sampling uncertainty is limited compared
to nIBC, like the finding for the variance convergence.

Finally, we discuss optimal combinations of nIBC and nRSD for practical forecasts,
in which total ensemble size is constrained by computational resources. Having just one
RSD already captures 90% of the maximum total variance, and nRSD = 2 and 3 are
optimal for sampling variability due to the PSP scheme once convection is active. However,
trading off nIBC for nRSD significantly compromises variability sampling in absence of
convection. Therefore, for long-term assessments, prioritising higher nIBC is recommended
unless computational resources allow for substantial increase in the total ensemble size.

This study mainly investigates how standard deviations converge, which corresponds
to the 68.13% width of the distributions, assuming they are perfect Gaussian distributions
centred at the ensemble mean. By multiplying Eq. 2.13 by a factor of 4 and 9, one can easily
determine the widths for the central 95.4% or 99.7% of the distributions. Thus, this method
appears to be easily extended to assessing a variability budget for ”extreme” weathers,
which are often defined as 95%- or 99%-ile values. In such a case, the relative contributions
of individual factors remain unchanged as obvious from Eq. 2.13. Although this application
sounds very useful and straightforward, nevertheless, extra caution is warranted when
examining the convergence of these extreme values. These extreme values are generally
more affected by non-linearity of the governing equations. In highly non-linear weather
models, these extreme percentiles converge much more slowly than the standard deviation
(Tempest et al., 2023). To properly analyse the convergence of such extreme quantiles, a
bespoke convergence study with much larger ensemble size is necessary.

It’s important to note that these results are based on a single case study under weak
convective forcing condition. The necessary size of nIBC may vary in different forcing
regimes and seasons. However, the minor importance of nRSD to nIBC is likely to remain
small. Model uncertainty representations are able to suggest another scenario in the given
atmospheric states, but are NOT able to create, for example, a thunderstorm in a region
characterised by the stable troposphere. This limitation applies, at least to some extent,
to other model uncertainty schemes as well. As long as model uncertainty is acting in
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sub-processes of the activity constrained by IBC, a lower level of randomness in a model
uncertainty scheme is expected to be sufficient.
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Chapter 6

Quantifying uncertainties with the
variability budget

The previous chapters addressed the model uncertainty impact on increasing country-scale
variability (Chapter 3) and scale-dependent variability (Chapter 4) for convective-scale
forecasts. This chapter aims to trace those impacts to their origin by tracking evolution of
the variances of the impacts and their interactions, addressing the last research question
How does forecast uncertainty from different sources evolve and interact over
time? The results from Chapter 5 support to structure an ensemble dataset for efficient
sampling of model uncertainties, as well as to validate robustness of sampled correlations.

The dataset is described in Sect. 6.1. In Sect 6.2 the time evolution of variability and
interactions is presented in a flow-dependent manner. The features of model uncertainties
leading to interactions are assessed in Sect. 6.3. The effect of the order of adding uncertainty
representations is examined in Sect. 6.4. The findings are summarised in Sect. 6.5.

6.1 Regional grand ensemble

6.1.1 Simulation design
For a comprehensive investigation of the flow-dependent impact of IBC, PSP, and MPP,
we conducted one-month routine simulations of an ”ensemble of ensembles,” termed the
regional grand ensemble (RGE). The RGE was basically designed as an enhancement of
the trial run dataset (Sect 4.3.1). It consists of daily ensemble simulations initialised every
00 UTC from 15 August to 14 September 2023, with a 24-hour forecast lead time. The
ensemble design employs the cycle-equitable graph with the simplified Morris concept, as
described in Section 2.5. Each day’s RGE comprises four 20-member ensembles, increment-
ally adding model uncertainty representations. The first ensemble, denoted I (referencing
IBC), includes only IBC perturbations and serves as the baseline. In the IP and IM
ensemble, the PSP scheme and parameter perturbations in microphysical parameters are
turned on, respectively. The combined ensemble IPM incorporates all three uncertainty
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representations.
Perturbations in IBC and of PSP follow the approach used in the trial run (Sect 4.3.1).

ICs are provided by the operational ensemble analysis of the ICON-D2-KENDA system.
LBCs are from the operational ICON-EU-EPS output. The first 20 members of them
were used for the initialisation. When the PSP scheme in turned on (in the IP and IPM
ensemble), it introduces spatial variability through a random seed mechanism. This seed
is assigned sequentially, changing from 1 to 20 across each ensemble member.

To efficiently capture the microphysical impact, we simplified MPP from the case stud-
ies used in Chapter 3 and 4. This simplification involved constructing 20 unique com-
binations of CCN concentration and CDSD shape parameters. We selected four distinct
CCN concentrations and five CDSD parameters to generate this diversity. It’s important
to note that the default CCN configuration required adjustment due to an update in the
ICON model. The new default is NCN = 250cm3, thus our chosen CCN values include
NCN = 100cm3, 250cm3, 1700cm3, and 3200cm3. The CDSD shape parameters are chosen
from 0, 1, 2, 4, and 8. When the MPP scheme is activated in the IM and IPM ensemble,
each of these 20 combinations is assigned to one ensemble member. While a specific com-
bination remains fixed for a particular IBC for simplicity, this choice doesn’t impact overall
ensemble variability because of inherent randomness and interchangeability of IBC in the
setup of the ICON-D2-KENDA.

6.1.2 Classification of forcing regimes
Throughout the period, all days received precipitation somewhere within the German do-
main, although for many days the precipitation occurred in trace amounts or only in small
regions. After excluding days with less than 1 mm/d accumulation on average, we classified
convective regimes for 19 days using the convective adjustment timescale (τc; Sect. 2.3).
Two cases that showed a clear diurnal cycle of precipitation and a clear τc peak before
daytime convection were classified as weak forcing cases (red dots in Fig. 6.1). Days with
continuous organised rainfall and daily mean τc less than 0.6 hours were classified as strong
forcing conditions, resulting in 7 days (blue dots in Fig. 6.1).

