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Abstract  

Pulmonary fibrosis is a lung disease featured by cumulative tissue degeneration and 

scarring, often occurring with an elusive underlying cause. Here, we identified the func-

tions of two macrophage subpopulations associated with pulmonary fibrosis; i.e. a profi-

brotic macrophage subset and a resolving macrophage subset, each of which exercise 

distinct functions. Using a mouse precision-cut lung slice (PCLS) explant model of fibro-

sis, single-cell transcriptomics, proteomics, and a mouse model of lung fibrosis, we 

demonstrate that pleural surfaces undergo dismantlement and diffuse inwards to form 

fibrosis in response to bleomycin stimulation. We determine that profibrotic and resolu-

tion macrophages are involved in regulating the different facets of this fibrotic change. 

We discover that profibrotic macrophages secrete matrix metallopeptidase to promote 

surface dismantlement leading to fibrotic accrual within lungs. We determined that reso-

lution macrophages secrete the anti-inflammatory factor progranulin to activate lung self-

repair function and enhance phagocytosis and clearance of the transferred fibrotic com-

ponents. The elucidation of the mechanisms underlying the function of profibrotic and 

repair macrophages in lung fibrosis offers a novel framework for comprehending and 

therapeutically addressing pulmonary fibrotic conditions. 
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1. Introduction 

1.1 Physiology and Structure of the Lung 

Lungs are vital respiratory organs of the human body and are located in the chest cavity 

with five lobes, three on the right and two on the left. In the center of the lungs are the 

heart, large blood vessels, organs and esophagus. The diaphragm at the base of the 

lungs separates the chest and abdominal cavities, which facilitates breathing movement. 

The lungs consist of bronchi, bronchioles, alveolar ducts and a large number of alveoli. 

After being inhaled from the nose and mouth, air traverses the pharynx, trachea and 

progressively into more refined bronchi, bronchioles and reaches the alveoli space, then 

it is exchanged for carbon dioxide and oxygen gases in the alveoli. The thickness of the 

respiratory membrane is less than 1 micrometer, and the higher permeability contributes 

to rapid gas exchange (Fig.1.1)(Weibel, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 SEM image of the parenchyma of the human lung  
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SEM image shows an alveolar duct surrounded by narrow septa separating the alveoli 

(Murray, 2010; Weibel, 2009).  

1.2 Pulmonary diseases and causative factors 

Due to innovations in modern medical technology, our understanding of human pulmo-

nary diseases has accumulated more theoretical knowledge and diagnostic techniques. 

Based on extensive disease statistics, pulmonary diseases are health concerns with a 

relatively high incidence, characterized by weak treatment and self-repair capabilities. 

Various causative factors can lead to different degrees of lung damage. 

1.2.1 Environmental factors causing lung disease 

Pulmonary injuries associated with environmental pollution often result from airborne 

particulates or chemicals, causing chronic conditions such as asthma and bronchitis. 

Specific chemicals, such as silica dust, asbestos and coal dust, can also lead to severe 

pneumoconiosis (Hanson & Kasik, 1977). The diagnosis of common pneumoconiosis 

can be made by looking at the lung structures on histologic slides to see if there is a 

predominantly rounded or irregular cloudy mass distributed in various dimensions of lung 

lobes, where immune cells are activated and recruited, and also in the context of the 

patient's occupational characteristics to determine environmentally-specific impacts, 

which, in severe cases, may lead to lung fibrosis and require lung transplantation surgery 

(Fig.1.2). 

 

Figure 1.2 Clinical treatment of pneumoconiosis.  
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SI: Silica (Qi et al., 2021). 

 

Factors related to self, such as smoking, genetic mutations, aging, and immune system 

dysregulation, increase the risk of disease. Cigarette smoking, in particular, stands out 

as a prominent causative factor in a substantial proportion of lung cancer cases (Adams 

et al., 2023; Malhotra et al., 2016), chronic obstructive pulmonary disease (COPD) 

(Christenson et al., 2022; Hou et al., 2019), and other respiratory disorders. Smoking 

can greatly influence the activation of macrophages, such as regulating the secretion of 

reactive oxygen species (ROS), hindering the phagocytosis function of macrophages, 

increasing the release of ferritin, etc., and pulmonary immune cell homeostasis (Fig.1.3). 

Being broken creates antecedent conditions for the occurrence of disease (Lugg et al., 

2022). 

 

Figure 1.3 Pathogenic mechanisms resulting from cigarette smoke exposure in alveolar 

macrophages.  

Six major functional pathways (Lugg et al., 2022). 
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1.2.2 Pathogenic infection causing lung disease 

In some cases, lung diseases are due to external infections, such as bacteria (Curran et 

al., 2018), viruses (Sefik et al., 2022), and fungi (Curran et al., 2018). All three can cause 

varying degrees of lung infection. Bacterial infections can lead to pneumonia, bronchitis 

and other respiratory infections. Antibiotics can be used, but attention needs to be paid 

to bacterial resistance. Pulmonary fungal infections are usually caused by inhalation or 

exposure to fungal spores and may be treated with antifungal medications (such as flu-

conazole, itraconazole, etc.). Viral infections often cause respiratory symptoms such as 

sore throat, cough, flu-like symptoms, pneumonia, etc. Viral infections can also cause 

systemic symptoms such as fever, fatigue and headache. Some viral infections can be 

prevented by vaccines, but not all viruses have effective vaccines. The novel coronavirus, 

which began spreading globally at the end of 2019 and continues to mutate, has resulted 

in recurrent cross-infections affecting human lungs. Despite the use of inactivated vac-

cines and mRNA vaccines, the virus cannot be completely eradicated, and its impact on 

human health will persist. It is evident that the causative factors of pulmonary diseases 

are multifaceted, and preventive measures and early health checks can help reduce the 

incidence and severity of these diseases. 

 

A study analyzing the effect of genetic factors on the development and spread of COVID-

19 disease in 219,692 cases identified 79 different genome-wide significant loci involved 

in the responding pathways activated by virus. The severity loci were matched to the 

type I interferon pathway (Fig.1.4), while the susceptibility loci were differentially matched 

to the viral entry and airway defense pathways, except for two severity loci, TMPRSS2 

and MUC5B (Initiative, 2023). Most patients with acute SARS-CoV-2 infections recover, 

but about 10-20% of them turn into chronic infections that can even be fatal. High levels 

of IL-1β and IL-18 correlate with the severity of COVID-19 infection in patients, and it 

was found that SARS-CoV-2 infection of human lung macrophages activates inflamma-

tory vesicles and initiates an inflammatory cascade that leads to cellular pyroptosis and 

facilitates downstream type I IFN responses. This demonstrates that chronic inflamma-

tion in the lungs associated with the type I interferon pathway will further impair lung 

tissue function (Sefik et al., 2022). 
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Figure1.4 Genome-wide significant variants linked with COVID-19.  

Annotated genes (illustrated in peach boxes) are enriched in different pathways (a) viral 

entry and innate immunity. (b) defense against entry in airway mucus.  (c) type I inter-

feron response (Initiative, 2023). 

1.3 Pulmonary fibrosis 

Pulmonary fibrosis is a lung interstitial fibrotic injury disease. It is mainly characterized 

by massive proliferation of fibroblasts, accumulation of extracellular matrix, recruitment 

of immune cells and destruction of tissue structure (Martinez et al., 2017). It develops 

from local to diffuse interstitial pulmonary fibrosis, and ultimately restricts lung function, 

causing most patients to die from respiratory failure and related complications. However, 

pulmonary fibrosis is often not a separate disease. It is formed by the end-stage changes 

of a lung disease. The late stages of many lung damage diseases are often accompanied 

by symptoms such as pulmonary fibrosis and breathing disorders (King et al., 2011). In 

general, alveolar inflammation, diffuse lung parenchyma and interstitial fibrosis are the 

main pathological features of interstitial lung disease (ILD), which is divided into two 

types, secondary interstitial lung disease and idiopathic interstitial pulmonary dis-

ease(Kalchiem-Dekel et al., 2018). The causes of the first type of diseases are relatively 

clear and are mainly related to environmental factors, such as pneumoconiosis, silicosis, 

asbestosis, radiation-induced pulmonary fibrosis, and drug induced pulmonary interstit-

ium. The cause of the second type of disease is unclear, which is mainly idiopathic pul-

monary fibrosis (IPF), also includes cystic pulmonary fibrosis (CPF) and autoimmune 

interstitial pneumonia with pneumonia autoimmune features (Abuserewa et al., 2021). 

Because of its complex pathogenesis, there is still a lack of early diagnostic indicators 

and effective treatments. Therefore, paying attention to the causative factors and the 
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regulation of lung fibrosis by the immune system will help to further explore potential 

treatment strategies and targets for this disease. 

1.3.1 Idiopathic Pulmonary Fibrosis (IPF) 

IPF is characterized by ongoing fibrosis and scarring of lung tissue, leading to dyspnea 

and reduced lung function (Richeldi et al., 2017). The challenge with IPF lies in the un-

certainty of the etiology and the lack of initial diagnostic indicators, as well as in the fact 

that some studies suggest that inflammatory and fibrotic processes are heavily involved 

in lung injury, and that aging, genetics, and chronic injuries also influence the severity of 

the disease. The existing diagnosis of the disease is usually based on high-resolution 

CT to determine whether it is generalized usual interstitial pneumonia (UIP) and of un-

known etiology (Mei et al., 2021; Thiessen et al., 2019). The lesions mainly manifest as 

"honeycombing" of subpleural cystic cavities or patchy fibrosis of the lung parenchyma, 

traction bronchiectasis, and thickening of the surrounding alveolar septa. The lesions of 

IPF spread inward from the pleural layer at the bottom and outer edges of the lungs, 

gradually losing lung tissue and limiting gas exchange. Patients who are diagnosed typ-

ically show signs of dyspnea, dry cough, fatigue, and decreased strength, but the aver-

age life expectancy after diagnosis is only 3 years (Martinez et al., 2017).  

 

The histological features of IPF are over-deposition of extracellular matrix proteins, the 

presence of fibroblastic foci, and areas of fibrosis immediately adjacent to areas of nor-

mal lung parenchyma (Natsuizaka et al., 2014; Richeldi et al., 2014). Alveolar epithelial 

cells undergo aging and damage, and studies have found that in areas where fibrosis 

occurs, AEC2 cells are undergoing apoptosis (Mulugeta et al., 2015) (Fig.1.5). Abnormal 

activation of epithelial cells can secrete pro-inflammatory and pro-fibrotic factors, includ-

ing fibroblast growth factor (FGF), chemokines, connective tissue growth factor (CTGF), 

etc. These mediators have the capacity to stimulate the migration, proliferation, and ac-

tivation of fibroblasts and myofibroblasts. These cells can continue to secrete extracellu-

lar matrix components and aggregate abnormally to form scar tissue, thereby destroying 

the lung tissue structure (Martinez et al., 2017). 
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Figure1.5 A proposed pathogenetic model of idiopathic pulmonary fibrosis  

(Martinez et al., 2017).  

 

Due to the lack of medications to treat irreversible lung damage, the current treatment 

approach for this disease is to slow down the fibrosis and improve the patient's quality 

of life, such as by using a ventilator for oxygenation, etc (Eaton et al., 2004). Currently, 

there are only two antifibrotic drugs on the market, Nintedanib and Pirfenidone, which do 

not share the same therapeutic principle. Nintedanib is a multi-targeted tyrosine kinase 

inhibitor, which works by inhibiting a variety of receptor tyrosine kinases (Martinez et al., 

2017; Wollin et al., 2015). Pirfenidone is thought to have antioxidant and anti-inflamma-

tory effects, and it slows the process of pulmonary fibrosis by inhibiting collagen synthe-

sis and reducing oxidative stress (Lancaster et al., 2017; Solomon et al., 2023). The 

choice between the two drugs often depends on the patient's specific situation and drug 

tolerance, there are also studies trying to combine the two drugs for treatment (Flaherty 

et al., 2018; Vancheri et al., 2018). Significant research effort is also devoted to finding 

more improved drugs, such as Pentraxin 2. Some studies have shown that intravenous 

injection of human recombinant Pentraxin 2 into IPF patients slowed down the decline of 

lung function compared with the control groups (Murray et al., 2011; Raghu et al., 2018). 

