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Abstract 
 
Background 
Psychiatric disorders rank among the top causes of global disability, leading to a 
substantial decrease in quality of life and imposing significant challenges on society. 
Their development involves a complex interplay of genetic and environmental factors 
that initiate molecular, cellular, and structural changes in the human body, specifically 
in the brain. Yet, the molecular architecture of psychiatric disorders remains elusive, 
largely due to their polygenic nature and the complex interplay among a mosaic of 
diverse cell types and various brain regions. The prefrontal cortex, a brain region 
orchestrating higher cognitive function, has shown structural and functional 
abnormalities in psychiatric disorders, such as schizophrenia, major depressive disorder 
(MDD), and bipolar disorder. This group of mood and psychotic disorders does not only 
display overlapping symptoms but also shares a common genetic architecture. While 
moderate stress can foster resilience and prevent psychiatric conditions, chronic stress 
can disrupt the body's stress response systems like the hypothalamic-pituitary-adrenal 
(HPA) axis, posing a major risk factor for the development of such disorders. This thesis 
aims to delineate the transcriptomic response to stress across various brain regions and 
the shared molecular architecture of schizophrenia, MDD, and bipolar disorder in the 
prefrontal cortex on a cell type level. 
 
Methodology 
To decipher the brain's stress response via the HPA axis, this work utilized RNA-
sequencing to analyze the transcriptional response to the glucocorticoid receptor agonist 
dexamethasone across eight brain regions implicated in stress within a mouse model 
(n=30). With a combination of differential expression and network analyses, we sought 
to unravel complex gene networks that evade detection at the single-gene level. For 
insights into the molecular basis of psychiatric disorders within the orbitofrontal cortex 
– a subregion of the prefrontal cortex and focal point in psychiatric research – single-
nucleus RNA-sequencing and ATAC-sequencing, a technique assessing chromatin 
accessibility, were conducted. These methods were applied to 92 postmortem human 
brain samples from a transdiagnostic cohort that included healthy controls and 
psychiatric cases with a diagnosis for schizophrenia, schizoaffective disorder, MDD, or 
bipolar disorder. Profiles of gene expression and chromatin accessibility, for 800,000 and 
400,000 nuclei respectively, were generated and subsequently integrated with genetic 
risk and clinical profiles. Differential expression and chromatin accessibility analyses 
between cases and controls were complemented by differential analyses contrasting 
groups of high and low genetic risk. 
 
Results 
The findings uncover a brain region-specific response to glucocorticoid stimulation in 
mice (5-27% of differentially expressed genes per brain region), yet a large number of 
genes (ngenes=172) demonstrates a consistent response throughout various regions. 
Network analyses enhance the understanding gained from differential expression, such 
as for genes like Abcd1, involved in the active transport of glucocorticoids, and part of a 
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differential network highlighting the role of ABC transporters in glucocorticoid 
response. Additionally, the gene Tcf4, which is implicated in psychiatric disorders, may 
modulate the Wnt pathway in a subregion-specific manner within the dentate gyrus. 
Furthermore, cell type-specific alterations in gene expression and chromatin accessibility 
within the human orbitofrontal cortex reveal a pronounced impact in excitatory neurons 
associated with psychiatric diagnoses and additionally in glial and endothelial cells 
influenced by genetic risk. Notably, there is minimal overlap between genes affected by 
psychiatric diagnosis and those influenced by genetic risk, yet the affected biological 
pathways often converge. The genes INO80E and HCN2 stand out due to their 
dysregulation on the level of both gene expression and chromatin accessibility in 
excitatory neurons of layers 2/3 influenced by genetic risk for schizophrenia. 
 
Conclusion 
In conclusion, this thesis significantly enriches our understanding of the stress response 
via the activation of the glucocorticoid receptor across multiple brain regions. 
Additionally, it sheds light on the complex genetic, transcriptomic, and epigenetic 
landscape of psychiatric disorders in a multitude of cell types. By contrasting genetic 
predisposition with clinical diagnoses, this research underscores the complexities 
inherent in integrating genetic risk factors with clinical phenotypes and highlights the 
necessity for a deeper understanding of the underlying biology. This thesis contributes 
to addressing these complexities, paving the way for advancements in personalized 
mental health care and the development of more targeted diagnostic and therapeutic 
strategies. The DiffBrainNet Shiny app as well as data and code repositories provide a 
wealth of materials and results, opening avenues for further exploration.  
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Zusammenfassung 
 
Hintergrund 
Psychische Störungen gehören weltweit zu den häufigsten Erkrankungen, 
beeinträchtigen die Lebensqualität von Betroffenen erheblich und stellen eine große 
gesellschaftliche Herausforderung dar. Ihre Entstehung ist von einem komplexen 
Zusammenspiel genetischer und umweltbedingter Faktoren geprägt, die molekulare, 
zelluläre und strukturelle Veränderungen im menschlichen Körper, insbesondere im 
Gehirn, auslösen. Dennoch bleibt die molekulare Basis psychischer Störungen 
weitgehend unergründet, was vor allem durch ihre polygene Beschaffenheit und die 
komplexen Interaktionen zwischen einer Vielfalt von Zelltypen und verschiedenen 
Gehirnregionen bedingt ist. Der präfrontale Kortex ist eine Gehirnregion, die höhere 
kognitive Prozesse koordiniert und bei psychischen Störungen wie Schizophrenie, 
Depression und bipolarer Störung strukturelle und funktionelle Anomalien zeigt. Diese 
Gruppe von affektiven und psychotischen Störungen zeigt nicht nur überlappende 
Symptome, sondern teilt auch eine gemeinsame genetische Basis. Während moderater 
Stress die Resilienz fördern und psychischen Erkrankungen vorbeugen kann, kann 
chronischer Stress die körpereigenen Stressreaktionssysteme, wie die Hypothalamus-
Hypophysen-Nebennierenrinden-Achse (HPA-Achse), stören und stellt somit einen 
erheblichen Risikofaktor für die Entwicklung solcher Erkrankungen dar. Diese 
Doktorarbeit zielt darauf ab, die transkriptomische Reaktion auf Stress über 
verschiedene Gehirnregionen hinweg sowie die gemeinsame molekulare Basis von 
Schizophrenie, Depression und bipolarer Störung im präfrontalen Kortex auf der 
Zellebene zu ergründen. 
 
Methodik 
In dieser Arbeit wurde die RNA-Sequenzierung genutzt, um die transkriptomische 
Reaktion auf den Glukokortikoidrezeptor-Agonisten Dexamethason in acht für die 
Stressreaktion relevanten Gehirnregionen anhand eines Mausmodells (n=30) zu 
analysieren. Die Intention dabei war, die Stressreaktion des Gehirns über die HPA-
Achse zu entschlüsseln und komplexe Gen-Netzwerke aufzudecken, die auf der 
Einzelgen-Ebene nicht erkennbar sind. Hierfür wurde eine Kombination aus 
differentieller Expressions- und Netzwerkanalyse verwendet. Um Einblicke in die 
molekulare Basis psychischer Störungen innerhalb des orbitofrontalen Kortex, einer 
Unterregion des präfrontalen Kortex und Schwerpunkt der psychiatrischen Forschung, 
zu gewinnen, wurde neben Einzelkern-RNA-Sequenzierung auch Einzelkern-ATAC-
Sequenzierung durchgeführt – ein Verfahren zur Analyse der genomweiten Chromatin-
Zugänglichkeit. Diese Methoden wurden an 92 postmortalen humanen Gehirnproben 
aus einer transdiagnostischen Kohorte angewandt, welche gesunde Kontrollen und 
psychiatrische Fälle mit Diagnosen für Schizophrenie, schizoaffektive Störung, 
Depression oder bipolare Störung umfasst. Genexpression und Chromatin-
Zugänglichkeit für 800.000 bzw. 400.000 Zellkerne wurden mit genetischem Risiko für 
psychische Störungen und klinischen Daten integriert. Neben der Analyse von 
differentieller Expression und Chromatin-Zugänglichkeit zwischen Erkrankten und 
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Kontrollen, wurden Gruppen mit hohem und niedrigem genetischem Risiko in 
differentiellen Analysen verglichen. 
 
Ergebnisse 
Die Ergebnisse zeigen eine regionsspezifische Reaktion auf Glukokortikoid-Stimulation 
im Maushirn (5-27% der differentiell exprimierten Gene pro Gehirnregion), wobei eine 
hohe Anzahl an Genen (nGene=172) in verschiedenen Regionen konsistent reagiert. 
Netzwerkanalysen erweitern das Verständnis, das aus der differentiellen 
Expressionsanalyse gewonnen wurde. Ein Beispiel hierfür ist das Gen Abcd1, das am 
aktiven Transport von Glukokortikoiden beteiligt und Teil eines differentiellen 
Netzwerks ist, welches die Rolle der ABC-Transporter in der Glukokortikoidreaktion 
hervorhebt. Ein weiteres Gen ist Tcf4, das mit psychischen Störungen in Verbindung 
gebracht wird und möglicherweise den Wnt-Signalweg in einer subregionsspezifischen 
Weise innerhalb des Gyrus dentatus moduliert.  
Darüber hinaus wurden zelltypspezifische Veränderungen der Genexpression und der 
Chromatin-Zugänglichkeit im humanen orbitofrontalen Kortex beobachtet, die einen 
ausgeprägten Einfluss auf erregende Neuronen in Assoziation mit psychiatrischen 
Diagnosen, sowie zusätzlich auf Glia- und Endothelzellen im Zusammenhang mit 
genetischem Risiko aufzeigen. Obwohl es zwischen Genen, die durch die den 
Krankheitsverlauf und solchen, die durch genetisches Risiko beeinflusst sind, nur eine 
minimale Überschneidung gibt, stimmen die betroffenen biologischen Prozesse oft 
überein. Die Gene INO80E und HCN2 heben sich hervor, da sie sowohl auf Ebene der 
Genexpression als auch der Chromatin-Zugänglichkeit in erregenden Neuronen der 
Schichten 2/3 durch das genetische Risiko für Schizophrenie beeinflusst werden. 
 
Schlussfolgerung 
Die Ergebnisse dieser Doktorarbeit tragen maßgeblich zu einem verbesserten 
Verständnis der Stressreaktion über die Aktivierung des Glukokortikoidrezeptors in 
verschiedenen Gehirnregionen bei. Außerdem geben Sie Aufschluss über die komplexe 
genetische, transkriptomische und epigenetische Landschaft psychischer Störungen in 
einer Vielzahl von Zelltypen. Durch die Gegenüberstellung von genetischem Risiko und 
klinischer Diagnose ebnet diese Doktorarbeit den Weg für Fortschritte in der 
personalisierten Gesundheitsversorgung und der Entwicklung gezielterer 
diagnostischer und therapeutischer Strategien. Die DiffBrainNet Shiny-App sowie 
Daten- und Quellcode-Repositorien stellen eine Fülle von Materialien und Ergebnissen 
bereit, die Wege für daran anknüpfende Forschung eröffnen.  



  

 xi 
 
 

Table of Contents 
Eidesstattliche Erklärung .......................................................................................................... i 
Publication Statement ............................................................................................................. iii 
Declaration of Contributions .................................................................................................. v 
Abstract ..................................................................................................................................... vii 
Zusammenfassung .................................................................................................................... ix 
Table of Contents ...................................................................................................................... xi 
1 Introduction ........................................................................................................................... 1 

1.1 Global Impact and Challenges of Psychiatric Disorders ........................................................ 2 
1.2 Stress Response and its Role in Psychiatric Disorders ........................................................... 6 
1.3 Animal Models and Human Postmortem Tissue Studies in Psychiatric Research ............ 8 
1.4 Correlates of Stress Across Brain Regions .............................................................................. 10 
1.5 Cellular Heterogeneity in the Prefrontal Cortex ................................................................... 11 
1.6 Genetic Architecture of Psychiatric Disorders ....................................................................... 16 
1.7 Transcriptomics in Psychiatric Research ................................................................................ 18 
1.8 Epigenomics in Psychiatric Research ...................................................................................... 19 
1.9 Single-Cell Molecular Profiling in Psychiatric Research ...................................................... 20 
1.10 Multi-Omics and Network-Based Analyses of Psychiatric Disorders ............................... 22 
1.11 Aims of the Thesis ...................................................................................................................... 25 

2 Materials and Methods ...................................................................................................... 27 
2.1 Methodological Approaches to Analyzing Transcriptomic Response to Glucocorticoid 

Treatment in Mouse Brain Tissue ................................................................................... 27 
2.1.1 Experimental Animals ................................................................................................... 27 
2.1.2 RNA Extraction ............................................................................................................... 28 
2.1.3 RNA Sequencing ............................................................................................................. 28 
2.1.4 RNA Sequencing Analysis ............................................................................................ 28 
2.1.5 Differential Expression Analysis .................................................................................. 29 
2.1.6 Network Analysis ........................................................................................................... 29 
2.1.7 Enrichment Analysis ...................................................................................................... 31 
2.1.8 Shiny App ........................................................................................................................ 32 

2.2 Methods for the Analysis of Cell Type-Specific Molecular Signatures in Postmortem 
Brain Tissue in a Cross-Disorder Psychiatric Cohort ................................................... 33 

2.2.1 Postmortem Brain Tissue ............................................................................................... 33 
2.2.2 Nuclei Isolation and Single-Nucleus RNA and ATAC Sequencing ........................ 34 
2.2.3 Processing of Single-Nucleus Data .............................................................................. 34 
2.2.4 Genotype Data ................................................................................................................. 37 
2.2.5 Differential Analysis ....................................................................................................... 38 
2.2.6 Functional Annotation ................................................................................................... 41 
2.2.7 Correlation Analysis Between Gene Expression and Chromatin Accessibility .... 42 
2.2.8 Contrasting Findings with Previous Studies .............................................................. 43 
2.2.9 Network Inference .......................................................................................................... 43 
2.2.10 Comparison of Differentially Expressed Genes Between Results in Mouse and 

Human Studies ................................................................................................................ 43 
3 Results ................................................................................................................................... 45 

3.1 Transcriptomic Response to Glucocorticoid Activation in Different Brain Regions ....... 45 



 

 xii 
 
 

3.1.1 Differential Expression and Networks in Response to Glucocorticoid Activation 
in 8 Different Brain Regions .......................................................................................... 47 

3.1.2 Enhanced Biological Insights Through Differential Network Analysis ................. 48 
3.1.3 Disease relevance of genes associated with stress response on single-gene and 

network level ................................................................................................................... 51 
3.1.4 Differential Network Analysis Augments the Biological Understanding of 

Differentially Expressed Genes ..................................................................................... 52 
3.1.5 Network Analysis Facilitates Hypothesis Generation for Candidate Genes ......... 52 

3.2 Molecular Alterations in Psychiatric Disorders in the Orbitofrontal Cortex on a Cell 
Type Level ........................................................................................................................... 56 

3.2.1 Study Design and Cohort Characteristics ................................................................... 56 
3.2.2 Identification and Assignment of Cell Types in Single-Nucleus Sequencing Data

  ........................................................................................................................................ 57 
3.2.3 Correlation of Gene Expression with Chromatin Accessibility Within and Across 

Cell Types ......................................................................................................................... 61 
3.2.4 Identification of Cell Type-Specific Changes in Psychiatric Disorders through 

Differential Gene Expression Analysis ........................................................................ 64 
3.2.5 Transcriptomic Profiling Reveals Enrichment of Disease-Associated Pathways in 

Microglia ........................................................................................................................... 66 
3.2.6 Comparison to Prior Research and Pseudobulk Analysis Endorses Disease-

Related Findings .............................................................................................................. 67 
3.2.7 Signatures of Disease-Related Chromatin Accessibility Alterations Divergent 

from Gene Expression Patterns ..................................................................................... 68 
3.2.8 Differential Transcriptomic and Epigenomic Patterns Related to Genetic Risk 

Highlight Variations in Chromatin Accessibility ....................................................... 70 
3.2.9 Common Pathways Affected by Diagnosis and Genetic Risk .................................. 73 
3.2.10 Genetic Risk Impacts Gene Expression of GWAS Loci ............................................. 73 
3.2.11 Genetic Risk for Schizophrenia Modulates INO80E and HCN2 Regulation in 

Excitatory Neurons in Cortical Layers 2/3 ................................................................. 74 
3.3 Cross-Species Transcriptional Dysregulation: Distinct Patterns in Mouse PFC Stress 

Response and Cell Types of Human PFC in Psychiatric Disorders ........................... 77 
4 Discussion ............................................................................................................................ 79 

4.1 Transcriptional Response to Glucocorticoid Exposure in the Brain ................................... 79 
4.2 Multi-modal Analysis of Psychiatric Disorders and Genetic Risk in Cortical Cell Types

............................................................................................................................................... 82 
4.3 Limitations and Future Directions ........................................................................................... 87 

5 Conclusion ............................................................................................................................ 89 
Bibliography .............................................................................................................................. 91 
Appendix A Supplementary Material ........................................................................ 115 

A.1 Supplementary Figures ........................................................................................................... 115 
A.2 Supplementary Tables ............................................................................................................. 121 

List of Abbreviations ............................................................................................................. 131 
List of Figures .......................................................................................................................... 133 
List of Tables ........................................................................................................................... 135 
Data and Code Availability .................................................................................................. 137 
Acknowledgements ............................................................................................................... 139 



Introduction 1 

 

1 Introduction 
Psychiatric disorders are highly prevalent and complex diseases that not only impair the 
lives of millions but also pose a substantial challenge in diagnosis procedures and 
finding effective treatments (Arias, Saxena, & Verguet, 2022; Vos et al., 2020). It is well 
known that psychiatric disorders arise from a complex interplay of genetic and 
environmental factors (Caspi & Moffitt, 2006; Uher, 2014). However, our understanding 
of their molecular and cellular architecture within the intricate landscape of the brain 
remains notably incomplete. This deficiency in understanding includes the interactions 
of genes, regulatory elements, pathways, and the variety of cell types involved in the 
manifestation and progression of psychiatric disorders. This thesis aims to uncover 
molecular alterations within the brain, specifically focusing on transcriptomic and 
epigenomic changes associated with psychiatric disorders and glucocorticoid exposure, 
a prominent factor linked to stress and implicated in psychiatric disorders. 
 
I study the transcriptomic response to glucocorticoid exposure across different brain 
regions using data from a mouse model treated with dexamethasone, a synthetic 
glucocorticoid. Within this framework, differential expression and differential network 
analyses are employed to delineate the unique molecular responses across key brain 
regions, previously linked to psychiatric disorders and stress response. This approach 
not only contributes to our understanding of distinct transcriptomic signatures 
associated with glucocorticoid exposure but also unravels the complexity of brain 
region-specific responses. 
 
In addition, I investigate the molecular alterations in human postmortem brain tissue 
obtained from a cohort of psychiatric patients and healthy controls. Here, the focus lies 
on the orbitofrontal cortex and the power of single-cell sequencing is leveraged to 
decipher transcriptomic and epigenomic alterations at the level of individual cell types. 
Besides the investigation of molecular signatures differentiating psychiatric cases from 
controls, my research delves into examining the influence of genetic risk for psychiatric 
disorders on both gene expression and chromatin accessibility. With this approach, I 
seek to dissect the molecular architecture of psychiatric disorders and the genetic risk 
for these at a cellular resolution, offering a unique perspective on the role of specific cell 
populations within the orbitofrontal cortex. 
 
This thesis aspires to enhance the understanding of the molecular architecture of 
glucocorticoid exposure and psychiatric disorders through the integration of an animal 
model and a human postmortem study. By dissecting the molecular details across 
various brain regions and cell types, my research aims to illustrate how genomic and 
genetic risk factors translate to clinical manifestations, potentially informing more 
precise diagnostics and therapeutic interventions.  
 
The subsequent sections provide an overview of stress and psychiatric disorders, 
delving into the current understanding of molecular dysregulation within these 
conditions. Furthermore, I introduce various techniques and methodologies used for 
collecting and analyzing molecular data in the study of stress and psychiatric research. 
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1.1 Global Impact and Challenges of Psychiatric Disorders 
Psychiatric disorders represent a significant global health challenge, leading to a 
substantial decrease in an individual's quality of life and imposing a significant 
economic burden on society (Arias et al., 2022; Vos et al., 2020). The impact of severe 
psychiatric disorders extends beyond the impairment in daily functioning and often 
culminates in severe consequences such as job loss, or in most tragic cases, suicide. In 
2019, mental disorders accounted for 16% of global disability-adjusted life years 
(DALYs), composed of the years lived with a disability and the years lost due to early 
death. The associated economic cost was estimated at approximately 5 trillion US dollars 
(Arias et al., 2022; Institute for Health Metrics and Evaluation, 2020). The prevalence and 
burden of psychiatric disorders, particularly depressive disorders, are highlighted by 
their status as leading causes of global DALYs across all age groups (Institute for Health 
Metrics and Evaluation, 2020; Vos et al., 2020). Epidemiological data indicates a rising 
prevalence of psychiatric disorders worldwide (Figure 1.1) with almost 280, 39, and 24 
million people affected by depressive disorders, bipolar disorder, and schizophrenia 
respectively in 2019 (Institute for Health Metrics and Evaluation, 2020; Vigo, Thornicroft, 
& Atun, 2016). Between 1990 and 2019, the number of DALYs and the prevalence of 
schizophrenia, depressive, and bipolar disorders have increased by approximately 60%, 
imposing an increasing challenge to global health systems. 
 

 
Figure 1.1. Global burden of severe psychiatric disorders over time. Disability-adjusted life years (DALYs, 
left) and prevalence (right) of schizophrenia, bipolar, and depressive disorders from 1990 to 2019 in millions. 
Dark lines represent the mean estimates. Ribbons represent 95% uncertainty intervals. Data was obtained 
from (Institute for Health Metrics and Evaluation, 2020; Vigo et al., 2016). 

The contemporary relevance of understanding the molecular basis of mental disorders 
becomes evident in the context of recent global events, including the COVID-19 
pandemic, war, and natural disasters. Different studies highlighted a general decline in 
overall societal well-being during the COVID-19 pandemic and an increase in symptom 
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severity experienced by patients diagnosed with a psychiatric disorder already before 
the pandemic started (Leung et al., 2022; Vindegaard & Benros, 2020). Social and 
economic loss due to war and natural disasters lead to mental instability which can 
culminate in post-traumatic stress disorder, anxiety, and depression (Makwana, 2019). 
Psychiatric drug development has seen minimal progress over the last decades, with 
current medications offering limited efficacy beyond those first introduced in the mid-
20th century (Paul & Potter, 2024; "The right treatment for each patient," 2023). Better 
insights into the underlying molecular mechanisms are crucial for developing effective 
treatments and supporting resilience in the face of adversities. 
 
The multifactorial nature of psychiatric disorders involves a complex interplay of genetic 
and environmental risk factors (Caspi & Moffitt, 2006; Uher, 2014). Epigenetic 
mechanisms act as mediators between environmental stressors – like trauma, extreme 
stress, or substance abuse – and gene expression (Keverne & Binder, 2020). This thesis 
centers its investigation on the molecular foundations of mood and psychotic disorders, 
specifically directing attention to schizophrenia and schizoaffective disorder, bipolar 
disorder, and major depressive disorder (MDD). This cluster of disorders has a 
substantial impact on global mental health, marked by a high overall prevalence and a 
pronounced intersection of genetic and environmental risk factors (Consortium., 2019). 
Furthermore, the presence of shared symptoms and treatment options across these 
severe psychiatric disorders (Newson, Pastukh, & Thiagarajan, 2021) adds to the 
reasoning of their unified exploration to shed light on commonalities and contribute to 
a more comprehensive understanding of their pathophysiology, a refinement of their 
diagnostic architecture and the development of more effective therapeutic strategies 
(Patrick F. Sullivan & Geschwind, 2019). In the following sections, I will delineate the 
specific symptoms and current treatment options for each of these disorders, further 
contextualizing their interconnectedness. 
 
Schizophrenia is a complex mental disorder characterized by a spectrum of symptoms 
that can be broadly categorized into positive, negative, and cognitive symptoms. 
Positive symptoms manifest as hallucinations, delusions, or suspiciousness, while 
negative symptoms include anhedonia, volitional impairment, and social withdrawal 
(Diagnostic and statistical manual of mental disorders, 2013; The ICD-10 classification of mental 
and behavioural disorders, 1992). Cognitive symptoms involve deficits in working 
memory, executive function, or attention (McCutcheon, Reis Marques, & Howes, 2020; 
Patel, Cherian, Gohil, & Atkinson, 2014).  
The heterogeneity of symptoms observed in schizophrenia has led to a lack of consensus 
regarding etiology and pathophysiology, complicating the optimization of effective 
treatment (Patel et al., 2014). The pathophysiology of schizophrenia involves 
abnormalities in neurotransmission, with an imbalance in neurotransmitters such as 
serotonin, dopamine, glutamate, aspartate, glycine, and gamma-aminobutyric acid 
(GABA) (Patel et al., 2014). Above all, the abnormal activity of dopamine receptors, 
specifically dopamine D2 receptors, is associated with symptoms of schizophrenia (Abi-
Dargham et al., 2000; Patel et al., 2014).  
The disorder, with a typical onset in early adulthood, is marked by a cortical excitatory-
inhibitory imbalance leading to disrupted synchronization of gamma-oscillations 



4  Introduction 
 

  

(McCutcheon et al., 2020). Treatment options for schizophrenia include pharmacological 
interventions with antipsychotics, such as D2-receptor blockers, which primarily help 
with positive symptoms but show limited efficacy for negative and cognitive symptoms 
(McCutcheon et al., 2020). Psychotherapeutic interventions, cognitive-behavioral 
therapy, and in rare cases also electroconvulsive therapy, can be part of schizophrenia 
treatment (Dickerson & Lehman, 2011; Grover, Sahoo, Rabha, & Koirala, 2019; Patel et 
al., 2014).  
 
Bipolar disorder is an affective disorder characterized by episodes of mania (or 
hypomania), depression, or both, involving recurrent changes in energy levels and 
behavior (Vieta et al., 2018). In addition, the disorder is associated with cognitive 
symptoms such as alterations in verbal and visual memory, executive function, and 
reaction time (Vieta et al., 2018). During manic episodes, affected individuals experience 
hyperactivity, inflated self-esteem, decreased need for sleep, expansive mood, and 
potentially psychotic symptoms. In contrast, during depressive episodes, symptoms 
include depressed mood, low self-esteem, social withdrawal, sleep disturbances, and a 
loss of energy (Diagnostic and statistical manual of mental disorders, 2013; The ICD-10 
classification of mental and behavioural disorders, 1992). The pathophysiology of bipolar 
disorder, which typically also has an onset in early adulthood, involves disruptions in 
monoaminergic signaling, neuronal-glial plasticity, inflammatory homeostasis, cellular 
metabolic pathways, and mitochondrial activity (McIntyre et al., 2020).  
In the pharmacological management of bipolar disorder, mood stabilizers like lithium 
and antipsychotics are commonly used, while antidepressants are prescribed cautiously, 
given their risk of precipitating mood instability during maintenance treatment (Müller-
Oerlinghausen, Berghöfer, & Bauer, 2002). Lithium stands out as the gold standard for 
mood stabilization, demonstrating antimanic, antidepressant, and anti-suicidal efficacy 
(McIntyre et al., 2020). Non-pharmacological treatment options include psychotherapy, 
electroconvulsive therapy, deep brain stimulation, vagus nerve stimulation, and lifestyle 
interventions (Perugi et al., 2017; Vieta et al., 2018). 
 
Major depressive disorder (MDD) is characterized by symptoms such as depressed 
mood, anhedonia, and a loss of energy (Fava & Kendler, 2000). Additional symptoms 
can include decreased or increased appetite, sleep disturbances, feelings of guilt and 
worthlessness, abnormalities of psychomotor activity, and suicidal ideation (Diagnostic 
and statistical manual of mental disorders, 2013; The ICD-10 classification of mental and 
behavioural disorders, 1992). The course of MDD follows an episodic pattern, though in 
some instances it becomes even chronic (Fava & Kendler, 2000). The etiology of MDD is 
associated with complex neuroregulatory systems and neural circuits, leading to 
secondary disturbances of monoamine neurotransmitter systems, such as the 
serotonergic, noradrenergic, and dopaminergic systems (Saveanu & Nemeroff, 2012). 
Glutamatergic and GABAergic neurotransmitter systems, as well as abnormalities in 
neuroendocrine systems, especially the hypothalamic-pituitary-adrenal (HPA) axis, 
further contribute to the pathophysiology of MDD (Saveanu & Nemeroff, 2012).  
Pharmacological treatment options for MDD include antidepressants, such as selective 
serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors 
(SNRIs), and can be augmented with mood stabilizers (Fava & Kendler, 2000). Non-
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pharmacological interventions encompass psychotherapy (e.g. interpersonal 
psychotherapy, behavioral therapy, or cognitive-behavioral therapy), electroconvulsive 
therapy, light therapy, physical activity, and lifestyle changes (Campbell, Miller, & 
Woesner, 2017; Fava & Kendler, 2000; Singh et al., 2023). 
 
Schizoaffective disorder is characterized by a combination of affective and psychotic 
symptoms that do not fully align with the diagnostic criteria for schizophrenia, nor do 
they correspond precisely with those of depressive or manic episodes (Diagnostic and 
statistical manual of mental disorders, 2013; The ICD-10 classification of mental and behavioural 
disorders, 1992). The diagnosis of schizoaffective disorders remains controversial in the 
psychiatric research community, with debates surrounding its reliability and 
practicability (Malaspina et al., 2013). Nevertheless, it is currently maintained as an 
independent diagnosis in the latest diagnostic manuals (Diagnostic and statistical manual 
of mental disorders, 2013; The ICD-10 classification of mental and behavioural disorders, 1992). 
 
Besides a high prevalence of comorbidities with other psychiatric disorders (McGrath et 
al., 2020), patients are also at high risk for non-psychiatric comorbidities, such as 
cardiovascular diseases (e.g. heart attacks, hypertension) or metabolic disease (e.g. 
diabetes, metabolic syndrome) (Correll et al., 2017; Vieta et al., 2018). Major risk factors 
contributing to these comorbidities are the use of antipsychotics, an unhealthy lifestyle, 
or an elevated body mass index (Correll et al., 2017; Vancampfort et al., 2016). In addition 
to suicide, the presence of comorbid disorders contributes to premature mortality in 
psychiatric patients compared to the general population (Roshanaei-Moghaddam & 
Katon, 2009).  
 
In conclusion, the diagnostic processes of psychiatric disorders present intricate and 
systemic challenges, marked by overlapping symptoms and shared genetic foundations. 
The current clinical framework, based on the ICD-10 (The ICD-10 classification of mental 
and behavioural disorders, 1992) and DSM-5 (Diagnostic and statistical manual of mental 
disorders, 2013) classification system, tends to neglect biological variables and frequently 
encounters challenges in distinguishing between symptom profiles, leading to 
difficulties in diagnosis and a lack of effective treatment options for certain patients 
(Brückl et al., 2020; Newson et al., 2021). Acknowledging these challenges underscores 
the urgent need for personalized medicine in psychiatry, making use of genomic 
advances to inform tailored treatment plans (Paul & Potter, 2024; "The right treatment 
for each patient," 2023). A more nuanced understanding of the transdiagnostic molecular 
foundations is essential to refine diagnostic precision, customize existing treatments, 
and develop new therapeutic strategies, ultimately improving the quality and 
effectiveness of mental health care. 
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1.2 Stress Response and its Role in Psychiatric Disorders 
Stress is commonly defined as the response to a difficult situation where the demands 
surpass an individual's resources, posing a threat to homeostasis and requiring adaptive 
measures (Lazarus & Folkman, 1984; Schneiderman, Ironson, & Siegel, 2005). Stressors 
play a significant role in influencing mood, behavior, and mental health, with acute 
stress responses in young, healthy individuals usually being adaptive (Schneiderman et 
al., 2005). However, in older or less healthy individuals, persistent or intense stress can 
lead to long-term health damage (Schneiderman et al., 2005).  
 
The multisystemic stress response in the human body, including neuroinflammatory, 
neuroendocrine, epigenetic, and metabolic responses, is essential not only for initiating 
an effective stress response but also related to resilience and vulnerability to stress 
(Atrooz, Liu, & Salim, 2019). Resilience to stress involves the ability to adapt and recover 
from stressors, maintaining or quickly regaining psychological and physiological 
homeostasis (Bush & Roubinov, 2021). This capacity for resilience is influenced by a 
complex interplay of genetic predispositions, environmental exposures, and lifestyle 
factors (Bush & Roubinov, 2021; McEwen, Nasca, & Gray, 2016). Understanding the 
mechanisms underlying stress response and resilience can inform interventions aimed 
at enhancing an individual's ability to cope with stress, potentially mitigating the 
development of stress-related psychiatric disorders. 
 
A central part of the endocrine stress response is the activation of the hypothalamic-
pituitary-adrenal (HPA) axis (de Kloet, Joëls, & Holsboer, 2005). As described by Smith 
and Vale (2006) as well as Griffiths and Hunter (2014), the corticotropin-releasing 
hormone (CRH) is released by the paraventricular nucleus of the hypothalamus and 
stimulates the anterior lobe of the pituitary gland. This induces the secretion of 
adrenocorticotropic hormone (ACTH) into the systemic blood circulation. Circulating 
ACTH targets the adrenal gland which synthesizes and secretes glucocorticoids in 
response to stimulation. This stress hormone exerts negative feedback on the 
hypothalamus and pituitary gland while also binding to glucocorticoid receptors (GR) 
and mineralocorticoid receptors (MR, Figure 1.2). These nuclear hormone receptors, 
which function as transcription factors, are central to the stress response and translocate 
from the cytoplasm to the nucleus upon activation by glucocorticoids (cortisol in 
humans and corticosterone in rodents) (Griffiths & Hunter, 2014; S. M. Smith & Vale, 
2006). The GR has a lower affinity to glucocorticoids compared to the MR, meaning that 
under baseline conditions, glucocorticoids predominantly bind to MR. However, during 
periods of stress, when glucocorticoid levels are elevated, they bind to GR (McEwen & 
Akil, 2020). Once bound to glucocorticoids, the GR interacts with glucocorticoid 
response elements (GRE) in the DNA, intricately modulating gene expression and 
eliciting a strong transcriptomic response (McKay & Cidlowski, 1999; Phuc Le et al., 
2005; Weikum, Knuesel, Ortlund, & Yamamoto, 2017).  
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Figure 1.2. The HPA axis and activation of the glucocorticoid receptor. The hypothalamus releases 
corticotropin-releasing hormone (CRH) during stress. CRH triggers the secretion of adrenocorticotropic 
hormone (ACTH) from the pituitary gland, which in turn stimulates the adrenal glands to produce 
glucocorticoids, a key stress hormone. Glucocorticoids exert a negative feedback effect on both the 
hypothalamus and the pituitary gland, but also bind to the glucocorticoid receptor (GR), triggering its 
translocation into the nucleus and binding to glucocorticoid response elements (GREs). Based on (Griffiths 
& Hunter, 2014; S. M. Smith & Vale, 2006). Created with Biorender.com  

The molecular response elicited by GR activation plays a pivotal role in the 
physiological adaptations initiated by stress (Sapolsky, Romero, & Munck, 2000). 
Energy-consuming and less important functions, such as digestion, growth, 
reproduction, and immunity are getting suppressed, while the vascular tone, respiratory 
rate, and intermediary metabolism are increased and energy stores are getting mobilized 
(Herman et al., 2016; Majer et al., 2023; S. M. Smith & Vale, 2006). 
 
