
Analyzing Training Dynamics of Deep
Neural Networks: Insights and Limitations

of the Neural Tangent Kernel Regime

Mariia Seleznova

Mai, 2024

Analyzing Training Dynamics of Deep
Neural Networks: Insights and Limitations

of the Neural Tangent Kernel Regime

Mariia Seleznova

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

Mai, 2024

ii

Erstgutachter/in: Prof. Dr. Gitta Kutyniok

Zweitgutachter/in: Prof. Dr. Mikhail Belkin

Drittgutachter/in: Prof. Dr. Stefanie Jegelka

Tag der Einreichung: 27.05.2024
Tag der mündlichen Prüfung: 07.11.2024

iv

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Gitta Kutyniok, for the continuous support,
guidance, and freedom to pursue research in the topics that interested me the most. Your
kindness and understanding meant a lot to me during the challenging times that I faced
after the start of the full-scale Russo-Ukrainian war.

I am also grateful to Prof. Dr. Mikhail Belkin and Prof. Dr. Stefanie Jegelka for agreeing
to review this thesis, and to Prof. Dr. Eyke Hüllermeier and Prof. Dr. Björn Ommer for
serving in the doctoral committee.

Furthermore, I am thankful to all my colleagues, many of whom have not only accompanied
me throughout this PhD journey but have also become cherished friends. In particular, I
would like to thank Edward (Dr. Hung-Hsu Chou) for the inspiring collaboration, which
has contributed to some of the results presented in this thesis, and for his wonderful sense
of humor. I would also like to thank Raffaele for all the meals that he cooked for me while I
was writing this thesis, and to Stefan for his help in navigating the complexities of German
bureaucracy.

I am grateful to my family and friends, who may not be familiar with the content of this
thesis, yet have provided me with unwavering support and encouragement.

Last but not least, I am immeasurably grateful to the Armed Forces of Ukraine for protecting
lives of my family and friends back home.

vi

vii

Zusammenfassung

Tiefe neuronale Netze (TNN) erzielen in unterschiedlichsten Anwendungsbereichen beein-
druckende Resultate und dennoch bleibt ihre zugrundeliegende Funktionsweise größten-
teils unverstanden. Empirische Beobachtungen wie die gute Generalisierbarkeit stark
überparametrisierter Netze stehen im Widerspruch zur klassischen statistischen Lerntheorie.
Das Training der Netzwerke kann aufgrund ihrer stark nicht-konvexen Verlustlandschaft nicht
mit klassischer konvexer Optimierung erklärt werden. Das Verständnis dieser Phänomene
erfordert die Entwicklung ganz neuer theoretischer Ansätze, und die Einführung des Neural
Tangent Kernels (NTK) in Jacot et al. (2018) erwies sich als ein signifikanter erster Schritt
in diese Richtung. Diese Methode analysiert die Netzdynamiken im sogenannten “infinite-
width limit” (Netzwerke mit unendlicher Breite). Unter bestimmten Annahmen befinden
sich diese Netzwerke dann im sogenannten “NTK-Regime”, das eine wichtige Rolle bei der
theoretischen Analyse der Netzwerk-Generalisierbarkeit und Konvergenz spielt.

Zwar ermöglicht das NTK-Regime eine komplette Charakterisierung von Netzwerken mit
unendlicher Breite, die Analyse lässt sich jedoch nicht direkt auf Netzwerke mit endlicher
Breite übertragen. Ziel dieser Doktorarbeit ist es, die Möglichkeiten und Grenzen des NTK-
Regimes für die Weiterentwicklung der Theorie des Deep Learning genauer zu beleuchten.
Der erste Teil der Arbeit zeigt basierend auf zwei Artikeln, dass es von den Hyperparametern
der zufälligen Initialisierung und dem Tiefe-zu-Breite-Verhältnis abhängt, ob sich ein
vollverbundenes Netzwerk im NTK-Regime befindet. Hierbei wird die Bedeutung der Drei-
Phasen-Initialisierung (erstmals erkannt von Poole et al. (2016)) – “ordered”, “chaotic”, und
“edge of chaos (EOC)” – genauer analysiert. Eine konkrete Charakterisierung der NTK
Streuung im “infinite-depth-and-width limit” (Netzwerke mit unendlicher Tiefe und Breite)
wird in allen drei Phasen aufgezeigt. Die Ergebnisse belegen ein exponentielles Wachstum
der NTK-Streuung mit der Netzwerktiefe in der EOC und der chaotischen Phase, jedoch
nicht in der geordneten Phase. Zusätzlich zeigen wir, dass der NTK der tiefen Netzwerke
während des Trainings nur in der geordneten Phase konstant bleibt. Die theoretisch erzielten
Ergebnisse werden mit einer umfangreichen Simulationsstudie belegt.

Der zweite Teil der Arbeit beschäftigt sich mit einem neuen Ansatz zur Analyse der Netzw-
erkdynamiken, der auf der NTK-Blockstruktur -Annahme beruht. Diese Annahme motiviert
sich aus dem “NTK-Alignment”-Phänomen, in dem sich der NTK von Netzwerken mit
endlicher Breite während des Trainings an die Zielfunktion anpasst. In der Klassifikation
mit TNN führt dies zu einer Blockstruktur in der Kernel-Matrix, bei der die Korrelationen
zwischen Datenpunkten derselben Klasse stärker sind als zwischen Datenpunkten ver-
schiedener Klassen. Durch die Annahme der NTK-Blockstruktur analysieren wir am Ende
des Trainings die Dynamik von TNN, die mit dem mittleren quadratischen Fehler trainiert
werden. Wir leiten die Dynamikgleichungen her, zerlegen sie in interpretierbare Phasen und
identifizieren eine Dynamikinvariante. Unsere Analysen zeigen, dass das aus empirischen
Studien bekannte Phänomen des “Neural Collapse (NC)” an speziellen Punkten in der
Dynamik auftritt. Zudem beleuchten wir die erforderlichen Annahmen für die Konvergenz
zum NC. Eine große Simulationsstudie belegt unsere theoretischen Erkenntnisse.

viii

Summary

The widespread use of Deep Neural Networks (DNNs) in various application has underscored
their effectiveness, yet the fundamental principles behind their success largely remain elusive.
Despite being highly overparametrized, DNNs often exhibit effective generalization, defying
predictions of classical statistical learning theory. Moreover, theoretical analysis of DNNs’
training falls outside of the scope of classical convex optimization theory, since DNNs’ loss
landscapes are highly non-convex. Addressing these challenges requires novel approaches to
studying DNNs’ training dynamics. The introduction of the Neural Tangent Kernel (NTK)
in Jacot et al. (2018) has been a significant step forward in this direction, as it greatly
simplified the analysis of DNNs’ dynamics in the infinite-width limit, where DNNs enter
the so-called NTK regime under certain conditions. This regime has played a pivotal role
in recent theoretical analyses of DNNs’ generalization and convergence.

While the NTK regime allows to completely describe the infinite-width limit of DNNs, it
cannot capture all the properties of realistic finite-width DNNs’ training dynamics. Thus,
the objective of this thesis is to determine possibilities and limitations of the NTK regime
for advancing the theory of deep learning. The first part of the thesis, comprising two
papers, focuses on the limitations of the NTK regime for the analysis of fully-connected
DNNs. Namely, our contributions demonstrate that whether a network is in the NTK
regime depends on the hyperparameters of random initialization and the network’s depth-
to-width ratio. Our results indicate the importance of the three phases of initialization,
identified in Poole et al. (2016): ordered, chaotic, and the edge of chaos (EOC). We derive
exact expressions for the NTK dispersion in the infinite-depth-and-width limit in all three
phases, and conclude that the NTK variability grows exponentially with depth at the
EOC and in the chaotic phase but not in the ordered phase. Additionally, we show that
the NTK of deep networks may stay constant during training only in the ordered phase.
Our contributions also include large-scale numerical experiments, which fully support the
theoretical findings.

The second part of the thesis introduces a novel approach to analyze DNNs’ training
dynamics based on the NTK block-structure assumption. This assumption is motivated by
the NTK alignment phenomenon, where the NTK of finite-width DNNs aligns with the
target function during training. For classification DNNs, this alignment gives rise to an
approximate block-structure in the kernel matrix, where the correlations between samples
from the same class are stronger than between samples from different classes. We employ
the NTK block-structure assumption to analyze the dynamics of DNNs trained with mean
squared (MSE) loss at the end of training. Namely, we derive the dynamics equations, break
the dynamics into interpretable phases, and identify a dynamics invariant. Our analysis
reveals that a prominent empirical phenomenon called Neural Collapse (NC) occurs in
certain fixed points of this dynamics, and provides necessary conditions for convergence to
NC. We provide large-scale numerical experiments on three common DNN architectures
and three benchmark datasets to support our theory.

x

Contents

1 Introduction 1
1.1 Challenges of Deep Learning Theory . 2

1.1.1 Overparametrization . 3
1.1.2 Implicit Bias . 4

1.2 Current Approaches to Study DNNs . 5
1.2.1 Neural Tangent Kernel . 6

1.3 Contributions . 7
1.3.1 Limitations of the NTK Regime . 7
1.3.2 Kernel Regime with Block-Structured NTK 9

1.4 Outline . 10

2 Background and Foundations 11
2.1 (Deep) Neural Networks . 11

2.1.1 Survey of NN Architectures . 14
2.1.2 Approximation Power of NNs . 16

2.2 Training . 17
2.2.1 Gradient Descent . 19
2.2.2 Backpropagation . 19
2.2.3 Gradient Flow . 22
2.2.4 Effects of Initialization . 23

2.3 Generalization . 25
2.3.1 Classical Generalization Bounds . 26
2.3.2 Modern Perspective on Generalization 28

2.4 Neural Tangent Kernel . 32
2.4.1 Infinite-Width Limit . 33
2.4.2 Training Dynamics in the NTK Regime 34
2.4.3 Generalization Bounds Based on the NTK 35
2.4.4 NTK Alignment . 36

2.5 Notation . 37

3 Contributing Papers 39
3.1 Can We Trust the NTK Theory? . 40

xii Contents

3.2 NTK Beyond the Infinite-Width Limit . 69
3.3 Neural (Tangent Kernel) Collapse . 109

4 Conclusions and Future Work 141

Bibliography 143

Chapter 1

Introduction

Over the past two decades, Deep Neural Networks (DNNs) have pushed forward the state of
the art in a wide range of applications. A prime example is image recognition, where DNNs
have long surpassed all other algorithms, and even human performance, by a large margin
(Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2015). Another example, especially
relevant at the time of writing this thesis, is natural language processing, where large
language models like BERT and GPT have recently come into the global spotlight (Brown
et al., 2020; Vaswani et al., 2017). Other areas where DNNs have shown impressive success
include drug discovery (Zhavoronkov et al., 2019), predicting folding behaviour of proteins
(Jumper et al., 2021), playing board games (Silver et al., 2016) and computer games (Mnih
et al., 2013), and many more. Embraced by scientists, companies, and governments, DNNs
have rapidly gained influence across diverse aspects of life.

As with great power comes great responsibility, the pervasive adoption of DNNs also caused
significant criticism: many authors voiced concerns about the use of deep learning for
safety-critical fields, such as autonomous driving and robotics, and for high-stakes decision
making, such as medicine or criminal justice (Rudin, 2019; Willers et al., 2020). The
criticism primarily stems from the fact that modern DNNs operate as black box models, i.e.,
it is currently impossible to provide meaningful performance guarantees for these models
and reliably explain their predictions to humans. This lack of trustworthiness is critical
when a model’s error can cause significant harm, which makes large-scale adoption of DNNs
in safety-critical applications problematic. As a reflection on this criticism, the machine
learning community has embraced the challenge of “opening the black box” of deep learning,
driving progress in fields such as explainability, fairness, and the mathematical foundations
of deep learning. This thesis is a contribution to the latter field.

2 1. Introduction

1.1 Challenges of Deep Learning Theory

Let us now delve into the question of why DNNs are considered black box models. Namely,
what makes it challenging to derive performance guarantees for DNNs? In fact, as we will
see in Section 2.1.2, even simple DNNs form families of functions that are rich enough to
approximate any continuous function with arbitrary accuracy. Therefore, in theory, there
usually exists a DNN with an appropriate choice of parameters that is guaranteed to exhibit
high performance on a given problem. However, in practice, reliably identifying such a
DNN is usually impossible due to the following reasons:

1. Generalization: In practical scenarios, the target function that a DNN aims to
approximate is unknown. Instead, the network is given a finite dataset comprising
(potentially noisy) samples of the target function. Naturally, the choice of the
underlying function based on a finite dataset is not unique. Therefore, even if a DNN
accurately fits the provided dataset, called the training set, its performance on new
data, called the test set, may vary. The field of machine learning theory addressing
how well a model performs on unseen data is known as generalization. While classical
machine learning models, like linear models or kernel models, have well-established
generalization theory and performance guarantees, deriving similar guarantees for
DNNs has proven to be highly challenging. We define fundamental concepts and
review literature regarding generalization of DNNs in Section 2.3.

2. Optimization: Parameters of DNNs are chosen by optimizing a given loss function,
which quantifies the network’s error on the training set. This process is known
as training. DNNs are typically trained using a variant of Gradient Descent (GD)
algorithm, which is a first-order numerical optimization algorithm with strong perfor-
mance guarantees for convex optimization problems. However, optimization problems
associated with training of DNNs are highly non-convex, always have multiple global
minima, and may include undesirable local minima and saddle points. Moreover, the
convergence point of the GD algorithm may significantly depend on initialization,
which is usually random in practice. While recent research suggests that modern
DNNs may have properties favourable for GD’s convergence to a global minimum
under certain conditions, it remains challenging to verify such conditions and to
characterize the solutions identified by GD in a given setting. We introduce basic
concepts related to DNNs’ training and discuss relevant literature in Section 2.2.

Hence, the current lack of a comprehensive theory for generalization and training of DNNs
makes it impossible to provide meaningful performance guarantees for DNNs used in
practical applications. This thesis focuses on one research direction that contributes to
the development of such a theory: the study of DNNs’ training dynamics. In this section,
we briefly review the current advances towards a theory of generalization and training of
DNNs, as well as open problems, focusing on two relevant concepts: overparametrization
and implicit bias.

1.1 Challenges of Deep Learning Theory 3

1.1.1 Overparametrization

An important characteristic of modern DNNs, particularly relevant for generalization and
optimization, is their overparametrization. Overparametrized models possess sufficient
complexity to exactly fit any dataset of a given size. Therefore, overparametrized DNNs
typically achieve near-zero training loss values, even when trained on a dataset with
completely random target labels (Zhang et al., 2021).

Optimization landscapes of overparametrized DNNs typically include entire manifolds of
interpolating global minima (i.e., solutions that exactly fit the dataset) (Cooper, 2021),
and are non-convex even locally around these global minima (Liu et al., 2022). While the
loss landscapes of overparametrized DNNs do not have strict local minima under weak
conditions, they often include non-strict local minima and saddle points (Nguyen et al., 2018;
Li et al., 2018). Given these characteristics, it is evident that properties of overparametrized
DNNs trained using variants of GD may significantly depend on various factors related to
the optimization process, such as the choice of initialization or the training algorithm.

Overparametrized DNNs also pose new theoretical challenges in the field of generalization.
Classical statistical learning theory predicts poor generalization guarantees for these models,
as traditional bounds on generalization tend to degrade with increasing model complexity.
However, empirical evidence contradicts this expectation, indicating that gradient descent
training of overparametrized DNNs frequently results in models with robust generalization
performance on real-world data. As we discuss in Section 2.3, the modern perspective on
generalization of overparametrized models aligns more closely with the double descent phe-
nomenon (Belkin et al., 2019). This phenomenon suggests that generalization performance
deteriorates with model complexity only until the interpolation threshold, after which it
improves again with further overparametrization. Empirical studies have demonstrated
double descent across a wide range of models, including DNNs (Nakkiran et al., 2021).
Theoretical works have also established the occurrence of double descent in different machine
learning models, such as linear models (Hastie et al., 2022) or random features models
(Belkin et al., 2020; Mei and Montanari, 2022). However, there is currently no established
theoretical framework to prove double descent in the context of DNNs.

As we discuss in Section 2.3, theoretical results regarding generalization of overparametrized
models usually rely on a predefined data model and a known convergence point of a given
training algorithm. This is in contrast with the classical statistical learning theory bounds,
which are independent of both the data distribution and the training procedure. Given that
overparametrized models can perfectly fit datasets with completely random labels, it is clear
that meaningful generalization guarantees may require certain data-related assumptions.
Moreover, the presence of entire manifolds of global minimizers, not all of which generalize
equally well, highlights the importance of algorithm-related assumptions. Indeed, these
assumptions determine which of the training loss minimizers are relevant for generalization
of the trained model. This observation provides the crucial connection between training
dynamics and generalization, which we discuss in more detail in the next section.

4 1. Introduction

1.1.2 Implicit Bias

The questions of generalization and optimization are intimately related in the overpara-
metrized setting: the generalization performance of a trained model is determined by the
solution, to which the training algorithm converges. Therefore, the literature uses the
notion of implicit bias, which is often informally defined as the tendency of gradient-based
training algorithms to favor solutions that exhibit good generalization. However, since the
generalization performance ultimately depends on the unknown target function, implicit
bias is more accurately defined as convergence of gradient-based training algorithms to
solutions with specific mathematical properties.

Deriving implicit bias results for a given model usually involves explicit analysis of the
model’s training dynamics. Implicit bias of overparametrized linear models, such as the
least squares and the logistic regression, has been extensively explored due to the relatively
tractable training dynamics equations of such models (Gunasekar et al., 2018; Soudry et al.,
2018). Remarkably, the results regarding implicit bias of linear models reveal important
differences between two loss functions, popular in machine learning: mean squared error
(MSE) loss and cross-entropy (CE) loss (defined in Section 2.2). In case of MSE loss, it is
well-known that GD training of overparametrized models converges to the global minimum
closest to the initialization in terms of ℓ2 norm. Conversely, CE loss has no attainable
global minima, and tends to zero as the parameters vector tends to infinity. Therefore, GD
training with CE loss diverges. However, the direction of the diverging parameters vector
tends to the maximal-margin vector and is independent of initialization.

Implicit bias has also been extensively studied for linear DNNs, i.e., DNNs without a
non-linear activation function. In this context, the picture is somewhat similar to linear
models: CE loss results in implicit bias towards maximal-margin solutions, independently
of initialization (Ji and Telgarsky, 2020). On the other hand, the implicit bias of GD with
MSE loss significantly depends on the initialization and is generally more challenging to
derive (Yun et al., 2020; Azulay et al., 2021). A related research direction studies the
implicit bias of deep matrix factorization, which is analogous to the training of linear DNNs
with no bias terms. The results in this area typically show implicit bias towards low-rank
solutions (Chou et al., 2024; Bah et al., 2022; Li et al., 2020).

Despite the aforementioned results, the current understanding of implicit bias in non-linear
DNNs is very limited. There exist some results on implicit bias of homogeneous DNNs, such
as fully-connected ReLU DNNs with no bias terms, trained using CE loss (Lyu and Li, 2019;
Ji and Telgarsky, 2020). However, implicit bias of non-linear DNNs with MSE loss poses
theoretical challenges even in the simplest case of single-neuron ReLU networks (Vardi and
Shamir, 2021). This field of study is particularly challenging because the training dynamics
of DNNs are governed by complex non-linear equations, which generally defy analytical
treatment. Nevertheless, recent studies have demonstrated that, under certain conditions,
non-linear DNNs enter the so-called lazy training or kernel regime, where the training
dynamics are linearized around the initialization (Chizat et al., 2019; Woodworth et al.,

1.2 Current Approaches to Study DNNs 5

2020). In the kernel regime, it is possible to derive implicit bias and generalization results
for non-linear DNNs. However, these results may not necessarily describe the behavior of
realistic DNNs. As a preview of the upcoming sections, we announce here that the main
contributions of this thesis largely concern the limitations of the kernel regime for the study
of DNNs’ training dynamics.

1.2 Current Approaches to Study DNNs

As we outlined in the previous section, developing a theory for training and generalization
of DNNs is highly challenging. Since the complex non-linear training dynamics of DNNs
cannot be studied analytically in the general case, the current theory relies on various
simplifications and special cases. Common simplified settings, used in the literature as
proxies to study DNNs, can be divided into the following broad categories:

1. Linear: Numerous papers study linear DNNs, i.e., networks with identity activation
function (Laurent and Brecht, 2018; Ji and Telgarsky, 2018). While mathematical
analysis of such networks is much more accessible, properties of linear DNNs do not
generally transfer to non-linear DNNs, as we saw in the discussion on implicit bias. It
is also clear that linear DNNs can only approximate linear functions, hence, they are
not used in deep learning practice.

2. Homogeneous: Another research direction considers homogeneous DNNs, i.e.,
networks with homogeneous activation functions, no skip connections, and no bias
terms. Turns out that homogeneity significantly simplifies the training dynamics
both in case of CE loss (Lyu and Li, 2019; Ji and Telgarsky, 2018) and MSE loss
(Poggio and Liao, 2019). While homogeneous activation functions, such as ReLU,
are common in deep learning practice, the complete absence of both bias terms and
skip connections is uncommon. Indeed, homogeneous DNNs can only approximate
homogeneous functions, which limits possible applications for such networks.

3. Shallow: Training dynamics of non-linear networks are often considered in the
special case of shallow networks, i.e., networks with one or two hidden layers (Mei
and Montanari, 2022; Arora et al., 2019a). While such results may point towards new
insights concerning neural networks’ dynamics, they do not provide any understanding
of the effects of depth in deep learning, and usually cannot be easily generalized to
arbitrary depth.

4. Very wide: Another recent line of research considers DNNs in the infinite-width
limit, where the number of neurons in each layer tends to infinity (Lee et al., 2019,
2018). Remarkably, it is possible to derive explicit infinite-width limits for the training
dynamics of DNNs in a wide range of settings (Yang and Hu, 2022). Some of the
most notable results in this direction pertain to the kernel regime of DNNs, where the
dynamics are linearized around the initialization and are governed by the so-called
Neural Tangent Kernel (NTK) (Jacot et al., 2018; Yang, 2020b). While modern

6 1. Introduction

overparameterized DNNs are often “very wide”, the question of whether a given DNN
can be approximated by a certain infinite-width limit is still largely open.

While each of the aforementioned approaches to study DNNs has its limitations, the
constraints of the last approach are perhaps the least clear. Indeed, modern neural networks
are usually not linear, not homogeneous, and not shallow. However, they often have very
large width. In this thesis, we focus of insights and limitations of the last approach and, in
particular, the kernel regime of DNNs.

1.2.1 Neural Tangent Kernel

In this section, we define the kernel regime of infinitely-wide DNNs and the associated
kernel, called the Neural Tangent Kernel (NTK). To this end, let us denote the output
function of a DNN fθ : R

nin → R
1. Here nin ∈ N is the input dimension and θ ∈ R

P are
the network’s parameters. Then the NTK of this network is given by

Θ(xi, xj) :=
〈

∇θfθ(xi),∇θfθ(xj)
〉

, xi, xj ∈ R
nin , (1.1)

where ∇θfθ is the gradient of the output function with respect to the parameters θ. Assume

further that the network is trained on a dataset S =
{

(xi, yi)
}N

i=1
, with loss function L, and

learning rate η > 0. Then the following holds for a GD step of the output function:

∆fθ(x) = −η
∑

(xi,yi)∈S

Θ(x, xi)
∂L

∂fθ
(xi, yi) +O(η2), (1.2)

where ∆fθ(x) represents the change in the value of fθ(x) during the GD step. In other
words, the NTK controls the first order approximation of the DNNs’ GD dynamics.

Since the NTK depends on the DNN’s parameters, it changes during training, and inherits
randomness from the random initialization and any other stochastic elements of the training
process. Consequently, the dynamics described in equation (1.2) generally defy analytical
solutions. However, a famous result by Jacot et al. (2018) states that, in the infinite-width
limit, the NTK is deterministic under proper random initialization and remains constant
during training. Therefore, the dynamics in (1.2) reduce to kernel regression in this limit,
and have an analytical solution expressed in terms of the NTK. We will call this setting
the kernel regime or the NTK regime of DNNs. We discuss the NTK regime in detail in
Section 2.4.

Within the kernel regime, it becomes feasible to study convergence and generalization of
DNNs theoretically by analyzing the properties of the NTK at initialization. Therefore,
many recent works proposed to study the NTK regime to gain new insights into DNNs’
behavior (Huang et al., 2020; Adlam and Pennington, 2020; Wang et al., 2022; Bietti and
Mairal, 2019; Tirer et al., 2022; Geiger et al., 2020). Numerous contributions also derived

1We consider NNs with scalar output here for simplicity of notation. However, the definition of the

NTK and our discussion is naturally generalized to NNs with multidimensional output.

1.3 Contributions 7

expressions for the infinite-width NTK of popular DNN architectures (Yang, 2020b; Du
et al., 2019; Alemohammad et al., 2020). Other papers established bounds on the DNNs’
width that ensure sufficient concentration of the NTK at initialization (Arora et al., 2019b;
Buchanan et al., 2021) and stability of the NTK during training (Huang and Yau, 2020;
Lee et al., 2019).

However, multiple authors have argued that the NTK regime and, in general, the infinite-
width limit cannot explain the success of DNNs (Chizat et al., 2019; Hanin and Nica,
2019; Aitchison, 2020; Li et al., 2021; Huang and Yau, 2020). The primary argument in
this context is that a constant NTK implies that DNNs do not learn new features during
the training process within the kernel regime. Moreover, the NTK at initialization is
label-agnostic, i.e., the value of Θ(xi, xj) does not depend on the target outputs (yi, yj).
This property renders the NTK regime inadequate for explaining DNNs’ capability to
perform well on various tasks using the same dataset (Chen et al., 2020). Finally, numerous
empirical results also demonstrated that there is often a performance gap between trained
DNNs and their kernel regimes (Fort et al., 2020; Lee et al., 2020). Therefore, understanding
the nature of the NTK regime of DNNs and its applicability is an important question of
deep learning theory.

1.3 Contributions

The objective of this thesis is to determine possibilities and limitations of the NTK regime
for advancing the theory of deep learning. The contributions of the thesis are published as
the following papers:

1. Analyzing Finite Neural Networks: Can We Trust Neural Tangent Kernel Theory?
(Seleznova and Kutyniok, 2022a) — included in Section 3.1.

2. Neural Tangent Kernel Beyond the Infinite-Width Limit: Effects of Depth and Initial-
ization (Seleznova and Kutyniok, 2022b) — included in Section 3.2.

3. Neural (Tangent Kernel) Collapse (Seleznova et al., 2023) — included in Section 3.3.

The first two papers mainly focus on the limitations of the NTK regime for the analysis of
realistic DNNs. The last paper proposes a new approach to analyze DNNs’ dynamics using
the kernel regime at the end of training, and employs this approach to explain a prominent
empirical phenomenon observed in well-trained DNNs.

1.3.1 Limitations of the NTK Regime

The following two observations were the starting point for our research into the limitations
of the NTK regime for the analysis of realistic DNNs:

• Depth: The infinite-width limit setting, where the NTK becomes constant and
deterministic, assumes that the depth of a DNN is fixed while the width tends to

8 1. Introduction

infinity. However, several papers demonstrated that infinite-width approximations
of DNN’s statistics at initialization often get worse as the network’s depth increases
(Li et al., 2021; Hanin and Nica, 2019; Hu and Huang, 2021). Such results typically
consider the infinite-depth-and-width limit, where both depth and width of a DNN
tend to infinity simultaneously with a given depth-to-width ratio. In particular, Hanin
and Nica (2019) were the first to show that the NTK is random and changes during
training in the infinite-depth-and-width limit for fully-connected ReLU DNNs under
a certain initialization setting.

• Initialization: The initialization may significantly change the behavior of DNNs in
the infinite-width limit, and even determine whether a DNN is in the kernel regime
(Yang and Hu, 2022). However, previous works on the infinite-depth-and-width limit
of the NTK do not clarify the effects of initialization in this setting. According to
Poole et al. (2016), there are three phases with distinct properties in the initialization
hyperparameters space: ordered, chaotic and the edge of chaos (EOC). In the infinite-
width limit, the chaotic phase roughly corresponds to initialization settings where
the gradients grow with the DNN’s depth. Conversely, gradients decrease with
growing depth in the ordered phase. EOC is the initialization at the border between
these phases. Given this interpretation, the three phases of initialization should be
significant for the statistical properties of the NTK of deep networks.

Hence, our research focused on exploring the combined effects of depth and initialization
on the NTK of fully-connected DNNs. Our contributions in this research direction are
summarized as follows:

• Variability of the NTK at initialization: We precisely characterized the dispersion
of the NTK in the infinite-depth-and-width limit for fully-connected ReLU DNNs in
Seleznova and Kutyniok (2022b). Our results indicate that the variability of the NTK
grows exponentially with the depth-to-width ratio at the EOC and in the chaotic
phase. On the other hand, the variance of the NTK tends to zero in the ordered
phase independently of depth. Therefore, the NTK of deep networks is approximately
deterministic at initialization only in the ordered phase. While these theoretical results
are derived for ReLU DNNs, we empirically showed analogous results for sigmoid
DNNs in Seleznova and Kutyniok (2022a). In addition, we provided non-asymptotic
expressions for the first two moments of the NTK, and discussed the finite-width
effects that follow. Our results significantly improve on the previous works, which
could only provide non-tight bounds for the NTK dispersion, and did not consider
different initialization settings. Furthermore, in contrast to the prior studies, we
carried out extensive numerical experiments that thoroughly validate the correctness
of our theoretical expressions.

• Training dynamics of the NTK: We proved that the expected relative change of
the NTK value during the first GD step tends to infinity with depth in the chaotic
phase, to zero in the ordered phase, and grows exponentially with the depth-to-width
ratio at the EOC (Seleznova and Kutyniok, 2022b). Therefore, the NTK of deep

1.3 Contributions 9

networks can stay constant during training only in the ordered phase. While our
theoretical results focus on ReLU DNNs, we provide similar empirical results for
sigmoid DNNs in Seleznova and Kutyniok (2022a). Namely, we show that the relative
change in the NTK matrix norm is generally much larger in the chaotic phase than in
the ordered phase. However, our experiments also indicate that the NTK structure
changes non-trivially during training even in the ordered phase. Indeed, as we discuss
in Seleznova and Kutyniok (2022b) and Seleznova et al. (2023), the NTK typically
aligns with the target function during training. In the context of classification, this
alignment manifests as an emergence of a block structure in the NTK matrix.

• Generalization in the NTK regime: We discuss the limitations of the NTK
regime for the analysis of DNNs’ generalization in Seleznova and Kutyniok (2022a).
Our main observation in this discussion is that properties of the infinite-width NTK
become unnatural as the depth increases. In particular, data-dependence of the
infinite-width NTK matrix vanishes with depth, as also demonstrated in Xiao et al.
(2020). Moreover, the infinite-width NTK matrix tends to a rank one matrix with
depth in case of initialization in the ordered phase, which makes deep infinite-width
networks untrainable in the ordered phase. Generalization analysis based on the NTK
with such properties suggests poor generalization performance for deep networks,
which does not agree with the empirical evidence.

1.3.2 Kernel Regime with Block-Structured NTK

The starting point for the second part of this thesis were the following observations regarding
the empirical NTK of realistic DNNs:

• NTK alignment: While the infinite-width NTK does not change during training
and does not depend on the target function, the empirical NTK aligns with the
target function during training (Atanasov et al., 2021; Baratin et al., 2021; Shan and
Bordelon, 2022; Seleznova and Kutyniok, 2022b). In other words, values of Θ(xi, xj)
become aligned with ⟨yi, yj⟩, where yi,j are the target outputs for inputs xi,j. The
kernel-target alignment has long been seen as favourable for generalization of kernel
methods in the literature (Cristianini et al., 2001). Therefore, NTK alignment could
also provide insights regarding performance of trained DNNs

• Rapid kernel learning: Empirical evidence shows that the NTK aligns with
the target function most rapidly during the early stages of training (Fort et al.,
2020; Atanasov et al., 2021; Baratin et al., 2021). According to Fort et al. (2020),
the performance of the empirical NTK after the initial rapid kernel learning phase
essentially matches the performance of the fully-trained DNN. Theoretical study of
simplified models in Atanasov et al. (2021) supports this conclusion. Therefore, it
could be more appropriate to describe DNNs dynamics using the kernel regime in the
end of training, where the NTK has developed its final structure.

Based on these observations, we proposed an approach to study the end-of-training dynamics

10 1. Introduction

of DNN classifiers with NTK alignment in Seleznova et al. (2023). In classification problems,
NTK alignment corresponds to the emergence of an approximate block structure in the
NTK matrix, where the correlations between samples from the same class are stronger than
between samples from different classes. In our work, we considered a simplified model of
NTK alignment, where the kernel takes only three distinct values: an inter-class value, an
intra-class value, and a diagonal value. Our contributions in this work are summarized as
follows:

• Gradient flow with block-structured NTK: We derived and analyzed Gradient
Flow (GF) dynamics of the last two layers of a DNN trained under MSE loss, assuming
that the NTK in these layers is block-structured. In particular, we identified three
distinct convergence rates in the dynamics, which correspond to three components of
the training error: error of the global mean, of the class means, and of each individual
sample. Moreover, we derived an invariant of the dynamics, which determines the
properties of the convergence point.

• Neural Collapse: We proved that, under certain conditions, the GF dynamics of
DNNs with block-structured NTK exhibits a prominent end-of-training phenomenon
of modern DNNs, called Neural Collapse (NC) (Papyan et al., 2020). During NC,
the class means of the DNN’s last-layer features form a symmetric structure with
maximal separation angle, and the features of each individual sample collapse to their
class means. While the effects of NC for generalization of DNNs are not entirely
clear (Kothapalli, 2023), maximal separation between classes is usually considered
favourable for generalization in the literature (Jiang et al., 2018; Cisse et al., 2017).
Our results provide the first theoretical connection between NTK alignment and
NC. Moreover, they demonstrate the effectiveness of the kernel regime in the end of
training for predicting behaviour of realistic DNNs.

1.4 Outline

Chapter 2 serves as the technical foundation for the contributions of this thesis. It begins
with Section 2.1, which defines fully-connected neural networks, explores other prevalent
architectures, and discusses the approximation capabilities of DNNs. Section 2.2 delves into
the essential aspects of DNN training, including gradient descent and backpropagation, and
discusses the effects of random initialization on DNNs’ statistical properties. In Section 2.3,
fundamental principles of generalization theory are discussed, encompassing classical results
and modern perspectives. Section 2.4 defines the NTK, provides the fundamental results
regarding the NTK regime of DNNs, and discusses the NTK alignment phenomenon.

Chapter 3 includes the individual publications forming this thesis. Section 3.1 corresponds
to Seleznova and Kutyniok (2022a). Section 3.2 is published as Seleznova and Kutyniok
(2022b). Section 3.3 corresponds to Seleznova et al. (2023).

Chapter 4 provides concluding remarks and explores potential directions for future work.

Chapter 2

Background and Foundations

This chapter furnishes the technical background relevant to the thesis. In Section 2.1, we
provide a definition of neural networks. Section 2.2 explores common methods employed in
the training of DNNs and discusses the effects of initialization on the properties of DNNs
at initialization. The concept of generalization is formalized and examined in Section 2.3,
followed by the definition of the Neural Tangent Kernel (NTK) and its significance in
the theory of DNNs’ training dynamics in Section 2.4. While the notation is generally
introduced in the main text, a concise summary is also provided in Section 2.5.

2.1 (Deep) Neural Networks

Artificial Neural Networks (NNs), which are discussed in this thesis, find their roots in
mathematical models of biological neural networks. These models were initially conceived
as a representation of interconnected neurons within animal brains. Due to this historical
connection, NNs are often visualized as computational graphs, composed of interconnected
nodes called neurons. In this framework, each neuron receives inputs from neurons in its
neighbourhood, processes the inputs, and transmits the output to other neurons. Figure 2.1
gives an example of a NN represented as a computational graph. The particular structure
and size of the computational graph define the NN’s architecture. In many common NN
architectures, neurons are organized in layers, such that neurons of a given layer can receive
input only from the previous layers, and can pass the output only to the following layers.
Depth of such NNs is defined as the number of layers. There is no universal answer to
the question of how many layers a NN should have to be classified as “deep”. One of the
contributions of this thesis demonstrates that the answer, in fact, may depend not only
on the layer count but also on factors such as the depth-to-width ratio. Nevertheless, it is
worth noting that depths of modern NNs are typically in the order of 101 to 102, which
certainly qualifies them as Deep NNs (DNNs).

12 2. Background and Foundations

x
1 = ϕ(W1

x
0 + b

1) x
4 = ϕ(W4

x
3 + b

4)

x
5 = ϕ(W5

x
4 + b

5)

x
0
1

x
0
2

x
1
2

x
1
5

x
1
3

x
1
1

x
1
4

x
2
4

x
2
7

x
2
5

x
2
3

x
2
6

x
2
8

x
2
2

x
2
9

x
2
1

x
3
4

x
3
7

x
3
5

x
3
3

x
3
6

x
3
8

x
3
2

x
3
9

x
3
1

x
4
2

x
4
5

x
4
3

x
4
1

x
4
4

x
5
1

x
5
2

x
0
3

input layer
output layer

hidden layers

n0 = 3

n1 = 5

n2 = 9 n3 = 9

n4 = 5

n5 = 2

x
3 = ϕ(W3

x
2 + b

3)x
2 = ϕ(W2

x
1 + b

2)

W
1, b

1
W

2, b
2

W
3, b

3
W

4, b
4

W
5, b

5

Figure 2.1: An example of a fully-connected feedforward NN with depth L = 5, input
dimension n0 = 3, hidden layers widths {nℓ}

4
ℓ=1 = (5, 9, 9, 5), and output dimension n5 = 2.

Each layer ℓ, 1 ≤ ℓ ≤ 5 performs a composition of an affine-linear function, parametrized
by weights matrix Wℓ and biases vector bℓ, and an activation function φ.

Artificial neuron From a mathematical perspective, a NN is a parametric function
defined via a computational graph. In this context, the NN’s parameters characterize the
functions associated with each neuron. The function realized by a single artificial neuron,
which is a building block of NNs, is given in the following definition:

Definition 2.1 (Artificial Neuron, Activation, Pre-Activation). Artificial neuron is a
function aθ : R

n → R
1, formed through the composition of an affine-linear function

hθ : R
n → R and a non-linear function φ : R → R, called the activation function:

aθ(x) := φ(hθ(x)), hθ(x) := ⟨w,x⟩+ b, x ∈ R
n. (2.1)

Here the affine-linear function is parametrized by w ∈ R
n, called the weights vector, and

b ∈ R, called the bias. The set of parameters is given by θ := (w,b) ∈ R
n × R ≃ R

n+1.
The value of h(x) is called pre-activation, and the value of a(x) is called activation of the
artificial neuron.

1In Definition 2.1 and throughout the thesis, we consider NNs with real inputs, outputs and parameters,
since the contributions of this thesis concern only real NNs. However, there exists literature on NNs that
employ different number systems, such as complex numbers or quaternions (Lee et al., 2022; Parcollet et al.,
2020).

2.1 (Deep) Neural Networks 13

Fully-connected NNs Given the definition of a neuron, it is possible to construct
definitions of NNs with various architectures. Suppose a NN is defined by a computational
graph, where neurons are organized into layers, such that neurons of each layer receive
inputs from all the neurons of the previous layer, and transmit outputs to all the neurons
of the next layer. Here the first layer, which receives the input of the NN, is called the
input layer, and the last layer, which represents the model’s output, is called the output
layer. The remaining layers are called the hidden layers. An example of such a network is
given in Figure 2.1. Additionally, suppose that all the weights and biases associated with
neurons of this network are independent parameters. Then NNs with this architecture are
called fully-connected feedforward NNs, and can be formally defined as follows:

Definition 2.2 (Fully-Connected Neural Network). A fully-connected feedforward NN
with depth L ∈ N, input dimension n0 ∈ N, hidden layers’ widths {nℓ}

L−1
ℓ=1 ∈ N

L−1, output
dimension nL ∈ N, and activation functions φℓ : R → R, 1 ≤ ℓ ≤ L, is given by the
following function:

fθ(x
0) :=

(

φL ⊙AL ◦ φL−1 ⊙AL−1 ◦ · · · ◦ φ1 ⊙A1

)

(x0) ∈ R
L, x0 ∈ R

n0 , (2.2)

where Aℓ : R
nℓ−1 → R

ℓ are affine-linear functions parametrized by weights Wℓ ∈ R
nℓ−1×nℓ

and biases bℓ ∈ R
nℓ , i.e,

Aℓ(x) := Wℓx+ bℓ, x ∈ R
nℓ−1 , 1 ≤ ℓ ≤ L, (2.3)

and activation functions φℓ, 1 ≤ ℓ ≤ L, are applied to vectors element-wise. The parameters
of the fully-connected feedforward NN are given by

θ :=
{

(

Wℓ,bℓ
)

}

1≤ℓ≤L
∈

L

×
ℓ=1

(

R
nℓ×nℓ−1 × R

nℓ

)

≃ R
P , (2.4)

where P :=
∑L

ℓ=1 nℓ(nℓ−1 + 1) ∈ N is the total number of parameters.

The term “fully-connected” in the above definition indicates that all the pairs of neurons from
adjacent layers are connected, while the term “feedforward” implies that the information
flows through the NN in a single direction – from input to output, meaning that there
are no cycles in the computational graph. In the following discussion, we will refer to
this architecture simply as “fully-connected NNs” when it does not lead to confusion.
Definition 2.2 accurately characterizes such a network, since each vector-valued affine-linear
function Aℓ is applied to the output of layer ℓ − 1, and represents all the nℓ real-valued
functions associated with neurons in layer ℓ ∈ [1, L]. The corresponding weights matrices
Wℓ ∈ R

nℓ−1×nℓ contain weights vectors of all the neuron in layer ℓ ∈ [1, L] as rows, and
the bias vectors bℓ ∈ R

nℓ contain scalar biases of these neurons as entries.

Fully-connected NNs can be considered the simplest and the most universal NN architecture,
as they do not exploit any inherent structure in the input data. Despite their simplicity,
these architectures pose numerous open theoretical challenges, as outlined in Chapter 1.

14 2. Background and Foundations

Given that the theoretical contributions of this thesis concentrate on fully-connected NNs,
the subsequent sections offer formal definitions and results exclusively for this architecture.
However, we provide a brief overview of popular NN architectures in the Section 2.1.1.

Activation functions Fully-connected NNs often use the same activation function in
all the hidden layers, and a different activation function in the output layer. The common
activation function choices include sigmoid function, Rectified Linear Unit (ReLU), and
their modifications.

Definition 2.3 (Sigmoid Activation Function). Sigmoid activation function φ : R → R is
given by

φ(x) =
1

1 + e−x
. (2.5)

Definition 2.4 (ReLU Activation Function). ReLU activation function φ : R → R is given
by

φ(x) = max{0, x}. (2.6)

As we will see in Section 2.1.2, the activation function choice has minimal influence on
the classical results regarding the approximation power of NNs. Therefore, modern DNNs
often choose the ReLU activation function based on purely computational considerations.
However, mathematical properties of the ReLU function, such as homogeneity and piecewise-
linearity, open unique possibilities for mathematical analysis of ReLU NNs. Consequently,
there is a growing body of theoretical research dedicated specifically to ReLU NNs. In this
thesis, the primary focus is also on DNNs with ReLU activation.

2.1.1 Survey of NN Architectures

State-of-the-art DNNs in many applications use more advanced architectures to achieve
better performance in specific tasks. These architectures typically leverage properties of the
input data, such as spatial translation-invariance of objects in images or the sequential nature
of words in text. In this section, we briefly describe several common NN architectures.

Convolutional NNs (CNNs) CNNs are foundational models of modern computer vision.
These architectures have been state-of-the-art models for image recognition since the last
decade (Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2015). The defining feature
of CNNs is the so-called convolutional layers. These layers often assume that the input
has two spatial dimensions (as images) and may have several channels (such as three color
channels of RGB images). In contrast to neurons of a fully-connected layer, each neuron of a
convolutional layer is connected only to a fraction of the input neurons, called the receptive
field. The receptive fields of the output neurons are obtained by sliding a two-dimensional
window over the spacial dimensions of the input. An illustration of a convolutional layer is
given in Figure 2.2a. Usually, all the neurons in a given output channel share the same

2.1 (Deep) Neural Networks 15

W
ℓ

∈ ℝ
2×2

x
ℓ

∈ ℝ
4×4

x
ℓ
i,j = ϕ(∑

k,p

W
ℓ
k,p

x
ℓ−1
i−k+1,j−p+1)

channels

(a) Convolutional layer.

U
ℓ

∈ ℝ
5×3

V
ℓ

∈ ℝ
2×5

W
ℓ

∈ ℝ
5×5

input layer

output layer

(b) Recurrent NN.

input layer

output layer

residual block

+

identity
map

x ∈ ℝ
3

F(x)

x + F(x)

(c) Residual NN

weights matrix. This property is motivated by translation-invariance of natural images: a
shift of an image does not change the objects that can be recognized in the image. Moreover,
this property greatly reduces the number of parameters associated with a convolutional
layer, in comparison with a fully-connected layer. Stacking multiple convolutional layers
together allows to increase the receptive field of the output neurons and, potentially, capture
more complex features of the input.

Recurrent NNs (RNNs) RNNs are often used for applications with sequential input
data, such as text translation or speech recognition (Graves et al., 2013; Sutskever et al.,
2011). In contrast to feedforward NNs, RNNs allow output of some neurons to affect
subsequent input to the same neurons. In other words, RNNs have cycles in their computa-
tional graphs. When sequential input is gradually passed into an RNN, the internal state
of the network (represented by the hidden layers) changes at each step and impacts the
processing of the next data chunk. Figuratively, this means that RNNs have memory about
the previous input chunks. A simple example of an RNN with a single fully-connected
recurrent layer is given in Figure 2.2b. State-of-the-art RNNs can include multiple recurrent
subnetworks with various architectures, and often use more advanced structure for recurrent
layers, such as Long Short-Term Memory (LSTM) units (Hochreiter and Schmidhuber,
1997).

Graph NNs (GNNs) GNNs are designed for input data represented as graphs, where
nodes and/or edges of the graph are described by feature vectors. GNNs achieve state-of-
the-art performance in applications such as proteins’ interactions (Fout et al., 2017) or
social networks analysis (Wu et al., 2020). The defining feature of GNNs are the so-called
message passing layers, which update feature vectors for each node of the input graph. Each
message passing layer aggregates the information from the neighbourhood of a given node
to compute a new feature vector of the node. This idea can be seen as a generalization of

16 2. Background and Foundations

convolutional layers, which compute a feature vector of a given pixel by aggregating the
information from all the neighboring pixels, to arbitrary graph structures.

Residual NNs (ResNets) ResNets are networks with so-called residual blocks. The
output of a residual block is a sum of a function implemented by the layers within this block
and the input of the block. In other words, there is a connection between the input and the
output layers of a residual block. An example of a ResNet with a single residual block is
given in Figure 2.2c. While “ResNet” usually refers to the architecture introduces in the
original paper on residual networks (He et al., 2016), many modern DNN architectures,
such as transformers and LSTM networks, include residual blocks.

Transformers The Transformer architecture was introduced in Vaswani et al. (2017),
and since then revolutionized natural language processing (NLP) and beyond. The key
innovation of the Transformers is the self-attention mechanism, which allows the model
to weigh different parts of the input sequence differently when making predictions. This
attention mechanism eliminates the need for recurrent or convolutional layers, making it
highly parallelizable and efficient for processing long-range dependencies. Transformers have
become the backbone of various state-of-the-art models for tasks like machine translation,
language understanding, and image generation.

Although we categorized architectures into distinct groups for clarity in the preceding
discussion, modern DNNs commonly incorporate diverse combinations of these approaches.
Examples include convolutional RNNs or residual CNNs, convolutional Transformers, and
many more. This flexibility allows modern DNNs to leverage the strengths of different
architectures to achieve state-of-the-art performance in a wide range of tasks.

2.1.2 Approximation Power of NNs

One of the most well-known results of NNs theory is the universal approximation theorem,
which shows that even shallow fully-connected NNs can approximate any continuous function
on a compact set with arbitrary precision (Cybenko, 1989; Hornik, 1991; Hornik et al.,
1989; Funahashi, 1989). While there is a series of such theorems in the literature, we adopt
a version from Pinkus (1999):

Theorem 2.1 (Universal Approximation Theorem). Let f : Rn0 → R
n2 denote a fully-

connected NN with depth L = 2, widths {nℓ}
2
ℓ=0 ∈ N

3, and activation functions φ2(x) = x,
φ1(x) = σ(x), x ∈ R, for continuous σ : R → R, i.e.,

fθ(x) = W2σ(W1x+ b1) + b2 (2.7)

with parameters θ =
((

W1,b1
)
,
(
W2,b2

))
. Then σ is not polynomial if and only if for

every input dimension n0 ∈ N, output dimension n2 ∈ N, compact set K ⊆ R
n0, continuous

function g : K → R
n2, and ϵ > 0, there exists hidden layer width n1 ∈ N and a choice of

2.2 Training 17

parameters θ = θ∗ such that

sup
x∈K

∥fθ∗(x)− g(x)∥ < ϵ. (2.8)

There are also numerous results that quantify the approximation rates of NNs with one
hidden layer for particular classes of functions, such as smooth functions or functions with
certain symmetries. We refer to DeVore et al. (2021) for a review of such results. Moreover,
there is a more recent line of research that aims to explain the effects of depth for the
approximation power of NNs. Some of these results show that depth allows NNs with very
few neurons in the hidden layers to still achieve universal approximation (Hanin and Sellke,
2018; Hanin, 2019; Kidger and Lyons, 2020). Other results show that deep NNs are more
efficient at approximation of certain classes of functions, in a sense that they require fewer
parameters than shallow NNs for the same approximation rates (Eldan and Shamir, 2016;
Yarotsky, 2017). One can find a survey of these results in Berner et al. (2021).

Overall, the literature shows that even simple NN architectures are sufficiently powerful
to efficiently represent continuous functions. Assuming that target functions in most
applications are at least piecewise continuous, this means that there usually exists a fully-
connected NN with an appropriate choice of parameters that is guaranteed to achieve high
performance on a given task. However, approximation theory does not explain how to find
parameters for such a NN. It also does not explain why more advanced architectures, such as
those surveyed in the previous section, may improve NNs’ performance in many applications.
While approximation theory is the most well-established subfield of the mathematical
foundations of NNs, and provides rigorous results for the best-case performance of NNs,
there is abundant evidence in the literature that real-world NNs do not achieve the
performance predicted by approximation theory (Adcock and Dexter, 2021; Fokina and
Oseledets, 2020; Hanin and Rolnick, 2019). We discuss the causes for this discrepancy in
the next two sections.

2.2 Training

Training, also called learning, refers to the process of algorithmically identifying optimal
parameters of a NN with a given architecture for a given task. In this thesis, we will focus
on the supervised learning setting, where a NN is given a finite dataset of input samples
with correct output values. Then the goal of training is to reconstruct a function that
generated the dataset. In statistical learning theory, the standard approach to this problem
is Empirical Risk Minimization (ERM).

Definition 2.5 (Empirical Risk Minimization). Given a set of functions F with domain X

and codomain Y, a training dataset S =
{
(xi, yi)

}N
i=1

with xi ∈ X , yi ∈ Y, i ∈ [1, N], and

a loss function L : Y × Y → R, an empirical risk minimization algorithm chooses f̂S ∈ F

18 2. Background and Foundations

such that

f̂S ∈ argmin
f∈F

L̂S(f), L̂S(f) :=
1

N

N∑

i=1

L(f(xi), yi), (2.9)

assuming such a choice exists, i.e., a minimum of L̂S is attained on F . Here the function
L̂S : F → R is called the empirical risk.