Figure 6.1: Time series of the day-to-day variability of 24-h accumulated precipitation
(bars) and convective adjustment timescale τc (dots). The colours of the dots represent
weak (red), intermediate (white) and strong (blue) forcing regimes. Green bars depict I
ensemble mean area-averaged rainfall.
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We first selected a typical case for each forcing regime to showcase detailed results.
The 15th of August represents a weakly forced case, characterised by a subtle horizontal
equivalent potential temperature gradient (Fig. 6.2a) and weak westerly winds flowing
from eastern France towards Germany (not shown). The timeseries of precipitation rate
followed a clear diurnal cycle, while the spatial distribution of accumulated precipitation
exhibited intermittency, particularly in northern Germany (Fig. 6.2c). The 19th of August
represents a strongly forced case, featuring a strong, zonal gradient of equivalent potential
temperature over the evaluation domain especially along the edge of the precipitated region
(Fig. 6.2b). Relatively cold air advected from the northwest led to a temperature inversion
in southern and eastern Germany, fostering widespread, organised precipitation that began
in the morning and persisted throughout the day (Fig. 6.2d). We will initially focus on
the results at 1600 UTC for these two days to exemplify flow-dependent behaviours after
substantial precipitation. An aggregated analysis over all seven cases within each regime
is presented in Section 6.2.

6.1.3 Application of the variability budget to RGE
To assess the evolution of variability and interactions between uncertainties from the three
sources of uncertainties, IBC, PSP and MPP, we compute each term in Eq. 2.14 with n = 3:

V ar(x′
IP M) = V ar(x′

I) + V ar(x′
P ) + V ar(x′

M)
+ 2[Cov(x′

I , x′
P ) + Cov(x′

I , x′
M) + Cov(x′

P , x′
M)],

(6.1)

where x′
IP M represents total impact defined as a deviation of an ensemble member in the

IPM ensemble from the ensemble mean, corresponding to debiased mixed effect EEIAB

in Eq. 2.10. x′
I , x′

P , and x′
M are debiased impacts of IBC, PSP and MPP, respectively,

corresponding to debiased EEs in Eq. 2.9. These debiased perturbations are defined as:

x′I
i = fi(0, 0) − fi(0, 0)

x′P
i = fi(1, 0) − fi(0, 0) − fi(1, 0) − fi(0, 0)

x′M
i = fi(1, 1) − fi(1, 0) − fi(1, 1) − fi(1, 0)

(6.2)

where indicates average, the subscript i refers to the ith ensemble member and fi(PSP, MPP )
is a model output value derived with the three input factors perturbed in RGE. The PSP
and MPP flags here are either 0 (turned off) or 1 (turned on). In the original Morris
method, xM

i should be normalised by difference in the parameter values (∆ in Eq. 2.8) to
approximate local partial derivative. However, we skip this step to focus on the impact
given by absence or presence of uncertainty. In practice debiasing impact has no effect on
the calculation of variances in Eq.6.1, but we keep subtracting the ensemble means of xP

and xM in the second and third lines in order to have consistency with the definition of x′
∗

in Sect. 2.5.2 and Figure 2.4.
In practice, x′

∗ are calculated by getting a change in deviation from the ensemble mean
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Figure 6.2: (a, b) Equivalent potential temperature at 850 hPa height and (c, d) Accumu-
lated precipitation until 1600 UTC for (a, c) 15 August 2022 and (b, d) 19 August 2022.
The values are the ensemble mean of the I ensemble.
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by adding uncertainty representations:

x′I
i = Ii − I

x′P
i = IPi − Ii − [IP − I]

x′M
i = IPMi − IPi − [IPM − IP ]

x′IP M
i = IPMi − [IPM ].

(6.3)

The variance terms in Eq. 6.1 can be easily obtained, and the covariance terms can be
calculated directly or indirectly using the relationship in Eq. 2.15 to save computational
resources.

The formulation in Eq. 6.3 defines the elementary effect of MPP with the IP ensemble
as a starting point, while the PSP effect is defined with the starting point of I. This
order is irrelevant if the elementary effect is independent of the starting point. However,
in nonlinear models like NWP models, this dependence often occurs. To assess this effect
of the starting point, we calculate the terms in Eq. 6.1 along a different pathway in the
cycle-equitable graph (Fig. 2.3b). We refer to the original pathway used in Eq. 6.3 as the
”P-path” and the alternative pathway as the ”M-path,” where the effects x′P

i and x′I
M are

calculated as:

x′P
i = IPMi − IMi − [IPM − IM ]

x′M
i = IMi − Ii − [IM − I].

(6.4)

The results presented in the following subsections primarily utilise the P-path for display
and discussion except for Subsect. 6.4 in which we compare the M-path results with the
P-path. Additionally, for brevity, we use the first letter of each uncertainty representation
to denote its impact. For instance, V ar(I) means V ar(x′I).

6.2 Flow-dependent evolution of impact
This subsection investigates how individual impact variances evolve, interact, and contrib-
ute to the increase in total variance. First we start with assessing a net variance increase
obtained by adding model uncertainty representations to verify whether there is correlation
between impacts of different sources. If the impact of model uncertainty is independent
from the IBC uncertainty impact, they are being uncorrelated, and hence their respective
variances will be linearly added, as presented in Sect. 2.5.

Figure 6.3 shows time series of ensemble variances for respective ensembles in the RGE
on the representative cases for respective forcing regimes. Overall, the net variance increase
is larger during weak forcing and reaches a maximum of around 15 % around noon for
specific humidity in weak forcing. This value is considerably smaller than the expected
linear sum of respective variances, as estimated, for example, using the work by Keil et al.
(2019) (a ratio of squared normalised spread in Fig.5), where the individual variance due
to PSP and microphysics (CCN) is about 70 % and 20 % of the EPS variance, respectively.
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Figure 6.3: Time series of total variance for the ensembles (blue) I, (orange) IP , (blue) IM ,
and (black) IPM . Variance at 850 hPa pressure levels for the weak forcing (left, 15 August)
and strong forcing (right, 19 August) case are shown. Bars show hourly precipitation
amounts over the evaluation domain, showing the diurnal cycle of convection.
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The discrepancy between the obtained and expected variance increase suggests the presence
of correlations between uncertainty impact, which contributes to suppressing total variance
increase.