The regulation of glucocorticoid levels involves a feedback inhibition mechanism that 
controls both the extent and duration of their release (Majer et al., 2023). This mechanism 
attempts to reestablish homeostasis and bring glucocorticoid levels back to baseline 
levels after the termination of the stressor (Majer et al., 2023). The speed at which this 
return to baseline occurs, governed by the strength of the individual's HPA axis negative 
feedback systems (Romero, 2004), plays a crucial role in minimizing the duration of 
glucocorticoid exposure which is known to be associated with various health risks, such 
as oxidative stress, cardiovascular issues, and increased mortality (Majer et al., 2023; 
Sapolsky et al., 2000). The dysfunction of this stress response system has been also 
implicated in psychiatric disorders (de Kloet et al., 2005; McEwen & Akil, 2020) and is 
closely linked to early-life stress and a lack of resilience – a major risk factor for these 
disorders (Heim & Binder, 2012; McEwen et al., 2015; Wilkinson & Goodyer, 2011).  
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To explore the molecular alterations induced by stress, this thesis employs a mouse 
model treated with dexamethasone, a synthetic glucocorticoid preferentially activating 
the GR. This model, consistent with the conserved nature of stress response across 
mammals (M. Joëls, Karst, & Sarabdjitsingh, 2018; Lin, Sawa, & Jaaro-Peled, 2012; 
McEwen et al., 2016), aims to provide valuable insights into the molecular mechanisms 
affected in stress-related disorders, such as MDD, bipolar disorder, and schizophrenia. 
By exploring the impact of glucocorticoid exposure on transcriptomic alterations within 
different brain regions, the goal is to clarify the intricate relationship between stress, 
molecular changes, and the onset of psychiatric disorders. 
 

1.3 Animal Models and Human Postmortem Tissue Studies in 
Psychiatric Research 

Psychiatric research employs a wide range of biological platforms, spanning from 
animal models to human postmortem tissues (Figure 1.5 left). These platforms provide 
varied insights into the underlying mechanisms of psychiatric disorders, each with its 
own set of strengths and challenges. 
 
The lack of definitive biomarkers for psychiatric disorders underscores the essential role 
of robust animal models in their research (Richtand, Harvey, & Hoffman, 2022). These 
models are invaluable investigative tools, yet their design and purpose must be clearly 
defined (Nestler & Hyman, 2010). Their effectiveness depends on their ability to 
demonstrate face validity through symptom homology, construct validity by replicating 
the disorder's pathology, and predictive validity by forecasting the response to 
treatment (Malik et al., 2023). Behavioral measures in animal models are crucial for 
formulating hypotheses on the origins of disorders, pinpointing diagnostic markers, 
exploring treatment options, and predicting outcomes (Richtand et al., 2022). 
 
Despite the considerable advantages of models that closely reflect human biology, such 
as primates, numerous challenges hinder their widespread use in research. These 
include primarily ethical considerations and practical constraints (Schmidt, Wang, & 
Meijer, 2011). Rodent models, particularly for depression, capture core symptomatic 
parallels such as anhedonia and anxiety but cannot replicate uniquely human 
experiences like self-esteem issues or suicidality (Schmidt et al., 2011). The intricate 
etiology of schizophrenia presents a similarly challenging task of developing models 
that fully capture the disorder's comprehensive symptomatology (Malik et al., 2023). 
Although animal models provide invaluable insights, they often cannot fully represent 
the complexities of human psychological states or precisely mirror the individual 
nuances of behavioral symptoms (Nestler & Hyman, 2010). 
 
Acknowledging these limitations, animal models retain their critical role in research, 
specifically to explore the interaction of genetic predispositions and environmental 
challenges. Genetic mouse models are particularly useful for dissecting molecular 
alterations observed in patient brains and how these may influence neuronal circuitries 



Introduction 9 

 

and behavior (Lin et al., 2012). In this thesis, a mouse model is employed to investigate 
the transcriptomic alterations following GR activation, a crucial component of the highly 
conserved HPA axis (M. Joëls et al., 2018; Lin et al., 2012; McEwen et al., 2016), thereby 
establishing the mouse a highly appropriate model organism for this study. 
 
While animal models provide controlled environments for dissecting potential 
pathophysiological mechanisms, they are complemented by cell lines, human-induced 
pluripotent stem cell (iPSC)-derived models, and brain organoids. These cell-based 
models offer a platform to study the human-specific genetic contributions to psychiatric 
disorders (Soliman, Aboharb, Zeltner, & Studer, 2017). However, only postmortem 
tissue studies can directly investigate human brain tissue to discern disease-related 
cellular, synaptic, and molecular alterations, and capture the full spectrum of psychiatric 
disorders as categorized in clinical diagnostic manuals (D. A. Lewis, 2002; Soliman et al., 
2017). 
 
Although postmortem tissue provides an irreplaceable resource for research, it comes 
with its own set of challenges. These include the availability of tissue, which can be 
impeded by the circumstances of death, and the consent from next of kin for brain 
donation (Padoan et al., 2022). The integrity of the tissue is vulnerable to a variety of 
confounders, including the postmortem interval and agonal factors, both of which can 
significantly affect study outcomes (Harrison, 2011; Stan et al., 2006). Additionally, 
postmortem research typically captures the advanced stages of disease and offers 
minimal insight into the early development of disorders (D. A. Lewis, 2002; Soliman et 
al., 2017). The nature of these studies is largely descriptive and correlational. Thus, the 
establishment of causality is not feasible, as it is not possible to perturb variables and 
measure the response within this context (Harrison, 2011).  
 
Despite these challenges, postmortem studies are essential in understanding how 
genetic predispositions translate into altered gene expression (D. A. Lewis, 2002). 
Integrating these studies with large-scale genomic analysis can delineate 
pathophysiological pathways and identify novel therapeutic targets, thus furthering the 
molecular phenotyping of psychiatric disorders (D. A. Lewis, 2002). Furthermore, 
postmortem studies include the ability to directly observe disease etiology and patient 
genetics, an aspect that often cannot be replicated in cell lines or iPSC-derived models 
which are limited by factors like cellular diversity or low reproducibility (Soliman et al., 
2017). Access to premortem human brain tissue is challenging, with biopsies being 
highly invasive and limited in availability (Krassner et al., 2023; Soliman et al., 2017).  
 
By carefully considering potential confounders and methodological limitations, 
postmortem studies remain a cornerstone in psychiatric research, offering invaluable 
insights into the molecular basis of psychiatric disorders and complementing findings 
from animal models. Here, I examine molecular changes in the orbitofrontal cortex that 
underpin severe psychiatric disorders using postmortem brain tissue. This method 
offers unparalleled access to a broad scope of investigational paths and the genomic 
signatures inherent to these disorders, paths that remain elusive through other research 
platforms. 
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1.4 Correlates of Stress Across Brain Regions 
The brain's response to stress is a complex, multi-faceted process that engages various 
regions and functions. Stress triggers molecular changes like epigenetic modifications 
and transcriptional regulation, mediated by epigenetic changes or transcription factors 
like GR and MR (Griffiths & Hunter, 2014; Keverne & Binder, 2020). Additionally, stress 
exerts structural changes within the brain, notably affecting neurogenesis and neuronal 
morphology in regions such as the hippocampus, amygdala, and prefrontal cortex 
(Marian Joëls, Krugers, & Karst, 2007; McEwen et al., 2016; Sapolsky et al., 2000). 
Functionally, stress can alter brain activity, with acute stress sometimes enhancing 
functions like memory, and chronic stress leading to adaptive or maladaptive plasticity, 
influencing cognition and emotional regulation (McEwen et al., 2016). Various brain 
regions play a significant role in the cognitive and emotional aspects of the stress 
response, including limbic structures and the cerebellum (Harlé et al., 2017). Here, I will 
introduce the various brain regions under investigation in this thesis (Figure 1.3) and 
discuss current knowledge on how they are affected by stress. 
 
The prefrontal cortex (PFC) is considered the most advanced brain region, playing a 
critical role in executing high-level cognitive processes (Funahashi, 2001; Gao et al., 
2012). It is highly interconnected, coordinating complex decision-making (Arnsten, 
2009). Stress can impair PFC functions, such as working memory and attention, and 
under stress, brain activity may shift from the PFC's deliberate control to more 
automatic, emotional responses driven by the amygdala (Arnsten, 2009). The PFC also 
has extensive connections with the limbic system, influencing emotion, motivation, and 
memory (Fuster, 1988). Chronic exposure to glucocorticoids during stress can lead to 
structural changes within the PFC, such as dendritic retraction and synaptic loss in the 
medial PFC as well as dendritic growth and new synapse formation in the OFC 
(McEwen & Akil, 2020). Over time, some of these alterations may be partly reversible 
(Romeo, 2010). A detailed description of the cortical layer structure and the various cell 
types in the prefrontal cortex can be found in Section 1.5. 
 
The hippocampus is crucial for memory, neurogenesis, and brain plasticity. It expresses 
receptors for stress hormones that mediate learning and memory (J. J. Kim & Diamond, 
2002; McEwen & Akil, 2020). Stress affects its neurogenesis, influencing emotional and 
cognitive functions and potentially contributing to psychiatric disorders (Levone, Cryan, 
& O'Leary, 2014). The hippocampus is divided into regions with distinct roles: the 
dorsal/posterior for spatial memory and the ventral/anterior (rodents/primates 
respectively) for stress and anxiety regulation (Levone et al., 2014).  
 
The amygdala is central to forming emotional responses, such as fear and anxiety, and 
connecting emotions to memories (Gallagher & Chiba, 1996). It undergoes unique stress-
induced changes that can result in its overactivity and enlargement, which are linked to 
mood disorders (McEwen et al., 2016). Stress alters the amygdala's structure, modulating 
the dendritic structure (McEwen et al., 2016). Glucocorticoids impact the lateral 
amygdala directly, with receptors located at postsynaptic sites (McEwen et al., 2016). 



Introduction 11 

 

Endocannabinoids in the amygdala help regulate stress responses and the HPA axis 
activity (Hill & McEwen, 2010). 
 
The hypothalamus manages the HPA axis activation and its inhibition, releasing CRH 
in response to stress and controlling ACTH release through feedback mechanisms 
involving glucocorticoid receptors (Herman et al., 2016). Endocannabinoid signaling in 
the paraventricular nucleus (PVN) of the hypothalamus can also suppress HPA axis 
activity (Hill & McEwen, 2010). Overexpression of Fkbp5, a key regulator of 
glucocorticoid receptors in the PVN, has been linked to chronic over-activation of the 
HPA axis (Häusl et al., 2021). 
 
The cerebellum, traditionally associated with motor functions, is increasingly 
recognized for its involvement in nonmotor functions, including stress responses 
(Moreno-Rius, 2019). It exhibits high densities of GR and may influence stress-induced 
motor alterations (Harlé et al., 2017). Adaptations in the cerebellar CRH (receptor) 
system may affect the cerebellum's response to stress, especially impacting motor 
learning and possibly causing motor changes (Ezra-Nevo et al., 2018; Harlé et al., 2017). 
Moreover, the cerebellum's connections to other stress-related brain areas underscore its 
role in stress-induced behavioral anomalies (Moreno-Rius, 2019). 
 
The goal of studying these brain regions and their transcriptional response to stress is to 
uncover the cellular and molecular mechanisms that underlie the onset and progression 
of stress-related disorders. By mapping the specific transcriptional changes within these 
structures, I aim to improve the understanding of how stress can precipitate or 
exacerbate psychiatric conditions. 
 

1.5 Cellular Heterogeneity in the Prefrontal Cortex 
The prefrontal cortex (PFC) is part of the frontal lobe of the neocortex, a highly organized 
and complex structure, characterized by its laminar formation. The laminar layers 1 to 6 
contain a structurally and functionally diverse range of glial and neuronal cell types 
(Molyneaux, Arlotta, Menezes, & Macklis, 2007). The PFC plays a crucial role in higher 
cognitive functions, including executive control, decision-making, social and emotional 
control (Funahashi, 2001). However, it is also susceptible to environmental risk factors 
and is implicated in the development of psychiatric disorders (Funahashi, 2001; Gao et 
al., 2012). Given the strong associations of MDD, bipolar disorder and schizophrenia 
with this structure (Howard et al., 2019; Mullins et al., 2021; Trubetskoy et al., 2022), it 
has received substantial attention in the study of these disorders (Bristot, De Bastiani, 
Pfaffenseller, Kapczinski, & Kauer-Sant’Anna, 2020; Fromer et al., 2016; Nagy et al., 2020; 
Ruzicka et al., 2022; Worf et al., 2022). Specifically, structural and functional 
abnormalities of the orbitofrontal cortex (OFC), a key component of the ventral 
prefrontal cortex, have been widely reported in many psychiatric disorders (Frisoni et 
al., 2009; Jackowski et al., 2012; Opel et al., 2020; Zhou, Xiong, Chen, & Wang, 2023). 
Brodmann area 11 (Brodmann, 1909), a subregion of the OFC, has shown reduced gray 
matter volume in elderly schizophrenia patients compared to healthy elders (Frisoni et 
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al., 2009) and dysregulation of gene expression and DNA methylation in depressed and 
suicidal patients (Zhou et al., 2023). 
Understanding the mechanisms of psychiatric disorders in the OFC is exacerbated by 
the complex interplay between its diverse cell types. While the ratio of glia to neurons 
across the entire human brain has been estimated to be around 10 for a long time, more 
recent studies indicate the ratio to be closer to 1-1.5 (von Bartheld, Bahney, & Herculano-
Houzel, 2016). However, the proportion of non-neuronal (mostly glial) cells to neurons 
varies significantly across brain regions, with estimates between 1.3 and 2.7 across 
cortical subregions (2.3 in PFC) (Ribeiro et al., 2013). Although diverse in function, glial 
cells are universally characterized by their non-excitable nature, which distinguishes 
them from neurons. Unlike neurons, which are responsible for creating and transmitting 
electrical and chemical signals, glial cells primarily regulate neuronal activity and 
communication (Rasband, 2016). All neurons and glial cells originate from a common 
progenitor – the neuroepithelial cell (Kintner, 2002). Here, I give an overview of the 
diverse cortical cell types, and their morphological and functional characteristics (Figure 
1.3). 
 
 

 
Figure 1.3. Dissected brain regions and cortical cell types for stress response and psychiatric disorder 
studies. This schematic representation outlines the 8 brain regions analyzed (amygdala – AMY, prefrontal 
cortex – PFC, dorsal and ventral cornu ammonis 1 – dCA1 and vCA1, dorsal and ventral dentate gyrus – dDG 
and vDG, paraventricular nucleus of the hypothalamus – PVN, cerebellum – CER) for examining the 
transcriptomic response to glucocorticoid receptor activation in stress response in the mouse brain (upper 
left) and the subregion of the orbitofrontal cortex (OFC – BA11) dissected to study the molecular basis of 
psychiatric disorders on a cell type level (lower left). On the right, the diverse cell types present in the OFC's 
cortical layers are depicted which are the focus of the psychiatric disorder study. Based on (R. Fang et al., 
2022; Fuster, 1988). Created with Biorender.com 
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Glutamatergic projection neurons, shortly also referred to as excitatory neurons, 
account for 70-80% of neocortical neurons and are primarily responsible for neural 
activation in the brain (Markram et al., 2004). Their role is to release neurotransmitters 
like glutamate, which elicit postsynaptic action potentials, essential for neural 
communication (Nieuwenhuys, 1994). Originating from progenitors in the dorsolateral 
wall of the telencephalon (Molyneaux et al., 2007), these neurons are characterized by 
their pyramidal-shaped cell bodies, an axon, and extensive dendritic trees, which are 
essential for receiving a wide range of synaptic inputs (Spruston, 2008). Excitatory 
neurons are distributed across different cortical layers, each with unique connections 
and functions (Douglas & Martin, 2004; Molyneaux et al., 2007), as well as layer and 
subtype-specific patterns of gene expression (Tasic et al., 2018). As described by 
Nieuwenhuys (1994) and Molyneaux et al. (2007), callosal neurons, a subset of 
associative projection neurons, are predominantly situated in layers II/III, V, and VI of 
the cortex. These neurons are characterized by their long axons, projecting to different 
cortical regions that traverse the corpus callosum. Meanwhile, corticothalamic neurons, 
which fall under the category of corticofugal projection neurons, are mainly found in 
cortical layer VI. These neurons project their axons subcortically to various nuclei within 
the thalamus. In addition, subcerebral projection neurons, also a class of corticofugal 
projection neurons, reside in the deeper regions of layer V. These neurons extend their 
projections down to the brainstem and spinal cord, playing a crucial role in the 
communication between the cortex and subcortical structures (Molyneaux et al., 2007; 
Nieuwenhuys, 1994).  
 
In contrast to their excitatory counterparts, GABAergic interneurons, also referred to as 
inhibitory neurons, comprise 20-30% of the neocortical neuronal population and serve 
as essential regulators of excitatory signaling (Markram et al., 2004). Interneurons are 
essential for maintaining the balance of neural activity within the brain (Markram et al., 
2004). Inhibitory neurons release neurotransmitters like GABA, which hyperpolarize the 
postsynaptic membrane, reducing the likelihood of an action potential (Fritschy & 
Brünig, 2003). These neurons arise from progenitors in the ventral telencephalon and 
display a rich morphological and functional diversity (Molyneaux et al., 2007). Most 
interneurons, including basket cells and chandelier cells, have aspiny dendrites and 
exhibit extensive dendritic trees, allowing them to receive input from multiple sources 
(Markram et al., 2004). They play a crucial role in suppressing neural activity, targeting 
the somata and axons of pyramidal neurons, and are critical for the timing and 
synchronization of action potentials (Markram et al., 2004). According to Fishell and 
Kepecs (2020), interneurons come in various subtypes, each with a specific role in the 
neural network. Parvalbumin-expressing (PVALB) interneurons are known for 
synchronizing neural activity and contributing to the generation of gamma oscillations. 
Somatostatin (SST) interneurons, found in layers 2-5, target the dendrites of excitatory 
neurons across multiple layers and are involved in dendritic inhibition. Other subtypes, 
such as those expressing vasoactive intestinal polypeptide (VIP), often disinhibit other 
interneurons, adding another layer of complexity to the regulation of neural circuits. 
Additional subtypes like RELN (reelin) and LAMP5 (lysosomal-associated membrane 
protein family member 5) interneurons further diversify the inhibitory landscape of the 
neocortex (Fishell & Kepecs, 2020).  
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Astrocytes are the most abundant type of glial cells, comprising approximately 25% of 
the brain's volume (Guillamón-Vivancos, Gómez-Pinedo, & Matías-Guiu, 2015). As 
described by Guillamón-Vivancos et al. (2015), astrocytes, traditionally viewed as 
support cells, play a crucial role in maintaining the brain's microenvironment. 
Morphologically, they are divided into two major groups: protoplasmic and fibrous. 
Protoplasmic astrocytes, primarily located in gray matter, have a rounded shape and 
highly branched, uniformly distributed processes, making contact with both synapses 
and blood vessels. Fibrous astrocytes, usually located in white matter, are characterized 
by their less branched, longer, and more fiber-like processes that often extend endfeet 
wrapping around blood vessels. Although they do not generate action potentials, 
astrocytes are excitable cells that play a role in communication. They can be activated by 
various signals and engage in gliotransmission, sending specific messages to adjacent 
cells. Functionally, astrocytes are involved in the development of the nervous system 
and synaptic plasticity, guiding growing axons with astrocyte-derived molecules and 
actively participating in synaptogenesis (Guillamón-Vivancos et al., 2015). They provide 
metabolic support to neurons, maintaining stable concentrations of glutathione 
(Sidoryk-Wegrzynowicz, Wegrzynowicz, Lee, Bowman, & Aschner, 2011). Additionally, 
astrocytes regulate neurotransmitter levels by taking up and releasing glutamate and 
GABA, with high levels of glutamine synthetase facilitating the conversion of glutamate 
to glutamine, thus maintaining optimal synaptic glutamate concentrations (Kimelberg 
& Nedergaard, 2010). They also regulate the extracellular environment, including ion 
homeostasis, and produce and release growth factors, further underscoring their 
supportive role for neurons (Sidoryk-Wegrzynowicz et al., 2011). 
 
Microglia are specialized glial cells of immune origin that play a pivotal role as the 
central nervous system's (CNS) primary defense mechanism (Guillamón-Vivancos et al., 
2015). These cells migrate into the brain from the bloodstream during early development 
(Guillamón-Vivancos et al., 2015). They comprise roughly 10% of the cells in the CNS 
and function similarly to macrophages, though with a homeostatic phenotype (Colonna 
& Butovsky, 2017). Morphologically, microglia are highly dynamic, characterized by 
their highly branched structure. Their processes are in constant motion, allowing 
microglia to make contact with neurons, astrocytes, and blood vessels (Colonna & 
Butovsky, 2017). Upon encountering injuries or inflammatory stimuli, microglia can 
transform from their ramified state into an amoeboid form, a change that facilitates their 
defensive functions (Colonna & Butovsky, 2017). Functionally, microglia are responsible 
for phagocytosis, clearing the CNS of harmful entities such as microbes, dead cells, and 
other potentially dangerous substances (Colonna & Butovsky, 2017; Nayak, Roth, & 
McGavern, 2014). They are also the primary source of proinflammatory cytokines, 
making them key players in neuroinflammation (Colonna & Butovsky, 2017). Beyond 
their role in defense, microglia contribute to neuronal survival by releasing growth 
factors that aid in the formation and maintenance of neuronal circuits (Nayak et al., 
2014). Additionally, microglia express immune receptors and neurotransmitter 
receptors, which facilitate glia-neuron communication and allow them to monitor 
neuronal and synaptic activity (Colonna & Butovsky, 2017). 
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Oligodendrocyte precursor cells (OPCs), constituting approximately 5% of cells in the 
CNS, maintain a state of constant homeostasis and are permanently present throughout 
the CNS (Xiao & Czopka, 2023). Also referred to as synantocytes, polydendrocytes, or 
NG2 glia, these cells exhibit a distinct morphology that varies by brain region 
(Nishiyama, 2007; Xiao & Czopka, 2023). Their processes are radially oriented in gray 
matter and more elongated in white matter (L.-P. Fang & Bai, 2023). OPCs differentiate 
into myelinating oligodendrocytes, a process essential for forming new myelin, as 
existing oligodendrocytes do not generate it (Nishiyama, 2007; Xiao & Czopka, 2023). 
Beyond myelination, OPCs regulate neural circuits by controlling neuronal density, 
synaptic activity, and action potential conduction velocity (L.-P. Fang & Bai, 2023). They 
integrate into local neural circuits, receiving glutamatergic signals through AMPA and 
NMDA receptors, and sense neuronal activity via the potassium channel Kir4.1 (L.-P. 
Fang & Bai, 2023). OPCs also engage in synaptic neurotransmission, in 
immunomodulation by influencing microglia and T cells, and contribute to axonal 
remodeling and synapse pruning, impacting neural network activity and function (L.-P. 
Fang & Bai, 2023). 
 
Oligodendrocytes are pivotal in forming myelin sheaths around axons in the CNS, with 
myelination being their primary function (Guillamón-Vivancos et al., 2015). They 
originate from OPCs and progress through stages of maturation, from immature to 
mature myelinating oligodendrocytes (Simons & Nave, 2016). Their morphology is 
characterized by two major cytoskeletal components: microtubules and F-actin 
(Michalski & Kothary, 2015). The life cycle of an oligodendrocyte encompasses four 
phases: birth, migration, and proliferation of OPCs; morphological differentiation with 
process expansion; axonal contact leading to myelin sheath formation; and long-term 
metabolic support of axons (Michalski & Kothary, 2015). Oligodendrocytes synthesize 
various myelin components and transport them to the myelin sheath during 
development (Simons & Nave, 2016). They also provide metabolic support to axons, 
transferring energy metabolites like lactate, which axons utilize for ATP production 
(Simons & Nave, 2016). This metabolic exchange is facilitated by cytoplasmic channels 
and monocarboxylate transporters in the myelin sheath, underscoring the critical role 
oligodendrocytes play in neuronal function and health (Philips & Rothstein, 2017). 
 
Endothelial cells constitute the inner lining of blood vessels in the human cortex and 
are a critical component of the blood-brain barrier (BBB) (Zlokovic, 2008). This selective 
interface is responsible for regulating the passage of substances between the 
bloodstream and the brain (Zlokovic, 2008). Morphologically, endothelial cells are 
elongated and thin, creating a continuous single layer that lines the interior surface of 
blood vessels (Nag, 2011). These cells are interconnected by tight junctions, which 
contribute to the BBB's selective permeability properties and are crucial for preventing 
neurotoxic substances from entering the brain while allowing essential nutrients and 
gases to pass through (Abbott, Patabendige, Dolman, Yusof, & Begley, 2010). Endothelial 
cells play a key role in physiological functions including angiogenesis, which is the 
formation of new blood vessels from existing ones (Carmeliet & Jain, 2011). In addition 
to their structural role, cortical endothelial cells secrete factors that influence the function 
and maintenance of other BBB components, including pericytes and astrocytic end-feet 
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(Abbott et al., 2010). Furthermore, endothelial cells contribute to immune surveillance 
by regulating immune cell migration into the CNS, thereby participating in 
neuroprotective and neuroinflammatory processes (B. Engelhardt & Ransohoff, 2005). 
 
Within the scope of this thesis, I examine the molecular architecture of psychiatric 
disorders across the described cortical cell types, aiming to characterize their distinct 
pathological signatures. 
 

1.6 Genetic Architecture of Psychiatric Disorders 
Psychiatric disorders exhibit a substantial genetic component which has been the focus 
of many studies aiming to unravel their complex etiology. Twin studies have been 
instrumental in determining the heritability of psychiatric disorders, with early twin 
studies emphasizing strong heritable effects for schizophrenia and bipolar disorder 
(Smoller et al., 2019). More recent twin studies, including those focused on MDD and 
anxiety disorders, have confirmed a substantial genetic component in these conditions. 
Twin studies suggest a heritability of 77% for schizophrenia, 68% for bipolar disorder, 
and 45% for MDD (Polderman et al., 2015; Smoller et al., 2019). In contrast, Single 
Nucleotide Polymorphism (SNP)-based heritability is significantly lower, ranging from 
8% to 24% for the three disorders (Consortium., 2019; Howard et al., 2019; Mullins et al., 
2021; Smoller et al., 2019; Trubetskoy et al., 2022). SNP arrays are commonly used to 
detect polymorphisms, covering a curated set of biallelic genetic markers optimized for 
robust measurements and genomic coverage (Patrick F. Sullivan & Geschwind, 2019). 
Possible explanations of the missing heritability include rare de novo variants which are 
not covered by current genotyping arrays, undiscovered common and structural 
variants, epigenetic factors, a lack of power to identify gene-gene interactions, and the 
failure to adequately account for shared environmental effect among relatives 
(Geschwind & Flint, 2015; Manolio et al., 2009; Yang, Zeng, Goddard, Wray, & Visscher, 
2017).  
 
Epidemiological studies implicate a high comorbidity between psychiatric disorders, as 
individuals diagnosed with one disorder exhibit an increased likelihood of developing 
other psychiatric conditions (McGrath et al., 2020). This, besides their overlapping 
symptoms, emphasizes the common genetic architecture of psychiatric disorders, a 
phenomenon referred to as pleiotropy (Consortium., 2019; Sivakumaran et al., 2011; 
Smoller et al., 2019). Genetic correlation analyses have revealed distinct clusters of 
interconnected disorders, with one highly genetically correlated group comprising 
mood and psychotic disorders such as MDD, bipolar disorder, and schizophrenia (SNP-
based correlations: schizophrenia-bipolar 0.7, schizophrenia-MDD 0.34, and MDD-
bipolar 0.36) (Consortium., 2019). This group of disorders with shared genetic 
architecture has been the focus of extensive research (Blokland et al., 2022; Cardno & 
Owen, 2014; Consortium., 2019; Docherty, Moscati, & Fanous, 2016; Opel et al., 2020; 
Worf et al., 2022). 
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Genome-wide association studies (GWASs), characterized by the need for large sample 
sizes, have significantly advanced our understanding of the genetic architecture of 
psychiatric disorders, with substantial numbers of significant variants associated with 
MDD (nsig. loci=102, nMDD cases=246K) (Howard et al., 2019), bipolar disorder (nsig. loci=64, 
nbipolar cases=42K) (Mullins et al., 2021) and schizophrenia (nsig. loci=287, nschizophrenia cases=77K) 
(Trubetskoy et al., 2022), as of March 2024. Genes implicated by schizophrenia GWAS 
variants are predominantly expressed in excitatory and inhibitory neurons, and 
enriched in pathways of synaptic organization and neuronal function (Trubetskoy et al., 
2022). Similarly, bipolar disorder GWAS variants are fine-mapped to genes with a 
particularly high expression in cortical and hippocampal neurons and part of synaptic 
signaling pathways (Mullins et al., 2021). MDD GWAS variants are also mapped to genes 
active in the nervous system and involved in synapse function and neurotransmission 
(Howard et al., 2019), suggesting shared molecular underpinnings in neuronal processes 
across these psychiatric disorders. 
 
Despite the massive scale of these GWAS and the high number of identified SNPs, it is 
crucial to recognize that many more variants, including rare variants and copy number 
variations (Kirov et al., 2012), are expected to be associated with the genetic architecture 
of these highly polygenic disorders. Even larger sample sizes and different approaches 
will hopefully lead to a more comprehensive detection of causal variants in the future. 
Efforts such as the GWAS catalog, a standardized and interoperable collection of 
GWASs, or the Psychiatric Genomics Consortium, performing GWAS meta- and mega-
analyses on psychiatric disorders, are pivotal in advancing towards this objective 
(Buniello et al., 2019; Sollis et al., 2022; P. F. Sullivan, 2010). 
 
Polygenic risk scores (PRS) have emerged as a valuable tool to capture the cumulative 
genetic risk for a particular disease or trait and may be instrumental in the development 
of tailored treatment strategies in personalized medicine (C. M. Lewis & Vassos, 2020; S. 
M. Purcell et al., 2009; Patrick F. Sullivan & Geschwind, 2019). The application of PRS 
has enabled a deeper exploration of the relationship between genetic risk and various 
genomic layers (Võsa et al., 2021), such as gene expression and chromatin accessibility, 
to understand the full spectrum of psychiatric disorders. 
 
In the subsequent sections of this thesis, I link the genetic risk for psychiatric disorders 
with cell type-specific changes in gene expression and chromatin accessibility in the 
human brain. Recognizing the research community's agreement that reliable risk 
predictions are most feasible at the tails of the PRS distributions (Andlauer & Nöthen, 
2020; Patrick F. Sullivan & Geschwind, 2019), my thesis focuses on these high and low 
risk groups rather than treating PRS on a continuous scale. 
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1.7 Transcriptomics in Psychiatric Research 
Transcriptomics, particularly RNA-sequencing (RNA-seq), has emerged as a pivotal 
tool in psychiatric research, offering unprecedented insights into the molecular 
correlates of stress and psychiatric disorders. By quantifying RNA in biological samples, 
this method enables the identification of gene expression changes or splice variants, 
providing a dynamic view of the transcriptome in various conditions (Wang, Gerstein, 
& Snyder, 2009).  
 
RNA-seq involves the reverse transcription of RNA into cDNA fragments, which are 
then sequenced and aligned to a reference genome to quantify transcriptome-wide gene 
expression levels (Wang et al., 2009). Differential expression analysis is widely used to 
study gene-level associations with phenotypes like psychiatric conditions (Fromer et al., 
2016; Merikangas et al., 2022; Ramaker et al., 2017). Complementary to this, gene set 
enrichment (Subramanian et al., 2005) and network analyses (de la Fuente, 2010; 
Langfelder & Horvath, 2008; Ogris, Hu, Arloth, & Müller, 2021) allow for the exploration 
of complex interactions among genes, tissues, and outcomes (Bagot et al., 2016; Bowen, 
Burgess, Granger, Kleinman, & Rhodes, 2019; Geng et al., 2020; Huggett & Stallings, 
2020; Kapoor et al., 2019; Kwon, Kim, Choi, Seol, & Kang, 2019; Labonté et al., 2017; X. 
Li et al., 2019; J. Liu, Jing, & Tu, 2016; Parikshak, Gandal, & Geschwind, 2015; Pierson, 
Koller, Battle, & Mostafavi, 2015; Sato et al., 2019; Zimmermann et al., 2019). Regulatory 
transcriptional networks have been constructed to identify master regulators in 
disorders like MDD, bipolar disorder, and schizophrenia (Funahashi, 2001), highlighting 
the power of transcriptomics in discerning key molecular players. More information on 
molecular network analysis can be found in Section 1.10. 
 
