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Zusammenfassung

Die baryonische akustische Oszillationsskala (BAO) ist mittlerweile eine der wichtigsten
kosmologischen Messgren. Durch die Beobachtung ihres Abdrucks in der Verteilung der
Galaxien knnen wir sowohl den Hubble-Parameter als auch den Winkeldurchmesserabstand
bestimmen.

Allerdings fhren nichtlineare Strukturbildung und Prozesse der Galaxienbildung zu
einer Verschiebung und Verbreiterung des BAO-Gipfels in der Korrelationsfunktion, was die
Przision unserer Messungen verringert. Um nichtlineare Effekte zu minimieren, verwenden
herkmmliche BAO-Inferenzmethoden ein Verfahren, das als BAO-Rekonstruktion bekannt
ist. Diese Methode nutzt die beobachtete Verteilung der Galaxien, um die Verschiebun-
gen durch grorumige Bewegungen zu schtzen und verschiebt die Galaxien damit nher an
ihre ursprngliche Position zurck. Dadurch werden die Galaxien wieder nher an ihre Aus-
gangsposition gebracht, was die Genauigkeit der BAO-Messung verbessert. Jedoch basiert
dieses Verfahren auf einer angenommenen Kosmologie und weiteren galaxienspezifischen
Parametern, whrend es wnschenswert wre, diese Gren zusammen mit der BAO-Skala zu
ermitteln. Darber hinaus nutzen konventionelle Methoden keine hherwertigen n-Punkt-
Funktionen, die wertvolle Informationen enthalten knnten.

In dieser Dissertation stellen wir eine alternative Technik vor, die auf einer feldbasierten
Inferenz und einem Forward-Modeling-Ansatz beruht. Beim Forward Modeling werden die
heute beobachtbaren Strukturen direkt aus den anfnglichen Bedingungen, die durch die
Inflation gesetzt wurden, entwickelt. Das von uns verwendete Forward-Modell basiert auf
der effektiven Feldtheorie der grorumigen Strukturen (EFTofLSS) und wird LEFTfield
genannt. Diese Methode ermglicht es uns, die BAO-Skala, kosmologische Parameter, Bias-
Parameter und die Anfangsbedingungen gemeinsam zu bestimmen, um eine vollstndig kon-
sistente Inferenz zu gewhrleisten. Darber hinaus liefert unser Modell direkte Informationen
aus dem Feld selbst, ohne auf hherwertige n-Punkt-Funktionen angewiesen zu sein.

Zunchst wenden wir diesen Ansatz auf Kataloge von simulierten Halos im Ruhesystem
an, bei denen die Anfangsbedingungen auf die aus der Simulation bekannten tatschlichen
Werte festgelegt sind. Unsere Analyse zeigt eine systematischen Abweichung von weniger
als 2% fr eingesetzte Skalen fr den EFT cutoff von Λ ⩽ 0, 25hMpc−1 ber alle untersuchten
Datenstze hinweg, wobei nur die massereichsten Halos eine Abweichung von mehr als 1%
aufweisen. Darber hinaus zeigen wir, dass die feldbasierte Inferenz die Gre der Fehler-
balken im Vergleich zur Leistungsspektrum-basierten Inferenz ohne Verwendung der BAO-
Rekonstruktion um das 1,1- bis 3,3-fache reduziert.



xvi Zusammenfassung

Anschlieend erweitern wir unsere Analyse auf ein komplexeres Szenario, in dem wir die
BAO-Skala gemeinsam mit den Anfangsbedingungen bestimmen. Diese Analyse wird mit
simulierten Daten durchgefhrt, die mit dem LEFTfield-Code erzeugt wurden. Wir zeigen,
dass auch in diesem Fall der systematische Fehler sehr gering bleibt. Darber hinaus zeigen
wir, dass unsere Einschrnkungen auf die BAO-Skala niedriger sind als die mit traditionellen
BAO-Methoden erzielten.



Abstract

Baryon acoustic oscillation (BAO) scale has been an important cosmological probe in
the past decade. By observing its imprint in the distribution of galaxies at later times,
we can estimate both the Hubble parameter and the angular diameter distance. However,
nonlinear matter evolution and galaxy formation processes shift and broaden the BAO peak
in the correlation function, consequently reducing the precision of our measurement. To
minimize non-linear effects, conventional BAO inference employs a method known as BAO
reconstruction. This approach uses galaxy maps to estimate bulk motion displacements
and shifts the galaxies back closer to their initial position. This restores the galaxies
closer to their original positions, improving the accuracy of the BAO scale measurement.
Nonetheless, this approach relies on assumed fiducial cosmology and bias values, whereas a
more accurate method would involve sampling these quantities along with the BAO scale.
Additionally, conventional methods do not utilize higher-order n-point functions, which
may contain valuable information.

In this thesis, we introduce an alternative technique based on the field-level inference
and forward modeling approach. Forward modeling takes the initial conditions that were
set by the inflation and then evolves them into observable structures as we see today.
Forward model we use is based on the Effective Field Theory of Large Scale Structure
(EFTofLSS) and called LEFTfield. This method allows us to jointly sample the BAO
scale, cosmological parameters, bias parameters, and initial conditions, ensuring a fully
consistent inference. Moreover, our model provides insights directly from the field itself,
avoiding the need for higher-order n-point functions.

We first apply this approach to rest-frame halo catalogs, in the case when the initial
conditions are fixed to the ground truth. Our analysis shows a systematic bias of less
than 2% for the Λ ⩽ 0.25, hMpc−1, where Λ is the maximum wavenumber included in the
forward mode. This systematic bias is consistent across all samples, with only the most
biased samples showing a systematic bias above 1%. Additionally, we demonstrate that
the field-level inference reduces error bar size by 1.1 to 3.3 times compared to the power
spectrum based inference without the use of the BAO reconstruction.

We then extend our analysis to a more complex scenario where we sample the BAO scale
along with the initial conditions. This analysis is conducted using mock data generated
with the LEFTfield code. We demonstrate that, even in this case, systematic bias remains
very low. Furthermore, we show that our constraints on the BAO scale are lower than
those obtained using traditional BAO methods.
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Chapter 1

Introduction

Baryon Acoustic Oscillations (BAO) represent one of the most significant observables in
cosmology. Originating from the period when photons and baryons were tightly coupled,
the imprints of BAO are visible in both the Cosmic Microwave Background (CMB) temper-
ature anisotropies and the clustering of matter at later times. By measuring the apparent
size of the BAO scale, rs, in the late-time matter distribution, it is possible to estimate
both the angular diameter distance and the Hubble parameter as functions of redshift.
Moreover, the BAO feature imprinted in galaxy clustering is much less sensitive to the de-
tails of the galaxy-matter relation (bias) than the broad-band galaxy statistics. However,
the nonlinear evolution of the matter density field and the formation of structures compli-
cate this picture. The bulk motion of matter (and galaxies with it) leads to a damping of
the BAO oscillations in the power spectrum, reducing the accuracy with which the BAO
scale can be measured from the late-time clustering of galaxies. Additionally, this effect
will reduce the size of the BAO scale, shifting its position in the correlation function and
introducing a systematic bias into our measurement [51,94,120,124].

Traditional BAO inference methods aim to reduce non-linear effects through a technique
known as BAO reconstruction [28,50,92,95,113,114,125,135,142]. BAO reconstruction is
based on the principle that the same galaxy maps used to measure the power spectrum can
be used to estimate the displacements caused by bulk motions. The estimated displacement
field is then used to shift galaxies back to their original positions, effectively reducing the
effects of non-linear evolution.

The BAO reconstruction technique has been highly successful and has played a crucial
role in inferring the BAO scale over the past decade [3,5,37,68,85,97,136]. However, this
technique relies on assumptions about the underlying cosmology and galaxy bias, which
should ideally be sampled alongside the BAO scale for consistent inference. Furthermore, it
only extracts information from the power spectrum, whereas higher-order n-point functions
could also provide valuable insight into the BAO scale.

In this thesis, we adopt a different approach to BAO scale inference, and use a fully
Bayesian field-level forward modeling approach to constrain the BAO scale. Forward mod-
eling has gained significant momentum in the past few years [10,53,54,61–64,69,70,72,84,
105,115–117,141]. The main goal of the field level inference is to find a joint posterior for



2 1. Introduction

the initial density field, cosmological parameters and nuisance parameters (bias parameters
and stochastic amplitudes). This posterior is constructed using the following elements:

• prior on the initial conditions

• forward model for matter and gravity

• bias expansion

• likelihood.

This posterior allows us to jointly sample all the cosmological and bias parameters along
with the initial conditions, eliminating the need to rely on a fiducial cosmology1

In this work, we demonstrate that field-level inference based on our forward model,
which will be detailed below, can effectively constrain the BAO scale. As shown in Chapters
7 and 8, not only is this approach feasible, but we also find that the results for fully
nonlinear tracers remain nearly unbiased, even when the BAO scale is sampled jointly with
the initial conditions. Furthermore, we show that this method yields tighter constraints on
the BAO scale compared to current approaches. This makes the method highly promising
for future cosmological analyses.

The forward model we use is based on the Effective Field Theory of Large Scale Struc-
ture (EFTofLSS) [17, 30]. A key component of any EFT framework is the cut-off scale,
denoted as Λ, which represents the maximum wavenumber of the modes included in the
calculations (in n-point-function-based analyses, this is often referred to as kmax). The
cut-off Λ excludes the impact of small-scale physics, which cannot be accurately modeled
using perturbation theory. While Λ can theoretically take any value, the upper limit in the
EFTofLSS is set by the nonlinearity scale (ΛNL ≈ 0.25hMpc−1 at z = 0), beyond which
the perturbation theory for large-scale structure breaks down. By applying this cut-off to
the initial density field, we ensure that all considered modes remain within perturbative
control from the outset. Importantly, the information about small-scale physics is not lost;
rather, it is captured through counterterms that are introduced during the renormalization
process.

The language of EFTofLSS allows us to express the highly complex relationship between
the matter density field and the tracer density field in terms of bias operators O [42]:

δg(x, η) =
∑
O

bO(η)O(x, η), (1.1)

where bias coefficients bO parameterize our ignorance about small scale physics. In other
words, they correct the error we make by ignoring all modes above Λ. Choice of operators
O is determined by the equivalence principle. Up to any given order in perturbation
theory, we have a finite number of such operators, forming what is known as a basis.
Importantly, the choice of this basis is not unique. In this work, we will employ both a

1In this study, we fix all cosmological parameters apart from the BAO scale in the inference, but all
bias parameters are jointly inferred with the BAO scale.
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Lagrangian basis, which includes operators constructed at an initial time, and an Eulerian
basis, whose operators are expressed at the observation time.

At the center of the forward model we are using is the so-called field-level or EFT
likelihood, which has been derived in a series of papers [29, 52, 112]. The key feature of
this likelihood is that it enables us to access information directly from the field, without
relying on compression functions. As a result, it captures the BAO information contained
in higher n-point functions, such as the bispectrum.

Thesis Outline

This thesis is structured in the following way:

• Chapter 2: In this chapter, we establish the foundations for the subsequent chap-
ters. We introduce the background cosmological model used to describe our universe
and define measurements within this framework. Additionally, we briefly introduce
perturbations in spacetime.

• Chapter 3: We begin this chapter by deriving a set of partial differential equations
that govern the evolution of dark matter and gravity. We then discuss various meth-
ods for solving these equations. First, we explore the standard perturbation theory
approach, which treats the matter density as a small perturbative parameter. After-
ward, we examine the limitations of this method, which motivate the introduction of
the Effective Field Theory of Large Scale Structure (EFTofLSS). Finally, we conclude
the chapter by introducing Lagrangian perturbation theory, offering an alternative
approach to solving these equations within the Lagrangian framework, where we also
briefly mention how EFTofLSS fits in the context of this approach.

• Chapter 4: This chapter addresses galaxy bias, which provides the relationship be-
tween the matter and galaxy density fields. We begin with the local-in-matter-density
bias expansion and demonstrate why this approach is incomplete. Using the equiv-
alence principle, we then derive a more general bias expansion. Next, we discuss
both Lagrangian and Eulerian bias expansions, presenting the explicit form of bias
operators up to the 4th order in each framework. Additionally, we discuss the renor-
malization of galaxy bias.

• Chapter 5: In this chapter we focus on baryon acoustic oscillations (BAO). We
start this section by providing some necessary background in the form of Boltzmann
equations for photons and the Boltzmann equations for baryons. We then discuss
the joint evolution of photons and baryons in the form of baryon-photon fluid. We
show that the equation governing this fluid has a form of forced harmonic oscillator
and discuss the physical intuition behind this. Next we discuss in more details how
non-linear evolution and galaxy bias distort the BAO feature by displacing galaxies
from their original position. After that, we introduce the BAO reconstruction as a
means of fixing the effects of non-linearities. In the final part of this chapter, we show
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how by measuring the apparent size of the BAO scale at some redshift z from the
late time clustering of matter, we can directly measure the Hubble parameter H(z)
and the angular diameter distance DA(z) relative to the sound horizon scale rs.

• Chapter 6: In this chapter we introduce the concept of field-level inference and
forward modeling. We describe all the ingredients needed to construct our forward
model based on EFTofLSS. Additionally, we explain how this model is applied to
infer the Baryon Acoustic Oscillation (BAO) scale.

• Chapter 7: In this chapter, we apply the forward model introduced in the previous
section to a rest-frame halo catalog and perform BAO scale inference, with the initial
conditions fixed to the ground truth. We then compare the field-level results to those
obtained using a Gaussian power spectrum-based likelihood, without implementing
BAO reconstruction.

• Chapter 8: In this chapter, we conduct a joint inference of the BAO scale and
the initial conditions of mock catalogs generated using our forward model. This
analysis is performed using both Lagrangian and Eulerian bias expansions. Finally,
we compare our results with those obtained using the reconstructed power spectrum
and Gaussian power spectrum-based likelihood.

• Chapter 9: This final chapter summarizes the main results of the thesis and outlines
plans for future research.

1.0.1 Notation

We use bold letters such as p to indicate vectors.
The momentum space integrals are written as∫

p1,...,pn

=

∫
d3p1
(2π)3

· · ·
∫

d3pn
(2π)3

. (1.2)

Relevant Publications

The content of this thesis is based on the following publications:

• Ivana Babić , Fabian Schmidt, and Beatriz Tucci. BAO scale inference from biased
tracers using the EFT likelihood. Published in JCAP, Volume 2022, August 2022.
Preprint: 2203.06177.

• Ivana Babić , Fabian Schmidt, and Beatriz Tucci. Straightening the Ruler: Field-
Level Inference of the BAO Scale with LEFTfield. Preprint: 2407.01524.



Chapter 2

Cosmological Setup

In this section, we will explore the geometry of our universe. First, we will introduce
the Friedmann–Lematre–Robertson–Walker (FLRW) metric, which describes an expanding
homogeneous and isotropic universe. Following that, we will discuss how distances are
defined within this framework, and introduce the concept of standard ruler and standard
candles as tools for these measurements. In the final section of the chapter, we will briefly
introduce the concept of metric perturbations.

This chapter was based on several chapters in [45] and several chapters in [87].

2.1 Robertson-Walker Metric

To describe the laws of gravity, we use general relativity. The fundamental object of theory
of relativity is metric gµν , a mathematical object that describes the geometry of spacetime.
Metric defines how distances and intervals between events in spacetime are measured and
it allows us to connect observer-dependent coordinates xµ = (t,x) to the invariant line
elements:

ds2 = gµνdx
µdxν . (2.1)

The way the metric varies with position in spacetime is governed by the distribution of
matter and energy in the universe. Finding the metric of an arbitrary spacetime can be
challenging, but knowing the symmetry of the spacetime makes the problem easier.

Our universe is isotropic and homogeneous on large scales, and can thus be described
using the Friedmann–Lematre–Robertson–Walker (FLRW) metric:

ds2 = −dt2 + γijdx
idxj, (2.2)

where

γijdx
idxj = a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (2.3)

and
dΩ2 = dθ2 + sin2(θ)dϕ2, (2.4)
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with r being the radial coordinate. The scale factor a(t) characterizes the expansion of the
universe. Due to the isotropy and homogeneity of the universe, the scale factor depends
only on time. By convention, the present value of the scale factor, denoted a0, is set to
one. As we look further back in time, the value of a decreases, reflecting the fact that the
universe was smaller in the past. The parameter K represents the spatial curvature of the
universe and can take one of three values, corresponding to different types of geometry:

K ≡


0 Euclidean (flat) space,

+1 spherical (closed) space,

−1 hyperbolic (open) space.

(2.5)

The value of K can only be determined through observational data. According to results
from the Planck mission, observations strongly favor a flat universe [2], so we will adopt
K = 0 in the following discussion unless stated otherwise.

Coordinates {xi} are referred to as comoving coordinates. The distance between two
points expressed in comoving coordinates remains constant as the universe expands. Co-
moving coordinates can be related to physical coordinates through the relation:

xiphys = a(t)xi. (2.6)

The physical velocity of an object is given by:

viphys ≡
dxiphys
dt

= a(t)
dxi

dt
+
da

dt
xi = vipec +Hxiphys. (2.7)

We see that there are two contributions to physical velocity. First one is the peculiar
velocity:

vipec ≡ a(t)
dxi

dt
. (2.8)

This is the velocity as measured by a comoving observed. The second contribution to
the physical velocity arises from the Hubble flow, Hxiphys, where the Hubble parameter is
defined as:

H ≡ 1

a

da

dt
. (2.9)

When working with FLRW metric, it is often convenient to replace the physical time t
with conformal time η, defined as:

η ≡
∫

dt

a(t)
, (2.10)

so that the differential time element dt can be expressed as dt = a(t)dη. Using the con-
formal time simplifies the flat FLRW metric, allowing it to be rewritten in the following
form:

ds2 = a2(t)
[
−dη2 + (dr2 + r2dΩ2)

]
. (2.11)
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This representation makes the FLRW metric conformally related to the metric describing
the flat Minkowski spacetime, ds2 = −dη2 + dr2 + r2dΩ2. This similarity makes certain
calculations and theoretical analyses simpler by making the metric easier to compare with
the familiar flat spacetime metric. As we will soon see, this is particularly useful in the
study of perturbations and the evolution of cosmic structures.

2.1.1 Redshift

Most of our knowledge about the universe comes from measuring the light emitted by very
distant objects. However, before we can draw any conclusions from these measurements,
we must account for the effect that the expansion of the universe has on the wavelength
of the light emitted by these objects. As the universe expands, the wavelength of the light
is stretched, meaning that the observed wavelength appears longer than the wavelength at
the time of emission. This stretching is proportional to the scale factor of the universe. To
quantify this effect, we define a stretching factor, commonly known as the redshift, denoted
by z:

1 + z =
λobserved
λemitted

=
a0
aemit

=
1

aemit

, (2.12)

where λobserved is the wavelength we detect, and λemitted is the wavelength that was originally
emitted. Similarly, aemit is the scale factor at the time of emission and we have used the
fact that the observation scale factor, i.e., the present-day scale factor, is set to one. The
redshift z provides a direct measurement of how much the universe has expanded since the
light was emitted and it plays an important role in understanding cosmic distances and
the evolution of the universe.

2.1.2 Distances

Measuring distances in an expanding universe is challenging, and we must carefully define
what we mean by “distance”, as there are several different interpretations of it in cosmology.

Comoving Distance

We begin by introducing a quantity that, while not directly observable, will prove useful in
defining observable distances: the comoving distance χ. Let us assume we are looking into
some distant object which emitted a light ray at some redshift z. Then the total comoving
distance light will travel to reach us is given by:

χ(z) =

∫ t0

t1

dt

a(t)
=

∫ z

0

dz

H(z)
, (2.13)

where evolution of H(z) depends on the matter content on the universe, therefore light
will cover different conformal distances during different stages of universe evolution.
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Angular Diameter Distance

One way to define distance is through the use of standard rulers. Standard rulers are objects
whose size at a given redshift z is well known, allowing us to determine the distance-redshift
relation.

Let us assume that we have a standard ruler of size l. Since this object is very far away
from us, the angular size δθ of this object is small. In this case, the distance to the object
can be determined by the following relation:

DA =
l

δθ
. (2.14)

This quantity is called the angular diameter distance DA. To translate this relation in
terms of expanding universe, we note that the comoving size of this object is l/a, where a
is the scale factor at the time of emission. The comoving distance to the object is given
by Eq. (2.13). Therefore:

δθ =
l/a

χ(a)
, (2.15)

which brings us to the angular diameter distance in Euclidean space:

DEuc
A = aχ =

χ

1 + z
. (2.16)

We immediately observe that in an expanding universe, the angular diameter distance
depends on the redshift, z. For small values of z, the angular diameter distance closely
corresponds to the comoving distance, and the relationship between an object’s size and
its distance is intuitive: objects farther away appear smaller. However, beyond a certain
redshift, the angular diameter distance begins to decrease as the redshift increases, caus-
ing distant objects to appear larger than expected. This is a direct consequence of the
universe’s expansion. When the light from these distant objects was emitted, the universe
was much smaller and the object was actually much closer at that time than it is now.

Luminosity distance

We can also define distances using objects of known luminosity L (energy emitted per
second). Such objects are called standard candles. In a flat non expanding universe, the
flux F observed at some distance d from such an object would be:

F =
L

4πd2
. (2.17)

To derive the expression for the observed flux in an expanding universe, we consider the
flux measured at a comoving distance χ(z), assuming that all photons were emitted from
the source with the same energy. The expansion of the universe impacts these photons in
two ways:
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• The rate at which photons from the source reach us will be reduced by a factor of
1/(1 + z), compared to the rate at which they were emitted.

• The observed energy of the photons will also be diminished by the same factor 1/(1+
z), compared to the emitted energy.

Taking these effects into account, the observed flux is given by

F =
L

4πχ2(z)(1 + z)2
, (2.18)

where L is the luminosity of the source. This definition allows us to introduce the luminosity
distance in Euclidian expanding universe:

dEucL ≡ χ(1 + z). (2.19)

We see that the luminosity distance and angular diameter distance are related by

DA =
dL

(1 + z)2
. (2.20)

2.2 Dynamics of the Universe

2.2.1 Homogeneous Universe

Dynamics of the universe is described with the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν + Λgµν , (2.21)

where Rµν is the Ricci tensor, R is the Ricci scalar, Tµν is the energy-momentum tensor,
Λ is cosmological constant, and G is the gravitational constant. Full form of the Ricci
scalar, and tensors can be found in [87]. The left-hand side of this equation represents
the curvature of spacetime, while the right-hand side relates it to the matter and energy
content of the universe.

Let us start with the right–hand side of the Einstein equations. We can derive the
expression for the energy momentum tensor using the isotropy and homogeneity of the
universe. We start by decomposing it in 3-scalar, T00, 3-vectors, Ti0 and T0j, and a 3-
tensor, Tij. Isotropy demands that mean of 3-vector vanish, Ti0 = T0j = 0. Isotropy
around x = 0 further implies that

Tij(x = 0) ∝ δij ∝ gij(x = 0). (2.22)

To satisfy homogeneity, this proportionality term can only be a function of time. Therefore,
homogeneity and isotropy lead us to the following form of the stress-energy tensor, which
corresponds to that of a perfect fluid:

Tµν = (p+ ρ)uµuν + gµνp, (2.23)
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where uµ is the four-velocity of the fluid relative to the observer, while ρ ≡ ρ(t) and p ≡ p(t)
are the background pressure and density.