Figures 6.4 and 6.5 present individual contributions of each term in Eq. 6.1, showing
that the contributions of uncertainty sources (IBC, PSP, MPP) evolve differently across
variables, heights, and convective regimes. For temperature and wind in the mid and lower
troposphere, both PSP and MPP impacts increase from 0600 UTC, growing steadily before
rapidly rising in the afternoon. In the upper troposphere (200 hPa), their contributions are
invisible until 1000 UTC but then increase rapidly. Initiation of deep convection facilitates
the upward propagation of PSP and MPP impacts from lower levels. Once upper and
lower layers are linked by convection, uncertainty grows at a similar rate in both forcing
regimes. However, the relative importance of IBC uncertainty is significantly larger in
strong forcing, where large-scale forcing is perturbed by perturbations in IBC. This finding
aligns with existing studies on model uncertainty growth in different convective regimes
(Flack et al., 2018; Keil et al., 2019; Johnson and Wang, 2020).

In both forcing regimes, adding model uncertainty representations only marginally in-
creases the total variance compared to summing individual variances. The covariance
terms Cov(I, P ) and Cov(P, M) evolve with the model uncertainty variances and almost
cancel out their impact. Interestingly, while the variances decrease after convection, the
covariance terms diminish less significantly once saturated. For instance, V ar(I)+V ar(P )
of 850-hPa temperature in weak forcing drops by 0.1 K2 from 1600 UTC to 2400 UTC,
but Cov(I, P ) only drops by 0.02. This leads to the net variance decrease in Fig. 6.3. The
implication is that correlation has a saturation level and it remains saturated once reached.
If the model uncertainty impact can grow rapidly and continue to grow after correlation
saturates, it could increase total variance efficiently.

Model uncertainty variances for specific humidity, on the other hand, start growing in
the lowest layer and grow faster at higher layers during weak forcing (Fig. 6.4, rightmost
column). The PSP scheme produces slight gains in the total variance across layers dur-
ing the rapid growth around noon, followed by an increase in the covariance term that
cancels out the impact. This different growth behaviour is physically reasonable since
fast-propagating modes like gravity waves will quickly lift disturbances in the planetary
boundary layer and cause simultaneous variance and covariance rises in temperature and
wind across layers, while changes in moisture variables require advective transport.

Although the evolution the individual variances varies slightly by level and variable,
their common behaviour can be summarised as follows. Model uncertainty for convective-
scale forecasts starts acting with initiation of convection in the lower troposphere. The
impact propagates quickly upwards for dynamics variables, while requiring advective trans-
port for moisture variables. Although the impact on total variance may be invisible or
small, this does not mean model uncertainty representations are inactive, but rather that
their effect is cancelled by strong correlation. Once correlation reaches saturation, it re-
mains saturated after convection ceases. One notable benefit of the PSP scheme, however,
is that the scheme gains the total variance during convection initiation, meanwhile MPP
prolongs the lifetime of variance in weak forcing regimes, in which time ensemble forecasts
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Figure 6.4: Temporal evolution of variance terms and covariance terms in Eq. 6.1 averaged
over two weak forcing cases for (left column) temperature, (middle) u component of wind
and (right) specific humidity. Values are averaged over the German domain. Orange and
green lines indicate the differences between the IP and I, and IPM and IP in Fig. 6.3,
respectively, indicating small net impact on the total variances compared to the individual
variances.
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Figure 6.5: As for Fig. 6.4, but for seven strong forcing cases.

are known to be underdispersive. This emphasises model uncertainty representation’s abil-
ity to focus on improving representation of bespoke events (Plant et al., 2022).

6.3 Structure of variance and correlation
To understand how variance is cancelled out, this section further investigates the structure
of variance and correlation in physical and probability space by focusing on representative
cases for the two convective regimes. We look at temperature at 850 hPa level since it is
closely related to warm uplift initiating convection as well as found to be sensitive to model
uncertainty (Romine et al., 2014). Since the total variance is unchanged until 1500 UTC
and after that the model uncertainty impact starts to be visible in Fig. 5.2, examining
behaviours at 1600 UTC seems suitable, as the presence of the impact and correlation is
certain but cancellation is strong at that time. Interestingly, this time coincides with the
peak time of hourly precipitation for both cases.

Figure 6.6 contrasts the spatial distribution of variances for the weak forcing case.
The IBC variance exhibits a wide spatial extent across the domain, with strong signals
concentrated in three northwest-southeast bands (Fig. 6.6a). The northern and southern
bands, located between Hamburg-Berlin and along the Alps, respectively, co-locate with
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regions exceeding 1 mm/d accumulated precipitation (Fig. 6.6d). The central band, which
co-locates with a weak equivalent potential temperature gradient in Fig. 6.2a, lacks any
significant precipitation association. The PSP variance exhibits strong signals along the
northern and southern bands, but not in the central band, suggesting its selective activ-
ation in regions of convective activity (Fig. 6.6b). The PSP scheme’s selective activation
is attributed to its ability to initiate convection in unstable regions. While also show-
ing selective behaviour, the MPP variance displays a weaker and more scattered pattern,
(Fig. 6.6c) likely due to its primary effect on altering the amplitude of convection rather
than activating convection (discussed in Chapter 4). The model uncertainty representa-
tions generally become active within subregions of the IBC impact, in line with the results
in Frogner et al. (2022).

Under strong forcing, IBC perturbations have pronounced impact over eastern Ger-
many, coinciding with regions of precipitation (Fig. 6.7a). The MPP variance closely
aligns with the precipitation over eastern Germany (Fig. 6.7c, d), while the PSP variance
shows a more uniform distribution across Germany with modest amplitudes (Fig. 6.7b).
Both variances are smaller compared to the weak forcing case, and the PSP impact appears
to arise from a random growth of small perturbations rather than the selective effect found
for the weak forcing case. This small model uncertainty impact can be explained by the
strong synoptic modulation dominated by IBC, which largely controls convection leaving
little room for model uncertainty to further initiate convection. As with weak forcing con-
ditions, model uncertainty representations are active within regions where the IBC impact
is active during strong forcing, but not as systematically as weak forcing conditions.