The intersection of genetics and the transcriptome is an important field in psychiatric 
research trying to shed light on the complex interplay between inherited genetic 
variations and associated expression patterns. For instance, approximately 20% of 
GWAS variants associated with schizophrenia have been found to potentially influence 
gene expression (Fromer et al., 2016). Expression quantitative trait loci (eQTL) studies 
have been instrumental in pinpointing genetic variants associated with disease that 
influence gene expression, frequently manifesting in trans-regulatory effects, as 
indicated by research in various tissues including blood (Porcu et al., 2021; Võsa et al., 
2021) and brain (Bryois et al., 2022; Dobbyn et al., 2018). Recognizing the high tissue 
specificity of gene expression and correspondingly eQTLs, the Genotype-Tissue 
Expression (GTEx) project has developed an extensive resource facilitating the 
examination of eQTLs across different tissues (Lonsdale et al., 2013). Additionally, the 
CommonMind Consortium has assembled a large collection of brain samples, which 
enables the investigation of eQTLs associated with psychiatric disorders (Hoffman et al., 
2019). Transcriptome-wide association studies (TWAS) for MDD and schizophrenia, 
integrating GWAS with gene expression levels, identified 94 and 157 genes respectively 
with significant association, thereby offering insights into causal genes and the nature of 
their impact on these diseases (Dall'Aglio, Lewis, & Pain, 2021; Gusev et al., 2018). 
However, the vast number of risk variants identified by GWAS, along with their often 
non-coding nature, and the complex phenomena of pleiotropy and incomplete 
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penetrance make the translation of these findings into mechanistic insights challenging 
(Hernandez et al., 2021). There is a notable correlation between PRS for psychiatric 
disorders and variations in gene expression, underscoring the significant impact of 
cumulative small genetic effects on the regulation of gene activity (Võsa et al., 2021; Worf 
et al., 2022). 
 
Transcriptomics serve as a bridge connecting genetic predisposition to molecular 
function in psychiatric research. The subsequent chapters will delve deeper into how 
these molecular insights translate into psychiatric conditions and genetic risk factors. 
 

1.8 Epigenomics in Psychiatric Research 
The exploration of epigenomics in psychiatric disorders has become an important aspect 
of understanding the molecular basis that underlies these complex conditions. 
Epigenetic modifications are known to be tissue- and cell-specific, and act as major risk 
factors for psychiatric disorders, integrating the influence of genetic and 
environmental factors on cellular function (Keverne & Binder, 2020).  
 
Epigenetic processes are of particular importance in the brain, as they need to ensure 
optimal functioning and interactions in an assembly of primarily postmitotic cells 
(Cholewa-Waclaw et al., 2016). They contribute to cell differentiation and developmental 
processes in the brain, but their modifications can be triggered by environmental factors 
and mediate the relationship between environment and gene regulatory mechanisms 
(Egervari, 2021; Griffiths & Hunter, 2014). Negative life events, especially during 
childhood, have been linked to an increased risk for psychiatric disorders mediated by 
epigenetic mechanisms (Griffiths & Hunter, 2014; Weaver et al., 2004; Weaver, Meaney, 
& Szyf, 2006).  
 
Keverne and Binder (2020) review the epigenetic layers associated with psychiatric 
disorders. Some of the major carriers of epigenetic information in psychiatric disorders 
are DNA methylation, chromatin modifications, non-coding RNAs, and RNA 
modifications. The accessibility of specific DNA sequences to transcription regulators – 
and RNA sequences to translational regulators in the case of RNA modifications – is 
collectively shaped by these epigenetic layers. DNA methylation represents the most 
studied layer of epigenetic regulation in MDD. Nonetheless, findings consistent in 
position and directionality are still to be reported (Keverne & Binder, 2020). 
 
The primary positions for regulatory elements in the genome, including promoters, 
enhancers, silencers, or transcription factor binding sites, are thought to be open 
chromatin regions (Tsompana & Buck, 2014). Using the assay for transposase-accessible 
chromatin sequencing (ATAC-seq), these accessible chromatin regions can be easily 
detected by high-throughput sequencing after sequencing adaptors are transposed into 
the DNA backbone by the Tn5 transposase (Buenrostro, Giresi, Zaba, Chang, & 
Greenleaf, 2013). ATAC-seq requires low amounts of starting material which makes it a 



20  Introduction 
 

  

practical choice for large-scale sequencing experiments, even at the single-cell level 
(Buenrostro et al., 2013; Buenrostro et al., 2015). 
 
While several studies reported a positive correlation between gene expression and 
chromatin accessibility in the respective gene's promoter region (Reske, Wilson, & 
Chandler, 2020; Wong et al., 2023), other studies reported that changes in gene 
expression often occur independently of alterations in chromatin accessibility in the 
respective genomic region (de la Torre-Ubieta et al., 2018). Different factors such as 
transcription factor binding, DNA methylation, or histone modifications might 
primarily regulate gene expression in these cases (de la Torre-Ubieta et al., 2018; 
Natarajan, Yardımcı, Sheffield, Crawford, & Ohler, 2012). This complexity was further 
elucidated by Starks et al., who identified distinct groups with varying gene expression 
and accessibility patterns, each associated with different cellular functions, such as 
housekeeping genes, or tissue-specific genes (Starks, Biswas, Jain, & Tuteja, 2019). 
 
The focus of psychiatric research has shifted in many cases towards epigenetic studies, 
which have the potential to clarify the complex interplay between genetics, gene 
regulation, and environmental variables since the majority of GWAS variants linked to 
psychiatric diseases are found in non-coding regulatory elements (Bryois et al., 2018; 
Consortium., 2019). A study by Bryois et al. (2018) evaluated the relationship between 
schizophrenia and chromatin accessibility in the human prefrontal cortex, and observed 
an enrichment of accessible regions for psychiatric risk variants but identified only a 
small number of differentially accessible regions between schizophrenia patients and 
controls. This discrepancy was attributed to a significant limitation in bulk studies - the 
potential masking of cell type-specific effects (Bryois et al., 2018). A high variability of 
chromatin accessibility between cell types in different cortical regions in human 
postmortem brain samples was actually detected using fluorescence-activate nuclear 
sorting (Hauberg et al., 2020). Additionally, a single-cell study of MDD revealed 
accessibility alterations predominantly in deep-layer excitatory neurons of the prefrontal 
cortex (Chawla et al., 2023). 
 
By studying epigenetic mechanisms in the brain, including chromatin accessibility, I aim 
to reach a better understanding of the gene regulatory processes and their impairments 
contributing to the development and manifestation of psychiatric disorders. 
 

1.9 Single-Cell Molecular Profiling in Psychiatric Research 

Recent advances of single-cell sequencing technologies have significantly enhanced our 
capability to perform high-resolution studies of different tissues at the level of individual 
cell types (Buenrostro et al., 2015; Kulkarni, Anderson, Merullo, & Konopka, 2019; 
Wagner, Regev, & Yosef, 2016). These technologies have facilitated the development of 
single-cell transcriptomic and epigenomic atlases for the human brain, revealing 
hundreds of unique cell types and even thousands of cellular subtypes among millions 
of cells from various brain regions (Y. E. Li et al., 2023; Siletti et al., 2023).  



Introduction 21 

 

It is of major importance to address cellular heterogeneity in postmortem human brain 
studies for psychiatric disorders (Price, Jaffe, & Weinberger, 2021). Techniques such as 
computational deconvolution of bulk tissue signals, based on known cell type-specific 
profiles, offer a rapid and cost-effective approach, yet they provide only estimates of cell 
type proportions (Newman et al., 2015). Historically, methods like laser capture 
microdissection and fluorescence-activated nuclear sorting have enabled the study of 
individual cells or nuclei, yet they come with limitations in throughput and other 
technical constraints (Matevossian & Akbarian, 2008; Price et al., 2021; Rossner et al., 
2006).  

Nowadays, single-cell sequencing technologies enable transcriptomic and epigenomic 
profiling of single cells (Figure 1.4). While plate-based methods allow for the isolation 
and analysis of individual cells or nuclei within PCR plates (Picelli et al., 2014), droplet-
based methods offer the capacity to sequence thousands of cells in isolation within 
nanoliter droplets (Macosko et al., 2015). Droplet-based strategies like the 10x Genomics 
Chromium platform, which was utilized to generate the single-cell sequencing data 
parts of this thesis rely on, provide much sparser RNA coverage, but offer higher 
throughput than plate-based strategies (Price et al., 2021). 

The choice between single-cell and single-nuclei sequencing depends on the availability 
of intact cells, a condition frequently unmet in postmortem brain samples, which are 
commonly fresh-frozen and sourced from brain banks. Research indicates that nuclear 
RNA can serve as a proxy for the whole transcriptome, thereby justifying the use of 
single-nuclei sequencing in scenarios where intact cells cannot be obtained (Trygve E. 
Bakken et al., 2018; Price et al., 2021). 

 

Figure 1.4. Bulk and single-cell sequencing analysis. During single-cell sequencing reads are getting 
barcoded on the single-cell level which provides molecular profiles for individual cells that can be mapped 
to cell types, while bulk sequencing provides molecular profiles averaged across all cells of a tissue sample. 
Based on (Clark) 
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Single-cell molecular profiling significantly advances our understanding of the complex 
etiology of psychiatric disorders. Comparative studies between diseased and healthy 
donors are increasingly transitioning from broad bulk analyses to more granular single-
cell resolution (Chawla et al., 2023; Nagy et al., 2020; Ruzicka et al., 2022). Psychiatric 
studies focusing on cellular populations within the prefrontal cortex related to MDD 
highlighted the crucial role of excitatory neurons in modulating both gene expression 
and chromatin accessibility (Chawla et al., 2023; Nagy et al., 2020). Another 
investigation, employing single-nucleus transcriptomics to explore molecular alterations 
associated with schizophrenia, revealed that a significant proportion of differentially 
expressed genes identified within specific cell types were also detected in bulk data 
analyses. However, inhibitory neurons and non-neuronal cell types exhibited a 
substantial number of cell type-specific hits, thereby underscoring how findings derived 
from bulk and cell type-specific approaches complement each other (Ruzicka et al., 
2022).  

Here, I explore the transcriptomic and epigenomic profiles of the orbitofrontal cortex in 
psychiatric disorders, using single-nuclei sequencing data from postmortem brain 
samples from patients and controls. The dissection on the level of single cells provides a 
detailed map of cell type-specific alterations in psychiatric disorders. 
 

1.10 Multi-Omics and Network-Based Analyses of Psychiatric 
Disorders 

Multi-omics studies in psychiatric research are enabling an integrated analysis of diverse 
data types, including molecular data, such as genomics, transcriptomics, epigenomics, 
and proteomics, but also phenotypic data (Figure 1.5). These studies are based on the 
understanding that psychiatric disorders arise from complex interactions within 
biological pathways, rather than from changes in single biomolecules (Sathyanarayanan 
et al., 2023). Multi-omics approaches enable the identification of biomarkers and unravel 
disease mechanisms that are consistently associated with a condition. A better 
understanding of these pathomechanisms is essential for the development of 
personalized medicine, whereby treatments can be tailored towards the unique 
molecular profiles of individual patients (Joyce et al., 2021; Sathyanarayanan et al., 2023). 
 
The integration of different data modalities is accomplished through bioinformatics 
tools, which employ statistical methods such as enrichment-based methods for overlap 
and association analysis (Sey et al., 2020; Watanabe, Taskesen, Van Bochoven, & 
Posthuma, 2017; Wu et al., 2021), statistical fine-mapping for establishing causality 
(Giambartolomei et al., 2014), and imputation-based methods like TWAS for predicting 
gene expression from genotypic data (Dall'Aglio et al., 2021). Machine learning further 
enhances multi-omics by applying for example linear and logistic regression, clustering, 
graph neural networks, and random forests (Sathyanarayanan et al., 2023). These 
techniques are instrumental for diagnostic classification and for predicting risk and 
treatment responses (Joyce et al., 2021).  
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Figure 1.5. Multi-omics analyses in psychiatric research. Data is obtained from tissue of human 
populations, animal models, or cell cultures and organoids. The data modalities may include various 
molecular measurements, such as genomics, transcriptomics, epigenomics, or proteomics, as well as 
phenotypic data, including clinical data or demographics. Integrative statistical and machine learning 
methods are used for biomarker detection, clustering (e.g., patient stratification), inference of molecular 
networks, drug target discovery, and more. Created with BioRender.com 

Graph- and network-based modeling are vital for the exploration of the interactions 
among multiple genes, tissues, and clinical outcomes in complex disorders. While strong 
differential expression is evident when major genetic or environmental factors are at 
play, as seen in conditions like cancer (Perduca, Omichessan, Baglietto, & Severi, 2018; 
Sondka et al., 2018), psychiatric disorders are highly polygenic, whereby many genetic 
variants with small effect sizes cumulatively contribute to the overall risk (Akbarian et 
al., 2015; M. Li et al., 2018).  
 
Combining differential expression analysis with network analysis has proven to be 
particularly effective in dissecting the pathomechanisms of complex disorders 
(Parikshak et al., 2015). Gene co-expression networks, constructed using Pearson's 
correlation, alongside differential expression analysis, have been employed to examine 
the shared and distinct transcriptomic profiles of various psychiatric disorders, leading 



24  Introduction 
 

  

to the identification of gene modules associated with specific cell types and disorders 
(Gandal, Zhang, et al., 2018). 
However, correlation-based network inference can result in over-connectivity and low 
specificity (Saint-Antoine & Singh, 2020). To combat this, alternative methods like 
regression-based and Bayesian techniques are employed. Bayesian methods, although 
less suited for large datasets, are advantageous for smaller networks. Conversely, 
regression and other machine learning algorithms require large sample sizes to infer 
connections confidently (Bersanelli et al., 2016; Saint-Antoine & Singh, 2020). To 
optimize performance on datasets with limited samples, reduction of the input space 
through prior knowledge is often required (Linde, Schulze, Henkel, & Guthke, 2015). 
 
KiMONo exemplifies this approach by utilizing prior knowledge of functional 
relationships sourced from public databases, to infer integrated multi-level networks 
(Ogris et al., 2021). Differential network analysis further extends the capability to 
represent differential co-expression and regulatory interactions within a single network, 
enabling the study of directed multivariate effects of treatments or disease states on gene 
neighborhoods (Kim Youngsoon, 2018). The advantage of combining differential 
network analysis with prior knowledge-based network inference is the resulting 
topological coherence. This is reflected in network metric such as node degree, which 
measures the number of edges a particular node has, or node-betweenness, measuring 
the degree to which a node is located on the shortest path between other nodes (Freeman, 
1977), thereby increasing the robustness of differential connection calculations. 
 
In this thesis, I aim to harness the power of multi-omics to uncover the molecular 
intricacies of psychiatric disorders and the biological effects of glucocorticoid exposure. 
I infer differential transcriptomic networks that are guided by prior knowledge to 
observe the intricate changes in gene expression patterns resulting from glucocorticoid 
exposure. By integrating genetic, transcriptomic, and epigenomic data, I aim to map the 
complex landscape of molecular alterations that underpin psychiatric disorders.  
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1.11 Aims of the Thesis 
 
The overall aim of my thesis is to enhance our understanding of molecular alterations 
underlying stress and psychiatric disorders, with a particular emphasis on the specificity 
of these dysregulations to brain regions and cell types. My focus lies on transcriptomic 
and epigenomic changes in response to stress, and in relation to psychiatric disorders 
and the genetic predisposition for such disorders.  
 
The project detailed in Chapter 3.1 of my thesis focuses on understanding the brain 
region-specific responses to glucocorticoid receptor activation at a transcriptome-wide 
level using a mouse model. The study explores whether genes that are differentially 
expressed upon glucocorticoid exposure also exhibit changes in co-expression patterns. 
Additionally, the project seeks to determine whether differential network analysis can 
provide further insights beyond differential expression analysis.  
 
The second project within my thesis (Chapter 3.2) is designed to discern cell type-specific 
dysregulations related to psychiatric disorders and the genetic predisposition for those 
in the orbitofrontal cortex. By using single-nuclei RNA-seq and ATAC-seq data, I aim to 
determine if gene expression correlates with chromatin accessibility both across and 
within cell types. The research focuses on the comparison of gene expression between 
trans-diagnostic psychiatric cases and controls across distinct cell types, investigating 
the biological processes affected at the gene expression level in these psychiatric 
disorders. Another crucial aspect is to examine how chromatin accessibility patterns 
vary between cases and controls and whether changes in accessibility occur nearby 
regions of differentially expressed genes, emphasizing the importance of multi-modal 
integration. Further, the study assesses dysregulations in gene expression and chromatin 
accessibility between donors with high and low genetic risk for psychiatric phenotypes 
within different cell types. It investigates whether the dysregulated patterns differ from 
those observed between cases and controls, thereby contributing to a better 
understanding of the molecular architecture of psychiatric disorders. 
 
In addition, my doctoral thesis aims to unravel the complex interplay between stress, 
glucocorticoid receptor activation, and dysregulations in psychiatric disorders in the 
prefrontal cortex, examining the extent to which glucocorticoid receptor activation 
disrupts the same genes and pathways implicated in stress-related disorders. This will 
elucidate whether the genetic and molecular disruptions observed in stress-related 
disorders align with those induced by glucocorticoid receptor activation. 
 
Overall, my doctoral thesis strives to dissect the molecular mechanisms underlying 
stress-related and psychiatric dysregulations in different regions and cell types of the 
brain. Through this integrated approach, the research anticipates providing novel 
insights into the pathophysiology of psychiatric disorders, which could ultimately lead 
to more targeted therapeutic strategies. 
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2 Materials and Methods 

2.1 Methodological Approaches to Analyzing Transcriptomic 
Response to Glucocorticoid Treatment in Mouse Brain 
Tissue 

2.1.1 Experimental Animals 

As previously reported (Gerstner et al., 2022), all experiments and protocols were 
performed in accordance with the European Communities' Council Directive 
2010/63/EU and were approved by the committee for the Care and Use of Laboratory 
animals of the Government of Upper Bavaria. All mice were obtained from the Max 
Planck Institute of Psychiatry's in-house breeding facility and maintained in group-
housed conditions in individually ventilated cages (IVC; 30 cm 16 cm x 16 cm; 501 cm2) 
with central airflow (Tecniplast, IVC Green Line – GM500). The animals were kept under 
constant environmental conditions (12:12 h light/dark cycle, 23 ± 2 °C and 55% 
humidity) and had unlimited access to water and standard chow. Every IVC had a 
sufficient amount of bedding and nesting materials, along with a wooden tunnel to 
enhance the environment. A semi-randomized method was used to assign animals to 
experimental groups. Data analysis and execution of experiments were performed 
blinded to group allocation. 
Male C57Bl/6n mice, aged 3 months (n=15 per condition), were given intraperitoneal 
injections of either 0.9% saline as control (vehicle) or 10 mg/kg body weight of 
dexamethasone (treatment). The mice were sacrificed four hours later, and the brains 
were perfused with a solution of Heparin in 0.9% saline, extracted and snap-frozen in 
butanol on dry ice, and preserved at 80 °C until needed. After slicing the brains into 250 
µm coronal slices, 8 different brain regions were isolated utilizing the mouse brain atlas's 
stereotaxic coordinates (Paxinos & Franklin, 2008). Specifically, the isolated brain regions 
included: cingulate cortex 1 and 2 (bregma 2.34 to -0.22), from now on referred to as 
prefrontal cortex (PFC); paraventricular nucleus of the hypothalamus (PVN; bregma -
0.58 to -1.22); amygdala (AMY; bregma 0.02 to -0.94); dorsal cornu ammonis 1 (dCA1; 
bregma -1.22 to -2.80); ventral cornu ammonis 1 (vCA1; bregma -2.92 to -3.88); dorsal 
dentate gyrus (dDG; bregma -0.94 to -2.80), ventral dentate gyrus (vDG; bregma -2.92 to 
-3.88) and cerebellar cortex (CER; bregma -5.80 to -6.24), see Figure 2.1. Brain punches 
were kept in dry ice while cutting and at -80°C until RNA extraction was carried out. 
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Figure 2.1. Mouse brain regions isolated from experimental animals. Prefrontal cortex (PFC), amygdala 
(AMY), paraventricular nucleus of the hypothalamus (PVN), dorsal and ventral cornu ammonis (dCA1 and 
vCA1), dorsal and ventral dentate gyrus (dDG and vDG) and the cerebellar cortex (CER) were isolated from 
coronal slices. Figure created with BioRender.com. 

2.1.2 RNA Extraction 

Following the manufacturer's instructions, RNA was extracted using an automated 
Chemagic 360° device with an integrated dispenser and the Chemagic RNA Tissue Kit 
(CMG-1212). Briefly said, magnetic beads are employed during Chemagic 360° RNA 
extraction to bind the nucleic acids, which are subsequently isolated using 
magnetized metal rods. Rotating zirconium beads were used to homogenize the tissue. 
Turning off the magnet while the rods were still rotating in a buffer of 
preference, allowed for the washing steps and the following elution of the RNA. DNase 
I was used to digest DNA, whereas Proteinase K was used to break down proteins. A 
Nanodrop was used to assess the concentration of RNA, and Tapestation RNA 
ScreenTapes (High Sensitivity RNA ScreenTapes, Cat No. 5067–5579) were used to 
measure the quality of the RNA. 

2.1.3 RNA Sequencing 

The QuantSeq 3′ mRNA Fwd kit (Lexogen) was utilised to prepare 3′ tag RNA 
sequencing libraries in accordance with the manufacturer's instructions. Additionally, 
individual transcripts were tagged with unique molecular IDs (UMIs – UMI Second 
Strand Synthesis Module for QuantSeq FWD). Using 75 bp long reads, libraries were 
single-end sequenced using an Illumina HiSeq 4000 sequencer, aiming for a 
total coverage of 10 million reads per library. Due to technical problems with the library 
preparation, two dexamethasone-treated dCA1 samples, one dexamethasone-treated 
PFC sample, one vehicle PVN sample, and one vehicle vCA1 sample were eliminated 
from sequencing and/or further analysis. 

2.1.4 RNA Sequencing Analysis 

FastQC v0.11.4 was used to assess the quality of the sequencing data (Andrews Simon, 
2019), and cutadapt v1.11 was used to trim the adapters (M. Martin). Following the 
extraction of unique molecular identities using UMI-tools v.0.5.4 (T. Smith, Heger, & 
Sudbery, 2017), the reads were aligned to the mouse reference genome (mm10, Ensembl 
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release 84) using STAR v2.6.0a (Dobin et al., 2013). Additionally, UMI-tools were applied 
to deduplicate the reads, and gene expression was quantified with featureCounts v1.6.4 
(Liao, Smyth, & Shi, 2014). R version 4.0.5 ("R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria.," 2021) was used 
to carry out downstream analyses. 12,976 genes remained in the dataset after all genes 
not detected in at least one complete treatment group were filtered out. Genes with less 
than 10 counts across all samples within each brain region were then 
removed (Supplementary Table 1 provides the number of genes per brain region). 
Principal component analysis (PCA) was performed on the samples from each treatment 
group and brain area separately to detect outliers. The first principal component was 
used to exclude samples that deviated from the mean by more than 2.5 standard 
deviations (Supplementary Table 1 lists the number of outliers by treatment group and 
brain area). To account for unwanted variation in the data, surrogate variable analysis 
(SVA) was applied (Leek, 2014). 

2.1.5 Differential Expression Analysis 

The model fitted for differential expression (DE) analysis included significant surrogate 
variables as covariates; the precise amounts are shown in Supplementary Table 1. 
Using DESeq2's (v1.30.1) variance stabilizing transformation (Love, Huber, & Anders, 
2014), the expression data was transformed and normalized before SVA and network 
analysis. DE analysis was carried out for each brain region separately between the two 
treatment groups. The Wald test in DESeq2 was applied to test for DE. Genes with a false 
discovery rate (FDR) £ 10% were considered to be significant. The less stringent 
threshold of 10% for the DE analysis was used to allow for a more systemic comparison 
between brain regions on the gene and network level. 

2.1.6 Network Analysis 

2.1.6.1 Network Inference 
In the study, separate networks were constructed for vehicle- (hereafter referred to as 
"vehicle") and dexamethasone-treated (hereafter referred to as "treatment") samples for 
each brain region. This was achieved using the KiMONo network inference method 
(Ogris et al., 2021). KiMONo leverages prior knowledge from biological databases to 
provide the foundational network layout, which includes the connections among the 
transcripts. The method then makes use of different omic layers (in this case, only 
transcriptomic data) on top of this basic network layout to adjust the edge weights in the 
network. If an edge weight falls below a certain threshold, it is removed from the 
network (Figure 3.1). More specifically, KiMONo employs a multivariate regression 
approach with sparse group LASSO penalization to model the transcripts' expression 
levels. The potential predictors in the regression model are derived from the gene's 
connections in a prior network. In the resulting directed gene expression networks, the 
nodes represent transcripts from the input data, and the edge weights are the beta 
coefficients (β value) determined by the regression approach. A β value > 0 indicates a 
positive correlation between the expression levels of two genes, while a β value < 0 
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indicates a negative correlation. Significant surrogate variables identified during the DE 
analysis were used as covariates for network inference and were treated as a separate 
group in the regression penalization (Supplementary Table 1). The R2 value assigned to 
each regression model serves as a confidence score, indicating the model's goodness of 
fit. In both the vehicle and treatment networks, all interactions with an absolute β value 
< 0.01 or an R2 value < 0.1, as well as the connections to the surrogate variables, were 
removed. 
As a prior network, we utilized FunCoup 5 (Persson, Castresana-Aguirre, Buzzao, 
Guala, & Sonnhammer, 2021), a database containing approximately 6.7 million 
interactions among 19,771 genes in the mouse organism. This database serves as a 
framework for inferring genome-wide functional couplings based on data from 10 
different evidence types: physical protein interactions, mRNA co-expression, protein co-
expression (based on the human protein atlas), genetic interaction profile similarities, 
shared regulation by transcription factor binding, shared regulation by miRNA 
targeting, subcellular colocalization, domain interactions, phylogenetic profile 
similarity, quantitative mass spectrometry data and gene regulatory data inferred from 
transcription factor bindings. FunCoup provides the edges for the basic network layout, 
and KiMONo calculates the weights of these edges, which are fitted from the expression 
of the transcripts in each brain region and treatment paradigm. 

2.1.6.2 Differential Network Analysis 
For each brain region, a differential network (DN) was computed by merging the vehicle 
and treatment networks. This was done using the DiffGRN method (Kim Youngsoon, 
2018), which outlines the differential relationships between two genes. Consequently, 
differential gene interactions were derived from the regression's β values and their 
standard errors via a z test: 

𝑧!" =	
𝛽!"# 	− 	𝛽!"$

&𝑆𝐸(𝛽!"# )% 	+ 	𝑆𝐸(𝛽!"$ )%
 

Here, βTXY and βVXY represent the β values of genes X and Y in the treatment and vehicle 
networks, respectively. A z value > 0 signifies either a stronger positive correlation (0 < 
βVXY < βTXY), a weaker negative correlation (βVXY < βTXY < 0), or a transition from negative 
to positive correlation (βVXY < 0 < βTXY) between genes X and Y from the vehicle to the 
treatment network. Conversely, a z value < 0 indicates a stronger negative correlation 
(βTXY < βVXY < 0), a weaker positive correlation (0 < βTXY < βVXY), or a switch from positive 
to negative correlation (βTXY < 0 < βVXY) between genes X and Y from the vehicle to the 
treatment network. Z values > 0 can be interpreted as relative changes in gene expression 
resulting in a more positive correlation (referred to as positive regulatory effect), while 
z values < 0 can be interpreted as relative changes in gene expression resulting in a more 
negative correlation (referred to as negative regulatory effect) (Figure 2.2). Differential 
interactions with an FDR adjusted p value ≥ 0.01 linked to the z score were omitted. 
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Figure 2.2. Differential networks metrics explained. Z values > 0 indicate relative changes in gene 
expression leading to a more positive correlation, so an overall positive regulatory effect, while z values < 
0 indicate relative changes in gene expression leading to a more negative correlation, so an overall 
negative regulatory effect. 

2.1.6.3 Hub Gene Analysis 
Key regulators in the vehicle, treatment, and differential networks were identified; 
respectively referred to as vehicle-, treatment-, and differential-hub genes. We used the 
node-betweenness, which is defined as the number of shortest pathways passing 
through a node and is implemented in the igraph package (Csardi, 2014; Csárdi, 2023), 
as a metric to identify the key genes. The node-betweenness in the networks (vehicle, 
treatment, differential) is determined by the prior network as they were created on top 
of it. As a result, we normalized the node-betweenness as follows: 

node-betweennessNorm&'()*+,	.(gene	𝑋) =
node-betweenness&'()*+,	.(gene	𝑋)

node-betweenness&'()*+,	/0120(gene	𝑋)
 

where node-betweennessnetwork A(gene X) is the node-betweenness of gene X in network 
A (e.g. DN of one brain region) and node-betweennessnetwork Prior(gene X) is the node-
betweenness of the same gene X in the prior network. Genes that had a node-
betweenness > 10,000 and a normalized node-betweenness > 1.0 were classified as hub 
genes. These genes were then compared with the DE genes identified in the DE analysis 
and with each other across different brain regions. 

2.1.7 Enrichment Analysis 

The enrichment of differentially expressed (DE) genes or differential hub genes for 
biological processes and pathways was carried out using the FUMA GENE2FUNC 
analysis (Watanabe et al., 2017). This analysis is based on the Gene Ontology (GO 
(Ashburner et al., 2000; Carbon et al., 2021)), KEGG (Kanehisa, 2019; Kanehisa, 
Furumichi, Sato, Ishiguro-Watanabe, & Tanabe, 2021; Kanehisa & Goto, 2000), Reactome 
(Jassal et al., 2020), and genes that single nucleotide polymorphisms (SNPs) with 
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genome-wide association to various traits are mapped to (analysis references the 
NHGRI-EBI GWAS Catalog (Buniello et al., 2019), accessed in September 2021). All genes 
expressed above the threshold in all brain areas (ngenes=12,830 genes) served as the 
background list when FUMA's default parameters were used. Only terms with at least 
10% (unless otherwise stated) of the input genes overlapping with the term genes were 
taken into consideration in order to account for differently sized input gene lists. To 
allow for multiple comparisons, p values were adjusted using the Benjamini-Hochberg 
(FDR) method (Benjamini & Hochberg, 1995). A 5% FDR cutoff was applied to assess 
statistical significance. Enrichment results are visualized with their FDR, gene ratio 
(genes associated with GR activation in the gene set/total genes in the gene set) and log2-
transformed odds ratio (proportion of genes associated with GR activation in gene set to 
the other genes in the gene set/proportion of genes associated with GR activation not in 
the gene set to the genes in background set that are neither associated nor in the gene 
set). 
We also tested for overrepresentation of DE and differential hub genes within network 
modules of a postmortem human brain study (autism spectrum disorder (n=51), 
schizophrenia (n=559), bipolar disorder (n=222), and controls (n=936)) (Gandal, Zhang, 
et al., 2018). This was done using a one-sided Fisher's exact test implemented in R ("R: A 
language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria.," 2021). P values were FDR corrected (Benjamini & 
Hochberg, 1995), and a cutoff of 5% was applied to determine statistical significance. 

2.1.8 Shiny App 

We developed DiffBrainNet, which is available online at 
http://diffbrainnet.psych.mpg.de, to enable all interested scientists to search these data 
and analyses. The application was generated in R v4.0.5 ("R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, Vienna, 
Austria.," 2021). It makes use of the shiny package v1.7.1 and a variety of other publicly 
available packages, including org.Mm.eg.db v3.14.0, shinythemes v1.2.0, ggplot 2 v3.3.5, 
plotly v4.10.0, visNetwork v2.1.0, data.table v1.14.2, dplyr v1.0.7, and stringer 1.4.0. The 
app is hosted using ShinyProxy, and its source code can be found on github (see Data 
and Code Availability).  
  

http://diffbrainnet.psych.mpg.de/
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2.2 Methods for the Analysis of Cell Type-Specific Molecular 
Signatures in Postmortem Brain Tissue in a Cross-Disorder 
Psychiatric Cohort 

2.2.1 Postmortem Brain Tissue 

As reported previously (Fröhlich et al.; Gerstner et al.; Matosin et al., 2023), the work 
was approved by the University of Wollongong's Human Research Ethics Committee 
(HE2018/351) and Ludwig Maximilians-Universität (22-0523). Informed permission for 
a brain autopsy was given by donors or their next of kin. We performed single-nucleus 
RNA-sequencing (snRNA-seq) and single-nucleus ATAC-sequencing (snATAC-seq) 
using freshly-frozen postmortem tissues of the orbitofrontal cortex (Brodmann area 11 
cut from the 3rd 8-10mm coronal slice), obtained from the NSW Brain Tissue Resource 
Centre in Sydney, Australia. The cohort comprised 92 donors, including 35 
psychologically healthy controls and 57 cases with a diagnosis of bipolar disorder, major 
depressive disorder (MDD), schizoaffective disorder (SCA), or schizophrenia 
(n=5,7,7,38, respectively). The case and control groups were matched according to brain 
pH (mean ± s.d. = 6.60 ± 0.24), postmortem interval (mean ± s.d. = 33.90 ± 14.82), age 
(mean ± s.d. = 54.27 ± 13.64), and sex (38% female representation), see Table 2.1. 
Structured information of comorbid diseases was not available. However, there is a 
notably high rate of natural deaths (94.3% in controls, 63.2% in cases), predominantly 
from cardiac and respiratory causes, among the cohort at a relatively young age of death. 
This fact, combined with a high mean body mass index (mean ± s.d. = 32.73 ± 7.68), 
indicates decreased physical health in the cohort compared with the general population. 
 
Table 2.1. Postmortem brain cohort characteristics. Data is presented as the mean ± standard deviation. F 
(female), M (male), PMI (postmortem interval), RIN (RNA integrity number), BMI (body mass index), BIP 
(bipolar disorder), MDD (major depressive disorder), SCA (schizoaffective disorder), SCZ (schizophrenia).  

