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2.8 (a) Checking band mixing validity condition in Eq. 2.37. We observe that in-
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3.1 Schematic illustration of the Bose polaron spectrum across an impurity-
boson Feshbach resonance for repulsively interacting bosons. In the presence
of inter-boson interactions, the attractive polaron persists to the repulsive
side as a well-defined resonance, while other metastable many-body bound
states appear in addition to the repulsive polaron. These many-body bound
states emerge due to the competition of multiple impurity-boson binding
and inter-boson repulsion. The structure of the main component of each
many-body bound state is shown schematically. . . . . . . . . . . . . . . . 44

3.2 (a) Energy of polaron states, including attractive and repulsive polaron, and
metastable states ms1 to ms6 (see text), across an impurity-boson Feshbach
resonance. On the attractive side (a < 0), an impurity resonance exists
corresponding to the attractive polaron branch (green dashed line), which
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two many-body bound states ms1 and ms2 (red and blue solid lines). The
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Zusammenfassung

Diese Dissertation behandelt zwei Hauptthemen von großem Interesse in der Forschung
zur Physik synthetischer Quantensysteme: nichtlineare topologische Wellenfortpflanzungs
phänomene und die Physik mobiler Quantenverunreinigungen in stark wechselwirkenden
Vielteilchensystemen.

Das Thema des ersten Teils ist relevant für eine Vielzahl von schwach wechselwirkenden
synthetischen Quantensystemen, wie z.B. photonische Systeme und ultrakalte bosonis-
che Gase. In diesen Systemen ist das Zusammenspiel von Topologie und Nichtlinear-
itäten ein aktuelles Forschungsthema von großem Interesse. Im ersten Teil erklären wir
das Phänomen des topologisch quantisierten Thouless-Pumpens von Solitonen in nichtlin-
earen eindimensionalen Gittern. Durch die Nutzung der speziellen topologischen Eigen-
schaften der Wannier-Funktionen der zugrunde liegenden Bandstruktur konstruieren wir
ein effektives Modell, das es uns ermöglicht, den beobachteten experimentellen Effekt
in experimentell relevanten Regimen mathematisch zu beweisen. Wir diskutieren aus-
führlich die Bedingungen, unter denen die Annahmen hinter unserem Beweis gültig sind.
Wir nutzen dieses Rahmenwerk interdisziplinär und schlagen eine Art von interaktionsin-
duzierter topologischer Pumpung in eindimensionalen Bose-Bose-Mischungen vor, die nach
den gleichen Prinzipien funktioniert.

Das zweite Thema von Interesse in dieser Dissertation sind die Quantenzustände einer
mobilen Verunreinigung in stark wechselwirkenden Vielteilchensystemen. Wir betrachten
diese Art von Quantenverunreinigungsproblemen in zwei verschiedenen Kontexten: einer
mobilen Verunreinigung, die mit bosonischen Atomen in einem Bose-Einstein-Kondensat
(BEC) wechselwirkt, und Interlayer-Exzitonen, die mit einem elektronischen fraktionalen
Quanten-Hall-System in Van-der-Waals-Heterostrukturen interagieren.

Im Kontext kondensierter bosonischer Systeme führt die Einkleidung einer mobilen
Verunreinigung durch Anregungen des BEC zur Bildung eines Quasiteilchens, das als Bose-
Polaron bezeichnet wird. Im starken Kopplungsregime ist bekannt, dass Bose-Polaron-
Modelle, die auf nicht wechselwirkenden Bosonen basieren, anomales Verhalten im Polaron-
Spektrum vorhersagen. Wir beheben diese Anomalie, indem wir das Modell erweitern,
um Wechselwirkungen zwischen den Bosonen einzubeziehen. Mit Hilfe eines in dieser
Arbeit entwickelten Variationsansatzes zeigen wir, dass das stark wechselwirkende Prob-
lem einer mobilen Verunreinigung in einem BEC auf das Problem schwach wechselwirk-
ender Phononen reduziert werden kann, die an Vielkörper-Bindungszuständen streuen. Wir
zeigen, dass unser Variationsansatz im Gegensatz zu den bestehenden gaußschen Variation-
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szuständen in der Lage ist, nicht gaußsche Korrelationen einzubeziehen, und es uns somit
ermöglicht, Eigenschaften der Vielkörperresonanzen des Systems aufzudecken, die in der
Literatur bisher nicht diskutiert wurden.

Im Kontext von Van-der-Waals-Heterostrukturen betrachten wir ein MoSe2/WSe2/
graphene Gerät, bei dem Interlayer-Exzitonen im MoSe2/WSe2 Heterobilayer mit einem
ν = 1/3 elektronischen fraktionalen Quanten-Hall-Zustand in Graphen wechselwirken.
Zunächst behandeln wir das Drei-Körper-Problem des Interlayer-Exziton-Karrierer-Streuens
und charakterisieren die resultierenden Drei-Körper-Zustände. Wir zeigen, dass im Gegen-
satz zum Fall ohne Magnetfeld, bei dem keine gebundenen Zustände von Exzitonen und
Karrierern entstehen können, im Magnetfeld das Exziton Karrierer binden kann. An-
schließend betrachten wir das vollständige Vielkörperproblem und finden, dass ein Quasiloch
an ein Interlayer-Exziton binden und anyonische Trionen bilden kann. Die Erzeugung
und Beobachtung solcher anyonischer Trionen infolge der Quasiloch-Bindung an defekt
lokalisierte Interlayer-Exzitonen kann zu einer räumlichen und bewegungstechnischen Kon-
trolle über Quasilöcher in Quantum Optical Twist and Scan Microscopes (QOTSM) führen,
ein Weg, der letztlich den direkten Zugang zu den fraktionalen Statistiken der Quasilöcher
ermöglichen kann.



Abstract

This thesis addresses two main topics of high interest in reserch on the physics of synthetic
quantum systems: nonlinear topological wave propagation phenomena and the physics of
mobile quantum impurities in strongly interacting many-body systems.

The topic of the first part is relevant for a wast variety of weakly interacting synthetic
quantum systems, such as photonic systems and ultracold bosonic gases. In these systems,
a recent topic of great interest concerns the interplay of topology and nonlinearities. In
the first part, we explain the phenomenon of topologically quantized Thouless pumping of
solitons in nonlinear one-dimensional lattices. Leveraging the special topological properties
of the Wannier functions of the underlying band structure, we construct an effective model
which enables us to mathematically prove the observed experimental effect in experimen-
tally relevant regimes. We discuss in detail the conditions under which the assumptions
behind our proof are valid. We exploit this framework interdisciplinarily and propose a
type of interaction-induced topological pumping in one-dimensional Bose-Bose mixtures,
which operators on the basis of the same principles.

The second topic of interest in this thesis is the quantum states of a mobile impurity
in strongly interacting many-body systems. We consider this type of quantum impurity
problems in two different settings: a mobile impurity interacting with bosonic atoms in
a Bose-Einstein Condensate (BEC), and interlayer excitons interacting with an electronic
fractional quantum Hall system in van der Waals heterostructures.

In the context of condensed bosonic systems, dressing of a mobile impurity by excita-
tions of the BEC leads to the formation of a quasiparticle dubbed Bose polaron. In the
strong coupling regime, it is known that Bose polaron models based on non-interacting
bosons predict anomalous behavior of the polaron spectrum. We cure this anomaly by
extending the model to incorporate inter-boson interactions. By means of a variational
ansatz constructed in this work, we show that the strongly interacting problem of a mobile
impurity in a BEC can be reduced to the problem of weakly interacting phonons scattering
off many-body bound states. We show that, contrary to the existing Gaussian variational
states, our variational ansatz is capable of including non-Gaussian correlations, and as
such, enables us to reveal properties of the multi-body resonances of the system which
were not previously discussed in the literature.

In the context of van der Waals heterostructures, we consider a MoSe2/WSe2/graphene
device, where interlayer excitons in the MoSe2/WSe2 heterobilayer interact with ν = 1/3
electronic fractional quantum Hall states in the graphene layer. First, we address the
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three-body problem of interlayer exciton-carrier scattering and characterize the resulting
three-body states. We show that, contrary to the case with no magnetic field, where bound
states of exciton and carriers can not form, in the presence of a magnetic field, the exciton
can bind carriers. We then consider the full many-body problem, and find that a qausihole
can bind to an interlayer exciton and form anyonic trions. Creation and observation of such
anyonic trions as a result of quasihole binding to defect localized interlayer excitons can
lead to spatial and motional control over quasiholes in Quantum Optical Twist and Scan
Microscopes (QOTSM), a path that eventually can lead to direct access to the quasihole
fractional statistics.
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Chapter 1

Introduction

Information processing and communication technologies undeniably constitute a corner-
stone of human civilization. From the ancient rudimentary tools of arithmetic like the
abacus to today’s cutting-edge computers, the capabilities of information systems has ad-
vanced at a breathtaking pace. These advancements are evident not only in the evolving
conceptual design and architecture of these systems but also in the growing sophistication
of the physical devices that handle information processing, storage, and communication
tasks. Despite the vast variety of information systems and their diverse applications, every
system includes a fundamental physical layer, which is essential for executing the basic
tasks of information processing, storage and transmission. For instance, a basic central
processing unit (CPU) implementing MIPS instruction set architecture (ISA) may com-
prise of hundreds of arithmetic logic units (ALU) and random access memories (RAM),
which are built from circuit elements such as logic gates and memory cells. Both the logic
gates and memory cells are made from transistors, which operate as current-controlled
switches that store bits of information. While the higher level computation algorithms
that the processor executes are independent of the physical realization of bits, numerous
factors pertaining to the characteristics of the physical device significantly influence the
performance of the entire system. A witness to this influence is the revolutionary impact
on the information technologies brought about by the invention of transistors, which dras-
tically transformed the capabilities of computers and communication systems previously
based on vacuum tubes. This influence is particularly more evident today as the increase
in complexity and scale of computational problems demands physical devices that surpass
the current ones in speed, efficiency (both in energy consumption and performance), and
reliability.

In addition to the classical information systems, the potential for realization of quantum
information processing (QIP) and quantum communication systems has sparked a surge
in research on various aspects of quantum information technology. In QIP, the connection
between processing quantum information and physical effects such as increase in entropy
is far more intricate – a minimal example being the Landauer’s principle, also reflected
in his famous quote “Information is physical”. This deep connection between the abstract
concepts of QIP and the physical quantum devices highlights the crucial importance of de-



2 1 Introduction

veloping quantum devices that meet the stringent requirements demanded by the effective
implementation of QIP tasks.

Beyond technological relevance, the progress in fundamental physics also drives the
development of devices with unprecedented controllability and precision. Recent break-
throughs in fundamental physics such as the detection of gravitational waves through grav-
itational wave interferometry were made possible by the advancements in highly precise
quantum sensors such as high-Q optomechanical resonators. Besides, progress in quan-
tum metrology and precision measurement are expected to enable future experiments with
groundbreaking impacts, aimed at testing general relativity, detection of dark matter, and
scrutinizing the foundations of quantum mechanics. The influential consequences of de-
vice development extends beyond fundamental physics to the realm of condensed matter
physics, where the exploration of strongly correlated many-body systems is now feasible
both in semiconductor heterostructures and in ultracold atomic gases loaded in optical
lattices. Notable recent experimental breakthroughs in this area includes the optical de-
tection of kinetic magnetism and correlated electronic insulators such as Wigner crystals,
detection of fractional Chern insulators, and realization of Harper-Hofstadter and Fermi-
Hubbard models in ultracold atomic gases in Floquet-engineered optical lattices.

Despite their vastly different functionalities and purposes, all the devices mentioned
above share a common characteristic: they are all synthetic quantum systems – quantum
systems that do not occur naturally but are fabricated in laboratories under well-controlled
experimental conditions using advanced fabrication processes. The remarkable technolog-
ical growth in the sophisticated machinary used for constructing, operating and maintain-
ing the synthetic quantum systems has enabled the realization of quantum phenomena so
fragile and intricate that their observation using mainstream laboratory equipment seems
inconceivable. Indeed, the scope of quantum phenomena and the synthetic platforms used
to realize them is so extensive that listing even a fraction of them is impossible. How-
ever, some notable examples across markedly different platforms include the realization of
metastable polaron quasiparticles in ultracold atomic mixtures and hybrid exciton-electron
systems in semiconductor heterostructures , topologically ordered quantum spin liquids in
Rydberg array tweezers, strongly correlated electronic states mentioned above, and cre-
ation and manipulation of unconventional states of light like topological frequency combs
and solitons in diverse photonic structures (Although the later effects are not quantum me-
chanical strictly speaking, they are intimately connected with quantum mechanical wave
phenomena). These examples highlight the breadth of physical effects and synthetic plat-
forms involved.

In this thesis, we explore two fundamental domains of prime importance in the study of
synthetic quantum systems: mobile quantum impurity problems and wave propagation in
nonlinear media. In the following, we briefly discuss the scope and context of the research
carried out in each of these fields, beginning with mobile quantum impurity problems and
subsequently moving on to nonlinear wave propagation.

Quantum impurity problems represent a class of paradigmatic problems in the physics
of synthetic quantum systems. In a broad sense, a quantum impurity problem is con-
cerned with the physics of a quantum system with few degrees of freedom interacting with
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an extended quantum system described by a quantum field theory. From the early days of
quantum mechanics, such problems have been at the center of theoretical and experimental
research. An iconic example is the problem of a single atom interacting with electromag-
netic radiation – a problem that underlies all of the developments in quantum optic and, in
modern times, in the study of open quantum systems. Indeed, many relevant open quan-
tum systems settings comprised of quantum devices - such as superconducting qubits and
quantum dots - coupled to their environment fall within the category of quantum impurity
problems.

While quantum impurity problems come in many shapes and forms and have incredibly
diverse ramifications, the main focus in this thesis is on a subclass of them called mobile
quantum impurity problems. Historically, these types of problems emerged in the study
of electron mobility in polar semiconductors, leading to the formulation of the polaron
concept by Landau and Pekar. In its original context, a polaron is a quasiparticle formed
from an electron dressed by optical phonon excitations of a polar semiconductor, a concept
that also became relevant in the study of electron-phonon interaction in superconductivity.
Surprisingly, polaron physics gained relevance in areas completely separate from its orig-
inal context. It turned out that the physics of ultracold atomic mixtures in the extreme
population imbalance regime can be well described through polaron models, leading to
significant attention in ultracold mixtures research. In parallel, polaron physics also ap-
peared in the study of optical excitations in doped semiconductor heterostructures, where
excitons can become dressed by particle-hole excitations of a two dimensional electron gas
(2DEG), forming exciton Fermi polarons. In this thesis, we address two core problems
pertaining to mobile impurities in both of these settings: in the former, we investigate the
physics of many-body bound state formation in impurities strongly coupled to condensed
bosonic ultracold gases. In the latter, we study how a topologically trivial impurity can
inherit topological properties through interaction with a topologically ordered many-body
system.

The problem of a mobile impurity in an ultracold bosonic gas in the condensed phase
is gaining ever-increasing attention in the ultracold atom community. It is connected to
many fundamental topics in condensed matter physics such as quasiparticle formation and
interaction, orthogonality catasthrophe, quantum criticality, and the interplay of few- and
many-body physics in ultracold gases. In this setting, the impurity is dressed by the exci-
tations of the Bose-Einstein condensate (BEC) and forms a quasiparticle dubbed the Bose
polaron. In the strong coupling regime, where the impurity-boson attractive interaction is
strong enough that impurity-boson dimers can form, there is a consensus in the commu-
nity that the many-body spectrum of the system becomes very rich due to the interplay of
many length and energy scales and the presence of few-body correlations. However, except
for certain limiting cases, little is known about the states of the impurity boson system. In
the strong coupling regime, several theoretical works and numerical studies based on quan-
tum Monte Carlo methods have predicted the emergence of multiple discrete resonances
with negative energies, dubbed “many-body bound states”. Despite this, many aspects of
these many-body resonances remain surrounded by uncertainty, and no in-depth study has
adequately characterized them. This inadequacy is partly because the current theoretical
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models of strong coupling Bose polarons have significant shortcomings in modelling strong
coupling phenomena.

The first original contribution of this thesis is to the understanding of strong coupling
Bose polaron physics and the nature of the many-body bound states. Specifically, we have
addressed a serious shortcoming of the existing models and extended them to include the
inter-boson repulsive interaction, a crucial step in accurately modeling strong coupling Bose
polaron physics. We then developed a theoretical scheme consisting of an effective model
and a suitably tailored variational ansatz, focusing on the limit where the impurity-boson
dimer energy far exceeds all other energy scales in the problem. Through this theoretical
formalism, we were able to uncover striking characteristics of these many-body resonances.
For instance, we revealed that the competition between the impurity-induced instability
and the repulsive inter-boson interaction results in a finite number of resonances, as op-
posed to earlier works that predicted an infinite number of resonances. The number of
these resonances, their energy spacing and their avoided crossings exhibit striking pattern
that reflects the significance of the aforementioned competition. The inter-boson interac-
tions further results in strong anti-bunching of bosons close to the impurity, leading to
non-Gaussianity of their quantum state. Furthermore, we anticipate pronounced signa-
tures of these resonances in future extensions of current experiments to include molecular
spectroscopy protocols.

In addition to the above work on Bose polarons, the second original contribution of this
thesis addresses another intriguing problem related to the physics of mobile impurities in
topologically ordered many-body systems: how does the impurity-medium interaction im-
print signatures of topological order on the impurity? This question is particularly relevant
in light of the recent experiments on the optical manipulation of strongly correlated elec-
tronic systems in atomically thin semiconductor heterostructures composed of transition
metal dichalcogenides (TMD). In these platforms, optical excitations induce tightly bound
excitons which appear as neutral impurities scattering off the electrons doped into the
system. When the electrons form a weakly interacting 2DEG, exciton Fermi polarons are
formed. While exciton Fermi polaron formation is well understood, the exciton spectrum
in the presence of strongly correlated incompressible electronic states such as fractional
quantum Hall states remains unexplored. To address this question, we propose an experi-
mental setup demonstrating that mobile interlayer excitons in a MoSe2/WSe2 heterobilayer
can bind to quasihole excitations of a ν = 1/3 fractional quantum Hall electronic state in
a proximate monolayer graphene, forming anyonic trions. The anyonic trion formation is
evidenced by a positive binding energy, on the order of the exciton Hartree shift, making
it experimentally detectable via optical spectroscopy. Additionally, the exciton-electron
spatial correlation function reveals the hallmark signature of a quasihole localized around
the exciton. Given the fractional charge and statistics of the quasihole, the formation of
exciton-quasihole bound states implies imprinting of gauge structures on a charge-neutral
particle, an excellent example of how interaction with an exotic topologically-ordered many-
body environment can induce non-trivial topological properties through imprinting a gauge
structure on otherwise topologically trivial impurities. We also show that interlayer ex-
citons localized in quantum defects at the tip of a Quantum Optical Twist and Scan
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Microscope (QOTSM) can create quasiholes in the proximate graphene layer, allowing for
spatial control over quasihole creation with nanometer precision. Furthermore, since defect
potentials in TMD materials are generally stronger than those in graphene, the quantum
defect can depin the quasihole, even enabling control over its motion. The ability to control
the position and motion of quasiholes in QOTSMs, combined with the potential to create
ground-state interlayer excitons with exceptionally long lifetimes, holds significant promise
for performing anyon braiding and gaining direct access to their fractional statistics.

The second main topic of this thesis is the interplay of nonlinear physics and topology in
wave propagation phenomena in one dimensional (1D) synthetic systems. Indeed, gaining
control over wave properties, such as phase and amplitude profile, localization, decay, group
velocity and scattering off defects is a topic of central importance in many areas such as
atom optics, matter waves, and photonics, both in the classical and quantum regime.
In photonics, the prospect of generating stable wave fronts with high tunability in their
degree of localization, lifetime, propagation direction and robustness against disorder has
a significant impact on the efficiency of many photonic processes of direct technological
relevance, among them frequency conversion, non reciprocity and lasing. The advent of
topological photonics has promised the engineering of electromagnetic modes that are
robust against disorder and fabrication imperfections. The study of the implications of such
topological robustness on established nonlinear effects and their potential improvement
has recently emerged as an active research area in photonics, dubbed nonlinear topological
photonics.

The third original contribution of this thesis is the explanation of the phenomenon of
quantized soliton transport in nonlinear topological lattices. This phenomenon was first
observed in photonic topological waveguide arrays under strong pump powers that drive
the system into the nonlinear regime. Under quite general arguments, we demonstrate that
this effect can occur in generic nonlinear topological 1D lattice systems when the nonlinear-
ity remains below the bifurcation transition threshold. We further extended the paradigm
to ultracold Bose-Bose mixtures, demonstrating that an interaction-induced topological
pump can be activated for a topologically trivial species.

Outline of the thesis this thesis is organized as follows:

• In Chapter I, we explore the interplay of nonlinearity and topology in weakly inter-
acting bosonic systems in the context of a recently observed nonlinear topological
phenomenon: the topologically quantized transport of solitons in 1D topological lat-
tices. By representing the actual model in terms of the maximally localized Wannier
states of the underlying band structure, we construct an effective model which can
explain the observed experimental effect. We investigate the applicability conditions
and the validity of the assumptions in details, and provide conservative bounds for
the parameters of the nonlinear system for which soliton transport is topologically
robust. Exploiting the generality of the formalism developed in this chapter, we gen-
eralize it to the case of nonlinear matter waves in two-component Bose-Bose mixtures.
We argue that an interaction induced topological pump is enabled for a topologically
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trivial minority atomic species as a result of its interaction with the majority species.

• In Chapters II we switch the context and investigate the problem of a mobile impu-
rity in a Bose-Einstein Condensate (BEC), leading to the formation of a quasiparticle
termed Bose polarons. In the strong coupling limit, the current Bose polaron models
suffer from an anomaly which results in the prediction of binding indefinite number
of particles to the impurity. We extend the model to include inter-boson interac-
tions, which results in the stability of the system. In the limit of extremely strong
interactions, we show that the construction of an effective model suggests a partic-
ular variational ansatz which is effective to describe the low energy spectrum of the
system. We show that, contrary to the existing Gaussian variational states, our vari-
ational ansatz is capable of including non-Gaussian correlations, and as such, enables
us to reveal properties of the multi-body resonances of the system which were not
previously discussed in the literature.

• In Chapter III, we consider the setting of a mobile impurity in a fractional quantum
Hall system, which is relevant in the context of current experiments on optical ma-
nipulation and control of electronic fractional quantum Hall states in van der Waals
heterostructures. In this regard, we consider a MoSe2/WSe2/graphene van der Waals
heterostructure, where interlayer excitons can form in the MoSe2/WSe2 heterobilayer,
while a ν=1/3 fractional quantum Hall state of carriers in graphene can be prepared.
First, we investigate the three-body problem of interlayer exciton-carrier scattering
and characterize the resulting three-body states. We show that, contrary to the case
with no magnetic field, where bound states of exciton and carriers can not form, in
the presence of a magnetic field, the exciton can bind carriers. We then consider
the many-body problem of an interlayer exciton interacting with a ν=1/3 fractional
quantum Hall state at fillings corresponding to few quasiparticle/quasihole excita-
tions in the system. We find that when a qausihole exists in the system, an interlayer
exciton with repulsive interaction with charge carriers in graphene can bind quasi-
holes and form anyonic trions. Creation and observation of such anyonic trions as a
result of quasihole binding to defect localized interlayer excitons can lead to spatial
and motional control over quasiholes in Quantum Optical Twist and Scan Micro-
scopes (QOTSM), a path that eventually can lead to direct access to the quasihole
fractional statistics.



Chapter 2

Quantized transport of solitons in
nonlinear Thouless pumps

This chapter is based on the following publication:

[1] Mostaan, N., Grusdt, F., & Goldman, N. (2022). Quantized topological pumping
of solitons in nonlinear photonics and ultracold atomic mixtures. nature communications,
13(1), 5997.

In this chapter, we investigate the interplay of nonlinearity and topology in the phe-
nomena associated to wave propagation in a class of engineered quantum systems whose
physics is described by bosonic fields. This class of quantum systems contain ultracold
bosonic gases and photonic systems as two broad subclasses with great significance in both
science and technology. These bosonic quantum systems also have a semiclassical mode of
operation. In their semiclassical limit, the bosonic field which describe the system evolve
predominantly in a coherent state. The dynamics of these systems in the semiclassical
limit thus is described by semiclassical wave equations. Therefore, gaining control over
wave dynamics in such systems is central to control their operation.

Controlling wave dynamics, whether in the form of matter waves in atomic media such
as BECs, or electromagnetic fields, requires managing many properties of the waves such
as the wave front, dispersion, phase and intensity profile, and decay channels, to name
but a few. Due to its significance in applications in laser optics, photonics and telecom-
munication, this goal has driven the construction of many paradigmatic platforms, such
as photonic crystals, waveguide arrays, and photonic metamaterials. In such platforms, it
is possible to determine the operating frequencies and bandwidths of a device basically at
will. The design principles and concepts for engineering the mode profile and frequency
of the electromagnetic fields in such photonic systems are inspired by concepts originally
developed in solid state physics to describe the motion of electronic waves in ionic crystals.
These concepts include wave scattering by periodic structures, band structure and Bloch’s
theorem, the importance of symmetries, and many more. It didn’t take long from the ini-
tial influences of such basic concepts on the design of photonic structures until solid state
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physics introduced another paradigm into the realm of photonics: topological protection.
Indeed, triumphant developments in the discovery and explanation of topological phenom-
ena such as the quantum Hall effect in two dimensional electron gases [96, 167] established
the intimate connection between the band structure topology and the appearance of chiral
edge and surface modes on the boundary of topological insulators which are robust to
scattering. Finding photonic modes as solutions to the Maxwells equations in a photonic
medium that are robust to fabrication imperfections (such as disorder or dielectric fluctu-
ations) is of prime importance in making high efficiency devices. The topologically robust
edge modes offer such an opportunity, and harnessing this topological protection is one of
the major current research directions in photonics [156], as well as other synthetic systems
[49].

The importance of topology is not restricted to the robustness of the edge mode, but
also extends to the protection of certain responses. In particular, various forms of quan-
tized responses have been identified associated to a variety of different band structures, for
instance the quantized Faraday and Kerr rotations in three-dimensional topological insula-
tors [215] and quantized circular dichroism [13] and topological Bloch oscillations [132, 97]
in two-dimensional ultracold atomic gases.

From a completely different side, many fundamental physical processes that under-
lies the operation of photonic devices are based on notions of nonlinear optics [26]. Such
processes include four wave mixing, second and higher harmonic generation, frequency
conversion, non-reciprocity, and laser physics. For instance, the efficiently of some of these
nonlinear processes, such as parametric amplification, depends on an effect called phase
matching [26], which briefly refers to enhancement in the generated light intensity in the
propagation direction as a result of the constructive interference of the nonlinearly gen-
erated signal. Thus, the potential to do nonlinear physics with topological robust modes
means that the efficiency of these processes can be enhanced. This potential has attracted
recently a lot of interest, giving rise to an emergent field called nonlinear topological photon-
ics, which pursues exactly the above goal, namely, how one can improve the performance of
photonic devices by properly controlling the underlying nonlinear processes by harnessing
the favorable properties of topological modes [191]. This endeavor has motivated to drive
the current known topological photonic systems into their nonlinear regime.

Typically, due to the weak interaction among photons, mediated by the matter interac-
tion, nonlinear effects only get important at high light intensities. When the light intensity
is increased in certain materials, the refractive index of the materials becomes intensity
dependent. In certain cases, this intensity dependence increases the refractive index, whose
increase beyond the certain threshold, leads to the trapping of light. In this situation, light
intensity gets trapped by itself, a phenomenon called self trapping. The self-trapping effect
is enabled by a competition between attractive nonlinearity and the inherent tendency
of waves to disperse, and the complete cancellation of these two effects leads to the long
lifetime of the self-trapped waveforms, leading to the creation of a nonlinear stable state of
the system. Such nonlinear stable states can either be fixed in space, or propagate. In the
latter case, they typically maintain their shape, thus leading to the emergence of waveforms
which propagate in time and space, while their shape (intensity and phase profile) remain
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intact. Such a peculiar nonlinear wave is called Soliton, a term which also used to refer
to their immobile counterparts. Studying different mechanisms behind soliton formation
and propagation is one of the major areas in photonics, since solitons are valuable objects
when it comes to applications. Indeed, many important waveforms in photonics, such as
frequency combs [160] are solitons.

In this chapter, we focus on an interesting recently discovered phenomenon, the quan-
tized pumping of solitons in nonlinear Thouless pumps [110]. The experiment reported
the quantized propagation of a bright soliton created in a 1D nonlinear lattice, whose lin-
ear spectrum was designed to show the Thouless pumping effect [202, 219], a topological
effect in periodically time dependent lattices. Thouless pumping is one of the minimal
examples of quantized transport in 1D lattice systems. Its realization in synthetic lattice
systems has attracted a lot of attention, both in photonics [121, 206, 230, 84, 36, 113]
and ultracold atomic gases [135, 151]. The observation of nonlinear quantized Thouless
pump is peculiar since topological protection is inherently a concept pertaining to linear
systems, and there is no direct way to deduce its generalization to nonlinear systems.
In this regard, studying the interplay between nonlinearities and the underlying topo-
logical structure of a model is a topic of central concern in the research on synthetic
systems [131, 193, 196, 18, 104, 79, 148, 149, 218, 159, 146, 116, 146]. In relation to this
problem, the first part of our work concerns the explanation of the quantization of soli-
ton motion, and exploring its validity conditions. We introduce a theoretical framework
which clarifies the connection between topological band indices and soliton transport in
a broad class of 1D nonlinear topological lattice models described by the discrete nonlin-
ear Schrödinger equation (DNLS) [199, 114]. The generality of our approach allows us
to mathematically demonstrate the topological nature of nonlinear Thouless pumps, by
relating the quantized motion of solitons to the Chern number of the underlying Bloch
band. We then exploit the understanding gained in the first part to extend it to other
settings relevant in synthetic quantum systems, where nonlinear wave physics occurs, a
prime example of which is the dynamics of nonlinear matter waves in ultracold atomic
media.

2.1 Topological pumping of solitons: a general theory
The theoretical description of soliton pumping relies on the topological character of Wan-
nier functions, namely, the displacement of Wannier centers per pump cycle by the Chern
number of the associated Bloch band, see Fig. 2.1(a). Intuitively, the reason behind soli-
ton pumping is that solitons are formed around a single Wannier function and follow its
motion throughout the pump sequence, resulting in their topologically quantized motion,
see Fig. 2.1(b). Interestingly, nonlinearities can induce this drag effect in topologically
trivial systems. To demonstrate this effect, we consider a 1D atomic Bose-Bose mixture
in a species-selective optical lattice, where the majority (minority) atoms experience a
topological (trivial) lattice. We show that a soliton of minority atoms undergoes quan-
tized displacement by activating a Thouless pump sequence for the majority atoms; see
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Wannier states
pump cycle

soliton

~ Chern

~ Chern

~ Chern

impurity atoms

(a)

(b)

(c)

Bose gas (majority)

Figure 2.1: Schematics of the soliton pumping mechanism and the nonlinearity-induced
pumping in ultracold mixtures. (a) In a Thouless pump, the Wannier functions undergo
a quantized motion determined by the Chern number of the corresponding band. (b)
When attractive nonlinearities are introduced, the motion of a soliton follows the quantized
Wannier transport. (c) In a Bose-Bose atomic mixture, quantized pumping can be induced
by interactions : a soliton of impurity atoms is dragged by the driven majority atoms,
leading to interaction-induced topological transport.

Fig. 2.1(c). In the following, we elaborate on the theoretical description of soliton motion
in nonlinear Thouless pumps and the interaction-induced topological pumps for atomic
mixtures.

Our theoretical framework concerns a generic class of lattice models governed by the
DNLS,

i∂tϕi,α =
∑
j,β

Hαβ
ij (t)ϕj,β − g |ϕi,α|2ϕi,α , (2.1)

where the field ϕi,α is defined at the lattice site α of the ith unit cell; H(t) is a time-
dependent Hamiltonian matrix, which includes a Thouless pump sequence [202, 12]; and
g>0 is the (onsite) nonlinearity strength. Equation (2.1) preserves the norm of the field,
which we set to ∑α,i |ϕi,α|2 =1, without loss of generality.

An illustrative model, used below to validate the general theory, is provided by the two-
band Rice-Mele model [135]: a 1D chain with alternating couplings J1,2(t) and staggered
potential ±∆(t). Considering the nonlinear Rice-Mele model, Eq. (2.1) takes the more
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explicit form

i∂tϕi,1 = J1(t)ϕi,2 + J2(t)ϕi−1,2 + ∆(t)ϕi,1 − g |ϕi,1|2ϕi,1,

i∂tϕi,2 = J1(t)ϕi,1 + J2(t)ϕi+1,1 − ∆(t)ϕi,2 − g |ϕi,2|2ϕi,2. (2.2)

Here, the Thouless pump cycle corresponds to a loop in the parameter space spanned by
(J2 − J1) and ∆, which encircles the origin (J1 = J2,∆ = 0). When g = 0, the Bloch
bands defined in momentum-time space are associated with a Chern number C=±1. This
topological invariant is known to determine the quantized displacement for a filled band
upon each cycle of the pump [12]. We come back to the Rice-Mele model in Sec. 2.2.

Our analysis starts by studying the adiabatic evolution associated to the general Eq. (2.1),
which is characterized by the period of the pump T (exceeding all other time scales). To
simplify notations, we use the multi-index i = (i, α) and write Hij ≡Hαβ

ij (t). Introducing
the adiabatic time s= t/T , Eq. (2.1) takes the form iε∂sϕi = ∑

j Hij(s)ϕj − g|ϕi|2ϕi, where
ε = 1/T . The solutions to the adiabatic DNLS can be well approximated by stationary
states of the form ϕi ∝ e−iθs φi, where θs is a time-dependent phase factor and φi is an
instantaneous solution to the stationary nonlinear Schrödinger equation (see Refs. [73, 33])

µs φi =
∑

j
Hij(s)φj − g |φi|2φi , (2.3)

where the instantaneous eigenvalue µs explicitly depends on the adiabatic time s. The
adiabatic theorem for NLS (both continuous and discrete forms), follows closely the for-
mulation of its linear counterpart [33, 73]. For a system with a time-dependent Hamiltonian
H(t), which varies on a time scale T much larger than all the time scales in the problem,
the time-dependent NLS takes the following form

iε ∂sϕ = H(s)ϕ− g|ϕ|2ϕ, (2.4)

The stationary state solutions of Eq. (2.4) are of the form

ϕs = e−iθs

(
φs + δ φs

)
, (2.5)

where φs is the instantaneous solution of the stationary NLS,

µs φs = H(s)φs − g |φs|2φs , (2.6)

and θs = 1/ε
( ∫ s

0 ds
′ µs′ − γs

)
is a global phase factor consisting of a dynamical contri-

bution and a Berry phase, and it can be ignored. The correction term δ φs accounts for
non-adiabatic variations, and for ε → 0, it behaves as ||δ φ|| ∼ ε , hence vanishes in the
adiabatic limit ε → 0 . The relevant dynamical information is therefore encoded in the
instantaneous solutions of Eq. (2.6).

Equation (2.3) admits (bright) solitons as stationary state solutions, which are stable
localized structures in the bulk. For sufficiently weak nonlinearity, solitons predominantly
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occupy the band from which they bifurcate [201], while increasing nonlinearity leads to
band mixing. In real space, solitons are immobile without external forcing, and are de-
generate modulo a lattice translation set by the translational symmetry of the system. By
adiabatically changing the Hamiltonian Hij(s), a single soliton undergoes smooth defor-
mation, and after one period, it is mapped to the manifold of initial solutions, implying
translation by an integer multiple of the unit cell. The observations of Ref. [110] suggest
that solitons bifurcating from a single Bloch band undergo a quantized displacement dic-
tated by the Chern number of the band [202] over each pump cycle. Demonstrating this
intriguing relation between the transport of nonlinear excitations and topological band
indices is at the core of the present work.

To elucidate the topological nature of nonlinear pumps, we follow Ref. [7] and represent
the solitons of Eq. (2.3) in the basis of maximally localized Wannier states,

φi =
∑

n

φ
(n)
i , φ

(n)
i =

∑
l

a
(n)
l w

(n)
i (l) , (2.7)

where the superscript n denotes the occupied band; the index l labels the unit cell on which
the Wannier state is localized; and all dependence on the adiabatic time s is henceforth
implicit. The coefficients a(n)

l obey the analogue of Eq. (2.3) in the Wannier representation

µs a
(n)
l =

∑
l1

ω
(n)
l−l1 a

(n)
l1 − g

∑
n1,n2,n3

∑
l1,l2,l3

W
(n)
l a

(n1)∗
l1 a

(n2)
l2 a

(n3)
l3 , (2.8)

where ω(n)
l =1/N ∑N−1

k=0 exp(i (2π/N) k l) ϵ(n)
k is the Fourier transform of the nth Bloch band

ϵ
(n)
k associated with Hij(s); N is the number of unit cells; n = (n, n1, n2, n3), l = (l, l1, l2, l3);

and W
(n)
(l) are the following Wannier overlaps

W
(n)
(l) =

∑
j
w

(n)∗
j (l)w(n1)∗

j (l1)w(n2)
j (l2)w(n3)

j (l3) . (2.9)

To derive the simplified scalar DNLS from the original lattice DNLS, we consider a s
independent version of Eq. 2.3

µϕi =
∑

j
Hij ϕj − g |ϕi|2 ϕi . (2.10)

The Wannier functions are related to the Bloch waves of the Hamiltonian by the following
relations

w
(n)
j (l) = 1√

N

N−1∑
k=0

ei(2π/N)k(−l) ψ
(n)
j (k) = 1√

N

N−1∑
k=0

ei(2π/N)k(j−l) u
(n)
j (k), (2.11)

where ψ(n)
j (k) = ei(2π/N)k(j) u

(n)
j (k) is the Bloch wave of band n with momentum k and

u
(n)
j (k) is the corresponding Bloch function, which is periodic over the unit cells and does
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not depend on j. To represent the Hamiltonian part in Wannier basis, we evaluate the
matrix elements of the Hamiltonian over the Wannier states

⟨w(n′)(l′), H w(n)(l)⟩

= 1
N

N−1∑
k,k′=0

ei(2π/N)(k′l′−kl) ⟨ψ(n′)(k′), H ψ(n)(k)⟩

= δnn′ · 1
N

N−1∑
k=0

ei(2π/N)k(l′−l) ϵ
(n)
k = δnn′ · ω(n)

l′−l ,

(2.12)

where ω(n)
l = 1/N ∑N−1

k=0 ei(2π/N)k(l) ϵ
(n)
k is the Fourier transform of the Bloch band ϵ

(n)
k .

Next, we express the nonlinearity in terms of Wannier functions,

⟨w(n)(l), |ϕ|2 ϕ⟩ =
∑

n1,n2,n3

∑
l1,l2,l3

∑
i
w

(n)∗
i (l)w(n1)∗

i (l1)w(n2)
i (l2)w(n3)

i (l3)
 a(n1)∗

l1 a
(n2)
l2 a

(n3)
l3 .

(2.13)

Taking the inner product of Eq. (2.10) with w
(n)
l and using Eqs. (2.12) and (2.13), we

obtain the following DNLS

µs a
(n)
l =

∑
l1

ω
(n)
l−l1 a

(n)
l1 − g

∑
n1,n2,n3

∑
l1,l2,l3

W
(n)
l a

(n1)∗
l1 a

(n2)
l2 a

(n3)
l3 , (2.14)

which is exactly in the form of Eq. 2.8.
The Wannier states of a Bloch band are not unique, as they depend on the gauge

choice for the Bloch functions [225]. Nevertheless, a unique set of maximally localized
Wannier functions is provided by the eigenstates of the position operator’s projection
onto the associated band. Since such Wannier functions are exponentially localized, the
contribution to the Wannier overlaps in Eq. (2.14) from Wannier functions correspond-
ing to different unit cells are negligible. The Wannier overlaps can thus be simplified as
W

(n)
l = W (n) δll1 δl1l2 δl2l3 , where W (n) = ∑

j w
(n)∗
j (l)w(n1)∗

j (l)w(n2)
j (l)w(n3)

j (l); we point out
that W (n) does not depend on the index l, because of translational invariance.

Moreover, as we will discuss below, in the regime of weak nonlinearity, the initial
state soliton occupies a single band [111, 110, 7], which allows us to neglect inter-band
contributions to Eq. (2.8). We note that this simplification holds throughout the evolution
of the pump, during which the soliton adiabatically follows the same band.

Under those realistic assumptions, the Wannier representation of the DNLS reduces to
the form

µs a
(n)
l =

∑
l1

ω
(n)
l−l1 a

(n)
l1 − gW (n)|a(n)

l |2a(n)
l , (2.15)

where W (n) = ∑
j |w(n)

j (l)|4. Equation (2.15) has the form of a scalar DNLS on a simple
lattice with one degree of freedom per unit cell labeled by Wannier indices l, with hopping
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terms involving nearest and beyond-nearest neighbors. The properties of such scalar DNLS
are well established [114, 117]: Equation (2.15) admits inter-site solitons, with maxima on
two adjacent sites, and on-site solitons, with their maximum on a single site. The inter-site
solitons are known to be unstable against small perturbations, we thus restrict ourselves to
the stable on-site solitons. Crucially, on-site solitons are always peaked around a single site
(l) throughout the pumping cycle, as there is a finite energy (Peierls-Naborro) barrier for
delocalization [114, 117]. Interestingly, the Peierls-Naborro barrier plays a role analogous to
the “gap condition" of conventional topological physics, by forbidding transitions to other
stable states during the adiabatic time evolution. This observation suggests that solitons
are dragged by Wannier states upon pumping, hence exhibiting a quantized displacement
in real space established by the Chern number [12, 144, 135]; see Figs. 2.1(a)-(b).

To firmly prove the topological nature of the nonlinear Thouless pump, we evaluate the
solitons center-of-mass displacement after one period s=1

∆⟨φ(n), Xφ(n)⟩ = ∆⟨w(n)(0), Xw(n)(0)⟩ + ∆
∑
l ̸=l′

a
(n)∗
l′ a

(n)
l ⟨w(n)(l′), Xw(n)(l)⟩ , (2.16)

where X is the position operator of the lattice; ⟨f, g⟩ ≡ ∑
i f

∗
i gi is the inner product of

fields on the lattice; and ∆(·) ≡ (·)s=1 − (·)s=0. The first term in Eq. 2.16 reflects the
displacement of Wannier functions upon one pump cycle, which is known to correspond
to the Chern number of the band [12, 144, 135]; the additional terms displayed on the
second line are possible corrections due to the finite overlap of different Wannier states.
Importantly, we find that these small interference effects are periodic in time, such that
these correction terms in Eq. 2.16 do not contribute to the solitons center-of-mass displace-
ment over a pump cycle. In the following section we outline the proof of this statement.
Altogether, proofing this statement completes the reasoning: the displacement of solitons
is indeed quantized according to the Chern number of the band from which they emanate.