In other words, the goal of ERM algorithm is to choose a function f̂S ∈ F that offers the
best approximation of the training set S according to a given loss function L. Note that the
choice of loss function may significantly impact the function selected by ERM. For example,
ERM with loss function L(ŷ, y) = |ŷ − y| prefers functions such that f̂S(xi) ≈ yi for all
i ∈ [1, N]. On the other hand, ERM with loss function L(ŷ, y) = sign(ŷy) only optimizes
for sign(f(xi)) = sign(yi), i ∈ [1, N].

In the context of NNs, the set of functions in the ERM definition comprises all the functions
that can be realized by a chosen NN architecture, given by

F = {fθ : R
n0 → R

nL | θ ∈ R
P}, (2.10)

where P is the number of the NN’s parameters. Common choices of loss function include
Mean Squared Error (MSE) and Cross-Entropy (CE) losses.

Definition 2.6 (Mean Squared Error Loss). Mean squared error loss L : Rn × R
n → R is

given by
L(ŷ, y) = ∥ŷ − y∥22. (2.11)

Definition 2.7 (Cross-Entropy Loss). Let the output space Y contain (Rn
+ \ {0})-vectors

that sum to 1, i.e.,
Y = {y ∈ R

n
+ \ {0} | ∥y∥1 = 1}. (2.12)

Then cross-entropy loss L : Y × Y → R is given by

L(ŷ, y) = −⟨y, log ŷ⟩, (2.13)

where logarithm is applied element-wise.

While MSE is a general-purpose loss function, CE loss is a common choice for classification
problems, where the NN’s output is interpreted as a vector of probabilities of a finite number
of classes. However, there is a growing body of evidence that MSE loss performs at least
on par with CE loss for classification (Hui and Belkin, 2021; Demirkaya et al., 2020; Poggio
and Liao, 2021). From the optimization standpoint, MSE and CE losses have very different
properties. Indeed, MSE attains its minimum when the DNN’s output matches the target
output on the whole dataset, i.e., fθ(xi) = yi for all i = [1, N]. On the other hand, DNNs
trained with CE loss usually normalize the output using the so-called softmax function,
defined as follows

ŷ = softmax(xL) :=
exp(xL)

∥ exp(xL)∥1
, (2.14)

2.2 Training 19

which makes the global minima of CE loss unattainable for any finite parameters. Since MSE
loss results in simpler dynamics equations and has more intuitive convergence properties,
we mostly focus on dynamics with MSE loss in this thesis.

2.2.1 Gradient Descent

While ERM sets the goal of training, it does not specify the algorithmic procedure to find
the minimum of the empirical risk. Some optimization problems arising from ERM have
analytical solutions. A prominent example is the ordinary least squares problem, which
corresponds to training a fully-connected NN with L = 1 (i.e., with no hidden layers) and
linear activation function using MSE loss. However, analytical solutions are very rare in
non-linear optimization problems, and virtually do not exist for real-world NNs. Therefore,
NNs are trained using numerical optimization methods, the most common of which is
Gradient Descent (GD), described in Algorithm 1.

Algorithm 1: Gradient Descent

Input :Differentiable empirical risk function L̂S : RP → R,
a number of steps K ∈ N, a sequence of step sizes {ηk}Kk=1,
initial choice of parameters θ(0) ∈ R

P .
Output :A sequence of parameters values {θ(k)}Kk=0.

for k = 1, . . . , K do

θ(k) ← θ(k−1) − ηk∇θL̂S(θ
(k−1))

end

One can see that GD is a greedy algorithm, which makes a step towards the steepest descent
of the empirical loss function in each iteration. Note that in Algorithm 1, we define the
empirical loss function L̂S : RP → R as a function of NN’s parameters θ ∈ R

P , since the
loss only depends on the NN’s output function fθ through the parameters.

2.2.2 Backpropagation

GD and its variants became the algorithms of choice for optimizing NNs’ parameters
mainly due to their computation efficiency. Modern DNNs typically have from hundreds
of thousands to even billions of parameters, and are trained for hundreds of thousands of
GD iterations. Therefore, it is essential to have a very efficient and universal procedure
to compute gradients of the empirical loss function with respect to the parameters in
order to make the optimization feasible. Such a procedure exists for NNs and is called
backpropagation. We will describe the backpropagation algorithm for fully-connected NNs.
However, the same algorithm can be easily generalized to any feedforward NN architecture,
and can also be adapted for RNNs (Werbos, 1990).

The backpropagation algorithm is essentially an efficient application of the chain rule, which
makes use of the observation that parameters of each layer of a fully-connected NN affect

20 2. Background and Foundations

the output function only through the subsequent layers. To outline the backpropagation
algorithm, we first introduce two key concepts: the forward pass and the backward pass.
The forward pass is the iterative computation of the NN’s output for a given input layer-
by-layer, progressing in the forward direction – from the input layer to the output layer.
The backward pass is the layer-by-layer computation of the NN’s “error” in the reverse
direction – from the output layer to the input layer.

Definition 2.8 (Forward Pass, Activation, Pre-Activation). Consider a fully-connected
NN with depth L ∈ N, widths {nℓ}Lℓ=0, and activation functions {φℓ}Lℓ=1. The forward pass
of such a network on input x := x0 ∈ R

n0 is defined as follows:

xℓ(x) := φℓ(h
ℓ(x)), hℓ(x) := Wℓxℓ−1(x) + bℓ, ℓ = [1, L], (2.15)

where xℓ : Rn0 → R
nℓ is called the activation, and hℓ : Rn0 → R

nℓ is called the pre-activation
of layer ℓ = [1, L].

Note that in the above definition activation xℓ and pre-activation hℓ are functions of the
NN’s input and depend on the NN’s parameters θ ∈ R

P . For ease of notation, we omit the
dependence on the input and the parameters when it does not lead to confusion in the
following discussion. One can see that xL = fθ, according to Definition 2.2 of fully-connected
NNs. In the following, we will use xL and fθ interchangeably to denote the output function
of a NN.

Definition 2.9 (Backward Pass, Backpropagated Error). Consider a fully-connected NN
with depth L ∈ N, widths {nℓ}Lℓ=0, and activation functions {φℓ}Lℓ=1. Let L : RnL×R

nL → R

be the loss function associated with training the NN. The backward pass of such a network
on input x := x0 ∈ R

n0 with target output y ∈ R
nL is defined as follows:

δ
L(x, y) :=

∂L(fθ(x), y)
∂hL

=
∂L(xL(x), y)

∂xL
⊙ φ′

L(h
L(x)), (2.16)

δ
ℓ(x, y) :=

∂L(fθ(x), y)
∂hℓ

=
(
Wℓ+1

)⊤
δ
ℓ+1(x, y)⊙ φ′

ℓ(h
ℓ(x)), ℓ = [1, L− 1], (2.17)

where δℓ : Rn0 × R
nL → R

nℓ is called the backpropagated error in layer ℓ = [1, L]

Note that the gradient of the loss L(fθ(x), y) w.r.t. hℓ in the above definition is more
formally defined as follows:

∂L(fθ(x), y)
∂hℓ

:= ∇g(hℓ(x)), (2.18)

where g : Rnℓ → R is a function such that L(fθ(x), y) = (g◦hℓ)(x). However, we will use the
same abuse of notation throughout the thesis. Similarly to the forward pass variables, δℓ is
a function of the training sample (x, y) and depends on the NN’s parameters θ. However, we
will omit the dependence of the backpropagated error on its arguments and the parameters
for clarity of notation, as long as this does not lead to confusion.

2.2 Training 21

Algorithm 2: Backpropagation

Input :Fully-connected NN fθ with depth L, widths {nℓ}Lℓ=0, and differentiable

activation functions {φℓ}Lℓ=1, parameters θ =
{
(Wℓ,bℓ)

}L
ℓ=1

, differentiable

loss function L, input dataset S =
{
(xi, yi)

}N
i=1

.

Output :Gradient of the empirical loss w.r.t. the parameters g = ∇θL̂S(θ).

g ← gradient container filled with zeros;
for i = 1, . . . , N do

x0 ← xi;
y ← yi;
for ℓ = 1, . . . , L do

hℓ ←Wℓxℓ−1 + bℓ ;
xℓ ← φℓ(h

ℓ);

end

δL ← ∇
x
LL(xL, y)⊙ φ′

L(h
L);

for ℓ = L− 1, . . . , 1 do

δℓ ←
(
Wℓ+1

)⊤
δℓ+1 ⊙ φ′

ℓ(h
ℓ) ;

end

gnew ← empty gradient container;
for ℓ = 1, . . . , L do

dWℓ ← δℓ ⊗ xℓ−1;
dbℓ ← δℓ;
Insert (dWℓ, dbℓ) into gnew;

end

g ← g +
gnew
N

;

end

The backpropagated error δℓ in layer ℓ can be interpreted as the role of the pre-activation
hℓ in the final loss value L(fθ(x), y). The formula for the backpropagated error computation
in equation (2.17) comes from the application of the chain rule as follows:

∂L(fθ(x), y)
∂hℓ

⊤

=
∂L(fθ(x), y)

∂hℓ+1

⊤

· ∂h
ℓ+1

∂xℓ
· ∂x

ℓ

∂hℓ
= (δℓ+1)⊤Wℓ+1 diag(φ′

ℓ(h
ℓ)), (2.19)

where diag(v) ∈ R
n denotes a diagonal matrix with values of vector v ∈ R

n on the main
diagonal. The above equation is easy to derive taking into account that xℓ = φℓ(h

ℓ) and
hℓ+1 = Wℓ+1xℓ + bℓ+1 according to Definition 2.8 of the forward pass.

Given the forward pass and the backward pass variables, the gradients of a NN can be

22 2. Background and Foundations

computed as follows:

∂L(fθ(x), y)
∂Wℓ

=
∂L(fθ(x), y)

∂hℓ
· ∂hℓ

∂Wℓ
= δ

ℓ ⊗ xℓ−1, (2.20)

∂L(fθ(x), y)
∂bℓ

=
∂L(fθ(x), y)

∂hℓ
· ∂h

ℓ

∂bℓ
= δ

ℓ, ℓ = [1, L], (2.21)

where ∂L(fθ(x), y)/∂Wℓ ∈ R
nℓ×nℓ−1 is the matrix of the gradients w.r.t. the weights

of layer ℓ, and ∂L(fθ(x), y)/∂bℓ ∈ R
nℓ is the vector of gradients w.r.t. the biases of

layer ℓ. Finally, we notice that the empirical loss function L̃S(θ) is the mean of the losses
corresponding to individual samples in the dataset. Therefore, the gradient of the empirical
risk function is simply the sum of gradients corresponding to the individual input samples.
We summarize the backpropagation approach to gradient computation in Algorithm 2.

The efficiency of the backpropagation algorithm in comparison with the naive application
of the chain rule comes from two observations: using δℓ+1 to compute δℓ reuses all the
repeated computations; computing the derivatives in the backward direction from output
to input only requires matrix-vector products. In fact, backpropagation is a special case
of the reverse-mode automatic differentiation, which is usually more efficient when the
number of variables is much larger than the output dimension (Griewank and Walther,
2008). While Algorithm 2 is specific for fully-connected NNs, modern frameworks for
NN training, such as PyTorch (Paszke et al., 2019) or JAX (Bradbury et al., 2018), can
perform reverse-mode automatic differentiation for a wide variety of NN architectures.
These frameworks decompose a given function (implemented by a computer program) into
a sequence of primitive operations with specified rules for computation of derivatives. This
way, it is possible to perform chain rule efficiently in a completely mechanical way.

2.2.3 Gradient Flow

Many papers that consider training dynamics of DNNs rely on Gradient Flow (GF), which
is a continuous-time approximation of GD. Recall the equation for k−th GD step with
learning rate η from Algorithm 1:

θ(k) ← θ(k−1) − η∇θL̂S(θ
(k−1)). (2.22)

We can now introduce a smooth function θ(t), t ≥ 0, such that θ(k) := θ(kη) for any k ∈ N.
Then, by taking the limit η → 0, we obtain the corresponding GF equation:

θ̇ = −∇θL̂S(θ). (2.23)

In other words, GF can be seen as the limit of GD, where the learning rate tends to zero.
This approximation makes the analysis of DNNs’ dynamics considerably simpler, since it
allows to remove the higher order terms with respect to η. While GF cannot capture all the
properties of GD dynamics, there is theoretical and empirical evidence that it approximates
the performance of GD with small enough learning rate (Elkabetz and Cohen, 2021). In
Section 3.3 of this thesis, our contributions focus on GF dynamics of DNNs, leaving the
consideration of the discrete-time effects for the future work.

2.2 Training 23

2.2.4 Effects of Initialization

The initial parameters θ(0) in GD algorithm are typically chosen randomly according to a
given distribution. Common initialization schemes for fully-connected DNNs satisfy the
following conditions for all ℓ ∈ [1, L], i ∈ [1, nℓ], j ∈ [1, nℓ−1]:

√
nℓ−1 ·Wℓ

i,j ∼ µw i.i.d., bℓ
i ∼ µb i.i.d., (2.24)

where µw and µb are given probability measures, such that

∫
xdµw,b(x) = 0, σ2

w,b :=

∫
x2dµw,b(x) <∞. (2.25)

Note that the variance of the weights at initialization is usually scaled by the width of the
network to avoid overflow for very wide DNNs.

Under such a random initialization, all the variables in the forward pass (Definition 2.8) and
the backward pass (Definition 2.9) of DNNs also become random. Therefore, it is of interest
to study the statistical properties of DNNs with various initialization settings. One relevant
line of research focuses on signal propagation in DNNs, i.e., changes of the distribution as
it propagates through consecutive layers of DNNs (Poole et al., 2016; Schoenholz et al.,
2016; Karakida et al., 2019). These works mostly focused on the special case of Gaussian
initialization with hyperparameters σw ∈ R+ and σb ∈ R+, given by

Wℓ
i,j ∼ N

(
0,

σ2
w

nℓ−1

)
i.i.d. , bℓ

i ∼ N (0, σ2
b) i.i.d. , (2.26)

and relied on the so called mean field approximation. Another closely related line of research
establishes the connection between the infinite-width limit of DNNs and Gaussian processes
(Lee et al., 2018; Yang, 2020a; Matthews et al., 2018). Since a significant part of this thesis
is devoted to analyzing the statistical properties of DNNs at initialization, this section will
delve into the basic aspects of these research areas.

Mean field approximation Consider the forward pass of a fully-connected DNN (see
Definition 2.8). Given the general form of initialization in (2.24), the following is immediate
for the pre-activation vectors hℓ

a := hℓ(a),hℓ
b := hℓ(b) in layers ℓ ∈ [1, L] computed for

inputs a, b ∈ R
n0 :

E[hℓ
a] = E[hℓ

b] = 0,
1

nℓ

E
[〈
hℓ
a,h

ℓ
b

〉]
=

σ2
w

nℓ−1

E
[〈
xℓ−1
a ,xℓ−1

b

〉]
+ σ2

b , (2.27)

We can also notice that entries of hℓ, i.e., different neurons in the same layer, are identically
distributed. Therefore, we can write the following:

E
[〈
hℓ
a,h

ℓ
b

〉]
= nℓEu,v[uv] = nℓCov(u, v), (2.28)

24 2. Background and Foundations

where (u, v) are random variables, jointly distributed as (hℓ
a,i,h

ℓ
b,i) for any neuron i ∈ [nℓ].

Another general observation is that different neurons in the same layer are uncorrelated,
i.e., Cov(hℓ

a,i,h
ℓ
b,j) = 0 if i ≠ j. However, this does not imply independence, since different

neurons still depend on the same parameters of previous layers.

Similarly, we can write the following for the scalar product of activations:

E
[〈
xℓ
a,x

ℓ
b

〉]
= E

[〈
φℓ(h

ℓ
a),φℓ(h

ℓ
b)
〉]

= nℓEu,v

[
φℓ(u)φℓ(v)

]
, (2.29)

Given the distribution of (u, v), the above equations can provide recursive relationships
for the statistics of the forward pass of DNNs. However, even for Gaussian initialization
(2.26), deriving the exact distribution of the pre-activations is challenging. Indeed, even
though the distribution of hℓ

a,i is Gaussian when conditioned on the parameters of all the
previous layers, the marginal distribution does not have to be Gaussian. Therefore, most of
the works on signal propagation in DNNs make the following assumption:

Assumption 2.1 (Mean Field Approximation (MFA)). Assume that pre-activations of all
the neurons of any layer ℓ ∈ [1, L] are mutually independent and normally distributed.

Under this assumption, we can recursively calculate the expectations in (2.28) and (2.29).
Denoting qℓ(a, b) := E

[〈
xℓ
a,x

ℓ
b

〉]
/nℓ, we have:

qℓ(a, b) = E
(u,v)∼N (0,Σℓ)

[
φℓ(u)φℓ(v)

]
, Σℓ(a, b) := σ2

w

[
qℓ−1(a, a) qℓ−1(a, b)
qℓ−1(a, b) qℓ−1(b, b)

]
+ σ2

b . (2.30)

Therefore, the pre-activations in layer ℓ behave as a centered Gaussian process with
covariance Σℓ. In fact, several works have rigorously proved that this is indeed the
case in the infinite-width limit of DNNs with Gaussian initialization (2.26) under weak
assumptions (Lee et al., 2018; Yang, 2020a). In other words, MFA assumption leads
to correct computations in the infinite-width limit. For some activation functions, the
expectation in the above equation has closed-form expressions. Such expressions for ReLU
and a certain sigmoid function are provided in the Appendix of Section 3.1.

To derive similar recursive expressions for the backward pass of a fully-connected DNN (Def-
inition 2.9), previous works relied on one more assumption (Schoenholz et al., 2016):

Assumption 2.2 (Gradient Independence Assumption (GIA)). Assume that matrix (Wℓ)T

in the backward pass equations and matrix Wℓ in the forward pass equations are independent
for all ℓ ∈ [1, L].

Then the following recursive expression holds for the backpropagated errors δℓ
a := δℓ(a),

δℓ
b := δℓ(b) in layer ℓ ∈ [1, L− 1]:

1

nℓ

E
[〈
δ
ℓ
a, δ

ℓ
b

〉]
=: pℓ(a, b) = pℓ+1(a, b)

nℓ+1

nℓ

σ2
w E
(u,v)∼N (0,Σℓ)

[φ′
ℓ(u)φ

′
ℓ(v)]. (2.31)

2.3 Generalization 25

Phases of initialization Given the mean field approximations for the forward and
backward passes, it is possible to derive norms of the DNN’s gradients at initialization,
using the following expressions:

∥∥∥
∂L(fθ(x), y)

∂Wℓ

∥∥∥
2

2
= ∥δℓ∥22∥xℓ−1∥22,

∥∥∥
∂L(fθ(x), y)

∂bℓ

∥∥∥
2

2
= ∥δℓ∥22, (2.32)

which directly follow from equations for gradients computation in the backpropagation
algorithm (2.20). According to Schoenholz et al. (2016) and Poole et al. (2016), the following
quantity

χ := σ2
w lim

ℓ→∞
Eu

[(
φ′
ℓ(u)

)2)
], u ∼ N (0, σ2

wq
ℓ−1(a, a) + σ2

b) (2.33)

can help to identify three distinct phases in the space of hyperparameters (σw, σb):

• Ordered phase: If χ < 1, the norms of the DNN’s gradients asymptotically
decrease at an exponential rate as the depth increases. At the same time, correlations

cℓ(a, b) = qℓ(a,b)√
qℓ(a,a)qℓ(b,b)

between different input samples grow as the network gets

deeper.

• Chaotic phase: If χ > 1, the gradients asymptotically grow at an exponential rate
with the depth, while the correlations cℓ(a, b) decrease.

• Edge of chaos: If χ ≈ 1, there is no exponential asymptotics of the gradients’ norm
with respect to the depth, which leads to better numerical stability and allows training
deeper networks. For ReLU networks, this setting corresponds to He initialization,
introduced in He et al. (2015).

Problems of mean field approximation While the contributions of this thesis in
Section 3.2 study the differences of DNNs’ behaviour in the initialization phases defined
above, our theory does not rely on the mean field approximation. Namely, we do not
use Assumption 2.1 and Assumption 2.2. While these assumptions often lead to correct
computations in the infinite-width limit (see e.g. the discussion in Yang (2020b)), we find
that they lead to dramatically incorrect results in the infinite-depth-and-width limit. The
reason for this disparity is that the effects introduced by the dependence between forward
and backward chains in layer ℓ are of the order O(1/nℓ). Therefore, these effects typically
vanish in the infinite-width limit. Similarly, the effects introduced by the dependences
between different neurons of the same layer vanish in the infinite-width limit. However,
when the depth is comparable with width, multiplicative terms of order O(1/nℓ) in each
layer result in non-trivial changes of the final expressions for the DNN’s gradients.

2.3 Generalization

Generalization is a field of machine learning theory, which studies how well a given model
performs on unseen data, i.e., data not used in the training process. The central quantity
of interest in generalization theory is the expected risk.

26 2. Background and Foundations

Definition 2.10. (Expected Risk) Let F be a set of functions with domain X and codomain
Y. Let µ be a probability distribution on X × Y, and L : Y × Y → R be a loss function,
such that (x, y)→ L(f(x), y) is measurable for any f ∈ F . Then the generalization error,
also called the expected risk, of function f ∈ F is defined as follows:

Lµ(f) := E(x,y)∼µ[L(f(x), y)]. (2.34)

Recall that we introduced the empirical risk function L̂S(f) in Definition 2.5 of ERM. Then,
assuming that the dataset S is sampled i.i.d. from a distribution µ, i.e., S ∼ µN , we have
the following relationship between expected and empirical risks:

Lµ(f) = ES∼µN

[
L̂S(f)

]
. (2.35)

The goal of generalization theory is to derive bounds on the expected risk of a function
f̂S ∈ F chosen by a learning algorithm given a dataset S. Therefore, generalization theory
results essentially study the concentration of the empirical risk as the dataset size N grows,
with an additional difficulty that the function of interest depends on the dataset.

2.3.1 Classical Generalization Bounds

Classical results of generalization theory assume that, depending on the dataset, the learning
algorithm may choose any function from the set F , so the bounds must hold simultaneously
for all f ∈ F . Therefore, such results usually depend on a certain measure of complexity
of F . The simplest results of this kind concern finite sets of functions, where the natural
measure of complexity is the size of F . For instance, the following theorem provides a
generalization bound for a binary classification problem, where the target outputs can only
take two distinct values:

Theorem 2.2 (Adopted from Vapnik (2013)). Let F be a set of functions from X to Y,
where |Y| = 2. Let the associated loss function be given by L(ŷ, y) = y ̸=ŷ. Let µ be an
arbitrary distribution over X ×Y, and S ∼ µN be a dataset comprising N ∈ N i.i.d. samples
drawn from µ. Assume that F is finite, i.e., |F| <∞. Then for any δ ∈ (0, 1] the following
holds with probability at least 1− δ:

sup
f∈F

|Lµ(f)− L̂S(f)| ≤
√

log |F|+ log(1/δ)

2N
. (2.36)

This result relies on Hoeffding’s inequality, applied to the bounded random variables
L(f(xi), yi) for (xi, yi) ∈ S, and a union bound over all the functions f ∈ F . However,
this approach cannot be extended to infinite sets of functions, which are common in
practical machine learning problems. Therefore, much of classical generalization theory
focuses on developing complexity measures for various learning settings. One prominent
example of such measures for binary classification problems is the Vapnik–Chervonenkis
(VC) dimension.

2.3 Generalization 27

Definition 2.11 (Growth Function, VC dimension). Let F be a set of functions from X to
Y, where |Y| = 2. The growth function of F is defined as follows:

GF(m) := max
(x1,...,xm)∈Xm

∣∣∣
{(

f(x1), . . . , f(xm)
)
∈ Ym | f ∈ F

}∣∣∣. (2.37)

Then the VC dimension of F is given by:

VCdim(F) := sup{m ∈ N | GF(m) = 2m }. (2.38)

The growth function determines the maximal number of distinct classification patterns
that functions in F can achieve on a set of m points. A set (x1, . . . , xm) is considered
“shattered” by F if F can realize all 2m possible classification patterns on this set. The
VC dimension of F is then defined as the maximal size of a dataset that can be shattered
by F . VC dimension is usually closely related to the number of parameters in machine
learning methods. For instance, VCdim(F) = n + 1 for a set of functions realized by a
linear classifier of dimension n, given by F = {x → sign(⟨w, x⟩ + b) | w ∈ R

n, b ∈ R}.
Similarly, VC dimension of fully-connected DNNs with binary output and piecewise-linear
activation function in the hidden layers is bounded above by O(PL logP + PL2), where L
is the network’s depth and P is the total number of parameters (Bartlett and Maass, 2003).
The following bound holds for sets of functions with finite VC dimension:

Theorem 2.3 (Adopted from Vapnik (2013)). Let F be a set of functions from X to Y,
where |Y| = 2. Let the associated loss function be given by L(ŷ, y) = y ̸=ŷ. Let µ be an
arbitrary distribution over X ×Y, and S ∼ µN be a dataset comprising N ∈ N i.i.d. samples
drawn from µ. Assume that F has finite VC dimension, i.e., D := VCdim(F) <∞. Then
for any δ ∈ (0, 1] and any sample size N > D/2 the following holds with probability at least
1− δ:

sup
f∈F

|Lµ(f)− L̂S(f)| ≤
√

D(log(2N/D) + 1) + log(4/δ)

N
. (2.39)

The guarantees on the proximity between expected and empirical risks in Theorems 2.2
and 2.3 deteriorate as the model’s complexity increases. However, some level of complexity
is usually required in practice to ensure that a function with sufficiently low empirical
risk exists in F . This trade-off between the model’s ability to fit the training data and
the classical generalization guarantees is known as the bias-variance trade-off. In view of
this trade-off, classical statistical learning theory prescribes to select models with limited
complexity, ensuring the optimal balance between empirical risk and generalization. This
approach to model selection is illustrated in Figure 2.3.

Notice that the bounds in Theorems 2.2 and 2.3 are completely distribution-free, i.e., they
are valid for any data distribution. This property is characteristic for classical generalization
theory results, which assume that the data distribution is unknown in practical machine
learning scenarios. The same bounds are also independent of the dataset S and the choice of
function f ∈ F . While these properties ensure very general applicability, they also reveal the

28 2. Background and Foundations

Expected risk ℒ
μ
(f*)

ℒ
μ
(f*) − ̂ℒS(f*)

Empirical risk ̂ℒS(f*)

Risk of f * ∈ argmin

f∈F

̂ℒS(f)

Complexity of F
Optimal complexity

Figure 2.3: Classical generalization curve with bias-variance trade-off.

fundamental limitation of such results: they only capture the worst-case scenario. Therefore,
even though the VC dimension bound is optimal in the class of distribution-, dataset-, and
function-independent bounds, it does not capture the typical generalization performance
of modern DNNs. This is particularly clear in case of overparametrized DNNs, for which
D > N , and therefore the bound in Theorem 2.3 becomes completely vacuous.

Within the classical statistical learning theory, a number of approaches were developed
to partially address the problems of VC bounds. For instance, bounds based on the
Rademacher complexity depend on the dataset S, which may provide better results in
certain scenarios. The notion of Rademacher complexity also allows to derive generalization
bounds for regression problems, unlike the VC dimension. However, such bounds still
consider the worst-case scenario with respect to the choice of f ∈ F , and are still vacuous
for modern overparametrized DNNs. Other approaches, such as structural risk minimization
and margin-based bounds, additionally introduce the dependence on f ∈ F into the classical
statistical learning theory bounds. However, all these approaches still lead to vacuous
bounds in the overparametrized setting. We refer to Valle-Pérez and Louis (2020) for a
comprehensive survey of different distribution-free generalization bounds and their drawback
when applied to DNNs.

2.3.2 Modern Perspective on Generalization

One of the biggest challenges of modern machine learning theory is to explain the mechanisms
behind the generalization of overparametrized DNNs. As we have seen in the previous
section, classical generalization bounds are typically vacuous for overparametrized models.
Nevertheless, modern heavily-overparametrized DNNs are known to generalize well in a
variety of practical settings. This disparity implies that the classical bias-variance trade-off
curve depicted in Figure 2.3 does not adequately describe generalization of overparametrized
models. To account for this, the double descent generalization curve (illustrated in Figure 2.4)

2.3 Generalization 29

Risk of f * ∈ argmin
f∈F

̂ℒS(f)

Complexity of FInterpolation threshold ̂ℒS(f*) = 0

Expected risk ℒ
μ
(f*)

Empirical risk ̂ℒS(f*)

overparametrized underparametrized

Figure 2.4: Double descent generalization curve.

was proposed in Belkin et al. (2019) as a novel view of generalization in overparametrized
machine learning models.

The double descent curve aligns with the classical bias-variance trade-off curve for under-
parametrized models, which are not rich enough to interpolate the dataset and achieve
zero empirical risk. However, increasing the model’s capacity beyond the interpolation
threshold results in improved generalization, contrary to the traditional perspective of
classical statistical learning theory. The double descent curve has been observed empirically
for a wide range of models, including DNNs (Nakkiran et al., 2021; Belkin et al., 2019).
Theoretical works have also proved the emergence of double descent in a variety of machine
learning models, such as linear models (Hastie et al., 2022), random features models (Belkin
et al., 2020; Mei and Montanari, 2022), and kernel models (Liu et al., 2021). However,
there is currently no theoretical framework that allows to rigorously prove the emergence of
double descent in DNNs.

Example: least squares regression Let us now examine how theoretical results on
double descent manage to avoid the problems of the classical generalization bounds from the
previous section, using a simple linear regression problem as an example. Following Hastie
et al. (2022), assume that the data samples (xi, yi) ∈ R

P × R are i.i.d., and distributed
according to the following data model :

(xi, ϵi) ∼ µx × µϵ, yi = ⟨w∗,xi⟩+ ϵi, i ∈ [1, N], (2.40)

where µx is a distribution on R
P , such that E[xi] = 0, Cov(xi) = Σ, and µϵ is a distribution

on R, such that E[ϵi] = 0, V ar(ϵi) = σ2. Let X ∈ R
N×P denote the features matrix, which

contains samples xi as rows, and y ∈ R
N denote the vector of target outputs. Then the

empirical risk minimization problem associated with the least squares (MSE loss) regression

30 2. Background and Foundations

is given by:
ŵ ∈ argmin

w∈RP

∥Xw − y∥22, (2.41)

where ŵ is the output of the ERM algorithm. Now we can notice that the minimizer of this
problem is not unique for overparametrized models, which satisfy P > N . In fact, there is a
linear subspace of minimizers with dimension P −N . Clearly, not all the minimizers of the
empirical risk in this subspace generalize equally well for the given data model. However,
double descent results additionally take into account that the training is carried out by GD
algorithm. Then it is possible to use the following well-known result regarding the implicit
bias of GD for the least squares regression:

Theorem 2.4. Consider running GD algorithm for the minimization problem (2.41) with
initialization w(0) = 0 and learning rate 0 < η ≤ 1/λmax(X

⊤X), where λmax(X
⊤X) is the

largest eigenvalue of X⊤X. Then the iterates are given by

w(k) = w(k−1) − ηX⊤(Xw(k−1) − y), k ∈ N. (2.42)

And the algorithm converges to the solution with minimal ℓ2 norm:

ŵ := lim
k→∞

w(k) = argmin{∥v∗∥22 | v∗ ∈ argmin
v∈RP

∥Xv − y∥22}. (2.43)

Moreover, the solution has the following closed-form expression:

ŵ = (X⊤X)+X⊤y, (2.44)

where (X⊤X)+ is the Moore-Penrose inverse of X⊤X.

Therefore, it is enough to consider the expected risk of a single function f̂(x) := ⟨ŵ,x⟩, to
which GD converges for a given dataset:

Lµ(f̂) = E(x,ϵ)∼µx×µϵ

[(
⟨ŵ,x⟩ − y

)2]
. (2.45)

This is in stark contrast with the results of Theorems 2.2 and 2.3, which bound the risk
simultaneously for all the functions that can be realized by a given model, independently of
the dataset and the training algorithm. The following theorem gives an explicit expression
for the expected risk Lµ(f̂) of the linear regression model with additional assumptions on
the input distribution:

Theorem 2.5 (Adopted from Hastie et al. (2022)). Assume the data is distributed according
to (2.40) with Σ = I. Assume additionally that the distribution µx has finite moment of
order 4 + k for some k > 0, and that ∥w∗∥ = r2 for all N,P ∈ N. Then the following holds
for the expected risk of the linear regression model trained using GD with MSE loss:

Lµ(f̂) −−−−−−−−→
N→∞,P→∞,
P/N→γ∈R

⎧
⎪⎨

⎪⎩

σ2 γ

1− γ
for γ < 1,

r2
(
1− 1

γ

)
+ σ2 1

1− γ
for γ > 1,

(2.46)

where γ := P/N is the ratio between the number of parameters and the number of samples
in the dataset.

2.3 Generalization 31

The expressions for the expected risk in Theorem 2.5 follow the double descent pattern: the
risk increases with the number of parameters in the underparametrized case, and decreases in
the overparametrized case. Intuitively, the variance decreases in the overparametrized case
because the space of the interpolating functions becomes larger with the parameters count.
Therefore, the minimal ℓ2-norm in this space can only decrease with more parameters. In
other words, stronger overparametrization also implies stronger implicit regularization.

While we only considered the least squares regression here, double descent results for
random features models or kernel models rely on the same principles. Namely, they
compute the empirical risk only for a single data-dependent choice of the empirical risk
minimizer, and exhibit double descent due to the growing regularity of this minimizer in
the overparametrized setting.

Generalization and implicit bias Compared to the classical generalization theory
bounds, current findings on double descent have sacrificed a lot of generality. Indeed,
unlike the classical bounds, these results depend on the training procedure and the data
distribution. Is this loss of generality necessary to derive non-vacuous generalization results
for overparametrized models?

While there might be room to relax assumptions about the data distribution in existing
results, the dependence on the training algorithm is a fundamental aspect of generalization
theory for overparametrized models. Indeed, overparametrization implies that multiple
functions in F achieve zero empirical risk, but usually not all of these functions generalize
equally well. In the example of the overparametrized least squares regression that we
considered above, the empirical risk minimizers can take the form w̃ = w∗ + α∆w, where
α ∈ R and ∆w ∈ {v ∈ R

P | Xv = 0, ∥v∥ = 1}. Therefore, it is easy to see that the
expected risk for such a minimizer is given by

Lµ(f̃) = E(x,ϵ)∼µx×µϵ
[(α⟨∆w,x⟩ − ϵ)2] = α2∥∆w∥2Σ + σ2, (2.47)

where f̃(x) = ⟨w̃,x⟩ and ∥∆w∥2Σ = ∆w⊤Σ∆w. Then, provided that we can choose ∆w
such that ∥∆w∥Σ > 0, there exist empirical risk minimizers with arbitrarily large expected
risk. Therefore, relying on the knowledge about the exact minimizer chosen by GD is
essential to derive any meaningful generalization guarantee.

The convergence of gradient-based algorithms to minimizers with certain properties is at
the focus of the implicit bias literature, which we discussed in the introduction. Clearly,
generalization performance of modern overparametrized models is deeply connected to the
implicit bias of common optimization algorithms. This, in turn, highlights the importance
of studying the training dynamics of machine learning models, as it allows to derive implicit
bias results.

Towards generalization guarantees for DNNs Empirical evidence suggests that
the double descent phenomenon can serve as a suitable framework for understanding

32 2. Background and Foundations

the generalization of modern DNNs (Nakkiran et al., 2021). However, a big obstacle for
deriving theoretical generalization results for DNNs is the current lack of satisfactory results
regarding the implicit bias of DNNs. Indeed, as we discussed in Section 1.2, existing results
regarding training dynamics and implicit bias of DNNs rely on various simplifications, which
do not accurately reflect the reality of modern deep learning. In the next section, we focus
on one such simplification, called the kernel regime of DNNs, which is the central theme of
this thesis. While the kernel regime of DNNs has been a breakthrough in deep learning
theory, the contributions of this thesis and numerous relevant works have highlighted its
limitations in capturing empirical properties of DNNs. Therefore, the perspective we adopt
in this thesis is that new approaches, grounded in strong empirical evidence, are necessary
to demystify the generalization of DNNs.

2.4 Neural Tangent Kernel

Let us consider the gradient flow dynamics of a NN fθ : R
n0 → R with trainable parameters

θ ∈ R
P , which is trained on a dataset S =

{
(xi, yi)

}N
i=1

. Here we consider the case of NNs
with scalar output nL = 1 for simplicity. The training dynamics of the NN’s parameters is
given by

θ̇ = −∇L̂S(θ) = −
1

N

N∑

i=1

∇fθ(xi)
∂L(fθ(xi), yi)

∂fθ(xi)
. (2.48)

Then, by chain rule, the corresponding dynamics of the DNN’s output function for any
input x ∈ R

n0 is given by:

ḟθ(x) = ⟨∇fθ(x), θ̇⟩ = −
1

N

N∑

i=1

〈
∇fθ(x),∇fθ(xi)

〉∂L(fθ(xi), yi)

∂fθ(xi)
. (2.49)

Therefore, the dynamics in the function space is controlled by an inner product kernel
Θ(x, x̃) :=

〈
∇fθ(x),∇fθ(x̃)

〉
, which is known as the Neural Tangent Kernel (NTK).

Definition 2.12 (Neural Tangent Kernel). Consider a NN fθ : R
n0 → R

nL with trainable
parameters θ ∈ R

P . Then the NTK of this network Θ : Rn0 × R
n0 → R

nL×nL is given by

Θk,s(x, x̃) :=
〈
∇fθ,k(x),∇fθ,s(x̃)

〉
, x, x̃ ∈ R

n0 , k, s ∈ [nL], (2.50)

where fθ,k : R
n0 → R is the k-th output neuron of the NN, and ∇fθ,k : Rn0 → R

P denotes
the gradient of fk with respect to all the parameters of the NN.

Although here we specifically consider NNs, notice that equations (2.48), (2.49) hold for other
machine learning models as well. In particular, for linear models we have Θ(x, x̃) := ⟨x, x̃⟩,
and for random features models Θ(x, x̃) := ⟨Φ(x),Φ(x̃)⟩ with an appropriate feature map Φ.
Finally, the role of the NTK in NNs’ dynamics is analogous to the role of a kernel in kernel
gradient flow. Therefore, the NTK generalizes the concepts of features matrices and kernels
to NNs. However, unlike traditional kernels, the NTK depends on the NN’s parameters, and
therefore it changes during training and inherits randomness from the initialization.

2.4 Neural Tangent Kernel 33

2.4.1 Infinite-Width Limit

Since the NTK is random and changes during training, theoretical analysis of dynamics (2.49)
is extremely challenging in the general case. However, a famous work by Jacot et al. (2018)
showed that the NTK becomes deterministic and constant in the infinite-width-limit of
NNs under certain conditions. This setting is called the kernel regime or the NTK regime
of NNs. The dynamics of NNs in the NTK regime are equivalent to kernel gradient flow,
enabling the derivation of theoretical results regarding implicit bias and generalization of
NNs. In this section, we introduce the kernel regime of DNNs and its applications.

The infinite-width limit of the NTK is traditionally considered in the so-called NTK

parametrization, where the NN’s trainable parameters are variables
{
(wℓ, βℓ)

}L
ℓ=1

, which
are in the following relationship to the weights and biases of the NN:

Wℓ
i,j =

σw√
nℓ−1

wℓ
i,j, bℓ

i = σbβ
ℓ
i . (2.51)

The Gaussian initialization, equivalent to (2.26), is expressed as follows in the NTK
parametrization:

wℓ
i,j ∼ N (0, 1) i.i.d., βℓ

i ∼ N (0, 1) i.i.d. (2.52)

Clearly, the reparametrization does not change the distribution of any variables of the NN’s
forward pass. However, it rescales the NN’s Jacobians as follows:

∇wℓfθ(x) =
σw√
nℓ−1

∇Wℓfθ(x), ∇βℓfθ(x) = σb∇bℓfθ(x). (2.53)

Therefore, since the NTK is defined as the inner product of the NN’s Jacobians with respect
to the trainable parameters, this reparametrization introduces a width-dependent rescaling
of the NTK summands. Note that during the training process, the NTK parametriza-
tion can also be interpreted as a suitable rescaling of the learning rates for individual
parameters.

The NTK parametrization is convenient in the infinite-width limit, as the width-dependent
rescaling ensures that the NTK does not diverge in this limit. Then it is possible to derive
the following result regarding the concentration of the NTK at initialization:

Theorem 2.6 (Infinite-width NTK is deterministic). Consider a fully-connected NN with
fixed depth L ∈ N and linear activation in the output layer, i.e., φL(x) = x. Assume
that the activation function in all the hidden layers is a Lipschitz continuous function φ.
Assume further that the NN is parametrized according to (2.51) and initialized as in (2.52).
Then, in the infinite-width limit n1, . . . , nL−1 → ∞, the following holds for the NTK at
initialization Θ(0) computed on any inputs x, x̃ ∈ R

n0:

Θ(0)(x, x̃)
p−→ Θ∞(x, x̃)InL

. (2.54)

Moreover, Θ∞ can be computed recursively using the following expression:

Θ∞(x, x̃) =
L∑

ℓ=1

(
Σℓ−1(x, x̃)

L∏

ℓ′=ℓ

Σ̇ℓ′(x, x̃)
)
, (2.55)

34 2. Background and Foundations

where Σℓ(x, x̃) is the Gaussian process covariance defined in (2.30), and2

Σ̇ℓ(x, x̃) = E
(u,v)∼N (0,Σℓ(x,x̃))

[
φ′(u)φ′(v)

]
. (2.56)

This result was originally proved in the seminal work of Jacot et al. (2018) for the sequential
setting, where limits with respect to the width of each layer are taken one by one. While
the sequential limit is not a good model for DNNs that typically have comparable widths
in different layers, this result was generalized to simultaneous limit in multiple following
works (Yang, 2020a; Arora et al., 2019b). Some works have also derived convergence rates
for this result (Arora et al., 2019b; Huang and Yau, 2020).

The second important result states that the NTK does not change during training in the
infinite-width limit:

Theorem 2.7 (Infinite-width NTK is constant). Consider a NN as described in Theorem 2.6.
Additionally, assume that the activation function φ is differentiable, and its derivative φ′ is

Lipschitz continuous. The NN is trained using GD on a dataset S =
{
(xi,yi)

}N
i=1

, contained
in a compact set, and such that xi ≠ xj for all i ̸= j. Assume the infinite-width NTK

matrix Θ∞(X,X) =
{
Θ∞(xi,xj)

}N
i,j=1
∈ R

N×N is full-rank, and the learning rate is set to

η < ηmax := 2/(λmax+λmin), where λmax,min denote the largest and the smallest eigenvalues
of Θ∞(X,X). Then for any GD step t ∈ N, the following holds in the infinite-width limit
n1, . . . , nL−1 →∞:

Θ
(t)
k,s(X,X)

p−→ Θ∞(X,X)δk,s, k, s ∈ [nL]. (2.57)

The first result regarding the limit of the NTK during training was proved in Jacot et al.
(2018) for the sequential limit and gradient flow training, while following works generalized
it to the simultaneous limit. The formulation that that we adopted here is an asymptotic
version of the results in Lee et al. (2019), which showed that the above limit converges at
a rate O(1/

√
n) uniformly over t. An analogous result was also proven for ReLU DNNs,

which are not covered by Theorem 2.7, in Arora et al. (2019b). Finally, a stronger result
regarding the convergence rate of the above limit was derived using the Neural Tangent
Hierarchy (NTH) in Huang and Yau (2020).

The results of Theorems 2.6 and Theorem 2.7 together define the NTK regime of NNs,
where the NTK is constant and deterministic during the whole training process.

2.4.2 Training Dynamics in the NTK Regime

The gradient flow dynamics of NNs (2.49) takes the following form in the NTK regime:

ḟθ(x) = −
1

N

N∑

i=1

Θ∞(x,xi)
∂L(fθ(xi), yi)

∂fθ(xi)
. (2.58)

2Lipschitz φ ensures that the derivative φ′ exists almost everywhere, so the expectation is well-defined.

2.4 Neural Tangent Kernel 35

In the special case of MSE loss, this can be expressed as the following matrix ODE:

ḟθ(X) = − 1

N
Θ∞(X,X)(fθ(X)−Y), (2.59)

where X ∈ R
N×n0 is a matrix comprising all the inputs xi, i ∈ [1, N] from the training

dataset as rows, and Y ∈ R
N is a vector of target outputs yi, i ∈ [1, N]. Therefore, the

dynamics in the NTK regime is governed by linear equations, and can be seen as the
linearization of the NN’s dynamics around its initialization.

The dynamics (2.59) has an analytical solution, expressed as follows:

f
(t)
θ (X) = Y + (f

(0)
θ (X)−Y) exp

(
−tΘ∞(X,X)

)
, (2.60)

where exp
(
−tΘ∞(X,X)

)
is the matrix exponential. Therefore, it is possible to study

convergence of gradient flow in the NTK regime. Indeed, we see that the NN’s error on
the training set converges to zero exponentially in the above equation, given that the NTK
matrix is positive-definite.

For an arbitrary input x ∈ R
n0 , we can also give an explicit expression for the training

dynamics, given that the infinite-width NTK matrix is invertible3:

f
(t)
θ (x) = f

(0)
θ (x)−Θ∞(x,X)Θ∞(X,X)−1

(
I− e−tΘ∞(X,X)

)
(f

(0)
θ (X)−Y). (2.61)

Therefore, it is possible to study generalization error of NNs in the kernel regime at any
training time t using the above expression.

2.4.3 Generalization Bounds Based on the NTK

Several works derived generalization bounds for NNs in the NTK regime. The characteristic
property of such bounds is their independence of width. I.e., the number of parameters of
the NN can grow without worsening the generalization guarantee. The following bound
was derived in Arora et al. (2019a) for sufficiently-wide NNs with one hidden layer trained
for sufficiently many GD steps:

Lµ(fθ) ≤
√

2Y⊤(Θ∞(X,X))−1Y

N
+O

(√
log N

λ0δ

N

)

, (2.62)

where the bound holds with probability at least 1− δ. A similar bound, generalized for
NNs of arbitrary depth L initialized at the EOC, has been formulated in Cao and Gu
(2019). This bound exhibits a linear growth with depth, indicating that the generalization
guarantees deteriorate for deeper networks in the NTK regime. However, this observation
appears inconsistent with empirical evidence. Our contributions in Section 3.1 partially
concern generalization in the NTK regime and its dependence on depth. In particular, we
discuss how the infinite-width NTK changes with depth, and how its properties lead to
poor generalization guarantees.

3As we see e.g. in Section 3.2, the infinite-width NTK is indeed invertible if all the points in the training

dataset are distinct.

36 2. Background and Foundations

t =0 t =100 t =500 t =3000

Figure 2.5: NTK alignment during training of a fully-connected ReLU DNNs with L = 20
and widths nℓ = 300 for all 0 < ℓ < L on MNIST. The NTK matrix develops an approximate
block structure during training. The heatmaps show the NTK matrix on MNIST subsample
of size 100 at epoch t ∈ {0, 100, 500, 3000}. The subsample is arranged so that diagonal
blocks of size 10 contain pairwise NTK values on each class. Figure from Seleznova and
Kutyniok (2022b).

2.4.4 NTK Alignment

The NTK at initialization is label-agnostic, meaning that its value for a pair (x, x̃) remains
independent of whether the labels of x and x̃ are identical or not. Therefore, DNNs in the
NTK regime do not learn and utilize any label-dependent features. Label-agnostic features,
however, may not offer an optimal representation system for an arbitrary task. Indeed,
since DNNs can perform equally well on various tasks using the same dataset, such as
recognizing different objects in the same set of images, label-agnostic kernel is unlikely to
explain the performance of trained DNNs.

Several studies have explored the advantages of incorporating label information into kernels
(Cristianini et al., 2001; Gönen and Alpaydin, 2011). These studies consider the alignment
between a given kernel matrix K := k(X,X) ∈ R

N×N and the “ideal kernel”, which is
proportional to the corresponding labels matrix YY⊤:

A(K,YY⊤) :=

〈
K,YY⊤

〉
F√〈

K,K
〉
F

〈
YY⊤,YY⊤

〉
F

, (2.63)

where
〈
K1,K2

〉
F
:=
∑N

i,j=1 k1(xi, xj)k2(xi, xj). Then higher kernel alignment values are
associated with better generalization performance of the corresponding kernel methods.
Hence, kernel alignment can be interpreted as a metric indicating the compatibility between
a kernel and a specific task. In the context of DNNs, Chen et al. (2020) argued that
label-agnosticism of the NTK could account for the performance gap observed between
trained DNNs and the NTK regime. They demonstrated that adding a label-dependent
term to the infinite-width NTK enhances the performance of the kernel. Therefore, it is
crucial to characterize the label-awareness of the empirical NTK to gain insights into the
properties of trained DNNs.

2.5 Notation 37

Multiple recent papers have observed that the empirical NTK of finite-width DNNs aligns
with the labels matrix YY⊤ during training (Baratin et al., 2021; Shan and Bordelon,
2022; Atanasov et al., 2021; Seleznova and Kutyniok, 2022b). This process characterizes
feature learning in DNNs and is called NTK alignment in the literature. In agreement
with the intuition from kernel methods, higher NTK alignment values are correlated with
better performance of DNNs (Atanasov et al., 2021; Seleznova et al., 2023). Figure 2.5
gives an example of the NTK alignment arising during training a fully-connected DNN
on MNIST. In classification problems, the labels matrix YY⊤ has a block structure, with
diagonal blocks filled with ones and non-diagonal blocks filled with zeros. Therefore, the
NTK alignment in these problems manifests as an emergence of a block structure in the
NTK matrix. This observation forms the basis for the NTK block structure assumption,
which we introduce in Section 3.3. Additionally, we present numerous visual examples
of the NTK block structure in trained DNNs and conduct experiments to showcase the
dynamics of NTK alignment during training in Section 3.3.

2.5 Notation

The set of natural numbers is denoted by N. The set of real numbers is denoted by R. The set
of non-negative real numbers is denoted by R+. [N1, N2] is a set of integers {N1, . . . , N2}.
Operation ◦ denotes composition of functions. Operations ⊙ denotes composition of
functions, where the outer function in the composition is applied component-wise. Set
product is denoted by×(or × for two sets). Set isomorphism is denoted by ≃. Convergence
in probability is denoted by

p−→. In the context of NNs, we generally denote by fθ(x) the
output function of a DNN with parameters θ computed on the input x. We denote ∇vfθ(x)
the gradient of the DNN’s output function computed on input x with respect to the subset
of parameters v, where the parameters are set to their current values, given by θ. In
the context of gradient flow, ḟ denotes the derivative of a function f with respect to the
time variable t. For a kernel function k : Rn × R

n → R, we denote by k(X, X̃) ∈ R
N×Ñ

the matrix of the kernel values computed for all the pairs of rows in matrices X ∈ R
N×n,

X̃ ∈ R
Ñ×n, i.e., k(X, X̃)[i, j] = k(X[i], X̃[j]). For any probability distribution µ, we

assume a suitable underlying probability space. Ex∼µ denotes the expectation with respect
to random variable x distributed according to µ. When the random variables and the
distribution are not specified, the expectation is taken with respect to all the relevant
random variables. Cov(x, y) denotes the covariance of random variables x and y.

38 2. Background and Foundations

Chapter 3

Contributing Papers

40 3. Contributing Papers

3.1 Analyzing Finite Neural Networks: Can We Trust

Neural Tangent Kernel Theory?

Contributing article: Seleznova, M. and Kutyniok, G. (2022a). Analyzing Finite Neural
Networks: Can We Trust Neural Tangent Kernel Theory? In Proceedings of the 2nd
Mathematical and Scientific Machine Learning Conference, pages 868–895. PMLR.

