


Mit Genehmigung der Medizinischen Fakultät 
 der Ludwig-Maximilians-Universität München 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

1. Gutachten: Prof. Dr. Christine Falter-Wagner 
2. Gutachten: Prof. Dr. Nikolaos Koutsouleris 
3. Gutachten: Prof. Dr. Sophia Stöcklein 
4. Gutachten: Prof. Dr. Dr. Kai Vogeley 

 
 

Dekan: Prof. Dr. med. Thomas Gudermann 
 
Tag der mündlichen Prüfung: 04.11.2024 



Dean’s Office Medical Faculty

Faculty of Medicine

Affidavit

Köhler, Jana

Surname, first name

Nußbaumstraße 7, 80336 München

Address

I hereby declare, that the submitted thesis entitled

Objectifying social interaction in autism: Digitally assisting the diagnostic process using be-
havioral parameters and machine learning

is my own work. I have only used the sources indicated and have not made unauthorised use of services

of a third party. Where the work of others has been quoted or reproduced, the source is always given.

I further declare that the dissertation presented here has not been submitted in the same or simi-

lar form to any other institution for the purpose of obtaining an academic degree.

Place, Date Signature doctoral candidate

Affidavit PhD Medical Research Date: 04.11..2024





Dean’s Office Medical Faculty

Doctoral Office

&onfirmation of congruency betZeen printed and electronic version of the
doctoral thesis

Doctoral candidate: Jana Köhler

Address: Nußbaumstraße 7, 80336 München

I hereby declare that the electronic version of the submitted thesis, entitled

Objectifying social interaction in autism: Digitally assisting the diagnostic process using behavioral
parameters and machine learning

is congruent with the printed version both in content and format.

Place, Date Signature doctoral candidate

&ongruency of submitted versions PhD Medical Research Date: 04.11.2024





 v  

Abstract 

The rising prevalence of autism spectrum disorder (ASD), a neurodevelopmental 
disorder characterized by severe impairments in social interaction and communi-
cation persisting across the lifespan, constitutes a pressing issue in comprehen-
sive healthcare provision. The heterogeneous phenotype hampers the identifica-
tion of solid diagnostic markers across the entire spectrum, resulting in subjective 
and cumbersome diagnostic tools in praxis. Diagnostic assessment so far is con-
ducted entirely at a behavioral level, requiring a skilled diagnostician and a 
lengthy diagnostic process, resulting in long waiting periods. Hence, updating our 
understanding of the complexity of autistic social interaction difficulties is crucial 

for the optimization of the diagnostic process. 

This dissertation project aimed at applying the multivariate methodology of ma-
chine learning to social interaction characteristics of autism which were digitally 
extracted from video and audio in order to build classification models that could 
potentially assist the diagnostic process. 

A first perspective on how to embed ML in social interaction research was pro-
posed in a proof-of-concept study (Perspective Article, Appendix). In the main 
part of this dissertation, diagnostic classification of ASD is explored using support 
vector machine (SVM) models trained on objectively and automatedly extracted 
features from dyadic conversations between autistic and non-autistic study par-
ticipants, tapping into the core symptomatology in the domains of social interac-
tion (Original Study I) and communication (Original Study II) and finding promis-
ing classification accuracy. Further, a proof-of-concept application using social 
interaction data from a real-life clinical sample, including a control group of pa-
tients with differential and co-morbid disorders, is provided (Original Study III).  

The research conducted within this dissertation project provides an important 
step towards objectifying social interaction difficulties in autism and can serve as 
a framework to potentially augment diagnostic decision-making in the future. Ul-
timately, finding the best combination of diagnostic markers will be crucial for im-

proving patient care in the long run. 
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1 Introductory summary  

1.1 Challenges in Autism Diagnostics 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder encompass-
ing a spectrum of persistent impairments in social interaction and communication 
as well as the presence of stereotypical behaviors [1]. With an estimated preva-
lence of 1% [1], ASD is typically diagnosed in early childhood, though an increas-
ing number of diagnoses are made in adulthood [2,3]. The highly heterogeneous 
phenotype with its diverse manifestations of autistic symptoms challenges diag-
nostic decision-making and research on behavioral or biological markers with suf-
ficient universality across the entire spectrum. Though a growing list of around 

100 candidate genes strongly linked to ASD has been proposed [4], no common 
variant has been identified yet. Several emerging diagnostic markers on the neu-
rophysiological (e.g., altered gamma-band activity) and biological (e.g., extra-ax-
ial fluid volume) level have limited reproducibility [5].   

Therefore, the diagnostic process for ASD poses a significant bottleneck: Cur-
rently, diagnostics are conducted entirely at the behavioral level. Best practice 
procedures include a series of diagnostic interviews and behavioral observations 
conducted by a multidisciplinary team, i.a., expert ratings of a patient’s social 
communication impairments and stereotypical and repetitive behaviors, testing 
procedures concerning neurocognitive functioning, and an assessment of the de-
velopmental history with a caretaker [6,7]. The involved process results in months 
of waiting time from referral until final diagnosis (median length around 7 months 
in a Canadian sample according to [8]), leading to a backlog in clinical institutions. 
This is particularly crucial, not least because early detection and intervention may 
facilitate improved developmental trajectories [9]. The lack of objective diagnostic 
markers on the behavioral level is also problematic in other ways: Due to the 
varied manifestations of social interaction impairments, detecting and correctly 
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classifying autistic symptoms and behaviors is particularly challenging for a clini-
cian. Hence, interrater reliability is heavily influenced by the expertise of the di-
agnostician [10,11]. Further, although standard screening measures for ASD 
show sufficient sensitivity in the general population, they nevertheless lack spec-
ificity in clinical settings [12,13] and challenge differential diagnostic decision-
making of conditions with overlapping phenotypes such as attention deficit hyper-
activity disorder (ADHD) [14], schizophrenia [15], intellectual disability [16], or 
other disorders that manifest in social interaction difficulties (e.g., Borderline per-
sonality disorder [17]). Differential diagnostic decision-making is further compli-
cated by the high rate of co-occurring mental health conditions present in autism 

[18,19]. The reduced specificity, in turn, may increase false diagnostic decisions 
and hinder accurate treatment.  

Taken together and considering the inconsistent findings on diagnostic markers 
across the entire autism spectrum, updating our understanding of social interac-
tion impairments in the context of ASD diagnostics is a pressing issue. Novel and 
complex multivariate methods that can account for the interdependencies in the 
highly heterogeneous autistic phenotype need to be applied.  

1.2 Diagnostic Classification of Autism using ML: Advances 

and Limitations  

Methods of artificial intelligence like machine learning (ML) are increasingly stud-
ied to aid diagnostic decision-making for psychiatric and neurodevelopmental 
conditions in a data-driven way [20,21]. ML allows a computer to learn patterns 
across large amounts of multivariate data using a variety of computational algo-
rithms and, in turn, apply those to unseen data, thereby providing an estimate of 
predictiveness of the data at hand. This method offers significant benefits for di-
agnostic decision-making, as it enables predictions on the single-subject level 
instead of the mere comparison of groups, as well as detecting predictive patterns 
and unknown interdependencies in high-dimensional data sets [22]. A common 
approach is the application of supervised learning techniques, whereby an algo-

rithm is trained on labeled data sets, hence, learning the relationships between 
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input variables and diagnostic label, allowing in turn for the prediction of diagnos-
tic status in unseen data. Considering these benefits in light of the complexity of 
the autistic phenotype, advances have been made in multiple fields using ML for 
establishing the classification value of potential diagnostic markers.   

One line of research focuses on extracting features from the Autism Diagnostic 
Observation Schedule (ADOS-2) [23] to train machine learning algorithms. The 
ADOS-2 is considered the current gold-standard instrument in childhood diag-
nostics of autism, though in Germany explicitly not recommended for adulthood 
[24]. Usually, it is conducted by a licensed clinical expert, who qualitatively as-
sesses a patient regarding their reciprocal communication and social interaction 

skills through a mixture of semi-structured interview and observation. Because of 
its widespread application, the data sets available are usually rather large, allow-
ing for comprehensive data analyses. Several studies have used ML techniques 
aiming to reduce the number of ADOS-2 interview items and to identify the most 
predictive core domains [25–29]. However, as the final diagnostic decision is usu-
ally heavily reliant on the outcome of the ADOS-2, the features used for prediction 
and the diagnostic label within these models are often not independent of each 
other [30], resulting in a circularity problem. Moreover, its administration in more 
heterogeneous populations including individuals with other disorders affecting so-
cial interactions, as well as differences in the clinical experience of the diagnosti-
cians, ultimately lead to decreased interrater reliability in diagnostic classification 
[31]. Conclusively, while data-driven ML analyses of ADOS-2 may contribute to 
the optimization of existing diagnostic tools, their inherent weaknesses remain.  

ML methods have been used in the broader field of personalized psychiatry 
based on neuroimaging data, aiming to build predictive models for early recogni-
tion, diagnosis, and prognosis of a wide range of psychiatric disorders. In the 
domain of autism research, neuroimaging data accounts for the majority of diag-
nostic classification studies [22], based on identified abnormalities regarding the 
volume of grey and white matter, as well as atypical functional and structural con-
nectivity [32]. Considering that a key strength of ML is the ability to test for a 

model’s generalizability to unseen data, large data quantities are usually re-
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quired, reducing the scalability of neuroimaging methods such as magnetic res-
onance imaging (MRI). Most importantly, we are faced with a unique group of 
individuals known for their sensory sensitivities in the field of autism, further ham-
pering the feasibility of using sensory intensive techniques on a large-scale basis. 

1.3 Objective Assessment of Autistic Social Interaction and 

Communication  

Peculiarities of social communication in autism include, for instance, poorly inte-
grated verbal and nonverbal communication [33], impaired use of gestures [34], 
reduced facial expressiveness [35], reduced conversational turn-taking [36], and 
aberrated [37] or complete lack of speech [1]. As marked differences in social 

interaction and communication style constitute the core features of ASD, these 
symptoms naturally lend themselves to be further explored for diagnostic predic-
tion. Importantly, as social interactions account for the majority of daily life, this 
kind of data is easily obtainable. Due to the mentioned drawbacks of observa-
tional coding, automated and objective assessment methods of autistic social in-
teraction and communication provide an exciting avenue for further investigation 
within a diagnostic context.  

Study findings have supported clinical anecdotal evidence suggesting a certain 
“oddness” about the first impression of autistic individuals: They have been 
judged more socially awkward [38], or have been rated less favorably regarding 
their character traits [39] than their non-autistic peers based on brief video snip-
pets and still images. Various motion tracking techniques have attempted to cap-
ture this awkwardness of nonverbal behaviors: Wearable motion tracking sensors 
can be applied with little effort, resulting in high resolution recordings of kinematic 
features. Studies have found promising classification results for ML models for 
both infants (e.g., based on ball playing motion [40]) and adults (e.g., based on 
hand motion in an imitation task [41]). However, those highly controlled study set 
ups require a distinct laboratory infrastructure, resulting in limited sample sizes 
and therefore warranting cautious interpretation. A more scalable alternative to 

quantify motion aberrances can be achieved using advanced computer vision 
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techniques, where two- or even three-dimensional motion is extracted from video 
excerpts using frame-differencing algorithms [42] or artificial intelligence [43], 
hence, requiring no complex setups. For instance, head motion features have 
been extracted using computer vision to classify ASD in children [e.g., 44,45]. 
Importantly, such techniques allow for motion analyses in more naturalistic set-
tings. This is crucial because autism is regarded as a disorder of social interac-
tion, i.e., it is based on the manifestation of difficulties when communicating with 
other individuals. In fact, reduced interpersonal synchrony with an interactional 
counterpart has been identified as a driver of negative first impressions of autistic 
individuals [46]. Interpersonal synchrony, meaning the adaptation of verbal 

and/or nonverbal behaviors during a social interaction, has frequently been in-
vestigated and found to be reduced in autism [47,48]. Further, the coordination 
of individual social behaviors across different modalities, intrapersonal syn-
chrony, is suggested to be impaired in autism [33,49], providing a potential con-
stituent of reduced interpersonal synchrony [50]. In a proof-of-concept study (Per-
spective Article, Appendix A), we computed intrapersonal head and body syn-
chrony of autistic, non-autistic and mixed (i.e., including an autistic and a non-
autistic individual) conversational dyads based on objective motion extraction us-
ing Motion Energy Analysis (MEA) [42], a frame-differencing algorithm. The re-
sulting synchrony time series were subsequently used as features in a SVM clas-
sification model to predict diagnosis with an accuracy of 75.9% [51]. Hence, com-
bining objectively extracted behavioral data stemming from actual social interac-
tions could aid in capturing subliminal signals contributing to autistic social inter-
action difficulties and, therefore, provide valuable markers for diagnosis.  

Another pillar constituting the autistic phenotype is atypical communication. While 
an estimated 25% of individuals on the spectrum are non- or minimally verbal 
[52,53], the majority have sufficient expressive language skills. The ADOS-2 [23] 
requires the rating of communication on multiple domains regarding content (ech-
olalia, stereotypical use of language), prosody (aberrant speech rhythm, intona-
tion, pitch, volume), as well as reciprocity within the conversation. While content-

related verbal peculiarities such as echolalia or stereotypical language are suffi-
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ciently straightforward to detect for a trained clinician, more subtle speech fea-
tures might be harder to assess. Hence, automated speech analysis has the ad-
vantage of not requiring phonetic experts for manual coding to operationalize the 
prosodic “awkwardness” in autism. This approach allows for the exploration of 
the robustness of potential vocal markers. In fact, a promising body of research 
is directed towards the classification of a diverse range of psychiatric disorders 
using speech recognition techniques [54]. For autism, classification has been at-
tempted based on automated speech analysis in tasks requiring conversations 
with an avatar [55], story retelling [56], or specific word repetitions [57]; the latter 
study reaching an accuracy of 91%. In real-life settings, two studies have used 

individual speech as well as turn-taking features extracted from ADOS interviews 
to predict diagnosis with accuracies ranging between 59-89% [36,58]. However, 
as autistic individuals have pronounced difficulties with small talk and building 
connections with others, an interview context encompassing a clear conversa-
tional pattern of question and answer might not adequately reflect the communi-
cation impairments present in autism. Therefore, the automated and objective 
extraction of both individual and interactional speech features during naturalistic 
reciprocal verbal exchanges poses an intriguing concept in the context of vocal 
marker research for diagnostic classification.  

One aim of the present thesis was to comprehensively capture both non-verbal 
(Original Study I) and verbal (Original Study II) social interaction and communi-
cation features on multiple modalities from naturalistic social interactions be-
tween autistic and typically-developing (TD) individuals using largely automated 
analysis pipelines and, subsequently, explore their predictive power for assisting 
diagnosis. To reduce the sensory load on participants, the experimental setup 
contained minimal use of wearable devices. To maximize scalability, feature ex-
traction was performed largely automatically from videos of the interactions, using 
established computer vision methods for motion and facial expression, as well as 
automated speech analysis. Instead of predicting individual diagnostic status, the 
developed ML models predict dyad membership to either mixed (ASD-TD) or 

non-autistic (TD-TD) dyad, therefore, putting the dyad in the focus of analysis and 
underlining interactional dependencies. 
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In the first study (Original Study I), synchrony in facial expressions, head and 
body motion was used as the base for multiple SVM classification models. The 
best performance was obtained based on the reciprocal interpersonal synchrony 
of facial motion (balanced accuracy/BAC of 79.5%), followed by models based 
on the total amount of head and body motion and facial expressiveness (BAC = 
68.8%), and head motion (BAC = 62.1%). The intrapersonal coordination of head 
and body movement did not yield significant predictive performance. Combining 
modalities within a stacking model [59] did not improve overall classification ac-
curacy.  

In the second study (Original Study II), the predictiveness of automatically ex-

tracted speech features was explored for a subsample of the participants. Im-
portantly, we included both individual and interactional aspects of vocal interac-
tions and were able to predict dyad membership using a SVM algorithm with a 
BAC of 76.2%. Further, in an attempt to objectify the perceived “awkwardness” in 
autistic social interaction, distinct group differences between autistic and non-au-
tistic participants were analyzed regarding prosodic and interactional features. 
We found slower and more monotonous speech in autistic participants, as well 
as an increased amount of silent intervals in ASD-TD interactions.  

Though employing carefully cross-validated ML algorithms, the arguably limited 
sample size and lack of external validation cannot rule out the possibility of over-
fitting, i.e., a lack of generalization to other, unseen samples. However, in using 
a minimally invasive setup as well as objective and scalable analysis methods, 
we were able to capture social interaction in autism across multiple modalities 
and, hence, provide a framework potentially to facilitate future validation in more 
translational settings. 