Pentraxin 2 is a serum amyloid protein whose function is to inhibit pulmonary fibrosis and 

inflammatory responses by inhibiting the differentiation of macrophages and fibrocytes. 

It can also inhibit the TGF-β1 that promotes the formation of connective tissue 

(Abuserewa et al., 2021). Another potential drug is Pamrevlumab (FG-3019), it shows 

the decline in FVC, comparing with Pirfenidone and Nintedanib treatments (Di Martino 

et al., 2021). As a large number of studies delve into the etiology and formation process 
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of IPF, more potential target drugs will be tested to provide more targeted options for 

future clinical treatments. 

1.3.2 Fibrotic process in the Animal model 

According to existing reports of drug-induced interstitial lung diseases, animal models of 

pulmonary fibrosis induced by drugs such as Methotrexate, Amiodarone, and Bleomycin 

have provided a research basis and direction for a large number of studies. The three 

drugs function through different pathogenic mechanisms. Amiodarone is a widely used 

antiarrhythmic drug, but it has high pulmonary toxicity and can induce intracellular phos-

pholipid accumulation in AEC2 and alveolar macrophages, which in turn affects late en-

dosomes and lysosomes (Dharmarajan et al., 2017; Li et al., 2022). Methotrexate is a 

folate antagonist that is widely used in autoimmune diseases such as leukemia and solid 

tumors, such as rheumatoid arthritis. Methotrexate achieves cytotoxicity by inhibiting di-

hydrofolate reductase (DHFR), thereby disrupting the folate cycle and affecting DNA 

synthesis. It has pulmonary toxicity by promoting the epithelial-mesenchymal transition 

(EMT) process of AEC2, leading to acute interstitial pneumonia and even pulmonary 

fibrosis (Abdalhameid et al., 2023; Fragoulis et al., 2019). Bleomycin is a water-soluble 

glycopeptide antibiotic that inhibits DNA metabolism and is used as an antineoplastic 

agent. However, it can diffuse into cells through the glycosaminoglycan chains in prote-

oglycans and induce DNA damage to cause lung tissue damage. In particular, the bleo-

mycin-ANXA2-YWHA-TFEB complex can induce autophagy dysfunction in AECs (Della 

Latta et al., 2015; Liu et al., 2017).  

 

The bleomycin-induced pulmonary fibrosis mouse model has been most widely used to 

study the pathogenesis of IPF. According to the results of a large number of studies, it 

has been found that a single administration of bleomycin to the mouse airway can be 

achieved by two commonly used methods, intratracheal instillation (I.T.) and oropharyn-

geal administration (O.A.) (Jenkins et al., 2017). Early day0 to day3 shows lung tissue 

damage and edema, mainly damage to alveolar epithelium and capillary endothelial cells. 

From the 3rd to the 7th day, the inflammatory reaction and type II alveolar epithelial 

hyperplasia recruit inflammatory cells to infiltrate the alveoli, first dominated by neutro-

phils, and then macrophages proliferate in large numbers. Between days 7 and 14, in-

flammatory cells are recruited and activated, and chemokines and growth factors are 

expressed in large quantities (Francois et al., 2015; Nagao et al., 2014), they are involved 

in the regulation of mesenchymal cells, inflammatory cells and epithelial cells. From the 

14th to the 21st day, the inflammation level decreased, but the lesions showed a large 

number of proliferation of collagen fibers, elastic fibers and smooth muscle bundles, and 



Introduction  

  18 

the lesions expanded in sheets. After day 28, fibrosis levels gradually decreased 

(Fig.1.6). On day 56, it was observed that the lung organs were almost completely re-

paired, and a large amount of collagen deposition was removed (Duitman JanWillem, 

2018; Schiller et al., 2015).  

 

Figure1.6 Representative tissue sections  

The images indicated experimental conditions and time points were analyzed using he-

matoxylin and eosin stain (H&E) (Schiller et al., 2015).  

 

1.3.3 Fibrotic phenotype in ex vivo model 

Based on the observation of animal pulmonary fibrosis models and human lung tissue 

lesions, a large number of cells and relevant cytokines related to the formation of lesions 

were shown to be main regulators of pulmonary fibrosis (Agostini & Gurrieri, 2006). Tar-

geted testing of a variety of specific drugs has been shown to slow the progression of 

this disease, but there is still a lack of specific target drugs that can prevent or reverse 

the development of IPF. Lung tissue ex vivo models are widely used for chemical screen-

ing, among that PCLS are a model suitable for both mouse and human lung samples, 

can be stably cultured in vitro, and can develop pulmonary fibrosis through drug stimu-

lation (Henjakovic et al., 2008; Lauenstein et al., 2014). Studies have demonstrated that 

precision-cut lung slices (PCLS) retain functionality even when exposed to a mixture of 

profibrotic elements (TGF-β, TNF-α, PDGF-AB, and LPA). Furthermore, genes and pro-

teins associated with fibrosis (including FN1, CTGF, MMP7, ACTA2, SERPINE1 and 

COL1A1) are swiftly upregulated in response. (Fig.1.7), forming a phenotype of exces-

sive extracellular matrix deposition (Alsafadi et al., 2017).  

Bleomycin treatment of PCLS has also been shown to form a fibrosis phenotype in vitro. 

PCLS under this treatment highly expressed fibrotic genes such as ACTA2, COL1A1, 

FN1, MMP12  and TIMP1 (Cedilak et al., 2019; Zhou et al., 2021). Based on the PCLS 



Introduction  

  19 

in vitro model, some studies have observed that Distal tissue repair pathways can be 

activated within diseased tissues. (Uhl et al., 2015). Precision cut lung slices (PCLS) 

could spatially retain the original state of the lung microenvironment, which is conducive 

to simulating and observing the dynamic changes in the occurrence and progression of 

lesions. In a short period of time, PCLS can be used for testing the effects of multiple 

drugs on pulmonary fibrosis, which will provide more potential specific targeted drugs for 

early diagnosis and treatment. 

 

 

 

 

 

 

 

 

 

 

Figure1.7 Immunofluorescence (IF) staining of FN1.  

Scale bar=1mm (Alsafadi et al., 2017). 

1.4 Lung Macrophages 

1.4.1 Origins and distribution of lung macrophages 

Macrophages are omnipresent cells found in all tissues and are renowned for their re-

markable plasticity within the hematopoietic system. They play pivotal roles in organo-

genesis, tissue homeostasis, repair, and immune surveillance. Conventionally, tissue-

resident macrophages originate from HSCs through circulating monocyte precursors. 

Their principal role involves safeguarding organs against infections. But in recent years, 

with the development of novel fate-mapping mouse models that can longitudinally track 

macrophages from their progenitor state to their mature cellular state within the organs 

they inhabit, the derivation of new research methods has revealed a new chapter in mac-

rophage biology (Jenkins & Allen, 2021). Studies have shown that resident macrophage 

populations exist in certain tissues during the embryonic stage before HSC development 
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(Fig.1.8a). Beginning on day 8.5 of mouse embryonic development, Yolk sac erythro-

myeloid progenitors (EMPs) regulate the embryonic development by generating pre-

macrophages (pMacs) in the early stages, which are dispersed throughout different em-

bryonic tissues starting from E9.0. These pMacs subsequently undergo differentiation 

into tissue -specific macrophages (Dick et al., 2022; Gomez Perdiguero et al., 2015; 

Mass et al., 2016; Mass et al., 2023). They have different life cycles (Fig.1.8b), with 

shorter-lived cells requiring constant supply from bone marrow HSCs (Perdiguero & 

Geissmann, 2016; Yona et al., 2013), such as intestinal macrophages, which are rapidly 

replaced after birth (Bain et al., 2014). HSC-derived cells are difficult to replace long-

lived tissue macrophages (Kupffer cells, microglia, Langerhans cells) in steady state 

(Ginhoux et al., 2010; Hoeffel et al., 2012; Lahmar et al., 2016; Schulz et al., 2012). 

There are also cases that are gradually replaced throughout life, such as alveolar giant 

cells (Gomez Perdiguero et al., 2015) and cardiac macrophages (Epelman, Lavine, 

Beaudin, et al., 2014; Epelman, Lavine, & Randolph, 2014; Molawi et al., 2014). 

 

 

Figure 1.8 Functions of different macrophages during tissue development 

a. Diverse developmental trajectories of tissue-resident macrophages. b. Macrophages 

derived from both erythromyeloid progenitors (EMPs) and hematopoietic stem cells 

(HSCs) participate in tissue function through intricate cell-cell communication with spe-

cialized tissue cells. (Mass et al., 2023). 

 

The lung organ has its own unique tissue structure, which is mainly composed of bronchi, 

small bronchi, alveolar ducts and alveoli. In the steady-state lung organ, multiple distinct 

macrophage populations are identified based on their anatomical locations, including the 

alveolar macrophage population and two to three interstitial macrophage populations. 

(Aegerter et al., 2022). The alveoli serve as the main site for gas exchange, and alveolar 
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macrophages are tightly attached to epithelial cells and directly exposed to the air. These 

macrophages serve as guardians of the alveolar microenvironment, performing phago-

cytosis of cells and pathogenic debris, as well as clearing mucus material within the al-

veoli, thereby contributing to alveolar homeostasis maintenance. Macrophages originate 

during embryonic development, and their ongoing development and maintenance are 

contingent upon the presence of GM-CSF, which is generated by specific epithelial cells 

(Guilliams et al., 2013), and have a high self-renewal capacity (Liu et al., 2019; Mass et 

al., 2016; Yona et al., 2013). The number of interstitial macrophages is smaller than that 

of alveolar macrophages, and their development is heavily dependent on steady-state 

CSF1R signaling. They commonly can produce IL-10 signals, but their ability to present 

antigens is different (Bain & MacDonald, 2022; Ural et al., 2020). They can mainly be 

subdivided into LYVE1highMHCIIlow and LYVE1lowMHCIIhigh subpopulations, or grouped 

based on TIM4, FOLR2, LYVE1, CCR2 and MHCII expression. LYVE1lowMHCIIhigh mac-

rophages exhibit high expression levels of pro-inflammatory factors, predominantly lo-

calized around nerve bundles or nerve terminals. (Ural et al., 2020). LYVE1highMHCIIlow 

interstitial macrophages are located proximal to blood vessels and express signaling 

molecules such as Tgfb2, Plaur and Fcna to participate in the immune regulatory process 

(Chakarov et al., 2019). Pulmonary macrophages perform their own guard functions in 

different locations, and support homeostasis of the lung environment by responding to 

changes and challenges in external stimuli. 

1.4.2 Diverse functions of lung macrophage polarization 

Macrophages in lung tissue can defend against foreign invasion and remove apoptotic 

cells, tumor cells, etc. through phagocytosis to maintain internal balance (Gordon, 2003; 

Varin & Gordon, 2009). They are highly plastic immune cells, and diverse environmental 

signals can stimulate them to activate specific functions through phenotypic polarization 

(O'Shea & Paul, 2010). Pulmonary macrophages are classified into two main cell types: 

classically activated macrophages and alternatively activated macrophages. Activated 

macrophages can regulate immune responses through various signals such as cytokines 

and chemokines, which supports communication with additional functional cells such as 

T cells and fibroblasts (Arora et al., 2018; Stout & Suttles, 2005). Multifunctional lung 

macrophages can directly or indirectly participate in regulating more tissue microenvi-

ronment immune responses and tissue reconstruction processes (Biswas & Mantovani, 

2010).  