 Controls (n=35) Cases (n=57) Overall (n=92) 

Age [years] 55.83 ± 13.56 53.32 ± 13.73 54.27 ± 13.64 

Sex 13 F | 22 M 22 F | 35 M 35 F | 57 M 

Psychiatric 
diagnosis 

0 BIP (5), MDD (7), 
SCA (7), SCZ (38) 

No diagnosis (35), BIP (5), 
MDD (7), SCA (7), SCZ (38) 

PMI [h] 31.80 ± 11.30 35.18 ± 16.58 33.90 ± 14.82 

pH 6.66 ± 0.24 6.57 ± 0.23 6.60 ± 0.24 

RIN 7.17 ± 1.34 7.25 ± 1.21 7.22 ± 1.25 

BMI 34.43 ± 9.50 31.46 ± 6.00 32.73 ± 7.68 

Manner of Death Accident (1), 
Natural (33), 
Unknown (1) 

Accident (3), 
Natural (36), 
Suicide (16), 
Unknown (2) 

Accident (4), 
Natural (69), 
Suicide (16), 
Unknown (3) 
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2.2.2 Nuclei Isolation and Single-Nucleus RNA and ATAC Sequencing 

Nuclei were isolated from approximately 50 mg of frozen postmortem brain tissue 
(Brodmann area 11). The tissue was homogenised by dounce-homogenization in a 1 ml 
nuclei extraction buffer, which had the following ingredients: 10 mM Tris-HCl pH 8.1, 
0.1 mM EDTA, 0.32 M Sucrose, 3 mM Mg(Ac)2, 5 mM CaCl2, 0.1% IGEPAL CA-630, and 
40 U/ml RiboLock RNase-Inhibitor (ThermoScientific). Next, using a Thermo 
ScientificTM SorvallTM WX+ 471 ultracentrifuge, the homogenate was placed onto 1.8 
ml of sucrose cushion (10 mM Tris-HCl pH 8.1, 1.8 M Sucrose, 3 mM Mg(Ac)2) and 
ultracentrifuged for 2.5 hours at 28,100 rpm at 4°C. The nuclei pellet was gently 
resuspended in 80 µl of resuspension buffer (1X PBS, 3 mM Mg(Ac)2, 5 mM CaCl2, 1% 
BSA, and 40 U/ml RiboLock RNase-Inhibitor) after the supernatant was removed 
using vacuum suction. Chromium Next GEM Single Cell ATAC Kit v1.1 and Chromium 
Next GEM Single Cell 3' Kit v3.1, respectively, were used to prepare sn-ATAC libraries 
and sn-RNA libraries from the identical nuclei suspension, in accordance with the 
manufacturer's instructions. For both the sn-ATAC and sn-RNA libraries, the targeted 
recovery was 10,000 nuclei per sample. Libraries of the different donors were pooled 
equimolarly (separately for snATAC and snRNA libraries). As directed by the 
manufacturer, Illumina Free Adaptor blocking Reagent was administered. The NovaSeq 
6000 System (Illumina, San Diego, California, USA) was used to sequence libraries. 

2.2.3  Processing of Single-Nucleus Data 

2.2.3.1 Randomization of Samples 
To ensure an experimental design that was not biased by variables of interest, samples 
were distributed into 16 batches, utilizing OSAT (Yan et al., 2012) for randomization 
based on age, sex, and disease status. Nuclei were extracted and libraries for snRNA-seq 
and snATAC-seq were prepared following this randomization of samples. 

2.2.3.2 snRNA-seq Data Workflow  
Using Cell Ranger (cellranger count v6.0.1) (Zheng et al., 2017), the preliminary 
processing of the snRNA-seq data was carried out, including read alignment to a pre-
mRNA reference (genome build GRCh38, Ensembl 98), cell barcoding, and UMI 
counting. We downsampled reads to the 75% quantile, which equates to 14,786 reads 
per cell, in order to account for the notable variations in sequencing depth between cells 
and samples. The downsampleReads function from the DropletUtils package v1.12.2 
(Lun et al., 2019) was used to carry out this downsampling process. In order to reduce 
bias in the analysis, we were able to achieve a more comparable degree of sequencing 
depth for cells across samples by downsampling the reads.  
The count matrices of all donors were concatenated and subjected to additional 
processing using Scanpy v1.7.1 (Wolf, Angerer, & Theis, 2018) in Python (Python 
Software Foundation, https://www.python.org/). The minimum number of genes 
expressed, counts, and percentage of mitochondrial genes (counts <500, genes <300, 
Mito% ≥ 15) were used to filter the nuclei. Genes expressed in less than 500 nuclei were 
eliminated. Due to generally poor data quality, which corresponded with a low RIN 
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score, one donor was filtered out. We used the DoubletDetection software v3.0 (Gayoso, 
Shor, Carr, Sharma, & Pe'er, 2020) to perform doublet removal in order to guarantee data 
integrity and the accuracy of our research. Sctranform v0.3.2 (Hafemeister & Satija, 
2019) was used to transform and normalise the data. Scanpy (Wolf et al., 2018) was 
utilised to identify highly variable genes and to perform dimensionality reduction, 
principal component analysis (PCA), and uniform manifold approximation and 
projection (UMAP). The leiden clustering algorithm (resolution 1.0) was used to cluster 
nuclei according to highly variable genes (Traag, Waltman, & van Eck, 2019). Four 
donors were removed because one cluster included more than half of their nuclei (Online 
Table 31).  

2.2.3.3 snATAC-seq Data Workflow 
Cell Ranger ATAC (cellranger-atac count v2.0.0) (Satpathy et al., 2019) was used for the 
initial processing of the snATAC-seq data. This included aligning the reads to a reference 
(genome build GRCh38, Ensembl 98), calling cells, and creating a count matrix.  
R v4.0.5 ("R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria.," 2021) was used to process the data further 
using the ArchR package v1.0.2 (Granja et al., 2021). Nuclei exhibiting a low signal-to-
noise ratio were removed throughout the per-cell quality control process based on their 
transcription start site (TSS) enrichment score (< 4). Moreover, nuclei with 100,000 or 
fewer distinct nuclear fragments were excluded. ArchR was used to infer doublet scores, 
and a filter ratio of 2.5 was used to eliminate the corresponding doublet. A low RIN value 
and general poor data quality led to the filtering out of one donor. To deal with the high 
sparsity of snATAC-seq data, dimensionality reduction was performed using iterative 
latent semantic indexing (LSI). To facilitate visualisation, a UMAP embedding was 
obtained from this lower dimensional space. Using an interface to the FindClusters 
method from Seurat v4.0.4 (Hao et al., 2021), which is based on the Louvain clustering 
algorithm (Waltman & van Eck, 2013), nuclei were clustered with resolution 1.0. Another 
donor with most of its nuclei grouping together and six clusters with low data quality in 
terms of doublet scores and number of fragments were eliminated during a final filtering 
step (Online Table 31). 
In order to evaluate chromatin accessibility at the gene level, ArchR (Granja et al., 2021) 
was used to compute gene scores. Gene scores are predictions of gene expression based 
on the accessibility of regulatory elements surrounding a gene (100 kb up- and 
downstream). The signal gets weighted based on the distance between a regulatory 
element and the gene. 

2.2.3.4 Cell Type Assignment of snRNA-seq and snATAC-seq Data 
Using a label transfer approach (scArches v0.4.0 (Lotfollahi et al., 2022)/scANVI (Xu et 
al., 2021)), an initial cell type assignment to nuclei clusters in the snRNA-seq data was 
performed. Using this variational inference model, cell type labels were transferred from 
a cortical dataset of the Allen Brain Map (Human Multiple Cortical Areas (Map., 2019)) 
to our snRNA-seq dataset. The cell type that accounted for the majority of the cluster's 
nuclei was labelled on each cluster. The cell type assignments were then manually 
refined based on the curation of known marker genes. Marker genes included: 
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Astrocytes: AQP4, CLU, GFAP, GJA1; Endothelial: CLDN5, COBLL1, FLT1, SYNE2; 
Excitatory neurons: SATB2, SLC17A6, SLC17A7; Inhibitory neurons: GAD1, GAD2, 
NXPH1, SLC32A1; Microglia: APBB1IP, C3, P2RY12; Oligodendrocytes: MPB, MOBP, 
PLP1, RNF220; Oligodendrocyte Precursors (OPC): OLIG1, OLIG2, PDGFRA, VCAN. 
Astrocyte subtypes: higher GFAP and ARHGEF4 expression (fibrous astrocytes 
(Astro_FB)) vs. higher expression of ATP1A2, GJA1 and SGCD (protoplasmic astrocytes 
(Astro_PP)) (Velmeshev et al., 2019). Excitatory neuron subtypes were labeled based on 
the expression of cortical-layer specific marker genes: layers 2-3: CUX2, RFX3; layer 4: 
IL1RAPL2, CRIM1, RORB; layers 5-6: RXFP1, TOX, DLC1, TLE4 (Nagy et al., 2020; 
Velmeshev et al., 2019). Inhibitory neuron subtypes were labeled based on the 
expression of interneuron markers LAMP5, PVALB, RELN, SST, and VIP. PVALB 
inhibitory neurons consisted of two subtypes: basket cells (In_PVALB_Ba) and 
chandelier cells (In_PVALB_Ch; identified based on the high expression of RORA, 
TRPS1, NFIB, and UNC5B) (T. E. Bakken et al., 2021). 
A parallelized interface to the FindTransferAnchors function in Seurat (Hao et al., 
2021) was used to integrate the snATAC-seq data with the snRNA-seq data in 
ArchR (Granja et al., 2021) for the initial assignment of cluster identities. By comparing 
the gene score matrix with the gene expression matrix, nuclei from snATAC-seq and 
scRNA-seq are being aligned. The cell type of the most comparable scRNA-seq nucleus 
gets transferred to each snATAC-seq nucleus. Subsequently, gene scores of the 
aforementioned marker genes were used to manually refine cluster identities. 
Endothelial cells were confidently identified as such despite known marker genes of 
endothelial cells not exhibiting distinct gene scores in the respective cluster. Its clear 
separation from other clusters, the unambiguous assignment as endothelial cells via 
label transfer, and imputed gene scores (Dijk et al., 2018) all contributed to this 
conclusion. 

2.2.3.5 Pseudobulk Replicates of snRNA-seq and snATAC-seq Data 
Pseudobulk replicates were created to facilitate downstream studies that call for 
replicates with statistically significant observations, including peak calling on ATAC-
seq data or differential testing. Thus, for each cell type-donor combination, gene 
expression and chromatin accessibility count matrices were aggregated, resulting in 
pseudobulk replicates resembling bulk RNA-seq and ATAC-seq data per cell type.  
To avoid sparsity, an ArchR method (Granja et al., 2021) summarizes several sufficiently 
comparable donors within a cell type to create pseudobulk duplicates that are employed 
for cell type-specific peak calling. These ArchR-generated replicates were solely used for 
peak calling since such multi-individual pseudobulk replicates are not appropriate for 
our downstream analyses. 

2.2.3.6  Peak Calling on snATAC-seq Data 
Using an interface to MACS2 in ArchR (Granja et al., 2021; Yong Zhang et al., 2008), peak 
calling was carried out for each cell type based on the aforementioned multi-
sample pseudobulk replicates. Peaks have a fixed width of 501 bp to ease downstream 
calculations. They are merged across cell types and pseudobulk replicates via a ranking 
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of normalized significance and the iterative elimination by overlap. There is one merged 
peak set of fixed-width peaks in the resulting matrix. 

2.2.4 Genotype Data 

2.2.4.1 DNA Extraction, SNP Genotyping and Imputation 
Using the QIAamp DNA mini kit (Qiagen) and following the manufacturer's 
instructions, genomic DNA was recovered from 10 mg of brain tissue. DNA samples 
were extracted and then concentrated using the DNA Clean & Concentrator-5 (Zymo 
Research). Illumina GSA-24v2-0_A1 arrays were used to genotype the samples in 
accordance with the manufacturer's protocols (Illumina Inc., San Diego, CA, USA). A 
quality control (QC) run on PLINK v1.90b3.30 (S. Purcell et al., 2007) was conducted. 
Donors with a missing rate > 2% or cryptic relatives (PI-HAT > 0.125) were excluded 
during sample QC. Additionally, genetic outliers (distance in ancestry components from 
the mean > 4 SD) and donors with autosomal heterozygosity deviation (|Fhet| > 4 SD) 
were removed. During variant QC, variants with a call rate < 98%, minor allele 
frequencies (MAF) < 1%, and p values equal to ≤ 10-6 from the Hardy-Weinberg 
equilibrium (HWE) test were filtered out. Imputation was performed with 
shapeit2 (Delaneau, Marchini, & Zagury, 2011) and impute2 (Marchini, Howie, Myers, 
McVean, & Donnelly, 2007), leveraging the 1000 Genomes Phase III reference sample. A 
final collection of 9,652,209 SNPs in 92 donors was obtained by discarding imputed SNPs 
with an INFO score below 0.6, MAF < 1%, or deviation from Hardy-Weinberg 
equilibrium (p value < 1 × 10-5). 

2.2.4.2 Calculation of Polygenic Risk Scores 
Polygenic risk scores (PRS) were computed based on summary statistics of GWAS 
studies for a cross-disorder phenotype (Consortium., 2019), schizophrenia (Trubetskoy 
et al., 2022), MDD (Howard et al., 2019), bipolar disorder (Mullins et al., 2021), and 
height (Yengo et al., 2022) (as a non-psychiatric control). PRS-CS v1.0.0 (Ge, Chen, Ni, 
Feng, & Smoller, 2019) was used to infer posterior effect sizes from the GWAS summary 
statistics. The 1000 Genomes Project phase 3 European samples, available on the PRS-CS 
GitHub page, served as linkage disequilibrium (LD) reference panel for the calculations. 
The global shrinkage parameter (phi) of PRS-CS was set to 0.01 for schizophrenia, a 
highly polygenic trait. For the other traits, with larger sample sizes in the respective 
GWAS studies, phi could be derived from the data and no specific parameter was 
specified. Using the score parameter in PLINK v2.00a2.3LM (S. Purcell et al., 2007), the 
previously inferred posterior effect sizes were used to calculate the polygenic risk scores 
for each donor (Online Table 32). 
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2.2.5 Differential Analysis 

2.2.5.1 Definition of Disease Status for Differential Testing 
Tests for differential expression (DE) and accessibility (DA) were performed on all 
donors who had been diagnosed with bipolar disorder, schizophrenia, schizoaffective 
disorder (SCA), or major depressive disorder (MDD) in comparison to all donors in the 
control group. Because psychiatric disorders share a genetic risk and have overlapping 
symptomatology (Consortium., 2019; Newson et al., 2021; Smoller et al., 2019), they were 
analysed as a cross-disorder phenotype. This increased the statistical power of the 
analyses and made it possible to find shared molecular dysregulations and underlying 
pathways. 

2.2.5.2 Definition of Groups for Testing Between High and Low Genetic Risk 
To evaluate DE and DA with regard to overall genetic predisposition, we conducted 
differential testing between individuals at opposite ends of the genetic risk spectrum for 
specific traits or diseases. In line with the established consensus in the research 
community that the most accurate risk predictions occur at the extreme quantiles of PRS 
distributions (Andlauer & Nöthen, 2020; C. M. Lewis & Vassos, 2020), genetic risk was 
classified into two distinct categories representing these extremes, as opposed to viewing 
it on a continuous scale. For each trait or disease, we identified the top and bottom 20 
PRS scorers within our cohort. 
Subsequently, propensity score matching was applied to align the extreme groups on 
covariates like age, sex, brain pH, PMI, and RIN (Figure 2.3a), ensuring an exact match 
for sex (Figure 2.3b-f). This was achieved using the 'matchit' function from MatchIt v4.5.5 
(Ho, Imai, King, & Stuart, 2011). The matched groups varied in size from 11 to 17 donors, 
specifically: 17 in both high and low PRS extremes for cross-disorder, 13 for 
schizophrenia, 14 for bipolar disorder, 11 for MDD, and 14 for height in both extremes 
(Online Table 31).  
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Figure 2.3. Definition of extreme groups for genetic risk. (a) Schematic overview of the definition of high 
and low genetic risk groups. 20 donors with the highest PRS and 20 donors with the lowest PRS were 
selected from both tails of the PRS distribution for each trait or disease. These groups were matched based 
on age, sex (exact), brain pH, PMI and RIN using propensity score matching. (b-f) Matched covariates and 
distribution of disease status and diagnoses for high and low risk groups for cross-disorder phenotype (b), 
bipolar disorder (c), major depressive disorder (d), schizophrenia (e) and height (f).  
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2.2.5.3 Selection of Covariates for Differential Testing Between Disease Status 
and Genetic Risk Groups 

The effect of potential confounders on the RNA-seq data was evaluated in order to 
carefully analyze the effects of biological variables and batch effects on the data and to 
identify relevant covariates for differential testing. Anticipating that technical variables 
are consistent across cell types, a full pseudobulk count matrix was generated by 
aggregating the gene-wise counts across all cell types. To be used in the covariate 
selection procedure, genes had to have at least 10 counts in at least 90% of the samples. 
After normalizing the data using DESeq2's variance stabilizing procedure (Love et al., 
2014), principal component analysis (PCA) was performed. Continuous variables such 
as RNA integrity number (RIN), postmortem interval (PMI), pH and age showed a 
significant correlation with one of the first ten principal components (PCs). "Library 
preparation batch" (lib_batch) was discovered as a covariate after additional 
investigation using canonical correlation analysis (CCA). However, because of the 
minimal number of observations per library preparation batch in the genetic risk model, 
this covariate was only included in the model for disease status. Sex, a well-known 
confounder, was also added to our model as a covariate. 
After normalizing, transforming, and regressing out the effects of all covariates and our 
variable of interest (disease status or genetic risk group, respectively) using voom and 
removeBatchEffect from the limma package v3.56 (Ritchie et al., 2015), PCA was 
conducted to capture hidden noise. We added the first PC (PC_noise) as another 
covariate to our final differential testing model, which read as follows: 
(~Disease_Status/Genetic_Risk + Sex + Age + pH + RIN + PMI + lib_batch + PC_noise). 
RIN was imputed to the cohort's median value as it was lacking for one donor. 
The model of differential chromatin accessibility analysis included the same covariates, 
except RIN, in order to maintain consistency across analyses. This was motivated by the 
fact that library preparation for both modalities – snRNA-seq and snATAC-seq – was 
carried out in the same batches and that the data were generated from the same tissue. 

2.2.5.4 Differential Expression Analysis 
DE was assessed using DESeq2 v1.40.2 (Love et al., 2014) at the pseudobulk level for 
each cell type individually. Genes were filtered for a minimum of 10 counts in 75% of 
the pseudobulk samples within each cell type-specific count matrix. Outlier samples 
were eliminated after data normalization using the variance stabilizing transformation 
in DESeq2 via iterative PCA and the removal of samples with a distance from the mean 
on the first PC of more than 3 standard deviations. The Wald test in DESeq2 was used to 
test for DE. Considering that the pseudobulk approach is thought to be more 
conservative than single-cell DE methods (Squair et al., 2021; Zimmerman, Espeland, & 
Langefeld, 2021), genes with an FDR ≤ 10% were reported as significant. 
To enable a comparison of cell type-specific DE genes and those detected on the bulk 
level within the same cohort, we extended our analysis to include the full pseudobulk 
level. This involved aggregating the count data for each gene across all cell types, 
followed by conducting the DE analysis using the same methodology applied at the cell 
type level.  
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2.2.5.5 Differential Chromatin Accessibility Analysis 
Gene scores were used to assess DA for each cell type at the pseudobulk level. DESeq2 
was not used for differential testing since gene scores do not conform to the usual 
characteristics of count data. The number of cells aggregated per pseudobulk sample 
was used to normalize pseudobulk gene scores, and outliers were filtered in the same 
manner as during DE analysis. Genes that showed scores higher than 0.1 in fewer than 
75% of the samples were eliminated and filtered out before being subjected to additional 
analysis. Following the fitting of a linear model incorporating the covariates previously 
mentioned, a Wald test was run and log2-fold changes were computed. Significant genes 
were defined as those having an FDR ≤ 10%.  

2.2.5.6 Differential Risk Analysis 
According to differential testing between cases and controls, differential risk studies 
were carried out on the level of gene expression (DE risk analysis) and chromatin 
accessibility (DA risk analysis) between donors with high and low genetic risk for a trait. 
The same rules applied to gene filtering, normalization, and outlier elimination. Genes 
with an FDR ≤ 10% were considered significant.  

2.2.6 Functional Annotation 

2.2.6.1 Pathway Enrichment Analysis 
The analysis of pathway enrichment was performed with the enrichKEGG function of 
the clusterProfiler package v4.8.1 (Wu et al., 2021). To ensure that this study is 
comparable across cell types, the 250 genes that showed the most significant up- and 
down-regulation for each cell type based on FDR values were evaluated for over-
representation of KEGG pathways (Kanehisa, 2019; Kanehisa et al., 2021; Kanehisa & 
Goto, 2000). We decided to extend this analysis beyond just the significant DE and DA 
genes to facilitate a consistent comparison across different cell types. Selecting 250 genes 
for each direction of regulation accounts for roughly half of the DE genes found in 
Exc_L2-3, which is the cell type exhibiting the greatest number of DE genes when 
comparing cases to controls. The corresponding heatmap displays any KEGG pathway 
that is significantly over-represented in at least one cell type (FDR ≤ 0.05). The 
enrichment heatmap was annotated with a hierarchy of KEGG pathways that was 
retrieved from the KEGG Pathway Database 
(https://www.genome.jp/kegg/pathway.html, accessed: June 2023) in order to 
summarize individual KEGG pathways in categories. 

2.2.6.2 GWAS Enrichment Analysis 
The GWAS enrichment analysis was carried out using H-MAGMA v1.10 (Sey et al., 
2020). SNPs were mapped to genes using the European 1,000 genomes reference panel, 
which was obtained from the H-MAGMA github website 
(https://github.com/thewonlab/H-MAGMA), and the GWAS summary statistics for 
schizophrenia (Trubetskoy et al., 2022), bipolar disorder (Mullins et al., 2021), and MDD 
(Howard et al., 2019). The respective results were used in the subsequent gene property 

https://www.genome.jp/kegg/pathway.html
https://github.com/thewonlab/H-MAGMA
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analysis with the "--gene-covar" argument in MAGMA. With this approach, the gene-
level regression framework may be used to examine if DE related to 
disease status/genetic risk is associated with GWAS results. Here, DE (risk) results are 
entered as a continuous variable, represented as -log10(p value)*log2(fold change)).  

2.2.6.3 Transcription Factor Motif Enrichment Analysis 
An analysis of transcription factor (TF) motif enrichment was carried out within the 
ArchR framework (Granja et al., 2021) to determine whether peaks in the promoter 
regions of a particular gene are enriched for binding sites of particular TFs. Using the 
addMotifAnnotation function, binary information was first obtained for each peak-TF 
pair indicating whether or not the corresponding motif is present in the peak. TF motif 
data was taken from the JASPAR 2020 database (Fornes et al., 2020). The peaks in a 
specific gene's promoter region were then tested for enriched presence of TF motifs 
relative to the presence in all peaks using a hypergeometric test, utilising an 
adapted version of the peakAnnoEnrichment function. TF motifs were considered 
significantly enriched when their adjusted p value ≤ 0.05. 

2.2.7 Correlation Analysis Between Gene Expression and Chromatin 
Accessibility 

Every cell type was evaluated independently at the pseudobulk level for the number of 
peaks in proximity to each gene and the quantity of correlated peaks nearby each gene. 
Genes with less than 5 counts in more than 75% of the samples were eliminated from the 
gene expression count matrix, while peaks with less than 5 counts in more than 50% of 
the samples were eliminated from the peak matrix. Because of the even sparser signal in 
the ATAC-seq data, a less stringent filtering was applied in the peak matrix. DESeq2's 
variance stabilising transformation (Love et al., 2014) was used to normalise the peak 
matrix and gene expression. Peaks were considered to be close to a gene and subjected 
to a correlation analysis if they fell within a 100 kb window from the gene, which is also 
the default distance utilised by ArchR (Granja et al., 2021) to determine gene scores. The 
association between chromatin accessibility and gene expression was measured using 
Pearson's correlation coefficient. 
Expression levels were correlated with chromatin accessibility on the level of gene scores 
in addition to the correlation analysis at the peak level. All cell types were analyzed 
individually as well as collectively. At the pseudobulk level, Spearman correlation 
coefficients were computed between expression and gene scores averaged across all 
samples. Furthermore, the distribution of Spearman correlation coefficients, which were 
computed for each gene between gene expression and gene scores across all pseudobulk 
samples, was compared to a random distribution that was produced by correlating gene 
expression with a random permutation of gene scores. 
A GO enrichment analysis was conducted across all cell types collectively to determine 
if groups of genes, characterized by distinct gene expression and chromatin accessibility 
patterns, are associated with different biological processes. Genes exhibiting expression 
levels above the 70th percentile were assigned to the high expression (HE) group, while 
those below the 50th percentile were assigned to the low expression (LE) group. 
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Equivalently, genes with gene scores above the 70th percentile were classified as highly 
accessible (HA), and those below the 50th percentile as lowly accessible (LA), following 
the methodology outlined by Starks et al. (Starks et al., 2019). The enrichGO method 
from the clusterProfiler package v3.18.1 (Yu, Wang, Han, & He, 2012) was used to test 
for significant enrichment (FDR £ 0.05) of GO terms related to biological processes. 
Genes with measurements of both gene expression and chromatin accessibility levels 
above the previously described cutoffs were used as a background. Lists of significant 
GO terms were reduced and grouped based on semantic similarity, and visualized in 
treemaps with the rrvgo package v1.2.0 (Sayols, 2023). 

2.2.8 Contrasting Findings with Previous Studies 

In assessing our DE results for disease status, we compared them with cell type-specific 
transcriptomic alterations in the prefrontal cortex of individuals with schizophrenia 
from prior research. Our objective was to determine the consistency of our results with 
those from earlier work. We aligned our effect sizes with those from a meta-analysis of 
single-cell RNA-seq by Ruzicka et al., which included 140 samples and over 469K cell 
counts (Ruzicka et al., 2022). We employed Pearson's correlation coefficient for each 
corresponding cell type to quantify the association between effect sizes across genes 
investigated in both studies. 

2.2.9 Network Inference 

The inference of correlation-based networks for given genes that exhibited differential 
expression and chromatin accessibility between schizophrenia risk groups was 
performed to integrate different data modalities. Besides gene expression and chromatin 
accessibility across various cell types, disease status and PRS for the aforementioned 
disorders and traits were included in the network analysis. Only donors who fall into 
the high and low genetic risk categories for schizophrenia were included in the 
network analysis. The levels of gene expression and gene scores were adjusted for age, 
sex, RIN, PMI, pH, and library preparation batch. Spearman correlation 
coefficients were computed for each pair of features. In each network, correlations with 
a nominal p value ≤ 0.05 are displayed, while edge strength and weight correspond to 
the absolute correlation coefficient. The R packages igraph (Csardi, 2014; Csárdi, 
2023) and ggnetwork (Tyner, Briatte, & Hofmann, 2017) were used to visualize 
networks. 

2.2.10 Comparison of Differentially Expressed Genes Between Results in 
Mouse and Human Studies 

To determine the overlap of DE genes between the mouse PFC after glucocorticoid 
receptor stimulation and various cell types within the human OFC in psychiatric 
disorders, we matched the Ensembl IDs of mouse genes to those of their human 
orthologs using the Biomart database (Durinck et al., 2005). 
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3 Results 
The results section of this thesis presents a dual-faceted exploration, addressing two 
distinct yet interconnected research questions. The first question delves into the brain 
region-specific transcriptomic response to glucocorticoid stimulation in a mouse model, 
highlighting the activation of the hypothalamic-pituitary-adrenal (HPA) axis – a critical 
component of the stress response mechanism – and its significance in stress-related 
disorders. The study probes the connection between glucocorticoid-induced gene 
expression alterations and variations in gene co-expression networks. The findings are 
showcased through the DiffBrainNet Shiny App, an interactive online resource created 
within the scope of this project. 
The second question investigates the molecular alterations characteristic of psychiatric 
disorders, with a particular focus on the genetic susceptibility associated with these 
conditions. This is examined in the human orbitofrontal cortex of postmortem brain 
tissue, through the genome-wide quantification of gene expression and chromatin 
accessibility at the single-cell level. Cell type-specific alterations in gene expression 
associated with psychiatric diagnoses were evaluated and compared to corresponding 
changes in chromatin accessibility. Additionally, molecular variations related to the 
genetic risk for psychiatric disorders were explored and contrasted with the molecular 
changes associated with clinical diagnoses. 
A comparative analysis bridges the findings from both research questions, offering 
insights into the affected genes and the intricate relationship between stress responses 
and psychiatric disorders. 

3.1 Transcriptomic Response to Glucocorticoid Activation in 
Different Brain Regions 

The objective of this study was to develop a resource of region-specific transcriptomic 
alterations in the brain, analyzing the impacts of a 4-hour, 10 mg/kg dexamethasone 
treatment across eight distinct mouse brain regions (Figure 3.1 top and Figure 2.1). 
Utilizing RNA sequencing, we profiled the whole transcriptome, identifying 12,976 
genes expressed across these brain regions (detailed numbers for each region are 
presented in Supplementary Table 1), with a set of 12,830 genes shared across all regions 
examined. Network analysis revealed the relative changes in gene expression that might 
elude detection at the level of differential expression (DE) analysis. Consequently, we 
computed gene expression networks for each condition within each brain region using 
regression analysis, informed by prior knowledge, with KiMONo (Ogris et al., 2021). The 
prior network was derived from FunCoup 5 (Persson et al., 2021), comprising 
experimental data encompassing approximately 6.7 million interactions among 19,771 
mouse genes, with our dataset reflecting 11,083 of these genes (5.4 million interactions). 
Differential networks (DNs) for each brain region were inferred by contrasting the 
regression analysis's β values between control and treated networks, applying a z-test, 
following the DiffGRN methodology (Kim Youngsoon, 2018). Additionally, DE analysis 
was conducted to discern gene-level reactions to glucocorticoid receptor (GR) 
stimulation, contrasting vehicle and dexamethasone treatment (Figure 3.1 middle).  
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Figure 3.1. Schematic representation of experimental and analytical procedures used for differential 
expression and network analysis across 8 mouse brain regions. (Experiment) C57Bl/6 mice were 
administered an intraperitoneal injection of either 10mg/kg dexamethasone or 0.9% saline solution as a 
vehicle for 4h. Brain region isolated include the amygdala (AMY), cerebellar cortex (CER), prefrontal cortex 
(PFC), paraventricular nucleus of the hypothalamus (PVN), dorsal cornu ammonis 1 (dCA1), ventral cornu 
ammonis 1 (vCA1), dorsal dentate gyrus (dDG), ventral dentate gyrus (vDG). (Analysis) Subsequent RNA 
sequencing of these brain regions informed both differential expression and network analysis, leveraging 
prior-knowledge. (Results) The interactive DiffBrainNet online resource compiles comprehensive 
differential expression and network results for the 8 brain regions.  
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To determine whether DE genes also exhibit prominent co-regulatory changes within 
the DNs, we pinpointed differential hub genes, characterized by a normalized node-
betweenness above 1 (Figure 3.1 bottom). Moreover, to identify pathways influenced by 
DE genes and/or differential hub genes, we performed enrichment analyses involving 
GO terms, KEGG and Reactome pathways, and GWAS genes. We were able to compare 
the transcriptomic responses across eight different brain regions on multiple 
complementary levels by using this analysis framework. All findings are accessible in an 
interactive online resource (DiffBrainNet, http://diffbrainnet.psych.mpg.de/), with 
subsequent sections presenting detailed results of our analyses. 
 

3.1.1 Differential Expression and Networks in Response to 
Glucocorticoid Activation in 8 Different Brain Regions  

By integrating DE and DN analysis, we studied the region-specific transcriptomic 
alterations following glucocorticoid exposure in mice. Analysis of gene expression 
variance through principal component analysis revealed that the first two principal 
components accounted for 62% of the variance and distinguished the different brain 
regions (Figure 3.2a). When assessing all regions collectively, the fourth and fifth 
principal components separated the treatment groups (Figure 3.2b). Across all eight 
regions, 2092 genes were differentially expressed following dexamethasone treatment 
(FDR £ 0.1), with 172 genes consistently altered across all regions (Figure 3.2c, Online 
Table 1). Most DE genes were dysregulated in multiple regions, with a minority (5.4–
26.6%) unique to a single region (Figure 3.2d, Supplementary Table 2-10, Online Table 
2-9). The upregulated genes common to all regions (ngenes=129) significantly correlated 
with processes like cell death and signal transduction, while downregulated genes 
(ngenes=43) were associated with development, including neurogenesis (Supplementary 
Figure 1a, and Online Table 19). Intriguingly, even though GR (gene name Nr3c1), the 
primary receptor activated by dexamethasone and hence initiating the transcriptional 
response, is differentially downregulated in every region, its normalized expression 
does not correlate with the number of DE genes across regions at vehicle condition 
(Supplementary Figure 1c). This observation also applied to MR (gene name Nr3c2), a 
glucocorticoid receptor with a higher affinity for cortisol and less for dexamethasone 
(Supplementary Figure 1d), as well as to the expression ratio of GR to MR 
(Supplementary Figure 1e). Although GR and MR vehicle expression levels vary across 
regions, the differences are small, potentially explaining the absence of correlation with 
DE gene counts in each region. 
 

http://diffbrainnet.psych.mpg.de/
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Figure 3.2. Differential gene expression across 8 mouse brain regions. (a) Principal component (PC) 
analysis plot visualizes the variance related to brain region along PCs 1 and 2. (b) PC analysis plot detailing 
variance in gene expression related to treatment groups along PCs 4 and 5. (c) UpSet plot revealing the 
overlap of DE genes (FDR £ 0.1) across the 8 brain regions. (d) Barplot representing the proportions of unique 
and shared DE genes within each brain region.  