2.1.1 Derivation of the soliton center-of-mass displacement

Here, we prove that the quantized displacement of the solitons center-of-mass is determined
by the Chern number of the related Bloch band. For later convenience, we derive the
following identity for matrix elements of position operator over the Wannier functions,

⟨w(n)(l′), Xw(n)(l)⟩ = ⟨w(n)(l′ − l), (T †
l X Tl)w(n)(0)⟩

= ⟨w(n)(l′ − l), X w(n)(0)⟩ + l ⟨w(n)(l′ − l), w(n)(0)⟩
= ⟨w(n)(l′ − l), X w(n)(0)⟩ + l δll′

(2.17)

where Tl is the translation operator by l unit cells. In deriving Eq. (2.17) we used the
relation T †

l XTl = X+ l together with the orthogonality of Wannier functions. The soliton
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center-of-mass then reads
⟨φ(n), Xφ(n)⟩s =

∑
l,l′

a
(n)∗
l′ a

(n)
l ⟨w(n)(l′), Xw(n)(l)⟩s

=
∑

l

|a(n)
l |2 ⟨w(n)(l), Xw(n)(l)⟩s +

∑
l ̸=l′

a
(n)∗
l′ a

(n)
l ⟨w(n)(l′), Xw(n)(l)⟩s

=
(∑

l

|a(n)
l |2

)
⟨w(n)(0), Xw(n)(0)⟩s +

(∑
l

|a(n)
l |2 l

)
⟨w(n)(0), w(n)(0)⟩s

+
∑
δl ̸=0

(∑
l

a
(n)∗
l+δl a

(n)
l

)
⟨w(n)(δl), Xw(n)(0)⟩s ,

(2.18)

where we used Eq. (2.17) in the last equality. The first term in the last equality of Eq. (2.18)
reduces to ⟨w(n)(0), Xw(n)(0)⟩s since we normalized the soliton intensity to unity, Nϕ =∑

l |a(n)
l |2 = 1. The second term in the last expression is the mean value of the position

of the Wannier functions indices, which is constant since the on-site solution is always
peaked around a Wannier label and remains symmetric around it. Its contribution to
the displacement over a pump cycle thus vanishes. The third term contains products of
the form

(∑
l a

(n)∗
l+δl a

(n)
l

)
⟨w(n)(δl), Xw(n)(0)⟩s and its treatment requires more care. The

coefficient
(∑

l a
(n)∗
l+δl a

(n)
l

)
is time-periodic, since a

(n)
l is, by assumption, the solution of

the scalar DNLS in Eq. (2.15). To investigate the behavior of ⟨w(n)(δl), Xw(n)(0)⟩s, we
note that after a pump cycle, the Wannier functions are displaced by the Chern number,
w(n)(l)|s=1 = w(n)(l + Cn)|s=0, with Cn the Chern number of band n [12, 144, 135]. Thus,
after a pump cycle, we have

⟨w(n)(δl), Xw(n)(0)⟩|s=1 = ⟨w(n)(δl + Cn), Xw(n)(Cn)⟩|s=0 = ⟨w(n)(δl), Xw(n)(0)⟩|s=0 ,

(2.19)

where we used Eq. (2.17) in the last step. This proves that the quantity ⟨w(n)(δl), Xw(n)(0)⟩|s,
in the last equality of Eq. (2.18), is a time-periodic quantity.

Altogether, the third term in Eq. (2.18) is also time-periodic, and the soliton’s center-
of-mass displacement over a pump cycle is given by

∆⟨φ(n), Xφ(n)⟩ = ∆ ⟨w(n)(0), Xw(n)(0)⟩ . (2.20)

This result directly relates the soliton’s displacement to the displacement of Wannier func-
tions upon one pump cycle, as dictated by the Chern number of the band [12, 144, 135].
This proves the quantized pumping of the soliton according to the Chern number.

2.2 Numerical validation
We now demonstrate the validity of our assumptions numerically by solving the nonlinear
Rice-Mele model (Eq. (2.2)). Throughout this work, we illustrate the general concepts
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and results using the Rice-Mele model, with periodic boundary conditions. This simple
two-band model, which is reviewed in some detail below, is known to exhibit a topological
(Thouless) pump sequence.

The Rice-Mele model is a 1D tight-binding model with alternating nearest-neighbor
tunneling matrix elements (J1, J2, J1, J2, . . . ), and a staggered on-site potential. We
denote the two sites within each unit cell by α = A,B and the unit cells by i, 0 ≤ i ≤ N−1,
where N is the number of unit cells. The hopping matrix element between sites A and B
within each unit cell (resp. between adjacent unit cells) is written as J1 =−J(1 + δ) (resp.
J2 = −J(1 − δ)) and the magnitude of the staggered potential on site A (resp. B) equals
∆ (resp. −∆). The Hamiltonian of the Rice-Mele model thus reads

H = −
N−1∑
i=0

[
J(1 + δ) |i, A⟩⟨i, B| + J(1 − δ) |i, A⟩⟨i− 1, B|

]

+ ∆
2

N−1∑
i=0

[
|i, A⟩⟨i, A| − |i, B⟩⟨i, B|

]
+ h.c. (2.21)

The simulations shown here are performed on a lattice with N = 100 unit cells, and
using the following pump sequence

J(s) = J0
(
1 + 1/2 cos(2πs)

)
,

δ(s) = δ0 cos(2πs)/(2 + cos(2πs)) ,
∆(s) = J0 sin(2πs),

(2.22)

with J0 = 0.5 and δ0 = 0.6, corresponding to a topological pump with Chern number
C=−1. The nonlinear Rice-Mele model, which is used in our simulations, is obtained by
adding an on-site nonlinearity to this lattice model; see Eq. (2.2).

Later when we discuss the nonlinear pump in ultracold mixtures, Iin order to demon-
strate the interaction-induced topological pumping, we assume that the two species expe-
rience the same Rice-Mele lattice described above, but with different pump sequences: the
majority atoms experience the topological pumping sequence in Eq. (2.64), while the im-
purity atoms experience a trivial sequence with Jδ= ∆ = 0. The resulting center-of-mass
displacement of both species are depicted in Fig. 2.11.

In Figs. 2.2(a)-(b), we compare the on-site soliton solution of the simplified Eq. (2.15),
which emerges from the lowest band, with the Wannier representation of the exact soliton
obtained by solving the full DNLS in Eq. (2.3). We then perform a similar comparison
in real space, by convolving the soliton of Eq. (2.15) with the corresponding Wannier
states, and by comparing this result to the exact soliton of the original nonlinear Rice-
Mele model; see Figs. 2.2(c)-(d). The perfect agreement validates the description of the
soliton in Wannier representation using the ordinary nonlinear Schrödinger equation (2.15).

We depict the motion of the exact soliton in Fig. 2.3, as obtained by solving Eq. (2.3)
over two pump cycles s ∈ [0, 2], and we compare this trajectory with the drift of its un-
derlying Wannier function, i.e. the Wannier state that contributes the most to the expan-
sion (2.7). In order to obtain a contiguous path for the Wannier center, we relabeled the
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Figure 2.2: Numerical validation of the simplified theoretical scheme. (a)-(b): Wannier
representation of a soliton in the lowest band (n=0) of the nonlinear Rice-Mele model
(blue solid line), compared with the soliton obtained from the simplified DNLS Eq. (2.15)
(dashed red line), for g = J0 and g = 2 J0 and time s= 0.12. Here, J0 is a characteristic
hopping strength. Note how increasing the nonlinearity further localizes the soliton. (c)-
(d) Same comparison in real space.
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Wannier functions whenever the Wannier centers met discontinuities; this smoothing cor-
responds to a singular gauge transformation of the corresponding Bloch states, and has no
physical implication. Figure 2.3 indicates that the trajectories of the soliton and Wannier
center differ at intermediate times (s ̸= integer), which we attribute to the aforementioned
interference effects involving different Wannier states; however, in agreement with our the-
oretical predictions, this deviation remains small and time-periodic over the whole pump
cycle, and does not introduce any (integer) correction to the quantized center-of-mass dis-
placement.
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Figure 2.3: Comparison of soliton and Wannier function center-of-mass displacement. Adi-
abatic evolution of the soliton’s center-of-mass (CM) during two full pump cycles (inset),
as obtained by solving Eq. (2.3) on the Rice-Mele lattice with g=J0, and selecting a soliton
in the lowest band. This is compared to the evolution of the center-of-mass of the Wannier
function with largest contribution to the soliton’s expansion [Eq. (2.7)]. For clarity, the
Wannier functions are relabeled during the pump cycle such that their center-of-mass fol-
lows a contiguous path instead of winding around a unit cell. The quantized displacement
is set by the Chern number C=−1 of the occupied band.
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2.3 Theoretical validity conditions
Here, we discuss the major phenomenological differences between the standard linear Thou-
less pump and the nonlinear (solitonic) Thouless pump discussed in this work. Especially,
why a central difference with the linear case concerns the presence of the second term in
the following equation,

∆⟨φ(n), Xφ(n)⟩ = ∆⟨w(n)(0), Xw(n)(0)⟩
+ ∆

∑
l ̸=l′

a
(n)∗
l′ a

(n)
l ⟨w(n)(l′), Xw(n)(l)⟩ . (2.23)

There are several reasons why the phenomenology of the nonlinear system differs from the
linear one:

• A necessary requirement for linear Thouless pumping is a uniform occupation of a
topological Bloch band. However, a soliton’s band occupation is non-uniform; thus,
according to the linear theory, a band occupation corresponding to a soliton solution
does not lead to quantized displacement. Nevertheless, the pumping of solitons is
shown to be topologically quantized, which highlights the importance of nonlinearity
in this solitonic-pump context.

• A localized wave packet (with either uniform or non-uniform band occupation) un-
dergoes dispersion in the linear regime, whereas nonlinearity circumvents dispersion
due to the formation of a soliton.

We provide further numerical evidence to support the above arguments. In Fig. 2.4(a)
and (c), we demonstrate the time evolution of a localized wave packet in the linear and
nonlinear regimes for identical initial states. The initial state corresponds to a stable
state soliton of the nonlinear lattice at t = 0 and with nonlinearity strength g = 1.8.
While in a nonlinear lattice (Fig. 2.4(a)), an initial stable state soliton propagates as a
solitary wave, the same initial state undergoes diffraction in a linear lattice (Fig. 2.4(c)).
Fig. 2.4(b) depicts the center-of-mass displacement of the soliton in Fig. 2.4(a), showing
topological pumping according to the Chern number of the lowest Rice-Mele band C = −1
(two lattice spacings per cycle). On the other hand, the center-of-mass displacement of the
wave packet in the linear regime (Fig. 2.4(d)) shows no indication of quantized pumping
due to non-uniform occupation of the lowest Rice-Mele band.

We also evaluate the power of the soliton projection on the higher (n = 1) Rice-Mele
band, P1 = ∑

j |P̂n=1φj|2, and compare it to the power of the soliton projection on the
lower (n = 0) Rice-Mele band, P0 = ∑

j |P̂n=0φj|2. The ratio P1/P0 is a degree of soliton
band mixing. We plot in Fig. 2.5 the ratio P1/P0 over two pump cycles for values of
nonlinearity strength g for which soliton pumps. This result indicates that a soliton can
undergo topological pumping and at the same time have considerable occupation of other
bands. This is in sharp contrast with the linear case, where quantized pumping is observed
for completely filled bands.
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Figure 2.4: Wave packet evolution in the Thouless pump sequence as in Eq. 2.22 with
J0 = 1 and δ0 = 2 and the nonlinearity strength g = 1.8. in the linear and nonlinear
regime for the same initial state. (a) Evolution of the initial state according to a stable
state soliton of the stationary DNLS at t = 0 in the lowest Rice-Mele band. Although the
initial wave packet has non-uniform band occupation, the wave packet pumps according
to the Chern number of the lowest Rice-Mele band after one pump cycle. The dashed line
represents the predicted topological displacement of the wave packet after two pump cycles.
(b) Center-of-mass motion of the soliton in (a). The center-of-mass pumps according to the
Chern number of the lowest Rice-Mele band C = −1 (two lattice spacings per cycle). (c)
Same as (a) but for a linear model (g = 0). The initial wave packet undergoes dispersion
with a dramatic diffraction pattern. (d) Center-of-mass displacement of the wave packet
in (c). Since the initial wave packet has non-uniform occupation of the bands, there is no
indication of pumping in the center-of-mass displacement.
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Figure 2.5: Ratio of the soliton power in the highest band to the lowest band of the
Rice-Mele model (from which the soliton bifurcates). Over a pump cycle, the soliton
center-of-mass follows a contiguous path with a topologically quantized displacement over
a pump cycle, i.e. it pumps, for all the values of g denoted here. Even when the occupation
of higher band is clearly non-negligible, the soliton undergoes topological pumping.

2.3.1 Existence of soliton solutions
We now discuss the requirements for the formation of a stable state soliton in the context
of a stationary DNLS. Here we remark on the conditions for stable state soliton formation
of the following equation

µs φi =
∑

j
Hij(s)φj − g |φi|2φi , (2.24)

in terms of its Wannier representation

µs a
(n)
l =

∑
l1

ω
(n)
l−l1 a

(n)
l1 − gW (n)|a(n)

l |2a(n)
l . (2.25)

Both Eq. 2.24 and Eq. 2.25 have stable state solitons for arbitrary small values of g > 0.
In the following, we present an argument for the existence of soliton solutions for every
g > 0 based on continuous NLS and the properties of DNLS in the continuum limit.

To explore the conditions for soliton formation, we follow closely the treatment pre-
sented in Ref. [154] for the Nonlinear Schrödinger equation in continuum. The time de-
pendent NLS

iℏψ̄t(x, t) + ℏ2

2mψ̄xx(x, t) + g|ψ̄(x, t)|2ψ̄(x, t) = 0 , (2.26)

with power P =
∫∞

−∞ dx |ψ̄(x, t)|2, can be scaled by setting ψ̄ = λψ and using dimensionless
variables (t → Tt, x → lx) to take the universal form

iψt(x, t) + ψxx(x, t) + 2|ψ(x, t)|2ψ(x, t) = 0 , (2.27)
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where ℏ/T = ℏ2/(2ml2) and λ2 = ℏ2/(2ml2g). Eq. 2.27 has solutions of the form

ψ(x, t) = 2iη sech
(
2η(x− x0 + 4ξt)

)
exp

(
− 2iξx− 4i(ξ2 − η2)t− iϕ0

)
. (2.28)

The necessary condition for having a soliton solution is∫ ∞

−∞
dx |ψ(x, 0)| ≥ ln

(
2 +

√
3
)

≃ 1.32 , (2.29)

Using Eq. 2.28, ∫ ∞

−∞
dx 2η sech

(
2η(x)

)
= π ≥ 1.32 . (2.30)

Thus, for an initial state according to ψ(x, 0) = 2ηsech(2η(x − x0)), the NLS has soliton
solutions for all g > 0. In the dimensionful units, the necessary condition reads∫ ∞

−∞
dx |ψ̄(x, 0)| ≥

√
ℏ2

mg
ln
(
2 +

√
3
)
, (2.31)

which means that, for arbitrary initial data, a necessary condition is that the integral∫∞
−∞ dx |ψ̄(x, 0)| be larger than the quantity

√
(ℏ2/m)/g ln

(
2 +

√
3
)
. In the case of DNLS,

we can still use this argument since for small nonlinearities, the soliton mostly occupies the
lowest band edge, where the dispersion relation is quadratic with an effective mass meff and
we can substitute the discrete Hamiltonian with the continuous one, and the continuum
limit works well. Thus, for a DNLS a necessary condition similar to Eq. 2.31 can be
obtained by substituting m with the effective mass meff . In order to evaluate the integral
on the left-hand side of Eq. 2.31, one has to make use of the continuous lattice model whose
tight-binding limit results in the original DNLS of the problem under consideration. Thus,
for every value of g > 0 we have a soliton solution of the DNLS provided that the initial
data is suitably chosen to fulfill Eq. 2.31.

Although there exists stable state soliton solutions for arbitrary g > 0, formation of such
stable states from an arbitrary initial data is a non-trivial question. One way for obtaining
a stable state soliton from a suitable initial data is to first solve Eq. 2.24 numerically and
obtain the stable state solutions, then use it as the initial waveform accordingly. This
method is applicable in waveguide array experiments as the input profile of the excitation
can be engineered. In the context of cold atoms in optical lattices, a detailed analysis of
the creation of solitons in a realistic setting is presented in Ref. [1]

As mentioned above, a stable state soliton does not always emerge from an initially
prepared localized state. Indeed, for weak powers (i.e. electric field power for light fields or
particle number for matter waves), the initial wave packet disperses. We hereby present an
alternative approach, following closely the discussion section 12.3 of Ref. [114] on thresh-
old conditions for the non-integrable DNLS models, and obtain a sufficient condition for
estimating the threshold power for solitary wave formation. To this end, we consider a
setting where the initial excitation is a Wannier function with amplitude A (in Wannier
representation, a(n)

l (s= 0) = Aδl,0). We find a threshold value A∗ above which a soliton
forms. The precise scenario for obtaining a stable state soliton from this on-site initial
data is as follows:
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• Consider an initial nonlinear lattice with given time-independent parameters (hop-
pings and on-site potentials).

• Choose the initial excitation to be localized on a single site in Wannier representation,
i.e. a

(n)
l (s = 0) = Aδl,0 (corresponding to a Wannier function of the lattice with

amplitude A).

• A sufficient condition for soliton formation is that the initial excitation has negative
energy with respect to the minimum of the excited band.

• The initial excitation undergoes time evolution and radiates some power to evolve
into the localized stable state of the nonlinear lattice.

Considering this scenario, the initial energy of the system reads

H0 = −
∑
l ̸=0

ω
(n)
l A2 − g

2W
(n)A4 . (2.32)

Thus, the sufficient condition is H0 < 0. We obtain the following threshold amplitude of
the initial excitation above which soliton formation happens,

A∗ =

√√√√−
2∑l ̸=0 ω

(n)
l

gW (n) . (2.33)

Non-trivial questions that arise here are : how much power will radiate until a stable
soliton forms, and what is the final stable state soliton? These questions, to the best of
our knowledge, are still open [114]1. All in all, since in this work we are not concerned
with the precise dynamical mechanism of soliton emergence from an initially localized
wave, we assume that a ratio e < 1 of the initial power dissipates. We assume e to be
empirical and given, since in principle e depends on the details of the dynamical model
of the dissipative processes in the nonlinear system and that does not concern us here.
To connect to our work, we assume that after the dissipation, the soliton power equals
unity, i.e. Psoliton = (1 − e)Pinitial = 1. The initial power Pinitial relates to the amplitude of
the on-site excitation A by Pinitial =A2. Thus, given the threshold condition A > A∗ and
Eq. 2.33, the nonlinearity coefficient g of the problem should satisfy

g > g∗ = −
2(1 − e)∑l ̸=0 ω

(n)
l

W (n) . (2.34)

In Fig. 2.6, we depict the values of g∗ for e = 0, 0.05, 0.1, for lattice parameters corre-
sponding to the pump sequence used in Eq. 2.22. It is clear that at s = 0.5 + n, n ∈ Z,

1The statement of Ref. [114] in Chapter 12 page 244 in relation to the soliton formation process is
“... Nevertheless, the precise mechanism of selection of the particular end state (i.e., of the particular
“equilibrium”) that a given initial state will result in remains a formidable outstanding question that
would be especially interesting to address in the future. This is perhaps one of the fundamental remaining
open questions in connection to the DNLS equation (see also the relevant discussion at the end of this
special section).”
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Figure 2.6: Nonlinearity threshold g∗ in Eq. 2.34 evaluated over two cycles of the pump
sequence. For s = 0.5, 1.5, · · · , the threshold value is less than 0.5, thus an initial Wannier
state of the lattice at s = 0.5, 1.5, · · · will evolve to a stable state soliton for nonlinearity
strengths larger than 0.5.

the required nonlinearity strength is always less than 0.5, thus one can initialize the lattice
with parameters corresponding to s = 0.5+n, initialize the wave packet as a single Wannier
function of the desired band (here taken to be the lowest band), wait until the soliton is
formed, and then drive the pump cycle.

Another important difference of linear and nonlinear Thouless pumps is that the second
term in Eq. 2.23 cannot be neglected based on the similarity of nonlinear Thouless pumping
with the linear one. In general, because a soliton is a coherent structure, the second term
in Eq. 2.23 is crucial to determine its displacement. Indeed, the non-trivial fact about
soliton pumping is that one cannot ignore this term a priori. Still, using the theoretical
framework developed in our work, one can prove that this term vanishes, provided the
conditions mentioned above are satisfied.

To illustrate why the second term in Eq. 2.23 is crucial to determine the pumping of
a coherent structure, we revisit the key meaning of Eq. 2.23 in more detail. Eq. 2.23 is
about the displacement of the center-of-mass of a coherent structure in a single band n.
Thus, such a coherent structure φ(n)

j is a linear superposition of Wannier functions of that
band, i.e. φ(n)

j = ∑
l a

(n)
l w

(n)
j (l). A priori, this coherent structure φ(n)

j can be any coherent
structure, such as a soliton, or the bound state of a pinning potential (with a negligible
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occupation of bands other than n). These two instances of a coherent structure, i.e. a
soliton and a bound state, exhibit completely different pumping behavior: one (i.e. the
soliton) undergoes topological pumping, while the other (i.e. the bound state) is always
pinned to the potential location, and does not pump. The different behavior of these
coherent structures is exactly reflected in the second term in Eq. 2.23.

In conclusion, it is not a priori possible to neglect the second term. Indeed, for the case
of the pinning potential bound state, it cancels the first term in Eq. 2.23. However, within
the current context of soliton pumping, it can be proved to be vanishing.

We now discuss the conditions for evaluating the degree of agreement between the ac-
tual soliton of the model and the real-space representation of the soliton obtained from the
simplified DNLS in Eq. 2.25. In deriving this equation, we assumed that two approxima-
tions allow an accurate phenomenology of the physics: (1) the single band approximation,
and (2) the Wannier locality approximation. These two approximations enabled us to
neglect the nonlinear terms that mix different bands or different Wannier orbitals. The
agreement between the actual soliton and its reconstruction via Eq. 2.25 depends on the
accuracy of these approximations: the smaller the magnitude of the neglected terms com-
pared to the remaining terms, the smaller the errors and the better the agreement. For
an arbitrary nonlinear model, the validity conditions depend on the lattice properties such
as the overlap of Wannier functions, band gap, band width, etc., but here we focus on the
Rice-Mele model considered in this work. We derive a condition for the validity of band
mixing approximation for unit power solitons, which reads as

4g2/E2
G ≪ 1 , (2.35)

where EG is the band gap. For solitons in the lowest Rice-Mele band (band index n = 0),
the condition 2.35 can be relaxed to

4g2/
(
E

(0)
BW + EG

)2
≪ 1 , (2.36)

where E(0)
BW is the lowest band width. For the Rice-Mele model, an explicit expression for

Eqs. 2.35 and 2.36 reads as

4g2

E2
G

= g2(
(2Jδ)2 + ∆2

) ≪ 1 , (2.37)

and
4g2(√

(2J)2 + ∆2 +
√

(2Jδ)2 + ∆2
)2 ≪ 1 , (2.38)

These conditions are derived from the requirement that the power in the undesired
bands be much smaller than the target band. They are consistent with a first-order per-
turbation analysis of the occupation of the undesired band. Conditions 2.35 and 2.36
suggest that for small nonlinearities g, the single band approximation works well. We
further discuss this condition in Sec. 2.3.2.
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Note that these conditions are stringent sufficient conditions to guarantee small band
mixing. We will show below that even when the left-hand side of Eqs. 2.35 and 2.36 exceed
unity, the actual soliton of the model and the approximate soliton match to a good degree
over the whole pumping sequence.

To investigate the validity of Wannier locality approximation, we note that generally
for the Wannier overlaps

W
(n)
(l) =

∑
j
w

(n)∗
j (l)w(n1)∗

j (l1)w(n2)
j (l2)w(n3)

j (l3) . (2.39)

The following conditions hold,

|W (n)
0,0,0,0| ≫ |W (n)

0,0,0,1| ≫ |W (n)
0,0,0,2| ≫ · · · ,

|W (n)
0,0,1,1| ≫ |W (n)

0,0,1,2| ≫ |W (n)
0,0,2,2| ≫ · · · .

(2.40)

The reason is the exponential localization of Wannier functions. But for completeness,
we obtain a sufficient condition for the degree of locality of Wannier states in terms of
Rice-Mele model parameters. More formally, the Wannier locality approximation is valid
when

β ≡ 1 − δ2

1 +
(

∆
2J

)2 ≪ 1 . (2.41)

We derive the condition above in Sec. 2.3.3. Intuitively, this condition means that whenever
δ≲1, the Wannier states are localized over a single unit cell. Indeed, δ=1 correspond to a
completely dimerized lattice, where Wannier functions are located entirely in a single unit
cell.

We further provide a sufficient condition for testing the accuracy of these assumptions.
This sufficient condition has to be checked a posteriori, i.e. one can solve Eq. 2.24, evaluate
the terms in the Hamiltonian that are to be neglected and compare the magnitude of these
terms to the remaining terms after making the approximations. The smaller the magnitude
of the band mixing and non-local terms compared to the single-band and local terms, the
more accurate the simplified model.

To make the above arguments quantitative, we define an a posteriori figure of merit for
the accuracy of the approximate scheme. More specifically, suppose that φj is a solution
of Eq. 2.24 bifurcating from band n, and {a(m)

l } are its Wannier coefficients, that is φj =∑
m

∑
l a

(m)
l w

(m)
j (l). The magnitude of the neglected terms in the Hamiltonian is

∆Eg = |Eg − Ẽg| , (2.42)

where
Eg = g

2
∑

j
|φj|4 , Ẽg = g

2W
(n)∑

l

|a(n)
l |4 . (2.43)

A figure of merit for evaluating the validity of the approximations is

αg = ∆Eg

Eg

. (2.44)
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When αg ≪ 1, one expects to find a good agreement between the actual soliton of the
model and its reconstruction from the Wannier representation, while as αg increases, the
approximations get worse.

After making the above approximations, the soliton in Wannier representation is the
solution â

(n)
l of Eq. 2.25. One can quantify the discrepancy between φj and its recon-

struction via Eq. 2.25, that is φ̂j = ∑
l â

(n)
l w

(n)
j (l), by evaluating the norm-squared error

between φj and φ̂j,

γ =
∑

j |φj − φ̂j|2∑
j |φj|2

. (2.45)

In Fig. 2.7 we depict the values for αg and γ for values of g in the pumped soliton regime.
Fig. 2.7(a) indicates that the energy of the neglected terms in αg increases for stronger non-
linearities, and even for values of αg as large as 0.4 one may still observe soliton pumping.
In Fig 2.7 (b), we bring the error γ, which again shows that the main factor for increasing
the error is strong nonlinearity. Furthermore, the variation pattern of αg is in complete
agreement with the error γ. Thus, examining the value of αg is a good indicator for ac-
curacy of the simplified model. Note that the condition is a sufficient condition, meaning
that if αg is small, say less than 0.05, then the approximations are better and the Wannier
representation soliton is a good approximation for the real one. On the other hand, large
values of αg and γ does not indicate the pumping break down, they only indicate the
reconstructed soliton deviates from the real one, although both undergo pumping.

In Fig. 2.8, we examine the conditions in Eqs. 2.37 and 2.41, for the validity of band-
mixing and Wannier locality approximations, respectively. We observe that increase in the
quantity 4g2/E2

G increases the error γ in Fig. 2.7. The condition 4g2/E2
G ≪ 1 is a stringent

sufficient condition for validity of band mixing approximation, and even for 4g2/E2
G ≃ 3

we observe less than 10 percent error in soliton reconstruction. In Fig. 2.8(b), we check
the sufficient validity condition for Wannier locality approximation. We observe that the
pattern of increase in β as defined in Eq. 2.41 is in accordance with the increase in Wannier
overlaps W1 ≡ W

(0)
0,0,0,1, W2 ≡ W

(0)
0,0,0,2, W3 ≡ W

(0)
0,0,0,3, · · · with respect to W0 ≡ W

(0)
0,0,0,0

for the lowest Rice-Mele band. Thus, it is a good indicator of the increase in non-local
Wannier overlaps.

The nonlinear term in Eq. 2.24 (Eq. 2.25) leads to spontaneous breaking of lattice
(Wannier lattice) translational symmetry . Thus, the minimum energy states, which are
stable state solitons, are not translationally invariant, but are mapped to one another by
a lattice translation. Continuous deformation of each stable state soliton to a neighboring
one requires a finite amount of energy. This finite energy barrier between solitons localized
on adjacent unit cells is reminiscent of the Peierls-Naborro barrier (PNB) known in the
theory of dislocation dynamics in crystals. Under adiabatic evolution, a soliton in Wannier
representation will always remain peaked on a single Wannier index, as the PNB prohibits
the soliton to move and localize on any other Wannier index. This fact is crucial in proving
the quantization of soliton displacement according to the Chern number.

We can estimate the strength of the Peierls-Naborro barrier by evaluating the difference
between the variational energy over the ansätze a

(n)
l = η sech(ξ(l − l0)) for the on-site
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Figure 2.7: (a) Values of the figure of merit αg for different values of g admitting soliton
pumping, over two pump cycles. Even for energy difference of the order of 40 percent,
the soliton still undergoes pumping. The accuracy of this scheme directly relates to the
strength of the nonlinearity: as the nonlinearity strength increases, the deviation between
the actual soliton and its effective counterpart starts to increase because of the increase in
band mixing effects.

(l0 = 0) and inter-site(l0 = 1/2) solitons. More formally,

∆PN = H(η1/2, ξ1/2) −H(η0, ξ0) (2.46)

where
H(ηl0 , ξl0) = minη,ξ H(η, ξ, l0), l0 ∈ {0, 1/2} , (2.47)

and the variational energy functional is

H(η, ξ, l0) = ω0

[
2
ξ
η2 +

∞∑
m=1

4π2η2

ξ2
m cos(2πml0)

sinh(π2m
ξ

)

]
+

∞∑
n=1

4n η2

sinh(ξn)ωn

− 2 g
3 η4

1
ξ

+
∞∑

m=1

2π2

ξ2

(
1 + π2m2

ξ2

)
m cos(2πml0)

sinh(π2m
ξ

)

 . (2.48)

A more descriptive form for ∆PN in terms of system parameters can be obtained by noting
that ξ1/2 ≃ ξ0 and η1/2 ≃ η0,

∆PN ≃
∞∑

m=1

4π2ω0η
2
0

ξ2
0

− 4π2 g

3ξ2
0
η4

0

(
1 + π2m2

ξ2
0

)m (1 − (−1)m)
sinh

(
π2m
ξ0

) , (2.49)

Which is in complete agreement with the expression of PNB in Ref. [114], chapter 2 section
2.1.1.2. Fig. 2.9 depicts the ratio of the variationally obtained Peierls-Naborro barrier to the
soliton energy for different values of nonlinearity over two pump cycles. Fig. 2.9 suggests
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Figure 2.8: (a) Checking band mixing validity condition in Eq. 2.37. We observe that
increase in the quantity 4g2/E2

G increases the error γ in Fig. 2.7. The condition 4g2/E2
G ≪ 1

is a stringent sufficient condition for validity of band mixing approximation, and even for
4g2/E2

G ≃ 3 we observe less than 10 percent error in soliton reconstruction. (b) Checking
the sufficient validity condition for Wannier locality approximation. We observe that the
pattern of increase in β as defined in Eq. 2.41 is in accordance with the increase in Wannier
overlaps W1 ≡ W

(0)
0,0,0,1, W2 ≡ W

(0)
0,0,0,2, W3 ≡ W

(0)
0,0,0,3, · · · with respect to W0 ≡ W

(0)
0,0,0,0

for the lowest Rice-Mele band. Thus, it is a good indicator of the increase in non-local
Wannier overlaps. The pump sequence considered here has the functional form J(t) =
1, δ(t) = 0.5 cos(2πt/T ), ∆(t) = sin(2πt/T ).

that at certain time intervals during the pump cycle, the PNB is almost vanishing (note
that it is always positive). However, the PNB calculated above is only an estimation of
the true PNB through a variational ansatz, thus it only gives a lower bound of the actual
energy barrier. Fig. 2.9 further suggests that the strength of PNB increases by increasing
the nonlinearity.

2.3.2 Derivation of the band-mixing validity condition
Here we give a derivation of the sufficient condition for the validity of the band mixing
approximation. We begin by the stationary DNLS of the lattice

µs φi =
∑

j
Hij(s)φj − g |φi|2φi , (2.50)

and treat the band mixing terms perturbatively. In Eq. 2.50, the stable state soliton
solution φi is a superposition of single-band components, φi = ∑

n φ
(n)
i . For simplicity, we

assume that soliton occupies the lowest band (n = 0), and only consider its coupling to the
immediate higher band (n = 1), since all the other bands are far off-detuned. Note that for
the Rice-Mele model this two-band approximation is exact. Furthermore, generalization
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Figure 2.9: The Ratio of Peierls-Naborro barrier to the soliton energy for two pump cycles
and different values of nonlinearity. Increase in the nonlinearity strength leads to stronger
barrier between adjacent solitons in Wannier representation.

of our arguments for solitons bifurcating from higher bands is straightforward. Without
loss of generality, we further assume that soliton is real-valued, φ∗

i = φi.
With the above assumptions, the soliton is expanded as φi = φ

(0)
i +φ(1)

i , where φ(0)
i is the

zeroth order approximation neglecting band mixing, and φ
(1)
i is the first order correction.

The energy functional takes the form

H =
∑
i,j
φ

(0)
i Hij(s)φ(0)

j +
∑
i,j
φ

(1)
i Hij(s)φ(1)

j − g
∑

i

(
φ

(0)
i + φ

(1)
i

)4

=
{∑

i,j
φ

(0)
i Hij(s)φ(0)

j − g
∑

i
φ4

i

}
+
{∑

i,j
φ

(1)
i Hij(s)φ(1)

j −
∑

i
6g φ(0)2

i φ
(1)2
i

−
∑

i
4gφ(0)3

i φ
(1)
i

}
+ O

(
φ(1)3

)
= H(0) +H(1) + O

(
φ(1)3

)
.

(2.51)

In the last line of Eq. 2.51, we neglect the terms of the order of φ(3)
i or higher since band

mixing is a perturbative effect and soliton power in n= 1 band is sufficiently small. To
study the effect of band mixing, we examine H(1) in Eq. 2.51 in detail,

H(1) =
∑
i,j
φ

(1)
i

[
Hij(s) − 6g φ(0)2

i δij

]
φ

(1)
j −

∑
i

4gφ(0)3
i φ

(1)
i . (2.52)
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The first term in Eq. 2.52 is the hopping Hamiltonian of the lattice in an attractive potential
well −6gφ(0)2

i , and the second term plays the role of a source term. Since H(1) is quadratice,
we can obtain its minimum exactly. To this end, it is more convenient to rewrite Eq. 2.52
in vector notation by defining the vector [φ(1)]i = φ

(1)
i , [b]i = 4gφ(0)3

i and the matrix
[H̃]ij = Hij(s) − 6g φ(0)2

i δij. Thus, Eq. 2.52 is written in a more compact form,

H(1) = φ(1)T H̃ φ(1) + bTφ(1) = α(1)T H̃ α(1) + bTα(1) + ∆φ(1)T H̃ ∆φ(1) (2.53)

where φ(1) = α(1) + ∆φ(1) and

α(1) = −
(
H̃ + H̃

T
)−1

b = −1
2 H̃

−1
b . (2.54)

Inserting Eq. 2.54 in Eq. 2.53, we find

H(1) = −1
4b

T H̃
−1
b+ ∆φ(1)TH ∆φ(1) . (2.55)

The minimum of H(1) is achieved by setting

φ(1)
min = −1

2H̃
−1
b = −2g H̃−1

φ(0)3 . (2.56)

Thus, we obtain an estimate for soliton’s power in band n = 1,

P (1) =
∑

i
|φ(1)

i |2 ≃ 4g2
(
φ(0)3

)T

H̃
−2
φ(0)3 <

4g2(
ε

(1)
min − εB

)2 . (2.57)

In Eq. 2.57, ε(1)
min is the minimum energy Bloch state of band n=1, (n=1 band edge) with

respect to the minimum of band n=0 (n=0 band edge), and εB is the energy of the bound
state of the Hamiltonian Hij(s) − 6gφ(0)2

i δij on band n= 1, which is of the order ∼ g and
can be neglected compared to ε(1)

min for small g. Since ε(1)
min is equal to the sum of bandwidth

of n=0 band (E(0)
BW) and the band gap EG, we arrive at the sufficient condition

P (1) ≲
4g2(

E
(0)
BW + EG

)2 ≪ 1 . (2.58)

For the case where the target band is n = 1, the same analysis can be done, resulting in a
stricter condition

P (0) ≲
4g2

E2
G

≪ 1 . (2.59)

For the lowest Rice-Mele band with the Hamiltonian

H = −
N−1∑
i=0

[
J(1 + δ) |i, A⟩⟨i, B| + J(1 − δ) |i, A⟩⟨i− 1, B|

]

+ ∆
2

N−1∑
i=0

[
|i, A⟩⟨i, A| − |i, B⟩⟨i, B|

]
+ h.c. ,

(2.60)
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one has explicit expressions for EG = 2
√

(2Jδ)2 + ∆2 and E(0)
BW =

√
(2J)2 + ∆2−

√
(2Jδ)2 + ∆2.

Thus, the sufficient condition Eq. 2.58 reads as

4g2(√
(2J)2 + ∆2 +

√
(2Jδ)2 + ∆2

)2 ≪ 1 . (2.61)

For a pump sequence of the form

J(t) = J0 ,

δ(t) = δ0 cos(2πt/T ) ,
∆(t) = ∆0 sin(2πt/T ),

(2.62)

with the condition 2J0δ0 = ∆0 (such that the band gap always remains constant, EG = ∆0),
Eq. 2.63 takes the following form

max
t

4g2(√
(2J(t))2 + ∆(t)2 +

√
(2J(t)δ(t))2 + ∆(t)2

)2 =
(

2g
1 + δ0

)2

≪ 1 . (2.63)

For the following pump sequence that we considered in this work,

J(t) = J0
(
1 + 1/2 cos(2πt/T )

)
,

δ(t) = δ0 cos(2πt/T )/(2 + cos(2πt/T )) ,
∆(t) = J0 sin(2πt/T ),

(2.64)

the condition in Eq. 2.63 reads as

max
t

4g2(√
(2J(t))2 + ∆(t)2 +

√
(2J(t)δ(t))2 + ∆(t)2

)2 = (g/J0)2 ≪ 1 . (2.65)

Note that both conditions Eq. 2.63 and Eq. 2.65 point to the smallness of g.

2.3.3 Derivation of the Wannier locality validity condition
To derive the Wannier locality condition, we resort to the analytical expressions for the
Wannier functions of the Rice-Mele model. The Bloch functions of the Rice-Mele model
are

U(k) =
(
u

(1)
A (k) u

(0)
A (k)

u
(1)
B (k) u

(0)
B (k)

)
= 1√

2(1 + d̂z)

(
1 + d̂z d̂x − id̂y

d̂x + id̂y −(1 + d̂z)

)
(2.66)

where

d(k) =
[
J(1 + δ) + J(1 − δ) cos(k)

]
êx +

[
J(1 − δ) sin(k)

]
êy + ∆ êz , (2.67)
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and d̂(k) = d̂xêx + d̂yêy + d̂zêz = d(k)/|d(k)|. For the lowest Rice-Mele band (n = 0), the
Wannier functions have the form(

w
(0)
j,A(l)

w
(0)
j,B(l)

)
=
w(0)

j−l,A(0)
w

(0)
j−l,B(0)

 , (2.68)

with

w
(0)
j−l,A(0) = 1

2π

∫ π

−π
dk eik(j−l)u

(0)
A (k) = 1

2π

∫ π

−π
dk eik(j−l) d̂x√

2(1 + d̂z)
,

w
(0)
j−l,B(0) = 1

2π

∫ π

−π
dk eik(j−l) u

(0)
B (k) = − 1

2π

∫ π

−π
dk eik(j−l)

√
1
2(1 + d̂z) .

(2.69)

We can express d̂x and d̂z in terms of δ and ∆/2J ,

d̂x = 1√
1 + (∆/2J)2

+O
( 1 − δ

1 + (∆/2J)2

)
(k) , d̂z = (∆/2J)√

1 + (∆/2J)2
+O

( 1 − δ2

1 + (∆/2J)2

)
(k) .

(2.70)
The band energies are the following,

ε(1)(k) = |d(k)| , ε(0) = −|d(k)| , |d(k)| =
√

2J2(1 + δ2) + ∆2 + 2J2(1 − δ2)cos(k) ,
(2.71)

and the band width of both bands is

E
(0)
BW = E

(1)
BW = 2J

√
1 +

( ∆
2J

)2
[
1 −

√√√√√1 − 1 − δ2

1 +
(

∆
2J

)2

]
(2.72)

From Eqs. 2.69, 2.70 and 2.72 one can see that to the zeroth order in (1 − δ)/(1 + η2) and
(1 − δ2)/(1 + η2) (η=∆/2J), Wannier functions are completely localized on a single unit-
cell and vanish outside. This fact is consistent with the δ = 1 limit which corresponds to a
completely dimerized lattice. By examining Eqs. 2.70 and 2.72 we choose (1−δ2)/(1+η2) as
a suitable quantity to characterize the locality of the Wannier functions. The requirement
for the locality of Wannier functions then reads as

β ≡ 1 − δ2

1 +
(

∆
2J

)2 ≪ 1 . (2.73)

2.4 An interaction-induced topological pump for ul-
tracold atomic mixtures

The theoretical framework presented in this work is based on the general DNLS in Eq. (2.1),
and hence, it applies to a broad range of nonlinear lattice systems. In particular, this equa-
tion corresponds to the Gross-Pitaevskii equation describing a weakly-interacting Bose
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gas evolving on a moving lattice potential. In this section, we propose to go beyond
the paradigm of nonlinear pumps for single-component bosonic systems, by introducing a
mapping to an imbalanced Bose-Bose atomic mixture, which encompasses the DNLS in
Eq. (2.1) as its semiclassical limit (within the Thomas-Fermi approximation). As we ex-
plain below, this original approach reveals an interaction-induced topological pump, where
solitons of impurity atoms undergo a quantized drift resulting from genuine interaction
processes with their environment.

We start from a microscopic theory for an imbalanced Bose-Bose atomic mixture on a
1D lattice [194], as described by the second-quantized Hamiltonian

Ĥ =
∑
⟨i,j⟩

ϕ̂†
i H

(ϕ)
ij ϕ̂j +

∑
i

Uϕϕ

2 ϕ̂†
i ϕ̂

†
i ϕ̂iϕ̂i +

∑
⟨i,j⟩

σ̂†
i H

(σ)
ij σ̂j +

∑
i

Uσσ

2 σ̂†
i σ̂

†
i σ̂i σ̂i

+
∑

i
Uϕσ ϕ̂

†
i ϕ̂i σ̂

†
i σ̂i , (2.74)

where ϕ̂i and σ̂i are bosonic field operators on the lattice; note that we use the same
conventions for indices i = (i, α) as before. Specifically, the first line describes single-body
processes (i.e. nearest-neighbor hopping and onsite potentials) and intra-species contact
interaction processes for the majority atoms, which are described by the field operator ϕ̂i;
the second line describes single-body processes and intra-species contact interactions for
impurity atoms, represented by the field operator σ̂i; and the third line describes inter-
species interaction processes. We assume that the intra-species interaction strengths are
both repulsive, (Uσσ, Uϕϕ > 0), whereas the inter-species interaction strength is attractive
(Uϕσ < 0).

In order to derive the equations governing the coherent state profiles of the two species
in the mixture, we start from the microscopic Hamiltonian in Eq. (2.74). The coherent-
state action of the system takes the following form (ℏ = 1),

S[ϕ̄, ϕ; σ̄, σ] =
∫ tf

ti

dt L[ϕ̄, ϕ; σ̄, σ] , (2.75)

with the Lagrangian

L[ϕ̄, ϕ; σ̄, σ] =
∑

i
ϕ̄i
[
i∂t + µϕ

]
ϕi −

∑
⟨i,j⟩

ϕ̄i tϕH
(ϕ)
ij ϕj −

∑
i

gϕϕ

2 |ϕi|4

+
∑

i
σ̄i
[
i∂t + µσ

]
σi −

∑
⟨i,j⟩

σ̄i H
(σ)
ij σj −

∑
i

gσσ

2 |σi|4 −
∑

i
gϕσ |σi|2|ϕi|2.

(2.76)

where ϕi and σi denote classical fields satisfying the constraints ∑i |ϕi|2 = Nϕ/(Nϕ +Nσ)
and∑i |σi|2 = Nσ/(Nϕ+Nσ), withNϕ andNσ the particle number of majority and impurity
species, respectively; the interaction parameters are defined as gαβ =Uαβ(Nϕ + Nσ), with
α, β = (ϕ, σ); µϕ,σ denote the chemical potentials.