Let us also add that the energy and momentum conservation are now combined in one
condition:

∇µT
µν = ∂µT

µν + Γµ
µλT

λ
ν − Γλ

µνT
µ
λ = 0, (2.24)

where Γλ
µν are Christoffel symbols:

Γλ
µν =

1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (2.25)

From the ν = 0 component of this equation, we derive the continuity equation

∂ρ

∂t
+ 3H(ρ+ p) = 0. (2.26)

If we combine the solution for the Ricci tensor and Ricci scalar with the momentum
tensor, we will arrive to Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ, (2.27a)

ä

a
= −4πG

3
(ρ+ 3p). (2.27b)

Friedman equations describe how background cosmology evolves in FLRW universe.
Density ρ and the pressure p are the sum of all contributions to the density and the

pressure in the universe. In fact, the first Friedmann equation is much more frequently
written in a form that reflects this better:

H2 = H2
0

(
Ωra

−4 + Ωma
−3 + ΩΛ

)
, (2.28)

with

Ωi =
8πG

3H2
0

ρ0,i. (2.29)

Dimensionless density parameters Ωi quantify the fraction of the universe’s total density
associated with each specific component. Specifically, Ωr accounts for the contribution from
radiation (photons and neutrons), Ωm corresponds to the matter contribution (including
both dark and baryonic matter), and ΩΛ represents the contribution from the cosmological
constant (dark energy). These components evolve differently with the scale factor a, which
is reflected in the distinct powers of a in the equation: radiation scales as a−4, matter as
a−3, and dark energy remains constant.

2.3 Perturbed spacetime

Up to this point, we have treated the universe as homogeneous. However, to describe the
process of structure formation, it is necessary to go beyond this assumption and introduce
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inhomogeneities into both sides of the Einstein equations. In this section, we will briefly
introduce the concept of metric perturbations. In the subsequent chapters, we will explore
perturbations in the matter density in greater detail.

The background metric we previously considered was time-dependent only. However,
introducing inhomogeneities will also bring in spatial dependence. We will assume that
these inhomogeneities are small, allowing the perturbed metric to remain close to the
background FLRW metric. To quantify these perturbations, we introduce two scalar fields,
Φ(x, t) and Ψ(x, t). In terms of these fields, the metric can be expressed as:

g00(x, t) = −1− 2Ψ(x, t),

g0i(x, t) = 0,

gij(x, t) = a2(t)δij [1 + 2Φ(x, t)]

(2.30)

We see that when we set Φ = Ψ = 0, we recover FLRW universe.
The perturbation fields Ψ(x, t) and Φ(x, t) are scalars. While vector and tensor per-

turbations can also exist, we will focus solely on scalar perturbations, as they are sufficient
for the purposes of this thesis. Moreover, perturbation fields are gauge dependant, and
our choice corresponds to the conformal Newtonian gauge. The field Ψ(x, t) corresponds
to the Newtonian potential which describes the motion of non-relativistic particles. While
it is possible to derive evolution equations for both Ψ(x, t) and Φ(x, t), we will primarily
be concerned with scales that are well within the Hubble radius and with non-relativistic
matter. In this regime, the Poisson equation will suffice:

∇2Ψ = 4πGa2ρδ, (2.31)

where ρ represents the background matter density field. Variable δ represents the fluctua-
tion in matter density field which will be the topic of the next chapter.
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Chapter 3

Structure Formation

The matter distribution in the early Universe was remarkably smooth, with only small
fluctuations in the average overdensity amplitude. However, under the influence of grav-
itational forces, these overdensities grew and evolved into the large-scale structures we
observe today. In this section, we will focus on working out the theory that will allow us
to understand how this evolution happened.

We will assume that dark matter can be described as a set of collisionless and non-
relativistic particles which interact only gravitationally. In other words, we will be treating
dark matter as a fluid. Using the full theory of gravity would be rather challenging.
Luckily, even for later universe gravity remains relatively weak which allows us to use the
linear form of Einstein equations. Using all these assumptions, we will derive a set of
partial differential equations describing the dark matter and gravity evolution. We will
first address the equations using Standard Perturbation Theory (SPT), which focuses on
the matter density and velocity fields and treats their components as small perturbations.
However, when examining loop integrals within this theory, problems arise because SPT
includes contributions from arbitrarily small scales, where the matter density can no longer
be treated as a small parameter. To address this issue, we introduce the Effective Field
Theory of Large Scale Structure (EFTofLSS), which incorporates a cut-off to properly
account for small-scale effects. Although the cut-off value can, in principle, take any value,
in the case of EFTofLSS, it should not exceed the nonlinearity scalethe at which density
perturbations become of order unity.

This chapter will also discuss Lagrangian Perturbation Theory (LPT), an alternative
approach that focuses on the evolution of the fluid in the Lagrangian frame, rather than
the Eulerian frame previously considered. LPT uses the Lagrangian displacement vector
to relate the observed position of the fluid to its initial Lagrangian position. By treating
the components of this vector as small perturbations, we can describe the evolution of the
dark matter fluid.

This chapter is based on several references. Section 3.1 is primarily based on [13]
and Chapter 12 of [45]. The main references for Section 3.2 are [13, 17, 101]. Section 3.3
follows [13,109].
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3.1 Standard Perturbation Theory

In cosmology, we are not concerned with the fate of individual particles. Instead, we
focus on studying the behavior of large groups of particles in certain regions of space.
To describe the behavior of such groups, we use distribution functions. The distribution
function f(x,p, t) gives the number of particles within an infinitesimal momentum-space
element d3p located within an infinitesimal volume element d3x centered around a point x
at time t. We can relate the distribution function to the number of particles. Throughout
this chapter, we will assume we are dealing with non-interacting particles, whose number
is conserved. This assumption leads us to the collisionless Boltzmann equation:

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂pi
dpi

dt
= 0. (3.1)

Furthermore, we are interested in sub-horizon scales and non-relativistic matter. In this
case, the Boltzmann equation becomes:

∂f

∂t
+
∂f

∂xi
pi

ma
− ∂f

∂pi

(
Hpi +

m

a

∂Ψ

∂xi

)
= 0, (3.2)

where m is the mass of the particles. This equation is called the Vlasov equation and,
together with the Poisson equation, describes the evolution of dark matter under the
influence of gravity. To solve this complicated set of equations, we can use the Standard
Perturbation Theory (SPT) (see [19] or Chapter 12.2 in [45]). Furthermore, we are not
interested in the full solution in momentum space, only in the evolution of the spatial
distribution. This allows us to simplify the problem by exploiting the momentum moments
of the Boltzmann equation. For this purpose, we introduce a momentum average which
for some function A(x,p, t) is defined as

⟨A(x, t)⟩f ≡
∫
p

A(x,p, t)f(x,p, t). (3.3)

Using this definition allows us to express two important quantities in a convenient way

• number density:

n(x, t) ≡ ⟨1⟩f =
ρ(x, t)

m
(3.4)

• the bulk or fluid velocity:

ui(x, t) ≡ ⟨pi⟩f
⟨m⟩f

(3.5)

• stress tensor:

τ ij =
1

m
⟨pipj⟩f − ρuiuj. (3.6)
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Taking the first two moments of the Vlasov equation and applying some algebraic
manipulations brings us to the continuity and Euler equation:

∂ρ

∂η
+

∂

∂xi
(
ρui

)
+ 3Hρ = 0 (3.7a)

∂

∂t
ui + uj

∂

∂xj
ui +Hui + ∂Ψ

∂xi
+

1

ρ

∂

∂xj
τ ij = 0, (3.7b)

here used the relation between proper time t and conformal time η, given by dt = a(η)dη,
and introduced the conformal Hubble parameter H = aH.

The stress tensor τ ij can be interpreted as a pressure contribution. In SPT, we assume
that the dark matter is a perfect fluid which allows us to set τ ij = 0. As we will see later,
this assumption will be one of the breaking points of SPT since a more correct way of
treating matter would be as an effective fluid. However, even with this assumption we can
explore and understand a lot about large scale structures.

By removing the homogeneous solution ρ(t) through relation ρ(x, t) = ρ(t)[1 + δ(x, t)],
we find the following set of nonlinear equations describing the dark matter evolution:

δ̇ +
∂

∂xi
(
(1 + δ)ui

)
= 0, (3.8a)

u̇i + uj
∂

∂xj
ui +Hui + ∂

∂xi
Ψ = 0, (3.8b)

∇2Ψ =
3

2
H2Ωm(η)δ, (3.8c)

where dot represents derivative with respect to η. We have also included the Poisson
equation which accounts for gravity evolution.

3.1.1 Linear Solution

Let us start by ignoring all quadratic terms in Eq. (3.8), this allows us to focus on solving
the linear part of the equations

δ̇(1) +∇u(1) = 0 (3.9a)

u̇(1) +Hu(1) = −∇Φ, (3.9b)

Linear equations are much simpler to solve since the variables are fully decoupled. The
solution becomes even more straightforward if we rewrite the Euler equation in terms of
the velocity divergence θ = ∇ · u and the velocity vorticity ω = ∇× u

θ̇(1) +Hθ(1) = −∇2Φ (3.10a)

ω(1) +Hω(1) = 0. (3.10b)
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The solution of Eq. (3.10b) is ω(1) ∝ a−1. This implies that any vorticity present at the
initial time decays at the linear level. Therefore, we are free to focus solely on the velocity
divergence.

From Eq. (3.9a), we see that the source of velocity divergence is in the time changing
density perturbations. This allows us to combine Eq. (3.9a) and Eq. (3.10a) into one

δ̈(1)(k, η) +H(η)δ̇(1)(k, η)− 3

2
Ωm(η)H2(η)δ(1)(k, η) = 0. (3.11)

In general, this equation will have two modes as solutions: a growing mode and a decaying
mode. Since we are interested in the structure formation, i.e., the growing mode, we will
discard the decaying mode. We can then solve this equation by assuming a separable
solution of the form

δ(1)(k, η) = D(η)δL(k), (3.12)

where δL(x) is the linear density field which was set by inflation and D(η) is the growth
factor

D(η) = D0H(η)

∫ a(η) da′

H3(a′)
, (3.13)

with D0 being the normalization constant that ensures D(a = 1) = 1 today. In the case
of the matter only Universe, the case of an Einstein–de–Sitter (EdS) Universe, a ∝ t2/3 so
the growth factor is simply D(a) = a. From Eq. (3.9a), we find the linear solution for the
velocity displacement

θ(1)(k, η) = −H(η)f(η)D(η)δL(k) (3.14)

where we have introduced the growth rate f(η) as

f(η) ≡ dlogD(η)

dloga
. (3.15)

For the case of EdS Universe, this factor reduces to Unity.
Before we move back to nonlinear equations, let us also calculate the linear order power

spectrum

P (11)(k, η) ≡ ⟨δ(1)(k, η)δ(1)(k′, η)⟩ = (2π)3δD(k− k′)D2(η)PL(k), (3.16)

where PL is the power spectrum of the initial conditions which were set by inflation.

3.1.2 Nonlinear solution

Let us now return to nonlinear equations. Similar to the case in the case of linear equations,
we can simplify things by separating the Eulerian equation (3.8b) into velocity divergence
and rotation parts. For the velocity vorticity, we get the following

ω(1) +Hω(1) +∇× (u× ω) = 0. (3.17)
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This equation demonstrates that if there is no initial vorticity, nonlinear evolution will not
generate it. Since we have also observed that any existing vorticity decays at early times,
we are justified in neglecting it in our calculations.

Keeping only the velocity divergence produces the final form of the nonlinear equations
for dark matter evolution

δ̇ + θ = −δθ − u∇δ, (3.18a)

θ̇ +Hθ +∇2Ψ = −u∇θ −∇ (u∇)u, (3.18b)

∇2Ψ =
3

2
H2Ω(η)δ. (3.18c)

We start by rewriting them in the form of convolution in Fourier space

δ̇ + θ =

∫
p1,p2

α(p1,p2)θ(p1, η)δ(p2, η)δD(k− p1 − p2), (3.19a)

θ̇ +Hθ + 3

2
H2Ω(η)δ = −

∫
p1,p2

β(p1,p2)θ(p1, η)θ(p2, η)δD(k− p1 − p2), (3.19b)

with the kernels

α(p1,p2) =
p1 · k
p21

, β(p1,p2) =
p1 · p2

2p21p
2
2

k2. (3.20)

These kernels originate from the nonlinear terms in Eq. (3.18) and hence capture the
nonlinearity of dark matter evolution. By looking at Eq. (3.19), it is also clear that the
evolution of δ(η,k) and θ(η,k) is governed by coupling of all modes whose wave vectors
sum to k as demanded by a homogeneous and isotropic Universe.

We assume the solution of the set of Eq. (3.19) can be found using the perturbative
expansion

δ(k, η) =
∞∑
n=1

Dn(η)δ(n)(k), θ(k, η) = −H(η)f(η)
∞∑
n=1

Dn(η)θ(n)(k), (3.21)

where the terms δ(n) and θ(n) contain n powers of the linear fields. Inserting Eq. (3.21)
into Eq. (3.19), gives us the general form of the solution

δ(n)(k) =

∫
p1...pn

δD(k− p12...n)Fn(p1, . . . ,pn)δL(p1) . . . δL(pn), (3.22a)

θ(n)(k) =

∫
p1...pn

δD(k− p12...n)Gn(p1, . . . ,pn)δL(p1) . . . δL(pn), (3.22b)

with kernels Fn and Gn. These kernels can be computed recursively. First order kernels
are trivial and equal to F1 = G1 = 1. To find the expression for the second order kernels,
we insert the linear solution on the right hand side of Eq. (3.19) which leads us to

F2(p1,p2) =
5

7
α(p1,p2) +

2

7
β(p1,p2), (3.23a)

G2(p1,p2) =
3

7
α(p1,p2) +

4

7
β(p1,p2). (3.23b)
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Continuing along these lines to higher and higher order, we find the general expression

Fn(p1, . . . ,pn) =
n−1∑
m=1

Gm(p1, . . . ,pm)

(2n+ 3)(n− 1)
[(2n+ 1)α(p1...m,pm+1...n)Fn−m(pm+1, . . . ,pn)]

+ 2β(p1...m,pm+1...n)Gn−m(pm+1, . . . ,pn), (3.24a)

Gn(p1, . . . ,pn) =
n−1∑
m=1

Gm(p1, . . . ,pm)

(2n+ 3)(n− 1)
[3α(p1...m,pm+1...n)Fn−m(pm+1, . . . ,pn)]

+ 2nβ(p1...m,pm+1...n)Gn−m(pm+1, . . . ,pn). (3.24b)

A list of higher-order kernels can be found in [19]. For more details on the derivation
of Eq. (3.24), refer to [55, 59]. Eqs. (3.22) and (3.24) together provide a method to
describe the nonlinear evolution and the formation of structure. They also equip us with
the tools necessary to calculate the statistics of the nonlinear density field at arbitrary
order, expressed in terms of the statistics of the linear density field. The equal time power
spectrum of δ(k) can be written as

P SPT(k, η) = D2(η)P (11)(k) +D4(η)
[
2P (13)(k) + P (22)(k)

]
+ · · · . (3.25)

The first term contains the linear contributions, while the second term contains the leading-
order nonlinear correction to the linear matter power spectrum. Notice that we have
dropped the terms which contain an uneven number of δL since they vanish due to δL
being a Gaussian field. However, one of the effects of nonlinear corrections is that the
terms containing an uneven number of evolved matter density field will no longer be zero.
As an example of this, we take the bispectrum which is at the lowest order given by

B(k1,k2,k3, η) ≡ ⟨δ(k1, η)δ(k2, η)δ(k3, η)⟩′

= D4(η)(2F2(k1,k2)PL(k1)PL(k2) + 2 perms).
(3.26)

3.2 Effective Field Theory of Large Scale Structure

Problems with SPT start to arise when we look at the so–called loop contributions. Those
are the nonlinear corrections that contain an integral over the moment. Let us for example
take a look at the P13(k) term

P13(k) = 3PL(k)

∫
p

F3(k,p,−p)PL(p). (3.27)

If we now let p → ∞ and use the fact that in this limit F3 → k2/p2, we will get the
following integral:

P13(k)
p→∞−→ PL(k)k

2

∫ ∞

0

p2dp
PL(p)

p2
. (3.28)

Here we are integrating over initial perturbations which are Gaussian with power spectrum
PL(p). From Eq. (3.28), it is evident that contributions from arbitrarily small scales are
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being included in our calculations. As p→ ∞, we probe progressively smaller scales, mov-
ing from the scale of galaxy clusters down to scales comparable to everyday objects. Since
Standard Perturbation Theory (SPT) becomes unreliable on such small scales, it becomes
necessary to regulate the scales considered in our analysis. Fortunately, the Effective Field
Theory of Large Scale Structure (EFTofLSS) provides a perturbative framework to address
this issue. The following section will focus on this approach, drawing primarily from Sec.
3 of [13], as well as from [17,31,32].

The central concept of EFTofLSS is the introduction of a cut-off scale, Λ, which rep-
resents the maximum wavenumber of the modes considered in the calculations. While the
exact value of Λ is arbitrary, its upper limit in EFTofLSS corresponds to the nonlinearity
scale–the scale at which perturbation theory breaks down. This nonlinearity scale can be
estimated by calculating the variance of density perturbations:

Σ2
Λ(a) =

1

2π2

∫ Λ

0

d ln q q3Plin(q, a) ≈
Λ3Plin(Λ, a)

2π2
. (3.29)

Notice we apply the cutoff to the linear density field. When Σ2
Λ ≪ 1, perturbations are

small, and PT theory holds. However, when Σ2
Λ ≳ 1, perturbations become large, and

non-linearities dominate. By setting Σ2
Λ ≈ 1, we can determine the nonlinearity scale. For

the present-day universe (a = 1), this scale is approximately ΛNL ≈ 0.25hMpc−1. As we
look further back in time, structures are less evolved, and the nonlinearity scale increases.

3.2.1 Equations of Motion in EFT

The starting point of EFTofLSS is to integrate out all the modes below Λ (short-wavelength
modes) which will leave us with the long-wavelet theory with all the modes above Λ.
This procedure is known as coarse graining. Integrating out small-scales in real space
corresponds to a convolution of fields with a window function WΛ

DΛ(x) =

∫
y

WΛ(|x− y|)D(x), (3.30)

which in Fourier space reduces to multiplication

DΛ(k) = WΛ(k)D(k). (3.31)

The window function is normalized such that WΛ(k = 0) =
∫
d3xWΛ(x) ≡ 1. We split all

the relevant physical quantities into long-wavelet modes and short-wavelength modes

D = Dl +Ds. (3.32)

In the simplest case when dealing with a single operator, Dl = DΛ and Ds is given by

Ds(k) = (1−WΛ(k))D(k). (3.33)
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We introduce the filtered density and momentum as

ρl =

∫
p

fl(x,p, η),

πl = ρlvl =
m

a3

∫
p

p

ma
fl(x,p, η).

(3.34)

Finally, to find the equations of motion in Effective Field Theory (EFT), we start again
from the set of equations in (3.18) and apply smoothing. This procedure leads us to the
following set:

δ̇l + θl = −δlθl − ul∇δl, (3.35a)

θ̇l +Hθl +∇2Ψl = −ul∇θl −∇(ul∇)ul −
1

ρ
∇τΛ,UV , (3.35b)

Notice the additional term τΛ,UV which captures the influence of small-wavelength fluctua-
tions on the large-wavelength modes. It arises because the smoothing of the fields and their
multiplication do not commute. In other words, a smoothed product of two fields is differ-
ent from the product of two smoothed fields. This difference occurs because the smoothed
product of the fields contains additional terms arising from the small–scale modes.

The full form of τ has been derived in the Appendix A of [17]

τ ijΛ,UV = ρuisu
j
s +

1

4πG

(
∂iΨs∂

jΨs −
1

2
δij∂kΨs∂

kΨs

)
. (3.36)

These small-scale perturbations are very large, making it impossible to describe their exact
behavior within perturbation theory. To still be able to make meaningful predictions about
their influence, we work with the expectation value of these modes on a long-wavelength
background. Since this way the result depends only on the large scale perturbations, which
are small, we can use Taylor expansion to write [31]

τ ijΛ,UV ≡ ⟨τ ijΛ,UV ⟩δl = ⟨τ ijΛ,UV ⟩δl=0 +
∂⟨τ ijΛ,UV ⟩
∂δl

+ · · · (3.37)

The result will be the stress tensor of an imperfect fluid. From the RHS of Eq. (3.35b) it
is clear that we need the divergence of τΛ,UV , which to linear order equals to

∇
( 1

ρΛ
∇τΛ,UV

)
= c̃2s,Λ∇2δΛ − 1

H
(
c̃2v,s,Λ + c̃2v,b,Λ

)
∇2θΛ +∆τϵ,m

=
[
c̃2s,Λ + f(η)(c̃2v,s,Λ + c̃2v,b,Λ)

]
∇2δΛ +∆τϵ,m,

(3.38)

where c2s,Λ represents the sound speed. The terms c2v,b,Λ and c2v,s,Λ correspond to the bulk
and shear viscosities, respectively. The coefficients c2s,Λ, c

2
v,b,Λ, and c

2
v,s,Λ are all sourced by

small-scale effects. The EFTofLSS cannot predict their values. Instead, these values need
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to be determined either from N-body simulations or from observations. The term ∆τϵ,m
represents the stochastic contribution, capturing the discrepancy between the expectation
values and the actual realizations. The stochastic contribution arises from integrating
out modes below Λ. Since this contribution is the result of the superposition of many
independent modes, the central limit theorem ensures that the stochastic field is Gaussian
to the leading order. Additionally, due to the local nature of tracer formation, its power
spectrum is constant at the leading order, with corrections scaling as k2.

3.2.2 EFT Power spectrum and renormalization

Once the divergence of the stress tensor has been found in (3.38), all the necessary compo-
nents are in place to solve the EFTofLSS equations from (3.35b). The process of solving
these equations follows a similar approach as in Standard Perturbation Theory (SPT).
Further details can be found in [31]. Here, we will simply present the solution for the
1-loop power spectrum.

PΛ
1−loop(k, η) = D2(η)PL(k) +D4(η)

[
2P 13

Λ (k) + P 22
Λ (k)

]
− 2c2s,Λ(η)D

2(η)k2PL(k) +D4(η)Pτϵ,mτϵ,m,Λ(k),
(3.39)

where we have defined c2s,Λ = c̃2s,Λ + f(η)(c̃2v,s,Λ + c̃2v,b,Λ). When introducing the cut-off scale
Λ, we emphasized that our results should not depend on it, as Λ is simply a tool used to
address issues in perturbation theory and carries no physical meaning. At first glance, the
1-loop power spectrum might seem problematic, as it includes terms that explicitly depend
on Λ. However, upon closer inspection, it becomes clear that all contributions involving Λ
cancel out.

Specifically, the Λ-dependent contributions in P 13
Λ exactly cancel out with those in c2s,Λ.

Similarly, the cut-off dependency in P 22
Λ cancels with the one in the stochastic contribution

Pτϵ,mτϵ,m,Λ, rendering P
Λ
1−loop free from any explicit dependence on Λ. A detailed derivation

of these cancellations can be found in [13].
This cancellation is not limited to the 1-loop power spectrum; it can be extended to any

n-point function of interest (for some examples see [8,20,131]). The theoretical framework
behind the removal of divergences is called renormalization. Renormalization is a procedure
that is not specific to EFTofLSS and it has been widely spread in quantum field theories
for decades (see for example [100,143]). For a deeper understanding of renormalization in
the context of EFTofLSS, one may refer to [1, 17,31].

3.3 Lagrangian Perturbation Theory

In the previous sections, we have discussed Standard Perturbation Theory (SPT), where
the perturbation variables were matter overdensity and bulk velocity, both expressed in
Eulerian space. An alternative approach to this method is Lagrangian Perturbation Theory
(LPT) [25–27,34,35,47,79,86,106,109,139], in which all perturbation variables are expressed



22 3. Structure Formation

in the frame of the fluid (Lagrangian space). One significant advantage of LPT is that
it converges faster and agrees better with the fully nonlinear density field compared to
SPT [133, 134]. Furthermore, as we will see in later chapters, implementing the general
bias expansion is much simpler in LPT than in the Eulerian case.