To summarise the spatial distribution of variances, the variances of PSP and MPP
are consistently active in regions where the IBC variance is present, suggesting that in
regions where model uncertainty representations are active, the IBC uncertainty is always
also active (confirmed across various lead times, not shown). The evolution of variance is
linked to unpredictable weather events rather being driven by a specific parameterisation
scheme. If the background atmospheric state, acting as an input parameter for a scheme,
is stable and predictable (i.e. showing no IBC variance), the model uncertainty does not
act in that region.

Next, we investigate the spatial distributions of correlations between the three uncer-
tainty impacts (Fig. 6.8 and 6.9). Grid points with less than 0.1 K2 variances for any of
the three uncertainties are excluded for clarity. The correlation between IBC and PSP
exhibits a systematic negative pattern, particularly pronounced in the northern band and
over the Alps (Fig. 6.8a), where the PSP variance is largest and local convection dominates.
Regions with smaller PSP variance, like the border between France and Germany, display
a mix of negative and positive correlations without a clear pattern. The average correla-
tion coefficient is around -0.45. This negative correlation implies that when an ensemble
member in the I ensemble has a higher temperature than the ensemble mean, adding
the PSP perturbations brings it closer to the mean in the IP ensemble, and vice versa.
Note that average correlation coefficients should generally be calculated from aggregated
covariances divided by root-mean-squared difference (Déqué, 2011), a simple spatial aver-
age of correlation coefficients is used here for straightforward interpretation of point-wise
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Figure 6.6: Variance maps of the (a) IBC, (b) PSP and (c) MPP impact for weak forcing
(1600 UTC on 15 August). (d) Precipitation accumulation, same as Fig. 6.2c for ease of
comparison.
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Figure 6.7: As for Fig. 6.6, but for strong forcing (1600 UTC on 19 August).
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Figure 6.8: Correlation coefficient maps of IBC-PSP (top), IBC-MPP (middle) and PSP-
MPP (bottom) calculated within the P-path for the weak forcing case (1600 UTC on 15
August). The area-averaged correlation coefficient values are shown at the top right corner.
Grid points where either three variances are less than 0.1 K2 are masked.

correlation.
In contrast, the correlation between IBC and MPP displays a noisy pattern of strong

correlations and no correlation when averaged across Germany (Fig. 6.8b). The spatial
scale of the signals matches the scale of the MPP variance shown in Fig. 6.6c (also the scale
of locally triggered convection) and the scale of typical displacement of precipitation cells
discussed in Sect. 4.2.4. This suggests that the IBC-MPP correlations at grid-point scales
are related to response of individual convective cells, but the response is fairly random.

The correlation between the model uncertainty impacts (PSP and MPP) is systematic-
ally negative, but exhibits a noisier pattern compared to the IBC-PSP correlation (Fig. 6.8a
and c), suggesting smaller effective scales for model uncertainty impacts. If we think of
a simple combination of mean correlations of IBC-PSP and PSP-MPP, it suggests that
where IBC perturbations leads to higher temperatures than the mean, PSP perturbations
tend to cool them down, and MPP might heat them again. This sounds as if it implies
a positive correlation between MPP and IBC, but this is not the case despite the fact
that these correlations are found on the same grid points (as shown in Fig 6.8b). What
perturbations the IBC uncertainty add does not systematically change the direction of the
MPP impact.

Despite differences in how variances evolve between weak and strong forcing regimes, the
respective correlation behaviours during strong forcing remain consistent, showing weaker
IBC-PSP correlation and stronger PSP-MPP correlation (Fig. 6.9a-c). Therefore, the
factors determining correlations appears to remain unchanged between forcing conditions.

The investigation of correlation maps already inferred the existence of linear relation-
ships between the impacts. To further elucidate these structures of correlation, Fig. 6.10
shows cross correlations of the impacts aggregated over all grid points where all three vari-
ances are larger than 0.1. First of all, the diagonal panels (Fig. 6.10I, II, III) show that
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Figure 6.9: As for Fig. 6.8, but for strong forcing (1600 UTC on 19 August).

individual impacts follow Gaussian distributions with zero mean (this is a result of debi-
asing in Eq. 2.9) when aggregated over the domain. However, the distributions become
skewed in response to the correlated impact as discussed later.

The IBC-PSP scatter density shows the linear relationship of their impacts, which
means when IBC impact is positive and large, PSP impact is likely to be negative and
large (Fig. 6.10a). However, on average, only one-thirds of the IBC impact is cancelled out
by this linear relationship, as the linear regression line shows the slope of -36.3 %. This
linear relationship is also found for the PSP-MPP correlation (Fig. 6.10c) with correlation
coefficient of -0.373 and the regression slope of -30.3%, as well as for upper layers with
stronger correlation, such as -0.571 for IBC-PSP correlation at 500 hPa level (not shown).
However, the linear relationship is not evident in the correlation between IBC and MPP
(Fig. 6.10b). While the sign of MPP impact is independently (randomly) determined from
the sign of IBC impact, the amplitude of MPP impact is strongly constrained by IBC;
MPP shows systematically small impact as IBC shows larger. This contrasting response
raises two sub-questions: 1) from which does this linear relationship arise? and 2) from
what does the remaining two-thirds arise?