1.4 Scalable translation to clinical settings 

The continuing developments regarding the remote assessment of behaviors us-
ing computer vision and wearables provide the opportunity to overcome scalabil-
ity issues and deliver insights into subtle mechanisms of autistic social interac-
tion. The classification accuracy for both verbal and non-verbal aspects of social 
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communication in autism explored in Original Study I and II shows that the auto-
matic extraction of these behaviors is a promising avenue in the quest for behav-
ioral marker research in autism. Importantly, shifting the dyad into focus of the 
analysis and assessing features of an interaction along with features describing 
the individual represents a viable route for more fine-grained investigations of 
social interaction difficulties in autism. The scalable setup facilitates implementa-
tion into clinical practice, potentially augmenting diagnostic decision-making in 
the long run.  

Therefore, another aim of the present thesis was to classify autism using a SVM 
model based on synchronized behaviors extracted via computer vision tech-

niques between patient and clinician. Hence, in the third study (Original Study III), 
we analyzed videos of real ADOS interviews from a representative clinical sample 
of an autism outpatient unit in Korea with MEA and used the objectively extracted 
features to train a SVM model. Importantly, instead of TD individuals, patients 
with a diverse range of differential psychiatric diagnoses served as a control 
group, providing the possibility to address the issue of specificity. Additionally, 
while the previous studies were comprised of adults, a larger age range of chil-
dren and young adults (5.5 – 28.7 years) was considered. Although the videos 
were not initially recorded for the purpose of this study – therefore constituting a 
rather uncontrolled setup – we did find above-chance classification accuracy 
(BAC = 63.4%) in support of interpersonal synchrony as a marker specific to au-
tism.  

1.5 Outlook 

The research presented in this work provides new insights into the autism spec-
trum and is an important step towards the goal of finding the best combination of 
markers to predict autism. In the future, it will be important to enhance diagnostic 
classification models with multiple modalities [60], i.e., combining behavioral with 
biological measures. The increasing availability of wearable devices able to 
measure physiological (e.g., medical wristbands), neurological (e.g., EEG head-
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bands) or neuropsychological (e.g., mobile eye tracking) signals allows for cap-
turing detailed aspects of social interaction without being too invasive or too re-
strictive regarding clinical accessibility. Further, in the endeavor of translational 
research, it will be important to target specificity and validation in large-scale di-
agnostic contexts. This includes ethical considerations concerning data availabil-
ity as such recordings are often bound by patient-doctor confidentiality [61], as 
well as mitigating bias in data collection and model development to ensure that 
minority groups are sufficiently represented [62]. Moreover, to fully overcome the 
circularity problem and address heterogeneity issues, unsupervised clustering 
approaches, i.e., identifying subclusters in a data-driven way, would be an inter-

esting approach to investigate social interaction differences in autism. In the lat-
est revisions of the common diagnostic classification systems, the categorization 
of autism into subtypes (e.g., Asperger’s syndrome or childhood autism) has been 
abandoned in favor of regarding autism as a spectrum of social interaction diffi-
culties and repetitive behaviors [1,63]. However, a recent meta-analysis [64] 
across 11 meta-analyses of autism-control group comparisons revealed a de-
crease in effect sizes over time, concluding that the substantial heterogeneity in 
autism symptomatology resulting from broadened diagnostic criteria may hamper 
the identification of solid diagnostic markers. Therefore, with the increased avail-
ability of larger data sets, the data-driven development of behavioral subclusters 
has the potential for gaining insight into the underpinnings of psychopathology 
and, ultimately, improve treatment options [65]. Finally, to shed further light on 
social interaction difficulties and their complex interdependencies in autism, the 
growing application of interpretable ML techniques can assist in increasing model 
transparency and, therefore, facilitate our understanding of why a certain diag-
nostic prediction is made for an individual [66].  

When diagnosing ASD, clinical expertise remains of utmost importance and po-
tential digital enhancements should be viewed as augmentation to and not re-
placement of a thorough diagnostic assessment conducted by a clinical expert. 
Yet, the objective assessment of autistic social interaction dynamics offers the 

opportunity for a scalable translation into clinical practice and could inform diag-
nostic decision-making in the future.  
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2 Original Study I – Machine learning classification of 
autism spectrum disorder based on reciprocity in 
naturalistic social interactions 

Contributions and reference 

In this study, the aim was to extract non-verbal behavioral features from social 
interactions between autistic and non-autistic participants and build diagnostic 
prediction models thereof. I oversaw the overarching project administration which 
involved gaining approval from the ethics board of LMU and study insurance mat-
ters. I programmed the paradigm, including the script-based synchronization of 

the hardware via PsychoPy [67] to ensure fully synchronized data collection. I 
presented the study design and collected feedback from members of the autism 
community during an outreach event. I was directly involved in and supervised 
recruitment and data collection of the autistic and non-autistic participants. I cu-
rated the data and developed the preprocessing pipelines using DaVinci Resolve, 
OpenFace [68], MEA [42] and RStudio [69]. I analyzed the final data set using 
NeuroMiner [70]. I presented the results to the scientific community during talks 
and poster presentations at different conferences. In compliance with the en-
deavor of reproducibility and open science, I published the analysis scripts on 
GitHub (https://github.com/jckoe/MLASS-study) and made a preprint available on 
MedRXiv. I wrote the manuscript and was primarily responsible for the revision 
process and finalizing the published article.  

Koehler, J.C., Dong, M.S., Bierlich, A.M., Fischer, S., Späth, J., Plank, I.S., Kout-
souleris, N., Falter-Wagner, C.M. (2024). Machine learning classification of 
autism spectrum disorder based on reciprocity in naturalistic social inter-
actions. Translational Psychiatry, 14(1), 76. https://doi.org/10.1038/s41398-024-
02802-5 

Note: For better readability, the supplementary material of this publication can be 

accessed online. 
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CFT 20-R [43]) IQ, two IQ assessments were undertaken, and their results
averaged. Since difficulties in recognizing emotional facial expressions
could potentially cause a bias in the investigation of synchrony in facial
expressions, participants additionally completed a computer task for facial
expression recognition (Berlin Emotion Recognition Test; BERT [44]).

Data preparation and feature extraction
Videos were cut to a duration of ten minutes in DaVinci Resolve (Version
16.2.0054). Facial expression was analyzed with the open-source algorithm
Openface 2.0 [45], identifying action units (AUs) and three head pose
parameters (pitch, yaw, roll) and extracting a time series of their presence
and intensity for every frame. Motion Energy analysis (MEA [32]) was used
to analyze head and upper body movement captured with the scenic
camera. MEA extracts time series of grayscale pixel changes for every
frame in pre-specified regions of interest (ROI). Due to the constant
lighting conditions and a stable camera, pixel changes within each ROI
indicate movement.
Prior to the final analyses, the behavioral time series from both tasks

were synchronized between, and (in case of intrapersonal coordination)
within, participants in the respective modalities. For this purpose,
windowed cross-lagged correlations were computed in R. The size of the
respective windows and lags for each modality were carefully chosen,
relying on previous research wherever applicable [20, 46], to ensure
maximum standardization. For the estimation of intrapersonal coordina-
tion, head movement, as derived from OpenFace, was cross-correlated
with the body motion energy times series derived from MEA. Finally,
summary scores (mean, median, standard deviation, minimum, maximum,
skewness, and kurtosis) of the maximum synchrony instances from both
tasks for each person were extracted. The extent as to which each person
was synchronizing within the dyadic interaction was defined as their
degree of imitating (following) their partners movements. For further
details on the cross-correlation and feature extraction procedures, refer to
Supplementary Information S2.
Facial emotion recognition capabilities were operationalized as mean

accuracy (in %) and response time (in ms) (see Supplementary Information
S3.4).
A full list of features can be found in Supplementary Table S13.

Classification models
Separate SVM classification models were trained using features grouped
according to the interaction modalities. The feature vectors for each
participant combined the values from both the mealplanning and hobbies
task. In each base model, the SVM algorithm independently modeled linear
relationships between features and classification label. To account for the
interactional nature of the underlying feature set for classification,
participants were labeled as belonging to either a mixed (ASD-TD) or
non-autistic control (TD-TD) dyad, resulting in groups of 56 and 32
individuals respectively. Consequently, both interactants within one dyad
received the same label, regardless of their individual diagnosis. This
labeling procedure was modeled closely to a diagnostic setting in clinical

reality, in which only one interactant’s diagnostic status would be at
question whereas the other interactant would represent the clinical rater.
Linear SVM optimized a linear hyperplane in a high-dimensional data
space that maximized separability between individuals belonging to either
of the two dyad types (i.e., the support vectors). Based on the trained
hyperplane, the data was subsequently projected into the linear kernel
space and their geometric distance to the decision boundary was
measured, therefore, predicting each participant’s classification. Every
participant was assigned a decision score and a predicted
classification label.
We built separate models for the synchrony of facial action units

(FACEsync; 168 features per individual), head movement (HEADsync; global
head movement, as well as pitch, yaw and roll; 56 features per individual),
and body movement (BODYsync; 14 features per individual), as well as
intrapersonal head-body movement coordination (INTRAsync; 14 features
per individual), and individual movement parameters (MovEx; total head
and body movement, and facial expressiveness; 6 features per individual).
The decision scores of all our base models, as well as the model covering
the head region (FACEsync + HEADsync), were subsequently combined in
a stacking-based data fusion framework [47] to assess whether a
combination of the modalities would result in superior prediction results
than the unimodal classifiers themselves.
We additionally conducted supplementary analyses using individual

diagnosis as classification label. Results of these analyses can be found in
the Supplementary Information S3.6.

Support vector machine learning analysis
Machine learning analyses were conducted with the toolbox NeuroMiner
(Version 1.1; https://github.com/neurominer-git/NeuroMiner_1.1) [48] in
MATLAB (Version 2022b) [49]. A repeated, nested, stratified cross-validation
(CV) structure was implemented with 11 outer CV folds and ten
permutations (CV2) and ten inner CV folds with one permutation (CV1).
At the CV2 level, we iteratively held back participants from four dyads as
test samples (approx. 9% of data), while the rest of the data (approx. 81%)
entered the CV1 cycle, where the data were again split into validation and
training sets. Both interactants from a dyad would always remain in the
same fold. This nested stratified CV allows for a strict separation between
training and testing data, with hyper-parameter tuning happening entirely
within the CV1 loop while the CV2 loop exclusively measured the model’s
generalizability to unseen data. Additionally, the stratified design ensured
that proportion of dyad type in every fold would adequately reflect the
proportion of dyad type in the full sample in order to avoid training bias.
The five base models were pre-processed and trained separately using
LIBLINEAR Support Vector L2-regularized L2-loss classification algorithms
(see Supplementary Information S3.1 and S3.2). Given that the current
dataset contains a rather high feature-to-sample ratio, this specific
algorithm was chosen because of its similarity to LIBSVM but without
implementing complex kernels which could potentially result in over-
fitting. All models were corrected for class imbalance by hyperplane
weighting. Balanced Accuracy (BAC = (sensitivity + specificity)/2) was used
as the performance criterion for parameter optimization. Statistical

Fig. 1 Experimental setup. Participants were seated across from each other and asked to conduct two conversational tasks. For additional
setup info see Supplementary Material.
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significance of the base classifiers was assessed through permutation
testing [50]. The permutation testing procedure determines how
statistically significant is the model’s performances (i.e., BAC) using the
current data compare to models trained on the dataset but with the labels
randomly permuted. The permutation test was repeated 1000 times. The
significance level was set to α= 0.05. In current discussions, an alpha level
of .005 has been proposed [51], though the appropriateness of this
approach has been called into question [52]. Hence, to reassure statistically
rigorous results, we additionally annotated when a significant model’s
permutation test result would fail significance using the stricter alpha level.
To control for potential bias of the dyadic nature of the data on each
model’s significance, each permutation analysis was conducted with both
participants of each dyad permuted in pairs according to their dyadic
structure. For further details on the permutation testing procedure, see
Supplementary Information S3.3. The two stacking models [53] were
trained on the resulting decision scores (all base models, facial expression
+ head motion synchrony) by wrapping them in the identical cross-
validation framework as the base models. A L1-loss LIBSVM algorithm with
Gaussian kernel was employed to find a parsimonious combination of
decision scores which maximized BAC across the C parameter range. For
details, see Supplementary Information S3.

RESULTS
Base model performances
Using facial action unit (AU) synchrony data, the repeated nested
stratified cross-validation FACEsync model yielded a balanced
accuracy (BAC) of 79.5%, and an area under the receiver operating
curve (AUC) of .82 (p < 0.001, also see Supplementary Fig. S9). The
contribution of the different features to classification group (Fig. 2)
was calculated by feature weights (see Supplementary

Information S3.4) and cross-validation ratio. Additionally, the
sign-based consistency was explored as an indicator of the
feature classification reliability. Assignment to the ASD-TD dyads
was mainly driven by features describing an elevated and highly
varied extent of adaptation in AU17 (chin raiser) and AU26 (jaw
drop). Minimized adaptation in AU01 (inner brow raiser), AU20 (lip
stretcher) and AU45 (blink) were indicative of belonging to the TD-
TD interaction type. In order to investigate any associations of
facial emotion recognition abilities and adaptation behaviors of
the different facial AUs, correlation analyses were performed
between the decision scores derived from the FACEsync model
and accuracy and response time (rt) from the Berlin Emotion
Recognition Test (BERT [44]). No significant associations were
found (raccuracy(86)=−0.16, rrt(86)= 0.13; both p= 0.23 after FDR
correction).
The model using only head motion coordination data (HEAD-

sync) achieved a BAC of 62.1% and an AUC of 0.64 (p= 0.002).
Assignment to the TD-TD group was driven by higher values in
minimum adaptation of global head movement whereas higher
maximum and more variant values for head movement adapta-
tion predicted the ASD-TD group.
The classification model based on upper body movement

coordination (BODYsync) predicted dyad origin with a BAC of
56.7% and an AUC of 0.55 (p= 0.009). Using a stricter alpha level
of 0.005, this model would not be judged as performing
significantly better than chance.
Our classification model based on intrapersonal head-body

coordination (INTRAsync) performed around chance level with a
BAC of 44.2% and an AUC of 0.44 (p= 0.994).

Fig. 2 Contribution of features in FACEsync model. Cross-validation ratio of feature weights (A) and sign-based consistency (B) for the
FACEsync model. The features depicted correspond to the person-specific adaptation of intensity of a participant to their dyadic counterpart
in the respective facial action units (AU) for either hobbies or mealplanning task (min minimum, sd standard deviation, max maximum).
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The SVM classification model based on features of total head
and body movement and general facial expressiveness (MovEx)
predicted dyad origin with a BAC of 68.8% and an AUC of 0.75
(p < 0.001).
Additional classification metrics for all models can be found in

Supplementary Table S6.

Stacking model
All base model decision scores were extracted and combined into
a hierarchical stacking-based fusion framework to assess potential
prediction improvements. Combinations of only the head region
(FACEsync + HEADsync; BAC= 78.8%, AUC = 0.83), as well as of
all modalities (BAC= 77.9%, AUC = 0.85) did not outperform the
most predictive base model (FACEsync) with 79.5%.
Additional classification metrics of all models are depicted in

Fig. 3.

Classification based on diagnostic group
We repeated all SVM analyses using different labels based on
diagnostic groups while ignoring interaction type. These addi-
tional analyses were conducted in order to investigate if our
collected social interaction data was specific enough to identify an
autistic individual, regardless of interaction dyad origin. All models
generated inferior prediction accuracies compared to the dyad
labeling approach (3.1). Detailed results can be found in
Supplementary Information S3.6.