The LPT description tracks the fluid element displacement from its initial Lagrangian
position q to its final Eulerian position x using the displacement vector ψ(q, η):

x(η) = q+ψ(q, η). (3.40)

From Eq. (3.40), it is straightforward to find the Jacobian J of this coordinate transfor-
mation

J =

∣∣∣∣d3xd3q
∣∣∣∣ = det(Iij + ∂q,iψj). (3.41)

Mass conservation provides the change in matter density between the coordinates:

1 + δ(x) = 1/J . (3.42)

To find the perturbative solution in LPT we treat the components of the displacement
vector as small parameters, which allows us to write

ψ(q, η) =
∞∑
n=1

ψ(n)(q, τ). (3.43)

Furthermore, it is convenient to use the standard vector calculus result, which allows us
to separate the displacement field into its curl-free and divergence-free components:

ψ(q, τ) =
∇
∇2

σ − 1

∇2
∇× ξ, (3.44)

where σ ≡ ∇·ψ is the divergence of the displacement, while ξ = ∇×ψ is the displacement’s
curl. This separation is useful because it allows us to derive recursion relations for the
solutions of σ and ξ, and consequently for ψ, at any desired order in PT [80,106,150].

A recursive solution can be obtained for any expansion history, provided it begins from
an initial epoch of matter domination [47,109]. Such solutions keep only the fastest-growing
mode; however, in more general cosmologies, other modes may become significant and
cannot be neglected. If another component, such as radiation, dominates, perturbations in
that component must also be considered, rendering the original equation of motion invalid,
which is why the initial condition of matter domination is necessary. Nonetheless, by
employing the Einstein-de Sitter (EdS) approximation and neglecting the curl component,
the problem becomes significantly simpler. The price we pay for this approximation is
very low since the curl component only enters into consideration at the third order, and
the error introduced by using EdS instead of ΛCDM is below one percent [109].

To derive the equation that governs the evolution of the displacement vector, we begin
with the equation that describes the evolution of the cosmological fluid in the Newtonian
limit:

d2x

dη2
+Hdx

dη
= −∇Ψ, (3.45)
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where Ψ is the gravitational potential, and its evolution is governed by the Poisson equation

∇2Ψ =
3

2
H2Ωm(η)δ. (3.46)

If we take the divergence of Eq. (3.45) and combine it with the Poisson equation, we get

∇x

[
d2x

dη2
+Hdx

dη

]
=

3

2
ΩmH2(J −1 − 1), (3.47)

where we have used the Eq. (3.42) to connect the matter density and Jacobian. This
equation was first derived in [44].

To fully express the equation in terms of Lagrangian coordinates, we use the relation
∇x = J −1∇q, where J is the Jacobian. Additionally, to solve the equation perturbatively,
we need to expand the Jacobian

J = 1 + J (1) + J (2) + J (3) + . . . (3.48)

At first order, we have

J (1) =
∑
i

∂qi∇ψ
(1)
i = σ(1). (3.49)

This leads us to the following differential equation for σ(1)(
d2

dη2
+H d

dη
− 3

2
ΩmH2

)
σ(1) = 0. (3.50)

Here we recognize the linear equation that we have already encountered in Eq. (3.11). As
in the previous case, we will keep only the growth mode and disregard the decaying one.
From Eq. (3.42) and Eq. (3.12), we find

ψ(1)(k, η) = i
k

k2
δL(k)D(η). (3.51)

This solution is known as Zel’dovich approximation [149]. Despite its simplicity, the
Zel’dovich approximation provides accurate predictions for the early nonlinear stages of
gravitational collapse and compares quite well with respect to the full N-body solution
[24,144].

To proceed to higher orders, we exploit the fact that in the EdS approximation higher
orders of the growth factor are simply powers of a so derivatives of ψ are given by

d2ψ(n)

da2
=
n(n− 1)

a2
ψn,

dψ(n)

da
=
n

a
ψn. (3.52)

This brings us to the n-th order equation

J (I+ ∂qψ)
−1
[
n2 +

n

2

]
H2ψ

(n)
i,j =

3

2
H2(J − 1). (3.53)



24 3. Structure Formation

To solve this equation at the desired order, one would have to proceed in the similar manner
as we did for the first order by expanding both J and ψ to the desired order and then
integrating to find the solution. We will not be giving more details here, but interested
reader may refer to Appendix A of [109] to find the recursion formula for all orders of σ
and ξ for all order solutions in EdS approximation.

Once we have found the displacement at the desired order, we can easily find the final
overdensity

δ(k) =

∫
x

e−ik·xδ(x) =

∫
q

e−ik·q
(
e−ik·ψ(q) − 1

)
. (3.54)

Expanding this equation, we can see that SPT and LPT are equivalent order by order in
the region of validity of both theories [24].

Finally, let us note that although LPT is not limited by the condition of small over-
density, it still has a point where it breaks down. LPT primarily fails at the point of
shell crossing. This occurs when different layers or shells of matter, initially described by
smooth trajectories, start to overlap due to gravitational collapse. Additionally, LPT suf-
fers from treating nonlinear scales as perturbative. Similarly to SPT, these limitations can
be addressed using techniques from effective field theory, where we solve the equations that
depend only on the smoothed fields. This approach introduces counterterms that represent
the effects of small-scale physics not described by the smoothed theory and absorb all the
cut-off dependent terms of the theory. For more details on EFTofLSS techniques for LPT,
refer for example to [104,138,139,148].



Chapter 4

From evolved matter to biased
tracers

In the previous chapter, we discussed the evolution of the matter density field from the
initial conditions set by inflation to the late-time matter distribution. However, the matter
density field itself is not directly observable. Instead, we observe the positions of so-called
biased tracers of the matter density field, such as halos, galaxies, and galaxy clusters. By
measuring their number density in different regions of the universe and comparing it to
their average density, we can determine the tracer overdensity:

δg(x, η) ≡
ng(x, η)

n̄g(η)
− 1. (4.1)

Here, ng(x, η) denotes the comoving rest-frame tracer density, and n̄g(η) is its position-
independent mean.

The key question we aim to answer in this section is how to connect the tracer density
to the matter density. On very large scales, we can use a linear approximation [66]:

δg(x, η) ≈ b1δ(x, η), (4.2)

where b1 is an unknown coefficient referred to as the bias. However, this linear approx-
imation breaks down at smaller scales, where non-linearities must be accounted for. To
describe this non-linear relationship, we will rely on the EFTofLSS. Details of this the-
ory can be found in various sources. This chapter draws mainly from the following key
references: [42,82,101,118].

4.1 General Bias Expansion

The simplest way we can approach the bias problem is to assume that δg(x, η) is a local
function of δ(x, η). We can formally write this connection as a Taylor expansion

δg(x, η) =
∞∑
n=1

bn(η)

n!
[δΛ(x, η)]

n , (4.3)
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where bn(η) are the bias coefficients and δΛ is the matter density field smoothed on a scale Λ.
The smoothing is applied to ensure that only contributions from scales under perturbative
control are considered. The role of the bias coefficients is to encapsulate our ignorance
of small scales, as we cannot predict their values but must measure them from N-body
simulations or observations. This kind of bias expansion is called local-in-matter-density
bias expansion. However, it is incomplete, since δg may depend on δ in more complex
ways than a straightforward power expansion. One such example would be tidal field Kij,
defined as:

Kij(x, η) ≡
(∂i∂j
∇2

− 1

3
δij

)
δ(x, η). (4.4)

Furthermore, the dark matter fluid has been described in terms of both the density field
δ and the velocity field ui, making it possible for δg to also depend on scalars constructed
from ui. Therefore, we will introduce a more general expansion for the tracer density field
in terms of operators O, which are called bias operators :

δg(x, η) =
∑
O

bO(η)O(x, η). (4.5)

This expansion makes no assumptions about the underlying physics of tracer formation;
instead, all information about small-scale effects is captured in the bias coefficients. The
choice of operators {O} to include in the expansion is determined by the symmetries of
the problem. Tracer formation occurs over very long time scales [83] and in very small
spatial regions [39], on the order of a few Mpc. The scale of the region involved in tracer
formation is characterized by the comoving length scale R∗, known as the non-locality scale.
We will assume that we are working with scales much larger than R∗, which allows us to
approximate the bias relation as local in space. According to the equivalence principle, the
leading observable is the second derivative of the Newtonian potential, ∂i∂jΦ. Therefore,
all bias operators {O} must be constructed using the Newtonian potential and at least two
derivatives. Additionally, the trace part of this tensor can be related to δ through the Pois-
son equation, while the traceless part is represented by the tidal tensor Kij. Another local
observable we can use to construct the bias operators is the derivative of ui. Furthermore,
we will assume that there is no velocity bias, meaning that the tracer velocity is equal to
the matter velocity ug = u. This is guaranteed by the equivalence principle for velocities
induced by gravity; only baryonic pressure forces can produce a velocity bias.

We have already mentioned that the formation of halos is not local in time as it happens
over a large fraction of the age of the Universe. This means that δg does not depend only
on η, instead it needs to be integrated over the entire past geodesic of the fluid [118]. For
a case in which a single bias operator is involved, this implies

δg(x, η) ⊃
∫ η

ηin

dη′fO(η
′, η)O(x(η′), η′), (4.6)

where x(η′) are positions of the fluid element for η′ < η and x = x(η). We can further use
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the Taylor expansion in time of the operator O

O(x(η′), η′) =
∞∑
n=0

1

n!
(η − η′)

Dn

Dηn
O(x(η), η), (4.7)

where D/Dη is the convective derivative along the fluid flow, defined as

D

Dη
≡ ∂

∂η
+ u · ∇. (4.8)

This step allowed us to remove all the dependence on η′ from the operators O and move it
into coefficients instead

δg(x, η) ⊃
∑
n

(∫ η

ηin

dη′fO(η
′, η)

1

n!
(η − η′)

) Dn

Dηn
O(x(η), η). (4.9)

However, we see that to account for the time non-locality, we also need to include the time
derivatives along the fluid flow.

Therefore, the operators in Eq. (4.5) can be constructed using combinations of ∂i∂jΦ,
and their time derivatives. At each order of the expansion, we obtain a finite set of
independent operators O. These sets are referred to as the basis of the bias expansion, and
their selection is not unique. In the following sections, we will employ the basis constructed
from operators in the Lagrangian frame (Lagrangian bias) as well as the basis constructed
using operators at the time of observation (Eulerian bias). In the sections below, we will
discuss each of these two sets of bases in more detail.

4.2 Lagrangian Bias Expansion

In the Lagrangian frame, the basis can be conveniently constructed using the Lagrangian
deformation tensor, defined as:

Mij(q, η) ≡ ∂q,iψj(q, η). (4.10)

The components of Mij can be treated as small perturbative parameters, allowing for an
expansion as:

Mij(q, η) =
∑
n

M
(n)
ij (q, η). (4.11)

These components can be determined iteratively using a recursion relation. The starting
point for this relation is given by [109]:

M
(1)
ij (q, η) =

∂q,i∂q,j
∇2

q

δ(1)(q, η), (4.12)

where δ(1)(q, η) represents the first-order density perturbation.
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In the following, we omit the time argument for clarity. It is easy to show that we can
express all local observables in terms of Mij [82, 150]. For example, if we want to express
∂ui(x)/∂xj in terms of Mij(q), we would start from the relation

ui(x) =
dsi(q)

dη
≡ ṡi(q). (4.13)

If we take derivative ∂j of this relation, we get

∂ui(x)

∂xj
=
∂qk
∂xj

∂ṡi(q)

∂qk
(4.14)

Using the relation
∂qk
∂xj

= ϵkmnϵjpl
1

2J
∂xp
∂qn

∂xl
∂qm

, (4.15)

and exploiting the fact that ∂xl

∂qm
= δlm+Mlm(q), we find that ∂jui(k) can fully be expressed

in terms of Mij(q) and its time derivative:

∂ui(x)

∂xj
=
ϵkmnϵjpl
2J [δpn +Mpn(q)] [δlm +Mlm(q)] Ṁik(q). (4.16)

A similar procedure can be applied to other local observables. Therefore, it makes sense to
choose M as the building block of the bias basis. Furthermore, since the bias basis needs
to be built out of scalars, we will work with with trace of powers of M . In that case, we
can write the galaxy density as

δLg =
∑
OL

bO(η)OL(q, η), (4.17)

where operators OL are Lagrangian operators built out of different combinations of trM
and its covariant derivative D/Dη (trM). In Lagrangian space, this simplifies a bit since
convective derivatives reduce to partial derivatives d/dη.

To build a better intuition about these operators, let us take a closer look at one of
the, for example OL = trM2.

trM2(q, η) = tr [M(q, η)M(q, η)] (4.18a)

= tr
[
(M (1)(q, η) +M (2)(q, η) + . . . )(M (1)(q, η) +M (2)(q, η) + . . . )

]
(4.18b)

= tr
[
M (1)(q, η)M (1)(q, η)

]
+ 2tr

[
M (1)(q, η)M (2)(q, η)

]
+ . . . , (4.18c)

where to get from the first to the second line, we used the expansion for M defined in Eq.
(4.11). We can simplify things further by using the fact that M(q, η) can be written as:

M(q, η) =
∞∑
n=0

Dn(η)M (n)(q). (4.19)
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Here D(η) is the linear growth factor normalized to some η0. Operator M (n) represents
the n-th order contribution to M(x, η) evaluated at some reference time η0. We have also
used the EdS approximation in assuming that n-the order of the growth factor is given as
powers of the linear growth factor. By employing Eq. (4.19), we can express trM2(q, η)
as:

trM2(q, η) = D2(η)tr
[
M (1)(q)M (1)(q)

]
+ 2D3(η)tr

[
M (1)(q)M (2)(q)

]
+ . . . (4.20)

Thus, the operator trM2 contains terms that are second order in perturbation and higher.
A similar result can be derived for other bias operators, allowing us to generally express:

OL(q, η) =
∞∑
n=0

DdO+n(η)O
(dO+n)
L (q). (4.21)

We have constructed this in such way that dO is the perturbative order of the leading
contribution to OL.

From Eq. (4.21) it is evident that the time derivative of any operator OL is a linear
combination of the operators Om

L with m ⩽ n. Therefore, in constructing the Lagrangian
basis, we need to count all the distinct scalars that can be formed using Tr(M). This task
is simplified by the fact that any terms involving Tr(M (n)) for n > 1 can be expressed in
terms of lower-order operators. Additionally, only the symmetric part of the displacement
field derivative needs to be considered, as the anti-symmetric part can be expressed through
the symmetric component [80,150].

The Lagrangian bias basis up to the 4th order is [42]:

1st tr[M (1)]

2nd tr[(M (1))2], (tr[M (1)])2

3rd tr[(M (1))3], (tr[(M (1))2]tr[M (1)]), (tr[M (1)])3, tr[M (1)M (2)]

4th tr[(M (1))4], (tr[(M (1))2])2, (tr[(M (1))3]tr[M (1)]), (tr[(M1))2]tr[(M (1))2]),

tr[M (1)]tr[M (2)], tr[M (1)M (3)], tr[M (2)M (2)].
(4.22)

The operators listed here are derived using the EdS (Einstein-de Sitter) approximation.
As shown in Appendix B.6 of [42], deviations from ΛCDM operators only begin to appear
at fourth order. Since our calculations are limited to operators up to third order, the EdS
approximation is sufficient for our purposes. However, an interested reader can find a more
general list of operators and their derivation in [109].
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4.3 Eulerian Bias Expansion

Eulerian basis for bias expansion is constructed using operators at the observation time.
As the main building block of the Eulerian basis, we introduce the tensor

Π
[1]
ij (x, η) =

2

3Ωm(η)H2(η)
∂i∂jΦ(x, η), (4.23)

which can be used to find all the basis elements [42,61,74]. It is easy to see that Π
[1]
ij = δ(1).

The procedure is now similar to the Lagrangian case, one needs to find all the independent
scalar that can be constructed from Π

[1]
ij . Higher order terms can be constructed using the

recursion relation

Π
[n]
ij =

1

(n− 1)!

[
(Hf)−1 D

Dη
Π

[n−1]
ij − (n− 1)Π

[n−1]
ij

]
. (4.24)

Π
[n]
ij contains perturbative terms of order n and higher. Using Eq. (4.9), we demonstrated

that to address the lack of time locality, it is necessary to include both the bias operators
and their convective derivatives to construct a complete basis for bias expansion. The
basis formed using Π

[n]
ij is complete because, at n-th order in perturbation theory, Π

[1]
ij

depends on time through only n quantities: D(η), D2(η), . . . , Dn(η). Consequently, any
higher-order convective time derivative Dm/Dηm with m > n can be expressed in terms
of lower-order derivatives, starting from the first to the n–th derivative, when neglecting
terms of higher than n-th order in perturbation theory. This result is analogous to what
we observed with Lagrangian operators, although in the Lagrangian frame, the convective
derivatives simplify to ordinary time derivatives, making the situation more intuitive.

Using all the combination of these tensors, we find the Eulerian basis up to the third
order

1st tr
[
Π(1)

]
2nd tr

[(
Π(1)

)2]
,
(
tr
[
Π(1)

])2
3rd tr

[(
Π(1)

)3]
, tr

[(
Π(1)

)2]
tr
[
Π(1)

]
,
(
tr
[
Π(1)

])3
, tr

[
Π(1)Π(2)

] (4.25)

We listed bias operators only up to the third order; however, we can continue using the
recursion relation to find higher–order operators.

Although this basis is complete, it does not offer an intuitive physical interpretation of
the bias terms. Luckily, we can connect this to a basis that is constructed from matter
density field δ and tidal field. To complete this basis, at the third order, we need to
introduce an additional operator

O
(3)
td ≡ 8

21
K

(1)
ij D

ij

[(
δ(1)

)2 − 3

2

(
K(1)

)2]
. (4.26)
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We define the relationship between two basis to be [82]

Kij(x, η) ≡ Π
[1]
ij − 1

3
δijTr(Π

[1]),

O
(3)
td ≡ 21

10
Kij

(
Π

[2]
ij − Π

[1]
ikΠ

[1]
jk

)
,

(4.27)

where we have used the shorthand notation Kn = tr(Kn). After careful calculations, one
can find the following expression for the tracer density field up to the third order

δg(x, η) = b1(η)δ(x, η)

+
1

2
b2(η)δ

2(x, η) +
1

2
bK2(η)K2(x, η)

+
1

6
b3(η)δ

3(x, η) +
1

6
bK3(η)K3(x, η) +

1

6
bδK2δK2 +

1

6
bΓ3(η)Γ3(x, η).

(4.28)

4.4 Higher-derivative bias

So far we have assumed the formation of tracers to be perfectly local in space. However,
we are well aware that this is just an approximation since the matter that forms the tracer
will come from a finite area of space. To account for this non-locality, we need to replace
the operators {O(x, η)} with functionals [36,78]. If we take O = δ, expression in the terms
of functional will be

bδ(η)δ(x, η) →
∫
d3y Fδ(y, η)δ(x+ y, η), (4.29)

where Fδ(y, η) is a time dependent kernel. Since the Universe is homogeneous, we know
that Fδ(y, η) can not depend on x. We can further Taylor expand δ(x+ y, η) around x

bδ(η)δ(x, η) →
[∫

d3y Fδ(y, η)

]
δ(x, η) +

[
1

6

∫
d3y |y|2Fδ(y, η)

]
∇2

xδ(x, η) + · · ·

= bδ(η)δ(x, η) + b∇2δ(η)∇2
xδ(x, η) + · · · .

(4.30)

To derive this expression, we have used the assumption of isotropy, which ensures that no
preferred directions exist with which the derivative operators could be contracted. Conse-
quently, the leading higher-derivative operator that accounts for the non-locality of halo
formation is ∇2

xδ. The coefficients of higher-derivative operators are related to the spatial
scale R∗, which quantifies the size of the region involved in the halo formation process.
On large scales, their contribution to δh,det is suppressed by powers of k2R2

∗. Since ∇2
xδ is

a local observable, it should also be included in the general bias expansion given by Eq.
(4.5).
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4.5 Renormalized galaxy bias

In Sec. 3.2.2, we discussed how renormalization is applied to handle both the large and
nonphysical (i.e., Λ-dependent) contributions to the matter density field, δ. A similar
approach is required for the tracer density. The bias expansion, used to express the tracer
density δg in terms of local observables, includes composite operators (products of fields
evaluated at the same point), such as δ2. These types of operators can introduce additional
divergences that cannot be removed through the renormalization of dark matter alone. To
better understand this issue, consider the expression for δ

(2)
g , which is given by

δ(2)g = bδδ
(2) + bδ2(δ

(1))2. (4.31)

Taking the expectation value, we find:

⟨δ(2)g ⟩ = bδ⟨δ(2)⟩+ bδ2⟨(δ(1))2⟩

= bδ2⟨δ2⟩ ∝
∫ Λ

0

dq q2P (q) ≡ σ2(Λ),
(4.32)

where we used that ⟨δ(2)⟩ = 0. Here we are met with two issues; not only is ⟨δ(2)g ⟩ different
from zero, but it also clearly has a Λ dependence. These issues are not limited to ⟨δ(2)g ⟩
alone; similar problems arise when moving to higher orders in perturbation theory. To
resolve these issues, we employ renormalization theory.

There are several approaches one can adopt for renormalization. The most widely used
method for galaxy bias renormalization involves the introduction of local counterterms,
whose primary role is to eliminate nonphysical contributions [9, 98]. Composite opera-
tors constructed from δn(x, η), as shown in [9], can be made finite through the use of
renormalized operators, which are defined as:

[δn](x, η) ≡ δn(x, η) +
∑
Õ

Z
(δn)

Õ Õ(x, η) ≪ 1, (4.33)

where Õ(x, η) are counterterms introduced to cancel UV divergences, and ZÕ are their
associated coefficients. These counterterms, Õ(x, η), are typically constructed from any
operators that respect the symmetries of the dark matter equations of motion. These
counterterms are precisely the set of operators in the general bias expansion; hence we say
that this bias expansion is closed under renormalization.

Returning to the example of δ
(2)
h , we derive the following expression

[δ2](x, η) ≡ δ2(x, η)− σ2(Λ), (4.34)

where σ2(Λ) accounts for the contribution from small-scale fluctuations. With this renor-

malized operator [δ2], it becomes evident that in the expectation value ⟨δ(2)g ⟩, the depen-
dence on Λ is eliminated, and the result is indeed zero.
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In general, once renormalization has been properly carried out, i.e. when all relevant
counterterms have been included, the result is a bias expansion in terms of renormalized
bias operators:

δg(x, η) =
∑
O

b
[R]
O (η)O(x, η), (4.35)

where the coefficients b
[R]
O are renormalized bias coefficients that no longer depend on the

cutoff scale Λ.
An alternative approach, based on the usage of renormalization-group, has been pre-

sented first for matter in [33] and recently for biased tracers in [107]. The renormalization
group technique was introduced by Wilson [146] and Polchinski [103]. In this case, one
starts from the partition function for biased tracers which was introduced in [29]. By inte-
grating out small–scale modes, one can find RG equations that govern the running of the
the bias coefficients. This method has recently been expanded to account for stochasticity
in [108] and non-Gaussian initial conditions in [91].

In this section we only briefly outlined why normalization of bias parameters is necessary
and in which ways it can be performed. Details of this procedure are much more complex
and beyond the scope of this thesis. A reader interested in learning more about the topic
can consult one of the references listed in the paragraph above.
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Chapter 5

Baryon Acoustic Oscillations

Baryon acoustic oscillations (BAO) are an oscillatory feature in the matter power spec-
trum [49]. The same feature is visible in the correlation function as a bump located at
the characteristic BAO scale rs. The origin of the BAO can be found in the early Uni-
verse era when photons and baryons were tightly coupled by Compton scattering, forming
the baryon-photon fluid. During this era, the gravitational force acting on the baryon
perturbations was balanced by the radiation pressure resulting in acoustic oscillations of
the baryon-photon fluid [49]. As the Universe expands and cools down, photons decouple.
Traces of these sound waves remain visible as the acoustic oscillations in the CMB tem-
perature anisotropies with the characteristic scale of the sound horizon at decoupling, rs.
Essentially the same scale is imprinted as the acoustic density perturbations in the baryon
distribution. Since baryons are coupled to dark matter gravitationally, and both jointly
evolve under gravitational evolution after decoupling, the imprint of these early-time os-
cillations is visible at fixed comoving scale in the late-time clustering of matter. Given
that the size of the sound horizon at decoupling has been well measured through CMB
experiments, determining its apparent size in the late-time matter distribution allows us to
estimate the angular-diameter distance and the Hubble parameter as a function of redshift.