Macrophage polarization is a rapid and reversible process that allows it to adjust to 

changes in the microenvironment. Different stimuli can polarize tissue-resident macro-

phages (M0), and LPS/IFNγ induces classically activated M1 macrophages (Tarique et 
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al., 2015). The LPS on the outer membrane of Gram-negative bacteria facilitates their 

recognition by cell surface receptor complexes, mediated by LPS-binding proteins (Guha 

& Mackman, 2001). Interferon-gamma (IFN-γ) is produced by a diverse array of immune 

cells within the body, including T helper 1 cells, CD8+ lymphocytes, NK cells, B cells and 

APCs. Subsequently, IFN-γ binds to its receptor, IFNGR, upon absorption. The specific 

binding of IFNGR initiates a cascade of signaling events, JAK (JAK/STAT pathway) is 

activated to facilitate the dimerization and translocation of STAT1. STAT1 activats M1-

related genes to transcribe, also increase the expression of proinflammatory factors 

(Senga et al., 2001). Therefore, M1 macrophages are characterized by enhancing pro-

inflammatory factors to secret (Fig.1.9) and increasing reactive oxygen intermediates 

(ROI) and iNOS-dependent production of reactive nitrogen intermediates (RNI), which in 

turn enhance antigen presentation capacity (Murray et al., 2014). According to studies, 

pro-inflammatory macrophages can release cytokines to damage tissue structures 

(Saarialho-Kere et al., 1999; Yang et al., 2020). Previous investigations have demon-

strated that under inflammatory conditions, lipopolysaccharides (LPS) can induce and 

activate macrophages to significantly upregulate the expression of matrix metalloprotein-

ase 7 (MMP7). The role of MMP7 entails the degradation of various macromolecules 

within the extracellular matrix, including gelatins, fibronectin, and proteoglycan 

(Vandenbroucke et al., 2014; Yu & Woessner, 2000). In idiopathic pulmonary fibrosis 

(IPF), MMP7, as a validated biomarker of disease severity, can promote fibrosis and 

inflammation (Bauer et al., 2017; Ley et al., 2014; Xiao et al., 2022). These evidences 

indicate during pulmonary fibrosis, macrophages may participate in the regulation of im-

munity and fibrosis by directly acting on lung ECM through MMP7. 
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Figure 1.9 Schematic map illustrating macrophage clusters.  

The M1 like exhibits proinflammatory characteristics. The M2a is activated by IL-4 and 

IL-13. The M2b and M2c are predominantly regulating the Anti-inflammation and Fibrosis 

process. (Zhang et al., 2018)  

 

Alternatively activated macrophages have many stimulatory factors, for example IL-4 

and M-CSF (Zhang et al., 2018). The function of M2 macrophages is mainly to regulate 

inflammation levels and Th2 immunity, support angiogenesis, tissue remodels, repairs 

damaged tissue, removes debris, and promote tumor development (Bosurgi et al., 2017). 

These macrophages can directly participate in regulating the remodeling of the extracel-

lular matrix, such as by overexpressing Stabilin-1, which is a receptor that binds to the 

matrix protein SPARC to mediate clearance. Based on gene expression profiles, M2 like 

macrophages are defined into four subtypes: M2a, M2b, M2c, and M2d (Fig. 1.9). Stim-

ulation with macrophage colony-stimulating factor (M-CSF), IL-13, and IL-4 prompts M2 

to upregulate scavenger and mannose receptors, the interleukin-1 receptor antagonist, 

and express elevated levels of interleukin-10 (IL-10), CCL17, CCL18, and CCL22. These 

factors play pivotal roles in modulating anti-inflammatory responses, tissue remodeling, 

and fibrosis processes  (Arora et al., 2018).  
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Nevertheless, there are no specific surface markers that differentiate subpopulation of 

M2, which are shown low expression of CD86, MHCII, and iNOS2 but high expression 

of Arg1, Ym1/2, Fizz1, and CD206 (Raes et al., 2002). CD206 is a marker of alveolar 

macrophages, participates in regulating the phagocytosis of M2, and can increase the 

engulfment of pathogens debris and apoptotic cells (Desch et al., 2016; Hong et al., 

2014). IL4 can activate two downstream signaling pathways, JAK1/STAT6 and 

PI3K/AKT, to induce M2 activity. Studies have shown that M2 macrophages can gener-

ate profibrotic factors like TGF-β and PDGF after activation to promote continued activa-

tion of fibroblasts and rapid proliferation of myofibroblasts. However, there are also re-

sults showing that the anti-fibrotic drug nintedanib can increase IL-4 signaling in macro-

phages by inhibiting the CSF1 receptor, thereby promoting a tissue repair phenotype 

(Watson et al., 2023). Therefore, classification based on M2 limits the possibility of func-

tional classification of macrophages. As highly plastic immune cells, macrophages can 

dynamically switch functional states according to changes in the microenvironment and 

stimuli. Studies have shown that Progranulin can inhibit M1 polarization and promote M2 

polarization to repair lung injury models(Chen et al., 2020). Therefore, further subdividing 

the functions of M1 and M2 macrophages has important clinical therapeutic and diag-

nostic significance for the study of pulmonary fibrosis. 

1.5 Lung extracellular matrix 

The extracellular matrix (ECM) is the basic structure of the lung tissue environment and 

consists of the basement membrane and interstitial space. It consists of fibrin, glycopro-

tein and proteoglycan complexes that constitute the non-cellular part of the tissue, and 

its specific composition changes according to the dynamic microenvironment. The base-

ment membrane in lung tissue is a thin and specialized ECM layer that underlies all 

epithelial and endothelial cells, while the interstitial space forms the lung parenchymal 

structure (White, 2015).  

1.5.1 Lung extracellular matrix in pulmonary fibrosis 

The lung extracellular matrix contains abundant fibrillar proteins and elastin, crucial for 

determining the tensile strength and elastic recoil of the lung tissue. (Senior et al., 1975; 

Shifren & Mecham, 2006), so these proteins can affect the stiffness of the ECM. When 

tissue is damaged, the body normally recruits highly differentiated myofibroblasts to pro-

duce ECM proteins. After completing the repair mission, the body initiates apoptosis and 

is quickly eliminated. However, in IPF, myofibroblasts are resistant to apoptosis, and 

their persistence leads to excessive scarring (Upagupta et al., 2018) and subsequent 
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damage to the alveolar structure. Therefore, the communication between cells and ex-

tracellular matrix may be one of the potential mechanisms triggering the pathogenesis of 

IPF. 

 

The ECM is composed of more than 300 proteins. With the highly dynamic changes in 

the ECM structure, ECM proteins are constantly secreted and degraded. In IPF, the re-

modeling of the ECM directly leads to the imbalance of protein composition, excessive 

deposition of proteoglycans, collagen, elastin, and fibronectin, thereby increasing the 

stiffness of the matrix. Studies have shown that this process can activate the mechano-

sensitive Hippo pathway effector Yes-associated protein 1 (YAP) (DuFort et al., 2011). 

Other mechanosensitive pathways also interact with the YAP signaling pathway. For ex-

ample, the signal generated by Notch mechanotransduction forms a positive feedback 

with YAP signal. This feedback loop can be inhibited by Wnt/β-catenin signaling (Kim et 

al., 2017). ECM remodeling can also affect FAK, ROCK/RhoA, and actin cytoskeletal 

rearrangements (Duscher et al., 2014). Not only that, but direct interactions between 

cells and ECM such as epithelial stress, activated macrophages, and fibroblasts can 

affect the fiber remodeling process. Therefore, in IPF disease, cell-ECM interaction is an 

indispensable part of in-depth study of pulmonary fibrosis. 

1.5.2 Perlecan of the lung extracellular matrix 

A kind of HS proteoglycan is ubiquitous in the extracellular matrix and most cells. Most 

of this perlecan is synthesized by cells and is considered to be one of the important 

components of the basement membrane (Lord et al., 2018). Human perlecan protein 

contains five different and conserved structural domains (Fig 1.10). Glycosaminoglycans 

attached to the N-terminal and C-terminal domains can exert tissue-specific activity. The 

five conserved domains perform different functions. Domain I interacts with PDGF, BMP2, 

HGF, FGF2 and GM-CSF respectively through HS.  Angiopoietin-3, and activin A to act 

as co-receptors in cell signaling that transmit growth factors and receptor activation 

(Melrose, 2020; Whitelock et al., 2008). Domain II has four LDL receptor type A domains, 

that are involved in the regulation of Wnt/calcium signaling pathways in vascular athero-

genic lipid internalization (Hayes et al., 2022). Domain III consists of 3 tandem laminin B 

domains and 3 laminin-type epidermal growth factor (EGF) domains consisting of 4 di-

sulfide bonds, capable of binding the FGF growth factor binding proteins, FGF7 and 

FGF18 (Mongiat et al., 2000; Smith et al., 2007). Base Membrane domain IV has the 

longest amino acid sequence. This recombinant domain can produce high affinity inter-

actions with fibronectin, nidogen-1, fibulin-2 and type IV collagen. This domain acts on 

the basement membrane through these interactions. Studies have shown that domain 
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IV is sensitive to the action of proteolytic enzymes (Martinez et al., 2019). Domain V of 

the basement membrane, which contains 3 laminin G (LG) and 2 pairs of proteins re-

leased by cathepsin L proteolysis, may act as a functional proteoglycan and may have 

different action properties than the core properties of the intact basement membrane 

protein. Tolloid-like MMPs can further hydrolyze domain V releasing the LG3 module 

(Gubbiotti et al., 2017). The different functions of these conserved domains imply that 

Perlecan can be a potentially important target in the process of pulmonary fibrosis. 

 

 

Figure 1.10 Schematic of the perlecan.  

its five modular domains (a). and their interactive ligands (b). 
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1.6 Hypothesis and aims  

During pulmonary fibrosis, alveoli and distal bronchioles are the onset of lesions, and a 

large amount of collagen and parenchymal structures form leading to scarring of the 

lungs. According to our preliminary observations, we found that the ECM in the pleural 

layer moved inward to become part of the fibrosis during the fibrosis process. In order to 

explore the mechanism of this phenomenon, we noticed that a large number of immune 

cells appeared around this lesion. Among them, macrophages, as one of the major im-

mune cells, can regulate the lung microenvironment through intercellular communication 

and secretion of cytokines, and they can also act directly on the damaged structures of 

the lung. However, the existing functional typing of macrophages is not clear. In recent 

years, it has been found that macrophages are highly plastic and diverse, and macro-

phages can define different functional subpopulations based on different gene markers. 

Thus, we identified two macrophage subpopulations based on single-cell sequencing 

results of pulmonary fibrosis, identified two subpopulations of macrophages based on 

significantly different cell markers, tracked the changes of the two subpopulations during 

fibrosis, and defined them as profibrotic and resolution macrophages based on their 

functions. We designed fibrotic PCLS in vitro experiments to investigate the mechanism 

of action of different macrophages on the dynamic migration of ECM. 

 

The hypothesis of this study is that, during fibrosis, profibrotic macrophages secrete 

MMP7 to break the lung ECM structure perlecan to promote inward migration of fibers. 

In contrast, resolution macrophages secrete the anti-inflammatory factor progranulin to 

enhance phagocytosis and clearance of ECM perlecan. 

 

We set 5 following plans: 

1. Tracking the dynamics of fibrosis in the pleural ECM layer  

2. Analysis of profibrotic macrophages and resolution macrophage in relation to fibrosis 

based on single-cell data 

3. Studying the direct effect of profibrotic macrophages on lung fibrosis 

4. Studying the role of resolution macrophage on fibrosis 

5. Analyzing human lung single cell RNA data to uncover the fucntions of the two mac-

rophage types in lung fibrosis 
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2. Material and Methods 

2.1 Materials 

2.1.1 Antibodies 

Table 1 Primary antibodies applied in histology staining. 