Author contributions: Mariia Seleznova developed the original research idea to analyze
the NTK of finite-width DNNs as a function of initialization hyperparameters and the
network’s depth to determine when the NTK regime approximates realistic DNNs. Mariia
Seleznova formulated all the theorems and derived all the proofs presented in the paper,
designed and programmed all the numerical experiments, wrote the paper’s main text
and appendices, and designed all the figures. As the main author, Mariia Seleznova also
managed the publication process: paper submission to the conference, writing a rebuttal
after the initial reviews, addressing reviewers’ concerns, and producing the camera-ready
version of the paper. Gitta Kutyniok took part in the project discussions at all the stages,
provided feedback, reviewed and proofread the paper.

Additional resources:

• Paper link: https://proceedings.mlr.press/v145/seleznova22a.html

• Slides: https://msml21.github.io/slides/id44.pdf

• Video presentation: Google Drive link

https://proceedings.mlr.press/v145/seleznova22a.html
https://msml21.github.io/slides/id44.pdf
https://drive.google.com/file/d/1POZFrmhVzIyHj4vSN19dMIdIcci52D6F/view

Proceedings of Machine Learning Research vol 145:1–28, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Analyzing Finite Neural Networks: Can We Trust Neural Tangent

Kernel Theory?

Mariia Seleznova SELEZNOVA@MATH.LMU.DE and Gitta Kutyniok KUTYNIOK@MATH.LMU.DE

Department of Mathematics, Ludwig-Maximilians-Universität München, Munich, Germany

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract

Neural Tangent Kernel (NTK) theory is widely used to study the dynamics of infinitely-wide deep

neural networks (DNNs) under gradient descent. But do the results for infinitely-wide networks

give us hints about the behavior of real finite-width ones? In this paper, we study empirically when

NTK theory is valid in practice for fully-connected ReLU and sigmoid DNNs. We find out that

whether a network is in the NTK regime depends on the hyperparameters of random initialization

and the network’s depth. In particular, NTK theory does not explain the behavior of sufficiently

deep networks initialized so that their gradients explode as they propagate through the network’s

layers: the kernel is random at initialization and changes significantly during training in this case,

contrary to NTK theory. On the other hand, in the case of vanishing gradients, DNNs are in the

the NTK regime but become untrainable rapidly with depth. We also describe a framework to

study generalization properties of DNNs, in particular the variance of network’s output function,

by means of NTK theory and discuss its limits.

Keywords: Deep Neural Networks (DNN), Neural Tangent Kernel (the NTK)

1. Introduction

Deep neural networks (DNNs) have gained a lot of popularity in the last decades due to their success

in a variety of domains, such as image classification (Krizhevsky et al., 2012), speech recognition

(Hannun et al., 2014), playing games (Mnih et al., 2013), etc. Consequently, there has been a

tremendous interest in the theoretical properties of DNNs: expressivity (Montufar et al., 2014),

optimization (Goodfellow et al., 2014) and generalization (Hardt et al., 2016). However, many

aspects of DNNs, in particular their surprising generalization properties, still remain unclear to the

community (Zhang et al., 2016).

To study theoretical properties of DNNs, numerous recent papers have considered them in the

infinite-width limit. In particular, there is a line of research which shows that untrained fully-

connected networks of depth L and widths M1, . . . ,ML with weights and biases initialized ran-

domly as

W
l
ij ∼ N (0,σ2

w/Ml),b
l
i ∼ N (0,σ2

b) (1)

behave as Gaussian processes (GP) in the infinite-width limit (for any l ∈ [1, L],Ml → ∞) (Lee

et al., 2017; Matthews et al., 2018; Novak et al., 2018). These GPs are then fully described by a so-

called Neural Network Gaussian Process (NNGP) kernel, and a number of publications have studied

properties of this kernel depending on the network’s depth and initialization hyperparameters (Poole

et al., 2016; Schoenholz et al., 2016). These works developed a mean field theory formalism for NNs

and identified that there exist two situations – depending on hyperparameters (σ2
w,σ

2
b) – in which

© 2021 M. Seleznova & G. Kutyniok.

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

signal propagation through the network differs substantially: ordered and chaotic phases, which

correspond to vanishing and exploding gradients. However, these results only concern untrained

randomly initialized networks.

There have also been recent successes in the theory of trained infinitely wide DNNs. In par-

ticular, it has been shown that the evolution of NN’s output during gradient flow training can be

captured by a so-called Neural Tangent Kernel (NTK) Θt (Jacot et al., 2018; Arora et al., 2019;

Yang, 2020):

df t(x)

dt
= −

1

S

∑

s=1,...S

Θt(x, xs) · [f
t(xs)− ys],

Θt(xi, xj) = ∇wf
t(xi)

T∇wf
t(xj), w = {Wl,bl}l=1,...L,

(2)

where f t(x) is the network’s output on x at time t and D = {(xs, ys)}s=1,...S is the training set. In

general, the NTK changes during training time t and the dynamics in (2) is complex. However, as

layers’ widths tend to infinity with fixed depth, it can be shown that the NTK stays constant during

training and equal to its initial value:

Θt(xi, xj) = Θ0(xi, xj). (3)

Moreover, the NTK at initialization converges to a deterministic kernel Θ∗ in the same limit:

Θ0(xi, xj) −−−−→
Ml→∞

Θ∗(xi, xj). (4)

These two results allow to dramatically simplify the analysis of DNNs behavior, as the dynamics in

(2) becomes identical to kernel regression and the ODE has a closed-formed solution.

However, some recent papers argue that the success of DNNs cannot be explained by their be-

havior in the infinite-width limit (Chizat et al., 2019; Hanin and Nica, 2019). One justification for

this view is that no feature learning occurs when (3) and (4) hold, as the NTK stays constant during

training and depends only on the parameters at initialization. Moreover, the NTK becomes com-

pletely data-independent in the infinite-depth limit, which suggests poor generalization performance

(Xiao et al., 2019). That is why, to study properties of real DNNs, it is important to understand when

and if NTK theory can be applied to finite-width NNs.

1.1. Contribution

Our aim in this work is to understand when the inferences of NTK theory (3) and (4) hold

for real NNs depending on hyperparameters (σ2
w,σ

2
b , L,M) and what this implies for the existing

theoretical results about DNNs based on NTK theory. The contributions of our work are as follows:

• NTK variance at initialization. We study empirically when the NTK is approximately de-

terministic at initialization for finite-width fully-connected ReLU and tanh networks with

different hyperparameters (σ2
w,σ

2
b , L,M). Our results suggest that, depending on the ini-

tialization hyperparameters (σ2
w,σ

2
b), there is a phase in the hyperparameter space where the

NTK is close to deterministic for any depth L, so (4) holds. However, there is also a phase

where the NTK variance grows with L/M , so (4) does not hold for deep networks. Follow-

ing the terminology from Poole et al. (2016), we will call these phases ordered and chaotic,

respectively.

2

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

• NTK change during training. We also empirically study changes in the NTK matrix during

gradient descent training for ReLU and tanh networks. Our results show that, in the ordered

phase, the relative change in the NTK matrix norm caused by training is small and does not

increase with L, so (3) holds. However, in the chaotic phase the NTK matrix change during

training is large and grows with depth L. This implies that (3) does not hold, i.e. DNNs

initialized in the chaotic phase do not behave as NTK theory suggests.

• NTK theory approach for generalization. Some recent publications analyze properties of

the NTK and draw conclusions about DNNs’ generalization thereof (Xiao et al., 2019; Geiger

et al., 2020). Other authors argue that the behavior of networks in the NTK regime is trivial

and does not yield good generalization properties, that are however observed for DNNs in

practice (Chizat et al., 2019). We show how to compute data-independent variance of the

network’s output when it evolves according to NTK theory. However, given our empirical

results for when NTK theory is applicable, we discover that these findings do not explain the

behavior of finite-width networks in most of the hyperparameters space (σ2
w,σ

2
b , L,M).

1.2. Related work

This work adds to the line of research that studies the correspondence between finite- and

infinite-width DNNs. In particular, the difference between theoretical (infinite-width) and empirical

(finite-width) NTK. In this section, we survey the prior results in this direction and position our

contribution within them.

A number of papers have studied the convergence of the empirical NTK at initialization to the

theoretical NTK. The first fundamental result of NTK theory is that the NTK converges to a deter-

ministic limit as M goes to infinity (Jacot et al., 2018). The following work proved a non-asymptotic

bound on minimal M required to guarantee this convergence in case of ReLU networks (Arora et al.,

2019). This bound on M depends on the depth as O(L6log(L)), therefore L/M is always small for

deep networks when the bound holds. Then, a recent theoretical work improved this result in a spe-

cial case of ReLU networks with initialization (σw = 2,σb = 0) by showing the precise exponential

dependence of the NTK variance at initialization on L/M (Hanin and Nica, 2019). That is, (4) does

not hold for such networks when L/M is bounded away from zero. However, the proofs given in

the paper are not immediately generalizable for different activation functions and different initial-

ization parameters. Thus, there is still no solid understanding of the NTK randomness depending on

the choice of a network. Therefore, in Section 3, we empirically study the randomness of the NTK

at initialization for ReLU and tanh networks with a variety of hyperparameters (M,L,σw,σb)
and observe the precise dependence on 1) the position of initialization (σw,σb) in either ordered or

chaotic phase, 2) depth-to-width ratio L/M in the chaotic phase.

Changes of the NTK matrix during gradient descent training have also been analyzed in the

literature mostly as a function of M . In particular, it has been proven (Huang and Yau, 2020) and

shown experimentally (Lee et al., 2019) that the change of the NTK matrix during gradient descent

training is bounded by O(1/M) when the depth L is fixed. For ReLU networks with initialization

(σw = 2,σb = 0) it has also been proven that the change of the NTK in a gradient descent step

depends exponentially on L/M (Hanin and Nica, 2019). We add to these results in Section 4 by

investigating the NTK changes during training for two activation functions and hyperparameters

(σw,σb, L).

3

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

A different line of research has also studied the theoretical (infinite-width) NTK as a function

of depth and initialization parameters (Xiao et al., 2019; Hayou et al., 2019). These contributions

found that the spectrum of infinite-width NTK behaves differently in ordered and chaotic phases.

The authors also showed that the infinite-depth limit of the theoretical NTK (when first the limit

M → ∞ is taken with fixed L and then L → ∞) yields trivial performance and cannot explain

properties of finite DNNs. These papers showed that both in ordered and chaotic phases the NTK

approaches its trivial limit exponentially in L, and only in the border between phases (EOC) this

convergence is sub-exponential. However, the setting of these contributions requires L/M values to

be small, therefore they do not explain how the randomness of NTK and its changes during training

impact the results. Our work shows that in the chaotic phase and at the EOC the NTK does not

behave as its theoretical limit when L/M is bounded away from zero, therefore we cannot draw

conclusions about such DNNs based on the theoretical NTK.

In generalization research, the recent trend is double descent – the phenomenon that highly

overparametrized models, including DNNs, tend to generalize surprisingly well (Belkin et al., 2018;

Nakkiran et al., 2019; Belkin et al., 2019; Hastie et al., 2019). The recent developments in the the-

ory of double descent showed that overparametrized linear models reach low generalization error

because, counterintuitively, their variance decreases when the number of parameters increases be-

yond the number of samples (Hastie et al., 2019). However, there is still no double descent theory

for DNNs, which are significantly more theoretically complex than linear models. In Section 5, we

studied the variance of DNNs’ output with the simplifications of NTK theory, which can be seen as

the first step into this direction.

2. Mean field approach for wide neural networks

A number of recent papers used the mean field formalism to study forward- and backpropagation

of signal through randomly initialized DNNs (Poole et al., 2016; Schoenholz et al., 2016; Karakida

et al., 2018; Yang and Schoenholz, 2017). We first describe this approach and show how ordered

and chaotic phases, which correspond to vanishing and exploding gradients, arise from it.

Suppose there is a fully-connected feed-forward neural network initialized randomly as in (1)

with hidden layers’ widths M1, . . .ML. Forward propagation through the network is given by

x
l(xs) = φ(hl(xs)), h

l(xs) = W
l
x
l−1(xs) + b

l, l = 1, . . . L,

x
0(xs) = xs, s = 1, . . . S,

where φ is the activation function, xl are activations, hl are pre-activations in each layer l, and

D = (X,Y) = {(xs, ys)}s=1,...S is a dataset.

Consider variances ql(xs) := E[(hl
i(xs))

2] of the pre-activations in each layer for a given input

vector xs. The mean field theory approach assumes that hl
i(xs), i = 1, . . .Ml are i.i.d Gaussian,

so by central limit theorem in the limit of M → ∞, the variance can be seen as a sum over dif-

ferent neurons in the same layer ql(xs) =
1
Ml

∑Ml

i=1(h
l
i(xs))

2. Then it can be computed through a

recursive relation:

ql(xs) = σ2
w

∫

Dz · φ(
√

ql−1(xs)z)
2 + σ2

b , (5)

where the average over numerous neurons in layer l − 1 is replaced by an integral over a Gaussian

distribution Dz = dz√
2π
e−z2/2. Then the variance of activations q̂l(xs) := E[(xl

i(xs))
2] is given by

4

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

q̂l(xs) =

∫

Dz · φ(
√

ql(xs)z)
2. (6)

In the same fashion, Poole et al. (2016) derive a recursive map for the correlation between pre-

activations of two different inputs and the correlation between activations of two different inputs,

denoted correspondigly ql(xs, xr) := E[hl
i(xs)h

l
i(xr)] and q̂l(xs, xr)] := E[xl

i(xs)x
l
i(xr)]:

qlsr(xs, xr) = σ2
w

∫

Dz1Dz2 · φ(u1)φ(u2) + σ2
b ,

q̂l−1
sr (xs, xr) =

∫

Dz1Dz2 · φ(u1)φ(u2),

u1 =
√

ql−1(xs)z1, u2 =
√

ql−1(xr)[c
l−1
sr z1 +

√

1− (cl−1
sr)2z2],

cl−1
sr =

ql−1(xs, xr)
√

ql−1(xs)ql−1(xr)
.

(7)

The gradients of the network are given by the backpropagation chain:

∂f

∂Wl
ij

= δliφ(h
l−1
j),

∂f

∂bl
i

= δli,

δli =
∂f

∂hl
i

= φ
′

(hl
i)
∑

j

δl+1
j W

l+1
ji ,

where we omitted the dependence on input xs for simplicity. With an additional assumption that

weights in forward- and backpropagation are drawn independently, i.e. φ(hl
j) and δli are indepen-

dent, Schoenholz et al. (2016) derived a recursive relation for the variance of the backpropagated

errors pl(xs) := E[
∑

i(δ
l
i(xs))

2]:

pl(xs) = σ2
wp

l+1(xs)
Ml+1

Ml+2

∫

Dz[φ
′

(
√

ql(xs)z)]
2. (8)

And for the corresponding correlation between backpropagated errors of two different input vectors

plsr(xs, xr) := E[
∑

i(δ
l
i(xs)δ

l
i(xr))]:

plsr(xs, xr) = σ2
wp

l+1
sr (xs, xr)

Ml+1

Ml+2

∫

Dz1Dz2 · φ
′

(u1)φ
′

(u2),

u1 =
√

ql(xs)z1, u2 =
√

ql(xr)[c
l
srz1 +

√

1− (clsr)
2z2],

clsr =
qlsr(xs, xr)

√

ql(xs)ql(xr)
.

(9)

Note that for certain activation functions, e.g. ReLU and erf, the integrals in (5), (6), (7), (8) and

(9) can be taken analytically. One can refer to Appendix E for these analytical expressions.

We can now introduce, following the notation from Poole et al. (2016) and Schoenholz et al.

(2016), a quantity that controls the backpropagation of variance pl(xs):

χl
1 = σ2

w

∫

Dz[φ
′

(
√

qlz)]2,

pl = pl+1 · χl
1,

5

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

where we assumed that the network’s width is constant, i.e. Ml+1/Ml+2 = 1. Then χ1 also controls

the propagation of the gradients at initialization:

E[(
∂f0(xs)

∂Wl
ij

)2] = E[(δli)
2]E[(φ(hl−1

j))2] ∝ pl(xs).

In particular, when the initialization parameters are such that χl
1 < 1 in all the layers, the gradients

vanish, and when χl
1 > 1 the gradients explode. These two situations are referred to as ordered and

chaotic phases correspondingly, and the border between these phases defined by χl
1 = 1 is called

edge of chaos (EOC) initialization. Several authors suggest that networks should be initialized near

EOC to allow deeper signal propagation (Hayou et al., 2018; Schoenholz et al., 2016).

In the next two sections of the paper, we test empirically how different parameters of random

initialization (σ2
w,σ

2
b), as well as network’s architecture (M,L), impact the behavior of the empiri-

cal NTK Θt. Our observation is that for finite-width networks chaotic and ordered phases give rise

to very different behavior of the empirical NTK as compared to the theoretical NTK, which has not

been considered in the community before to the best of our knowledge.

3. NTK variance at initialization

First we aim to verify empirically when the theoretical result (4) that the NTK is deterministic

at initialization in the infinite-width limit holds for finite-width NNs. Following Hanin and Nica

(2019), we computed the ratio E[Θ0(x, x)2]/E2[Θ0(x, x)] ∈ [1,∞) to study the distribution of the

NTK. When the NTK at initialization is close to deterministic, its distribution is similar to a delta

function around its mean and the value of the ratio is close to one. On the other hand, when this

ratio is bounded away from one, the NTK’s variance is comparable to its mean value and therefore

cannot be disregarded.

One can see the results of our experiments for fully-connected ReLU and tanh networks with

constant width M in Figure 1. We observe that when σ2
w is small enough (ordered phase), the

NTK variance is small and does not increase with depth L, implying that (4) holds for any depth

and NTK theory can be used to study NNs initialized in this way. However, for large σ2
w (chaotic

phase) the variance grows significantly with L, hence for very deep networks in this phase (4)

does not hold. At the EOC, the variance of the NTK is a fraction of its mean even for very deep

networks, so NTK theory can approximate the average behavior of networks initialized near EOC,

but the random effects may still be significant. One can also see that as M grows, the vertical red

region gets narrower, i.e. the transition becomes sharper. This is consistent with the fact that the

theoretical border between vanishing and exploding gradients is sharp and computed in mean field

theory (Section 2) by taking the limit M → ∞. These results are similar for ReLU and tanh

networks, taking into account that the theoretical boundary between phases — given by χl
1 = 1 and

indicated by the dashed line in the figures — is located at larger σ2
w values for sigmoid networks.

One also observes that the NTK variance is small for sufficiently shallow NNs with any σ2
w value.

Such shallow networks were mostly considered in recent empirical studies on behavior of wide NNs

under gradient descent (Lee et al., 2019). It is thus important to note, that such empirical results

may be invalid for much deeper networks, depending on the initialization parameters.

Moreover, when depth L is fixed and width M increases, the the NTK variance decreases in

the chaotic phase, which supports the hypothesis that the variance depends on the ratio L/M .

To examine this dependence on L/M in more detail, we present Figure 2. It shows the ratio

6

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 1: Ratio
E[Θ0(x, x)2]

E2[Θ0(x, x)]
for fully-connected a) tanh, b) ReLU networks of constant widths

M = 50, 100, 200, 500, in all the experiments σ2
b = 1. The expected values for each set

of parameters are calculated by sampling 200 random initializations of the network. The

NTK is computed using TensorFlow automatic differentiation. The dashed line shows

the theoretical border between ordered and chaotic phases (χl
1 = 1) for the given hy-

perparameters. In the black zone, the ratio is close to one, i.e. the NTK at initialization

Θ0 has low variance and can be considered a deterministic variable. In the red zone, the

NTK standard deviation is comparable with its mean. In the blue zone, the NTK standard

deviation is greater than its mean, so the NTK is not deterministic and cannot be replaced

by its mean.

7

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 2: Dependence of ratio
E[Θ0(x, x)2]

E2[Θ0(x, x)]
on L/M with different initialization parameters and

width values for ReLU networks. Both rows show the same curves plotted against a)

depth L, b) ratio L/M . The expectations are computed by sampling 200 random initial-

izations of the network.

E[Θ0(x, x)2]/E2[Θ0(x, x)] for a wider range of M values for four different initialization param-

eters sets: (σ2
w,σ

2
b) ∈ [(1, 1), (1.5, 1), (2, 0), (3, 1)]. Each curve is plotted against both L and L/M .

We notice that in the ordered phase (σ2
w = 1 and σ2

w = 1.5) the ratio is close to 1, does not grow

with L/M and decreases with M . In this phase, the NTK converges to its deterministic limit with

increasing M regardless of the L value, which is the expected behaviour within NTK theory. How-

ever, in the chaotic phase (σ2
w = 3) the ratio grows exponentially as a function of L/M . This

observation gives a precise scaling for minimal M values required to assume that the NTK of a net-

work with a given depth L is deterministic at initialization, which improves the previous asymptotic

result in Jacot et al. (2018) and the bound on required M in Arora et al. (2019). In case of ReLU

networks and initialization (σ2
w,σ

2
b) = (2, 0), Hanin and Nica (2019) theoretically showed that the

E[Θ0(x, x)2]/E2[Θ0(x, x)] ratio is indeed exponential in L/M , but their analysis is not trivially

generalizable for different activation functions and initialization parameters. Our experiments con-

firm these findings in the special case but also show that changing initialization parameters impacts

the behaviour of the the NTK variance significantly.

We also checked if the value of σ2
b impacts the NTK variance behavior at initialization signifi-

cantly. In Appendix D, we provide figures showing the NTK variance with different σ2
b values. We

observed that lower σ2
b values yield narrower boundary between the two phases identified in Figure

1, but the general picture stays similar.

8

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

4. NTK change during training

In this section we present the numerical experiments that we conducted to check whether the sec-

ond result of NTK theory (3) holds, i.e. whether the empirical NTK of finite-width ReLU and

tanh networks stays approximately constant during training with gradient descent. We trained

networks with a variety of hyperparameters (σ2
w,σ

2
b , L) and measured the relative change of NTK’s

Frobenious norm ∥Θt −Θ0∥F /∥Θ
0∥F that occurs during training. The results for tanh and ReLU

networks are in Figures 3a and 4a. In Figures 3b and 4b, we also plotted the minimal losses that the

networks reached in the experiments.

We draw the following conclusions from the experiments’ results:

• Phase transition for empirical NTK. For both ReLU and tanh networks, the NTK behav-

ior during training changes significantly around the theoretical border between chaotic and

ordered phases.

• Chaotic phase. In the chaotic phase, the relative change in the NTK matrix norm is signifi-

cant and increases with depth L, so one cannot assume that the kernel stays constant during

training for deep networks. However, for very shallow networks the NTK at initialization

may still be a good approximation for the NTK after training. In the previous section we also

saw that the NTK matrix of shallow networks in the chaotic phase is close to deterministic

at initialization, which shows that NTK theory approximates only shallow networks in the

chaotic phase.

• Ordered phase. In the ordered phase, the relative change in the NTK matrix norm is small

throughout training for any depth. We saw in the previous section that the NTK is also close

to deterministic at initialization in this phase. It follows that in the ordered phase finite-width

DNNs behave as NTK theory suggests even when depth L is large.

• EOC. There is a region close to the border between phases where the change in the NTK

norm is larger than in the ordered phase but still remains way below 1 for deep networks.

We also saw in the previous section that in this region the standard deviation of the NTK is

lower than its mean value for deep networks. Thus, NTK theory can approximate behavior

of deeper networks in case of EOC initialization in comparison to the chaotic phase, but the

effects of randomness and change during training may still play a significant role.

• Trainability. Networks become untrainable with depth much faster in the ordered phase than

in the chaotic phase. In our experiments, networks in the ordered phase with L = 20 already

mostly cannot reach low training loss values. This is consistent with the results on trainability

provided in Xiao et al. (2019).

We thus have discovered two regions in the hyperparameters space (σ2
w,σ

2
b , L,M) where both state-

ments of NTK theory (3) and (4) hold: the ordered phase with any depth L and the chaotic phase

where the L/M ratio is low. For other choices of architecture and initialization, our experiments

suggest that finite-width networks do not behave according to NTK theory.

Note that the networks in Figures 3a and 4a take different number of training steps to reach

their final loss values. Somewhat counterintuitively, we observe that the networks which take more

iterations to train show mostly small changes in the NTK matrix norm. To provide more insight

about the NTK dynamics during different stages of training, we also include figures that show

9

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 3: a) Relative change in the NTK norm
∥Θt −Θ0∥F

∥Θ0∥F
for tanh networks of width M = 256

trained by gradient descent with MSE loss on a subset of MNIST (128 samples). The

dashed line indicates the theoretical border between ordered and chaotic phases (χl
1 = 1).

We used early stopping when the loss did not decrease by at least 10−7 in 100 consecu-

tive steps, otherwise the number of training steps was limited by 105. The learning rate is

constant and equals 10−5 for all the networks, which is chosen so that, for all the hyper-

parameters, it does not exceed the theoretical maximal learning rate for wide networks

derived in Karakida et al. (2018). b) Minimal loss value that the networks managed to

reach in our experiments. Networks in the red area are untrainable with the given learning

rate, networks in the blue area are trainable.

10

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 4: a) Relative change in the NTK norm
∥Θt −Θ0∥F

∥Θ0∥F
for ReLU networks of width M = 256

trained by gradient descent with MSE loss on a subset of MNIST (128 samples). The

dashed line indicates the theoretical border between ordered and chaotic phases (χl
1 = 1).

We used early stopping when the loss did not decrease by at least 10−7 in 100 consecu-

tive steps, otherwise the number of training steps was limited by 105. The learning rate is

constant and equals 10−5 for all the networks, which is chosen so that, for all the hyper-

parameters, it does not exceed the theoretical maximal learning rate for wide networks

derived in Karakida et al. (2018). b) Minimal loss value that the networks managed to

reach in our experiments. Networks in the red area are untrainable with the given learning

rate, networks in the blue area are trainable.

11

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

changes in the NTK matrix norm as a function of the number of training steps, as well as figures

with changes of the NTK for different M values, in Appendix D.

5. NTK theory approach for generalization

If the NTK stays constant during training (3), then the dynamics in (2) are identical to kernel re-

gression with kernel Θ0. In such dynamics, the output function of a network that is trained until

convergence (t → ∞) by gradient flow with MSE loss is given by:

f t=∞(x) = Θ0(x,X)Θ0(X)−1Y + f0(x)−Θ0(x,X)Θ0(X)−1f0(X), (10)

where Θ0(X) is the kernel matrix of all the pairs of inputs in X = [xs]s=1,...S , i.e. Θ(X) =
[Θ0(xs, xr)]s,r=1,...S , and Θ(x,X) = [Θ0(x, xs)]s=1,...S and f0(X) = [f0(xs)]

T
s=1,...S . One can

refer to Arora et al. (2019) or Lee et al. (2019) for the derivation of this equation. If the NTK is

also deterministic at initialization (4), then the only variables in (10) that are random with respect

to the network’s parameters at initialization w0 are f0(x) and f0(X), which greatly simplifies the

analysis of the generalization properties of f t=∞.

Let us denote R(x) := Ew0,D[(f
t=∞(x) − ytrue)

2] – the expected error on an arbitrary test

point x, given that the initialization is random. Then we can write the bias-variance decomposition

as follows:

R(x) = V ar(f t=∞(x)) +Bias(f t=∞(x)),

where

V ar(f t=∞(x)) = Ew0,D[(f
t=∞(x)− Ew0,D[f

t=∞(x)])2],

Bias(f t=∞(x)) = Ew0,D[(Ew0,D[f
t=∞(x)]− ytrue)

2].

Then NTK theory allows us to analyze the variance term to characterize the generalization error

of the network Ex[R(x)]. To do so, first let us show how distributions of the terms in (10) can be

characterized by the mean field theory quantities introduced in Section 2. First of all, the distribution

of the network’s output at initialization is given directly by the definitions of qL and qLsr. Hence, the

following lemma is immediate.

Lemma 1 The variance of the output function f0 of a randomly initialized network and the covari-

ance of outputs on two different input vectors are given by:

E[(f0(x))2] = E[(hL
i (x))

2] = qL(x),

E[f0(xs)f
0(xr)] = E[hL

i (xs)h
L
i (xr)] = qLsr(xs, xr).

Recall that the NTK is composed of gradients as Θ0(xs, xr) = ∇wf
0(xs)

T∇wf
0(xs) and its ex-

pected values are therefore proportional to the variances of gradients, considered in Section 2. Then,

assuming that the the NTK matrix at initialization is deterministic and equal to its expected value,

we can express it through quantities ql, pl, qlsr, p
l
sr by the following lemma.

12

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 5: κ2 as a function of depth for a) erf, b) ReLU networks. The colorbar shows the initial

value of the covariance between inputs xTs xr ∈ [0, 1]. For both activation functions,

(σ2
w,σ

2
b) values are chosen to lie in ordered and chaotic phases and at the border between

them.

Lemma 2 For a fully-connected network with widths Ml = αlM, l = 0, . . . L (where M0 is the

input dimension), deterministic the NTK matrix on a sample X = {xs}s=1,...S at initialization is

given by:

Θ∗(X) = αM
(

Λ+O(1/M)
)

,

Λ =

⎡

⎢

⎢

⎣

κ1(x1) κ2(x1, x2) . . . κ2(x1, xS)
κ2(x1, x2) κ1(x2) . . .

. . . κ2(x1, xS−1)
κ2(x1, xS) . . . κ2(x1, xS−1) κ1(xS)

⎤

⎥

⎥

⎦

,

κ1(x) =

L
∑

l=1

αl−1

α
q̂l−1(x)pl(x), κ2(xs, xr) =

L
∑

l=1

αl−1

α
q̂l−1
sr (xs, xr)p

l
sr(xs, xr),

where α =
∑L−1

l=1 αlαl−1.

We give a proof for this lemma in Appendix A. We note that the same statement is also proven in

Karakida et al. (2018) as a part of Theorem 3.

We can also notice that κ1 and ql depend only on the norm of input x, so for normalized inputs

they become data-independent. On the other hand, κ2 and qlsr depend on covariances of points in

the dataset and therefore are data-dependent. However, it has also been observed in Poole et al.

(2016) that both ql and qlsr converge to their data-independent limits with depth. Let us denote their

13

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 6: κ1/κ2 ration as a function of depth for a) erf, b) ReLU networks. The colorbar shows

the initial value of the covariance between inputs xTs xr ∈ [0, 1]. For both activation

functions, (σ2
w,σ

2
b) values are chosen to lie in ordered and chaotic phases and at the

border between them.

data-independent means by q̄l and q̄lsr respectively. Then we can also write data-independent means

p̄l and p̄lsr for the backpropagated errors, as well as ˆ̄ql and ˆ̄qlsr for the activations. This leads to data-

independent κ̄1 =
∑L

l=1

αl−1

α
ˆ̄ql−1p̄l and κ̄2 =

∑L
l=1

αl−1

α
ˆ̄ql−1
sr p̄lsr. We also notice that the changes

in κ2 that come from the changes in covariance are small with respect to its mean value κ̄2 for ReLU

and erf networks1. Note that for these two activation functions, we can take the integrals in (5),

(7), (8) and (9) analytically (see Appendix E) and calculate κ2 for different values of the inputs’

covariance, which is shown in Figure 5 for ordered and chaotic phases and at the border between

them. Therefore, we can write the NTK as a sum of its data-independent part and a data-dependent

perturbation:

Θ∗(X) = Θ̄∗(IS + ϵ(X)),

Θ̄∗ = αM
(

(κ̄1 − κ̄2)IS + κ̄2 S
T
S

)

.

We note that this result about the structure of the NTK is consistent with the analysis of Xiao et al.

(2019), where the authors study the NTK at large depths.

From the structure of Θ∗, one can see that its condition number depends on the ratio κ1/κ2:

when its value is high, the NTK matrix is well-conditioned, and when the ratio approaches 1 the

matrix becomes close to degenerate. Figure 6 shows κ1/κ2 ratio as a function of depth for erf

and ReLU networks in ordered and chaotic phases and at the border between them. One can see

1. We expect tanh-networks that we studied empirically in other sections to behave similar to erf-networks.

14

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

from the graphs that the NTK matrix is well-conditioned in the chaotic phase and ill-conditioned in

the ordered phase. Ill-conditioned NTK also implies that the maximum learning rate which allows

to train the network is small (Xiao et al., 2019; Karakida et al., 2018). Therefore networks in the

ordered phase rapidly become untrainable with depth, which is consistent with our observations in

Section 4.

The following theorem characterizes the dependence of the variance of the output function

f t=∞(x) on the data-independent part of the NTK.

Theorem 3 Suppose a network evolves according to NTK theory under gradient flow and is fully

trained (t → ∞) on a dataset of size S. Suppose also that the NTK matrix is well-conditioned. Then

the variance of its output is characterized by:

V ar(f t=∞(x)) ≈ (1 +
A2

S
)(q̄L − q̄Lsr) + (A− 1)2q̄Lsr,

where A = A(κ1,κ2) =
S

κ̄1/κ̄2+(S−1) .

We give a proof for this result in the Appendix B. In the next paragraphs, we analyze the behavior

of the given variance expression and the applicability of the theorem in different situations:

• Ordered phase. One can notice that in the ordered phase A(κ1,κ2) converges to 1 rapidly

with depth, as κ̄1/κ̄2 → 1. This implies V ar(f t=∞(x)) ∝ q̄L − q̄Lsr, i.e. the variance is

small and decreases with depth. However, the NTK is also ill-conditioned, therefore small

data-dependent changes can cause significant changes in the output function. Thus, the data-

independent estimate for variance given by NTK theory does not explain the behavior of

DNNs in the ordered phase and it is important to take into account data-dependent effects.

• Chaotic phase. In the chaotic phase, the NTK is well-conditioned for any depth. However,

only networks with depth to width ratio L/M ≈ 0 behave as NTK theory suggests under

gradient flow in the chaotic phase according to our experiments. As we saw in the previ-

ous sections, the NTK changes significantly during training and is random at initialization

for deep networks, therefore the expression for the output function after training (10) does

not hold. The ratio κ̄1/κ̄2 increases with depth in the chaotic phase, so A(κ1,κ2) decreases,

and q̄L is much larger than q̄Lst (Poole et al., 2016). Therefore the data-independent variance

V ar(f t=∞(x)) ∝ q̄L is high and proportional to the variance of outputs of a randomly ini-

tialized network. This is consistent with observations in Chizat et al. (2019) and Xiao et al.

(2019). Thus, NTK theory can explain poor generalization, which shallow wide networks in

the chaotic phase display. However, deeper networks may have very different behavior due

to randomness at initialization and changes during gradient descent training, so they require

more investigation.

• EOC. At EOC, the conditioning of the NTK as a function of depth is similar to the chaotic

phase: κ̄1/κ̄2 grows with depth, hence the kernel is well-conditioned. However, at EOC q̄L

is smaller than in the chaotic phase (Poole et al., 2016). This implies that networks initialized

close to EOC generalize better than networks in the chaotic phase and at the same time remain

trainable at large depths. We observed in the previous sections that at the border between

phases NTK theory gives an approximation of network’s average behavior even for deep

networks, but the finite-width effects can still be significant and should be considered.

15

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

6. Conclusions and future work

In this work, we have shown that NTK theory does not generally describe the training dynamics of

finite-width DNNs accurately. Only relatively shallow networks and deep networks in the ordered

phase, i.e. initialized with small σ2
w, behave as NTK theory suggests under gradient descent. The

analysis of the data-independent variance of the output function based on NTK theory shows that

it is proportional to the output variance at initialization qL in the chaotic phase and at EOC. This

result is not surprising, in a sense that it does not explain how training effects NNs’ performance.

It would provide more insight into networks’ behavior if we could understand the data-dependent

changes in the NTK, which are significant for deep networks in the ordered phase and at EOC, and

study how these changes impact the output function. To study deep networks in the chaotic phase

and at EOC, it is also essential to account for randomness in the NTK matrix at initialization and its

changes during training, which cannot be done within NTK theory. Thus, an entirely new conceptual

viewpoint is required to provide a full theoretical analysis of DNNs behavior under gradient descent.

Acknowledgments

GK would like to acknowledge partial support by the NSF-Simons Research Collaboration THEO-

RINET.

References

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.

On exact computation with an infinitely wide neural net. In Advances in Neural Information

Processing Systems, pages 8139–8148, 2019.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learn-

ing and the bias-variance trade-off. arXiv preprint arXiv:1812.11118, 2018.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. arXiv

preprint arXiv:1903.07571, 2019.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.

In Advances in Neural Information Processing Systems, pages 2937–2947, 2019.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,

Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization with

number of parameters in deep learning. Journal of Statistical Mechanics: Theory and Experiment,

2020(2):023401, 2020.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network

optimization problems. arXiv preprint arXiv:1412.6544, 2014.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. arXiv

preprint arXiv:1909.05989, 2019.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,

Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end

speech recognition. arXiv preprint arXiv:1412.5567, 2014.

16

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic

gradient descent. In International Conference on Machine Learning, pages 1225–1234. PMLR,

2016.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-

dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the selection of initialization and acti-

vation function for deep neural networks. arXiv preprint arXiv:1805.08266, 2018.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Mean-field behaviour of neural tangent

kernel for deep neural networks. arXiv preprint arXiv:1905.13654, 2019.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-

archy. In International Conference on Machine Learning, pages 4542–4551. PMLR, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-

eralization in neural networks. In Advances in neural information processing systems, pages

8571–8580, 2018.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in

deep neural networks: Mean field approach. arXiv preprint arXiv:1806.01316, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-

tional neural networks. In Advances in neural information processing systems, pages 1097–1105,

2012.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha

Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,

2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-

Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models

under gradient descent. In Advances in neural information processing systems, pages 8572–8583,

2019.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.

Gaussian process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271,

2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-

stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear

regions of deep neural networks. In Advances in neural information processing systems, pages

2924–2932, 2014.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep

double descent: Where bigger models and more data hurt. arXiv preprint arXiv:1912.02292,

2019.

17

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abo-

lafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with

many channels are gaussian processes. arXiv preprint arXiv:1810.05148, 2018.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Expo-

nential expressivity in deep neural networks through transient chaos. In Advances in neural

information processing systems, pages 3360–3368, 2016.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information

propagation. arXiv preprint arXiv:1611.01232, 2016.

Lechao Xiao, Jeffrey Pennington, and Samuel S Schoenholz. Disentangling trainability and gener-

alization in deep learning. arXiv preprint arXiv:1912.13053, 2019.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In Advances

in neural information processing systems, pages 7103–7114, 2017.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint

arXiv:2006.14548, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding

deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Appendix A. Lemma 2

By definition, each component of the NTK matrix is a scalar product of network’s gradient vectors:

Θ0(X) = [∇wf
0(xs)

T∇wf
0(xr)]xs∈X,xr∈X .

In Section 2 we show for the network’s gradients that

E

[

(
∂f0(x)

∂Wl
ij

)2
]

= E[(δli)
2]E[(φ(hl−1

j))2] =
1

Ml
pl(x)q̂l−1(x),

E

[

(
∂f0(x)

∂bl
i

)2
]

= E[(δli)
2] =

1

Ml
pl(x),

and similarly

E

[∂f0(xs)

∂Wl
ij

∂f0(xr)

∂Wl
ij

]

= E[δli(xs)δ
l
i(xr)]E[φ(h

l−1
j)(xs)φ(h

l−1
j)(xr)]

=
1

Ml
plsr(xs, xr)q̂

l−1
sr (xs, xr),

E

[∂f0(xs)

∂bl
i

∂f0(xr)

∂bl
i

]

= E[δli(xs)δ
l
i(xr)] =

1

Ml
plsr(xs, xr).

18

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Thus, we get the following expression for non-diagonal elements of the NTK:

Θ0(xs, xr) =
∑

i,j,l

[∂f0(xs)

∂Wl
ij

∂f0(xr)

∂Wl
ij

]

+
∑

i,l

[∂f0(xs)

∂bl
i

∂f0(xr)

∂bl
i

]

=
∑

l

MlMl−1E[δ
l
i(xs)δ

l
i(xr)]E[φ(h

l−1
j)(xs)φ(h

l−1
j)(xr)]

+
∑

l

MlE[δ
l
i(xs)δ

l
i(xr)]

=
∑

l

αl−1Mplsr(xs, xr)q
l−1
sr (xs, xr) +

∑

l

plsr(xs, xr)

= αM
(

∑

l

αl−1

α
plsr(xs, xr)q

l−1
sr (xs, xr) +O(1/M)

)

= αM(κ2(xs, xr) +O(1/M))

Similarly, we get the expression for diagonal elements of the NTK matrix:

Θ0(x, x) = αM(κ1(x) +O(1/M)),

which gives the statement of the lemma.

Appendix B. Theorem 3

Recall the formula of the output function after training:

f t=∞(x) = Θ0(x,X)Θ0(X)−1Y + f0(x)−Θ0(x,X)Θ0(X)−1f0(X).

As initialization of the network’s parameters w0 is centered Gaussian, the expectation of the output

at initialization is equal to zero:

Ew0
[f0(x)] = 0, Ew0

[f0(X)] = 0S .

Then if the NTK is deterministic at initialization we can write the expectation as follows:

Ew0
[f t=∞(x)] = Ew0

[Θ0(x,X)Θ0(X)−1Y] = Θ∗(x,X)Θ∗(X)−1Y

because neither Y nor Θ∗ are random with respect to the initialization parameters.

To obtain the variance of output, we also need to write the expected values of all the terms of

squared f t=∞. First, by Lemma 1:

Ew0
[(f0(x))2] = qL(x).

Then,

Ew0
[(Θ0(x,X)Θ0(X)−1Y)2] = (Θ∗(x,X)Θ∗(X)−1Y)2 = E

2
w0
[f t=∞(x)].

19

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

And

Ew0
[(Θ0(x,X)Θ0(X)−1f0(X))2]

= tr(Ew0
[f0(X)f0(X)T]Θ∗(X)−1Θ∗(x,X)TΘ∗(x,X)Θ∗(X)−1)

= tr(K(X)Θ∗(X)−1Θ∗(x,X)TΘ∗(x,X)Θ∗(X)−1),

where

K(X) =

⎡

⎢

⎢

⎣

qL(x1) qLsr(x1, x2) . . . qLsr(x1, xS)
qLsr(x1, x2) qL(x2) . . .

. . . qLsr(x1, xS−1)
qLsr(x1, xS) . . . qLsr(x1, xS−1) qL(xS)

⎤

⎥

⎥

⎦

.

K(X) is the NNGP matrix, which characterizes the Gaussian process of a randomly initialized

network. Finally:

Ew0
[f0(x)Θ0(x,X)Θ0(X)−1f0(X)] = Θ∗(x,X)Θ∗(X)−1

Ew0
[f0(x)f0(X)]

= Θ∗(x,X)Θ∗(X)−1qLsr(x,X),

where qLsr(x,X) = [qLsr(x, xs)]
T
s=1,...S . The other terms are equal to zero. Moreover, we can see

that terms of variance with Y cancel each other.

We now recall that Θ∗(X) = Θ̄∗(IS + ϵ(X)) and Θ̄∗ = αM
(

(κ̄1 − κ̄2)IS + κ̄2 S
T
S

)

. Then

we can invert Θ̄∗ by Woodbury identity:

Θ̄∗ −1 =
1

αM(κ̄1 − κ̄2)

(

IS −
κ̄2

κ̄1 + (S − 1)κ̄2
S

T
S

)

We assumed that the NTK matrix is well-conditioned, so the change in the Θ̄∗ −1 caused by the

perturbation term is relatively small and we can write Θ∗ −1(X) = Θ̄∗ −1(IS + ϵ̃(X)). Then we

can also approximate the above expectation as follows:

Θ∗(x,X)Θ∗(X)−1qLsr(x,X) ≈
κ̄2

(κ̄1 − κ̄2)
T
S

(

IS −
κ̄2

κ̄1 + (S − 1)κ̄2
S

T
S

)

qLsr(x,X)

=
κ̄2

(κ̄1 − κ̄2)

(

1−
κ̄2S

κ̄1 + (S − 1)κ̄2

)

T
Sq

L
sr(x,X)

=
S

(κ̄1/κ̄2 + (S − 1))
⟨qLsr(xs, x)⟩s=1,...S ,

tr(K(X)Θ∗(X)−1Θ∗(x,X)TΘ∗(x,X)Θ∗(X)−1)

≈
κ̄22

(κ̄1 − κ̄2)2
(1−

κ̄2S

κ̄1 + (S − 1)κ̄2
)2tr(K(X) S

T
S)

=
S2

(κ̄1/κ̄2 + (S − 1))2
(
1

S
⟨qL(xs)⟩+ (1−

1

S
)⟨qLsr(xs, xr)⟩).

Taking expectation of the above expressions over a random dataset D, which is independent to

random initialization w0, we get

20

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Ew0,D[f
0(x)Θ0(x,X)Θ0(X)−1f0(X)] =

S

κ̄1/κ̄2 + (S − 1)
EX [⟨qLsr(xs, x)⟩]

=
S

κ̄1/κ̄2 + (S − 1)
q̄Lsr,

Ew0,X [(Θ0(x,X)Θ0(X)−1f0(X))2] =
S2

(κ̄1/κ̄2 + (S − 1))2
·

· EX(
1

S
⟨qL(xs)⟩+ (1−

1

S
)⟨qLsr(xs, xr)⟩)

=
S2

(κ̄1/κ̄2 + (S − 1))2
(1

S
q̄L + (1−

1

S
)q̄Lsr

)

.

Putting everything together, we get

Ew0,X [(f t=∞
lin (x))2]− Ew0,X [f t=∞

lin (x)]2 ≈ q̄L − 2
S

κ̄1/κ̄2 + (S − 1)
q̄Lsr

+
S2

(κ̄1/κ̄2 + (S − 1))2
(1

S
q̄L + (1−

1

S
)q̄Lsr

)

.

Denoting A =
S

κ̄1/κ̄2 + (S − 1)
, we can rewrite the above expression as

V ar(f t=∞(x)) ≈ (1 +
A2

S
)(q̄L − q̄Lsr) + (A− 1)2q̄Lsr.

Appendix C. Effects of biases on the NTK variance at initialization

Figure 7 shows the dependence of the NTK variance at initialization on σ2
b . One can see that lower

σ2
b values yield narrower boundary between the two phases, but the general picture stays similar to

the one in Figure 1.

Appendix D. Additional experiments on the NTK change during training

Here we provide additional figures on changes of the NTK during gradient descent training.

Figures 8 and 9 show changes in the NTK matrix norm as a function of the number of train-

ing steps for tanh and ReLU networks, respectively. One can see how the NTK changes after

10, 102, 103 and 104 training steps. The findings from these figures are similar to the analysis we

provided in Section 4: the NTK behaviour changes significantly around the border between ordered

and chaotic phases. One can also see that for deep networks in the chaotic phase the NTK changes

significantly already in the early stages of training, while networks in the ordered phase display very

low changes in the NTK norm for a long time.

Figures 10 and 11 show the effects of the network width on the changes of the NTK matrix

during training. We provide experiments for M = 128, 256, 512. One can see that, as expected in

NTK theory, higher M values overall result in smaller changes of the NTK. However, with all the

width values, one can see the transition from ordered to chaotic phase, which gets more pronounced

with the network’s depth.

21

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 7:
E[Θ0(x, x)2]

E2[Θ0(x, x)]
ratio for fully-connected a) tanh, b) ReLU networks of width M = 100

for different σb values. The dashed line shows the theoretical border between ordered and

chaotic phases (χl
1 = 1) for the given hyperparameters. For tanh networks the location

of the border between phases depends on σ2
b , while for ReLU networks it is the same for

all the σ2
b values.

22

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 8: Relative change in the NTK norm ∥Θt − Θ0∥F /∥Θ0∥F for tanh networks after a) 10,

b) 102, c) 103, d) 104 gradient descent steps. The training parameters are the same as in

Figure 3.

23

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 9: Relative change in the NTK norm ∥Θt − Θ0∥F /∥Θ0∥F for ReLU networks after a) 10,

b) 102, c) 103, d) 104 gradient descent steps. The training parameters are the same as in

Figure 4.

24

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 10: Relative change in the NTK norm ∥Θt −Θ0∥F /∥Θ0∥F for tanh networks of width

a) M = 128, b) M = 256, c) M = 512 in the end of training. The training parameters

are the same as in Figure 3.

25

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Figure 11: Relative change in the NTK norm ∥Θt −Θ0∥F /∥Θ0∥F for ReLU networks of width

a) M = 128, b) M = 256, c) M = 512 in the end of training. The training parameters

are the same as in Figure 4.

26

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Appendix E. Analytical relations for integrals in Section 2

E.1. ReLU networks

ReLU activation function is defined by

φ(x) =

{

x x > 0,

0 x ≤ 0.

Then to obtain analytical expressions for ql and qlsr we can take the following integrals, which

appear in (5) and (8):

∫

Dz · φ(az)2 = a2/2,
∫

Dz · [φ
′

(az)]2 = 1/2,

Then we immediately get

ql =
σ2
w

2
ql−1 + σ2

b ,

pl−1 =
σ2
w

2
pl

Ml

Ml+1
.

Similarly, to get analytical expressions for qlsr and plsr, we can take the integrals in (7) and (9):

∫

Dz1Dz2 · φ(az1)φ(bz1 +
√

a2 − b2z2) =
a

2π
(
√

1− c2 + cπ/2 + c arcsin(c)),
∫

Dz1Dz2 · φ
′

(az1)φ
′

(bz1 +
√

a2 − b2z2) =
1

2π
(π/2 + arcsin(c)),

where c = b/a, to obtain the following expressions:

qlsr =
σ2
w

2π
ql−1(

√

1− c2 + cπ/2 + c arcsin c) + σ2
b ,

pl−1
sr =

σ2
w

2π
pl

Ml

Ml+1
(π/2 + arcsin c),

where c = ql−1
st /ql−1.

Then, to compute the values of ql, qlst, p
l and plst in all the layers, we only need to set the

following initial conditions: q0 = 1 when data is normalized, q0st ∈ [0, 1] is the covariance between

two inputs, pL = pLst = 1 as the output depends linearly on the activations in the last layer.

E.2. Erf networks

Error function, which is a kind of sigmoid functions, is defined by

φ(x) =
2√
π

∫ x

0
e−t2dt.

27

CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Then, same as for ReLU activation, we analytically take the integrals from (5) and (8):

∫

Dz · φ(az)2 =
2

π
arctan

a2
√

a2 + 1/4
,

∫

Dz · [φ
′

(az)]2 =
2

π

1
√

a2 + 1/4

to obtain expressions for ql and pl:

ql =
2σ2

w

π
arctan

ql−1

√

ql−1 + 1/4
+ σ2

b ,

pl−1 =
2σ2

w

π
pl

1
√

ql−1 + 1/4

Ml

Ml+1
.

And similarly we take the integrals in (7) and (9):

∫

Dz1Dz2 · φ(az1)φ(bz1 +
√

a2 − b2z2) =
2

π
arctan

2b
√

(1 + 2a)2 − 4b2
,

∫

Dz1Dz2 · φ
′

(az1)φ
′

(bz1 +
√

a2 − b2z2) =
4

π

1
√

(1 + 2a)2 − 4b2
,

to obtain the analytical expressions for qlsr and plsr:

qlsr =
2σ2

w

π
arctan

2

√

ql−1
sr

√

(1 + 2
√

ql−1)2 − 4ql−1
sr

+ σ2
b ,

pl−1
sr =

4σ2
w

π
pl

Ml

Ml+1

1
√

(1 + 2
√

ql−1)2 − 4ql−1
sr

.

And the initial conditions can be specified in the same way as for the ReLU networks in the previous

subsection.

28

3.2 NTK Beyond the Infinite-Width Limit 69

3.2 Neural Tangent Kernel Beyond the Infinite-

Width Limit: Effects of Depth and Initialization

Contributing article: Seleznova, M. and Kutyniok, G. (2022b). Neural Tangent Kernel
Beyond the Infinite-Width Limit: Effects of Depth and Initialization. In Proceedings of the

39th International Conference on Machine Learning, pages 19522–19560. PMLR.