To proceed, we seek stationary state solutions for the coherent state fields of the form
ϕ

(ss)
i (t) = e−iω0t ϕi and σ

(ss)
i (t) = e−iω0t σi, which minimize L[ϕ̄, ϕ; σ̄, σ]. Such solutions are
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the saddle-point solutions of the quantum mechanical action, giving the mean-field stable
states of the system. The Lagrangian then takes the time-independent form

L[ϕ̄, ϕ; σ̄, σ] =
∑

i
ϕ̄i
[
ω0 + µϕ

]
ϕi −

∑
⟨i,j⟩

ϕ̄i H
(ϕ)
ij ϕj −

∑
i

gϕϕ

2 |ϕi|4

+
∑

i
σ̄i
[
ω0 + µσ

]
σi −

∑
⟨i,j⟩

σ̄i H
(σ)
ij σj −

∑
i

gσσ

2 |σi|4 −
∑

i
gϕσ |σi|2 |ϕi|2.

(2.77)

To minimize the Lagrangian, the corresponding Euler-Lagrange equations are derived from
δL/δ ϕ̄i = 0 and δL/δ σ̄i = 0 , which leads to the two coupled nonlinear Schrödinger
equations (Ref. [194])

(ω0 + µϕ)ϕi −
∑

j
H

(ϕ)
ij ϕj −

(
gϕϕ|ϕi|2 + gϕσ|σi|2

)
ϕi = 0 ,

(ω0 + µσ)σi −
∑

j
H

(σ)
ij σj −

(
gϕσ|ϕi|2 + gσσ |σi|2

)
σi = 0 . (2.78)

In the limiting case of heavy impurities, we neglect their kinetic-energy contributions
(H(σ)

ij ) to Eq. (2.78), the so-called Thomas-Fermi approximation. In this case, the second
equation in Eq. (2.78) reduces to (ω0 + µσ) = gϕσ|ϕi|2 + gσσ |σi|2. For the bright soliton
solutions of Eq. (2.78), ϕi and σi decay exponentially away from the soliton center, thus,
to zeroth order in the impurities hopping strength, ω0 + µσ = 0. Eq. (2.78) then reduce to

(ω0 + µϕ)ϕi =
∑

j
H

(ϕ)
ij ϕj +

(
gϕϕ|ϕi|2 + gϕσ|σi|2

)
ϕi , (2.79)

|σi|2 = −gϕσ/gσσ |ϕi|2 . (2.80)
Inserting Eq. (2.80) into Eq. (2.79), we obtain an effective DNLS for ϕi,

(ω0 + µϕ)ϕi =
∑

j
H

(ϕ)
ij ϕj +

(
gϕϕ − g2

ϕσ/gσσ

)
|ϕi|2ϕi , (2.81)

with the effective nonlinearity strength g=−gϕϕ + g2
ϕσ/gσσ , which for gϕϕgσσ<g

2
ϕσ corre-

sponds to a defocusing nonlinearity.
Considering the case of heavy impurities, we neglect their kinetic-energy contributions

(H(σ)
ij ) to Eq. (2.78), the so-called Thomas-Fermi approximation. In this regime, one can

relate the impurity mean-field profile to the majority profile as

|σi|2 = −(gϕσ/gσσ) |ϕi|2, (2.82)

and Eq. (2.78) simplifies to the DNLS

(ω0 + µϕ)ϕi =
∑

j
H

(ϕ)
ij − uMF

i

ϕi , uMF
i = g|ϕi|2 . (2.83)
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Interestingly, Eq. (2.83) is formally equivalent to the DNLS in Eq. (2.3): the majority
atoms described by the field ϕi can form a soliton and undergo a quantized motion upon
driving a Thouless pump sequence in the corresponding lattice Hamiltonian, i.e. H(ϕ)

ij (s).
Importantly, according to Eq. (2.82), the impurity atoms also form a soliton and undergo a
quantized motion: the impurities exhibit topological pumping from genuine interaction pro-
cesses with the majority atoms. In particular, this interaction-induced topological pumping
occurs even when the lattice felt by the impurities H(σ)

ij is associated with a trivial (non-
topological) band structure. This intriguing phenomenon, which could be implemented
in ultracold atomic mixtures in optical lattices [21, 40, 194], is reminiscent of topologi-
cal polarons [89, 90, 30, 150, 161, 15], in the sense that impurities inherit the topological
properties of their environment through genuine interaction processes.

We first analyze this interaction-induced topological effect by considering the Thomas-
Fermi approximation. It appears from Eq. (2.83) that uMF acts as an effective potential
for the majority atoms; a soliton then emerges as the bound state of the impurity field. In
the context of highly-imbalanced mixtures with strong impurity-majority coupling, i.e. in
the strong-coupling Bose polaron regime, it is customary to assume a variational ansatz
describing the profile of the impurity and majority fields [87]; the majority field is then
found as the bound state of the impurity potential uMF using the first relation in Eq. (2.83).
Here, the variational problem for obtaining uMF reduces to one for ϕ, because of the
constraint uMF = g|ϕ|2. As before, we express ϕ in the Wannier basis, and the variational
problem is then solved simultaneously for both uMF and ϕ using the ansatz al = η sech(ξ (l−
l0)) for the Wannier coefficients of ϕ. The bound state of the resulting impurity potential
uMF =g|ϕ|2 then corresponds to the soliton.

Figures 2.10(a) and (b) show the adiabatic evolution of the amplitude η and width
ξ of the variational solution al = η sech(ξ (l − l0)) used for the Wannier coefficients of ϕ.
We compare these results with the amplitude and width extracted from the bound-state
solution associated with the impurity potential uMF = g|ϕ|2, as well as to those extracted
from the exact soliton of Eq. (2.3) expressed in Wannier representation. We also show the
dependence of these parameters on the nonlinearity g in Fig. 2.10(c), for both the exact
soliton and the variational solution. These results validate our variational approach, as
well as the bound-state picture of our soliton.

The minimum-energy solutions obtained from the variational ansatz are realized for
integer values of the Wannier index l0, and thus correspond to stable on-site solitons.
Moreover, this Wannier index l0 remains constant over a pump cycle. Hence, this again
suggests that the real-space motion of the soliton should follow the quantized Wannier
drift, as established by the Chern number. This is verified in Fig. 2.10(d), where the
center-of-mass displacement of the calculated bound state is shown to be quantized over a
pump cycle (compare with Fig. 2.3).

In order to demonstrate the validity of our results, in particular, the robustness of
the interaction-induced topological pump away from the Thomas-Fermi limit, we solve
Eq. (2.78) numerically for a mass-balanced mixture, thus including the effects of the impu-
rities’ kinetic energy. We again use the Rice-Mele model, but consider two different pump
sequences for the majority and impurity species: the majority feels the same (topological)
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Figure 2.10: Characterizing soliton evolution during two pump cycles. (a) Evolution of
the soliton’s width ξ in Wannier space over two pump cycles, as obtained by fitting the
numerical solution of Eq. (2.3) with a sech function (blue solid line). This is compared to
the width of the variational-ansatz solution (dashed red line), and to that of the bound-
state solution (green dotted line); here g=J0. (b) Same for the amplitude of the soliton η.
(c) Amplitude and width of the exact (solid blue line) and variational-ansatz (dashed red
line) solutions as a function of g, at time s=0.12. (d) Center-of-mass displacement of the
calculated bound state over one pump cycle. The inset shows the corresponding bound
state profiles. The quantized motion is dictated by the Chern number C = −1; compare
with Fig. 2.3.

pump sequence as in Fig. 2.3, while we apply a trivial sequence for the impurity species.
We obtain the steady state solution of Eq. (2.78) over two pump cycles, where the majority
particles predominantly occupy the lowest Bloch band. The corresponding trajectories of
the CM of both species are depicted in Fig. 2.11, where the impurity CM is shown to be
dragged by the majority particles. While the exact form of the CM trajectories depend
on the details of the model and pumping sequence, the CM displacement after one pump
cycle is dictated by the Chern number of the topological band occupied by the majority
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Figure 2.11: Nonlinearity-induced topological pumping in a Bose-Bose mixture. Center-
of-mass (CM) trajectories of both species in a Bose-Bose mixture. Here, the interaction
strengths are set as gϕϕ ≃ 0.226 J0, gϕσ ≃ −11.32 J0 and gσσ ≃ 2.26 J0. The majority atoms
undergo the pumping sequence as in Fig. 2.3, while impurities feel a trivial sequence. Im-
purity atoms undergo quantized transport through interactions with their environment.

species (C = −1 in this case). Although the impurity atoms experience a topologically
trivial lattice, they are shown to undergo topological pumping through genuine interaction
effects with their environment.

2.4.1 Variational ansatz for the state of Bose-Bose mixture in
the Thomas-Fermi limit

The variational treatment of Eqs. (2.82) and (2.83) accounts to minimizing the following
energy functional for the field ϕ

H[ϕ̄, ϕ] =
∑
i,j
ϕ̄i H

(ϕ)
ij ϕj − g

2
∑

i
|ϕi|2 − µϕ

(∑
i

|ϕi|2 −Nϕ

)
. (2.84)

From the knowledge obtained from the soliton solutions of the DNLS, we assume that
ϕi belongs to a single band and expand it in terms of the Wannier functions of the corre-
sponding band, ϕi =

∑
l a

(n)
l w(n)(l). We then use a sech variational ansatz for the coefficient
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amplitudes, a(n)
l =η/ sech

(
ξ(l− l0)

)
. The variational energy functional takes the following

form

H/η2 = ω
(n)
0 Nϕ/η

2 +
∞∑

m=1

4m
sinh(ξm)ω

(n)
m (2.85)

− 2 gW (n)

3 η2

1
ξ

+
∞∑

m=1

2π2

ξ2

(
1 + π2m2

ξ2

)
m cos(2πml0)

sinh(π2m
ξ

)

 ,
subject to the constraint Nϕ = const., where

Nϕ/η
2 = 2

ξ
+

∞∑
m=1

4π2

ξ2
m cos(2πml0)

sinh(π2m
ξ

)
. (2.86)

For the simulations presented (Fig. 2.10), we assume that Nϕ =1 ; see Refs. [114, 115] for
more details on variational ansätze for DNLS. From the solution of Eqs. (2.85) and (2.86)
we then obtain the boson field, ϕi, which is then used to obtain the effective attractive
potential uMF

i = g|ϕi|2 ; see Eq. (2.83).

2.4.2 Potential barrier preventing soliton delocalization
The nonlinear term in Eqs. (2.1) (resp. in Eq. (2.15)) leads to the formation of localized
soliton solutions, which do not satisfy the lattice (resp. Wannier lattice) translational
symmetry. While the stable-state solitons are not translationally invariant, they can be
mapped to one another through lattice translations. It is known that an effective potential
barrier exists for continuous deformations of each stable-state soliton to a neighboring
one. This potential barrier is reminiscent of the Peierls-Naborro barrier (PNB) known in
the theory of dislocation dynamics in crystals [8]. Under adiabatic evolution, a soliton
in Wannier representation will always remain peaked on a single Wannier index since the
potential barrier rules out the existence of solutions that interpolate continuously between
two on-site solitons. The strength of this potential barrier can be estimated in terms of
the model parameters using the variational ansatz a(n)

l = η/sech
(
ξ(l− l0)

)
for the Wannier

soliton in band n, and the corresponding energy functional in Eq. (2.85),

∆Barrier ≃ H(η0, ξ0, l0 = 1/2) −H(η0, ξ0, l0 = 0)

≃
∞∑

m=1

4π2ω
(n)
0 η2

0
ξ2

0
− 4π2 g

3ξ2
0
η4

0

(
1 + π2m2

ξ2
0

)m (1 − (−1)m)
sinh

(
π2m
ξ0

) , (2.87)

where
H(η0, ξ0, l0 = 0) = min

η,ξ
H(η, ξ, l0 = 0). (2.88)

The estimated ∆Barrier depends on the model parameters via the Fourier transform of the
dispersion relation at l = 0, ω(n)

0 = 1/N ∑N−1
k=0 ϵ

(n)
k , and the interaction parameter g. We
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verified that the expression in Eq. (2.87) is in agreement with a result found in Ref. [114]
for DNLS equations with nearest-neighbor hopping.

2.4.3 Implementation in ultracold atoms

The interaction-induced topological pump introduced above could be experimentally im-
plemented in ultracold atomic gases involving two bosonic species [21, 40, 194]. In fact, the
parameter values incorporated in our numerical simulations of Eq. (2.78), and displayed
in Fig. 2.11, are compatible with an experimental realization based on bosonic 7Li −7 Li
mixtures, with two different hyperfine states of 7Li as “majority" and “impurity" atoms;
we note that the formation of solitons in Lithium gases was previously investigated, both
theoretically and experimentally [1, 198]. Following Ref. [101], the scattering lengths be-
tween atoms in state (F =1,mF =1) – “impurity" atoms – and (F =1,mF =0) – “majority"
atoms – can be set to aϕϕ ≃ 0.154 a0, aϕσ ≃ −7.57 a0, aσσ ≃ 1.514 a0, at a magnetic field
B ≃ 575G, where a0 is the Bohr radius (a0 = 0.0529 nm); we note that these scattering
lengths are highly tunable thanks to a broad Feshbach resonance. As further discussed
below, this configuration is compatible with the interaction parameters (gϕϕ, gσσ, gϕσ) used
in our numerics.

The lattice structure and pump sequence can be designed within a time-dependent
optical lattice. For instance, following Ref. [151], the atoms can be loaded in a potential
landscape comprised of two superimposed optical lattices, with a long-wavelength lattice
(λl = 1064 nm) and a shorter lattice (λs = λl/2), with different amplitudes (Vl = 3.0ER

and Vs = 1.0ER, with ER = h2/(2mλ2
l ) the recoil energy of the long lattice). Such an

optical lattice potential takes the form V (x, ϕ) = −Vl cos2(2πx/λl − ϕ) − Vs cos2(2πx/λs),
and it implements the Rice-Mele lattice considered in our numerics: the Thouless pump
sequence is simply realized by sweeping the phase ϕ from 0 to 2π. The relevant parameters
of the Rice-Mele model can be extracted from a tight-binding analysis of the optical lattice
potential [151], and the resulting pump sequence is described by the following elliptic path
in parameter space: ((J1 −J2)/a)2 +(∆/b)2 =1, with a ≃ 0.19ER and b ≃ 0.475ER. In our
numerics, we choose a closely related pumping sequence with a = 0.15ER and b = 0.5ER;
this choice does not affect our final conclusions, since topological pumping is robust against
smooth deformations of the pumping sequence. Finally, to reveal the interaction-induced
topological transport for impurities, we propose to implement a trivial pump sequence
for that species only [see Fig. 2.11]; this could be realized by designing a state-dependent
optical lattice [106], for instance, using the Floquet-engineering scheme of Ref. [109].

The particle numbers of the two species can be set to Nϕ ≃ 1500 [27] and Nσ/Nϕ ≃
1/30. With this choice, we obtain the interaction parameters according to the relation
gαβ/ER =(Nσ +Nϕ)

√
8/π kl aαβ(Vs/ER)3/4 [21], where α, β=(ϕ, σ) and kl =2π/λl. Setting

the pump parameter J0 = 0.5ER, the numerical values for the interaction parameters are
obtained as gϕϕ ≃ 0.226 J0, gϕσ ≃ −11.32 J0 and gσσ ≃ 2.26 J0, which are the values used
in our numerical simulations [Fig. 2.11].
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2.5 Conclusion and Outlook
In this work, we outlined a general theoretical framework that connects Bloch band’s
topology to nonlinear excitations, hence elucidating the topological transport of solitons
in the context of nonlinear Thouless pumps. Solitons are stable states of nonlinear lattice
systems described by the paradigmatic discrete nonlinear Schrödinger equation (DNLS),
which is central in describing nonlinear phenomena in a wide range of physical settings,
from nonlinear optics and photonics, to ultracold quantum matter, fluid dynamics and
plasma physics. In this sense, characterizing the influence of Bloch band’s topology on
the behavior of the stable states of DNLS is of prime importance. This program is par-
ticularly challenging due to the lack of generic theoretical approaches connecting notions
of topological physics to nonlinear systems and vice versa. Furthermore, introducing non-
linearities in more sophisticated topological systems, such as higher-dimensional settings,
or lattices exhibiting higher-order topology and symmetry-protected features, could lead
to exotic phenomena exhibited by the nonlinear modes of the system; see Ref. [57] and
references therein. By providing a scheme that naturally connects topological indices of
band structures to nonlinear excitations, our work opens the door to the exploration of
novel nonlinear topological phenomena.

We also illustrated the universality of our approach, by introducing a topological pump
for Bose-Bose atomic mixtures, where one species (impurity atoms) experience a quantized
drift through genuine interaction processes with the other species (the surrounding ma-
jority atoms). Importantly, the impurity atoms inherit the topological properties of their
environment through inter-species interactions. We note that such interaction-induced
topology has been previously studied in the context of topological polarons, namely, in
mixtures with strong population imbalance, where individual topological excitations can
bind to mobile impurities [89, 90, 150, 15]. The present scheme extends those concepts
to more complex majority-impurity states, such as coupled coherent states within a su-
perfluid phase. We also point out that the proposed scheme can be implemented using
available cold-atom technologies, and the quantized transport of impurities can be mea-
sured in-situ, using state-selective imaging techniques [20]. Besides, the Chern number
characterizing the interaction-induced topological pump could also be directly extracted
by interferometry [90].

This second part of our work explores an interesting interplay of nonlinearity and band
topology, and it addresses the following question: can nonlinearities induce topological
features within a multi-component system? This question is fascinating since different
components can have different band structures with distinct topological features: as we
demonstrate, a topologically trivial component can become non-trivial through genuine
interaction processes. The interplay of interactions/nonlinearities and band topology in
multi-component systems is yet a relatively unexplored territory with lots of open questions
and potential for discovering new physics. For instance, the questions regarding the possible
mechanisms for pumping break-down, in strongly interacting bosonic or fermionic systems
or in the mean-field limit (where the interactions take the form of nonlinearities), are still
active areas of recent experimental and theoretical research.
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Moreover, aside from the scalar DNLS, which is ubiquitous in optics, photonics, atomic
physics, and many other areas of physics, coupled scalar DNLS equations appearing in
the form of vector DNLS equations also arise in many different contexts. For instance,
various components of the vector DNLS can be different modes of an optical device coupled
via nonlinearities. Furthermore, in the context of multi-component ultracold gases, each
component can come from other species, or different coexisting phases of the gas, with
interactions treated within the mean-field theory. Therefore, it is tempting to generalize
the scheme developed here to address the interplay of band topology and nonlinearity in
coupled nonlinear systems. We expect richer physics to arise in the multi-component DNLS
case since different components can have different band structure topology.

Finally, we note that our proposal will motivate future studies of interaction-induced
topological pumping beyond the mean-field regime. It will be interesting to see, then, how
quantum fluctuations can modify the results.



Chapter 3

Quantum impurities strongly coupled
to condensed bosonic systems

This chapter is based on the following publication:

[2] Mostaan, N., Goldman, N., Grusdt, F. (2023). A unified theory of strong coupling
Bose polarons: From repulsive polarons to non-Gaussian many-body bound states, arXiv
preprint arXiv:2305.00835

3.1 Introduction
Explaining the behavior of quantum materials through the notion of quasiparticles is
a central paradigm in condensed matter physics. While many phases of matter, such
as conventional superconductors and Fermi liquids, possess quasiparticle-like excitations
[16, 69, 162], in some strongly correlated phases, such as strange metals, the excitation
spectra defy quasiparticle-based descriptions [122, 203, 204, 19, 54]. Thus, studying the
detailed mechanisms of quasiparticle formation and breakdown is of prime interest. An
emblematic scenario for quasiparticle formation is the dressing of electrons in solid-state
systems by lattice vibrations, giving rise to a quasiparticle termed polaron. Since its first
formulation by Landau and Pekar [124], the polaron concept has been central to describ-
ing electron mobility in organic semiconductors [5, 56, 48, 100, 210, 55], exciton transport
in light-harvesting complexes [52, 67, 68], and phonon-based theories of high-temperature
superconductivity [227, 23, 3, 2, 63, 4]. The problem of characterization and description
of polarons naturally falls in the broader context of mobile quantum impurity problems,
where a single mobile impurity interacts with the elementary excitations of a many-body
medium and gives rise to a quasiparticle with renormalized properties.

Recent developments in the realization of synthetic quantum systems with increasing
degrees of control and tunability resulted in an upsurge in research on mobile quantum
impurity problems, both in fermionic [120, 176, 119, 189, 174, 143, 178, 164, 158, 166] and



44 3 Quantum impurities strongly coupled to condensed bosonic systems

Figure 3.1: Schematic illustration of the Bose polaron spectrum across an impurity-boson
Feshbach resonance for repulsively interacting bosons. In the presence of inter-boson in-
teractions, the attractive polaron persists to the repulsive side as a well-defined resonance,
while other metastable many-body bound states appear in addition to the repulsive po-
laron. These many-body bound states emerge due to the competition of multiple impurity-
boson binding and inter-boson repulsion. The structure of the main component of each
many-body bound state is shown schematically.

bosonic [108, 99, 220, 35, 72, 190, 195, 169, 133, 86, 145] systems. In the latter case, the
quasiparticle formed from an impurity resonantly coupled to a bosonic medium in a Bose-
Einstein Condensate (BEC) phase is called Bose polaron. Numerous theoretical works have
studied different properties of Bose polarons, including spectral response and quasiparticle
properties [108, 99, 169, 86, 184, 41, 129, 185], the implication of three-body correlations on
the state of Bose polarons [222, 130, 42, 43, 200] and finite-temperature effects [91, 62, 70],
to name a few. The powerful toolbox available in atomic gas settings has enabled the
investigation of various aspects of Bose polaron physics, reaching impurity-medium inter-
actions deep into the strong coupling regime. Contrary to its weak coupling counterpart,
the strong coupling regime poses substantial challenges to both experiments and theory
and comes with many aspects that, as we now review, are still poorly understood.

In particular, a unified theoretical framework is lacking that could describe the con-
nection of repulsive and attractive polarons. The mainly employed theoretical methods so
far either included an infinite number of weakly correlated excitations in the polaron cloud
[185, 88, 60] or a highly restricted number of potentially strongly correlated excitations
[169, 133, 108]. On the repulsive side of the Feshbach resonance the former approaches do
not include an attractive polaron branch. In contrast, the latter approaches predict that
the attractive polaron continuously evolves into the molecular dimer state, energetically
well below the metastable repulsive polaron, as the Feshbach resonance is crossed. We will
argue in this article that neither of these scenarios is completely correct.

The peculiar nature of the Bose polaron problem at strong couplings becomes clearer
by considering a static impurity interacting with an ideal, i.e. non-interacting BEC via an



3.1 Introduction 45

attractive potential. The strong coupling regime occurs when the impurity-boson potential
admits a bound state with energy −EB < 0. In this regime, beyond a certain scattering
length, a long-lived metastable polaronic state with energy ERP>0 emerges, known as re-
pulsive polaron, that involves the depletion of bosons close to the impurity from the polaron
cloud. The repulsive polaron is unstable against the decay of bosons to the bound state.
However, the number of decaying particles is not restricted for bosons, unlike fermions
where Pauli blocking inhibits multiple occupations of the bound state. Thus, successive
decay of bosons is energetically favorable, with a gain in energy per particle equal to the
impurity-boson binding energy. In this sense, the spectrum of the system consists of an
incoherent continuum of excitations on top of the repulsive polaron, together with a dis-
crete set of bound states with energies En = ERP − nEB for n = 1, 2, 3, · · ·, involving n
particles bound to the impurity.

This pathological behavior, first noted in Ref. [185] and discussed in further detail
in [60], initiated active theoretical research to improve theoretical models that include
the repulsive inter-boson interactions to counteract the impurity-induced instability of the
ground state. To illustrate this effect, consider an even simpler model than the impurity-
ideal gas model described above, where the bosons can only occupy a single state with vac-
uum energy ERP and negative energy per particle −EB . In this single orbital model, includ-
ing an effective inter-boson repulsion term Un2/2 stabilizes the system. The ground state
is then realized for n∗ = EB/U bosons, giving a finite ground state energy ERP − E2

B/2U
(see Fig. 3.1 for a schematic illustration). Thus, an effective repulsive interaction among
bosons makes the model stable. While this simplified model offers a rough idea of how
inter-boson repulsion can stabilize the system, the actual scenario involving a mobile im-
purity interacting with a Bose-Einstein condensate (BEC) is significantly more complex.
This complexity arises due to the presence of a continuum of interacting bosonic modes,
driven by two-body repulsion between bosons. In practice, this repulsion-induced stabiliza-
tion is manifested via short-range repulsion of bosons close to the impurity, signifying the
importance of short-range effects. Besides, an ideal theoretical description of strong cou-
pling Bose polarons must involve an indefinite number of interacting bosons in the polaron
cloud to properly capture the local correlations around the impurity while interpolating to
long-length scales to account for the distortion of the condensate, rendering the problem
theoretically challenging.

Recent theoretical works have analyzed the ground state energy by treating inter-boson
interaction at the mean-field level [177, 221, 142, 92, 85, 98], showing that the ground
state energy remains finite in the thermodynamic limit. Exact Monte Carlo results [38]
demonstrated that the theoretically employed classical field treatment accurately describes
the polaron cloud of a static impurity supporting a bound state, when the impurity-boson
interaction range r0 is much larger than the inter-boson scattering length aB. Interestingly,
in this framework, the polaron cloud contains infinitely many bosons with boson number
N growing sub-dimensional with system’s volume V (that is N/V → 0 as N , V → ∞).
Nevertheless, the polaron ground state energy remains finite as the main contribution to
the energy comes from the bosons localized around the impurity and not in the polaron
tail.
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In the opposite limit r0 ≪ aB, the standard one-parameter modeling of the low-energy
scattering processes in three dimensions by the scattering length has to be amended by
inclusion of short range details of the impurity-boson and boson-boson interaction poten-
tials [92]. A non-local version of the Gross-Pitaevskii theory was proposed for the regime
r0 ≪ aB [59], including a method to account for finite range effects. Furthermore, trun-
cated basis variational (TBV) methods exist that allow for the inclusion of impurity-boson
correlations exactly up to a few particles [222, 129]. The TBV methods are especially
suitable for cold atom realization of Bose polarons where the impurity-boson system is
described by a two-channel model. In such models, another stabilization mechanism was
identified [187, 223, 128] whereby the exchange of a closed-channel dimer effectively re-
moves the impurity from the system and reduces the number of bound bosons to only
a few, even in a non-interacting bosonic system. Although these TBV methods predict
polaron energy accurately, their accuracy is limited by their few particle nature for ob-
servables such as quasiparticle residue that are sensitive to the particle number. On the
other hand, inspecting the (N + 1)−body problem for non-interacting bosons coupled to a
static impurity via the two-channel model reveals that (N + 1)−body bound states exist
for positive scattering lengths close to two special scattering resonances, corresponding
to 1/a → 0+ and a → a∗−, with a∗ a critical value [223]. The binding energy of these
(N + 1)−body states increase monotonically with N close to the scattering resonances,
while remaining lower-bounded [223]. For 0< 1/a < 1/a∗, it is conjectured in Ref. [223]
that all (N + 1)−body states exist, though a direct solution to this (N + 1)−body scatter-
ing problem even with non-interacting bosons remains extremely challenging. The proper
inclusion of an indefinite number of excitations while at the same time accounting for
finite-range impurity-boson and boson-boson interactions remains a central challenge in
the development of an all-coupling theory of Bose polarons in a BEC.

Thus far, theoretical works on strong coupling Bose polarons have mainly focused on
the independent characterization of the repulsive and attractive Bose polaron branches.
However, not much work has been carried out to characterize further many-body bound
states on the repulsive side other than the attractive polaron. Such many-body bound
states were studied before in the context of Rydberg [182] and ionic [14] impurities im-
mersed in bosonic quantum gases, and for neutral impurities in two dimensions [10]. As
mentioned, these bound states have also been explored for neutral static impurities inter-
acting with an ideal Bose gas via a two-channel model, where they were shown to exist
for all N as 1/a→ 0+ and a→a∗−, and conjectured to exist for all 0< 1/a< 1/a∗. While
the two-channel model introduces an effective inter-boson repulsion via impurity scatter-
ing to the closed channel, such a stabilization mechanism does not exist in single-channel
models. Consequently, single-channel models remain unstable unless two-body inter-boson
repulsion is explicitly included. Although metastable bound states have been predicted for
Bose polarons in single-channel models [185], the crucial effects of inter-boson repulsion
have not been included so far. On the repulsive side, the non-interacting single channel
models of Refs. [185, 60] predict a series of many-body bound states and no attractive
polaron, while Gross-Pitaevskii theories which include inter-boson interactions within the
mean-field level [59, 142, 221, 92] predict only a single state with negative energy (i. e. the
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attractive polaron) and no further many-body bound states. The disagreement between
different theoretical approaches for the Bose polaron on the repulsive side extends beyond
the distinction between single- and two-channel models; even within the single-channel
model, different variational methods yield qualitatively different predictions. These dis-
crepancies further underscore that the nature and characteristics of many-body resonances
remain unresolved, and a comprehensive understanding of the problem is still lacking.

In this chapter, we refine the understanding of strong coupling Bose polarons by ad-
dressing the physics of several metastable states that appear in this regime in the form of
many-body bound states in addition to attractive and repulsive polarons. To characterize
these metastable states, we develop a variational principle that is able to accommodate
the effects outlined above in a numerically efficient manner, and is accurate as long as the
bound state is well separated from the other states in the bosonic one-particle spectrum.
This variational principle builds upon a solidly grounded phenomenological model we for-
mulate that enables to capture the essential correlations relevant for strong coupling Bose
polarons. Although this variational scheme is suitable for generic impurity-condensate
systems in arbitrary dimensionality, as a concrete example we focus on cold atom sys-
tems and characterize the metastable bound states emerging on the repulsive side of an
impurity-boson Feshbach resonance.

Our variational approach enables us to unveil interesting properties of these states. For
instance, the variational energy of these metastable bound states lie in between the attrac-
tive and repulsive polaron branches, and behave non-monotonously with particle number,
resulting in level-crossings among the states, in contrast to the wisdom gained from the pre-
vious studies on many-body resonances (see Fig. 3.1). Moreover, the statistics of bosons
bound to the impurity in these states exhibit strong quantum mechanical features, in-
cluding non-Gaussian quantum correlations and interaction-induced anti-bunching. Such
non-Gaussian correlations directly affect the number of resonances as the impurity-boson
interaction strength is tuned. In contrast to the non-interacting or mean-field models
described above, we find that the number of resonances remain finite, is not fixed, and
depends on the strength of the inter-boson interaction relative to the impurity-boson in-
teraction. While the quantitative aspects of these effects depend on the particular setting
considered, the underlying physical principles are general, and we expect such effects to
occur in a broad class of impurity-BEC systems. Our results pave the way for investigating
the implications of these metastable many-body bound states for Bose polaron physics at
strong couplings.

Overall, our approach provides a unified theory of repulsive and attractive Bose po-
larons: we argue that the remnant of the attractive polaron branch on the repulsive side
of the Feshbach resonance coincides with the lowest-lying multi-boson bound state around
the metastable repulsive polaron. As the resonance is crossed the attractive polaron adia-
batically evolves first into a molecular bound state with (approximately) one bound boson
– as proposed in Ref. [108] – but then continues to adiabatically evolve into an (approx-
imate) two-boson-plus-impurity bound state, and so on. Thereby, the stable attractive
polaron on the repulsive side of the Feshbach resonance, along with additional metastable
many-body bound states, is understood as a necessary and direct consequence of having
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a metastable repulsive-polaron saddle-point; i.e. the repulsive polaron cannot exist with-
out its attractive counterpart. Put differently, for repulsive impurity-boson interactions,
repulsive polaron is the stable ground state of repulsively interacting bosons, thus it exists
without any attractive polaron or other lower energy resonances. However, for attractive
impurity-boson interactions, whenever the repulsive polaron branch exists, other lower en-
ergy resonances such as the attractive polaron branch and/or, depending on the setting,
further few- and many-body states such as clusters or many-body bound states necessarily
have to exist. This is because the repulsive polaron is not anymore a stable lowest energy
state. Thus, novel experimental schemes for detecting the low-lying states and character-
izing their properties is worthy of more research efforts, although detection of these states
is difficult with the conventional impurity spectroscopy techniques.

The rest of this chapter is organized as follows: in Sec. 3.2, we outline the theoretical
formalism and introduce our variational principle. In Sec. 3.3, we apply our theoretical
method to the special case of cold atomic Bose polarons, extract their energies and quantum
correlated nature revealed by quantum statistics of bosons in the bound state, and discuss
possible experimental detection of these states by molecular spectroscopy. In Sec. 3.4 we
compare the variational scheme presented here to existing methods and discuss its merits
and limitations. We conclude in Sec. 3.5 and draw several future directions.

3.2 Theoretical Formalism

3.2.1 Model
We consider a mobile impurity of mass M coupled to a bosonic medium, consisting of
particles of mass m in a condensed phase with density n0 in three dimensions. The boson-
boson and impurity-boson interactions are modeled by single-channel central potentials
UBB(x) and VIB(x), respectively. The impurity is described by its position and momentum
operators X̂ and P̂ = −iℏ∇X, and the bosonic environment by the field operators ϕ̂x and ϕ̂†

x
satisfying bosonic commutation relations [ϕ̂x, ϕ̂

†
x′ ] = δ(3)(x−x′), [ϕ̂x, ϕ̂x′ ] = [ϕ̂†

x, ϕ̂
†
x′ ] = 0. It

is convenient to treat the condensed system in a grand-canonical ensemble by introducing
a chemical potential µ fixing the condensate’s mean particle number.

The total Hamiltonian Ĥtot describing the system takes the form

Ĥtot = P̂
2
/2M +

∫
x
VIB(x − X̂) ϕ̂†

xϕ̂x + ĤB , (3.1)

with
∫

x ≡
∫
d3x. It consists of the impurity kinetic energy, impurity-boson interaction, and

the bosonic Hamiltonian ĤB, given by

ĤB =
∫

x
ϕ̂†

x

(
− ℏ2∇2/2m− µ

)
ϕ̂x + 1

2

∫
x,x′

UBB(x − x′) ϕ̂†
xϕ̂

†
x′ϕ̂x′ϕ̂x . (3.2)

The problem is further simplified by transforming to the frame co-moving with the im-
purity. This is achieved through the Lee-Low-Pines transformation [86] ÛLLP = exp

(
i/ℏ X̂·
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P̂bath
)
, where P̂bath =

∫
x ϕ̂

†
x(−iℏ∇x)ϕ̂x is the total momentum operator of the bath. Under

ÛLLP, a state |Ψ(K0)⟩ with well-defined total momentum K0 transforms to

|Ψ(K0)⟩LLP = ÛLLP |Ψ(K0)⟩ = |K0⟩imp ⊗ |ΨK0⟩bath , (3.3)

which enables restricting the total Hilbert space to the sector with well-defined impurity
momentum K0. The transformed total Hamiltonian under ÛLLP reads

ĤLLP = ℏ2

2MK2
0 − ℏ

M
K0 · P̂bath + : P̂

2
bath :

2M +
∫

x
VIB(x) ϕ̂†

xϕ̂x

+
∫

x
ϕ̂†

x

(
− ℏ2∇2/2mred − µ

)
ϕ̂x + 1

2

∫
x,x′

UBB(x − x′) ϕ̂†
xϕ̂

†
x′ϕ̂x′ϕ̂x ,

(3.4)

where K0 is the total momentum of the system, m−1
red = m−1 +M−1 is the impurity-boson

reduced mass, and : · · · : denotes normal ordering of field operators. Eq. 3.4 is obtained
using Û †

LLP P̂ ÛLLP = P̂ − P̂bath and the replacement P̂ → K0 on the restricted Hilbert
space. In the rest of the paper we focus on the case K0 = 0, which corresponds to the
overall ground state.

After introducing the model Hamiltonian, it is instructive to adopt a path integral
formalism to study strong coupling Bose polarons. Path integral formulation is able to
represent Bose polaron models in dense and dilute media and capture crucial strong cou-
pling effects such as impurity-induced instability and condensate deformation. The free
energy F of the system in path integral representation takes the following form

eiF/ℏ =
∫

D[φ∗, φ] eiS[φ∗,φ]/ℏ , (3.5)

where S[φ∗, φ] is the action in terms of the classical fields φ∗ and φ, written as

S[φ∗, φ] =
∫
d3+1x

(
φ∗ iℏ∂tφ−HLLP[φ∗, φ]

)
. (3.6)

It is standard to treat F within a saddle point approximation, that involves finding the
saddle points of S[φ∗, φ].

Crucially, the saddle point analysis of the action reveals the existence of repulsive
and attractive polarons on the repulsive side of the Feshbach resonance as the unstable,
respectively, stable saddle points of the action. It is a key messages of the work presented
in this chapter to underline the necessity of going beyond the saddle point approximation
to study the physics of metastable many-body bound states, as those states emerge due
to the strong modification of the energy landscape around the repulsive polaron by inter-
boson interactions. Nevertheless, as a starting point of the theoretical construction it is
necessary to outline a detailed picture of the saddle point structure of the model. This is
the topic of the next subsection.
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3.2.2 Saddle point analysis
Mean-field decoupling of ĤLLP

To obtain the saddle point solutions and analyze the associated energy landscape, it is
instructive to perform a mean-field decoupling of the Hamiltonian. To this end, we separate
ϕ̂x into a classical component φx representing the condensate, and quantum fluctuations
δϕ̂x, i.e. ϕ̂x = φx + δϕ̂x. For notational convenience, we introduce the Nambu vector δΨ̂
with coordinate representation δΨ̂x = (δϕ̂x, δϕ̂

†
x)T .

Within the mean-field theory, the elementary excitations of the system are modeled
by weakly interacting quasiparticles with Bogoliubov-type field operators B̂x = (β̂x, β̂

†
x)T

related to δΨ̂ through the canonical transformation δΨ̂x =
∫

y SxyB̂y, where Sxy are 2 × 2
matrices. Note that both the classical component φx as well as the Bogoliubov modes
B̂x should be calculated in the presence of the impurity in the Lee-Low-Pines frame, as
explained below.

Correspondingly, the vacuum state of elementary excitations |GS⟩, defined by β̂x |GS⟩ =
0, is connected to the bosonic vacuum |ø⟩ by |GS⟩ = Ŝ |ø⟩ where

Ŝ = exp
(
i

2δΨ̂
† Ξ δΨ̂

)
, (3.7)

is a bosonic squeezing operator. In Eq. 3.7, Ξ is a Hermitian matrix related to S by
S = exp

(
iΣzΞ

)
with Σz = σz δ

(3)(x − x′) and σz the Pauli-z operator. For shorthand
notation, matrix multiplication implies integration over spatial coordinates and summation
over Nambu components. To fulfill the bosonic commutation relations for β̂x and β̂†

x, S
must be a symplectic matrix satisfying S†ΣzS=Σz.

By means of Wick’s theorem, ĤLLP takes the form (see Appendix 3.2.3)

ĤLLP = E[Φ,Γ] +
(
δΨ̂† · ζ[Φ,Γ] + h.c.

)
+ 1

2 : δΨ̂†HMF[Φ,Γ]δΨ̂ : +Ĥ3 + Ĥ4 . (3.8)

Here, Φx =(φx, φ
∗
x)T , the covariance matrix Γ is defined by 2Γ = ⟨GS| {δΨ̂, δΨ̂†} |GS⟩ − I

and can be expressed in terms of S by 2Γ + I = SS†, I is the identity matrix and : · · · :
denotes normal ordering with respect to β̂x and β̂†

x. Furthermore, HMF[Φ,Γ] is the mean-
field Hamiltonian, Ĥ3 and Ĥ4 are the cubic and quartic Hamiltonians in the field operators,
respectively, and ζ[Φ,Γ] is defined in Appendix 3.2.3.

In standard mean-field theory, beyond quadratic terms are neglected, while Φ0 and S0
are found that correspond to the saddle point solution ζ[Φ0,Γ0] = 0 and diagonalize the
mean-field Hamiltonian as S†

0HMF[Φ0,Γ0]S0 = I2 ⊗ D, with I2 the 2 × 2 identity matrix
and D a diagonal matrix. The condition 2Γ0 + I = S0S

†
0 and the dependence of HMF on

Γ0 require that S0 be obtained self-consistently. The resulting normal modes B̂0 = S−1
0 δΨ̂

are the well-known Bogoliubov modes.
In the following, we analyze the quadratic terms in ĤLLP from a mean-field viewpoint.

However, as we elucidate later, it is crucial to retain the higher-order terms Ĥ3 and Ĥ4
to describe essential strong coupling effects such as the non-Gaussian correlations of Bose
polaron many-body bound states at strong couplings.
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Saddle point structure

Next, we analyze the saddle point and normal mode structure of the quadratic part of
ĤLLP across an impurity-boson scattering resonance. On the attractive side (a < 0, with
a the impurity-boson scattering length), the saddle point condition is equivalent to the
Gross-Pitaevskii equation and admits a single solution Φatt that is the attractive polaron
(dashed green line in Fig. 3.2). The static and dynamic properties of the attractive polaron
obtained within Gross-Pitaevskii were investigated in [59, 142, 221, 92], and the predictions
for cold atom settings are in excellent agreement with the experiments. Furthermore, the
attractive polaron is a stable saddle point solution, meaning that all the corresponding
fluctuation modes have positive energy, or equivalently, HMF[Φ0,Γ0] is positive-definite
(see Fig. 3.2(b), panel (1)).

The attractive polaron solution extends to the repulsive side (a > 0) and remains a
stable saddle point. Nevertheless, for the mean-field Hamiltonian HMF[Φ,Γ], there exists
a dynamical instability window of impurity-boson interaction strength, where an unstable
phase quadrature of a Bogoliubov mode emerges [88] (see Fig. 3.2(b), panel (2)).

Beyond the dynamical instability, another saddle point solution Φrep emerges that is the
repulsive polaron. The repulsive polaron saddle point is unstable, as a single Bogoliubov
mode with negative energy exists in the spectrum of HMF[Φrep,Γrep]. The existence of
this unstable mode is traced back to the bound state of the impurity-boson potential,
therefore with a slight abuse of terminology, we call it “the bound state" or “dimer" as well
(see Appendix A for further discussion on the bound Bogoliubov mode and its relation to
the impurity-boson bound state). Analogously, we call the extended modes with positive
energy “scattering Bogoliubov modes" or “scattering states". In fact, when VIB admits ν
bound states, there exists 2ν + 1 solution to the Gross-Pitaevskii equation; see Refs. [141,
221]. The third solution of the Gross-Pitaevskii equation is similar to the attractive polaron
in amplitude, but has a negative sign. The absolute value of its energy is positive with the
same magnitude as the attractive polaron. Thus, it is not physical, and we do not consider
it in the following analysis.

In a mean-field treatment of the Bose polaron without including inter-boson interactions
[88], the presence of the unstable mode implies that the system can decrease its energy
by filling the bound state with bosons, resulting in the many-body ground state energy
EGS = −∞. This pathological behavior signifies the need for a non-perturbative beyond
mean-field treatment of the Bose polaron by the full Hamiltonian in Eq. 3.8, i.e. including
the cubic and quartic terms.

