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Abstract

Research on the treatment of cancer is a topic on which mankind has continuously and
persistently focused its efforts and resources since many decades and it will continue being
on the forefront of science for the foreseeable future. In our endeavor to understand and
treat cancer, numerous scientific fields have been interwoven and combined: medicine, epi-
demiology, biology, chemistry, engineering, mathematics, artificial intelligence and physics.
Radiation therapy is one of the main tools for offering safe and efficient treatments to
cancer patients. Based, among others, on our comprehension of particles’ interaction with
matter and on our capability of precisely controlling and guiding radiation to malignant
tumors, it naturally became a very fertile research area in the field of physics.

Radiation therapy using heavy charged particle beams, often simply called particle
therapy, has emerged already since the 1950s as a promising technique for treating can-
cer. Due to the finite range of charged particles in matter, which allows to achieve a very
conformal dose distribution to the tumor and spare healthy tissues, combined with of-
ten enhanced radiobiological effects, has rendered particle therapy a clinically established
treatment modality offered nowadays by hospitals worldwide to thousands of patients.
This inherently precise and effective technique is nonetheless very sensitive to a broad
spectrum of uncertainties. Anatomical uncertainties about the patient specific treatment
site, uncertainties about the exact biological response of living cells to radiation, position-
ing uncertainties of the patient prior to the treatment delivery and organ motion, are a few
examples of different effects that may limit the potential of particle therapy for sparing
healthy tissues during irradiation.

This manuscript presents published work that addresses various of the above mentioned
uncertainties impacting the quality of treatment in the case of particle therapy. It starts
with the basic concepts related to cancer as a disease, the relevant definitions and sta-
tistical facts as well as a review of radiation therapy and its imaging. Subsequently, the
main physics of particle therapy is outlined. Next, a direct comparison of two imaging
modalities, one based on photons and one based on protons, is presented, concluding that
both are capable of reducing proton range uncertainties at the treatment planning level
below the desired 1%. Continuing to anatomical and positioning uncertainties that have to
be accounted for at the day of the treatment, a new concept of acquisition for proton com-
puted tomography that allows for low dose – highly accurate image guidance is described.
The theoretical foundations are laid and the potential of this technique is investigated both
in detailed simulations and experiments performed in a clinical facility. It is demonstrated
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that this new technique retains the high image quality of conventionally acquired proton
computed tomography, while reducing dose to healthy tissues by as much as 60%. Consid-
ering biological uncertainties, their impact on treatment plan optimization is investigated.
The findings indicate that including these uncertainties in the plan optimization procedure
can reduce overdosage of healthy tissues. Real–time verification of the delivered dose to
the patient is explored by means of secondary prompt photon detection. The currently
established nuclear models predicting secondary prompt photon emission are assessed and
improved and thereafter the sensitivity of the method in detecting range uncertainties due
to anatomical changes is investigated on a number of simulated patients. It is shown that
±2 mm range shifts inside the patient are detectable with this method. The manuscript
closes with the radiation protection study of CALA, the facility for laser–based acceleration
of electron, proton and heavy ions for novel biomedical applications.



Chapter 1

General introduction

The aim of this chapter is to introduce the main aspects of cancer as a disease and set the
framework for the rest of the manuscript. In the subsequent pages the reader will be pre-
sented with: basic definitions of cancer and of radiation oncology, a brief historical review,
recent facts and statistics about cancer and a summary of imaging tools and therapeutic
strategies. As a transition to the following chapters the basic concepts of radiation therapy
with heavy charged particles will be outlined. The chapter concludes with the scientific
goals of this work.

1.1 Definitions and brief historical review

According to the World Health Organization (WHO) (WHO 2020), cancer is a large group
of diseases that can start in almost any organ or tissue of the body when abnormal cells
grow uncontrollably, go beyond their usual boundaries to invade adjoining parts of the
body and/or spread to other organs. The latter process is called metastasizing and is a
major cause of death from cancer. Other common names for cancer are neoplasm and
malignant tumor.