3.1.2 Enhanced Biological Insights Through Differential Network 
Analysis 

Beyond DE analysis, we performed DN analysis within each of the eight brain regions. 
A comparison of the number and enrichment patterns of differential hub gene 
enrichment revealed 755 differential hub genes, with the majority (>73%) being common 
to at least two brain regions (Figure 3.3a-b, Supplementary Table 2,11-18, and Online 
Table 11-18). Notably, seven hub genes were consistently identified across all regions 
included in the study (Sox5, Lpar1, Thy1, Mcam, Nell2, Rab3c, Zic1) (Figure 3.3a, 
Supplementary Figure 1b, Online Table 10+20). Out of the 755 differential hub genes, 
only 174 were also identified as DE genes in any of the brain regions (Figure 3.3a).  
We delved deeper into the PFC, which had the highest number of unique DE genes (920 
in total, with 245 unique to the PFC, Figure 3.2c). The PFC, along with the AMY, also 
displayed the most unique differential hub genes (293 in total, with 29 unique to the PFC, 
Figure 3.3a, Supplementary Table 2). Intriguingly, none of the PFC's 29 unique 
differential hub genes overlapped with DE genes. GO enrichment analysis among the 
PFC's unique DE and differential hub genes revealed distinct biological functions for 
each gene set. The highly enriched biological processes for unique DE genes primarily 
related to development and signaling (Figure 3.3c, and Online Table 21), while the 
unique differential hub genes correlated with broader terms related to stress or stimuli 



Results 49 

 

responses (Figure 3.3d, and Online Table 22). This pattern implies that DE and DN 
analyses, while different, provide complementary insights into the brain's 
transcriptional responses to stimuli. 
 

 
Figure 3.3. Differential network analysis in the PFC provides unique biological insights not captured by 
differential expression alone. (a) UpSet plot visualizing the overlap of differential hub genes with a 
normalized node-betweenness > 1.0 across 8 brain regions. Yellow parts of the intersection size bars 
represent genes concurrently identified as significant DE genes in at least one brain region within the 
intersection. (b) Barplot representing the proportions of unique and shared differential hub genes within 
each brain region. (c-d) Dot plots displaying the top 14 GO terms that are most significantly enriched among 
the PFC's unique DE genes (c) and unique differential hub genes (d). 

To demonstrate the added value of DN analysis, we highlight Abcd1, a gene involved in 
the active transport of glucocorticoids and part of the ABC protein family (Müller et al., 
2003; Uhr et al., 2002). Although not classified as a DE gene in the PFC (FDR = 0.935; 
Figure 3.4a), Abcd1 emerged as a prominent differential hub gene with the highest 
normalized node-betweenness in the PFC network (Supplementary Table 15) and 
numerous differential correlations. Within its DN, we found four PFC DE genes (FDR £ 
0.1) and seven genes with a nominal DE p value £ 0.05 (Figure 3.4b). Pathway enrichment 
analysis of Abcd1's DN highlighted a broader role for ABC transporters in the response 
to glucocorticoids (Figure 3.4c-d, and Online Table O23). Furthermore, it can be inferred 
that Abcd1 is associated with extensive interconnected DNs based on its direct or indirect 
connections to Tm7sf2 and Pex5l, two additional differential hub genes (Figure 3.4b). The 
small expression changes in genes linked to Abcd1 add up, elevating its status as a 
differential hub gene, indicative of its pivotal role despite the modest individual 
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expression change. These insights underscore the ability of network analyses to dissect 
subtle transcriptomic responses, uncovering molecular pathways in a way that single-
gene analysis cannot, thus underlining the integral nature of gene networks in cellular 
function and the discovery of pathway-specific molecular mechanisms. 
 

 
Figure 3.4. ABC transporters and their role in dexamethasone responses in the PFC at the network level. 
(a) Boxplot visualizing the normalized expression of Abcd1 across all brain regions at vehicle and treatment 
level. Abcd1 is not differentially expressed in any of the 8 regions. (b) Differential network of Abcd1 and its 
neighbors in the PFC. (c) Pathway enrichment analysis for Abcd1 and its differentially connected neighbors 
in the PFC, based on KEGG and Reactome, with bold terms highlighting the broader involvement of the 
ABC transporters pathway in the PFC's response to glucocorticoids. (d) Differential network of the ABC 
transporters pathway in the PFC. 
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3.1.3 Disease relevance of genes associated with stress response on 
single-gene and network level 

To assess the translatability of transcriptomic responses to dexamethasone in mice to 
human conditions, we examined the consensus between dexamethasone-responsive 
genes in the mouse PFC and genes implicated in autism spectrum disorder, bipolar 
disorder, and schizophrenia in the human cortex from a postmortem study (Gandal, 
Zhang, et al., 2018). Our analysis revealed that 41.3% of the mouse DE genes (ngenes=380 
out of 920) were also associated with human psychiatric disorders (Figure 3.5a), 
emphasizing the importance of glucocorticoid-mediated transcriptional alterations in 
these conditions. This correlation was also evident when aligning our findings with 
network modules derived from human postmortem brain analyses (Gandal, Zhang, et 
al., 2018), showing that stress-related DE genes and differential hub genes were 
significantly enriched in modules linked to autism spectrum disorder, bipolar disorder, 
and schizophrenia (Figure 3.5b). 
 

 
Figure 3.5. Aligning DiffBrainNet discoveries with human studies. (a) UpSet plot comparing the DE genes 
identified in the mouse PFC with DE genes from the postmortem human cortex of individuals with bipolar 
disorder (BIP, n=222), autism spectrum disorder (ASD, n=51), and schizophrenia (SCZ, n=559) as reported 
by (Gandal, Zhang, et al., 2018). (b) Enrichment analysis of DE genes and differential hub genes from our 
PFC analysis in modules associated with SCZ, ASD, and BIP as identified by (Gandal, Zhang, et al., 2018). 
The significance of enrichment within each module, determined via a one-sided Fisher's exact test, is 
denoted by asterisks: * FDR £ 0.05, ** FDR £ 0.01, *** FDR £ 0.001.  
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3.1.4 Differential Network Analysis Augments the Biological 
Understanding of Differentially Expressed Genes 

We aimed to enhance the interpretative power of DE results by integrating them with 
DN results, which is particularly useful when DE gene numbers are too low to imply 
clear pathway involvement, suggesting minimal gene-level effects. In the vCA1 region 
of the hippocampus, only 5.4% of the DE genes (ngenes=25 out of 466) were unique to this 
area (Figure 3.2c, Figure 3.6a, Supplementary Table 9, and Online Table 8), and GO 
enrichment analysis did not reveal any significant terms (Supplementary Figure 2, and 
Online Table 24). We used the 25 unique DE genes from the vCA1 as seed nodes in our 
network analysis, identifying their differential neighbors, which culminated in a DN 
comprising 745 nodes, incorporating both the 25 unique vCA1 DE genes and an 
additional 720 differential neighbors. This network was enriched for genes linked to 
general cognitive ability, schizophrenia, and autism spectrum disorder through GWAS 
(Figure 3.6b, and Online Table 25). Furthermore, the network displayed significant 
enrichment for GO terms related to nervous system processes, cell morphogenesis, ion 
transport, and synaptic signaling (Figure 3.6c, and Online Table 26), indicating subtle 
but widespread molecular connectivity alterations in vCA1 not apparent in DE analysis 
alone. 
Focusing on the enriched GO term based on the gene ratio, "regulation of trans-synaptic 
signaling" (FDR=8.71 × 10-22), we investigated the differential network of the genes both 
related to this term and part of the vCA1 DE gene network (Figure 3.6d). Grm4, coding 
for a metabotropic glutamate receptor, was central in this network, exhibiting numerous 
differential associations with other hub and DE genes, including Cacna1a, which is 
crucial for neuronal communication and synaptic signaling (Luo et al., 2017). This 
network demonstrated shifts in connectivity among various differential hub genes. 
These changes extended beyond Grm4 and Cacna1a, including alterations between Brsk1, 
Nlgn3, Cspg5, Rab3a, and Grin2b. Thus, the combined DE and DN analysis was key to 
unveiling complex biological responses to dexamethasone in vCA1 that DE analysis 
alone could not discern. 
 

3.1.5 Network Analysis Facilitates Hypothesis Generation for Candidate 
Genes 

Next, we looked into biological pathways and processes regulated by genes previously 
linked to psychiatric disorder risk using our resource and analytical framework. This 
allowed us to examine co-regulatory patterns of specific genes under normal conditions 
and following stimuli, such as glucocorticoid exposure. Our focus centered on Tcf4 
(Transcription factor 4) which is associated with various psychiatric disorders including 
schizophrenia, major depressive disorder, and autism spectrum disorders (Teixeira, 
Szeto, Carvalho, Muotri, & Papes, 2021), and implicated in neurodevelopmental 
disorders like Pitt-Hopkins syndrome (Sirp et al., 2021). Therefore, we investigated the 
biological pathways that Tcf4 modulates in DNs reflecting GR activation responses. 
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Figure 3.6. Network-based differential analysis enhances the biological interpretation of differential 
expression: the case of vCA1. (a) Barplot depicting the number of unique and shared DE and hub genes in 
the vCA1. The vCA1 shows the smallest proportion of unique DE genes but the highest rate of unique 
differential hub genes compared to other brain regions. (b) GWAS enrichment analysis of the unique vCA1 
DE genes and their differential neighbors shows enrichment for genes linked to SNPs associated with 
schizophrenia, autism spectrum disorder or schizophrenia, and general cognitive ability. (c) GO enrichment 
analysis of biological processes in the unique vCA1 DE genes and their neighbors shows enrichment of ion 
transport, and synaptic signaling. (d) Differential network of the genes linked to the GO term "regulation of 
trans-synaptic signaling" and connected with vCA1's unique DE genes. 

Tcf4 exhibited significant differential expression with dexamethasone treatment in the 
amygdala, vDG, and dDG, all showing a consistent downregulation (Figure 3.7a). While 
Tcf4's expression change was not statistically significant in the PFC, previous human 
postmortem brain network analyses have identified it as a schizophrenia master 
regulator (Torshizi et al., 2019). In the PFC DN centered around Tcf4, we pinpointed 26 
genes with differential connectivity to both DE genes and differential hub genes (Figure 
3.7b). This network, associated with various neurobehavioral traits in GWAS, 
underscores Tcf4's relevance to schizophrenia and the impact of stress on Tcf4 networks 
(Figure 3.7c, and Online Table 27). Notably, the differential Tcf4 network showed 
enrichment for development-related GO terms, as well as autophagy and chromatin 
organization (Figure 3.7d, and Online Table 28). 

https://www.sciencedirect.com/topics/neuroscience/single-nucleotide-polymorphism
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Figure 3.7. Network dynamics linked to candidate genes: the case of Tcf4. (a) Differential expression of 
Tcf4 is observed in the ventral and dorsal dentate gyrus (v/dDG) and in the AMY following the 
administration of dexamethasone. (b) Differential network of Tcf4 in the PFC. (c) GWAS enrichment analysis 
for Tcf4 and its differential neighbors shows significant enrichment (FDR £ 0.05) for genes linked to SNPs 
associated with the GWAS traits schizophrenia, autism spectrum disorder or schizophrenia, adventureness 
and general risk tolerance, among others. (d) GO biological processes enrichment analysis for Tcf4 PFC 
differential network members shows significant enrichment for development, neuronal differentiation, 
RNA biosynthetic processes, and gene expression, as well as the regulation of autophagy (bold).  

In the hippocampal formation, known for high Tcf4 expression from prenatal stages to 
adulthood (Teixeira et al., 2021), Tcf4 is significantly downregulated in both vDG and 
dDG regions (Figure 3.8a). Here, we explored how Tcf4's differential expression might 
affect molecular connectivity within these subregions. The CHEA and TRANSFAC 
transcription factor targets databases (Lachmann et al., 2010; Wingender, Dietze, Karas, 
& Knüppel, 1996) and the Pathway commons protein-protein interactions datasets 
(Cerami et al., 2010) identify 20 of the 55 members of the Tcf4 vDG and dDG DNs (Figure 
3.8a) as known Tcf4 targets and/or protein interactors. Based on MotifMap (Y. Liu et al., 
2017) and TRANSFAC (Wingender et al., 1996), an additional 11 genes are predicted Tcf4 
targets (Supplementary Figure 3, and Online Table 29). While most connections in these 
networks were similarly regulated in both vDG and dDG, 24 showed opposite 
regulatory patterns between the regions (Online Table 30, and selected genes in Figure 
3.8b) (data obtained from the Harmonizome database (Rouillard et al., 2016)). The 
connections between Tcf4 and the Zic gene group, which includes Zic1, Zic2, and Zic3, 
indicated a negative regulatory effect in dDG and a positive regulatory effect in vDG 
(see Methods 2.1.6.2 for explanation of term). Zic genes are important in the formation 

https://www.sciencedirect.com/topics/neuroscience/nerve-cell-differentiation
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of body pattern formation through the Wnt pathway (Nagai et al., 1997), which has been 
closely linked to Tcf4 (Bem et al., 2019; Petherick et al., 2013). Moreover, Tcf4's 
interactions with Runx2, a Wnt pathway participant (McCarthy & Centrella, 2010), 
suggested dexamethasone may modulate Tcf4's impact on the Wnt pathway in a 
subregion-specific manner within the DG. 
These findings present a comprehensive approach to generating hypotheses for 
subsequent experimental validation of these observed effects, underscoring the nuanced 
role of Tcf4 and its networks in response to glucocorticoid treatment across different 
brain regions. 
 

 
Figure 3.8. Differential regulations of Tcf4 in vDG and dDG. (a) Differential network of Tcf4 in both the 
vDG and dDG (left). Close-up view of a highly interconnected segment of the DG Tcf4 DN (right). Edges are 
highlighted in orange to indicate a positive regulatory effect in the dDG in contrast to a negative regulatory 
effect in the vDG. Edges in brown indicate a positive regulatory effect in the vDG and a negative one in the 
dDG, while the edges colored in green represent a positive regulatory effect in both areas. (b) Tcf4 molecular 
pathways that display divergent co-regulation in vDG and in dDG. The interactions between Tcf4 and the 
Zic transcripts, along with Satb2 and Nfia, exhibit a positive regulatory effect in vDG but a negative one in 
the dDG. Conversely, the interactions of Tcf4 with Runx2, Egr1 and R3hdm4 show a negative regulatory 
effect in the vDG and a positive one in the dDG.  
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3.2 Molecular Alterations in Psychiatric Disorders in the 
Orbitofrontal Cortex on a Cell Type Level 

In this chapter, we transition from a bulk transcriptomic study on the response to 
glucocorticoid receptor (GR) activation in mouse brain tissue to a multi-omics study 
focusing on mood and psychotic disorders with cell type resolution. This study is 
conducted in the human orbitofrontal cortex (OFC) – a subregion of the prefrontal cortex 
(PFC) – using postmortem brain samples. This shift was motivated by several key 
factors. The PFC was identified as the brain region with the highest number of 
transcriptional alterations upon GR activation, and is a focal point of psychiatric 
research, largely due to consistent evidence that dysfunctions in this brain region are 
fundamental to the cognitive and behavioral symptoms observed in psychiatric 
disorders (Gao et al., 2012). The heterogeneity of cell types within the PFC necessitates a 
cell type-specific investigation of the respective molecular alterations.  
In addition to a more detailed understanding of transcriptomic alterations, we aimed to 
explore the epigenomic landscape related to psychiatric disorders within the PFC's cell 
types. Epigenomic mechanisms are of particular interest in psychiatric research as they 
are thought to mediate the interaction between environmental influences and molecular 
processes (Cho, Elizondo, & Boerkoel, 2004; Keverne & Binder, 2020).  
Utilizing postmortem brain tissue from a transdiagnostic psychiatric cohort, this study 
integrates cell type-specific transcriptomic and epigenomic alteration with genetic 
predisposition for psychiatric disorders. While it is crucial to get a better understanding 
of the alterations in gene expression among GR activation to dissect the molecular 
response to stress, primarily via the HPA axis, the postmortem study enables a direct 
examination of the regulatory interactions within the human prefrontal cortex, offering 
a unique window into the etiology of mood and psychotic disorders.  
 

3.2.1 Study Design and Cohort Characteristics 

To decipher cell type-specific molecular changes linked to psychiatric disorders within 
the OFC, a detailed examination of nuclei from postmortem brain tissue (Brodmann area 
11) was performed. This work included the integration of single-nucleus (sn) RNA-seq 
and ATAC-seq data with genetic profiles, along with demographic and clinical 
information (Figure 3.9). The analysis was based on a cohort encompassing 92 donors, 
including 35 controls without psychiatric diagnoses and 57 cases diagnosed with 
schizophrenia, schizoaffective disorder (SCA), major depressive disorder (MDD), or 
bipolar disorder (n=38,7,7,5, respectively). Matching for sex (38% female representation), 
age (mean ± s.d. = 54.27 ± 13.64), postmortem interval (mean ± s.d. = 33.90 ± 14.82), and 
brain pH (mean ± s.d. = 6.60 ± 0.24), ensured comparability between the case and control 
groups, as detailed in Table 2.1 (p. 33).  
Following stringent quality control measures, we successfully retained a set of high-
quality transcriptomic data, representing a total of 787,046 nuclei from 87 donors. The 
data were characterized by an average number of 9,046 nuclei per donor (range 3,895-
15,693 nuclei). The median count of unique molecular identifiers (UMIs) per nucleus was 
3,887, allowing the detection of a median of 2,205 genes per nucleus. In addition to the 
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transcriptomic profiles, we also acquired chromatin accessibility data for 399,439 nuclei 
from 90 donors after quality control. These profiles were characterized by an average 
number of 4,438 nuclei per donor (range 982-8,707 nuclei) and a median number of 7,071 
ATAC-seq fragments per nucleus. 
 

Figure 3.9. Schematic representation of single-nucleus sequencing study in postmortem human brain 
samples of the orbitofrontal cortex. Data is based on a cohort of 92 donors, including 35 healthy controls 
and 57 psychiatric cases with a diagnosis for either schizophrenia, schizoaffective disorder, MDD, or bipolar 
disorder (n=38,7,7,5 respectively). Demographic and clinical variables were available for each donor. 
Genotyping, as well as single-nucleus profiling of gene expression (RNA-seq) and chromatin accessibility 
were performed on tissue samples of the orbitofrontal cortex (Brodmann Area 11) of the cohort. 

 

3.2.2 Identification and Assignment of Cell Types in Single-Nucleus 
Sequencing Data 

The preprocessing of both snRNA-seq and snATAC-seq data was followed by the 
assignment of cell type labels to the identified cellular clusters. To label the snRNA-seq 
data, we initially leveraged a cortical dataset from the Allen Brain Atlas (Human 
Multiple Cortical Areas (Map., 2019)), using a variational inference model (Lotfollahi et 
al., 2022). Subsequently, we fine-tuned these labels through manual curation based on 
the expression of marker genes (see Methods 2.2.3.4). Similarly, we defined cluster 
identity in the snATAC-seq data by integrating it with the previously labeled snRNA-
seq data (Granja et al., 2021) and a subsequent refinement based on the chromatin 
accessibility of known marker genes (Figure 3.10).  
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Figure 3.10. Gene expression and gene scores of established cell type-specific markers. (a-b) Dotplots 
illustrating levels of gene expression in snRNA-seq data (a) and gene scores in snATAC-seq data (b) for 
selected marker genes, categorized by major cell types. Color reflects the mean gene expression or score, 
while the size of each dot denotes the proportion of nuclei with a gene counts or scores > 1. 

Both data modalities facilitated detailed profiling of all major cortical cell types, 
including multiple subtypes of excitatory and inhibitory neurons from different cortical 
layers, endothelial cells, and various glial subtypes such as astrocytes, microglia, 
oligodendrocytes, and oligodendrocyte precursor cells (OPCs). Within the snRNA-seq 
data, a total of 19 distinct cell types were discerned, and of these, 15 were also identified 
in the snATAC-seq data (Figure 3.11).  
 

 
Figure 3.11. Low-dimensional representation of snRNA-seq and snATAC-seq data. UMAP visualizations 
for snRNA-seq (787,046 nuclei) and snATAC-seq (399,439 nuclei) data, colored by the corresponding cell 
type classification. 19 cell types were identified in the snRNA-seq data, while 15 cell types were discerned 
in the snATAC-seq data, encompassing the full spectrum of major cortical cell types. 

The distribution of library preparation batches, disease status, and sex does not show 
major differences between the cell types in both snRNA-seq and snATAC-seq data 
(Figure 3.12), indicating that cell clustering was not influenced by these potential 
confounding variables. However, the number of nuclei associated with each cell type 
exhibited considerable heterogeneity, both among different cell types and between 
snRNA-seq and snATAC-seq (Figure 3.13a). A median Pearson correlation coefficient of 
0.86 was observed between the cell type proportions of RNA-seq and ATAC-seq data 
across donors (Figure 3.13b). There were significant differences (FDR ≤ 0.05) in cell type 
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proportions when comparing them between the data from RNA-seq and ATAC-seq for 
all cell types (Figure 3.13c, Supplementary Table 19). Conversely, within each data 
modality, the cell type proportions did not significantly differ between case and control 
groups (Figure 3.13d-e). The glia-to-neuron ratio (RNA: 0.47, ATAC: 0.92, 
Supplementary Table 20) diverges from the numbers reported in histologically-based 
studies (see Introduction 1.5), a discrepancy that has been previously observed in 
droplet-based single-cell sequencing studies (Lake et al., 2018; Nagy et al., 2020). 
 

 
Figure 3.12. Distribution of library preparation batches, disease status and sex per cell type. (a-b) Stacked 
barplots representing the percentage distribution of library preparation batches in snRNA-seq (a) and 
snATAC-seq (b) data. (c-d) Stacked barplots representing the percentage distribution of cells originating 
from healthy controls and psychiatric cases in snRNA-seq (c) and snATAC-seq (d) data. (e-f) Stacked 
barplots representing the percentage distribution of cells originating from female and male donors in 
snRNA-seq data (e) and snATAC-seq (f) data. 
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Figure 3.13. Cell Type Distribution and differences between data modalities and disease status. (a) Nuclei 
count retained for each cell type after quality control. Color differentiates cell types hatching indicated the 
data modality. (b) Histogram depicting the distribution of Pearson correlation coefficients between the cell 
type proportions in snRNA-seq and snATAC-seq data across donors. (c) Significance levels of the disparities 
in cell type proportions between snRNA-seq and snATAC-seq data, with bar height indicating the -log10-
transformed FDR values from a two-sided Wilcoxon signed-rank test. (d-e) Significance levels of the 
disparities in cell type proportions between cases and controls in snRNA-seq data (d) and snATAC-seq data 
(e) with bar height indicating the -log10-transformed FDR values from a two-sided Wilcoxon rank sum test. 
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3.2.3 Correlation of Gene Expression with Chromatin Accessibility 
Within and Across Cell Types 

To clarify the cis-regulatory links between chromatin accessibility and gene expression 
within various cell types, independent of the influence of psychiatric disorders on gene 
regulation, we performed a detailed investigation. This included the quantification of 
the number of peaks located nearby (up to 100 kb from the gene body) each gene. We 
then assessed the correlation between chromatin accessibility and gene expression, 
applying cell type-specific filtering and normalization methods to the data. 
For example in oligodendrocyte precursor cells (OPCs), the distribution of adjacent 
peaks around the gene body within the 100 kb region varied, ranging from 0 to 112, with 
the median being 6. It was observed that more than 1,500 genes had no neighboring 
peaks in their close vicinity (Figure 3.14a). While similar trends were noted in other cell 
types, they each had their maximum values, generally low median peak counts, and a 
substantial proportion of genes did not have any proximate peaks within the 100 kb 
window from their gene body. Furthermore, among the peaks located in the vicinity of 
a gene, even fewer exhibited a significant correlation with the gene's expression levels. 
The highest number of peaks achieving nominal significance (p value £ 0.05) was 18, 
while almost 8,000 genes had no peaks correlated with their expression (Figure 3.14b). 
 

 
Figure 3.14. Number of peaks nearby genes. (a) Histogram of the peak count within a 100kb window from 
the gene body across all genes tested for differential expression in OPCs. Dashed red line denotes the median 
peak count. (B) Histogram of the number of nominally significantly correlated peaks (p value £ 0.05) within 
a 100kb distance from the gene body in OPCs. 

Given the low density of peaks, we shifted our focus to assess the association between 
gene expression and chromatin accessibility on the gene level. For this, we utilized gene 
scores that estimate the gene expression based on the accessibility of nearby regulatory 
elements, circumventing the need for peak calling (see Methods 2.2.3.3). The Spearman 
correlation indicates a significant, though modest, relationship between the mean 
normalized gene expression values and gene scores across (R = 0.35, Figure 3.15a) and 
within cell types (R = [0.37, 0.46] in all cell types, Figure 3.15b). The modest nature of this 
correlation might stem from the complexity of open chromatin's role, which is not solely 
associated with gene activation but may also signify gene repression or genes that are 
primed for future activation (Daugherty et al., 2017; Shlyueva, Stampfel, & Stark, 2014). 
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Figure 3.15. Relationship between mean gene expression and chromatin accessibility. (a-b) Dotplot 
depicting the mean gene expression levels plotted against mean gene score levels across all cell types (a) and 
in OPCs (b). Red line indicates a linear model fitted on the data. Spearman correlation coefficient is displayed 
in the upper left corner. 

To evaluate if groups of genes with different expression and chromatin accessibility 
patterns are enriched for different functionalities, we grouped genes based on their gene 
expression (HE: high expression, LE: low expression) and chromatin accessibility levels 
(HA: high accessibility, LA: low accessibility). We performed a GO enrichment analysis 
for biological processes to determine the associated functions of genes that are 
simultaneously highly/lowly expressed and accessible (HE-HA and LE-LA), but also 
the genes that are highly/lowly expressed while being lowly/highly accessible (HE-LA, 
LE-HA), as described in the Methods section 2.2.7. We observed a significant enrichment 
(FDR £ 0.05) of biological processes primarily related to the neurons and synapses for 
the genes that are highly expressed and accessible (HE-HA: 1331 genes, Figure 3.16a), 
while genes with high expression and low accessibility are more likely to be involved in 
general cell functionality, such as RNA transport and processing (HE-LA: 795 genes, 
Figure 3.16b). Genes with high accessibility, though a low expression level, were not 
enriched for any biological processes (LE-HA: 891 genes), while genes with both a low 
expression and accessibility seem to be involved in metabolic, catabolic, or 
mitochondrial processes (LE-LA: 2660 genes, Figure 3.16c). We can therefore conclude 
that these groups of genes are indeed involved in different biological processes.  
 
The relationship between normalized gene expression and gene scores is notably robust 
when correlating pseudobulk samples across all cell types, retaining cell type and 
sample-specific variation within the data (Figure 3.17a). However, when the correlation 
analysis is limited to pseudobulk samples from the same cell type, thus only accounting 
for sample-specific variations, the correlations are generally lower and partly even 
negative (Figure 3.17b). Nonetheless, these correlation distributions remain significantly 
different from what would be expected by chance (p value < 2.2e-16), as evidenced by 
comparing it to a random distribution created by permuting gene scores among 
pseudobulk samples (see Methods 2.2.7).  
In light of these findings, our downstream analyses were performed at the level of gene 
scores. This method effectively circumvents the issue of missing peaks that affect 
numerous genes, offering a broader perspective of the regulatory landscape 
surrounding a gene.  
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Figure 3.16. Functionalities of groups of genes with different patterns of gene expression and chromatin 
accessibility levels. (a-d) Treemaps summarizing significantly enriched biological processes (FDR £ 0.05), 
based on GO terms, for genes with high expression and high accessibility (a), high expression and low 
accessibility (b), and low expression and low accessibility (c). No enrichments were identified for genes with 
low expression and high accessibility. GO terms are grouped based on semantic similarity. The size of each 
rectangle corresponds to the significance of the GO term. 

 

 

Figure 3.17. Relationship between gene expression and chromatin accessibility at the cell type-level. (a-
b) Histogram displaying Spearman correlations between gene expression and gene score levels on the donor 
level across all cell types (a) and in OPCs (b). The observed correlation coefficients (blue) are shown 
alongside the distribution generated from randomly permuting donor levels (gray). Dashed lines mark the 
mean values of each distribution. 
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3.2.4 Identification of Cell Type-Specific Changes in Psychiatric 
Disorders through Differential Gene Expression Analysis 

Exploring transcriptional alterations related to psychiatric disorders, this study applied 
differential expression analysis, comparing cases with controls for each cell type. The 
number of genes showing significant differential expression (DE, FDR ≤ 0.1) displayed 
a substantial variation, ranging from 0 to 481 (Figure 3.18a, Supplementary Table 21, 
Online Table 33). Notably, excitatory neurons stood out for their high counts of DE genes 
and most substantial log2-transformed fold changes (FC, ranging from -0.35 to 0.38, see 
Figure 3.18b). In cell types with at least two hits (ncell types=12 cell types), at least 50% of 
the identified DE genes were unique (Figure 3.18a), highlighting their distinct 
transcriptional signatures. For instance, the gene Slit Guidance Ligand 2 (SLIT2) on 
chromosome 4, which displayed the highest absolute FC of 0.38 and the lowest FDR 
value (FDR=1.38x10-6), manifested a unique and significant upregulation specifically in 
excitatory neurons of layers 4 to 6, cluster 1 (Exc_L4-6_1, Figure 3.18c-d), despite not 
presenting the highest expression in that particular cell type (mean exp=0.32 vs. mean 
exp of 1.66 in basket cells [In_PVALB_Ba], Figure 3.18e). While prior research has 
implicated SLIT2, a glycoprotein in the Slit family known for its conserved role in axon 
guidance and neuronal migration in depression- and anxiety-like behavior in adult mice 
(Huang et al., 2020), its cell type-specific dysregulation in the human cortex has not been 
previously reported. Furthermore, Potassium Voltage-Gated Channel Subfamily Q Member 
3 (KCNQ3) on chromosome 8 stands out due to its unique significant downregulation in 
microglia (FDR=0.02), showing a FC of -0.25. This contrasts with its FCs in all other cell 
types, ranging between -0.05 and 0.15 (Figure 3.18f-g). KCNQ3 also exhibits the highest 
expression specifically in microglia (mean exp=1.75, Figure 3.18h). While KCNQ3 has 
been previously linked to the etiology of bipolar disorder in postmortem prefrontal 
cortex (Kaminsky et al., 2015), the specificity of its downregulation in microglia offers a 
novel insight. 
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Figure 3.18. Gene expression changes between psychiatric cases and controls. (a) UpSet plot displaying 
the number of DE genes (FDR £ 0.1) for each cell type (left), as well as their overlap across cell types (right). 
(b) Dotplot illustrating the DE genes, with log2-fold change on the y-axis and dot size corresponding to -
log10-transformed FDR values. (c) Boxplot of normalized gene expression levels of SLIT2 in both controls 
and cases. (d) Dotplot representing the log2-fold changes of SLIT2 across cell types, with dot size reflecting 
the -log10-transformed FDR values. (e) UMAP plot of snRNA-seq data colored according to the normalized 
expression levels of SLIT2. (f) Boxplot of normalized gene expression levels of KCNQ3 in both controls and 
cases. (g) Dotplot representing the log2-fold changes of KCNQ3 across cell types, with dot size reflecting the 
-log10-transformed FDR values. (h) UMAP plot of snRNA-seq data colored according to the normalized 
expression levels of KCNQ3. 

The observed disparities in the count of DE genes per cell type motivated an assessment 
of whether the detection power varied due to the number of nuclei per cell type. Our 
observations confirmed that the quantity of DE genes for each cell type was indeed 
driven by the number of nuclei and the number of unique molecular identifier (UMI) 
counts (Figure 3.19a-b), which ultimately influences the number of genes tested for DE. 
When the nuclei per cell type were downsampled to the 75%, 50%, and 25% percentiles 
(nnuclei=40,793, 31,504, 14,416, respectively), the disparity in the number of tested genes 
and DE genes between excitatory neurons and other cell types narrowed. Despite this, 
excitatory neurons consistently displayed the most DE genes (Figure 3.19c-d). Therefore, 
it is essential to consider that the extent of dysregulation in a cell type cannot be solely 
judged by the count of DE genes. 
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Figure 3.19. Influence of nuclei count on detection power. (a-b) Nuclei count (a) and the number of UMI 
counts (b) plotted against the number of DE genes (FDR £ 0.1) per cell type. Dot color indicates the cell type 
as coded above. (c-d) Barplot representing the number of genes tested for differential expression (c) and the 
number of significant DE genes (d) using the full dataset and datasets downsampled to the 75%, 50% and 
25% percentile of nuclei per cell type which is indicated by color. 

3.2.5 Transcriptomic Profiling Reveals Enrichment of Disease-Associated 
Pathways in Microglia 

To gain insights into the underlying biological processes and functions perturbed by 
these DE genes within different cell types, we conducted an enrichment analysis of 
KEGG pathways in up- and downregulated genes within each cell type (Figure 3.20, see 
Methods 2.2.6.1). The notable presence of pathways such as long-term depression 
(FDR=0.04) and mechanisms of cellular interaction, including focal adhesion 
(FDR=0.04), among the downregulated genes in microglia was uniquely distinctive 
when compared to other cell types. Additionally, the analysis highlighted certain 
pathways involved in the nervous and endocrine systems (e.g., various synapses or 
endocannabinoid signaling) enriched among downregulated genes in specific cell types, 
including fibrous astrocytes (Astro_FB), chandelier cells (In_PVALB_Ch), and microglia. 
Various pathways related to neurodegenerative diseases, as well as oxidative 
phosphorylation, were found to be significantly enriched among both up- and 
downregulated genes in different cell types. The Ribosome pathway showed significant 
enrichment, particularly in upregulated genes in oligodendrocytes (FDR=5.18x10-29), 
alongside moderate enrichment in OPCs (FDR=7.20x10-7) and endothelial cells 
(FDR=6.54x10-11). 
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Figure 3.20. Pathway enrichments among disease-related genes. Heatmaps displaying the findings from 
KEGG pathway enrichment analysis conducted on the 250 most up- and downregulated genes for each cell 
type. The heatmap displays all pathways that have shown significant enrichment in at least one cell type. 
The intensity of color correlates with the -log10-transformed FDR values, with asterisks indicating 
significance (FDR £ 0.05). Pathway classifications are color-coded on the left of each heatmap to indicate the 
specific pathway group and family. K-means clustering dendrograms are provided to show how cell types 
group together based on their pathway enrichment profiles.  