Antigen Host Species Dilution Manufacturer Ref No. Application 

a-SMA Goat 1:200 Abcam ab21027 IF 

CD206 Goat 1:500 R und D Systems AF2535 IF 

CD80 Rabbit 1:200 Abcam ab134120 IF 

GRN Sheep 1:500 Bio-Techne AF2557 IF, WB 

MMP7 Rabbit 1:200 Proteintech  10374-2-

AP  

IF, WB 

YAP Rabbit 1:200 Abcam ab205270 IF 

PSMAD2 Rabbit 1:200 Cell Signaling 18338S IF 

Col1 Rabbit 1:200 Biomol E-AB-

36387.20 

IF 

Col4 Rabbit 1:200 Abcam ab6586 IF 

LGMN Rabbit 1:200 Tebu-Bio 126144-

61944-100 

IF 

MARCO Rabbit 1:200 Abcam ab259264 IF 

Perlecan 

(A76) 

Mouse 1:500 Abcam ab26265 IF, WB 

Perlecan 

(7B5) 

Mouse 1:500 Life Technologies 134400 IF, WB 

Perlecan 

(A74) 

Mouse 1:500 Abcam ab23418 IF, WB 

Perlecan 

(5D7-2E4) 

Mouse 1:500 Life Technologies MABT12 IF, WB 

Perlecan 

(A7L6) 

Rat 1:500 Abcam ab2501 IF, WB 
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Table 2 Secondary antibodies applied in histology staining. 

Antigen Dilution Manufacturer Ref No. Application 

Alexa Fluor 647 Donkey Anti-

Rabbit Antibody 

1:500 Life Technologies A31573 IF 

Alexa Fluor 594 Donkey Anti-

Rat Antibody 

1:500 Life Technologies A31573 IF 

Alexa Fluor 647 Goat anti-

Mouse Antibody 

1:500 Life Technologies A21235 IF 

Alexa Fluor 647 Donkey anti-

Goat Antibody 

1:500 Life Technologies A21447 IF 

Alexa Fluor 647 Donkey anti-

Sheep Antibody 

1:500 Life Technologies A21448 IF 

Alexa Fluor 568 Donkey anti-

Rabbit Antibody 

1:500 Life Technologies A10042 IF 

ScanLater™ assay kit, Goat 

Anti-Rabbit IgG Antibody 

1:5000 VWR /Molecular 

Device 

10048-

858 

WB 

ScanLater EU-LAB, Anti-

Mouse IgG Antibody 

1:5000 VWR /Molecular 

Device 

MLDVR82

08 

WB 

Donkey Anti-Sheep HRPAnti-

body 

1:10000 Abcam ab195176 WB 

 

2.1.2 Primers 

Table 3 Primers used for qPCR experiments. 

Gene Species Sequence 5’-3’ 

GAPDH Mouse F:AGGTCGGTGTGAACGGATTTG 

  R:TGTAGACCATGTAGTTGAGGTCA 

Progranulin Mouse F:ATGTGGGTCCTGATGAGCTG 

  R:GCTCGTTATTCTAGGCCATGTG 

MMP7 Mouse F:CTGCCACTGTCCCAGGAAG 

  R:GGGAGAGTTTTCCAGTCATGG 

LGMN Mouse F:TGGACGATCCCGAGGATGG 

  R:GTGGATGATCTGGTAGGCGT 

Marco Mouse F:ACAGAGCCGATTTTGACCAAG 
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  R:CAGCAGTGCAGTACCTGCC 

MMP2 Mouse F:CAAGTTCCCCGGCGATGTC 

  R:TTCTGGTCAAGGTCACCTGTC 

MMp9 Mouse F:CTGGACAGCCAGACACTAAAG 

  R:CTCGCGGCAAGTCTTCAGAG 

JAK1 Mouse F:CTCTCTGTCACAACCTCTTCGC 

  R:TTGGTAAAGTAGAACCTCATGCG 

JAK2 Mouse F:TTGTGGTATTACGCCTGTGTATC 

  R:ATGCCTGGTTGACTCGTCTAT 

STAT1 Mouse F:CGGAGTCGGAGGCCCTAAT 

  R:ACAGCAGGTGCTTCTTAATGAG 

STAT6 Mouse F:CTCTGTGGGGCCTAATTTCCA 

  R:CATCTGAACCGACCAGGAACT 

PI3K Mouse F:GCAGAGGGCTACCAGTACAGA 

  R:CTGAATCCAAGTGCCACTAAGG 

IL1 Mouse F:GCAACTGTTCCTGAACTCAACT 

  R:ATCTTTTGGGGTCCGTCAACT 

IL4 Mouse F:GGTCTCAACCCCCAGCTAGT 

  R:GCCGATGATCTCTCTCAAGTGAT 

IL4R Mouse F:TCTGCATCCCGTTGTTTTGC 

  R:GCACCTGTGCATCCTGAATG 

IL6 Mouse F:CCAAGAGGTGAGTGCTTCCC 

  R:CTGTTGTTCAGACTCTCTCCCT 

ATAC Mouse F:CCCAACTGGGACCACATGG 

  R:TACATGCGGGGGACATTGAAG 

 

2.1.3 Cell types 

Table 4 Cell types. 

Name Cell type Supplier 
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NIH3T3/Cas9 Mouse embryonic fibroblasts NIH Swiss, Embryo 

Monocytes Mouse Primary Monocytes Mouse Bone marrow 

Macrophages Mouse Primary Macrophages Mouse Bone marrow 

 

2.1.4 Cell culture medium and Kits 

Table 5 Medium and Chemicals. 

Medium, Chemicals Source Ref No. 

RPMI 1640 GIBCO 21875034 

Phenol red-free RPMI1640  GIBCO 11835030 

Fetal Bovine Serum Life Technologies 10500064 

Sodium pyruvate Sigma S8636 

M-CSF Peprotech 315-02-10 

IFN-gamma Peprotech 315-05-100 

GM-CSF R And D Systems 415-ML-020/CF 

LPS Sigma Aldrich L8274 

IL4 Peprotech 214-14-20 

Pen-Strep Gibco 15140122 

Amphotericin B  Sigma A2942 

MACS Monocyte Isolation kit Miltenyi Biotec 130-100-629 

Red Cell Lysis Solution Miltenyi Biotec 130-094-183 

RNeasy  Qiagen 74104 

 

2.1.5 Chemicals 

Table 6 Chemical lists 

Product Manufacturer 

Bleomycin Sigma-Aldrich 

Bovine serum albumin (BSA) Sigma-Aldrich  

4% paraformaldehyde (PFA)  VWR International 

DAPI staining Becton Dickinson 
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Fluorescent-G Mounting Medium Invitrogen 

Isopropanol Roth Carl Roth Sonderaktion 

Phalloidin Alexa Fluor 647 Biomol 

Recombinant mouse TGF-β1 protein R&D Systems 

Triton X-100 Sigma 

Trypsin EDTA 0.25% Life Technologies 

DPBS Life Technologies 

GM6001 Sigma-Aldrich 

Heparan Sulfate Medchemexpress 

Chlorate Sigma-Aldrich 

Isofraxidin Sigma-Aldrich Chemie 

Anti-CD47 Blocking Antibody Biozol Diagnostica 

Recombinant Progranulin protein Enzo Life Sciences 

Gliotoxin Cay11433-1 

Vorinostat LC-V-8477_250mg 

D(+)-Trehalose Dihydrat Carl Roth 

NHS-ester dye Life Technologies 

Micro Particles Sigma-Aldrich 

rmEndorepellin Bio-Techne 

Collagenase Type I Th Geyer 

Dnase I, Grade Ii Sigma-Aldrich Chemistry 

Liberase Tm Research Grade 10 Mg Sigma-Aldrich Chemistry 

RR-11a Biozol Diagnostica 

Clodronate liposomes & control liposomes  Liposoma BV 

Paraformaldehyde, 16% w/v aq.  VWR International 

Cytochalasin D Th Geyer. 

Nintedanib esylate Santa Cruz 

Pirfenidone Santa Cruz 

Sucrose Santa Cruz 

Agarose, low gelling temperature  Sigma-Aldrich Chemie 

Sulfosuccinimidyl oleate sodium MCE 

Ointment Bayer 

Gelatine  Sigma 

Triton X-100 Sigma 
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Thimerosal Sigma 

HSPG2 ELISA kit Biozol 

Progranulin ELISA kit Life technologies 

 

2.1.6 Consumables 

Table 7 Consumables 

Product Manufacturer 

6/12/24/48 well plates e.biss Lagermaterial 

µ-Plate 24 Well Black Ibidi 

Cell culture dishes Neolab 

Cell culture flasks Schubert und Weiss 

Falcon tubes 15ml/50ml Falcon 

Filter pipet tips Sigma 

Cell strainer, nylon 100,70,40μm Falcon  

26G needle  VWR International  

23G needle VWR International   

Intravenous cannulation VWR International  

10ml syringe VWR International  

Syringe insulin 0,5ml BD Micro-Fine+ 

PCR plates, qPCR Biozym Scientific 

Sealing foil, qPCR Sigma-Aldrich 

PVDF membrane Life Science 

4-15% MP TGX Gel Bio Rad 

Forceps Fisher Scientific 

Scissors Fisher Scientific 

Whatman blotting paper GE Healthcare, Freiburg, Germany 

OCT CellPath 

Cryostat CryoStar 
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2.2 Cell culture methodology 

2.2.1 Mouse primary Monocyte isolation 

C57BL/6J mice, aged 8-10 weeks (Charles River), were sacrificed to extract femurs and 

tibiae. The separated bones were sterilized by briefly soaking in 75% alcohol, and the 

two ends of the bones were split with sterile forceps (Fisher Scientific 15307805) and 

scissors (Fisher Scientific 15654444) to form a through state. Bone marrow-derived cells 

were flushed out with 10 ml PBS (Life Technologies 5001223) through a syringe (VWR 

International 4617100V), and large tissue debris was removed through a 70 µm sterile 

filter (Falcon 352350). Bone marrow cells were obtained after centrifugation at 300g for 

10 min (Eppendorf Rotina 420R), Red cell lysis solution (Miltenyi Biotec 130-094-183) 

was used for red blood cells clearing. Subsequently, primary monocytes were obtained 

using the Monocyte isolation kit (Miltenyi Biotec 130100629) and placed in a 37 °C incu-

bator with 5% CO2. RPMI 1640 (GIBCO 21875034) supplemented with 10% (v/v) FBS 

(Life Technologies 10500064), 20ng/ml GM-CSF (R and D Systems 415-ML-020/CF), 1% 

(v/v) Pen-strep (GIBCO 15140122), and 1% (v/v) sodium pyruvate (Sigma S8636) was 

used to culture the cells. 

2.2.2 Macrophages differentiation and polarization 

Primary monocytes were stimulated in the medium containing RPMI1640 (GIBCO 

21875034), 10% heat-inactivated FBS (Life Technologies 10500064) and 20 ng/ml GM-

CSF (R and D Systems 415-ML-020/CF). After 7 days cells were differentiated into ad-

herent macrophages, replace the culture medium every other day. Adherent macro-

phages were divided into two groups, one group was treated with fresh medium consist-

ing 100 ng/ml LPS (Sigma Aldrich L8274) and 50 ng/ml interferon-γ (IFNγ, PeproTech 

315-05-100) for 24 hours to Classic activated Macrophages. Another group added the 

medium containing 50ng/ml M-CSF (PeproTech 315-02-10) and 20ng/ml Interleukin-4 

(IL4, PeproTech 214-14-20) (Ying et al., 2013), then was cultured for 24 hours to obtain 

alternative activated Macrophages. 