In the first section of this chapter, we will focus on understanding the physics of BAO.
We will begin with linear theory and then introduce the effects of non-linear evolution. In
the second section, we will present and discuss the BAO reconstruction algorithm. Finally,
in the last section, we will demonstrate how the BAO scale can be used as a standard ruler.
This chapter is based on a large number of references, the main ones are Chapter 9 and
Chapter 11 in [45] together with [16,48,95].

5.1 Physics of Baryon Acoustic Oscillations

The goal of this section is to derive the equation that describes the evolution of the baryon-
photon fluid, particularly during the period before and around decoupling. Before we pro-
ceed to the main analysis, it is important to cover some relevant background information.



36 5. Baryon Acoustic Oscillations

5.1.1 Boltzmann equation for Photons

Photons are relativistic particles, and as such, the Boltzmann equation they obey differs
from the one applied to non-relativistic matter, as shown in Eq. 3.2. Furthermore, in the
early Universe, the Boltzmann equation for photons cannot ignore collisions, as photons
interact with baryons through Compton scattering:

e−(p1) + γ(q1) ↔ e−(p2) + γ(q2). (5.1)

Consequently, the photon distribution function, fγ, satisfies the following form of the Boltz-
mann equation:

dfγ
dt

= C[fγ], (5.2)

where C[fγ] is a collision term. By expanding the total derivative and using geodesic
equation, one can show that the left hand side of this equation equals to

dfγ
dt

=
∂fγ
∂t

+
p̂i

a

∂fγ
∂xi

− p
∂fγ
∂p

[
H + Φ̇ +

p̂i

a

∂Ψ

∂xi

]
. (5.3)

In a homogeneous Universe, the photon distribution function follows a Bose-Einstein dis-
tribution, with the photon temperature T depending solely on time. However, the actual
Universe deviates from perfect homogeneity. To account for these deviations, we introduce
perturbations to the distribution function, described by a fractional temperature pertur-
bation Θ(x, p̂, t), which modifies the photon distribution as follows:

fγ(x, p, p̂, t) =

[
exp

{
p

T (t)[1 + Θ(x, p̂, t)]

}
− 1

]−1

. (5.4)

Fractional temperature Θ(x, p̂, t) reflects the fact that the temperature also depends on
the photon’s position x and its direction of motion p̂. Using the fact that the perturbation
Θ is small, we can expand fγ to first order in Θ:

fγ(x, p, p̂, t) ≈ f (0)
γ (p, t)− p

∂f
(0)
γ (p, t)

∂p
Θ(x, p̂, t), (5.5)

where f (0) is a Bose–Einstein distribution with zero chemical potential. Inserting this
expansion back into Boltzmann equation 5.3 leads to:

• 0th order
dfγ
dt

=
∂f (0)

∂t
−Hp

∂f (0)

∂p
= 0 (5.6)

• 1st order
dfγ
dt

= −p∂f
(0)

∂p

[
Θ′ +

p̂i

a

∂Θ

∂xi
+ Φ′ +

p̂i

a

∂Ψ

∂xi

]
, (5.7)
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where we have used prime to represent the derivative with respect to t. Total derivative
at the 0th order is set to zero. Therefore, all the collision terms will be proportional to Θ
and all other perturbations to homogeneous Universe.

Before we give the Boltzmann equation for photons which accounts for the Compton
scattering, let us stress it is often more convenient to work in terms of the multipole
moments of Θ rather than Θ itself. These moments are defined as

Θl(k, t) ≡
1

(−i)l
∫ 1

−1

dµ

2
Pl(µ)Θ(µ, k, t), (5.8)

where µ is the cosine of the angle closed by the wavenumber k and the photon direction p̂:

µ ≡ k · p̂
p

. (5.9)

With Pl we denote the Legendre polynomial of order l. We will mostly be interested in the
monopole (l = 0) and the dipole (l = 1), as higher-order multipoles capture information
about the small-scale anisotropies of radiation. Describing photon perturbations in terms
of the hierarchy of moments Θl is completely equivalent to using Θ.

Now we are ready to discuss the Boltzmann equation for photons with Compton scat-
tering, which is given by:

Θ′ + p̂i
∂Θ

∂xi
+ Φ′ + p̂i

∂Ψ

∂xi
= neσT [Θ0 −Θ+ p̂ · ub] , (5.10)

where ne is number density of free electrons, σT is Compton scattering cross section and
ub is baryon velocity. Notice that we have switched from derivatives with respect to t
to derivatives with respect to η, which we denote with a dot. The first two terms in this
equation on their own would exist in the collisionless case and they describe the derivatives
along light rays in homogeneous Universe. The second two terms on the left side describe
the effects gravitational perturbations have on the photon. Finally, the right hand side
describes interaction with baryons. It will be more convenient to have this equation in
Fourier space:

Θ̇ + ikµΘ+ Φ̇ + ikµΨ = −τ̇ [Θ0 −Θ+ µub] (5.11)

Here we have introduced the optical depth

τ(η) ≡
∫ η0

η

dη′neσTa. (5.12)

Optical depth measures the transparency of the Universe to photons, indicating the likeli-
hood that a photon will be scattered by an electron. In the early Universe, the number of
free electrons is high, so the chances of a photon being scattered are also high, correspond-
ing to τ ≫ 1. We refer to this as strong coupling condition. Conversely, at later times, the
number of free electrons is small so τ ≪ 1. Note that τ is defined such that

τ̇ =
dτ

dη
= −neσTa. (5.13)
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5.1.2 Boltzmann Equation For Baryons

The word baryons has wider meaning in cosmology than it does in particle physics. In
particle physics, baryons are subatomic particles made from three quarks, such as protons
and neutrons. However, in cosmology, baryons refer to all forms of ordinary matter made
up of protons and neutrons. This includes atomic nuclei (protons and neutrons bound
together) as well as their associated electrons, even though electrons are not technically
baryons in the particle physics sense. Results listed here can be applied to all the baryons.
Electrons and protons are coupled together trough Coulomb scattering.

e−(p1) + p(q1) ↔ e−(p2) + p(q2). (5.14)

This scattering ensures that:

ρe− − ρ̄e−

ρe−
=
ρp − ρ̄p
ρp

≡ δb. (5.15)

Similarly, their velocities are also the same

ue− = up ≡ ub. (5.16)

Since baryons are non-relativistic, similar to dark matter, the total derivative of their
distribution function follows the same form as in Eq. (3.2):

∂fb
∂t

+
∂fb
∂xi

pi

mba
− ∂fb
∂pi

(
Hpi +

mb

a

∂Ψ

∂xi

)
= 0, (5.17)

where fb represents the baryon distribution function and mb is the baryon mass.
However, due to interactions such as Compton scattering with photons and Coulomb

scattering among baryons, the total derivative is no longer zero. These scattering processes
conserve the number of baryons, and any other processes that could alter the baryon
number are negligible during this epoch. By taking the zeroth moment of the Boltzmann
equation, we obtain the continuity equation for baryons:

δ̇b + ikub + 3Φ̇ = 0, (5.18)

To find the Euler equation for baryons, we need to take the first moment of Eq. (5.17)
for each baryon and add them together. Since the proton mass is much larger than the
electron ones, it will dominate this equation and we will arrive to

mp

∂
(
nbu

j
b

)
∂t

+ 4Hmpnbu
j
b +

mpnb

a

∂Ψ

∂xj
= Cj(x, t), (5.19)

where C is the collision term. While the number of baryons is conserved during Compton
scattering, momentum is transferred between the particles and C is the force term that
accounts for this. Since the overall momentum is conserved, C needs to have the same
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magnitude and the opposite sign from the force term in Boltzmann equation for photons.
By taking the first moment of the Boltzmann equation for photons (5.3) and applying some
algebra, we arrive to the Euler equation for baryons:

u̇b +Hub + ikΨ =
τ̇

R
[3iΘ1 + ub] , (5.20)

where we have introduced R to be the ratio of photon and baryon density:

1

R(η)
≡ 4ργ

3ρb
. (5.21)

5.1.3 Linear Theory of BAO

Acoustic Oscillations Equation

Before decoupling photons and baryons are tightly coupled together into baryon-photon
fluid. To derive the equation describing this fluid, we will start with the Boltzmann equa-
tion for photons (5.3). By multiplying this equation with P0(η)/2 and integrating over µ,
we find the zeroth moment of this equation to be

Θ̇0 + kΘ1 = −Φ̇. (5.22)

Similarly, by multiplying the Eq. (5.3) with P1(η)/2 and integrating over µ, we arrive to
the first moment of the equation

Θ̇1 −
kΘ0

3
=
kΨ

3
+ τ̇

[
Θ1 −

iub
3

]
, (5.23)

where ub is baryon velocity described with Eq. (5.20). To eliminate the velocity from the
equation, we can rewrite it as

ub = −3iΘ1 +
R

τ̇
[u̇b +Hub + ikΨ] . (5.24)

The second term in this equation is going to be suppressed. Reason for this is that we
have terms proportional to 1/τ and k/τ with τ ≫ 1. Therefore, at the leading order
ub = −3iΘ1. To find ub at the next order, we simply insert the leading order solution back
into Eq. (5.24):

ub = −3iΘ1 +
R

τ̇

[
−3iΘ̇1 − 3iHΘ1 + ikΨ

]
. (5.25)

Inserting Eq. (5.25) into Eq. (5.23) lead us to

Θ̇1 +HΘ1 −
1

3

k

1 +R
Θ0 =

kΨ

3
(5.26)
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To eliminate Θ1, we substitute its expression from Eq. (5.22), which relates Θ1 to Θ̇0 and
Φ̇0. Similarly, to eliminate Φ̇1, we differentiate Eq. (5.22) with respect to η. This finally
leads to the equation describing the photon evolution during the strong coupling era:

Θ̈0 +H R

1 +R
Θ̇0 + k2c2sΘ0 = F (k, η), (5.27)

where we have defined

F (k, η) ≡ −k
2

3
Ψ−H R

1 +R
Φ̇− Φ̈. (5.28)

We have also defined the sound speed of the combined baryonphoton fluid as

cs(η) ≡
√

1

3[1 +R(η)]
. (5.29)

Equation (5.26) corresponds to a differential equation that describes the behavior of a
forced harmonic oscillator. In this analogy, F (k, η) serves as the external driving force
that influences the evolution of temperature perturbations Θ0. This term encapsulates
the combined effects of gravitational potential fluctuations and other perturbative forces
acting on the photon-baryon fluid. Gravity drives oscillations, similar to a force applied
to a mass-spring system. Additionally, the frequency and speed of these oscillations are
governed by the sound speed cs, which depends on the relative densities of photons and
baryons. As the number of baryons increases relative to photons, the increased mass of the
baryons adds inertia to the system, providing greater resistance to motion. This increased
resistance slows the oscillations. Thus, the presence of more baryons effectively damps the
oscillatory behavior, reducing both the frequency and speed of the oscillations. Finally,
the term H R

1+R
Θ̇0 corresponds to a drag term, and it is a consequence of the expansion of

the Universe.
For comparison, we could also express the same dynamics in terms of baryon density,

as shown in [46,77,99]:

d

dη
[(1 +R)δ] +

k2

3
δ = −k2(1 +R)Φ− d

dη
[3(1 +R)Ψ] . (5.30)

This equation also describes a forced harmonic oscillator, demonstrating consistency be-
tween perturbations in baryons and photons. The growth of the amplitude of baryon
perturbations is constrained by their interactions with photons. Instead of exhibiting
unbounded growth, these perturbations undergo harmonic motion, with the amplitude de-
caying as (1 + R)−1/4 [56, 57]. This decay depends on the photon density. As the baryon
density increases, the damping effect becomes more and more pronounced.

This oscillatory motion will continue until photons and baryons decouple. This happens
when τ(η) reaches a value close to one. After this, photons and baryons go their separate
ways and oscillations in baryons remain frozen-in. Expanding the Eq. (5.30) to higher
order in k/τ̇ , reveals that photon-baryon diffusion causes an exponential damping of these



5.1 Physics of Baryon Acoustic Oscillations 41

perturbations, a phenomenon known as Silk damping [126]. This suppression becomes
significant at small scales, with the characteristic damping scale approximately given by
the geometric mean of the horizon size and the photon mean free path at the time of
decoupling. The same result can be obtained by considering photon perturbations. For a
comprehensive derivation of this result from the perspective of photon perturbations, see
Sec. 9.4 in [45].

Physical picture of fluid evolution

To gain a clearer understanding of this phenomenon, let us examine the evolution of an
initial point-like overdensity within the fluid. Gravity tries to intensify this overdensity,
causing photons to be drawn closer together. As the density increases, the temperature and
pressure of the photons rise correspondingly. This rising pressure initiates the propagation
of a spherical sound wave through the baryon-photon plasma, aiming to reach equilibrium.
The sound wave travels at the speed of sound cs, and the dynamic interplay between
gravitational compression and pressure-driven expansion continues until decoupling. At
decoupling, the photons and baryons are no longer tightly coupled, and the oscillations stop.
Photons then begin to free-stream, eventually forming what we observe today as CMB.
Baryons are left with a higher density organized into a spherical shell at a specific radius
from the initial overdensity. After decoupling, baryons primarily interact gravitationally
with dark matter. This interaction draws dark matter particles toward the same radius as
the overdense shell of baryons. As a result, the probability of galaxy formation increases
in these regions, giving rise to the large-scale structure of the Universe that we observe
today. This characteristic radius, where the probability of galaxy formation is enhanced,
is commonly referred to as the Baryon Acoustic Oscillation (BAO) scale. It corresponds
to the distance the sound wave traveled by the time of decoupling:

rs =

∫ ∞

zrec

csdz

H(z)
=

1√
ΩmH2

0

2c√
3zeqReq

ln

[√
1 +Rrec +

√
Rrec +Req

1 +
√
Req

]
, (5.31)

where Rrec is the baryon photon ratio at the time of decoupling and Req is their ratio at
the time of matter and radiation equality. The value of BAO scale is around 150Mpc1.
The BAO scale manifests as a characteristic feature in the matter correlation function. If a
galaxy had formed at the center of the initial perturbation, a distinct bump would appear
in the correlation function at the distance rs. The same feature is visible in the power
spectrum as a series of wiggles.

This process is well-illustrated in the famous Figure 5.1, originally published in [51],
which also provides a more rigorous analysis of overdensity evolution.

1Note the different unit convention used here compared to the rest of the thesis: we use Mpc instead
of h−1Mpc
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Figure 5.1: Evolution of the radial mass profile of a point-like overdensity initially posi-
tioned at r = 0. Dark matter perturbations are shown in black, baryon perturbations in
blue, photon perturbations in red, and neutrino perturbations in green. Time progresses
from higher redshift at the top to lower redshift at the bottom, and redshift also decreases
from left to right. In the top-left panel, we observe that photon and baryon perturbations
evolve together. In the top-right panel, we see that this evolution causes the cold dark
matter to respond due to its gravitational interaction with the photon-baryon fluid. As
recombination approaches, photons begin to decouple and leak away (middle-left panel),
eventually leaving the baryon perturbations behind at the characteristic scale rs. In the
bottom panels, gravity takes over, pulling both baryons and dark matter into the overdense
regions r = 0 and r = rs. This image was first published by Eisentein et al. in [51].
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5.1.4 Non-linear Evolution and Galaxy Clustering Bias

As we have seen in Sec. 3 and Sec. 4 structure formation is a highly non-linear process.
This nonlinear evolution moves galaxies away from their original positions which shifts and
broadens the peak in the correlation function [6,7,58,65,81,123,128,140]. This will result
in reduced precision with which we can measure the BAO scale from galaxy clustering
data [23,119] and introduce a bias in the measurement.

To understand better how non-linear evolution affects the BAO, we go back to con-
sidering initial point-like perturbation whose evolution we have discussed in the Sec. 5.1.
There, we have explained the peak in the correlation function as arising from baryon over-
density that was left once the acoustic wave staled at the decoupling. If we were then to
consider the later evolution of such a spherical shell, we would expect it to go trough some
gravitational collapse caused by its interaction with the galaxy formed in the center and
due to its own self-gravity. This kind of collapse would slightly shrink the size of the BAO.

In addition to slightly shifting the position of the peak in the correlation function,
non-linearities also lead to the broadening of this peak. This effect can be intuitively
understood using the same simplified model. Suppose a galaxy forms at a specific location
on a shell of radius rs. The position of this galaxy will be influenced by interactions
with other overdensities in the vicinity. These interactions can displace the galaxy in
various directions, either closer to or further from the center. Since the correlation function
averages over the positions of all galaxies, the cumulative effect of these displacements is
to broaden the peak in the correlation function. To estimate the RMS displacement,
we begin by smoothing the observed density field using a smoothing scale R. Next, we
calculate the displacement by applying the Zel’dovich approximation to the smoothed
density field. In particular, [51] demonstrates that these displacements typically shift
particles by approximately 10 h−1Mpc.

Non-linearities also affect the power spectrum. The broadening of the peak in the
configuration space will correspond to damping of the wiggles at higher k values in the
Fourier space. Naturally, this affects the measurement precision of BAO from the galaxy
power spectrum.

In this section, we have presented a simplified view of how non-linearities affect the BAO
scale. For a more comprehensive discussion on this topic, we refer to [51]. This reference
demonstrates that the primary source of the broadening in the BAO feature arises from
large-scale modes. Large-scale modes are not as affected by non-linear evolution and can
nicely be modeled using perturbation theory. This insight has led to the development of
methods which can be used to reverse these broadening effects in the correlation function
and the damping in the power spectrum. These methods are called BAO reconstruction
methods, and they will be the topic of the next section.
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5.2 BAO reconstruction

5.2.1 Reconstruction Algorithm

In the previous section, we discussed how non-linear evolution impacts the precision of
BAO measurements from galaxy clustering. Specifically, non-linear effects widen the peak
in the correlation function and erase the higher harmonics in the power spectrum. The
goal of the reconstruction is to exploit the fact that these effects come from large scale
gravitational effects. By correcting these effects, the reconstruction enhances the accuracy
of our BAO measurements and mitigates systematic shift in BAO scale size.

BAO reconstruction procedure was first introduced in [50]. This technique was based on
the fact that Zel’dovich approximation captures important aspects of non-linear evolution
at large scales. By applying the the reversed Zel’dovich approximation to an observed
galaxy field, it can estimate the displacement caused by non-linearites. The algorithm for
this technique is as follows:

1. Smooth the observed tracer density field, δg, by applying a filter S(k,R) with a
smoothing scale R:

δg(k) → S(k,R)δg(k).

This step removes high-k non-linearities.

2. Compute the negative Zel’dovich displacement from the smoothed density field:

s(k) ≡ −i k
k2
S(k)

δg(k)

b1
,

where the tracer density field has been divided by the linear bias b1 to obtain the
matter density field.

3. Shift the original particles by s and compute the displaced density field, δd.

4. Shift a spatially uniform grid of particles by s to get the shifted density field, δs.

5. Find the reconstructed density field as the difference between the displaced and shifted
density fields, δr:

δr = δd − δs.

The effects of the reconstruction are nicely illustrated in the Fig. 5.2 which was first
published by Padmanabhan et al. in [95].

The first application of BAO reconstruction to any observed data was on galaxy cat-
alogues from the Sloan Digital Sky Survey (SDSS) [147] in [96]. Ever since then, almost
every large scale survey in the past decade, such as Baryon Oscillation Spectroscopic Sur-
vey [41], the extended Baryon Oscillation Spectroscopic Survey [40], WiggleZ [22] and
DESI [76], has used the BAO reconstruction as a part of their BAO analysis. The gain
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in the statistical precision depended on the survey, but it was up to 45% reduction in the
error bar size in certain samples [3, 5, 37, 68,85,97,136].

When it comes to applying BAO reconstruction to survey data, one has to additionally
account for the redshift-space distortions (RSD) which arise due to the peculiar motion
of galaxies [67]. Peculiar motion affects the measurements of cosmological redshifts by
introducing additional Doppler shift, which results in change of the broad band of the
power spectrum or the correlation function. Depending on the way RSD is treated during
the reconstruction, we differentiate between the isotropic BAO reconstruction [5, 96] and
anisotropic BAO reconstruction [50,121,122]. The anisotropic reconstruction tries to keep
the RSD signal in the reconstructed density field, while the anisotropic reconstruction
attempts to remove it. In later chapters, we will be looking into BAO analysis in the rest
frame of galaxies only. Therefore, RSD will not have any effect in our case so we will not
be giving any more details on it.

5.2.2 Understanding BAO Reconstruction Using Lagrangian Per-
turbation Theory

While this reconstruction method is straightforward to implement, its intuitive understand-
ing is challenging due to the non-linear mapping of the observed density field. However, the
Lagrangian perspective on reconstruction, initially introduced for the matter density field
in [95] and subsequently extended to biased tracers in [93], can provide valuable insights
into the function of each step in the reconstruction process.

We will assume that the particles have been observed at some position x, which is
displaced from their initial position q by the vector field ψ:

x = q+ψ(q). (5.32)

Then the observed density is given by:

δ(k) =

∫
q

e−ik·q
(
e−ik·ψ(q) − 1

)
. (5.33)

Note that we have dropped the time argument for clarity.
The first step in the reconstruction is to smooth the density field with the filter S(k,R).

Then we use that smoothed density field to estimate the negative Zel’dovich displacement:

s(k) ≡ −i k
k2
S(k)

δg(k)

b1
. (5.34)

Since the displacement field s is derived using the smoothed density field and the Zel’dovich
approximation only captures linear information, s does not fully recover all the information
contained in ψ.

Now we use the vector s to move the particles closer to their initial position:

x → x = q+ψ + s. (5.35)
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This gives us the displaced density field, which can be written as

δd(k) =

∫
q

e−ik·q
(
e−ik·[ψ(q)+s(q)] − 1

)
. (5.36)

If we use use the expansion for ψ introduced in Eq. (3.43), we can easily find the physical
interpretation of δd:

δd(k) =

∫
q

e−ik·q
(
e−ik·[ψ(1)(q)+ψ(2)(q)+ψ(3)(q)+···+s(q)] − 1

)
=

∫
q

e−ik·q
(
e−ik·(+ψ(2)(q)+ψ(3)(q)+... ) − 1

)
,

(5.37)

where we have also used that s ≈ −ψ(1). Note that a more precise approach to this cal-
culation involves decomposing the displacement vector ψ into long– and short–wavelength
contributions, where short–wavelength contributions are removed by the smoothing on the
scale R. Then this step in reconstruction removes the long–wavelength contribution to
ψ(1). However, even if we were able to reverse smaller-scale displacements, they would re-
main irrelevant if they occur on scales smaller than the intrinsic width of the BAO feature
in the linear correlation function, as it is impossible to make the BAO feature narrower
than this limit. Note that if we had used S(k,R) = 1 and assumed the observed density
field was perfectly linear, the displacement would move the particles back to their exact
initial positions, resulting in δd = 0.

Next, we generate a uniform grid of particles and displace them by s. This brings us
to the shifted field:

δs(k) =

∫
q

e−ik·q
(
e−ik·s(q) − 1

)
. (5.38)

Assuming again that δ is linear and S = 1, we would find that δs = −δ. This result
arises because δs is obtained using the negative Zel’dovich displacement, which effectively
reverses the original displacement. Consequently, the shifted density field δs becomes the
negative of the observed density field δ.