Author contributions: Mariia Seleznova developed the original research idea to derive
the infinite-depth-and-width limit of the NTK for different phases of initialization. In fact,
this idea stems from the empirical results of the previous paper (Seleznova and Kutyniok,
2022a). Mariia Seleznova formulated all the theorems and derived all the proofs presented in
the paper, designed and programmed all the numerical experiments, wrote the paper’s main
text and appendices, and designed all the figures. As the main author, Mariia Seleznova also
managed the publication process: paper submission to the conference, writing a rebuttal
after the initial reviews, addressing reviewers’ concerns, and producing the camera-ready
version of the paper. Gitta Kutyniok took part in the project discussions at all the stages,
provided feedback, reviewed and proofread the paper.

Additional resources:

• Paper link: https://proceedings.mlr.press/v162/seleznova22a.html

• Slides: https://icml.cc/media/icml-2022/Slides/16473.pdf

• Video presentation: https://slideslive.com/38983579

• Source code: https://github.com/mselezniova/ntk beyond limit

https://proceedings.mlr.press/v162/seleznova22a.html
https://icml.cc/media/icml-2022/Slides/16473.pdf
https://slideslive.com/38983579
https://github.com/mselezniova/ntk_beyond_limit

Neural Tangent Kernel Beyond the Infinite-Width Limit:

Effects of Depth and Initialization

Mariia Seleznova 1 Gitta Kutyniok 1

Abstract

Neural Tangent Kernel (NTK) is widely used to

analyze overparametrized neural networks due to

the famous result by Jacot et al. (2018): in the

infinite-width limit, the NTK is deterministic and

constant during training. However, this result can-

not explain the behavior of deep networks, since

it generally does not hold if depth and width tend

to infinity simultaneously. In this paper, we study

the NTK of fully-connected ReLU networks with

depth comparable to width. We prove that the

NTK properties depend significantly on the depth-

to-width ratio and the distribution of parameters at

initialization. In fact, our results indicate the im-

portance of the three phases in the hyperparameter

space identified in Poole et al. (2016): ordered,

chaotic and the edge of chaos (EOC). We derive

exact expressions for the NTK dispersion in the

infinite-depth-and-width limit in all three phases

and conclude that the NTK variability grows expo-

nentially with depth at the EOC and in the chaotic

phase but not in the ordered phase. We also show

that the NTK of deep networks may stay constant

during training only in the ordered phase and dis-

cuss how the structure of the NTK matrix changes

during training.

1. Introduction

Despite the widespread use of Deep Neural Networks

(DNNs), the theory behind their success is still poorly un-

derstood. For instance, no present theory can explain why

highly overparametrized DNNs generalize very well in prac-

tice, contrary to classical statistical learning theory predic-

tions. Likewise, it is surprising that optimizing a highly

non-convex loss function of a DNN with a variant of Gradi-

1Department of Mathematics, Ludwig-Maximilians-Universität
München, Munich, Germany. Correspondence to: Mariia Se-
leznova <selez@math.lmu.de>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

ent Descent (GD) typically yields a good local minimum.

Although training dynamics and generalization capabilities

of DNNs stand among the biggest open problems of deep

learning theory, it is possible to address these challenges

in the special case of infinitely-wide DNNs using the so-

called Neural Tangent Kernel (NTK). This kernel captures

the first-order approximation of DNN’s evolution during

GD training. Consider the gradient flow dynamics of the

DNN’s parameters:

ẇ = −∇wL(D) = −
∑

(xi,yi)∈D

∇wf(xi)
∂L(D)

∂f(xi)
, (1)

where w is the vector of all the trainable parameters, f(·)
is the DNN’s output function (defined in Section 2), L(·) is

the loss function and D is the dataset. Then the dynamics

of the DNN’s output function is given by:

ḟ(x) = ∇wf(x) · ẇ = −
∑

(xi,yi)∈D

Θ(x, xi)
∂L(D)

∂f(xi)
, (2)

where the kernel Θ(xi, xj) :=
〈

∇wf(xi),∇wf(xj)
〉

is

called the NTK.

A famous result by Jacot et al. (2018) states that in the

infinite-width limit, the NTK is deterministic under proper

random initialization and stays constant during training.

Thereby, the dynamics in (2) is equivalent to kernel regres-

sion and has an analytical solution expressed in terms of

the kernel. It is then possible to derive properties of trained

infinitely-wide DNNs theoretically by means of their NTKs.

Hence, many recent works used the NTK to explain em-

pirically known properties of DNNs (Huang et al., 2020;

Adlam & Pennington, 2020; Wang et al., 2022; Tirer et al.,

2021; Geiger et al., 2019). Numerous contributions also de-

rived the infinite-width limit of the NTK for popular DNN

architectures (Yang, 2020; Du et al., 2019; Alemohammad

et al., 2021). Other papers established some non-asymptotic

results on the concentration of the NTK at initialization

(Arora et al., 2019; Buchanan et al., 2021) and stability of

the NTK during training (Huang & Yau, 2020; Lee et al.,

2019).

However, the extent to which the results in the infinite-

width limit extrapolate to realistic DNNs remains largely

Neural Tangent Kernel Beyond the Infinite-Width Limit

an open question. Indeed, multiple authors have argued

that the NTK regime and, in general, the infinite-width

limit cannot explain the success of DNNs (Chizat et al.,

2019; Hanin & Nica, 2020; Aitchison, 2020; Li et al., 2021;

Seleznova & Kutyniok, 2021; Bai et al., 2020; Huang & Yau,

2020). The first argument in this direction is that no feature

learning occurs if the NTK stays constant during training.

Moreover, several works showed that the infinite-width limit

of the NTK becomes completely data-independent as depth

increases (Xiao et al., 2020; Hayou et al., 2019), which

suggests poor generalization performance for deep networks

in the NTK regime. Finally, numerous empirical results

demonstrated that the performance of trained DNNs and the

corresponding kernel methods often differs in practice (Fort

et al., 2020; Lee et al., 2020; Arora et al., 2020). That is

why it is essential to understand the statistical properties of

the NTK and how they depend on the myriad of settings of

a given DNN to assess if the infinite-width limit provides a

reasonable approximation for this network. We contribute to

this line of research by exploring the combined effect of two

factors on the NTK: the network’s depth and initialization

hyperparameters.

Network’s depth Most results on the NTK are derived in

the setting where the network’s depth is kept constant while

the width tends to infinity. This limit can only model very

wide and shallow networks since the depth-to-width ratio

tends to zero in it. Indeed, several recent papers demon-

strated that infinite-width approximations often get worse

as the depth increases (Li et al., 2021; de G. Matthews et al.,

2018; Yang & Schoenholz, 2017). In particular, Hanin &

Nica (2020) first showed that the NTK of fully-connected

ReLU DNNs may be random and change during training if

depth and width are comparable. Hu & Huang (2021) also

studied the effects of depth on the NTK distribution and

derived an upper bound for the NTK moments. We expand

on these results by precisely characterizing the variability

of the NTK at initialization and generalizing to different

initialization settings described below.

Initialization hyperparameters There are three phases

in the initialization hyperparameter space where the proper-

ties of untrained infinitely-wide DNNs differ significantly:

ordered, chaotic and the edge of chaos (EOC) (Poole et al.,

2016). In the ordered phase, the gradient norms decrease

with depth, whereas in the chaotic phase the gradient norms

increase, and the edge of chaos is the initialization at the

border between these two phases (Schoenholz et al., 2017).

The results by Hanin & Nica (2020) concerned the statistical

properties of the NTK of wide and deep ReLU networks at

the EOC. At the same time, several contributions demon-

strated that the properties of the infinite-width NTK depend

significantly on the phase of initialization (Xiao et al., 2020;

Hayou et al., 2019). However, these results do not apply to

networks with depth comparable to width since they assume

infinite width before considering the effects of growing

depth. We fill this gap by deriving statistical properties of

the NTK for wide and deep ReLU networks in all three

phases of initialization.

1.1. Contributions

We study the variability of the NTK at initialization for

fully-connected ReLU DNNs with depth comparable to

width and varying initialization hyperparameters in Sec-

tion 3. Our contributions are as follows:

• We precisely characterize the dispersion of the diagonal

elements Θ(x, x) of the NTK (for arbitrary input x) in

the infinite-depth-and-width limit and conclude that

the variability of the NTK grows exponentially with the

depth-to-width ratio at the EOC and in the chaotic phase.

Conversely, the variance of Θ(x, x) tends to zero in the

same limit in the ordered phase. Our results allow to

evaluate the variance of the NTK for a given DNN with

any depth-to-width ratio and initialization.

• We provide non-asymptotic expressions for the first two

moments of Θ(x, x) and illustrate finite-width effects

that follow. We show that the variance of the finite-width

NTK in the ordered phase gradually increases as the ini-

tialization approaches the EOC, which describes the tran-

sition between the two kinds of behavior in the limit. We

also notice that the NTK dispersion depends on the archi-

tecture, i.e. on the varying widths of the fully-connected

layers. Notably, the dispersion of Θ(x, x) decreases with

depth in the ordered phase if the DNN increases the di-

mensionality in consecutive layers. This enables us to

conclude that deeper networks are more robust to random

initialization in this setting.

• We lower-bound the ratio of the expected non-diagonal

elements of the NTK, i.e. Θ(x, x̃) with x ̸= x̃, and the

diagonal elements Θ(x, x) in the infinite-depth-and-width

limit. We also upper-bound the dispersion of the non-

diagonal elements. In the ordered phase, our results allow

to ensure that the whole NTK matrix is approximately

deterministic and thus can be approximated by the infinite-

width limit.

• We provide extensive numerical experiments to ve-

rify our theoretical results. We use JAX (Bradbury

et al., 2018) and Flax (neural network library for

JAX) (Heek et al., 2020) to compute the NTK of

fully-connected ReLU networks effortlessly. Source

code to reproduce the presented results is available at:

https://github.com/mselezniova/ntk beyond limit.

We study the training dynamics of the NTK for fully-

connected ReLU DNNs with depth comparable to width

and varying initialization hyperparameters in Section 4. Our

contributions are as follows:

Neural Tangent Kernel Beyond the Infinite-Width Limit

• We show that the expected relative change of Θ(x, x) in

the first GD step tends to infinity in the chaotic phase

and to zero in the ordered phase in the infinite-depth-and-

width limit. Combined with the result by Hanin & Nica

(2020), which states that the expected relative change of

Θ(x, x) in the first GD step is exponential in the depth-

to-width ratio at the EOC, we can conclude that the NTK

of deep networks can stay approximately constant during

GD training only in the ordered phase.

• We discuss how the structure of the NTK matrix changes

during training outside of the NTK regime. The NTK ma-

trix at initialization has a diagonal structure with larger val-

ues on the main diagonal as compared to the non-diagonal

ones. We speculate that the training process changes the

NTK structure to block-diagonal with blocks of larger

values corresponding to classes and provide experiments

to support this sentiment.

2. Preliminaries

We consider fully-connected ReLU DNNs of depth L ∈ N

with linear output layer and widths (nℓ)0≤ℓ≤L, where

n0 ∈ N is the input dimension and nL = 1 is the out-

put dimension. Forward propagation in such a network is

defined as follows:

x
ℓ(x) := φ(hℓ(x)), x

0(x) := x ∈ R
n0 ,

h
ℓ(x) := W

ℓ
x
ℓ−1(x) + b

ℓ, 1 ≤ ℓ ≤ L− 1,

f(x) := W
L
x
L−1(x) + b

L ∈ R,

(3)

where φ(x) := x {x>0} denotes the ReLU function, Wℓ ∈
R

nℓ×nℓ−1 and b
ℓ ∈ R

nℓ are the weights and the biases and

f(x) is the output function of the DNN. The NTK of this

network on a pair of inputs (x, x̃) is given by:

Θ(x, x̃) := ΘW (x, x̃) +Θb(x, x̃),

ΘW (x, x̃) :=

L
∑

ℓ=1

nℓ
∑

j=1

nℓ−1
∑

i=1

∂f(x)

∂Wℓ
ij

∂f(x̃)

∂Wℓ
ij

,

Θb(x, x̃) :=

L
∑

ℓ=1

nℓ
∑

j=1

∂f(x)

∂bℓ
j

∂f(x̃)

∂bℓ
j

,

(4)

where ΘW (x, x̃) comprises the gradients w.r.t. the weights

and Θb(x, x̃) — the gradients w.r.t. the biases.

When we consider wide networks with unequal widths in

the hidden layers, we define a width scale parameter M and

constants λ, (αℓ)0≤ℓ≤L−1 such that:

L

M
= λ ∈ R,

nℓ

M
= αℓ ∈ R, 0 ≤ ℓ ≤ L− 1. (5)

Then we can describe the asymptotic behavior of the NTK

in terms of M and the constants defined above.

2.1. Initialization and parametrization

We consider random i.i.d. initialization given by:

W
ℓ
ij ∼ N

(

0,
σ2
w

nℓ−1

)

, b
ℓ
i ∼ N (0,σ2

b), (6)

where (σw,σb) are the initialization hyperparameters.

This initialization corresponds to the so-called standard

parametrization (SP), where the weights and the biases de-

fined in (3) are the trainable parameters. We note that the

NTK is often considered in the so-called NTK parametriza-

tion (NTP), where the weights in (3) are the scaled versions

of trainable parameters: Wℓ
ij = σw/

√
nℓ−1w

ℓ
ij for train-

able w
ℓ ∈ R

nℓ×nℓ−1 initialized as w
ℓ
ij ∼ N (0, 1) i.i.d.

This reparametrization, of course, does not change the dis-

tribution of the DNN’s components. However, it scales the

gradients by O(1/M) and gives the NTK a well-defined

infinite-width limit for fixed L. At the same time, NTP

is equivalent to setting an individual learning rate in each

layer inverse-proportionally to width, as explained, e.g., in

Yang & Hu (2021). In this paper, we focus on the NTK in

SP since this parametrization is more common in practice

(indeed, SP is the default setting in PyTorch). However, our

results can be generalized to NTP straightforwardly.

2.2. Information propagation in DNNs

Results on information propagation in infinitely-wide DNNs

established that the initialization hyperparameters (σw,σb)
determine the evolution of the variances E[(xℓ

i(x))
2] and the

covariances E[xℓ
i(x)x

ℓ
i(x̃)] as they propagate through the

DNN’s layers. Based on this, Poole et al. (2016) identified

three phases with distinct properties in the hyperparame-

ter space: ordered, chaotic and the edge of chaos (EOC).

Schoenholz et al. (2017) subsequently showed that the or-

dered phase corresponds to vanishing gradients and the

chaotic phase corresponds to exploding gradients, i.e. the

gradient norm decreases with depth in the ordered phase

and increases in the chaotic phase. The edge of chaos is

the initialization at the border between these two phases,

which allows deeper signal propagation through a DNN

by avoiding vanishing or exploding gradients. Consider

backpropagation equations given by:

∂f(x)

∂Wℓ
ij

= δ
ℓ
ix

ℓ−1
j ,

∂f(x)

∂bℓ
i

= δ
ℓ
i ,

δ
ℓ
i :=

∂f(x)

∂hℓ
i

= φ
′

(hℓ
i)
∑

j

δ
ℓ+1
j W

ℓ+1
ji ,

(7)

Schoenholz et al. (2017) studied the evolution of E[(δℓi)
2]

along with E[(xℓ
i)

2] to find the distribution of DNNs’ gradi-

ents. Some recent publications used these results to derive

the properties of the infinite-width NTK in all the three

phases of initialization (Karakida et al., 2019; Xiao et al.,

Neural Tangent Kernel Beyond the Infinite-Width Limit

0.0 0.1 0.2 0.3 0.4 0.5

λ

2
0

2
1

2
2

2
3

2
4

a) M =100
Theory:

Ordered

EOC

Chaotic

Experiments:

σ
2
w
=0.8

σ
2
w
=1.4

σ
2
w
=1.7

σ
2
w
=2.0

σ
2
w
=2.5

σ
2
w
=3.5

0.0 0.1 0.2 0.3 0.4 0.5

λ

2
0

2
1

2
2

2
3

2
4

b) M =200

0.0 0.1 0.2 0.3 0.4 0.5

λ

2
0

2
1

2
2

2
3

2
4

c) M =500

Figure 1. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M ∈ {100, 200, 500}
with α0 = 1. The dashed lines represent the experimental results and the solid lines correspond to the theoretical predictions from

Theorem 3.1. For each DNN configuration, we sampled 500 random initializations and computed an unbiased estimator for the ratio (see

details in Appendix C.3). The error bars (indicated by the vertical lines) show the bootstrap estimation of the standard error (only in a

subset of points to keep the figure readable). We provide additional figures with continuous error bars in Appendix C.2.

2020). Hayou et al. (2019) also showed that the infinite-

depth limit of the infinite-width NTK (when first the limit

M → ∞ is taken with fixed L and then L → ∞) yields a

data-independent kernel and thus cannot explain properties

of finite DNNs. Although our approach is different from the

mentioned results since we do not assume infinite width be-

fore increasing depth, we show that the statistical properties

of δℓ and x
ℓ can still be derived and lead to results on the

NTK in our setting.

The initialization hyperparameters that comprise each phase

differ depending on the chosen activation function. Since

we are interested in ReLU networks, we note that the or-

dered phase corresponds to σ2
w < 2 and the chaotic phase

— to σ2
w > 2 for this activation function. The EOC is the

initialization with σ2
w = 2. We refer, e.g., to Schoenholz

et al. (2017) for a method to compute the border between

phases for a given activation function.

3. Variability of the NTK

In the infinite-width limit, the NTK is deterministic under

random initialization, which is one of the main results of the

NTK theory. We investigate when this result holds outside

of the NTK limit and, consequently, when the infinite-width

behavior of the NTK gives a good approximation for realis-

tic DNNs.

3.1. Infinite-depth-and-width limit

Most results on the NTK assume that the network’s depth

is fixed as the width tends to infinity, i.e., L/M → 0 in the

limit. This setting, of course, does not describe deep finite-

width networks since their depth-to-width ratio is bounded

away from zero. Indeed, some recent works demonstrated

that infinite-width approximations often get worse as the

network’s depth increases (Li et al., 2021; de G. Matthews

et al., 2018; Yang & Schoenholz, 2017). In particular, Hanin

& Nica (2020) considered this effect for the NTK and de-

rived bounds for the ratio E[Θ2(x, x)]/E2[Θ(x, x)] in case

of ReLU DNNs initialized at the EOC (σw = 2). This ratio

characterizes the dispersion of the NTK: it is close to one if

the NTK is approximately deterministic and is larger than

two if the NTK’s distribution is of high variance. Our first

main result characterizes this ratio in the infinite-depth-and-

width limit under different initializations:

Theorem 3.1 (Dispersion of the NTK at initialization in

the limit). Consider a ReLU DNN as defined in (3) with

constant width of hidden layers M ∈ N, input dimension

n0 = α0M , α0 ∈ R and output dimension nL = 1. The

initialization is given by (6) and the biases are initialized to

zero, i.e. σb = 0. Then, in the infinite-depth-and-width limit

M → ∞, L → ∞, L/M → λ ∈ R, the following holds

for the dispersion of the NTK:

1. In the chaotic phase (a := σ2
w/2 > 1), the NTK

dispersion grows exponentially with depth-to-width ratio

λ := L/M as follows:

E[Θ2(x, x)]

E2[Θ(x, x)]
−→ 1

2λ
e5λ

(

1− 1

4λ
(1− e−4λ)

)

. (8)

2. At the EOC (a = 1), the NTK dispersion grows exponen-

tially with depth-to-width ratio λ as well, but with a slower

rate given by:

E[Θ2(x, x)]

E2[Θ(x, x)]
→ 1

(1 + α0)2

[

e5λ
(1

2λ
+

2α2
0 − 8α0

25λ2

)

+(eλ − e5λ)
1− 4α0

8λ2
+

2α0

5λ

(4− α0

5λ
− 1− α0

)

]

.

(9)

Neural Tangent Kernel Beyond the Infinite-Width Limit

0.0 0.1 0.2 0.3 0.4 0.5

λ

1

1.5

2.0

a) α0 =2.0σ
2

w
=1.4

σ
2

w
=1.6

σ
2

w
=1.7

σ
2

w
=1.8

σ
2

w
=1.9

σ
2

w
=2.0

σ
2

w
=2.1

0.0 0.1 0.2 0.3 0.4 0.5

λ

1

1.5

2.0

b) α0 =0.5

0.0 0.1 0.2 0.3 0.4 0.5

λ

1

1.5

2.0

c) α0 =0.1

Figure 2. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M = 200 with the ratio

α0 := n0/M ∈ {2.0, 0.5, 0.1}. The initialization hyperparameter σ2

w is close to the EOC for all the lines. The dashed lines represent the

experimental results (computed as described in Figure 1) and the solid lines show the theoretical predictions given by Theorem 3.2. The

error bars are shown only for a subset of points to keep the figure readable. We provide additional figures with continuous error bars in

Appendix C.2.

3. In the ordered phase (a < 1), the NTK dispersion tends

to one:
E[Θ2(x, x)]

E2[Θ(x, x)]
→ 1. (10)

Our numerical experiments in Figure 1 demonstrate that

Theorem 3.1 provides accurate approximations for the be-

havior of sufficiently deep and wide DNNs. Indeed, the

proofs listed in Appendix A.1 show that the expressions in

the above theorem are true up to the approximation given

by (1 + c/M)L ≈ ecλ and O(1/
√
M) in the coefficients of

the exponents in case of finite width and depth.

Remark 1. The EOC expression in Theorem 3.1 tends to

the chaotic phase expression if α0 := n0/M tends to zero

(i.e. when the input dimension is fixed). We discuss this

effect in Appendix B.1.

Remark 2. Model scaling introduced in papers on the so-

called ”lazy training” phenomenon (Chizat et al., 2019)

does not change the results of Theorem 3.1. We discuss lazy

training and its effects on our analysis in Appendix B.3.

3.2. Finite depth and width effects

We notice that some features of the NTK dispersion are

still not visible in the infinite-depth-and-width limit. One

can see in Figure 1 that the NTK variance in the ordered

phase is not exactly zero for finite-width DNNs, contrary to

the prediction in the limit. This is especially noticeable for

initialization close to the EOC, where the transition between

the two kinds of limiting behavior occurs. Moreover, Theo-

rem 3.1 cannot reveal the effects of the architecture since it

considers only DNNs of constant width. Therefore, we pro-

vide non-asymptotic expressions for the first two moments

of the NTK at initialization in the following theorem and

show that these expressions accurately describe the behavior

of finite-width DNNs.

Theorem 3.2 (Moments of the NTK at initialization). Con-

sider a ReLU DNN defined in (3) with widths scaling defined

in (5) and the output dimension nL = 1. The initialization

is given by (6) and σb = 0. Then the expectation of the NTK

is determined by the following terms:

E[ΘW (x, x)] = ∥x0∥2aL−1
L
∑

ℓ=1

nℓ−1

n0
, (11)

E[Θb(x, x)] =
L
∑

ℓ=1

aL−ℓ, (12)

where the NTK components ΘW and Θb are defined in (4).

Moreover, the second moment of the NTK is determined by:

E[Θ2
W (x, x)]

∥x0∥4a2(L−1)
= X(1,L)

[

L
∑

ℓ=1

n2
ℓ−1

n2
0

+
∑

ℓ1<ℓ2

nℓ2−1nℓ1−1

n2
0

C(ℓ1,ℓ2)
X(ℓ1,ℓ2)

]

,

(13)

E[Θb(x, x)
2]

a2L
=

L
∑

ℓ=1

X(ℓ,L)

a2ℓ
+ 2

∑

ℓ1<ℓ2

X(ℓ2,L)

aℓ1+ℓ2
, (14)

E[ΘW (x, x)Θb(x, x)]

∥x0∥2a2L−1
=

L
∑

ℓ=1

nℓ−1

n0

X(ℓ,L)

aℓ

+
∑

ℓ1<ℓ2

X(ℓ2,L)

aℓ1
nℓ1−1

n0

(

nℓ2−1

nℓ1−1
C(ℓ1,ℓ2) +

aℓ1

aℓ2

)

,

(15)

where we denoted X(i,j) :=
∏j−1

k=i

(

1 + 5
nk

+O
(

M−3/2
)

)

,

C(i,j) :=
∏j−1

k=i

(

1 + 1
nk

+O
(

M−3/2
)

)

and a := σ2
w/2.

Neural Tangent Kernel Beyond the Infinite-Width Limit

These expressions are derived in Appendix A.1 as a part of

the proof of Theorem 3.1 and they simplify to the results in

the limit by noticing that X(1,L) → e5λ and C(1,L) → eλ.

Figure 2 examines how well the above expressions approxi-

mate the NTK of DNNs with varying ratios α0 := n0/M
between the input dimension and the width of hidden layers.

One can see that the NTK variance in the ordered phase

indeed grows as the initialization approaches the EOC. This

effect is due to the terms proportional to
(

(a − 1)M
)−1

in the moments of Θb(x, x) and ΘW (x, x)Θb(x, x). When

the initialization is close enough to the EOC, (a− 1)−1 be-

comes comparable with finite M , and therefore the behavior

diverges from the limit.

Another remarkable observation is that the NTK dispersion

may decrease with depth in the ordered phase for DNNs

that increase the dimensionality (i.e. n0 ≤ n1 ≤ . . . nL−1),

which means that deeper networks can be more robust. In-

deed, in Subfigures b) and c) of Figure 2, the dispersion

reaches its peak at a certain depth and then decreases. We

provide additional results characterizing this effect in DNNs

with non-constant width in hidden layers in Appendix B.2.

3.3. Non-diagonal elements of the NTK

The results stated so far only concern the diagonal elements

of the NTK. To generalize to the whole kernel, we provide

the following theorem proven in Appendix A.2:

Theorem 3.3 (Non-diagonal elements of the NTK). Con-

sider a ReLU DNN from Theorem 3.2. The following bounds

hold for the ratio of non-diagonal and diagonal elements of

the NTK:

1 ≥ lim
L→∞,M→∞
L/M→λ∈R

E[Θ(x, x̃)]

E[Θ(x, x)]
≥ 1

4
. (16)

Moreover, the dispersion of the non-diagonal elements is

bounded by the dispersion of diagonal ones:

lim
L→∞
M→∞
L/M→λ

E[Θ2(x, x̃)]

E2[Θ(x, x̃)]
≤ 16 lim

L→∞
M→∞
L/M→λ

E[Θ2(x, x)]

E2[Θ(x, x)]
. (17)

Of course, the bound in (17) is too loose for practical ap-

plications if the goal is to prove that the NTK is approxi-

mately deterministic. However, we note that the ratio of

non-diagonal and diagonal elements can be close to the

lower bound only in the chaotic phase. In the ordered phase,

our proof suggests the following bound for sufficiently wide

and deep networks:

E[Θ(x, x̃)]

E[Θ(x, x)]
!

∑L
ℓ=1 a

L−ℓ
∏L−1

k=ℓ g(ρk−1)
∑L

ℓ=1 a
L−ℓ

, (18)

where g(t) := 1
π (π/2+arcsin t) and ρk is the infinite-width

approximation of the cosine distance between x
k and x̃

k,

which only increases with depth and is given by applying

the function r(t) := 1
π

(√
1− t2 + tπ/2 + t arcsin t

)

to ⟨x0, x̃0⟩ consecutively k times. The function r(·) arises

from the expectation of a product of two correlated Gaussian

variables under ReLU function.

We provide empirical results on the ratio of non-diagonal

and diagonal elements of the NTK in Figure 3. We also plot

the estimate for the ratio given by (18) in the same figure.

One can see that the ratio quickly increases with depth in

the ordered phase. Moreover, the lower bound in (18) gives

a good approximation for the experimental results. Then for

a given network in the ordered phase one can replace the

coefficient 16 in the bound (17) with 1/c2, where c is a better

estimate for the lower bound of E[Θ(x, x̃)]/E[Θ(x, x)] and

can be close to one in the ordered phase.

We also provide experiments on the dispersion of the non-

diagonal elements in Appendix C.1. Our results indicate

that, in practice, the dispersion here is only slightly higher

than the prediction for the diagonal elements. The general

picture stays the same as in Figure 1: the dispersion is

low and does not grow with depth in the ordered phase

but increases exponentially with the depth-to-width ratio at

the EOC and in the chaotic phase. The finite-width effects

represented in Figure 2 also remain the same for the non-

diagonal elements.

3.4. Proof ideas

All our proofs are based on the following decomposition of

the NTK:

Θ(x, x) =

L
∑

ℓ=1

∥δℓ(x)∥2
(

∥xℓ−1(x)∥2 + 1
)

, (19)

which directly follows from (4) and the representation

of the gradients in backpropagation (7). Using forward-

propagation equations (3) and backpropagation equations

(7), we derive the first two moments for the ratios

N ℓ
x := ∥xℓ∥2/∥xℓ−1∥2 and N ℓ

δ := ∥δℓ∥2/∥δℓ+1∥2 in

Lemmas A.1 and A.2. We then notice that N ℓ
x are uncorre-

lated in different layers of the networks, as well as N ℓ
δ , while

N ℓ
x and N ℓ

δ in the same layer can be weakly correlated and

we quantify the effects of this dependence in Lemma A.4.

Given the moments of N ℓ
x and N ℓ

δ and the results on their

correlations, we can represent summands of the NTK as the

following telescopic products:

∥δℓ∥2∥xℓ−1∥2 = ∥x0∥2∥δL∥2
ℓ−1
∏

k=1

N k
x

L−1
∏

p=ℓ

N p
δ (20)

and use this decomposition to compute the expectation and

the second moment of the NTK. We derive the first two

moments for ΘW (x, x) and Θb(x, x) separately in Lemmas

A.5 and A.6. These two components have very different

Neural Tangent Kernel Beyond the Infinite-Width Limit

0.0 0.2 0.4

λ

0.25

0.50

0.75

1.00a) M =100σ
2

w
=1.4

σ
2

w
=1.8

σ
2

w
=1.9

σ
2

w
=2.0

σ
2

w
=3.5

0.0 0.2 0.4

λ

0.25

0.50

0.75

1.00b) M =200

0.0 0.2 0.4

λ

0.25

0.50

0.75

1.00c) M =500

Figure 3. Ratio E[Θ(x, x̃)]/E[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M ∈ {100, 200, 500} with

α0 = 1. Colors and markers indicate different values of σ2

w. There are 5 dashed lines for each σ2

w value, which correspond to 5 values of

the initial angle between input samples ⟨x0, x̃0⟩ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Darker lines (which also display larger values of the ratio

of interest) correspond to larger product ⟨x0, x̃0⟩. Expectations are computed by sampling 500 random initializations of each DNN

configuration. The solid lines show the estimate for the ratio of interest given by (18) in the ordered phase.

properties in the infinite-depth-and-width limit and, as we

show in the proof of Theorem 3.1, the behavior of the NTK

is determined by ΘW (x, x) in the chaotic phase and by

Θb(x, x) in the ordered phase. We also derive the expecta-

tion of ΘW (x, x)Θb(x, x) in Lemma A.7 to complete the

calculations of the second moment of the NTK.

We note that many papers on the NTK use the so-called gra-

dient independence assumption (GIA), which leads to the

independence of N ℓ
x and N ℓ

δ . This assumption often leads

to correct results in the infinite-width limit, as discussed in

Yang (2019). However, in our case of infinite depth and

width, it may have a non-negligible effect even for simple

fully-connected networks with all the weights initialized

independently. Thus, we have to calculate this effect ex-

plicitly in our proofs. We also note that Li et al. (2021)

used a similar technique involving telescoping products of

weakly-correlated variables to derive the distribution of the

activation norms of ResNets.

4. Training dynamics of the NTK

In the infinite-width limit, the NTK stays constant during

training, which allows to study the gradient flow dynamics

of infinitely-wide DNNs analytically. In this section, we

discuss when this result holds outside of the infinite-width

limit and how the empirical NTK changes during training.

4.1. The first GD step

Hanin & Nica (2020) proved that the NTK of over-

parametrized fully-connected ReLU networks initialized

at the EOC can evolve non-trivially during GD training if

depth and width of the network are comparable. In particu-

lar, their result bounds the relative change of the diagonal

elements of the NTK Θ(x, x) in the first GD step carried

out on a single sample x above and below by an exponential

function of the depth-to-width ratio λ. We generalize this

result to different initializations with the following theorem

proven in Appendix A.3:

Theorem 4.1 (GD step of the NTK). Consider a ReLU

DNN from Theorem 3.2. A single GD update on a sample

(x, y) ∈ D results in the following changes of the NTK:

1. In the chaotic phase (a := σ2
w/2 > 1), the changes to

the NTK value are infinite in the limit for a constant

learning rate η ∈ R:

E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

∞. (21)

2. In the ordered phase (a < 1), the NTK stays constant

in the limit:

E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0. (22)

This result shows that deep networks can potentially behave

according to the NTK theory during GD training only in

case of initialization in the ordered phase. We refer to exper-

iments in Seleznova & Kutyniok (2021), which confirm that

the relative change of the NTK during training on MNIST

is significant and grows with depth in the chaotic phase and

at the EOC but not in the ordered phase. However, it is

unclear how to generalize this result to realistic scenarios of

DNN training, which include randomly selected batches of

Neural Tangent Kernel Beyond the Infinite-Width Limit

σ2
w = 1.0

σ2
w = 2.0

σ2
w = 2.2

10
0

10
−2

a) Test loss

Θc/Θd

Θn/Θd

0 1000 2000

t

10
0

10
−2

10
−4

b) Train loss

0.5

1.0
c) σ2

w
= 1.0

t =0 t =100 t =500 t =3000

0.5

1.0
d) σ2

w
= 2.0

0 1000 2000

t

0.5

1.0
e) σ2

w
= 2.2

Figure 4. Structure of the NTK matrix in different stages of training for fully-connected ReLU DNNs with L = 20 and M = 300. The

DNNs are initialized with σ2

w ∈ {1.0, 2.0, 2.2} and trained on MNIST using Adam algorithm with learning rate 10−5. Subplots a) and b)

show the test and the train loss achieved by each DNN. Subplots c), d) and e) characterize label-awareness of the NTK. Variables Θd, Θc

and Θn are defined in (23). The heatmaps show the NTK matrix on MNIST subsample of size 100 at epoch t ∈ {0, 100, 500, 3000}.

The subsample contains 10 elements of each class and is arranged so that consecutive diagonal blocks of size 10 contain pairwise NTK

values on each class. The color range in the heatmaps is adjusted to include the interval between the maximal and the minimal values of

the NTK in a given epoch, i.e. the colors correspond to different values for different epochs. Brighter colors indicate larger values.

arbitrary size and optimization algorithms beyond vanilla

GD. Our experiments in the next subsection show that the

NTK evolution is in general non-trivial even in the ordered

phase.

Remark 3. Deep networks rescaled as in Chizat et al. (2019)

can exhibit lazy training (with random NTK at initialization)

in the chaotic phase only if the scaling parameter grows

exponentially with depth L. We discuss the lazy training

phenomenon and its effects on our results in Appendix B.3.

4.2. Changes of the NTK structure

The NTK at initialization is label-agnostic, i.e. its value on

a pair (x, x̃) is independent of whether the labels of x and x̃
are the same or not. Clearly, label-agnostic features cannot

provide an optimal representation system for an arbitrary

task and many authors studied the benefits of adding label

information to kernels (Cristianini et al., 2001; Gönen &

Alpaydin, 2011; Tishby & Zaslavsky, 2015). In particular,

Chen et al. (2020) argued that label-agnosticism can explain

the performance gap between trained DNNs and the NTK

and demonstrated that adding label-awareness improves the

performance of the infinite-width NTK. Thus, it is impor-

tant to characterize label-awareness of the empirical NTK

and how the training process leads to it to understand the

properties of DNNs.

We saw in Section 3.3 that the NTK at initialization has an

approximately diagonal structure with the diagonal values

larger than the non-diagonal ones. On the contrary, the ”opti-

mal kernel” for a classification task would be block-diagonal

with blocks of larger values corresponding to samples of the

same class. Thus, we expect the NTK to naturally change

towards the block-diagonal structure during the training pro-

cess. Our experiments in Figure 4 confirm this intuition in

a simple setting of fully-connected ReLU networks trained

on MNIST. Let us define the following variables that char-

acterize label-awareness of the NTK matrix:

Θd :=
1

|X |
∑

x∈X

Θ(x, x),

Θc :=
1

K

K
∑

k=1

1

|Xk|(|Xk|− 1|)
∑

xi ̸=xj ,
xi,xj∈Xk

Θ(xi, xj),

Θn :=
1

K

K
∑

k=1

1

|Xk|(|X |− |Xk|)
∑

xi∈Xk,
xj ̸∈Xk

Θ(xi, xj),

(23)

where X = ∪K
k=1Xk is the decomposition of the dataset X

into K classes. Then Θd is the mean diagonal value, Θc

is the mean value of the NTK on samples from the same

class and Θn is the mean value on samples from different

classes. Figure 4 suggests that a larger gap between Θn/Θd

and Θc/Θd may be related to better performance of DNNs.

Moreover, the gap between 1 and the ratio Θc/Θd may char-

acterize overfitting. Therefore, we believe that the structure

Neural Tangent Kernel Beyond the Infinite-Width Limit

of the NTK can be a proxy for generalization of DNNs even

outside of the NTK regime. One can also see that the struc-

ture of the NTK changes more rapidly in the early stages

of training, which is coherent with the conclusion in Fort

et al. (2020) that useful features are mostly learned in the

first epochs of training. Thus, dynamics of the NTK may

provide information about the state of the training process.

5. Conclusions and future work

This paper adds to the line of research on the statistical

properties of the NTK and the correspondence between

finite-width DNNs and their infinite-width approximations.

Our results in Section 3 precisely quantify variability of

the NTK at initialization for a given fully-connected ReLU

DNN and assess how well the kernel is approximated by its

infinite-width limit. Combining our findings from Section

3 with the results on the GD update of the NTK in Section

4.1, we conclude that the NTK regime can approximate

trained networks with non-trivial depth-to-width ratio only

in the ordered phase. At the same time, the behavior of

overparametrized DNNs outside of the NTK regime is very

poorly understood so far. It is unclear how to characterize

DNNs’ training dynamics in the general case and what role

the properties of the (random and dynamic) NTK play here.

We make a step into this direction in Section 4.2 by demon-

strating how the NTK acquires a block-diagonal structure

during training. We believe that precisely characterizing

the effects of this NTK structure on the generalization of

DNNs is a promising direction for future work. In general,

we hope to establish new connections between the NTK and

other aspects of DNN training outside of the NTK regime.

Acknowledgements

G.K. acknowledges partial support by the NSF–Simons

Research Collaboration on the Mathematical and Scien-

tific Foundations of Deep Learning (MoDL) (NSF DMS

2031985) and DFG SPP 1798, KU 1446/27-2 and KU

1446/21-2.

References

Adlam, B. and Pennington, J. The neural tangent kernel

in high dimensions: Triple descent and a multi-scale

theory of generalization. In International Conference on

Machine Learning, pp. 74–84. PMLR, 2020.

Aitchison, L. Why bigger is not always better: on finite

and infinite neural networks. In International Conference

on Machine Learning, ICML, volume 119, pp. 156–164.

PMLR, 2020.

Alemohammad, S., Wang, Z., Balestriero, R., and Baraniuk,

R. G. The recurrent neural tangent kernel. In Interna-

tional Conference on Learning Representations, ICLR,

2021.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and

Wang, R. On exact computation with an infinitely wide

neural net. In Advances in Neural Information Processing

Systems, pp. 8139–8148, 2019.

Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R.,

and Yu, D. Harnessing the power of infinitely wide deep

nets on small-data tasks. In International Conference on

Learning Representations, ICLR, 2020.

Bai, Y., Krause, B., Wang, H., Xiong, C., and Socher,

R. Taylorized training: Towards better approxima-

tion of neural network training at finite width. CoRR,

abs/2002.04010, 2020. URL https://arxiv.org/

abs/2002.04010.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,

C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,

Wanderman-Milne, S., and Zhang, Q. JAX: composable

transformations of Python+NumPy programs, 2018. URL

http://github.com/google/jax.

Buchanan, S., Gilboa, D., and Wright, J. Deep networks

and the multiple manifold problem. In International

Conference on Learning Representations, ICLR, 2021.

Chen, S., He, H., and Su, W. J. Label-aware neural tangent

kernel: Toward better generalization and local elasticity.

In Advances in Neural Information Processing Systems,

2020.

Chizat, L., Oyallon, E., and Bach, F. R. On lazy training

in differentiable programming. In Advances in Neural

Information Processing Systems, pp. 2933–2943, 2019.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola,

J. S. On kernel-target alignment. In Advances in Neural

Information Processing Systems, pp. 367–373. MIT Press,

2001.

de G. Matthews, A. G., Hron, J., Rowland, M., Turner, R. E.,

and Ghahramani, Z. Gaussian process behaviour in wide

deep neural networks. In International Conference on

Learning Representations, ICLR, 2018.

Du, S. S., Hou, K., Salakhutdinov, R., Póczos, B., Wang,

R., and Xu, K. Graph neural tangent kernel: Fusing

graph neural networks with graph kernels. In Advances in

Neural Information Processing Systems, pp. 5724–5734,

2019.

Fort, S., Dziugaite, G. K., Paul, M., Kharaghani, S., Roy,

D. M., and Ganguli, S. Deep learning versus kernel learn-

ing: an empirical study of loss landscape geometry and

the time evolution of the neural tangent kernel. In Ad-

vances in Neural Information Processing Systems, 2020.

Neural Tangent Kernel Beyond the Infinite-Width Limit

Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L.,

d’Ascoli, S., Biroli, G., Hongler, C., and Wyart, M. Scal-

ing description of generalization with number of parame-

ters in deep learning. CoRR, abs/1901.01608, 2019. URL

http://arxiv.org/abs/1901.01608.

Gönen, M. and Alpaydin, E. Multiple kernel learning algo-

rithms. J. Mach. Learn. Res., 12:2211–2268, 2011.

Hanin, B. and Nica, M. Finite depth and width corrections

to the neural tangent kernel. In International Conference

on Learning Representations, ICLR, 2020.

Hayou, S., Doucet, A., and Rousseau, J. Mean-field be-

haviour of neural tangent kernel for deep neural net-

works. CoRR, abs/1905.13654, 2019. URL https:

//arxiv.org/abs/1905.13654.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,

B., Steiner, A., and van Zee, M. Flax: A neural network

library and ecosystem for JAX, 2020. URL http://

github.com/google/flax.

Hu, Z. and Huang, H. On the random conjugate kernel and

neural tangent kernel. In International Conference on

Machine Learning, pp. 4359–4368. PMLR, 2021.

Huang, J. and Yau, H. Dynamics of deep neural networks

and neural tangent hierarchy. In International Confer-

ence on Machine Learning, ICML, volume 119, pp. 4542–

4551. PMLR, 2020.

Huang, K., Wang, Y., Tao, M., and Zhao, T. Why do deep

residual networks generalize better than deep feedforward

networks? — A neural tangent kernel perspective. In

Advances in Neural Information Processing System, 2020.

Jacot, A., Hongler, C., and Gabriel, F. Neural tangent kernel:

Convergence and generalization in neural networks. In

Advances in Neural Information Processing Systems, pp.

8580–8589, 2018.

Karakida, R., Akaho, S., and Amari, S. Universal statistics

of Fisher information in deep neural networks: Mean

field approach. In International Conference on Artificial

Intelligence and Statistics, AISTATS, volume 89, pp. 1032–

1041. PMLR, 2019.

Korotkov, N. E. and Korotkov, A. N. Integrals Related to

the Error Function. CRC Press, 2020.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,

Sohl-Dickstein, J., and Pennington, J. Wide neural net-

works of any depth evolve as linear models under gradient

descent. In Advances in Neural Information Processing

Systems, pp. 8570–8581, 2019.

Lee, J., Schoenholz, S. S., Pennington, J., Adlam, B., Xiao,

L., Novak, R., and Sohl-Dickstein, J. Finite versus infinite

neural networks: an empirical study. In Advances in

Neural Information Processing Systems, 2020.

Li, M. B., Nica, M., and Roy, D. M. The future is log-

gaussian: ResNets and their infinite-depth-and-width

limit at initialization. CoRR, abs/2106.04013, 2021. URL

https://arxiv.org/abs/2106.04013.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and

Ganguli, S. Exponential expressivity in deep neural net-

works through transientchaos. In Advances in Neural

Information Processing Systems, pp. 3360–3368, 2016.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-

Dickstein, J. Deep information propagation. In Inter-

national Conference on Learning Representations, ICLR,

2017.

Seleznova, M. and Kutyniok, G. Analyzing finite neural

networks: Can we trust neural tangent kernel theory?

In Conference on Mathematical and Scientific Machine

Learning, volume 145. PMLR, 2021.

Tirer, T., Bruna, J., and Giryes, R. Kernel-based smoothness

analysis of residual networks. In Conference on Math-

ematical and Scientific Machine Learning, volume 145.

PMLR, 2021.

Tishby, N. and Zaslavsky, N. Deep learning and the in-

formation bottleneck principle. In 2015 IEEE Informa-

tion Theory Workshop, ITW, pp. 1–5. IEEE, 2015. doi:

10.1109/ITW.2015.7133169.

Wang, S., Yu, X., and Perdikaris, P. When and why PINNs

fail to train: A neural tangent kernel perspective. J. Com-

put. Phys., 449:110768, 2022. doi: 10.1016/j.jcp.2021.

110768.

Xiao, L., Pennington, J., and Schoenholz, S. Disentangling

trainability and generalization in deep neural networks.

In International Conference on Machine Learning, pp.

10462–10472. PMLR, 2020.

Yang, G. Scaling limits of wide neural networks with

weight sharing: Gaussian process behavior, gradient in-

dependence, and neural tangent kernel derivation. CoRR,

abs/1902.04760, 2019. URL http://arxiv.org/

abs/1902.04760.

Yang, G. Tensor programs II: Neural tangent kernel for

any architecture. CoRR, abs/2006.14548, 2020. URL

https://arxiv.org/abs/2006.14548.

Yang, G. and Hu, E. J. Tensor programs IV: Feature learning

in infinite-width neural networks. In International Con-

ference on Machine Learning, volume 139, pp. 11727–

11737. PMLR, 2021.

Neural Tangent Kernel Beyond the Infinite-Width Limit

Yang, G. and Schoenholz, S. S. Mean field residual net-

works: On the edge of chaos. In Advances in Neural

Information Processing Systems, pp. 7103–7114, 2017.

Neural Tangent Kernel Beyond the Infinite-Width Limit

A. Proofs

A.1. Variability of the NTK at initialization

Lemma A.1 (Forward-propagation of variance). Consider a fully-connected DNN defined in (3) initialized as in (6). The

activation function in the hidden layers is ReLU, i.e. φ(x) = x {x > 0}. Assume further that the biases are initialized

to zero, i.e. σb = 0. Then the following holds for the ratios of the activation norms in consecutive layers of the network,

denoted N ℓ
x := ∥xℓ∥2/∥xℓ−1∥2, ℓ = 1, . . . , L− 1:

E[N ℓ
x] =

σ2
w

2

nℓ

nℓ−1
, E[(N ℓ

x)
2] =

(σ2
w

2

)2(nℓ

nℓ−1

)2(
1 +

5

nℓ

)
. (24)

N ℓ
x − E[N ℓ

x]√
V[N ℓ

x]

d−−−−→
nℓ→∞

N (0, 1), (25)

where N (0, 1) is the standard normal distribution. Moreover, random variables {N ℓ
x}ℓ=0,...,L−1 are mutually independent.

Proof. The squared norm of the activation vector in layer ℓ is given by

∥xℓ∥2 =

nℓ∑

i=1

φ2(Wℓ
i·x

ℓ−1 + bℓi)

Here x
ℓ−1 depends only on {(Wj ,bj)}j=1,...ℓ−1, therefore x

ℓ−1 is independent of (Wℓ,bℓ). Since elements of Wℓ are

i.i.d Gaussian, the distribution of Wℓ
x
ℓ−1 depends only on the norm of xℓ−1 and not on the direction. Then we can write

the following equalities in distribution:

W
ℓ
i·x

ℓ−1=

√
σ2
w

nℓ−1
∥xℓ−1∥Uℓ

i ,

φ2
(
W

ℓ
i·x

ℓ−1 + bℓi

)
=
(
√

σ2
w

nℓ−1
∥xℓ−1∥+ σb

)2
φ2(Uℓ

i),

where we introduced i.i.d random variables Uℓ
i=
〈√

nℓ−1

σ2
w

(Wℓ
i·)

T , x
ℓ−1

∥xℓ−1∥

〉
∼ N (0, 1), i = 1, . . . , nℓ, which are indepen-

dent of xℓ−1, and used the fact that φ(αx) = αφ(x) for α ∈ R
+. Therefore for the norm of the activation vector we have

the following:

∥xℓ∥2 =

nℓ∑

i=1

φ2(Wℓ
i·x

ℓ−1 + bℓi)=
(
√

σ2
w

nℓ−1
∥xℓ−1∥+ σb

)2 nℓ∑

i=1

φ2(Uℓ
i),

where only the first bracket depends on x
ℓ−1. Then in case of zero biases, i.e. σb = 0, for the ratio between the norms of

consecutive activation vectors we have

N ℓ
x=

σ2
w

nℓ−1

nℓ∑

i=1

φ2(Uℓ
i),

where the variables Uℓ
i , i = 1, . . . , nℓ depend only on the weights in the given layer Wℓ. Then the ratios N ℓ

x in different

layers are independent and we can obtain the desired moments of N ℓ
x as follows:

E[N ℓ
x] =

σ2
w

nℓ−1

nℓ∑

i=1

E[φ2(Uℓ
i)] =

σ2
w

2

nℓ

nℓ−1
,

E[(N ℓ
x)

2] =
(σ2

w

nℓ−1

)2 nℓ∑

i=1

V[φ2(Uℓ
i)] + E

2[(N ℓ
x)] =

(σ2
w

2

)2(nℓ

nℓ−1

)2(
1 +

5

nℓ

)
,

where we used the moments of variables φ(Ui), which can be calculated by integration:

E[φ2(Uℓ
i)] =

1

2
, V[φ2(Uℓ

i)] =
5

4
, i = 1, . . . , nℓ.

Neural Tangent Kernel Beyond the Infinite-Width Limit

Moreover, by the central limit theorem we have

N ℓ
x − E[N ℓ

x]√
V[N ℓ

x]
=

2
(1

nℓ

∑nℓ

i=1 φ
2(Uℓ

i)−
1

2

)

√
5/nℓ

d−−−−→
nℓ→∞

N (0, 1).

Lemma A.2 (Backpropagation of variance). Consider the same setting as in Lemma A.1. Then the following holds

for the ratios of norms of backpropagated errors (defined in (7)) in consecutive layers, denoted N ℓ
δ := ∥δℓ∥2/∥δℓ+1∥2,

ℓ = 1, . . . , L− 1:

E[N ℓ
δ] =

σ2
w

2
, E[(N ℓ

x)
2] =

(σ2
w

2

)2(
1 +

5

nℓ

)
. (26)

N ℓ
δ − E[N ℓ

δ]√
V[N ℓ

δ]

d−−−−→
nℓ→∞

N (0, 1), (27)

where N (0, 1) is the standard normal distribution.

Proof. The recursive formula for the backpropagated errors is given by

δ
ℓ
i = φ′(hℓ

i)

nℓ+1∑

j=1

W
ℓ+1
ji δ

ℓ+1
j = φ′(hℓ

i)(W
ℓ+1)Ti·δ

ℓ+1.