2.3 scRNA-seq data analysis 

Scanpy50 were used to perform all the analyzes (Wolf et al., 2018). The matrices of each 

samples were combined, and quality control measures were implemented. Combat and 

cell cycle regression algorithms were implemented to address batch and cell cycle ef-

fects. The UMAP algorithm was chosen as the primary method for dimensional reduction. 
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Mouse IPF lung datasets were obtained from the Collaborative laboratory (GSE141259). 

Cell annotation was performed by iteratively increasing the threshold during ensuring 

that distinct cell clusters are preserved. During the subclustering of macrophage, naïve 

monocytes served as the control cluster. Genes markers of each cluster were ranked 

with the 'wilcoxon' assay and subsequently applied to gene ontology term overrepresen-

tation analysis. The expression profiles of Macrophages were computed using the gene 

score function. The profibrotic Macrophages was defined by the Markers of Marco, Ctss, 

Chi3l3, Lyz2, Ccl6, Lgmn, Spp1, Cd163, Cd9, Tyrobp, Atp6v0d2, Psap, Lgals3, Ftl1, Lpl, 

Tmsb4x, Wfdcl7, Mrc1, Ear2, Fcerlg, Cyba, Cstb, Ctsl. For the Resolution macrophages 

profile, the markers Grn, C1qb, Ctss, Ctsb, C1qc, Ctsd, Mrc1, Lyz2, Apoe, C1qa, Tyrobp, 

Cd36, Fth1, Ctsl, Spp1, Lgmn, Fcer1g, Psap, Sepp1, Cst3, Ftl1, B2m, Cd68, Itm2b, 

Lgals3 were used. 

 

Human lung IPF single cell data was acquired from the GEO repository (GSE128033). 

Human Macrophage clusters annotation was operated with scArches (Lotfollahi et al., 

2022). Subsequently, the cells of human dataset were annotated. Parameters were ap-

plied following scArches optimization guidelines. Trajectories from two clusters of mac-

rophages and from the naïve monocyte-to-resolution macrophage trajectory inference 

was performed using PAGA with RNA velocity directed edges and the scvelo toolkit. 

(Bergen et al., 2020; Wolf et al., 2019). Human trajectories, including those from the 

unbiased dataset and from the naïve monocyte-to-resolution macrophage trajectory 

clusters, were set by PAGA only, given the unmatched the human samples. The arrange-

ment was conducted through diffusion pseudotime to substitute velocity pseudotime. 

2.4 Precision-cut lung slices and in vitro culture 

2.4.1 Precision-cut lung slices assay 

According to the experimental methods in the reference literature (Akram et al., 2019; 

Lehmann et al., 2018; Uhl et al., 2015; Wu et al., 2019), with slight adjustments, 

C57BL/6J mice (Charles River) aged 6 to 12 weeks were deeply anesthetized by intra-

peritoneal injection of ketamine (100 mg/mL, Vetquinol) and xylazine (20 mg/mL, 

Sedaxylan). The abdominal cavity of the mice was opened with sterile scissors (Fisher 

Scientific 15654444), the abdominal aorta was incised and the mice were euthanized by 

bleeding. Open the chest with scissors (Fisher Scientific 15654444) upward and remove 

the chest walls on both sides. 10 ml PBS (Life Technologies 5001223) was perfused 

through the right ventricle of the heart towards the lung tissue through a 26G needle 
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(VWR International 02040676) to remove blood cells. Carefully remove the anterior chest 

wall to expose the trachea, pass forceps underneath the trachea, and take sterile medical 

thread to fix the needle as a backup. Precision ophthalmic scissors make a mini cut on 

the trachea below the cricoid cartilage. Insert the plastic tube wrapped with the intrave-

nous cannulation (VWR International 4252110B) into the trachea, and tie it with a knot 

of medical thread. After intubation, 2% low melting point agarose (Sigma A9414) pre-

pared with phenol red-free RPMI1640 medium (GIBCO 11835030) was injected into the 

trachea until both lungs were inflated. Wait for 1 minute, remove the intravenous cannu-

lation (VWR International 4252110B) and tighten the fixation line, remove the lungs to-

gether with the heart and transfer them to pre-cooled medium, and place them on ice 

until they are completely solidified.  

 

The left lung lobe was separated to remove the liquid on the surface of the lung lobe, 

and the lung surface was evenly coated with NHS-ester dye (Life Technologie A20000) 

for 1 min, and then the lung surface was rinsed with Tris-HCL solution to remove excess 

dye. The fluorescent dye-labeled lung lobes were transversely sectioned using a vi-

brotome (Zeiss Hyrax V55) at a thickness of 300µm per slice. The parameters were set 

to a speed of 10–12 μm/s, a frequency of 80Hz and the amplitude of 1 mm. PCLS was 

incubated for 2 hours at 37°C and washed twice with warm RPMI1640 (GIBCO 

21875034). PCLS was cultured in the medium of RPMI 1640 (GIBCO 21875034) with 

10% (v/v) FBS (Life Technologies 10500064), 2.5μg/mL (0.1%) amphotericin B (Sigma 

A2942) and 1% (v/v) Pen-strep (GIBCO 15140122), and then transferred to a 37 °C 

incubator with 5% CO2. 

2.4.2 PCLS Coculture with immune cells 

3D lung sections with fluorescent labeling in the pleural layer were co-cultured with 2x105 

mouse primary monocytes, 2x105 differentiated adherent macrophages M0, 2x105 LPS/ 

IFNγ activated macrophages and 2x105 IL4/M-CSF Macrophages in 24-well plates sep-

arately, adding medium RPMI 1640 (GIBCO 21875034) medium supplemented with 10% 

(v/v) FBS (Life Technologies 10500064), 2.5μg/mL (0.1%) amphotericin B (Sigma A2942) 

and 1% (v/v) Pen-strep (GIBCO 15140122), and then cultured in a 37 °C incubator with 

5% CO2. The control group was set to an equal volume of culture medium, and each 

group of samples was set to 4 replicates. The fluorescence distribution of lung slices was 

recorded with fluorescence microscope using a compiled zoom of 10× at timepoint of d0, 

d3, d5, and the medium was changed every other day. 
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A dual factor experiment was used to verify macrophages’ function. Labeled PCLS was 

firstly co-cultured with 2x105 LPS/ IFNγ-activated macrophages for three days, and then 

2x105 mouse primary monocytes, 2x105 differentiated adherent macrophages M0 and 

2x105 IL4/M-CSF polarized macrophages were added in 24-well plates separately, with 

4 sample replicates in each group. The control group was a group without adding cells 

and a group with 2x105 macrophages activated by LPS/IFNγ. The fluorescence distribu-

tion of each lung slice was recorded with the fluorescence microscope on d0, d3, and d5. 

The medium was changed every other day. Culture conditions were using medium RPMI 

1640 (GIBCO 21875034) containing with 10% (v/v) FBS (Life Technologies 10500064), 

2.5μg/mL (0.1%) amphotericin B (Sigma A2942) and 1% (v/v) Pen-strep (GIBCO 

15140122). Then samples were transferred to a 37 °C incubator with 5% CO2. 

2.4.3 PCLS Coculture with Chemicals 

Screening of differentially expressed genes between two types of macrophages based 

on comparison of single cell data, including potential macrophage targets MMP7, MMPs, 

SLAMF5, CD47, Progranulin, and CD36. Also listed are NF-kB signaling pathway targets 

related to inflammation and perlecan functional structural targets differentially expressed 

in lung disease tissues. The in vitro PCLS fibrosis model was used to verify the role of 

inhibitors or recombinant proteins of relevant targets in the fibrosis process. In the same 

way, based on the co-culture experiment of cells and PCLS, chemicals were added to 

treat each target, and the role of the target was verified by tracking the trajectory of la-

beled ECM movement. We set the groups as Control +DMSO, LPS/ IFNγ-activated mac-

rophages, LPS/ IFNγ-activated macrophages+ Chemical, IL4/ M-CSF induced macro-

phages, IL4/ M-CSF induced macrophages+ chemical, LPS/ IFNγ-activated macro-

phages (first 3 days)+ IL4/ M-CSF induced macrophages. 

Table 8 Chemicals for the targets 

Targets Chemicals Manufacturer Ref No. 

Perlecan Heparan Sulfate Medchemexpress HY-101916 

Perlecan Chlorate Sigma-Aldrich 403016 

CD47 Anti-CD47 Blocking 

Antibody 

Biozol Diagnostica BXC-BE0283 

CD36 Sulfosuccinimidyl 

oleate 

Santa Cruz sc-208408B 
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Progranulin Recombinant 

Progranulin protein 

Bio-Techne AF2557 

Progranulin Vorinostat  Biomol LC-V-8477 

Progranulin D(+)-Trehalose Carl Roth 5151.2 

MMP7 Isofraxidin Sigma-Aldrich PHL89229 

MMPs GM6001 Sigma-Aldrich CC1100 

SLAMF5 CD84 protein Biozol Diagnostica BLD-326002 

legumain RR-11a Biozol Diagnostica ADQ-A19852-1 

NF-kB Gliotoxin Biomol Cay11433-1 

Phagocytosis Cytochalasin D Th Geyer. 10838343 

Lung fibrosis Nintedanib esylate Santa Cruz sc-396761B 

Lung fibrosis Pirfenidone Santa Cruz sc-203663 

2.5 Animal experiments 

2.5.1 Approval of animal experiments 

All experiments adhered strictly to the guidelines set forth by the ethics committee of the 

Helmholtz Zentrum Munich and were duly approved by the regional council of Upper 

Bavaria Germany (Project ROB-55.2-2532.Vet_02-19-101). To induce experimental fi-

brotic phenotype , added 50 μL Bleomycin (2 U/kg, Bleomycin sulfate, dissolved in DPBS) 

was administered intratracheally by an intravenous cannula (VWR International 

4252110B). Control mice were treated with 50 μL DPBS (Life Technologies 5001223). 

2.5.2 Lung bleomycin animal Model 

10-12 weeks C57BL/6J female mice ordered from Charles River (Sulzfeld, Germany) 

were applied for lung bleomycin model. Non-toxic fluorochrome-conjugated NHS-Ester 

(Life Technologie A20000) was intrapleural injected (50 microliters of 10 mg /ml) 2 days 

before bleomycin instillation. At the day of bleomycin instillation, mice are anesthetized 

with MMF (Medetomidine at 500 μg/kg, Midazolam at 5mg/kg and Fentanyl at 50 μg/kg 

body weight). The eyes of the mice were protected with ointment (Bayer, 0010087848). 

Then Bleomycin was in-fused at a concentration of 2 U/kg. The control group was set up 

in PBS. The experiments were then terminated and specimens collected at either 7, 14, 

21, 28, 45 days (Izbicki et al., 2002; Peng et al., 2013; Ruscitti et al., 2017; Schiller et al., 
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2015) after instillation depending on the experiment described below. Progranulin ad-

ministration experiments were set up on bleomycin model. Progranulin was intrapleural 

injected twice, the first injection was with bleomycin instillation and the second was 

added on day7. The lung samples were collected on day7, day14, day 21, day28 com-

paring the histological features with control and bleomycin group. Each group had 6 mice 

for replication. 

2.6 RNA analysis 

2.6.1 RNA extraction and cDNA synthesis 

2x105 Primary macrophages (M0) were seeded into 12 well plates within the medium 

containing different chemicals. The groups were set up with 20 mU/ml bleomycin (Sigma-

Aldrich B5507), 100 ng/ml LPS (Sigma Aldrich L8274) + 50 ng/ml interferon-γ (IFNγ, 

PeproTech 315-05-100), 100 ng/ml LPS (Sigma Aldrich L8274) + 50 ng/ml interferon-γ 

(IFNγ, PeproTech 315-05-100)+ 50ng/ml Progranulin, 100 ng/ml LPS (Sigma Aldrich 

L8274) + 50 ng/ml interferon-γ (IFNγ, PeproTech 315-05-100)+ 10 μm Isofraxidin (MCE 

HY-N0774), 50ng/ml M-CSF (PeproTech 315-02-10) + 20ng/ml Interleukin-4 (IL4, Pepro-

Tech 214-14-20), and PBS as control. The RNA was extracted by using the RNeasy kit 

(Qiagen 74104). The concentration and quality was quantified through a 

NanoDrop1000(PeqLab). Then cDNA was synthesized via reverse transcription kit. The 

process involved incubation for 10 minutes at 20°C, Then an annealing cycle was set for 

75 minutes at 43°C and an extension for 5 minutes at 99°C. The reaction was then cooled 

to 4°C for storage.  