Finally, the reconstructed density field is obtained by taking the difference between the
displaced and shifted density fields: δr = δd − δs. From the structure of δs and δd, it is
evident that the reconstructed density field δr will not be purely linear. It will also contain
non-linear corrections, as can be seen from Eq. (5.37).
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Figure 5.2: In this image, each panel shows a thin slice of the cosmological density field.
The blue dot represents the point at the origin, while the thick black ring marks the parti-
cles around the BAO radius, which is depicted in red. The upper-left panel corresponds to
a period close to decoupling, when the density field was still very uniform. At this stage,
the black ring of points, which is a 2D representation of the Green’s function shown in
Fig. 5.1, is perfectly centered around the BAO radius. This panel also shows a Gaussian
curve, representing the root mean square (rms) distance between the black points and the
centroid marked by the blue point. In the upper-right panel, we advance to the present
day. At this point, structure formation has occurred (as described by the Zel’dovich ap-
proximation), introducing non-linearities into the density field. These non-linear effects
have displaced particles from their original positions, causing the once-uniform black ring
to become distorted and no longer perfectly centered around the BAO radius. This dis-
placement of particles leads to a broadening of the BAO peak in the correlation function.
Additionally, in the corner of the panel, we observe that the root mean square (rms) dis-
tance between particles has increased compared to its original value The lower-left panel
displays the same image, but now includes arrows that indicate the particle displacements
caused by the Zel’dovich approximation. The lower-right panel shows the results of the
reconstruction process. The density field has been smoothed, and the reversed Zel’dovich
displacement has been applied. As a result, the black ring now closely resembles its original
form, as seen in the upper-left panel. However, it is not perfectly centered around BAO
radius, as the reconstruction is not perfect. This image was first published by Padmanab-
han et al. in [95].
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5.3 Baryon Acoustic Oscillations as a Cosmological

Probe

The significance of baryon acoustic oscillations (BAO) lies in their application as a standard
ruler for cosmological measurements. In this section, we will derive the connection between
BAO, the Hubble parameter, and the angular diameter distance. This section closely
follows Sec. 11 in [45].

Galaxy redshift surveys provide the most direct measurements of the galaxy density
field. These surveys map the angular positions and redshifts of galaxies, allowing us to
study their 3D distribution. However, translating redshifts into distances requires assuming
a fiducial cosmology, and we do not know the true cosmological model with certainty. If we
assume the wrong cosmology, the BAO feature will appear at slightly different locations
along the line of sight and in the transverse direction. This apparent shift allows us to
measure both the Hubble parameter and the angular diameter distance by comparing the
BAO positions in these two directions.

We start by expressing the observed galaxy redshift z and observed position (θ, ϕ) in
terms of the 3D position vector

xobs(z, θ, ϕ) = χ(z) n̂(θ, ϕ), (5.39)

where n̂ is a unit vector indicating galaxy position. To get the distance χ(z), we have
to assume a cosmological model for the universe. For practical purposes, we choose a
fiducial cosmology, which serves as the basis for all calculations. However, because the
true cosmology of the universe is unknown, the fiducial model will inevitably differ from
the true cosmology. This discrepancy can be expressed as:

χfid(z) = χtrue(z) + δχtrue(z). (5.40)

The observed and the true position of a galaxy are related as

xobs =
χfid(z)

χtrue(z)
xtrue. (5.41)

For simplicity, we assume that we are working in the rest frame of the galaxies, where
the peculiar velocity of galaxies, ug, is set to zero. This allows us to ignore the effects of
redshift-space distortions (RSD) and focus solely on the issues arising from assuming the
wrong cosmology. To learn more about the RSD effects on the observed power spectrum,
refer to Chapter 11 in [45].

To make the rest of this section easier to follow, we break it down in a couple of steps.

Step 1: Connecting the coordinates

We start by making use of several approximations. First, by considering galaxies within a
narrow redshift range centered on the value z̄, we can simplify x to χ̂ = χ(ẑ), representing
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the distance corresponding to the mean redshift z̄ of this slice. We can simplify things
further by using the flat sky approximation. This approximation allows us to express the
galaxy position as a 2D vector θ = (θ1, θ2). We chose the origin such that xobs = 0
corresponds to θ = 0, z = z̄. Note that θ = 0 represents a point in the sky close to the
center of the survey footprint.

Let us start with the observed transverse components (x1obs, x
2
obs), which can be ex-

pressed as
(x1obs, x

2
obs) = χfid(z)× (θ1, θ2). (5.42)

In a similar manner, we can express the true transverse components (x1, x2) as

(x1true, x
2
true) = χtrue(z)× (θ1, θ2). (5.43)

To establish the relationship at linear order between the two sets of coordinates, we express
(θ1, θ2) in terms of (x1obs, x

2
obs) and use Eq. (5.40) to find the expression

(x1true, x
2
true) =

χtrue(z)

χfid(z)
(x1obs, x

2
obs). (5.44)

From this equation, it is evident that an incorrect choice of cosmology directly influences
the transverse coordinates. Specifically, when χfid > χtrue, the comoving distance is over-
estimated, meaning the galaxy’s true transverse position is closer to us than the observed
position suggests. Conversely, if χfid < χtrue, the comoving distance is underestimated, and
the galaxy’s true transverse coordinates will be farther away than the observed ones.

Moving on to the line-of-sight component, which is characterized by the redshift z. In
the case of observed coordinates, x3obs can be expressed as:

x3obs(z) = χfid(z)− χfid(z̄) ≈
1

Hfid(z̄)
(z − z̄). (5.45)

Here, we have used the fact that we are considering a thin slice around the redshift z,
which allows us to expand to linear order in z − z̄. Expression in the true coordinates has
a similar form:

x3true(z) ≈
1

Htrue(z̄)
(z − z̄) =

Hfid(z̄)

Htrue(z̄)
x3obs. (5.46)

The deviation of the fiducial cosmology affects the line-of-sight differently than it did the
transverse coordinates. This dependence is primarily driven by how the comoving distance
χ(z) changes with redshift around z̄. In essence, the line-of-sight coordinate reflects changes
in the Hubble parameter H(z).

Finally, we can write down the full relationship between the observed and the true
coordinate of a galaxy:

xtrue(xobs) =
[
α⊥x

1
obs, α⊥x

2
obs, α∥x

3
obs

]
, (5.47)

where we have introduced parameters

α⊥ =
χ

χfid

∣∣∣
z̄
, α∥ = −Hfid

H

∣∣∣
z̄
. (5.48)



50 5. Baryon Acoustic Oscillations

Parameters α⊥ and α∥ play a very important role in observational cosmology. From
the way they are defined, we see that by measuring them, we can infer the true Hubble
rate Htrue(z̄), and the true distance χtrue(z̄) at the redshift z̄. In the case of the Euclidean
universe, which is the one we are assuming, χtrue is equivalent to the angular diameter
distance DA. Therefore, from this point on, we will be using DA. Now the obvious
question is how do we actually measure them? To answer this question we need to connect
the observed and the fiducial statistic.

Step 2: True and Observed Power Spectrum

Let us now focus on understanding how the galaxy statistics measured using observed
positions relate to the true underlying statistics. We will analyze this on the example of
the power spectrum. The first step towards finding this connection is to recognize that the
number of galaxies in the same region of space should be consistent, regardless of whether
we use observed coordinates or true coordinates:

ng,obs(xobs) d
3xobs = ng,true(xtrue) d

3xtrue, (5.49)

where ng,obs and ng are the observed number densities in terms of observed and true
coordinates. Next, we introduce the Jacobian J as

J ≡
∣∣∣∣d3xtrued3xobs

∣∣∣∣ . (5.50)

Expressing Eq. (5.49) using the Jacobian, leads to

ng,obs(xobs) = ng,true(xtrue)J . (5.51)

It can be shown that the Jacobian evaluated at z̄ in this case equals to2:

J̄ = α2
⊥α∥. (5.52)

We can easily relate the number density to the overdensity, which is an essential step
toward obtaining the power spectrum. In true coordinates, this relationship is expressed
as ng,true = n̄(1+ δg,true), where n̄ represents the average number density. For the observed
number density, we similarly have ng,obs = n̄g,obs(1 + δg,obs). The observed number density
can be related to the true number density by the following equation:

n̄g,obs(xobs) = n̄g,true(xtrue)J . (5.53)

Combining Eq. (5.51) and Eq. (5.51),= gives the relationship between the observed and
the true overdensity

δg,obs(xobs) = δg,true(xtrue). (5.54)

2For more details on this derivation, take a look at the Sec. 11 in [45]
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Let us now rewrite this expression in the Fourier space

δg,obs(kobs) =

∫
d3xobs e

−ikobs·xobsδg,true (xtrue[xobs])

= (α2
⊥α∥)

−1

∫
d3xtrue e

−iktrue[kobs]·xδg,true (xtrue)

= J̄ −1δg,true (ktrue[kobs]) , (5.55)

where we have defined

ktrue[kobs] =
(
α−1
⊥ k1, α

−1
⊥ k2, α

−1
∥ k3

)
. (5.56)

Finally, we have everything we need to express the observed power spectrum in the
therms of the true one

Pg,obs(|kobs| , z̄) = J̄ −1

[
b1PL(|ktrue| , z̄)

∣∣∣
ktrue=

(
α−1
⊥ k1, α

−1
⊥ k2, α

−1
∥ k3

) + PN

]
, (5.57)

where we use the linear bias b1 to relate the observed power spectrum, Pg,obs, to the linear
matter power spectrum, PL(|ktrue| , z̄). The reason we have J̄ −1 instead of J̄ −2 is the
additional factor of J̄ arising from the Dirac delta function. We have also introduced
the constant noise term PN , which is not affected by the incorrect cosmology choice, for
completeness.

The deviation between the fiducial cosmology used in calculations and the true under-
lying cosmology introduces artificial anisotropies in the observed power spectrum. This
anisotropy arises because the relationship between the true wavevector, ktrue, and the ob-
served wavevector, kobs, depends on the angle that kobs forms with the line of sight, as the
parameters α∥ and α⊥ differ. This effect, known as the Alcock-Paczynski (AP) effect [4],
allows for constraints on H(z)×DA(z).

To illustrate this, consider two limiting orientations of kobs. When kobs is parallel to the
line of sight, we have |k| = |kobs| /α∥. On the other hand, if kobs is perpendicular to the line
of sight, we have |k| = |kobs| /α⊥. It becomes evident that the power spectrum is no longer
isotropic if α⊥ ̸= α∥, since in that case PL (|kobs| /α⊥) ̸= PL

(
|kobs| /α∥

)
. Therefore. by

comparing the power spectrum along different orientations, we can constrain α∥α⊥, which
gives us the product of H(z)×DA(z).

To break the degeneracy between H(z) and DA(z), we require a feature of known size
in the power spectrum. By comparing the known true size of this feature to its observed
size along the line of sight, we can constrain H(z). Similarly, comparing the feature’s size
perpendicular to the line of sight constrains DA(z).

The BAO scale, rs, serves as an ideal candidate for these measurements. It acts as
a cosmological standard ruler, providing a well-defined physical scale against which the
expansion history of the Universe can be measured. Its size can be precisely predicted
using big-bang nucleosynthesis [38] or constrained using CMB data [99,132]. By measuring
its apparent size at a given redshift z̄ and comparing it to its true size, we can directly
determine H(z̄) and χ(z̄).
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Chapter 6

EFT Based Forward Model for BAO
inference

This chapter synthesizes the results of the previous chapters to finally introduce the concept
of forward modeling and establish the tools necessary to perform the inference of the BAO
scale using this approach. This chapter is a setup for the following two in which we present
the results of this inference.

We begin by introducing the key element of the field-level approach: the joint posterior
distribution for cosmological and nuisance parameters. Following this, we will look into the
individual components required to build this posterior. Given that previous chapters have
covered the necessary background on perturbation theory and bias expansion, our focus
here will be on the treatment of the initial density field and the specifics of the likelihood
function.

A key benefit of the field–level approach is that it does not rely on any compression
functions, instead, it extracts the information directly from the field. This is done by
writing down a joint posterior for the initial density field, cosmological parameters, and
nuisance parameters (bias parameters and stochastic amplitudes). A crucial ingredient
in this posterior is the likelihood function of observing a tracer field δh given the evolved
matter density field. A likelihood function in the context of the effective field theory (EFT)
of large scale structures [18, 30] has been derived in [29, 52, 112]. A significant feature of
the EFT likelihood is that it allows us to constrain the parameter of interest at the field
level. Furthermore, Ref. [112] has shown that the forward model combined with the EFT
likelihood naturally includes the BAO reconstruction. In addition to the BAO scale, EFT-
based field-level inference results have been applied to the σ8 parameter in [52,71,90,110]
as well as the growth rate f in [130]. Moreover, Ref. [21] (“Beyond-2pt challenge”) recently
presented the results of a variety of inference methods applied to cosmology-blinded mock
catalogs constructed by populating dark matter halos with a halo occupation distribution,
where field-level inference based on LEFTfield showed very competitive results for σ8
inference.

In the final section of the chapter, we will briefly sketch how the forward model we are
considering is implanted in the LEFTfield code. This chapter is based on [11] and [12].
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6.1 EFT based Forward Model

The idea of forward modeling is involves starting from the initial conditions and then model
the tracer overdensity field δg at late times. The latter is defined as

δg(x, η) ≡
ng(x, η)

n̄g(η)
− 1 = δg,det(x, η) + ϵ(x, η), (6.1)

where η is the conformal time, ng(x, η) is the comoving rest-frame tracer density and n̄g(η)
is its position-independent mean. δg,det(x, η) is the deterministic part predicted by the
forward model and ϵ(x, η) is the stochastic (noise) contribution.

The forward model employed here was introduced in [112]. The main object of this
model is a joint posterior for the initial density field δin, cosmological parameters θ and
“nuisance” parameters (bias parameters {bO} and stochastic amplitudes σ) given the data,
i.e. P (δin, θ, {bO}, σ|δg). There are four ingredients to this posterior:

• Prior on the initial conditions

• Forward model for matter and gravity

• Bias model

• Likelihood.

The forward model we employ is based on EFTofLSS. Specifically, our forward model
for matter and gravity uses third–order Lagrangian perturbation theory (see Sec. 3.3),
which we combine with second– and third–order Lagrangian bias expansions (see Sec. 4).

Relying on the EFT approach means that we have a natural occurrence of a cutoff
scale Λ. While in analytical loop calculations one typically sends this cutoff to infinity for
convenience, it is necessary to keep it finite when using a field-level forward model [111],
in close analogy to lattice field theory (see [107] for a discussion of the connection between
both conventions). Thus, in our case, Λ denotes the maximum wave number included in
the analysis, and Λ is restricted to be smaller than the nonlinearity scale at which the
EFTofLSS breaks down. In practice, the cutoff Λin is applied in the initial conditions
(i.e., in the free field), as well as in the likelihood evaluation to only include the modes
in the data that are below the cutoff klikemax; specifically, throughout this paper we keep
Λin = klikemax = Λ.

In the following sections, we will elaborate on the treatment of the initial density field
and provide more details about the likelihood model used in our analysis.

6.1.1 Initial density field

A single realization of the initial density field is of the form

δin(k, ŝ) = WΛ(k)
√
PL(k)ŝ(k), (6.2)
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where WΛ(k) is a sharp-k filter which we use to ensure the proper renormalization of
the evolution of large-scale modes, PL is the linear power spectrum, and ŝ(k) is the unit
Gaussian field which we use to represent the normalized initial conditions (sometimes
loosely referred to as “phases”). Depending on the choice of prior for ŝ, we distinguish
between two scenarios,

ŝ(x) =

{
δD(ŝ− ŝtrue), FixedIC,

N (0, 1), FreeIC.
(6.3)

In the case when ŝ is fixed to ground truth, we are talking about FixedIC case. Alter-
natively, the case when the Gaussian prior for ŝ is chosen, we denote as FreeIC. In this
chapter, we will focus exclusively on the FixedIC case.

Changing the size of the BAO scale

As we have seen the Sec. 5.3, the BAO is normally used to infer the angular diameter
distance to a given observed redshift by comparing the predicted scale of the BAO feature
to the data for a given assumed distance. This kind of approach is not suitable in our case
since we are working with simulations on a cubic box with periodic boundary conditions.
Modifying the fiducial distance in such a case would result in changes to the comoving
volume of the data, and violate the periodic boundary conditions of the simulated catalog.
To avoid these significant complications, we adopt a different approach, essentially rescaling
the predicted comoving sound horizon.

We want to constrain the BAO scale rs just from the information available in the
oscillatory part of the power spectrum, without referring to its broad-band part. This is
because the broad-band power spectrum depends on other cosmological parameters as well.
One possible way to constrain rs from the power spectrum is by varying the baryon density
ωb and checking which value agrees the best with the data. However, varying the value of
ωb changes not only the oscillatory part of the power spectrum, but also its broad–band.
Therefore, this approach is not suitable.

Instead, we approximate the linear matter power spectrum as1

PL(k, β) = PL,sm(k)[1 + A sin(kβrfid + ϕ) exp(−k/kD)], (6.4)

where A, ϕ and kD are constants and rfid is the fiducial BAO scale. Through this equa-
tion, we separate the broad band part of the power spectrum, described with the function
PL,sm(k), from its oscillatory feature. In the oscillatory feature, we recognize the contri-
bution sin(kβrfid) describing the baryon acoustic oscillations and the exponential envelope
corresponding to the primordial photon diffusion, or Silk damping. The Silk damping
term absorbs all the physics that is not captured within the fluid approximation to the
baryon-photon system before recombination.

Finally, we introduced the factor β as

β =
rs
rfid

. (6.5)

1Inference results in this section were obtained with PL(k, β) = PL,sm(k)[1 +A sin(kβrfid) exp(−k/kD)]
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(a) Ratio of the linear power spectrum obtained
from CLASS and the best fit for PL,sm.

(b) Ratio of the linear power spectrum from
CLASS and the best fit for PL from Eq. (6.4).

Figure 6.1: Comparing the linear power spectrum to the power spectrum approximation.

By changing β, we are changing the size of the BAO scale rs to match the data while
keeping the distances fixed. Most importantly, changing β will result in changes in the
oscillatory part of the power spectrum while keeping its overall shape intact. It is worth
nothing that, since the BAO scale was imprinted in the power spectrum during the early
Universe, varying it in the initial (linear) density field is the physically correct approach.

The function PL,sm(k) can be written in the form

PL,sm(k) = N
( k
kp

)ns

T 2(k), (6.6)

where N is a normalization constant that is proportional to the primordial normalization
As times the growth factor squared, kp is the pivot scale, and T (k) is the “no-wiggle”
transfer function which we take from Ref. [49]. We found the value of N , kD, ϕ and A by
fitting Eq. (6.6) to the linear power spectrum produced by the CLASS code [75]. Fig. 6.1a
shows the ratio of the CLASS power spectrum to PL,sm(k). We can clearly see the damped
oscillation in the BAO range which indicates that PL,sm really does describe the smooth
power spectrum with no BAO wiggles. Fig. 6.1b shows the ratio of the CLASS power
spectrum to the power spectrum approximated by Eq. (6.4). While some residual wiggles
are visible in the plot, they are suppressed at high k, where most of the constraints come
from. Therefore, we can conclude that Eq. (6.4) is a good approximation of the linear
power spectrum and we can use it for the BAO scale inference.

Given the known fiducial power spectrum, i.e. the power spectrum from which the ini-
tial conditions of the N-body simulations were drawn, it is easy to find the power spectrum
with a different BAO scale, using Eq. (6.4). We introduce the factor f(k, β) as

f 2(k, β) =
PL(k, β)

Pfid(k)
=

1 + A sin(kβrfid) exp(−k/kD)
1 + A sin(krfid) exp(−k/kD)

. (6.7)



6.1 EFT based Forward Model 57

Notice that f(k, 1) = 1. From f(k, β), it is straightforward to find the relationship between
the fiducial and rescaled linear density fields

δβ(k, β) = f(k, β)δfid(k). (6.8)

To recap, δβ is the linear matter density field with all fiducial phases but for which the
BAO scale is of the size rs = βrfid. Throughout the chapter we will be using different δβ
as the initial fields for our forward model.

6.1.2 EFT likelihood

By construction, our model does not capture modes above the cutoff Λ in the initial con-
ditions. These modes introduce scatter around the mean relation δg,det, which is described
by the stochastic contribution expressed as the field ϵ in Eq. (6.1). The purpose of the
field-level EFT likelihood is to absorb this stochastic contribution. Considering that ϵ
originates from integrating out numerous independent k modes, the central limit theorem
ensures that this field is Gaussian at leading order. Furthermore, owing to the local nature
of tracer formation, the power spectrum of ϵ is constant at leading order, with corrections
scaling as k2. These properties lead to the formulation of the EFT likelihood

lnLEFT(δg|ŝ, θ, {bO}, σ) = −1

2

∑
k⩽Λ

[
ln[2πσ2(k)] +

1

σ2(k)
|δg(k)− δg,det[ŝ, θ, {bO}](k)|2

]
.

(6.9)
where σ2 represents the noise power spectrum, formulated in a way that ensures its positive
definiteness,

σ2(k) = σ2
ϵ (k)(1 + k2σϵ,2)

2. (6.10)

The parameter σϵ is the variance of the noise field ϵ on the discrete grid. This quantity is
dependent on both the grid size, NΛ

g , and the box size L. Its relationship with the noise
power spectrum Pϵ is then given by

Pϵ = σ2
ϵ

L3

(NΛ
g )

3
. (6.11)

The main feature to highlight in the EFT likelihood is that it compares the data δg
and the model δg,det mode by mode, or voxel by voxel, up to the maximum scale at which
we trust the model. This allows the likelihood to access the full spectrum of information
within the field.

This likelihood offers a convenient feature: it can be marginalized analytically over the
bias parameters. This is possible because under the assumption of Gaussian or uniform
priors, the likelihood exhibits a quadratic dependence on the bias coefficients. We will refer
to this as the marginalized likelihood. It can be shown that in the case of Gaussian priors
(mean µbO and covariance Cprior) on the bias parameters, this marginal likelihood is of the
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form [71]

− lnL (δd,Λ|β, ŝ, σϵ) =
1

2
tr lnAOO′ +

1

2
tr lnCprior+

1

2

kmax∑
k ̸=0

(
lnσ2

ϵ +
1

σ2
ϵ

|δd,Λ(k)|2
)
− 1

2

∑
{O,O′}

BO

(
A−1

)
OO′ BO′ ,

BO ≡ BO [ŝ, β] =
kmax∑
k ̸=0

δ∗d,Λ(k)O [ŝ, β] (k)

σ2
ϵ

+
∑
O′

(
C−1

prior

)
OO′ µbO′ ,

AOO′ ≡ AOO′ [ŝ, β] =
kmax∑
k ̸=0

O∗ [ŝ, β] (k)O′ [ŝ, β] (k′)

σ2
ϵ

+
(
C−1

prior

)
OO′ .

(6.12)

Equivalent result can be found for uniform priors, see [52] for more details.

6.2 Code Implementation of the forward model

Our forward model is implemented in the LEFTfield code.
We start by sampling the initial conditions. We place those on a grid of size NΛ

g , and
multiply them with the square root of the linear power spectrum to obtain the initial field.
The size of the initial grid, NΛ

g , is determined by the requirement to represent all Fourier
modes (for the given box size L) up to the cutoff Λ. Next, we find the bias operators. This
procedure slightly varies between the Eulerian and Lagrangian case.

In the Eulerian case, we construct the LPT displacement to the n-th order (nLPT).
During the construction, to make sure all physical modes are accounted for, we employ a
grid of size NnΛ

g , where n is the maximum perturbative order. We then displace a uniform
grid of pseudoparticles to Eulerian space. These pseudoparticles are then assigned (see
below) to obtain the Eulerian density field δ. This field is subsequently sharp-k filtered as
described above, after which the Eulerian bias operators are constructed. We resize the
grid appropriately to ensure that all modes entering the likelihood are safe from aliasing.

In the Lagrangian bias case, the set of operators listed in Eq. (4.22) up to the desired
order is constructed concurrently with the nLPT displacement. In addition to the uniform-
weight grid used to obtain the Eulerian matter density, we also assign particles with weights
given by the OL(q), effectively displacing the Lagrangian operators to Eulerian space [110].