Cooper (2019) provides an informative description of different classifications of types
of tumors and cancers. There are more than a hundred distinct types of cancer, which can
vary substantially in their behavior and response to treatment. A basic distinction in cancer
pathology is categorizing tumors as benign or malignant. Benign tumors remain confined to
their original location. Malignant tumors are capable of both invading surrounding normal
tissue and metastasizing throughout the body. Only malignant tumors are specified as
cancers.

Cancers can be classified according to the type of cell from which they arise and fall into
one of three main groups: carcinomas, sarcomas, and leukemias or lymphomas. Carcino-
mas, account for approximately 90% of human cancers, are malignancies of epithelial cells,
namely cells at the outer surfaces of organs and blood vessels. Leukemias and lymphomas,
which account for approximately 8% of human cancers, arise from the blood–forming cells
and from cells of the immune system, respectively. Finally sarcomas, are solid tumors of
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connective tissues, such as muscle, bone, cartilage, and fibrous tissue. Tumors are also
characterized according to the organ they are located in, for example lung or breast carci-
nomas.

Although cancer has become one of the leading causes of death only in the 20th cen-
tury, it is by no means a modern disease. The ancient Egyptians have observed malignant
tumors and the first description of breast cancer by an Egyptian physician is dated back
to 1600 BC. Growths suggestive of bone cancer have been seen in mummies. Cancer
received further attention during the classical antiquity and between 460–370 BC Hip-
pocrates coined the term carcinos for malignant tumors. This term was later translated
in Latin as cancer by the Roman physician Celsus (28 BC–50 AD). The Greek physician
Galenus (130–200 AD) used the word oncos (Greek for swelling or volume) to describe
tumors. Breast amputations as a breast cancer treatment were advocated for and reported
already in the 16th century (Sakorafas & Safioleas 2009). In what is regarded as one of
the earliest documented epidemiological works, Bernardino Ramazzini observed in 1713
the frequency of occurrence of specific types of cancers in nuns and correlated them to
specific behavioral patterns with respect to the general female population. In 1838 Müller
was the first to relate cancer to anomalies of the cells (Triolo 1965). In 1896, only one
year after the discovery of x–rays by Röntgen, Grubbé possibly made the first application
of radiation for cancer treatment (Grubbé 1933). The medical use of ionizing radiation
as part of cancer treatment to control malignant cells is nowadays defined as radiation
oncology (Gunderson 2016). It is a field that saw tremendous development in the 20th

century, evolving from the early irradiation techniques of Grubbé to sophisticated modern
irradiation methods such intensity modulated radiation therapy and particle therapy, the
latter being the conceptual basis of this manuscript.

1.2 Cancer facts and statistics

As shown in figures 1.1(a) and (d), in 2020 the estimated total number of new cancer cases
worldwide exceeded 19 millions and the mortality approached 10 millions. Due to the
anatomical differences between the two genders, some cancer types are common to both
genders while others (for example breast and prostate cancer) are gender specific.

In terms of incidence, the most frequently occurring cancer types in adults are in the
breast and in the lung, with about 11% incidence rate for each. For males the most
frequent indication is lung cancer with approximately 14% (figure 1.1(b)) and for females
it is breast cancer with about 25% (figure 1.1(c)). It is noteworthy mentioning the large
diversity of cancer types, as about 40% of incidence rates concern what is called ”other
cancers” (figures 1.1(a)–(c)). Concerning mortality rates, lung cancer is identified as the
most frequent cause of death related to cancer with about 20% in the whole population
(figure 1.1(d)). For females the leading cause of mortality due to cancer is breast cancer
(16% – figure 1.1(f)) while for males it is lung cancer (22% – figure 1.1(e)). It is important
to note that age plays a significant role in the above mentioned data. When analyzing
the data for patients younger than 14 years of age (pediatric patients – data not shown),
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both the most frequently occurring cancer type and the highest mortality are related to
leukemia (exceeding 30%), regardless of the patient gender.