DISCUSSION
The aim of the current study was to quantify social interaction in
ASD for the purpose of automatized diagnostic classification. In
this proof-of-concept study, we set out to utilize a dyadic setting
for classification of autistic vs. non-autistic interaction based on
reciprocity. Participants were filmed conducting two brief
conversations about pre-set topics. Using repeated nested cross-
validation techniques, we could show that SVM classification
models based on different modalities of behavioral reciprocity
were sufficient to predict dyad membership to a high degree.
Contrary to our hypothesis, combining different non-verbal
modalities did not improve overall predictive accuracy. Classifica-
tion into individual diagnostic groups (ASD vs. TD) based on social
interaction data performed worse on all modalities, as well as the

model classifying on individual measures of full body movement
and general facial expressiveness. This highlights the importance
of the social context to capture the manifestation of autistic
symptoms.
A model based on reciprocity of facial action units within the

interactions showed the best classification accuracy (79.5%) within
our sample. When looking more closely at individual feature
importance in the facial region, we found heightened and more
varied scores for reciprocal adaptation in the AUs chin raiser, jaw
drop and lip corner depressor in both tasks to be indicative for
classification into the autistic interaction type. This was especially
pronounced for the mealplanning task, suggesting higher and
more varied synchrony in this task in the ASD-TD interactions.
While elevated synchrony in ASD might seem counterintuitive at
first glance, especially in light of findings on reduced mimicry in
autism [54, 55], taking a closer look at feature importance for the
TD-TD group provides a differentiated picture. Participants with
higher values for minimum adaptation across all features had an
increased likelihood to be classified into the TD-TD group,
suggesting a potential floor effect for facial synchrony in this
group. Thus, their synchrony did not subceed a certain lower
threshold. This was especially pronounced in the action units for
inner brow raiser (AU1), lip stretcher (AU20) and blinking (AU45).
Additionally, motor synchrony in autistic interactions has pre-
viously been found to vary along with the level of autistic traits,
social-communicative functioning, and context [19]. The same
mechanisms may hold true for mimicry. For example, in a study
investigating mimicry in the BERT emotion recognition task,
Drimalla and colleagues [56] found significantly more variance in
the intensity of facial expressions in autistic participants.
Importantly, since machine learning analyses factor in countless
interdependencies between features, interpretations based on
feature weights should be considered with caution. Nevertheless,
the rather high classification accuracy based solely on facial
synchrony features found in our study provides valuable implica-
tions for future research on classification based on social
interactions in an even more ecological setting (e.g., diagnostic
assessments via video conferencing).
Interestingly, our model based on measures of individual

amount of full body movement and general facial expressiveness
(MovEx) was the second-best of the base learners, supporting
findings of a characteristic motor signature in autism. For example,

Fig. 3 Classification metrics for all base and stacking models. BAC balanced accuracy, AUC area under the curve, PPV positive predictive
value, NPV negative predictive value. Models are depicted in the order of lowest to highest performing BAC.
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Zhao and colleagues [57] investigated head movements in autistic
children during live interactions and found aberrances on all three
axes. Notably though, our classification model factoring in dyad
type, thus, data that included the TD interaction partners, showed
superior performance compared to classification based on
diagnosis. Hence, interactional aspects also seem to have an
association with individual movement features, supporting the
hypothesis that intra- and interpersonal adjustment processes are
not entirely independent of each other [58].
Contrary to previous findings of high classification accuracy for

head and body coordination [24], our model based on this
modality performed at a below-chance level, showing low
specificity of head-body coordination for autistic vs. non-autistic
interaction. However, interpretation should be considered cau-
tiously given the specifications of our experimental setup. Due to
our data being collected as part of a larger setup, participants
wore wristbands on their non-dominant hand measuring physio-
logical data (see Supplementary Information S1). In order to
reduce artefacts in physiological data acquisition, participants
were instructed to relax their non-dominant hand in their lap.
Arguably, this instruction and setup difference with regards to the
previous study could well account for the lack of classification
power by intrapersonal coordination in the current study. This is
supported by the absence of a significant difference between
body synchrony found between our participants’ motion time
series and randomly matched time series (see Supplementary
Information S2.3).
While our results support previous findings on head motion

synchrony as a distinguishing feature of autistic communication
[21], combining it with facial expression synchrony did not yield a
higher prediction accuracy in a stacking model. This was also the
case for our overall stacking model. However, stacking may be
able to improve predictive performance of any problem primarily
in cases where the underlying data is not well represented by a
single model [59], which is not the case in the current study.
Furthermore, combining several models with significantly differ-
ent predictive accuracies might in fact harm overall performance
of the stacker. Additionally, if the underlying base models are
highly correlated, combining them does not necessarily lead to
improved performance [59]. In fact, we did find significant
associations of our MovEx model (total head and body movement
and general facial expressiveness) with HEADsync for the ASD-TD
group (r= 0.55, p < 0.001), as well with INTRAsync for the TD-TD
group (r= 0.52, p > 0.05; for further details see Supplementary
Information S4.5). In our study, we aimed to combine different
modalities in a hypothesis-driven way to retain a certain amount
of interpretability. We found no added benefit for increasing
model complexity. However, it is possible that in order to improve
predictive performance of social interactions features, non-verbal
aspects of social interaction could be complemented by different
modalities in the future, such as speech, eye-movements,
physiological or neurological measures. For example, in a recent
study conducted by Liao et al. [60], simultaneous measures of EEG,
eye tracking and facial expression were assessed of autistic
children viewing social and non-social stimuli. The authors found
superior prediction accuracies for the combination of behavioral
and physiological classifiers.
Notably, there are several limitations within the scope of the

present study.
First, the sample size in the current study is limited. To counter

this, we implemented a repeated nested cross-validation structure
as well as careful feature reduction methods. Nevertheless, our
findings should be considered as proof-of-concept and will have
to be validated in a larger and external sample, possibly including
adults with different psychiatric diagnoses, including comorbid-
ities, to examine specificity within a clinical context more closely
and, hence, strengthen the translational aspect [61]. Additionally,
regarding the differing incidence rates and possibly phenotypical

presentation in males and females with autism, larger samples will
allow for thorough analyses of sex and gender effects on social
interaction in autism. In any case, we believe that automatic
extraction and classification algorithms of social behaviors can
support human observation, as they have the possibility to extract
behavioral subtleties reliably (e.g., subtle facial expressions [62]),
and, thus, could augment diagnostic decision making [63] over
and above potential biases. We are convinced that the high
scalability of our largely automatized setup can facilitate a
simplified data collection process within clinical settings, ideally
allowing for cross-site validation approaches which are crucial to
the development of reliable clinical prediction models [64].
Second, though interpersonal synchrony has been found to be
reduced in interactional dyadic settings independent of partner
diagnosis [22], a preference for interactions within purely autistic
dyads as compared to mixed interactions has been suggested
[12]. This is reflected in theoretical frameworks, such as the
“double empathy problem” [65] as well as “dialectic misattune-
ment” [66], specifying autistic impairments to be especially
pronounced between people with fundamentally different ways
of information processing and interacting. While this underlines
the notion of ASD as a social interaction disorder, in a real-world
and especially clinical setting this homogenous combination is
rarely to be found, which is why this dyad composition was not
assessed in this study.
Third, though highly scalable, we relied on different existing

computer vision algorithms for our study. On the one hand, this
means that the direct comparison of the base models’ accuracies
has to be interpreted with caution, as both computer vision
algorithms used employ different methods of movement extrac-
tion. On the other hand, these algorithms are associated with
certain limitations themselves. For example, Motion Energy
Analysis (MEA) as a video analysis method has constraints
regarding the dimensionality of movement. Because MEA only
outputs changes in motion, no specifications regarding direction
or magnitude of movement can be made. However, while more
distinct investigations of these factors in ASD are certainly
desirable, they nevertheless add another layer of complexity to
already highly dimensional prediction models. With an increasing
feature-to-sample ratio, the ability of ML classifiers to learn more
complex relationships may be restricted. Therefore, this was not a
focus in our study. Regarding facial expression, a range of AUs and
participants had to be excluded due to their extent of missing
values within their resulting time series. This was partially due to
the participants moving out of the camera frame. Though
OpenFace employs person-specific normalization by subtracting
a “neutral” face from all other frames of a person, the algorithm is
nevertheless reported as potentially less accurate if a face does
not show a lot of movement dynamics [67]. Further, within this
study the AUs were extracted in a completely automated fashion,
without external validation by human coders. While performance
accuracy measures for OpenFace are generally favorable com-
pared to other automatic facial expression detection algorithms
[45] and this fully automatic approach furthers scalability, never-
theless, it cannot be ruled out that the AUs were not measured
accurately, limiting direct interpretations in terms of specific AUs.
However, even considering those technical drawbacks, our
FACEsync model achieved high classification accuracy. We believe
that with the continuing technological developments within
computer vision methodology this limitation will likely be
overcome in the future.
Lastly, the application of machine learning in clinical psychology

and psychiatry is providing novel possibilities for increased
precision in individualized diagnosis, prognosis and treatment
[68]. However, with increasing model complexity, interpretation of
findings and their implications become more challenging. While
our findings point to the predictive accuracy of reciprocity in
social interactions for autism, future research should aim to gain a
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greater understanding about the underlying mechanisms of those
features. For instance, while we have found high predictive
accuracy for an overall estimate of autistic reciprocal interaction
within a conversation, a more fine-grained analysis of behavioral
synchrony at different time points could shed light on possibly
fluctuating interaction dynamics. In addition, while this study
mainly explored the use and performance of one of the most
widely used machine learning algorithms in psychiatric research
[68], there exist a range of other supervised and unsupervised
machine learning algorithms that, given a careful cross-validation
procedure, tend to perform well with small sample sizes. An
additional exploratory analysis using Random Forest Classification
is included in the Supplementary Material (Section S4.7). However,
to gain deeper understanding of underlying interactions and
mechanisms in autistic social interaction, future research should
compare the performance indices and feature spaces selected by
different algorithms across different samples. Furthermore, inter-
pretable machine learning models could be used in future studies
to take feature analysis to the individual level and, thus, study the
heterogeneity of ASD in more detail as well as develop more
personalized psychosocial interventions.
In this study, we tested adults with autism with a diverse range

of cognitive functioning levels, autistic traits and ages. Never-
theless, our SVM models managed to identify participants of an
autistic social interaction with high accuracy. While this approach
prevents disclosure of the diagnostic status of each individual
within a dyad, thus, preserves anonymity, the continuing
developments in computer vision prediction models may raise
concerns of those affected over the risk of unwilling identification.
Hence, it should be emphasized that a professional clinician’s
rating is essential for diagnostic decision making in psychiatric
care. Consequently, diagnostic prediction models should be
viewed as augmenting, rather than replacing diagnostic assess-
ments made by trained clinicians [63]. However, a shift of data
collection from traditional questionnaire-based or behavior
observation diagnostic tools to objective digital markers will
produce sensitive data that needs to be continuously treated with
greatest care and data protection standards need to be abided by.
Here, automated coding of behaviors is especially beneficial as
opposed to manual approaches, allowing for instant anonymiza-
tion of extracted time series.
Conclusively, using carefully cross-validated ML algorithms, we

were able to classify members of autistic and non-autistic dyads
based on multiple objective non-verbal measures of reciprocity in
naturalistic social interactions. Facial synchrony within the dyad as
unit of analysis [29] proved to be the most valuable marker for
diagnostic classification of ASD. We are confident that with the
growing interconnectedness in psychiatric and computational
research, the complexity of social interaction difficulties in autism
can be optimally captured.
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ASD, the Autism Diagnostic Observation Schedule [ADOS(R); (7)], 
highlights that both changes in prosody and speech rate may indicate 
ASD, amongst other verbal behaviours.

A recent meta-analysis evaluated the alterations of speech features 
in ASD (5). $e authors found that pitch di#ers between autistic and 
non-autistic people in terms of increased mean and variance. However, 
results concerning intensity and speech rate were more equivocal. For 
both domains, many included studies did not show di#erences between 
autistic and non-autistic people, while other studies found e#ects, 
though not all of them in the same direction. $e meta-analysis did not 
include studies that investigated variance of intensity over the course 
of a conversation. In another systematic review (8), two studies 
investigating variance of intensity were mentioned, one of which did 
not !nd di#erences in intensity range (9), and the other found 
decreased standard deviation of intensity (10). It is important to note 
that both Fusaroli et al. (8) and Asghari et al. (5) included various 
modes of speech production, ranging from spontaneous production 
over narration to social interactions. Additionally, both included all age 
ranges, so it is possible that not all outcomes apply to adults.

In addition to the importance of speech di#erences, autistic people 
report having di&culties with small talk and are perceived as more 
awkward in conversations (11–14). Since small talk and conversations 
with strangers are essential for building connections with others, it is 
important to understand how autistic verbal behaviours di#er from 
non-autistic verbal behaviours in these situations. Reciprocal 
communication is characterised by a to and fro of speaking and 
listening. Successful turn-taking not only requires mutual prediction 
of an upcoming transition point but also a minute concertation of 
behaviours between interaction partners allowing them to be in sync 
(15). $e length of turn-taking gaps can be an estimate of how in sync 
interaction partners were and is associated with social connection (16). 
If two strangers lose their "ow, they tend to feel awkward and try to !ll 
the silence (17). A recent study by Ochi et al. (18) found increased 
turn-taking gaps and more silence vs. talking as measured by the 
silence-to-turn ratio (19). However, the sample consisted of only male 
autistic and non-autistic participants, and it is unclear whether the 
results generalise to people of other genders. $erefore, it is especially 
important to investigate turn structure in a more general sample to 
assess the quality of verbal communication.

Finally, the investigation of speech features should be extended to 
include the temporal !ne-tuning within interaction dyads, given the 
increasing literature showing reduced interactional synchrony in 
dyads of one autistic and one non-autistic compared to two 
non-autistic interaction partners [e.g. (20); for a review, see (21)]. 
Behavioural synchrony is the product of coordination between 
interaction partners. $is coordination can be achieved by the 
interaction partners adapting their behaviour to each other. Synchrony 
of speech features is well documented (22–25); however, research 
investigating speech synchrony in autistic people is scarce. Ochi et al. 
(18) found that non-autistic participants showed more synchrony 
between the ADOS interviewer’s intensity and their own than autistic 
participants, but they found no di#erences regarding synchrony of 
pitch. Wynn et al. (26) altered the speed in trial prompts and found 
that non-autistic adults adapted the speed of their answer in the 
corresponding trial, while autistic adults and children did not. Both 
studies show that interpersonal coordination of speech features is a 
promising avenue to investigate di#erences in verbal interaction 
between autistic and non-autistic people.

Additionally, a recent study also used parts of ADOS interviews 
to investigate classi!cation between autistic and non-autistic children 
based on synchrony of speech features (27). $ey extracted lexical 
features and calculated the similarity of the lexical content of the 
interviews. Machine learning classi!ers were able to predict whether 
a child was diagnosed with ASD with better accuracy when the 
synchrony measures were added to the model as compared to a model 
that only included individual speech features. However, in that study, 
the ADOS was used both for creating the true labels and to extract 
features for the classi!cation, risking circularity that might arti!cially 
in"ate accuracies. $erefore, it is vital to assess the performance of 
classi!ers with features extracted from data that is independent from 
the diagnostic process. In a recent study using automatically extracted 
interpersonal synchrony of motion quantity and facial expressions, 
we show that pursuing more naturalistic study designs can yield high 
classi!cation accuracy of almost 80% (28). If these results can 
be extended to speech and interactional features of verbal 
communication in adults, this would provide a low-tech and scalable 
route to assist clinicians with the diagnosis of ASD.

$is study design !lls the outlined gaps in the literature by 
extracting speech parameters with an automated pipeline from 
naturalistic conversations that are independent of the diagnostic 
assessment to avoid any circularity in the classi!cation procedure. $e 
automated extraction of features increases objectivity, speci!city and 
applicability of the pipeline to a variety of conversational paradigms. 
$e main aim of the current study was (i) to determine the potential 
of speech coordination as a diagnostic marker for ASD. Additionally, 
we de!ned two secondary aims: (ii) to describe individual speech 
feature di#erences, and (iii) interactional speech di#erences that can 
help explain the classi!cation power. Concerning our main aim (i), 
we expected that a multivariable prediction model would be able to 
classify dyad type based on individual speech and dyadic 
conversational features, thereby o#ering an exciting possibility for 
assisting diagnostics of ASD. On the individual level regarding our 
aim (ii), we expected that autistic and non-autistic individuals would 
di#er in their pitch variance, intensity variance and articulation rate. 
Additionally, we computed turn-based adaptation of pitch, intensity 
and articulation rate and expected increased turn-based adaptation in 
non-autistic compared to autistic individuals. On the dyadic level 
regarding our aim (iii), we hypothesised that interactional di#erences 
would be found in silence-to-turn ratios, turn-taking gaps as well as 
time-course synchrony of pitch and intensity.

2. Materials and methods

$is study is part of a larger project to !nd diagnostic markers for 
ASD. $e preregistration of the hypotheses regarding aim (ii) and (iii) 
can be retrieved from OSF.1 Preprocessing was performed using Praat 
6.2.09 (29), the uhm-o-meter scripts provided by De Jong et al. (30, 
31) and R 4.2.2 (32) in Rstudio 2022.12.0 (33). $e Bayesian analysis 
was performed in R and JASP 0.16.4 (34). $e machine learning 
analysis was conducted with the NeuroMiner toolbox 1.1 (35) 

1 https://osf.io/jhetr
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implemented in MATLAB R2022b (36) and Python 3.9.2 All code used 
to preprocess and analyse the data can be found on GitHub.3 We report 
our prediction model following the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) guidelines (37).

2.1. Participants

We recruited 35 autistic and 69 non-autistic participants from the 
general population and the outpatient clinic at the LMU University 
Hospital Munich by posting "yers at the university and at the hospital 
as well as distributing them online on social media and mailing lists. Of 
these participants, 26 autistic (mean age = 34.85 ± 12.01 years, 17 male) 
and 54 non-autistic (mean age = 30.80 ± 10.42 years, 21 male) 
participants were analysed (Figure 1). Non-autistic participants were 
recruited to match the overall gender and age distribution of the autistic 
sample. $is sample is a subset of the sample analysed by Koehler et al. 
(28) containing all participants with su&cient audio data quality.