The assignment schemes implemented in LEFTfield are nearest-grid-point (NGP),
cloud-in-cell (CIC), triangular-shaped cloud (TSC), and non-uniform-to-uniform discrete
Fourier transform (NUFFT) [14], which we employ as an assignment scheme. The quickest
assignment scheme we have implemented is NUFFT, as it converges rapidly with Eulerian
grid size thanks to the kernel deconvolution. NUFFT implements the non-uniform-to-
uniform discrete Fourier transform [f(x) → f̃(k)] by assigning particle positions xi with
weights f(xi) to a supersampled grid (increasing the resolution by a factor typically in the
range 1.2 to 2) using a suitable assignment kernel with compact support (of roughly 4 to 16
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grid cells). It then performs an FFT on the supersampled grid, deconvolves the assignment
kernel, and finally performs a grid reduction in Fourier space to yield the desired uniform
discrete Fourier transform f̃(k). This method is approximate, but accuracy close to ma-
chine precision can be obtained for very reasonable computational effort. When NUFFT
is used, for the Eulerian grid size, we choose NEul

g such that the Nyquist frequency corre-
sponds to (3/2)Λ, at which point the density assignment is converged to next-to-leading
order [129]. When CIC is used, for the Eulerian grid size, we choose NEul

g such that the
Nyquist frequency corresponds to 2Λ.
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Chapter 7

BAO scale inference from biased
tracers using the EFT likelihood

This chapter is adaptation of [11].

Abstract

The physical scale corresponding to baryon acoustic oscillations (BAO), the size of the
sound horizon at recombination, is precisely determined by CMB experiments. Measuring
the apparent size of the BAO scale imprinted in the clustering of galaxies gives us a direct
estimate of the angular-diameter distance and the Hubble parameter as a function of
redshift. The BAO feature is damped by non-linear structure formation, which reduces the
precision with which we can infer the BAO scale from standard galaxy clustering analysis
methods. Many methods to undo this damping via the so-called BAO reconstruction have
so far been proposed; however, they all rely on backward modeling. In this chapter, we
present the first results of isotropic BAO inference from rest-frame halo catalogs using
forward modeling combined with the EFT likelihood, in the case where the initial phases
of the density field are fixed. We show that the remaining systematic bias is less than 2%
when we consider cutoff values of Λ ≤ 0.25hMpc−1 for all halo samples considered, and
below 1% and consistent with zero for all but the most highly biased samples. We also
demonstrate that, when compared to the standard power spectrum likelihood approach
under the same assumption of fixed phases, the 1σ errors associated to the field level
inference of the BAO scale are 1.1 to 3.3 times smaller, depending on the value of the
cutoff and the halo sample. Our analysis therefore unveils another promising feature of
using field-level inference for high-precision cosmology.
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7.1 Introduction

In this chapter, we perform an unbiased inference of the isotropic BAO scale–referred to
simply as the BAO scale–using rest-frame halo catalogs and the EFT likelihood. By relying
on simulations, we are able to fix the initial conditions of the linear density field to their
true values, effectively minimizing cosmic variance and reducing the size of the error bars.

To gauge what are the improvements from the field level likelihood over standard,
power-spectrum-based approaches, we also determine the BAO scale value using a like-
lihood constructed from the power spectrum. For the predicted power spectrum we do
not perform any additional BAO reconstruction; instead, we use the deterministic halo
field found from the forward model. This means that the EFT likelihood is still used to
constrain the bias parameters in the construction of the predicted power spectrum, but is
not used to constrain the BAO scale. On the other hand, our power spectrum covariance
takes into account that the phases are fixed to the ground truth, i.e. there is no cosmic
variance. Thus, we perform a fair comparison between both methods.

This chapter is organized as follows. Section 7.2 offers an overview of the method used
for inferring the BAO scale within the EFT-based approach. In Section 7.3, we apply this
approach to determine the BAO scale and compare these results with those obtained from
the power spectrum, as discussed in Section 7.4. We conclude in Section 7.5.

7.2 Inference method

All numerical results presented here were obtained for a spatially flat ΛCDM cosmology
with parameters Ωm = 0.3, ΩΛ = 0.7, h = 0.7, ns = 0.967 and a box with size L =
2000h−1Mpc. We use four halo mass bins in the mass range 1012.5h−1M⊙–10

14.5h−1M⊙.
We present results on two simulation realizations, “run 1” and “run 2”, which differ in their
initial phases. In Tab. 7.1, we present the number density of halos in run 1 at different
redshifts.

For the forward model, we use third–order LPT combined with second– and third–
order bias expansion. As mentioned earlier, we do not sample the initial density field; it is
instead fixed to the exact initial conditions used in the N-body simulations within which
the halos are identified. To get the initial density with different BAO scales, we apply Eq.
(6.8) for a set of values {βi}. The default set spans the range [0.8, 1.02]; in all cases, we
make sure that the maximum-a-posteriori (MAP) value of β is safely within the range.
Fixing the initial phases not only saves the computational time, but it also minimizes the
cosmic variance as much as possible resulting in smaller error bars for the inferred value
of β.

To find the MAP estimate for β, which we denote as β̂, we use the profile likelihood [145].
For a probability distribution P (β, σε|δh) (recall that the bias coefficients are analytically
marginalized over) and parameter β, the profile likelihood is defined as

P prof(β) = max
σε

[P (β, σε|δh)], (7.1)
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z Mass range n̄h

[log10(M/h−1M⊙)] [(Mpc/h)−3]

0.0 [12.5− 13.0] 7.056 88× 10−4

0.5 [12.5− 13.0] 6.001 05× 10−4

1.0 [12.5− 13.0] 4.744 83× 10−4

0.0 [13.0− 13.5] 3.509 70× 10−4

0.5 [13.0− 13.5] 2.766 35× 10−4

1.0 [13.0− 13.5] 1.884 50× 10−4

0.0 [13.5− 14.0] 1.149 82× 10−4

0.5 [13.5− 14.0] 7.426 65× 10−5

1.0 [13.5− 14.0] 3.767 61× 10−5

0.0 [14.0− 14.5] 2.965 94× 10−5

0.5 [14.0− 14.5] 1.331 26× 10−5

1.0 [14.0− 14.5] 3.941 75× 10−6

Table 7.1: Number density of halos in run 1 at different redshifts.

where the parameter σε has been profiled out.

For a fixed Λ, halo sample, redshift and βi we maximize the profile likelihood using the
MINUIT minimizer [60]. In this way we obtain a set {βi,−2 lnP prof(βi)} which is nicely
fit by a parabola for all halo samples and all cutoffs. An example of this parabola for two
different cutoffs is shown in Fig. 7.1, where the elements of the set {βi,−2 lnP prof(βi)}
are represented with orange dots and the blue line corresponds to the parabolic fit. The
MAP value β̂ is located at the minimum of the best fit parabola. The estimated 68%
confidence-level error on β̂ is given by the inverse square root curvature of the parabolic
fit.

7.3 Field-Level Results

In this section, we show the results of applying the EFT likelihood to the halo catalogs. We
start by comparing the results for two different bias orders—second and third order—at
fixed redshift z = 0. Fig. 7.2 shows the deviation of the MAP values β̂ from 1 as a function
of Λ for different halo mass ranges. For all of halo mass bins except the highest one, β̂ is
consistent with being unbiased within the error bar obtained from the profile likelihood.
Moreover, β̂ is moving closer to 1 as Λ is increased, consistent with the shrinking error bar
as more k modes are being included in the likelihood and forward model. We notice that
the MAP values β̂ are closer to 1 for the third order bias expansion than in the case of
second order, for every halo sample. This indicates that the systematic error in β̂ in the
3rd order bias case is reduced, as expected if one is in the converging regime of the EFT.
Therefore, in the rest of the chapter, we focus only on the 3rd order bias expansion.

Fig. 7.3 depicts the value of the 1σ error bar, σF (β̂), for the field-level inference (as
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Figure 7.1: Profile likelihood −2 lnP prof plotted as a function of β for two different cut-offs
Λ at z = 0. The blue line shows the parabolic fit which was used to find the maximum-a-
posteriori value β̂ and its error σ(β̂).

emphasized by the subscript F ) as a function of Λ for the 3rd bias order for both runs

1 and 2. We see that σF (β̂) is smoothly decreasing with increasing Λ. Since our initial
conditions are exactly the ones used in the halo simulations, the statistical uncertainty
σF (β̂) is only sourced by the halo stochasticity which appears in the EFT likelihood. Note

that we do expect the σF (β̂) results to change once we start sampling the initial phases
instead of keeping them fixed.

We also notice that the σF (β̂) values do not change much between the different halo
samples. This trend can be understood by inspecting how the numerator and denominator
of Eq. (6.9) change with halo mass. On the one hand, more massive halos are rarer, and
hence have larger noise (stochasticity), i.e. larger σ2

ε in the denominator. On the other
hand, higher-mass halos are more biased, and hence show a stronger clustering signal.
Hence the numerator also increases with halo mass. As a consequence, the ratio of both
quantities is actually roughly constant, so that we get a similar σF (β̂) for all halo bins
considered. Notice that this result only applies to the fixed-phase study done here.

Next, we look at the results found at different redshifts. Fig. 7.4 and Fig. 7.5 show the
value of β̂ as a function of Λ at redshifts z = 0.0, 0.5, 1.0 for run 1 and run 2, respectively.
For run 1, these results are also summarized in Tab. 7.2 for a fixed cutoff, Λ = 0.16hMpc−1.
We find that the remaining systematic bias is very low across all the redshifts and mass
ranges. Even for this cutoff, the bias is less than 1% at z = 0 for all mass ranges and
the results generally keep improving with growing Λ. If we look across all redshifts, it is
clear that the remaining bias is still below 2%, and in fact consistent with zero, for most
of the cases. It goes over 2% only for the most massive halos which are very rare at higher
redshifts. Those halo samples would most likely benefit from from going to higher bias
orders in the bias expansion.
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z Mass range log10(M/h−1M⊙) 100(β̂ − 1) σε

0.0 [12.5− 13.0] 1.08 ± 0.74 0.463
0.5 [12.5− 13.0] -0.47 ± 0.71 0.471
1.0 [12.5− 13.0] -0.09 ± 0.68 0.494
0.0 [13.0− 13.5] 0.56 ± 0.78 0.625
0.5 [13.0− 13.5] 0.40 ± 0.70 0.647
1.0 [13.0− 13.5] 0.43 ± 0.67 0.735
0.0 [13.5− 14.0] -0.89 ± 0.86 0.992
0.5 [13.5− 14.0] -0.28 ± 0.72 1.163
1.0 [13.5− 14.0] 0.86 ± 0.75 1.582
0.0 [14.0− 14.5] 0.80 ± 0.80 1.785
0.5 [14.0− 14.5] -2.73 ± 0.80 2.572
1.0 [14.0− 14.5] -2.29 ± 0.97 4.926

Table 7.2: Summary of the results found using the field-level EFT likelihood at the cutoff
Λ = 0.16hMpc−1 for different redshifts and halo mass bins.

From Fig. 7.4 and Fig. 7.5 we notice that the remaining systematic bias in β̂ is increas-
ing with growing redshift. This occurrence is counter-intuitive, since from perturbation
theory we would expect a better performance at higher redshifts where perturbation the-
ory extends to higher wavenumbers. A similar trend was noticed with inference of σ8 from
the halo catalogues described in [111]. It was found there that this trend is caused by the
higher-order bias terms. Although the higher-order bias terms are suppressed by powers of
the normalized growth factor Dnorm(z) = D(z)/D(0) at higher redshifts, it is possible that
the increase in their coefficients with redshift more than compensates for this suppression.
To check if this was the case for us as well, we use the test suggested in [111] which was
based on the assumption from [43] that the higher order bias terms can be approximated
as being a function of (b1 − 1)Dnorm(z). Results are shown in Fig. 7.6, where we plotted
the |β̂ − 1| values for all halo mass bins and redshifts against (b1 − 1)Dnorm(z). There is a
hint of a correlation between |β̂ − 1| and (b1 − 1)Dnorm(z), although all but one points are
consistent with β̂ = 1 within one sigma.

Let us also comment on the limits of the cutoff we are using. For matter, the EFT is
under perturbative control for Λ ≲ 0.25hMpc−1 at z = 0. For highly biased tracers, the
cutoff is reduced due to the growing size of bias parameters at higher orders. Thus, we
are going beyond that limit, and not all of our values of Λ are strictly under perturbative
control. However, because the BAO is an oscillatory feature, while higher-order corrections
are expected to be smooth functions of k, the BAO inference seems to be still robust at
these high k. We leave a more systematic investigation of this important issue to future
work.
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7.4 Comparing the field-level results to the power

spectrum approach

Having presented the results of constraining the BAO scale using the EFT likelihood, we
now turn to comparing these results to a more traditional BAO inference approach based
on the power spectrum.

7.4.1 Power spectrum likelihood

Care is needed in order to ensure that the comparison we are making is valid, since in the
EFT approach we use fixed phases in the matter density field. Therefore, we adopt the
following Gaussian likelihood for the halo power spectrum:

−2 lnL[Ph(k)|δin, {bO}, Pε] =
kmax∑
k

[Ph(k)− Pε − Pdet(k|δin, β, {bO}]2
Varfix[Ph(k)]

. (7.2)

Here, Pdet(k|δin, β, {bO}) is the power spectrum of the deterministic halo field found
using the same forward model as in EFT case for a fixed β value; Ph(k) is the measured
halo power spectrum, mk is the number of modes in a wavenumber bin, and Pε is the
noise spectrum. Notice that the covariance appearing in the numerator of the likelihood,
Varfix[Ph(k)], is modified to reflect the fact that we are using fixed phases. The derivation
of the power spectrum covariance for fixed phases can be found in Appendix A and its final
form is given in Eq. (A.18). It is also important to note that we are not performing any
additional BAO reconstruction on the halo data, but comparing the halo power spectrum
directly with the theory predictions from the full forward model. Therefore the comparison
we are making is at the level of likelihoods: the EFT likelihood is performing at the level
of the field, while the likelihood in Eq. (7.2) compresses the data to the power spectrum
in bins of k. Both likelihoods however consistently assume fixed initial conditions.

To find the best fit for β, we use the following procedure for different values βi. We start
by finding the initial matter fields with the BAO scales rs = βirfid using Eq. (6.8) as in the
field-level likelihood calculations. Once we have the linear matter density field δin(k, βi) , we
use the 3LPT forward model to generate the evolved matter field δ(k, β) = δfwd[δin(k, βi)],
where we set all modes with k > Λ to zero. For the bias operators, we use the same bias
model as in the field–level case. The MAP for the bias parameters is found by maximizing
the EFT likelihood. We keep one bias parameter free at a time and marginalize over all
other bias coefficients. Once we found the MAP value for that parameter, we move on
and repeat the procedure for the remaining ones. This gives us the deterministic halo field
whose power spectrum Pdet(k|δin, β, {bO}) is straightforward to measure in the same k bins
as the halo sample.

We now turn to the determination of Pε. Ideally, one would fit for this together with
β and the bias parameters. In our simplified analysis, we only fit Pε, and use the same
noise spectrum value Pε across all Λ and β values. This value is found for Λ = 0.2 hMpc−1
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z Mass range log10(M/h−1M⊙) 100(β̂ − 1) b1

0.0 [12.5− 13.0] 1.20 ± 0.90 0.833
0.5 [12.5− 13.0] 1.87 ± 0.79 1.266
1.0 [12.5− 13.0] 1.32 ± 0.73 1.901
0.0 [13.0− 13.5] 4.80 ± 0.96 1.236
0.5 [13.0− 13.5] 0.79 ± 0.94 1.973
1.0 [13.0− 13.5] -2.01 ± 0.81 2.892
0.0 [13.5− 14.0] 2.27 ± 1.27 1.996
0.5 [13.5− 14.0] 1.77 ± 1.01 3.129
1.0 [13.5− 14.0] 1.41 ± 0.88 3.994
0.0 [14.0− 14.5] 1.18 ± 1.46 3.416

Table 7.3: MAP values of β for cutoff Λ = 0.16hMpc−1 inferred from the power spectrum
likelihood, at different redshifts for different halo mass ranges.

and β = 1.00 by fitting the difference Ph(k)− Pdet(k|δin, β = 1, {bO}) to a constant, using
w = 1/σw as the weight where σw = |Ph−Pdet|/

√
2/mk. Fitting the noise separately from

bias terms and β leaves us with some uncertainties in its estimate. We roughly estimate
this uncertainty by repeating the same analysis for run 2 halo samples, resulting in values
of Pε that differ by around 20%, which results in a corresponding 20% shift in the 1σ error
for β̂. We conclude that our results for the latter carry an uncertainty of ∼ 20%. This is
sufficient for the approximate comparison we are aiming for in this chapter. We aim to
improve this in future work.

Finally, by inserting Pdet(k|δin, βi, {bO}) and Pε in Eq. (7.2), we find the likelihood
value for each βi. Repeating this procedure at fixed halo sample, redshift and Λ, leads to a
set {βi,−2 lnP prof(βi)}, which is nicely fit by a parabola. An example of this parabola fit
is shown in Fig. 7.7. β̂ and σPS(β̂), the value of the 1σ error bar for the power spectrum
inference, are found as the location of the minimum and the inverse square root of the
parabolic fit, respectively.

7.4.2 Results

We now turn to the results for MAP. β̂ is found using the likelihood given in Eq. (7.2).
The residual values of β̂ as a function of Λ at the three different redshifts are shown in Fig.
7.8. For the most massive halo range log10(M/h−1M⊙) = 14.0−14.5, we show results only
at redshift zero. For this halo range at higher redshifts, the set {βi,−2 lnP prof(βi)} does
not yield a well-defined maximum. We also exclude all the samples for which the MINUIT
algorithm does not converge for the bias coefficients due to a poor signal to noise ratio.

The quantitative results are summarized in Tab. 7.3. We see that, for most of the
samples, the residual bias in β̂ is between 1.20% and 2.3%. The MAP values of the linear
bias parameter b1 are also listed in the table. We notice that, for a fixed mass bin, b1 is
increasing with halo mass and redshift as is expected. In Fig. 7.9, we show σPS(β̂) as a
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function of Λ at redshift z = 0. While for the field-level likelihood σF (β̂) reduces about 2.4
times from Λ = 0.1hMpc−1 to Λ = 0.2hMpc−1, here we do not see such a trend. Instead,
σPS(β̂) stays fairly constant across all Λ for the power spectrum likelihood. This is pre-
sumably because the field-level likelihood can still make use of the phase information at
wavenumbers for which the power spectrum likelihood is already dominated by the noise Pε.

The most interesting result is Fig. 7.10, which compares the error on β̂ from the
power spectrum approach, σPS(β̂), to the one from the field level approach, σF (β̂). This
ratio is shown for three different halos mass ranges at three different redshifts. For smaller
cutoffs, both likelihoods give similar results, which is the expected result if the data (δh) are
well approximated as a Gaussian random field. However, as Λ grows, the EFT likelihood
starts outperforming the power spectrum based likelihood. At the highest Λ considered,
the σF (β̂) value is around 2.5 times smaller than σPS(β̂). The field-level EFT likelihood
performs better because it operates at the level of the field. This means that it includes not
only all the information coming from the power spectrum, but also information from the
from N-point functions of arbitrarily high orders. Concretely in the case of the BAO, the
field-level likelihood knows about the bulk flow field, and can thus compare the expected
BAO scale at a given location with the data. The power spectrum on the other hand is
averaged over all locations, and thus suffers from the damping of the BAO peak [94, 124].
Thus, the fact that the field-level likelihood outperforms the power spectrum based one
comes as no surprise.

Finally, note that we have fixed the bias coefficients in the theory prediction for the
power spectrum to the values obtained from the field-level likelihood. In practice, those
would have to be marginalized over in a power spectrum analysis.



7.4 Comparing the field-level results to the power spectrum approach 69

0.10 0.16 0.20 0.25 0.30

Λ [hMpc−1]

0.98

1.00

1.02

β̂

Field-level

Third order bias

Second order bias

(a) log10(M/h−1M⊙) = 12.5− 13.0

0.10 0.16 0.20 0.25

Λ [hMpc−1]

0.98

1.00

1.02

β̂

Field-level

Third order bias

Second order bias

(b) log10(M/h−1M⊙) = 13.0− 13.5

0.10 0.16 0.20 0.25

Λ [hMpc−1]

0.98

1.00

1.02

β̂

Field-level

Third order bias

Second order bias

(c) log10(M/h−1M⊙) = 13.5− 14.0

0.10 0.15 0.20 0.25

Λ [hMpc−1]

0.98

1.00

1.02

β̂

Field-level

Third order bias

Second order bias

(d) log10(M/h−1M⊙) = 14.0− 14.5

Figure 7.2: MAP value β̂ found using the EFT likelihood for two bias orders at z = 0.
The different sub-figures show four different mass ranges.



70 7. BAO scale inference from biased tracers using the EFT likelihood

0.10 0.15 0.20 0.25 0.30

Λ [hMpc−1]

0.005

0.010

0.015

0.020

σ
F
(β̂

)

Field-level

Run 1

Run 2

(a) log10(M/h−1M⊙) = 12.5− 13.0

0.10 0.15 0.20 0.25

Λ [hMpc−1]

0.005

0.010

0.015

0.020

σ
F
(β̂

)

Field-level

Run 1

Run 2

(b) log10(M/h−1M⊙) = 13.0− 13.5

0.10 0.15 0.20 0.25

Λ [hMpc−1]

0.005

0.010

0.015

0.020

σ
F
(β̂

)

Field-level

Run 1

Run 2

(c) log10(M/h−1M⊙) = 13.5− 14.0

0.10 0.15 0.20 0.25

Λ [hMpc−1]

0.005

0.010

0.015

0.020

σ
F
(β̂

)

Field-level

Run 1

Run 2

(d) log10(M/h−1M⊙) = 14.0− 14.5

Figure 7.3: σF (β̂) values as a function of Λ at z = 0. Different sub-figures show four
different mass ranges.
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Figure 7.4: MAP values for β using the EFT likelihood found at different redshifts for run
1. Different panels show four different mass ranges at three different redshifts each.
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Figure 7.5: MAP values for β using the EFT likelihood found at different redshifts for run
2. Different panels show four different mass ranges at three different redshifts each.
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Figure 7.8: MAP values for β using the power spectrum likelihood for different Λ. Different
panels show four different mass ranges at three different redshifts.
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Figure 7.9: σPS(β̂) values found using the power spectrum likelihood for different Λ. Dif-
ferent panels show four different mass ranges at the redshift z = 0.
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Figure 7.10: Ratio of the uncertainty on the BAO scale inferred from the power spectrum
likelihood, σPS(β̂), to that from the field-level likelihood, σF (β̂), as a function of cutoff for
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7.5 Summary and Conclusions

In this chapter we compared the inference of the BAO scale from the halo catalogs using an
LPT-based forward model combined with the EFT likelihood with the standard approach
which compresses the data to the power spectrum. The forward model uses a combination
of 3LPT expansion for the matter field and a third-order bias expansion. Our results were
expressed in the terms of the parameter β, defined as the ratio of the measured value of
the BAO scale to its fiducial value.

The field-level inference results are summarised in Fig. 7.4 and Tab. 7.2. From these
it is clear that the remaining systematic error in β̂ is at most ∼ 2% for all samples. If
we ignore the most biased sample (log10(M/h−1M⊙) > 14.0 at z = 0.5 and z = 1.0), at
Λ = 0.16hMpc−1, the remaining bias in β is less than 1% for all remaining samples, which
is remarkably low. Moreover, β̂ is statistically consistent with being unbiased for all halo
samples except the highest mass one. It is also interesting to notice that the bias in β̂
is under control for all halo mass ranges, even for Λ = 0.25hMpc−1, which is close to
the nonlinear scale. For the lighter halos, log10(M/h−1M⊙) < 13.5, this even applies to
Λ = 0.3hMpc−1.

While we consider halos here, the EFT approach is equally applicable to galaxies. This
is confirmed by the results of [15], who demonstrated an unbiased inference of the linear
power spectrum normalization σ8 on fully hydrodynamical simulated galaxies.