While an exact non-perturbative solution for the spectrum of ĤLLP is infeasible due to
the strongly correlated nature of the problem, one can capture the essential correlations
using a phenomenological model, while rendering a stable state analysis of the problem
possible. The formulation of this phenomenological model is one of the main results in this
chapter. In the following we introduce the effective model we devise for investigating Bose
polarons at strong impurity-boson interactions.
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Figure 3.2: (a) Energy of polaron states, including attractive and repulsive polaron, and
metastable states ms1 to ms6 (see text), across an impurity-boson Feshbach resonance. On
the attractive side (a < 0), an impurity resonance exists corresponding to the attractive
polaron branch (green dashed line), which extends to the repulsive side and remains the
well-defined stable saddle point across the resonance. On the repulsive side, the repulsive
polaron branch emerges as the unstable saddle point solution with a bound state, as well as
two many-body bound states ms1 and ms2 (red and blue solid lines). The red dotted line
indicates the bare dimer energy. Beyond a critical scattering length (denoted by a vertical
black dotted line), further metastable many-body bound states ms3 to ms6 emerge in the
spectrum (grey shaded solid lines). Note that the normalized energy is rescaled to show
all bound states compactly. The grey-shaded region (2) on the repulsive side is bounded
by 1/kna ≃ 1.2 where µ/εB ≃ 9 × 10−3, providing a conservative bound for the validity
of our theory. (b) The energy landscape over the phase space of the bound Bogoliubov
mode, around the saddle points corresponding to different regions in (a). The real and
imaginary parts of the coherent state variable αB serve as coordinates for the phase space
of the bound Bogoliubov mode. In (1), the attractive polaron (green shaded point) is a
stable saddle point, with all the fluctuation modes having positive energy. Within region
(2), a dynamical instability occurs as a precursor to the formation of the repulsive polaron,
signified by a single unstable phase mode with a corresponding stable amplitude mode.
In (3), the repulsive polaron (purple shaded dot) is a saddle point solution with a single
unstable Bogoliubov mode. The energy and particle number of many-body bound states
in (a) are depicted qualitatively on the energy surfaces. The radius of each circle denotes
the mean bound state occupation number, while its position on the surface denotes the
energy of the state. Repulsive inter-boson interaction increases the energy of the many-
body bound state with a higher particle number. By increasing 1/kna, further many-body
bound-states enter the atom-dimer continuum (grey shaded solid lines). Increasing the
binding energy increases the number of bound bosons in the lowest many-body bound
state. The vertical black dashed lines mark the level crossings between many-body bound
states.
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3.2.3 Details of the mean-field decoupling of ĤLLP

Here we detail on the mean-field decoupling procedure. Using the Wick’s theorem [212],
for ĤLLP in Eq. 3.4, the mean-field Hamiltonian takes the following form,

ĤLLP = E +
(
δΨ̂† · ζ + h.c.

)
+ 1

2 : δΨ̂†HMFδΨ̂ : +Ĥ3 + Ĥ4 , (3.9)

with explicit expressions for different terms as the following,

E = ℏ2K2
0

2M − ℏK0

M
·
(∫

x
φ∗

x(−iℏ∇x)φx +
∫

k
ℏkΓ11

kk

)

+
∫ (ℏk · ℏk′

2M

){
|φk|2|φk′|2 +

(
φkφk′Γ21

k′k + φ∗
k′φkΓ11

kk′ + φ∗
k′φk′Γ11

kk + c.c.
)

+ Γ11
kkΓ11

k′k′ + |Γ11
kk′ |2 + |Γ12

kk′|2
}

+
∫

x
φ∗

x

(
− ℏ2∇2

2mred
+ VIB(x) − µ

)
φx +

∫
x

(
− ℏ2∇2

2mred
+ VIB(x) − µ

)
Γ11

xx

+ 1
2

∫
x,x′

UBB(x − x′)
{

|φx|2|φx′|2 +
(
φ∗

xφ
∗
x′Γ12

xx′ + |φx|2Γ11
x′x′ + φ∗

x′φxΓ11
xx′ + c.c.

)
+ |Γ12

xx′ |2 + |Γ11
xx′ |2 + Γ11

xxΓ11
x′x′

}
.

(3.10)

The linear Hamiltonian Ĥ1 has the following form,

Ĥ1 =
∫

x
ϕ̂†

xζx + h.c. , (3.11)

where we explicitly write the coordinate space integration instead of shorthand inner prod-
uct. The vector ζx then reads as

ζx = h0φx +
[ ∫

x′
UBB(x − x′)

(
|φx′|2 + Γ11

x′x′

)]
φx

+
∫

x′

{[
UBB(x − x′) − 1

M
(−iℏ∇x) · (−iℏ∇x′)

]
Γ11

x′x

}
φx′

+
∫

x′

{[
UBB(x − x′) + 1

M
(−iℏ∇x) · (−iℏ∇x′)

]
Γ12

xx′

}
φ∗

x′

+
∫

x′

1
M

[
− iℏ∇x′

(
|φx′ |2 + Γ11

x′x′

)]
· (−iℏ∇xφx) ,

(3.12)

where h0 = −ℏ2∇2/2mred +VIB(x) −µ . With ζx as in Eq. 3.12, the saddle point condition
is ζx = 0. In the special case of Γ11

xx′ = Γ12
xx′ = 0 and M → ∞, the saddle point condition

reduces to the Gross-Pitaevskii equation for the condensate, including the distortion caused
by the impurity (that is encoded in the impurity-boson potential in h0). Given the saddle
point condition ζx = 0, and the boundary condition on the condensate that lim|x|→∞ φx =
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√
n0, the chemical potential including the Lee-Huang-Yang and finite boson-boson range

corrections reads as

µ = (n0 + Γ11
00)
∫

x
UBB(x) +

∫
x
UBB(x)Re(Γ12

x0 + Γ11
x0) . (3.13)

The quadratic Hamiltonian is of the following form

Ĥ2 = 1
2 :

∫
k,k′

(
δϕ̂†

k′ δϕ̂−k′

)
Himp

k′k

(
δϕ̂k

δϕ̂†
−k

)
: +1

2 :
∫

x,x′

(
δϕ̂†

x′δϕ̂x′

)
Hx′x

(
δϕ̂x

δϕ̂†
x

)
: , (3.14)

thus, HMF consists of two terms: Himp comes from the finite mass of the impurity, and H
is the mean-field Hamiltonian in the limit M → ∞. The explicit forms of H and Himp are
of the following form, 

Himp
k′k =

 E imp
k′k ∆imp

k′k
∆imp∗

(−k′)(−k) E imp∗
(−k′)(−k)

 ,

Hx′x =
Ex′x ∆x′x

∆∗
x′x E∗

x′x ,

 ,

(3.15)

where the diagonal and off-diagonal terms of Himp are as follows, E imp
k′k = ℏk·ℏk′

M

(
Γ11

kk′ + φ∗
kφk′

)
+ δ(d)(k − k′)

∫
k′′

ℏk′·ℏk′′

M
(Γ11

k′′k′′ + φ∗
k′′φk′′

)
,

∆imp
k′k = −ℏk·ℏk′

M

(
Γ12

k′(−k) + φk′φ−k
)
.

(3.16)

The diagonal and off-diagonal terms in H read as Ex′x = δ(d)(x − x′)
[
h0 +

∫
x′′ UBB(x′ − x′′)

(
Γ11

x′′x′′ + |φx′′ |2
)]

+ UBB(x − x′)
(
Γ11

xx′ + φ∗
xφx′

)
,

∆x′x = UBB(x − x′)
(
Γ12

x′x + φx′φx
)
.

(3.17)
Finally, the cubic and quartic terms are of the following forms

Ĥ3 =
∫

k,k′

ℏk · ℏk′

M

(
φk : δϕ̂†

kδϕ̂
†
k′δϕ̂k′ : +h.c.

)
+
∫

x,x′
UBB(x − x′)

(
φx : δϕ̂†

xδϕ̂
†
x′δϕ̂x′ : +h.c.

)
.

(3.18)

The quartic term representing the interaction of fluctuation modes reads as

Ĥ4 =
∫

k,k′

ℏk · ℏk′

2M : δϕ̂†
kδϕ̂

†
k′δϕ̂k′δϕ̂k : +1

2

∫
x,x′

UBB(x − x′) : δϕ̂†
xδϕ̂

†
x′δϕ̂x′δϕ̂x : . (3.19)

3.2.4 Effective Model and variational principle
The first step to obtain the effective model is to harness the large seperation of energy
scales between the scattering states and the bound state of the mean-field Hamiltonian at
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strong couplings. This large separation of energy and length scales enables to treat the
bound state separately from the rest of the modes. Formally, this separation is achieved
by splitting the bosonic annihilation operator into two parts, ϕ̂x = ϕ̂(B)

x + ϕ̂(sc)
x . Here,

ϕ̂(B)
x =

(
uB,xb̂+vB,xb̂

†
)
, uB,x and vB,x are the real space form of Bogoliubov factors associated

to the bound Bogoliubov mode, b̂ is its annihilation operator, and ϕ̂(sc)
x = ϕ̂x − ϕ̂(B)

x only
consists of scattering Bogoliubov modes. We deploy this mode separation to recast the
Hamiltonian ĤLLP to a form that is more appropriate for our variational treatment later
on. With this mode separation, the Hamiltonian ĤLLP of Eq. 3.8 takes the following form,

ĤLLP =
∑
n,m

n+m≤4

b̂†nb̂m Ĥn,m[ϕ̂(sc)†
x , ϕ̂(sc)

x ] , (3.20)

where Ĥn,m[ϕ̂(sc)†
x , ϕ̂(sc)

x ] terms only act on the scattering Bogoliubov modes, and n ,m de-
note powers of the bound Bogoliubov mode operators. Note that to obtain the form in
Eq. 3.20, the mean-field decoupling of ĤLLP has to be performed over the repulsive po-
laron saddle point, with the corresponding condensate field Φrep and covariance matrix
Γrep. This is again because the bound Bogoliubov mode is a well-defined unstable mode of
the repulsive polaron saddle point.

We now introduce the structure of variational states to model the metastable many-
body bound states. First, we note that an arbitrary eigenstate of ĤLLP Eq. 3.20 with energy
E can be decomposed into |ψE⟩ = ∑

n an,E |n⟩B ⊗ |ψn,E⟩sc, where an,E for n = 0, 1, 2, · · ·
are coefficients, |n⟩B = b̂†n/

√
n! |GS⟩ is the Fock state of the bound Bogoliubov mode, and

|ψn,E⟩sc is a corresponding many-body state of the scattering Bogoliubov modes.
Using the separation of time scales over which the bound and scattering Bogoliubov

modes evolve, we require the variational states
∣∣∣ψ(var)

〉
approximating |ψE⟩ to be separable

in the Hilbert space of the bound and scattering Bogoliubov modes as∣∣∣ψ(var)
〉

=
∣∣∣ψ(B)

〉
B

⊗
∣∣∣ψ(sc)

〉
sc
, (3.21)

where the additional subscripts “B" and “sc" refer to the Hilbert spaces of the bound and
scattering Bogoliubov modes, respectively, and we drop them hereafter. This approxi-
mation is in the spirit of the Born-Oppenheimer approximation [25] used frequently in
quantum chemistry to determine the electronic structure of a molecule, by using the sep-
aration of energy scales between the fast and slow degrees of freedom. One then assumes
that fast degrees of freedom adiabatically follow the dynamics of the slow degrees of free-
dom. In the present context, the bound and scattering Bogoliubov modes constitute the
fast and slow degrees of freedom, respectively.

To make a more direct connection to the Born-Oppenheimer approximation in the
context of quantum chemistry, we compare the impurity-boson system in the present setting
to atoms and simple molecules. In such chemical systems, the energy scales for nuclear
excitations are orders of magnitude higher than the electronic ones. Thus, one can assume
a specific stable internal configuration of the nuclei and focus on the electronic degrees
of freedom relevant to chemical reactions. Analogously, in the present context, when the
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energy scale of the impurity-boson dimer formation is far larger than the energy scale for
dressing by long wavelength BEC excitations, one can treat the dynamics of the bound
Bogoliubov modes separately from the scattering modes. In addition to this intuitive
motivation, we further justify the separable structure of the variational ansatz of Eq. 3.21
by giving a rigorous derivation of it in Sec. 3.2.5 as the form of the exact eigenstates to
leading order in a carefully defined perturbative description of the problem.

Following the same reasoning, we identify
∣∣∣ψ(B)

〉
as the eigenstate of the effective Hamil-

tonian

Ĥeff,B =
〈
ψ(sc)

∣∣∣ ĤLLP

∣∣∣ψ(sc)
〉

=
∑
n,m

n+m≤4

〈
ψ(sc)

∣∣∣ Ĥn,m[ϕ̂(sc)†
x , ϕ̂(sc)

x ]
∣∣∣ψ(sc)

〉
b̂†nb̂m , (3.22)

while the effective Hamiltonian for scattering Bogoliubov modes reads

Ĥeff,sc =
〈
ψ(B)

∣∣∣ ĤLLP

∣∣∣ψ(B)
〉

=
∑
n,m

n+m≤4

〈
ψ(B)

∣∣∣ b̂†nb̂m
∣∣∣ψ(B)

〉
Ĥn,m[ϕ̂(sc)†

x , ϕ̂(sc)
x ] . (3.23)

To determine the variational structure of
∣∣∣ψ(B)

〉
and

∣∣∣ψ(sc)
〉
, we take

∣∣∣ψ(B)
〉

to be an unre-
stricted superposition of Fock states |n⟩B as

∣∣∣ψ(B)
〉

= ∑
n ψn |n⟩B, while we take

∣∣∣ψ(sc)
〉

to
be a coherent state

|αx⟩ = exp
(∫

x
αx δϕ̂

†
x − h.c.

)
|Φrep⟩ , (3.24)

where αx is the real space profile of the coherent cloud of bosons occupying the scattering
Bogoliubov modes. We then obtain the complete form of the variational state as

∣∣∣ψ(var)[ψn, αx]
〉

=
(∑

n

ψn |n⟩B

)
⊗ |αx⟩ . (3.25)

The Hamiltonian ĤLLP displayed as in Eq. 3.20, together with the variational states
presented in Eq. 3.25, constitute the basis of our variational principle. The variational
parameters ψn, αx and α∗

x are then determined by optimizing the energy functional

H[ψ∗
n, ψn, α

∗
x, αx] =

〈
ψ(var)[ψn, αx]

∣∣∣ ĤLLP

∣∣∣ψ(var)[ψn, αx]
〉
, (3.26)

with respect to ψn and αx subject to the conditions
〈
ψ(var)[ψn, αx]

∣∣∣ψ(var)[ψn, αx]
〉

= 1 ,∫
x

(
u∗

B,xαx − vB,xα
∗
x

)
= 0 .

(3.27)

The first condition in Eqs. 3.27 is the normalization of the variational wave function,
while the second condition results from the requirement that |αx⟩ consists of the scattering
Bogoliubov modes only, thus b̂ |αx⟩ = 0. Note that the parameters uB,x, vB,x are determined
by the saddle-point solution of the repulsive polaron.
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Some comments on the variational scheme presented above are in order. First, note
that

∣∣∣ψ(B)
〉

is a many-body state composed of a superposition of Fock states of the bound
Bogoliubov mode, hence the name “many-body bound state". The Hamiltonian Ĥeff,B
governing the dynamics of the bound Bogoliubov mode contains all the interaction terms
including the interaction of the bound Bogoliubov mode with itself, as well as its interaction
with the condensate. This Hamiltonian is easy to treat since it is the Hamiltonian of a single
mode. Thus, one can use exact diagonalization to find its eigenstates and eigenenergies.
In this sense, one can take into account the quantum correlations of the bound Bogoliubov
excitations encoded in the obtained eigenstates exactly, without restricting the number of
bound Bogoliubov excitations. Furthermore, the excitation number of scattering modes
is also not restricted in the ansatz, since there is no restriction built into the ansatz to
limit the coherent state amplitude of the scattering modes. Furethermore, in Sec. 3.2.5 we
rigorously justify the assumption of the separability of the eigenstates between the bound
and the scattering Bogoliubov modes.

To explain the intuitive meaning of this second condition, we again resort to the simple
model presented in the introduction, and note that all states with n-times occupation of
the bound state where n∗ ≤ n < 2n∗ have energy less than the repulsive polaron. If the
energy difference of the ⌊2n∗⌋ state (with ⌊n⌋ the integer part of n) to the repulsive polaron
is comparable to the typical energy of phonon excitations (which is of the order of the BEC
chemical potential µ), then a boson added to the bound state to construct the ⌊2n∗⌋ state
from the ⌊2n∗⌋ − 1 state would also have a comparable occupation of the scattering states.
Requiring that |E⌊2n∗⌋| be much larger than µ, leads to µ/|εB − U/2| ≪ 1. Applying the
same argument to the effective model introduced here leads to the condition

µ ≪
∣∣∣H22⌊1 + εB/H22⌋

(
εB/H22 − ⌊εB/H22⌋

)∣∣∣ , (3.28)

with H22 = 1/2
∫

x,x′ UBB(x − x′) |uB,x|2|uB,x′|2 .
Third, regarding the assumption of coherent state occupation of scattering Bogoliubov

modes, note that the bosons occupying the bound state are localized around the impurity.
Thus they screen the impurity potential for the rest of the condensed bosons. This screen-
ing results in a modification of the condensate field that leads to the excitation of scattering
Bogoliubov modes of the unperturbed condensate. This condensate distortion effect is cap-
tured by the coherent field αx. In principle, an exact many-body wavefunction for the Bose
polaron includes higher-order correlations and entanglement among the excited scattering
Bogoliubov modes that goes beyond the uncorrelated coherent state. Nevertheless, for
heavy mobile impurities where the impurity mass is comparable but larger than the boson
mass and the heteronuclear Efimov effect is highly suppressed, the scattering Bogoliubov
modes are now weakly interacting and delocalized, so the entanglement among these modes
caused by their interactions - either mediated by the impurity or from higher-order pro-
cesses - plays a negligible role. Thus, modeling the excitation of scattering Bogoliubov
modes by a coherent state |αx⟩ is justified.

A final remark concerns the influence of three-body correlations on the spectrum of
the system. Our analysis ignores the more complicated three-body correlations underlying
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Efimov states [130, 42, 43, 11]. This is fully justified for heavy impurities where the size
of excited Efimov clusters is much larger than many-body bound states considered here.
For lighter impurities, the few-body bound states we describe are expected to decay into
deeply bound Efimov states but we leave a detailed analysis of their influence to future
research.

In the following, we apply our theory to a relevant experimental cold atoms setting
and discuss some of the main features of the resulting many-body bound states on the
repulsive side of the Feshbach resonance. As a key result, we reveal non-Gaussian quantum
mechanical correlations in the bound state occupation statistics of these states.

3.2.5 Justification of the effective model and the variational prin-
ciple

Here, we give a rigorous justification of the variational principle described in Sec. 3.2.4. To
this end, we present a formulation of the initial impurity-boson problem where many-body
bound states emerge as an effective impurity with multiple internal states coupled to a bath
of weakly interacting, renormalized phonons. The coupling causes transitions between
different impurity internal states (i.e., many-body bound states) via phonon scattering.
Due to the large separation of energy scales between the different impurity internal states
compared to the strength of transitions, one can treat the impurity-bath coupling within
perturbation theory. Crucially, the relevant eigenstates of the unperturbed Hamiltonian
corresponding to different metastable branches have the same product state form of the
variational state

∣∣∣ψ(var)
〉

in Eq. 3.21. Since the variational manifold includes the leading
order term of the true eigenstates, optimizing the variational parameters enables an even
better approximation of the eigenstates.

As stated in the main text, a suitable Gaussian transformation can eliminate the linear
term in Eq. 3.9 by displacing the field operator to the repulsive polaron saddle point while
at the same time diagonalizing HMF to give the fluctuation modes on top of the repulsive
polaron. As in the main text, the fluctuation field operator can be written as

δϕ̂x = δϕ̂(B)
x + δϕ̂(sc)

x , (3.29)

where δϕ̂(B)
x = uB,x δb̂ + vB,x δb̂

† with δb̂ the fluctuation operator of the unstable mode b̂.
Inserting the mode-separated form of the fluctuation operator Eq. 3.29 in Eq. 3.9 results
in the following form of ĤLLP,

ĤLLP = E[Φrep,Γrep] + ĤB[δϕ̂(B)†
x , δϕ̂(B)

x ] + Ĥsc[δϕ̂(sc)†
x , δϕ̂(sc)

x ]
+ Ĥint[δϕ̂(B)†

x , δϕ̂(B)
x ; δϕ̂(sc)†

x , δϕ̂(sc)
x ] .

(3.30)

In Eq. 3.30,

ĤB[δϕ̂(B)†
x , δϕ̂(B)

x ] = −εB δb̂
†δb̂+ Ĥ3[δϕ̂(B)†

x , δϕ̂(B)
x ] + Ĥ4[δϕ̂(B)†

x , δϕ̂(B)
x ] , (3.31)
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where Ĥ3[δϕ̂(B)†
x , δϕ̂(B)

x ] and Ĥ4[δϕ̂(B)†
x , δϕ̂(B)

x ] are given in Eqs. 3.18 and 3.19 with δϕ̂(†)
x

substituted by δϕ̂(B)(†)
x . Similarly, the Hamiltonian Ĥsc only involves δϕ̂(sc)(†)

x . Finally, Ĥint
describes the interaction between the bound and scattering modes. By means of direct
manipulation, the interaction Hamiltonian can be absorbed into Ĥsc to yield

Ĥ ′
sc = Ĥsc + Ĥint =

(∫
x
δϕ̂(sc)†

x ζ̂ ′
x + h.c.

)
+ 1

2

∫
x,x′

: δΨ̂(sc)†
x Ĥ′

2,xx′ δΨ̂(sc)
x′ :

+
( ∫

x,x′
: δϕ̂(sc)†

x δϕ̂
(sc)†
x′ Ĥ′

3,xx′ δϕ̂
(sc)
x′ : +h.c.

)
+ Ĥ4[δϕ̂(sc)†

x , δϕ̂(sc)
x ] .

(3.32)

In Eq. 3.32, Ĥ′
2,xx′ , Ĥ′

3,xx′ and ζ̂ ′
x are operators in terms of δϕ̂(B)(†)

x as follows,

Ĥ′
2,xx′ =

(
Ê ′

xx′ ∆̂′
xx′

∆̂′∗
xx′ Ê ′∗

xx′

)
, (3.33)

Ê ′
xx′ = Exx′ + E imp

xx′ + Ūeff,xx′ φx δϕ̂
(B)†
x′ + Ūeff,xx′ φ∗

x′ δϕ̂(B)
x + : δϕ̂(B)†

x′ Ueff,xx′ δϕ̂(B)
x :

+ δ(d)(x − x′)
[ ∫

x′′
δϕ̂

(B)†
x′′ Ueff,x′′x′φx′′ +

∫
x′′
φ∗

x′′ Ueff,x′′x′ δϕ̂
(B)
x′′

+
∫

x′′
: δϕ̂(B)†

x′′ Ueff,x′′x′δϕ̂
(B)
x′′ :

]
,

(3.34)

∆̂′
xx′ = ∆xx′ + ∆imp

xx′ + 2Ueff,xx′ φx δϕ̂
(B)
x′ + Ueff,xx′ : δϕ̂(B)

x′ δϕ̂(B)
x : , (3.35)

Ĥ′
3,xx′ = Ueff,xx′φx + Ueff,xx′ δϕ̂(B)

x , (3.36)

ζ̂ ′
x =

∫
x′

(
Exx′ + E imp

xx′

)
δϕ̂

(B)
x′ + 1

2

∫
x′

(
∆xx′ + ∆imp

xx′

)
δϕ̂

(B)†
x′ + 1

2

∫
x′

(
∆x′x + ∆imp

x′x

)
δϕ̂

(B)†
x′

+
∫

x′
: δϕ̂(B)†

x′

(
Ueff,xx′φx′

)
δϕ̂(B)

x : +
∫

x′
: δϕ̂(B)†

x′

(
Ueff,xx′φx

)
δϕ̂

(B)
x′ :

+
∫

x′
φ∗

x′ Ueff,xx′ : δϕ̂(B)
x δϕ̂

(B)
x′ : +

∫
x′

: δϕ̂(B)†
x′ Ueff,xx′ δϕ̂

(B)
x′ δϕ̂(B)

x : .
(3.37)

In Eq. 3.34, Ūeff,xx′ is different from Ueff,B and is given by Ūeff,xx′ = UBB(x − x′) −
1/M(−iℏ∇x) · (−iℏ∇x′), and in the third line integration by parts is carried out. The
form of Ĥ ′

sc in Eq. 3.32 is the same as Eq. 3.9 up to a constant, suggesting that the Hamil-
tonian parameters of the scattering modes only get renormalized by the fluctuations of the
unstable mode. The physical meaning of absorbing Ĥint into Ĥsc to obtain Ĥ ′

sc becomes
more transparent if Ĥ ′

sc is partially expanded in terms of the eigenstate |ψn⟩B of ĤB with
energy En (ĤB |ψn⟩B =En |ψn⟩B) as Ĥ ′

sc =∑n,m |ψn⟩⟨ψm|B ⊗ ⟨ψn| Ĥ ′
sc |ψm⟩B . The operators

⟨ψn| Ĥ ′
sc |ψm⟩B are the same as in Eq. 3.32, but with ζ̂ ′

x, Ĥ′
2,xx′ and Ĥ′

3,xx′ substituted by
their matrix elements ⟨ζ̂ ′

x⟩nm, ⟨Ĥ′
2,xx′⟩nm and ⟨Ĥ′

3,xx′⟩nm (⟨·⟩nm denotes the matrix element
⟨ψn| · |ψm⟩B). The diagonal part of Ĥ ′

sc consists of effective renormalized Hamiltonians
⟨ψn| Ĥ ′

sc |ψn⟩B for stable modes when the impurity forms a many-body bound state |ψn⟩.
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The off-diagonal part of Ĥ ′
sc describes interaction processes between the many-body bound

states and phonons, where a phonon scatters off the many-body bound state |ψm⟩ and
triggers the transition from |ψm⟩ to |ψn⟩. In this sense, off-diagonal terms can be treated
as a perturbation term

Ĥpert =
∑

n̸=m

|ψn⟩⟨ψm|B ⊗ ⟨ψn| Ĥ ′
sc |ψm⟩B , (3.38)

added to the unperturbed Hamiltonian Ĥ0, defined by

Ĥ0 = ĤB +
∑

n

|ψn⟩⟨ψn|B ⊗ ⟨ψn| Ĥ ′
sc |ψn⟩B . (3.39)

Thus, the strong-coupling impurity-boson problem has reduced to finding the eigen-
states of Ĥ0 and including Ĥpert in perturbation theory. We still have to establish that
Ĥpert can indeed be treated perturbatively, but first, it is instructive to gain a better un-
derstanding of the low energy states of Ĥ0. The structure of ⟨ψn| Ĥ ′

sc |ψn⟩B is similar to
Eq. 3.9, which is form invariant under Gaussian transformations. As a result, one can
perform a Gaussian transformation Û ′

n = D̂[α(sc)
n,x ] Ŝn, implementing n-dependent displace-

ments α(sc)
n,x of δϕ̂(sc)

x to eliminate the linear term proportional to ⟨ζ̂ ′
x⟩nn and diagonalize

⟨Ĥ′
2,xx′⟩nn by Ŝn. The resulting Bogoliubov modes with field operators denoted by β̂n,k

have a vacuum state |GSn⟩ = D̂[α(sc)
n,x ] Ŝn |Φrep⟩ and single-particle excitations β̂†

n,k |GSn⟩.
Thus, each many-body bound state has an eigenstate of Ĥ0 associated to it, of the form∣∣∣Ψn,(0)

〉
= |ψn⟩ ⊗ D̂[α(sc)

n,x ] Ŝn |Φrep⟩ , (3.40)

which is the lowest energy state associated with the many-body bound state |ψn⟩. Ac-
cordingly, the single particle excitations on top of

∣∣∣Ψn,(0)
〉

are of the form β̂†
n,k

∣∣∣Ψn,(0)
〉
.

Intuitively,
∣∣∣Ψn,(0)

〉
describes a “many-body bound state" polaron - the polaronic dressing

of a many-body bound state instead of the bare impurity. As such, the many-body bound
states emerge as internal states |ψn⟩ of an effective impurity - the bare impurity with sev-
eral bosons bound to it - whose dynamics and dressing by phonons is described by Ĥ0. In
this regard, Ĥpert describes transitions between internal states of this effective impurity via
phonon scattering.
The notable character of the state

∣∣∣Ψn,(0)
〉

is its product state form, which closely connects
to the same form of the variational state

∣∣∣ψ(var)
〉

in Eq. 3.21. The difference of
∣∣∣Ψn,(0)

〉
and∣∣∣ψ(var)

〉
is in the additional Gaussian transformation Ŝn, which accounts for the renormal-

ization of the phonons by many-body bound state formation. This renormalization occurs
due to the underlying interactions among bosons bound to the impurity and bosons in the
BEC. Thus, the effect of Ŝn is to account for terms in ⟨Ĥ′

2,xx′⟩nn which contain expectation
values over |ψn⟩ of operators involving δϕ̂(B)(†)

x . Note that the n−independent part of the
quadratic Hamiltonian is already diagonal by the initial Gaussian transformation and has
no instability since all the involved scattering modes have positive energies. Furthermore,
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investigating the structure of |ψn⟩ obtained from numerical diagonalization of ĤB reveals
that the addition of n-dependent terms has a minute effect and, importantly, does not in-
duce any instability. The absence of instability is confirmed by direct numerical evaluation
which shows that expectation values of single field operators as well as ⟨: δϕ̂(B)

x δϕ̂
(B)
x′ :⟩nn

over the relevant many-body bound states are vanishingly small. This demonstrates that
the additional squeezing transformation Sn to redefine phonon modes in the presence of
the many-body bound state |ψn⟩ has a minimal effect; thus we can set Ŝn ≃ I. In this way,
we recover exactly the same form of

∣∣∣ψ(var)
〉

in Eq. 3.21.
In the following, we elaborate more on the perturbative treatment of Ĥpert mentioned

above. As discussed in the main text, Fock states are excellent approximations to the many-
body bound states |ψn⟩. Thus, combinations of δϕ̂(B)(†)

x which change particle number have
vanishingly small expectation values over |ψn⟩, but the same is not true for transition
matrix elements between two different many-body bound states. To estimate the effect of
phonon-induced transitions, we consider the first-order perturbative correction to

∣∣∣Ψn,(0)
〉
.

The first order correction to
∣∣∣Ψn,(0)

〉
within perturbation theory reads

∣∣∣Ψn,(1)
〉

∝
∣∣∣Ψn,(0)

〉
+
∑

m̸=n

⟨GSm| ⟨Ĥ ′
sc⟩mn |GSn⟩

En,(0) − Em,(0)
|GSm⟩

+
∑

m̸=n

∫
{ki}m

⟨{ki}m| ⟨Ĥ ′
sc⟩mn |GSn⟩

En,(0) − Em,(0) − ε{ki}m

|{ki}m⟩ ,

(3.41)

where En,(0) is the energy of En,(0), and |{ki}m⟩ denotes the state containing elementary
excitations of momenta k1,k2, · · · on top of |GSm⟩. In the denominator of the third
term in Eq. 3.41, En,(0) − Em,(0) ∼ εB is by far the largest energy scale. Thus the only
relevant decay processes are those where

∣∣∣Ψn,(0)
〉

decays to a lower energy state
∣∣∣Ψm,(0)

〉
and emits high energy phonons with total energy ε{ki}m ∼ εB . Note that although ⟨Ĥ ′

sc⟩mn

contains three- and four-phonon terms, such phonon interaction terms are weak compared
to phonon kinetic term which dominates. This can be seen from the structure of ⟨Ĥ ′

sc⟩nn

which resembles the Hamiltonian of a weakly interacting Bose gas with a linear coupling
⟨ζ̂ ′

x⟩nn which leads to a coherent state of excitations α(sc)
n,x with total excitation number

much less than unity (see the main text). Importantly, ⟨Ĥ ′
sc⟩nn does not contain any

instability to compete with the interaction terms. Thus, the true eigenstates of Ĥ ′
sc can

be adiabatically connected to the non-interacting ones |{ki}m⟩, and especially for high
energies, the interaction terms become irrelevant.

We now discuss the structure of the last term in Eq. 3.41. A full perturbative treatment
of ⟨Ĥ ′

sc⟩mn, while systematically possible, is a formidable task and is excessively cumber-
some even at the level of the first-order perturbative term in Eq. 3.41. Nevertheless, we
estimate the magnitude of relevant terms in the expansion of |{ki}m⟩. Specifically, we
focus on single-excitation states |k⟩. The relevant |k⟩ states have high energies εk ∼ εB,
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thus the approximation Ŝn ≃ I is specifically more accurate here. After a rather lengthy
algebra, it turns out that the dominant contribution of |k⟩ to

∣∣∣Ψn,(1)
〉

is proportional to

χk =
∫

x,x′
eik·x

(
⟨ζ̂ ′′

x⟩mn + ⟨Ê ′
xx′⟩mn α

(sc)
n,x′ + α

(sc)∗
m,x′ Re

[
⟨∆̂′

xx′⟩mn

])
, (3.42)

where ζ̂ ′′
x equals ζ̂ ′

x without the first three terms in Eq. 3.37. The subleading contribu-
tions to |k⟩ contain higher powers of α(sc)

n,x and α(sc)∗
m,x , which are significantly smaller since∫

x |α(sc)
(n,m),x|2 ≪ 1 in accordance with the results presented in the main text. Note that

the large value of |k|∼
√

2mredεB/ℏ2 also suppresses the magnitude of χk. Intuitively, the
above formal arguments mean that the decay of a dressed many-body bound state

∣∣∣Ψn,(0)
〉

by emitting a high-energy phonon is strongly suppressed. One can carry out the same type
of argumentation for the second term in Eq. 3.41, where the leading term is found to be
proportional to

χm =
∫

x

1
εB

(
α(sc)∗

m,x ⟨ζ̂ ′′

x⟩mn + α(sc)
n,x ⟨ζ̂ ′′†

x ⟩mn

)〈
α(sc)

m,x

∣∣∣α(sc)
n,x

〉
. (3.43)

Given that both estimates of the size of the first-order perturbative corrections quan-
tified by the amplitudes χm and χk are substantially smaller than unity, we conclude that
the variational ansatz based on the product form of

∣∣∣Ψn,(0)
〉

can provide qualitatively reli-
able information about general characteristics of the many-body bound states. Note that
the structure of the variational ansatz in Eq. 3.21 provides more freedom to optimize the
parameters and find better approximations to the true many-body bound states than the
zeroth order state

∣∣∣Ψn,(0)
〉
, as the variational manifold includes

∣∣∣Ψn,(0)
〉
. As such, the op-

timization procedure partially accounts for higher-order perturbative corrections.
Ultimately, we emphasize that the proportionality constants mentioned above scale accord-
ing to the occupation number of many-body bound states. As such, the above arguments
are valid for cases where a few bosons are bound to the impurity, but in general, the va-
lidity of arguments has to be checked for each specific case under consideration. Problems
that require caution include Rydberg and ionic impurities in a BEC, where hundreds of
bosons are bound to the impurity. In such cases, the transition matrix elements of Ĥpert
can be large, which might require including perturbative corrections to high orders.

3.3 Results
Here we consider a Bose polaron setting comprised of impurity 40K atoms immersed in a
BEC of 87Rb atoms with condensate density n0 = 1.8 × 1014 cm−3 and inter-boson scat-
tering length aB = 100 a0 with a0 = 0.529 Å the Bohr radius [99]. The natural length
and energy units are then the inverse Fermi momentum kn = (6π2n0)1/3 and energy
En = ℏ2k2

n/2mB, respectively. The impurity-boson potential is modeled by a squarewell
of the form VIB(r)=V0 Θ(r0 − r) where r= |r| and r0 is the potential range tuned properly
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to retrieve the impurity-boson effective range. The boson-boson scattering potential can
be modeled by a zero-range contact interaction UBB(x)=U0 δ(x) compatible with the Born
approximation. Note that the major effect of any finite boson-boson interaction range
would appear in the interaction of bound Bogoliubov modes, while the bound-scattering
and scattering-scattering mode interactions are still well modeled by contact boson-boson
interactions. The latter is due to the fact that only low energy scattering Bogoliubov modes
with momenta of the order of 1/ξred are involved, with ξ2

red = ℏ2/(2mredn0U0) the modified
BEC healing length, which is much larger than the boson-boson interaction range. Thus,
we expect the effect of non-zero boson-boson interaction to be quantitative and only result
in marginal changes in the interaction strength of bound Bogoliubov modes.

Having described the system, we now use the variational principle explained before to
obtain the relevant stable-state solutions across the impurity-boson scattering resonance.
To this end, we apply the construction presented earlier step-by-step. Furthermore, at each
step we carry out suitable approximations that are applicable to the problem considered
here and illustrate the essential physics in a more transparent manner.

The first step is to find the repulsive polaron saddle-point solution by the procedure
outlined in Sec. 3.2.2. To find Φrep and Srep, we begin by an initial guess Srep,0 = I, and solve
ζ[Φrep,0, I] = 0. The resulting solution Φrep,0 is the repulsive polaron without Bogoliubov
approximation. Since for small positive impurity-boson scattering lengths a such that
a/ξ ≪ 1, the condensate distortion of the repulsive polaron relative to the unperturbed
condensate is O(a/ξ) [142, 221], HMF[Φrep,0, I] equals HMF[√n0, I] up to perturbative terms
coming from the condensate distortion. Thus, the Bogoliubov transformation Srep,1 that
diagonalizes HMF[Φrep,0, I] is identical to the standard Bogoliubov transformation SBog of
an unperturbed BEC, up to corrections of O

(
(a/ξ)2

)
.

The next step correction to the repulsive polaron amounts to finding Φrep,1 such that
ζ[Φrep,1,ΓBog] = 0. The differential equation ζ[Φ,ΓBog] = 0 differs from ζ[Φ, I] = 0 only in
the terms containing Γ11

Bog and Γ12
Bog, both of the order O(λ3/2) ∼ 5×10−3, with λ = n

1/3
0 aB

the BEC gas parameter [186, 163]. Due to the diluteness of cold atomic gases, λ ≪ 1, and
including bosonic correlations through Γ within Bogoliubov approximation and beyond
does not affect the repulsive polaron solution and the quantum fluctuations atop. Thus,
in connection to the special setting we consider here, hereafter we neglect corrections due
to quantum fluctuations of the repulsive polaron and set Srep = I.

Note that in general settings, especially pertaining to atomic BECs in lower dimension-
ality or exciton-polariton condensates in semiconductor heterostructures, it is essential to
include the effects of quantum fluctuations through Γ, and our theory is capable to ac-
count for such effects in principle. In these lower dimensional settings, the role of quantum
fluctuations is fundamentally different, and one must take great care in applying standard
treatments of weakly interacting Bose gases in higher dimensions [197]. Even in three di-
mensions, the effect of quantum fluctuations is essential for long-range physics. However,
for the setting we consider in this chapter, the excitations come either in the form of a
bound Bogoliubov mode, which is highly localized around the impurity, and as such the
effect of Bogoliubov transformation on it becomes insignificant (see Appendix A), or in
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the form of scattering modes which, as we show later, have a vanishingly small excitation
number such that their state is almost a vacuum state. In both cases, Bogoliubov transfor-
mation does not add much information to the conclusions about the physics of the problem.
However, Inclusion of quantum fluctuations through Γ terms is essential when consider-
ing light impurities and studying impurity-induced instabilities on attractive polaron, as
studied for instance in Refs. [42, 43].

The next inputs to our variational theory are the bound state Bogoliubov factors uB,x
and vB,x, which form the bound state solution of HMF[Φ, 0]. It can be shown that the
contribution of the off-diagonal terms in HMF[Φ, 0] to the eigenstates and eigenenergies
are of O

(
µ/εB

)
∼ 9 × 10−3, and can be neglected to the leading order. This approxi-

mation amounts to setting vB,x = 0. Furthermore, the effective potential U0|φrep,x|2 − µ
caused by the repulsive polaron’s condensate distortion around the impurity is much weaker
than VIB(x), thus uB,x can be approximated by ηx that is the bound state solution of
−ℏ2∇2/2mred + VIB(x) - see Appendix A for a detailed derivation of these perturbative
approximations. Note that the leading-order approximations made above can be extended
to arbitrary higher orders in a systematic manner, and we expect that the quantitative
changes will not alter any of the key physics of the many-body bound states.

By carrying out the previous steps, we are in a position to obtain the metastable states
from finding the optimal solutions of Eqs. 3.26 and 3.27 by solving the variational equations
(see Appendix B for the explicit form)

δ

δα∗
x
H[ψ∗

n, ψn, α
∗
x, αx] − ληx = 0 ,

δ

δψ∗
n

H[ψ∗
n, ψn, α

∗
x, αx] = E ψn .

(3.44)

In Eq. 3.44, λ is a Lagrange multiplier determined to fulfill the second of Eqs. 3.27, and
E is the energy of the metastable state that also acts as a Lagrange multiplier to fulfill
the normalization condition Eq. 3.27. Solving Eqs. 3.44 gives access to the energies and
variational states of the many-body bound states across the Feshbach resonance, which are
discussed in the next sections.

3.3.1 Energy of the many-body bound states
In the regime µ/εB ≪ 1, we already noted that the condensate distortion αx remains small
in magnitude compared to the repulsive polaron field φrep, and as we will discuss at the
end of this subsection, the energies and wave functions of the many-body bound states
obtained by solving Eqs. 3.44 are well approximated by setting αx =0, meaning a vacuum
of scattering Bogoliubov modes on top of the repulsive polaron. Fig. 3.2(a) depicts the
energies of the metastable states obtained by setting αx =0. In the attractive side (region
(1) in Fig. 3.2(a)), the only stable-state solution corresponds to the attractive polaron Φatt
(green dashed line), studied in Refs. [92, 142, 177]. All the fluctuation modes that are
eigenstates of HMF[Φatt, I] have positive energy with a parabolic energy landscape as in
panel (1) in Fig. 3.2(b).
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On the repulsive side, there exists a range of scattering lengths where impurity-boson
interactions lead to the instability of the phase quadrature of a Bogoliubov mode, leading
to dynamical instability. The dynamical instability is a precursor to the formation of
repulsive polaron, and occurs for a range of scattering lengths which lies inside the region
(2) in Fig. 3.2(a). The energy landscape of the dynamically unstable mode is depicted in
panel (2) of Fig. 3.2(b), where the negative- and positive-curvature directions correspond
to the phase and amplitude quadratures, respectively.

In region (3) of Fig. 3.2(a), a well-defined unstable fluctuation mode emerges, that is the
bound Bogoliubov mode. The possibility of multiple occupation of the bound Bogoliubov
mode results in the emergence of the two metstable states ms1 and ms2, depicted by solid
red and blue lines, respectively, in Fig. 3.2(a). The corresponding energy landscape in
the form of a mexican hat, alongside the relative energies of various metastable states are
depicted in panel (3) of Fig. 3.2(b). The origin of the energy landscape corresponds to
the vaccum of the fluctuation mode, i.e. the repulsive polaron. The metastable states
ms1 and ms2 are designated on the energy landscape schematically by circles whose radii
and relative positions indicate the mean bound state occupation number and the relative
energy of the states, respectively.

The energy landscape minimum corresponds roughly to the bound state component
of the attractive polaron coherent state field, obtained by calculating the overlap αatt,B =∫

x η
∗
xφatt,x. In fact, we interpret the lowest-lying many-body bound state as nothing but the

remnant of the attractive polaron branch on the repulsive side of the Feshbach resonance.
The two variational states we employ here, i.e. the attrative polaron and the ms1 state
have similar but not identical structures, which explains their slightly different variational
energies. To further support our claim, in Fig. 3.3 we compare density-profile of bosons
around the impurity for the different variational states. The qualitative similarity of the
spatial structures of the lowest-lying many-body bound state and the attractive polaron
further suggests that the two states describe the same ground state.

Beyond a certain critical scattering length, new stable solutions emerge from the re-
pulsive polaron, denoted by ms3 to ms6 in Fig. 3.2. These states correspond to multiple
occupation of the bound state. As the interaction strength rises, the bound state becomes
more localized, resulting in an increase in the effective inter-boson repulsive interaction. At
the same time, the system gains energy by binding more bosons. While both these effects
compete, the increase in bound state energy dominates, lowering the energy of the states
with higher bound state occupation. In terms of the saddle point structure, the increase
in bound state energy means that the saddle point gets deeper, and the mean occupa-
tion number of the bound state increases, as depicted in panel (4) of Fig 3.2(b). Another
implication of the competition between the increase in binding energy and the repulsive
interaction is the emergence of level crossings among the metastable states in region (4)
of Fig. 3.2(a). The presence of such level crossings can be explained again by the simple
model laid out in the introduction. For a fixed bound state energy εB,0, two metastable
states with n1 and n2 occupation of the bound state with n∗(εB,0) < n1 < n2 < 2n∗(εB,0)
have energies En1 < En2 . For larger 1/kna, the increase in binding energy has the dom-
inant effect on the energy of the many-body bound states, and the energy of the state
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Figure 3.3: Density profile of the repulsive polaron (solid purple line), attractive polaron
(green dashed line), and ms1 state (solid red line), as a function of the radial distance
from the impurity, for (a) 1/kna = 2.0 and (b) 1/kna = 3.61 . The density profiles of the
attractive polaron and the ms1 state are qualitatively similar.

with higher bound state occupation decreases more rapidly, resulting in the level crossing
pattern.