The linear relationship appears to arise from displacement of weather events due to the
high dimensionality of the NWP model. If a small-scale weather event that causes a strong
positive temperature anomaly at 850 hPa, for instance deep moist convection, occurs in
one simulation, that event is unlikely to occur at the exactly same grid point at the same
time in another simulation. Figure 6.11 demonstrates how intermittency and small scale of
such events affect correlations. North of the ”A” label in Fig. 6.11a, a positive temperature
anomaly within a convective updraft is found and enhanced by adding the PSP scheme
(Figure 6.11b). This is a particular case in which the displacement does not happen, and
with which we can directly understand the impact as an amplitude. However, by further
adding MPP to that, the convection is displaced and shows paired positive and negative
impacts due to displacement (Fig. 6.11c). The next example, convection to the south of
the sign ”B” indicates that missing convection shows strong sign-reversed impact between
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Figure 6.10: Cross correlation of uncertainty impacts for temperature at 850 hPa during
peak convection for weak forcing case (1600 UTC of 15 August) aggregated across the
Germany domain. Diagonal panels show impact sample distributions for (I) IBC, (II) PSP,
and (III) MPP. Off-diagonal panels shows scatter densities of (a) IBC-PSP, (b) IBC-MPP,
and (c) PSP-MPP impacts. Correlation coefficient values r are in the top left corner. Black
lines indicate the perfect negative correlation line. Orange lines indicate linear regressions
that estimate x-axis values from y-axis. The slope of the regression line is written in orange
text. Grid points where either the three variances are less than 0.1 K2 are excluded.
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Figure 6.11: Example of temperature impact distributions for (a) IBC, (b) PSP, and (c)
MPP at the 500 hPa pressure level at peak convection (1600 UTC on 15 August). An
area of 180 x 180 km over northern Germany is shown. The colour unit is K. Black, red,
and blue contours indicate location of convective updrafts (vertical wind > 1.0 m/s) of
ensemble member 2 in the I, IP , and IPM ensembles, respectively. Refer to the text for
letters A, B and C.

IBC and PSP (Fig. 6.11a,b) and neutral impact of MPP (Fig. 6.11c). This explains why
only PSP responds to the IBC impact; the displacement is unlikely to survive two paths
in the pathway. In a final example, PSP and MPP impact have an updraft at the same
location (west of ”C” in Fig. 6.11c) but still show the opposite sign of impact. This is a
case that was caused by displacement in time. Despite the precise location of convection,
the short duration of strong upward heat transport leads to the opposite sign of impact.
Thus, such displacement has a strong effect as a factor pushing anomalous signals towards
the ensemble mean, causing negative correlation between pre-existing and added impact.
This ”higher-order effect” is inherent in random disturbances of the atmospheric model
state given by any kinds of perturbations. Although this method calculates grid-point
correlations, the effect that the correlation shows is analogue to the spatial correlation
concept of ”correspondence in phase” in Murphy (1995). That is, negative correlation
means opposite phase between impact and no correlation means that the phase is shifted
by 1/4 wavelength, or completely randomly for continuous wavy fields like planetary-
scale atmospheric motion. Since convective events distribute intermittently, phase shifts
greater than 1/2 wavelength leads to perfect negative correlation in convection forecasts.
However, if the higher-order effect and phase shifts were a particularly dominant factor,
the correlation coefficient and regression slope would be close to -1. There are factors
mitigating this effect, which will be discussed to answer the second question posed above.

Answering the latter question, what weakens the linear relationship given by the higher-
order effect, is more challenging because it is a combination of several factors. Aligning
with the idea of ”correspondence in phase”, we must ask what are factors leading to subtle
phase shifts. One factor is that an anomalous impact typically combines contributions
from multiple scales. Displacement only cancels out small-scale contributions, leaving the
large-scale impact persists. Consequently, even if a strong localised anomaly is displaced,
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Figure 6.12: As for Fig. 6.8, but calculated within the M-path.

the neighbourhood may still be spatially or temporally correlated with the anomaly, mit-
igating the effect of displacement. Thus it appears as a form of spatial correlation within
a neighbourhood, in line with the results in Minamide and Posselt (2022). Their work
showed that convective moistening at the location of the convection peak is correlated
with a neighbourhood with a radius of a few tens of kilometres. Another possible source is
the nature of physical processes. In Fig. 6.10a, when the IBC impact produces a cool an-
omaly of around -2.0, the PSP impact is shown to be +2.0 or greater at many grid points.
In contrast, when IBC has a strong warm anomaly of around +2.0, the PSP impact rarely
shows values smaller than -2.0. This type of asymmetric response is more tied to specific
physical processes, such as increased subsidence by the PSP scheme, which warms 850 hPa
temperature in ensemble members with relatively less convection, but is unlikely to cool
a warm ensemble member by suppressing convection. Last but not least, generation and
prolongation of convection due to added model uncertainty schemes are new anomalous
signals that cannot be explained as a phase shift of the pre-existing impact. The extent
to which the negative correlation deviates from being perfect provides a measure of how
much convection are modulated beyond simply being relocated from its original position.
As this is the only controllable factor among those mentioned above, harnessing the model
uncertainty scheme to generate and prolong convection, not merely displace it, is necessary
to effectively increase ensemble variance.

6.4 Effect of pathway on correlation between impacts
Negative correlations between successively added impacts erode the effectiveness of adding
uncertainty representations. This raises a question: does the order of adding represent-
ations alter the correlations? Figure 6.12 displays how changing the pathway modulates
correlation fields. The IBC-PSP correlation shows a weaker average correlation (r = -
0.159) and a noisy pattern in regions where convection is not very active at the time of
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Figure 6.13: As for Fig. 6.4, but calculated within the M-path.

the display (Fig. 6.12a). However, systematic negative correlation is still present in the
convectively active region (the north band in Fig. 5.8b). The correlation between IBC
and MPP impacts becomes negative (r = -0.329) instead (Fig. 6.12a), while the MPP-
PSP correlation remains almost unchanged (Fig. 6.12c). The implication is that the noisy
part in Fig. 6.12a arises from the effect given by adding the impact of PSP on top of the
pre-existing impact of MPP (the higher-order effect), while the systematic negative signal
part shows inherent correlation between PSP and IBC. As expected from the previous
discussions, the IBC-PSP correlation is also quite small during strong forcing due to the
weak higher-order effect (not shown). This result aligns well with the intuition that the
PSP scheme is typically not active in strong forcing conditions.

As the pathway changes the correlation structure significantly, does changing the path-
way contribute to increasing the total variance? We know the answer is ”no”, from the fact
that the IPM ensemble and its ensemble spread is unchanged for both pathways. How-
ever, we can understand why it happens. Figure 6.13 shows the evolution of variances and
covariances within the M-path. The relative importance of respective covariance terms
is very different to that from the P-path, but the individual variances remain unchanged.
Again, adding both PSP and MPP does not produce a large increase in the total variance
(orange and green lines). Therefore, changing the pathway only relocates the higher-order
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Table 6.1: Average correlation coefficients for (rows) different pathways and (larger
columns) forcing conditions. The bottom row shows absolute differences between the
pathways. Values for averaged temperature correlation at 850 hPa between 1500 UTC and
2400 UTC are shown.