In order to assess the performance of the field-level inference of the BAO scale, we
compare it to the more traditional approach of the BAO inference from the power spectrum.
For this we utilized the likelihood defined in Eq. (7.2), where the theory model for the
power spectrum is based on the same forward model as in the EFT likelihood approach
(in particular, the field-level likelihood was still used to find the best-fit values for the
bias parameters). We modified the covariance in this likelihood to reflect the fact that we
are using fixed phases, so that we can compare the two approaches on the same footing.
Results found using this likelihood are shown in Fig. 7.8 and Tab. 7.3. For a fixed
Λ = 0.16hMpc−1, the remaining systematic error β̂ is between 1.2% and 2.3% for those
halo samples that yielded converged profile likelihoods.

Fig. 7.10 shows the relative performance of the field-level and power spectrum based
likelihoods. Across all halos samples, we notice a similar trend. For smaller cutoffs, both
likelihoods show similar performance. However, for Λ > 0.12hMpc−1, the field-level like-
lihood gives better results across all the halo masses and redshifts. For the highest cutoff
value considered in both likelihoods, Λ = 0.2hMpc−1, the error on the BAO scale inferred
from the power spectrum is between 2.47 − 3.3 times larger than that obtained from the
field-level likelihood, depending on the halo sample. Since the field-level likelihood contains
all the information that would come from the higher order correlation functions, including
the precise bulk-flow field, while the information available in the likelihood from Eq. (7.2)
are only those from the power spectrum, a better performance of the EFT likelihood was
to be expected.

In future work we will investigate how well we can constrain the BAO from the EFT
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likelihood in the cases when the initial conditions are not fixed, but sampled. This will
allow for a realistic comparison of the constraining power on the BAO scale that can be
obtained from the field-level inference as compared to that based on the galaxy power
spectrum.



Chapter 8

Straightening the Ruler: Field-Level
Inference of the BAO Scale with
LEFTfield

This chapter is an adaptation of [12].

Abstract

Current inferences of the BAO scale from galaxy clustering employ a reconstruction tech-
nique at fixed cosmology and bias parameters. Here, we present the first consistent joint
Bayesian inference of the isotropic BAO scale, jointly varying the initial conditions as well
as all bias coefficients, based on the EFT-based field-level forward model LEFTfield. We
apply this analysis to mock data generated with a much higher cutoff (resolution), resulting
in a significant model mismatch between mock data and the model used in the inference.
We demonstrate that the remaining systematic bias in the BAO scale is below 2% for all
data considered and below 1% when Eulerian bias is used for inference. Furthermore, we
find that the inferred error on the BAO scale is up to 1.6 times smaller compared to that
from a replication of the standard power-spectrum reconstruction approach, using the same
scales as in the field-level inference, with the improvement growing towards smaller scales
(higher k). Thus, a field-level approach to BAO not only allows for a consistent inference
of the BAO scale, but promises to achieve more precise measurements on the same data
as well.

8.1 Introduction

In the previous chapter, we performed BAO scale inference on the dark matter halo samples
in N-body simulations, but in the scenario of fixed initial conditions. Our analysis revealed
that the error bars for the BAO scale were between 1.1 and 3.3 times smaller when using



80
8. Straightening the Ruler: Field-Level Inference of the BAO Scale with

LEFTfield

the field-level likelihood as compared to the power spectrum without BAO reconstruction,
where this range corresponds to the range of scales considered, Λ = [0.1 − 0.25]hMpc−1,
as well as different halo samples and redshifts.

In this chapter, we go a significant step further and use the field-level likelihood to
perform a joint inference of the BAO scale and the initial conditions, which of course is
necessary in the application to real data. Sampling initial conditions is challenging since
the dimensionality of the parameter space is of the order of 105 − 106. To deal with
this challenge, we follow the lead of [61] and use the Hamiltonian Monte Carlo (HMC)
[88] sampling method to sample the initial conditions and slice sampler [89] to sample
the cosmological parameters. We apply this analysis to mock data generated with the
LEFTfield code, a Lagrangian EFT-based forward model [109], which we also use for the
inference. Importantly, our mock data are generated with a substantially higher cutoff
than that used in the inference, as well as different bias models (with bias parameters
representative of actual halo samples), so that we can test the robustness against model
mis-specifications.

Apart from demonstrating the feasibility and robustness of BAO scale inference at the
field level with LEFTfield, the second main goal of this work is to quantify the information
gain relative to the standard reconstruction algorithm [50]. To this end, we adapt the
reconstruction pipeline to deal with our mock data, and then perform an inference using,
as closely as possible, the same cutoffs and scales as used in the field-level inference. This
allows us to perform a consistent comparison of the two methods. The results of this
comparison are presented in Sec. 8.4.2.

Section 6.2 provides details of the implementation within the LEFTfield code. Section
8.2 elaborates on the generation of mock data. Finally, in Section 8.3.2, we present the
results from the joint inference of BAO along with the initial conditions, and compare to
the power-spectrum analysis with and without reconstruction applied in Section 8.4.

8.2 Synthetic Data sets

The data sets used in this chapter were generated using the LEFTfield code, which we
denote as Mock A and Mock B. Both data sets were generated in a box of side length
L = 2000h−1Mpc and with fiducial cosmology fixed to σ8 = 0.85, Ωm = 0.3, ΩΛ = 0.7,
h = 0.7 and ns = 0.967. We emphasize that both mocks contain nonlinear information, as
they were generated using second-order LPT, while the distinguishing factor between them
lies in the choice of the bias model. Mock A was created using the second-order Lagrangian
bias, while Mock B utilized the second-order Eulerian bias. For the bias parameters, we
adopted values obtained through fixed-phase inference on realizations of halo catalogues
(see for example [73]), specifically the halo mass range log10(M/h−1M⊙) = 13.0− 13.5 at
redshift z = 0. In order to increase the signal to noise ratio, we used a slightly lower noise
level than in the halos sample for both mocks. Ground truth β0 values were deliberately
selected to be different from 1 to verify unbiased inference even in the case of a nontrivial
rescaling of the fiducial power spectrum. Furthermore, the mocks were generated at the
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Mock Bias basis Pϵ [h
−3Mpc3] β bδ b∇2δ bσσ bTr[M(1)M(1)] bδ2 bK2

A Lagrangian 553.83 0.99 1.21 0 -0.26 -0.18 - -
B Eulerian 915.53 0.98 1.67 -0.07 - - -0.19 0

Table 8.1: Values of parameters used to produce mock datasets A and B. For both mocks,
we use second order LPT combined with second order bias expansion and cutoff Λ0 =
0.3hMpc−1.

cutoff Λ0 = 0.3hMpc−1, while the inference was performed at lower Λ values, allowing
us to test the impact of model mismatch in this dimension as well. The values of all
parameters used to generate these mocks are summarized in Table 8.1.

8.3 Field level BAO inference

8.3.1 Sampling method and data analysis

In this section, we provide a detailed account of how we sample from the posterior defined
in Sec. 6.1. To achieve this, we employ a combination of the HMC sampler for initial
conditions and the slice sampler for all other parameters.

The initial step involves selecting a prior for the initial field ŝ. Depending on this choice,
we distinguish between two scenarios,

ŝ(x) =

{
δD(ŝ− ŝtrue), FixedIC,

N (0, 1), FreeIC.
(8.1)

In the case when ŝ is fixed to ground truth, we are talking about FixedIC case. Alterna-
tively, the case when the Gaussian prior for ŝ is chosen, we denote as FreeIC. FixedIC case
has been extensively studied in our previous work [11], while here we are focused on the
FreeIC case and use the FixedIC case only as a consistency check.

The FreeIC case is challenging in particular due to the dimensionality of the parameter
space of ŝ which is of the order of 106. To perform the sampling of such a large parameter
space, we use the HMC sampler which is well suited for sampling in large dimensions.
While the execution time in standard MCMC techniques typically scales linearly with the
dimension of the problem Ndim, in the case of the HMC it scales as N

1/4
dim [88]. Because of

the way HMC generates new proposals, it requires a forward model which is differentiable
with respect to the initial conditions. Fortunately, our forward model is differentiable, and
the structure of the LEFTfield code allows us to find its analytical derivative by performing
successive applications of the chain rule.

Apart from the initial conditions, we also sample β, σϵ and σϵ,2. The priors used for
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these parameters are
P(β) = U(0.8, 1.2),
P(σϵ) = U(0.05, 100),

P(σϵ,2) = U(−105, 105),

(8.2)

where U denotes the uniform distribution.
When employing the likelihood marginalized over bias parameters, one MCMC chain

used Gaussian priors for bias parameters. More specifically, the priors used were N (0.01, 5)
for bδ and N (0, 5) for the other bias parameters. In addition to this, we operated two other
chains that employed uniform priors: U(0.01, 10) for bδ, and U(−30, 30) for the remaining
bias parameters. However, the bias coefficients are well constrained by the data, and the
posteriors are likelihood-dominated for both chains. Hence, despite the different priors, all
chains are found to yield consistent posteriors in β, σϵ and σϵ,2. Therefore, we aggregated
the results from all three chains in the analysis. For comparison, we have also performed
inferences using a likelihood that was not marginalized over bias parameters; the results
of this inference are shown in App. B, and provide evidence for the above statement.

To sample cosmological parameters, we employ the univariate slice sampling technique.
This involves drawing samples from the one-dimensional probability density function as-
sociated with these parameters, considering the present state of the initial conditions, ŝ.
For each data set, we run a set of three chains: one starting from true initial conditions
and two starting from random initial conditions. We continue running these chains until
we achieve at least 100 effective samples of the β parameter.

8.3.2 Field-level results

In this section, we present inference results obtained using the marginalized EFT likelihood
for both Mock A and Mock B.

Mock A was generated using the second–order Lagrangian bias expansion which we also
use for the inference. In Fig. 8.1, we present a trace plot for the parameter β corresponding
to a specific value of Λ = 0.2hMpc−1. The figure shows the trajectories of all three Markov
chains utilized in our analysis. Despite starting from different β values, the chains exhibit
rapid convergence towards a consistent value of β, indicating robustness in parameter
estimation across varied starting points. It is also important to note that one of the chains
started from the true initial conditions ŝtrue while the other two started from random ŝ.
Fig. 8.2 depicts the normalized auto-correlation function for β (for Λ = 0.2hMpc−1), for
one of the chains. We find the correlation length τ(β) to be quite short, substantially
shorter than that of σ8 in the field-level inference chains shown in [21,90]. This is a major
computational advantage which also allows us to push to smaller scales than used there.
We determine the effective number of samples by dividing the absolute length of the chain
by the estimated correlation length.

Our main findings for Mock A are summarized in Fig. 8.3. In the left panel, we show the
remaining systematic bias in the β value. For the lower cutoffs, Λ = 0.15hMpc−1 and Λ =
0.18hMpc−1, the bias is below 1%, however in the case of Λ = 0.2hMpc−1 the systematic
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Figure 8.1: Trace plot of parameter β for Λ = 0.2hMpc−1 for three independent MCMC
chains, where n denotes the sample index. The chain shown in green started from the true
initial conditions ŝtrue while the other two chains started from random initial conditions ŝ.
Each chain started from a different initial β value, with all quickly converging to the same
value. Dashed black line indicates the ground truth value β0.

offset is around 1.8%. This is most likely due to our choice to employ a second-order bias
expansion for the inference. We generated the mocks at a higher cutoff, and thus they
require more bias terms to describe at the lower cutoff used for the inference.

The right panel of Fig. 8.3 displays the 68% confidence-level error bars for β, denoted as
σF(β), obtained through the EFT likelihood across varying Λ values. For the lowest cutoff,
σF(β) slightly exceeds 1%, whereas for the two higher cutoffs, it reduces to 0.71% and
0.66%, respectively. The reduction in error bar size with increasing cutoff was anticipated,
as a larger Λ permits the inclusion of more modes in both the forward model and the
likelihood, thereby providing additional information. We can also compare the behavior of
σF(β) as a function of Λ with the ideal expectation from mode counting, σF(β) ∝ N

−1/2
mode(Λ),

finding very rough agreement. More precisely, the error bar σF(β) improves more rapidly
than the mode scaling between Λ = 0.15hMpc−1 and Λ = 0.18hMpc−1, while between
Λ = 0.18hMpc−1 and Λ = 0.2hMpc−1, it shrinks at a lower rate than estimated from
mode counting. Note however that the simple mode counting ignores the varying sensitivity
to a change in β of the linear power spectrum as a function of k.

Turning our attention to Mock B, this data set is generated using the second-order Eu-
lerian bias and sampled with both the second-order Eulerian and second-order Lagrangian
biases. The left panel of Fig. 8.4 shows the inferred β for both Eulerian and Lagrangian
bias cases. In the instance of Eulerian bias, we observe that the residual systematic bias
remains below 1% across all considered cutoffs. Additionally, the ground truth value of β
is consistently recovered within 1σ. Conversely, when using the Lagrangian bias model for
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Figure 8.2: The normalized auto-correlation function for parameter β inferred at Λ =
0.2hMpc−1. In the figure we also display the correlation length value τ together with
the maximum separation M between the samples considered, both of which are defined
in App. B. The correlation length of β is estimated to be τ ≃ 244 samples. In the lower
panel, we zoom into the first 1800 samples of the chain.

inference, a slightly higher systematic bias is evident. Specifically, for Λ = 0.15hMpc−1

and 0.18hMpc−1, this bias hovers around 1%, while for Λ = 0.2hMpc−1, it increases
somewhat to 1.7%. This is consistent with what we found for Mock A, and would likely
be solved by going to a higher order in bias in the inference.

In the right panel of Fig. 8.4, we show the inferred 68% CL error bar σF(β) for the
Mock B at the different cutoffs. We find that in the case of both bias models the size of
the error bar is shrinking with increasing Λ. This trend aligns with our expectations, as a
larger Λ implies the inclusion of more modes in both the forward model and the likelihood.

Comparing the error bar size, σF(β), between the Eulerian and Lagrangian models
shows that the error bar is smaller in the case of the Lagrangian bias model. This difference
is likely attributable to the construction of bias operators in these models. In the Eulerian
bias model, bias operators are constructed using the filtered matter field, δΛ. This second
filter (in addition to the one applied to the initial conditions) removes some mode-coupling
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Figure 8.3: Inference results for the Mock A. Left panel shows inferred BAO scale relative
to ground truth obtained using Lagranigan bias for sampling. FreeIC are represented using
circle marker and FixedIC using a square. On the right we show the 68% CL error bar on
the BAO scale, σF(β), as a function of cutoff Λ.
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Figure 8.4: Inference results for Mock B. The left panel displays the inferred BAO scale
relative to the ground truth, where the BAO scale is sampled alongside the initial condi-
tions. The Lagrangian bias points, computed for the same values of Λ, have been slightly
displaced horizontally for better visibility. On the right, we show the 68% CL error bar,
σF(β), as a function of the cutoff Λ. The results obtained using the Lagrangian bias are
depicted in blue, while those obtained using Eulerian bias are shown in orange.

contributions that are under control and kept in the Lagrangian bias model, which only
filters the initial conditions (both bias models of course use the same likelihood filter).
The downside of the Lagrangian approach is the higher computational cost due to the
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additional density assignments needed.

In Fig. 8.5, we show posteriors of parameters sampled on the Mock B dataset using
Λ = 0.18hMpc−1. The two panels correspond to the Eulerian and Lagrangian biases,
respectively. Mock B was generated at Λ0 = 0.3hMpc−1 with σϵ = 0.9. From Eq. (6.11),
we find that this will correspond σϵ ≈ 0.41 at Λ = 0.18hMpc−1. We see that the inferred
value of σϵ is indeed consistent with the expected value within errors. However, we notice
that σϵ,2 is now larger than zero. This elevation in noise level is due to the fact that
inference is performed at Λ < Λ0. Since the model is nonlinear, the modes between Λ
and Λ0 which are integrated out lead to additional effective noise contributions, as shown
explicitly in [71] and at the level of renormalization-group equations in [108].
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Figure 8.5: Posterior of parameters for the FreeIC inference in the case of Mock B. Left
panel (a) represents the Eulerian bias model while the right panel (b) represents the La-
grangian bias. The dotted gray line indicates the ground truth value β0 in each case. The
inference was performed at Λ = 0.18hMpc−1 in both cases.
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Figure 8.6: Diagram of two methods of BAO inference; field level inference (top) and power
spectrum-based inference with and without reconstruction (bottom). The reconstruction
step includes the generation of a discrete tracer catalog from δg, as described in the text

8.4 Comparing the field-level results to the recon-

struction approach

8.4.1 BAO Reconstruction Procedure

We now describe how we implement a BAO reconstruction pipeline on our mock data. The
initial step involves generating mock datasets using the LEFTfield code. The parameters
chosen for the creation of these datasets are aligned with those employed in the field-
level inference (as described below) to maintain consistency across the two analyses. This
includes the use of the same bias parameters, noise levels, and the value for β. A flowchart
summarizing both analyses is shown in Fig. 8.6.

We adopt the standard reconstruction procedure, which is based on the algorithm
introduced by [50] and summarized in Chapter 5.2. However, before this can be applied,
we need to convert the density distribution on a grid (of size NΛ0 = 1923, where Λ0 =
0.3hMpc−1 is the cutoff value used to generate the mock) generated by the LEFTfield

code to a catalog of discrete “tracer” positions. This is done by first replacing the Gaussian
likelihood used in the EFT likelihood with a Poisson process, which generates a discrete
tracer count Ni in each voxel i. For the average tracer number density n̄g, we adopt the
value of 1/Pϵ used for the mocks employed in the field-level analysis. We then assign
random positions to each of the Ni tracers within the voxel i.

Once the mock catalog is obtained, we proceed with the reconstruction. To ensure
a fair comparison with the field level approach and guarantee that both methods have
access to the same k-modes, we carefully select the smoothing scale and grid sizes. The
choice of the smoothing scale is particularly important, given that the field-level approach
employs a sharp-k filter, while standard reconstruction involves a Gaussian filter. We
choose the Gaussian smoothing scale R = 1

Λ
. We consider this to be a conservative choice
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for the comparison, as it allows for a significant contribution from modes with k > Λ in
the standard reconstruction approach, while these modes are excluded from the field-level
analysis.

The reconstruction proceeds as follows.

1. Smooth the density field δg using a Gaussian filter S(k,R) with a smoothing scale
R: δg(k) → S(k,R)δg(k).

2. Using the smoothed density field, we find the estimated displacement ψ, where

ψ(k) ≡ −i k
k2
S(k,R)

δg(k)

bδ
. (8.3)

3. We interpolate ψ to find its value at the position of each tracer and use it to move
the tracers.

4. Once all the tracers have been shifted, we use the nearest-grid-point (NGP) assign-
ment scheme and a grid of size NΛ0 to obtain the “displaced” density field δd. Notice
that this operation removes a large fraction of the large-scale perturbations in δg.

5. We generate a spatially uniform grid of particles and shift them by ψ to create the
“shifted” field δs. The assignment scheme used to find δs is again NGP, and the grid
size is NΛ0 .

6. The reconstructed density field is obtained as δrecg = δd − δs, where the field −δs
re-instates the large-scale perturbations removed from δd.

7. Next, we resize the reconstructed field to a grid of size NΛ
g to make sure we keep only

the modes below the cutoff.

8. Finally, we measure the power spectrum of the reconstructed field, P rec
g , with kmax =

Λ.

As an illustration, the left panel of Fig. 8.7 displays the oscillatory part of the power
spectrum averaged over 500 Mock A-like realizations, for both pre- and post-reconstruction
cases. Post-reconstruction, the wiggles become significantly more pronounced.

Finally, to obtain the BAO scale parameter β and its uncertainty, we use a maximum-
likelihood approach, where all parameters apart from β are fixed to their ground truths.
For a given value of Λ, we calculate the power spectrum likelihood LPS for a set of {βi}
values, where

−2 logLPS(β) =
(Pdata(k)− Ptheory(k, β))

2

Cov[Pdata(k)]
+ const. (8.4)

Here, Pdata(k) represents the power spectrum of the reconstructed mock data from which
we aim to infer the BAO scale, and Ptheory(k, β) is the theoretical prediction for the recon-
structed power spectrum for different β values. We find the latter by averaging over 500
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1Figure 8.7: The left panel shows the oscillatory part of the power spectrum averaged over
500 Mock A-like realizations. We show this for both the pre- and post-reconstructed power
spectrum (for Λ = 0.2hMpc−1). We see that following the reconstruction, the wiggles on
smaller scales become more pronounced. The right panel shows the inferred error bar
σPS(β) on the BAO scale using pre- and post-reconstruction power spectrum. The gain in
BAO scale precision due to reconstruction increases as Λ increases.

samples, each sharing the same cosmological, bias, and noise parameters at fixed β, but
featuring independent realizations of the initial conditions. We use linear binning to find
the power spectrum. The forward model, specified by Λ0, as well as all bias terms and σϵ
are fixed at the values used for generating the mock. It is worth noting that Ptheory(k, β)
already incorporates the stochastic contributions Pϵ. We use the linear covariance

Cov[Pdata(k)] = 2
[Ptheory(k, β0)]

2

mk

, (8.5)

where mk is the number of modes inside a bin. Since the covariance is independent of β,
the normalization constant in Eq. (8.4) is irrelevant.

We then fit a parabola to the set of {βi,−2 lnLPS(βi)}. The maximum-likelihood value
of β, denoted as β̂, is located at the minimum of this parabola. The error bar, σPS(β),
can be estimated by finding the point at which −2 logLPS increases by 1. Note that
we apply this inference procedure using LPS both for the pre- and post-reconstruction
power-spectra, as depicted in Fig. 8.6. The improvement in BAO scale determination
after reconstruction is demonstrated in the right panel Fig. 8.7. Notice that the relative
improvement grows with with increasing Λ, which is expected since the sharpening of the
BAO by reconstruction is more pronounced at higher k.

Compared to the field-level approach, which jointly infers all bias and stochastic pa-
rameters, this analysis strongly favors the standard power-spectrum-based method. By
conducting the reconstruction at the same cutoff used to generate the mock, we give access
to the complete information about the mock, and avoid the model mismatches that the
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field-level analysis had to overcome. Additionally, we fix the values of the bias parameters,
whereas in practice, jointly inferring the values of the bias parameters would introduce
further uncertainties into the inference process and enlarge the error bars. These issues
are clearly worth revisiting in the future.

8.4.2 Inference results and comparison with the field level

In this section, we compare the results of the power spectrum analysis (before and after
reconstruction) with the field-level inference presented in the previous section.

We begin with Mock A, presenting in Fig. 8.8 the ratio of error bars on β̂ derived
from the two power-spectrum-based analyses, σPS, to those obtained at the field level,
σF. Compared to the field level, the pre-reconstruction power spectrum yields an error bar
between 1.15 and 2 times larger. As expected, this difference between σPS and σF decreases
once we perform reconstruction, where we find σPS to be at most 1.5 times larger than σF.
Note that the improvemend of field level over power spectrum generally increases with the
cutoff. There are several possible explanations for this, which we turn to in the discussion
Sec. 8.5.
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Figure 8.8: Inferred error bar σPS(β) on the BAO scale using pre- and post-reconstruction
power spectrum, relative to that in the field-level inference σF, in the case of Mock A. This
mock was generated (and sampled, in case of field-level inference) using Lagrangian bias.
Pre-reconstruction results are depicted using squares, whereas post-reconstruction results
are represented by stars. It is evident that, even comparing to power spectrum after BAO
reconstruction, the field-level BAO scale inference is more precise, by up to a factor of 1.4,
corresponding to a ∼ 2 times larger survey volume.
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Figure 8.9: Inferred error bar σPS(β) on the BAO scale from the post-reconstruction power
spectrum, relative to that in the field-level inference σF, in the case of Mock B. Blue points
indicate the scenario where the Lagrangian bias is used in the field level inference, while
orange points correspond to the Eulerian case (the reconstruction results are the same in
both cases). The field-level error bar is consistently smaller, regardless of which bias basis
is used in the field-level inference.