Then, in the same way as in Lemma A.1, we have the following for the squared norm of δℓ:

∥δℓ∥2 =

nℓ∑

i=1

(φ′(hℓ
i))

2
(
(Wℓ+1)Ti·δ

ℓ+1
)2

=
σ2
w

nℓ
∥δℓ+1∥2

nℓ∑

i=1

(φ′(hℓ
i))

2(Vℓ+1
i)2,

where we introduced i.i.d. random variables Vℓ+1
i =

〈√
nℓ

σ2
w
W

ℓ+1
·i , δ

ℓ+1

∥δℓ+1∥

〉
∼ N (0, 1), i = 1, . . . , nℓ, which are indepen-

dent of δℓ+1. One can also see that φ′(hℓ) can only depend on {(Wj ,bj)}j=1,...ℓ, therefore it is independent of ∥δ∥ℓ+1

and of Vℓ+1
i , i = 1, . . . , nℓ. Moreover, φ′(hℓ

i) = φ′(Wℓ
i·x

ℓ−1) = φ′(Uℓ
i) for all i = 1, . . . , nℓ, therefore φ′(hℓ) depends

only on W
ℓ. Then we can write the following for the ratio of interest and its moments:

N ℓ
δ=

σ2
w

nℓ

nℓ∑

i=1

φ′(Uℓ
i)(Vℓ+1

i)2,

E[N ℓ
δ] =

σ2
w

2
, E[(N ℓ

δ)
2] =

(σ2
w

2

)2(
1 +

5

nℓ

)
,

where we calculated the moments of the summands as

E[(φ′(hℓ
i))

2V2
i] = E[(φ′(hℓ

i))
2]E[V2

i] =
1

2
, V[(φ′(hℓ

i))
2V2

i] = E[(φ′(hℓ
i))

4]E[V4
i]−

1

4
=

5

4
.

Here we used that, in case of ReLU activation, φ′(hℓ
i), i = 1, . . . , nℓ are Bernoulli variables with probability of 1 and 0

equal to 1/2, since h
ℓ is symmetric around zero. Therefore, E[(φ′(hℓ

i))
2] = E[(φ′(hℓ

i))
4] = 1/2.

Same as in Lemma A.1, the limiting distribution of N ℓ
δ is given by the central limit theorem.

As we note in Section 3.4, many papers that study the NTK adopt the following assumption:

Assumption A.3 (Gradient independence assumption (GIA)). Matrix (Wℓ)T in backpropagation equations (7) and matrix

W
ℓ in forward-propagation equations (3) are independent for all ℓ ∈ {1, . . . , L}.

Neural Tangent Kernel Beyond the Infinite-Width Limit

This assumption is of course not true; however, the products (Wℓ)Ti·x =
∑nℓ

k=1 W
ℓ
kixk and W

ℓ
j·x =

∑nℓ−1

k=1 W
ℓ
jkxk are

only dependent through the single summand containing W
ℓ
ij . Thus, the correlations caused by this dependence are of order

O(1/M) and can be disregarded in the infinite-width limit. However, in our case of the infinite-depth-and-width limit terms

of order O(1/M) can have a non-trivial impact on the computations. Therefore, we calculate the effects of the dependence

between the forward-propagated chain and the backpropagated chain in the following lemma.

Lemma A.4 (Gradient independence assumption (GIA)). Consider the same setting as in Lemma A.1. Then the following

statements hold:

1. GIA does not change the expectation of ∥δℓ∥2/∥δℓ+k+1∥2:

E

[k∏

p=0

N ℓ+p
δ

]
=

k∏

p=0

E[N ℓ+p
δ] (28)

2. GIA changes the expectation of ∥δℓ∥2/∥δℓ+k+1∥2 ·∥xℓ+k∥2/∥xℓ−1∥2 by a term that has a non-trivial depth-and-width

limit where M → ∞, L → ∞, L/M → λ ∈ R. In particular, we have:

E

[k∏

p=0

N ℓ+p
δ N ℓ+p

x

]
=

k∏

p=0

E[N ℓ+p
δ]E[N ℓ+p

x]
(
1 +

1

nℓ+p
+O

(1

M3/2

))
, (29)

where nℓ = αℓM,αℓ ∈ R, ℓ = 1, . . . , L− 1

3. GIA does not change the expectation of (∥δℓ∥2/∥δℓ+k+1∥2)2 in the infinite-depth-and-width limit where M →
∞, L → ∞, L/M → λ ∈ R. In particular, we have:

E

[k∏

p=0

(N ℓ+p
δ)2

]
=

k∏

p=0

E[(N ℓ+p
δ)2]

(
1 +O

(1

M3/2

))
, (30)

where nℓ = αℓM,αℓ ∈ R, ℓ = 1, . . . , L− 1:

Proof. In Lemmas A.1 and A.2 we derived the following equations for N ℓ
δ and N ℓ

x:

N ℓ
δ=

σ2
w

nℓ

nℓ∑

i=1

(φ′(hℓ
i))

2(Vℓ+1
i)2=

σ2
w

nℓ

nℓ∑

i=1

(φ′(Uℓ
i))

2(Vℓ+1
i)2,

N ℓ
x=

σ2
w

nℓ−1

nℓ∑

i=1

φ2(Uℓ
i),

where Uℓ
i depends only on the i-th row of the weights matrix W

ℓ
i· and Vℓ

j depends only on j-th column of the same matrix

W
ℓ
·j for i = 1, . . . , nℓ, j = 1, . . . , nℓ−1, ℓ = 1, . . . , L− 1. Therefore, variables Uℓ

i and Vℓ
j are only dependent through the

single weight Wℓ
ij , which nevertheless makes N ℓ

δ and N ℓ+1
δ dependent for any ℓ = 1, . . . , L− 2. One can also see that

N ℓ
δ and N ℓ

x are dependent through {Uℓ
i }i=1,...,nℓ

. The objective of this lemma is to determine the effects of these weak

dependencies on the expectation of products that appear in the NTK.

Part 1. We first consider the product of ratios of the backpropagated errors:

E

[k∏

p=0

N ℓ+p
δ

]
=

k∏

p=0

σ2
w

nℓ+p

nℓ∑

i0=1

· · ·
nℓ+k∑

ik=1

E[φ′(Uℓ
i0)(V

ℓ+1
i0

)2φ′(Uℓ+1
i1

)(Vℓ+2
i1

)2 · · · · · φ′(Uℓ+k
ik

)(Vℓ+k+1
ik

)2]

=
k∏

p=0

σ2
w

nℓ+p

nℓ∑

i0=1

· · ·
nℓ+k∑

ik=1

E[φ′(Uℓ
i0)]E[(V

ℓ+k+1
ik

)2]
k∏

p=1

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)]

=
1

2

k∏

p=0

σ2
w

nℓ+p

nℓ∑

i0=1

· · ·
nℓ+k∑

ik=1

k∏

p=1

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)].

Neural Tangent Kernel Beyond the Infinite-Width Limit

As Uℓ+p
ip

that Vℓ+p
ip−1

depend only through W
ℓ+p
ipip−1

, we can condition the expectation of their product as follows:

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)] = E
[
E[(Vℓ+p

ip−1
)2 | Wℓ+p

ipip−1
] · E[φ′(Uℓ+p

ip
) | Wℓ+p

ipip−1
]
]
.

To simplify the notation, let us denote wipip−1
:=

√
nℓ+p−1

σ2
w

W
ℓ+p
ipip−1

∼ N (0, 1), aj := x
ℓ+p
j /∥xℓ+p∥ and

bk := δ
ℓ+p
k /∥δℓ+p∥. Then we have Vℓ+p

ip−1
=
∑nℓ+p

k=1 wkip−1
bk = wipip−1

bip +
∑

k ̸=ip
wkip−1

bk and

Uℓ+p
ip

=
∑nℓ+p−1

j=1 wjip−1
aj = wipip−1

aip−1
+
∑

j ̸=ip−1
wipjaj . We can then open the conditional expectations:

E[(Vℓ+p
ip−1

)2 | Wℓ+p
ipip−1

] = w2
ipip−1

b2ip + E[(
∑

k ̸=ip

wkip−1
bk)

2] = 1− b2ip(1− w2
ipip−1

),

E[φ′(Uℓ+p
ip

) | Wℓ+p
ipip−1

] = P[
∑

j ̸=ip−1

wipjbk > −wipip−1
aip−1

] = Φ
(wipip−1

aip−1√
1− a2ip−1

)
,

where Φ(·) is the CDF of the standard normal distribution. Here we used that
∑

k ̸=ip
wkip−1

bk ∼ N (0, 1 − b2ip) and∑
j ̸=ip−1

wipjaj ∼ N (0, 1− a2ip−1
). Then we have:

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)] = (1− b2ip)E[Φ(A · wipip−1
)] + b2ipE[w

2
ipip−1

Φ(A · wipip−1
)] =

1

2
,

where we used the following integrals:

E[Φ(A · wipip−1
)] =

1

2
+

1

2

∫ ∞

−∞

1√
2π

erf
(A√

2
wipip−1

)
exp
(
−
w2

ipip−1

2

)
dwipip−1

=
1

2
,

E[w2
ipip−1

Φ(A · wipip−1
)] =

1

2
E[w2

ipip−1
]

+
1

2

∫ ∞

−∞

1√
2π

w2
ipip−1

erf
(A√

2
wipip−1

)
exp
(
−
w2

ipip−1

2

)
dwipip−1

=
1

2
.

Thus, the expectation of the product of the ratios of backpropagated errors is exactly equal to the product of their expectations:

E

[k∏

p=0

N ℓ+p
δ

]
=

1

2

k∏

p=0

σ2
w

nℓ+p

nℓ∑

i0=1

· · ·
nℓ+k∑

ik=1

1

2k
=
(σ2

w

2

)k+1

=
k∏

p=0

E[N ℓ+p
δ],

which completes the proof of the first statement.

Part 2. We now consider the expectation of products of the activations’ ratios and the backpropagated errors’ ratios for the

same layers. The product in a single layer is given by:

N ℓ
δN ℓ

x =
σ2
w

nℓ−1

σ2
w

nℓ

nℓ∑

i=1

nℓ∑

j=1

φ2(Uℓ
j)(φ

′(Uℓ
i))

2(Vℓ+1
i)2 =

σ2
w

nℓ−1

σ2
w

nℓ

nℓ∑

i=1

nℓ∑

j=1

φ′(Uℓ
i)φ

′(Uℓ
j)(Uℓ

j)
2(Vℓ+1

i)2,

where we noticed that φ(Uℓ
i)φ

′(Uℓ
i) = φ(Uℓ

i) = Uℓ
i φ

′(Uℓ
i). Then for the product involving multiple layers we have:

k∏

p=0

N ℓ+p
δ N ℓ+p

x =
σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏

j=0

(σ2
w

nℓ+j

)2 nℓ∑

i0=1

nℓ∑

j0=1

. . .

· · ·
nℓ+k∑

ik=1

nℓ+k∑

jk=1

φ′(Uℓ
i0)φ

′(Uℓ
j0)(U

ℓ
j0)

2(Vℓ+1
i0

)2 . . .φ′(Uℓ+k
ik

)φ′(Uℓ+k
jk

)(Uℓ+k
jk

)2(Vℓ+k+1
ik

)2,

Neural Tangent Kernel Beyond the Infinite-Width Limit

And the expectation can be decomposed into products as follows:

E

[k∏

p=0

N ℓ+p
δ N ℓ+p

x

]
=

σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏

j=0

(σ2
w

nℓ+j

)2 nℓ∑

i0=1

nℓ∑

j0=1

. . .

· · ·
nℓ+k∑

ik=1

nℓ+k∑

jk=1

E[φ′(Uℓ
i0)φ

′(Uℓ
j0)(U

ℓ
j0)

2]E[(Vℓ+k+1
ik

)2] ·
k∏

p=1

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2]

=
nℓ

4

(
1 +

1

nℓ

) σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏

j=0

(σ2
w

nℓ+j

)2 nℓ∑

i0=1

· · ·
nℓ+k∑

ik=1

nℓ+k∑

jk=1

k∏

p=1

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2],

where we used that E[(V l+k+1
ik

)2] = 1 and
∑nℓ

j0=1 E[φ
′(Uℓ

i0
)φ′(Uℓ

j0
)(Uℓ

j0
)2] = 1

4 (nℓ − 1) + 1
2 = nℓ

4

(
1 + 1

nℓ

)
. If jp ̸= ip,

we also know that the terms in E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] are only dependent through {Wℓ+p
ipip−1

,Wℓ+p
jp,ip−1

}.

Same as in Part 1, we can condition the product on these weights:

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] = E
[
E[(Vℓ+p

ip−1
)2 | wipip−1

, wjpip−1
] · E[φ′(Uℓ+p

ip
) | wipip−1

]·

· E[φ′(Uℓ+p
jp

) | wjpip−1
] · E[(Uℓ+p

jp
)2 | wjpip−1

]
]
.

And we can again write the conditional expectations in case jp ̸= ip as follows:

E[(Vℓ+p
ip−1

)2 | wipip−1
, wjpip−1

] = 1− b2ip(1− w2
ipip−1

)− b2jp(1− w2
jpip−1

) + 2bipbjpwipip−1
wjpip−1

,

E[φ′(Uℓ+p
ip

) | wipip−1
] = Φ

(wipip−1
aip−1√

1− a2ip−1

)
,

E[φ′(Uℓ+p
jp

) | wjpip−1
] = Φ

(wjpip−1
aip−1√

1− a2ip−1

)
,

E[(Uℓ+p
jp

)2 | wjpip−1
] = 1− a2ip−1

(1− w2
jpip−1

).

To calculate the expectation of the product here we will need to use that E[Φ(A · w)] = E[w2Φ(A · w)] = 1
2 , which we

already computed in Part 1. One can also easily see that E[w4Φ(A ·w)] = 3
2 . The other expectations involved in the product

can be calculated as follows:

E[wΦ(A · w)] = 1

2
√
2π

∫ ∞

−∞

w erf
(A√

2
w
)
exp
(
−w2

2

)
dw =

1√
2π

A√
A2 + 1

,

E[w3Φ(A · w)] = 1

2
√
2π

∫ ∞

−∞

w3 erf
(A√

2
w
)
exp
(
−w2

2

)
dw =

1√
2π

A√
A2 + 1

(
2 +

1

A2 + 1

)
.

Expressions for the integrals above can be found e.g. in (Korotkov & Korotkov, 2020). Using all the above expressions, we

can obtain the following expression for the considered expectation in case jp ̸= ip:

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
1

4
(1− b2ip − b2jp)(1− a2ip−1

) +
1

4
(b2ip + b2jp)(1− a2ip−1

)

+
1

4
(1− b2ip − b2jp)a

2
ip−1

+
1

4
b2ipa

2
ip−1

+
3

4
b2jpa

2
ip−1

+ 2bipbjp(1− a2ip−1
)

4A2

A2 + 1
+ 2bipbjpa

2
ip−1

4A2

A2 + 1

(
2 +

1

A2 + 1

)

=
1

4
+

1

2
b2jpa

2
ip−1

+ 8bipbjpa
2
ip−1

(1 + 2a2ip−1
− a4ip−1

)

On the other hand, if jp = ip we have φ′(U l+p
ip

)φ′(U l+p
jp

)(U l+p
jp

)2 = φ′(U l+p
ip

))(U l+p
ip

)2 and therefore the expectation is

given by:

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)(Uℓ+p
ip

)2] =
1

2
+ a2ip−1

b2ip .

Neural Tangent Kernel Beyond the Infinite-Width Limit

We now notice that index jp appears only in one expectation term in the product for each p. Therefore, we can sum over jp
independently for all p:

nℓ+p∑

jp=1

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
nℓ+p

4
(1 +

1

nℓ+p
) +

1

2
a2ip−1

+
1

2
a2ip−1

b2ip

+
(nℓ+p∑

jp=1

bjp

)
8bipa

2
ip−1

(1 + 2a2ip−1
− a4ip−1

).

On the other hand, we need to sum over ip−1 values sequentially over different values of p. First, we can calculate the

following sum:

nℓ+p−1∑

ip−1=1

nℓ+p∑

jp=1

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
nℓ+p−1nℓ+p

4
(1 +

1

nℓ+p
) +

1

2
+

1

2
b2ip

+
(nℓ+p∑

jp=1

bjp

)
8bip(1 + 2

nℓ+p−1∑

ip−1=1

a4ip−1
−

nℓ+p−1∑

ip−1=1

a6ip−1
).

Then we can obtain the following bounds for the sum of bjp and aip−1
given by Hölder’s inequality:

∣∣∣
nℓ+p∑

jp=1

bjp

∣∣∣ ≤
nℓ+p∑

jp=1

|bjp | = ∥b∥1 ≤ √
nℓ+p∥b2∥ =

√
nℓ+p,

0 ≤ 1 + 2

nℓ+p−1∑

ip−1=1

a4ip−1
−

nℓ+p−1∑

ip−1=1

a6ip−1
≤ 3,

|bip | ≤ 1, b2ip ≤ 1.

Therefore, we can rewrite the previous sum as

nℓ+p−1∑

ip−1=1

nℓ+p∑

jp=1

E[(Vℓ+p
ip−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)(Uℓ+p
jp

)2] =
nℓ+p−1nℓ+p

4

(
1 +

1

nℓ+p
+O

(1

M3/2

))

Finally, for the expectation of the whole product we have:

E

[k∏

p=0

N ℓ+p
δ N ℓ+p

x

]
=

σ2
w

nℓ−1

σ2
w

nℓ+k

k−1∏

j=0

(σ2
w

nℓ+j

)2nℓnℓ+k

4

(
1 +

1

nℓ

) k∏

p=1

nℓ+p−1nℓ+p

4

(
1 +

1

nℓ+p
+O

(1

M3/2

))

=
(σ2

w

2

)2(k+1)nℓ+k

nℓ−1

k∏

p=0

(
1 +

1

nℓ+p
+O

(1

M3/2

))

=
k∏

p=0

E[N ℓ+p
δ]E[N ℓ+p

x]
(
1 +

1

nℓ+p
+O

(1

M3/2

))

Part 3. Finally, we consider the expectation of a product of squared ratios of the backpropagated errors. In a single layer we

have:

(N ℓ
δ)

2 =
(σ2

w

nℓ

)2 nℓ∑

i=1

nℓ∑

j=1

φ′(Uℓ
i)φ

′(Uℓ
j)(Vℓ+1

i)2(Vℓ+1
j)2.

Neural Tangent Kernel Beyond the Infinite-Width Limit

And for the product in multiple layers we have:

k∏

p=0

(N ℓ+p
δ)2 =

k∏

p=0

(σ2
w

nℓ+j

)2 nℓ∑

i0=1

nℓ∑

j0=1

. . .

· · ·
nℓ+k∑

ik=1

nℓ+k∑

jk=1

φ′(Uℓ
i0)φ

′(Uℓ
j0)(V

ℓ+1
i0

)2(Vℓ+1
j0

)2 . . .φ′(Uℓ+k
ik

)φ′(Uℓ+k
jk

)(Vℓ+k+1
jk

)2(Vℓ+k+1
ik

)2,

E

[k∏

p=0

(N ℓ+p
δ)2] =

k∏

p=0

(σ2
w

nℓ+p

)2 nℓ∑

i0=1

nℓ∑

j0=1

. . .

· · ·
nℓ+k∑

ik=1

nℓ+k∑

jk=1

E[φ′(Uℓ
i0)φ

′(Uℓ
j0)]E[(V

ℓ+k+1
ik

)2(Vℓ+k+1
jk

)2] ·
k∏

p=1

E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)]

Here the expectations under product are more complicated since the variables in E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)]

are dependent through {Wℓ+p
ipip−1

,Wℓ+p
jp,ip−1

,Wℓ+p
ipjp−1

,Wℓ+p
jpjp−1

}. Nevertheless, we can still decompose the expectation as

before into the following terms:

E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)] = E
[
E[(Vℓ+p

ip−1
)2 | wipip−1

, wjpip−1
] · E

[
E[(Vℓ+p

jp−1
)2 | wipjp−1

, wjpjp−1
]·

E[φ′(Uℓ+p
ip

) | wipip−1
, wipjp−1

] · E[φ′(Uℓ+p
jp

) | wjpip−1
, wjpjp−1

]
]
.

And each conditional expectations can again be calculated explicitly:

E[(Vℓ+p
ip−1

)2 | wipip−1
, wjpip−1

] = 1− b2ip(1− w2
ipip−1

)− b2jp(1− w2
jpip−1

) + 2bipbjpwipip−1
wjpip−1

,

E[(Vℓ+p
jp−1

)2 | wipjp−1
, wjpjp−1

] = 1− b2ip(1− w2
ipjp−1

)− b2jp(1− w2
jpjp−1

) + 2bipbjpwipjp−1
wjpjp−1

,

E[φ′(Uℓ+p
ip

) | wipip−1
, wipjp−1

] = Φ
(wipip−1

aip−1
+ wipjp−1

ajp−1√
1− a2ip−1

− a2jp−1

)
,

E[φ′(Uℓ+p
jp

) | wjpip−1
, wjpjp−1

] = Φ
(wjpip−1

aip−1
+ wjpjp−1

ajp−1√
1− a2ip−1

− a2jp−1

)
.

We open the expectation using the following expressions, which, as before, are integrals involving the error function

computed e.g. in (Korotkov & Korotkov, 2020):

E[Φ(Aiwi +Ajwj)] = E[w2
iΦ(Aiwi +Ajwj)] =

1

2
,

E

[
wiΦ

(wiaip−1
+ wjajp−1√

1− a2ip−1
− a2jp−1

)]
=

√
1

2π
aip−1

,

E

[
wiwjΦ

(wiaip−1
+ wjajp−1√

1− a2ip−1
− a2jp−1

)]
= 0,

E

[
w2

iw
2
jΦ
(wiaip−1

+ wjajp−1√
1− a2ip−1

− a2jp−1

)]
=

1

2
,

E

[
wiw

2
jΦ
(wiaip−1

+ wjajp−1√
1− a2ip−1

− a2jp−1

)]
=

1√
2π

aip−1
(1− a2jp−1

).

Using all of the above, we get the following expression for the expectation in case ip−1 ̸= jp−1:

E[(Vℓ+p
ip−1

)2(Vℓ+p
jp−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)] =

⎧
⎪⎪⎨

⎪⎪⎩

1

2
ip = jp,

1

4
+

1

π
bipbjp(a

2
ip−1

+ a2jp−1
− 2a2ip−1

a2jp−1
(b2ip + b2jp)) ip ̸= jp,

Neural Tangent Kernel Beyond the Infinite-Width Limit

In case ip−1 = jp−1, we have

E[(Vℓ+p
ip−1

)4 | wipip−1
, wjpip−1

] = 1− b2ip(1− w2
ipip−1

)− b2jp(1− w2
jpip−1

) + 2bipbjpwipip−1
wjpip−1

,

E[φ′(Uℓ+p
ip

) | wipip−1
] = Φ

(wipip−1
aip−1√

1− a2ip−1

)
,

E[φ′(Uℓ+p
jp

) | wjpip−1
] = Φ

(wjpip−1
aip−1√

1− a2ip−1

)
.

Therefore, the expectation in this case is given by:

E[(Vℓ+p
ip−1

)4φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)] =

⎧
⎪⎪⎨

⎪⎪⎩

3

2
ip = jp,

3

4
+

2

π
bipbjpa

2
ip−1

(3− a2ip−1
(b2ip + b2jp)) ip ̸= jp.

To compute the sum, we now notice that equality of indices in one layer (ip = jp) amounts to multiplying the product∏k
p=1 E[(V

ℓ+p
ip−1

)2(Vℓ+p
jp−1

)2φ′(Uℓ+p
ip

)φ′(Uℓ+p
jp

)] by 6 +O(1/M3/2) and for every pair of indices (ip, jp) there are only nℓ+p

summands with this multiplier and nℓ+p(nℓ+p − 1) summands without it. We can also see that if we computed the sum

with all the pairs of indices not equal, we would get
∏k

p=0

(
nℓ+p/2

)2(
1− 1/nℓ+p +O(1/M3/2)

)
. Therefore, we get the

desired expression for the expectation of the product:

E

[k∏

p=0

(N ℓ+p
δ)2] =

k∏

p=0

(σ2
w

nℓ+p

)2 k∏

p=0

(nℓ+p

2

)2(
1− 1

nℓ+p
+

6

nℓ+p
+O

(1

M3/2

))

=
k∏

p=0

(σ2
w

2

)2(
1 +

5

nℓ+p
+O

(1

M3/2

))

=
k∏

p=0

E[(N ℓ+p
δ)2]

(
1 +O

(1

M3/2

))
.

Lemma A.5 (Dispersion of ΘW (x, x)). Consider a fully-connected DNN of depth L defined in (3) initialized as in (6).

The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M . The

activation function in the hidden layers is ReLU, i.e. φ(x) = x {x > 0}, and the output layer is linear. Assume also that the

biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the component of the NTK corresponding

to the weights ΘW (x, x) :=
∑L

ℓ=1

∑
ij

(∂f(x)
∂Wℓ

ij

)2
has the following properties at initialization:

E[ΘW (x, x)] =
(σ2

w

2

)L−1(
1 +

M

n0
(L− 1)

)
, (31)

E[Θ2
W (x, x)]

E2[ΘW (x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
. (32)

Neural Tangent Kernel Beyond the Infinite-Width Limit

Proof. Using backpropagation formulas for the gradients, we can rewrite the NTK as follows:

ΘW (x, x) =
L∑

ℓ=1

nℓ∑

i=1

nℓ−1∑

j=1

(δℓi)
2(xℓ−1

j)2

=
L∑

ℓ=1

∥δℓ × x
ℓ−1∥2 =

L∑

ℓ=1

∥δℓ∥2∥xℓ−1∥2

=

L∑

ℓ=1

∥δL∥2∥x0∥2
L−1∏

j=ℓ

∥δj∥2

∥δj+1∥2
ℓ−1∏

k=1

∥xk∥2

∥xk−1∥2

=

L∑

ℓ=1

∥δL∥2∥x0∥2
L−1∏

j=ℓ

N j
δ

ℓ−1∏

k=1

N k
x .

Here for the simplicity of notation we omit the dependence on δℓ and x
ℓ−1 on the input x.

If the last layer has a linear activation and the input data is normalized, we also have that ∥δL∥2∥x0∥2 = 1. Then, using the

results about expectations of N ℓ
δ and N ℓ

x from Lemma A.1 and Lemma A.2, as well as the results about correlations from

Lemma A.4, we can write the following for the expectation of ΘW (x, x):

E[ΘW (x, x)] =
L∑

ℓ=1

L−1∏

j=ℓ

σ2
w

2

ℓ−1∏

k=1

σ2
w

2

nk

nk−1
=
(σ2

w

2

)L−1 L∑

ℓ=1

nℓ−1

n0

And for constant width of hidden layers, i.e. nℓ = M, ℓ = 1, . . . , L− 1, this simplifies to

E[ΘW (x, x)] =
(σ2

w

2

)L−1(
1 +

M

n0
(L− 1)

)
∝
(σ2

w

2

)LML

n0

Now we consider the second moment of the NTK, which is given by:

E[Θ2
W (x, x)] =

L∑

ℓ=1

E[θ2ℓ] + 2
∑

1≤l1<l2≤L

E[θℓ1θℓ2],

θℓ =

L−1∏

j=ℓ

N j
δ

ℓ−1∏

k=1

N k
x , ℓ = 1, . . . , L.

We can open the expectation of the squared terms defined above as follows:

E[θ2ℓ] = E

[L−1∏

j=ℓ

(N j
δ)

2
]
E

[ℓ−1∏

k=1

(N k
x)

2
]

=
(σ2

w

2

)2(L−1)(nℓ−1

n0

)2 L−1∏

j=ℓ

(
1 +

5

nj
+O

(1

M3/2

)) ℓ−1∏

k=1

(
1 +

5

nk

)
,

which simplifies to the following expressions in case of constant width M :

E[θ2ℓ] =
(σ2

w

2

)2(L−1)(M
n0

)2(
1 +

5

M
+O

(1

M3/2

))L−1

, ℓ > 1,

E[θ21] =
(σ2

w

2

)2(L−1)(
1 +

5

M
+O

(1

M3/2

))L−1

.

Neural Tangent Kernel Beyond the Infinite-Width Limit

And the mixed terms with 1 ≤ ℓ1 < ℓ2 ≤ L can be calculated as follows:

E[θℓ1θℓ2] = E

[L−1∏

j=ℓ2

(N j
δ)

2
]
E

[ℓ2−1∏

p=ℓ1

N p
δ N

p
x

] ℓ1−1∏

k=1

E[(N k
x)

2]

=
(σ2

w

2

)2(L−1)(nℓ2−1nℓ1−1

n2
0

) L−1∏

j=ℓ2

(
1 +

5

nj
+O

(1

M3/2

)) ℓ2−1∏

p=ℓ1

(
1 +

1

np
+O

(1

M3/2

)) ℓ1−1∏

k=1

(
1 +

5

nk

)
,

which for constant width M simplifies to

E[θℓ1θℓ2] =
(σ2

w

2

)2(L−1)(M
n0

)2(
1 +

5

M
+O

(1

M3/2

))L−1−∆ℓ
(
1 +

1

M
+O

(1

M3/2

))∆ℓ

, ℓ1 > 1,

E[θ1θℓ2] =
(σ2

w

2

)2(L−1)(M
n0

)(
1 +

5

M
+O

(1

M3/2

))L−ℓ2(
1 +

1

M
+O

(1

M3/2

))ℓ2−1

.

To make the notation lighter, we will denote x := 1 + 5/M +O
(
M−3/2

)
, y := 1 + 1/M +O

(
M−3/2

)
, a := σ2

w/2 and

λ := L/M here and in the following proofs. Then we can rewrite the two sums that comprise the second moment of the

NTK as follows:

L∑

ℓ=1

E[θ2ℓ] = a2(L−1)xL−1
(M2

n2
0

(L− 1) + 1
)

= a2(L−1)M
2L2

n2
0

[
xL−1 1

λM
+O

(1

M3/2

)]
= a2(L−1)M

2L2

n2
0

[
xL−1 1

λM
+O

(1

M3/2

)]
,

∑

1≤ℓ1<ℓ2≤L

E[θℓ1θℓ2] = a2(L−1)M
2

n2
0

L−2∑

∆ℓ=1

(L− 1−∆ℓ) x
L−1−∆ℓy∆ℓ + a2(L−1)M

n0

L∑

ℓ2=2

xL−ℓ2yℓ2−1

= a2(L−1) M4

16n2
0

(
(L− 2)yxL − (L− 1)y2xL−1 + xyL

)
+ a2(L−1)M

2

4n0
(yxL−1 − yL)

= a2(L−1)M
2L2

n2
0

[
xL

(
1

4λ

(
1− 5

M

)
− 1

16λ2

(
1 +

5− 4α0

M

)
+O

(1

M3/2

))
+

+ yL

(
1

16λ2

(
1 +

5− 4α0

M

)
+O

(1

M3/2

))]

Therefore, the complete expression for the second moment of ΘW (x, x) is given by:

L∑

ℓ=1

E[θ2ℓ] + 2
∑

1≤ℓ1<ℓ2≤L

E[θℓ1θℓ2] = a2(L−1)M
2L2

n2
0

[
xL

(
1

2λ

(
1− 3

M

)
− 1

8λ2

(
1 +

5− 4α0

M

)
+O

(1

M3/2

))
+

+ yL

(
1

8λ2

(
1 +

5− 4α0

M

)
+O

(1

M3/2

))]

a2(L−1)M
2L2

n2
0

[
xL

(
1

2λ
− 1

8λ2
+O

(1

M

))
+ yL

1

8λ2
+O

(1

M

))]

One can see that in the limit L → ∞, M → ∞, L/M → λ ∈ R, we have xL → e5λ and yL → eλ. Therefore, we can find

the limit of the desired ratio:

E[Θ2
W (x, x)]

(σ2
w

2

)2(L−1)L2M2

n2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
.

Neural Tangent Kernel Beyond the Infinite-Width Limit

Lemma A.6 (Dispersion of Θb(x, x)). Consider a fully-connected DNN of depth L defined in (3) initialized as in (6). The

input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M . The

activation function in the hidden layers is ReLU, i.e. φ(x) = x {x > 0}, and the output layer is linear. Assume also that the

biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the component of the NTK corresponding

to the biases Θb(x, x) :=
∑L

ℓ=1

∑
i

(∂f(x)
∂bℓ

i

)2
has the following properties at initialization:

E[Θb(x, x)] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(σ2
w

2

)L
− 1

σ2
w

2
− 1

if
σ2
w

2
̸= 1

L if
σ2
w

2
= 1

(33)

E[Θ2
b(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
σ2
w

2
< 1

2

25λ2
(e5λ − 1)− 2

5λ
if
σ2
w

2
= 1

e5λ if
σ2
w

2
> 1

(34)

Proof. Using backpropagation equations (7), we can obtain the following expression for Θb(x, x):

Θb(x, x) =
L∑

ℓ=1

∥δℓ∥2 = ∥δL∥2
L∑

ℓ=1

L−1∏

j=ℓ

∥δj∥2

∥δj+1∥2 =
L∑

ℓ=1

L−1∏

j=ℓ

N j
δ .

In this lemma, we will again denote a := σ2
w/2 and x := 1 + 5/M +O(1/M3/2). And in the following computations, we

will need to consider cases with a ̸= 1 and a = 1 separately.

Case 1: a ̸= 1. In this case the expectation is given by a sum of a geometric progression:

E[Θb(x, x)] =
L∑

ℓ=1

L−1∏

j=ℓ

E[N j
δ] =

L∑

ℓ=1

aL−ℓ =
aL − 1

a− 1

And for the second moment we can write:

E[Θb(x, x)
2] = E

[(L∑

ℓ=1

L−1∏

j=ℓ

N j
δ

)2
]
=

L∑

ℓ=1

E

[L−1∏

j=ℓ

(N j
δ)

2
]
+ 2

∑

1≤ℓ1<ℓ2≤L

E

[ℓ2−1∏

j=ℓ1

N j
δ

L−1∏

k=ℓ2

(
N k

δ

)2]

=
L∑

ℓ=1

a2(L−ℓ)
L−1∏

j=ℓ

(
1 +

5

nj
+O

(1

M3/2

))
+ 2

∑

1≤ℓ1<ℓ2≤L

a2L−ℓ1−ℓ2

L−1∏

k=ℓ2

(
1 +

5

nk
+O

(1

M3/2

))

For constant width M the above expression simplifies to the following sum:

E[Θb(x, x)
2] =

L∑

ℓ=1

a2(L−ℓ)xL−ℓ + 2
∑

1≤ℓ1<ℓ2≤L

a2L−ℓ1−ℓ2xL−ℓ2

=

L∑

ℓ=1

a2(L−ℓ)xL−ℓ + 2

L−1∑

ℓ1=1

a2(L−ℓ)xL−ℓ
L−ℓ∑

∆ℓ=1

a−∆ℓx−∆ℓ

Neural Tangent Kernel Beyond the Infinite-Width Limit

And the involved terms can be further calculated explicitly as follows:

E[Θb(x, x)
2] =

a2LxL − 1

a2x− 1
+

2

ax− 1

L−1∑

ℓ=1

a2(L−l)xL−l(1− al−Lxl−L)

=
a2LxL − 1

a2x− 1
+

2

ax− 1

(a2LxL − 1

a2x− 1
− 1− aL − a

a− 1

)

=
a2LxL − 1

a2x− 1

ax+ 1

ax− 1
− 2

ax− 1

aL − 1

a− 1

=
1

(a− 1)2

[
a2LxL

(
1 +O

(1

M

))
− 2aL

(
1 +O

(1

M

))
+ 1 +O

(1

M

))]

If a < 1, the expectation and the second moment have finite limits:

E[Θb(x, x)] −−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

1− a

E[Θb(x, x)
2] −−−−−−−−−→

M→∞,L→∞,
L/M→λ∈R

−1

a2 − 1

a+ 1

a− 1
− 2

a− 1

−1

a− 1
=

1

(a− 1)2

Therefore for a < 1 we have
E[Θ2

b(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

On the other hand, if a > 1 then the limits are infinite but there is a finite limit of the ratio:

E[Θb(x, x)
2]

a2L/(a− 1)2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

e5λ

Case 2: a = 1. In this case, the expectation is just a sum of ones, so we have

E[Θb(x, x)] =

L∑

ℓ=1

1 = L

And the second moment can be calculated as follows:

E[Θb(x, x)
2] =

L∑

ℓ=1

xL−ℓ + 2

L−1∑

ℓ=1

xL−ℓ
L−l∑

∆ℓ=1

x−∆ℓ =
xL − 1

x− 1
+

2

x− 1

(L−1∑

ℓ=1

xL−ℓ −
L−1∑

ℓ=1

1
)

=
xL − 1

x− 1
+

2

x− 1

(xL − x

x− 1
− L+ 1

)
= M2

[
xL
(1

5M
+

2

25

)
− 1

5M
− 10λ+ 2

25

]

=
xL − 1

x− 1
+

2

x− 1

(xL − x

x− 1
− L+ 1

)
= L2

[
xL
(2

25λ2
+O

(1

M

))
− 2

5λ
− 2

25λ2
+O

(1

M

)]

Then for the desired ratio we have the following result in the limit:

E[Θb(x, x)
2]

L2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

2

25λ2
(e5λ − 1)− 2

5λ
,

which completes the proof for all the cases.

Neural Tangent Kernel Beyond the Infinite-Width Limit

Lemma A.7 (Dispersion of ΘW (x, x)Θb(x, x)). Consider a fully-connected DNN of depth L defined in (3) initialized as in

(6). The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M .

The activation function in the hidden layers is ReLU, i.e. φ(x) = x {x > 0}, and the output layer is linear. Assume also

that the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the following statements hold:

1. In the chaotic phase, i.e. if σ2
w/2 > 1:

E[ΘW (x, x)Θb(x, x)]

E2[ΘW (x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0 (35)

2. In the ordered phase, i.e. if σ2
w/2 < 1:

E[ΘW (x, x)Θb(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0 (36)

3. At the EOC, i.e. if σ2
w/2 = 1:

E[ΘW (x, x)Θb(x, x)]

L2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

4α0

(
e5λ

9

25λ2
− eλ

1

λ2
− 4

5λ
+

16

25λ2

)
(37)

Proof. We can decompose ΘW (x, x)Θb(x, x) into telescopic products as follows:

ΘW (x, x)Θb(x, x) =

L∑

ℓ=1

∥δℓ∥2∥xℓ−1∥2
L∑

ℓ′=1

∥δℓ
′

∥2

= ∥δL∥4∥x0∥2
L∑

ℓ=1

L−1∏

j=ℓ

∥δj∥4

∥δj+1∥4
ℓ−1∏

k=1

∥xk∥2

∥xk−1∥2

+ ∥δL∥4∥x0∥2
∑

1≤ℓ1<ℓ2≤L

ℓ2−1∏

p=ℓ1

∥δp∥2

∥δp+1∥2
L−1∏

j=ℓ2

∥δj∥4

∥δj+1∥4
ℓ2−1∏

k=1

∥xk∥2

∥xk−1∥2

+ ∥δL∥4∥x0∥2
∑

1≤ℓ1<ℓ2≤L

ℓ2−1∏

p=ℓ1

∥δp∥2

∥δp+1∥2
L−1∏

j=ℓ2

∥δj∥4

∥δj+1∥4
ℓ1−1∏

k=1

∥xk∥2

∥xk−1∥2

Then, as in the previous lemmas, we can calculate the expectation using the results of Lemmas A.1, A.2 and A.4:

E[ΘW (x, x)Θb(x, x)] =
L∑

ℓ=1

E

[L−1∏

j=ℓ

(N j
δ)

2
] ℓ−1∏

k=1

E[N k
x] +

∑

1≤ℓ1<ℓ2≤L

ℓ2−1∏

p=ℓ1

E[N p
δ N

p
x]E
[L−1∏

j=ℓ2

(N j
δ)

2
] ℓ1−1∏

k=1

E[N k
x]

+
∑

1≤ℓ1<ℓ2≤L

ℓ2−1∏

p=ℓ1

E[N p
δ]E
[L−1∏

j=ℓ2

(N j
δ)

2
] ℓ1−1∏

k=1

E[N k
x]

=
L∑

ℓ=1

a2L−ℓ−1nℓ−1

n0

L−1∏

j=ℓ

(
1 +

5

nj
+
(1

M3/2

))

+
∑

1≤ℓ1<ℓ2≤L

a2L−ℓ1−1nℓ2−1

n0

ℓ2−1∏

p=ℓ1

(
1 +

1

np
+
(1

M3/2

)) L−1∏

j=ℓ2

(
1 +

5

nj
+
(1

M3/2

))

+
∑

1≤ℓ1<ℓ2≤L

a2L−ℓ2−1nℓ1−1

n0

L−1∏

j=ℓ2

(
1 +

5

nj
+
(1

M3/2

))
,

where we denoted a := σ2
w/2. As in Lemma A.6, we will need to consider the cases with a ̸= 1 and a = 1 separately here.

Neural Tangent Kernel Beyond the Infinite-Width Limit

Case 1: a ̸= 1. For constant width M the above expression for the expectation simplifies to:

E[ΘW (x, x)Θb(x, x)] =
L∑

ℓ=1

nℓ−1

n0
a2L−ℓ−1xL−ℓ +

L−1∑

ℓ1=1

a2L−ℓ1−1
L∑

ℓ2=ℓ1+1

nℓ2−1

n0
yℓ2−ℓ1xL−ℓ2

+
L−1∑

ℓ1=1

nℓ1−1

n0

L∑

ℓ2=ℓ1+1

a2L−ℓ2−1xL−ℓ2

= a2(L−1)xL−1
(
1 +

M

n0

1

ax− 1

)
− M

n0

aL−1

ax− 1

+ a2(L−1)xL−1M

n0

1

x− y

ay

ax− 1
− a2(L−1)yL

M

n0

1

x− y

ay

ay − 1

+ aL
M

n0

1

x− y

(−xy

ax− 1
+

y2

ay − 1

)

+ a2(L−1)xL−1 1

ax− 1

(
1 +

M

n0

1

ax− 1

)
− aL−1

ax− 1
− aL−1

ax− 1

M

n0
(L− 2)− M

n0

aLx

(ax− 1)2

= a2(L−1)xL−1

[(
1 +

M

n0

1

ax− 1

)(
1 +

1

ax− 1

)
+

M

n0

1

x− y

ay

ax− 1

]

− a2(L−1)yL
M

n0

1

x− y

ay

ay − 1

+ aL−1

[
M

n0

a

x− y

(−xy

ax− 1
+

y2

ay − 1

)
− 1

ax− 1

(
1 +

M(L− 1)

n0

)
− M

n0

ax

(ax− 1)2

]

= a2(L−1)xL−1 M

4α0

a

ax− 1

[
y +

4α0x

M
+

4x

(ax− 1)M
+O

(1

M

)]

− a2(L−1)yL
M

4α0

a

ay − 1

[
y +O

(1

M

)]

+ aL−1 M

4α0

a

ax− 1

[
16

M2(ay − 1)(ax− 1)
− 4α0

Ma

(
1 +

L− 1

α0

)]

=
M

4α0

a

a− 1

[
a2(L−1)xL−1 − a2(L−1)yL − 4aL−1λ+O

(1

M

)]
,

where we also denoted x := 1 + 5/M +O(1/M3/2) and y := 1 + 1/M +O(1/M3/2). From the last expression, we see

that E[ΘW (x, x)Θb(x, x)] tends to zero if a < 1, therefore in this case we get

E[ΘW (x, x)Θb(x, x)]

E2[Θb(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0, (38)

using the result of Lemma A.6 that E[Θ2
b(x, x)] has a finite limit when a < 1.

On the other hand, if a > 1, we can see that E[ΘW (x, x)Θb(x, x)] contains polynomials of M and L of degree not larger

than 1. Therefore, we have

E[ΘW (x, x)Θb(x, x)]

a2LM2L2/n2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0, (39)

which completes the proof for the case when a ̸= 1.

Neural Tangent Kernel Beyond the Infinite-Width Limit

Case 2: a = 1. In this case, the expression for the expectation with constant width M is given by:

E[ΘW (x, x)Θb(x, x)] =

L∑

ℓ=1

nℓ−1

n0
xL−ℓ +

L−1∑

ℓ1=1

L∑

ℓ2=ℓ1+1

nℓ2−1

n0
yℓ2−ℓ1xL−ℓ2

+
L−1∑

ℓ1=1

nℓ1−1

n0

L∑

ℓ2=ℓ1+1

xL−ℓ2

=
M2

4α0

[
xL−1

(9

25
+O

(1

M

))
− yL

(
1 +O

(1

M

))
− 4λ

5
+

16

25

]

Theorem A.8 (Dispersion of the NTK at initialization). Consider a fully-connected DNN of depth L defined in (3) initialized

as in (6). The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width

M . The activation function in the hidden layers is ReLU, i.e. φ(x) = x {x > 0}, and the output layer is linear. Assume

also that the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then the dispersion of the NTK at

initialization is given by the following expressions:

1. In the chaotic phase (a := σ2
w/2 > 1), the NTK dispersion grows exponentially with the depth-to-width ratio

λ := L/M as

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
(40)

2. At the EOC (a = 1), the NTK dispersion grows exponentially with the depth-to-width ratio λ as well, but with a slower

rate given by

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

(1 + α0)2λ

[
e5λ
(1
2
+

16α2
0 + 36α0 − 25

200λ

)

+ eλ
1− 4α0

8λ
+

2α0(4− α0)

25λ
− 2α0(1 + α0)

5

] (41)

3. In the ordered phase (a < 1), the NTK variance does not grow with λ and we have

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1 (42)

Proof. We will consider the cases of the ordered phase (a := σ2
w/2 < 1), the chaotic phase (a > 1) and the EOC (a = 1)

separately.

Case 1: Chaotic phase. Using the results of Lemmas A.5, A.6, and A.7 and taking into account that a > 1, we obtain the

following limit:

E[Θb(x, x)]

E[ΘW (x, x)]
=

aL − 1

a− 1

aL−1(1 +
M

n0
(L− 1))

=

a− a−L+1

a− 1

1 +
M

n0
(L− 1)

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

Therefore, recalling that Θ(x, x) = ΘW (x, x) +Θb(x, x), we get the ratio between the complete NTK and its component

corresponding to weights:

E
2[Θ(x, x)]

E2[ΘW (x, x)]
=
(
1 +

E[Θb(x, x)]

E[ΘW (x, x)]

)2
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

Neural Tangent Kernel Beyond the Infinite-Width Limit

Similarly, from Lemmas A.5, A.6, A.7, we can also obtain the following limit:

E[Θ2(x, x)]

E2[ΘW (x, x)]
=

E[Θ2
W (x, x)]

E2[ΘW (x, x)]
+

E[Θ2
b(x, x)]

E2[ΘW (x, x)]
+

E[ΘW (x, x)Θb(x, x)]

E2[ΘW (x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

E[Θ2
W (x, x)]

E2[ΘW (x, x)]

Therefore, the dispersion of the NTK is determined by ΘW (x, x) in the infinite-depth-and-width limit in case of the

initialization in the chaotic phase. Then we have the following expression for the dispersion in the limit:

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
,

which completes the first part of the proof.

Case 2: Ordered phase. In the ordered phase, i.e. if a < 1, we have that aL → 0 as L → ∞, so Lemmas A.5, A.6 and A.7

suggest different relations between the terms of the NTK:

E[ΘW (x, x)]

E[Θb(x, x)]
=

aL−1(1 +
M

n0
(L− 1))

aL − 1

a− 1

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

E[Θ2
W (x, x)] −−−−−−−−−→

M→∞,L→∞,
L/M→λ∈R

0,

E[ΘW (x, x)Θb(x, x)] −−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

E[Θ2
b(x, x)] −−−−−−−−−→

M→∞,L→∞,
L/M→λ∈R

1

(a− 1)2

Therefore, the dispersion of the NTK is determined by the component corresponding to biases Θb in the limit in case of

initialization in the ordered phase:

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1,

which completes this part of the proof.

Case 3: EOC. Here we have aℓ = 1 for any ℓ ∈ N. Therefore, we can simplify the expressions for expectations from

Lemmas A.5, A.6 and A.7 as follows:

E[ΘW (x, x)] = 1 +
1

α0
(L− 1),

E[Θb(x, x)] = L.

Then the expectation of the complete NTK is given by:

E[Θ(x, x)] = E[ΘW (x, x)] + E[Θb(x, x)] =
L

α0

(
1 + α0 +

α0

L
− 1

L

)
∝ L

α0
(1 + α0).

The squared NTK is given by Θ2(x, x) = Θ2
W (x, x) + 2ΘW (x, x)Θb(x, x) + Θ2

b(x, x). Then we need to consider the

Neural Tangent Kernel Beyond the Infinite-Width Limit

expectations of all the components of this sum:

E[Θ2
W (x, x)]

L2/α2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

e5λ
(1

2λ
− 1

8λ2

)
+ eλ

1

8λ2
,

E[Θ2
b(x, x)]

L2/α2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

α2
0

(2

25λ2
e5λ − 2

25λ2
− 2

5λ

)
,

E[ΘW (x, x)Θb(x, x)]

L2/α2
0

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

α0

4

(9

25λ2
e5λ − 1

λ2
eλ − 4

5λ
+

16

25λ2

)
.

Putting the above expressions together, we get the following limit for the desired ratio:

E[Θ2(x, x)]

E2[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

1

(1 + α0)2λ

[
e5λ
(1
2
+

16α2
0 + 36α0 − 25

200λ

)

+ eλ
1− 4α0

8λ
+

2α0(4− α0)

25λ
− 2α0(1 + α0)

5

]
,

which completes the proof.

A.2. Non-diagonal elements of the NTK

Theorem A.9 (Non-diagonal elements of the NTK). Consider a fully-connected DNN of depth L defined in (3) initialized

as in (6). The input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width

M . The activation function in the hidden layers is ReLU, i.e. φ(x) = x {x > 0}, and the output layer is linear. Assume

also that the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then for the ratio of non-diagonal

and diagonal elements of the NTK we have:

1 ≥ lim
L→∞,M→∞
L/M→λ∈R

E[Θ(x, x̃)]

E[Θ(x, x)]
≥ 1

4

Moreover, for the dispersion of the non-diagonal elements we have:

lim
L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x̃)]

E2[Θ(x, x̃)]
≤ 16 lim

L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x)]

E2[Θ(x, x)]

Proof. The non-diagonal element of the NTK on point x and x̃ is given by

Θ(x, x̃) =

L∑

ℓ=1

⟨δℓ, δ̃ℓ⟩⟨xℓ−1, x̃ℓ−1⟩+
L∑

ℓ=1

⟨δℓ, δ̃ℓ⟩,

where the activations and the backpropagated errors with tilde correspond to x̃. Same as in Lemma A.1, we can write the

following for the involved dot products:

⟨xℓ, x̃ℓ⟩ = σ2
w

nℓ−1
∥xℓ−1∥∥x̃ℓ−1∥

nℓ∑

i=1

φ(Uℓ
i)φ(Ũℓ

i)

We notice that in this case Uℓ
i ∼ N (0, 1) and Ũℓ

i ∼ N (0, 1) are correlated variables and the covariance is given by

ρℓ−1
x := ⟨xℓ−1,x̃ℓ−1⟩

∥xℓ−1∥∥x̃ℓ−1∥
. The distribution of Uℓ

i and Ũℓ
i depends only on the angle between the activations and not on the

norms.