Weak Strong
IP IM PM IP IM PM

P-path -0.383 0.009 -0.361 -0.343 -0.016 -0.365
M-path -0.146 -0.269 -0.389 -0.122 -0.267 -0.382

|P-path - M-path| 0.237 0.278 0.028 0.221 0.251 0.017

effect and barely alters individual variances and total variance. Assessing different path-
ways is like watching the same impact from different angles, meaning that a single pathway
is sufficient to understand impact evolution and their interactions.

Despite the redundancy in examining different pathways for understanding the com-
bined impact of uncertainty representations, comparing correlation coefficients between
pathways allows the estimation of the saturation correlation due to higher-order effects.
Table 6.1 shows the difference in correlation coefficients between pathways. The correla-
tions between IBC and PSP, IBC and MPP change by approximately 0.25 for weak forcing,
which represents the correlation coefficient given by the higher-order effect. In contrast,
the correlation between PSP and MPP is barely affected by the pathway because PSP
and MPP are added successively in both pathways. If other uncertainties are inserted in
between, they will show weaker correlation. The differences between the pathways are
slightly larger in weak forcing regimes, as the effect of displacement is smaller in strong
forcing conditions.

Assuming this derived difference value is valid for any impact combinations, it allows
for a rough estimate of the net gain in total variance only including the higher-order
correlation. Consider a case of variance given by added uncertainty V aradd and ensemble
variance without the added one V arpre, with their correlation being −γ. Using Eq. 2.13,
the criterion for the total variance V artotal to increase is:

V artotal − V arpre = V aradd + 2
√

V arpre

√
V aradd(−γ) > 0√

V aradd/
√

V arpre − 2γ > 0
V aradd/V arpre > 4γ2.

(6.5)

thus, to achieve a net gain in total variance after correlation saturation, the variance due
to the added uncertainty needs to be larger than 4γ2. This corresponds to a fourfold
of the pre-existing variance when γ = 0.25. If variance due to an added uncertainty
representation is expected to be below this level, that representation will not contribute to
increasing ensemble variability. However, caution is required as this threshold value varies
for different variables and levels.

Although individual correlation structures largely depend on pathways, variance and
net gain in total variance do not. The important message we can get from these results is
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that once robust statistics for the higher-order effect are obtained, it is possible to roughly
estimate whether an added uncertainty representation could increase total variance or not,
without screening multiple pathways. Ideally, these statistics should be derived considering
flow dependence to estimate added values for bespoke events.

6.5 Summary and Conclusions
This section studies the budget of variability, exploring how forecast uncertainties
evolve and interact using the novel method of decomposing total ensemble variance
into a summation of variances from individual uncertainty sources and their correlations.
Their flow-dependent behaviour is examined by classifying two weakly forced and seven
strongly forced days from a month-long ensemble dataset. The ensemble design follows a
simplified Morris concept (described in Section 2.5) and includes a sufficient sub-ensemble
size to sample the impact of model uncertainties, as discussed in Chapter. 5. Initially,
an ensemble with perturbed IBCs is created. Then, model uncertainty representations,
including PSP and MPP, are added sequentially. To investigate the effect of the order in
which uncertainties are introduced, different sequences of adding these representations are
tested, creating a cyclic graph of pathways.

The evolution of forecast uncertainties from various sources exhibits distinct behaviours
across variables, heights, and convective regimes. Although individual uncertainty contri-
butions can be substantial, their combined impact on the total ensemble variance is often
limited due to negative correlations arising from the displacement of weather systems. This
inevitable higher-order effect plays a crucial role in determining the net variance increase
when incorporating new uncertainty representations. However, the strength of these neg-
ative correlations tends to saturate, suggesting a potential for increasing ensemble spread
by introducing additional uncertainty sources once the correlation saturates, in a statistical
sense.

The spatial patterns of uncertainty variances and correlations reveal intricate relation-
ships with convective activity and model uncertainty behaviour. Both PSP and MPP
actively insert variance within subregions of IBC activity where local convection is act-
ive. This strong link between local convection and model uncertainty is evident in weakly
forced conditions. Conversely, in strongly forced conditions, the large-scale forcing domin-
ates, leaving less room for model uncertainties to further modulate convection. Although
this overlap of active regions shows some redundancy in model uncertainty representations
for grid-point variance, they insert variability at finer scales than the IBC uncertainty,
aligning with previous studies e.g. Hermoso et al. (2021); Chen et al. (2024).

While the pathway of adding uncertainty representations is crucial for determining in-
dividual correlations between impact, it does not change the variances introduced by the
uncertainty sources. Performing ensemble simulations along a single pathway would suf-
fice to verify if a new representation adds variability or not. The multi-pathway approach
would be useful to disentangle the higher-order effect and inherent correlation from the
combined correlation derived within a single pathway. Quantifying the correlations in-
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troduced by the higher-order effect allows estimating the potential variance increase from
adding new uncertainty representations. To achieve a net gain in total variance after cor-
relation saturation, the variance due to the added uncertainty needs to be larger than a
threshold determined by the higher-order correlation.

Although additional model uncertainty representations may have a marginal direct
impact on increasing the total variance of these variables, it does not preclude beneficial
impacts on other metrics. Stochastic drift (Romine et al., 2014; Berner et al., 2017) could
alter the mean state of ensemble forecasts as a result of accounting for previously missed
uncertain processes. This can lead to systematically reduce biases and eventually improve
the overall reliability of the forecasts (e.g. McTaggart-Cowan et al., 2022; Puh et al., 2023).