 

3.2.6 Comparison to Prior Research and Pseudobulk Analysis Endorses 
Disease-Related Findings 

To evaluate the consistency of our results with previous studies, a correlation analysis 
was performed to compare effect sizes observed in our study against those reported by 
Ruzicka et al. (2022). We observed that the highest correlation in effect sizes typically 
occurred between matching cell types. For instance, the effect sizes of astrocytes in our 
analysis exhibited the strongest correlation with those of the astrocyte population in the 
Ruzicka et al. study (Figure 3.21a), suggesting a general alignment of our findings with 
those in previous studies.  
From all DE genes identified across cell types in our study (ngenes=732 non-redundant), 
less than half (40%, ngenes=291) reached significance when assessed at the full pseudobulk 
level, aggregating the data across all cell types (see Methods 2.2.5.4). Of the DE genes 
identified from the full pseudobulk analysis (ngenes=511), 57% (ngenes=291) were also 
significant in at least one specific cell type (Figure 3.21b-c), underscoring the value of 
single-cell investigations. 
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Figure 3.21. Comparison of DE results with single-cell data on schizophrenia and full pseudobulk 
analysis. (a) Heatmap displaying correlations between effect sizes from our study and those published in 
Ruzicka et al. (2022) for each cell type pair. Color gradient represents the Pearson correlation coefficient 
based on the effect sizes for genes tested in both studies in the respective cell types. Dark blue borders mark 
the highest correlation per column, while light blue borders mark the highest correlation per row. (b) Barplot 
visualizing the number of DE genes in each cell type, categorizing upregulation and downregulation, with 
the darker sections indicating the subset also found as DE in the full pseudobulk analysis. (c) Barplot 
visualizing the number of DE genes from the full pseudobulk analysis, categorized by upregulation and 
downregulation, with the darker sections indicating the subset of genes also found as DE in at least one 
specific cell type.  

3.2.7 Signatures of Disease-Related Chromatin Accessibility Alterations 
Divergent from Gene Expression Patterns 

Augmenting our DE results, we performed differential chromatin accessibility (DA) 
analysis between cases and controls at the gene score level across the different cell types 
(ncell types=15). We discovered significant alterations in chromatin accessibility (FDR ≤ 0.1) 
in two subtypes of excitatory neurons (excitatory neurons layers 2 to 3 [Exc_L2-3], 
ngenes=46 and excitatory neurons layers 3 to 5 [Exc_L3-5], ngenes=1), as well as in 
protoplasmic (Astro_PP, ngenes=4) and fibrous astrocytes (Astro_FB, ngenes=5), as detailed 
in Figure 3.22a, Supplementary Table 22, and Online Table 34. 
Focusing on genes that showed differential expression in the snRNA-seq data within 
specific cell types, a subset of these genes also exhibited significant changes in chromatin 
accessibility. The largest group was observed in excitatory neurons of layers 2 to 3 with 
13 DE+DA genes (Figure 3.22b, and Online Table 35). For 8% of these genes (ngenes=2 out 
of 24), the analysis revealed contrasting patterns of regulation between the 
transcriptomic and epigenomic data (Supplementary Figure 4a). However, certain genes 
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displayed congruent regulatory patterns across both data sets. For instance, Hes Family 
BHLH Transcription Factor 4 (HES4) in excitatory neuron layers 4 to 6, cluster 1 (Exc_L4-
6_1), had FDR values of 0.04 (RNA) and 2.21x10-3(ATAC) with FCs of -0.28 (RNA) and -
0.43 (ATAC). Similarly, Insulin-like growth factor-binding protein 5 (IGFBP5) in 
oligodendrocyte precursor cells (OPCs) showed FDR values of 1.70x10-5 (RNA) and 0.08 
(ATAC) with FCs of 0.33 (RNA) and 0.21 (ATAC). Figure 3.22c-d shows the genome 
tracks displaying the normalized ATAC signal for cases and controls near these genes. 
There was no observed overlap of DA genes across different cell types. Moreover, 
pathway enrichment analysis among the most up- and downregulated genes in each cell 
type indicated no significant enrichments for the majority of the cell types 
(Supplementary Figure 4b). 
 

 

Figure 3.22. Chromatin accessibility changes between psychiatric cases and controls. (a-b) Findings from 
the differential accessibility analysis considering all genes passing filtering step (a) alongside those genes 
also DE (b). Barplot on top illustrates the count of significant DA genes (FDR £ 0.1) per cell type. Dotplot 
depicts the log2-transformed fold changes (FCs) for all tested, with color denoting DA significance and dot 
size corresponding to the -log10-transformed FDR value. (c-d) Genome tracks presenting the normalized 
ATAC signal in a 100kb around the gene body of HES4 (c) and IGFBP5 (d). HES4 within excitatory neuron 
layers 4 to 6, cluster 1 (Exc_L4-6_1), observed FDR values were 0.04 (RNA) and 2.21x10-3 (ATAC), with FCs 
of -0.28 (RNA) and -0.43 (ATAC). Likewise, IGFBP5 in oligodendrocyte precursor cells (OPCs) exhibited 
FDR values of 1.70x10-5 (RNA) and 0.08 (ATAC), with FCs of 0.33 (RNA) and 0.21 (ATAC).  



70  Results 
 

  

3.2.8 Differential Transcriptomic and Epigenomic Patterns Related to 
Genetic Risk Highlight Variations in Chromatin Accessibility 

To unravel the impact of genetic risk on gene expression and chromatin accessibility, 
independent of the clinical diagnosis, differences between donors at high and low 
genetic risk were examined. Polygenic risk scores (PRS), derived from summary 
statistics of several psychiatric GWAS studies (Cross-disorder phenotype (Consortium., 
2019), schizophrenia (Trubetskoy et al., 2022), MDD (Howard et al., 2019), and bipolar 
disorder (Mullins et al., 2021)) and height (Yengo et al., 2022) as a non-psychiatric trait, 
were employed to capture each donor's overall genetic risk for these conditions (Online 
Table 32). Notably, even though cases displayed a significantly higher mean PRS 
compared to controls based on the cross-disorder, the MDD and the bipolar disorder 
GWAS (p value £ 0.05 respectively, one-sided T-test), the score distributions are highly 
overlapping between controls and cases (Figure 3.23), highlighting that PRS can not 
pinpoint psychiatric diagnoses, but capture only the genetic predisposition for the actual 
disease. Instead of treating PRS as a continuum, we adopted an approach comparing 
extreme groups of the distribution, matched for covariates with propensity score 
matching (see Methods 2.2.5.2). Focusing on the extreme groups is an approach that has 
been demonstrated as reliable in previous studies (Andlauer & Nöthen, 2020; C. M. 
Lewis & Vassos, 2020).  

 

Figure 3.23. Overlapping PRS distributions for psychiatric cases and controls. Distribution of cross-
disorder, schizophrenia, MDD, bipolar disorder, and height PRS for psychiatric controls and cases. P values 
derived from t-test to test for differences between cases and controls shown on top. A one-sided t-test was 
utilized for psychiatric PRS to test if the mean PRS of cases was significantly higher than the mean PRS of 
controls, while a two-sided t-test was utilized for height, as we did not assume a difference in the mean PRS 
between cases and controls. 

Recognizing the need to assess genetic influences independent of clinical diagnosis, we 
analyzed the alterations in gene expression between high vs. low risk groups (DE risk 
genes). We detected significant DE risk genes in 3 to 10 of the 19 cell types for each GWAS 
trait studied (Figure 3.24a, and Online Table 36). In the fibrous astrocytes (Astro_FB), 54 
DE risk genes were linked to the cross-disorder phenotype, with some additional hits 
across other cell types (ngenes=18 hits in 5 cell types). The majority of DE risk genes for 
bipolar disorder were prevalent in excitatory neurons (ngenes=32 out of 35 hits) and 
displayed some overlap with DE genes differentiating cases from controls (ngenes=3 out 
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of 35 hits, gray dots in Figure 3.24a). While genetic risk for schizophrenia was linked to 
alterations in various cell types (ngenes=17 hits in 7 cell types), genetic risk for MDD was 
associated with a lower count of DE risk genes (ngenes=7 hits in 3 cell types). The effect 
sizes of DE risk genes were more pronounced than those observed for genes associated 
with clinical diagnoses (median absolute FCPRS=[0.29,0.55] vs. median absolute 
FCdiagnosis=[0.18,0.30] per cell type, see Supplementary Figure 5a). Notably, 3 DE risk 
genes associated with the genetic predisposition for height were identified in 3 distinct 
cell types, differing from those linked with psychiatric traits.  

In an analysis focused on chromatin accessibility differences between extreme PRS 
groups, a substantial number of genes demonstrated differential accessibility (DA risk 
genes) across various cell types and GWAS traits (Figure 3.24b, and Online Table 37) 
with a total of 6,418 DA risk genes compared to 141 DE risk genes. These genes were 
predominantly identified in excitatory neurons of layers 2 to 3 (Exc_L2-3, ngenes=5,645 
DA risk genes). Moreover, DA risk genes showed larger effect sizes than those DA genes 
associated with clinical diagnoses (median absolute FCPRS=[0.15,0.74] vs. median 
absolute FCdiagnosis=[0.12,0.35] per cell type, see Supplementary Figure 5b). Although DA 
risk genes for height were found, only a single gene overlapped a DA risk gene for 
bipolar disorder. Despite the substantial number, the overlap between DA risk genes 
and DE risk genes was minimal (Figure 3.24b, gray dots). Only two genes, the 
hyperpolarization-activated cyclic nucleotide-channel (HCN2) and IN080 complex 
subunit E (INO80E), were identified as both DE risk gene (FCs=0.36 and 0.26, FDR=0.06 
and 0.09 respectively) and DA risk gene (FCs=0.14 and 0.16, FDR=0.05 and 0.03 
respectively) for the same GWAS trait (schizophrenia) and in the same cell type (Exc_L2-
3). Genomic tracks of HCN2 and INO80E depict different ATAC coverage contrasting 
the high and low schizophrenia risk groups (Figure 3.24c-d). HCN2 is predominantly 
expressed in the heart and the nervous system, according to bulk GTEx data (Lonsdale 
et al., 2013) (Figure 3.24e), and contributes to pacemaker currents (Santoro et al., 1998). 
INO80E shows expression across all tissues in the GTEx data (Lonsdale et al., 2013) 
(Figure 3.24e), and is involved in ATP-dependent chromatin remodeling as well as DNA 
replication and repair processes (Conaway & Conaway, 2009). 
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Figure 3.24. Transcriptomic and epigenomic alterations linked to genetic risk. (a-b) Findings from DE risk 
(a) and DA risk (b) analyses between donors with high and low genetic predisposition, as quantified by PRS 
informed by 5 different GWAS studies (cross-disorder, schizophrenia, MDD, bipolar disorder, and height). 
Barplots depict the number of significant DE and DA risk genes. Dotplots detail the significant DE/DA risk 
genes (FDR <= 0.1), with the color denoting the GWAS study and dot size corresponding to the -log10-
transformed FDR values. In panel (a), gray dots represent DE risk genes were also identified as DE genes 
between cases and controls within the same cell type. In panel (b), gray dots represent DA risk genes that 
were also identified as DE risk genes within the same cell type. (c-d) Genome tracks illustrating normalized 
ATAC signal in a 100kb window around the gene body of INO80E (c) and HCN2 (d). (e) Heatmap showing 
gene expression levels (i.e., transcript per million, TPM) for HCN2 and INO80E across various human 
tissues, sourced from the GTEx database (Lonsdale et al., 2013).  
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3.2.9 Common Pathways Affected by Diagnosis and Genetic Risk 

Despite the limited overlap of DE genes associated with psychiatric diagnoses and those 
associated with genetic risk for psychiatric conditions (DE risk genes), we observed a 
consensus of commonly affected pathways (Supplementary Figure 6). Across the 
different GWAS traits, including psychiatric phenotypes, and interestingly also height 
(included as a non-psychiatric reference), most pathways enriched in at least one cell 
type are related to human diseases or integral to organismal systems. The pathways 
influenced by genetic risk factors for psychiatric disorders often involve mechanisms 
within the endocrine and nervous systems. Across all examined traits, there was a 
predominant enrichment within endothelial cells and excitatory neurons. However, a 
distinct pattern emerges in microglia with upregulated genes linked to cross-disorder 
genetic risk (Supplementary Figure 6a), mirroring the pattern observed for psychiatric 
diagnoses. In particular, genes affected by genetic risk for schizophrenia, bipolar 
disorder, and MDD showed significant enrichment for signal transduction pathways 
(Supplementary Figure 6b-d). 
When examining alterations in chromatin accessibility between groups of high and low 
genetic risk, only a few significant pathways emerged (Supplementary Figure 7). This 
suggests that the DA genes may participate in distinct biological processes rather than 
common pathways, but is most likely also influenced by the varying sizes of the gene 
sets used as backgrounds in our analyses. 
 

3.2.10 Genetic Risk Impacts Gene Expression of GWAS Loci 

To investigate if DE risk genes for certain traits and cell types show an association with 
genes implicated in psychiatric disorders via GWAS, specifically bipolar disorder 
(Mullins et al., 2021), MDD (Howard et al., 2019), and schizophrenia (Trubetskoy et al., 
2022), we performed a GWAS enrichment analysis using H-MAGMA (Sey et al., 2020). 
The results revealed no notable enrichment of GWAS-associated genes within the DE 
genes for psychiatric diagnoses and the DE genes linked to genetic risk for cross-disorder 
phenotype, bipolar disorder, MDD, and height (Figure 3.25a-b,d-f). Yet, significant 
enrichment was observed for schizophrenia GWAS-associated genes in the DE risk 
genes specifically for schizophrenia among basket cells (In_PVALB_Ba), excitatory 
neurons layers 2 to 3 (Exc_L2-3), and endothelial cells (Figure 3.25c). Endothelial cells 
also displayed a marked enrichment for MDD GWAS-associated genes within their DE 
risk genes for schizophrenia. This observation indicates that genes associated with 
significant genetic variants identified in GWAS are also affected in their expression 
levels in certain cell types by the overall genetic predisposition. 
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Figure 3.25. GWAS enrichment in DE genes and DE risk genes. (a-f) Results of GWAS enrichment analysis 
in DE genes for psychiatric diagnosis (a), cross-disorder DE risk genes (b), schizophrenia DE risk genes (c), 
MDD DE risk genes (d), bipolar disorder DE risk genes (e) and height DE risk genes (f) using H-MAGMA 
for GWAS hits of bipolar disorder, major depressive disorder and schizophrenia. Color indicates -log10-
transformed FDR values and asterisks indicate significance (FDR £ 0.05). 

 

3.2.11 Genetic Risk for Schizophrenia Modulates INO80E and HCN2 
Regulation in Excitatory Neurons in Cortical Layers 2/3 

INO80E, a gene with known association to schizophrenia from prior genomic studies 
including GWAS, transcriptome-wide association analysis (TWAS), and copy number 
variation (CNV) analyses (Gusev et al., 2018; Lago & Bahn, 2022; Z. Li et al., 2017; 
Marshall et al., 2017; Ripke et al., 2014), has emerged as significant in our differential 
analyses between schizophrenia risk groups (DE and DA risk gene, Figure 3.24b and 
Figure 3.26a-b) in excitatory neuron of layers 2 to 3 (Exc_L2-3). As one of only two such 
genes, INO80E demonstrated differential expression and accessibility specifically in this 
cell type but was not differentially regulated in any other cell type (Figure 3.26c).  
To gain a deeper understanding of the regulatory mechanisms of INO80E across various 
cortical cell types, we conducted a comprehensive analysis that integrated gene 
expression, chromatin accessibility, and dysregulation between schizophrenia risk 
groups. We inferred a correlation-based network, incorporating gene expression and 
chromatin accessibility across various cell types, PRS for cross-disorder phenotypes, 
bipolar disorder, MDD, schizophrenia, and height, as well as the disease status (Figure 
3.26d). The network reveals that nodes within the same node family (like PRS for various 
disorders or gene expression across cell types) tend to exhibit positive correlations. 
However, correlations between different node families are predominantly negative. Of 
particular note, INO80E's gene score in excitatory neurons of layers 2 to 3 (Exc_L2-3) 
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correlates with both cross-disorder and schizophrenia PRS, while its gene expression in 
this cell type exhibits correlation below nominal significance, despite being identified as 
a significant DE risk gene.  
To understand the key transcriptional drivers influencing INO80E and identify the 
regulatory elements governing the observed expression and accessibility changes, we 
performed a transcription factor motif enrichment analysis within its promoter region. 
We observed a significant enrichment of the KLF4 transcription factor motif 
(Supplementary Table 23, Figure 3.26e), which has a prior association with 
downregulation in schizophrenia. Interestingly, KLF4 neither shows expression nor 
accessibility levels above the set threshold in excitatory neurons of layers 2 to 3 (Exc_L2-
3). 

 

Figure 3.26. Cell type-specific patterns of gene regulation of INO80E in relation to schizophrenia genetic 
risk. (a-b) Boxplots depicting gene expression (a) and chromatin accessibility (b) levels of INO80E for high 
and low genetic risk groups for schizophrenia and according to psychiatric diagnosis. (c) Heatmap 
illustrating log2-fold changes of INO80E from both DE and DA risk analyses related to schizophrenia, with 
asterisks denoting significance (FDR £ 0.1). (d) Correlation-based network inferred from PRS for cross-
disorder phenotypes, bipolar disorder, MDD, schizophrenia and height, alongside psychiatric diagnosis, 
gene expression, and gene scores across different cell types. Edges represent all nominally significant 
correlations (p value £ 0.05). Nodes are colored according to their cell type, with node label colors indicating 
the node family/data modality, edge width relating to the correlation strength, and edge color reflecting 
whether the correlation is positive or negative. This network is characterized by predominantly positive 
correlations within the same data modality (e.g., PRS across various disorders or gene expression levels 
across cell types), but primarily negative correlations occur between different data modalities. (e) 
Transcription factor binding motif for KLF4, obtained from the JASPAR database (Fornes et al., 2020).  

HCN2, a gene encoding a hyperpolarization-activated cation channel plays an important 
role in the generation of native pacemaker activity in the heart and the brain, exhibited 
differential expression and accessibility (DE and DA risk gene) in excitatory neurons 
layers of 2 to 3 between low and high risk groups for schizophrenia as well (Figure 3.24b 
and Figure 3.27a-b). No significant dysregulation of gene expression or chromatin 
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accessibility was observed within any other cell type (Figure 3.27c). The correlation-
based network for HCN2, integrating levels of gene expression and chromatin 
accessibility across various cell types, PRS for cross-disorder phenotypes, bipolar 
disorder, MDD, schizophrenia, and height, as well as disease status (Figure 3.27d), 
shows more positive correlations between node families than the INO80E integration. 
Gene scores of HCN2 in excitatory neurons of layers 2 to 3 (Exc_L2-3) are positively 
correlated with PRS for bipolar disorder, while gene expression of HCN2 in Exc_L2-3 are 
positively correlated with gene expression in other populations of excitatory neurons 
and negatively correlated with gene score in VIP and SST interneurons (In_VIP and 
In_SST). Transcription factor motif analysis within the HCN2 promoter region revealed 
significant enrichment of numerous transcription factor motifs (Supplementary Table 
23), with the most significant ones for MAZ (Figure 3.27e) and ZNF148 (Figure 3.27f). 
The two respective genes are expressed and accessible in excitatory neurons of layers 2 
to 3, as they are in the majority of cell types. 

 

Figure 3.27. Cell type-specific patterns of gene regulation of HCN2 in relation to schizophrenia genetic 
risk. (a-b) Boxplots depicting gene expression (a) and chromatin accessibility (b) levels of HCN2 for high 
and low genetic risk groups for schizophrenia and according to psychiatric diagnosis. (c) Heatmap 
illustrating log2-fold changes of HCN2 from both DE and DA risk analyses related to schizophrenia, with 
asterisks denoting significance (FDR £ 0.1). (d) Correlation-based network inferred from PRS for cross-
disorder phenotypes, bipolar disorder, MDD, schizophrenia and height, alongside psychiatric diagnosis, 
gene expression, and gene scores across different cell types. Edges represent all nominally significant 
correlations (p value £ 0.05). Nodes are colored according to their cell type, with node label colors indicating 
the node family/data modality, edge width relating to the correlation strength, and edge color reflecting 
whether the correlation is positive or negative. (e-f) Transcription factor binding motif for MAZ (e) and 
ZNF148 (f), obtained from the JASPAR database (Fornes et al., 2020).  
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3.3 Cross-Species Transcriptional Dysregulation: Distinct 
Patterns in Mouse PFC Stress Response and Cell Types of 
Human PFC in Psychiatric Disorders 

We performed a comparative analysis aiming to understand the relationship between 
gene expression alterations in the mouse PFC following glucocorticoid treatment and 
the cell type-specific gene expression changes observed in the human postmortem OFC 
associated with psychiatric diagnoses. Our goal was to discern whether the same genes 
dysregulated by GR activation in the mouse PFC also show dysregulation in the human 
postmortem OFC within psychiatric contexts. 
Upon mapping mouse genes to their human orthologs and analyzing the overlap of DE 
genes, we discovered that only a minority of cell type-specific DE genes for psychiatric 
diagnoses were also DE following GR activation in the mouse model (Figure 3.28). 
Specifically, out of the cell type-specific DE genes (ngenes=732 non-redundant DE genes), 
only 47 were DE in the mouse (ngenes=920 DE genes in total in mouse PFC), with 30 of 
these exhibiting regulation in the same direction (Supplementary Table 24). Notably, a 
substantial number of the cell type-specific psychiatric DE genes (ngenes=287 genes) were 
not assessed in the mouse PFC, predominantly due to either very low expression levels 
or because the human DE genes lacked mouse orthologs (using Biomart (Durinck et al., 
2005), December 2021). Out of the 920 DE genes identified in the mouse PFC, 102 were 
not even tested for differential expression in the human OFC, due to low expression 
levels. 
This modest overlap was not entirely unexpected, given that even within our broader 
pseudobulk analysis, we observed a limited concurrence between full pseudobulk DE 
genes and cell type-specific DE genes, despite being derived from the same dataset. The 
bulk RNA-seq data from our mouse study potentially masks cell type-specific signals, 
and single-nucleus sequencing data might lack the power to detect many dysregulated 
genes due to its sparsity. 
Among the shared genes, notable examples include FKBP5, which was upregulated in 
both the mouse PFC and the excitatory neurons in layers 2/3 (Exc_L2-3) of the human 
OFC. FKBP5, coding for the protein FKBP51, is a co-chaperone of heat shock protein 90 
(Hsp90) and can modulate GR, affecting the HPA axis regulation (Binder, 2009). 
Elevated FKBP5 expression levels can reduce GR sensitivity and might impair the HPA 
axis's negative feedback efficiency (Pariante & Miller, 2001). The pathogenic role of 
FKBP5 in psychiatric disorders has been shown consistently in prior research, with 
increased expression levels across different subregions of the PFC (Matosin et al., 2023; 
Seifuddin et al., 2013; Sinclair, Fillman, Webster, & Weickert, 2013) and an association of 
such increased expression levels with psychiatric-like phenotypes in mouse models (C. 
Engelhardt et al., 2021; Hartmann et al., 2015). 
Additionally, RASD1, coding for the "Dexamethasone inducible Ras-related protein 1", 
was upregulated across both excitatory neurons of layers 2/3 and layers 4 to 6, cluster 1 
(Exc_L2-3 and Exc_L4-6_1), as well as in the mouse PFC. Glucocorticoids are known to 
increase expression levels of RASD1 in the hypothalamus (Greenwood et al., 2016), while 
our findings implicate the same for the PFC. The gene is also implicated in the negative 
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feedback loop controlling ACTH secretion (Brogan, Behrend, & Kemppainen, 2001) as 
part of the HPA axis. 
In contrast, SLIT2, the gene with the highest absolute fold change in gene expression 
between psychiatric cases and controls across all cell types (see Results 3.2.4), displayed 
opposite regulation trends. It exhibits downregulation in the mouse while being 
upregulated in human excitatory neurons of layers 4 to 6, cluster 1 (Exc_L4-6_1). 
Interestingly, a divergent expression pattern of SLIT2 has been observed in a study of 
prion disease in mice, with upregulation observed in a neuronal cluster and 
downregulation in astrocytes (Slota, Sajesh, Frost, Medina, & Booth, 2022). An ovarian 
cancer study showed that gene expression levels of SLIT and ROBO genes, including 
SLIT2, can be elevated by a reduction of GR expression (Dickinson, Fegan, Ren, Hillier, 
& Duncan, 2011). 
These findings emphasize the intricate nature of gene regulation under psychiatric 
conditions and GR activation, highlighting both congruent and divergent patterns across 
species and the potential for distinct regulatory mechanisms at play during acute stress 
and in the etiology of psychiatric disorders. 
 

 
Figure 3.28. Overlap of dysregulated genes following GR stimulation in mouse PFC and dysregulated 
genes in psychiatric disorders in cell types of human OFC. (a) Barplot visualizing the number of up- and 
downregulated genes following GR stimulation in mouse PFC. Blue portions of the bars represent genes 
that were also tested for DE in at least one cell type of human OFC. Dark blue portions represent genes 
identified as DE in at least one cell type of human OFC. (b) Barplot visualizing the number of up- and 
downregulated genes in psychiatric disorders in cell types of human OFC. Blue portions of the bars 
represent genes that were also tested for DE in mouse PFC. Dark blue portions represent genes identified as 
DE in mouse PFC. 
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4 Discussion 
 
In this thesis, I have endeavored to elucidate the intricate molecular mechanisms and 
alterations that orchestrate the stress response and the etiology of stress-related 
disorders by employing a diverse array of methodologies and data derived from 
different biological platforms. Specifically, the outlined research includes a brain region-
specific transcriptomic analysis of the stress response utilizing a mouse model. This 
project has demonstrated the utility of differential network analysis, beyond the gene-
level analysis, in uncovering biological processes involved in the response to 
glucocorticoid receptor activation. The culmination of this research project is the 
establishment of a publicly available resource, offering an accessible and user-friendly 
platform for the exploration of differential expression and networks of interest. Further, 
I have investigated the cell type-specific molecular alterations in the orbitofrontal cortex 
associated with psychiatric disorders, using postmortem brain tissue, where molecular 
profiling was conducted on approximately 800,000 cells with single-nucleus RNA-seq 
and 400,000 cells with single-nucleus ATAC-seq from a cohort of 92 donors. This 
substantial dataset enabled a comprehensive analysis of the deviations in gene 
expression and chromatin accessibility between psychiatric cases and controls within 19 
and 15 distinct cell types, respectively. The comparative analysis highlighted more 
pronounced transcriptomic alterations in psychiatric cases versus controls when 
contrasted with variations in chromatin accessibility, as well as more substantial changes 
in chromatin accessibility distinguishing individuals with high versus low genetic risk 
for psychiatric disorders than the differences observed in gene expression.  
Here, I discuss the concordance of our findings with previous research and elucidate 
their contribution to the expansion of current knowledge, and acknowledge their 
limitations.  
 

4.1 Transcriptional Response to Glucocorticoid Exposure in 
the Brain 

A major part of this thesis presents the results of a study in which we used a mouse 
model for glucocorticoid receptor stimulation to provide a detailed transcriptomic 
profiling across 8 brain regions, including the prefrontal cortex, amygdala, 
paraventricular nucleus of the hypothalamus, cerebellum, and four hippocampal 
subregions (ventral and dorsal cornu ammonis 1, ventral and dorsal dentate gyrus). The 
extensive dataset derived from these brain regions has revealed differential network 
analysis to be an indispensable tool that, when combined with differential expression 
analysis, offers a more comprehensive understanding of the transcriptomic intricacies 
elicited by glucocorticoid receptor activation. This approach enables the exploration of 
the complex biological processes at play during stress response, both across and within 
each brain region. The creation of the resource DiffBrainNet enables researchers to delve 
into molecular pathways crucial to basal functionality and glucocorticoid responses in a 
brain region-specific manner. 
 

http://diffbrainnet.psych.mpg.de/
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The complementation of differential expression with differential network analyses has 
augmented our understanding of the transcriptomic response to glucocorticoid 
stimulation, revealing complementary insights that neither approach could provide 
alone. For instance, in the prefrontal cortex, differentially expressed genes were 
primarily associated with signaling and development, whereas hub genes and their 
neighboring nodes in the differential network were linked to cellular responses to 
stimuli.  
 
Notably, Abcd1 emerged as a top differential hub gene within the prefrontal cortex 
network, despite not being listed among the differentially expressed genes of this brain 
region. Abcd1 is part of the ATP-binding cassette (ABC) proteins, which have been 
recognized for their role in facilitating the transport of dexamethasone across the blood-
brain barrier and placenta (Müller et al., 2003; Uhr, Holsboer, & Müller, 2002) and in 
synaptic function and psychiatric conditions (Gong et al., 2017; Lopez et al., 2021). A 
deficiency in Abcd1 within microglia has been correlated with synaptic and axonal 
degradation, highlighting the importance of the gene in synaptic signaling (Gong et al., 
2017). Another transporter in the ABC family, Abcb1, is associated with stress response 
and could potentially influence stress-related psychiatric disorders (Lopez et al., 2021). 
These findings highlight that the differential network analysis can identify additional, 
complementary molecular pathways beyond the aspects captured by gene-level 
analyses.  
 
Additionally, network analysis serves as a powerful tool for generating and testing 
hypotheses regarding specific genes when an appropriate prior network is selected. In 
the case of Tcf4, a gene implicated in psychiatric risk, we utilized DiffBrainNet to assess 
the impacts of dexamethasone on Tcf4 coexpression networks across different brain 
regions. Tcf4's expression in the cortex, the hippocampus, and the hypothalamic and 
amygdaloid nuclei is pronounced at the end of prenatal development and decreases to 
moderate levels during adult life (Teixeira et al., 2021). It plays a crucial role in the 
maintenance and proliferation of neural progenitor cells (Mesman, Bakker, & Smidt, 
2020). Functional modifications in Tcf4 through animal model studies have underscored 
its role in cognitive processes, sensorimotor gating, and neuroplasticity (Badowska et al., 
2020). Although interactions between Tcf4 and psychosocial stress have been observed 
(Volkmann, Stephan, Krackow, Jensen, & Rossner, 2021), there is limited understanding 
of the specific molecular pathways and brain regions involved. Our analysis has 
determined that Tcf4 is involved in the modulation of glucocorticoid effects within two 
hippocampal subregions, the ventral and dorsal dentate gyrus, evident both in gene 
expression and network dynamics. However, in the prefrontal cortex, Tcf4's role emerges 
only within network-level differences, not on the single-gene level. The Tcf4 network in 
the prefrontal cortex shows enrichment for autophagy-related functions, aligning with 
past literature connections between Tcf4 and autophagic processes (Petherick et al., 
2013). However, to the best of our knowledge, this novel link to stress-related autophagy 
regulation has not been reported before.  
 
The prefrontal cortex stands out in our study as the brain region with the highest number 
of differentially expressed genes (920 genes) and a high percentage of unique 
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differentially expressed genes (26.6%), which is consistent with its advanced complexity 
and extensive study in psychiatric research. Even so, the dorsal dentate gyrus showed 
the highest number of hub genes (313 genes) and the prefrontal cortex exhibits the 
highest percentage of unique hub genes together with the amygdala (9.9% each), even 
though these proportions did not differ too much between all brain regions. This finding 
suggests a comparable degree of interconnected changes across the different brain 
regions. 
 
Our methodological approach in this study presents several strengths along with 
inherent limitations. A primary strength lies in our ability to overcome the challenge of 
comparing networks across conditions, which is typically constrained by node degree 
and heavily influenced by the chosen threshold for network analysis. Here, we inferred 
a differential network by utilizing a two-step method: initially, we inferred prior 
knowledge-based treatment and control networks using KiMONo (Ogris et al., 2021), 
followed by the computation of a differential network with DiffGRN (Kim Youngsoon, 
2018). This strategy enabled us to focus on differential interactions rather than mere gene 
comparisons. 
One of the key strengths of our method is the alignment of treatment and control 
networks in terms of their topological layout, achieved by leveraging prior information 
about potential gene connections. This approach enables a robust and reliable calculation 
of z-values within the differential network. The method we employ for network 
inference is informed by prior knowledge rather than correlations, enabling a focused 
identification of gene interactions through the integration of established functional 
associations, including transcription factor binding sites, subcellular colocalization, and 
protein-protein interactions. We utilized the repository of functional associations 
provided by FunCoup 5 (Persson et al., 2021) to build upon these established 
connections, thereby substantially reducing the likelihood of false positive findings. 
Nevertheless, our methodology remains versatile, allowing researchers to source prior 
knowledge from an array of databases, which can be precisely tailored to address 
specific research questions.  
However, one limitation of our methodology is the inherent bias that network metrics 
such as node degree, betweenness, and modularity can exhibit due to the influence of 
the prior network. To address this, we normalized the node-betweenness by dividing 
the betweenness in the differential network by the betweenness in the prior network, 
thus attempting to mitigate bias and improve the interpretability of our network metrics.  
 
The ShinyApp resource (http://diffbrainnet.psych.mpg.de/) allows for an in-depth 
exploration of the transcriptional landscape across these brain regions under various 
conditions (Figure 4.1). This platform is designed to facilitate the research community's 
access to these findings, offering functionalities for searching differentially expressed 
genes, visualizing networks, and comparing hub genes across different treatment levels. 
Additionally, it provides options for users to download both the data and the 
corresponding visualizations. This accessible and comprehensive database is an 
invitation for researchers to extend and apply our findings to novel experimental 
designs targeting the molecular mechanisms underlying stress response and associated 
disorders. 

http://diffbrainnet.psych.mpg.de/
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Figure 4.1. DiffBrainNet: a resource of gene expression and network data for 8 mouse brain regions. (a) 
DiffBrainNet compiles gene expression and network data across 8 mouse brain regions at vehicle, 
dexamethasone and differential levels. (b) The resource offers network data for all brain regions, both 
individually and collectively, under vehicle, treatment, and differential conditions, with the option to 
download and visualize the data interactively in the application. (c) It also catalogues gene expression data 
for all brain regions, with features to download and visualize the data within the application. (d) The tool 
allows users to tailor downloads to their research needs, providing customizable filters for significance, fold 
change, and node-betweenness in both network and gene expression data.  