  

a)

b)

c)

d)

e)

f)

Incidence Mortality

Figure 1.1: Worldwide cancer incidence and mortality estimates for the year 2020, inte-
grated over all patient ages. Graphs were produced using WHO data and the tool Globocan
(http:://gco.iarc.fr). The first row shows data for all genders, the second and the third
rows for male and female patients, respectively.
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According to the German Centre for Cancer Registry Data (Zentrum für Krebsregis-
terdaten) (ZfKD 2016) a total of 492.090 incidences were registered in 2016. Of these,
approximately 47% occurred in women and 53% in men. About half of these incidences
concerned the mammary gland (68.900), the prostate (58.800), the large intestine (58.300)
and the lungs (57.500). Gender standardized incidence rates are summarized in figure 1.2.
During the same year, the number of deaths in Germany related to cancer was estimated to
be 229.827. Between 2006 and 2016, the absolute number of new cases of cancer increased
by around 2% in men and 5% in women. This increase was less than would have been
expected if age–specific incidence rates had remained at the level found in 2006. Since the
risk of developing nearly all types of cancer increases with age, population aging would
currently be expected to lead to an increase in cancer incidence of around 1% per year.

The German Cancer Research Center (DKFZ) estimates that at least 37% of all new
cancer cases in Germany are linked to behavioral or dietary factors, hence avoidable or
reducible. The dominant contribution to these risk factors is tobacco consumption, as 19%
of annual cancer incidence in Germany is attributable to smoking.

Figure 1.2: Most frequent tumor sites as a percentage of all new cancer cases in Germany
2016, excluding non–melanoma skin cancer (ZfKD 2016).
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1.3 Imaging tools and therapeutic strategies

Diagnosing cancer at the earliest possible stage is often a decisive factor for the outcome
of the treatment. Due to the diversity in cancer types, in the anatomical sites where they
can occur and in the manifestation of symptoms, highly advanced techniques are employed
for detection and accurate staging of cancer. There is a wide spectrum of diagnostic tools
ranging from computed tomography imaging and biopsy to radiogenomics and artificial
intelligence. Many of these tools are applicable beyond diagnosis and staging, to the
treatment procedure and treatment response assessment.

Imaging forms an essential part of cancer clinical protocols, providing anatomical,
metabolic and functional information. Combining different imaging techniques allows fus-
ing of complementary information, for example functional together with morphological,
and can significantly improve staging and therapy planning. The role of imaging through-
out the whole clinical workflow, from diagnosis to therapy is schematically outlined in
figure 1.3. Most clinically established imaging systems are based on the interaction of
electromagnetic radiation with body tissues, with the exception of ultrasound which is
based on the propagation of acoustic waves. An excellent review of biomedical imaging
techniques applicable to cancer diagnosis and therapy is provided by Fass (2008).

Figure 1.3: The role of imaging (excluding molecular imaging) in the clinical workflow
from diagnosis to treatment response (http://www.radiationoncology.com.au/).

Large part of this manuscript refers to novel aspects of computed tomography (CT)
imaging applicable to particle therapy. The history of CT comprises development in
physics, mathematics and computing intertwined with each other. Seminal role played
the discovery of x–rays by Röntgen in 1895 (Röntgen 1898) and the formulation of the
Radon theorem (Radon 1917). The basic idea behind tomographic reconstruction is that
by obtaining a set of measurements from different angles of radiation passing through an
object, yielding line integrals of a property of that object, we can finally reconstruct the
spatial distribution of that property. For example, an x–ray radiography consists of mea-
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surements of the integrated photon attenuation coefficient along lines connecting the source
and particular positions on a detector. From a set of such radiographies it is possible to
reconstruct the spatial distribution of the attenuation coefficient in the object. The first
experiments on medical applications of this type of reconstruction were performed by Cor-
mack (1963). It is here worth noting that in his pioneering work Cormack proposed that
also protons could be used for obtaining tomographic images for radiological applications.
The first successful demonstration of an x–ray CT scanner coupled with tomographic re-
construction was achieved by Hounsfield (1973), who is now generally recognized as the
inventor of CT. An excellent review of the history and of the technical developments of
x–ray CT was published by Kalender (2006).