Fig. 3.4 depicts the behavior of energy and bound state occupation for the first few
many-body bound states together with the attractive and repulsive polaron. The energy
of the ms1 state decreases monotonically, and its mean bound state occupation number
saturates to double occupation for the range of scattering lengths considered. The ms2
state approaches the bare dimer in energy and bound state occupation number. Across
the level crossings of the two lowest-lying states, ⟨NB⟩ shows a non-monotonic behavior,
and by increasing 1/kna saturates to single and double occupation for ms2 and ms1 states,
respectively. The ms3 state appears in the atom-dimer continuum at a critical scattering
length (marked by the vertical dotted line in Fig. 3.4 (b)) and maintains a constant ⟨NB⟩ ≃
3. In contrast, the mean bound state occupation number of the attractive polaron increases
monotonically with a value that remains larger than ms1 and ms2. At the level crossing
of ms1 and ms3, the two states demonstrate strong mixing, resulting in spikes of ⟨NB⟩ for
both states.
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Figure 3.4: Energy in units of the dimer binding energy (a) and mean bound state occu-
pation number (b) of the many-body bound states (red, blue and grey solid lines for ms1,
ms2 and ms3 respectively), attractive polaron (green dashed line), and repulsive polaron
(purple solid line). Initially, the ms2 state has higher mean bound state occupation number
and energy than the ms1 state, indicating the dominant effect of the inter-boson interaction
on the energy of the states. Beyond the first level crossing, the mean occupation number
of the ms1 state increases above the ms2 state due to the gain in energy from binding more
bosons. The ms3 state enters the dimer-boson continuum at the critical scattering length
indicated by vertical dotted line in panel (b) and maintains an almost constant NB ≃ 3.
For increasing 1/kna, the mean bound state occupation number of ms1 and ms2 states
approach integer values. At the level crossing between ms1 and ms3, the states strongly
mix, resulting in sharp spikes in ⟨NB⟩ in panel (b).

Before moving on to the next section, we comment on the approximation αx =0 intro-
duced earlier. In Fig. 3.5, we compare the energies of many-body bound states obtained
from solving the full set of Eqs. 3.44, to the energies obtained under the assumption αx =0.
We find that the effect of condensate distortion on the wave functions and energies of many-
body bound states are only marginal, and setting αx =0 is a reasonable approximation.

The main reason behind the markedly different behavior of the many-body bound states
compared to the attractive and repulsive polaron lies in the particular composition of each
many-body state

∣∣∣ψ(B)
〉

out of dimer Fock states {|n⟩B , n = 0, 1, 2, · · · }. Indeed, inspection
of ⟨NB⟩ in Fig. 3.4 suggests that

∣∣∣ψ(B)
〉

for each of the many-body bound states has to
be close to a Fock state |n⟩B for some n. To gain further insight into the structure of
the many-body bound states, in the next subsection, we investigate the dimer occupation
statistics of the many-body bound states.
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Figure 3.5: Energy of the many-body bound states including the effect of condensate
distortion obtained by fully solving Eqs. 3.44 (dotted lines), compared to the energies
obtained by setting αx = 0. Including condensate distortion effects results in marginal
changes in the energy (denoted by ∆Emsi

, i = 1, 2, 3 ), and wave function of many-body
bound states.

3.3.2 Dimer occupation statistics of the many-body bound states
As mentioned at the end of Sec. 3.2.2, pure mean-field approaches to model the state
of Bose polaron neglect the higher order terms Ĥ3 and Ĥ4, while the latter are crucial to
capture the physics of many-body bound states. One consequence of including these higher
order terms in the model is their non-perturbative effects reflected in the genuine quantum
mechanical correlations of the wave function in the dimer Fock space, which is represented
in our variational scheme by

∣∣∣ψ(B)
〉
. To quantify the quantum mechanical correlations

of
∣∣∣ψ(B)

〉
, we note that it formally belongs to the Fock state of a single bosonic mode b̂,

thus its characteristics can be quantified via different quantum mechanical quasiprobability
distributions used frequently in quantum optics to characterize the quantum states of light.

A quasiprobability distribution that is specially suitable for characterizing
∣∣∣ψ(B)

〉
is the

Husimi Q representation, that in our context can be defined by [183]

Q(α) = 1
π

〈
α
∣∣∣ψ(B)

〉 〈
ψ(B)

∣∣∣α〉 . (3.45)

In Eq. 3.45, |α⟩ is an arbitrary coherent state that is the eigenstate of b̂, i.e. b̂ |α⟩ = α |α⟩.
In Fig. 3.6, we depict the Q representation of the states in Fig. 3.4 for 1/kna = 2.74. The

repulsive and attractive polaron, both include coherent state components of the bosonic
mode b̂ with a coherent state amplitude α(sp) =

∫
x η

∗
x φ

(sp)
x with the superscript “sp" indi-

cating the respective saddle point. The Q representation of the saddle point state is thus
Q(sp)(α)=1/π exp

(
−|α−α(sp)|2

)
, which is a Gaussian distribution localized on αsp. In con-

trast, the many-body bound states have markedly different Q representations, reminiscent
of Fock states. The Q representation already indicates that the state

∣∣∣ψ(B)
〉

contains quan-
tum mechanical correlations with non-Gaussian characters, as opposed to coherent and
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Figure 3.6: (a) Illustration of the energy landscape and the metastable states at 1/kna =
2.74. As in Fig. 3.2 (b) panels (3) and (4), the radius, respectively, the vertical order of each
circle on the energy surface reflect the mean bound state occupation number, respectively,
the energy of the corresponding metastable state. Panels (b) and (c) show the quantitative
calculations of the Q representation of the repulsive and attractive polaron, respectively.
Panels (d) to (f) depict the Q representation of ms1 to ms3 states.

squeezed coherent states that are characterized by ellipsoidal Q distributions. We again
highlight that the non-Gaussianity of the Q distribution is a result of including higher
order terms Ĥ3 and Ĥ4 in the model, and treating the boson correlations in the dimer Fock
state sector exactly. Note that with the strong boson-boson repulsions considered here, a
truncated-basis variational ansatz can be accurate enough to predict essential features of
the polaron, however, it is best suited for the limit of low densities. Our theory, on the
other hand, has the capability to include a fluctuating number of particles in the polaron
cloud even in dense bosonic media, as long as the binding energy is much larger than the
BEC chemical potential.

Another useful quantity signifying the correlations of bosons occupying the bound state
is g(2)

B defined by

g
(2)
B =

〈
ψ(B)

∣∣∣ b̂†2b̂2
∣∣∣ψ(B)

〉
〈
ψ(B)

∣∣∣ b̂†b̂
∣∣∣ψ(B)

〉2 . (3.46)

Fig. 3.7 depicts g(2)
B for different many-body bound states. We again observe that due
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Figure 3.7: g
(2)
B of the many-body bound states. Clear deviations from the results of a

Gaussian state indicates the non-Gaussian nature of bosons spatial correlations occupying
the bound state.

to the effect of boson-boson repulsion, g(2)
B shows strong boson anti-bunching for all the

many-body bound states. Especially, the states beyond ms2 have g(2)
B ≃1−1/n with n ≥ 3,

a hallmark signature of Fock states in contrast to coherent states that have g(2)(0) = 1.

3.3.3 Spectral signatures of the many-body bound states
Here we consider the experimental observability of the many-body bound states we pre-
dicted above. An experimentally relevant quantity in polaron spectroscopy is the quasi-
particle residue, defined as

Z(E) =
∑

i

| ⟨GS0|i⟩ |2 δ(E − Ei) , (3.47)

where |i⟩ is an eigenstate of the interacting system with energy Ei, and |GS0⟩ is the non-
interacting ground state. In the case of Bose polarons, the non-interacting ground state
consists of an impurity and an unperturbed condensate with no mutual interactions. In
contrast, the interacting state is of the form Ôi |GS⟩, where Ôi creates the appropriate
excitations of the eigenstate i on top of the interacting ground state.

In Fig. 3.8 (a), the variation of Z across the Feshbach resonance is depicted for each
stable states, as well as the Z factor for attractive and repulsive polaron. We observe that
although the quasiparticle weights of ms1 and ms2 states are higher than the attractive
polaron, all the other many-body states have essentially vanishing quasiparticle residue.
This observation is compatible with the conclusion that beyond ms2, the many-body states
are well characterized by Fock states |n⟩B for n ≥ 3 with vanishing quasiparticle residue.
Furthermore, as the repulsive inter-boson interaction is decreased, the Z factor of attractive
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Figure 3.8: (a) Quasiparticle residue of different many-body bound states, compared to
the attractive and repulsive polaron. At strong couplings, the quasiparticle residue of
attractive polaron and all the many-body bound states are substantially smaller than the
repulsive polaron for strong couplings. (b) Molecular quasiparticle residue of the states
in (a). The states ms1 and ms2 have substantial molecular weight with non-monotonic
behavior as a function of 1/kna, in contrast to the prediction for the attractive polaron.
The sharp spikes in Zmol of ms1 and ms3 occurs at the corresponding level crossing.

polaron and all the many-body bound state excitations decrease due to an increasing
number of bound state excitations.

Furthermore, in connection with detecting molecular spectra in ultracold mixtures, a
molecular quasiparticle residue can be defined as

Zmol(E) =
∑

n

| ⟨GSmol|n⟩ |2 δ(E − En) , (3.48)

where |GSmol⟩ is a state comprised of an unperturbed condensate and a single impurity-
boson dimer. This quasiparticle residue is suggested in [168, 58] to detect molarons and
observe polaron-molecule transition in impurity-Fermi systems. Fig. 3.8(b) shows Zmol of
the many-body bound states. Interestingly, ms1 and ms2 states have substantial Zmol,
with the non-monotonous variation with 1/kna compatible with their bound state occu-
pation number. For the attractive polaron, the magnitude of Zmol is of the same order of
magnitude as ms1, although quantitative differences point to the remaining differences of
these variational states. Thus, Zmol can be a sensitive probe for detection of many-body
bound states and to elucidate the exact nature of the overall ground state.

The ms3 state exhibits a vanishing Zmol except for values of 1/kna close to the level
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crossing with ms1 state, where Zmol of both states vary rapidly and coincide at Zmol = 0.5.

3.4 Comparison to the existing methods
As mentioned earlier, the crucial assumption of the variational formalism developed in
this chapter is the large separation of energy scales between the dimer binding energy εB
and the typical energy of the Bogoliubov excitations (of the order of µ). This condition
is violated close to the unitarity on the repulsive side. The other important assumption
concerns the existence of a well-defined unstable Bogoliubov mode on top of the repulsive
polaron saddle point, which breaks down in the presence of a dynamical instability.

Variational schemes such as truncated basis methods or Gaussian state theories includ-
ing boson-boson inteactions are in principle able to surpass these limitations. Truncated
basis methods are able to give access to the full excitation spectrum and include multi-
body correlations exactly, however, they are limited in the number of particles included in
the variational state. In comparison, our approach includes exact correlations only among
excitations bound to the impurity and neglects some correlations of excited scattering
states, that is suitable for heavy mobile impurities. Nevertheless, it does not restrict the
number of excitations included in the ansatz. Gaussian state theories are able to access
the exact stable saddle point of the system by optimizing Φ and Γ. However, the states
with non-Gaussian correlations are not included in the variational manifold.

An improvement to our ansatz is to include Bogoliubov transformation as a variational
parameter, and obtain the modifications of the Bogoliubov spectrum due to the presence
of the impurity. This approach has already been incorporated to study the modification of
local boson correlations in the vicinity of the impurity [42, 43], and predicted many-body
shifts of Efimov states. Including these correlations in our ansatz partially accounts for
three-body correlations on a many-body level. However, it is a numerically challenging task
to obtain metastable variational solutions and we leave this problem for future research.

3.5 Conclusion and outlook
In this chapter, we addressed the problem of Bose polaron at strong couplings. We in-
troduced a variational scheme that is suitable for the regime when the impurity-boson
binding energy is much larger than the BEC chemical potential. We presented a com-
prehensive theoretical formalism that is sufficiently general to be applicable to dilute and
dense bosonic media in any dimensions, ranging from ultracold atomic mixtures to exci-
tonic condensates in semiconductor heterostructures, and include effects that are crucial
to describe Bose polarons at strong couplings. We demonstrated that the interplay of
impurity-induced instability and repulsive inter-boson interactions leads to the existence
of multiple metastable states in the form of many-body bound states with intermediate
energies lying between the attractive and repulsive polaron.

Crucially, the existence and properties of the many-body bound states we predict are
closely linked to the non-perturbative nature of the problem captured by the higher or-
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der interaction processes Ĥ3 and Ĥ4, involving three- and four-boson terms, respectively.
Within our variational approach, we showed that including the resulting correlations among
the bound bosons exactly leads to the emergence of genuine quantum mechanical charac-
teristics of the wave function, especially non-Gaussian correlations and interaction-induced
anti-bunching. Furthermore, these many-body bound states can have observable signatures
in molecular spectroscopy techniques with quasiparticle weights considerably different from
the coherent state theory prediction for the attractive and repulsive polarons.

The improvement to the standard Bose polaron models presented here - by including Ĥ3
and Ĥ4 terms, alongside the variational ansatz derived in detail in Appendix 3.2.5 - reveals
characteristics of the many-body bound states beyond the predictive scope of the current
Bose polaron models. Unlike non-interacting single-channel models, we predict that the
number of many-body resonances is finite and varies depending on the impurity-boson
and inter-boson interaction strength. Additionally, their binding energies exhibit non-
monotonic behavior as a function of particle number, leading to level crossings between
the many-body bound states. Near these level crossings, the many-body bound states
do not possess a well-defined particle number due to the low-energy particle exchange
processes with the condensate.

Furthermore, through the rigorous theoretical analysis detailed in Appendix 3.2.5, we
show that the strong-coupling Bose polaron problem can be mapped to the problem of
many-body bound states weakly coupled to the renormalized phonon modes. This emer-
gent weak-coupling theory is amenable to perturbative treatments, allowing for further
characterization of the many-body resonances, including the determination of lifetimes
and decay rates.

The theoretical developments in this chapter present one natural scheme to separate
the modes of the strong coupling impurity-boson system into a few strongly interacting
modes requiring non-perturbative treatment, and a continuum of weakly interacting modes.
With this theory we are able to explore a broad range of parameters and map out the phase
diagram of the strong coupling Bose polaron. In particular, we clarified how the attractive
polaron continuously evolves into a multi-body bound state as one crosses the Feshbach
resonance into the repulsive side. Thereby we arrive at a unified theory of repulsive and
attractive Bose polarons.

We emphasize that the theoretical analysis in this chapter applies to a wide range of
experimentally relevant Bose polaron settings where mobile impurities have masses com-
parable or even smaller than the boson masses, as long as the impurity mass is not too
light such that three-body correlations lead to dramatic qualitative changes in the polaron
spectra such as polaronic instability [42, 43]. Indeed, most of the experimentally relevant
mixtures, such as 40K-87Rb (JILA [99]), 39K-39K (Aarhus [108], Cambridge [64]), and 40K-
23Na (MIT [220], Munich [61]), exhibit a smooth variation in the attractive polaron energy
across the Feshbach resonance. Additionally, the attractive polaron energy, for which the
influence of short-range correlations is the strongest, shows excellent agreement with the
predictions of the Gross-Pitaevskii theory [92] for the 40K-87Rb and 39K-39K mixtures,
where the impurity-boson mass ratio is the smallest. Therefore, the theoretical framework
developed here applies to the above settings without the need for extension of the vari-
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ational ansatz to include three-body correlations by treating the covariance matrix Γ as
a variational parameters, as done in Refs. [42, 43]. Nevertheless, the present variational
ansatz is capable of incorporating three-body correlations by including Γ as a variational
parameter, and promoting the coherent state part of the ansatz in Eq. 3.25 to a Gaussian
state or a truncated basis variational state.

Another interesting future direction is to apply the present framework to study strong
coupling polarons in one and two dimensions. The intricate physics of polarons in low
dimensions, together with the availability of multiple theoretical approaches for bench-
marking such as DMRG and exact diagonalization in one dimension and Quantum Monte
Carlo in one and two dimensions makes this direction particularly promising.

In the present context, we pointed out the crucial role of phonon nonlinearities on the
physics of strong coupling Bose polarons. It would be interesting to expand the scope of the
work presented in this chapter by considering other models where phonon nonlinearities
play a crucial role, for instance, to study impurity motion in nonlinear bosonic models
with non-perturbative solitonic excitations (e.g. in the Ferenkel-Kontorova model [28], or
models described by the nonlinear Schrodinger equation [114]). As another avenue, one
could apply this framework to study the motion of single holes in quantum antiferromagnets
[112, 214, 22] or the formation of magnon-impurity bound states [51].

In conclusion, the developments presented in this chapter highlight the intriguingly
rich physics of many-body resonances in strong-coupling Bose polarons and point toward
the need for further theoretical research to clarify the remaining unknown aspects of these
resonances. On the experimental side, the distinct behavior of the molecular quasiparticle
residue encourages the exploration of bold signatures of these states by going beyond the
conventional spectroscopic techniques.



Chapter 4

Realization of anyonic trions in van
der Waals heterostructures

In the previous chapter, we were mostly concerned with the physics of a heavy impurity
interacting with bosonic particles in a BEC. The many-body system in this case, although
ubiquitous and of prime interest in numerous synthetic quantum systems platforms, is
a well understood system, in the sense that there is a vast body of theoretical works
that investigate the physics of weakly interacting Bose gases. Moreover, the experimental
advancement in preparation and manipulation of such ultracold gases is phenomenal by
now, and posses an extremely advanced and powerful toolbox.

At the same time, current research efforts across multiple fields, from quantum science
and technology to condensed matter physics, focus on the realization of strongly correlated
phases of matter that demonstrate exotic characteristics such as long-range entanglement
and topological order. This is largely due to the presence of anyonic excitations of these
states, which hold promise in realizing topological quantum computation, a form of quan-
tum computation that is robust to noise [153], and by themselves feature exotic physical
properties. Nevertheless, there are incredible challenges in experimental realization of such
phases, since they have a very subtle structure of quantum mechanical superpositions
between an exponential number of many-body configurations, giving them their genuine
quantum mechanical nature and their intricate characteristics.

In 1982, Tsui, Stormer and Gossard [205] discovered a new phase of matter, the FQH
liquid, that defies classification according to Landau’s paradigm, as it does not break any
symmetry when compared to normal Fermi liquids, but it exhibits a markedly different
transport response: the fractional quantum Hall effect (FQH). In 1990, the concept of
topological order was introduced by Wen [211] as a new type of order characterizing FQH
liquids. Since then, classification of phases of matter according to topological order has
been largely recognized as a distinct paradigm alongside Landau’s symmetry breaking
framework. In Landau’s classification of phases according to symmetry breaking, phases
realized with different symmetries in a system for different parameter sets can not be
transformed to one another by continuous change of parameters without encountering a
singularity in the free energy - a phase transition. In contrast, topological order is defined
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for systems with gapped ground states and is characterized by certain topological invariants
(in the case of FQH states, this topological invariant is the ground state degeneracy on a
torus). Two topologically ordered states belong to the same universality class if they can
be transformed to one another by smooth deformation of the Hamiltonian without closing
the gap.

Aside from strange properties of their ground states, topologically ordered states posses
anyonic excitations as their low energy excitations. Such anyonic excitations are funda-
mental ingredients needed to construct topological qubits [153]. This requirement has
initiated intense research efforts to realize and control anyons in various synthetic quan-
tum settings such as solid-state platforms and digital quantum processors. On digital
quantum processors, braiding of both abelian and non-abelian anyons have been realized
[173, 103]. In solid-state experiments, signatures of anyons and their fractional charge
and statistics have been observed by means of various anyon interferometry techniques
[17, 152, 77, 172, 107, 126, 171]. In other synthetic platforms, efforts have been made to
realize analogues of fractional quantum Hall states for atoms [127], and photons [44]. When
anyons are potentially realized in such analogue quantum simulation platforms, it is possi-
ble to gain spatial control over their position via the well-developed tools in ultracold atom
experiments, to directly create anyons and perform direct braiding in its most basic form.
Nevertheless, such systems suffer from severe finite size effects, thus the generalization of
the concepts and results available for continuum FQH systems in thermodynamic limit to
such finite sized systems is not straightforward. This problem is especially tricky since
topological properties are well defined in the thermodynamic limit. On the other hand, in
solid-state platforms, FQH states in the thermodynamic limit are far more straightforward
to realize. However, direct control over position and motion of anyons remains an arduous
task.

Impurity binding as a means of detection and control of fractional excitations of a
strongly correlated synthetic topological system has been studied in previous theoretical
works [229, 150, 137, 83, 89], mostly targeting cold atomic systems, where there is a
potential to realize mesoscopic scale fractional quantum Hall fluids. Since in cold atoms,
the synthetic magnetic field is realized by rotating the atoms using laser light, the impurity
is naturally experiencing the same artifical gauge field as the majority atoms, and thus, its
motion is quantized in Landau levels. Besides, many of these proposals are addressing the
impurity-quantum Hall systems in idealized settings where the gap to the excited states is
assumed to remain open even in the interacting system, an assumption which is suitable
for heavy impurities and theoretically accurate when Born-Oppenheimer approximation is
valid. On the other hand, fractional quantum Hall states of electrons are ubiquitious in
van der Waals semiconductor heterostructures, where these states can also be addressed
optically.

In this chapter, we study a solid-state setup in the form of an atomically thin graphene-
transition metal dichalcogenides (TMD) heterostructure, to optically investigate fractional
quantum Hall states and to explore the creation of anyons in an optically controlled manner.
The heterostructure consists of an hBN-encapsulated graphene monolayer in the proximity
of a MoSe2/WSe2 heterobilayer in a strong perpendicular magnetic field. The carrier
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density in graphene is gate-tunable, where ν = 1/3 FQH states of electrons and holes
can be realized [24]. In addition, interlayer excitons (IX) can be created in the TMD
heterobilayer, where the type-II band alignment makes the electron (hole) reside in the
MoSe2 (WSe2) layer [170], see Fig. 4.6 (a). Depending on the IX configuration and the
carrier charges, the IX-carrier interaction can be either attractive or repulsive (Fig. 4.6
(a)).

Inspired by the developments in Ref. [86], we make use of a unitary transformation,
called the Lee-Low-Pines (LLP) transformation to address the problem of a mobile exciton
interacting with a many-body system comprised of electrons forming a ν= 1/3 fractional
quantum Hall state. The reduction in the complexity of the problem, enabled by the LLP
transformation leads us to the observation of two bound states between an exciton and
excitations of the quantum Hall system, at fillings corresponding to a single quasihole on
top of the Laughlin state. We identify the lower energy bound state as an anyonic trion,
a bound state of an exciton and the quasihole.

We first focus on the attractive IX-hole interaction in the few-body limit, where only
a single hole is present in the graphene valence band. By solving the three-body problem
of an electron and two holes residing in the MoSe2, WSe2 and graphene, respectively, we
find that the three-body spectrum contains a bound IX-hole state, that is an interlayer
magnetic trion. The existence of this state is interesting since in the absence of a magnetic
field, IX can not bind massless graphene quasiparticles. Thus, the formation of interlayer
magnetic trions is a direct consequence of the effect of a magnetic field on the few-body
spectrum of the system. Inspecting the trion state shows that the contribution of excited
IX Rydberg states are negligible, due to the large 1s IX binding energy. Furthermore,
we find that the admixture of higher hole Landau levels is negligible, justifying a lowest
Landau level approximation for the many-body problem.

4.1 Strongly correlated electronic states in van der
Waals heterostructures

Semiconductor materials form the foundational platform for electronics from the begin-
ning of its history [6]. In semiconductor electronic devices, through variation of chemical
composition with position, it is possible to adjust the local electrostatic potential felt by
the electrons, and thus control their transport. Such semiconductor structures are called
heterostructures, a celebrated example of which is the p−n junction, used in various forms
of diodes (e. g. LEDs, varactors, photodiodes), transistors and many other electronic de-
vices. Heterostructures allow the investigation of electronic transport in low dimensional
mesoscopic semiconductor heterostructures, a well-established field encompassing numer-
ous research areas. Confinement of electron motion in low-dimensional geometries such
as quantum dots (0D), quantum wires (1D) and quantum wells and inversion layers (2D)
leads to the quantization of electronic states, which are electrically and optically accssible.

By 2004, various heterostructure geometries such as III-V semiconductor quantum wells
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1 were extensively studied. In 2005, mechanical exfoliation of graphite led to the exper-
imental realization of graphene [155]. Later, the mechanical exfoliation techniques were
extended to create atomically thin monolayers of other types of crystals, where stacks of
monolayers are held together via the weak van der Waals interlayer interaction. The van
der Waals interaction further allows to stack different types of monolayers and form multi-
layer structures, leading to the construction of van der Waals (vdW) heterostructures. The
extreme confinement of electrons in these heterostructures and the high carrier mobility,
together with the possibility of engineering band structures for these materials made the
research on vdW materials into a vibrant and flourishing field [74, 9].

The particular appeal of the research on vdW heterostructures is the possibility of
realizing strongly correlated electronic states - such as unconventional superconductivity
[32], quantum spin Hall effect [217] and correlated insulator states [31], among a multitude
of others.

In this chapter, the emphasis is on optical spectroscopy of fractional quantum Hall states
of a graphene monolayer using interlayer excitons in a proximate heterobilayer of transition-
metal dichalcogenides (TMD). Below we outline physics of these materials relevant for our
purposes.

4.1.1 Graphene
Graphene is a monolayer 2D material exfoliated from bulk graphite, and is composed of
carbon atoms arranged in a hexagonal lattice. The Fermi level of undoped graphene is
located at the Dirac points in the K and K ′ points of the hexagonal Brillouin zone (see
Fig. 4.2). Thus, the low energy quasiparticle excitations of the graphene are massless Dirac
fermions, giving graphene its unique transport properties [34, 53].

The band structure of electrons close to the Fermi surface can be understood by con-
sidering the chemical composition of graphene [78]. A carbon atom C has 6 electrons,
arranged in an electronic configuration [He] 2s2 2p2 . The 2p manifold is ∼ 4 eV higher
in energy that the 2s manifold (note that each electronic state contains 2 electrons with
both spin-down and spin-up configurations). To form covalent bonds with other atoms,
it may be more energetically favorable to excite an electron in the 2s2 orbital to the 2pz

orbital. The remaining three electrons in the 2s, 2px and 2py orbitals form sp2 hybridized
orbitals, which are located 2π/3 with respect to one another. Two carbon atoms can form
a molecule by a σ−bond (a covalent bonding which is rotationally symmetric with respect
to the inter-nuclear axis). This σ−bonding results in the hexagonal lattice structure of
the monolayer graphene. The remaining electrons per carbon atom in 2pz orbitals are
fully delocalized in the π−bonds across the crystal. In addition, each graphene unit cell
contains two carbon atoms, whose 2pz orbitals can form bonding (π−bond) or antibonding
(π∗−bond) configurations. In the presence of only the nearest neighbor hopping, resulting
energy bands are particle-hole symmetric, with dispersion ϵλ(k) = λϵ(k), where λ=+ for

1The III-V quantum wells are formed out of layers composed of group III and group V elements of
the periodic table. The most typical group III elements used in heterostructures include Gallium(Ga),
Aluminium (Al) and Indium (In), and group V include Arsenic (As) and Phosphorus (P) [175].
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(a)

(b)

Figure 4.1: (a) By stacking different monolayers exfoliated from different types of crystals,
van der Waals multilayer structures can be made. The multilayer structure is put together
due to the weak van der Waals force between the layers. (b) Example crystals from different
families of material heterostructures. Different color codes indicate the stability of the
monolayers in various circumstances: stable under ambient conditions (blue), probably
stable in air (green), unstable in air but potentially stable in the absence of reactive gases
(pink). Monolayers have been sucessfully exfoliated from the materials shaded with grey.
Figure is reprinted from Ref. [74].
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Figure 4.2: (a) Hexagonal lattice structure of graphene. The unit cell (denoted by the
rhombus) consists of two inequivalent lattice sites A and B. The lattice vectors are denoted
by a1 and a2. (b) The Brillouin zone of the hexagonal lattice with the K and K ′ points.

the π∗ band and λ= − for the π band [78]. Since there are only two electrons per unit
cell, the λ= − (λ= +) band is completely full (empty). The two bands touch at the K
and K ′ points where they form Dirac cones, at momenta K and −K at the corners of the
Brillouin zone, respectively. The low energy excitations close to the K (K ′) valley have
momenta k = ±K + q, where + (−) is used for the K (K ′) valley. If we denote the valley
pseudo spin by the Pauli matrices τ̂µ = (Î, τ̂x, τ̂y, τ̂z), then the effective Hamiltonian close
to the Dirac points reads

Ĥ(q) = ℏ vF τ̂ ⊗ q · σ̂ . (4.1)

Hereafter, since we work with strong magnetic fields, we assume spin polarized electrons.
Since valley physics is also not important for us, we further assume full valley polarization
in the K valley. Thus, the Hamiltonian reduces to

ĤK(q) = ℏ vF q · σ̂ . (4.2)

In a magnetic field, according to Peierls substitution, the momentum q̂ (which now is
promoted to an operator) is substituted by the gauge invariant kinetic momentum Π̂ (see
Appendix C for the definition of the kinetic and magnetic momenta). Thus, the kinetic
Hamiltonian in the magnetic field takes the form

ĤK(Π̂) = ℏ vF Π̂ · σ̂ . (4.3)
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Expressing Π̂ in terms of the associated creation and annihilation operators, the eigenstates
of ĤK(Π̂) are given by

|ψn,m⟩ = 1√
2

(
|n− 1,m⟩

|n,m⟩

)
, (4.4)

where as usual, n is the Landau level index and m is the magnetic momentum quantum
number. The positive energy states have energies εn,m =

√
2n ℏvF/lB . These results will

be essential in finding the few-body states of the IX scattering off a carrier in the strong
magnetic field.

Having reviewed few aspects of the electronic states in graphene which are relevant to
the present work, we move to give an introduction about transition metal dichalcogenide
vdW heterostructures, which have enabled to do quantum optics with strongly correlated
electronic systems in a highly controllable fashion.

4.1.2 Transition metal dichalcogenides: quantum optics meets
strongly correlated electronic systems

As brought in Fig. 4.1, transition metal dichalcogeneides form another important group of
vdW materials [209]. Their chemical composition consists of a transition metal atom (typ-
ically Mo, W) bound to two chalcogen atoms (typically S, Se, Te), arranged in a hexagonal
crystal with D3h symmetry (see Fig. 4.3). In the monolayer limit, these materials are direct
band gap, and as such are optically active. Furthermore, the strong spin-orbit splitting of
the valence band leads to optical selection rules, stating that the transitions in the K (K ′)
valley can be excited only by σ+ (σ−) circularly polarized light.

The optical excitations in semiconductors are in the form of tightly bound excitons.
Excitons are electron-hole pairs, which are bound together as a result of the Coulomb
interaction. They form the elementary optical excitations in the TMD materials. The
reason for large binding energy of excitons in these materials is the tight 2D confinement
of the charge carriers, together with the reduced dielectric screening of the environment (the
electric field generated by an electron-hole pair penetrates the surrounding space, which
leads to a more efficient binding). The reduced dielectric screening, together with large
carrier effective masses (m∗

e ≃ 0.8m0 in MoSe2) leads to sharp excitonic resonances in these
materials with a large binding energy (≃ 512 meV in MoSe2). In the presence of electrons,
either in the same layer as the exciton, or in the proximate layers, the electric field of the
environment affects the exciton binding, and leads to the modification of its binding energy,
polarization, and other characteristics. Since this resonance is very sharp and strong (as
compared to excitonic resonances in more standard GaAs based quantum wells, where the
exciton binding energy ∼ 10 meV), its sensitivity to the electronic environment can be used
as a probe for many-body physics in the proximate electronic system. In the following,
we touch upon the exciton spectra in doped systems, which can be explained by means of
Fermi polaron physics.
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Figure 4.3: (a) Crystal structure of TMD materials in the monolayer form. The unit
cell contains a transition metal atom (black) and two chalcogen atoms (yellow). (b) In
monolayer, TMDs admit a direct band gap in the K (shown in the figure) and K ′ points.
The spin-orbit splitting ∆soc is strongest in the valence band, while in the conduction band
it is much smaller. (c) and (d) Qualitative band structure near K and K ′ points in MoX2
(c) and WX2 (d) monolayers. Figure reprinted from Ref. [209].

4.2 Exciton Fermi polarons dominate the optical spec-
tra of doped TMDs

The idea of probing correlations of the electronic states of vdW heterostructures using TMD
excitons gained significant interest after the observation of attractive and repulsive exciton-
Fermi polaron resonances in electron and hole-doped TMDs [188]. The experimental setup
in this experiment is a classic example for experiments set up to observe exciton-Fermi
polaron effect. The device consists of an hBN-encapsulated MoSe2 monolayer, gated by
the gold contacts and doped via the graphene layer on top. The whole heterostructure is
placed between two Distributed Bragg Reflector (DBR) mirrors, which constitute a high
finesse cavity. The monolayer TMD is placed on the antinode of the cavity mode, to
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efficiently hybridize the excitons with the cavity mode, see Fig. 4.4, left side, panel (a). In
the low doping limit, it is known that a single electron on the Fermi surface can polarize
the exciton, such the exciton-electron interaction becomes attractive. Since the system is
tightly confined in 2D, the attractive two-body potential always leads to the formation of
a bound state. The exciton electron bound state is typically called a charged exciton or
a trion. Thus, at low dopings excitons can bind electrons and form trions. But at higher
dopings, when the inter electron distance (characterized by the electron density 1/√ne

is comparable to the trion Bohr radius, the excitons gain energy by forming a coherent
superposition of trions with the electrons on the Fermi surface, leading to dressing by
coherent electron-hole excitations of the Fermi sea [102], and formation of an attractive
exciton-Fermi polaron. The formation of attractive exciton-Fermi polarons comes hand
in hand with another quasiparticle excitation, the repulsive exciton-Fermi polaron, which
can be understood as a blue-shifted exciton resonance, dressed by a repulsive cloud of
electron-hole excitations (see Fig. 4.4, left side, panel (c)).

In the experiment of Ref. [188], the hybridization of the exciton with the cavity mode
leads to the formation of exciton-polariton Fermi polaron. However, the signatures of the
Fermi polaron formation is also evident in reflectance spectroscopy experiments, such as
the one on the right hand side of Fig. 4.4. In these experiments, the measured signal is
the reflectance contrast ∆R, defined as the ratio of the difference in the reflectance signal
with respect to the background reflectance,

∆R(E) = R(E) −R0(E)
R0(E) , (4.5)

where E is the photon energy. The reflectance contrast is a direct measure of the absorption
in the material, since the fraction of the intensity that is not reflected is absorbed. The
reflectance contrast in a vdW device similar to the one in Ref. [188] is shown in the right
hand side of Fig. 4.4. This device is used in the experiment of Ref. [192] to measure the
interaction-induced Shubnikov de Hass oscillations in the optical response of monolayer
MoSe2. In the absence of the magnetic field, the reflectance spectrum shows hallmarks of
the exciton-polaron formation in the doped regime. As is plotted in panel (b) of Fig. 4.4, in
the charge neutral regime, a sharp exciton resonance appears. When the device is electron
or hole doped, two spectral features are notable: a sharp resonance appears abruptly on
the red side of the bare exciton resonance, which blueshifts with electron doping. The
resonance gains oscillator strength as the doping is increased, and is associated to the
attractive exciton polaron. the blueshift of the attractive exciton polaron is due to the
increase in the Fermi energy, which increases both the resonance position of the exciton and
the electron energy on the Fermi surface. The other resonance is continuously connected
to the bare exciton. It also blueshifts with doping and loses oscillator strength. This
resonance corresponds to the repulsive exciton polaron.

The above spectral features in the optical conductivity of doped monolayer TMDs can
be adequately explained by the theory of Fermi polaron formation in two dimensions.
Exctions by nature are delocalized excitations that have a dipole and carry momenta.
Although excitons are themselved composite objects, due to the large exciton binding
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energy which is by far the largest energy scale in the system, they can be treated as pointlike
particles with creation operator x̂†

k. Furthermore, due to the spin-valley locking in TMDs,
excitons in a valley interact attractively (repulsively) with electrons in the opposite (same)
valley. To understand this, assume an exciton in the K valley of MoSe2, which is composed
of a spin-↑ electron and a spin-↓ hole. An electron in the opposite valley can gain energy
from the Coulomb exchange interaction (it can recombine with the hole of the exciton),
which leads to an attractive interaction [45]. The attractive exciton electron interaction
leads to the formation of a bound state in two dimensions, which is the trion. In a classical
picture, trions can gain binding energy by polarizing excitons, attracting the exciton’s hole
and repelling the exciton’s electron. Polarizing the exciton means that the exciton-electron
interaction excites the exciton to excited intermediate Rydberg states, where the electron
hole separation is larger, and as a result, the exciton dipole is stronger. However, these
processes are relevant only in second order perturbative corrections to the trion binding
energy in terms of ET/EX , the ratio of the trion binding energy to the exciton binding
energy. Thus, the exciton electron interaction can be modelled by a two-body potential.
The Hamiltonian to describe this system reads

Ĥ =
∑

k
εX,k x̂

†
kx̂k +

∑
k
εc,k ê

†
kêk +

∑
k,q,p

gq x̂
†
kx̂

†
k+q ê

†
pêp−q , (4.6)

where εX,k and εc,k are the exciton and conduction band electron dispersions, respectively,
and gq is the electron-exciton interaction strength. It turns out that the spectrum of this
system can be very well described by assuming a variational ansatz for the eigenstates of
Ĥ, the so called Chevy ansatz [39, 50, 143, 179]

|ϕk⟩ =
(
φkx̂

†
k +

∑
p,q

φkpq x̂
†
k−p−qê

†
pĥ

†
q

)
|∅⟩ , (4.7)

where |ϕk⟩ is approximating an eigenstate of Ĥ with momentum k. the Chevy ansatz was
first introduced to study the normal state of highly imbalanced Fermi gases. Despite its
simplicity, provides excellent predictions for many properties of the two dimensional Fermi
polarons in the context of exciton-electron systems. Its success comes back to a nearly
perfect cancellation of the contribution of states with more than one particle-hole pair as
a result of destructive interference [207, 165, 46]. Intuitively, the Chevy ansatz describes a
polaron state as a coherent superposition of a bare exciton with particle-hole fluctuations
of the Fermi sea. It was also discovered that application of the Chevy ansatz is equivalent
to a non self consistent diagrammatic approach [47].

All in all, the Chevy ansatz, though increadibly successful in predicting the results for
a single exciton interacting with non-intercting electrons in a Fermi sea, and can describe
polaron response to weak external field. For instance, it can explain the changes in po-
laronic features due to the effects of a weak magnetic field on the Fermi surface, which
leads for instance to the Shubnikov de Haas oscillations of the optical conductivity [192].
However, it can not be applied a priori to settings such as polaron formation in strongly
interacting settings, such as FQH systems, or electronic states in flat bands, due to the
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relevance of inter-electron interactions in these systems, and the absence of a kinetic en-
ergy scale, such as the Fermi energy, for electrons. In this thesis, where we are interested
in polaron formation in a FQH setting, which is by nature a strongly correlated system.
Thus, it is essential to go beyond the Chevy ansatz to describe the physics of a mobile
impurity interacting with the excitations of a FQH system. Before delving into the physics
of polaron formation in FQH systems, it is necessary to review the basics of the FQH effect.
We cover this topic in the next section.

4.3 The Hall Effect: quantum, integer, and fractional
Hall effect was discovered by the Americal physicist Edwin Hall in 1879 [95]. It occurs when
a two dimensional current is subject to a perpendicular magnetic field. In this situation,
a voltage VH transverse to the current I appears between the two edges of the current-
carrying slab, that is proportional to the current. The proportionality constant is called
the Hall resistance RH, defined by

RH = VH

I
. (4.8)

The Hall effect has a simple explanation based on the balance of the electric and magnetic
components of the Lorentz force. For a two dimensional gas of non-interacting classical
charge carriers with charge q with density n, the Hall resistivity ρH (which is equal to the
Hall resistance assuming a uniform current density) is the ratio between the transverse
electric field E⊥ and the current density J∥,

ρH = E⊥

J∥
=
(

1
qnc

)
B . (4.9)

Thus, ρH is linear as a function of B with a proportionality constant 1/qnc, which depends
on the density and sign of carriers. It took almost a century until von Klitzing, Dorda and
Pepper discovered the integer quantum Hall (IQH) effect [118]. It was discovered that RH
is quantized in plateaus according to

RH = h

ne2 . (4.10)

Its origin goes back to the quantization of two dimensional electronic states into Landau
levels in strong magnetic fields is low disorder samples (see Appendix C for a comprehensive
review on the quantum theory of charged particles in a magnetic field). However, a finite
but small amount of disorder is needed for the stability of the plateau. The further details
on the physics of the IQH effect can be found in many textbook on the subject [29, 224,
105, 37, 65]. Briefly, the electronic kinetic energy becomes quantized in macroscopically
degenerate Landau levels, which are manifolds spaced in energy by ℏωB, where ωB is the
cyclotron frequency. The edges act as potentials to lift the Landau levels to the Fermi
surface. When the Fermi level resides between Landau levels n and the n+ 1, there are n
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Figure 4.4: Left side: (a) Schematic of the device used for optical spectroscopy of an hBN-
encapsulated MoSe2 monolayer. The gold contacts control the electric potential of the
layers. The graphene layer is used to dope the heterostructure. The MoSe2 monolayer is
at the antinode of a Distributed Bragg Reflector (DBR) cavity, whose frequency is tunable
by changing the cavity length Lc via a piezoelectric device. (b) Optical microscope of
the device. (c) Cartoon depicting the electron density around the exciton in an attractive
and repulsive polaron state. Figures on the left side are reprinted from Ref. [188]. Top
right: (a) a similar device structure, used to observe Shubnikov de Haas oscillations in
the exciton-polaron spectra in Ref. [192]. (b) Gate tunability of the exciton spectrum,
appearing in the reflectance contrast. In the charge neutral regime, a sharp excitonic
resonance exists, that does not change by the gate voltage. In the electron or hole doped
regime, excitons get dressed by electron-hole excitations of the Fermi sea and form Fermi
polarons. The attractive polaron branch (red shifted in energy) appears alongside the
repulsive polaron branch, which is connected to the bare exciton resonance. The sharp
blueshift of the repulsive polaron resonance can be used as a probe of the electron density.
Bottom right: The reflectance contrast as a function of the gate voltage. in the hole doped
side, the attractive polaron resonance is less sensitive to the changes in the hole density
rather than the electron density, due to the heavy mass of the hole, while the repulsive
polaron resonance (indicated also as exciton) blueshifts and loses oscillator strength by
increasing the hole doping. Figures on the right side are reprinted from Ref. [192]
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edge channels through which current can be conducted. These conducting edge states are
responsible to give RH its quantized values h/ne2.

A few years later , Tsui, Störmer and Gossard discovered the FQH effect in samples with
even lower disorder and in stronger magnetic fields. It was ovserved that the transverse
resistivity acquires plateau only in certain odd-denominator fractional filling of the lowest
Landau level, while the longitudinal resistivity drops to zero, an effect similar to the IQH
effect, but with a marked difference that the only energy scale in the problem is the
Coulomb interaction energy between the charge carriers, as the kinetic energy is fully
quenched due to the strong magnetic field. The theoretical explanation of the FQH is far
richer than the IQH which only relies on a non-interacting model for electrons, and has led
to many groundbreaking developments in condensed matter physics. Excellent pedagogical
presentations of the topic can be found in textbooks [29, 224, 105, 37, 65, 71, 213]. In the
rest of this chapter, we only briefly touch upon the known results in the literature, and do
not intend to give a pedagogical exposition to the fundamentals. Nevertheless, to enable
the readers to convenienty reproduce the results of this thesis from scratch, we give a
thorough exposition to the analytical background necessary for the calculations involved
in the theory of FQH effect in Appendix C. In the following, we touch upon the basics of
the FQH physics.