 

4.2 Multi-modal Analysis of Psychiatric Disorders and 
Genetic Risk in Cortical Cell Types 

In another major part of this thesis, I present the results of single-nucleus postmortem 
analyses, specifically within the orbitofrontal cortex of a transdiagnostic psychiatric 
cohort. An extensive collection of roughly 800,000 and 400,000 nuclei has been analyzed, 
via single-nucleus RNA-seq and ATAC-seq respectively, involving detailed molecular 
profiling at the level of gene expression and chromatin accessibility in 19 and 15 distinct 
cell types. Beyond differential analyses between cases and controls, I studied the 
molecular alterations between high and low genetic risk groups. Although there was 
minimal overlap in terms of differentially expressed and accessible genes in diagnostic 
and genetic risk analyses, a consensus of commonly disrupted biological pathways was 
observed. Notably, differences in gene expression were predominantly linked to 
psychiatric diagnoses and alterations in chromatin accessibility were linked to genetic 
risk rather than diagnosis.  
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In this study, we followed a transdiagnostic approach, thereby building upon previous 
research that identified shared disease-related signatures between major psychiatric 
disorders and how these signatures reflect genetic risk (Gandal, Haney, et al., 2018; 
Lynall et al., 2022; Patrick F. Sullivan & Geschwind, 2019). We studied psychiatric 
disorders as a cross-disorder phenotype, including donors diagnosed with 
schizophrenia, schizoaffective disorder, bipolar disorder, and MDD, hypothesizing that 
molecular alterations mapping onto shared symptoms across disorders could effectively 
inform personalized medicine in psychiatry. We uncovered shared transcriptomic and 
epigenomic alterations in major psychiatric disorders, an endeavor not previously 
conducted at the single-cell level for a transdiagnostic phenotype, despite a bias towards 
schizophrenia in our cohort. 
 
While reductions in the number of cortical glial cells and inhibitory neurons have been 
reported in MDD, bipolar disorder and schizophrenia in earlier research (Benes, 
McSparren, Bird, SanGiovanni, & Vincent, 1991; Cotter, Pariante, & Everall, 2001; Ongür, 
Drevets, & Price, 1998; Rajkowska et al., 1999), our study did not mirror these findings 
(Figure 3.13d-e). However, more recent single-cell sequencing and confocal microscopy 
studies did not observe such differences in cell type proportions either (Enwright et al., 
2016; Ruzicka et al., 2022).  
 
Our investigation of the correlation between gene expression and chromatin 
accessibility revealed an overall, though not universal, positive correlation. This was in 
line with the general understanding that open chromatin states in promoter regions 
facilitate transcription (Reske et al., 2020; Tsompana & Buck, 2014). While there was an 
overall trend of positive correlation at the cell type level, many genes did not have a peak 
indicative of open chromatin nearby (Figure 3.14), and the positive correlation within a 
cell type was often small when the cell type-specific signals were not present in the data 
(Figure 3.17). The observed low correlations within cell types could be due to distal and 
trans-regulatory elements, such as enhancers and silencers, that are not captured with 
our gene score-based approach, or other epigenetic modifications regulating gene 
expression, including histone acetylation and methylation (de la Torre-Ubieta et al., 
2018; Natarajan et al., 2012). In addition, the absence of peaks in chromatin accessibility 
for many genes could be caused by data sparsity, which current technologies cannot 
sufficiently address (Baek & Lee, 2020). 
 
Through the assessment of differential expression between psychiatric cases and 
controls, we identified differentially expressed genes in a variety of cell types (875 genes 
across 13 cell types), with a specifically high number in excitatory neurons which aligns 
with findings from previous single-cell transcriptomic studies of schizophrenia and 
MDD (Nagy et al., 2020; Ruzicka et al., 2022). However, it is crucial to acknowledge the 
differences in nuclei count and genes tested per cell type that drive the number of 
differentially expressed genes detected, as confirmed by the downsampling of nuclei 
(Figure 3.19). We observed cell type-specific alterations in genes previously implicated 
in psychiatric disorders, such as SLIT2 and KCNQ3 (Huang et al., 2020; Kaminsky et al., 
2015). SLIT2 has been shown to be associated with depression- and anxiety-like behavior 
(Huang et al., 2020) as well as the development of serotonergic and dopaminergic 
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circuits in the forebrain (Bagri et al., 2002). Further, its manipulation in oligodendrocytes 
is known to restrict the modulation of axon guidance by endocannabinoids (Alpár et al., 
2014). We identified it as exclusively upregulated in excitatory neurons of layers 4-6 
cluster 1. KCNQ3, a gene with reduced gene expression and altered DNA methylation 
in bipolar disorder (Kaminsky et al., 2015), and potential as a novel treatment target for 
depression and anhedonia (Costi et al., 2021), was exclusively downregulated in 
microglia. These findings underscore the added value of single-cell analyses over bulk 
studies, providing a more granular view of gene expression alterations. 
 
Motivated by the significant role of environmental factors like stress and lifestyle in 
psychiatric disorders which can induce epigenetic modifications and thereby influence 
chromatin structure and gene expression (Cho et al., 2004; Keverne & Binder, 2020), we 
explored differential chromatin accessibility. We found only a small subset of genes to 
be both differentially expressed and accessible between cases and controls (5 out of 872 
genes), with many more expression changes occurring without evident alterations in 
chromatin accessibility. When only examining genes identified as differentially 
expressed for differential accessibility, we pinpointed a small group where changes in 
gene expression paralleled changes in chromatin accessibility among psychiatric cases 
compared to controls (24 out of 872 genes). For example, HES4 exhibited a consistent 
downregulation in both expression and accessibility within excitatory neurons of layers 
4 to 6, cluster 1, and has been linked to atypical psychomotor behavior in schizophrenia 
(Yunqiao Zhang et al., 2020). Notably, previous studies have identified an association 
between epigenetic changes in HES4 and processes involved in neuronal development 
and neurodegeneration (Bai et al., 2015). Similarly, IGFBP5 was found to be upregulated 
in expression and accessibility in OPCs and has connections to depressive symptoms 
and cognitive impairment in aging (Capuano et al., 2019). Our findings indicate that 
transcriptomic changes in psychiatric disorders can occur without evident changes in 
chromatin accessibility and can be driven by various factors beyond chromatin 
accessibility near the gene body, as shown in many previous studies: Post-
transcriptional mechanisms, such as the regulation of mRNA stability, splicing, and 
translation efficiency by micro RNAs, play a pivotal role in gene expression within the 
context of psychiatric disorders (Choi et al., 2015; Geaghan & Cairns, 2015), 
independently of chromatin accessibility. Epigenetic research has illuminated the role of 
DNA methylation and histone modifications in modulating gene expression related to 
psychiatric conditions (Gavin & Sharma, 2010; Grayson & Guidotti, 2013), possibly 
without directly altering chromatin states. Additional insights from psychiatric 
genomics suggest that gene expression modulation is not confined to the proximal 
promoter regions but can also be significantly influenced by distal enhancers or 
repressors (Klengel & Binder, 2015; Lynall et al., 2022; Penner-Goeke et al., 2023). 
However, it could be also the case that changes in chromatin accessibility are present, 
but too subtle to be capture by current technologies. 
 
Building upon these results, we explored the impact of genetic predispositions for 
psychiatric disorders on gene expression. Our data revealed unique patterns of 
regulation linked to genetic risk across disorders and for bipolar disorder, MDD, and 
schizophrenia. These patterns showed minimal overlap with the ones linked to 
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psychiatric diagnoses. The observed discrepancies underscore the necessity to explore 
the influence of genetic risk on gene expression independently from diagnosis in 
psychiatric research. This independent study helps to isolate the genetic contributions to 
disease from environmental interactions and disease progression. Thereby, it aids in 
elucidating the complex interplay between genetic risk and environmental factors, 
forming a more detailed understanding of the etiology of psychiatric disorders.  
Interestingly, while the number of differentially accessible genes between psychiatric 
cases and controls was minimal, there was a substantial increase in differentially 
accessible genes related to genetic risk for psychiatric disorders, with a count of 141 
differentially expressed compared to 6,418 differentially accessible genes. The genes 
INO80E and HCN2 stood out as being the only ones significant in both expression and 
accessibility analyses, specifically in excitatory neurons of layers 2/3 in the context of 
genetic risk for schizophrenia. INO80E has been implicated in GWAS, transcriptome-
wide association studies, and copy number variation studies linked to schizophrenia 
(Gusev et al., 2018; Lago & Bahn, 2022; Liberzon et al., 2011; Marshall et al., 2017; Ripke 
et al., 2014), while HCN2 has been shown to have altered methylation in the 
hippocampus and prefrontal cortex in schizophrenia (Alelú-Paz et al., 2016; Richetto & 
Meyer, 2021) and modulates antidepressant-like behaviors when knocked down in 
rodent models (Chung S. Kim, Chang, & Johnston, 2012; A. S. Lewis et al., 2011). These 
findings imply that alterations in chromatin accessibility may be related to the genetic 
architecture of psychiatric disorders more directly than gene expression changes.  
To enhance our understanding of how different data modalities interact, particularly 
across various cell types, in the regulatory process of INO80E and HCN2 in relation to 
genetic risk for psychiatric disorders, we applied an integrative correlation-based 
network analysis. This analysis showed primarily positive correlations within a data 
modality (e.g., gene expression, PRS) and mostly negative correlations across different 
data modalities, suggesting that genetic risk-related gene expression or accessibility 
variations may not have a monotonic relationship with polygenic risk scores. Overall, 
these polygenic risk scores show a closer association with chromatin accessibility than 
with gene expression. Further investigation into the regulatory elements of INO80E, 
using a transcription factor motif analysis, revealed a significant KLF4 motif association. 
Although the KLF4 gene is lowly expressed in excitatory neurons of layers 2/3, the 
respective protein could be still abundant and act as a transcription factor for INO80E. 
For HCN2, we identified a range of enriched motifs, suggesting complex, cell context-
specific transcriptional regulation mechanisms. 
 
Overall, the varied effects of genetic risk and clinical diagnosis on different cell lineages, 
specifically neurons and glial cells (Figure 4.2), are highlighted by the findings of this 
study. Excitatory neurons were highly influenced by both clinical diagnosis and genetic 
risk, aligning with the role of neuronal populations in the synaptic and circuit-level 
changes characteristic of psychiatric conditions (Citri & Malenka, 2008). Conversely, 
endothelial and glial cells, such as astrocytes, OPCs, and microglia, were more heavily 
influenced by genetic risk factors, with 76%-97% of altered genes (all DE/DA (risk) 
genes) being affected by genetic risk. This indicates that while glial cells are traditionally 
viewed as support cells, they may play a more proactive role in the genetic 
predisposition to psychiatric disorders (Yamamuro, Kimoto, Rosen, Kishimoto, & 
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Makinodan, 2015). In conclusion, the results of this study suggest that certain cell 
lineages may be genetically predisposed to psychiatric disorders, while others are more 
responsive to pathophysiological changes associated with diagnosis. Again, this 
underlines the significance of cell type-specific studies in advancing our understanding 
of psychiatric disorders at the molecular level. 
 

 
Figure 4.2. Impact of clinical diagnosis and genetic predisposition on gene expression and chromatin 
accessibility. The impact of genetic predisposition was observed to be higher on chromatin accessibility 
than gene expression, while it was the other way round for clinical diagnosis. Although differentially 
expressed genes hardly overlapped between genetic predisposition and clinical diagnosis, many common 
pathways were observed. Despite the very high number of differentially accessible genes for genetic 
predisposition, very few pathways were enriched. Endothelial cells and glia, such as astrocytes, OPCs and 
microglia, were highly affected by genetic predisposition, while excitatory neurons were affected by genetic 
predisposition and clinical diagnosis. Created with BioRender.com  

 
An interesting aspect of our findings is the limited direct overlap in genes between 
diagnostic and genetic risk analyses, yet the impacted pathways frequently show 
parallels. This could be due to a functional convergence among the dysregulated genes 
or possibly due to insufficient power in our analysis to uncover additional overlapping 
genes. We noted a significant enrichment of ribosomal processes in upregulated genes 
within oligodendrocytes, OPCs, and endothelial cells. This aligns with previous studies 
that link ribosomal dysregulation to psychiatric disorders (Hori et al., 2018; Mekiten, 
Yitzhaky, Gould, Rosenblum, & Hertzberg, 2023), potentially impacting protein 
synthesis and synaptic function (Laguesse & Ron, 2020). Moreover, the enrichment of 
pathways related to neurodegenerative disorders and oxidative phosphorylation across 



Discussion 87 

 

various cell types points to disruptions in protein synthesis and oxidative stress. 
Oxidative stress, often resulting from an imbalance in oxidative phosphorylation, can 
lead to excitation/inhibition imbalances, a condition implicated in schizophrenia 
(Cuenod et al., 2022; Mekiten et al., 2023). A distinct pattern of dysregulation in genes 
downregulated in microglia underscores their essential role in maintaining brain health 
(Q. Li & Barres, 2018), possibly related to increased inflammation and stress-induced 
brain changes, which have been associated with disorders such as schizophrenia (Calcia 
et al., 2016; Rodrigues-Neves, Ambrósio, & Gomes, 2022; Weickert et al., 2024). 
 
When comparing the molecular response to glucocorticoid receptor activation in mice 
with alterations observed in postmortem brain tissue of psychiatric disorders, the 
overlap was small. Many of the cell type-specific differentially expressed genes in the 
human orbitofrontal cortex could not be tested in the mouse prefrontal cortex due to the 
absence of orthologs or because they were not expressed at sufficient levels (39.2%) – 
and vice versa (11.1%). For instance, Abcd1 which emerged as significant in the mouse 
prefrontal cortex through differential network analysis and is known to be critical for 
synaptic signaling in microglia (Gong et al., 2017), could not be tested in human 
orbitofrontal cortex microglia due to its low expression levels. Various genes show 
differences in the direction of gene regulation, which has been also observed when 
comparing human blood and mouse brain responses to glucocorticoid activation and 
chronic stress (Arloth et al., 2015). While we assume a well-functioning stress response 
via the HPA axis in the mice treated with dexamethasone, the stress hormone system in 
psychiatric patients, including its negative feedback regulation, is possibly impaired 
(Binder, 2009; Gandal, Haney, et al., 2018; Pariante & Miller, 2001; Patrick F. Sullivan & 
Geschwind, 2019). The observed discordances in regulation direction might therefore be 
related to an impairment of the stress response system in psychiatric patients.  
 

4.3 Limitations and Future Directions 
The work detailed in my thesis represents an important step forward in translational 
psychiatric research, particularly in understanding the transcriptomic response to 
glucocorticoid stimulation in different brain regions and dissecting cell type-specific 
molecular signatures in psychiatric disorders in the orbitofrontal cortex. However, it also 
opens new doors for further exploration and improvement. 
 
The use of transcriptome-wide analyses, while comprehensive, paves the way for future 
studies to explore the critical changes at the epigenetic or proteomic levels, which could 
provide an even more extensive understanding of molecular responses to glucocorticoid 
stimulation. Although the combined approach of differential expression and prior-
knowledge-based differential network analysis proved to be powerful, it might still 
overlook relevant pathways or connections not covered by the prior network. 
Additionally, despite the well-conserved nature of the HPA axis across mammals, 
species-specific differences need to be recognized, as confirmed by the fact that for many 
of the altered genes related to psychiatric disorders identified in the postmortem study, 
no orthologs in mice could be identified. 
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The postmortem research presented in my thesis has yielded significant biological 
insights, offering opportunities for future extensions. While single-nuclei transcriptomes 
offer a reliable approximation of whole-cell transcriptomes (Trygve E. Bakken et al., 
2018; Lake et al., 2017), there is a need to delve into more intricate processes such as 
mRNA splicing, which has been implicated in psychiatric disorders (Reble, Dineen, & 
Barr, 2018; Worf et al., 2022; C.-Y. Zhang, Xiao, Zhang, Hu, & Li, 2022). The prevalent 
droplet-based methods, also applied in this study, are highly scalable and optimal for 
high-throughput experiments with a relatively low cost per cell (Macosko et al., 2015). 
However, they are not suitable to capture full-length transcripts, as it is possible with 
plate-based methods (Picelli et al., 2014). Single-cell sequencing is further limited by 
issues of high sparsity and frequent dropouts due to low amounts of starting material in 
individual cells (Price et al., 2021). The glia-to-neuron ratio observed in this thesis and 
other droplet-based single-cell sequencing research (Lake et al., 2018; Nagy et al., 2020), 
which is notably lower than expected from histologically-based studies (see Introduction 
1.5), indicates a potential limitation of these methodologies in capturing glial cells. 
Future advancements in technology may allow for the large-scale sequencing of full-
length transcripts from intact cells. Additionally, I recognize the constraints of 
postmortem tissue studies in fully encompassing the variability related to clinical 
histories and disease progression stages.  

The lack of a consistent correlation between gene expression and chromatin accessibility 
across all genes suggests the presence of other regulatory mechanisms, possibly trans-
regulatory in nature, which were beyond the scope of our current study. This study, 
while notable for its large cohort in the field of psychiatric single-cell research, still 
necessitates additional research to fully capture the wide array of genetic and epigenetic 
variations present in the broader population. Moreover, the focus on participants of 
European ancestry in the cohort underscores a prevalent challenge in psychiatric 
research: the lack of diversity in biosample collections (A. R. Martin et al., 2022). It is 
essential for future efforts to focus on the collection of more comprehensive and 
inclusive samples to ensure that the research outcomes are representative and can be 
extended to diverse ethnic backgrounds (Danner et al., 2024).  

While the focus on molecular profiling has revealed critical insights, I advocate for 
subsequent functional validations to solidify the biological significance of these findings. 
Future studies might focus on the inference of gene regulatory networks specific to each 
cell type, providing a more detailed perspective on the regulatory mechanisms driving 
the transcriptional and epigenomic variations observed. Building upon the molecular 
signatures that have been identified, I expect future research to develop personalized 
therapies and repurpose existing treatment options to target the specific molecular 
perturbations associated with psychiatric disorders.   
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5 Conclusion 
The findings presented in my thesis underscore the multifaceted nature of gene 
regulation within the brain, particularly in the context of stress and psychiatric 
disorders. By examining the mouse brain in a region-specific manner and focusing on 
the shared and distinct transcriptomic changes elicited by glucocorticoid receptor 
activation – a central process in the body's response to stress – the utility of differential 
network analysis to gain more comprehensive insights into these responses became 
evident. This research affirms that genes function within complex networks and are 
accordingly also dysregulated upon stress within these networks, where their 
differential interactions are critical and shape the broader transcriptomic landscape. 
 
Furthermore, cell type-specific dysregulations in the human orbitofrontal cortex 
revealed unique, often non-overlapping profiles among different cell types. This 
specificity suggests that genes implicated across severe psychiatric disorders may 
manifest in distinct cellular environments. A notable divergence between gene 
expression and chromatin accessibility suggests the presence of additional regulatory 
mechanisms not covered in this thesis. Moreover, the influence of genetic risk for 
psychiatric disorders on gene expression and chromatin accessibility seems to diverge 
from the alterations induced by the disease's progression. This distinction suggests that 
strategies aimed at enhancing resilience and preventing psychiatric disorders might 
need to target different molecular pathways than those addressed during active 
treatment of the manifest conditions.  
 
The comprehensive investigation of glucocorticoid-induced transcriptomic responses 
across eight brain regions, including a detailed dissection of the hippocampus, alongside 
one of the largest single-cell datasets in psychiatric research to date encompassing both 
transcriptomic and epigenomic data from 92 donors (800,000 and 400,000 nuclei 
respectively), significantly contributes to our understanding of the molecular basis 
underlying stress response and psychiatric disorders in different regions and cell types 
of the brain. The datasets and the derived results, present important resources for future 
explorations and pave the way for the development of more targeted diagnostic and 
therapeutic strategies in personalized mental health care. 
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Appendix A Supplementary Material 
 

A.1 Supplementary Figures 
 

 
Supplementary Figure 1. Enrichments for commonly dysregulated genes of all brain regions and patterns 
of GR and MR expression. (a-b) Enrichment analysis of GO terms (biological processes) in the 172 shared 
DE genes (a) and 7 shared differential hub genes (b) across all eight brain regions. Color indicates gene ratio 
and dot size represents the respective odds ratio. The heatmap in (a) indicates if the respective term is also 
significant for up- or downregulated genes only. (c-d) Number of DE genes for each brain region plotted 
against the normalized expression level of GR (c) and MR (d) for up- and downregulated genes separately. 
(e) Number of DE genes for each brain region plotted against the ratio of the normalized expression levels 
of GR over MR.  
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Supplementary Figure 2. Enrichment analysis for unique DE genes in the vCA1. Genes uniquely 
differentially expressed in vCA1 are not significantly enriched for any GO terms (biological processes). 
Color indicates gene ratio and dot size represents the respective odds ratio. 

 
 

 
Supplementary Figure 3. Tcf4 cDG and dDG network members. Overlap of genes that are members of the 
differential vDG and dDG Tcf4 network with data from the CHEA (Lachmann et al., 2010), TRANSFAC 
(Wingender et al., 1996) and MotifMap (Y. Liu et al., 2017) transcription factor target databases and from the 
Pathway commons protein-protein interactions database (Cerami et al., 2010) collected from Harmonizome 
(Rouillard et al., 2016). 
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Supplementary Figure 4. Epigenomic differences between psychiatric cases and controls. (a) Dotplot 
showing log2-transformed fold changes in both differential expression and accessibility for all DE genes 
across cell types, with color highlighting significance within the same cell type. A blue line indicates the 
linear regression fit to the data. (b) Heatmap displaying the findings from KEGG pathway enrichment 
analysis conducted on the 250 most upregulated genes for each cell type. The heatmap displays all pathways 
that have shown significant enrichment in at least one cell type. The intensity of color correlates with the -
log10-transformed FDR values, with asterisks indicating significance (FDR £ 0.05). Pathway classifications 
are color-coded on the left of each heatmap to indicate the specific pathway group and family. K-means 
clustering dendrograms are provided to show how cell types group together based on their pathway 
enrichment profiles. There was no significant enrichment of pathways among downregulated DA genes.  

 
 

 
Supplementary Figure 5. Variability of effect sizes associated with clinical diagnoses and genetic risk. 
(a-b) Visualizations of the variability of absolute median log2-transformed fold changes for each cell type, 
for DE (risk) genes (a) and DA (risk) genes (b). The vertical lines denote the range of effect sizes observed 
across cell types,e with the colored dots representing the minimum and maximum effect size each. Smaller 
black dots indicate the median effect sizes corresponding to particular cell types. 
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Supplementary Figure 6. Pathways affected by differential expression between high and low genetic risk 
groups. (a-e) Heatmap displaying the findings from KEGG pathway enrichment analysis conducted on the 
250 most up- and downregulated genes for each cell type between high and low genetic risk groups for 
cross-disorder phenotype (a), schizophrenia (b), bipolar disorder (c), MDD (d), and height (e). Pathways 
enriched among upregulated genes are shown on the left of each panel, while pathways enriched among 
the downregulated genes are shown on the right of each panel. The heatmap displays all pathways that 
have shown significant enrichment in at least one cell type. The intensity of color correlates with the -log10-
transformed FDR values, with asterisks indicating significance (FDR £ 0.05). Pathway classifications are 
color-coded on the left of each heatmap to indicate the specific pathway group and family. K-means 
clustering dendrograms are provided to show how cell types group together based on their pathway 
enrichment profiles.  
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Supplementary Figure 7. Pathways affected by differential chromatin accessibility between high and low 
genetic risk groups. (a-d) Heatmap displaying the findings from KEGG pathway enrichment analysis 
conducted on the 250 most up- and downregulated genes for each cell type between high and low genetic 
risk groups for cross-disorder phenotype (a), schizophrenia (b), bipolar disorder (c), and MDD (d). Pathways 
enriched among upregulated genes are shown on the left of each panel, while pathways enriched among 
the downregulated genes are shown on the right of each panel. The heatmap displays all pathways that 
have shown significant enrichment in at least one cell type. The intensity of color correlates with the -log10-
transformed FDR values, with asterisks indicating significance (FDR £ 0.05). Pathway classifications are 
color-coded on the left of each heatmap to indicate the specific pathway group and family. K-means 
clustering dendrograms are provided to show how cell types group together based on their pathway 
enrichment profiles. There was no significant enrichment of pathways among DA risk genes related to 
height. 
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A.2 Supplementary Tables 

Supplementary Table 1. Number of genes tested and samples per brain region and treatment group in 
the mouse brain dataset. Number of genes refers to the genes tested for differential expression after quality 
control. The number of samples per treatment group refers to the samples remaining after exclusion of 
samples during quality control and outlier removal. 

Brain 
region 

Genes Outliers 
Vehicle-
Treated 

Samples 
Vehicle-
Treated 

Outliers 
Dex-treated 

Samples 
Dex-
Treated 

Significant 
surrogate 
variables 

AMY 12,937 0 15 0 15 9 

CER 12,927 1 14 0 15 8 

dCA1 12,924 1 14 0 13 7 

dDG 12,941 0 15 0 15 8 

PFC 12,928 0 15 1 13 7 

PVN 12,924 0 14 0 15 8 

vCA1 12,940 0 14 3 12 7 

vDG 12,957 0 15 1 14 8 

 
Supplementary Table 2. Number of (unique) differentially expressed and hub genes per brain. The 
numbers refer to differentially expressed (DE) genes exhibiting an FDR £ 0.1 according to differential testing 
with DESeq2 (Love et al., 2014) and hub genes with a normalized node-betweenness > 1. Unique genes are 
those identified as DE/hub genes in only one brain region. 

Brain region DE Genes Unique DE 
genes 

Hub Genes Unique Hub 
Genes 

AMY 784 105 293 29 

CER 821 176 284 21 

dCA1 569 74 302 22 

dDG 755 141 313 22 

PFC 920 245 293 29 

PVN 598 77 307 26 

vCA1 465 25 260 24 

vDG 848 139 289 19 

 
Supplementary Table 3. Top 10 differentially expressed genes in the amygdala. Full list of differentially 
expressed genes in response to glucocorticoid receptor stimulation in amygdala (n=784) available at 
https://doi.org/10.5281/zenodo.10864161, Online Table 2. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Cx3cr1 89.0654571 -2.2149356 0.10550043 9.11E-100 1.18E-95 
Cdkn1a 204.145839 3.45171765 0.18604411 1.24E-76 8.00E-73 
Synm 86.6907622 1.8107745 0.10114147 6.76E-73 2.91E-69 
Fkbp5 41.9730919 2.5443663 0.14691873 5.31E-68 1.72E-64 
Mt2 467.641314 0.92309406 0.06161485 1.93E-51 5.00E-48 
Phactr3 165.989417 1.24079198 0.08540937 4.11E-50 8.86E-47 
Ccng1 53.7591584 1.75779552 0.12042269 2.48E-49 4.58E-46 
Trim59 38.4214773 -2.1923465 0.15878357 1.77E-45 2.86E-42 
Mxd4 127.191593 1.11523069 0.07996072 2.80E-45 4.02E-42 
Dio2 89.2624892 1.51774366 0.11086074 4.57E-44 5.91E-41 

 

https://doi.org/10.5281/zenodo.10864161
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Supplementary Table 4. Top 10 differentially expressed genes in the cerebellum. Full list of 
differentially expressed genes in response to glucocorticoid receptor stimulation in cerebellum (n=821) 
available at https://doi.org/10.5281/zenodo.10864161, Online Table 3. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Synm 155.917 1.89100685 0.08688926 6.30E-107 8.14E-103 
Phactr3 180.478122 1.68685903 0.08065733 7.21E-99 4.66E-95 
Nt5c3 139.575818 1.63217634 0.0847939 1.05E-83 4.51E-80 
Sgk3 64.9922474 2.33697765 0.1285318 2.88E-75 9.30E-72 
Ccng1 80.357405 2.06915689 0.11858892 9.91E-70 2.56E-66 
Cx3cr1 45.7958471 -2.340605 0.13740997 1.16E-66 2.49E-63 
Fkbp5 38.7224706 2.67600753 0.16711032 4.22E-59 7.80E-56 
Cdkn1a 281.91692 3.12473503 0.20339631 1.00E-54 1.62E-51 
Trim59 49.4480732 -2.2827252 0.15428947 4.77E-51 6.86E-48 
Mxd4 147.262714 1.11240658 0.07829108 9.72E-47 1.26E-43 

 
Supplementary Table 5. Top 10 differentially expressed genes in the dorsal cornu ammonis 1. Full list of 
differentially expressed genes in response to glucocorticoid receptor stimulation in the dorsal cornu 
ammonis 1 (n=569) available at https://doi.org/10.5281/zenodo.10864161, Online Table 4. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Cx3cr1 71.5810893 -1.8426352 0.12806666 9.32E-48 1.21E-43 
Cdkn1a 134.113197 2.8705463 0.21251828 1.60E-42 1.03E-38 
Mthfd2 30.9847353 2.6936094 0.20967862 3.15E-38 1.36E-34 
Dio2 175.313369 1.0642026 0.08546181 5.96E-37 1.93E-33 
Fkbp5 49.2283834 1.71831954 0.15051982 1.26E-31 3.26E-28 
Nfkbia 170.318549 1.20156184 0.10718048 5.24E-31 1.13E-27 
Sox9 182.538918 -0.9080968 0.08452176 2.44E-28 4.51E-25 
Slc2a1 94.2762862 1.22790506 0.12422674 7.00E-25 1.13E-21 
Mt1 1180.28251 0.65311629 0.06939741 4.65E-23 6.67E-20 
Mt2 710.519261 1.01418824 0.11019874 3.60E-22 4.65E-19 

 
Supplementary Table 6. Top 10 differentially expressed genes in the dorsal dentate gyrus. Full list of 
differentially expressed genes in response to glucocorticoid receptor stimulation in the dorsal dentate gyrus 
(n=755) available at https://doi.org/10.5281/zenodo.10864161, Online Table 5. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Cdkn1a 127.302652 3.00936287 0.18300767 1.05E-64 1.36E-60 
Cx3cr1 58.5389349 -2.0408996 0.13983053 9.94E-50 6.43E-46 
Mthfd2 25.8910363 2.73982255 0.19807453 9.24E-45 3.99E-41 
Tsc22d3 92.1374449 1.44983647 0.11155805 3.96E-40 1.28E-36 
Nfkbia 174.207042 1.31289884 0.10432934 4.86E-38 1.26E-34 
Slc2a1 92.8660118 1.11257185 0.09045336 1.29E-36 2.77E-33 
Errfi1 35.7050562 1.79103464 0.14523494 4.60E-36 8.51E-33 
Fkbp5 45.9621499 1.62278702 0.13909269 3.44E-32 5.56E-29 
Ddit4 64.2629499 1.37113061 0.11838184 6.19E-32 8.90E-29 
Mt2 560.676772 0.84878225 0.07733517 9.84E-30 1.27E-26 

 
Supplementary Table 7. Top 10 differentially expressed genes in the prefrontal cortex. Full list of 
differentially expressed genes in response to glucocorticoid receptor stimulation in the prefrontal cortex 
(n=920) available at https://doi.org/10.5281/zenodo.10864161, Online Table 6. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Cdkn1a 144.9020448 1.936002026 0.088388692 4.20E-109 5.43E-105 
Cx3cr1 77.69273276 -2.042626247 0.105675594 1.07E-83 6.93E-80 
Fkbp5 38.10974824 2.898776928 0.168575632 1.43E-68 6.16E-65 
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Sox9 176.8618563 -1.097228016 0.068295387 3.98E-59 1.28E-55 
Mthfd2 24.53018208 2.874590781 0.196841836 3.27E-49 8.47E-46 
Wipf3 195.7570523 0.989430069 0.069827784 1.46E-46 3.15E-43 
Tiparp 50.80106841 1.749342973 0.123969166 1.20E-45 2.21E-42 
Irs2 105.5129903 1.054074937 0.075956183 4.08E-45 6.60E-42 
Nfkbia 178.6596523 1.29689783 0.098600406 1.20E-40 1.73E-37 
Id3 96.86971702 -1.176929753 0.09064925 8.66E-40 1.12E-36 

 
Supplementary Table 8. Top 10 differentially expressed genes in the paraventricular nucleus of the 
hypothalamus. Full list of differentially expressed genes in response to glucocorticoid receptor stimulation 
in the paraventricular nucleus of the hypothalamus (n=598) available at 
https://doi.org/10.5281/zenodo.10864161, Online Table 7. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Dio2 67.505075 2.49364385 0.12971355 1.14E-83 1.47E-79 
Cdkn1a 207.741575 3.45062892 0.1944233 5.77E-71 3.73E-67 
Fkbp5 41.9199776 2.61606961 0.15443434 3.43E-65 1.48E-61 
Phactr3 140.122899 1.30992268 0.08563011 3.39E-54 1.09E-50 
Mt2 592.407405 1.13695944 0.07549168 5.94E-54 1.53E-50 
Cx3cr1 49.9728943 -2.1774376 0.14561437 1.21E-51 2.60E-48 
Nfkbia 161.697488 1.52168227 0.10685479 3.46E-48 6.39E-45 
Mxd4 138.468049 1.12022122 0.08004466 1.03E-45 1.66E-42 
Smim3 25.1944839 2.34785568 0.18756755 6.62E-37 9.50E-34 
Zbtb16 30.2145981 2.20819826 0.18143306 3.52E-35 4.55E-32 

 
Supplementary Table 9. Top 10 differentially expressed genes in the ventral cornu ammonis 1. Full list 
of differentially expressed genes in response to glucocorticoid receptor stimulation in the ventral cornu 
ammonis 1 (n=465) available at https://doi.org/10.5281/zenodo.10864161, Online Table 8. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Cdkn1a 138.373439 3.35495113 0.22394223 2.66E-53 3.44E-49 
Cx3cr1 84.8880055 -2.0033494 0.13940091 1.44E-47 9.31E-44 
Dio2 194.435804 1.38229923 0.0980219 2.16E-46 9.33E-43 
Fkbp5 47.8784655 2.51816728 0.18221116 4.61E-45 1.49E-41 
Slc2a1 103.02543 1.33164613 0.10399143 1.21E-38 3.13E-35 
Mt2 688.581684 0.94914244 0.07580518 9.62E-37 2.07E-33 
Mthfd2 32.9101229 2.71436572 0.22067105 6.17E-36 1.14E-32 
Sox9 207.102319 -1.0054523 0.08669965 1.31E-32 2.12E-29 
Mxd4 162.871616 0.92744365 0.08915185 4.95E-26 7.12E-23 
Gadd45g 29.8711425 1.77837312 0.18809477 1.01E-22 1.31E-19 

 
Supplementary Table 10. Top 10 differentially expressed genes in the ventral dentate gyrus. Full list of 
differentially expressed genes in response to glucocorticoid receptor stimulation in the ventral dentate 
gyrus (n=848) available at https://doi.org/10.5281/zenodo.10864161, Online Table 9. 

gene_symbol baseMean log2FoldChange lfcSE p FDR 
Cx3cr1 63.880212 -2.2370212 0.12274106 2.56E-75 3.31E-71 
Nfkbia 193.024945 1.50499026 0.08757915 1.20E-67 7.80E-64 
Fkbp5 57.7549998 2.37331813 0.14219277 1.13E-63 4.88E-60 
Cdkn1a 152.924088 3.20866117 0.20612115 3.23E-57 1.05E-53 
Mthfd2 35.7443156 2.80971841 0.18610411 1.09E-52 2.82E-49 
Dio2 157.625803 1.45005428 0.09745452 1.44E-51 3.12E-48 
Slc2a1 105.206294 1.32877368 0.09412672 8.44E-47 1.56E-43 
Tsc22d3 138.174837 1.39992617 0.10091649 9.08E-46 1.47E-42 
Errfi1 42.9399649 1.84278171 0.13076356 1.29E-45 1.86E-42 
Ddit4 70.6919893 1.43810642 0.10972943 2.50E-40 3.24E-37 
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Supplementary Table 11. Top 10 differential hub genes in the amygdala. Full list of differential hub 
genes in response to glucocorticoid receptor stimulation in the amygdala (n=293) available at 
https://doi.org/10.5281/zenodo.10864161, Online Table 11. 