2.6.2 Quantitative real-time PCR 

The mRNA levels of the specific genes were assessed by SYBR Green (Roche) and an 

LC480 Light Cycler (Roche), with normalization against the reference gene GAPDH. The 

Primers were diluted to a final concentration of 500 nM with RNase/DNase-free water. 

The qPCR system were carried out: starting denaturation was 5 minutes at 95°C, then 

45 cycles of denaturation for 5 seconds at 95°C, annealing for 5 seconds at 59°C, and 

elongation for 10 seconds at 72°C. Subsequently, a melting curve analysis was per-

formed to characterize the dissociation features of dsDNA, involving denaturation for 5 

seconds at 95°C, annealing for 1 minute at 60°C, and continuous acquisition was set 

from 60°C to 95°C. The reaction concluded with a final cooling step at 4°C. The level of 

relative transcript expression were determined by calculating the difference between cy-

cle threshold values (ΔCt). 
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2.7 Histology 

2.7.1 Immunofluorescence 

Lung samples from animal experiments underwent fixation with 4% paraformaldehyde 

O/N (PFA, VWR 43368.9), followed by three washes with clean DPBS and subsequent 

processing for sectioning with OCT infiltration. The slides were then cleaned 3 times with 

0.05% PBST to remove the OCT and blocked for 1 hour with 10% donkey serum in PBST 

at RT. Subsequently, the solution were changed with primary antibody in blocking buffer 

at 4°C O/N. Afterward, Slides were washed 3 times with PBST and then incubated with 

secondary antibody for 1 hour at RT. After that, sections underwent 3 rinses in PBST 

and were mounted with mounting media containing DAPI. 

 

PCLS 3D-staining, fixed PCLS slides (approximately 1 cm2) were treated PBSGT for 1 

day. Solution was changed with the primary antibody in PBSGT for 48 hours at RT. Then 

samples were washed 3 times for 3hours, following dipping in the solution of secondary 

antibody in PBSGT for 48 hours. Primary antibodies used: a-SMA (Abcam ab21027, 

1:150), CD206 (R und D Systems AF2535 1:500), CD80 (Abcam ab134120 1:200), GRN 

(Bio-Techne AF2557 1:500), MMP7 (Proteintech 10374-2-AP 1:200), Col1 (Biomol E-

AB-36387.20 1:200), Col4 (Abcam ab6586 1:200), LGMN (Tebu-Bio 126144-61944-100 

1:200), MARCO (Abcam ab259264 1:200), perlecan (A76, Abcam ab26265 1:500), per-

lecan (7B5, Life Technologies 134400 1:500), perlecan (A74, Abcam  ab23418 1:500), 

perlecan (5D7-2E4, Life Technologies MABT12 1:500), perlecan (A7L6, Abcam ab2501 

1:500).  

2.7.2 Masson-trichrome stain 

Trichrome staining (Masson) (Sigma Aldrich HT15) was conducted utilizing a common 

kit. The slides were imaged using a ZEISS AxioImager.Z2m microscopy with a 20× ob-

jective. The sample under microscope showed collagen fibers were blue, muscle fibers 

were red, red blood cells were orange, and cell nuclei were gray-black.  

2.7.3 Image Analysis 

Histological images were analyzed using Fiji (v.1.53c). In order to quantify the movement 

trajectory of labeled pleural layer ECM in in vivo slices and in vitro 3D lung tissue exper-

iments, we measured the pleural layer thickness at different time points. Each sample 

took measurement data from four different areas, and each group ensured four sample 

repetitions. We compared the data from the fibrosis group with the results from the 
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healthy group to draw conclusions. Immunofluorescence staining results analysis Posi-

tive cell rate, the staining cells numbers in same size of area was caculated by combining 

double-positive signals in DAPI and labeled antibody channels. By quantifying the fluo-

rescence intensity of labeled matrix antibodies, their average fluorescence intensity was 

measured in lung sections of the same size, and then the data were compared between 

healthy and disease groups. Fractal analysis was based on the ImageJ plugin “FracLac” 

29, applied the same parameters and preprocessing (Correa-Gallegos et al., 2019; 

Correa-Gallegos et al., 2023).  

2.8 Protein analysis 

2.8.1 Mass spectrometry data analysis 

Eleven human lung health and Idiopathic Pulmonary Fibrosis (IPF) samples were 

sourced from the proteomecentral public database (dataset ID PXD011116). Raw data 

underwent analysis through MaxQuant. The software allowed for two missing cleavage 

sites (Tyanova et al., 2016). Carbamidomethylation of cysteine served as a fixed modify 

command. The bait database was constructed by upending the previous sequence to 

enhance the reliability of peptide and protein identifications.  

 

The "proteome" MaxQuant output file facilitated quantification of protein. Subsequent 

data preprocessing was conducted using Perseus86 software. Contaminants and pro-

teins identified solely or the decoy database were filtered out. The lowest threshold was 

established for protein detection of 6 valid values. LFQ values of protein abundances 

were subjected to a comprehensive data analysis pipeline comprising sample normali-

zation, technical replicate averaging, noise level estimation, and fold change evaluation. 

Robust quantile normalization was applied to the LFQ values, particularly suitable for 

heavy-tailed distributions. The resulting protein peptide intensities were normalized to 

account for systematic changes in data distribution between samples. Significance of 

fold change between conditions was determined by the t-statistic model. The P value 

<0.01 and missing values <50% were deemed significantly altered.  

2.8.2 ELISA assay 

Supernatants of PCLS after treatments were analyzed using ELISA Kits for mouse per-

lecan (Biozol BYT-ORB780077), Progranulin (Life technologies EMGRN) according to 

the instructions. The concentrations were calculated and analyzed by GraphPad Prism 

9.0 using the protein standard included in the ELISA kits. 
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2.9 Statistical analysis 

All Data were recorded and analyzed with GraphPad Prism 9.0. The analysis was oper-

ated using one-way ANOVA, t-test, two-tailed paired t-test. Data are shown as means ± 

SEMs and were considered statistically significant when p ≤ 0.05. 
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3. Results 

3.1 Fibrotic macromolecules accrule inward from the pleural 

ECM 

3.1.1 Inward egress of fibrotic macromolecules in animal models of 

fibrosis 

To reveal the dynamic involvement of lung pleura extracellular matrix (ECM) during lung 

injury, we used NHS-easter dye to label the pleural layer of lung ECM, then traced the 

dynamic changes of labeled ECM proteins in a bleomycin model of lung fibrosis (Fig. 

3.1a). The resulting NHS-ester dye tags ECM with FITC+ signal. We then performed 

bleomycin intratracheal instillation in mouse lungs, and we quantified the depth of matrix 

movement, as well as performed fractal analysis of ECM fibers at Day 14 post Bleomycin 

(Fig. 3.1b). FITC+ labeled proteins appeared in the bleomycin group within deep lung 

tissue, and its statistical depth was approximately 5 times the thickness of the labeled 

pleural layer as compared to control groups. Fractal dimension was used to analyze the 

structural complexity of the green fluorescent fiber based on its distribution and folding 

degree. The results showed that the bleomycin group was 1.5 times that of the control 

group. Transverse slices were used to obtain the overall signal distribution level of the 

plane. It was found that the green signal in the bleomycin group could diffuse throughout 

the entire lung plane on day 21, while in the control group, the signal clearly remained 

only in the pleural layer.  

 

Immunofluorescence staining of markers related to fibrosis found that the aSMA+ cell 

rate in the bleomycin group accounted for 40% of the cells in the area, and the Col1+ cell 

rate accounted for 75% of the cells in the area. Both groups of fibrosis marker-positive 

cells were much higher than those in the control group (Fig. 3.1c), and the structure of 

the green labeled macromolecules is spatially associated with fibrosis markers. This 

proves that green labeled ECM protein may be involved in the process of pulmonary 

fibrosis, and this green label can track the dynamic changes of pulmonary fibrosis. 
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Figure 3.1 Pleural layer ECM is accompanied by inward movement of fibrosis. 

a. Scheme of bleomycin animal model, NHS-easter dye marks the pleural layer ECM in 

advance. b. Tissue sections show that the day14 sample has shown a movement trend, 

statistical analysis of the depth of ECM influx (left) and the complexity of fiber dimension 

analysis (right). c. Observe the degree of fiber diffusion of the marker in the pleural layer 

on day 21 on the cross section. The fluorescent image shows the marker (Green) and 

fibrosis marker (magenta), and the positive rate of the fibrosis marker is counted. Scale 

bar is 100 μm (b, c). 

 

3.1.2 Inward egress of fibrotic proteins in ex vivo models 

In order to simplify animal experiments and facilitate subsequent large-scale drug 

screening experiments, we designed ex vivo tissue explant culture experiments. Low 

melting point agarose gel was perfused into mouse lungs, and NHS-ester dye was used 

to label the ECM protein of the lung pleural layer, and then vibratome was used to slice 

the lungs into uniformly 300micron thick lung sections. We treated lung slices with bleo-

mycin for 7 days ex vivo and tracked the changes in NHS-labeled pleural layer ECM. 

The results showed that the labeled thickening of the bleomycin group was 1.915 times 

that of the control, and the fiber structure and dimensional complexity was higher than 

that of the control group, indicative of fibrosis development (Fig3.2). 
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Figure 3.2 In vitro pulmonary fibrotic 3D model.  

Schematic flow chart of lung slices in vitro (left) and fluorescence images of the fibrosis 

group and control group labeled with ECM in the pleural layer (right), with statistics on 

changes in ECM movement depth and fibrosis dimension. The scale scale is 0.2mm. 

 

Labeled lung sections showed the phenotype of the control group on day0 (left), and on 

day 7 of bleomycin stimulation, lung sections showed an inward influx of green fluores-

cent fibers and a decrease in the central black area (right). We tested the fibrosis-asso-

ciated markers aSMA and Col1 by immunofluorescence staining, and found that cells 

positive for both were highly expressed in the bleomycin group. Furthermore, we cap-

tured the signal of second harmonic generation (SHG) overlapping with the labeled area 

using a multi-photon microscope, thus demonstrating that the movable FITC+ material 

are strongly associated with fibrosis. 

 

 

Figure 3.3 fibrotic markers signature in PCLS model.  
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The fluorescence results show the labeled pleural layer ECM (green), fibrotic marker 

(magenta) and Second harmonic signal (cyan). The statistical results show the positive 

rate of fibrotic marker cells. Scale bar is 2mm (top), 0.2mm (bottom). 

3.2 Monocyte-derived macrophages adopt distinct responses 

signature in severe bleomycin model  

3.2.1 Different clusters of lung macrophages 

To investigate the function of distinct macrophage clusters during pulmonary fibrosis, we 

defined different cell populations by single-cell RNA sequencing methods. The database 

contains seven time points from day0, day3, day7, day10, day14, day21 and day28. 

These time points contain the initial stages of inflammation, the stage of fibrosis onset 

and the stage of fibrosis resolution. We detected two distinct macrophages clusters (Fig. 