All participants were between 18 and 60 years old, had no current 
neurological disorder and had an IQ above 70 based on verbal and 
non-verbal IQ tests (38, 39). For each autistic participant, an ASD 
diagnosis (F84.0 or F84.5) according to the ICD-10 (40) was 
con!rmed by evaluating the diagnostic report. All non-autistic 
participants had no current or previous psychiatric diagnosis and no 
intake of psychotropic medication. Autistic and non-autistic 
participants did not di#er credibly in age, verbal [measured with the 
Mehrfachwahl-Wortschatz-Intelligenztest, MWT-B; (38)] or 
nonverbal IQ [measured with the Culture Fair Intelligence Test, 
CFT-20-R; (39)], but they di#ered credibly on the Adult Dyspraxia 
Checklist [ADC; (41)], the Autism Quotient [AQ; (42)], the Beck’s 
Depression Inventory [BDI; (43)], Self-Monitoring Scale [SMS-short; 
(44)], the Saarbrückener Persönlichkeitsfragebogen [SPF; (45), 
German version of the Interpersonal Reacitivity Index, IRI, (46)] and 
the Toronto Alexithymia Scale [TAS-20; (47); see Table 1]. Two autistic 

2 https://github.com/neurominer-git/NeuroMiner_1.1

3 https://github.com/IreneSophia/MLSPE

participants had a comorbid diagnosis of attention de!cit hyperactivity 
disorder (ADHD), nine of an a#ective disorder and !ve of a neurotic 
stress-related or somatoform disorder. $e study was conducted in 
accordance with the Declaration of Helsinki and approved by the 
ethics committee of the medical faculty of the LMU. All participants 
provided written, informed consent and received a monetary 
compensation for their participation.

2.2. Experimental procedure

A'er giving informed consent, blood samples were taken, followed 
by demographics and the intelligence assessments. $roughout the 
session, participants completed the above listed questionnaires. $ey 
also performed a task assessing emotion recognition [BERT, (48)]. In 
addition, some of the participants took part in a separate study 
measuring endocrinology and e#ects of social ostracism.

We paired participants in either mixed dyads consisting of one 
autistic and one non-autistic participant or non-autistic dyads. 
Participants were paired based on availability regardless of age and 
gender. Dyads did not di#er in average age or age di#erence between 
the interaction partners. However, there was strong evidence in favour 
of a di#erence in gender composition (mixed dyads: mean 
age = 33.15 ± 7.72, mean age di#erence = 12.69 ± 9.18 [1 to 32 years], 
15% female, 35% male and 50% gender-mixed dyads; non-autistic 
dyads: mean age = 30.18 ± 8.22, mean age di#erence = 10.64 ± 11.15 [1 
to 31 years], 50% female and 50% gender-mixed; for statistical values 
see Supplementary material S1.1). We did not disclose their interaction 
partner’s diagnostic status to them. $e dyads engaged in two 
10-minute long conversations: one about their hobbies and one fun 
task in which they were asked to plan a menu consisting of food and 
drinks that they both disliked (49). On the one hand, we chose the 
hobbies task because special interests are a core symptom of ASD (4). 
On the other hand, the meal planning task facilitates a more 
collaborative interaction and has been shown to promote increased 
synchrony in non-autistic dyads (20). $e experimenter le' the room 
during the conversations. A'er both conversation tasks, participants 
were asked to rate the quality of their interactions. During the 
COVID-19 pandemic, testing had to be moved to a di#erent room 
a'er nine dyads and a plexiglass was placed between the participants 

FIGURE 1

This consort chart shows the recruitment and exclusion of participants. All sample sizes are given per participant and not per dyad. Colours indicate 
the group a#liation at the respective analysis step.
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as a health and safety measure. Participants did not wear masks during 
the conversations and the quality of interactions was rated equal 
before and a'er the measures had been put into place (28).

We captured participants’ behaviour via multiple channels. $e 
current study focuses on speech coordination captured with one 
recording device to which two separate microphones were connected 
(t.Bone earmic 500 with ZoomH4n recorder). $e nonverbal 
communication parameters, body movement captured by a scene 
camera (Logitech C922), facial expressions captured by two face 
cameras (Logitech C922), heart rate and electrodermal activity 
captured by wearables (Empatica E4), as well as the analysis of the 
blood samples were outside of the scope of the current analysis and 
published elsewhere (28). For more details on the data collection 
procedure, please consult Supplementary material S1.2.

2.3. Preprocessing

We extracted individual phonetic features for each task and 
participant using praat (29) (for more details, see 
Supplementary material S1.3). We calculated pitch and intensity 
synchrony with rMEA’s cross-correlation function to calculate 
windowed cross-lagged correlations (WCLC) using the same window 
length of 16 s, step size of 8 s and lag of 2 s as Ochi et al. (18). We used 
the uhm-o-meter (30, 31) to extract turns from conversations, with a 
turn de!ned as all speaking instances of one interactant until the end of 
the speaking instance preceding the next speaking instance of someone 
else (see Figure 2). For each turn, we calculated turn-taking gap, average 
pitch, average intensity and number of syllables to calculate articulation 
rate. Additionally, we used turn-based information to calculate how 
much each participant adapted their pitch, intensity and articulation rate 
to the pitch, intensity and articulation rate of the previous turn.

2.4. Comparison of synchrony with 
pseudosynchrony

We used segment shu(ing as described by Moulder et al. (50) to 
determine whether synchrony and turn-based adaptation calculations 

are credibly di#erent from their corresponding pseudo values (see also 
Supplementary material S3). $ese pseudo values are created by 
randomly shu(ing one of the interactant’s data and then computing 
synchrony between the shu(ed and real data. For each synchrony and 
turn-based adaptation value, we computed the average of 100 
pseudosynchrony or pseudoadaptation values. $en, we used a 
Bayesian paired t-test as implemented in the BayesFactor package to 
compare the values. $ere was evidence in favour of the hypotheses 
that pitch and intensity synchrony as well as turn-based adaptation of 
pitch, intensity and articulation rate were all credibly higher than the 
corresponding pseudo values (see Table 2). $is indicates that the 
obtained synchrony values exceeded chance coordination.

2.5. Support vector machine for 
classification

We used a linear L2-regularised L2-loss support vector machine 
(SVM) as implemented by LIBLINEAR in NeuroMiner to predict 
each individual’s participation in either a non-autistic or mixed dyad 
to address our main aim (i). SVMs have not only been applied to 
classify several psychiatric diagnoses (51, 52), but have been 
speci!cally applied to predict ASD based on interactional data (28, 53, 
54). $erefore, we chose to use an SVM to allow for comparability 
with previous results and decided on a linear SVM for its 
computational speed (55). We combined the SVM with a L2 or ridge 
regression since this seems to perform better with correlated 
predictors (56). $e SVM algorithm optimises a linear hyperplane to 
achieve maximum separability between non-autistic and mixed dyads 
in the high-dimensional feature space. Separability was assessed using 
balanced accuracy, which equally weighs sensitivity (ratio of true 
positives to the sum of the true positives and false negatives) and 
speci!city (ratio of true negatives to the sum of the true negatives and 
false positives). We used hyperplane weighting to account for 
unbalanced sample sizes where the misclassi!cation penalty for the 
smaller sample is increased (35). $e algorithm optimises the 
hyperplane so that the geometric margin between most similar 
instances of opposite classes (i.e. the support vectors) is maximised, 
thus increasing generalisability to new observations following the 
principles of statistical learning theory (57–59). $e SVM algorithm 
determines dyad membership by the position of an individual with 
respect to the optimally separating hyperplane (OSH), while the 
individual’s decision score measures the geometric distance to the 
OSH with higher absolute values indicating a more pronounced 
expression of the given separating pattern. $is decision score then 
determines the label assigned to an individual, speci!cally if the 
individual was part of a non-autistic or mixed dyad. All features (see 
Table 3) were scaled from −1 to 1 and pruned to exclude zero variance 
features as recommended by the NeuroMiner manual. We used a 
repeated, nested strati!ed cross-validation (CV) structure to account 
for the unbalanced sample sizes and the dyadic nature of the data, 
ensuring that two interactants of the same dyad were always in the 
same fold and that the ratio of interactants from mixed and 
non-autistic dyads was consistent in all folds. $e CV structure 
consisted of two loops with the outer loop being implemented in seven 
folds and 10 permutations and the inner loop with 10-fold and one 
permutation. $e outer loop iteratively held back !ve dyads to validate 
the algorithm on unseen data, while the rest of the dyads was included 

TABLE 1 Mean and standard deviation of the autistic and non-autistic 
samples analysed in this study as well as group comparisons performed 
with Bayesian Mann–Whitney U tests based on 10,000 samples.

Autistic Non-
autistic

Log(BF10) W

Age 34.85 ± 12.01 30.80 ± 10.42 −1.028 564.50

IQ – nonverbal 115.35 ± 22.96 117.07 ± 15.21 −1.384 716.50

IQ – verbal 112.12 ± 15.01 113.96 ± 16.53 −1.297 743.00

ADC 50.12 ± 16.06 15.57 ± 8.99 9.339 61.50

AQ 33.00 ± 8.41 14.26 ± 4.55 8.863 65.50

BDI 18.35 ± 12.36 3.94 ± 3.96 8.137 139.00

SMS-short 5.92 ± 2.86 9.54 ± 2.98 5.080 1,136.00

SPF 36.77 ± 6.62 45.43 ± 5.35 6.498 1,214.00

TAS-20 61.27 ± 11.74 36.91 ± 7.61 8.359 77.00

Note. ADC, Adult Dyspraxia Scale; AQ, Autism Quotient; BDI, Beck’s Depression Inventory; 
SMS-short, Self-Monitoring Scale; SPF, Saarbrückener Persönlichkeitsfragebogen; TAS-20, 
Toronto Alexithymia Scale.
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in the inner loop. Here, three dyads were held back for validation. $e 
decision scores of the test data of the inner loop were additionally 
post-hoc optimised according to the receiver operator function. Last, 
we used label permutation testing while keeping the cross-validation 
structure intact to assess whether the resulting SVM performance was 
above chance (5,000 permutations, αBonferroni-corrected = 0.007).

2.6. Bayesian analysis

We tested our hypotheses regarding aims (ii) and (iii) using 
Bayesian repeated-measures ANOVAs as implemented in JASP. Each 
ANOVA included one within-subjects factor (task: meal planning, 
hobbies) and one between-subjects factor, either diagnostic status 
(autistic, non-autistic) or dyad type (mixed, non-autistic). We checked 
for equality of variance and visually inspected whether the residuals 
were normally distributed. In the case of violations of these 
assumptions, we computed a non-parametric alternative and 
compared the results. We used the Bayes Factor to assess the strength 
of evidence for or against a model or inclusion of a factor. $e Bayes 
Factor is the ratio of marginal likelihoods, thereby quantifying how 
much more or less likely one model is than the other. We interpreted 
the logarithmic Bayes Factor according to Je#rey’s scheme (60). For 
example, if a model is more than 100 times as likely 
[Log(BF) > Log(100) = 4.6], we consider this decisive evidence in favour 
of this model [very strong: Log(BF) > 3.4; strong: Log(BF) > 2.3; 
moderate: Log(BF) > 1.1; anecdotal: Log(BF) > 0]. We use the logarithm 

of the Bayes Factor because it leads to symmetric thresholds: a Log(BF) 
of 4 signi!es very strong evidence in favour of a model and a Log(BF) 
of −4 the same strength of evidence against a model.

$ere was a credible di#erence between the gender composition 
of the non-autistic and the mixed dyads due to no non-autistic male 
dyads. Since studies have shown di#erences between genders with 
regard to language in ASD (61–63), we repeated all group comparisons 
on the dyad level excluding the male mixed dyads to ensure that 
possible di#erences are not driven by gender composition.

3. Results

3.1. Performance of support vector 
machine for classification

Our SVM algorithm was able to distinguish between individuals 
from a non-autistic and a mixed dyad with 76.2% balanced accuracy 
on the basis of both individual and dyadic speech and communication 
features. Speci!cally, 78.6% of the individuals from a non-autistic dyad 
were correctly labelled as such (speci!city), while 73.8% of the 
individuals from a mixed dyad were assigned the correct label 
(sensitivity, see Figure 3). While this model performs signi!cantly 
above chance levels (p < 0.001; area under the curve: 0.81 [CI 0.72–
0.92]; please consult Supplementary material S2 for more details on 

FIGURE 2

Conversations can be broken down into turns where one of the interactant is speaking and gaps between the turns. In a large-scale study, Templeton 
et al. (16) found that turns in an unstructured conversation between strangers have a median length of 1.8 s, while the median length of gaps was about 
0.2 s.

TABLE 2 Comparison of synchrony and turn-based adaptation values 
with their corresponding pseudo values.

Mean and 
SD of 
values

Mean and SD 
of pseudo 

values

Log(BF10)

Individual adaptation

Turn-based pitch 0.121 ± 0.107 0.087 ± 0.020 4.561

Turn-based intensity 0.146 ± 0.086 0.091 ± 0.017 20.977

Turn-based 
articulation rate

0.138 ± 0.096 0.099 ± 0.019 7.017

Dyadic synchrony

Pitch 0.197 ± 0.022 0.190 ± 0.003 1.423

Intensity 0.368 ± 0.048 0.164 ± 0.010 104.491

TABLE 3 List of individual and dyadic features.

Individual Dyadic

Articulation rate Number of turns

Number of pauses Silence-to-turn ratio

Number of syllables Speech rate

Phonation time Synchrony of intensity

Turn-based adaptation of articulation rate Synchrony of pitch

Turn-based adaptation of intensity Turn-taking gap

Turn-based adaptation of pitch

Variance of intensity

Variance of pitch

Note. All features were entered for the meal planning and the hobbies task separately, 
resulting in 30 features. Articulation rate refers to the number of syllables per phonation 
time, while speech rate refers to the number of syllables per total time (phonation time and 
silence).
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the SVM classi!er), it does not outperform a model trained on 
synchrony of facial expressions with a balanced accuracy of 79.5% or 
a stacked model with a balanced accuracy of 77.9% including multiple 
movement parameters automatically extracted from video recordings 
of dyadic interactions (28).

3.2. Group comparisons on the individual 
and the dyad level

3.2.1. Individual di#erences between autistic and 
non-autistic participants

Autistic participants di#ered from non-autistic participants in their 
speech features as evidenced by the results of the Bayesian ANOVAs.

3.2.1.1. Pitch
Pitch variance was best explained by a model including task and 

diagnostic status but not the interaction of the two [Log(BF10) = 5.612]. 
$e analysis of e#ects across matched models revealed very strong 
evidence for the inclusion of task and anecdotal evidence for the 
inclusion of diagnostic status [task: Log(BFincl) = 4.455; diagnostic 
status: Log(BFincl) = 1.030]. $ere was anecdotal evidence against the 
inclusion of the interaction [task × diagnostic status: 
Log(BFincl) = −0.510]. However, the Q-Q plot of the residuals revealed 
deviations from the normal distribution and the variances were not 
homogeneous. $erefore, we computed a Bayesian Mann–Whitney U 
test to determine whether the anecdotal evidence in favour of an e#ect 
of diagnostic status can be reproduced with a non-parametric test, 
which was the case [Log(BF10) = 0.888, W = 439.00]. Pitch variance was 
increased in non-autistic compared to autistic participants.

3.2.1.2. Intensity
$e best model describing intensity variance was the full model 

including the predictors task and diagnostic status as well as their 
interaction [Log(BF10) = 3.205]. $e analysis of e#ects across matched 
models revealed that this was mainly driven by the interaction with 
decisive evidence in favour of the interaction e#ect and moderate and 
anecdotal evidence against task and diagnostic status, respectively 
[task × diagnostic status: Log(BFincl) = 5.163; task: Log(BFincl) = −1.544; 

diagnostic status: Log(BFincl) = −0.436]. Speci!cally, while intensity 
variance of autistic participants was increased in the hobbies condition, 
the reverse was true for non-autistic participants (see Figure 4).

3.2.1.3. Articulation rate
Articulation rate was again best described by the full model 

including task, diagnostic status and the interaction [Log(BF10) = 6.727], 
with moderate evidence in favour of including diagnostic status as 
well as strong evidence in favour of including task and the interaction 
[task × diagnostic status: Log(BFincl) = 2.517; task: Log(BFincl) = 2.656; 
diagnostic status: Log(BFincl) = 1.517]. Articulation rate was faster in 
non-autistic than autistic participants.