This study gives some indication of which combination of model uncertainty represent-
ations are effective or redundant. However, it is important to acknowledge the limitations
of this work. The current analysis focuses specifically on grid-point ensemble variance for
free-atmospheric variables over a one-month period during summer. Extending the invest-
igation to other regions and seasons will provide a more comprehensive view across diverse
weather situations. Variables that increases in variance with accumulated values, such as
precipitation, may exhibit different responses. Looking at more than a grid point is also
important. Looking beyond a single grid is also important. Scale-dependent metrics (e.g.
FSS (Roberts and Lean, 2008), Structure-Amplitude-Location scores (Wernli et al., 2008),
and spectral analyses (Chen et al., 2024)) will help account for the effect of displacements
and might reveal different budget evolution. Extending the method to these metrics is
currently underway as a follow-up study to this thesis. Finally, we emphasise that it is
essential to perform experiments using a full EPS in order to accurately account for the
higher-order effect.



112 6. Quantifying uncertainties with the variability budget



Chapter 7

Conclusions

Convective-scale EPSs typically underestimate forecast uncertainty because they do not
adequately represent all sources of uncertainty in their model formulations. Accounting
for these model uncertainties is crucial for achieving reliable ensemble forecasts. While
a number of studies have investigated the individual impact of those uncertainties (e.g.
Buizza et al., 1999; Leoncini et al., 2010; Berner et al., 2011b; Clark et al., 2016; Keil
et al., 2019), the combined impact of multiple uncertainty sources has only recently at-
tracted attention (e.g. Berner et al., 2015; Flack et al., 2021; Hermoso et al., 2021; Frogner
et al., 2022). Even fewer studies have considered the influence of varying meteorological
environmental conditions (Kühnlein et al., 2014; Flack et al., 2018; Puh et al., 2023; Chen
et al., 2024). The purpose of this thesis is to add knowledge in this field by specifically
investigating how the combined impact of model uncertainties evolves. The thesis is tra-
cing the growth of variability, starting from daily and mesoscales and progressing to hourly
and kilometre scales, under distinct atmospheric flow conditions. The thesis’ overarching
research question ’How different sources of uncertainty influence convective-scale
forecast variability under varying convective forcing regimes?’ is explored from
four different perspectives presented in separate chapters.

Two representations of model uncertainty were applied in a convection-permitting
model. The first scheme, the microphysical parameter perturbations (MPP), perturbs CCN
density and shape parameters of CDSD (Barthlott et al., 2022b). The second scheme, the
physically-based stochastic parameterisation (PSP) scheme (Kober and Craig, 2016; Hirt
et al., 2019), introduces feedback from subgrid-scale turbulence in the planetary boundary
layer. Both schemes were introduced to the state-of-the-art convection-permitting model
ICON-D2 (D. Reinert et al., 2021), in parallel with standard uncertainty representations of
initial and lateral boundary conditions (IBC). The dependence of the impact on varying at-
mospheric situations was examined by classifying experiment days based on the convective
adjustment time scale τc (Done et al., 2006). Convection is generally more unpredictable
in weakly forced regimes, where poorly-represented local factors dominate the triggering
of convection.

The first research question of How does the relative impact of individual and
combined uncertainties vary under different convective forcing regimes? was
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explored in Chapter 3. A combined ensemble of 20 IBC and 9 MPP members was extracted
using a subsampling method to quantify the relative impacts of individual perturbations.
The analysis showed that the ranges (90% confidence interval) of the relative MPP impact
on 24-hour precipitation averaged over Germany were twice as sensitive in weak forcing
compared to strong forcing. When MPP was combined with IBC perturbations, they elong-
ated the tail of forecast variability without altering the distribution shape. This suggests
a compensating effect that mitigates added variability, motivating further investigation of
the combined variability when new uncertainty representations are added. Additionally,
the sensitivity of the MPP impact to IBC highlights the necessity of using a full EPS for
proper quantification of the impact of combined uncertainties.

The second question of On what spatial scales does the uncertainties impact?
aimed to understand the scale-dependent impact. A three-month trial experiment including
the PSP scheme (Puh et al., 2023) enabled systematic evaluation of the forecast error and
spread in varying convective regimes. To quantify spatial variability of precipitation, the
FSS technique (Roberts and Lean, 2008) and its variant spatial error and spread (Dey et al.,
2014) were used. The study found that during weak forcing, the spatial error and spread of
hourly precipitation strongly varied with the diurnal cycle. The displacement scale of er-
ror and spread during the convective period indicated spatial underdispersion of convective
precipitation. Conversely, during strong forcing, the forecast error and spread increased
steadily, exhibiting a better error-spread relationship. Activating the PSP scheme system-
atically increased spread on scales less than 50 km during weak forcing. The variability
injected on the smallest scale during convection initiation evolved upscale until convection
ceased. On scales larger than 50 km, the spread decreased as the PSP scheme facilitated
convection initiation within a larger spatial window. Overall, adding the PSP scheme con-
tributed to a better error-spread relationship across scales. This benefit was also found in
strong forcing, but with a much smaller amplitude. Therefore, the PSP scheme selectively
affected spatial variability during weak forcing, exhibiting the known upscale error growth
behaviour (Zhang et al., 2007).

In a case study combining PSP and MPP, it was shown that their individual impact is
additive. Although PSP and MPP perturbations showed similar up-scale growth in spatial
variability, their impact acted on different spatial scales when combined with IBC uncer-
tainty. The combined impact appeared to be the sum of the scale-dependent impact of
the PSP scheme and the scale-independent impact of MPP. This suggests that PSP and
MPP introduce spatial variability through different mechanisms. The PSP scheme primar-
ily initiates and relocates convection, whereas MPP changes the amplitude of convective
precipitation and subsequently alters location of strong precipitation signals. Although the
impact of adding MPP was mostly compensated for with respect to the area-averaged pre-
cipitation amount (see Chapter 3), the impacts on spatial variability were additive. This
finding led to the development of a framework to understand the budget of variability,
exploring statistically how variances evolve and interact over space and time.

Motivated by these results, a novel framework named the ”variability budget” has
been developed to quantify the variability from various uncertainty sources and their in-
teractions. This method decomposes total ensemble variance into the sum of individual
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variances and their correlation terms, enabling the quantification of the effect of a certain
model uncertainty representation on sampling of forecast variability as well as the dia-
gnosis of the efficiency of a scheme to increase total forecast variability. The third research
question of Does model uncertainty need as many ensemble members as IBC
to accurately estimate variability? is addressed in Chapter 5 building on this new
framework.