4.3.1 Basics of the FQH effect
As mentioned above, the FQH effect occurs when the electron system partially occupies the
lowest Landau level manifold. The Hamiltonian of N spin-polarized particles with charge
q and mass m in a perpendicular magnetic field, interacting via a two-particle potential
V (x) is given in first quantization by

Ĥ =
N∑

i=1

Π̂
2
i

2m +
N∑

i<j

V (x̂i − x̂j) , (4.11)

where Π̂i = p̂i − (q/c)A(x̂i) is the kinetic momentum (Appendix C), and A(x) is the
magnetic vector potential. When all the particles are in the lowest Landau level, The
kinetic energy term plays no role, and the physics is entirely governed by the interaction
term, projected on the lowest Landau level,

ĤFQH = P̂LLL

 N∑
i<j

V (x̂i − x̂j)
 P̂LLL (4.12)

where P̂LLL is the lowest Landau level projection operator. The whole problem is now to
obtain the low energy states of the Hamiltonian ĤFQH and characterize their properties.
The difficulty here is that the whole effect is non-perturbative, and the problem has to be
solved exactly for a thermodynamically large number of particles. Thus, the explanation
of FQH effect seemed exceptionally challenging at the beginning of its discovery.
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Figure 4.5: Spectrum of a ν = 1/3 FQH system on a sphere for N = 8 and Q = 3/2(N −
1) = 11 as a function of the total angular momentum of the state. At this monopole
strength, the spectrum contains the Laughlin state as the fully isotropic state at L = 0.
The magnetoroton branch is visible, as well as the higher excited states. The interparticle
potential here is taken as the Coulomb interaction with the dielectric constant ε = 3.5
corresponding to the dielectric constant of hBN.

To explain the FQH effect, a theoretical breakthrough came by the work of Laughlin,
who constructed a Jastrow-type variational ansatz based on very general considerations
to describe the observed plateau in electronic FQH states at the filling ν = 1/3. These
general considerations are: 1) the electrons all reside in the lowest Landau level, 2) the wave
function of every two electron must be anti-symmetric with respect to the exchange of two
electrons, 3) the electronic state must have the correct filling factor ν = 1/3 of the lowest
Landau level, and 4) it must describe an incompressible liquid state, that is a liquid state
with excitations which remain gapped in the thermodynamic limit. The arguments behind
these requirements are thoroughly discussed in textbooks on FQH [29, 224, 105, 37, 65].
Giving these requirements, Laughlin propsed the following wave function for N electrons
in the symmetric gauge (Appendix C), known as the Laughlin state for the ν = 1/3 FQH
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effect
ΨLN(z) = NLN ·

N∏
i<j

(zi − zj)3 · exp
(

− 1
2

N∑
i=1

|zi|2
)
, (4.13)

where NLN is a normalization constant and z = (z1, · · · , zN), where zi is the complex
coordinate of the i’th electron. Since all many-body states of N electrons contain the
exponential factor, and all quantum states can be properly normalized, hereafter we drop
the normalization constant and the exponential factor, unless explicitly needed in the
discussion.

The Laughlin state was proved to be an excellent variational ansatz with no varia-
tional parameters which has a large overlap with exact eigenstates of the quantum Hall
Hamiltonian for small systems [94, 66]. The Laughlin state suggest two types of charged
excitations,

• a quasihole excitation with a variational state

Ψqh(ξ; z) =
N∏

i=1
(zi − ξ) · ΨLN(z) , (4.14)

• a quasiparticle excitation, whose variational state can be

Ψqp(ξ; z) =
N∏

i=1
(∂zi

− ξ) · ΨLN(z) . (4.15)

Besides, FQH liquids can host neutral excitations, known as magnetorotons, which resemble
the roton excitations of a superfluid. A single-mode approximation theory of magnetoro-
tons was developed by Girvin, McDonald and Plazman [75, 76]. While quasiparticles and
quasiholes are immobile excitations (they remain at the same place they are created, delo-
calized in an area the size of the magnetic length), magnetoroton modes can have definite
momentum k and a well-defined dispersion. The structure of a magnetoroton further can
be understood as a bound state of a quasiparticle and a quasihole, which unbinds for large
momenta [228].

In this chapter, we are mostly interested in quasihole excitations of a Laughlin liquid
at ν = 1/3. The reason is multifold: 1) quasiholes have fractional charge e∗ = νe and
statistics α = 2πν, which means that the wave function of two quasiholes acquired a phase
eiα upon exchange of two quasiholes. 2) they are exact eigenstates of a delta-function
repulsive potential, and an approximate ground state of many local attractive potentials,
thus they can be created by localized repulsive potentials, thus there is a potential that
they can be realized in experiments [157, 139]. Indeed, we will show later that the IX
potential can localize a quasihole, both for a mobile and a localized exciton.

Having discussed the FQH, its ground state and excitations, we now introduce a single
mobile impurity in the system and study the impurity-FQH system. Introducing a mobile
impurity significantly increases the complexity of the problem, since now the Hilbert space
of the impurity-FQH system is the tensor product of the many-body Hilbert space of the
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FQH system and that of the mobile impurity, which has a continuous family of momentum
eigenstates. Computations in this huge Hilbert space is thus intractable as one needs to
include an indefinite number of impurity modes to correctly describe the strong coupling
phenomena, such as impurity-quasihole binding. As will be shown, it is possible to reduce
the complexity of the prolem substantially by moving the system into the impurity frame,
by the so called Lee-Low-Pines (LLP) transformation. We make crucial use of the Lee-Low-
Pines transformation for obtaining the IX-quasihole bound states and higher excited states
in the subsequent sections, which were not possible without using the LLP transformation.
In the following, we first lay out the general theory of application of the LLP transformation
to the problem of a mobile impurity.

4.4 A mobile impurity in a FQH system
In this section, we consider a neutral mobile impurity of mass M interacting with a FQH
system in 2D. We introduce the magnetic Lee-Low-Pines transformation (magnetic LLP),
to bring the FQH system to the impurity frame. We show that application of the magnetic
LLP transformation to the problem of a mobile impurity in a FQH environment leads to
the imprinting of a gauge potential on the impurity, through the appearance of the FQH
system’s total magnetic momentum in the impurity’s kinetic term. Since the magnetic LLP
transformation translates the entire FQH system to the impurity frame, a gauge potential
proportional to the vector potential of the magnetic field is also imprinted on the impurity.
This gauge potential scales with the particle number in the FQH system, an effect which is
expected since all the particles in the FQH are translated, leading to an Aharonov-Bohm
phase in the impurity-FQH wave function which scales with the particle number. We show
that there exists a non-unitary transformation which translates wave functions that are
similar to quasiholes, only depend on a single complex coordinate, without translating the
entire system. Fortunately, it is possible to apply the typical LLP transformation on the
sphere and as we will discuss, it has been crucial in enabling us to find all the numerical
results in the many-body part.

4.4.1 A neutral mobile impurity in FQH system

To keep the formalism general in the beginning, we consider a two-species population-
imbalanced system in a two-dimensional plane span(ê1, ê2), confined in a 2-D volume with
area A, which in the extreme population imbalance reduces to a single mobile impurity
in a FQH system. The majority particles are fermionic with field operator ψ̂(x) and
experience a uniform magnetic field B = B ê3 perpendicular to the confinement plane.
The minority (impurity) particles field operator are not affected by the magnetic field.
The total Hamiltonian of the system is

Ĥ = Ĥimp + Ĥmajority + Ĥint . (4.16)
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In the second quantized form, the Hamiltonians of the impurity (Ĥimp), the majority
particles (Ĥmajority) and the interaction term (Ĥint) read

Ĥimp =
∫
d2x ϕ̂†(x)

(
− ℏ2

2M∇2
)
ϕ̂(x) , (4.17)

Ĥmajority =
∫
d2x ψ̂†(x)

− ℏ2

2m

(
∇ − i

2π
Φ0

A(x)
)2

+ 1
2

∫
d2x′ V (x − x′)ψ̂†(x′)ψ̂(x′)

ψ̂(x) ,

(4.18)
Ĥint =

∫
d2x d2x′ ϕ̂†(x)ϕ̂(x)U(x − x′) ψ̂†(x′)ψ̂(x′) , (4.19)

with ψ̂(x), ϕ̂(x) and m, M the field operators and masses of the majority and impurity
particles, respectively. The interaction between the majority particles are described by
V (x), whereas the inter-species potential U(x) characterises the interaction between the
impurity and the majority particles. Here we express the relevant quantities of the problem
in dimensionless form (see Table. C.1),

Ĥimp =
∫
d2x ϕ̂†(x)

(
− β

2 ∇2
)
ϕ̂(x) , (4.20)

Ĥmajority =
∫
d2x ψ̂†(x)

−1
2

(
∇−iA(x)

)2
+1

2

∫
d2x′ V (x−x′)ψ̂†(x′)ψ̂(x′)

ψ̂(x) , (4.21)

Ĥint =
∫
d2x d2x′ ϕ̂†(x)ϕ̂(x)U(x − x′) ψ̂†(x′)ψ̂(x′) , (4.22)

where β = m/M is the impurity-majority mass ratio.

4.4.2 The magnetic Lee-Low-Pines transformation
Let us make a short recap of group theory in quantum mechanics. Consider a system with
a Hilbert space H and a set of complete orthonormal (distinguishable) states {|m⟩} with
m ∈ M a set of labels, together with an action of a group G on M, i.e. µ : G×M −→ M .
For a unitary representation of G, we have

Û(g)† |m⟩ = |µ(g,m)⟩ ∀g ∈ G ,

which induces a transformation rule for creation operators â†
m as

â†
µ(g,m) |∅⟩ = Û †(g) â†

mÛ(g) Û †(g) |∅⟩ . (4.23)

For a system with a unique vaccum state and a symmetry operation g ∈ G, Û †(g) |∅⟩ = |∅⟩ ,
so the creation operators transform according to

Û †(g) â†
mÛ(g) = â†

µ(g,m) . (4.24)
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Note that for a FQH system on a torus where the ground state is degenerate, Û(g) acts
non-trivially on the ground state manifold. Nevertheless, in the following we focus on the
case where Û(g) |∅⟩ = |∅⟩ . We define the magnetic Lee-Low-Pines transformation as

ÛLLP ≡ exp
(

− i x̂imp · Γ̂cm

)
, (4.25)

where
x̂imp =

∫
d2xx ϕ̂†(x)ϕ̂(x) , (4.26)

X̂cm =
∫
d2X X ψ̂†(X)ψ̂(X) , (4.27)

P̂cm =
∫
d2X ψ̂†(X)

(
− i∇X

)
ψ̂(X) , (4.28)

Γ̂cm = P̂cm − A(X̂cm) + B̂ × X̂cm . (4.29)
Using Eqs. 4.26, 4.27, 4.28, 4.29, we obtain the transformation rules for the impurity and
majority field operators,

Û †
LLP ϕ̂

†(x) ÛLLP = exp
(

− ix · Ā
(
X̂cm +N x/2

))
exp

(
ix · P̂cm

)
ϕ̂†(x)

= exp
(
ix · Γ̂cm

)
ϕ̂†(x),

(4.30)

Û †
LLP ψ̂

†(X) ÛLLP = exp
(

− ix̂imp · Ā
(
X −N x̂imp/2

))
ψ̂†( X − x̂imp ) , (4.31)

where we have defined Ā(x) = A(x) − B × x. Eqs. 4.30 and 4.31 imply the following
transformations for density operators,

Û †
LLPϕ̂

†(x)ϕ̂(x)ÛLLP = ϕ̂†(x)ϕ̂(x) , (4.32)

Û †
LLPψ̂

†(X)ψ̂(X)ÛLLP = ψ̂†(X − x̂imp)ψ̂(X − x̂imp) , (4.33)
where we used the fact that the majority and impurity operators commute so that one acts
as a c-numbers on the other’s Hilbert space. This results in the invariance of the interaction
terms in the Hamiltonians 4.21 and 4.20. To obtain the transformation of the kinetic term
of the majority Hamiltonian, we note that the magnetic and kinetic translations commute
(Eq. C.5), so the kinetic term of the majority Hamiltonian also remains invariant under
ULLP . The transformation of the impurity can be obtained as follows,

Û †
LLP Ĥimp ÛLLP =

∫
d2x ϕ̂†(x) exp

(
ix · Γ̂cm

) (
− β

2 ∇2
)

exp
(

− ix · Γ̂cm
)
ϕ̂(x) . (4.34)

To calculate the RHS of Eq. 4.34, we make use of the following expression,

∇x exp
(
−ix·Γ̂cm

)
= exp

(
−ix·Γ̂cm

) [
∇x−i

(
P̂cm−Ā( X̂cm )

)
+N

{
iĀ(x)−i∇x

(1
2x·Ā(x)

)}]
.

(4.35)
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We can further simplify the last two terms in the RHS of Eq. 4.35 asiĀ(x) − i∇x

(1
2x · Ā(x)

)
k

= iĀklxl − i

2

(
Āklxl + Ālkxl

)
= i

2

(
Ākl − Ālk

)
xl . (4.36)

The last expression in Eq. 4.36 is the antisymmetric part of the matrix Ā acting on x .
One can show 2 that the antisymmetric part of any gauge potential A(x) which is linear
in x is exactly the symmetric gauge Asym,k = 1

2 ϵkl xl and the symmetric part AS,kl =
1/2 (Akl + Alk ) is a pure gauge contribution. Thus,

1
2
(
Ākl − Ālk

)
= −1

2 ϵkl , (4.37)

and using Eq. 4.36,
iĀ(x) − i∇x

(1
2x · Ā(x)

)
= −iAsym(x) . (4.38)

Substituting Eq. 4.38 in Eq. 4.34 yields

U †
LLP Ĥimp ULLP =

∫
d2x ϕ̂†(x)

[
− β

2

(
∇x − iN Asym(x) − iΓ̂cm

)2 ]
ϕ̂(x) . (4.39)

Interestingly, we see that the symmetric gauge always arises in the expression for the LLP-
transformed impurity Hamiltonian, independent of the gauge potential. At the first sight,
this seems worrysome because it seems to violate gauge freedom. However, it should be
noted that the gauge freedom is intact since there is a freedom in choosing the path over
which the system is translated to the position of the impurity. Indeed, one can show (left
as an exercise for the reader) that the straight path from the impurity position to the
origin corresponds to the symmetric gauge, and the paths along the x and y directions
corresponds to the choice of two different Landau gauges, depending on the order taken.

Finally, the full impurity-majority Hamiltonian in the LLP frame takes the following
form,

Û †
LLP Ĥtot ÛLLP =

∫
d2x ϕ̂†(x)

[
− β

2

(
∇x − iN Asym(x) − iΓ̂cm

)2 ]
ϕ̂(x)

+
∫
d2x ψ̂†(x)

− 1
2

(
∇ − iA(x)

)2
+ 1

2

∫
d2x′ V (x − x′)ψ̂†(x′)ψ̂(x′)

ψ̂(x)

+
∫
d2xϕ̂†(x)ϕ̂(x)

∫
d2x′ U(x′) ψ̂†(x′)ψ̂(x′) .

(4.40)

If we take a (N+1) - particle system with a single impurity and N particles in the majority,
we have ∫

d2x ϕ̂†(x)ϕ̂(x) = 1 ,
∫
d2x ψ̂†(x)ψ̂(x) = N . (4.41)

2We show in the appendix that this is indeed the case.
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in this case we can treat the impurity in first quantization, in which case Eq. 4.40 reads

Û †
LLP Ĥtot ÛLLP = β

2

(
p̂imp −N Asym(x̂imp) − Γ̂cm

)2

+
∫
d2x′ U(x′) ψ̂†(x′)ψ̂(x′)

+
∫
d2x ψ̂†(x)

− 1
2

(
∇ − iA(x)

)2
+ 1

2

∫
d2x′ V (x − x′)ψ̂†(x′)ψ̂(x′)

ψ̂(x) .

(4.42)

To proceed further, first let us focus on the kinetic term in Eq. 4.42. It is clear that the
gauge field emerged in the impurity’s kinetic term has two components: NAsym(x̂imp) and
Γ̂cm. The latter is the total magnetic momentum of the system, and the former is the gauge
field that the center-of-mass of the whole FQH system experiences. This term is anomalous,
since it scales by the full particle numbers in the system. Indeed, this term emerged due
to the translation of the FQH center-of-mass, which acts as a particle with mass Nm and
charge Nq. However, this is not a physical effect, since translation to the impurity frame
is only meaningfull for the excitations of the FQH system, without translating the entire
system.

To understand the above points, consider translation of a single charge q in a magnetic
field. The kinetic Hamiltonian of the charge is translation invariant, while the vector
potential is not. However, one can show that translation of the vector potential amount only
to a gauge transformation (see Chapter 2 of Ref. [105]). This is apparent when considering
translation of an arbitrary lowest Landau level state f(z)e−|z|2/2 in the symmetric gauge 3.
The translated state to a position z0 has the form

f(z − z0) e−|z−z0|2/2 = e−|z|2/2e−|z0|2/2e(z̄0z+z0z̄)/2 f(z − z0)

= e−(z̄0z−z0z̄)/2 · e−|z0|2/2ez̄0z ·
(
f(z − z0) e−|z|2/2

)
.

(4.43)

The first term in the second line of Eq. 4.43 is a pure gauge term of the form −i/ℏ(q/c)A(x0)·
x, where z and z0 are the complex coordinates associated to x and x0, respectively. The last
term is the translation of the polynomial part of the wavefunction, without changing the
Gaussian term. This is exactly the form of the wave function we are after. To understand
this, let us consider the form of the quasihole wave function in Eq. 4.15. The polynomial
factor alone is a translation of the quasihole wave function centered at 0 to the position ξ,
while the exponential factor remains unchanged. It turns out that putting the whole FQH
system on a sphere does not suffer from these problems, and one can apply the normal
LLP to reduce the complexity of the problem substantially. The reason for application of
the normal LLP transformation is that on the sphere, the system is rotationally symmet-
ric. Since the generators of rotation on the sphere, which are angular momenta, are also

3Here, with a slight abuse of notation, we consider z to be the complex coordinate of a single particle,
as opposed to z = (z1, · · · , zN ) for N particles. We also drop the charge carrier sign ς.
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Figure 4.6: (a) Schematic of the device configuration considered in this work to study
IX-FQH physics. A MoSe2/MoSe2 heterobilayer constitutes the optically active layer. At
strong magnetic fields, the 2DES in the proximate graphene monolayer can form quantum
Hall states. A representative ν=1/3 quantum Hall state in the composite fermion picture
is illustrated as a ν∗ = 1 state of 2CF composite fermions. For type-II band alignment of
the MoSe2/MoSe2 heterobilayer [170], the electron (hole) resides in the conduction band
(valence band) of the MoSe2 (WSe2). (b)-(d) In the type-II (type-I) band alignment,
the interlayer exciton interction with graphene charge carriers is repulsive (attractive),
resulting in exciton binding to single quasihole (quasiparticle) excitations of the ν = 1/3
FQH state and formation of anyonic trions. (c) A localized exciton in an optically active
quantum defect can bind a quasihole, in a Quantum Optical Twist and Scan Microscope
(QOTSM). The movable upper part of the device allows spatial control over the quasihole
position. (e) schematic of the spatial profile of the electric potential corresponding to (c).
The repulsive exciton-carrier interaction creates a local repulsive potential, and effectively
binds a quasihole.

generators of translations, one can use normal translation instead of magnetic translation
to move to the impurity frame.

We close the discussion on the magnetic LLP transformation by noting that, the idea
behind the magnetic LLP is to reduce the complexity of the problem as much as possible
by transforming to the impurity frame, while performing a suitable gauge transformation
on the background. In the following sections on the few-body physics of excitons scattering
off charge carriers in graphene, we will incorporate a generalization of this idea, and show
that application of a suitable gauge transformation leads to a striking property of the trion
states, akin to that of point like charge particles in a magnetic field. This property is the
conservation of the trion magnetic momentum quantum number. For investigations of the
many-body IX-FQH system, we apply the normal LLP transformation on the sphere, and
we demonstrate its effectiveness is giving consistent results for the low energy states of the
many-body system. Below, we outline the experimental setup and parameters used for the
modeling.
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4.5 From few- to many-body body physics in exciton-
quantum Hall systems: exciton quantum Hall po-
larons and anyonic trions

After a rather abstract discussion on the theory of mobile impurities interacting with
a quantum Hall system, we are now at a position to descibe the concrete experimental
setup we propose to observe the physics of mobile-impurities interacting with a quantum
Hall system. The considered gate-controlled device is shown in Fig. 4.6 (a), consisting
of an hBN-encapsulated MoSe2/WSe2 heterobilayer with layer distance d = 0.6nm, in
the proximity of a graphene monolayer in a distance l = 1.2nm from the MoSe2 layer,
containing the quantum Hall system. In this thesis we are mostly interested in the physics
of IX interacting with a FQH state near filling ν = 1/3, since it is the most stable FQH
experimentally observed. In the composite fermion picture of the FQH effect ([105]), a
ν = 1/3 FQH state can be viewed as an IQH state of composite fermions, which are the
electrons carrying two flux quanta (see Fig. 4.6). A quasihole excitation of the ν = 1/3
FQH liquid can be viewed as a charge defect carrying a single flux quantum. In this picture,
three flux quanta at the same position thus represent a single vacant electron, giving an
intuitive explanation for the fractional charge of a ν = 1/3 FQH liquid equal to e∗ = e/3.

We first study the few-body states of an exciton interacting attractively with a single
hole in the graphene layer. Studying this setting is particularly necessary for modeling the
many-body case, since excitons are not structureless particles, and treating them as a single
point like particle in the present context has to be justified. Moreover, the lowest Landau
level approximation which underlies a significant number of results on FQH systems needs
to be checked, as the exciton-carrier interaction might lead to Landau level mixing. We
will see that both the assumption of a point like exiton and confinement of carriers to the
lowest Landau level approximations are excellent approximations.

In the many-body limit, we investigate two separate cases, where the exciton is entirely
delocalized, and the case where it is strongly localized in an optically active quantum defect
in the TMD heterobilayer. For mobile excitons, we consider both attractive and repulsive
exciton electron interactions. The sign of the exciton-carrier interaction can be tuned,
either electrically by changing the default type-II band alignment of the TMD system
([170]), or by changing the particle doping of the graphene layer from electrons to holes.
For the purpose of our numerical investigations, we consider electrons in graphene, while
changing the IX configuration. Regarding the FQH system, we investigate the low energy
spectrum of the IX-FQH system at filling factors corresponding to the Laughlin ν = 1/3
state, a single ν = 1/3 quasihole, two ν = 1/3 quasiholes and a single ν = 1/3 quasiparticle,
for both attractive and repulsive interactions.

For repulsive exciton-electron interactions, in the setting where the FQH contains one
quasihole as an excess flux quantum on top of the Laughlin state, we observe clear sig-
natures of two bound states in the low energy spectrum of the system. We identify the
lowest energy state as an anyonic trion, since the exciton-electron spatial correlation func-
tion, called g(2), has an excellent agreement with that of a single quasihole of the FQH
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system. This result is particularly striking since this signature appears to be independent
of the total angular momentum of the system, which in the present context of FQH on
the system, constitutes another well-defined quantum number alongside the energy. The
g(2) of the other bound state is also very similar to that of the quasihole, however it does
not vanish at the position of the exciton, giving it a higher energy than the first bound
state. By analysing the spectrum of the system in the limit of a lozalized exciton, we
interpret the formation of the second bound state as the result of a coherent superposition
of delocalized quasiholes and higher excited states, in such a way that they destructively
interfere at the exciton position, thus reducing the energy cost of the repulsive interaction
with the exciton. We further analyze the observed energy gaps for these two bound states,
and find that they show a saturation behaviour, suggesting that they acquire a definite
value in the thermodynamic limit.

For attractive exciton-electron interactions, we do not find meaningful signatures of
exciton-quasiparticle binding, such as a well-defined gap, and agreement of the exciton-
electron g(2) function with that of a bare quasiparticle. Instead, we find that the g(2)

function resembles the one for an excited state of the FQH system, which is more peaked
at the exciton position than the quasiparticle. Again, this result is expected since a super-
position of the excitations which constructively interfere at the exciton position can lead
to a higher gain in binding energy.

In the following, we first investigate the few-body problem and gain insight to analyze
the many-body setting.

4.6 Few-body physics in the lowest Landau level
In the previous sections, we focused on the rather abstract problem of a point like neutral
mobile impurity moving in the background of massive charged particles in a magnetic field.
However, our main focus is the interaction of excitons with a FQH system in graphene,
and we have to take the particularities of this system into account. Especially, excitons
are composite objects made of electrons and holes, and it is a priori unknown if the charge
carriers in the FQH system have any effect on the internal structure of the excitons. This
problem is particularly relevant, as it is known that in systems such as GaAs quantum
wells, the electron and hole motion of the exciton is quantized in Landau levels. Thus, one
has to model a magnetoexciton interacting with the FQH system, and the assumption of
pointlike excitons will drastically fail [82] (see also [136] for a discussion on abrupt changes
in the exciton structure in high magnetic fields). Besides, the whole FQH effect occurs in
the lowest Landau level, whereas it is not clear whether the scattering of the exciton excites
the carriers into higher landau levels. Thus, it is necessary to quantify the admixture of
the interlayer exciton 1s state with the excited excitonic Rydberg series, the Landau level
mixing of the charge carrier as a result of scattering off the interlayer exciton, and the
binding energy of the existing interlayer trion states.

In the following, we address the above questions, we investigate the few-body physics
of the IX and a single graphene charge carrier by considering the problem of an electron
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and a hole in the MoSe2 and WSe2 layers, and a single positive charge in the graphene (see
Fig. 4.6 (a) for the schematics of the device). The reason for considering a hole carrier in
graphene is that we consider the MoSe2 monolayer to be closer to the graphene layer, thus
the net potential of the IX is attractive for a hole excitation in graphene. We solve the
problem by means of exact diagonalization of the three-body Hamiltonian, and find the
exact eigenstates. We will show that both the admixture of the 1s exciton with excited
Rydberg states, as well as the contribution of higher Landau levels to the trion state is
negligible. These results firmly establish that treating the exciton as a point like particle
in the 1s state, as well as the lowest Landau level approximation for the charge carriers
are excellent approximations.

Before moving on to the full three-body problem, we first consider the problem of an
exciton in a magnetic field, and find the energy levels.

r∗ me mh a∗
0 Ry∗

unit nm m0 m0 nm meV

MoSe2 3.9 0.84 0.6 0.6804 235.2
WSe2 4.5 0.34 0.53 1.1497 139.2

Table 4.1: Material parameters for MoSe2 and WSe2. Values are taken from [80, 123, 134,
216, 125].Note that theoretical values of effective masses are very different, and where ever
they do not agree with the experimental value, the experimental value is taken.

4.6.1 Exciton Hamiltonian
To find the energy levels of an exciton in a magnetic field, we follow Gor’kov and Dzyaloshin-
skii [81]. The total magnetic momentum Γ̂X = Γ̂e + Γ̂h of the exciton is a conserved quan-
tity. In terms of the exciton’s relative (center-of-mass) position and momentum r̂eh, p̂eh

(R̂X, P̂X), the total exciton magnetic momentum operator reads

Γ̂X =
(
p̂e + p̂h

)
+ e

c
A(r̂e − r̂h) − e

c
B × (r̂e − r̂h)

= P̂X + e

c
A(r̂eh) − e

c
B × r̂eh .

(4.44)

From Eq. 4.44, [Γ̂X,1, Γ̂X,2] = 0, therefore both components of Γ̂X are good quantum num-
bers. On an eigenstate ψK(RX, reh) of Γ̂X with Γ̂X ψK(RX, reh) = KψK(RX, reh), the
action of P̂X follows from Eq. 4.44 to be

P̂X ψK(RX, reh) =
(

K − e

c
A(reh) + e

c
B × reh

)
ψK(RX, reh) , (4.45)
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Thus, ψK(RX, reh) is of the following form

ψK(RX, reh) = exp
 i
ℏ

(
K − e

c
A(reh) + e

c
B × reh

)
· RX

ψK(reh) . (4.46)

In Eq. 4.46, ψK(reh) is only a function of reh, and is an eigenstate of the Hamiltonian
Ĥ

′
X = Û †

G ĤX ÛG with ÛG = exp
(

i
ℏ

(
K − e

c
A(reh) + e

c
B × reh

)
· RX

)
. Explicitly, Ĥ ′

X is
given by

Ĥ
′

X = K2

2MX
+ e

MXc
K ·

(
B × reh

)
+ Ĥ

′

X,internal (4.47)

where the Hamiltonian of the internal exciton degrees of freedom reads

Ĥ
′

X,internal = 1
2me

(
p̂eh + e

c
ηA(r̂eh) + e

c

me

MX
B × r̂eh

)2

+ 1
2mh

(
p̂eh + e

c
ηA(r̂eh) − e

c

mh

MX
B × r̂eh

)2

+ Veh(r̂eh) ,

(4.48)

where η = (mh −me)/MX. In the symmetric gauge A(reh) = 1/2 B×reh, Ĥ ′
X,internal reduces

to

Ĥ
′

X,internal = 1
2me

(
p̂eh + e

2cB × r̂eh

)2

+ 1
2mh

(
p̂eh − e

2cB × r̂eh

)2

+ Veh(r̂eh)

=
[

1
2µX

p̂2
eh + Veh(r̂eh)

]
+ e2

8µXc2 (B × r̂eh)2 + e

2µXc
ηB · L̂eh .

(4.49)

In the last line of Eq. 4.49, the first term in braces is the internal exciton Hamiltonian, the
rest are the diamagnetic and an effective paramagnetic term, respectively.

From Eqs. 4.49 and 4.47, the exciton states are of the form |K, nX, lX⟩X, where nX and lX
are the exciton principle quantum number and angular momentum, respectively. A suitable
orthonormal basis for the internal excitonic state, thus, are |nX, lX⟩X ≡ |K = 0, nX, lX⟩X.

To perform the numerical diagonalization and find the excitonic states, we first need
to find the electrostatic potential between the charges. The standard procedure is to solve
the Poisson equations for point charges in each layer [208]. We obtain the electrostatic
potentials for a device with d= 0.6nm distance between the TMD layers and l= 1.2nm
distance between the MoSe2 and the graphene layers. The material parameters needed
to find the interparticle potentials are listed in Table. 4.6. Of special importance is the
screening length r∗, which is related to the 2D polarizability of the layered materials by
r∗ = χ2D/2. In Fig. 4.7, the energy levels of the interlayer exciton are reported in terms of
exciton Rydberg energy Ry∗

X =ℏ2/2µXa
∗2
0,X , where µX is the reduced mass of the exciton,

and a∗
0,X = 4πεhBNℏ2/µXe

2 is the exciton Bohr radius, and εhBN = 4.5ε0 . The obtained
ground state exciton energy is EBX = 0.4242Ry∗

X .
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Figure 4.7: Energy levels of the s, p, d interlayer exciton for magnetic fields from B=1T
up to B = 16T . The 1s exciton is the least susceptible of all the states to the magnetic
field, due to the smallness of the exciton Bohr radius compared to the magnetic length.
Higher excited Rydberg states ns with n > 1 as well as higher angular momentum states
are more susceptible to the magnetic field due to the diamagnetic effect and the L · B
coupling. At large magnetic fields, higher excited states become unbound.

4.6.2 Three-body problem of the interlayer exciton-graphene hole
scattering

To describe trion formation, the Hamiltonian is very similar to Eqs. 4.47 to 4.49. However,
we can transform the Hamiltonian in a suitable form by means of a unitary transformation
akin to a magnetic LLP transformation.

The proper coordinate system for trion, are the trion COM and the relative coordinates
with respect to the hole. Denoting the electron, hole and the carrier positions by re, rh

and rq, respectively, the relative coordinates are reh = re − rh and rqh = rq − rh. The total
magnetic momentum of the trion in the symmetric gauge reads

Γ̂tot = P̂T + q

c
A(R̂T) − e

c

(
1 + q

e

me

MX

)
A(r̂eh) + q

c
A(r̂qh) . (4.50)

Similar to the gauge transformation we perfomed on the exciton Hamiltonian in Eq. 4.47,
Equation 4.50 suggests to perform a gauge transformation of the following form on the
trion Hamiltonian

ÛG = exp
[

− i

ℏ

(
Γ̂tot − P̂T − q

c
A(R̂T)

)
· R̂T

]
. (4.51)

After performing the above gauge transformation, one obtains the following trion Hamil-
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Figure 4.8: Characterization of the five lowest trion states, obtained by exact diagonal-
ization of the trion Hamiltonian in Eq. 4.52. The trion states ψnT ,MT ,LT

are indexed by
three quantum numbers: nT is the principle quantum number, labeling the trion states
in ascending order in energy; MT is the magnetic degeneracy quantum number which is
conserved akin to the Landau level states of point like charges in a uniform magnetic
field, and as such, the trion energy levels are independent of MT ; LT is the trion total
orbital angular momentum. Here we drop the spin as we assume spin polarized graphene
carriers. Furthurmore, particles belonging to different layers are assumed distinguishable,
thus we neglect the particles spins. Shown in different panels are weight corresponding to
different exciton Rydberg states (nX) (a), hole Landau levels (n) (b), angular momentum
eigenstates of the hole in the lowest Landau level (m), and exciton states with different
angular momenta (lX) (d), contributing to the trion states ψ(nT ,0,0), with nT = 1, · · · , 5 on
a logarithmic scale. The main contribution to the trion state comes from the exciton 1s
state and the hole lowest Landau level manifold.



102 4 Realization of anyonic trions in van der Waals heterostructures

tonian,

ĤT = Π̂
2
T

2MT
+ Π̂T

MT
·
[

− p̂qh +
(
γeq + γhq

)
A(r̂qh) +

(
γeh + βe

)
A(r̂eh)

]
+ 1

2me

[
p̂eh + βeA(r̂eh) + γeqA(r̂qh)

]2
+ 1

2mh

[
p̂eh − γehA(r̂eh) + p̂qh − γhqA(r̂qh)

]2

+ vF

[
p̂qh + βqA(r̂qh) + γqeA(r̂eh)

]
· σ̂ .

(4.52)

In Eq. 4.52, the parameters βe, βq, γeh, γeq and γhq are defines as

βe =
(

1 +
(
me/MX

)2
q/e

)
e/c ,

βq = −q/c ,
γeh =

(
1 +

(
memh/M

2
X

)
q/e

)
e/c ,

γeq =
(
me/MX

)
q/c ,

γhq = −
(
mh/MX

)
q/c .

(4.53)

The first term in the RHS of Eq. 4.52 gives the trion Landau level structure with trion
cyclotron frequency ωT = |q|B/MT c, the second term is coupling of trion COM motion to
the internal degrees of freedom, and the rest is the internal trion Hamiltonian. However,
different trion Landau levels are mixed as a result of the interaction with the internal
states, described by the second term in ĤT. Using this result, the quantum numbers that
characterize the trion states, are as the following

• Total angular momentum LT = sign(q)(m−n)+lX+sign(q)(MT−NT), where MT and
NT are the magnetic and Landau level quantum numbers of the trion center-of-mass.

• Total spin S: Here we assumed spin-polarized particles, but it is possible to include
the spin configurations of the particles if Zeeman splitting is negligible.

• Principle quantum number nT : Indexes different bound states of HT.

• Magnetic degeneracy number MT: The total trion magnetic momentum ΓT leads to
the degeneracy number MT , similar to an electron in a magnetic field.

A typical trion state, thus is indexed by quantum numbers (nT,MT, LT, ST). However,
since we assume the particles in different layers to be distinguishable, and the hole is
assumed to be spin polarized, we neglect ST hereafter.

To diagonalize the Hamiltonian ĤT, we calculate the matrix elements of ĤT over the
product states |nX , lX⟩⊗|n,m⟩, where nX and lX are the exciton principle quantum number
and orbital angular momentum quantum numbers, respectively, and n,m are the usual
Landau level indices of the hole. Particularly, in the context of the disk geometry used here,
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m is related to the angular momentum of the hole by sign(q)(n−m). The interlayer trion
binding energy that we calculate for B = 1T is ET = 0.0037Ry∗

X ≃ 0.8056 meV, which is
0.87 % of the interlayer exciton binding energy, a quantity that is directly experimentally
observable.

4.7 From few- to many-body body physics in exciton-
quantum Hall systems: exciton quantum Hall po-
larons and anyonic trions

Having characterized in detail the three-body scattering problem of an IX and a graphene
hole, we are now at the position to apply the obtained insights to model the physics of IX
and charge carriers in the quantum Hall regime. We are particularly interested to see if an
exciton can bind a quasihole.

To this end, we first introduce the LLP transformation on a sphere, and then use it
to simplify the system Hamiltonian. In particular, LLP implies a particular structure for
the eigenstates of the system in the impurity frame, which make the angular momentum
conservation manifest, and also can guide the intuition into the formation of anyonic trions
and the other bound state discussed above.

4.7.1 Lee-Low-Pines transformation on the sphere
Here we elaborate on the application of the Lee-Low-Pines transformation to the impurity-
quantum Hall system which was crucial to obtain the results in this work. To this end,
we again consider the problem of a neutral mobile impurity X interacting with a quantum
Hall system of N particles with mass m and charge q with fractionally filled lowest Landau
level. Both systems are put on a sphere with radius R enclosing a magnetic monopole with
strength Q. The full Hamiltonian reads

Ĥ = L̂
2
X

2MXR2 +
N∑

i=1
VXC(r̂i − r̂X) + ĤFQH . (4.54)

In Eq. 4.54, MX, r̂X and L̂X are, respectively, the impurity’s mass, position and angular
momentum, VXC is the impurity-carrier interaction potential, r̂i is the position of the
i’th carrier, and ĤFQH is given in Eq. 4.12. The full rotational symmetry of the impurity-
quantum Hall system implies that the spectrum is invariant under the rotation which bring
the impurity at a position rX to r0 =R ez, where ez is the unit vector along the z axis.
This rotation is performed by the following unitary

ÛLLP = e−iφ̂ ⊗ L̂z e−iθ̂ ⊗ L̂y e−iγ̂ ⊗ L̂z . (4.55)

In Eq. 4.55, ÛLLP acts on the whole quantum Hall system with total angular momentum
L̂ = ∑N

i=1 L̂i to rotate it by a rotation which brings a rigid body in the state |φ, θ, γ⟩
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characterized with Euler angles (φ, θ, γ) to |φ = 0, θ = 0, γ = 0⟩. This transformation is
very similar to the angulon transformation used in the study of quantum rotors like dimers
in BECs and formation of angulon quasiparticles [181, 180]. Note, however, that the
physics of angulons and the thermodynamic limit of its setting is completely different from
the setting considered here, and the only formal similarity between the two settings is the
rotational symmetry of the problem. Note also that, although for a point-like impurity the
Euler angle γ is not defined, it should be kept throughout the calculations to maintain the
entire group structure of the rotations of the quantum Hall system.

To make use of the LLP transformation, it is necessary to understand its effect on the
full Hamiltonian Ĥ as well as an arbitary state |J,M, n;α⟩X,QH of the whole system with
angular momentum quantum numbers J , M and n (we discuss the meaning of the quantum
number n later). First, we inspect different terms in the Hamiltonian. The quantum Hall
Hamiltonian ĤFQH is obviously rotationally invariant. Application of ÛLLP on VXC(r̂i − r̂X)
yields

Û †
LLP VXC(r̂i − r̂X) ÛLLP = VXC(r̂′

i − r0) , (4.56)

where r′
i = R(φ, θ, γ)[ri] is the rotated position of the i’th particle. In Eq. 4.56, it is

noticable that the action of ÛLLP has removed the impurity degree of freedom, thus instead
of interacting with a mobile impurity, all the particles in the quantum Hall system interact
with a static potential localized around r0.

The action of ÛLLP on the impurity kinetic energy is more involved. To proceed with
the analytics, it is more convenient to work with the spherical tensor components of the
angular momentum operators. For any vector operator Ô = Ôxex + Ôyey + Ôzez , the
spherical tensor components are defined by and Ôµ = (−µ)/

√
2 (Ôx + iµÔy), µ = ±1 . Ô0 = Ôz , µ = 0 ,

Ôµ = − µ√
2

(
Ôx + iµÔy

)
, µ = ±1 .

(4.57)

Accordingly, the spherical tensor components of the impurity angular momentum operator
in coordinate space read

L̂X, 0(φ, θ, γ) = −i∂φ ,

L̂X, ±1(φ, θ, γ) = i√
2 e

±iφ

[
± cot(θ)∂γ + i∂θ ∓ 1

sin(θ)∂φ

]
.

(4.58)

Applying ÛLLP to L̂X,µ directly gives

Û †
LLP L̂X,µ ÛLLP = L̂X,µ −

∑
ν

D(1)∗
µν (φ̂, θ̂, γ̂) L̂ν , (4.59)

where D(1)∗
µν (φ, θ, γ) is the complex conjugate of the Wigner D-matrix D(1), and Lν is the

ν-component of the total angular momentum of the quantum Hall system. From Eq. 4.59,
it is evident that ÛLLP imprints the effect of the many-body medium on the impurity
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through the total angular momentum components L̂ν . The LLP transformation of L̂
2 is

then achieved by using Eq. 4.59 as the following,

Û †
LLP L̂

2
X ÛLLP = L̂

′ 2
X −

∑
µ

(−1)µL̂
′(−µ)
X L̂µ + L̂

2 =
(

L̂
′(c)
X − L̂

)2
, (4.60)

In Eq. 4.60, L̂
′(c)
X = ∑

µ L̂
′µ
X eµ is the contravariant angular momentum of the impurity, with

L̂′µ
X = (−1)µL̂′

X,−µ, and L̂′
X,µ is the impurity angular momentum in the body-fixed frame,

that is the frame rotated with respect to the space-fixed frame by the Euler angles φ, θ, γ .
Explicitly, these components are related to one another by L̂

′µ
X = ∑

ν D
(1)
νµ (φ, θ, γ) L̂X,ν ,

L̂ν,X = ∑
µ D

(1)∗
νµ (φ, θ, γ) L̂′µ

X .
(4.61)

From the definition of L̂
′(c)
X , it is straightforward to show that

L̂′µ
X = −Î† L̂µ

X Î , (4.62)

where Î |j,m⟩ = |j,−m⟩. Equation. 4.62 leads to the result that the eigenvalues of the
spherical LLP term is the same as the total angular momentum L̂tot = L̂X + L̂. In order
to come from Eq. 4.59 to Eq. 4.60, the following identities that are the defining differential
equations for D(j)

µλ(φ̂, θ̂, γ̂) must be used,[L̂ν , D
(j)
µλ(φ̂, θ̂, γ̂)] = (−1)1+ν

√
j(j + 1)Cj,µ−ν

j,µ;1,−ν D
(j)
(µ−ν)λ(φ̂, θ̂, γ̂) ,

[L̂′ν , D
(j)
µλ(φ̂, θ̂, γ̂)] = −

√
j(j + 1)Cj,λ+ν

j,λ;1,ν D
(j)
µ(λ+ν)(φ̂, θ̂, γ̂) ,

(4.63)

where Cj,µ
j1,µ1;j2,µ2 = ⟨j1, µ1; j2, µ2|j, µ⟩ are Clebsch-Gordan coefficients. After performing all

the steps above, the total system Hamiltonian in the LLP frame takes the following form

ĤLLP = 1
2MXR2

(
L̂

′(c)
X − L̂

)2
+

N∑
i=1

VXC(r̂′
i − r0) + ĤFQH , (4.64)

The next step is to find the form an arbitrary state |J,M, n;α⟩X,QH of the full system with
angular momentum quantum numbers J , M and n, and the rest of the quantum numbers
summarized in α. To this end, we note that |J,M, n;α⟩X,QH takes the most general form

|J,M, n;α⟩X,QH =
∑

j,L,β

cj,L;α,β

∑
m,N

CJ,M
j,m;L,N |j,m, n⟩X⊗|L,N ; β⟩QH =

∑
j,L,β

cj,L;α,β |j, L; β⟩X,QH .