Assuming ρℓ−1
x is given, we can calculate the expectation of φ(Uℓ

i)φ(Ũℓ
i):

E[φ(Uℓ
i)φ(Ũℓ

i) | ρℓ−1
x] =

1

2π

(√
1− (ρℓ−1

x)2 + ρℓ−1
x π/2 + ρℓ−1

x arcsin ρℓ−1
x

)

Neural Tangent Kernel Beyond the Infinite-Width Limit

Then, denoting g(x) := 1
π

(√
1− x2 + xπ/2 + x arcsinx

)
, we have

E

[⟨xℓ, x̃ℓ⟩
⟨xℓ−1, x̃ℓ−1⟩

]
=

σ2
w

2

nℓ

nℓ−1
E

[g(ρℓ−1
x)

ρℓ−1
x

]

We can reason in the same way to find expected dot products of the backpropagated errors:

⟨δℓ, δ̃ℓ⟩ = σ2
w

nℓ
∥δℓ+1∥∥δ̃ℓ+1∥

nℓ∑

i=1

φ′(Uℓ
i)φ

′(Ũℓ
i)Vℓ+1

i Ṽℓ+1
i

We can also calculate the involved expectations:

E[φ′(Uℓ
i)φ

′(Ũℓ
i) | ρℓ−1

x] =
1

2π

(π
2
+ arcsin ρℓ−1

x

)
,

E[Vℓ
i Ṽℓ

i | ρℓδ] = ρℓδ :=
⟨δℓ, δ̃ℓ⟩
∥δℓ∥∥δ̃ℓ∥

And, using the above expressions, we get

E

[⟨δℓ, δ̃ℓ⟩
⟨δℓ+1, δ̃ℓ+1⟩

]
=

σ2
w

2
E

[1
π

(π
2
+ arcsin ρℓ−1

x

)]

We also need to consider the expectation of ρℓx:

E[ρℓx | ρℓ−1
x] = E

[∑
i φ(Uℓ

i)φ(Ũℓ
i)√∑

i φ
2(Uℓ

i)
√∑

i φ
2(Ũℓ

i)
| ρℓ−1

x

]
−−−−−−→
nℓ−1→∞

g(ρℓ−1
x),

where the correction to the above expectation for finite width is of order O(1/M) since the components approach normality

with this rate. Moreover, the estimator of correlation coefficient has a negative bias, therefore E[ρℓx | ρℓ−1
x] approaches

g(ρℓ−1
x) from below with nℓ−1 → ∞. Then we have

E

[
⟨xℓ, x̃ℓ⟩

]
= ⟨x0, x̃0⟩E

[ℓ∏

k=1

⟨xk, x̃k⟩
⟨xk−1, x̃k−1⟩

]
= ⟨x0, x̃0⟩aℓ nℓ

n0
E

[g(ρℓ−1
x)

ρ0x

ℓ−2∏

k=0

g(ρk)

ρk+1

]
≥ ∥x0∥∥x̃0∥aℓ nℓ

n0
E
[
ρℓx
]

Similarly, denoting f(x) := 1
π (π/2 + arcsinx), we get the following for the products of backpropagated errors:

E[⟨δℓ, δ̃ℓ⟩] ≥ aL−ℓ
L−1∏

k=ℓ

f
(
E[ρk−1

x]
)

Now we notice that E[ρℓx] → g◦ℓ(ρ0x) not only if M → ∞ but also if ℓ → ∞ with finite M , where g◦k denotes composition

of the function k times. Indeed g(x) is a monotonically increasing function with g(x) ≥ x and a single fixed point at

x = 1, so we have E[ρℓx] → 1 and g◦ℓ(ρ0x) → 1 if ℓ → ∞. In other words, if E[ρℓx]/g
◦ℓ(ρ0x) = 1 + cℓ/M for some

coefficients cℓ, then cℓ → 0 as ℓ → ∞. Therefore, we can replace E[ρℓx] with g◦ℓ(ρ0x) in the above bounds to obtain the

infinite-depth-and-width limit.

Putting everything together, we can write the following bound for the expectation of a non-diagonal element of the NTK

lim
L→∞,M→∞
L/M→λ∈R

[Θ(x, x̃)] ≥ lim
L→∞,M→∞
L/M→λ∈R

[
∥x0∥∥x̃0∥aL−1

L∑

ℓ=1

nℓ−1

n0
g◦ℓ−1(ρ0x)

L−1∏

k=ℓ

f
(
g◦(k−1)(ρ0x)

)
+

L∑

ℓ=1

aL−ℓ
L−1∏

k=ℓ

f
(
g◦(k−1)(ρ0x)

)
]
,

Neural Tangent Kernel Beyond the Infinite-Width Limit

Now studying the expressions above we can find the following bounds:

1 ≥ lim
L→∞,M→∞
L/M→λ∈R

E[Θ(x, x̃)]

E[Θ(x, x)]
≥ 1

4
,

The upper bound is trivial. We obtain the lower bound in case of initialization in the chaotic phase by noticing that∑L
ℓ=1 g

◦ℓ−1(ρ0x)
∏L−1

k=ℓ f
(
g◦(k−1)(ρ0x)

)
≥ L/4 for L ≥ 2, which, by Chebyshev’s sum inequality, gives the maximal ratio

between diagonal and non-diagonal elements of the NTK, since E[ΘW (x, x)] = aL−1
∑L

ℓ=1

nℓ−1

n0
. In the ordered phase,

we have
∑L

ℓ=1

∏L−1
k=ℓ f

(
g◦(k−1)(ρ0x)

)
≥ L/4 and E[Θb(x, x)] =

∑L
ℓ=1 a

L−ℓ, which gives the same bound.

Moreover, it is easy to see that E[Θ2(x, x̃)] ≤ E[Θ2(x, x)], therefore we can write

lim
L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x̃)]

E2[Θ(x, x̃)]
≤ 16 lim

L→∞,M→∞
L/M→λ∈R

E[Θ2(x, x)]

E2[Θ(x, x)]

A.3. Training dynamics of the NTK

Theorem A.10 (GD step of the NTK). Consider a fully-connected DNN of depth L defined in (3) initialized as in (6). The

input dimension is given by n0 = α0M , the output dimension is 1, and the hidden layers have constant width M . The

activation function in the hidden layers is ReLU, i.e. φ(x) = x {x > 0}, and the output layer is linear. Assume also that

the biases are initialized to zero, i.e. σb = 0, and the input data is normalized. Then, if we perform a GD step on a point

(x, y) ∈ D with learning rate η, the following holds for the changes of the corresponding element of the NTK:

1. In the chaotic phase (a := σ2
w/2 > 1), the changes to the NTK value are infinite in the limit for a constant learning

rate:
E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

∞ (43)

The scaling of the learning rate needed to avoid the infinite limit is given by η = O(a−L), which tends to zero with

depth.

2. In the ordered phase (a < 1), the NTK stays constant in the limit:

E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0 (44)

Proof. A derivative of the NTK in gradient flow can be expanded as follows:

Θ̇(x, x) =
L∑

ℓ=1

(∑

i,j

∂Θ(x, x)

∂Wℓ
ij

Ẇ
ℓ
ij +

∑

i

∂Θ(x, x)

∂bℓ
i

ḃ
ℓ
i

)
,

where the parameters change in the direction of the negative gradient:

Ẇ
ℓ
ij = −∂L(D)

∂Wℓ
ij

, ḃ
ℓ
i = −∂L(D)

∂bℓ
i

, i = 1, . . . nℓ, j = 1, . . . , nℓ−1, ℓ = 1, . . . L

If we now assume that the gradient descent step is performed on a single point of the dataset x, which is the same point for

which the NTK is calculated, we have:

Ẇ
ℓ
ij = −∂L(x)

∂Wℓ
ij

= −∂L(x)
∂f(x)

∂f(x)

∂Wℓ
ij

= −∂L(x)
∂f(x)

δ
ℓ
ix

ℓ−1
j ,

ḃ
ℓ
i = −∂L(x)

∂bℓ
i

= − ∂L(x
∂f(x)

∂f(x)

∂bℓ
i

= −∂L(x)
∂f(x)

δ
ℓ
i

Neural Tangent Kernel Beyond the Infinite-Width Limit

It remains to calculate the derivatives of the NTK with resepect to the parameters. The involved terms are:

∂ΘW (x, x)

∂Wℓ
ij

=
∑

ℓ′

∑

i′,j′

∂

∂Wℓ
ij

(∂f(x)

∂Wℓ′
i′j′

)2
= 2

∑

ℓ′

∑

i′,j′

∂f(x)

∂Wℓ′
i′j′

∂2f(x)

∂Wℓ
ijW

ℓ′
i′j′

,

∂ΘW (x, x)

∂bℓ
k

=
∑

ℓ′

∑

i′,j′

∂

∂bℓ
k

(∂f(x)

∂Wℓ′
i′j′

)2
= 2

∑

ℓ′

∑

i′,j′

∂f(x)

∂Wℓ′
i′j′

∂2f(x)

∂bℓ
kW

ℓ′
i′j′

,

∂Θb(x, x)

∂bℓ
k

=
∑

ℓ′

∑

i′

∂

∂bℓ
k

(∂f(x)
∂bℓ′

i′

)2
= 2

∑

ℓ′

∑

i′

∂f(x)

∂bℓ′
i′

∂2f(x)

∂bℓ
kb

ℓ′
i′
,

∂Θb(x, x)

∂Wℓ
ij

=
∑

ℓ′

∑

i′,j′

∂

∂Wℓ
ij

(∂f(x)
∂bℓ′

i′

)2
= 2

∑

ℓ′

∑

i′

∂f(x)

∂bℓ′
i′

∂2f(x)

∂Wℓ
ijb

ℓ′
i′

To calculate these terms, we need to find the second derivatives of the DNN’s output function.

∂2f(x)

∂Wℓ
ijW

ℓ′
i′j′

= δ
ℓ′

i′
∂xℓ′−1

j′

∂Wℓ
ij

+ x
ℓ′−1
j′

∂δℓ
′

i′

∂Wℓ
ij

= ℓ<ℓ′δ
ℓ′

i′ x
ℓ−1
j

∂xℓ′−1
j′

∂hℓ
i

+ ℓ>ℓ′δ
ℓ
ix

ℓ′−1
j′ φ′(hℓ−1

j)
∂δℓ

′

i′

∂δℓ−1
j

,

In the above equation the first term is non-zero only in case ℓ′ > ℓ and the second term is non-zero only if ℓ′ < ℓ. Then we

can write the following:

∑

ℓ

∑

i,j

∂ΘW (x, x)

∂Wℓ
ij

Ẇ
ℓ
ij =− ∂L(x)

∂f(x)

∑

ℓ′>ℓ

∥δℓ
′

∥2∥xℓ−1∥2
∑

i

δ
ℓ
i

∂∥xℓ′−1∥2

∂hℓ
i

− ∂L(x)
∂f(x)

∑

ℓ>ℓ′

∥δℓ∥2∥xℓ′−1∥2
∑

j

x
ℓ−1
j

∂∥δℓ′∥2

∂δℓ−1
j

Opening the remaining parts of the derivative in the same way, we obtain the following expression:

Θ̇(x, x) = −∂L(x)
∂f(x)

(
∑

ℓ′>ℓ

(
∥δℓ

′

∥2∥xℓ−1∥2 + ∥δℓ
′

∥2
)∑

i

δ
ℓ
i

∂∥xℓ′−1∥2

∂hℓ
i

+
∑

ℓ>ℓ′

(
∥δℓ∥2∥xℓ′−1∥2 + ∥δℓ∥2

)∑

j

x
ℓ−1
j

∂∥δℓ′∥2

∂δℓ−1
j

)

Case 1. Chaotic phase. Let us bound the change of the NTK by computing only the terms with ℓ′ = ℓ+ 1. In this case,
∂∥xℓ′−1∥2

∂hℓ
i

= 2xℓ
i . We then notice that

∑
i x

ℓ
iδ

ℓ
i =

∑
k δ

ℓ+1
k

∑
i W

ℓ+1
ki x

ℓ
i =

∑
k δ

ℓ+1
k h

ℓ+1
k =

∑
k δ

ℓ+1
k x

ℓ+1
k , which by

induction gives
∑

i x
ℓ
iδ

ℓ
i = f(x). Therefore, taking into account that for quadratic loss we have ∂L(x)/∂f(x) = f(x)− y,

we can write the following bound:

E[|∆Θ(x, x)|] ≥ 2ηE
[
f(x)2

L∑

ℓ=1

(
∥δℓ+1∥2∥xℓ−1∥2 + ∥δℓ+1∥2

)]

Then, using the results of Lemmas A.1, A.2 and A.4 again, we obtain the expectation of the first part:

E[|∆Θ(x, x)|] ≥ 4η
∥x0∥4

n0
a2L−1

L∑

ℓ=1

L−1∏

j=ℓ+1

(
1 +

1

nj
+O

(1

M3/2

)) ℓ−1∏

i=1

(
1 +

5

nj

)
∝ a2L−1

And since in case of the chaotic phase E[Θ(x, x)] ∝ E[ΘW (x, x)] ∝ aLLM/n0, we have the desired limit:

Neural Tangent Kernel Beyond the Infinite-Width Limit

E[|∆Θ(x, x)|]
E[Θ(x, x)]

−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

∞

Case 2. Ordered phase. The bound that we used for the chaotic phase above gives zero in the limit in case of the

ordered phase. We will now show that the upper bound of the relative change of the NTK is also zero in the limit in this

case. We notice that
∑

i f(x)δ
ℓ
i
∂∥xℓ′−1∥2

∂hℓ
i

=
∑

i δ
ℓ
i

∑
k δ

ℓ
k
∂∥xℓ′−1∥2

∂hℓ
i

h
ℓ
k =

∑
i(δ

ℓ
i)

2 ∂∥xℓ′−1∥2

∂hℓ
i

h
ℓ
i +
∑

i ̸=k δ
ℓ
iδ

ℓ
k
∂∥xℓ′−1∥2

∂hℓ
i

h
ℓ
k.

Then we have
∑

i f(x)δ
ℓ
i
∂∥xℓ′−1∥2

∂hℓ
i

≤ ∥δℓ∥2∥xℓ′−1∥2 + A, where the expectation of A is zero. Similarly, we have

∑
j f(x)x

ℓ−1
j

∂∥δℓ′∥2

∂δℓ−1

j

≤ ∥δℓ′∥2∥xℓ−1∥2 +B with a term B of zero expectation. The we have the following bound for the

change of the NTK:

E[|∆Θ(x, x)|] ≤ 2ηE
[∑

ℓ1

∥δℓ1∥2∥xℓ1−1∥2
∑

ℓ2<ℓ1

∥δℓ2∥2
(
∥xℓ2∥2 + 1

)]

The expectation of
∑

ℓ2<ℓ1
θℓ1W θℓ2W , where θℓW := ∥δℓ∥2∥xℓ−1∥2, was calculated in Lemma A.5 and the expectation of∑

ℓ2<ℓ2
θℓ1W θℓ2b , where θℓb := ∥δℓ∥2, was calculated in Lemma A.7. In particular, we have the following results for the two

sums:

E[
∑

ℓ2<ℓ1

θℓ1W θℓ2W] ∝ a2L
L2

α2
0

1

4λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
,

E[
∑

ℓ2<ℓ1

θℓ1W θℓ2b] ∝ a2L

a− 1

L

α0

1

4λ
e5λ(1− e−4λ).

Then we see that the upper bound on the changes of the NTK is proportional to a2LL2, which tends to zero with depth in

the ordered phase. Given that the expectation of the NTK in the ordered phase has a non-zero limit given by 1/(1− a), we

can then conclude that
E[∆Θ(x, x)]

E[Θ(x, x)]
−−−−−−−−−→
M→∞,L→∞,
L/M→λ∈R

0

in case of initialization in the ordered phase.

B. Additional observations

B.1. Effects of α0 := n0/M at the EOC

The theoretical expression for the NTK dispersion in the infinite-width limit, which we derived in Theorem 3.1, depends on

the ratio α0 := n0/M at the EOC:

VEOC :=
E[Θ2(x, x)]

E2[Θ(x, x)]
→ 1

(1 + α0)2

[
e5λ
(1

2λ
+

2α2
0 − 8α0

25λ2

)
+ (eλ − e5λ)

1− 4α0

8λ2
+

2α0

5λ

(4− α0

5λ
− 1− α0

)]
.

Examining this expression, one can see that it tends to the limiting expression for the NTK dispersion in the chaotic phase as

the ratio α0 decreases:

VEOC −−−−→
α0→0

1

2λ
e5λ

(
1− 1

4λ
(1− e−4λ)

)
.

We illustrate this effect in Figure 5. One can see that gradually decreasing the value of α0 moves the NTK dispersion at the

EOC closer to the NTK dispersion in the chaotic phase.

B.2. Effects of the architecture

In Section 3.2, we showed that constant-width DNNs that increase the input dimensionality, i.e. n0 < n1 = · · · = nL−1, get

more robust with depth in a sense that the dispersion of their NTK decreases. Here we show how the theoretical expressions

Neural Tangent Kernel Beyond the Infinite-Width Limit

Figure 5. Effects of α0 := n0/M on the NTK dispersion at the EOC in the infinite-depth-and-width limit. All the lines show the

theoretical expressions from Theorem 3.1. The black line (uppermost) corresponds to the NTK dispersion in the chaotic phase, while all

the other lines show the NTK dispersion at the EOC with varying α0 values. The colors spanning from yellow to violet (from lighter to

darker tones) indicate the value of α0 spanning from 1 (yellow) to 0.1 (violet).

0.0 0.2 0.4 0.6 0.8

λ

1.0

1.2

1.4

a) Incr. widthσ
2
w
=1.0

σ
2
w
=1.4

σ
2
w
=1.7

σ
2
w
=1.8

σ
2
w
=1.9

σ
2
w
=2.0

0.0 0.2 0.4 0.6 0.8

λ

1.0

1.2

1.4

b) Const. width

0.0 0.2 0.4 0.6 0.8

λ

1.0

1.2

1.4

c) Decr. width

Figure 6. Effects of the architecture on the NTK dispersion ratio E[Θ2(x, x)]/E2[Θ(x, x)] as predicted by Theorem 3.2. The subplots

show the dispersion for varying values of σ2

w for three different architectures. The lower row of the figure illustrates the considered

architectures. Formally, the widths for each architecture are given by: a) nℓ = M1 +
⌈

ℓ(M2 −M1)/L
⌉

, b) nℓ =
⌈

(M1 +M2)/2
⌉

,

c) nℓ = M2 +
⌈

ℓ(M1 −M2)/L
⌉

for 0 ≤ ℓ ≤ L. The width parameters are given by M1 = 100, M2 = 500 and do not change as the

depth grows. The depth-to-width ratio is computed for the average width, i.e. λ = 2L/(M1 +M2).

Neural Tangent Kernel Beyond the Infinite-Width Limit

for the NTK moments in Theorem 3.2 reveal more effects of the DNN’s architecture. In Figure 6, we compute the theoretical

prediction of the NTK dispersion for three architectures: the first one gradually increases width over L layers from n0 = M1

to nL−1 = M2, the second one keeps constant width, i.e. n0 = · · · = nL−1 = (M1 +M2)/2, and the third one gradually

decreases width over L layers from n0 = M2 to nL−1 = M1. We note that all the architectures have the same average width

in this setting. We also note that we keep M1 and M2 fixed while varying the depth L. Therefore, we compare networks that

increase or decrease the dimensionality equally but over a different number of layers. Figure 6 demonstrates that the NTK

dispersion is lower for the DNNs that increase the dimensionality. Moreover, for such DNNs the peak of dispersion falls on

the relatively shallow networks. Therefore, it may be beneficial to increase dimensionality over more layers if the goal is to

decrease the variance of the DNN. On the contrary, the dispersion only increases with depth for DNNs that decrease the

dimensionality. Thus, it may be beneficial to keep such networks shallow if one wants to keep the variance minimal.

B.3. Lazy training

The NTK regime of neural networks is often discussed in connection with the so-called lazy training phenomenon (Chizat

et al., 2019). In lazy training, a model behaves as its linearization around the initialial parameters due to rescaling given by:

f̃α(x) = αf(x), L̃α(D) =
1

α2
L(D), α ∈ R,

where f(·) is the original model’s output function and L(D) is the training loss. Chizat et al. (2019) showed that the

dynamics of a rescaled model defined by f̃α(·) and L̃α(D) is close to its linearization if the scaling factor α is large. Thus,

in this section we discuss the effects of the lazy training rescaling on the results presented in our paper.

One can see that the NTK changes trivially if we rescale the output function:

∇wf̃α(x) = α∇wf(x) ⇒ Θ̃α(x1, x2) = α2Θ(x1, x2),

where we denoted the NTK of the rescaled model as Θ̃α. Therefore, all our results concerning the NTK dispersion

(Theorem 3.1) and the ratios of expectations at initialization (Theorem 3.3) do not change if we rescale the model, since the

constants added to the nominator and the denominator cancel each other:

E[Θ̃2
α(x1, x2)]

E2[Θ̃α(x1, x2)]
=

E[Θ2(x1, x2)]

E2[Θ(x1, x2)]
.

On the other hand, the relative change of the NTK in a gradient descent step (Theorem 4.1) is affected by the rescaling.

Recall that the NTK derivative is given by:

Θ̇(x, x) =

L∑

ℓ=1

(∑

i,j

∂Θ(x, x)

∂Wℓ
ij

Ẇ
ℓ
ij +

∑

i

∂Θ(x, x)

∂bℓ
i

ḃ
ℓ
i

)
.

Terms of the above expression change as follows due to the rescaling:

∂Θ̃α(x, x)

∂Wℓ
ij

= α2 ∂Θ(x, x)

∂Wℓ
ij

,
∂Θ̃α(x, x)

∂bℓ
i

= α2 ∂Θ(x, x)

∂bℓ
i

,

(˜̇
W

ℓ
ij

)
α
= −∂L̃α(D)

∂Wℓ
ij

= − 1

α2

∂L(D)

∂Wℓ
ij

= − 1

α2

˜̇
W

ℓ
ij ,

(˜̇
b
ℓ
i

)
α
=

1

α2
ḃ
ℓ
i .

Therefore, the NTK derivative is not changed by the rescaling and for the relative change of the NTK we have:

E[∆Θ̃α(x, x)]

E[Θ̃α(x, x)]
=

1

α2

E[∆Θ(x, x)]

E[Θ(x, x)]
.

For any constant choice of α ∈ R, this scaling does not change our limiting results in Theorem 4.1. However, if the rescaling

parameter is scaled exponentially with L as α ∝ (σw/
√
2)L then the relative change of the NTK tends to zero in the chaotic

phase, as well as in the ordered phase and at the EOC. Thus, it is possible to enforce lazy training in deep networks outside

of the ordered phase but the required rescaling parameter grows exponentially with depth.

Neural Tangent Kernel Beyond the Infinite-Width Limit

C. Additional experiments

C.1. Non-diagonal elements of the NTK

We provide empirical results on the dispersion of the non-diagonal elements of the NTK in this subsection. Figure 7 is

analogous to Figure 1: it compares the dispersion of the NTK in different phases of initialization. One can see that the

non-diagonal elements of the NTK behave similarly to the diagonal ones. In particular, the dispersion of the non-diagonal

elements grows exponentially with the depth-to-width ratio and reaches high values for deep networks in the chaotic phase

and at the EOC, whereas in the ordered phase the dispersion is low and does not grow with depth. Figure 8 is analogous to

Figure 2: it characterizes the behavior of the NTK dispersion close to the EOC, where the finite-width effects are significant.

Here the picture is again similar to the one described in Section 3.2 for the diagonal elements of the NTK. In particular, the

dispersion gradually increases as σ2
w grows and approaches the EOC. One can also see that the dispersion of the non-diagonal

elements decreases with depth in the ordered phase for networks with α0 < 1, same as in the case of the diagonal elements.

In all the figures, we provide experiments for varying initial angles between the two input samples of the NTK and conclude

that the dispersion does not depend significantly on this angle.

C.2. Additional error bars for Figures 1, 2 and 3

To keep all the figures readable, we include error bars only in a subset of points in Figures 1 and 2 in the main text. We also

omit error bars in Figure 3. To give the reader a better idea about the variance observed in our experiments, we include

additional figures with continuous error bars in this section. Figure 9 is analogous to Figure 1: it shows the estimated

dispersion of the NTK along with the theoretical expressions in the infinite-depth-and-width limit from Theorem 3.1. We

include fewer lines (values of σ2
w) in this figure to keep the continuous error bars distinguishable. Similarly, Figure 10 is

analogous to Figure 2: it shows the results concerning the NTK dispersion around the EOC. Finally, Figure 11 shows a

subset of lines from Figure 3 with their continuous error bars and concerns the ratio between non-diagonal and diagonal

elements of the NTK.

C.3. Estimating the NTK dispersion from a sample

In our experiments, we estimate the ratio r := E[Θ2(x, x)]/E2[Θ(x, x)] at initialization from a sample. To do so, we sample

an element of the NTK N times with independently chosen intialization parameters and get a sample {θi}Ni=1.

In this setting, the standard estimators for the first and the second moments given by µ̂1 :=
∑N

i=1 θi/N and

µ̂2 :=
∑N

i=1 θ
2
i /N are unbiased:

E[µ̂1] = E

[1
N

N∑

i=1

θi

]
=

1

N

N∑

i=1

E[θi] = µ1,

E[µ̂2] = E

[1
N

N∑

i=1

θ2i

]
=

1

N

N∑

i=1

E[θ2i] = µ2,

where we denoted the actual moments as µ1 := E[θi] and µ2 := E[θ2i].

However, µ̂1 and µ̂2 computed on the same sample are dependent, so the estimator for the desired ratio given by µ̂2/(µ̂1)
2

is biased and we need to correct it. First, we notice that the estimator for µ2
1 given by the square of µ̂1 is biased as follows:

E[µ̂2
1] = E

[1

N2

(N∑

i=1

θi

)2]
=

µ2

N
+

N − 1

N
µ2
1

Therefore, an unbiased estimator for µ2
1 can be computed as

(̂µ2
1) =

N

N − 1
(µ̂2

1 −
1

N
µ̂2)

Second, we want to remove the dependence between the numerator and the denominator, which can be done simply by

Neural Tangent Kernel Beyond the Infinite-Width Limit

0.0 0.2 0.4
λ

20

21

22

23

24

a) M =100, ⟨x0, x̃0⟩ = 0.1σ2
w =0.8

σ2
w =1.4

σ2
w =1.7

σ2
w =2.0

σ2
w =2.5

σ2
w =3.5

0.0 0.2 0.4
λ

20

21

22

23

24

b) M =100, ⟨x0, x̃0⟩ = 0.5

0.0 0.2 0.4
λ

20

21

22

23

24

c) M =100, ⟨x0, x̃0⟩ = 0.9

0.0 0.2 0.4
λ

20

21

22

23

24

d) M =200, ⟨x0, x̃0⟩ = 0.1

0.0 0.2 0.4
λ

20

21

22

23

24

e) M =200, ⟨x0, x̃0⟩ = 0.5

0.0 0.2 0.4
λ

20

21

22

23

24

f) M =200, ⟨x0, x̃0⟩ = 0.9

0.0 0.2 0.4
λ

20

21

22

23

24

g) M =500, ⟨x0, x̃0⟩ = 0.1

0.0 0.2 0.4
λ

20

21

22

23

24

h) M =500, ⟨x0, x̃0⟩ = 0.5

0.0 0.2 0.4
λ

20

21

22

23

24

i) M =500, ⟨x0, x̃0⟩ = 0.9

Figure 7. Ratio E[Θ2(x, x̃)]/E2[Θ(x, x̃)] at initialization (on a pair of different input samples, i.e. x ̸= x̃) for fully-connected

ReLU networks of constant width M = 200 with α0 ∈ {2.0, 0.5, 0.1} and varying initial angle between the input samples

⟨x0, x̃0⟩ ∈ {0.1, 0.5, 0.9}. The dashed lines show the experimental results and the solid lines show the corresponding theoret-

ical predictions for diagonal elements of the NTK from Theorem 3.1. For each network configuration, we sampled 500 random

initializations and computed an unbiased estimator for the ratio (see details in Appendix C.3). The error bars show the bootstrap estimation

of the standard error.

Neural Tangent Kernel Beyond the Infinite-Width Limit

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4a) α0 =2.0, ⟨x
0, x̃0⟩ = 0.1σ2

w =1.4

σ2
w =1.6

σ2
w =1.7

σ2
w =1.8

σ2
w =1.9

σ2
w =2.0

σ2
w =2.1

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4b) α0 =2.0, ⟨x
0, x̃0⟩ = 0.5

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4c) α0 =2.0, ⟨x
0, x̃0⟩ = 0.9

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4d) α0 =0.5, ⟨x
0, x̃0⟩ = 0.1

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4e) α0 =0.5, ⟨x
0, x̃0⟩ = 0.5

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4f) α0 =0.5, ⟨x
0, x̃0⟩ = 0.9

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4g) α0 =0.1, ⟨x
0, x̃0⟩ = 0.1

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4h) α0 =0.1, ⟨x
0, x̃0⟩ = 0.5

0.0 0.2 0.4
λ

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4i) α0 =0.1, ⟨x
0, x̃0⟩ = 0.9

Figure 8. Ratio E[Θ2(x, x̃)]/E2[Θ(x, x̃)] at initialization (on a pair of different input samples, i.e. x ̸= x̃) for fully-connected

ReLU networks of constant width M = 200 with α0 ∈ {2.0, 0.5, 0.1} and varying initial angle between the input samples

⟨x0, x̃0⟩ ∈ {0.1, 0.5, 0.9}. The dashed lines show the experimental results and the solid lines show the theoretical predictions

given by Theorem 3.2 for the diagonal elements of the NTK. For each network configuration, we sampled 500 random initializations and

computed an unbiased estimator for the ratio (see details in Appendix C.3). The error bars show the bootstrap estimation of the standard

error.

Neural Tangent Kernel Beyond the Infinite-Width Limit

0.0 0.1 0.2 0.3 0.4 0.5

λ

2
0

2
1

2
2

2
3

2
4

a) M =100
Theory:

Ordered

EOC

Chaotic

Experiments:

σ
2
w
=0.8

σ
2
w
=1.7

σ
2
w
=2.0

σ
2
w
=3.0

0.0 0.1 0.2 0.3 0.4 0.5

λ

2
0

2
1

2
2

2
3

2
4

b) M =200

0.0 0.1 0.2 0.3 0.4 0.5

λ

2
0

2
1

2
2

2
3

2
4

c) M =500

Figure 9. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU DNNs of constant width M ∈ {100, 200, 500} with

α0 = 1. The experiment setup is the same as in Figure 1. Continuous error bars show the bootstrap estimation of the standard error.

0.0 0.1 0.2 0.3 0.4 0.5

λ

1.0

1.5

2.0

a)α = 2.0
σ
2

w
=1.7

σ
2

w
=1.9

σ
2

w
=2.0

σ
2

w
=2.1

0.0 0.1 0.2 0.3 0.4 0.5

λ

1.0

1.5

2.0

b)α = 0.5

0.0 0.1 0.2 0.3 0.4 0.5

λ

1.0

1.5

2.0

c)α = 0.1

Figure 10. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M = 200 with the ratio

α0 := n0/M ∈ {2.0, 0.5, 0.1}. The initialization hyperparameter σ2

w
is close to the EOC for all the lines. The experiment setup is the

same as in Figure 2. Continuous error bars show the bootstrap estimation of the standard error.

0.0 0.2 0.4

λ

0.25

0.50

0.75

1.00a) M =100σ
2

w
=1.4

σ
2

w
=1.8

σ
2

w
=1.9

σ
2

w
=2.0

σ
2

w
=3.5

0.0 0.2 0.4

λ

0.25

0.50

0.75

1.00b) M =200

0.0 0.2 0.4

λ

0.25

0.50

0.75

1.00c) M =500

Figure 11. Ratio E[Θ2(x, x)]/E2[Θ(x, x)] at initialization for fully-connected ReLU networks of constant width M = 200 with the ratio

α0 := n0/M ∈ {2.0, 0.5, 0.1}. The initialization hyperparameter σ2

w
is close to the EOC for all the lines. The experiment setup is the

same as in Figure 2. Continuous error bars show the bootstrap estimation of the standard error.

Neural Tangent Kernel Beyond the Infinite-Width Limit

using disjoint parts of the sample to compute the two:

r̂ :=
1

N − 2

N
∑

i=1

θ2i

1
(N−1)(N−2)

[(

∑

j ̸=i θj

)2

−

∑

j ̸=i θ
2
j

]

,

where we used the unbiased version of the estimator for µ2
1 computed on a sample without θi in the denominator. Then we

can compute the expectation of our new estimator for the ratio as follows:

E[r̂] = (N − 1)
N
∑

i=1

E[θ2i]

E

[(

∑

j ̸=i θj

)2

−

∑

j ̸=i θ
2
j

]

=
µ2

µ2
1

.

Therefore, r̂ is an unbiased estimator of the ratio.

3.3 Neural (Tangent Kernel) Collapse 109

3.3 Neural (Tangent Kernel) Collapse

Contributing article: Seleznova, M., Weitzner, D., Giryes, R., Kutyniok, G., and Chou,
H.-H. (2023). Neural (Tangent Kernel) Collapse. In Advances in Neural Information

Processing Systems, volume 36. Curran Associates, Inc.

Author contributions: Mariia Seleznova developed the original idea to connect NTK
aligment and Neural Collapse (NC), formulated the block-structure assumption on the
NTK, and derived all the theorems and proofs presented in the paper. Mariia Seleznova
designed and programmed all the numerical experiments, and produced all the figures.
Mariia Seleznova wrote most of the paper’s main text and the appendices, and managed
the publication process: paper submission to the conference, writing a rebuttal after the
initial reviews, addressing reviewers’ concerns, and producing the camera-ready version
of the paper. Hung-Hsu Chou proofread and helped to structure the theoretical part of
the paper, and took part in the project discussions since the early stages. Dana Weitzner
joined the project in the later stages and provided helpful references. Dana Weitzner and
Hung-Hsu Chou contributed into writing the paper’s main text. Raja Giryes and Gitta
Kutyniok provided review and feedback.

Additional resources:

• Paper link: https://openreview.net/pdf?id=fyLvHzEssH

• Slides: https://neurips.cc/media/neurips-2023/Slides/70877.pdf

• Video presentation: https://slideslive.com/39010253

• Source code: https://github.com/mselezniova/ntk collapse

https://openreview.net/pdf?id=fyLvHzEssH
https://neurips.cc/media/neurips-2023/Slides/70877.pdf
https://slideslive.com/39010253
https://github.com/mselezniova/ntk_collapse

Neural (Tangent Kernel) Collapse

Mariia Seleznova1∗ Dana Weitzner2 Raja Giryes2 Gitta Kutyniok1 Hung-Hsu Chou1

1Ludwig-Maximilians-Universität München 2Tel Aviv University

Abstract

This work bridges two important concepts: the Neural Tangent Kernel (NTK),
which captures the evolution of deep neural networks (DNNs) during training, and
the Neural Collapse (NC) phenomenon, which refers to the emergence of symmetry
and structure in the last-layer features of well-trained classification DNNs. We
adopt the natural assumption that the empirical NTK develops a block structure
aligned with the class labels, i.e., samples within the same class have stronger
correlations than samples from different classes. Under this assumption, we derive
the dynamics of DNNs trained with mean squared (MSE) loss and break them
into interpretable phases. Moreover, we identify an invariant that captures the
essence of the dynamics, and use it to prove the emergence of NC in DNNs with
block-structured NTK. We provide large-scale numerical experiments on three
common DNN architectures and three benchmark datasets to support our theory.

1 Introduction

Deep Neural Networks (DNNs) are advancing the state of the art in many real-life applications,
ranging from image classification to machine translation. Yet, there is no comprehensive theory that
can explain a multitude of empirical phenomena observed in DNNs. In this work, we provide a
theoretical connection between two such empirical phenomena, prominent in modern DNNs: Neural
Collapse (NC) and Neural Tangent Kernel (NTK) alignment.

Neural Collapse. NC [39] emerges while training modern classification DNNs past zero error
to further minimize the loss. During NC, the class means of the DNN’s last-layer features form a
symmetric structure with maximal separation angle, while the features of each individual sample
collapse to their class means. This simple structure of the feature vectors appears favourable for
generalization and robustness in the literature [12, 31, 40, 47]. Though NC is common in modern
DNNs, explaining the mechanisms behind its emergence is challenging, since the complex non-linear
training dynamics of DNNs evade analytical treatment.

Neural Tangent Kernel. The NTK [30] describes the gradient descent dynamics of DNNs in the
function space, which provides a dual perspective to DNNs’ evolution in the parameters space. This
perspective allows to study the dynamics of DNNs analytically in the infinite-width limit, where the
NTK is constant during training [30]. Hence, theoretical works often rely on the infinite-width NTK
to analyze generalization of DNNs [1, 20, 28, 49]. However, multiple authors have argued that the
infinite-width limit does not fully reflect the behaviour of realistic DNNs [2, 10, 22, 27, 36, 43], since
constant NTK implies that no feature learning occurs during DNNs training.

NTK Alignment. While the infinite-width NTK is label-agnostic and does not change during
training, the empirical NTK rapidly aligns with the target function in the early stages of training
[5, 7, 44, 45]. In the context of classification, this manifests itself as the emergence of a block structure

∗Correspondence to: Mariia Seleznova (selez@math.lmu.de).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

in the kernel matrix, where the correlations between samples from the same class are stronger than
between samples from different classes. The NTK alignment implies the so-called local elasticity
of DNNs’ training dynamics, i.e., samples from one class have little impact on samples from other
classes in Stochastic Gradient Descent (SGD) updates [23]. Several recent works have also linked
the local elasticity of training dynamics to the emergence of NC [33, 53]. This brings us to the main
question of this paper: Is there a connection between NTK alignment and neural collapse?

Contribution. In this work, we consider a model of NTK alignment, where the kernel has a block
structure, i.e., it takes only three distinct values: an inter-class value, an intra-class value and a
diagonal value. We describe this model in Section 3. Within the model, we establish the connection
between NTK alignment and NC, and identify the conditions under which NC occurs. Our main
contributions are as follows:

• We derive and analyze the training dynamics of DNNs with MSE loss and block-structured
NTK in Section 4. We identify three distinct convergence rates in the dynamics, which
correspond to three components of the training error: error of the global mean, of the class
means, and of each individual sample. These components play a key role in the dynamics.

• We show that NC emerges in DNNs with block-structured NTK under additional assumptions
in Section 5.3. To the best of our knowledge, this is the first work to connect NTK alignment
and NC. While previous contributions rely on the unconstrained features models [21, 38, 48]
or other imitations of DNNs’ training dynamics [53] to derive NC (see Appendix A for a
detailed discussion of related works), we consider standard gradient flow dynamics of DNNs
simplified by our assumption on the NTK structure.

• We analyze when NC does or does not occur in DNNs with NTK alignment, both theoreti-
cally and empirically. In particular, we identify an invariant of the training dynamics that
provides a necessary condition for the emergence of NC in Section 5.2. Since DNNs with
block-structured NTK do not always converge to NC, we conclude that NTK alignment is a
more widespread phenomenon than NC.

• We support our theory with large-scale numerical experiments in Section 6.

2 Preliminaries

We consider the classification problem with C ∈ N classes, where the goal is to build a classifier that
returns a class label for any input x ∈ X . In this work, the classifier is a DNN trained on a dataset
{(xi, yi)}

N
i=1, where xi ∈ X are the inputs and yi ∈ R

C are the one-hot encodings of the class labels.

We view the output function of the DNN f : X → R
C as a composition of parametrized last-layer

features h : X → R
n and a linear classification layer parametrized by weights W ∈ R

C×n and
biases b ∈ R

C . Then the logits of the training data X = {xi}
N
i=1 can be expressed as follows:

f(X) = WH+ b1⊤
N , (1)

where H ∈ R
n×N are the features of the entire dataset stacked as columns and 1N ∈ R

N is a vector
of ones. Though we omit the notion of the data dependence in the text to follow, i.e. we write H
without the explicit dependence on X , we emphasize that the features H are a function of the data and
the DNN’s parameters, unlike in the previously studied unconstrained feature models [21, 38, 48].

We assume that the dataset is balanced, i.e. there are m := N/C training samples for each class.
Without loss of generality, we further assume that the inputs are reordered so that x(c−1)m+1, . . . , xcm

belong to class c for all c ∈ [C]. This will make the notation much easier later on. Since the dimension
of features n is typically much larger than the number of classes, we also assume n > C in this work.

2.1 Neural Collapse

Neural Collapse (NC) is an empirical behaviour of classifier DNNs trained past zero error [39].

Let ⟨h⟩ := N−1
∑N

i=1 h(xi) denote the global features mean and ⟨h⟩c := m−1
∑

xi∈class c h(xi),

c ∈ [C] be the class means. Furthermore, define the matrix of normalized centered class means as

M := [⟨h⟩1/∥⟨h⟩1∥2, . . . , ⟨h⟩C/∥⟨h⟩C∥2]
⊤ ∈ R

n×C , where ⟨h⟩c = ⟨h⟩c − ⟨h⟩, c ∈ [C]. We say
that a DNN exhibits NC if the following four behaviours emerge as the training time t increases:

2

(NC1) Variability collapse: for all samples xc
i from class c ∈ [C], where i ∈ [m], the penultimate

layer features converge to their class means, i.e. ∥h(xc
i)− ⟨h⟩c∥2 → 0.

(NC2) Convergence to Simplex Equiangular Tight Frame (ETF): for all c, c′ ∈ [C], the class
means converge to the following configuration:

∥⟨h⟩c − ⟨h⟩∥2 − ∥⟨h⟩c′ − ⟨h⟩∥2 → 0, M⊤M →
C

C − 1
(IC −

1

C
1C1

⊤
C).

(NC3) Convergence to self-duality: the class means M and the final weights W⊤ converge to
each other: ∥

∥M/∥M∥F −W⊤/∥W⊤∥F
∥
∥
F
→ 0.

(NC4) Simplification to Nearest Class Center (NCC): the classifier converges to the NCC
decision rule behaviour:

argmax
c

(Wh(x) + b)c → argmin
c

∥h(x)− ⟨h⟩c∥2.

Though NC is observed in practice, there is currently no conclusive theory on the mechanisms of its
emergence during DNN training. Most theoretical works on NC adopt the unconstrained features
model, where features H are free variables that can be directly optimized [21, 38, 48]. Training
dynamics of such models do not accurately reflect the dynamics of real DNNs, since they ignore the
dependence of the features on the input data and the DNN’s trainable parameters. In this work, we
make a step towards realistic DNN dynamics by means of the Neural Tangent Kernel (NTK).

2.2 Neural Tangent Kernel

The NTK Θ of a DNN with the output function f : X → R
C and trainable parameters w ∈ R

P

(stretched into a single vector) is given by

Θk,s(xi, xj) :=
〈

∇wfk(xi),∇wfs(xj)
〉

, xi, xj ∈ X , k, s ∈ [C]. (2)

We also define the last-layer features kernel Θh, which is a component of the NTK corresponding to
the parameters up to the penultimate layer, as follows:

Θh
k,s(xi, xj) :=

〈

∇whk(xi),∇whs(xj)
〉

, xi, xj ∈ X , k, s ∈ [n]. (3)

Intuitively, the NTK captures the correlations between the training samples in the DNN dynamics.
While most theoretical works consider the infinite-width limit of DNNs [30, 52], where the NTK can
be computed theoretically, empirical studies have also extensively explored the NTK of finite-width
networks [19, 36, 45, 49]. Unlike the label-agnostic infinite-width NTK, the empirical NTK aligns
with the labels during training. We use this observation in our main assumption (Section 3).

2.3 Classification with MSE Loss

We study NC for DNNs with the mean squared error (MSE) loss given by

L(W,H,b) =
1

2
∥f(X)−Y∥2F , (4)

where Y ∈ R
C×N is a matrix of stacked labels yi. While NC was originally introduced for the

cross-entropy (CE) loss [39], which is more common in classification problems, the MSE loss is
much easier to analyze theoretically. Moreover, empirical observations suggest that DNNs with MSE
loss achieve comparable performance to using CE [14, 29, 41], which motivates the recent line of
research on MSE-NC [21, 38, 48].

3 Block Structure of the NTK

Numerous empirical studies have demonstrated that the NTK becomes aligned with the labels Y⊤Y
during the training process [7, 32, 45]. This alignment constitutes feature learning and is associated
with better performance of DNNs [9, 13]. For classification problems, this means that the empirical

3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h1 h11 h21 h31 h41 h51 h61

h
1

h
1
1

h
2
1

h
3
1

h
4
1

h
5
1

h
6
1

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.4

0.6

0.8

e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.1

0.2

0.5

0

0.5

1

Figure 1: The NTK block structure of ResNet20 trained on MNIST. a) Traced kernel
∑C

k=1 Θk,k(X)
computed on a random data subset with 12 samples from each class. The samples are ordered as
described in Section 2, so that the diagonal blocks correspond to pairs of inputs from the same class.
b) Traced kernel

∑n
k=1 Θ

h
k,k(X) computed on the same subset. c) Norms of the kernels Θk,s(X) for

all k, s ∈ [C]. d) Norms of the kernels Θh
k,s(X) for all k, s ∈ [n]. The color bars show the values

in each heatmap as a fraction of the maximal value in the heatmap. e) The alignment of the traced
kernels from panes a and b with the class labels.

NTK develops an approximate block structure with larger kernel values corresponding to pairs of
samples (xc

i , x
c
j) from the same class [44]. Figure 1 shows an example of such a structure emergent

in the empirical NTK of ResNet20 trained on MNIST.2 Motivated by these observations, we assume
that the NTK and the last-layer features kernel exhibit a block structure, defined as follows:

Definition 3.1 (Block structure of a kernel). We say a kernel Θ : X × X → R
K×K has a block

structure associated with (λ1,λ2,λ3), if λ1 > λ2 > λ3 ≥ 0 and

Θ(x, x) = λ1IK , Θ(xc
i , x

c
j) = λ2IK , Θ(xc

i , x
c′

j) = λ3IK , (5)

where xc
i and xc

j are two distinct inputs from the same class, and xc′

j is an input from class c′ ̸= c.

Assumption 3.2. The NTK Θ : X × X → R
C×C has a block structure associated with (γd, γc, γn),

and the penultimate kernel Θh : X × X → R
n×n has a block structure associated with (κd,κc,κn).

This assumption means that every kernel Θk,k(X) := [Θk,k(xi, xj)]i,j∈[N] corresponding to an

output neuron fk, k ∈ [C] and every kernel Θh
p,p(X) corresponding to a last-layer neuron hp, p ∈ [n]

is aligned with Y⊤Y (see Figure 1, panes a-b). Additionally, the "non-diagonal" kernels Θk,s(X)
and Θh

k,s(X), k ̸= s are equal to zero (see Figure 1, panes c-d).3 Moreover, if γc ≫ γn and κc ≫ κn,

Assumption 3.2 can be interpreted as local elasticity of DNNs, defined below.

Definition 3.3 (Local elasticity [23]). A classifier is said to be locally elastic (LE) if its prediction or
feature representation on point xc

i from class c ∈ [C] is not significantly affected by performing SGD
updates on data points from classes c′ ̸= c.

To see the relation between Assumption 3.2 and this definition, consider a Gradient Descent (GD)

step of the output neuron fk, k ∈ [C] with step size η performed on a single input xc′

j from class

c′ ̸= c. By the chain rule, block-structured Θ implies locally-elastic predictions since

f t+1(xc
i)− f t(xc

i) = −ηΘ(xc
i , x

c′

j)
∂L(xc′

j)

∂f(xc′

j)
+O(η2), (6)

i.e., the magnitude of the GD step of f(xc
i) is determined by the value of Θ(xc

i , x
c′

j). Similarly,

block-structured kernel Θh implies locally-elastic penultimate layer features because

ht+1(xc
i)− ht(xc

i) = −ηΘh(xc
i , x

c′

j)W
⊤ ∂L(xc′

j)

∂f(xc′

j)
+O(η2). (7)

This observation provides a connection between our work and recent contributions suggesting a
connection between NC and local elasticity [33, 53].

2We provide figures illustrating the NTK block structure on other architectures and datasets in Appendix C.
3We discuss possible relaxations to our main assumption, where the "non-diagonal" components of the

last-layer kernel Θh
k,s are allowed to be non-zero, in Appendix D.

4

Eigenvalue Eigenvector Multiplicity

λsingle = γd − γc vc
i =

1
m−1

(

m− 1,−1⊤
m−1

︸ ︷︷ ︸

index i>0, class c<0

, 0⊤
N−m

︸ ︷︷ ︸

others =0

)⊤
N − C

λclass = λsingle +m(γc − γn) vc =
1

C−1

(

(C − 1)1⊤
m

︸ ︷︷ ︸

class c>0

,− 1⊤
N−m

︸ ︷︷ ︸

others <0

)⊤
C − 1

λglobal = λclass +Nγn v0 = 1N 1
Table 1: Eigendecomposition of the block-structured NTK.

4 Dynamics of DNNs with NTK Alignment

4.1 Convergence

As a warm up for our main results, we analyze the effects of the NTK block structure on the
convergence of DNNs. Consider a GD update of an output neuron fk, k ∈ [C] with the step size η:

f t+1
k (X) = f t

k(X)− ηΘk,k(X)(f t
k(X)−Yk) +O(η2), k = 1, . . . , C. (8)

Note that we have taken into account that Θk,s is zero for k ̸= s by our assumption. Denote the

residuals corresponding to fk as r⊤k := f⊤
k (X)−Yk ∈ R

N . Then we have the following dynamics
for the residuals vector:

rt+1
k = (1− ηΘk,k(X))rtk +O(η2). (9)

The eigendecomposition of the block-structured kernel Θk,k(X) provides important insights into
this dynamics and is summarized in Table 1. We notice that the NTK has three distinct eigenvalues
λglobal ≥ λclass ≥ λsingle, which imply different convergence rates for certain components of the error.
Moreover, the eigenvectors associated with each of these eigenvalues reveal the meaning of the error
components corresponding to each convergence rate. Indeed, consider the projected dynamics with
respect to eigenvector v0 and eigenvalue λglobal from Table 1:

⟨rt+1
k ,v0⟩ = (1− ηλglobal)⟨rtk,v0⟩, (10)

where we omitted O(η2) for clarity. Now notice that the projection of rtk onto the vector v0 is in fact
proportional to the average residual over the training set:

⟨rtk,v0⟩ = ⟨rtk,1N ⟩ = N⟨rtk⟩ (11)

where ⟨·⟩ denotes the average over all the training samples xi ∈ X . By a similar calculation, for all
c ∈ [C] and i ∈ [m] we get interpretations of the remaining projections of the residual:

⟨rtk,vc⟩ =
N

C − 1
(⟨rtk⟩c − ⟨rtk⟩), ⟨rtk,vc

i ⟩ =
m

m− 1
(rtk(x

c
i)− ⟨rtk⟩c), (12)

We where ⟨·⟩c denotes the average over samples xc
i from class c, and r⊤k (x

c
i) is the kth component of

f⊤(xc
i)− yci . Combining (10), (11) and (12), we have the following convergence rates:

⟨rt+1
k ⟩ = (1− ηλglobal)⟨rtk⟩, (13)

⟨rt+1
k ⟩c − ⟨rt+1

k ⟩ = (1− ηλclass)(⟨rtk⟩c − ⟨rtk⟩), (14)

rt+1
k (xc

i)− ⟨rt+1
k ⟩c = (1− ηλsingle)(r

t
k(x

c
i)− ⟨rtk⟩c). (15)

Overall, this means that the global mean ⟨r⟩ of the residual converges first, then the class means, and
finally the residual of each sample r(xc

i). To simplify the notation, we define the following quantities:

R = f(X)−Y = [r(x1), . . . , r(xN)], (16)

Rclass =
1

m
RY⊤Y = [⟨r⟩1, . . . , ⟨r⟩C]

︸ ︷︷ ︸

:=R1

⊗1⊤
m, (17)

Rglobal =
1

N
R1N1⊤

N = ⟨r⟩ ⊗ 1⊤
N , (18)

5

where R ∈ R
C×N is the matrix of residuals, Rclass ∈ R

C×N are the residuals averaged over each
class and stacked m times, and Rglobal ∈ R

C×N are the residuals averaged over the whole training
set stacked N times. According to the previous discussion, Rglobal converges to zero at the fastest
rate, while R converges at the slowest rate. The last phase, which we call the end of training, is when
Rclass and Rglobal have nearly vanished and can be treated as zero for the remaining training time. We
will use this notion in several remarks, as well as in the proof of Theorem 5.2.