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Ikbkg 92687.3978 10576.5141 8.76351104 
Kif3a 61260.9573 16516.5492 3.70906517 
Traf6 127109.34 41214.3559 3.08410352 
Esrrb 54640.1599 20250.8657 2.69816416 
Prkn 27778.4846 10834.5226 2.56388635 
Kcnd3 58199.3427 29503.9499 1.97259495 
Syt14 50008.5679 27970.7196 1.78788993 
H2bc21 29293.3862 16559.6436 1.76896236 
Cyb5rl 31358.7496 19026.5815 1.64815469 
Nudt11 105282.913 64479.9007 1.63280203 

 
Supplementary Table 12. Top 10 differential hub genes in the cerebellum. Full list of differential hub 
genes in response to glucocorticoid receptor stimulation in the cerebellum (n=284) available at 
https://doi.org/10.5281/zenodo.10864161, Online Table 12. 

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Pla2g4a 73337.9323 13484.7109 5.43859879 
Dmd 51216.4826 18737.001 2.73344077 
Fbn1 56812.1287 22987.853 2.47139777 
Pbx3 43042.3386 18902.1145 2.27711765 
Tmem53 84180.7716 39286.8943 2.14271891 
Tdp1 28192.1311 14059.2649 2.00523508 
Arhgap35 17654.3587 10032.2927 1.75975314 
Reep3 22578.1212 14869.8651 1.51838104 
Otx2 35273.4165 24479.7751 1.44092077 
Bgn 120390.733 86582.8525 1.39046855 

 
Supplementary Table 13. Top 10 differential hub genes in the dorsal cornu ammonis 1. Full list of 
differential hub genes in response to glucocorticoid receptor stimulation in the dorsal cornu ammonis 1 
(n=302) available at https://doi.org/10.5281/zenodo.10864161, Online Table 13. 

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Map2k5 65327.7668 10460.1049 6.24542175 
Slc43a3 59988.1894 13271.1897 4.52018176 
Map1s 22406.5949 11893.5678 1.88392544 
Sv2b 35078.1214 20466.5239 1.71392668 
Irak1 41968.7662 25879.8891 1.62167489 
Zfp24 17356.2601 11242.4499 1.54381476 
Hipk3 31404.4678 20406.7419 1.5389261 
Cdh8 64802.8076 43761.191 1.48082824 
Gbp2 21331.4366 15378.8677 1.38706159 
Jup 23668.9096 17693.6594 1.33770574 

 
Supplementary Table 14. Top 10 differential hub genes in the dorsal dentate gyrus. Full list of 
differential hub genes in response to glucocorticoid receptor stimulation in the dorsal dentate gyrus 
(n=313) available at https://doi.org/10.5281/zenodo.10864161, Online Table 14. 

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Parp16 101406.214 21360.8165 4.74730045 
Tek 33931.6694 11439.5801 2.96616388 
Pum3 17767.0185 10548.1674 1.68437016 
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Sema6d 41618.0452 26224.8943 1.58696713 
Ctnnd1 57803.4899 37149.412 1.55597321 
Sord 29571.0994 19152.935 1.5439461 
Dync2h1 35114.2965 22926.0863 1.53163065 
Dvl1 16778.7327 11098.0064 1.51186908 
Fech 22059.4606 15086.1899 1.46222874 
Tmem109 24844.8143 17237.6236 1.44131319 

 
Supplementary Table 15. Top 10 differential hub genes in the prefrontal cortex. Full list of differential 
hub genes in response to glucocorticoid receptor stimulation in the prefrontal cortex (n=293) available at 
https://doi.org/10.5281/zenodo.10864161, Online Table 15. 

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Abcd1 62281.8632 10684.718 5.829060091 
Slc39a3 42127.932 10496.4137 4.013554854 
Ror2 81086.6847 26778.6327 3.028036778 
Myo7a 26651.4248 10044.9813 2.653207998 
Slc8a1 52031.1229 21875.2656 2.378536737 
Sulf1 39128.083 17721.985 2.207883763 
Arntl 44832.9063 21714.0036 2.064700136 
Tm7sf2 28589.656 13853.7012 2.0636836 
Aldh18a1 50038.5522 25541.1117 1.959137599 
Dab2ip 40797.4348 21685.6071 1.881313936 

 
Supplementary Table 16. Top 10 differential hub genes in the paraventricular nucleus of the 
hypothalamus. Full list of differential hub genes in response to glucocorticoid receptor stimulation in the 
paraventricular nucleus of the hypothalamus (n=307) available at 
https://doi.org/10.5281/zenodo.10864161, Online Table 16. 

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Itga1 85034.9231 10889.4243 7.80894572 
Fcgr2b 62168.4431 10637.7956 5.84410955 
Mitf 69172.0995 12964.464 5.33551557 
Fas 70795.5052 37743.912 1.87568012 
Ccdc8 65849.387 36734.4584 1.79257814 
Sgce 66707.6331 39578.4807 1.68545209 
Evc2 36712.4354 23084.3162 1.5903627 
Kcnu1 25818.2285 18157.345 1.4219165 
Arhgef6 49114.1117 34924.3985 1.406298 
Samd8 24253.7529 17452.3192 1.38971517 

 
Supplementary Table 17. Top 10 differential hub genes in the ventral cornu ammonis 1. Full list of 
differential hub genes in response to glucocorticoid receptor stimulation in the ventral cornu ammonis 1 
(n=260) available at https://doi.org/10.5281/zenodo.10864161, Online Table 17. 

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Slc4a8 37736.95562 12808.42081 2.946261383 
Pex13 42516.55658 15369.69044 2.766259786 
Pdlim4 83290.92368 34727.89363 2.398386858 
Zfp235 43535.20672 18700.50365 2.32802322 
Syt16 162904.908 78925.49487 2.064034039 
Hbp1 32467.37703 18173.25717 1.786546942 
Pcdh8 100955.9267 57784.29357 1.747117087 
Pth1r 23426.23622 14094.84185 1.662043212 
Hk2 16414.27236 10028.84675 1.636705871 
Ntsr2 99093.03558 61109.97619 1.621552515 

https://doi.org/10.5281/zenodo.10864161
https://doi.org/10.5281/zenodo.10864161
https://doi.org/10.5281/zenodo.10864161


126   Appendix A 
 
 

  

Supplementary Table 18. Top 10 differential hub genes in the ventral dentate gyrus. Full list of 
differential hub genes in response to glucocorticoid receptor stimulation in the ventral dentate gyrus 
(n=289) available at https://doi.org/10.5281/zenodo.10864161, Online Table 18.  

gene_symbol nodebetweenness nodebetweenness_prior nodebetweenness_norm 
Gucy2e 31035.2829 10140.5326 3.06051802 
Lin9 24842.9309 10013.8357 2.48086064 
Zfp12 32804.0641 18919.1681 1.73390626 
Rerg 16604.6167 10129.7909 1.63918652 
Cd44 81825.1292 50486.5829 1.62073019 
Kcnh8 19542.9439 12269.2924 1.59283382 
Nkain3 26860.8918 20391.8625 1.31723583 
Pxn 14820.5661 11604.3408 1.27715709 
Irs1 82902.712 65355.2805 1.26849294 
Nudt10 81539.1793 64452.2 1.26511088 

 
Supplementary Table 19. Nuclei counts and differences in cell type proportions between snRNA-seq and 
snATAC-seq data. The difference in cell type proportions between snRNA-seq and snATAC-seq for each 
cell type was tested using a two-sided Wilcoxon signed-rank test.  

Cell Type Number Nuclei 
RNA 

Number Nuclei 
ATAC 

p value FDR 

Astro_FB 26,789 16,158 5.3613E-04 6.1862E-04 
Astro_PP 86,351 31,902 3.9645E-11 1.1893E-10 
Endothelial 14,353 5,996 3.9153E-02 3.9153E-02 
Exc_L2-3 218,679 95,711 1.3736E-09 2.5756E-09 
Exc_L3-5 12,152 5,041 8.2961E-05 1.1313E-04 
Exc_L4-6_1 36,166 22,852 2.6669E-09 4.4449E-09 
Exc_L4-6_2 35,090 4,950 1.0817E-14 4.0564E-14 
Exc_L4-6_3 14,479 NA NA NA 
Exc_L5-6 7,564 NA NA NA 
Exc_L5-6_HTR2C 4,164 NA NA NA 
In_LAMP5 15,116 NA NA NA 
In_PVALB_Ba 31,504 14,396 2.3570E-04 2.9462E-04 
In_PVALB_Ch 6,717 2,925 1.8237E-03 1.9539E-03 
In_RELN 24,095 19,425 8.1309E-16 6.0982E-15 
In_SST 34,069 22,410 8.8831E-11 2.2208E-10 
In_VIP 42,154 17,492 1.7051E-10 3.6538E-10 
Microglia 39,433 34,983 4.3114E-15 2.1557E-14 
Oligodendrocyte 92,744 87,086 1.2677E-07 1.9015E-07 
OPC 45,427 18,112 8.1309E-16 6.0982E-15 

 
Supplementary Table 20. Glia-to-neuron ratio in single-nucleus sequencing data. Total number of nuclei 
in snRNA-seq and snATAC-seq data, along with the number of glia and neurons, and the glia-to-neuron 
ratio per data modality.  

 RNA ATAC 
Total 787,046 399,439 

Glia 224,522 188,241 

Neurons 481,949 205,202 

Glia:Neuron Ratio 0.47 0.92 
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Supplementary Table 21. Differentially expressed genes for various cell types between psychiatric cases 
and controls. Per cell type a maximum of 10 differentially expressed genes is shown here. Full list of 
differentially expressed genes for all cell types available at https://doi.org/10.5281/zenodo.10864161, 
Online Table 33. 

cell type gene_symbol baseMean log2FoldChange lfcSE p FDR 
Astro_FB CAB39L 28.81014790 0.27243328 0.06884160 4.39E-05 9.95E-02 
Astro_FB L3MBTL4 32.40612498 0.27968614 0.07372429 4.38E-05 9.95E-02 
Endothelial MEG8 20.74041906 0.30400439 0.06992844 3.30E-05 8.73E-02 
Exc_L2-3 MIEN1 173.86975625 0.28891269 0.05481492 8.05E-08 7.21E-04 
Exc_L2-3 POU2F2 1,026.59249054 -0.25262255 0.04617773 5.79E-08 7.21E-04 
Exc_L2-3 AC034268.2 9,121.33622633 -0.30408274 0.06492070 3.74E-07 1.84E-03 
Exc_L2-3 AC005972.3 335.37440497 -0.27137913 0.05524922 4.10E-07 1.84E-03 
Exc_L2-3 DGKD 293.54470692 0.32182652 0.06856127 5.78E-07 2.07E-03 
Exc_L2-3 CALB1 253.95166858 0.37427501 0.07276923 1.13E-06 3.21E-03 
Exc_L2-3 KCNE2 22.32591926 -0.33054163 0.07020575 1.25E-06 3.21E-03 
Exc_L2-3 AC105180.2 75.65001315 -0.34702343 0.07306697 1.51E-06 3.27E-03 
Exc_L2-3 NFX1 1,606.83471202 -0.13007411 0.02717061 1.65E-06 3.27E-03 
Exc_L2-3 STAB2 37.06856663 0.35789714 0.07340386 2.01E-06 3.27E-03 
Exc_L3-5 AC068282.1 23.16550766 0.20863521 0.05664445 5.87E-06 4.01E-02 
Exc_L3-5 RIT2 119.32522585 0.24874240 0.05576373 9.40E-06 4.01E-02 
Exc_L4-6_1 SLIT2 528.16894479 0.38332639 0.06182622 1.09E-10 1.38E-06 
Exc_L4-6_1 TIMP2 147.61594280 0.32208732 0.05647373 2.56E-09 1.61E-05 
Exc_L4-6_1 AC012404.1 87.19238118 0.29896487 0.06024576 9.83E-08 4.13E-04 
Exc_L4-6_1 PCP4L1 33.58207229 0.33093782 0.06641521 4.88E-07 1.35E-03 
Exc_L4-6_1 BTBD11 65.15141725 0.31950542 0.06735957 5.36E-07 1.35E-03 
Exc_L4-6_1 TRPC4 37.15815670 0.34300392 0.06667601 8.74E-07 1.83E-03 
Exc_L4-6_1 NFX1 255.73413526 -0.15084974 0.03181411 1.93E-06 3.48E-03 
Exc_L4-6_1 KLHL5 313.70325378 -0.18094030 0.03888953 2.28E-06 3.59E-03 
Exc_L4-6_1 LCN15 26.79836800 -0.27889190 0.06529515 3.40E-06 4.76E-03 
Exc_L4-6_1 AC090578.1 787.57649550 -0.21906726 0.04880094 4.31E-06 4.98E-03 
Exc_L4-6_2 COX5B 95.74082887 0.23318186 0.04992042 5.35E-07 4.52E-03 
Exc_L4-6_2 AC012404.1 81.01612790 0.26140653 0.05985582 7.69E-07 4.52E-03 
Exc_L4-6_2 LINC00513 166.14217370 0.23728024 0.05826286 4.07E-06 1.20E-02 
Exc_L4-6_2 RAB11A 228.40256652 0.17757332 0.03903647 4.02E-06 1.20E-02 
Exc_L4-6_2 IGSF11 274.56512613 -0.20471159 0.04541945 8.68E-06 2.04E-02 
Exc_L4-6_2 ABHD14A 77.20857420 0.17907253 0.04456717 1.98E-05 2.18E-02 
Exc_L4-6_2 MCTP1 472.03156077 0.22357017 0.05222439 1.82E-05 2.18E-02 
Exc_L4-6_2 MAK 56.17350115 0.21897463 0.05364213 1.62E-05 2.18E-02 
Exc_L4-6_2 UBB 119.90996118 0.22341695 0.05842757 2.04E-05 2.18E-02 
Exc_L4-6_2 RHBDL3 140.93836867 0.23960576 0.06234199 1.54E-05 2.18E-02 
Exc_L4-6_3 SNAP91 424.81719204 -0.11016166 0.02252115 9.12E-07 7.56E-03 
Exc_L4-6_3 COL19A1 161.06127926 -0.22608318 0.05057608 5.85E-06 1.62E-02 
Exc_L4-6_3 LINC00923 34.97198587 -0.33258490 0.07172967 5.29E-06 1.62E-02 
Exc_L4-6_3 NTN4 41.99015877 -0.29791632 0.06451338 9.91E-06 2.05E-02 
Exc_L4-6_3 LINC01202 46.31304885 -0.28287352 0.06955769 3.69E-05 3.40E-02 
Exc_L4-6_3 PMPCB 49.37211724 0.19443960 0.04990928 3.32E-05 3.40E-02 
Exc_L4-6_3 SCN2B 46.76789447 0.24589974 0.06173362 3.37E-05 3.40E-02 
Exc_L4-6_3 ALDOC 27.41642012 0.27127043 0.06609752 2.32E-05 3.40E-02 
Exc_L4-6_3 PCSK1N 143.35810447 0.24612738 0.06339140 3.38E-05 3.40E-02 
Exc_L4-6_3 AC034268.2 766.17224436 -0.26312537 0.07195336 4.63E-05 3.83E-02 
Exc_L5-6 GNB5 55.04442805 -0.21893311 0.04925575 1.31E-05 6.14E-02 
Exc_L5-6 CCNT2-AS1 27.94981846 -0.27539975 0.06417439 4.35E-05 6.76E-02 
Exc_L5-6 GALNTL6 182.74255279 -0.22196000 0.06714698 5.79E-05 6.76E-02 
Exc_L5-6 CTBP2 31.90543248 0.25448668 0.06694304 7.19E-05 6.76E-02 
Exc_L5-6 GPC5 91.34310305 0.27400580 0.06835849 5.68E-05 6.76E-02 
Exc_L5-6 ARHGEF3 80.15178777 0.20723646 0.05156498 1.41E-04 9.47E-02 
Exc_L5-6 TANC2 397.06947776 -0.13734910 0.03613396 1.31E-04 9.47E-02 
In_LAMP5 KLHL5 65.20306812 -0.22347981 0.05057992 7.79E-06 7.38E-02 
In_LAMP5 AC012404.1 30.53607648 0.20480644 0.05565332 1.80E-05 8.54E-02 
In_VIP TP53I11 117.06951258 -0.20737439 0.04715767 1.77E-06 2.16E-02 
In_VIP AC012404.1 47.92389704 0.18816550 0.05288196 9.37E-06 5.73E-02 
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In_VIP CORO2B 125.99490856 -0.17556354 0.04092296 2.33E-05 9.51E-02 
Microglia WDR70 127.28394944 -0.19007806 0.04185745 7.35E-06 1.81E-02 
Microglia KCNQ3 725.47094178 -0.25327751 0.05861334 8.01E-06 1.81E-02 
Oligodendrocyte ANKS1B 1,094.31882649 -0.16170514 0.03425079 2.42E-06 8.25E-03 
Oligodendrocyte UBB 108.37590048 0.24760225 0.05516280 1.21E-06 8.25E-03 
Oligodendrocyte CDH8 125.93870049 -0.30514296 0.06498672 4.28E-06 9.74E-03 
Oligodendrocyte RPL5 65.64096890 0.20333004 0.05356452 6.30E-05 7.08E-02 
Oligodendrocyte CRB1 84.58282042 -0.21660119 0.05313032 5.60E-05 7.08E-02 
Oligodendrocyte MAL 267.53115499 0.18880388 0.05007365 1.05E-04 7.08E-02 
Oligodendrocyte WDR70 196.54263131 -0.12665983 0.03298209 1.13E-04 7.08E-02 
Oligodendrocyte PLAAT3 268.28328829 0.18721997 0.04909912 1.14E-04 7.08E-02 
Oligodendrocyte SARM1 26.84034871 -0.24517115 0.06251949 1.10E-04 7.08E-02 
Oligodendrocyte TTYH2 249.19568448 0.21405321 0.05524731 5.54E-05 7.08E-02 
OPC SPARCL1 349.31341668 0.25041470 0.05373613 1.89E-06 1.76E-02 
OPC IGFBP5 16.60954963 0.32656977 0.07243997 1.70E-05 6.48E-02 
OPC RAMP1 143.53953302 0.24219085 0.06570503 4.16E-05 6.48E-02 
OPC GRAMD1C 113.15461920 0.28638900 0.07081784 3.75E-05 6.48E-02 
OPC SORCS1 549.20497883 -0.19382779 0.04697509 2.40E-05 6.48E-02 
OPC ALDOC 64.63193269 0.26069679 0.06593691 2.84E-05 6.48E-02 
OPC HIST1H4C 21.97725534 0.21506579 0.06985243 4.97E-05 6.63E-02 
OPC KCNMA1 1,044.99299534 -0.15948756 0.03973330 7.65E-05 8.94E-02 
OPC FDFT1 37.92183451 0.27086732 0.06674194 1.00E-04 9.98E-02 
OPC UNC13C 26.07561909 -0.25688809 0.07052918 1.07E-04 9.98E-02 

 

Supplementary Table 22. Differentially accessible genes for various cell types between psychiatric 
cases and controls. Per cell type a maximum of 10 differentially accessible genes is shown here. Full list of 
differentially accessible genes for all cell types available at https://doi.org/10.5281/zenodo.10864161, 
Online Table 34. 

cell type gene_symbol log2FoldChange stat p FDR 
Astro_PP PDCD6IP -0.17510947 19.92906139 8.04E-06 3.34E-02 
Astro_PP CCDC112 -0.175290541 21.55747347 3.43E-06 2.86E-02 
Exc_L2-3 PEF1 -0.131126715 16.51527133 4.83E-05 5.38E-02 
Exc_L2-3 TIE1 -0.124018363 14.49210923 1.41E-04 7.66E-02 
Exc_L2-3 GPR37L1 -0.103466593 17.31492285 3.17E-05 4.13E-02 
Exc_L2-3 DYRK3 0.1179966 14.40042598 1.48E-04 7.66E-02 
Exc_L2-3 VIT -0.114143862 13.88138489 1.95E-04 9.07E-02 
Exc_L2-3 GALM 0.075239978 14.84326911 1.17E-04 7.26E-02 
Exc_L2-3 MAP4K4 0.079174742 15.17998062 9.77E-05 7.08E-02 
Exc_L2-3 FBLN2 -0.133475835 21.67419425 3.23E-06 1.05E-02 
Exc_L2-3 SEMA5B -0.109595985 21.8189582 3.00E-06 1.05E-02 
Exc_L2-3 SLC12A8 -0.09244186 18.19075816 2.00E-05 3.26E-02 
Exc_L3-5 RIPOR2 0.351549129 22.25912579 2.38E-06 1.78E-02 
Exc_L3-5 PPP1R3E -0.293602744 17.99222452 2.22E-05 8.27E-02 
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Supplementary Table 23. Transcription factor motif enrichments for INO80E and HCN2. Table includes 
enrichment results (-log10 transformed p values) for INO80E and HCN2 based on the JASPAR motif 
database (Fornes et al., 2020).  

INO80E  HCN2   
TF motif -log10(padj) TF motif -log10(padj) 
KLF4_587 2.080057 MAZ_410 11.09635749 
  ZNF148_548 10.26775749 
  ZNF740_525 7.689057491 
  EGR1_563 7.625157491 
  KLF15_401 6.955257491 
  KLF4_587 6.564757491 
  KLF11_400 6.380857491 
  ZBTB14_545 6.210657491 
  CTCFL_560 6.069157491 
  ZNF460_476 5.581957491 
  KLF5_57 5.420357491 
  TFAP2A.var.2_231 5.121057491 
  TFAP2C.var.2_627 4.942257491 
  SP9_449 4.781157491 
  KLF9_588 4.583957491 
  ASCL1.var.2_526 4.504257491 
  ZIC5_468 4.376557491 
  TFAP2B_232 4.280557491 
  KLF16_169 4.114957491 
  EGR3_162 3.987757491 
  TFAP2E_454 3.971057491 
  TFDP1_318 3.885657491 
  PLAG1_28 3.879457491 
  RREB1_11 3.325557491 
  TCF4_622 3.225157491 
  TFAP2A_626 3.141757491 
  E2F6_561 3.033657491 
  SP3_522 2.962257491 
  SP4_117 2.789457491 
  ZIC4_172 2.761557491 
  TFAP2C_235 2.694457491 
  SP8_170 2.654857491 
  EBF1_562 2.534657491 
  ZEB1_320 2.518957491 
  TCF12.var.2_543 2.449557491 
  EBF3_532 2.301857491 
  KLF14_168 2.116057491 
  KLF17_402 2.089657491 
  NRF1_40 1.995457491 
  ESR2_47 1.925057491 
  EGR4_163 1.888357491 
  EGR2_161 1.871657491 
  ZNF135_470 1.854157491 
  KLF10_399 1.799957491 
  SP2_521 1.795057491 
  SP1_520 1.604557491 
  ZNF263_632 1.553157491 
  ZBTB7B_128 1.542657491 
  ASCL1_482 1.536557491 
  TFAP2B.var.2_233 1.429457491 
  ZBTB7C_129 1.327757491 
  GLIS2_165 1.326757491 
  TCF3_621 1.324957491 
  TCFL5_523 1.315657491 
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 Supplementary Table 24. Common differentially expressed genes between mouse and human. Table 
shows genes that are commonly differentially expressed in cell types of the human orbitofrontal cortex 
(OFC) related to psychiatric diagnoses and the mouse prefrontal cortex (PFC) in response to glucocorticoid 
stimulation. Gene column indicates the gene symbol of the respective human gene. 

Gene Cell type 
human OFC 

log2FC 
human OFC 

FDR  
human OFC 

Log2FC 
mouse PFC 

FDR  
mouse PFC 

MFSD2A Exc_L2-3 0.2672 6.43E-02 0.7275 1.43E-08 
CCN1 Exc_L2-3 0.2603 7.85E-02 1.3067 2.81E-02 
PRDX6 Exc_L2-3 0.2037 5.71E-02 -0.1923 1.06E-03 
LYST Exc_L2-3 -0.0846 9.10E-02 0.4273 2.80E-03 
MAT2A Exc_L2-3 0.1364 8.51E-02 0.4335 1.36E-11 
CTDSPL Exc_L2-3 -0.0944 9.26E-02 0.2561 6.91E-02 
TMEM44 Exc_L2-3 0.1801 8.87E-02 -0.2148 6.62E-02 
NREP Exc_L2-3 -0.1604 6.62E-02 -0.3202 3.99E-03 
EDN1 Exc_L2-3 -0.2286 6.17E-02 0.8200 3.46E-03 
FKBP5 Exc_L2-3 0.2267 6.46E-02 2.8988 6.16E-65 
CD164 Exc_L2-3 0.1308 5.11E-02 0.6505 1.39E-08 
RPA3 Exc_L2-3 0.2248 5.44E-03 -0.5164 4.71E-02 
FAM126A Exc_L2-3 0.2211 9.29E-02 0.6333 1.48E-04 
FZD1 Exc_L2-3 0.2716 4.41E-02 0.5162 2.10E-02 
TCIM Exc_L2-3 0.2470 5.19E-02 2.6988 1.49E-13 
CHCHD7 Exc_L2-3 0.1778 3.12E-02 -0.3187 9.62E-02 
PTPN3 Exc_L2-3 -0.1498 6.98E-02 0.3322 9.29E-02 
DDIT4 Exc_L2-3 0.2539 8.57E-02 1.7206 9.15E-26 
CPNE7 Exc_L2-3 0.2456 6.06E-02 0.4080 5.43E-03 
RASD1 Exc_L2-3 0.2309 6.86E-02 1.2574 5.35E-04 
POU2F2 Exc_L2-3 -0.2526 7.21E-04 -0.5663 5.16E-04 
MID1IP1 Exc_L2-3 0.2062 8.65E-02 -0.2610 4.63E-03 
TSC22D3 Exc_L2-3 0.1747 9.29E-02 1.2296 4.29E-13 
POU2F1 Exc_L4-6_1 -0.0895 9.71E-02 -0.4827 3.56E-04 
MAT2A Exc_L4-6_1 0.1489 3.51E-02 0.4335 1.36E-11 
LRRC58 Exc_L4-6_1 0.1554 8.11E-02 0.5501 7.09E-16 
BCL6 Exc_L4-6_1 0.2263 7.36E-02 0.3576 1.10E-02 
SLIT2 Exc_L4-6_1 0.3833 1.38E-06 -0.6548 2.62E-05 
CDH9 Exc_L4-6_1 -0.2068 4.16E-02 -0.7743 1.89E-03 
NREP Exc_L4-6_1 -0.1958 8.74E-03 -0.3202 3.99E-03 
MLIP Exc_L4-6_1 -0.1811 4.84E-02 -0.2869 4.13E-02 
ST3GAL1 Exc_L4-6_1 -0.1847 5.66E-02 -0.4335 4.09E-02 
PTPN3 Exc_L4-6_1 -0.1789 3.91E-02 0.3322 9.29E-02 
PPFIBP2 Exc_L4-6_1 0.2188 7.41E-02 0.9575 8.26E-04 
TRPC4 Exc_L4-6_1 0.3430 1.83E-03 0.4773 1.16E-02 
GALNT16 Exc_L4-6_1 0.1858 5.30E-02 0.2729 5.15E-02 
CLMN Exc_L4-6_1 0.2588 6.26E-03 0.3965 5.81E-08 
IGDCC3 Exc_L4-6_1 0.2172 7.27E-02 0.8148 1.38E-02 
SPIRE1 Exc_L4-6_1 -0.0732 5.77E-02 0.3460 5.89E-05 
RNF152 Exc_L4-6_1 0.2837 2.64E-02 -0.3505 1.84E-02 
POU2F2 Exc_L4-6_1 -0.2021 3.56E-02 -0.5663 5.16E-04 
RCAN2 Exc_L4-6_2 -0.1626 5.71E-02 0.3014 1.28E-02 
SYNE1 Exc_L4-6_2 -0.1047 8.75E-02 0.2546 8.63E-06 
RASD1 Exc_L4-6_2 0.2209 7.39E-02 1.2574 5.35E-04 
RHBDL3 Exc_L4-6_2 0.2396 2.18E-02 0.2857 6.87E-02 
PTCHD1 Exc_L4-6_2 -0.2233 2.66E-02 -0.5094 6.56E-04 
POU2F1 Exc_L4-6_3 -0.1244 9.56E-02 -0.4827 3.56E-04 
C2orf72 Exc_L4-6_3 0.2182 9.80E-02 -2.035 3.86E-10 
KIAA1958 Exc_L4-6_3 0.1726 9.56E-02 0.3669 1.91E-02 
ARHGEF3 Exc_L5-6 0.2072 9.47E-02 0.3624 1.96E-02 
MAL Oligodendrocyte 0.1888 7.08E-02 0.4010 1.20E-02 
ANKS1B Oligodendrocyte -0.1617 8.25E-03 0.1068 6.34E-02 
SORCS1 OPC -0.1938 6.48E-02 0.3024 4.55E-02 
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ACTH adrenocorticotrophic hormone 
AMY amygdala 
ASD autism spectrum disorder 
ATAC assay for transposase-accessible chromatin 
ATP adenosine triphosphate 
BBB blood-brain barrier 
BIP bipolar disorder 
bp base pairs 
CER cerebellum 
CNS central nervous system 
CNV copy number variation 
CRH corticotrophin releasing hormone 
D2 dopamine receptor 2 
DA differential accessibility/differentially accessible 
DALYs disability-adjusted life years 
dCA1 dorsal hippocampal cornu ammonis 1 region 
dDG dorsal dentate gyrus 
DE differential expression/differentially expressed 
DN differential network 
DNA deoxyribonucleic acid 
DSM-5 5th edition of the diagnostic and statistical manual of mental 

disorders 
FC log2-transformed fold change 
FDR false discovery rate 
GABA gamma-aminobutyric acid 
GEM gel bead in emulsion 
GO gene ontology 
GR glucocorticoid receptor 
GRE glucocorticoid response element 
GWAS genome-wide association study 
HPA hypothalamic-pituitary-adrenal 
ICD-10 10th revision of the international classification of diseases 
kb kilobases 
MDD major depressive disorder 
MR mineralocorticoid receptor 
OFC orbitofrontal cortex 
OPC oligodendrocyte precursor cell 
PC principal component 
PCA principal component analysis 
PFC prefrontal cortex 
PMI postmortem interval 
PRS polygenic risk scores 
PVN paraventricular nucleus of the hypothalamus 
RIN RNA integrity number 
RNA ribonucleic acid 
SCA schizoaffective disorder 
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SCZ schizophrenia 
sn single-nucleus 
SNP single nucleotide polymorphism 
SV surrogate variable 
SVA surrogate variable analysis 
TF transcription factor 
TWAS transcriptome-wide association study 
UMAP uniform manifold approximation and projection 
vCA1 ventral hippocampal cornu ammonis 1 region 
vDG ventral dentate gyrus 
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Data Availability 
The online tables supporting this thesis, as referenced in its chapters, are available at 
https://doi.org/10.5281/zenodo.10864161. This repository further provides files 
containing complete lists of differential expression and network results, which extend 
beyond the significant genes, from the analysis of the response to glucocorticoid receptor 
activation in 8 mouse brain regions. Additionally, it includes complete lists of differential 
expression and chromatin accessibility analyses of psychiatric disorders in the 
orbitofrontal cortex, based on the postmortem brain cohort. Interactive exploration of 
the mouse brain project results as well as tailored visualizations and downloads are 
facilitated at http://diffbrainnet.psych.mpg.de/. 
Access to the raw and preprocessed RNA-seq data from the mouse brain project is 
available through the Gene Expression Omnibus (GEO) under the accession number 
GSE190712. The raw and preprocessed sequencing data from the postmortem brain 
study can also be accessed on GEO under the accession numbers GSE254569 (single-
nucleus RNA-seq) and GSE256207 (single-nucleus ATAC-seq). 
 
 
Code Availability 
The data analysis scripts and the code used to generate the figures presented in this 
thesis are available on GitHub: https://github.molgen.mpg.de/mpip/DiffBrainNet. 
The source code of the R shiny app "DiffBrainNet" can be found at GitHub as well: 
https://github.molgen.mpg.de/mpip/DiffBrainNet_ShinyApp. Additionally, the app 
can be deployed locally using the Docker image that can be accessed on Docker Hub 
(https://hub.docker.com/r/ngerst/diffbrainnet). 
Scripts for the single-nucleus analysis of the orbitofrontal cortex are likewise accessible 
on GitHub at https://github.molgen.mpg.de/mpip/SingleNuclei_Analysis_OFC.  
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