We perform a similar analysis in the case of the Mock B, the results of which are
summarized in Fig. 8.9. In the plot, the orange points represent the comparison of the
post-reconstruction power spectrum variance σPS to the case when we use Eulerian bias
expansion in the field level. Blue points correspond to Lagrangian bias expansion being
used for the field level. We find that results here are consistent with the ones in the case
of Mock A: σPS (after reconstruction) is between 1.1 and 1.6 times larger than σF, with
the improvement generally increasing toward higher Λ.

8.5 Discussion and Conclusions

In this chapter, we have presented the outcome of field-level BAO scale inferences, which
jointly infer the BAO scale together with the initial conditions, bias and stochastic parame-
ters via the LEFTfield code, applied to mock data in the rest frame (without redshift-space
distortions). The mock datasets were created using bias parameters taken from a fixed ini-
tial condition (FixedIC) analysis on halo catalogues, and at a substantially higher cutoff
(or resolution) than those used in the inference. By introducing model misspecification in
this way, we attempt to make our mocks as realistic as possible. The primary distinction
between the two sets of mock data is in the bias expansion model employed for their gen-
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eration: Mock A was produced using the second-order Lagrangian bias, whereas Mock B
used the second-order Eulerian bias.

For Mock A, the analysis was done only using the second-order Lagrangian bias ex-
pansion in the inference. It showed that the systematic bias in β stays below 1% and is
effectively negligible for all Λ values, except for the highest cutoff, where it increases to
about 1.8%. We plan to investigate this increase in systematic bias in β in the future by
going to the third order in the bias expansion.

For the Eulerian-bias Mock B, our analysis included both second-order Lagrangian
and Eulerian biases. For the Eulerian bias, we find that the remaining systematic bias is
consistent with zero and decreases as Λ increases. In the case of Lagrangian bias expansion,
the remaining systematic bias is slightly higher. Again, it is possible that the residual
systematic shift in the Lagrangian analysis decreases once we go to a higher order in bias
expansion. Furthermore, we find that the error bar in the case of the Lagrangian analysis
is lower than in the case of Eulerian analysis. This is likely connected to the approaches
used for constructing bias operators in these models. For the Eulerian bias model, the
construction of bias operators involves an additional filtering of the matter field, beyond
the initial condition filtering. This extra filtering step results in the omission of some mode-
coupling contributions, which are preserved in the Lagrangian bias model. The latter only
applies filtering to the initial conditions. Note that both models utilize the same likelihood
filter.

The standard approach to BAO inference is based on applying a reconstruction proce-
dure to the tracer catalog, and then measuring the BAO scale in the post-reconstruction
power spectrum. In Sec. 8.4, we detailed the application of this reconstruction algorithm
to our mock data. Throughout the reconstruction process, we employed the same Λ0, and
fixed the bias parameters to the values that were used to generate the mock datasets,
thereby giving a significant benefit to the reconstruction-based analysis pipeline. Figures
8.8 and 8.9 summarize the comparison between the error bars obtained from the field level
analysis, σF, and those derived using the power spectrum, σPS. These figures illustrate
that, depending on the mock and the value of Λ, σF is smaller than σPS by up to a factor
of two (pre-reconstruction), or between 1.4 and 1.6 (post-reconstruction), the latter corre-
sponding to an effective doubling of the survey volume. Additionally, we observe that the
improvement over the power spectrum analysis increases as more modes are included with
increasing Λ.

These results are clearly very encouraging for the field-level approach. However, one
might naturally ask two questions about these findings: first, where does the additional
information come from? As argued in [112], the field-level approach extracts the BAO
feature not only in the power spectrum, but also in higher n-point functions of the tracer,
such as the bispectrum, as it does not rely on any compression of the data. In addition, our
use of a 2LPT forward model means that the change of the local BAO scale in the presence
of large-scale density perturbations (due to the different local expansion in the separate-
universe picture) is consistently captured. On the other hand, the Zeldovich approximation
used in Eq. (8.3) does not describe this effect correctly [124]. Both of these effects are
expected to become more significant as smaller scales are included in the analysis, which
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could explain the increasing improvement that we find toward smaller scales (higher Λ).
It is worth noting that the maximum wavenumbers included in our analysis are some-

what lower than those chosen in current BAO reconstruction analyses. Specifically, these
choose a smoothing kernel in the displacement construction on similar scales as the one
used here, but then measure the post-reconstruction power spectrum to higher k ∼ 0.3−
0.5hMpc−1. This approach assumes that the BAO are still well described by the pertur-
bative model on scales where perturbation theory no longer applies, an assumption which
needs to be carefully validated. On the other hand, the field-level approach by construction
requires that the model describe all aspects of the data up to the maximum scale included,
which precludes us from pushing this approach beyond perturbative scales.

The second natural question is whether these results apply to actual nonlinear tracers.
Thus, our next step will be to transition from mock data to dark matter halos in full
N-body simulations, and perform a similar comparison there. We are also advancing our
redshift-space modeling [130], which will enable an anisotropic BAO scale inference in
terms of line-of-sight and perpendicular components. Moreover, we plan to jointly infer
the BAO scale while varying cosmological parameters governing the growth, such as σ8
and the growth rate f .

Finally, the field-level forward model also enables a consistent Bayesian inference of
the BAO scale using the BAO reconstruction technique, by way of simulation-based infer-
ence (SBI) [137], allowing us to consistently marginalize over bias, noise and cosmological
parameters. We also plan to explore this direction in the near future.
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Chapter 9

Summary and Outlook

In this thesis, we have analyzed the application of field-level inference to BAO scale esti-
mation. The main results are presented in Chapter 7 and Chapter 8.

In Chapter 7, we applied this analysis to rest frame halo catalogs and we kept the initial
conditions fixed to the ground truth. The forward model we used was a combination of
third–order LPT with the third–order Lagrangian bias expansion. We looked into the
remaining systematic bias in the BAO scale and summarised the main findings in Fig. 7.4
and Tab. 7.2. We found that most of the samples have the remaining systematic bias below
1%. Only the most biased sample, with the most massive halos, had a remaining systematic
bias up to 2%. We compared our field-level analysis to standard power spectrum–based
analysis, but without BAO reconstruction. We have found that the field level error bar
is between 1.1 and 3.3 times smaller than that of the power spectrum, depending on the
sample considered.

In Chapter 8, we conducted a joint field-level inference of the BAO scale alongside the
initial conditions. For this analysis, we used mock data generated with the LEFTfield code.
To make the mocks more realistic, we produced them at Λ values significantly higher than
those used in the inference and incorporated bias coefficients obtained from the FixedIC
inference on halo catalogs. Our results demonstrate that this type of analysis is not only
feasible but also exhibits very low remaining systematic bias. Focusing on the results
obtained with the Eulerian bias model, we found that the remaining bias is consistently
below 1% and effectively zero in all cases. For the Lagrangian bias model, the bias is slightly
larger, reaching up to 1.8% at Λ = 0.2. Comparing these findings to the standard BAO
reconstruction applied to the same mock data, we observed that the field-level inference
yields error bars 1.4 to 1.6 times smaller than those from the reconstruction-based analysis.

In the near future, we aim to investigate the source of additional information about the
BAO in field-level analysis. To address this, we plan to compare the standard Zel’dovich
approximation (1LPT) with the 2LPT analysis on the same mock data. If the error bars
on the BAO scale are larger with the 1LPT model compared to the 2LPT model, it would
suggest that the information gain observed in [12] is attributable to the use of 2LPT.
Conversely, if the error bars are similar, the additional information likely originates from
higher-order n-point functions.
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We also plan to apply the BAO analysis to rest-frame halo catalogs and compare these
results with our existing findings. Preliminary work in this area indicates that the field-level
BAO inference is consistent with our results from mock data.

Let us also note that the computational effort required for full field-level inference,
including BAO scale inference alongside other cosmological parameters, is expected to be
manageable. This conclusion is based on the short correlation length for the BAO, as
demonstrated in Section 8.

In the long term, our goal is to apply this analysis to observed data. Two major steps
are required to achieve this. Firstly, we need to integrate the anisotropic BAO scale into
our analysis. To accomplish this, incorporating redshift-space distortions (RSD) into our
model is essential. Fortunately, substantial progress has already been made on RSD within
our group [130], which should make this step relatively straightforward.

The second step involves incorporating masks into our code. This is expected to be
more challenging, as it requires masking small regions of the sky in a manner consistent
with the Effective Field Theory of Large Scale Structure (EFTofLSS).

The general methodology combines BAO reconstruction with full-shape galaxy n-point
functions. As demonstrated in [102], applying this technique to the power spectrum en-
hances cosmological constraints. However, challenges arise in accurately modeling the
covariance and developing a theoretical model for the reconstructed power spectrum. This
is where the LEFTfield forward model, in conjunction with Simulation-Based Inference
(SBI), becomes particularly advantageous. The SBI approach eliminates the need for ex-
plicit covariance modeling, greatly simplifying the process. However, the primary challenge
with SBI is the need for a sufficient number of simulations to effectively train the model.
LEFTfield addresses this by providing a fast and reliable method for generating the re-
quired simulations. By combining SBI and LEFTfield, we can analyze both pre- and
post-reconstructed spectra on galaxy density fields. Extending the analysis beyond the
power spectrum to include the bispectrum and trispectrum within this framework is much
simpler than using more traditional n-point function-based methods. This combination
of SBI and LEFTfield has already been applied to σ8 [90] so extending it to BAO scale
inference should be straight forward.



Appendix A

Power spectrum covariance for fixed
phases

In this section we derive the power spectrum covariance in the case where the initial
phases are fixed. Inside a thin shell bin of magnitude k, which we keep fixed throughout,
the prediction for the halo power spectrum can be written as

Ph(k) =
1

mk

∑
q

|δdet(q) + ε(q)|2, (A.1)

with the sum running over all the modes q inside the bin of magnitude k. δdet(q) ≡
δdet(q|δin, {bO}) is the deterministic halo density field (for fixed phases δin) which can be
found using the forward model, ε(q) is the noise field and mk is the number of modes inside
that bin. We are interested in the variance of Ph(k), i.e.,

Varfix[Ph(k)] = ⟨P 2
h (k)⟩ − ⟨Ph(k)⟩2 (A.2)

=
1

m2
k

||q,q′|−k|<∆k/2∑
q,q′

(
⟨|δh(q)|2|δh(q′)|2⟩ − ⟨|δh(q)|2⟩⟨|δh(q′)|⟩2

)
, (A.3)

in the case where δdet(k) is fixed. We start by focusing on the right-hand side of Eq. (A.3).
The expected value ⟨|δh(q)|2⟩ for a single mode q can be written as

⟨|δh(q)|2⟩ =
∫

DεP(ε|Pε) |δdet(q) + ε(q)|2 , (A.4)

where P(ε|Pε) is a multivariate Gaussian given by

P(ε|Pε) =
1√

(2πPε)mk

exp

[
−1

2

mk∑
p

|ε(p)|2
Pε

]
(A.5)

and Pε ∝ σ2
ε is the noise power spectrum. Notice that in Eq. (A.4) we integrate only over

ε, since the value of δdet is fixed. Inserting

|δdet(q) + ε(q)|2 = |δdet(q)|2 + 2Re[δdet(q)ε
∗(q)] + |ε(q)|2 (A.6)



98 A. Power spectrum covariance for fixed phases

in the integral of Eq. (A.4), only the first two terms will survive. The last term integrates
to zero since P(ε|Pε) is a symmetric function. Therefore, Eq. (A.4) becomes

⟨|δh(q)|2⟩ =
1√

(2πPε)mk

∫
Dε(p) exp

[
−1

2

mk∑
p̸=q

|ε(p)|2
Pε

]
(A.7)

×
∫

Dε(q) exp
[
−1

2

|ε(q)|2
Pε

] (
|δdet(q)|2 + |ε(q)|2

)
. (A.8)

This allows us to perform the integration for a single mode q and obtain

⟨|δh(q)|2⟩ = |δdet(q)|2 + Pε . (A.9)

This holds equivalently for q′, while the result for the whole bin can be found by summing
over all the modes. Now let us focus on the first term in Eq. (A.3), ⟨P 2

h (k)⟩, where
⟨|δh(q)|2|δh(q′)|2⟩ = ⟨|δdet(q) + ε(q)|2|δdet(q′) + ε(q′)|2⟩ can be expanded as

⟨|δh(q)|2|δh(q′)|2⟩ = ⟨(|δdet(q)|2 + 2Re[δdet(q)ε
∗(q)] + |ε(q)|2)

× (|δdet(q′)|2 + 2Re[δdet(q
′)ε∗(q′)] + |ε(q′)|2)⟩

= ⟨|δdet(q)|2|δdet(q′)|2 + |δdet(q)|2|ε(q′)|2 + |ε(q)|2|δdet(q′)|2 (A.10)

+ |ε(q)|2|ε(q′)|2 + 4Re[δdet(q)ε
∗(q)]Re[δdet(q

′)ε∗(q′)]⟩ . (A.11)

From the previous calculation of ⟨|δh(q)|2⟩, we already know how to calculate the expected
values encountered in Eq. (A.10). What is left for us to understand are the ones shown in
the last line, Eq. (A.11). Regarding the first term, since ε is a random Gaussian field, by
Wick’s theorem we obtain

⟨ε(q)ε∗(q)ε(q′)ε∗(q′)⟩ = ⟨ε(q)ε∗(q)⟩⟨ε(q′)ε∗(q′)⟩
+ ⟨ε(q)ε(q′)⟩⟨ε∗(q)ε∗(q′)⟩+ ⟨ε(q)ε∗(q′)⟩⟨ε∗(q)ε(q′)⟩

= P 2
ε (1 + δq,−q′ + δq,q′) . (A.12)

Regarding the last term from Eq. (A.11), we can expand it as

⟨4Re[δdet(q)ε∗(q)]Re[δdet(q′)ε∗(q′)]⟩ = ⟨[δdet(q)ε∗(q) + δ∗det(q)ε(q)][δdet(q
′)ε∗(q′) + δ∗det(q

′)ε(q′)]⟩
=

〈
δdet(q)ε

∗(q)δdet(q
′)ε∗(q′) + δdet(q)ε

∗(q)δ∗det(q
′)ε(q′)

(A.13)

+ δ∗det(q)ε(q)δdet(q
′)ε∗(q′) + δ∗det(q)ε(q)δ

∗
det(q

′)ε(q′)
〉
.

(A.14)

Let us inspect how to calculate the expectation value of the first contribution of Eq. (A.13),

⟨δdet(q)ε∗(q)δdet(q′)ε∗(q′)⟩ = 1√
(2πPε)mk

∫
Dε(p) exp

[
−1

2

mk∑
p̸=q

|ε(p)|2
Pε

]

×
∫

Dε(q) exp
[
−1

2

|ε(q)|2
Pε

]
δdet(q)ε

∗(q)δdet(q
′)ε∗(q′)

= |δdet(q)|2Pε δq,−q′ . (A.15)
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The calculation for the other three contributions of Eqs. (A.13)–(A.14) follows similarly.
Collecting terms, we have that

⟨|δh(q)|2|δh(q′)|2⟩ = |δdet(q)|2|δdet(q′)|2 + |δdet(q)|2Pε + |δdet(q′)|2Pε

+ P 2
ε (1 + δq,−q′ + δq,q′) + 2|δdet(q)|2Pε(δq,−q′ + δq,q′) (A.16)

By inserting Eq. (A.16) and the values of Eq. (A.9) for q and q′ into the expression for
the variance of the power spectrum given by Eq. (A.3), we find that

Varfix[Ph(k)] =
1

m2
k

||q,q′|−k|<∆k/2∑
q,q′

[
⟨|δh(q)|2|δh(q′)|2⟩ − ⟨|δh(q)|2⟩⟨|δh(q′)|⟩2

]
=

1

m2
k

||q,q′|−k|<∆k/2∑
q,q′

[
|δdet(q)|2|δdet(q′)|2 + Pε(|δdet(q)|2 + |δdet(q′)|2) + P 2

ε

+ (P 2
ε + 2|δdet(q)|2Pε) (δq,−q′ + δq,q′)− (|δdet(q)|2 + Pε)(|δdet(q′)|2 + Pε)

]
.

(A.17)

Summing over q′, we finally obtain the power-spectrum variance when the phases of δ are
fixed,

Varfix[Ph(k)] =
2Pε

m2
k

||q|−k|<∆k/2∑
q

(2|δdet(q)|2 + Pε) . (A.18)

Using a mock generator for δdet = b1δ in which the phases of δ are fixed, we verify in Fig.
A.1 that this prediction accurately matches the variance of 103 power spectra measured in
a 512h−1Mpc box with 1283 cells.
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Figure A.1: Ratio of the variance of 103 power spectra with fixed phases to the prediction
obtained in Eq. (A.18) for a variety of bias and noise parameters.
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Appendix B

Details of Data Analysis

B.1 Correlation length

In this section, we describe in detail how we conducted the analysis of field-level chains.
We follow the same procedure for both mocks. For each bias expansion used to perform
the inference, we analyze three Λ values. For each Λ, we run three chains. For one chain,
we leverage our knowledge of the ground truth for the initial conditions and start sampling
from there. The other two chains begin from random initial conditions, with a different seed
used for each to ensure they start from a unique set of initial conditions. All three chains
also had slightly different initial values for the cosmological parameters sampled. This
approach ensured that the inferred value of BAO is independent of the sampler’s starting
point. As mentioned in the Sec. 8.3.1, one chain used Gaussian prior for bias, while the
other two used uniform priors; however, these priors were essentially uninformative, as
the bias parameters are well constrained by the data (at least when sampling only β as
cosmological parameter),

To perform the analysis, we combine the three independent chains into one large chain,
which consists of N elements; for a parameter f , we label the sample points as {fs}, after
discarding the burn-in portion of each chain, which was about 5 correlation lengths. To
denote the mean of the dataset, we use ⟨fs⟩ ≡ f̄ = 1

N

∑N
s=1 fs. We continue running the

chains until we achieve 100 effective samples of the β parameter for each dataset and Λ
considered. The number of effective samples is calculated by dividing the total number
of samples, N , by the auto-correlation length. The auto-correlation length for an MCMC
chain indicates the number of steps required within the chain to obtain samples that are
independent of each other. Correlation length can be estimated using the relation

τ̂f (M) = 1 + 2
M∑
τ=1

ρ̂f (τ), (B.1)

where ρ̂ is the normalized autocorrelation function

ρ(τ) =
A(τ)

A(0)
, (B.2)
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and
A(τ) = ⟨fsfs+τ ⟩s − ⟨fs⟩2s. (B.3)

is the auto-correlation function. M is the maximum separation between the samples con-
sidered. As the best choice for M , [127] suggests using the smallest value of M such that
M ⩾ Cτ̂f (M) for a constant C chosen to minimize the covariance of the estimator. This
is usually achieved for values of C close to 5. Plots indicating τf values of β for chains an-
alyzed in the chapter are shown below. In the tables below, we summarize the correlation
lengths for the parameter β.

Λ [hMpc−1] 0.15 0.18 0.2
τ

Chain 1 210 683 101
Chain 2 165 728 132
Chain 3 175 609 261

Table B.1: Correlation length values for chains run on the Mock A using Lagrangian bias.

Λ [hMpc−1] 0.15 0.18 0.2
τ

Chain 1 350 252 507
Chain 2 272 771 728
Chain 3 212 123 609

Table B.2: Correlation length values for chains run on the Mock B using Lagrangian bias.

Λ [hMpc−1] 0.15 0.18 0.2
τ

Chain 1 186 590 735
Chain 2 105 606 744
Chain 3 800 522 710

Table B.3: Correlation length values for chains run on the Mock B using Eulerian bias.

B.2 Parameter posteriors: marginalized likelihood

Below we present the corner plots showing posterior distribution of parameters sampled
for both mocks and cutoffs. Results for the Mock B are summarized in the Fig. B.1, where
again we denote Lagrangian bias results in blue and Eulerian in orange. We notice the
same trend of increasing noise as we did in Sec. 8.3.2. In Fig. B.2, we present the results
for Mock A. The effective noise also grows in the case of Mock A, but in this case it is σϵ
that grows more significantly, rather than σϵ,2.



B.2 Parameter posteriors: marginalized likelihood 103

B.2.1 Parameter posteriors: non-marginalized likelihood

In this section, we present the results of the inference obtained using a likelihood that was
not marginalized over the bias parameters. For this analysis, uniform priors were applied
to the bias parameters. Specifically, a uniform prior of U(0.01, 10) was used for bδ, while
all other bias parameters were assigned a uniform prior of U(−30, 30). For the inference
process, two chains per sample were initiated, each starting from random initial conditions
ŝ and a different initial value of β. These chains converged quickly to a similar β value,
as illustrated in Figure B.3, which displays the trace plot of β for Mock B sampled with
Eulerian bias at Λ = 0.15hMpc−1. The chains were run until 100 effective samples were
obtained.

In Fig. B.4 we show the auto-correlation plot for one of the chains. We see that the
correlation length for β is very short even in the case when the non-marginalized likelihood
is used. In fact, the correlation length is shorter than for the marginalized likelihood in
this case (Tab. B.3), in contrast to the findings for σ8 in [71]. This finding is clearly worth
further investigation; note that the parameter posteriors show no significant correlations
of β with any other parameter.

Finally, Figure B.5 displays the corner plots for all sampled parameters, including the
mean value and the size of the error bars for each parameter. Comparing the size of the
error bars for σ(β) in this plot with those in Figure B.1a reveals that the error bar size for
β does not depend on the type of likelihood used, as expected. Furthermore, the values of
σϵ and σϵ,2 are consistent with those obtained using the marginalized likelihood.

The inferred values of the bias parameters differ from those used to generate the mock
data, due to the mismatch in Λ between the generation and sampling of the mock data [107].
That is, the bias parameters and stochastic parameters are expected to run with Λ, while
the inferred cosmological parameter, in this case β, should be consistent with the ground
truth value.

The same analysis using the non-marginalized likelihood has been applied to Mock A
sampled with the Lagrangian bias. The results of this analysis are summarized in Fig. B.6.
Similarly as in the case of mock B, we find that the error bar σ(β) is the same as when
the marginalized likelihood is used for the same cutoff.
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Figure B.1: Posterior of parameters for the inference performed on Mock B. Top two panels
(orange color) corresponds to Eulerian bias, while the lower two panels (blue) correspond
to Lagrangian bias. The intermediate cutoff Λ = 0.18hMpc−1 behaves similarly, and is
not shown here for brevity.
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Figure B.3: Trace plot for parameter β in chains generated using the non-marginalized
likelihood. Inference was performed at Λ = 0.15hMpc−1 for Mock B.

0 10000 20000 30000 40000 50000

∆n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5

ρ
(β

)

τ =9.11e+01
M =456

0 500 1000 1500 2000

∆n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5

ρ
(β

)

τ =9.11e+01
M =456

Figure B.4: The normalized auto-correlation function for parameter β inferred at Λ =
0.15hMpc−1 using the non-marginalized likelihood. We also show the correlation length
value τ together with the maximum separation M between the samples considered. The
lower panel zooms in on the first 3000 samples.



B.2 Parameter posteriors: marginalized likelihood 107

0.96 0.98 1.00

β

4

5

6

7

b ∇
2
δ

0.16

0.18

0.20

0.22

0.24

b K
2

−0.265

−0.260

−0.255

b2 δ

1.36

1.38

1.40

b δ

10

15

20

σ
ε,

2

0.32

0.34

0.36

0.38

0.40

σ

β = 0.9874 ± 0.0097

0.33 0.36 0.39

σ

σ = 0.357 ± 0.012

10 20

σε,2

σε,2 = 13.817 ± 2.426

1.36 1.38

bδ

bδ = 1.376 ± 0.007

−0.266 −0.260

b2
δ

b2
δ = -0.261 ± 0.002

0.17 0.20 0.23

bK2

bK2 = 0.200 ± 0.012

4 5 6 7

b∇2δ

b∇2δ = 5.551 ± 0.511

Figure B.5: Results of the joint FreeIC inference on the Mock B using non-marginalized
likelihood and Eulerian bias. We show the posterior for all noise parameters, bias param-
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