The convergence of variance and correlation with increasing ensemble size n of both
IBCs and random seeds (RSD) in the PSP scheme is examined. Increasing nIBC continu-
ously reduced the sampling uncertainty of the total variance and the individual variances
attributed to IBC and PSP, following the n−1/2 slope as shown in Craig et al. (2022); Tem-
pest (2023). In contrast, increasing nRSD barely contributed to a reduction in sampling
uncertainty. The variability stemming from the PSP scheme is partly covered by that from
IBC, so smaller nRSD is needed to let the PSP impact converge when nIBC is sufficiently
large (n > 10). Even a single random seed per IBC already seems suitable.

The impacts of IBC and PSP were found to be negatively correlated. The sampling
error of correlation coefficient was computed using bootstrapping and compared to the the-
oretical convergence rate derived from the Fisher-z transform (Fisher, 1921). The sampling
uncertainty of the correlation was reduced by increasing either nIBC or nRSD. However,
the computed sampling uncertainty was systematically larger than the Fisher-z estimate.
In addition, the sampling uncertainty decreased more slowly with increasing nRSD, in-
dicating an overestimation of the effect of nRSD by the theory. This also suggests the
superiority of nIBC to nRSD to achieve a better sampling of variability. Thus, the con-
vergence of the impact correlation in the NWP application does not follow the Fisher-z
theory.

In Chapter 6, the evolution of variances from different uncertainty sources and their
interactions were traced from their origin with addressing the fourth research question
of this thesis: How does forecast uncertainty from different sources evolve and
interact over time? ICON-D2 ensemble simulations covering one entire summer month
were performed to effectively sample the impact given by adding PSP and MPP to IBC
perturbations, based on the findings in Chapter 5. The results demonstrated that the
added uncertainty representations are actually acting although they seem to have almost
no impact on the total (combined) variance. It is found that their impacts are negatively
correlated with the pre-existing impact. This negative correlation is mainly caused by the
higher-order effect arising from displacements of convective cells that foster the growth of
variability and cancel out the ingested additional impact on the total variance. The model
uncertainty variance grows similarly in both convective forcing regimes, but with lower
relative importance of model uncertainty during strong forcing. Interestingly, the negative
correlations saturate at some point suggesting that a quick saturation of correlation com-
bined with continuing variance growth could lead to a net variance increase. At first sight
this cancellation due to the correlation appears to contradict the additive impact found in
Chapter 4. However, the scale-dependent metric takes into account the effect of spatial
displacements and shows the impact from a different perspective of forecast variability.

The closer inspection of variance and correlation structures demonstrated that both
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PSP and MPP insert variance in regions of large IBC spread. Displacements of weather
phenomena in these regions, induced by the high dimensionality of the NWP model, were
accounted for as a redundant effect, leading to the systematic negative correlation between
the impacts. To increase total variance on a grid-point scale, a scheme needs to overcome
the barrier posed by this effect of displacements. Comparing the correlation structures
between different pathways of successively adding uncertainty representations disentangled
the effect of displacements from the correlation found in a single pathway. Obtaining robust
statistics on this effect can help to estimate the effectiveness of a new uncertainty scheme
in increasing total variance.

Finally, the added knowledge for improving forecast reliability obtained by answer-
ing the overarching question of How different sources of uncertainty influence
convective-scale forecast variability under varying convective forcing regimes?
is summarised as follows: Different aspects of model uncertainty impact were precisely
quantified by employing suitable metrics for each aspect. A new method designed to spe-
cifically assess the combined impact of uncertainties was proposed. The strong dependence
of model uncertainty impact on IBC was objectively measured, with the impact assessed
in presence of IBC uncertainty throughout the thesis. The significant sensitivity of moist
convection to model uncertainty was visualised. Convective activity was a key factor in the
growth of forecast uncertainties, regardless of the processes directly influenced by model
uncertainty schemes. The importance of flow-dependent evaluation based on the different
characteristics of convection is further emphasised, with the findings that the impact of
model uncertainty was more pronounced in weak forcing regimes irrespective of the metrics
used for measurement.

Although this thesis highlighted various aspects of the combined model uncertainty
impact, there are some limitations. First, the research was performed only for summer
convection over central Europe. The model uncertainty impact during winter, when large-
scale baroclinic forcing is more dominant, and in monsoonal regions, where oceans modulate
convection, could be different. Second, the analyses were based on aggregated statistics
rather than process-level inspections due to the lack of computational capability to store
high-resolution datasets required for such detailed analysis. Those analysis, like track-
ing individual convective cells, could provide additional insights into physical mechanisms
driving the evolution of variability. Another caveat is the non-equivalent design of the PSP
scheme and MPP. This made it challenging to isolate the contributions of homogeneous
parameter structures (in MPP) and randomly generated spatial patterns (in PSP) to the
differences found between their impacts. The use of a stochastic approach for MPP could
significantly change the relative contributions of PSP and MPP impacts, as suggested by
other studies Christensen et al. (2015); Stanford et al. (2019); McTaggart-Cowan et al.
(2022).

The findings of this thesis open up many potential topics for future research. First,
applying the methods used in this study to other uncertainty representations will facilit-
ate a deeper understanding of variability interactions. Second, extending the variability
budget method to handle either quantiles of a distribution or multi-modal distributions
will significantly broaden its usability. This extension would enable quantifying the evolu-
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tion of extreme values, which is particularly crucial for mitigating potential socioeconomic
impacts caused by extreme weather events. Additionally, the variability budget method
can be applied to spatial variability measures. Since many scale-dependent metrics em-
ploy squared differences between ensemble members in their formulations, the variability
budget method can be readily extended to cover such metrics. A follow-up study is cur-
rently underway, applying the budget analysis to scale-dependent metrics for evaluating
precipitation variability to understand the additive impact of model uncertainties on these
metrics found in Chapter 4 of this thesis.
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