3.2.1.4. Turn-based adaptation
Last, the null model outperformed all alternative models with 

anecdotal evidence in favour of the null model for turn-based adaptation 
of pitch and intensity (see Supplementary material S4). In the case of 
adaptation of articulation rate, there was anecdotal evidence in favour 
of the model including task but no other predictor [Log(BF10) = 1.072] 
with higher articulation rate in the meal planning condition. Since the 
residuals were not normally distributed, we performed non-parametric 
tests which con!rmed no e#ect of diagnostic status on all three 
adaptation parameters (see Supplementary material S4).

3.2.2. Dyadic di#erences between non-autistic 
and mixed dyads

Some interactional features di#ered between non-autistic and 
mixed dyads; however, others were comparable in both dyad types 
(see Figure 5).

3.2.2.1. Silence-to-turn ratio
$e silence-to-turn ratio was best predicted by the full model 

including both task and dyad type as well as the interaction 
[Log(BF10) = 4.141]. A closer look at the analysis of e#ects across 
matched models revealed strong evidence in favour of the inclusion 
of task and moderate evidence in favour of the inclusion of the 
interaction as well as anecdotal evidence against the inclusion of dyad 
type as a predictor [task × dyad type: Log(BFincl) = 1.690; task: 
Log(BFincl) = 2.449; dyad type: Log(BFincl) = 0.049]. $is seems to 

FIGURE 3

This graph shows for each participant the decision score calculated by the SVM classifier with participants from non-autistic dyads in blue and 
participants from mixed dyads in green. Filled circles were correctly categorised by the classifier, while empty circles were misclassified.
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be driven by the increased di#erence between mixed and non-autistic 
dyads in the meal planning condition; although, in both conditions the 
silence-to-turn ratio was smaller in the case of non-autistic dyads.

3.2.2.2. Turn-taking gap
Turn-taking gap was best explained by the model only including 

the predictor dyad type for which there was anecdotal evidence 
[Log(BF10) = 0.267]. Similarly, there was anecdotal evidence in favour 
of including dyad type as well as the interaction of dyad type and task 
but moderate evidence against including task [task × dyad type: 
Log(BFincl) = 0.877; task: Log(BFincl) = −1.369; dyad type: 
Log(BFincl) = 0.279]. Turn-taking gaps tended to be slightly longer in 
the mixed dyads, especially in the meal planning task.

3.2.2.3. Pitch synchrony
Pitch synchrony, as calculated with WCLC, was best explained by 

the null model, suggesting that interactants of both dyad types 
adjusted their pitch to a similar extent to each other (see 
Supplementary material S5).

3.2.2.4. Intensity synchrony
Nonetheless, non-autistic and mixed dyads di#ered in their 

WCLC synchrony of intensity with the best model predicting WLCL 
synchrony of intensity including both task and dyad type but not the 
interaction [Log(BF10) = 7.150]. Indeed, there is anecdotal evidence 

against the inclusion of the interaction, while there is decisive evidence 
for the inclusion of task and moderate evidence for the inclusion of 
dyad type [task × dyad type: Log(BFincl) = −0.813; task: 
Log(BFincl) = 5.567; dyad type: Log(BFincl) = 1.576]. Mixed dyads 
adjusted their intensity more strongly, with more synchrony in the 
hobbies condition in both dyad types.

3.2.2.5. Comparison of dyads excluding male dyads
We repeated the analyses of silence-to-turn ratio, turn-taking gap, 

pitch synchrony and intensity synchrony in a limited sample excluding 
all male dyads to ensure that the found di#erences are not driven by 
di#erences in gender composition between mixed and non-autistic 
dyads. For all four parameters, the same model was supported by the 
evidence as the best model as for the full sample (see 
Supplementary material S6). $erefore, it is unlikely that the found 
di#erences were driven by gender composition.

4. Discussion

Di#erences in verbal communication are an important symptom 
of ASD (4, 7). We paired strangers and asked them to have two 
conversations, one about their hobbies and one where they 
collaboratively planned a meal with food and drinks that they both 
dislike. $e dyads either consisted of two non-autistic adults or of one 

FIGURE 4

This graph shows the distribution of individual features in the autistic and non-autistic participants as scatterplots, density plots and box plots. The 
boxes show the interquartile range and the median, while the whiskers show 1.5 times the interquartile range added to the third and subtracted from 
the first quartile. In the first row, panel (A) shows pitch variance, panel (B) intensity variance and the panel (C) articulation rate. All three features were 
increased in non-autistic compared to autistic participants. The second row shows the amount participants adapted their pitch (D), intensity (E) and 
articulation rate (F) to the previous turn. There were no significant di!erences in adaption of all three speech factors between autistic and non-autistic 
participants.
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autistic and one non-autistic adult. $is study aimed at answering the 
following research question: (i) what is the potential of speech and 
interactional features of communication for objective, reliable and 
scalable classi!cation of ASD? Additionally, we used the extracted 
features to answer the following questions: (ii) how do autistic and 
non-autistic people di#er with regards to their speech, and (iii) how 
do interactions between an autistic and a non-autistic person di#er 
from interactions between two non-autistic people?

Regarding our main research question (i), we are able to present 
a multivariable prediction model that is able to distinguish between 
mixed and non-autistic dyads with above 75% of balanced accuracy. 
Automated extraction of speech and interactional features of verbal 
conversations o#er an exciting new avenue for investigating symptoms 
as well as assisting the diagnosis of ASD. First, automated extraction 
increases objectivity and replicability while also providing a more 
detailed and !ne-grained perspective on actual speech di#erences. 
$is !ne-grained perspective could in turn inform intervention by 

focusing on the speci!c aspects that di#er between autistic and 
non-autistic conversation partners. Additionally, the current 
diagnostic procedures are time consuming, and recommendations 
include a combination of semi-structured interviews and 
neuropsychological assessments (64). $is increases psychological 
stress for the a#ected person and their families (64, 65). Recent studies 
have shown that machine learning algorithms based on automatically 
extracted features could assist in this process (18, 27, 28, 53). Koehler 
et al. (28) automatically extracted movement parameters from the 
video recordings of the dyadic interactions analysed here, although in 
a slightly larger sample. A support vector machine based on the 
synchrony of facial expressions led to a balanced accuracy of almost 
80% and a stacked model of di#erent modalities achieved a balanced 
accuracy of 77.9%, both outperforming the here-proposed model. 
However, the extraction from speech and interactional features based 
on audio recordings o#ers an especially low-tech and user-friendly 
data collection procedure that is scalable and economic. As long as the 

FIGURE 5

This graph shows the distribution of dyadic features for mixed and non-autistic dyads. Panel (A) shows the silence-to-turn ratio which was higher in 
mixed compared to non-autistic dyads. Panel (B) shows turn-taking gaps which were, on average, longer in mixed dyads. The lower panels show time-
course synchrony of pitch (C) and intensity (D) with the latter being higher in mixed dyads.



Plank et al. 10.3389/fpsyt.2023.1257569

Frontiers in Psychiatry 09 frontiersin.org

environment is quiet and each of the interaction partners has their 
own microphone, the proposed preprocessing pipeline is easily 
applicable. Additionally, this study shows the feasibility of recording 
free conversations with prede!ned topics without the need of a semi-
structured interview or of a trained conversation partner.

$e here-presented and other studies (18, 27, 28, 53) show the 
potential of developing a multivariable prediction model to assist 
diagnostics of ASD. However, sample sizes in all of these studies are 
limited, and while they serve as a proof-of-concept, it is paramount to 
develop and validate such a multivariable prediction model with 
signi!cantly larger sample sizes. Such a large-scale study could also 
compare di#erent machine learning algorithms to ensure optimal 
performance. Automated extraction of speech and conversation features 
from audio recordings of people performing the meal planning task may 
be especially fruitful for collecting a large data set, especially if the here-
presented e#ects persist in virtual conversations. Additionally, it is 
important to note that the autistic adults in our sample are not 
representative for many autistic adults, for example those with an 
intellectual disability or those who are non-verbal. $is also limits the 
applicability of any developed prediction model based on speech and 
interactional features to a subsample of the autistic population. 
Furthermore, although the non-autistic sample did not di#er from the 
autistic sample in age and gender distribution, a questionnaire 
measuring autism-like traits indicated that the non-autistic sample was 
positioned at one end and the autistic sample at the other end of this 
spectrum. Although this is representative of a non-clinical population, 
higher autism-like traits are also observed in other clinical populations 
(66). Future research should include a representative sample of other 
psychiatric diagnoses than ASD. $is can only be achieved by evaluating 
the performance of the here-presented multivariable prediction model 
in a large-scale study to ensure its adequate translation to the clinical 
reality of the diagnostic process.

Concerning research question (ii), our results regarding the 
speech di#erences between autistic and non-autistic adults di#er from 
a recent meta-analysis (5). While we found increased pitch and 
intensity variance as well as articulation rate in non-autistic compared 
to autistic adults, the authors of the meta-analysis report decreased 
pitch variability for non-autistic compared to autistic people as well as 
no signi!cant di#erences regarding intensity variability and speech 
rate. However, the meta-analysis included a wider sample ranging 
from infants to adults and several modes of speech production 
including conversations, narration, semi-standardised tests and 
crying. Focusing on an adult sample and a conversation paradigm, 
Ochi et al. (18) found a decrease in the standard deviation of intensity 
in autistic compared to non-autistic adults but no di#erence in speech 
rate. Additionally, Kaland et al. (67) also found a decrease in pitch 
range in autistic compared to non-autistic adults. However, autistic 
adults seem to show a larger pitch range or variability compared to 
non-autistic adults in less naturalistic contexts including the narrative 
subtext of an assessment scale (68), answering questions about 
pictures (69) and when asked to produce a phrase conveying speci!c 
emotions (70). Interestingly, Hubbard et al. (70) used produced 
emotional phrases to assess whether the emotion is recognisable. $ey 
found that while phrases produced by autistic adults were matched 
with the intended emotion more o'en, they were also perceived as 
sounding less natural. $erefore, it is possible that autistic adults 
exaggerate in arti!cial contexts more strongly than non-autistic adults, 
leading to less natural and, most importantly, less representative 

speech. $is would explain the di#erences in pitch variability between 
more and less interactive speech paradigms and highlights that speech 
in monologues and interactive dialogues needs to be distinguished in 
order to contextualise decreased or increased pitch variability in ASD.

Despite several interventions aiming at improving verbal 
communication skills and turn-taking (71–73), there is little research 
on di#erences in interactional features of conversations including 
autistic people. In this study, we investigated the ratio of silence to turns 
as well as the duration of the gaps between turns to investigate research 
question (iii). We found that mixed dyads had a credibly higher ratio of 
silence to turns, especially when collaboratively planning a meal. $is 
indicates that the amount they were silent was higher, and they were 
speaking less. $is is in line with the !ndings by Ochi et al. (18). 
However, we only found anecdotal evidence in favour of a di#erence in 
turn-taking gaps between mixed and non-autistic dyads, while Ochi 
and colleagues reported a clear e#ect of credibly longer turn-taking 
gaps when the ADOS was conducted with autistic adults compared to 
non-autistic adults. $is elongation of turn-taking gaps has also been 
reported for children taking the ADOS by Bone et al. (74). Additionally, 
they found that both less speaking time and longer turn-taking gaps 
correlated with ADOS severity, and that there was a signi!cant 
di#erence in the length of turn-taking gaps between children who were 
diagnosed with ASD and those who were diagnosed with other 
developmental disorders. $is discrepancy could be due to the 
conversation topics. In our studies, the di#erence in turn-taking gaps 
was smaller in the hobbies task which could suggest that di#erences are 
reduced when autistic adults are talking about their special interests.

It is important to note that studies have shown that some 
di#erences in interactions can be reduced or even diminished when 
autistic individuals are interacting with other autistic people [75–80; 
for a possible theory explaining this phenomenon see Milton, (81)]. 
Since this study did not include dyads consisting of two autistic 
people, it is unclear if the found di#erences would extend to such a 
scenario. Future research examining interactional features in verbal 
communication should investigate possible di#erences not only 
between mixed and non-autistic dyads, but should also include 
comparisons with dyads consisting of two autistic interaction partners.

In addition to interactional features of verbal conversations, 
we also assessed synchrony and turn-based adaptation of speech 
features between two interaction partners in a dyad. We found no 
di#erence in turn-based adaptation between autistic and non-autistic 
adults, meaning that the extent to which they adapted their pitch, 
intensity and articulation rate to the previous turn was comparable in 
both groups. Similarly, we also did not !nd any di#erences between 
time-course synchrony of pitch between mixed and non-autistic 
dyads. However, we found that time-course synchrony of intensity was 
higher in mixed dyads than in non-autistic dyads. $is is in contrast 
to Ochi et al. (18) who found increased correlation of the blockwise 
mean of intensity in conversations with non-autistic compared to 
autistic adults in the context of the ADOS. $ey also found a trend 
towards increased correlation of the blockwise mean of pitch in the 
conversations with non-autistic adults. Similarly, Lahiri et al. (27) 
found decreased dissimilarity of prosodic features which suggests 
increased synchrony in non-autistic children when analysing 
conversations from the ADOS. $is is also more in line with previous 
research on other modalities which consistently shows reduced 
interpersonal synchrony in mixed dyads including an autistic person 
compared to dyads consisting of two non-autistic people (21). More 
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research is needed to assess in which context interpersonal synchrony 
of speech features di#ers between autistic and non-autistic adults or 
mixed and non-autistic dyads.

Despite the insights this study o#ers, it is still unclear how context 
in"uences speech production with respect to ASD. We aimed for a 
naturalistic conversation setting with one common (hobbies) and one 
uncommon (meal planning) conversation topic. Other studies have 
opted to focus on a more controlled speech production by pairing 
participants with a trained diagnostician (18, 27), asking participants 
to retell a story (68) or even to produce a speci!c phrase with the aim 
of conveying a prede!ned emotion (70). Some of these contexts may 
have led to the di#erences in the reported results. $e in"uence of 
context could be investigated by combining a naturalistic 
conversation task with a more controlled speech production task. $e 
!rst would allow to assess speech features in an interactive settings 
similar to everyday conversations, while the latter could provide a 
baseline for each participant. Additionally, the in"uence of the 
interaction partners themselves has not been investigated yet. In our 
study, all interaction partners were strangers before the experiment, 
and in other studies, the interaction partners were o'en part of the 
research team (18).

In this study, we investigated the potential of speech and 
interactional features of verbal communication for digitally assisted 
diagnostics. We used automatic feature extraction on two naturalistic 
10-minute conversations between either two non-autistic strangers 
(non-autistic dyad) or one autistic and one non-autistic stranger 
(mixed dyad). We were able to classify between individuals from a 
non-autistic vs. from a mixed dyad based on these features with high 
accuracy which o#ers a low-tech, economic and scalable option for 
diagnostic classi!cation. Additionally, we have shown di#erences in 
pitch and intensity variation as well as articulation rate between 
autistic and non-autistic adults and di#erences in silence-to-turn 
ratio, turn-taking gaps and time-course synchrony of intensity 
between non-autistic and mixed dyads. $is study shows the potential 
of verbal markers for diagnostic classi!cation of ASD and suggests 
multiple relevant features showing di#erences between autistic and 
non-autistic adults.
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4 Original Study III – Classifying autism in a clinical 
population based on motion synchrony: a proof-of-
concept study using real-life diagnostic interviews 

Contributions and reference 
This project aimed to test the predictability of motion synchrony obtained through 
objective computer vision analyses of real-life diagnostic interviews for the diag-
nostic classification of autism in a clinical population. This study was an interna-
tional collaboration with Seoul National University (SNU). I designed and super-
vised the implementation of the preprocessing pipeline at SNU Bundang Hospital, 

involving an extended on-site lab visit followed up by remote consultation. I was 
further involved in the screening of eligible videos. I analyzed the final data set 
using RStudio [69] and NeuroMiner [70] and interpreted the results in conjunction 
with the shared first author. I presented the results to the scientific community 
during talks and poster presentations at different conferences. In compliance with 
the endeavor of reproducibility and open science, I published the analysis scripts 
on GitHub (https://github.com/jckoe/SNU_ASDsync) and made a preprint availa-
ble on MedRXiv. I wrote the manuscript and was primarily responsible to the re-
vision process and finalizing the published article.  
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the originally proposed 11-item diagnostic algorithm. Nevertheless, this approach is prone to a certain circular-
ity, given the outcome criterion, that is the clinical diagnosis of ASD, is heavily in#uenced by the features used 
for  prediction8. $us, using machine learning on objective and rater-independent datasets for the screening of 
potential markers is desirable. Hence, several studies investigated structural or functional brain abnormalities 
as predictive markers in  ASD9, with promising accuracies especially for younger  children10. However, methods 
such as magnetic resonance imaging lack scalability and are impractical to implement in standardized clinical 
practice. Additionally, those approaches pose special challenges for a sensory-sensitive study population such as 
autistic individuals. $us, a more translational approach uses machine learning for diagnostic classi!cation in 
ASD through digitally assisted diagnostics or digital  phenotyping11, which directly taps the symptomatic behav-
ior. $is approach combines the advantages of moving away from the human coding of behaviors while using 
more scalable methods such as tablet-based movement data or video analysis via computer vision techniques. 
For instance, Anzulewicz and  colleagues12 reported that a machine learning model trained to identify children 
with ASD based on their tablet-recorded motion trajectories performed with an accuracy of 93%. In a recent 
study, Jin et al13. developed a pipeline to objectively extract movement features correlated with clinicians’ ratings 
from children during ADOS interviews. Movement aberrances in autism are common, though its connection to 
autistic core symptomatology remains  unclear14.