(4.65)
In Eq. 4.65, |j,m, n⟩X is an angular-momentum-j eigenstate of L̂

2
X, and the quantum

numbers m and n denote the angular momentum projections along the z axis in the space-
fixed and body-fixed frames, respectively. More explicitely,

L̂
2
X |j,m, n⟩X = ℏ j(j + 1) |j,m, n⟩X ,

L̂X,z |j,m, n⟩X = ℏm |j,m, n⟩X ,

L̂′
X,z |j,m, n⟩X = ℏn |j,m, n⟩X .

(4.66)
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The state |L,N ; β⟩QH is an eigenstate of ĤFQH with angular momentum quantum numbers
L and N , and labeled by β. It is clear from the form of |J,M, n;α⟩X,QH in Eq. 4.65 that it
suffices to evaluate Û †

LLP on |j,m, n⟩X ⊗ |L,N ; β⟩QH,

Û †
LLP |j,m, n⟩X ⊗ |L,N ; β⟩QH =

∫ 2π

0
dγ

∫ π

0
dθ sin(θ)

∫ 2π

0
dφ

√
2j + 1

8π2 D(j)∗
mn (φ, θ, γ) |φ, θ, γ⟩X

⊗ Û †(φ, θ, γ) |L,N ; β⟩QH .

(4.67)

To proceed, we use the transformation of angular momentum representations under arbi-
trary rotations

Û †(φ, θ, γ) |L,N ; β⟩QH =
∑
N ′

D
(L)∗
NN ′(φ, θ, ϕ) |L,N ′; β⟩QH , (4.68)

together with several identities involving angular momentum summations and symmetry
properties of the Wigner D matrices and Clebsch-Gordan coefficients to finally arrive at

Û †
LLP |j, L; β⟩X,QH =

∑
N ′

(−1)L+N ′
C

j,(−n)∗
J,−(n+N ′);L,N ′ |J,M, n+N ′⟩X ⊗ |L,N ′; β⟩QH . (4.69)

Inserting Eq. 4.69 into Eq. 4.65,

Û †
LLP |J,M, n;α⟩X,QH =

∑
L,N ′,β

fL,N ′,n;α,β |J,M, n+N ′⟩X ⊗ |L,N ′; β⟩QH , (4.70)

where fL,N ′,n;α,β = ∑
j(−1)L+N ′

C
j,(−n)∗
J,−(n+N ′);L,N ′ cj,L;α,β . For a point-like impurity, one can

set n = 0, and n drops out of the equations. The final form of the state in the LLP frame
is thus

Û †
LLP |J,M ;α⟩ =

∑
L,N,β

fL,N ;α,β |J,M,N⟩X ⊗ |L,N ; β⟩QH , (4.71)

with fL,N ;α,β = ∑
j(−1)L+N ′

Cj,0 ∗
J,−N ;L,N cj,L;α,β . Application of the special form of the states

in the LLP frame as in Eq. 4.71 for exact diagonalization of ĤLLP forms the foundations
of the results obtained in this work.

We apply the spherical LLP transformation above to the IX-FQH system by numerically
diagonalizing the Hamiltonian ĤLLP in Eq. 4.64 over the states |J,M,N⟩X ⊗ |L,N ; β⟩QH.
In the following section, we discuss the results.

4.7.2 Results
To understand the results in the section, we first lay out some basic facts about the nu-
merical diagonalization of ĤFQH in spherical geometry. The details about the Landau level
structure of charged particles on a sphere are outlined in Appendix C. Direct construction
of Laughlin states on the sphere [93, 105] shows that for N particles, the incompressible
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Figure 4.9: Many-body energies of the exciton interacting with a ν = 1/3 system of N =
4−7 electrons (panels (a)-(e)), at fillings characterized by monopole strengths in the range
QLN = 3/2(N − 1), associated to the presence of the Laughlin state. The red and blue
dots corresponds to the attractive and repulsive exciton-electron interactions, respectively,
while the orange dots correspond to zero exciton-electron interaction. For comparison,
the lowest energy states of the infinitely heavy impurity is also shown (dashed), with the
same color code denoting the exciton-electron interactions. The spectrum for all particle
numbers is characterized by a dispersive low energy branch of quasiparticles on top of the
Laughlin state, for both attractive and repulsive interactions. This branch correspond to
the dressing of the exciton with magnetorotons. States with definite total angular momenta
J = 0 − 4 are considered. For FQH systems with even particle number, the ground state is
realized in the J = N/2 sector. For the purpose of visibility, the energies in the repulsive
and attractive cases are shifted to the right and left, respectively.

Laughlin state at filling ν = 1/m occurs for magnetic monopoles QLN = m/2(N−1), which
in the thermodynamic limit gives the correct filling factor. Indeed, the spectrum of a FQH
liquid at QLN has a gapped ground state at total angular momentum L = 0 (the fully
isotropic liquid), a magnetoroton branch, and further higher excitations. Fig. 4.5 shows
the lowest part of the energy spectrum for N=8 electrons. The Laughlin gap converges to
a constant (∼ 0.1EC where EC is the characteristic Coulomb energy scale at the magnetic
length, EC = e2/4πεlB) in the thermodynamic limit and the magnetoroton remains a well-
defined excitation branch, while higher excited states are non-universal and their values
depend on the specific system under consideration.

To create a quasihole, one single unit of flux has to be introduced in the system. This
can be accomplished by: 1) removing particles from the system, 2) increasing the magnetic
flux at fixed area and particle number, and 3) by increasing the area at fixed magnetic flux
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Figure 4.10: Same as Fig. 4.9, but for a magnetic monopole Q = QLN + 1, corresponding
to two quasiholes on top of the Laughlin state. The strong mixing of the exciton kinetic
energy states, the higher density of two-quasihole states and the smaller gap of those states
to the excited states results in a featureless pattern of excitations, for both attractive and
repulsive interactions.

density and particle number [140, 147]. However, to compare the energetics of the system
in different cases (presence/absence of the exciton), it is more convenient to increase the
magnetic flux at fixed particle number and area, especially since the FQH system is not
charge neutral. To increase the flux by one quantum means to increase Q by a half integer,
thus the monopole strength at which a single flux defect is introduced to the system is
Qqh = QLN + 1/2. Counting the degeneracy of the ground state manifold reveals that the
total angular momentum of the ground state is L=N/2 [93]. Similarly, removing a flux
quantum from the system creates a quasiparticle defect. In this case, the system again has
a total angular momentum L=N/2 (see [94] for more details).

We diagonalize the system described by ĤLLP in Eq. 4.64 over the states |J,M,N⟩X ⊗
|L,N ; β⟩QH for B = 16T , and obtain the few lowest eigenstate (∼ 20), for different values of
J depending on the particle number and different monopole strengths corresponding to one
and two quasiholes, one quasiparticle and the Laughlin filling, for repulsively interacting,
non-interacting, and attractively interacting exciton-FQH systems. Note that, since the
quasihole and quasiparticle occur at total angular momentum N/2 of the FQH alone, the
value of the total angular momentum of exciton-FQH system has to be a half-integer when
N is odd. Aside from energy eigenvalues, another interesting quantity that gives useful
information into the structure of the eigenstates is the exciton-electron g(2)(r) function,
defined as ([105])



4.7 From few- to many-body body physics in exciton-quantum Hall systems:
exciton quantum Hall polarons and anyonic trions 109

-1 0 1 2 3 4 5
J

1.8

1.9

2

2.1

2.2

E
[e

2
=
4
:
"
l B

]

N = 4

0 1 2 3 4 5
J

2.75

2.8

2.85

2.9

2.95

E
[e

2
=
4
:
"
l B

]

N = 5

-1 0 1 2 3 4 5
J

3.8

3.85

3.9

3.95

4

E
[e

2
=
4
:
"
l B

]

N = 6

0 1 2 3 4 5
J

5

5.05

5.1

E
[e

2
=
4
:
"
l B

]

N = 7

Figure 4.11: Same as Fig. 4.9, but for a magnetic monopole Q = QLN −1/2, corresponding
to a single quasiparticle on top of the Laughlin state. Contrary to the single quasihole
case, no well defined dispersive quasiparticle branch is visible.

g(2)(r) = 1
ρN

N∑
i=1

⟨δ(2)(ri − rX − r)⟩ . (4.72)

Intuitively, g(2)(r) means that for an exciton at position rX , what is the probability to find
an electron at a distance r away. It turns out that in the LLP frame, g(2) takes a rather
simple form as below

g(2)(Ω) = ⟨ ˆ̄ρ(Ω)⟩
1

4π

∫
dΩ ⟨ ˆ̄ρ(Ω)⟩

, (4.73)

since in the LLP frame, the impurity is exactly localized at the north pole of the sphere.
It is more convenient to work with g(2)(θ) which is the angular average of g(2)(Ω) in the
azimuthal direction, g(2)(θ) = 1/2π

∫
dφ g(2)(Ω).

First we discuss the cases for the Laughlin, one quasiparticle, and two quasihole fillings
(see Fig. 4.9). When Q = QLN, the spectrum for all particle numbers is characterized
by a dispersive low energy branch of quasiparticles on top of the Laughlin state, for both
attractive and repulsive interactions. This branch correspond to the dressing of the exciton
with magnetorotons, and is also obtained in the context of magnetoexcitons in GaAs [82].
For increasing J , the lower branch splits into closely spaced eigenstates, suggesting that this
branch acquires a finite lifetime with increasing total momentum in the thermodynamic
limit. For the J values considered here, the gap to the higher excited states remains open,
while its magnitude decreases. For the purpose of visibility, the energies in the repulsive
and attractive cases are shifted to the right and left, respectively.
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Figure 4.12: Same as Fig. 4.9, but for a magnetic monopole Q=QLN+1/2, corresponding to
a single quasiholes on top of the Laughlin state. For attractive interactions, clear signatures
of bound state formation does not appear, while for repulsive interactions, for all particle
numbers, two gapped non-degenerate states appear as the lowest energy states for all the
angular momenta J = 0 − 4 for even particle numbers and J = 0.5 − 4.5 for odd particle
numbers. The ground state particle is marked by dark green, the first gapped excited
state by pink, and the second excited state which occurs at the onset of the continuum in
purple. The ground state of the system occurs at J=N/2 for all the particle numbers (the
difference is not visible in the case of N=7), corresponding to the total angular momentum
sector at which the quasihole occurs.

The next filling factor corresponds to the two quasihole case, where the FQH system
contains two additional flux quanta. The spectrum in this case is depicted in Fig. 4.10. In
the absence of the exciton, the lowest energy eigenstates of the two quasihole system occur
at total angular momenta L = N,N−2, N−4, · · · [94]. This is because the two quasiholes
are indistinguishable particles that can be both bosons or fermions (note that all loops on
a sphere are contractible). The gap of two quasihole states with definite relative and total
angular momenta to their excited states is much smaller, and the number of states in the
low energy manifold comprised by these states are larger. This leads to a stronger mixing
of these states when the mobile exciton is added to the system, resulting in a featureless
pattern of excitations, for both attractive and repulsive interactions.

The case corresponding to the single quasiparticle also shows no well-defined gap in
the low energy spectrum, as depicted in Fig. 4.11. In this case, instead of binding to a
quasiparticle, we find that the density distribution around the exciton more resembles the
one for a excited state of the FQH higher than the quasipartile, that has higher density at
the position of the exciton, see Fig. 4.13.
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More interesting than the above cases is the exciton-FQH spectrum at a single quasihole,
depicted in Fig. 4.12. In this case, we consistently find the signatures of two non-degenerate
bound states below the continuum for repulsive interactions, for electron numbers N = 4
to N = 7 . The first bound state (shown in dark green in Fig. 4.12) acquires its minimum
energy at J=N/2, corresponding to the angular momentum at which the quasihole forms
the gapped ground state manifold of the system. The second bound state (shown in pink
in Fig. 4.12) also shows a similar behavior as a function of the total angular momentum
of the system. The second excited state (shown in purple in Fig. 4.12), marks the onset of
the continuous spectrum. The energy gaps of these states are also depicted in Fig. 4.14 as
a function of 1/N , for various values of the angular momenta. We observe that both gaps
show a saturation behavior with respect to 1/N , suggesting that they go to a finite value
in the thermodynamic limit. Furthermore, both of the gaps have a value ∼ 0.009EC . For
EC ≃ 49.9 meV at B = 16T , this gap is around 0.45 meV, which can be observed in the
experiments.

Having found the peculiar emergence of these states, we try to gain more insight into
their structure. To this end, we evaluate the g(2)(θ) function associated to these states and
few higher excitations, depicted in Figs. 4.15, 4.16 and 4.17. The excellent agreement of
the g(2)(θ) function of the ground state to the single quasihole state strongly suggests that
this state is the exciton-quasihole bound state we were after, that is the anyonic trion.
The structure of the g(2) function also does not depend on J , suggesting that this state is
robust even when the kinetic energy of the exciton is increased.

The g(2) function of the first excited state (the second bound state) shows very similar
signatures as the ground state one. However, it is notable in Fig. 4.16 that the electron
density does not vanish entirely at the origin. The non vanishing electron density at the
origin further increases with J , which is a feature different than the ground state.

The g(2) function of the second excited state again shows a marked difference compared
to the above to situations. Importantly, as strong density fluctuation is observed with a
strong density increase at the exciton density, consistent with the higher energy of this
state compared to the two bound states.

One might ask the question: why there are only two bound states arising in the spec-
trum, and not more? While we do not have a full answer to this questions, we can obtain
some insight on the composition of different states constituting the two bound states. To
this end, we compared the excitation spectrum of the system without any exciton, to the
one containing a single immobile exciton, a situation which is experimentally relevant for
the setting of a Quantum Optical Twist and Scan Microscope (QOTSM). Fig. 4.18 de-
picts this comparison. In panel (a), the spectrum of the FQH system for N = 7 electrons
containing one quasihole in the form of an additional flux quantum is depicted in black
lines, together with the spectrum with a single exciton localized around r0 = R ez in red
circles. The three visible gaps in the FQH spectrum are also highlighted. It is evident that
the presence of the localized exciton potential singles out the quasihole localized around
the exciton, and the rest of the states in the degenerate quasihole manifold are raised in
energy, forming a band akin to a magnetoroton branch. All these states still remain in the
quasihole gap, with a non-vanishing gap to the higher excited states. This behavior also
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Figure 4.13: The exciton-electron g(2)(θ) function, marked by the blue line, for the case of
a mobile exciton, calculated using Eq. 4.73, for N = 7 electrons at a single quasiparticle
filling. The exciton-electron interaction is attractive, i = 1 indicates that the g(2) belongs
to the ground state, and M∞ = 0 indicates that the exciton is mobile. (a)-(c) are the g(2)

values for J = 1.5−4.5, respectively. For comparison, The g(2) function for the quasiparticle
localized around r0 in a FQH with no impurity is also depicted by green dashed-dotted
line. However, the g(2) function of the interacting system more resembles the one of an
excited state of the FQH system, which has higher magnitude around the impurity. The
g(2) function of the non-interacting state (mobile exciton with no interaction with the FQH
system) is also depicted.

persists for N = 8 particles, depicted in panel (b) of Fig. 4.18. This fact suggests that, if
the exciton kinetic term, present in ĤLLP in Equation. 4.64, is turned on, the only relevant
states that mix and contribute to the structure of the low energy parts of the spectrum, are
first, the quasihole state localized on the north pole, and second, the magnetoroton branch.
In Fig. 4.19, we compare the lowest part of the full interacting system (with the same color
code as the one in Fig. 4.12) to the energies depicted in Fig. 4.18. As it is observed, the
energies of the two bound states lie very close to the bottom of the magnetoroton branch
for all values of J = 1.5 − 4.5, with the ground state lying slightly lower in energy. This
observation suggests that these two states are composed of a coherent superposition of the
two aforementioned classes of low energy states corresponding to the immobile exciton,
and this superposition is formed in a way that the states destructively interfere to reduce
their repulsive energy at the exciton position, leading to the emergence of the two bound
states.
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Figure 4.14: Scaling of the first gap (energy difference between the green and pink states
in Fig. 4.12) and the second gap (energy difference between the pink and the purple states
in Fig. 4.12) as a function of 1/N for N = 5, 6, 7. The scaling suggests that the first gap
saturates to an energy ∼ 0.009EC , which at B = 16T is ∼ 0.45 meV.

4.8 Conclusion and Outlook
In this chapter, we considered the problem of exciton-electron interaction in the quantum
Hall regime in a vdW heterostructure consisting of a TMD heterobilayer in the proximity
of a monolayer graphene. We discussed the few- and many-body aspects of the problem,
and argued that in the quantum Hall regime, the physics is even richer than the setting in
the absence of the magnetic field. In the few-body limit of an interlayer exciton interacting
attractively with a single charge carrier in graphene, we found the emergence of a magnetic
trion even at magnetic fields B ≃ 1T , forming from 1s excitons scattering off the carrier
in the lowest Landau level. In the many-body limit, when a single quasiparticle is present
in a fractional quantum Hall system at ν = 1/3, we demonstrated the emergence of two
bound states, where the lower energy bound state can be identified as an anyonic trion
which inherits the fractional charge and statistics of the bound quasihole. In the limit of a
localized impurity, we found that the exciton potential also can bind the quasihole, leading
to a sizable gap to the magnetoroton excitations ∼ 0.054EC .

The results in this section indicate that having spatial control over the position of a
quasihole excitation by optical means is now within experimental reach. Furthermore,
realization of ground state excitons, as for instance observed in excitonic insulators in the
experiments of Ref. [138], in the setup described in the chapter, can enable the realization
of long lifetime excitons. Binding quasiholes to such long lifetime excitons can enable
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Figure 4.15: The exciton-electron g(2)(θ) function, marked by the blue line, for the case of
a mobile exciton, calculated using Eq. 4.73, for N=7 electrons at a single quasihole filling.
The exciton-electron interaction is repulsive, i = 1 indicates that the g(2) belongs to the
ground state (dark green state in Fig. 4.12), and M∞ = 0 indicates that the exciton is
mobile. (a)-(c) are the g(2) values for J = 1.5 − 4.5, respectively. For comparison, The g(2)

function for the quasihole localized around r0 in a FQH with no impurity is also depicted
by green dashed-dotted line. The g(2) function of the non-interacting state (mobile exciton
with no interaction with the FQH system) is also depicted.

moving the quasiholes across the sample and even perform braiding.
Another exciting direction that our work suggests is to investigate exciton polaron

formation in other quantum Hall systems such as twisted MoTe2 moire structures, where
formation of fractional Chern insulators have been experimentally observed [226].
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Figure 4.16: Same as Fig. 4.15, but for the first excited state (the state denoted by pink
in Fig. 4.12).
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Figure 4.17: Same as Fig. 4.15, but for the second excited state (the onset of the continuum,
the state denoted by purple in Fig. 4.12).
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Figure 4.18: Comparison of the energy of levels of the FQH system as a function of the
total Lz at the magnetic monopole corresponding to a single quasihole in the presence and
absence of a localized exciton at r0 = R ez , for N=7 (a) and N=8 particles. The energy
levels in the absence of the exciton are depicted by horizontal lines, whereas the energies in
the presence of the localized exciton are marked with red circles. Three visible gaps in the
FQH spectrum are highlighted. For both cases, the presence of the exciton gaps out the
quasihole state at Lz = −N/2 localized around r0 . The degeneracy of the other quasihole
states are lifted, and a spectrum akin to magnetorotons appear, with a well-defined gap to
the higher excited states. The magnetoroton branch still lies in the original quasihole gap.
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Figure 4.19: Same as Fig. 4.18, but for N = 7. The lowest energy states of the full
interacting Hamiltonian for a mobile exciton is also shown. The green, pink and purple
lines show the energies of the states with the same color code as in Fig. 4.12, while the
higher excited states are shown in blue dotted lines.
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Chapter 5

Conclusion and outlook

Without repeating the summary of the work done in this thesis - which has already been
stated many times in different parts of this thesis - we outline several possible extensions
of the works.

An interesting avenue to pursue in the study of topological nonlinear phenomena is
the study of multi-component solitons. In the context of the multi-component solitons,
different components can experience bands with different Chern numbers. The implication
of the band structure topology and pseudo spin degrees of freedom can lead to non-trivial
pseudo spin structures of the solitons. It would be interesting to classify various types of
solitons that potentially can arise in systems governed by multi-component (D)NLS equa-
tions. Another research area is to find genuine topological indices which can characterize
solitons of nonlinear models. In this direction, a direct generalization of the application of
Wannier functions used in this work is to construct nonlinear models which are topologi-
cally trivial in terms of basis functions which do not possess all the properties of Wannier
functions, but nevertheless undergo spectral flow by changing a system parameter period-
ically, for instance Landau levels in two dimensions. Thus, this construction can enable
the generalization of the above framework to topological models in dimensions higher than
one.

In the direction of strong coupling Bose polarons, development of novel spectroscopy
technics that can resolve the many-body bound states would be of great interest. This
many-body bound states have been predicted in various non-interating models, however,
their interplay with higher few-body states such as cluster or Efimov type states are not
known. It would also be interesting to apply the current framework to calculate other
quasiparticle properties of these states, such as lifetime and decay rate, or dressing by
phonons. Including few-body physics into the proposed variational ansatz is also possible
if the coherent state ansatz is promoted to Gaussian states or truncated basis states.

Regarding the exciton-fractional quantum Hall systems, an interesting extension is to go
beyond the single exciton regime and explore situations where excitonic many-body states
play a role. This setting is particularly interesting in the context of proximity induced
effects, where, for instance, an excitonic insulator in the proximity of a fractional quantum
Hall can induce anyonic condensation or further exotic states. All in all, driving the
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current hybrid exciton-electron systems in semiconductor structures deep into the quantum
Hall regime and investigate the physics of quantum Hall Bose-Fermi mixtures can attract
attention both in the community of solid state physics and cold atomic gases.



Appendix A

Connection of the bound Bogoliubov
mode to the bare impurity-boson
bound state

Here we try to find the bound state of the quadratic Hamiltonian Eq. 3.14. As mentioned
in the text, the exact excitation spectrum of the system is determined by finding φ0,x

and S0,xy such that ζ[Φ0,Γ0] = 0 and S†
0HMF[Φ0,Γ0]S0 = I2 ⊗D, while fulfilling 2Γ0 + I =

S0S
†
0. The self-consistent solution can be obtained iteratively, starting from an unperturbed

weakly-interacting Bose gas φi=0
x = √

n0 and Si=0 = I as initial guess. At each step,
the updated condensate field Φi+1

x = (φi+1
x , φi+1∗

x )T satisfies ζ[Φi+1,Γi] = 0, and Si+1

diagonalizes HMF[Φi,Γi], giving the updated covariance matrix Γi+1. Iterations are then
carried out until convergence.

In the first iteration, the quadratic Hamiltonian is

Ĥ i=0
2 = 1

2 :
∫

k

(
δϕ̂†

k δϕ̂−k

)
HBog(k)

(
δϕ̂k

δϕ̂†
−k

)
:

+1
2 :

∫
k,k′

(
δϕ̂†

k′ δϕ̂−k′

)
ṼIB(k′ − k) I2×2

(
δϕ̂k

δϕ̂†
−k

)
: ,

(A.1)

where HBog(k) is the standard Bogoliubov Hamiltonian

HBog(k) =
(
ϵk + n0UBB(k) n0UBB(k)
n0UBB(k) ϵk + n0UBB(k)

)
, (A.2)

with ϵk = ℏ2k2/2mred, and ṼIB(k) is the Fourier transform of VIB(x). HBog(k) is diagonal-
ized by the matrix Sk given by

Sk =
(
uk −vk

−vk uk

)
(A.3)
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bound state

where uk = cosh(θk), vk = sinh(θk), and tanh(2θk) = n0UBB(k)/
(
ϵk + n0UBB(k)

)
. Diago-

nalization by Sk leads to the Bogoliubov dispersion relation

εk =
√
ϵk
(
ϵk + 2n0UBB(k)

)
. (A.4)

The bound state of the Hamiltonian in Eq. A.1 is obtained from(
ϵk + n0UBB(k) n0UBB(k)
n0UBB(k) ϵk + n0UBB(k)

)(
uB,k
vB,k

)
+
∫

k′
ṼIB(k − k′)

(
uB,k′

vB,k′

)
= −εB

(
uB,k
vB,k

)
.

(A.5)

Formally solving for vB,k in Eq. A.5 results in

vB,k =
∫

k′
G(−εB)kk′ n0UBB(k′)uB,k′ , (A.6)

where G−1(E)kk′ =
(
E−ϵk −n0UBB(k)

)
δ(d)(k−k′)− ṼIB(k−k′). Inserting vB,k of Eq. A.6

back in the equation satisfied by uB,k results in

(
ϵk + n0UBB(k)

)
uB,k +

∫
k′
ṼIB(k − k′)uB,k′

+ n0UBB(k)
∫

k′
G(−εB)kk′ n0UBB(k′)uB,k′ = −εB uB,k .

(A.7)

Applying standard perturbation theory to Eq. A.7 in the regime n0UBB(0) ≪ εB, uB,k is
obtained as the bound state of −ℏ2∇2/2mred+VIB(x) up to corrections of O(n0UBB(0)/εB).
Thus, to leading order in n0UBB(0)/εB, uB,x = ηx and vB,x = 0.



Appendix B

Explicit form of variational equations

In this appendix, for the sake of completeness, we first derive the general form of variational
equations in 3.44 for the case Γ = 0. Then we specialize the variational equations solved to
obtain the variational states and energies of the many-body bound states presented in this
work. The coherent state αx satisfies the following nonlinear integro-differential equation

[
h0 +

∫
x′
UBB(x − x′)|φrep,x′ |2

]
αx +

∫
x′
UBB(x − x′)φ∗

rep,xφrep,x′ αx′

+
∫

x′
UBB(x − x′)φrep,x′φrep,x α

∗
x′

+
∫

x′
UBB(x − x′)

[
φ̃∗

x′φ̃x − φ∗
rep,x′φrep,x + ∆⟨: ϕ̂(B)†

x′ ϕ̂(B)
x :⟩

]
αx′

+
∫

x′
UBB(x − x′)

[
|φ̃x′ |2 − |φ∗

rep,x′|2 + ∆⟨: ϕ̂(B)†
x′ ϕ̂

(B)
x′ :⟩

]
αx

+
∫

x′
UBB(x − x′)

[
φ̃x′φ̃x − φrep,x′φrep,x + ∆⟨: ϕ̂(B)

x′ ϕ̂(B)
x :⟩

]
α∗

x′

+
∫

x′
UBB(x − x′)φ̃x α

∗
x′αx′ +

∫
x′
UBB(x − x′)φ̃x′ α∗

x′αx

+
∫

x′
UBB(x − x′)φ̃∗

x′ αx′αx +
∫

x′
UBB(x − x′)α∗

x′αx′αx

+
∫

x′
UBB(x − x′)φrep,x ⟨: ϕ̂(B)†

x′ ϕ̂
(B)
x′ :⟩ +

∫
x′
UBB(x − x′)φrep,x′ ⟨: ϕ̂(B)†

x′ ϕ̂(B)
x :⟩

+
∫

x′
UBB(x − x′)φ∗

rep,x′ ⟨: ϕ̂(B)
x ϕ̂

(B)
x′ :⟩ +

∫
x′
UBB(x − x′) ⟨: ϕ̂(B)†

x′ ϕ̂
(B)
x′ ϕ̂(B)

x :⟩

+
[
h0 +

∫
x′
UBB(x − x′)|φrep,x′|2

]
⟨ϕ̂(B)

x′ ⟩ +
∫

x′
UBB(x − x′)φ∗

rep,xφrep,x′ ⟨ϕ̂(B)
x′ ⟩

+
∫

x′
UBB(x − x′)φrep,x′φrep,x⟨ϕ̂(B)†

x′ ⟩ − λuB,x + λ∗vB,x = 0 ,

(B.1)

where φ̃x = φrep,x + ⟨ϕ̂(B)
x ⟩, ∆⟨: ϕ̂(B)(†)

x ϕ̂(B)
y :⟩ = ⟨: ϕ̂(B)(†)

x ϕ̂(B)
y :⟩ − ⟨ϕ̂(B)(†)

x ⟩⟨ϕ̂(B)
y ⟩, and the

expectation value ⟨· · · ⟩ is taken over
∣∣∣ψ(B)

〉
. The states

∣∣∣ψ(B)
〉
, respectively, the energies
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of the metastbale states are the eigenstates, respectively, eigen energies of

Ĥeff,B =
∑

n,m=0
Ĥn,m[α∗

x, αx] b̂†nb̂m , (B.2)

in the Fock space of b̂, determined by exact diagonalization. The explicit eigenvalue prob-
lem is

∑
l

2∑
n,m=0

Ĥn,m[α∗
x, αx] ⟨k| b̂†nb̂m |l⟩ψl = E ψk , (B.3)

where E is the energy of the many-body bound state
∣∣∣ψ(B)

〉
= ∑

n ψn |n⟩B.
By applying the assumptions and approximations we made in this work, the equation

B.1 satisfied by αx reduces to the following simplified equation

[
h0 + 3U0φ̃

2
x + 2U0η

2
x∆⟨b̂†b̂⟩ + η2

x∆⟨b̂2⟩
]
αx + 3U0 φ̃x α

2
x + U0 α

3
x + 2U0φrep,x η

2
x⟨b̂†b̂⟩

+ U0φrep,x η
2
x⟨b̂2⟩ + U0 η

3
x⟨b̂†b̂2⟩ +

[
h0 + 2U0φ

2
rep,x⟨b̂⟩ + U0 φ

2
rep,x⟨b̂†⟩

]
ηx − ληx = 0 .

(B.4)

In Eq. B.4, we made use of the fact that αx can be taken to be real, αx = α∗
x.
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Charged particle in magnetic field

C.1 Free charged particle in a uniform magnetic field
We consider a free particle with charge q and mass m confined in a two dimensional
surface and moving in the background of a uniform magnetic field B = B n, where B is
the magnetic flux density and n is the normal to the surface. It is convenient to express
relevant quantities in terms of the natural units of the system, which are listed in the
table C.1. The Hamiltonian is

Ĥ0[Aa] = −1
2

(
∇ − iςAa(x̂)

)2
, (C.1)

where Aa(x) is the vector potential in gauge a corresponding to the background magnetic
field, ∇ × Aa(x) = B, and ς = sgn(qB). Upon a gauge transformation from a to b, the
vector potential transforms as Ab(x) = Aa(x) + ∇Λa→b(x). The wavefunctions transform
as ψb(x) = eiΛa→b ψa(x), and the Hamiltonian transforms as

Ĥ0[Aa]ψa(x) = Ĥ0[Aa] eiΛb→a ψb(x) = eiΛb→aĤ0[Aa − ∇Λb→a]ψb(x) = eiΛb→aĤ0[Ab]ψb ,
(C.2)

which results in the well-known transformation law for Hamiltonian,

Ĥ0[Aa] = eiΛb→a Ĥ0[Ab] e−iΛb→a . (C.3)

A note on the orientation convention. Because of the dependence of cyclotron
orbits to the sign of the charge, it is important to fix the convention for the orientation
of the magnetic field, the particle charge and other quantities in the system. We fix the
normal to the surface n and choose two orthonormal in-plane directions x and y such that
(x,y,n) form a right-handed frame. There are four different possibilities for the magnetic
field direction and charge sign as listed below,

• ς = sgn(qB) > 0: z = (x+ iy)/
√

2 is the natural complex variable.

• ς = sgn(qB) < 0: z = (x− iy)/
√

2 is the natural complex variable.

In the following, we obtain the Landau level spectrum in different gauges and geometries.
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length momentum frequency energy flux vector po-
tential

unit lB pB ωB ℏωB Φ0 2πlB/Φ0

name magnetic
length

− cyclotron
frequency

cyclotron
energy

flux
quan-
tum

−

definition
√
ℏ/mωB ℏ/lB |qB|/mc ℏωB hc/|q| 2πlB/Φ0

Table C.1: Natural units of the free charged particle in a uniform magnetic field.

C.1.1 Gauge invariant formulation of Landau levels
In this section, general relations and properties for the single particle system of a charged
particle in a magnetic field are given. To this end, it is convenient to introduce the kinetic
momentum operator Π̂ = p̂−ςA(x̂) and the magnetic momentum operator Γ̂ = p̂−ςA(x̂)+
ςn×x where n = B/|B| and we define the symmetric gauge as Asym(x) = (1/2) n×x. The
commutation relations between different components of kinetic and magnetic momenta are

[Π̂i, Π̂j] = ς · i εijk nk , (C.4)

[Π̂i, Γ̂j] = 0 , (C.5)

[Γ̂i, Γ̂j] = ς · (−i)εijk nk , (C.6)

[Π̂i, Âsym j] = ς ·
(

− i

2

)
εijk nk . (C.7)

Interpretation of magnetic momentum in terms of guiding center of mass
coordinates The equations of motion of the classical system of a free charged particle in
a magnetic field is derived from the following Lagrangian

L(x, ẋ) = m

2 ẋ2 + q

c
A(x) · ẋ , (C.8)

from which the conjugate momentum p = ∂L/∂ẋ reads as

p = mẋ + q

c
A(x) . (C.9)

From Eq. C.9 and the definition of kinetic momentum, it is clear that π = mẋ . The
classical equations of motion follows from Euler-Lagrange equations 1

mẍ = q

c
ẋ × B . (C.10)

1Alternatively, the EOM can be obtained from Hamilton equations, although they look more involved.
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Using Eq. C.10 and the definition of kinetic momentum,

d

dt

(
p − q

c
A(x) − q

c
x × B

)
= 0 , (C.11)

which leads to the definition of magnetic momentum γ = p− q
c

A(x)+ q
c

B×x as a constant
of motion, i.e.

γ̇ = d

dt

(
p − q/cA(x) + q/cB × x

)
= 0 . (C.12)

We can gain further insight into the meaning of this definition by noting that the classical
equation of motion imply the following time dependence for the particle position

x(t) = x0 + r(t) , (C.13)

such that
mω × (ω × r) = q

c
ṙ × B , (C.14)

with ω = −ωB n. Thus sr × n = ṙ/ωB, or equivalently r = ςn × ṙ/ωB. From Eq. C.13 we
obtain the relation between the magnetic momentum and the center of orbit as

γ = ςmωBn×
(
x(t) − r(t)

)
= ςmωBn×x0 . (C.15)

Eq. C.15 establishes the relation between the magnetic momentum γ and the center of
orbit - or the guiding center - as γ = ςmωBn×x0.

Going back to the discussion on gauge invariant single particle properties of the system,
the commutation relations in Eqs. C.4, C.5 and C.6 can be expressed in a more clear form.
We note that iεijk nk = −(σy )ij where σy is the y−Pauli matrix. By diagonalizing σy,

ςσy = Uς ςDy U
†
ς

Uς = 1√
2

(
1 1
iς −iς

)
, Dy =

(
1 0
0 −1

)
, U † = 1√

2

(
1 −iς
1 iς

)
,

(C.16)

we can arrange Π̂i and Γ̂i operators in a matrix and define(
Π̂−,ς

Π̂+,ς

)
= U †

ς

(
Π̂1

Π̂2

)
=
(

(Π̂1 − iςΠ̂2)/
√

2
(Π̂1 + iςΠ̂2)/

√
2

)
,

(
Γ̂−,ς

Γ̂+,ς

)
= U †

ς

(
Γ̂1

Γ̂2

)
=
(

(Γ̂1 − iςΓ̂2)/
√

2
(Γ̂1 + iςΓ̂2)/

√
2

)
.

(C.17)
Thus,

(−ςσy)
(

Π̂1

Π̂2

)
= Uς (−Dy)U †

ς Uς

(
Π̂−,ς

Π̂+,ς

)
= Uς

(
−ςΠ̂−,ς

ςΠ̂+,ς

)
, (C.18)

and the same transformation rules hold for Γ̂i’s. The commutation relations C.4 to C.6
now reads

[ Π̂+,ς , Π̂−,ς ] = [ Γ̂−,ς , Γ̂+,ς ] = 1
[ Π̂±,ς , Γ̂±,ς ] = 0 .

(C.19)
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Furthermore, we have
Π̂−,ς = Π̂†

+,ς , Γ̂+,ς = Γ̂†
−,ς . (C.20)

We consider the case of positive and negative charge separately.
• ς > 0: We readily observe the correspondence Π̂1 7−→ X̂, Π̂2 7−→ P̂ thus Π̂1 and

Π̂2 constitute a pair of canonically conjugate variables - this statement also holds for
the classical mechanics of a charged particle in a magnetic field. Moreover, Π̂+ and
Π̂− serve as annihilation, respectively, creation operator associated to Π̂1 and Π̂2,

â ≡ iΠ̂+ = i
Π̂1 + iΠ̂2√

2
, â† ≡ −iΠ̂− = −iΠ̂1 − iΠ̂2√

2
. (C.21)

Interestingly, we can express the Hamiltonian Ĥ = −1/2 (∇ − iA(x) )2 in terms of â
and â†,

Ĥ = 1
2
(
Π̂2

1 + Π̂2
2

)
= Π̂−Π̂+ + 1

2 = â†â+ 1
2 , (C.22)

which gives the Landau level structure. We can construct creation and annihilation
operators corresponding to Γ̂1 and Γ̂2 accordingly

b̂ ≡ iΓ̂− = i
Γ̂1 − iΓ̂2√

2
, b̂† ≡ −iΓ̂+ = −i Γ̂1 + iΓ̂2√

2
, (C.23)

which gives the guiding-center degeneracy. Hereafter, we make extensive use of the
results in Eqs. C.19, C.20, C.22, and C.27. We note that, the interpretation of Π̂±
and Γ̂± in terms of creation and annihilation operators are quite general and works
in any gauge. The Landau levels then are the harmonic oscillator states created by
â† and b̂†,

|n,m⟩ = (â†)n(b̂†)m

√
n!m!

|0, 0⟩ . (C.24)

• ς < 0: In this case, Π̂1 7−→ P̂ , Π̂2 7−→ X̂. The role of Π̂+ and Π̂− as creation
and annihilation operators is now changed compared to the positively charged case,
meaning that

â† ≡ −iΠ̂+ = −iΠ̂1 + iΠ̂2√
2

, â ≡ iΠ̂− = i
Π̂1 − iΠ̂2√

2
. (C.25)

the Hamiltonian is now

Ĥ = 1
2
(
Π̂2

1 + Π̂2
2

)
= Π̂+Π̂− + 1

2 = â†â+ 1
2 , (C.26)

which gives the Landau level structure. We can construct creation and annihilation
operators corresponding to Γ̂1 and Γ̂2 accordingly,

b̂† ≡ −iΓ̂− = −i Γ̂1 − iΓ̂2√
2

, b̂ ≡ iΓ̂+ = i
Γ̂1 + iΓ̂2√

2
, (C.27)

In the following, we look into the Landau level structure in different gauges in more
details.
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C.2 Landau levels in the symmetric gauge
The symmetric gauge is suitable for studying geometries with rotational symmetry, e.g.
spherical, disk, and corbino geometry. Below we will outline the description of the system
in symmetric gauge.

C.2.1 General theory
The vector potential in symmetric gauge is Asym(x)=1/2 n×x. When rotational symmetry
is present, it is convenient to use complex variables

zς = x+ iςy√
2

, z̄ς = x− iςy√
2

. (C.28)

The inverse transformations reads as

x = zς + z̄ς√
2

, y = ς(zς − z̄ς)
i
√

2
. (C.29)

In the complex coordinates, the position vector takes the form

x = x x̂ + y ŷ = zς

( x̂ − iςŷ√
2

)
+ z̄ς

( x̂ + iςŷ√
2

)
= zς ϵ̂+,ς + z̄ς ϵ̂−,ς , (C.30)

so zς and z̄ς correspond to circular polarizations +, ς and −, ς ,

ϵ̂+,ς = x̂ − iςŷ√
2

, ϵ̂−,ς = x̂ + iςŷ√
2

, (C.31)

with the inverse relations

x̂ = 1√
2
(
ϵ̂+,ς + ϵ̂−,ς

)
, ŷ = iς√

2
(
ϵ̂+,ς − ϵ̂−,ς

)
. (C.32)

We have the following orthogonality relations for ϵ̂+,ς and ϵ̂−,ς ,

ϵ̂∗
+,ς = ϵ̂−,ς , ϵ̂∗

+,ς · ϵ̂+,ς = ϵ̂∗
−,ς · ϵ̂−,ς = 1 , ϵ̂∗

+,ς · ϵ̂−,ς = ϵ̂∗
−,ς · ϵ̂+,ς = 0 (C.33)

The derivatives with respect to zς and z̄ς and their inverses are as the following, ∂zς = ∂zςx ∂x + ∂zςy ∂y = 1√
2

(
∂x − iς∂y

)
,

∂z̄ς = ∂z̄ςx ∂x + ∂z̄ςy ∂y = 1√
2

(
∂x + iς∂y

)
,

(C.34)

with the inverse relations ∂x = ∂xzς ∂zς + ∂xz̄ς ∂z̄ς = 1√
2

(
∂zς + ∂z̄ς

)
,

∂y = ∂yzς ∂zς + ∂yz̄ς ∂z̄ς = iς√
2

(
∂zς − ∂z̄ς

)
.

(C.35)
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One can easily check that the following relations hold

zς
† = z̄ς , ∂†

z̄ς
= −∂zς ,

[ ∂zς , zς ] = [ ∂z̄ς , z̄ς ] = 1 , [ ∂zς , z̄ς ] = [ ∂z̄ς , zς ] = 0 .
(C.36)

Here for completeness, we derive the form of kinetic and magnetic momenta,

iΠ̂ = ∇ − iςA(x) = ϵ̂+,ς iΠ̂+,ς + ϵ̂−,ς iΠ̂−,ς , (C.37)

iΓ̂ = ∇ + iςA(x) = ϵ̂+,ς iΓ̂+,ς + ϵ̂−,ς iΓ̂−,ς . (C.38)

As before, we have the following hermitian conjugation relations for Π̂±,ς and Γ̂±,ς as well
as the definition of harmonic oscillator modes â and b̂,

Π̂†
+,ς = Π̂−,ς ,

Γ̂†
+,ς = Γ̂−,ς ,

(C.39)

âς ≡ iΠ̂+,ς , â†
ς ≡ −iΠ̂−,ς

b̂ς ≡ iΓ̂−,ς b̂†
ς ≡ −iΓ̂+,ς ,

(C.40)

with the following commutation relations

[ Π̂+,ς , Π̂−,ς ] = 1 ,
[ Π̂±,ς , Γ̂±,ς ] = 0 ,
[ Γ̂−,ς , Γ̂+,ς ] = 1 .

(C.41)

In terms of zς , z̄ς , ∂zς , ∂z̄ς ,

Π̂+,ς = −iâς = −i
(
∂z̄ς + zς/2

)
, Γ̂+,ς = ib̂†

ς = −i
(
∂z̄ς − zς/2

)
,

Π̂−,ς = iâ†
ς = −i

(
∂zς − z̄ς/2

)
, Γ̂−,ς = −ib̂ς = −i

(
∂zς + z̄ς/2

)
.