3.4a). Cluster 1 was defined as profibrotic macrophages, marked by Marco, Lgmn and 

Cd163. Cluster 2 scored highest for resolution macrophages, marked by Grn, Ctsb and 

Mrc1. To trace the number of distinct macrophages among the 7 timepoints, we recorded 

the percentage of cells, which showed that monocyte numbers were highest at day0 and 

continued to decline thereafter. Profibrotic macrophages started at less than 20%, 

peaked at 65% on day21, and then declined in number. Resolution-type macrophages 

remained low until day21, and then began to rise rapidly after day21, outnumbering pro-

fibrotic macrophages on day28 (Fig.3.4c). Our investigation revealed distinct expression 

patterns of markers MARCO and GRN, associated with profibrotic macrophages and 

resolution macrophages, respectively. To further validate these findings, we assessed 

the expression of activated macrophages in vitro. 

 

Comparative analysis demonstrated that MARCO exhibited heightened expression lev-

els in macrophages activated by LPS/IFNγ, in contrast to unstimulated macrophages. 

Conversely, GRN demonstrated relatively elevated expression in macrophages stimu-

lated by IL4/M-CSF (Fig.3.4d). These observations suggest that the macrophage sub-

clusters identified from single-cell sequencing results can be recapitulated in vitro 

through these two treatment modalities. 
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Figure 3.4 two macrophages subcluster in mouse IPF scRNA-seq.  

a.All cell populations at 7 time points of single cell data, including two types of macro-

phage subpopulations. b. profibrotic and resolution macrophages’ gene marker. c. Track 

the differential changes in the cell proportions of two macrophage subpopulations at dif-

ferent time points. d. qPCR results show the relative expression of two high-confidence 

markers in the Macrophages samples with different treatment.  

 

3.2.2 Aggregation of macrophage subpopulations during different stages 

Due to the limitation of single-cell RNA sequencing time points, we were unable to ana-

lyze the macrophage expression and distribution that tracked the subsequent day45 time 

points. Therefore we collected sections from lung bleomycin experiments at six time 

points to count the distribution of NHS-labeled signals and changes in the number of the 

two types of macrophages. The results of the sections showed that the green fluorescent 

protein signal began to egress inward after day0 and reached a maximum of 60% on 

day21, while it began to resolve on day28 and finally fell to 20%. Whereas the trend of 
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profibrotic macrophages was similar to that of labeled signals, which continued to rise 

during the early immunization phase (day7-day14), reaching a peak of 37% at day21 

and dropping to 5% at day28. In contrast, resolution macrophages rose from day14 and 

remained at high expression levels on day45. These results implie that different macro-

phages exercise their specific functions in the inflammatory and repair phases, respec-

tively. 

 

 

Figure 3.5 Profibrotic and resolution macrophage stages in the fibrosis process.  

a. The fluorescence image shows the degree of diffuse inward movement of ECM in the 

pleural layer marked at different time points. b. Statistically analyze the average fluores-

cence intensity of the labeled protein (green) in the fluorescence photos at different time 

points. c. Changes in cell proportions of profibrotic (red) and resolution macrophage (ma-

genta) at key time points. Scale bar is 100 μm. 

 



Results  

  49 

3.3 IPF triggers fibrosis-related profiles in macrophages 

3.3.1 LPS/IFNγ induces macrophages to promote the diffusion of labeled 

fibrotic macromolecules 

According to the literature, LPS/IFNγ and IL4/M-CSF stimulation can differentiate mac-

rophages into different activation states. here, we respectively added monocytes, inac-

tive macrophages (M0), LPS/IFNγ induced macrophages (M1-like) and IL4/M-CSF stim-

ulated macrophages (M2-like) onto PCLS lung explants, tracking changes in the thick-

ness of NHS markers from day0, day3 to day5. The results showed that LPS/IFNγ in-

duced macrophages showed fibrosis-promoting motility. We then co-cultured PCLS with 

M1-like for 3 days, after which we added separately monocytes, inactive macro-phage 

(M0), and IL4/M-CSF stimulated macrophages (M2-like). Tracing the NHS-labeled sig-

nals, it was found that the fibrosis moved inward when M1-like was added first for 3 days 

of co-culture, but the movement was suppressed after the addition of IL4/M-CSF-stimu-

lated macrophages (M2-like) (Fig 3.6a). This result demonstrates that LPS/IFNγ-induced 

macrophages have the function of promoting the movement of fibrosis, while IL4/M-CSF-

stimulated macrophages (M2-like) may exercise the opposite role. 

 

To further explore the function of LPS/IFNγ-induced macrophages, we screened poten-

tial targets such as Perlecan, MMPs, CD47, SLAMF5, CD36, and Progranulin based on 

single-cell sequencing results comparing the differentially expressed genes of probiotic 

macrophages and resolution macrophages. Specific inhibitors were added with to PCLS-

macrophage co-cultures. Signal dynamic changes according to NHS labeling showed 

that the profibrotic macrophage group (F) was higher enrichment of fibrosis than the 

control group, and the amplitude of ECM movement was elevated by the addition of two 

inhibitors of Perlecan (heparan and chlorate). Whereas the addition of GM6001 and 

Isofraxidin inhibited inward fiber movement, which are inhibitors of MMPs and specific 

MMP7, respectively. Similarly, the addition of SLAMF5 inhibitor, CD47 inhibitor, and 

Progranulin recombinant protein inhibited the function of profibrotic macrophages. The 

difference in effect was not significant with the addition of SR-B3 inhibitor (Fig 3.6b). 

According to the group with the most statistically significant differences, profibrotic mac-

rophage function was effected strongly by MMP7 and Perlecan, alluding to their mecha-

nism of action. 
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Figure 3.6 LPS/IFNγ-induced and IL4/M-CSF activated macrophages play different role 

in fibrotic matrix movement.  

a.PCLS and cell co-culture experiment, the fluorescence image shows the changes in 

the pleural layer after single factors are added to cells and PCLS culture (upper layer 1 

-5), two-factor analysis adds M1 group first and then other cell groups. Statistical analysis 

of changes in pleural layer thickness at different time points. b. Profibrotic macrophages 

differentiation method, drug-treated cell targets are co-cultured with PCLS, and matrix 

movement changes are counted. Scale bar is 0.2mm. 

 

3.3.2 Profibrotic macrophage disrupts ECM structure through Perlecan 

and MMP7 

According to the differential expression heat map of macrophages, profibrotic macro-

phages highly expressed MMP7. Based on the drug screen assay, Isofraxidin, specifi-

cally inhibits the expression of MMP7, which significantly impeded the function of profi-

brotic  macrophage. Therefore we verified the effect of this drug by using in vitro bleo-

mycin model. The results showed that inhibition of MMP7 secretion directly blocked the 

development of fibrosis stimulated by bleomycin (Fig 3.7a). We also verified that Per-

lecan is one of the important components of the lung basement membrane, which con-

tains five functional structural domains, and we examined the distribution of different 

structural domains in healthy and diseased states. and the immunofluorescence staining 
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images verified that the distribution and expression of domain3 and domain5 was much 

higher in the bleomycin samples than in the control groups. This result implies that the 

two structural domains may be potential targets of action (Fig 3.7b). We co-localized 

MMP7 and the two key structural domains by immunofluorescence staining, and found 

that MMP7 and the two structural domains were highly expressed and nearly distributed 

in the bleomycin group (Fig 3.7c). 

 

Figure 3.7 Effect of Profibrotic macrophage on lung perlecan.  

a. Fluorescence photos show the results of treatment of fibrotic PCLS with the MMP7 

inhibitor isofraxidin. Statistically track the movement changes of the matrix at different 

time points. b. Immunofluorescence shows the protein expression of the five domains of 

perlecan in the bleomycin sections and the control sections, and the average fluores-

cence intensity of the five domains in the sample was calculated. c. Fluorescence colo-

calization of MMP7 and two differentially accumulated domains. Scale bar is 10 mm. 
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3.4 IPF triggers self-repair regulators in macrophages 

3.4.1 Resolution macrophages regulate affinity for ECM and phagocytosis 

through secretion of Progranulin 

Based on our PCLS model of fibrosis, we added macrophages (R) activated by IL4/M-

CSF alone to co-cultures with PCLS, which showed no significant difference from control. 

Subsequent addition of various inhibitor treatments was also not significant, except for 

the addition of the phagocytosis-associated inhibitor of SR-B3 which appeared to be sig-

nificantly different. Addition of blocking CD47 antibody group and addition of Progranulin 

recombinant protein group showed enhanced inhibition of fibrosis spreading. Subse-

quently, a similar trend of results was observed in the group with resolution macrophage 

and various chemicals after 3 days of pretreatment with profibrotic macrophage (Fig. 

3.8a). We thus hypothesized that the function exercised by resolution macrophage might 

be related to the phagocytic mechanism. 

 

Based on the comparison of the significance of differences in the drug screening assay, 

the group with the addition of Progranulin showed enhanced repair function of resolution 

macrophages. Based on the differential gene expression, we found that resolution mac-

rophages highly expressed Progranulin, so we verified the function of Progranulin in our 

PCLS fibrosis model. The results recorded that the spread of fibrosis was significantly 

inhibited by adding Progranulin recombinant protein to the bleomycin group. Statistical 

parallel comparison of the treatment effect with existing antifibrotic drugs Pirfenidone, 

Nintedanib and macrophage scavenger Chlodronate liposomes showed that the antifi-

brotic effect of Progranulin was significant (Fig3.8b). 

 

ELISA comparing the difference in protein expression levels of Progranulin in different 

treatment groups showed that the highest expression was found in the group of macro-

phages activated by the addition of IL4/M-CSF to PCLS (Fig3.8c). To further validate the 

function of resolution macrophages, we designed cellular experiments in which Perlecan 

purified proteins were co-incubated with beads with FITC fluorescent signals, followed 

by addition of the beads to co-culture with IL4/M-CSF-activated macrophages. The con-

trol group was blank co-incubated with fluorescent beads, and fluorescent photographs 

showed that Perlecan protein-incubated bead group presented a stronger affinity to mac-

rophages, and a greater number of beads were phagocytosed into the cells (Fig3.8d). 

From this, it can be inferred that resolution macrophages highly express Progranulin 

along with higher phagocytosis and affinity for Perlecan. 
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Figure 3.8 The role of resolution macrophages in pulmonary fibrosis.  

a. Resolution macrophages differentiation process. Drug-treated macrophage targets 

were co-cultured with PCLS, and matrix movement distances were statistically compared. 

b. Fluorescence results show that GRN recombinant protein repairs fibrotic PCLS, and 

the data changes of each group at different time points are counted，Scale bar is 0.2 

mm. c. ELISA test to compare the protein levels of GRN under different culture conditions 

of PCLS. d. The domain V domain protein of perlecan is wrapped with fluorescent beads 

and then incubated with resolution macrophages. The phagocytosis ability is detected 

by fluorescence microscopy, and the number of beads contained in each cell is counted. 

Scale bar is 2 μm. 
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3.4.2 Prograunlin is a repair factor in the early fibrosis process 

In order to verify the role of progranulin recombinant protein in the mouse in vivo model, 

we added Progranulin recombinant protein in the bleomycin experimental group twice 

via intratracheal instillation at day0 and day7 time points. We collected samples for sec-

tioning to observe the lung fibrosis phenotypes at day21. The results showed that the 

level of lung fibrosis in mice after instilment of Progranulin recombinant protein was sig-

nificantly lower than that in the group with Bleomycin alone (Fig3.9a), and the same result 

was verified by the Masson staining structure. We recorded the body weight of the mice 

daily from day0 to day21, and the Bleomycin group lost up to 10% of their body weight, 

while the Bleomycin plus Progranulin recombinant protein group lost up to 2% of their 

body weight (Fig3.9b). Combined with the statistics of assessing the level of pulmonary 

fibrosis in the sections, the level of fibrosis in the Progranulin plus Progranulin recombi-

nant protein samples were dramaticly lower than that in the Bleomycin samples. This 

shows that early addition of Progranulin significantly inhibited fibrosis development. 