4.2 Gradient Flow Dynamics with Block-Structured NTK

We derive the dynamics of H,W,b under Assumption 3.2 in Theorem 4.1. One can see that the
block-structured kernel greatly simplifies the complicated dynamics of DNNs and highlights the role
of each of the residual components identified in Section 4.1. We consider gradient flow, which is
close to gradient descent for sufficiently small step size [16], to reduce the complications caused by
higher order terms. The proof is given in Appendix B.1.

Theorem 4.1. Suppose Assumption 3.2 holds. Then the gradient flow dynamics of a DNN can be
written as ⎧

⎨

⎩

Ḣ = −W⊤[(κd − κc)R+ (κc − κn)mRclass + κnNRglobal]

Ẇ = −RH⊤

ḃ = −Rglobal1N .

(19)

We note that at the end of training, where Rclass and Rglobal are zero, the system (19) reduces to

Ḣ = −(κd − κc)∇HL̃, Ẇ = −∇WL̃, L̃(W,H) :=
1

2
∥WH+ b1⊤

N −Y∥2F , (20)

and ḃ = 0. This system differs from the unconstrained features dynamics only by a factor of κd − κc

before H. Moreover, such a form of the loss function also appears in the literature of implicit
regularization [4, 6, 11], where the authors show that WH converges to a low rank matrix.

5 NTK Alignment Drives Neural Collapse

The main goal of this work is to demonstrate how NC results from the NTK block structure. To this
end, in Section 5.1 we further analyze the dynamics presented in Theorem 4.1, in Section 5.2 we
derive the invariant of this training dynamics, and in Section 5.3 we finally derive NC.

5.1 Features Decomposition

We first decompose the features dynamics presented in Theorem 4.1 into two parts: H1, which lies in
the subspace of the labels Y, and H2, which is orthogonal to the labels and eventually vanishes. To
achieve this, note that the SVD of Y has the following form:

P⊤YQ =
[√

mIC ,O
]

, (21)

where O ∈ R
C×(N−C) is a matrix of zeros, and P ∈ R

C×C and Q ∈ R
N×N are orthogonal matrices.

Moreover, we can choose P and Q such that P = IC and

Q =
[

Q1,Q2

]

, Q1 =
1√
m
IC ⊗ 1m ∈ R

N×C , Q2 = IC ⊗ Q̃2 ∈ R
N×(N−C), (22)

where ⊗ is the Kronecker product. Note that by orthogonality, Q̃2 ∈ R
m×(m−1) has full rank and

1⊤
mQ̃2 = O. We can now decompose HQ into two components as follows:

HQ =
√
m[H1,H2], H1 =

1√
m
HQ1, H2 =

1√
m
HQ2. (23)

The following equations reveal the meaning of these two components:

H1 =
[

⟨h⟩1, . . . , ⟨h⟩C
]

, H2 =
1√
m

[

H(1)Q̃2, . . . ,H
(C)Q̃2

]

, (24)

where ⟨h⟩c ∈ R
n is the mean of h over inputs xc

i from class c ∈ [C], and H(c) ∈ R
n×m is the

submatrix of H corresponding to samples of class c, i.e., H =
[

H(1), . . . ,H(C)
]

. We see that H1

6

is simply the matrix of the last-layer features’ class means, which is prominent in the NC literature.

We also see that the columns of H(c)Q̃2 are m− 1 different linear combinations of m vectors h(xc
i),

i ∈ [m]. Moreover, the coefficients of each of these linear combinations sum to zero by the choice of

Q̃2. Therefore, H2 must reduce to zero in case of variability collapse (NC1), when all the feature
vectors within the same class become equal. We prove that H2 indeed vanishes in DNNs with
block-structured NTK as part of our main result (Theorem 5.2).

5.2 Invariant

We now use the former decomposition of the last-layer features to further simplify the dynamics and
deduce a training invariant in Theorem 5.1. The proof is given in Appendix B.2.

Theorem 5.1. Suppose Assumption 3.2 holds. Define H1 and H2 as in (23). Then the class-means
of the residuals (defined in (17)) are given by R1 = WH1 + b1⊤

C − IC , and the training dynamics
of the DNN can be written as

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Ḣ1 = −W⊤R1(µclassIC + κnm1C1
⊤
C)

Ḣ2 = −µsingleW
⊤WH2

Ẇ = −m(R1H
⊤
1 +WH2H

⊤
2)

ḃ = −mR11C ,

(25)

where µsingle := κd − κc and µclass := µsingle +m(κc − κn) are the two smallest eigenvalues of the

kernel Θh
k,k(X) for any k ∈ [n]. Moreover, the quantity

E :=
1

m
W⊤W −

1

µclass

H1(IC − α1C1
⊤
C)H

⊤
1 −

1

µsingle

H2H
⊤
2 (26)

is invariant in time. Here α := κnm
µclass+Cκnm

.

We note that the invariant E derived here resembles the conservation laws of hyperbolic dynamics
that take the form Ehyp := a2 − b2 = const for time-dependent quantities a and b. Such dynamics

arise when gradient flow is applied to a loss function of the form L(a, b) := (ab− q)2 for some q.
Since the solutions of such minimization problems, given by ab = q, exhibit symmetry under scaling
a → γa, b → b/γ, the value of the invariant Ehyp uniquely specifies the hyperbola followed by the
solution. In machine learning theory, hyperbolic dynamics arise as the gradient flow dynamics of
linear DNNs [42], or in matrix factorization problems [3, 15]. Moreover, the end of training dynamics
defined in (20) has a hyperbolic invariant given by

Eeot := W⊤W −
1

µsingle

HH⊤. (27)

Therefore, the final phase of training exhibits a typical behavior for the hyperbolic dynamics, which
is also characteristic for the unconstrained features models [21, 38]. Namely, "scaling" W and H by
an invertible matrix does not affect the loss value but changes the dynamic’s invariant. On the other
hand, minimizing the invariant Eeot has the same effect as joint regularization of W and H [48].

However, we also note that our invariant E provides a new, more comprehensive look at the DNNs’
dynamics. While unconstrained features models effectively make assumptions on the end-of-training
invariant Eeot to derive NC [21, 38, 48], our dynamics control the value of Eeot through the more
general invariant E. This way we connect the properties of end-of-training hyperbolic dynamics with
the previous stages of training.

5.3 Neural Collapse

We are finally ready to state and prove our main result in Theorem 5.2 about the emergence of NC in
DNNs with NTK alignment. We include the proof in Appendix B.3.

Theorem 5.2. Assume that the NTK has a block structure as defined in Assumption 3.2. Then the
DNN’s training dynamics are given by the system of equations in (25). Assume further that the
last-layer features are centralized, i.e ⟨h⟩ = 0, and the dynamics invariant (26) is zero, i.e., E = O.
Then the DNN’s dynamics exhibit neural collapse as defined in (NC1)-(NC4).

7

Below we provide several important remarks and discuss the implications of this result:

(1) Zero invariant assumption: We assume that the invariant (26) is zero in Theorem 5.2 for sim-
plicity and consistency with the literature. Indeed, similar assumptions arise in matrix decomposition
papers, where zero invariant guarantees "balance" of the problem [3, 15]. However, our proofs in fact
only require a weaker assumption that the invariant terms containing features H are aligned with the
weights W⊤W, i.e.

W⊤W ∝
1

µclass

H1H
⊤
1 −

1

µsingle

H2H
⊤
2 , (28)

where we have taken into account our assumption on the zero global mean ⟨h⟩ = 0.

(2) Necessity of the invariant assumption: The relaxed assumption on the invariant (28) is necessary
for the emergence of NC in DNNs with block-structured NTK. Indeed, NC1 implies H2 = O, and
NC3 implies H1H

⊤
1 ∝ W⊤W. Therefore, DNNs that do not satisfy this assumption do not display

NC. Our numerical experiments described in Section 6 strongly support this insight (see Figure 2,
panes a-e). Thus, we believe that the invariant derived in this work characterizes the difference
between models that do and do not exhibit NC.

(3) Zero global mean assumption: We note that the zero global mean assumption ⟨h⟩ = 0 in
Theorem 5.2 ensures that the biases are equal to b = 1

C
1C at the end of training. This assumption

is common in the NC literature [21, 38] and is well-supported by our numerical experiments (see
figures in Appendix C, pane i). Indeed, modern DNNs typically include certain normalization (e.g.
through batch normalization layers) to improve numerical stability, and closeness of the global mean
to zero is a by-product of such normalization.

(4) General biases case: Discarding the zero global mean assumption allows the biases b to take an
arbitrary form. In this general case, the following holds for the matrix of weights:

(WW⊤)2 =
m

µclass

(

IC − α1C1
⊤
C + (1− αC)(Cbb⊤ − b1⊤

C − 1Cb
⊤)

)

. (29)

For optimal biases b = 1
C
1C , this reduces to the ETF structure that emerges in NC. Moreover, if

biases are all equal, i.e. b = β1C for some β ∈ R, the centralized class means still form an ETF (i.e.,
NC2 holds), and the weights exhibit a certain symmetric structure given by

WW⊤ ∝
(

IC − γ1C1
⊤
C

)

, M⊤M ∝
(

IC −
1

C
1C1

⊤
C

)

, (30)

where γ := 1
C
(1− |1− βC|

√
1− αC) < 1

C
. The proof and a discussion of this result are given in

Appendix B.4. In general, the angles of these two frames are different, and thus NC3 does not hold.
This insight leads us to believe that normalization is an important factor in the emergence of NC.

(5) Partial NC: Our proofs and the discussion suggest that all the four phenomena that form NC do
not have to always coincide. In particular, our proof of NC1 only requires the block-structured NTK
and the invariant to be P.S.D, which is much weaker than the total set of assumptions in Theorem 5.2.
Therefore, variability collapse can occur in models that do not exhibit the ETF structure of the
class-means or the duality of the weights and the class means. Moreover, as shown above, NC2 can
occur when NC3 does not, i.e., the ETF structure of the class means does not imply duality.

6 Experiments

We conducted large-scale numerical experiments to support our theory. While we only showcase our
results on a single dataset-architecture pair in the main text (see Figure 2) and refer the rest to the
appendix, the following discussion covers all our experiments.

Datasets and models. Following the seminal NC paper [39], we use three canonical DNN architec-
tures: VGG [46], ResNet [24] and DenseNet [26]. Our datasets are MNIST [35], FashionMNIST [51]
and CIFAR10 [34]. We choose VGG11 for MNIST and FashionMNIST, and VGG16 for CIFAR10.
We add batch normalization after every layer in the VGG architecture, set dropout to zero and choose
the dimensions of the two fully-connected layers on the top of the network as 512 and 256. We use
ResNet20 architecture described in the original ResNet paper [24], and DenseNet40 with bottleneck
layers, growth k = 12, and zero dropout for all the datasets.

8

10−1

100

101

a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.003

Acc.: 99.49%, ⟨Θh, Y Y T ⟩: 0.45

LeCun normal init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.93

Uniform init., LR=0.003

Acc.: 99.60%, ⟨Θh, Y Y T ⟩: 0.51

Uniform init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.88

He normal init., LR=0.005

Acc.: 99.51%, ⟨Θh, Y Y T ⟩: 0.38

He normal init., LR=0.049

Acc.: 99.64%, ⟨Θh, Y Y T ⟩: 0.92

0 100 200 300 400
epoch

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.25

0.50

0.75

1.00

1.25

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.98

0.99

1.00

0.98

0.99

1.00

10−3 10−1

Learning rate

0.98

0.99

1.00

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−1

100

101

a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.003

Acc.: 99.49%, ⟨Θh, Y Y T ⟩: 0.45

LeCun normal init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.93

Uniform init., LR=0.003

Acc.: 99.60%, ⟨Θh, Y Y T ⟩: 0.51

Uniform init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.88

He normal init., LR=0.005

Acc.: 99.51%, ⟨Θh, Y Y T ⟩: 0.38

He normal init., LR=0.049

Acc.: 99.64%, ⟨Θh, Y Y T ⟩: 0.92

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

Figure 2: ResNet20 trained on MNIST with three initialization settings and varying learning rates
(see Section 6 for details). We chose a model that exhibits NC (red lines, filled markers) and a model
that does not exhibit NC (blue lines, empty markers) for each initialization. The vertical lines indicate
the epoch when the training accuracy reaches 99.9% (over the last 10 batches). a) Frobenious norm
of the invariant ∥E∥F . b) Alignment of the invariant terms as defined in (28). c) NC1: standard

deviation of h(xc
i) averaged over classes. d) NC2: ∥M⊤M/∥M⊤M∥F − Φ∥F , where Φ is an ETF.

e) NC3: ∥W⊤/∥W∥F − M/∥M∥F ∥F . The legend displays the test accuracy achieved by each

model and the last-layer features kernel alignment given by ⟨Θh/∥Θh∥F ,Y⊤Y/∥Y⊤Y∥F ⟩F . The
curves in panes a-e are smoothed by Savitzky–Golay filter with polynomial degree 1 over window of
size 10. Panes f, g and h show the NC metrics and the test accuracy as functions of the learning rate.

Optimization and initialization. We use SGD with Nesterov momentum 0.9 and weight decay
5 × 10−4. Every model is trained for 400 epochs with batches of size 120. To be consistent with
the theory, we balance the batches exactly. We train every model with a set of initial learning rates
spaced logarithmically in the range η ∈ [10−4, 100.25]. The learning rate is divided by 10 every 120
epochs. On top of the varying learning rates, we try three different initialization settings for every

model: (a) LeCun normal initialization (default in Flax), (b) uniform initialization on [−
√
k,
√
k],

where k = 1/nℓ−1 for a linear layer, and k = 1/(Knℓ−1) for a convolutional layer, where K is the
convolutional kernel size (default in PyTorch), (c) He normal initialization in fan_out mode.

Results. Our experiments confirm the validity of our assumptions and the emergence of NC as
their result. Specifically, we make the following observations:

• While most of the DNNs that achieve high test performance exhibit NC, we are able to
identify DNNs with comparable performance that do not exhibit NC (see Figure 2, panes
f-h). We note that such models still achieve near-zero error on the training set in our setup.

• Comparing DNNs that do and do not exhibit NC, we find that our assumption on the invariant
(see Theorem 5.2 and (28)) holds only for the models with NC (see Figure 2, panes a-e). This
confirms our reasoning about the necessity of the invariant assumption for NC emergence.

• The kernels Θ and Θh are strongly aligned with the labels Y⊤Y in the models with the
best performance, which is in agreement with the NTK alignment literature and justifies our
assumption on the NTK block structure.

We include the full range of experiments along with the implementation details and the discussion
of required computational resources in Appendix C. Specifically, we present a figure analogous to
Figure 2 for every considered dataset-architecture pair. Additionally, we report the norms of matrices
H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤, as well as the alignment of both the NTK Θ and the last-layer features

kernel Θh in the end of training, to further justify our assumptions.

9

7 Conclusions and Broad Impact

This work establishes the connection between NTK alignment and NC, and thus provides a mechanis-
tic explanation for the emergence of NC within realistic DNNs’ training dynamics. It also contributes
to the underexplored line of research connecting NC and local elasticity of DNNs’ training dynamics.

The primary implication of this research is that it exposes the potential to study NC through the lens
of NTK alignment. Indeed, previous works on NC focus on the top-down approach (layer-peeled
models) [18, 21, 38, 48], and fundamentally cannot explain how NC develops through earlier layers
of a DNN and what are the effects of depth. On the other hand, NTK alignment literature focuses on
the alignment of individual layers [7], and recent theoretical results even quantify the role of each
hidden layer in the final alignment [37]. Therefore, we believe that the connection between NTK
alignment and NC established in this work provides a conceptually new method to study NC.

Moreover, this work introduces a novel approach to facilitate theoretical analysis of DNNs’ training
dynamics. While most theoretical works consider the NTK in the infinite-width limit to simplify the
dynamics [1, 20, 28, 49], our analysis shows that making reasonable assumptions on the empirical
NTK can also lead to tractable dynamics equations and new theoretical results. Thus, we believe that
the analysis of DNNs’ training dynamics based on the properties of the empirical NTK is a promising
approach also beyond NC research.

8 Limitations and Future Work

The main limitation of this work is the simplifying Assumption 3.2 on the kernel structure. While
the NTK of well-trained DNNs indeed has an approximate block structure (as we discuss in detail
in Section 3), the NTK values also tend to display high variance in real DNNs [22, 44]. Thus, we
believe that adding stochasticity to the dynamics considered in this paper is a promising direction
for the future work. Moreover, the empirical NTK exhibits so-called specialization, i.e., the kernel
matrix corresponding to a certain output neurons aligns more with the labels of the corresponding
class [45]. In block-structured kernels, specialization implies different values in blocks corresponding
to different classes. Thus, generalizing our theory to block-structured kernels with specialization
is another promising short-term research goal. In addition, our theory relies on the assumption
that the dataset (or the training batch) is balanced, i.e., all the classes have the same number of
samples. Accounting for the effects of non-balanced datasets within the dynamics of DNNs with
block-structured NTK is another possible future work direction.

More generally, we believe that empirical observations are essential to demistify the DNNs’ training
dynamics, and there are still many unknown and interesting connections between seemingly unrelated
empirical phenomena. Establishing new theoretical connections between such phenomena is an
important objective, since it provides a more coherent picture of the deep learning theory as a whole.

10

Acknowledgments and Disclosure of Funding

R. Giryes and G. Kutyniok acknowledge support from the LMU-TAU - International Key Cooperation
Tel Aviv University 2023. R. Giryes is also grateful for partial support by ERC-StG SPADE grant
no. 757497. G. Kutyniok is grateful for partial support by the Konrad Zuse School of Excellence
in Reliable AI (DAAD), the Munich Center for Machine Learning (BMBF) as well as the German
Research Foundation under Grants DFG-SPP-2298, KU 1446/31-1 and KU 1446/32-1 and under
Grant DFG-SFB/TR 109, Project C09 and the Federal Ministry of Education and Research under
Grant MaGriDo.

References

[1] Ben Adlam and Jeffrey Pennington. The neural tangent kernel in high dimensions: Triple
descent and a multi-scale theory of generalization. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 74–84. PMLR, 2020.

[2] Laurence Aitchison. Why bigger is not always better: on finite and infinite neural networks. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
156–164. PMLR, 2020.

[3] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 244–253. PMLR, 2018.

[4] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 7411–7422, 2019.

[5] Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[6] Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael Westdickenberg. Learning deep
linear neural networks: Riemannian gradient flows and convergence to global minimizers.
Information and Inference: A Journal of the IMA, 11(1):307–353, 02 2021.

[7] Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal
Vincent, and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In The
24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April
13-15, 2021, Virtual Event, volume 130 of Proceedings of Machine Learning Research, pages
2269–2277. PMLR, 2021.

[8] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[9] Shuxiao Chen, Hangfeng He, and Weijie J. Su. Label-aware neural tangent kernel: Toward better
generalization and local elasticity. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[10] Lénaïc Chizat, Edouard Oyallon, and Francis R. Bach. On lazy training in differentiable
programming. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 2933–2943, 2019.

[11] Hung-Hsu Chou, Carsten Gieshoff, Johannes Maly, and Holger Rauhut. Gradient descent
for deep matrix factorization: Dynamics and implicit bias towards low rank. arXiv preprint:
2011.13772, 2020.

[12] Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann N. Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. In Proceedings of the 34th

11

International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 854–863. PMLR,
2017.

[13] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S. Kandola. On kernel-target
alignment. In Advances in Neural Information Processing Systems 14: Natural and Synthetic,
NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada, pages 367–373. MIT
Press, 2001.

[14] Ahmet Demirkaya, Jiasi Chen, and Samet Oymak. Exploring the role of loss functions in
multiclass classification. In 54th Annual Conference on Information Sciences and Systems,
CISS 2020, Princeton, NJ, USA, March 18-20, 2020, pages 1–5. IEEE, 2020.

[15] Simon S. Du, Wei Hu, and Jason D. Lee. Algorithmic regularization in learning deep ho-
mogeneous models: Layers are automatically balanced. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 382–393, 2018.

[16] Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural networks.
In Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
4947–4960, 2021.

[17] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex
duality. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pages 3004–3014. PMLR, 2021.

[18] C Fang, H He, Q Long, and WJ Su. Exploring deep neural networks via layer-peeled model:
Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences of
the United States of America, 118(43), 2021.

[19] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M.
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss
landscape geometry and the time evolution of the neural tangent kernel. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[20] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,
Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization
with number of parameters in deep learning. Journal of Statistical Mechanics: Theory and
Experiment, 2020(2):023401, 2020.

[21] X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under MSE loss: Proximity
to and dynamics on the central path. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[22] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[23] Hangfeng He and Weijie J. Su. The local elasticity of neural networks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer
Society, 2016.

[25] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020.

[26] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–2269.
IEEE Computer Society, 2017.

12

[27] Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent
hierarchy. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 4542–4551. PMLR, 2020.

[28] Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. Why do deep residual networks
generalize better than deep feedforward networks? - A neural tangent kernel perspective.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[29] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[30] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 8580–8589, 2018.

[31] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization
gap in deep networks with margin distributions. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[32] Dmitry Kopitkov and Vadim Indelman. Neural spectrum alignment: Empirical study. In Artificial
Neural Networks and Machine Learning - ICANN 2020 - 29th International Conference on
Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part II,
volume 12397 of Lecture Notes in Computer Science, pages 168–179. Springer, 2020.

[33] Vignesh Kothapalli, Ebrahim Rasromani, and Vasudev Awatramani. Neural collapse: A review
on modelling principles and generalization. arXiv preprint arXiv:2206.04041, 2022.

[34] Alex Krizhevsky et al. Learning multiple layers of features from tiny images, 2009.

[35] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[36] Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances
in Neural Information Processing Systems, 33:15156–15172, 2020.

[37] Yizhang Lou, Chris E Mingard, and Soufiane Hayou. Feature learning and signal propagation in
deep neural networks. In International Conference on Machine Learning, pages 14248–14282.
PMLR, 2022.

[38] Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
arXiv preprint arXiv:2011.11619, 2020.

[39] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of Sciences,
117(40):24652–24663, 2020.

[40] Federico Pernici, Matteo Bruni, Claudio Baecchi, and Alberto Del Bimbo. Fix your features:
Stationary and maximally discriminative embeddings using regular polytope (fixed classifier)
networks. arXiv preprint arXiv:1902.10441, 2019.

[41] Tomaso A. Poggio and Qianli Liao. Explicit regularization and implicit bias in deep network
classifiers trained with the square loss. arXiv preprint arXiv:2101.00072, 2021.

[42] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[43] Mariia Seleznova and Gitta Kutyniok. Analyzing finite neural networks: Can we trust neural
tangent kernel theory? In Mathematical and Scientific Machine Learning, 16-19 August 2021,
Virtual Conference / Lausanne, Switzerland, volume 145 of Proceedings of Machine Learning
Research, pages 868–895. PMLR, 2021.

[44] Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit:
Effects of depth and initialization. In International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pages 19522–19560. PMLR, 2022.

13

[45] Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence
on training. arXiv preprint arXiv:2105.14301, 2021.

[46] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[47] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and
Yichen Wei. Circle loss: A unified perspective of pair similarity optimization. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 6398–6407, 2020.

[48] Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural
collapse. In Proceedings of the 39th International Conference on Machine Learning, volume
162, pages 21478–21505, 2022.

[49] Tom Tirer, Joan Bruna, and Raja Giryes. Kernel-based smoothness analysis of residual networks.
In Mathematical and Scientific Machine Learning, volume 145, pages 921–954, 2021.

[50] Tom Tirer, Haoxiang Huang, and Jonathan Niles-Weed. Perturbation analysis of neural collapse.
arXiv preprint arXiv:2210.16658, 2022.

[51] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[52] Greg Yang. Tensor programs II: neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

[53] Jiayao Zhang, Hua Wang, and Weijie J. Su. Imitating deep learning dynamics via locally elastic
stochastic differential equations. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 6392–6403, 2021.

14

A Related works

NC with MSE loss. NC was first introduced for DNNs with cross-entropy (CE) loss, which is
commonly used in classification problems [39]. Since then, numerous papers discussed NC with
MSE loss, which provides more opportunities for theoretical analysis, especially after the MSE loss
was shown to perform on par with CE loss for classification tasks [14, 29].

Most previous works on MSE-NC adopt the so-called unconstrained features model [21, 38, 48]. In
this model, the last-layer features H are free variables that are directly optimized during training,
i.e., the features do not depend on the input data or the DNN’s trainable parameters. Fang et al. [18]
also introduced a generalization of this approach called N -layer-peeled model, where features of
the N -th-to-last layer are free variables, and studied the 1-layer-peeled model (equivalent to the
unconstrained features model) with CE loss as a special case.

One line of research on MSE-NC in unconstrained/layer-peeled models aims to derive global mini-
mizers of optimization problems associated with DNNs [17, 18, 48]. In particular, Tirer et al. [48]
showed that global minimizers of the MSE loss with regularization of both H and W exhibit NC.
Moreover, Ergen & Pilanci [17] showed that NC emerges in global minimizers of optimization
problems with general convex loss in the context of the 2-layer-peeled model. In comparison to our
work, these contributions do not consider the training dynamics of DNNs, i.e., they do not discuss
whether and how the model converges to the optimal solution.

Another line of research on MSE-NC explicitly considers the dynamics of the unconstrained features
models [21, 38]. In particular, Han et al. [21] considered the gradient flow of the unconstrained
renormalized features along the "central path", where the classifier is assumed to take the form of the
optimal least squares (OLS) solution for given features H. Under this assumption, they derive a closed-
form dynamics that implies NC. While they empirically show that DNNs are close to the central path
in certain scenarios, they do not provide a theoretical justification for this assumption. The dynamics
considered in their work is also distinct from the standard gradient flow dynamics of DNNs considered
in our work. On the other hand, an earlier work by Mixon et al. [38] considered the gradient flow
dynamics of the unconstrained features model, which is equivalent (up to rescaling) to the end-of-
training dynamics (20) that we discuss in Sections 4.2 and 5.2. Their work relies on the linearization
of these dynamics to derive a certain subspace, which appears to be an invariant subspace of the
non-linearized unconstrained features model dynamics. Then they show that minimizers of the loss
from this subspace exhibit NC. We note that, in terms of our paper, assuming that the unconstrained
features model dynamics follow a certain invariant subspace means making assumptions on the
end-of-training invariant (27). In comparison to these works, we make a step towards realistic DNNs
dynamics by considering the standard gradient flow of DNNs simplified by Assumption 3.2 on the
NTK structure, which is supported by the extensive research on NTK alignment [7, 9, 44, 45]. In our
setting, the NTK captures the dependence of the features on the training data, which is missing in the
unconstrained features model. Moreover, while other works focus only on the dynamics that converge
to NC, we show that DNNs with MSE loss may not exhibit NC in certain settings, and the invariant
of the dynamics (26) characterizes the difference between models that do and do not converge to NC.

Notably, works by Poggio & Liao [41] adopt a model different from the unconstrained features model
to analyze gradient flow of DNNs. They consider the dynamics of homogeneous DNNs, in particular
ReLU networks without biases, with normalization of the weights matrices and weights regularization.
The goal of weights normalization in their model is to imitate the effects of batch normalization
in DNNs training. In this model, certain fixed points of the gradient flow exhibit NC. While the
approach taken in their work captures the dependence of the features on the data and the DNN’s
parameters, it fundamentally relies on the homogeneity of the DNN’s output function. However, most
DNNs that exhibit NC in practice are not homogeneous due to biases and skip-connections.

NC and local elasticity. A recent extensive survey of NC literature [33] discussed local elasticity
as a possible mechanism behind the emergence of NC, which has not been sufficiently explored up
until now. One of the few works in this research direction is by Zhang et al. [53], who analyzed
the so-called locally-elastic stochastic differential equations (SDEs) and showed the emergence of
NC in their solutions. They model local elasticity of the dynamics through an effect matrix, which
has only two distinct values: a larger intra-class value and a smaller inter-class value. These values
characterize how much influence samples from one class have on samples from other classes in the
SDEs. While the aim of their work is to imitate DNNs’ training dynamics through SDEs, the authors

15

do not provide any explicit connection between their dynamics and real gradient flow dynamics of
DNNs. On the other hand, we derive our dynamics directly from the gradient flow equations and
connect local elasticity to the NTK, which is a well-studied object in the deep learning theory.

Another work by Tirer et al. [50] provided a perturbation analysis of NC to study "inexact collapse".
They considered a minimization problem with MSE loss, regularization of H and W, and additional
regularization of the distance between H and a given matrix of initial features. In the "near-collapse"
setting, i.e., when the initial features are already close to collapse, they showed that the optimal
features can be obtained from the initial features by a certain linear transformation with a block
structure, where the intra-class effects are stronger than the inter-class ones. While this transformation
matrix resembles the block-structured effect matrices in locally-elastic training dynamics, it does not
originate from the gradient flow dynamics of DNNs and is not related to the NTK.

B Proofs

B.1 Proof of Theorem 4.1

Proof of Theorem 4.1. We will first derive the dynamics of hs(x
c
i), which is the s-th component of

the last-layer features vector on sample xc
i ∈ X from class c ∈ [C]. Let w ∈ R

P be the trainable
parameters of the network stretched into a single vector. Then its gradient flow dynamics is given by

ẇ = −∇wL(f) = −
C
∑

k=1

N
∑

i′=1

(f(X)ki′ −Yki′)∇wf(X)ki′ , (31)

where ∇wf(X)ki′ ∈ R
P is the component of the DNN’s Jacobian corresponding to output neuron k

and the input sample xc′

i′ . Since entries of f(X) can be written as

f(X)ki′ =

n
∑

s′=1

Wks′Hs′i′ + bk =

n
∑

s′=1

Wks′hs′(x
c′

i′) + bk, (32)

we obtain

ẇ = −
C
∑

k=1

N
∑

i′=1

n
∑

s′=1

(f(X)ki′ −Yki′)∇w(Wks′hs′(x
c′

i′) + bk). (33)

By chain rule, we have ḣs(x
c
i) = ⟨∇whs(x

c
i), ẇ⟩. Then, taking into account that

⟨∇whs(x
c
i),∇w(Wks′hs′(x

c′

i′) + bk)⟩ = Wks′⟨∇whs(x
c
i),∇whs′(x

c′

i′)⟩, (34)

and that ⟨∇whs(x
c
i),∇whs′(x

c′

i′)⟩ = Θh
s,s′(x

c
i , x

c′

i′) by definition of Θh, we have

ḣs(x
c
i) = −

C
∑

k=1

N
∑

i′=1

n
∑

s′=1

(f(X)ki′ −Yki′)Wks′Θ
h
s,s′(x

c
i , x

c′

i′). (35)

Now by Assumption 3.2 we have Θh
s,s′ = 0 if s ̸= s′. Therefore, the above expression simplifies to

ḣs(x
c
i) = −

N
∑

i′=1

Θh
s,s(x

c
i , x

c′

i′)

C
∑

k=1

(f(X)ki′ −Yki′)Wks

= −
N
∑

i′=1

[W⊤(WH+ b1⊤
N −Y)]si′Θ

h
s,s(x

c
i , x

c′

i′).

To express Ḣ =
[

ḣs(x
c
i)
]

s,i
∈ R

n×N in matrix form, it remains to express Θh
s,s(x

c
i , x

c′

i′) as the

(i′, i)-th entry of some matrix. We will separate the sum into three cases: 1) i = i′, 2) i ̸= i′ and
c = c′, and 3) c ̸= c′. According to Assumption 3.2, the first case corresponds to the multiple of
identity κdIN . The second corresponds to the block matrix of size m with zeros on the diagonal,

16

which can be written as κc(Y
⊤Y − IN). The third matrix equals to κn(1N1⊤

N −Y⊤Y). Therefore
we can express the dynamics of H as follows:

Ḣ =− [W⊤(WH+ b1⊤
N −Y)][κdI+ κc(Y

⊤Y − I) + κn(1N1⊤
N −Y⊤Y)]

=− (κd − κc)W
⊤(WH+ b1⊤

N −Y)

− (κc − κn)W
⊤(WHY⊤Y +mb1⊤

N −mY)

− κnW
⊤(WH1N1⊤

N +Nb1⊤
N −

N

C
1C1

⊤
N).

Now we notice that HY⊤Y/m is the matrix of stacked class means repeated m times each and

H1N1⊤
N/N is a matrix of the global mean repeated N times. Therefore, we have

WHY⊤Y +mb1⊤
N −mY = mRclass,

WH1N1⊤
N +Nb1⊤

N −
N

C
1C1

⊤
N = NRglobal

according to the definitions of global and class-mean residuals in (18) and (17).

The expressions for the gradient flow dynamics of W and b follow directly from the derivatives of
f(X) w.r.t. W and b. This completes the proof.

B.2 Proof of Theorem 5.1

Proof of Theorem 5.1. Recall from (23) in Section 5.1 that we have the following decomposition

HQ =
√
m[H1,H2], H1 =

1√
m
HQ1, H2 =

1√
m
HQ2

with orthogonal Q = [Q1,Q2] ∈ R
N×N . We now artificially add QQ⊤(= IN) to the dynamics

(19) in Theorem 4.1 and obtain
⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

ḢQ = −(κd − κc)W
⊤(WHQ+ b1⊤

NQ− YQ)

−(κc − κn)mW⊤(1
m
WHQQ⊤Y⊤YQ+ b1⊤

NQ− YQ)

−κnNW⊤(1
N
WHQQ⊤1N1⊤

NQ+ b1⊤
NQ− 1

C
1C1

⊤
NQ)

Ẇ = −(WHQ+ b1⊤
NQ− YQ)Q⊤H⊤

ḃ = −(WHQ+ b1⊤
NQ− YQ)Q⊤1N .

(36)

Let us simplify the expression. Since Q1 = 1√
m
IC ⊗ 1m and Q2 = IC ⊗ Q̃2, we have

1⊤
NQ =

√
m[1⊤

C ,O], YQ =
√
m[IC ,O]. (37)

Plugging (37) into (36), we see the dynamics can be decomposed into
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Ḣ1 = −(κd − κc)W
⊤(WH1 + b1⊤

C − IC)

−(κc − κn)mW⊤(WH1 + b1⊤
C − IC)

−κnNW⊤(1
C
WH11C1

⊤
C + b1⊤

C − 1
C
1C1

⊤
C)

Ḣ2 = −(κd − κc)W
⊤WH2

Ẇ = −m(WH1 + b1⊤
C − IC)H

⊤
1 −mWH2H

⊤
2

ḃ = −m(WH1 + b1⊤
C − IC)1C .

(38)

To further simplify (38), we define the following quantities

µsingle := κd − κc, µclass := µsingle +m(κc − κn), R1 := WH1 + b1⊤
C − IC . (39)

Notice that µsingle and µclass are the two largest eigenvalues of the block-structured kernel Θh
s,s(X)

(see Table 1 for the eigndecomposition of a block-structured matrix), and R1 is a matrix of the
stacked class-mean residuals, which is also defined in (17). The the dynamics (38) simplifies to

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Ḣ1 = −W⊤(µclassR1 + κnN(1
C
WH11C1

⊤
C + b1⊤

C − 1
C
1C1

⊤
C))

Ḣ2 = −µsingleW
⊤WH2

Ẇ = −m(R1H
⊤
1 −WH2H

⊤
2)

ḃ = −mR11C .

(40)

17

It remains to simplify the expression for Ḣ1. By using the relation

1

C
WH11C1

⊤
C + b1⊤

C −
1

C
1C1

⊤
C =

1

C
R11C1

⊤
C , (41)

we can deduce that the dynamics for Ḣ1 in (40) can be expressed as (recalling that N = mC)

Ḣ1 = −W⊤R1(µclassI+ κnm1C1
⊤
C). (42)

We notice that (IC + κnm
µclass

1C1
⊤
C)

−1 = IC − α1C1
⊤
C , where α := κnm

µclass+Cκnm
. Then we can derive

the invariant of the training dynamics by direct computation of the time-derivative Ė, where

E :=
1

m
W⊤W −

1

µclass

H1(IC − α1C1
⊤
C)H

⊤
1 −

1

µsingle

H2H
⊤
2 (43)

Since Ė = O, we get that the quantity E remains constant in time. This completes the proof.

B.3 Proof of Theorem 5.2

We divide the proof into two main parts: the first one shows the emergence of NC1, and the second
one shows NC2-4.

(NC1). Following the analysis in Section 3, the dynamics eventually enters the end of training phase
(see Section 4.1). Then the dynamics in Theorem 5.1 simplifies to the following form:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Ḣ1 = O

Ḣ2 = −µsingleW
⊤WH2

Ẇ = −mWH2H
⊤
2

ḃ = O

(44)

As we note in Section 4, this dynamics is similar to the gradient flow of the unconstrained features
models and is an instance of the class of hyperbolic dynamics, which is discussed in Section 5.2.
During this phase the quantity

Ẽ := µsingleW
⊤W −mH2H

⊤
2 = mµsingle(E+

1

µclass

H1(I− α1C1
⊤
C)H

⊤
1) (45)

does not change in time. Hence we can decouple the dynamic using the invariant as follows:

{

Ḣ2 = −µsingle(Ẽ+mH2H
⊤
2)H2

Ẇ = −W(µsingleW
⊤W − Ẽ)

(46)

Since E is p.s.d (or zero, as a special case), Ẽ is p.s.d as well, and the eigendecomposition of the

invariant is given by Ẽ =
∑

k ckvkv
⊤
k for some coefficients ck ≥ 0 and a set of orthonormal vectors

vk ∈ R
n. Then we also have H2H

⊤
2 =

∑

k,l αklvkv
⊤
l , where αkl are symmetric (i.e. αkl = αlk)

and αkk ≥ 0 for all k = 1, . . . n (since H2H
⊤
2 is symmetric and p.s.d.). Note that coefficients ck

here are constant while coefficients αkl are time-dependent. Let us then write the dynamics for αkl

using the dynamics of H2H
⊤
2 :

˙(H2H
⊤
2) = −ẼH2H

⊤
2 −H2H

⊤
2 Ẽ− 2(H2H

⊤
2)

2 (47)

Then for the elements of α we have:

α̇kl = −αkl(ck + cl)− 2
∑

j

αkjαjl (48)

For the diagonal elements αkk, this gives:

α̇kk = −2ckαkk − 2
∑

j

α2
kj (49)

18

Since ck ≥ 0 , αkk ≥ 0 and α2
kj ≥ 0, we get that

αkk −−−→
t→∞

0 ∀k (50)

And, therefore, all the non-diagonal elements also tend to zero. Thus, we get that

H2H
⊤
2 −−−→

t→∞
O (51)

and thus
H2 −−−→

t→∞
O (52)

Now we notice that from the expression for H2 in (24) it follows that H2 = O implies variability

collapse, since it means that all the feature vectors within the same class are equal. Indeed, H(c)Q̃2 =
O ∈ R

n×(m−1) means that there is a set of m− 1 orthogonal vectors, which are all also orthogonal
to [hi(x

c
1), . . . , hi(x

c
m)] for any i = 1, . . . , n, where xc

i are inputs from class c. However, there is

only one vector (up to a constant) orthogonal to all the columns of Q̃2 in R
m and this vector is 1m.

Therefore, [hi(x
c
1), . . . hi(x

c
m)] = γ1m for some constant γ for any i = 1, . . . , n. Thus, we indeed

have h(xc
1) = · · · = h(xc

m), which constitutes variability collapse within classes.

(NC2-4). Set β = 1
C

. We first show that zero global feature mean implies b = β1C . At the end of
training, since R1 = O, we have

WH1 + b1⊤
C = IC (53)

On the other hand, zero global mean implies H11C = C⟨h⟩ = O. Then multiplying (53) by 1C on
the right, we get the desired expression for the biases. Given the zero global mean, we have

1

m
W⊤W −

1

µclass

H1H
⊤
1 −

1

µsingle

H2H
⊤
2 = E−

αmC2

µclass

⟨h⟩⟨h⟩⊤ = E (54)

By the proof of NC1, H2 → O. Together with the assumption that E is proportional to the limit of
W⊤W (or zero, as a special case), we obtain

µclassW
⊤W −mH1H

⊤
1 → γW⊤W (55)

for some γ ≥ 0. Note that since H1H
⊤
1 is p.s.d. this implies λ̃c := µclass − γ ≥ 0. By multiplying

the left and right with appropriate factors, we have
{

H⊤
1 (λ̃cW

⊤W −mH1H
⊤
1)H1 → O

W(λ̃cW
⊤W −mH1H

⊤
1)W

⊤ → O.
(56)

Consequently (according to (53))
{

λ̃c(IC − β1C1
⊤
C)

2 −m(H⊤
1 H1)

2 → O

λ̃c(WW⊤)2 − (IC − β1C1
⊤
C)

2 → O
(57)

Since both WW⊤ and H⊤
1 H1 are p.s.d., we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

H⊤
1 H1 →

√

λ̃c

m
(IC − β1C1

⊤
C)

WW⊤ →
√

m

λ̃c

(IC − β1C1
⊤
C).

(58)

To establish NC2, recall that H1 =
[

⟨h⟩1, . . . , ⟨h⟩C
]

and that M, as a normalized version of H1,
satisfies

M⊤M →
1

1− β
(IC − β1C1

⊤
C) =

C

C − 1
(IC −

1

C
1C1

⊤
C).

To establish NC3, note that from (55) and (58) together, it follows that the limits of M and W⊤ only
differ by a constant multiplier.

To establish NC4, note that using NC3 we can write

argmax
c

(Wh(x) + b)c = argmax
c

(Wh(x))c (b = β1C)

→ argmax
c

(M⊤h(x))c (NC3)

= argmin
c

∥h(x)− ⟨h⟩c∥2.

This completes the proof.

19

B.4 General biases case

Proof. As in the proof of Theorem 5.2, at the end of training we have WH1+b1⊤
C = IC . Moreover,

since E = O and H2 → O, we have

1

m
W⊤W −

1

µclass

H1(I− α1C1
⊤
C)H

⊤
1 → O. (59)

Multyplying the above expression to the left by W and to the right by W⊤, we obtain the general
expression (29) for the matrix (WW⊤)2 mentioned in the main text:

(WW⊤)2 →
m

µclass

(

IC − α1C1
⊤
C + (1− αC)(Cbb⊤ − b1⊤

C − 1Cb
⊤)

)

. (60)

This expression implies that the rows of the weights matrix may have varying separation angles in
the general biases case, i.e., there is no symmetric structure is general. However, for constant biases
b = β1C , the above expression simplifies to

(WW⊤)2 →
m

µclass

(

IC −
1

C

(

1− (1− αC)(1− βC)2
)

1C1
⊤
C

)

. (61)

Since α < 1/C and (1−βC)2 ≥ 0, we have that (1−(1−αC)(1−βC)2)/C ≤ 1/C. Therefore, the

RHS of (61) is always p.s.d. and has a unique p.s.d square root proportional to IC − γ1C1
⊤
C for some

constant γ < 1/C. Denote ρ := (1− (1−αC)(1−βC)2)/C, then we have γ = (1−
√
1− Cρ)/C.

Note that ρ < 1/C ensures that γ is well defined. Then the configuration of the final weights is given
by

WW⊤ →
√

m

µclass

(

IC − γ1C1
⊤
C

)

. (62)

This means that the norms of all the weights rows are still equal, as in NC2. However, since γ < 1/C
if β ̸= 1/C, the angle between these rows is smaller than in the ETF structure.

We can derive the configuration of the class means similarly by multyplying (59) to the left by H⊤
1

and to the right by H1. In the general biases case, we get

H⊤
1 H1(IC − α1C1

⊤
C)H

⊤
1 H1 →

µclass

m

(

IC − b1⊤
C − 1Cb

⊤ + ∥b∥221C1
⊤
C

)

. (63)

As with the weights, we see that this is not a symmetric structure in general. Thus, NC2 does not
hold in the general biases case. However, for the constant biases b = β1C , the above expression
simplifies to

H⊤
1 H1(IC − α1C1

⊤
C)H

⊤
1 H1 →

µclass

m
(IC − β1C1

⊤
C)

2. (64)

Analogously to the previous derivations, we get that the unique p.s.d. square root of the RHS is given
by IC − ρ̃1C1

⊤
C , where ρ̃ := (1− |1− βC|)/C < 1/C for β ̸= 1/C. On the other hand, the unique

p.s.d root of I− α1C1
⊤
C is given by IC − φ1C1

⊤
C , where φ := (1−

√
1− αC)/C. Thus, we have

the following
√

m

µclass

H⊤
1 H1(IC − φ1C1

⊤
C) → IC − ρ̃1C1

⊤
C . (65)

Therefore, the structure of the last-layer features class means is given by

H⊤
1 H1 →

√

µclass

m

(

IC − ρ̃1C1
⊤
C

)(

IC −
φ

1 + φC
1C1

⊤
C

)

=

√

µclass

m

(

IC − θ1C1
⊤
C

)

, (66)

where θ := ρ̃ + φ/(1 + φC) − Cρ̃φ/(1 + φC) < 1/C for β ̸= 1/C. Thus, similarly to the
classifier weights W, the last-layer features class means form a symmetric structure with equal
lengths and a separation angle smaller than in the ETF. However, the centralized class means given
by M = H1(IC − 1C1

T
C/C) still form the ETF structure:

M⊤M →
√

µclass

m

(

IC −
1

C
1C1

⊤
C

)

. (67)

This holds since the component proportional to 1C1
⊤
C on the RHS of equation (66) lies in the kernel

of the ETF matrix (IC − 1C1
⊤
C/C). Thus, we conclude that NC2 holds in case of equal biases, while

NC3 does not.

20

Remark on α → 0 case: Simplifying the expressions for constants γ and θ, which define the angles
in the configurations of the weights and the class means above, we get the following:

γ =
1

C

(

1− |1− βC|
√
1− αC

)

, θ =
1

C

(

1−
|1− βC|

2−
√
1− αC

)

. (68)

Analyzing these expressions, we find that they are equal only if 1− αC = 1, i.e. α = 0. However,
this can only hold if κn = 0 by definition of α, i.e., when the kernel Θh is zero on pairs of samples
from different classes. While α ̸= 0 in general, there are certain settings where α approaches zero.
Simplifying the expression for α, we can get the following

α =
1

κc

κn

(1− 1
m
) + κd

κn

1
m

+ (C − 1)
. (69)

One can see that α → 0 if C → ∞ or when κc/κn → ∞. Since the kernel Θh is strongly aligned
with the labels in our numerical experiments, the value of κc/κn is large in practice. Thus, α is not
zero but indeed significantly smaller than 1/C. Thus, in our numerical experiments the angles θ and
γ are close to each other. However, we note that the equality of these two angles does not imply NC3,
since the value of θ characterizes the angles between the non-centralized class means.

Remark on α → 1/C case: If α = 1/C, the equation (63) for the structure of the features class
means with general (not equal) biases simplifies to

M⊤M →
µclass

m

(

IC −
1

C
1C1

⊤
C

)

, (70)

i.e., in this case the class means always exhibit the ETF structure, even without the assumption
that all the biases are equal. Moreover, in this case γ = 1/C as well. Thus, both NC2 and NC3
hold. While by definition α < 1/C, we can analyze the cases when it approaches 1/C using the
expression (69) again. One can see that when m → ∞ and κc/κn → 1, we have α → 1/C. However,

the requirement κc/κn → 1 implies that the kernel Θh does not distinguish between pairs of samples
from the same class and from different classes. Such a property of the kernel is associated with poor
generalization performance and does not occur in our numerical experiments.

C Numerical experiments

Implementation details We use JAX [8] and Flax (neural network library for JAX) [25] to im-
plement all the DNN architectures and the training routines. This choice of the software allows to
compute the empirical NTK of any DNN architecture effortlestly and efficiently. We compute the val-
ues of kernels Θ and Θh on the whole training batch (m = 12 samples per class, 120 samples in total)
in case of ResNet20 and DenseNet40 to approximate the values (γd, γc, γn) and (κd,κc,κn), as well
as the NTK alignment metrics, and compute the invariant E using these values. Since VGG11 and
VGG16 architectures are much larger (over 10 million parameters) and computing their Jacobians is
very memory-intensive, we use m = 4 samples per class (i.e., 40 samples in total) to approximate the
kernels of these models. We compute all the other training metrics displayed in panes a-e of Figures 3,
4, 5, 6, 7, 8, 9, 10, 11 on the whole last batch of every second training epoch for all the architectures.
The test accuracy is computed on the whole test set. To produce panes f-h of the same figures, we
only compute the NC metrics and the test accuracy one time after 400 epochs of training for every
learning rate. We use 30 logarithmically spaced learning rates in the range η ∈ [10−4, 100.25] for
ResNet20 trained on MNIST and VGG11 trained on MNIST. For all the other architecture-dataset
pairs we only compute the last 20 of these learning rates to reduce the computational costs, since the
smallest learning rates do not yield models with acceptable performance.

Compute We executed the numerical experiments mainly on NVIDIA GeForce RTX 3090 Ti GPUs,
each model was trained on a single GPU. In this setup, a single training run displayed in panes a-e of
Figures 3, 4, 5, 6, 7, 8, 9, 10, 11 took approximately 3 hours for ResNet20, 6 hours for DenseNet40,
7 hours for VGG11, and 11 hours for VGG16. This adds up to a total of 312 hours to compute panes
a-e of the figures. The computation time is mostly dedicated not to the training routine itself but to the
large number of computationally-heavy metrics, which are computed every second epoch of a training
run. Indeed, to approximate the values of Θ and Θh, one needs to compute C(C + 1) + n(n+ 1)
kernels on a sample of size mC from the dataset, and each of the kernels requires computing a

21

gradient with respect to numerous parameters of a DNN. Additionally, the graphs in panes f-h of the
same figures take around 1.5 hours for each learning rate value for ResNet20, 3 hours for DenseNet40,
and 4 hours for VGG11 and VGG16, which adds up to approximately 1350 computational hours.

Results We include experiments on the following architecture-dataset pairs:

• Figure 3: VGG11 trained on MNIST

• Figure 4: VGG11 trained on FashionMNIST

• Figure 5: VGG16 trained on CIFAR10

• Figure 6: ResNet20 trained on MNIST

• Figure 7: ResNet20 trained on FashionMNIST

• Figure 8: ResNet20 trained on CIFAR10

• Figure 9: DenseNet40 trained on MNIST

• Figure 10: DenseNet40 trained on FashionMNIST

• Figure 11: DenseNet40 trained on CIFAR10

The experiments setup is described in Section 6. Panes a-h of Figures 3, 4, 5, 6, 7, 8, 9, 10, 11 are
analogous to the same panes of Figure 2. We include additional pane i here, which displays the norms
of the invariant terms corresponding to the feature matrix components H1 and H2, and the global
features mean ⟨h⟩ at the end of training. One can see that the global features mean is relatively small
in comparison with the class-means in every setup, and the "variance" term H2 is small for models
that exhibit NC. We also add pane j, which displays the alignment of kernels Θ and Θh for every
model at the end of training. One can see that the kernel alignments is typically stronger in models
that exhibit NC.

C.1 Additional examples of the NTK block structure

We include the following additional illustrative figures (analogous to Figure 1 in the main text) that
show the NTK block structure in dataset-architecture pairs covered in our experiments:

• Figure 13: VGG11 trained on MNIST

• Figure 14: VGG11 trained on FashionMNIST

• Figure 15: VGG16 trained on CIFAR10

• Figure 16: ResNet20 trained on FashionMNIST

• Figure 17: ResNet20 trained on CIFAR10

• Figure 18: DenseNet40 trained on MNIST

• Figure 19: DenseNet40 trained on FashionMNIST

• Figure 11: DenseNet40 trained on CIFAR10

Overall, the block structure pattern is visible in the traced kernels in all the figures. As expected,
the block structure is more pronounced in the kernels where the final alignment values are higher.
While the norms of the "non-diagonal" components of the kernels are generally smaller than the
"diagonal" components in panes c) and d), we notice that there is a large variability in the norms of the
"diagonal" components in some settings. This means that different neurons of the penultimate layer
and different classification heads may contribute to the kernel unequally in some settings. Moreover,
certain "non-diagonal" components of the last-layer kernel may have non-negligible effect in some
settings. We discuss how one could generalize our analysis to account for these properties of the
NTK in Appendix D.