Although autism is commonly referred to as a disorder of social interaction, thus, implying a certain degree 
of reciprocity, this aspect is challenging to assess objectively. $e increasingly studied phenomenon of reduced 
interpersonal synchrony in  ASD15 provides such an opportunity. Interpersonal synchrony is commonly de!ned as 
the alignment of individuals within an  interaction16,17 and has found to be predictive for conversational features 
and outcomes, such as prosocial  behavior18 or  empathy19. Given the frequent mismatch and o%en perceived 
awkwardness in autistic social interactions, a number of studies have investigated a potential link of interper-
sonal synchrony to the autistic phenotype, as well as potential  interventions15. While interpersonal synchrony 
encompasses a range of aligned signals on multiple modalities, for this speci!c study we focused exclusively on 
interpersonal motor synchrony, i.e., the alignment of movement within a conversation. In a previous  study20, we 
found reduced interpersonal synchrony as derived from motion energy analysis  (MEA21) in diagnostic interviews 
with autistic adults as compared to those who did not subsequently receive an autism diagnosis. Furthermore, 
we explored the predictiveness of interpersonal synchrony between autistic and non-autistic interactants on 
multiple modalities, !nding high accuracy for the synchrony of facial and head  movements22. However, these 
studies were conducted with adults, and while motor di&culties in autism tend to persist throughout  adulthood23, 
little is known about the predictive power of synchrony alterations in children.

In a study on video-based pose estimation, Kojovic et al24. investigated videos of ADOS interviews with 
small children. $eir deep neural network analysis of multiple aspects of non-verbal interaction di'erentiated 
between autistic children and typically-developing (TD) children with an accuracy of 80.9% and additionally 
revealed associations between their model and the overall level of symptomatology. $us, modeling based on 
direct extraction of predictive features from diagnostic videos opens a promising avenue for the clinical setting.

Our aim in this proof-of-concept study was to investigate automatic video analysis as a scalable approach to 
screen for synchrony alterations as an objective marker to classify autism in children and adolescents in transi-
tion to adulthood. To this end, we trained several support vector machine (SVM) classi!cation models using 
synchrony features extracted from videos of real-life ADOS-2 interviews and investigated the associations of 
our classi!ers’ outputs with professional clinical ratings. Importantly, to explore model speci!city in a realistic 
clinical scenario, we used a representative clinical sample that included participants who were subsequently 
diagnosed with ASD as well as patients with other psychiatric diagnoses.

Methods
In the following, we report the details of our prediction model following the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)  guidelines25.

Sample
$e ADOS-2 videos and their related datasets were compiled from two di'erent sources at Seoul National Uni-
versity Bundang Hospital: the patient pool of the psychiatric outpatient clinic for children and adolescents as well 
as from a study population of an unrelated study that included the ADOS-2. $erefore, the inclusion criteria and 
available data slightly di'ered. Patients referred to the outpatient clinic underwent extensive clinical examina-
tion to evaluate the presence of an ASD or di'erential diagnosis. Additional information on comorbidities and 
medication for this subsample is available in the supplementary material (see Supplementary Table S4.1) and 
was not included in the !nal analysis. For the patients from the unrelated study, ADOS-2 was performed as part 
of the study protocol, though the diagnosis had either already been suspected or given elsewhere. In contrast to 
the outpatient pool, exclusion criteria were applied in the unrelated study which comprised severe motor impair-
ments restricting patients from engaging in the required ADOS-2 activities, as well as sensory-related issues or 
selective mutism. No age limit applied.

For all cases from both sources, the autism diagnosis was con!rmed as a best clinical estimate consensus 
diagnosis by two psychiatrists, taking into account ADOS-2 and ADI-R results, as well as other neuropsycho-
logical assessments.

An overview of the current sample compilation procedure can be found in Fig. 1. All available ADOS-2 video 
materials were initially screened for the !rst occurrence of at least !ve minutes of consecutive and unobstructed 
footage for every participant based upon the following criteria: (a) steady camera position and constant lighting, 
(b) camera angle that includes the head and upper body of both participant and ADOS-2 administrator, (c) both 
participant and administrator being seated throughout all video frames (i.e., no freeplay, no running around), 
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0.5 s, according to the default setting in rMEA. A comparison analysis of potential feature di'erences depending 
on the room can be found in the supplementary material (S2.2).

Interpersonal synchrony between participant and administrator in their head and body motion was computed 
with windowed cross-lagged correlations. In line with a previous analysis of diagnostic interviews with autistic 
 adults20, a window size of 60 s was chosen. To capture all instances of synchrony, time series were cross correlated 
with lags of 5 s and increments of 30 s. All values in the resulting cross-correlation matrices were converted to 
absolute Fisher Z values. Time series were subsequently shu(ed and randomly paired into 500 pseudodyads. 
Cross correlations were conducted in the same manner, yielding a measure of pseudosynchrony per arti!cial 
dyad. $ey were subsequently compared to the interpersonal synchrony values to assess whether the interper-
sonal synchrony values were above-chance. Detailed results can be found in the supplementary material (S2.3).

Moreover, following procedures from Georgescu et al27., intrapersonal head and body coordination was 
computed for every patient, using window sizes of 30 s, lags of 5 s and a step size of 15 s.

Lastly, we derived the head and body movement quantity per participant from the respective MEA time series. 
Following previous  procedures20,28, they were de!ned as the number of frames with changes in motion energy 
divided by the total number of frames, resulting in four values per dyad (two for participant and administrator, 
respectively).

In addition to the processing of motion, we submitted our videos to an exploratory vocal output analysis. For 
this purpose, the audio tracks of the selected clips were processed with the so%ware  Praat29 to semi-automatically 
extract annotations of intervals of vocalizations and silences. As there was no speaker distinction within the 
audio tracks, this analysis was considered exploratory and is not included in the main machine learning analysis. 
Details can be found in the supplementary material (S1.1).

Feature engineering
Because the videos in our sample varied in both length and conversational content (see Supplementary Mate-
rial S2.1), as well as to account for the interview context, our aim was to gain the best estimate of the overall 
synchrony (i.e., instances in and out of synchrony), while simultaneously maintaining an adequate feature-to-
sample ratio. For this reason, summary statistics of each cross-correlation matrix were computed (i.e., minimum, 
maximum, mean, median, standard deviation, skew, and kurtosis), resulting in seven features per participant-
administrator dyad and region of interest (ROI). $is procedure expands previous research investigating only 
the average of the entire matrix as a measure of synchrony (e.g28,30), therefore, providing additional insight and 
information on the richness of the data at hand. We additionally computed the same summary statistics for 
the intrapersonal head-body coordination of each participant. $is approach slightly di'ered from a previous 
 study22, where we were interested in the trajectory of maximum synchrony instances during naturalistic and 
free-#owing conversations. To comply with previous procedures, we additionally computed a feature set using 
a peak-picking algorithm to obtain a measure of the trajectory of the highest synchrony instances during each 
interview. Details and results can be found in the supplementary material (S2.4).

$e !nal feature set for each dyad consisted of 25 features per participant-administrator dyad (see Supplemen-
tary Table S4.2): seven interpersonal synchrony features per dyad and ROI (head and body), seven features for 
the intrapersonal head-body coordination of every participant, as well as four features for the individual amount 
of head and body movement of both interactants. IQ and sex of the participant were additionally included as 
features in a second model, as both are frequently associated with autism symptomatology and the likelihood 
of receiving a  diagnosis31,32.

Support vector machine (SVM) learning analyses
We trained two separate binary machine learning models to classify between dyad type: (1) a “behavioral” model 
containing only synchrony data objectively extracted from the videos (MEA), and (2) a model additionally 
containing sex and IQ as demographic features (MEA + DEMO). Taking into consideration the large age range 
in our sample, age was regressed out in both models. By constructing two separate models, we could explore 
whether demographic features frequently associated with ASD might improve the purely behavioral predictive 
performance. A L1-loss LIBSVM algorithm was chosen for both models, as it is frequently used in psychiatric 
 research33, known to perform robustly with reduced sample  sizes34. In each model, the SVM algorithm indepen-
dently modeled a linear relationship between features and classi!cation labels by optimizing a linear hyperplane 
in a high-dimensional feature space to maximize separability between the dyads. Subsequently, the data was 
projected into the linear kernel space and their geometric distance to the decision boundary was measured. $us, 
every dyad was assigned a predicted classi!cation label and a decision score.

Machine learning analyses were conducted in NeuroMiner (Version 1.1; https:// github. molgen. mpg. de/ 
pages/ LMU- Neuro diagn ostic- Appli catio ns/ Neuro Miner. io/)35, an open-source mixed  MATLAB36-Python-based 
machine learning library. To prevent any possibility of information leakage between training and testing data, 
our diagnostic classi!ers were cross-validated in a repeated, nested, strati!ed cross-validation scheme. We used 
ten folds and ten permutations in the outer CV loop (CV2) and ten folds and one permutation in the inner loop 
(CV1). Speci!cally, at the CV2 level, we iteratively held back 9 or 10 participant-administrator dyads as test 
samples, while the rest of the data entered the CV1 cycle, where the data were again split into training and vali-
dation sets. $is way training and testing data were strictly separated, with hyper-parameter tuning happening 
entirely within the inner loop while the outer loop was exclusively used to measure the classi!er’s generalizability 
to unseen data and generate decision scores for each dyad in this partition. $is process was repeated for the 
remaining folds, a%er which the participants were reshu(ed within their group and the process was repeated nine 
times, producing 10 × 10 = 100 decision scores for each held out participant. $e !nal median decision score of 
each held out dyad was computed from the scores provided by the ensemble of models in which given dyad had 
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not been used at the CV1 level for training or hyperparameter optimization. Additionally, the strati!ed design 
ensured that the proportion of the diagnostic groups in every fold would adequately re#ect the proportion of 
the diagnostic group in the full sample and, thus, guarantee that each class is equally represented in each test 
fold to avoid bias during model training.

$e preprocessing settings for the respective models can be found in Table 1.
Class imbalances were corrected for by hyperplane weighting. Balanced Accuracy (BAC = [sensitivity + speci-

!city]/2) was used as the performance criterion for hyperparameter optimization. $e C parameter was optimized 
in the CV1 cycle using 11 parameters within the following range: 0.0156, 0.0312, 0.0625, 0.1250, 0.2500, 0.5000, 
1, 2, 4, 8, and 16, which represent the default settings in  NeuroMiner35. Model signi!cance was assessed through 
label permutation  testing37, with a signi!cance level α = 0.05 and 1000 permutations. $e permutation testing 
procedure determines the statistical signi!cance of a model’s performances (i.e., BAC) by using the current data 
compared to models trained on the dataset but with the labels randomly permuted. Details regarding the per-
mutation testing procedure can be found in the supplementary materials. $e predictive pattern of the models 
was extracted using cross-validation ratio (CVR) and sign-based consistency. Firstly, CVR was computed as the 
mean and standard error of all normalized SVM weight vectors concatenated across the entire nested CV struc-
ture. CVR measures pattern element stability and was de!ned as the sum across CV2 folds of the CV1 median 
weights divided by their respective CV1 standard error, all of which was subsequently divided by the number of 
CV2  folds38. Secondly, we used the sign-based-consistency  method39 to test the stability of the predictive pattern 
by examining the consistency of positive and negative signs of the feature weight values across all models in the 
ensemble (see Supplementary Material S1.2 for additional information). Feature stability was assessed for statisti-
cal signi!cance at α = 0.05, using the Benjamini–Hochberg procedure of false discovery rate correction (FDR)40.

Associations of SVM model and clinical variables
To investigate potential underlying clinical factors associated with our classi!cation models, post-hoc correla-
tion analyses with the SVM decision scores and ADOS-2, as well as ADI-R scores were performed in RStudio 
(version 2022–07.2)41. A dyad’s predicted SVM decision score represents their distance from the hyperplane. 
ADOS-2 scores included domain scores for social a'ect (SA) and restricted and repetitive behaviors (RRB), as 
well as the total score (Total). Because our sample included data from both modules three and four, calibrated 
severity  scores42,43 were used for the correlation analyses for better comparison. For ADI-R, ratings on three 
subdomains based on caregiver report were used: reciprocal social interaction (A), social communication (B), 
and restricted and repetitive behaviors (C). Statistical signi!cance was determined at α = 0.05 and two-sided p 
values were corrected for multiple comparisons using FDR.

Exploratory SVM analysis
To further address the speci!city of synchrony, given that phenotypic movement di&culties overlap in neurode-
velopmental disorders (e.g., dyspraxia and autism, or hyperkinetic movement in ADHD), the MEA classi!er 
was retrained within the same sample but using di'erent class labels: (i) a neurodevelopmental disorders class, 
which grouped all 74 patients with a diagnosis of a neurodevelopmental disorder as de!ned by DSM-544 (n = 56 
ASD, n = 10 ADHD, n = 1 Developmental Delay, n = 1 Tourette Syndrome, n = 4 Intellectual Disability, n = 2 Broad 
Spectrum/Pervasive Developmental Disorder–Not Otherwise Speci!ed (PDD-NOS)), and (ii) a clinical control 
group consisting of the 20 patients with other psychiatric diagnoses or typically-developing participants (n = 12 
TD including 8 una'ected siblings, n = 1 Anxiety Disorder, n = 2 Bipolar Disorder, n = 4 Depressive Disorder, 
n = 1 Social Phobia). $e strati!ed CV structure was adapted accordingly.

Table 1.  SVM Classi!cation Model Descriptions. Number of features of respective modality in parentheses. 
Missing IQ values (16% of cases) were imputed using k-nearest neighbor imputation.

Model Features Preprocessing pipeline

MEA

Interpersonal head synchrony (7) 1. Scaling between 0 and 1

Interpersonal body synchrony (7) 2. Pruning of non-informative features (zero variance, in!nite 
values)

Intrapersonal head-body coordination of patient (7)
3. Age as covariate (partial correlation)

Total head and body movement (4)

MEA + DEMO

Interpersonal head synchrony (7) 1. Scaling between 0 and 1

Interpersonal body synchrony (7) 2. Pruning of non-informative features (zero variance, in!nite 
values)

Intrapersonal head-body coordination of patient (7) 3. k-nearest neighbor imputation of missing values
Total head and body movement (4)

4. Age as covariate (partial correlation)IQ (1)
Sex (1)
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Results
Sample description
A description of the !nal sample grouped according to the ADOS-2 module can be found in Table 2. A chi-square 
test of independence revealed no signi!cant association between the diagnostic group and sex (χ2(1,94) = 0.045, 
p = 0.831). $ough naturally participants across both modules di'ered in age, there was no signi!cant di'erence 
in age between diagnostic groups within each module. Because !nal diagnosis was partly based on ADOS-2 and 
ADI-R results, autistic patients across both modules had signi!cantly higher ADOS-2 as well as ADI-R scores 
compared with the clinical control group. Best-estimate IQ values were signi!cantly higher in the CC group 
for module 3. $is e'ect was reversed in module 4, with autistic patients scoring signi!cantly higher on their 
respective IQ assessment. SVM Classi!cation Performance and Feature Importance.

Using only motion energy analysis data and regressing out age, our MEA model was able to classify interview 
dyads with an autistic participant as opposed to those with other psychiatric diagnoses with a BAC of 63.4% 
(Fig. 2). Detailed performance metrics, i.e., sensitivity, speci!city, accuracy, positive and negative predictive 
values, and Area-Under-the-Receiver-Operating-Curve (AUC) can be found in Table 3. $ere was no signi!cant 
residual association between age (M = 13.53, SD = 4.70) and the model’s resulting decision scores (M = 0.19, 
SD = 0.89) a%er regressing out age during pre-processing (rPearson = 0.06, p = 0.558). $e model that addition-
ally included sex and IQ as features (MEA + DEMO) had a lower BAC of 59.4% (Sensitivity = 71.4%, Speci!c-
ity = 47.4%, AUC = 0.58[CI = 0.46—0.70], also see S4.3Supplementary Table).