 

 

Figure 3.9 Progranulin regulates early pulmonary fibrosis levels.  

a. Animal pulmonary fibrosis model, progranulin was perfused on day0 and day7 respec-

tively. Staining of day21 sample sections shows the level of fibrosis. b. Record the weight 

changes of mice in each group from day 0 to day 21, and evaluate the fibrosis level of 

each group based on the Masson staining results. Scale bar is 100 μm. 
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3.5 Resolution macrophages in human IPF and ILD 

3.5.1 Human Macrophages clusters in scRNA-seq 

Comparing the single cell data of lung tissue in human IPF and non-lesional areas, and 

combining the distribution of the two types of samples, we divided four macrophage sub-

populations, among which Progranulin showed higher expression in healthy lung tissue, 

while MMP7 was expressed in healthy lung tissue. High expression in IPF samples was 

mainly concentrated in large cluster 1 macrophages (Fig. 3.10). This result laid the foun-

dation for subsequent in-depth exploration of Progranulin and MMP7. 

 

 

Figure 3.10 Macrophage population in human IPF.  

a. Comparison of macrophage populations in human lung IPF and healthy samples. b. 

Progranulin expression in IPF and non-lesional lung tissue. c. Expression of MMP7 in 

IPF and non-lesional lung tissue. 

 

3.5.2 Distribution of human lung fibrosis and proteomic differential 

phenotypes 

According to the results of Masson's trichrome staining, the lung tissue of human IPF 

patients showed a thickening of the pleural layer, with blue collagen extending inward 

and connecting to fibrotic patches in deep lung interstitium (Fig3.10a). This part of the 

diseased tissue was significantly different from the healthy lung tissue. We analyzed the 
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proteomes of 11 human IPF lung samples and 11 healthy human lung samples, focusing 

on the cumulative abundance of peptides in the different structural domains of Perlecan 

and the statistics of the shear sites. We found that domain1, domain3 and domain5 of 

Perlecan were highly enriched in the bleomycin samples instead of healthy one 

(Fig3.10a). And the shear sites of domain3 and domain5 were more in the Bleomycin 

group. This result also implies that the structural changes of Perlecan are one of potential 

targets to regulate pulmonary fibrosis. 

 

 

Figure 3.11 Distribution of human pleural layer ECM in IPF lesions.  

a.Masson staining shows differences in collagen deposition in healthy and IPF lung tis-

sue. b. Statistics on the accumulation of peptide abundances of the five domains of hu-

man perlecan and the differences in the number of cleavage sites in different domains. 

Scale bar is 200 μm. 

 

3.5.3 Distribution of Profibrotic macrophages and resolution 

macrophages in human IPF samples 

To explore whether the two clusters of macrophages with different functions defined in 

the mouse model are compatible and applicable to the human lung tissue microenviron-

ment, we traced the distribution of the two classes of macrophages by immunofluores-

cence staining in human healthy and diseased samples. Perlecan is an important com-

ponent of the basement membrane in the human lung tissue but it is locally overex-

pressed in a group of human IPF samples. Profibrotic macrophages were highly ex-

pressed in its periphery, and the expression of this cell population was higher than in the 
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present disease samples. The resolution macrophages, on the other hand, highly ex-

press Progranulin, which is expressed in the healthy group and also in the IPF tissue, 

and tightly associated with areas rich in Perlecan protein expression. Immunolocalization 

of Progranulin and CD206 in IPF samples showed high co-expression of positive cells. 

 

 

Figure 3.11 marker signals in human IPF.  

a. Immunofluorescence photo showing co-localization of Perlecan/HSPG2 and profi-

brotic macrophage marker. b. Immunofluorescence results show co-localization of Per-

lecan/HSPG2 and resolution macrophage. c. Immunofluorescence resolution macro-

phage and CD206 marker co-localize. Scale bar is 100 μm. 

 

 

 

 

 



Discussion  

  58 

4. Discussion  

Lung structure injury and excessive deposition of collagen are common lesions in mouse 

and human lung fibrosis, and this pathological feature is often found in the later stages 

of the disease. According to our experimental design, the ECM structural proteins of the 

lung were labeled at the pleural surface, and coupled with the fibrosis stimulator Bleo-

mycin, we observed that the fibrous components of the pleural layer also participated in 

and formed part of the pulmonary fibrosis lesions. According to the results, the labeled 

ECM in the pleural layer gradually accumulates inward along with the process of fibrosis. 

This phenomenon has an important impact on exploring the formation of fibrosis symp-

toms. This also confirms that the lesions in patients with pulmonary fibrosis are always 

related to the pleural layer (Lynch et al., 2018; Martinez et al., 2017). Previous studies 

by our group have found, in other tissue models of scars and fibrosis, that ECM move-

ments are directly involved in repair and influx into the lesion in skin wound models and 

peritoneal adhesion models (Correa-Gallegos et al., 2019; Correa-Gallegos et al., 2023; 

Fischer et al., 2022). This study reveals the impact and role of dynamic changes in ECM 

based on the pleural layer on the lung microenvironment, which has clinical significance 

for the research and diagnosis of pulmonary fibrosis. 

 

We found that macrophages are closely involved in the regulation of pulmonary fibrosis, 

and this refined classification based on their functions has an important impact on track-

ing the accumulation of their cell populations at different stages. Our data shows that two 

types of macrophage subpopulations have direct effects on lung pleura ECM structure, 

thereby participating in the regulation of pulmonary fibrosis. The root of this process is 

the multiple plasticity functions of macrophages, which form two types of distinct effects 

on the fibrosis process in the face of varying degrees of microenvironmental changes. 

Among them, a type of profibrotic macrophages can play a dominant role during inflam-

mation. Profibrotic macrophages secrete pro-inflammatory factors, increase cell metab-

olism, secrete copious amounts of MMP7, which destroy the basic structure of the lung 

ECM, and lay the foundation for fiber movement. Previous studies have shown that 

MMP7 assists cancer cell invasion by cleaving Glycoslylated and basement membrane 

bound Perlecan, and the enriched domain IV fragment of Perlecan induces cancer cell 

aggregation (Grindel et al., 2014; Melrose, 2020). However, given that domain IV of Per-

lecan is also highly expressed in normal tissues, the difference between control and Ble-

omycin group in immunofluorescence staining results is not significant. But our single-

cell sequencing and proteomic data show that Perlecan differentially accumulates in do-

main III and domain V in pulmonary fibrosis samples of mice and human. Domain III 
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exhibits pro-angiogenic properties, contributing to extracellular matrix (ECM) organiza-

tion. Moreover, the endogenous release of domain V by matrix metalloproteinases 

(MMPs) from full-length Perlecan facilitates tissue repair by engaging in angiogenic in-

teractions with various element such as VEGF, VEGF-Receptor 2 (VEGF-R2), α2β1 in-

tegrin, ECM-1, and progranulin (Arikawa-Hirasawa, 2022; Hayes et al., 2022; Tanimoto 

et al., 2017; Wilson, 2022). Our results demonstrate that repair macrophages highly ex-

press Progranulin, and Progranulin administration in the early stages decreases pulmo-

nary fibrosis in animal models, indicating the recombinant protein has a significant effect 

on inhibiting the level of fibrosis. Our results demonstrate that the function of this se-

creted protein is not only to regulate anti-inflammatory levels, but also to have high affin-

ity for Domain V and promote the clearance of beads coated with Domain V protein, 

suggesting that repair macrophages regulate fibrotic microenvironment through Progran-

ulin.  

 

In human IPF single cell sequencing results and tissue section staining results, the ex-

pression of Progranulin in healthy tissues in non-lesion areas was higher than that in 

pulmonary fibrosis tissue areas. Studies have tracked the difference in Progranulin levels 

in the blood of IPF, ILD and healthy patients. The results show that the Progranulin levels 

in healthy and ILD patients are higher than those in IPF (Liu et al., 2021; Tanaka et al., 

2015; Toth et al., 2023; Xie et al., 2021; Zhao et al., 2024). This result is consistent with 

our speculation. Progranulin is involved in regulating early pulmonary fibrosis levels and 

contributes by inhibiting the process of pulmonary fibrosis. Our results show that human 

healthy lung tissue and IPF tissue have differential accumulation of Domain III and Do-

main V of Perlecan, which is consistent with the results of the fibrosis model in mice. 

This suggests that mouse and human macrophages exert an identical molecular mech-

anism in pulmonary fibrosis. 

 

An crucial consideration in this study is the limited number of biological replicates in our 

in vivo experiments. Nonetheless, despite this limitation, multiple results such as ex vivo 

PCLS fibrosis models, cell differentiation stimulation co-culture models, and support from 

single-cell sequencing and proteomic analysis, indicate the important role of both mac-

rophage subsets in the process of pulmonary fibrosis. Although a large number of studies 

have classified M1 and M2 macrophage groups according to stimulus, the macrophages 

of those group still have different functional roles (Zhang et al., 2018). Our single-cell 

sequencing data indicates that resolution macrophages are directly differentiated from 

monocytes and are involved in regulating phagocytosis and anti-inflammatory levels. 
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Profibrotic macrophages differentiate from non-classical monocytes and participate in 

the regulation of metallopeptidase activity and heparin binding activity. Further, our data 

indicates that profibrotic macrophages directly destroy the Perlecan structure by secret-

ing MMP7 and promoting the movement of cells and fiber structures from the pleural 

ECM. Differential accumulation domain V of Perlecan can enhance the binding effect of 

Progranulin. Resolution macrophages highly express Progranulin to regulate the im-

mune level of the lung microenvironment. It can also enhance the affinity to Perlecan 

domain V, thereby riveting the broken ECM structure, and clearing the specific excessive 

accumulation of ECM components. 

 

These results have important clinical implications because different subtypes of macro-

phages can directly determine the stage of pulmonary fibrosis progression and charac-

terize the body's self-repair ability. In particular, both macrophages anchor a specific 

Perlecan structural component in the ECM that is abnormally accumulated not only in 

pulmonary fibrotic disease but also in human lung tumor samples. Pathological analysis 

of the differential accumulation of different structural domains of Perlecan can determine 

the stage of lung damage. Treatments tailored to modulate early stages of pulmonary 

fibrosis would be beneficial by directly stimulating repair macrophages to inhibit profi-

brotic development and early clear excess collagen deposition to prevent excessive 

damage to lung structures. 
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5. Conclusiones and Outlook 

This thesis reveals that two types of macrophage subpopulations, profibrotic macro-

phages and resolution macrophages, can promote or inhibit the movement of pulmonary 

fibrosis by directly acting on the structural components of lung pleural ECM. This study 

demonstrates the strong plasticity of macrophages and defines their specific functions at 

different stages of fibrosis. Profibrotic macrophages destroy the Perlecan structure in the 

lung ECM by secreting MMP7 and promoting the influx of ECM fibers in the pleural layer 

to form a part of the fibrotic lesions. Resolution macrophages have a strong affinity for 

the conserved domain V of Perlecan by secreting Progranulin, which improves/activates 

its ability to phagocytose and clear specific ECM structures. 

 

In human lung tissue, Progranulin was highly expressed in non-lesion lung tissue and in 

ILD patient lung tissue compared with IPF samples. This also implies that Progranulin is 

a potential target for self-repair. Based on the current understanding, we need to con-

tinue to verify the role of Progranulin and MMP7 in the fibrosis microenvironment of hu-

man lung tissue, compare the regulatory effects of Progranulin and MMP7 on fibrosis at 

different concentration levels, and explore more possibilities for macrophages to lung 

ECM direct effect. 

 

Figure 5.1 Revised model of pulmonary fibrosis.  

Profibrotic macrophages directly destroy the lung ECM structure and promote inward 

migration of pleural fibers. Repair macrophages regulate the level of pneumonia by se-

creting progranulin and improve phagocytosis of ECM structures. 
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