(C.42)

The normal angular momentum component L̂3 takes the following form

L̂3 = ς
(
zς∂zς − z̄ς∂z̄ς

)
= ς

(
b̂†b̂− â†â

)
, (C.43)

where we used the following relations

∇ = ϵ̂+,ς ∂z̄ς + ϵ̂−,ς ∂zς = ϵ̂∗
+,ς ∂zς + ϵ̂∗

−,ς ∂z̄ς ,

Asym(x) = i

2ς zς ϵ̂+,ς − i

2ς z̄ς ϵ̂−,ς

(C.44)

We expand the Hamiltonian in Eq. C.1 as

H = −1
2
(
∇2 − i2ςAsym(x) · ∇ − Asym(x)2

)
. (C.45)
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By making use of the following identities


∇2 = 2 ∂z̄ςzς ,

Asym(x)2 = z̄ςzς/2 ,
−i2 Asym(x) · ∇ = (−i) (x∂y − y∂x ) = L3 ,

L3 = ς
(
z∂z − z̄∂z̄

)
,

(C.46)

thus, the Hamiltonian in Eq. C.45

H = −1
2

(
2∂z̄ςzς − z̄ςzς/2 + ςL3

)
= −1

2

(
2∂z̄ςzς − z̄ςzς/2 + (zς∂zς − z̄ς∂z̄ς )

)
. (C.47)

Interestingly, the form of the Hamiltonian is invariant under the change of variables ς → −ς
and zς → z−ς . We further have

∂z̄z e
−α|z|2 = e−α|z|2

[
∂z̄z + α2z̄z − α ( z∂z + z̄∂z̄ ) − α

]
,

( z∂z − z̄∂z̄ ) e−α|z|2 = e−α|z|2 ( z∂z − z̄∂z̄ ) ,
(C.48)

Thus, for the action of the Hamiltonian on states in the lowest Landau level, we have

H e−α|z|2 = −1
2 e

−α|z|2
 2

[
∂z̄z + α2z̄z − α ( z∂z + z̄∂z̄ ) − α

]
− z̄z/2 + ς ( z∂z − z̄∂z̄ )


= e−α|z|2

{
H − α2z̄z + α(z∂z + z̄∂z̄) + α

}
(C.49)

for α = 1/2 , the above expression reduced to

H
(
e−|z|2/2 f(z)

)
= e−|z|2/2

(
− ∂z̄z + z̄∂z̄ + 1

2

)
f(z) = 1

2e
−|z|2/2 f(z) . (C.50)

Eq. C.50 means that the ground state of the Hamiltonian is of the form of a Gaussian
factor times a holomorphic function. The Landau levels in a symmetric gauge are

|n,m⟩ = N (sym)
n,m · zm−n

ς · e−r2/4 L(m−n)
n

(
r2

2

)
= N (sym)

n,m · zm−n
ς · e−|zς |2/2 L(m−n)

n

(
|zς |2

)
,

(C.51)

where the normalization factor N (sym)
n,m is

N (sym)
n,m = (−1)n

√
n!√

2πm!
. (C.52)
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C.3 Haldane Pseudopotentials
In order to quantify two-body interactions in the lowest Landau level, it is instructive to
consider the two-body scattering problem in a magnetic field. To this end, consider the
following Hamiltonian,

H = 1
2 Π2

1 + 1
2 Π2

2 + V
(
|x1 − x2|

)
, (C.53)

As in the previous section, the complex coordinates for the particles are zς1,1 and zς2,2,
where the helicities ς1 and ς2 can in principle be different, but since the final form of
the Hamiltonian is independent of the helicity, we hereby drop the indices ς1 and ς2. We
transform to the center-of-mass and relative coordinatesZ =

(
z1 + z2

)
/2 , z = z1 − z2 ,

z1 = Z + z/2 , z2 = Z − z/2 ,
(C.54)

where the Jacobian of the transformation is unity. The corresponding transformation rules
for the derivatives read as ∂z1 = ∂z1Z ∂Z + ∂z1z ∂z = (1/2)∂Z + ∂z ,

∂z2 = ∂z2Z∂Z + ∂z2z ∂z = (1/2)∂Z − ∂z ,
(C.55)

The kinetic term in the Hamiltonian for general degree of freedoms x and y, (1/2)Π2 can
be written in terms of complex coordinates as

1
2 Π2 = −∂z̄z + z̄z

4 − 1
2
(
z∂z − z̄∂z̄

)
, (C.56)

thus, the kinetic part of the Hamiltonian can be factored into a center-of-mass and a
relative coordinate contribution,

H
(CM)
0 = −1

2∂Z̄Z + 2Z̄Z
4 − 1

2
(
Z∂Z − Z̄∂Z̄

)
,

H
(rel)
0 = −2∂z̄z + 1

4

(
z̄z

2

)
− 1

2
(
z∂z − z̄∂z̄

)
,

(C.57)

the lowest Landau level wavefunction with M = 0, m = 0 reads as

|m1 = 0,m2 = 0⟩ = |M = 0,m = 0⟩ = 1
√

2π2 e
−
(

|z1|2+|z2|2
)

/2 = 1
√

2π2 e
−
(

2|Z|2+(1/2)|z|2
)
,

(C.58)
and the creation operator for the center-of-mass and relative angular momenta reads as

B† = 1√
2

(
− ∂Z̄ + Z

)
, b† = 1√

2

(
− 2∂z̄ + z

2

)
, (C.59)
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and the states with total angular momentum M and relative angular momentum m can
be constructed by applying B† and b† operators consecutively on the state in Eq. C.58,

|M,m⟩ = B†Mb†m

√
M !

√
m!

|0, 0⟩ = 1
2M/2

√
2πM !

(
2Z
)M

e−|Z|2 · 1
2m/2

√
2πm!

(z)m e−|z|2/4 . (C.60)

For defining Haldane pseudopotentials, we need the following overlaps

⟨m1,m2|M,m⟩ = (−1)m−m1 2−(M+m)/2
(
m1!m2!
M !m!

)1/2
 M∑

k=0
(−1)k

(
M

k

)(
m

m1 − k

) δM+m,m1+m2 .

(C.61)
Matrix elements of a central potential ⟨m3,m4|V (r) |m1,m2⟩ only depends on the relative
angular momentum index m. Furthermore, V (r) conserves the total angular momentum
and relative angular momentum, thus

⟨M ′,m′|V (r) |M,m⟩ = δM ′Mδm′m ⟨m′|V (r) |m⟩ , (C.62)

thus the potential operator is

V =
∑

M ′,M

∑
m′,m

⟨M ′,m′|V |M,m⟩ |M ′,m′⟩⟨M,m|

=
∑
m

⟨m|V |m⟩
(∑

M

|M,m⟩⟨M,m|
)
,

=
∑
m

⟨m|V |m⟩Pm ,

(C.63)

where Pm is the projection operator on two-particle states with relative angular momenta
m. In terms of states |m1,m2⟩, its matrix elements read

⟨m3,m4|Pm |m1,m2⟩ =
∑
M

⟨m3,m4|M,m⟩ ⟨M,m|m1,m2⟩ , (C.64)

thus,

⟨m3,m4|V |m1,m2⟩ =
∑
m

Vm

(∑
M

⟨m3,m4|M,m⟩ ⟨M,m|m1,m2⟩
)
. (C.65)

C.4 Quantum Hall effect on spherical geometry
We consider a spherical surface with radius r enclosing a magnetic monopole located at
the origin. The magnetic flux density threading the sphere is

B = Φ
2r2 Ω , (C.66)

where Φ is the monopole total flux, and Ω is the radial unit vector. The vector potential
satisfies the equation

∇×A = Φ
2r2 Ω . (C.67)
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There are a number of gauge fixing choices, corresponding to different configuration of a
semi-infinite solenoid carrying the magnetic flux, as the following,

• Solenoid on z < 0 axis, axial vector potential A = AN
ϕ (θ)ϕ,

AN
ϕ (θ) = Φ

2r tan(θ/2) . (C.68)

• Solenoid on z > 0 axis, axial vector potential A = AS
ϕ(θ)ϕ,

AS
ϕ(θ) = − Φ

2r cot(θ/2) . (C.69)

• A solenoid carrying half of the flux on z > 0 axis and a solenoid carrying the other
half on z < 0 axis, axial vector potential A = Aϕ(θ)ϕ, Aϕ(θ) = 1/2(AN

ϕ (θ) +AS
ϕ(θ)),

Aϕ(θ) = − Φ
2r cot(θ) . (C.70)

We proceed with the last gauge choice. The covariant derivative D = ∇−iA(x) in spherical
coordinates reads as

D = ∇ − iA(x) = Ω ∂r + θ

r
∂θ + ϕ

r sin(θ)

(
∂ϕ + i

Φ
2 cos(θ)

)
. (C.71)

We define the orbital (kinetic) angular momentum Λ to be

Λ = x×(mẋ) = x×Π, (C.72)

for which the well-known expression for the magnitude of the angular momentum holds,

Λ2 = (x · x)(Π · Π) − (x · Π)2 + iℏ(x · Π) , (C.73)

resulting in the analoguous relation between Laplacian operator and total angular momen-
tum

Π2 = Λ2

r2 + (−iℏ)2 1
r2∂r

(
r2∂r

)
. (C.74)

In the spherical coordinates,

Λ = (−i)ϕ ∂θ − (−i)θ 1
sin(θ)

(
∂ϕ + i ςS cos(θ)

)
. (C.75)

It can be shown that for the quantum mechanical problem, [r2, H]=0, such that the radius
will remain constant and terms involving radial derivatives can be ignored (this is trivially
true for a particle confined on a sphere). Thus, the Hamiltonian can be rewritten in terms
of Λ,

H = 1
2mr2 Λ2 . (C.76)
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In spherical coordinates, Π2 explicitly reads

Π2 = (−iℏ)2
(
∇2 − i2 ςA · ∇ − A2

)
= (−iℏ)2

 1
r2∂r(r2∂r) + 1

r2 sin(θ)∂θ

(
sin(θ)∂θ

)
+ 1
r2 sin2(θ)

(
∂ϕ + i ς

Φ
2 cos(θ)

)2
 .
(C.77)

From Eq. C.77, we obtain the following expression for Λ2

Λ2 = (−iℏ)2

 1
sin(θ)∂θ

(
sin(θ)∂θ

)
+ 1

sin2(θ)

(
∂ϕ + i ς

Φ
2 cos(θ)

)2
 . (C.78)

From the theory of classical electrodynamics it is a known fact that the angular momentum
of a charged particle with charge q in a magnetic monopole with charge Q such that B=
(Q/r2)Ω is Lem =−(qQ/c)Ω. In the natural units, B=(Φ/2)Ω/r2 and Lem =−ς(Φ/2) Ω.
The total angular momentum of the system thus is L = Λ − ςSΩ, and is a constant of
motion. Here S=(Φ/2) is the spin of the charged particle. The usual angular momentum
commutation relations follows as

[Li, Lj] = iεijkLk , (C.79)

which is consistent with the following commutation relations for Λ components,

[Λi,Λj] = iεijk(Λk + ςS Ωk). (C.80)

in spherical coordinates,

L = −ςSΩ + (−i)ϕ ∂θ − (−i)θ 1
sin(θ)

(
∂ϕ + i ςS cos(θ)

)
, (C.81)

with the components

L3 = −i∂ϕ ,

L1 = −ςS cos(ϕ)
sin(θ) + isin(ϕ) ∂θ + icot(θ)cos(ϕ) ∂ϕ ,

L2 = −ςS sin(ϕ)
sin(θ) − icos(ϕ) ∂θ + icot(θ)sin(ϕ) ∂ϕ .

(C.82)

As usual, the raising and lowering operators L± = L1 ± iL2, as below

L± = e±iϕ

(
± ∂θ + icot(θ)∂ϕ − ς

S

sin(θ)

)
. (C.83)
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C.4.1 Spectrum of kinetic angular momentum
Eq. C.76 in dimensionless form H=(1/2r2)Λ2 indicates that the spectrum of Λ2 gives the
Landau levels. Given that L=Λ − ςSΩ and Λ · Ω = 0, we have

Λ2 = L2 − S2 . (C.84)

Since Li’s satisfy the angular momentum algebra, their representation exactly follows that
of the angular momentum algebra, i.e. there exists a set of basis functions YSlm(θ, ϕ) for
the functions on the unit sphere such thatL2 YSlm = l(l + 1)YSlm ,

L3 YSlm = mYSlm ,
(C.85)

where l = 0, 1/2, 1, 3/2, · · · and m = −l,−l + 1, · · · , l, and half-integer values of l are
also allowed, in contrast to the case of orbital angular momentum in the ordinary quantum
mechanics. To obtain the spectrum, we use the explicit representation of Λ2 in spherical co-
ordinates as in Eq. C.78, and assume a solution of the type YSlm(θ, ϕ) = eimϕPSlm

(
cos(θ)

)
,

where PSlm

(
cos(θ)

)
satisfies the following differential equation,

− 1
sin(θ)∂θ

(
sin(θ)∂θ PSlm

(
cos(θ)

))
+ 1

sin2(θ)

(
m2 + 2mςScos(θ) + S2 cos2(θ)

)
PSlm

(
cos(θ)

)
=
[
l(l + 1) − S2

]
PSlm

(
cos(θ)

)
.

(C.86)

Changing variable to x = cos(θ), Eq. C.86 takes the form{
− (1 − x2)d2

x + 2xdx + 1
(1 − x2)

(
m+ ςS x

)2
}
PSlm(x) =

[
l(l+ 1) − S2

]
PSlm(x) . (C.87)

To proceed, we use the following identities
dx Qab(x) = Qab(x)

 a−bx
(1−x2) + dx

 ,
d2

x Qab(x) = Qab(x)
 (a2−b)+[2a(1−b)]x+b(b−1)x2

(1−x2)2 + 2(a−bx)
(1−x2) dx + d2

x

 , (C.88)

where Qab(x) = (1 + x)a+b
2 (1 − x) b−a

2 . By defining RSlm(x) as PSlm(x) = Qab(x)RSlm(x),
Eq. C.87 reduces to{

(1 − x2)d2
x + 2[a− (b+ 1)x]dx − C(x)

(1 − x2)

}
RSlm(x) =

[
l(l + 1) − S2

]
RSlm , (C.89)
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where C(x) = (−a2 + b+m2) + 2
(
ab+ ςmS

)
x+

(
S2 − b(b+ 1)

)
x2. by setting b=m and

a=−ςS, Eq. C.89 reduces to{
(1 − x2)d2

x − 2
(
ςS + (m+ 1)x

)
dx −

(
m(m+ 1) − S2

)}
RSlm(x) =

[
− l(l+ 1) + S2

]
RSlm .

(C.90)
Eq. C.90 is a hypergeometric equation of the form

(1 − x2)y′′ +
(
β − α− (α + β + 2)x

)
y′ + n(n+ α + β + 1)y = 0 , (C.91)

with α=m + ςS, β=m − ςS and n= l − m. Eq. C.91 has jacobi polynomials Pα,β
n (x) as

its solutions, which are in the form

Pα,β
n (x) = (−1)n

2nn! (1 − x)−α(1 + x)−β dn

dxn

[
(1 − x)α+n(1 + x)β+n

]
= 1

2n

n∑
s=0

(−1)n−s

(
n+ α

s

)(
n+ β

n− s

)
(1 − x)n−s(1 + x)s .

(C.92)

Putting the pieces together, we obtain the following expression for the monopole harmonics
YSlm(θ, ϕ),

YSlm = NSlm · 2−m · eimϕ · (1 + x)m−ςS
2 (1 − x)m+ςS

2 · Pm+ςS,m−ςS
l−m (x) . (C.93)

with the normalization factor

NSlm =

√√√√2l + 1
4π

(l −m)!(l +m)!
(l − S)!(l + S)! . (C.94)

C.5 Disk Geometry
In this section we introduce another rotationally symmetric geometry in infinite two di-
mensional systems which is the disk geometry. The proper gauge for the disk geometry is
the symmetric gauge, whose properties where studied in details in previous sections. It is
relevant for experimental realizations of the FQHE systems to confine interacting particles
in optical traps, thus studying the properties of mobile particles in uniform gauge fields in
the presence of a harmonic trap is important. Due to cylindrical symmetry of these con-
figurations, the disk geometry is suitable to study these systems. To investigate the single
particle physics of a charged particle in a magnetic field confined in a harmonic potential,
we begin by the corresponding Hamiltonian, keeping all the dimensions of the quantities

H = 1
2m

(
− iℏ∇ − qB

c

1
2 n̂ × x

)2
+ 1

2mω
2
0r

2 . (C.95)

We note that, an alternative form of the single particle Hamiltonian in the symmetric
gauge, Eq. C.47 is

H = − ℏ2

2m∇2 − ςℏωB

2
Lz

ℏ
+ 1

2mω
2
B
r2

4 = −ℏωB

2

(
∇2 + ςLz

ℏ
− r2

4

)
, (C.96)
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Eq. C.97 can also be written in a suitable form to include the trapping term,

H = − ℏ2

2m∇2 − ςωB

2 Lz + 1
2m

(
ω2

B + 4ω2
0

)r2

4

=
[

− ℏ2

2m∇2 − ςΩC

2 Lz + 1
2mΩ2

C
r2

4

]
+ ς(ΩC − ωB)

2 Lz .
(C.97)

The Hamiltonian in Eq. C.97 has exactly the same eigenstates as the magnetic Hamiltonian
in the symmetric gauge, with the renormalized cyclotron frequency ΩC =

√
ω2

B + 4ω2
0.

C.6 Torus geometry
Although we do not use torus geometry for the purpose of calculations in this thesis, we
nevertheless explain it in details, since it is directly relevant for extensions of the work
performed in the last chater, especially for lattice systems such as moire fractional Chern
insulators in twisted MoTe2, and fractional Chern insulators in ultracold atomic systems.
Investigating the Landau level structure on a torus is also advantageous for several other
reasons. First, as a result of short-sightedness of spatial correlations in a FQHE system,
the physics in the thermodynamic limit is known to be well reproduced from small systems
confined to compact two dimensional surfaces. One way to realize the thermodynamic
limit of a finite system is to impose periodic boundary conditions, which effectively puts
the system on a torus. Torus geometry is also suitable to study currents since it allows
non-contractible loop, a property not present in disk or spherical geometry. Here we first
obtain the Landau levels of a particle for rectangular geometries, and then narrow down
to the periodic boundary conditions.

For rectangular geometries, it is convenient to work with Landau gauges AX(x) = −yex

and AY(x) = xey. In this gauges, the kinetic and magnetic momenta take the following
form, ΠX = p − ςAX = p + ςyex

ΓX = p + ςAY = p + ςxey

,

ΠY = p − ςAY = p − ςxey

ΓY = p + ςAX = p − ςyex

(C.98)

Here, we choose to work with AX. The Hamiltonian in this gauge takes the following form

H = 1
2(−i∂x)2 + 1

2(−i∂y)2 + (−i)ςy∂x + 1
2y

2 . (C.99)

The x-components of eigenfunctions are planewaves, such that eigenfunctions can be writ-
ten as

ψ(x) = eikxx

√
L1
ϕ(y) . (C.100)

The y-component of eigenfunctions ϕ(y) satisfy the time-independent Schrödinger equation
with the following Hamiltonian

H̃ = e−ikxxHeikxx = 1
2(−i∂y)2 + 1

2(y + ςkx)2 , (C.101)
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which is just the Hamiltonian of simple harmonic oscillator with the normalized eigenfunc-
tions

ϕn(y) =
(

2n/2π1/4(n!)1/2
)−1

e− 1
2 (y+ςkx)2

Hn(y + ςkx) . (C.102)

We now consider a charged particle moving on a parallelogram surface with sides L1
and L2 forming an angle θ, thus the sides are parallel to e1 = ex and e2 = cosθ ex +sinθ ey,
respectively. The periodic boundary conditions are imposed by identifying opposite sides
of the parallelogram. Given the twist angles ϕ1 and ϕ2, The periodic boundary conditions
explicitly read  T (L1e1)ψ(x) = eiϕ1ψ(x) ,

T (L2e2)ψ(x) = eiϕ2ψ(x) ,
(C.103)

where T (a) = exp(ia · Γ) is the magnetic translation along a. Its explicit forms is

T (a) = eia·ΓX = exp(−iςaxay/2) · exp(ay∂y) · exp(ax∂x) exp(iςayx)
= exp(iςaxay/2) · exp(ay∂y) · exp(iςayx) exp(ax∂x)
= exp(iςaxay/2) · exp(iςayx) · T (ayey)T (axex) ,
= exp(iςaxay/2) · exp(iςayx) · T (a) ,

(C.104)

Where T (a) is the ordinary translation by a, T (a) = exp(ia · p̂) On the lowest Landau
level states of the form

ψ
(0)
LLL(x; kx) = e−k2

x/2

π1/4
√
L1

e−y2/2 eikx(x+iςy)

= eikxx

π1/4
√
L1

e−(y+ςkx)2/2 ,

(C.105)

the action of T (a) would be

T (a)ψ(0)
LLL(x; kx) = 1

π1/4
√
L1

exp(−iςaxay/2) exp
(
i(kx + ςay)(x+ ax)

)
· exp

(
−
(
y + ay + ςkx

)2
/2
) (C.106)

From the first condition in Eq. C.103, the values of kx are constrained to

kxLx = ϕ1 + 2πjx . (C.107)

Before proceeding further, we note that ψLLL(x) in the chosen gauge is localized around y =
ςkx. Since the y-coordinate is restricted to [−L2/2 sinθ, L2/2 sinθ), we have the following
condition on kx in addition to Eq. C.107,

−L2 sinθ ≤ ςkx ≤ L2 sinθ . (C.108)

To fulfill the second condition in Eq. C.103, we have to superpose magnetic translations of
a nominal LLL state ψ(0)

LLL(x) (such as the one in Eq. C.105) by integer multiples of L2e2
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and with suitable weights. The normalized state fulfilling periodic boundary conditions
reads as

ψLLL(x) =


+∞∑
m=−∞

e−imϕ2 T m(L2e2)
ψ(0)

LLL(x; kx) . (C.109)

Eq. C.109 explicitly reads

ψLLL(x) = 1
π1/4

√
L1

+∞∑
m=−∞

exp
{

− imϕ2 − y2/2 − k2
x/2 + ieiςθmL2

[
kx + (1/2)ςmL2 sinθ

]

+ i
[
kx + ςmL2 sinθ

]
zς

}
= 1
π1/4

√
L1

+∞∑
m=−∞

i(−1)m exp(α0 + α1/2 + α2/4)

· exp
(
(α1 + α2 + iπ)(m− 1/2)

)
exp

(
α2(m− 1/2)2

)
,

(C.110)

where 
α0 = −y2/2 − k2

x/2 + ikxzς ,

α1 = −iϕ2 + ikxL1(L2/L1)eiςθ + i ς(2πNϕ) zς/L1 ,

α2 = (i/2)ς(2πNϕ)(L2/L1)eiςθ ,

(C.111)

and zς = x+ iςy (note the different convention used here as compared to earlier sections),
such that Eq. C.110 can be written as

ψLLL(x) = 1
π1/4

√
L1

exp
{

− y2/2 − k2
x/2 + (i/2)

(
τςkxL1 − ϕ2

)
+ (i/4) ς πNϕτς + i

(
kxL1 + ςπNϕ

)
zς/L1

}
·

+∞∑
m=−∞

i(−1)m exp
{
iπ
(
ςNϕτς

)(
m− 1/2

)2}
exp

{
iς(2πNϕ)

(
m− 1/2

)
(z − z0)/L1

}
,

(C.112)

where τς = (L2/L1)eiςθ and

z0 = −τςL1

(
ςkxL1

2πNϕ

+ 1
2

)
− ςL1

2Nϕ

(
1 − ϕ2

π

)

= −
(
ςkx

sinθ + L2

2

)
eiςθ − ςL1

Nϕ

(
π − ϕ2

2π

)
.

(C.113)

with these definitions, Eq. C.112 takes the more compact form

ψLLL(x) = e−y2/2 · (−i)
π1/4

√
L1

exp
{

− k2
x/2 − (i/4)(ςπNϕ)τς + ikxz0

}

· exp
{
i(kxL1 + ςπNϕ)(z − z0)/L1

}
ϑ1

ςNϕ

(
z − z0

L1

)∣∣∣∣∣∣ςNϕτς

 (C.114)
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or equivalently

ψLLL(x) = e−y2/2 · (−i)
π1/4

√
L1

exp
{

(1/2 − iςcotθ)k2
x − (i/4)(ςπNϕ)τς

+ (−1/2)ikxL1

(
τς + (ς/Nϕ)(1 − ϕ2/π)

)}

· exp
{
i(kxL1 + ςπNϕ)(z − z0)/L1

}
ϑ1

ςNϕ

(
z − z0

L1

)∣∣∣∣∣∣ςNϕτς

 .
(C.115)

Yet another alternative form of ψLLL(x) can be written as

ψLLL(x) = exp
(
π2N2

ϕ/(2L2
1) + kx(ςπNϕ/L1)

)
exp

(
(i/2)

(
− ϕ2 + [kx + (1/2)ςπNϕ/L1]L1τς

))

· ψ(0)
LLL(x, y; kx + ςπNϕ/L1)ϑ1

ςNϕ

(
z − z0

L1

)∣∣∣∣∣∣ςNϕτς


= exp

(
(i/2)

[
− ϕ2 + Re(τς)

(
kxL1 + ςπNϕ/2

)])

· ψ(0)
LLL(x, y; kx + ςπNϕ/L1) · ϑ1

ςNϕ

(
z − z0

L1

)∣∣∣∣∣∣ςNϕτς


= exp

(
(i/2)

(
ϕ1 Re(τς) − ϕ2

)
+ iπ

(
j + (ςNϕ/4)

)
Re(τς)

)

· ψ(0)
LLL(x, y; kx + ςπNϕ/L1)ϑ1

ςNϕ

(
z − z0

L1

)∣∣∣∣∣∣ςNϕτς


(C.116)

Here, ϑ(z|τ) is the odd elliptic theta function with the definition

ϑ(z|τ) =
+∞∑

m=−∞
i(−1)m eiπτ(m−1/2)2

ei2π(m−1/2)z . (C.117)

if we denote the state ψLLL(x) in Eq. C.114 by

ψLLL(x, y; jx, ϕ1, ϕ2) , (C.118)

then T (a) corresponds to the following mapping

ψLLL(x, y; jx, ϕ1, ϕ2) → exp(iςaxay/2) exp(ikxax)

· ψLLL

(
x, y; jx + ς L1ay/(2π), ϕ1, ϕ2 − ς z · (a × L2)

)
.

(C.119)

The states ψLLL(x, y; jx, ϕ1, ϕ2) has the following property,

ψLLL(x, y; jx + ς rNϕ, ϕ1, ϕ2) = exp(−irϕ2) exp
(

− i(ς/2)r2L2
2sinθcosθ

)
· exp

(
− i(ϕ1 + 2πjx)r(L2/L1)cosθ

)
· ψLLL(x, y; jx, ϕ1, ϕ2) ,

(C.120)
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C.6.1 Symmetries of the wavefunction in the torus geometry
For the purposes related to analytical and numerical investigations of FQHE states on
toroiad geomteries, it is instructive to classify the symmetries of the system and map out
the structure of the Hilbert space. In this section, we follow Haldane (1985) to find the
many-body invariants of the fractional quantum Hall system on a torus. To this end,
we first consider a system of Np particles on a torus with principal vectors L1 = L1e1
and L2 = L2e2, residing on a torus with Nϕ flux quantum piercing its surface, where
ez · (L1 × L2) = 2πNϕ. The filling factor ν = Np/Nϕ is assumed to be rational, ν = p/q
with p and q co-prime, Np = pN and Nϕ = qN where N is the greatest common divisor
of Np and Nϕ. First, we outline useful identities of the single-particle magnetic translation
algebra,

I. t(a)t(b) = eiez ·(a×b)/2 t(a + b)

II. t(a)t(b) = eiez ·(a×b) t(b)t(a)
The property II is the consequence of the property I. The algebra above holds also for
single particle translations in the many-body system, where the magnetic translation of the
particle i by a is denoted by ti(a). By the requirement of periodic boundary conditions, the
many-body wavefunctions should be simultaneous eigenfunctions of magnetic translations
of each particle by integer multiples of the torus principal vectors L1 and L2, i.e. by vectors
of the form Lmn = mL1 + nL2, (m,n) ∈ Z2. By the property I, the eigenvalues of ti(Lmn)
are given as eiθi

mn with θi
mn = πmnNϕ +mϕ1 +nϕ2, and the (anti-)symmetry of the many-

body wavefunctions imply that θi
mn = θj

mn for each pair i, j of particles. The physical
states in the Hilbert space thus are subject to a selection rule that for every pair of states
|α⟩ and |β⟩, the observable composed by from dyads |α⟩⟨β| has to remain invariant under
magnetic translations ti(Lmn) for all i and Lmn, i.e. [ti(Lmn), |α⟩⟨β|] = 0. This implies that
both |α⟩ and |β⟩ should have the same eigenvalues eiθmn . Thus we focus on the Hilbert
space H(ϕ1, ϕ2) parameterized by the two twist angles ϕ1 and ϕ2 and the operators which
leave it invariant.

The many-body system further has another symmetry, namely the invariance under
center-of-mass (CM) translations, defined by the collective translations of all the particles,

T (a) =
Np∏
i=1

ti(a). (C.121)

A "relative translation" operator t̃i(a) can thus be defined using Eq. C.121 by the decom-
position of ti(a) in terms of the CM translation and the relative translation,

ti(a) = T

(
a
Np

)
t̃i(a) , ⇒ t̃i(a) = T

(
− a
Np

)
ti(a) . (C.122)

The relative translation operator can further be written as

t̃i(a) =
Np∏
j=1

ti

(
a
Np

)
tj

(
− a
Np

)
. (C.123)
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By definition, t̃i’s satisfy the property ∏Np

i=1 t̃i(a) = 1. It is straightforward to obtain the
following relations for the composition of operators ti, T and t̃i,

T (a)T (b) = eiNp ez ·(a×b) T (b)T (a) , (C.124)

t̃i(a)t̃i(b) = ei(1−1/Np) ez ·(a×b) t̃i(b)t̃i(a) , (C.125)
ti(a)T (b) = eiez ·(a×b) T (b)ti(a) , (C.126)

ti(a)t̃i(b) = ei(1−1/Np) ez ·(a×b) t̃i(b)ti(a) , (C.127)
t̃i(a)T (b) = T (b)t̃i(a) , (C.128)

and the translation property for t̃i and T results to the following algebra similar to the
property I above,

T (a)T (b) = eiNp ez ·(a×b)/2 T (a + b) ,
t̃i(a)t̃i(b) = ei(1−1/Np) ez ·(a×b)/2 t̃i(a + b) .

(C.129)

Eqs. C.124 to C.129 have important implications. First, let us examine them in more
details. Eq. C.128 has the intuitive interpretation that the relative translations remain
independent of the CM translations, thus all t̃i’s are invariant under the application of T ’s
and can be simultaneously diagonalized. Eq. C.126 implies that on CM translations of the
form T (Lmn/Nϕ) keep the Hilbert space H(ϕ1, ϕ2) invariant. Furthermore, by Eq. C.124 it
is evident that only T ’s of the form T (qLmn/Nϕ) commute with T (Lkl/Nϕ). More explicitly,

T

(
Lmn

Nϕ

)
T

(
Lkl

Nϕ

)
= ei(Np/N2

ϕ) ez ·(Lmn×Lkl) T

(
Lkl

Nϕ

)
T

(
Lmn

Nϕ

)

= ei(Np/N2
ϕ) Lmn·(Lkl×ez) T

(
Lkl

Nϕ

)
T

(
Lmn

Nϕ

)
,

(C.130)

Thus, T (Lkl/Nϕ) changes the eigenvalues of T (Lmn/Nϕ) of the form exp
(
iK · Lmn/Nϕ

)
to

exp
(
i
(
K + (Np/Nϕ)Lkl × ez

)
· Lmn/Nϕ

)
, meaning that K → K + (Np/Nϕ)Lkl × ez . This

means that T (Lmn/Nϕ) can at most have q distinct eigenvalues with eigenstates produced
by application of an arbitrary T (Lkl), since (Np/N

2
ϕ)Lmn ·(Lkl × ez)=2π(p/q)(ml − nk) ∈

2π(p/q)Z, and ml−nk runs over all integers if m and n are co-prime. We thus can choose
a representative primitive vector L0 and consider the eigenvalues of T (L0/Nϕ). Since
T (L0/Nϕ) remains invariant under T (qLmn/Nϕ), the operators T (qLmn/Nϕ) act invariantly
in each eigensubspace of T (L0/Nϕ).

Eigenvalues of t̃i(pLmn) and T (qLmn/Nϕ): First we remark on the eigenvalues of t̃i(pLmn).
For a hexagonal Bravais lattice - which is the highest symmetry PBC - we have the π/3-
rotational symmetry. Over the state with trivial translational symmetry, we also have
t̃i(pL1) = t̃i(−pL1) = t̃i(pL2). This two conditions result in the following constraint on
t̃i(pLmn)’s applied on this state,

t̃i(pL1) = t̃i(−pL1) = t̃i(pL2) = t̃i(pL1 − pL2) , (C.131)
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which together with Eq. C.125 and Eq. C.129 results in

t̃i(pL1) = t̃i(pL2) = (−1)pq(Np−1) , (C.132)

Over the state with the trivial translational symmetry. We also note that the CDW
operator ∑Np

i=1 exp(iQ · xi) shifts the states from one eigensubspace of t̃i(pLmn) to another,
given that exp(Q · Lmn) = 1, i.e. Q is compatible with PBC. This conventions mean that
the eigenvalues of t̃i(pLmn) are

t̃i(pLmn) → (−1)pq(Np−1) exp
(

− iq(k · Lmn)/Nϕ

)
, (C.133)

By the convention in Eq. C.133, first the definition of k = 0 is totally fixed as the state
fulfilling the conditions in Eq. C.131 and invariance under π− 3 rotations, and second, the
CDW operator acts on the eigenstates of t̃i(Lmn) by merely shifting k to k + Q. These
results totally determine the eigenvalues of t̃i(Lmn). The eigenvalues of T (qLmn/Nϕ) result
from the eigenvalues of t̃i(pLmn) and ti(pLmn), and are equal to

T

(
qLmn

Nϕ

)
→ (−1)pq(Np−1) eipθmn+iq(k·Lmn)/Nϕ . (C.134)

It is also straightforward to see that the set {T (qLmn/Nϕ + rL0/Nϕ)} constitute a max-
imally commuting set and the CM wavefunction cannot be the eigenstate of any other
T (Lmn/Nϕ). In view of the above symmetries, the kinetic part of the many-body Hamil-
tonian Hkin = 1/(2m) ∑Np

i=1 |ez × Πi|2 can be separated as a sum of the CM kinetic term
HCM

kin = 1/(2mNp)|∑Np

i=1 ez × Πi|2 and a relative kinetic term

Hrel
kin =

∑
i<j

1
2mNp

|ez × (Πi − Πj)|2 , (C.135)

and in accordance, the wavefunction can be split as a product of a CM component and a
relative component Ψ = Ψc.m. ⊗ Ψrel where k is a good quantum number for Ψrel.

C.7 Hilbert space invariant subspaces of the system
on a torus

To employ the symmetry properties derived in the last section on the states of the Hilbert
space and use these symmetries to partition the Hilbert space, we first form the slater
determinant of the states ψLLL(x, y; jx, ϕ1, ϕ2) to obtain the many-body state

Ψ(MB)
LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1, jx2, · · · , jxNp}, ϕ1, ϕ2

)
= 1√

Np!
∑

π∈SNp

(−1)π ψLLL(x1, y1; jxπ(1), ϕ1, ϕ2) · · ·ψLLL(xNp , yNp ; jxπ(Np), ϕ1, ϕ2) .
(C.136)
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Next, we evaluate the action of t̃i(pLmn) on Ψ(MB)
LLL ,

t̃i(pLmn) Ψ(MB)
LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1, jx2, · · · , jxNp}, ϕ1, ϕ2

)
= exp(−inpϕ2) exp

(
− i(ς/2)n2p2L2

2 sinθcosθ
)

× exp
(

− iϕ1np(L2/L1)cosθ
)
exp

(
iςπpqn(Np − 1)

(
m+ n(L2/L1)cosθ

))
× exp

[
− i(2πp/Np)

(
m+ n(L2/L1)cosθ

)(∑
jx,k

)]

× 1√
Np!

∑
π∈SNp

(−1)π ψLLL(x1, y1; jxπ(1) − ςnq, ϕ1, ϕ2) · · ·

ψLLL(xNp , yNp ; jxπ(Np) − ςnq, ϕ1, ϕ2)
= eiθ̃mn Ψ(MB)

LLL (x, y; {jx1 − ςnq, jx2 − ςnq, · · · jxNp − ςnq}, ϕ1, ϕ2) ,
(C.137)

where the phase θ̃mn is

θ̃mn = − npϕ2 − (ς/2)n2p2L2
2 sinθcosθ − ϕ1np(L2/L1)cosθ

+
[
ςπpqn(Np − 1) − (2πp/Np)

(∑
jx,k

)](
m+ n(L2/L1)cosθ

)
.

(C.138)

Now we calculate the action of T (a) on Ψ(MB)
LLL ,

T (a)Ψ(MB)
LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1, jx2, · · · , jxNp}, ϕ1, ϕ2

)
=

exp
(
iςaxayNp/2

)
exp(iNpkxax)

Ψ(MB)
LLL

(
{x1, y1, · · · , xNp , yNp};

{jx1 + ςL1ay/(2π), jx2 + ςL1ay/(2π), · · · , jxNp + ςL1ay/(2π)}, ϕ1, ϕ2 − ς ez · (a × L2)
)
.

(C.139)

In particular, the action of T (Lmn/Nϕ) will result in

T (Lmn/Nϕ)Ψ(MB)
LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1, jx2, · · · , jxNp}, ϕ1, ϕ2

)
=

exp
(
iςπn(p/q)

(
m+ n(L2/L1)cosθ

))
× exp

(
i(p/q)ϕ1

(
m+ n(L2/L1)cosθ

))
× exp

(
i(2π/Nϕ)

(∑
jk

)(
m+ n(L2/L1)cosθ

))
× Ψ(MB)

LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1 + ςn, jx2 + ςn, · · · , jxNp + ςn}, ϕ1, ϕ2

)
,

(C.140)
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and similarly, the action of T (qLmn/Nϕ) would be

T (qLmn/Nϕ)Ψ(MB)
LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1, jx2, · · · , jxNp}, ϕ1, ϕ2

)
=

exp
(
iςπnpq

(
m+ n(L2/L1)cosθ

))
· exp

(
ipϕ1

(
m+ n(L2/L1)cosθ

))
· exp

(
i(2πq/Nϕ)

(∑
jk

)(
m+ n(L2/L1)cosθ

))
· Ψ(MB)

LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1 + ςnq, jx2 + ςnq, · · · , jxNp + ςnq}, ϕ1, ϕ2

)
,

= exp(iΘmn) Ψ(MB)
LLL

(
{x1, y1, · · · , xNp , yNp}; {jx1 + ςnq, jx2 + ςnq, · · · , jxNp + ςnq}, ϕ1, ϕ2

)
,

(C.141)

where the phase Θmn reads

Θmn =
[
ςπnpq + pϕ1 + (2πq/Nϕ)

(∑
jk

)](
m+ n(L2/L1)cosθ

)
(C.142)

Above equations show that the following states simultaneously diagonalize t̃i(pLmn) and
T (qLmn/Nϕ),

|(s, j),L⟩ = 1√
N

|L|−1∑
r=0

ei(2π/N)rsΨ(MB)
LLL

(
x, y; {jx1 − ςrq, jx2 − ςrq, · · · , jxNp − ςrq};ϕ1, ϕ2

)
,

(C.143)
where L indexes the equivalence class of states Ψ(MB)

LLL (x, y; {jx1, jx2, · · · , jxNp}, ϕ1, ϕ2) which
map to itself by a finite number L times application of T (qLmn/Nϕ).

Especial case of a rectangular geometry with vanishing twist angle: In this case, there
are following simplified forms for the important quantities

ψLLL(x) = ψ
(0)
LLL(x, y; kx + ςπNϕ/L1)ϑ1

ςNϕ

(
z − z0

L1

)∣∣∣∣∣∣ςNϕτς

 , (C.144)

where
z0 = − ςL1

2Nϕ

− i
(
kx + ς

L2

2

)
. (C.145)

It is evident that the location of zeros of the wavefuction ψLLL(x) in Eq. C.144 are on the
real axis and are distributed as the following,

zl = z0 + ς
(
L1

Nϕ

)
l, l = 0 , · · · , Nϕ − 1 . (C.146)

Over the Slater determinant constructed from this state, the action of T (qLmn/Nϕ) and
t̃i(pLmn) equal to

T (qLmn/Nϕ)Ψ(MB)
LLL = exp(iΘmn) Ψ(MB)

LLL

(
x, y; {jx1 + ςnq, jx2 + ςnq, · · · , jxNp + ςnq}, ϕ1, ϕ2

)
,

t̃i(pLmn)Ψ(MB)
LLL = exp(iθ̃mn) Ψ(MB)

LLL (x, y; {jx1 − ςnq, jx2 − ςnq, · · · jxNp − ςnq}, ϕ1, ϕ2) ,
(C.147)
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and the phases θ̃mn and Θmn read

Θmn = ςπmnpq + 2πm
N

(∑
ji

)
,

θ̃mn = ςπmnpq(Np − 1) − 2πm
N

(∑
ji

)
,

(C.148)

C.7.1 Numerical excat diagonalization of FQH systems on dif-
ferent geometries

Having laid out the structure of Landau levels in different geometries, we now explain how
to perform numerical exact diagonalization for finite system sizes. To this end, one needs
to evaluate the matirx elements of ĤFQH in Eq. 4.12 over the basis of N-particle states in
the lowest Landau level. Regardless of the geometry, the N-particle states in Landau levels
are of the form

|n1,m1; · · · ;nN ,mN⟩ = â†
n1,m1 · · · â†

nN ,mN
|∅⟩ , (C.149)

where â†
n,m creates a particle in the |n,m⟩ state. The second quantized form of ĤFQH then

reads
ĤFQH = 1

2
∑

m1,··· ,m4

∑
n1,··· ,n4

V n1,n2,n3,n4
m1,m2,m3,m4 â

†
n3,m3 â

†
n4,m4 ân2,m2 ân1,m1 , (C.150)

where V n1,n2,n3,n4
m1,m2,m3,m4 = ⟨n3,m3;n4,m4|V (x1 − x2) |n1,m1;n2,m2⟩. The standard way to

evaluate V n1,n2,n3,n4
m1,m2,m3,m4 is by Fourier transforming the potential V (x) and re-writing the

matrix element as

V n1,n2,n3,n4
m1,m2,m3,m4 =

∫ d2q

(2π)2 Fn3,n1(ηq)F∗
m3,m1(ηq)F∗

n2,n4(ηq)Fm2,m4(ηq) . (C.151)

To obtain Eq. C.151, we note that ⟨n′,m′| eiq·x |n,m⟩ = Fn′,n(ηq)F∗
m′,m(ηq), where

Fm′,m(ηq) = ⟨m′| eηqâ†−η∗
qâ |m⟩ =


√

m!
m′!e

−|ηq|2/2 ηm′−m
q L(m′−m)

m

(
|ηq|2

)
, m′ ≥ m

F∗
m,m′(−ηq) , m < m′

(C.152)
is a form factor, L(α)

n (x) is an associated Laguerre polynomial, |m⟩’s are harmonic oscillator
eigenstates with destruction operator â, and ηq = 1/

√
2(qx + iςqy). In the spherical geome-

try, which we used in the current thesis, a more feasible way to obtain the matrix elements
is outlined below. To this end, we note that on a sphere with radius R, the Hamiltonian
in the lowest Landau level can be written as

ĤFQH = 1
2

∞∑
l=0

Vl

l∑
m=−l

(−1)m : ˆ̄ρl(−m) ˆ̄ρlm : . (C.153)

where ˆ̄ρ(Ω) = P̂LLLρ̂(Ω)P̂LLL is the LLL-projected density operator, ˆ̄ρlm =
∫
dΩ ˆ̄ρ(Ω) , and

the Haldane pseudo-potentials are given by

Vl = 2π
∫ π

0
dθ sin(θ)Pl(cos θ)V

(
2R sin(θ/2)

)
. (C.154)
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The density operators ˆ̄ρlm explicitly read

ˆ̄ρlm =
∑

m′,m′′

(∫
dΩY ∗

QQm′′(Ω)Y ∗
0lm(Ω)YQQm′(Ω)

)
â†

0,m′′ â0,m′

=
∑

m′,m′′
(−1)Q−m′

S∗({−Q, 0, Q}, {Q, l,Q}, {−m′,m,m′′}) â†
0,m′′ â0,m′ ,

(C.155)

where S({Q1, Q2, Q3}, {l1, l2, l3}, {m1,m2,m3}) is the overlap integral of monopole spheri-
cal harmonics, and has a known expression in terms of Wigner 3j symbols (see chapter 2
of Ref. [105] for more details and explicit expressions). Having the above information, it
is straightforward to numerically construct the whole Hamiltonian by having the matrix
form of â(†)

n,m operators and the Haldane pseudo-potentials.
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