A closer investigation of the cross-validation ratio revealed that classi!cation towards the autism-adminis-
trator dyads was driven by higher kurtosis and skewness of their body synchrony values (Fig. 3a). $is means 
that a dyad with more pronounced outliers in their body synchrony, especially in the positive direction, was 
considered more autistic. In contrast, our model considered higher mean body synchrony values as non-autistic. 
Sign-based consistency revealed that this e'ect was relatively stable (Fig. 3b). Interestingly, the opposite e'ect 
was visible for head synchrony: higher kurtosis and skewness of head synchrony values were considered non-
autistic, whereas higher mean head synchrony values were considered autistic. However, this was not consistent 
and of less feature importance than body synchrony.

A closer look at the movement parameters of both participant and administrator revealed that more move-
ment by the administrator was taken into account when classifying an autistic dyad, whereas more movement 
by the participant was classi!ed as a clinical control dyad.

A comprehensive list of cross-validation ratios and sign-based consistencies for all features of the MEA model 
can be found in the Supplementary Material (Supplementary Figs. 2 and 3).

Associations between SVM model scores and clinical variables
We conducted a range of correlation analyses of the resulting SVM scores of our models with ADOS-2 5 and 
ADI-R6 domain and total scores (Fig. 4). ADI-R data was incomplete for ten participants, who were discarded 
from the respective analysis.

Table 2.  Sample description and demographic group di'erences across subsamples. Full Scale IQ depicted 
as best estimate depending on age (WISC-III, WISC-IV, WPPSI-IV, WAIS → Korean versions); Verbal IQ 
as indicated by verbal comprehension index (VCI) of respective IQ test; group comparisons computes using 
Welch’s t-test for unequal variances, p value adjusted for multiple testing with Bonferroni-Holm correction, 
E'ect size cohen’s d.

Module

ASD (n = 56, 11 
female) CC (n = 38, 9 female) T test E"ect size
n M SD n M SD t df p

3

Age 37 11.35 2.79 27 10.68 2.74 0.96 56.80 .339 .244
Full Scale IQ 33 92.09 20.87 20 103.55 17.05  − 2.18 46.44 .035  − .601
Verbal IQ 33 93.39 21.19 20 104.50 18.02  − 2.03 45.29 .048  − .56
ADOS_SA 37 10.05 2.89 27 5.37 3.65 5.53 47.94  < .001 1.42
ADOS_RRB 37 1.27 1.54 27 .26 .59 3.64 49.36 .001 .867
ADI-R_A 36 17.58 6.38 24 6.25 5.53 7.30 53.99  < .001 1.90
ADI-R_B 36 13.00 4.67 24 4.58 4.09 7.38 53.71  < .001 1.92
ADI-R_C 36 4.81 2.62 24 1.12 1.39 7.07 55.75  < .001 1.76

4

Age 19 18.26 3.05 11 19.69 4.18  − 1.00 16.25 .334  − .392
Full Scale IQ 18 95.56 17.52 8 77.25 12.34 3.05 18.91 .007 1.21
Verbal IQ 17 102.65 19.20 8 90.25 11.12 2.03 21.72 .054 .79
ADOS_SA 19 10.74 4.11 11 5.82 3.95 3.24 21.73 .004 1.22
ADOS_RRB 19 2.05 1.75 11 .73 1.01 2.63 27.99 .014 .929
ADI-R_A 16 14.31 7.91 8 6.50 4.87 2.98 20.77 .007 1.19
ADI-R_B 16 10.44 4.70 8 4.88 3.80 3.12 17.16 .006 1.30
ADI-R_C 16 4.81 2.61 8 1.75 1.49 3.65 21.44 .001 1.44
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In general, classi!cation towards the autistic group was loosely associated with higher ADI-R ratings on all 
three scales, although these !ndings were not statistically signi!cant. No signi!cant associations were found for 
the ADOS-2 ratings. Detailed correlation results can be found in S4.4 Supplementary Table.

Exploratory SVM analysis: NDD versus CC
When regrouping the present sample and classifying participants with neurodevelopmental disorders in general 
and clinical controls based on motion energy synchrony (analogous to the MEA model), the BAC decreased to 
56.1% (Table 3).

Discussion
$is proof-of-concept study aimed to explore the predictability of autism from non-verbal aspects of social 
interactions between participants and clinicians using videos of real-life diagnostic interviews. Our classi!cation 
algorithm solely trained on objectively quanti!ed synchrony values was able to predict autism in a representative 
clinical sample with a BAC of 63.4%. A separate model including demographic features frequently associated 
with the likelihood of an autism diagnosis (i.e., sex and IQ) yielded a lower balanced accuracy and, thus, did 
not improve predictive performance. Feature importance analyses revealed the impact of body synchrony and 
movement quantity for diagnostic classi!cation. Slight but non-signi!cant associations were found with ratings 
based on parent’s reports (ADI-R), while we did not !nd any visible associations with ratings by clinicians. When 

Figure 2.  SVM classi!cation results of ASD versus CC patient-administrator dyads. Figure depicts mean 
classi!er scores of each dyad in the model containing only MEA data, resulting in a balanced classi!cation 
accuracy of 63.4%. $e further the score is from the decision boundary, the more likely this dyad was predicted 
as belonging to their respective class.

Table 3.  Classi!cation metrics for SVM classi!ers based on Motion Energy Synchrony Analyses between 
Patient and Administrator. Both classi!ers were trained on the same sample, regrouping patients under 
di'erent labels. $e NDD group contained, additionally to patients with ASD, patients with Intellectual 
Disability, Developmental Delay, ADHD, Tourette Syndrome, and Broad Spectrum/PDD-NOS. ASD—Autism 
Spectrum Disorder, CC—Clinical Control, NDD—Neurodevelopmental Disorder, BAC—Balanced Accuracy, 
AUC —Area Under $e Receiver Operating Curve, TN—True Negatives, TP—True Positives, FN—False 
Negatives, FP—False Positives.

Classi#er BAC (%)
Sensitivity 
(%)

Speci#city 
(%)

AUC [95% 
CI] TN TP FN FP Accuracy (%)

Number 
needed to 
diagnose

Positive 
likelihood 
ratio

Diagnostic 
odds ratio

Permutation 
test, p value

ASD versus 
CC 63.4 76.8 50.0 .61 [.50—.72] 19 43 13 19 66.0 3.7 1.5 2.4  < .001

NDD versus 
CC 56.1 62.2 50.0 .52 [.38—.66] 10 46 28 10 59.6 8.2 1.2 1.5 .005
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classifying neurodevelopmental disorders in general against other psychiatric diagnoses, accuracy was lower than 
the base model, possibly suggesting a non-verbal social interaction signature speci!c to autism.

Compared to Kojovic et al24., the accuracy of our classi!er based on motion energy synchrony data between 
participants and administrators was reduced. $is might be due to several reasons: First, our sample was hetero-
geneous in terms of diagnosis and age. Instead of classifying ASD against TD children, our classi!er was trained 
on a real-life clinical sample, including a range of diagnoses o%en co-occurring in autism. Reduced interpersonal 
synchrony has been reported for adults with other psychiatric diagnoses such as  depression45 and  schizophrenia46; 
the former being a frequent co-occurring condition in  ASD47 and the latter sharing phenomenological overlaps 
with  autism48. For the sake of completeness, we included information on comorbidities and medication in the 
supplementary material. However, due to the limited availability of this information for many participants, we did 
not run any analyses on these data. Future studies should investigate the in#uence of co-occurring and di'erential 
diagnoses by, e.g., running clustering analyses. We controlled for the large age range (5.5–28.7 years) present in 
our sample by including chronological age as a covariate, leaving no signi!cant residual association of the model’s 
decision scores with age. However, while reduced interpersonal synchrony has been found across the lifespan of 
individuals on the autism  spectrum15, they have yet to be investigated in direct comparison and the association 
to general motor skills remains unclear. In our sample, the continuing development of motor skills with age 
could have resulted in larger heterogeneity of the ability to synchronize and reduced classi!cation performance.

Another approach to increase classi!cation performance could incorporate multi-modal aspects of synchrony. 
In the present study, we focused on head and body motion synchrony. However, previous research has shown 
high predictability of, e.g., facial expression  synchrony49. In fact, we previously found that facial expression 

Figure 3.  Feature importance of SVM model. Only the ten most important features are depicted. (a) Cross-
validation ratio. Figure depicts the sum across CV2 folds of the selected CV1 median weights divided by the 
selected CV1 standard error, which is subsequently divided by the number of CV2 folds. Absolute values >  = 2 
correspond to p <  = .05, absolute values >  = 3 correspond to p <  = .01. (b) Sign-based consistency. $e 
importance of each feature was calculated as the number of times that the sign of the feature was consistent. $e 
depicted scores represent the resulting negative logarithm of p values that were corrected using the Bonferroni-
Holm false-discovery rate. Sign-based consistency -10log(p) >  = 1.3 is equivalent to p <  = .05.
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children with other psychiatric diagnoses or social communication di&culties. Decreased speci!city of ADOS 
in populations more representative of the real-world clinical setting has been reported in previous  studies54,55. 
$is was also visible in the overlap of ADOS-2 and ADI-R severity scores between both groups in our sample. 
On the other hand, the ADOS-2 and ADI-R scores, even though only one part of a clinical best estimate decision, 
made up the outcome criterion of our classi!er (i.e., the diagnosis) to a large extent. $erefore, high associations 
between the decision scores of our classi!er and the outcome criterion could imply a certain circularity (for a 
detailed discussion of this phenomenon  see56–58). $ough not available for this speci!c study, future research 
should employ di'erent measures related to autism diagnosis to be able to further evaluate the underlying 
mechanisms involved in classi!cation. Further, ADOS-2 is known to not comprehensively represent the entire 
autistic phenotype, with the scoring algorithm only encompassing a subset of behaviors. $is, however, does not 
imply that other behaviors o%en manifested in autistic individuals are not associated with autism. One example 
are motor di&culties which are heavily prevalent in  autism59,60, though not part of the diagnostic algorithm of 
ADOS. Another example are !rst impression studies which show that a certain oddity is perceived implicitly 
at a !rst, non-verbal, glance, heavily driven by audio-visual, and not conversational content-related  cues61,62. 
Moreover, eye-tracking studies reveal distinct eye gaze patterns predictive of  autism63,64, which are not entirely 
assessed in their quality within ADOS. $us, automatic measurements provide the possibility to capture implicit, 
more nuanced behaviors and, therefore, could potentially augment the decision-making process in the future.

In an exploratory analysis to increase accuracy, we employed a SVM classi!cation on a re-labelled sample, 
grouping ASD with other neurodevelopmental disorders as de!ned by the DSM-544. However, this model per-
formed slightly above chance, suggesting a synchrony signature speci!c to autism. Yet, we recognize that this 
!nding needs external validation in order to be further interpreted.

Our study has several limitations that should be considered: First, the videos analyzed in this study were not 
initially recorded for the purpose of automated machine learning-based analysis procedures. For this reason, the 
setup varied regarding background and camera angles depending on the di'erent rooms. $is could also have 
contributed to the lack of signi!cant di'erences in our comparison to pseudo-synchrony (see Supplementary 
materials S2.3). However, we consider this a feature, rather than a #aw of our approach. When comparing the 
synchrony values between the di'erent rooms, we could not detect signi!cant di'erences, underling the scal-
ability of our setup. $is is in line with Kojovic and  colleagues24 who investigated their computer vision algorithm 
with two validation samples, !nding minimal in#uence of video conditions. However, for future reference, we 
have compiled recommendations for a more standardized recording protocol of ADOS-2 which can be found 
in the supplementary material (S3). Additionally, we recommend the use of separate microphones to allow for 
more elaborate analyses of verbal interaction, as well as the use of cameras for more !ne-grained facial expres-
sion analyses.

Secondly, because our videos di'ered in length, the use of summary statistics as best estimate measures 
of interpersonal synchrony were deemed most suitable. However, this approach cannot capture the temporal 
dynamics of synchrony throughout a conversation. During free-#owing conversations, interactants tend to move 
in and out of synchrony over  time65, suggesting a certain #exibility in interpersonal alignment. However, no clear 
evidence exists regarding interview contexts. $us, future research should investigate synchrony trajectories in 
more standardized experimental settings.

Moreover, the diagnostic label of the participants in our sample was partly in#uenced by the results of 
ADOS-2 and ADI-R. $us, while the follow-up correlation analyses might shed light on underlying commonali-
ties in autistic symptomatology between participants in our classi!cation, they are not conclusive.

Further, regarding our aim to screen for synchrony as an objective marker to classify autism, we relied on 
one of the most widely used machine learning algorithms in psychiatric  research33. Yet, di'erent supervised 
and unsupervised machine learning algorithms tend to perform well with small data sets and could provide 
novel insights in the predictiveness of autistic social interaction. As an exploratory analysis, we retrained our 
winning models with both a random forest, as well as a GLM logistic regression algorithm, the results of which 
can be found under S2.5 in the supplementary material. However, future research could bene!t from in-depth 
comparisons of detailed performance indices and selected feature spaces using other algorithms.

Finally, and importantly, even though we have implemented a careful and rather conservative cross-validation 
structure within our model, the sample size in this study is limited, and the results require external validation. 
K-fold, nested, external cross-validation is suggested as a gold-standard strategy to target the issue of overop-
timistic model performances and over!tting, especially when dealing with small sample  sizes66. As this study 
served as a proof-of-concept, the present videos were chosen based on a meticulous screening process, which 
consequently resulted in a high number of exclusions. For example, we only analyzed video excerpts of more 
than !ve minute in length and without the use of any external props; the latter of which is an important part of 
the ADOS-2 assessment. However, we are con!dent that the high scalability of the methodology used in this 
study will encourage future data collection and, hence, further external and cross-site validation. In this regard, 
it will be important to analyze any e'ects of relaxed inclusion criteria concerning, e.g., the minimum length of 
an analysis window for a feasible synchrony assessment. Conclusively, our results and the potential implications 
for their clinical usefulness should be interpreted with strict caution until further validation on larger cohorts. 
$erefore, further research is needed to assess the potential translation of our models into clinical practice.

In this research, we assessed the predictability of the interpersonal synchrony within excerpts of ADOS-2 
as short as !ve minutes, !nding a classi!cation accuracy above chance. Importantly, we used objective motion 
extraction tools. While clinicians’ judgments continue to outperform computational algorithms in their diag-
nostic  precision67, the notion of digital augmentation of the diagnostic process could prospectively loosen the 
current bottlenecks caused by resource-exhaustive clinical assessments. Experienced clinical judgement, as well 
as detailed accounts of the developmental history by caretakers, remain an invaluable element in the professional 
assessment. However, converging evidence in the !eld points towards the high potential of neuropsychological 
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and behavioral markers for autism diagnosis (i.e., eye  tracking64,68,  movement12,13,  synchrony20,27). Considering 
the aforementioned limitations, we present a viable route toward a digitally assisted diagnostic process in autism. 
Using a heterogeneous dataset, both in age and technical setup, our classi!cation model could detect ASD in 
a clinical sample with an above-chance accuracy. With few adjustments regarding the standardization of the 
experimental setup, including possibilities to record nuanced facial expression and vocal output, the strength 
of our approach is the high scalability. Ultimately, it remains to assess which markers in combination will reach 
su&cient diagnostic power to be translated into clinical practice.

Data availability
$e datasets generated or analyzed during the study are not publicly available as the IRB approved the data to be 
used within the research team but could be available from the corresponding author on reasonable request. $e 
preprocessing scripts used during this study are available under https:// github. com/ jckoe/ SNU_ASDsync.git.
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INTRODUCTION

Autism spectrum disorder (ASD) is an umbrella term for
neurodevelopmental conditions characterized by severe
difficulties in social interaction and communication, as well
as by repetitive behaviors and restricted interests (American
Psychiatric Association, 2013). The prevalence rates of ASD
are on the rise (Elsabbagh et al., 2012) and diagnostic services
are experiencing an increased demand, in particular in adults
seeking diagnostic advice (Murphy et al., 2011). Diagnostics
according to medical guidelines are time-consuming, the clinical
assessment is complicated by the phenotypic heterogeneity and
the language-dependency of assessment with verbal skills being
affected by the ASD.

Recently, computational methods of classification have
been employed to increase diagnostic reliability and efficiency
(Thabtah, 2018). In particular, machine learning (ML) employs
algorithms to uncover patterns in complex datasets, which are
utilized to improve decision making. ASD diagnostics come
down to a decision-making problem that can be supported by
automated models (classifiers) using ML to decide whether a
newly assessed patient has ASD or not. This works by splitting
available data into a training set, on which an algorithm is trained,
which is then applied to a test set, resulting in a measure of
accuracy of the resulting model. Without making assumptions
ML finds classification solutions in a data-driven, bottom-up
approach that can be applied to individual prediction making
(Dwyer et al., 2018). The primary purposes of using ML are
(1) to reduce assessment time to reach a diagnostic decision
in order to provide quicker access to health care services, (2)
to improve diagnostic reliability, and (3) diagnostic validity by
reducing dimensionality of input data so as to identify those
features that have the most diagnostic value in ASD (Thabtah,
2018). However, first applications of ML in studies on autism
diagnostics have been inconsistent in terms of methodology and
outcome, with inconsistent classification accuracy and specificity.