C.2 Preliminary experiments with CE loss

While CE loss is a common choice for training DNN classifiers, our theoretical analysis and the
experimental results only cover DNNs trained with MSE loss. For completeness, we provide
experimental results for ResNet20 trained on MNIST with CE loss in Figure 12. One can see that

22

smaller invariant norm and higher invariant alignment correlate with NC in the figure. However,
DNNs trained with CE loss overall reach better NC metrics but have much larger norm of the invariant
in comparison with DNNs trained with MSE loss.

D Relaxation of the NTK Block-Structure Assumption

In this section, we first derive the dynamics equations of DNNs with a general block structure
assumption on the last-layer kernel Θh (analogous to the equations presented in Theorem 4.1 and
Theorem 5.1). Then we discuss a possible relaxation of Assumption 3.2, under which our main result
regarding NC in Theorem 5.2 still holds.

D.1 Dynamics under General Block Structure Assumption

We first formulate the most general form of the block structure assumption on Θh as follows:

Assumption D.1. Assume that Θh : X × X → R
n×n has the following block structure

Θh(x, x) = Ad +Ac +An, Θh(xc
i , x

c
j) = Ac +An, Θh(xc

i , x
c′

j) = An, (71)

where Ad,c,n ∈ R
n×n are arbitrary p.s.d. matrices. Here xc

i and xc
j are two distinct inputs from the

same class, and xc′

j is an input from class c′ ̸= c.

This assumption means that every kernel matrix Θh
k,s(X), k, s ∈ [1, n] still has at most three distinct

values, corresponding to the inter-class, intra-class, and the diagonal values of the kernel. However,
these values are arbitrary and may depend on the choice of k, s ∈ [1, n].

Under the general block structure assumption, the gradient flow dynamics of DNNs with MSE loss
takes the following form:

⎧

⎨

⎩

Ḣ = −AdW
⊤R+mAcW

⊤Rclass +NAnW
⊤Rglobal

Ẇ = −RH⊤

ḃ = −Rglobal1N .

(72)

This is the generalized version of the dynamics presented in Theorem 4.1. Consequently, the
decomposed dynamics presented in Theorem 5.1 takes the following form under the general block
structure assumption:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ḣ1 = −(Ad +mAc)W
⊤R1 −mAnW

⊤R11C1
⊤
C

Ḣ2 = −AdW
⊤WH2

Ẇ = −m(R1H
⊤
1 +WH2H

⊤
2)

ḃ = −mR11C .

(73)

The derivation of the above dynamics equations are identical to the proofs of Theorem 4.1 and
Theorem 5.1 presented in Appendix B.

Rotation invariance We notice that the dynamics of (W,H) in (72) has to be rotation invariant,

i.e., the equations should not be affected by a change of variables W → WQ, H → Q⊤H for any
orthogonal matrix Q. This holds since the loss function only depends on the product WH, which
does not change under rotation. This requirement puts conditions on the behavior of Ad,c,n under

rotation. Indeed, assume that the rotation W → WQ, H → Q⊤H for some Q corresponds to the
following change of the kernel:

Ad,c,n → Ãd,c,n(Q), (74)

then the rotation invariance of the dynamics implies the following equality for any Q:

QÃd(Q)Q⊤W⊤R+mQÃc(Q)Q⊤W⊤Rclass +NQÃn(Q)Q⊤W⊤Rglobal (75)

= AdW
⊤R+mAcW

⊤Rclass +NAnW
⊤Rglobal. (76)

These equations are satisfied trivially with our initial assumption, where Ad,c,n = Ãd,c,n(Q) ∝ In.
However, as we can see, any generalized assumption should specify the behavior of the kernel under
rotation, and satisfy the above equation.

23

For general Ad,c,n, the following behavior under rotation trivially satisfies the above condition:

Ãd,c,n(Q) = Q⊤Ad,c,nQ. This behaviour of the kernel under rotation is intuitive, since it implies
that the gradients of the last-layer features h are rotated in the same way as the features. However, we
note that gradients of parametrized functions do not in general behave this way, since the rotation
of the function has to be realized by a certain change of parameters. Consider, for instance, a
one-hidden-layer linear network with weights V in the first layer. Then we have H = VX , and a
rotation H → Q⊤H corresponds to the change of parameters V → Q⊤V. In this case, the kernel

does not change under rotation, i.e., Ãd,c,n(Q) = Ad,c,n.

Dynamics invariant We note that the dynamics in 73 does not in general have an invariant
analogous to the one we identified in Theorem 5.1. Indeed, if we define a quantity E := W⊤W −
c1H1H

⊤
1 − c2H2H

⊤
2 for some constants c1,2 ∈ R, and additionally assume centered global means

H11C = 0, we get the following expression for the derivative of E:

Ė =
(

c1(Ad +mAc)−mIn

)

W⊤R1H
⊤
1 −H1R

⊤
1 W

(

c1(Ad +mAc)
⊤ −mIn

)

(77)

+
(

c2Ad −mIn

)

W⊤WH2H
⊤
2 −H2H

⊤
2 W

⊤W
(

c2A
⊤
d −mIn

)

, (78)

which is not equal to zero with arbitrary matrices Ad,c.

D.2 Neural Collapse under Relaxed Block Structure Assumption

We now propose a relaxation of our main assumption, under which our main result regarding NC
in Theorem 5.2 still holds. In terms of Assumption D.1 on the general block structure of Θh, our
initial Assumption 3.2 in the main text is the special case with An = κnIn, Ac = (κc − κn)In,
Ad = (κd−κc)In. The relaxed assumption can be formulated as follows in terms of matrices Ad,c,n:

Assumption D.2. Assume that An is an arbitrary p.s.d. matrix and (Ac,Ad) satisfy the following
conditions:

Ac = κcIn +Nc,Ad = κdIn +Nd, (79)

where N⊤
c,d ∈ ker(R⊤W), i.e., Nc,dW

⊤R = O. Further, assume that the kernel changes under

rotation with an orthogonal matrix Q as follows:

Ãd,c,n(Q) = Q⊤Ad,c,nQ. (80)

Since An is arbitrary, this relaxation allows arbitrary non-zero values of non-diagonal kernels Θh
k,s

with k ̸= s. The following observations justify the consistency of the above assumption:

• Since W ∈ R
C×n, R ∈ R

C×N and N > n > C, R⊤W has a non-empty kernel (possibly
time-dependent).

• The dynamics is rotation invariant under the assumption, i.e., the equation (75) holds.

• The expression of the assumption is rotation invariant, in a sense that Ãd,c(Q) = κd,cIn +

Ñd,c(Q), where Ñ⊤
d,c ∈ ker(R⊤WQ) for any orthogonal Q.

Under the above assumption, the derivative in 77 becomes zero, so the dynamics has an invariant of
the form E := W⊤W − c1H1H

⊤
1 − c2H2H

⊤
2 . Moreover, the statement and the proof of our main

Theorem 5.2 remains unchanged. Thus, DNNs satisfying the conditions of Theorem 5.2 display NC
under Assumption D.2.

D.3 Discussion

The analysis of the DNNs dynamics is simplified significantly by assuming that Θh has a block
structure. However, formulating a reasonable and consistent assumption on the NTK and its compo-
nents is non-trivial. The Assumption 3.2 that we used in the main text is justified by the empirical
results but may not capture all the relevant properties of the NTK. We believe that studying DNNs’
dynamics under a more general or a more reasonable assumption on the NTK is a promising future
work direction. The relaxed block structure assumption proposed in this section is the first step into
this direction.

24

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0

200

400

600

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 99.36%, ⟨Θh, Y Y T ⟩: 0.88

LeCun normal init., LR=0.348

Acc.: 99.55%, ⟨Θh, Y Y T ⟩: 0.88

Uniform init., LR=0.007

Acc.: 99.58%, ⟨Θh, Y Y T ⟩: 0.76

Uniform init., LR=0.131

Acc.: 99.58%, ⟨Θh, Y Y T ⟩: 0.98

He normal init., LR=0.013

Acc.: 99.55%, ⟨Θh, Y Y T ⟩: 0.74

He normal init., LR=0.131

Acc.: 99.57%, ⟨Θh, Y Y T ⟩: 0.95

0 100 200 300 400
epoch

0.0

0.1

0.2

0.3

0.4

c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

d) NC2

0 100 200 300 400
epoch

0.0

0.5

1.0

1.5

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.98

0.99

1.00

0.98

0.99

1.00

10−3 10−1

Learning rate

0.98

0.99

1.00

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 99.36%, ⟨Θh, Y Y T ⟩: 0.88

LeCun normal init., LR=0.348

Acc.: 99.55%, ⟨Θh, Y Y T ⟩: 0.88

Uniform init., LR=0.007

Acc.: 99.58%, ⟨Θh, Y Y T ⟩: 0.76

Uniform init., LR=0.131

Acc.: 99.58%, ⟨Θh, Y Y T ⟩: 0.98

He normal init., LR=0.013

Acc.: 99.55%, ⟨Θh, Y Y T ⟩: 0.74

He normal init., LR=0.131

Acc.: 99.57%, ⟨Θh, Y Y T ⟩: 0.95

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0

200

400

600

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

10−1

101

103
i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

Figure 3: VGG11 trained on MNIST. See Figure 2 for the description of panes a-h. i) Norms of
matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ and Θh at

the end of training. The color in panes i-j is the color of the same model in panes a-e.

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

103
i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 93.12%, ⟨Θh, Y Y T ⟩: 0.66

LeCun normal init., LR=0.348

Acc.: 93.24%, ⟨Θh, Y Y T ⟩: 0.87

Uniform init., LR=0.007

Acc.: 93.39%, ⟨Θh, Y Y T ⟩: 0.54

Uniform init., LR=0.131

Acc.: 93.07%, ⟨Θh, Y Y T ⟩: 0.91

He normal init., LR=0.013

Acc.: 92.66%, ⟨Θh, Y Y T ⟩: 0.76

He normal init., LR=0.131

Acc.: 93.35%, ⟨Θh, Y Y T ⟩: 0.81

0 100 200 300 400
epoch

0.0

0.1

0.2

0.3

c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.50

0.75

1.00

1.25

1.50
e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.90

0.91

0.92

0.93

0.94

0.90

0.91

0.92

0.93

0.94

10−2 10−1

Learning rate

0.90

0.91

0.92

0.93

0.94

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 93.12%, ⟨Θh, Y Y T ⟩: 0.66

LeCun normal init., LR=0.348

Acc.: 93.24%, ⟨Θh, Y Y T ⟩: 0.87

Uniform init., LR=0.007

Acc.: 93.39%, ⟨Θh, Y Y T ⟩: 0.54

Uniform init., LR=0.131

Acc.: 93.07%, ⟨Θh, Y Y T ⟩: 0.91

He normal init., LR=0.013

Acc.: 92.66%, ⟨Θh, Y Y T ⟩: 0.76

He normal init., LR=0.131

Acc.: 93.35%, ⟨Θh, Y Y T ⟩: 0.81

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

Figure 4: VGG11 trained on FashionMNIST. See Figure 2 for the description of panes a-h. i) Norms
of matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ and Θh

at the end of training. The color in panes i-j is the color of the same model in panes a-e.

25

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0

1000

2000

3000

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 78.72%, ⟨Θh, Y Y T ⟩: 0.50

LeCun normal init., LR=0.131

Acc.: 87.25%, ⟨Θh, Y Y T ⟩: 0.88

Uniform init., LR=0.007

Acc.: 82.91%, ⟨Θh, Y Y T ⟩: 0.59

Uniform init., LR=0.181

Acc.: 89.28%, ⟨Θh, Y Y T ⟩: 0.87

He normal init., LR=0.018

Acc.: 86.34%, ⟨Θh, Y Y T ⟩: 0.86

He normal init., LR=0.068

Acc.: 88.78%, ⟨Θh, Y Y T ⟩: 0.90

0 100 200 300 400
epoch

0.0

0.1

0.2

0.3

0.4

c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

1.2
d) NC2

0 100 200 300 400
epoch

0.25

0.50

0.75

1.00

1.25

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

10−2 10−1

Learning rate

0.6

0.7

0.8

0.9

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 78.72%, ⟨Θh, Y Y T ⟩: 0.50

LeCun normal init., LR=0.131

Acc.: 87.25%, ⟨Θh, Y Y T ⟩: 0.88

Uniform init., LR=0.007

Acc.: 82.91%, ⟨Θh, Y Y T ⟩: 0.59

Uniform init., LR=0.181

Acc.: 89.28%, ⟨Θh, Y Y T ⟩: 0.87

He normal init., LR=0.018

Acc.: 86.34%, ⟨Θh, Y Y T ⟩: 0.86

He normal init., LR=0.068

Acc.: 88.78%, ⟨Θh, Y Y T ⟩: 0.90

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

103

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

Figure 5: VGG16 trained on CIFAR10. See Figure 2 for the description of panes a-h. i) Norms of
matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ and Θh at

the end of training. The color in panes i-j is the color of the same model in panes a-e.

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0

200

400

600

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−1

100

101

a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.003

Acc.: 99.49%, ⟨Θh, Y Y T ⟩: 0.45

LeCun normal init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.93

Uniform init., LR=0.003

Acc.: 99.60%, ⟨Θh, Y Y T ⟩: 0.51

Uniform init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.88

He normal init., LR=0.005

Acc.: 99.51%, ⟨Θh, Y Y T ⟩: 0.38

He normal init., LR=0.049

Acc.: 99.64%, ⟨Θh, Y Y T ⟩: 0.92

0 100 200 300 400
epoch

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.25

0.50

0.75

1.00

1.25

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.98

0.99

1.00

0.98

0.99

1.00

10−3 10−1

Learning rate

0.98

0.99

1.00

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−1

100

101

a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.003

Acc.: 99.49%, ⟨Θh, Y Y T ⟩: 0.45

LeCun normal init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.93

Uniform init., LR=0.003

Acc.: 99.60%, ⟨Θh, Y Y T ⟩: 0.51

Uniform init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.88

He normal init., LR=0.005

Acc.: 99.51%, ⟨Θh, Y Y T ⟩: 0.38

He normal init., LR=0.049

Acc.: 99.64%, ⟨Θh, Y Y T ⟩: 0.92

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0

200

400

600

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

Figure 6: ResNet20 trained on MNIST. See Figure 2 for the description of panes a-h. i) Norms of
matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ and Θh at

the end of training. The color in panes i-j is the color of the same model in panes a-e.

26

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0

200

400

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.005

Acc.: 91.82%, ⟨Θh, Y Y T ⟩: 0.63

LeCun normal init., LR=0.094

Acc.: 93.84%, ⟨Θh, Y Y T ⟩: 0.74

Uniform init., LR=0.005

Acc.: 93.00%, ⟨Θh, Y Y T ⟩: 0.56

Uniform init., LR=0.094

Acc.: 93.71%, ⟨Θh, Y Y T ⟩: 0.70

He normal init., LR=0.007

Acc.: 92.53%, ⟨Θh, Y Y T ⟩: 0.57

He normal init., LR=0.068

Acc.: 93.64%, ⟨Θh, Y Y T ⟩: 0.88

0 100 200 300 400
epoch

0.05

0.10

0.15

0.20

c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.4

0.6

0.8

1.0

1.2

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.90

0.92

0.94

0.90

0.92

0.94

10−2 10−1

Learning rate

0.90

0.92

0.94

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.005

Acc.: 91.82%, ⟨Θh, Y Y T ⟩: 0.63

LeCun normal init., LR=0.094

Acc.: 93.84%, ⟨Θh, Y Y T ⟩: 0.74

Uniform init., LR=0.005

Acc.: 93.00%, ⟨Θh, Y Y T ⟩: 0.56

Uniform init., LR=0.094

Acc.: 93.71%, ⟨Θh, Y Y T ⟩: 0.70

He normal init., LR=0.007

Acc.: 92.53%, ⟨Θh, Y Y T ⟩: 0.57

He normal init., LR=0.068

Acc.: 93.64%, ⟨Θh, Y Y T ⟩: 0.88

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

Figure 7: ResNet20 trained on FashionMNIST. See Figure 2 for the description of panes a-h. i)
Norms of matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ

and Θh at the end of training. The color in panes i-j is the color of the same model in panes a-e.

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0

200

400

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 69.19%, ⟨Θh, Y Y T ⟩: 0.66

LeCun normal init., LR=0.068

Acc.: 87.64%, ⟨Θh, Y Y T ⟩: 0.45

Uniform init., LR=0.004

Acc.: 69.40%, ⟨Θh, Y Y T ⟩: 0.48

Uniform init., LR=0.068

Acc.: 87.03%, ⟨Θh, Y Y T ⟩: 0.47

He normal init., LR=0.018

Acc.: 81.89%, ⟨Θh, Y Y T ⟩: 0.40

He normal init., LR=0.068

Acc.: 86.53%, ⟨Θh, Y Y T ⟩: 0.77

0 100 200 300 400
epoch

0.05

0.10

0.15

0.20

0.25

c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

1.2
d) NC2

0 100 200 300 400
epoch

0.25

0.50

0.75

1.00

1.25

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

10−2 10−1

Learning rate

0.6

0.7

0.8

0.9

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 69.19%, ⟨Θh, Y Y T ⟩: 0.66

LeCun normal init., LR=0.068

Acc.: 87.64%, ⟨Θh, Y Y T ⟩: 0.45

Uniform init., LR=0.004

Acc.: 69.40%, ⟨Θh, Y Y T ⟩: 0.48

Uniform init., LR=0.068

Acc.: 87.03%, ⟨Θh, Y Y T ⟩: 0.47

He normal init., LR=0.018

Acc.: 81.89%, ⟨Θh, Y Y T ⟩: 0.40

He normal init., LR=0.068

Acc.: 86.53%, ⟨Θh, Y Y T ⟩: 0.77

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

Figure 8: ResNet20 trained on CIFAR10. See Figure 2 for the description of panes a-h. i) Norms of
matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ and Θh at

the end of training. The color in panes i-j is the color of the same model in panes a-e.

27

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−1

100

101

102
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.004

Acc.: 99.21%, ⟨Θh, Y Y T ⟩: 0.53

LeCun normal init., LR=0.049

Acc.: 99.64%, ⟨Θh, Y Y T ⟩: 0.75

Uniform init., LR=0.004

Acc.: 99.36%, ⟨Θh, Y Y T ⟩: 0.61

Uniform init., LR=0.049

Acc.: 99.67%, ⟨Θh, Y Y T ⟩: 0.79

He normal init., LR=0.007

Acc.: 99.48%, ⟨Θh, Y Y T ⟩: 0.47

He normal init., LR=0.049

Acc.: 99.65%, ⟨Θh, Y Y T ⟩: 0.72

0 100 200 300 400
epoch

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

1.2

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.98

0.99

1.00

0.98

0.99

1.00

10−2 10−1 100

Learning rate

0.98

0.99

1.00

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−1

100

101

102
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.004

Acc.: 99.21%, ⟨Θh, Y Y T ⟩: 0.53

LeCun normal init., LR=0.049

Acc.: 99.64%, ⟨Θh, Y Y T ⟩: 0.75

Uniform init., LR=0.004

Acc.: 99.36%, ⟨Θh, Y Y T ⟩: 0.61

Uniform init., LR=0.049

Acc.: 99.67%, ⟨Θh, Y Y T ⟩: 0.79

He normal init., LR=0.007

Acc.: 99.48%, ⟨Θh, Y Y T ⟩: 0.47

He normal init., LR=0.049

Acc.: 99.65%, ⟨Θh, Y Y T ⟩: 0.72

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

Figure 9: DenseNet40 trained on MNIST. See Figure 2 for the description of panes a-h. i) Norms of
matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ and Θh at

the end of training. The color in panes i-j is the color of the same model in panes a-e.

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 93.00%, ⟨Θh, Y Y T ⟩: 0.62

LeCun normal init., LR=0.094

Acc.: 94.01%, ⟨Θh, Y Y T ⟩: 0.75

Uniform init., LR=0.007

Acc.: 92.95%, ⟨Θh, Y Y T ⟩: 0.69

Uniform init., LR=0.094

Acc.: 94.08%, ⟨Θh, Y Y T ⟩: 0.75

He normal init., LR=0.007

Acc.: 91.71%, ⟨Θh, Y Y T ⟩: 0.56

He normal init., LR=0.094

Acc.: 94.16%, ⟨Θh, Y Y T ⟩: 0.77

0 100 200 300 400
epoch

0.06

0.08

0.10

c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.4

0.6

0.8

1.0

1.2

1.4
e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.90

0.92

0.94

0.90

0.92

0.94

10−2 10−1 100

Learning rate

0.90

0.92

0.94

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 93.00%, ⟨Θh, Y Y T ⟩: 0.62

LeCun normal init., LR=0.094

Acc.: 94.01%, ⟨Θh, Y Y T ⟩: 0.75

Uniform init., LR=0.007

Acc.: 92.95%, ⟨Θh, Y Y T ⟩: 0.69

Uniform init., LR=0.094

Acc.: 94.08%, ⟨Θh, Y Y T ⟩: 0.75

He normal init., LR=0.007

Acc.: 91.71%, ⟨Θh, Y Y T ⟩: 0.56

He normal init., LR=0.094

Acc.: 94.16%, ⟨Θh, Y Y T ⟩: 0.77

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

Figure 10: DenseNet40 trained on FashionMNIST. See Figure 2 for the description of panes a-h. i)
Norms of matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ

and Θh at the end of training. The color in panes i-j is the color of the same model in panes a-e.

28

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

101

102

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 76.99%, ⟨Θh, Y Y T ⟩: 0.57

LeCun normal init., LR=0.094

Acc.: 88.31%, ⟨Θh, Y Y T ⟩: 0.70

Uniform init., LR=0.007

Acc.: 78.71%, ⟨Θh, Y Y T ⟩: 0.64

Uniform init., LR=0.094

Acc.: 88.33%, ⟨Θh, Y Y T ⟩: 0.68

He normal init., LR=0.007

Acc.: 70.19%, ⟨Θh, Y Y T ⟩: 0.49

He normal init., LR=0.094

Acc.: 88.34%, ⟨Θh, Y Y T ⟩: 0.72

0 100 200 300 400
epoch

0.08

0.10

0.12

0.14

0.16

c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.4

0.6

0.8

1.0

1.2

1.4

e) NC3

0.98

0.99

T
es
t
a
cc
u
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

10−2 10−1 100

Learning rate

0.6

0.7

0.8

0.9

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10−2

10−1

100

101
a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.007

Acc.: 76.99%, ⟨Θh, Y Y T ⟩: 0.57

LeCun normal init., LR=0.094

Acc.: 88.31%, ⟨Θh, Y Y T ⟩: 0.70

Uniform init., LR=0.007

Acc.: 78.71%, ⟨Θh, Y Y T ⟩: 0.64

Uniform init., LR=0.094

Acc.: 88.33%, ⟨Θh, Y Y T ⟩: 0.68

He normal init., LR=0.007

Acc.: 70.19%, ⟨Θh, Y Y T ⟩: 0.49

He normal init., LR=0.094

Acc.: 88.34%, ⟨Θh, Y Y T ⟩: 0.72

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

Figure 11: DenseNet40 trained on CIFAR10. See Figure 2 for the description of panes a-h. i) Norms
of matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ and Θh

at the end of training. The color in panes i-j is the color of the same model in panes a-e.

0.98

0.99

1.00

0.98

0.99

1.00

10−3 10−1

Learning rate

0.98

0.99

1.00

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

102

103

i) Features norms

L
eC

u
n
in
it
.,

n
o
N
C

L
eC

u
n
in
it
.,

N
C

U
n
if
.
in
it
.,

n
o
N
C

U
n
if
.
in
it
.,

N
C

H
e.
in
it
.,

n
o
N
C

H
e.
in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

∥H1H
T
1 ∥F

∥H2H
T
2 ∥F

∥⟨h⟩⟨h⟩T∥F

⟨Θ/∥Θ∥F , Y Y T/∥Y Y T∥F⟩

⟨Θh/∥Θh∥F , Y Y T/∥Y Y T∥F⟩

100

101

a) Invariant norm

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.003

Acc.: 99.41%, ⟨Θh, Y Y T ⟩: 0.56

LeCun normal init., LR=0.049

Acc.: 99.69%, ⟨Θh, Y Y T ⟩: 0.86

Uniform init., LR=0.003

Acc.: 99.56%, ⟨Θh, Y Y T ⟩: 0.70

Uniform init., LR=0.049

Acc.: 99.61%, ⟨Θh, Y Y T ⟩: 0.82

He normal init., LR=0.003

Acc.: 99.23%, ⟨Θh, Y Y T ⟩: 0.48

He normal init., LR=0.049

Acc.: 99.61%, ⟨Θh, Y Y T ⟩: 0.87

0 100 200 300 400
epoch

0.15

0.20

0.25

0.30

0.35

c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

d) NC2

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

e) NC3

Figure 12: ResNet20 trained on MNIST with CE loss. See Figure 2 for the description of panes a-h.
i) Norms of matrices H1H

⊤
1 , H2H

⊤
2 , and ⟨h⟩⟨h⟩⊤ at the end of training. j) Alignment of kernels Θ

and Θh at the end of training. The color in panes i-j is the color of the same model in panes a-e.

29

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c 1
c 2

c 3
c 4

c 5
c 6

c 7
c 8

c 9
c 1

0
a)

∑
kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c 1

c 2
c 3

c 4
c 5

c 6
c 7

c 8
c 9

c 1
0

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h
1

h
4
3

h
8
5

h
1
2
7

h
1
6
9

h
2
1
1

h
2
5
3

h1

h43

h85

h127

h169

h211

h253

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.5

0.6

0.7

0.8

0.9

e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 13: NTK block structure of VGG11 trained on MNIST. LeCun normal initialization, initial
learning rate 0.131. The kernel is computed on a random data subset with 4 samples from each class.
See Figure 1 for the description of panes.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c 1
c 2

c 3
c 4

c 5
c 6

c 7
c 8

c 9
c 1

0

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c 1
c 2

c 3
c 4

c 5
c 6

c 7
c 8

c 9
c 1

0

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h
1

h
4
3

h
8
5

h
1
2
7

h
1
6
9

h
2
1
1

h
2
5
3

h1

h43

h85

h127

h169

h211

h253

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.6

0.7

0.8

0.9

e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 14: NTK block structure of VGG11 trained on FashionMNIST. LeCun normal initialization,
initial learning rate 0.049. The kernel is computed on a random data subset with 4 samples from each
class. See Figure 1 for the description of panes.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c 1
c 2

c 3
c 4

c 5
c 6

c 7
c 8

c 9
c 1

0

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c 1
c 2

c 3
c 4

c 5
c 6

c 7
c 8

c 9
c 1

0

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h
1

h
4
3

h
8
5

h
1
2
7

h
1
6
9

h
2
1
1

h
2
5
3

h1

h43

h85

h127

h169

h211

h253

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.4

0.6

0.8

e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 15: NTK block structure of VGG11 trained on CIFAR10. LeCun normal initialization, initial
learning rate 0.131. The kernel is computed on a random data subset with 4 samples from each class.
See Figure 1 for the description of panes.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h1 h11 h21 h31 h41 h51 h61

h
1

h
1
1

h
2
1

h
3
1

h
4
1

h
5
1

h
6
1

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.4

0.5

0.6

0.7

e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 16: NTK block structure of ResNet20 trained on FashionMNIST. LeCun normal initialization,
initial learning rate 0.094. The kernel is computed on a random data subset with 12 samples from
each class. See Figure 1 for the description of panes.

30

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h1 h11 h21 h31 h41 h51 h61

h
1

h
1
1

h
2
1

h
3
1

h
4
1

h
5
1

h
6
1

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.2

0.3

0.4

0.5

0.6

0.7
e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 17: NTK block structure of ResNet20 trained on CIFAR10. LeCun normal initialization,
initial learning rate 0.068. The kernel is computed on a random data subset with 12 samples from
each class. See Figure 1 for the description of panes.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h
1

h
2
3

h
4
5

h
6
7

h
8
9

h
1
1
1

h1

h23

h45

h67

h89

h111

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0
e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 18: NTK block structure of DenseNet40 trained on MNIST. LeCun normal initialization,
initial learning rate 0.049. The kernel is computed on a random data subset with 12 samples from
each class. See Figure 1 for the description of panes.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h
1

h
2
3

h
4
5

h
6
7

h
8
9

h
1
1
1

h1

h23

h45

h67

h89

h111

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.0

0.2

0.4

0.6

0.8

1.0
e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 19: NTK block structure of DenseNet40 trained on FashionMNIST. LeCun normal initializa-
tion, initial learning rate 0.094. The kernel is computed on a random data subset with 12 samples
from each class. See Figure 1 for the description of panes.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

a)
∑

kΘk,k(X)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

b)
∑

kΘ
h
k,k(X)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
1
0

c) ∥Θk,s∥F

h
1

h
3
1

h
6
1

h
9
1

h
1
2
1

h
1
5
1

h
1
8
1

h1

h31

h61

h91

h121

h151

h181

d) ∥Θh
k,s∥F

0 100 200 300 400
epoch

0.0

0.2

0.4

0.6

0.8

e) Alignment

⟨Θ,Y Y T ⟩
∥Θ∥F∥Y Y T∥F

⟨Θh,Y Y T ⟩
∥Θh∥F∥Y Y T∥F

0.01

0.1

0.2

0.5

0

0.5

1

Figure 20: NTK block structure of DenseNet40 trained on CIFAR10. LeCun normal initialization,
initial learning rate 0.094. The kernel is computed on a random data subset with 12 samples from
each class. See Figure 1 for the description of panes.

31

Chapter 4

Conclusions and Future Work

In this thesis, we explored insights and limitations of the NTK regime for the analysis of
DNNs’ training dynamics. While we acknowledge that the introduction of the NTK regime
was a breakthrough in deep learning theory, our contributions underscore that this regime
frequently fails to accurately capture the intricacies of real-world DNNs’ dynamics.

Our contributions regarding the limitations of the NTK regime focused specifically on deep
networks, i.e., those with depth comparable to width. Our theoretical analysis concerned
fully-connected DNNs with ReLU activation, while our empirical analysis additionally
covered DNNs with sigmoid activation. We demonstrated that properties of the NTK at
initialization and during training significantly depend on the initialization setup. Namely,
we showed that the NTK of a deep network is random at initialization and changes during
training if the network is initialized in the chaotic phase or at the EOC. While in case of
initialization in the ordered phase the NTK is approximately deterministic and changes
insignificantly during the first GD step, its structural changes during the entire training
process are still non-trivial in the empirical studies. This critical examination contributes
to a nuanced understanding of the limitations of relying solely on the NTK regime to
characterize the training dynamics of DNNs.

While our analysis of the NTK behaviour answers many questions regarding the NTK
regime applicability for fully-connected DNNs, numerous open questions remain, suggesting
several avenues for future research:

• Architectures with weights sharing: While the literature extensively covers the
infinite-width limit of the NTK for various architectures, the consideration of the
infinite-depth-and-width regime, to our knowledge, remains confined to fully-connected
DNNs. The challenge in generalizing our analysis to different architectures lies in
addressing weights sharing, which introduces additional dependencies among neurons
within the same layer. Although our theoretical approach may potentially extend to
architectures like residual NNs, novel conceptual frameworks are likely required for
architectures incorporating weight sharing. Importantly, even if theoretical analysis

142 4. Conclusions and Future Work

proves challenging, we believe that empirical results on the NTK statistics and
structure across diverse architectures would constitute a valuable contribution to the
literature.

• Dynamics beyond the first GD step: Describing the evolution of the NTK
beyond the initial GD step presents a significant theoretical challenge. Some studies
on the NTK alignment considered the NTK evolution in toy models to show that
alignment with the labels matrix is in some sense optimal. However, capturing the
complete dynamics of the NTK for realistic DNNs currently seems infeasible due to
the complex nature of its non-linear dynamics.

Our contributions regarding the kernel regime of DNNs with block-structured NTK proposed
a new perspective on the NTK regime. Instead of considering the dynamics with the infinite-
width NTK computed theoretically at initialization, we proposed to make assumptions
on the NTK at the end of training, motivated by our understanding of the empirical
NTK’s properties. Given the approximate block structure observed in the empirical NTK
of well-trained classification DNNs, our NTK block structure assumption provides an
approximation of the end-of-training NTK for such networks. This assumption allowed us
to analyze the dynamics of the last two layers of a DNN at the end of training, and derive
conditions for convergence to NC. We believe that numerous future work directions exist in
this field as well:

• Relaxing the NTK block structure assumption: While the NTK of well-trained
DNNs indeed demonstrates an approximate block structure, it is also evident that
the NTK values often exhibit considerable variance in real-world DNNs. Conse-
quently, incorporating stochasticity into the dynamics with block-structured NTK is a
promising avenue for future research. Additionally, empirical observations reveal the
phenomenon of specialization within the NTK, where the kernel matrix associated
with specific output neurons aligns more closely with the labels of their respective
classes. In the context of block-structured kernels, specialization entails distinct
values in blocks corresponding to different classes. Therefore, extending our theory to
encompass block-structured kernels with specialization is another possible direction
for future work.

• Other empirical phenomena of DNNs: Our work employed assumptions on
the NTK structure to analyze specifically the NC phenomenon. However, similar
assumptions could potentially be applied to investigate other empirical phenomena of
DNNs, particularly towards the end of training. One such phenomenon, which may
be related to the NTK dynamics, is the Edge of Stability behavior observed in DNNs
during training. Exploring these connections could provide further insights into the
underlying mechanisms governing DNN training dynamics.

Overall, we believe that empirical observations should play a crucial role in unveiling theory
of DNNs’ dynamics and deep learning in general.

Bibliography

Adcock, B. and Dexter, N. (2021). The Gap between Theory and Practice in Function
Approximation with Deep Neural Networks. SIAM Journal on Mathematics of Data
Science, 3(2):624–655.

Adlam, B. and Pennington, J. (2020). The Neural Tangent Kernel in High Dimensions:
Triple Descent and a Multi-Scale Theory of Generalization. In Proceedings of the 37th
International Conference on Machine Learning, pages 74–84. PMLR.

Aitchison, L. (2020). Why bigger is not always better: On finite and infinite neural networks.
In Proceedings of the 37th International Conference on Machine Learning, pages 156–164.
PMLR.

Alemohammad, S., Wang, Z., Balestriero, R., and Baraniuk, R. (2020). The Recurrent
Neural Tangent Kernel. In International Conference on Learning Representations.

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. (2019a). Fine-Grained Analysis of
Optimization and Generalization for Overparameterized Two-Layer Neural Networks. In
Proceedings of the 36th International Conference on Machine Learning, pages 322–332.
PMLR.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., and Wang, R. (2019b). On Exact
Computation with an Infinitely Wide Neural Net. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

Atanasov, A., Bordelon, B., and Pehlevan, C. (2021). Neural Networks as Kernel Learners:
The Silent Alignment Effect. In International Conference on Learning Representations.

Azulay, S., Moroshko, E., Nacson, M. S., Woodworth, B. E., Srebro, N., Globerson, A., and
Soudry, D. (2021). On the Implicit Bias of Initialization Shape: Beyond Infinitesimal
Mirror Descent. In Proceedings of the 38th International Conference on Machine Learning,
pages 468–477. PMLR.

Bah, B., Rauhut, H., Terstiege, U., and Westdickenberg, M. (2022). Learning deep linear
neural networks: Riemannian gradient flows and convergence to global minimizers.
Information and Inference: A Journal of the IMA, 11(1):307–353.

144 BIBLIOGRAPHY

Baratin, A., George, T., Laurent, C., Hjelm, R. D., Lajoie, G., Vincent, P., and Lacoste-
Julien, S. (2021). Implicit Regularization via Neural Feature Alignment. In Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics, pages
2269–2277. PMLR.

Bartlett, P. L. and Maass, W. (2003). Vapnik-chervonenkis dimension of neural nets. The
handbook of brain theory and neural networks, pages 1188–1192.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854.

Belkin, M., Hsu, D., and Xu, J. (2020). Two models of double descent for weak features.
SIAM Journal on Mathematics of Data Science, 2(4):1167–1180.

Berner, J., Grohs, P., Kutyniok, G., and Petersen, P. (2021). The modern mathematics of
deep learning. arXiv preprint arXiv:2105.04026.

Bietti, A. and Mairal, J. (2019). On the Inductive Bias of Neural Tangent Kernels. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula,
G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX:
composable transformations of Python+NumPy programs.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020). Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc.

Buchanan, S., Gilboa, D., and Wright, J. (2021). Deep networks and the multiple manifold
problem. In International Conference on Learning Representations.

Cao, Y. and Gu, Q. (2019). Generalization bounds of stochastic gradient descent for wide
and deep neural networks. Advances in neural information processing systems, 32.

Chen, S., He, H., and Su, W. (2020). Label-Aware Neural Tangent Kernel: Toward Better
Generalization and Local Elasticity. In Advances in Neural Information Processing
Systems, volume 33, pages 15847–15858. Curran Associates, Inc.

Chizat, L., Oyallon, E., and Bach, F. (2019). On Lazy Training in Differentiable Pro-
gramming. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc.

BIBLIOGRAPHY 145

Chou, H.-H., Gieshoff, C., Maly, J., and Rauhut, H. (2024). Gradient descent for deep matrix
factorization: Dynamics and implicit bias towards low rank. Applied and Computational
Harmonic Analysis, 68:101595.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. (2017). Parseval
Networks: Improving Robustness to Adversarial Examples. In Proceedings of the 34th
International Conference on Machine Learning, pages 854–863. PMLR.

Cooper, Y. (2021). Global Minima of Overparameterized Neural Networks. SIAM Journal
on Mathematics of Data Science, 3(2):676–691.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola, J. (2001). On Kernel-Target
Alignment. In Advances in Neural Information Processing Systems, volume 14. MIT
Press.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314.

Demirkaya, A., Chen, J., and Oymak, S. (2020). Exploring the role of loss functions in
multiclass classification. In 54th Annual Conference on Information Sciences and Systems,
CISS 2020, Princeton, NJ, USA, March 18-20, 2020, pages 1–5. IEEE.

DeVore, R., Hanin, B., and Petrova, G. (2021). Neural network approximation. Acta
Numerica, 30:327–444.

Du, S. S., Hou, K., Salakhutdinov, R. R., Poczos, B., Wang, R., and Xu, K. (2019). Graph
Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels. In Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Eldan, R. and Shamir, O. (2016). The Power of Depth for Feedforward Neural Networks.
In Conference on Learning Theory, pages 907–940. PMLR.

Elkabetz, O. and Cohen, N. (2021). Continuous vs. Discrete Optimization of Deep Neural
Networks. In Advances in Neural Information Processing Systems, volume 34, pages
4947–4960. Curran Associates, Inc.

Fokina, D. and Oseledets, I. (2020). Growing axons: Greedy learning of neural networks
with application to function approximation.

Fort, S., Dziugaite, G. K., Paul, M., Kharaghani, S., Roy, D. M., and Ganguli, S. (2020).
Deep learning versus kernel learning: An empirical study of loss landscape geometry and
the time evolution of the Neural Tangent Kernel. In Advances in Neural Information
Processing Systems, volume 33, pages 5850–5861. Curran Associates, Inc.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. (2017). Protein interface prediction using
graph convolutional networks. Advances in neural information processing systems, 30.

146 BIBLIOGRAPHY

Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2(3):183–192.

Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L., d’Ascoli, S., Biroli, G., Hongler, C.,
and Wyart, M. (2020). Scaling description of generalization with number of parameters in
deep learning. Journal of Statistical Mechanics: Theory and Experiment, 2020(2):023401.

Gönen, M. and Alpaydin, E. (2011). Multiple Kernel Learning Algorithms. Journal of
Machine Learning Research, 12(64):2211–2268.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal
processing, pages 6645–6649. Ieee.

Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. (2018). Characterizing Implicit Bias in
Terms of Optimization Geometry. In Proceedings of the 35th International Conference
on Machine Learning, pages 1832–1841. PMLR.

Hanin, B. (2019). Universal Function Approximation by Deep Neural Nets with Bounded
Width and ReLU Activations. Mathematics, 7(10):992.

Hanin, B. and Nica, M. (2019). Finite Depth and Width Corrections to the Neural Tangent
Kernel. In International Conference on Learning Representations.

Hanin, B. and Rolnick, D. (2019). Deep ReLU Networks Have Surprisingly Few Activation
Patterns. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc.

Hanin, B. and Sellke, M. (2018). Approximating Continuous Functions by ReLU Nets of
Minimal Width.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2022). Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics, 50(2):949–986.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

BIBLIOGRAPHY 147

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366.

Hu, Z. and Huang, H. (2021). On the Random Conjugate Kernel and Neural Tangent
Kernel. In Proceedings of the 38th International Conference on Machine Learning, pages
4359–4368. PMLR.

Huang, J. and Yau, H.-T. (2020). Dynamics of Deep Neural Networks and Neural Tangent
Hierarchy. In Proceedings of the 37th International Conference on Machine Learning,
pages 4542–4551. PMLR.

Huang, K., Wang, Y., Tao, M., and Zhao, T. (2020). Why Do Deep Residual Networks
Generalize Better than Deep Feedforward Networks? — A Neural Tangent Kernel
Perspective. In Advances in Neural Information Processing Systems, volume 33, pages
2698–2709. Curran Associates, Inc.

Hui, L. and Belkin, M. (2021). Evaluation of neural architectures trained with square loss
vs cross-entropy in classification tasks. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural Tangent Kernel: Convergence
and Generalization in Neural Networks. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Ji, Z. and Telgarsky, M. (2018). Gradient descent aligns the layers of deep linear networks.
In International Conference on Learning Representations.

Ji, Z. and Telgarsky, M. (2020). Directional convergence and alignment in deep learning.
In Advances in Neural Information Processing Systems, volume 33, pages 17176–17186.
Curran Associates, Inc.

Jiang, Y., Krishnan, D., Mobahi, H., and Bengio, S. (2018). Predicting the Generalization
Gap in Deep Networks with Margin Distributions. In International Conference on
Learning Representations.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasu-
vunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.
A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J.,
Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska,
M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu,
K., Kohli, P., and Hassabis, D. (2021). Highly accurate protein structure prediction with
AlphaFold. Nature, 596(7873):583–589.

148 BIBLIOGRAPHY

Karakida, R., Akaho, S., and Amari, S.-i. (2019). Universal Statistics of Fisher Information
in Deep Neural Networks: Mean Field Approach. In Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics, pages 1032–1041. PMLR.

Kidger, P. and Lyons, T. (2020). Universal Approximation with Deep Narrow Networks. In
Proceedings of Thirty Third Conference on Learning Theory, pages 2306–2327. PMLR.

Kothapalli, V. (2023). Neural Collapse: A Review on Modelling Principles and Generaliza-
tion. Transactions on Machine Learning Research.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc.

Laurent, T. and Brecht, J. (2018). Deep Linear Networks with Arbitrary Loss: All Local
Minima Are Global. In Proceedings of the 35th International Conference on Machine
Learning, pages 2902–2907. PMLR.

Lee, C., Hasegawa, H., and Gao, S. (2022). Complex-Valued Neural Networks: A Compre-
hensive Survey. IEEE/CAA Journal of Automatica Sinica, 9(8):1406–1426.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J.
(2018). Deep Neural Networks as Gaussian Processes. In International Conference on
Learning Representations.

Lee, J., Schoenholz, S., Pennington, J., Adlam, B., Xiao, L., Novak, R., and Sohl-Dickstein,
J. (2020). Finite Versus Infinite Neural Networks: An Empirical Study. In Advances in
Neural Information Processing Systems, volume 33, pages 15156–15172. Curran Associates,
Inc.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington,
J. (2019). Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
Descent. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc.

Li, D., Ding, T., and Sun, R. (2018). Over-parameterized deep neural networks have no
strict local minima for any continuous activations. arXiv preprint arXiv:1812.11039.

Li, M., Nica, M., and Roy, D. (2021). The future is log-Gaussian: ResNets and their infinite-
depth-and-width limit at initialization. In Advances in Neural Information Processing
Systems, volume 34, pages 7852–7864. Curran Associates, Inc.

Li, Z., Luo, Y., and Lyu, K. (2020). Towards Resolving the Implicit Bias of Gradient Descent
for Matrix Factorization: Greedy Low-Rank Learning. In International Conference on
Learning Representations.

BIBLIOGRAPHY 149

Liu, C., Zhu, L., and Belkin, M. (2022). Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational
Harmonic Analysis, 59:85–116.

Liu, F., Liao, Z., and Suykens, J. (2021). Kernel regression in high dimensions: Refined
analysis beyond double descent. In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, pages 649–657. PMLR.

Lyu, K. and Li, J. (2019). Gradient Descent Maximizes the Margin of Homogeneous Neural
Networks. In International Conference on Learning Representations.

Matthews, A. G. d. G., Hron, J., Rowland, M., Turner, R. E., and Ghahramani, Z. (2018).
Gaussian Process Behaviour in Wide Deep Neural Networks. In International Conference
on Learning Representations.

Mei, S. and Montanari, A. (2022). The Generalization Error of Random Features Regression:
Precise Asymptotics and the Double Descent Curve. Communications on Pure and Applied
Mathematics, 75(4):667–766.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2021).
Deep double descent: Where bigger models and more data hurt*. Journal of Statistical
Mechanics: Theory and Experiment, 2021(12):124003.

Nguyen, Q., Mukkamala, M. C., and Hein, M. (2018). On the loss landscape of a class of
deep neural networks with no bad local valleys. In International Conference on Learning
Representations.

Papyan, V., Han, X., and Donoho, D. L. (2020). Prevalence of neural collapse during
the terminal phase of deep learning training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663.

Parcollet, T., Morchid, M., and Linarès, G. (2020). A survey of quaternion neural networks.
Artificial Intelligence Review, 53(4):2957–2982.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
PyTorch: An Imperative Style, High-Performance Deep Learning Library.

Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta
Numerica, 8:143–195.

Poggio, T. and Liao, Q. (2019). Generalization in deep network classifiers trained with the
square loss. Center for Brains, Minds and Machines (CBMM) Memo No, 112.

150 BIBLIOGRAPHY

Poggio, T. A. and Liao, Q. (2021). Explicit regularization and implicit bias in deep network
classifiers trained with the square loss. arXiv preprint arXiv:2101.00072.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016). Exponential
expressivity in deep neural networks through transient chaos. In Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206–
215.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-Dickstein, J. (2016). Deep Information
Propagation. In International Conference on Learning Representations.

Seleznova, M. and Kutyniok, G. (2022a). Analyzing Finite Neural Networks: Can We Trust
Neural Tangent Kernel Theory? In Proceedings of the 2nd Mathematical and Scientific
Machine Learning Conference, pages 868–895. PMLR.

Seleznova, M. and Kutyniok, G. (2022b). Neural Tangent Kernel Beyond the Infinite-Width
Limit: Effects of Depth and Initialization. In Proceedings of the 39th International
Conference on Machine Learning, pages 19522–19560. PMLR.

Seleznova, M., Weitzner, D., Giryes, R., Kutyniok, G., and Chou, H.-H. (2023). Neural
(Tangent Kernel) Collapse. In Advances in Neural Information Processing Systems,
volume 36. Curran Associates, Inc.

Shan, H. and Bordelon, B. (2022). A Theory of Neural Tangent Kernel Alignment and Its
Influence on Training.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489.

Soudry, D., Hoffer, E., Nacson, M. S., and Srebro, N. (2018). The Implicit Bias of Gradient
Descent on Separable Data. In International Conference on Learning Representations.

Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with recurrent
neural networks. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 1017–1024.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1–9.

BIBLIOGRAPHY 151

Tirer, T., Bruna, J., and Giryes, R. (2022). Kernel-Based Smoothness Analysis of Residual
Networks. In Proceedings of the 2nd Mathematical and Scientific Machine Learning
Conference, pages 921–954. PMLR.

Valle-Pérez, G. and Louis, A. A. (2020). Generalization bounds for deep learning.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business
media.

Vardi, G. and Shamir, O. (2021). Implicit Regularization in ReLU Networks with the
Square Loss. In Proceedings of Thirty Fourth Conference on Learning Theory, pages
4224–4258. PMLR.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, "L.,
and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Wang, S., Yu, X., and Perdikaris, P. (2022). When and why PINNs fail to train: A neural
tangent kernel perspective. Journal of Computational Physics, 449:110768.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560.

Willers, O., Sudholt, S., Raafatnia, S., and Abrecht, S. (2020). Safety Concerns and
Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception
Tasks. In Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., and Ferreira, P., editors,
Computer Safety, Reliability, and Security. SAFECOMP 2020 Workshops, Lecture Notes
in Computer Science, pages 336–350, Cham. Springer International Publishing.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E., Savarese, P., Golan, I., Soudry,
D., and Srebro, N. (2020). Kernel and Rich Regimes in Overparametrized Models. In
Proceedings of Thirty Third Conference on Learning Theory, pages 3635–3673. PMLR.

Wu, Y., Lian, D., Xu, Y., Wu, L., and Chen, E. (2020). Graph convolutional networks with
markov random field reasoning for social spammer detection. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 1054–1061.

Xiao, L., Pennington, J., and Schoenholz, S. (2020). Disentangling Trainability and
Generalization in Deep Neural Networks. In Proceedings of the 37th International
Conference on Machine Learning, pages 10462–10472. PMLR.

Yang, G. (2020a). Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian
Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation.

Yang, G. (2020b). Tensor programs II: neural tangent kernel for any architecture. arXiv
preprint arXiv:2006.14548.

152 BIBLIOGRAPHY

Yang, G. and Hu, E. J. (2022). Feature Learning in Infinite-Width Neural Networks.

Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks. Neural
networks, 94:103–114.

Yun, C., Krishnan, S., and Mobahi, H. (2020). A unifying view on implicit bias in training
linear neural networks. In International Conference on Learning Representations.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021). Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM,
64(3):107–115.

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladin-
skaya, A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A.,
Volkov, Y., Zholus, A., Shayakhmetov, R. R., Zhebrak, A., Minaeva, L. I., Zagribelnyy,
B. A., Lee, L. H., Soll, R., Madge, D., Xing, L., Guo, T., and Aspuru-Guzik, A. (2019).
Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature
Biotechnology, 37(9):1038–1040.

Versicherung an Eides statt

(gemäß § 8 Abs. 2 Nr. 5 der Promotionsordnung vom 12. Juli 2011)

Hiermit erkläre ich, Mariia Seleznova, an Eides statt, dass die Dissertation mit dem Titel „Analyzing Training Dynamics of Deep Neural
Networks: Insights and Limitations of the Neural Tangent Kernel Regime“ von mir selbstständig und ohne unerlaubte Beihilfe angefertigt
wurde.

Ort Datum Seleznova, Mariia

Mariia Seleznova
München

Mariia Seleznova
27.05.2024

	Introduction
	Challenges of Deep Learning Theory
	Overparametrization
	Implicit Bias

	Current Approaches to Study DNNs
	Neural Tangent Kernel

	Contributions
	Limitations of the NTK Regime
	Kernel Regime with Block-Structured NTK

	Outline

	Background and Foundations
	(Deep) Neural Networks
	Survey of NN Architectures
	Approximation Power of NNs

	Training
	Gradient Descent
	Backpropagation
	Gradient Flow
	Effects of Initialization

	Generalization
	Classical Generalization Bounds
	Modern Perspective on Generalization

	Neural Tangent Kernel
	Infinite-Width Limit
	Training Dynamics in the NTK Regime
	Generalization Bounds Based on the NTK
	NTK Alignment

	Notation

	Contributing Papers
	Can We Trust the NTK Theory?
	NTK Beyond the Infinite-Width Limit
	Neural (Tangent Kernel) Collapse

	Conclusions and Future Work
	Bibliography