The aim of the present paper is twofold: First, we aim to give
an overview of previous research that has attempted to apply ML
methods to the classification of ASD, while suggesting guidelines
for future research in terms of setup and algorithm design.
Second, in a proof-of-principle analysis of data from a social
interaction study we aim to establish the potential of using full-
body non-verbal behavior data extracted from video recordings
of naturalistic social interactions to classify autistic adults.

MACHINE LEARNING APPLICATIONS IN
THE CLASSIFICATION OF ASD

First ML attempts in ASD have been used with the aim of
shortening ADOS [Autism Diagnostic Observation Schedule,
(Lord et al., 2000)] and ADI-R [Autism Diagnostic Interview,
(Lord et al., 1994)] administration time by item-reduction
yielding a classification accuracy of autism vs. typically-
developing (TD) individuals of up to 99.9% (Wall et al., 2012a,b;
Bone et al., 2016). In a similar attempt to predict case status words
and expressions contained in 8 year old children’s developmental

evaluations across a network of multiple clinical sites were used
for algorithm development (Maenner et al., 2016) with 86.5%
prediction accuracy and high concordance with the respective
clinician. Home videos of children have been rated by naïve
and/or expert raters in terms of ASD-typical behavior and
ratings fed into a predictive model along with other features of
the diagnostic process (Glover et al., 2018; Tariq et al., 2018).
However, while all these first studies using ML in ASD yield
fairly high accuracies, the features utilized for classification are
still highly subjective and not independent of the respective
clinician who bases the diagnostic decision on just those features
(circularity). Importantly, when using subjectively influenced
data, resulting classification algorithms must be validated in an
independent sample in order to prevent circularity.

An increasing number of studies are also using ML to
separate individuals with ASD from TD individuals based on
neuroimaging data. For example, Ecker et al. (2010) used regional
gray and white matter volume measures from whole-brain
structural MRI scans of individuals with ASD to investigate their
diagnostic value. They used a common variant ofML, the support
vector machine (SVM). This is an algorithm aiming at finding
a boundary (the so-called “hyperplane”) that can be used to
optimally classify groups while being able to generalize to new
cases (Dwyer et al., 2018). In their sample, the SVM correctly
classified individuals with ASD and controls on the basis of
their neuroanatomy with about 80% accuracy (Ecker et al.,
2010). These original observations are supported by findings
from several other neuroimaging studies with similar levels of
classification accuracy in younger age groups (Wee et al., 2014),
females with ASD (Calderoni et al., 2012) and with various
anatomical and functional measurements (Coutanche et al.,
2011). These results based on objective data are very promising,
although not widely applicable due to high costs.

WHOLE-BODY MOVEMENTS AS A
FEATURE IN ML ALGORITHMS IN ASD

Another source of objective data with high potential for
diagnostics can be found in the motor domain. Approximately
80% of children with ASD are suspected to exhibit pronounced
motor difficulties (Green et al., 2009). Difficulties with
balance, gait, movement speed and timed movements
have demonstrated to hold a high level of discrimination
between children with ASD and TD children (Jansiewicz
et al., 2006) and correlate strongly with measures of social
and communicative functioning (Parma and de Marchena,
2016). Hence, movement parameters of social interactions
in ASD should be investigated for their potential as a
diagnostic marker.

Particularly relevant for ASD motor symptomology are
gestures and non-verbal communicative behaviors (Georgescu
et al., 2014). Accordingly, atypical non-verbal behavior has been
included in the DSM-5 criteria for ASD. Yet, the assessment is
not straightforward or standardized so far and is hampered by the
fact that non-verbal behavior is not necessarily reduced in ASD,
but abnormal in the quality of its temporal coordination with
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own verbal output (de Marchena and Eigsti, 2010) and that of an
interaction partner. Literature provides evidence for aberrations
in temporal processing (Allman and Falter, 2015) and time
experience in ASD (Vogel et al., 2019), potentially affecting non-
verbal communication. In fact, findings have shown that ASD can
be characterized by increased temporal resolution associated with
the severity of (non-verbal) communication impairments in ASD
(Falter et al., 2012, 2013; Menassa et al., 2018; but see Isaksson
et al., 2018).

Recently, movement in ASD has taken up increasing interest
(for a review see Bo et al., 2016). In a proof-of-concept
study to explore whether low-functioning children with ASD
could be identified by means of a kinematic analysis of
a simple motor task, 15 children with ASD and 15 TD
children (2–4 years) were asked to pick up a ball and drop
it into a hole while their movements were recorded using
a motion tracker (Crippa et al., 2015). Seventeen kinematic
parameters were extracted from the upper-limb movement and
seven of these were found significant for discrimination. The
classifier distinguished ASD from non-ASD with a classification
accuracy of 96.7%, suggesting the validity of assuming a motor
signature of ASD. Reach and throw movements of 10 ASD
and 10 TD children were analyzed for “peculiar features”
using ML and fed into a classification algorithm yielding
an accuracy of 92.5% (Perego et al., 2009). Furthermore, Li
et al. (2017) extracted 40 kinematic parameters of imitative
movements and identified 9 of them that best describe variance
of participant groups, resulting in a classification accuracy
of 93%.

These studies demonstrate the potential of using kinematic
biomarkers in diagnostics of ASD. However, the movements
under investigation were staged, thus, highly unnatural. Yet, it
has been established that individuals with ASD have particular
difficulties with spontaneous “on-line” social interaction
requiring intuitive decisions and behavior (Redcay et al., 2013)
constituting an urgent need to move this type of research to
more external validity and investigate movement in a more
naturalistic context.

CLASSIFICATION USING
INTRAPERSONAL SYNCHRONY: A
PROOF-OF-CONCEPT STUDY

Whole-body movements in more naturalistic conversations were
tested for their classification potential in 29 high functioning
adults with ASD and 29 TD individuals. The data for this
investigation came from a study on interpersonal coordination
in dyadic interactions (Georgescu et al., under revision).
The autistic participants were diagnosed and recruited at the
Autism Outpatient Clinic of the Department of Psychiatry,
University Hospital Cologne, Germany. The sample included
only patients with the diagnoses high-functioning autism
(ICD-10: F84.0) or Asperger syndrome (ICD-10: F84.5). Two
medical specialists confirmed the diagnosis independently in
clinical interviews, according to the criteria of the International
Classification of Diseases (ICD-10) and supplemented by

extensive neuropsychological examination. The TD sample was
recruited online from the student and staff population at the
University of Cologne and the University Hospital of Cologne,
Germany. The study was conducted with the approval of the
local ethics committee of the Medical Faculty of the University
of Cologne. Participants were paired to conduct five 5min
social interaction tasks. Conversational dyads consisted of either
two TD individuals, two individuals with ASD or a TD
individual with an individual with ASD. An ice-breaker task,
two debating tasks, a meal-planning task and a roleplay were
included resulting in a total of 145 videos of social interactions
(for more information, see Georgescu et al., under revision).
All conversations were recorded in a room with standardized
artificial lighting and using a high-definition video camera
(Panasonic DV C Pro HD P2), mounted on a tripod 320 cm away
from the chairs which were 60 cm apart from each other. Since
one of the MIXED dyads did not understand instructions on
the ice-breaker task, for the purpose of this analysis the whole
task was abandoned, resulting in a total of 116 videos submitted
for final analysis. Intrapersonal Synchrony between the head
and upper body was quantified using Motion Energy Analysis,
a widely used semi-automated frame-differencing method that
continuously monitors the amount of movement occurring in
manually pre-defined regions of interest and the method of
lagged cross-correlations (Nagaoka and Komori, 2008; MEA;
Altmann, 2011; Ramseyer and Tschacher, 2011). MEA offers the
advantage of a constraint-free, objective analysis tool for non-
verbal behavior (e.g., Ramseyer and Tschacher, 2011; Schmidt
et al., 2012; Paxton and Dale, 2013). This method has been
used to capture body movement in different contexts (e.g.,
Grammer et al., 1999; Ramseyer and Tschacher, 2011, 2014;
Schmidt et al., 2012, 2014; Paxton and Dale, 2013). MEA
and other frame-differencing methods have been successfully
used in clinical research before (e.g., Kupper et al., 2015)
and in particular in autism (Noel et al., 2017; Romero et al.,
2017, 2018). We followed the MEA pipeline described in
Ramseyer and Tschacher (2014). We manually selected two
regions of interest (ROI) for each participant, covering (1)
the head and (2) the rest of the body including the legs.
Changes in grayscale values in these ROIs were detected and
separately recorded as two continuous time series measuring the
amount of movement in the head and the body region of each
person. Data were submitted for quantification of Intrapersonal
Synchrony (for more information on the MEA procedure in
general, please see Ramseyer and Tschacher, 2014 and on this
sample, Georgescu et al., under revision). Input time series
were smoothed and scaled to account for different-sized ROIs
using custom software in R (package rMEA, Kleinbub and
Ramseyer, 2019) and cross-correlated in windows of 60 s with
a time lag of ±5 s (step size 0.04 s). Windows were not allowed
to overlap. The resulting 1,004 lagged cross-correlations were
then z-standardized and aggregated over the four conditions for
every participant, yielding 4,016 features per participant which
were implemented in the open-source machine learning tool
NeuroMiner (https://www.pronia.eu/neurominer/). A support
vector machine with linear kernel was chosen as a classification
algorithm, a multivariate supervised learning technique widely
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TABLE 1 | Performance metrics of the ASD vs. TD SVM classifier.

True positives/true negatives 28/16

False positives/false negatives 13/1

Accuracy [%] 75.9

Sensitivity [%] 96.6

Specificity [%] 55.2

Area under the curve 0.71

For detailed explanation of performance metrics please refer to Dwyer et al. (2018).

FIGURE 1 | Decision scores of SVM classification performance. The algorithm

assigns a score to each participant indicating the probability of this participant

as belonging to Group 1 or 2 (in our case ASD vs. TD) where the decision

boundary between the two groups is zero. Notably, our algorithm misclassified

only one of the ASD participants.

used in psychiatric research (Bone et al., 2016; Duda et al.,
2016). Our repeated nested k-fold cross-validation (CV) structure
consisted of 10-folds and five permutations for the outer cross-
validation cycle (CV2) and repeated 5-by-5-fold inner cross-
validation cycle (CV1), with participants being shuffled prior
to each definition of folds. This way, the data available for
training was maximized while ensuring enough heterogeneity
within the inner test sample to avoid overfitting and create stable
models. Parameter optimization was performed in CV1, while
model performance was evaluated in CV2. Prior to analysis, data
was preprocessed using principal component analysis (PCA) for
dimensionality reduction, retaining the principal components
that cumulatively explained 80% of the variance in each CV1

fold, and subsequently, scaled feature-wise from 0 to 1. The slack
parameter C was estimated in the inner CV cycle using eight
parameters ranging from 0.015625 to 16. Overall classification
performance resulted in 75.9% accuracy (Table 1). Remarkably,
sensitivity was 96.6%, correctly classifying all but one individual
with ASD (Figure 1).

Thus, with a portable and inexpensive video-setup in a
naturalistic setting and a semi-automated analysis pipeline, we
reached a good diagnostic classification of ASD within four
5min interaction excerpts on the mere basis of objective motion
data. Feeding further clinical and interaction variables into the

BOX 1 | Minimum requirements for reliable clinical application of ML in

ASD research (adapted from Dwyer et al., 2018)

• Combination of objective variables and standard diagnostic measures as

input features to classify ASD.

• Use of nested CV as a standard procedure.

• Prevent unstable model outcomes through k-fold CV.

algorithm promises a high potential for classification (see Future
Perspectives section).

METHODOLOGICAL ISSUES IN MACHINE
LEARNING APPROACHES TO
CLASSIFYING ASD

Unlike e.g., Bone et al. (2016) or Li et al. (2017), most ML
studies in ASD research have relied on simple cross-validation
(CV) methods. This increases the likelihood of choosing an
overly optimistic model (Cawley and Talbot, 2010). We therefore
suggest the application of a second layer of CV to allow for
parameter selection and model performance evaluation to not be
performed on the same data and to prevent overfitting. The test
fold is completely held out until parameter optimization within
the inner CV cycle is achieved by splitting the training data once
more into an (inner) test and (inner) training set. The optimized
models can then be tested for generalizability on the outer
test fold. This so-called nested CV maximizes generalizability
and has now been established as a gold standard procedure in
psychiatric research (Dwyer et al., 2018). In order to account
for the small sample sizes in ASD research, often predictions are
made in a leave-one-out approach whereby only one individual’s
data is held out in the test set while parameters are optimized
on the others (Crippa et al., 2015; Li et al., 2017). Especially,
for ASD with its highly heterogeneous phenotype, leave-one-
out creates overly variable test sets, rendering model outcomes
unstable (Varoquaux et al., 2017). This can be prevented
through k-fold nested CV and simultaneous permutation of
individual data sets within the inner cross-validation cycle
(Dwyer et al., 2018). An overview of best-practice standards is
outlined below.

FUTURE PERSPECTIVES

Impairments of non-verbal communication are seen across the
entire spectrum of ASD warranting the use as a behavioral
biomarker. Yet, its intricacy requires multivariate analysis
methods to capture complex interdependencies across domains.
Machine learning offers the potential to incorporate high-
dimensional data for the detection of underlying mechanisms
and classification if certain minimum practice requirements are
fulfilled (see Box 1).

In our proof-of-principle study, we were able to classify
high-functioning adults with ASD from TD adults on the
mere basis of non-verbal intrapersonal motion synchrony in
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social interactions with an accuracy of 75.9%, which can be
regarded a conservative estimate on the basis of a state-of-
the art ML approach. Due to relatively small sample sizes
available with high phenomenological heterogeneity in ASD,
it is of utmost importance to choose adequate methods of
cross-validation in order to maximize generalizability. The
use of repeated nested cross-validation prevents overfitting
and should be incorporated as a standard procedure in ML
applications. However, given our rather limited sample size,
the next steps for future research will be to apply the
resulting algorithm to a completely new and larger data set
and to investigate its transdiagnostic specificity across different
psychiatric disturbances.

Future research should furthermore consider combining
multiple non-verbal communication parameters and clinical
data (e.g., questionnaires) in order to improve prediction and
classification accuracy further and to possibly detect potential
associations across domains. For instance, peculiarities in
eye-gaze (Merin et al., 2007; Georgescu et al., 2013) and
facial expression (McIntosh et al., 2006) in ASD demonstrate
feasible approaches.

One future avenue would be to explore methods to quantify
non-verbal behavior in a fully-automated fashion. In the present
proof-of-principle study, a dataset was used that was analyzed
using MEA, a classic frame-differencing approach. It has been
shown that MEA is able to capture movements and even
complex coordinative patterns to a similar extent as more
expensive motion capture equipment such as the Polhemus
(Romero et al., 2017). A main advantage for autism research
of this method of extracting whole-body motor movement
is that it does not involve any wearable technology. Given
the hypersensitivity exhibited by many individuals with ASD,
not having to add any attachable piece of equipment or
body suit to their bodies is helpful. However, while MEA
automatically detects pixel changes, corresponding regions of
interest are drawn in manually. Although resulting values are
standardized, there remains a subjective component. Computer
vision tools that can estimate the coordinates of limb positions
and even extract gaze location and body poses would offer
similar benefits while balancing out subjective biases in the
motion extraction process (Marín-Jiménez et al., 2014; Mehta
et al., 2017; Tome et al., 2017; Cao et al., 2018). In
addition, they offer even more flexibility, given it could be
possible to include less strict and standardized experimental
setups (no requirement for standardized camera or lighting
conditions). However, the validity for movement extraction
compared to other standard motion capture methods has
not been demonstrated yet. Moreover, such tools vary greatly
with respect to their susceptibility to tracking failures, or
the type of videos they can support (single vs. multiple
agent, indoor vs. outdoor etc.). Overall, with the current
methodology that is available for motion extraction, the
present semi-automated method offers a realistically applicable
diagnostic value. Nevertheless, incredible advances are being

made (Li et al., 2018; Tran et al., 2018) such that they are very
promising tools for future non-verbal behavior in autism research
and beyond.

Taken together, given the recent advances in predictive
psychiatry, adequately applied ML offers the potential to
fully capture the autistic phenotype in all its complexity
with sufficient specificity across psychiatric disorders with a
special focus on the spontaneous non-verbal behavior during
social encounters with others and irrespective of clinician
or site.
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