There are two large classes of tomographic reconstruction algorithms and a recent re-
view of them was published by Willemink & Noël (2018). The first class is the so called
direct method or analytical reconstruction. Algorithms belonging to that class are derived
from the analytic relationships between functions and their line integrals. An example of
such an algorithm is the well established filtered backprojection. A brief description of a
filtered backprojection algorithm applied to proton computed tomography is provided in
chapter 6. The second class, dominant in nowadays commercial CT scanners, is the iter-
ative reconstruction methods. The basic concept starts by discretizing the volume of the
image object. Then the measured values are considered as the result of a matrix multipli-
cation of the unknown discretized object values, with a matrix modelling the measurement
procedure and the physical interactions of radiation with matter. The result is a huge set
of simultaneous linear equations that can be solved to compute the CT image. In prin-
ciple the system of equations can be solved with standard methods. In practice, due to
the immense number of equations and of the properties of the problem (such as sparsity),
we resort to iterative methods. For comprehensive review of the various reconstruction
algorithms employed for tomographic reconstruction and their mathematical formulations,
the reader is referred to chapter 26 (Leahy et al. 2009) from the book of Bovik (2009).

Following the diagnostic phase which is heavily relying on imaging, a therapeutic strat-
egy is planned. The main treatment options are: surgery, radiation therapy, and sys-
temic treatment which includes chemotherapy, targeted therapy, hormonal therapy, and
immunotherapy. Surgery is an invasive procedure with the aim of removing the entirety
or part of a tumor and the branch of medicine associated to it is called surgical oncology
(a reference for specialized medical practitioners is (Poston 2007)). Radiation therapy,
which is the contextual basis of this manuscript, means the use of ionizing radiation for
killing cancer cells and the corresponding branch of medicine is called radiation oncol-
ogy (see section 1.4 for more details). Chemotherapy consists of administering to the
patient pharmacological agents mainly aiming at inhibiting mitosis (cell division) or in-
ducing DNA damage (DeVita & Chu 2008). Targeted therapy is also a drug based type of
treatment aiming at interfering with specific proteins involved in tumorigenesis, by focus-
ing on specific molecular changes which are unique to a particular cancer (Baudino 2015).
Hormonal therapy is a non–toxic therapy used to mainly reduce the size of the primary
cancer by removing specific hormones from the body or blocking their effects (Abraham &
Staffurth 2016). Finally, immunotherapy, the most recent treatment technique, is based on
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the concept of stimulating the immune system or blocking immune checkpoints, thus allow-
ing the immune system to better recognize and attack cancer cells (Waldman et al. 2020).
The branch of medicine encompassing all different systemic treatment options is named
medical oncology.

Due to the very large diversity in cancer types it is difficult to summarize in a definitive
and meaningful way the frequency with which different treatment options are used. Fur-
thermore, treatment options vary depending on the exact stage of a particular cancer type
and very often more than one treatment options are used for optimal treatment outcomes.
In general the most common treatments are surgery, chemotherapy, and radiation. A
handful of examples highlighting this variability, taken from the American Cancer Society
report from year 2019 on cancer treatment and survivorship statistics (Miller et al. 2019),
are listed here. The most common treatment among women with early–stage (stage I or
II) breast cancer is surgery combined with radiation therapy (49%). By comparison, more
than two–thirds (68%) of patients with stage III breast cancer disease undergo surgery,
most of whom also receive chemotherapy. The majority of patients with stage I and II
colon cancer undergo surgery without chemotherapy (84%), whereas approximately two-
thirds of patients with stage III disease (as well as some patients with stage II disease) also
receive chemotherapy. Chemotherapy is the standard treatment for most leukemias. For
the most common type of lung cancer (non–small cell lunc cancer), only 18% of patients
with stage III undergo surgery, whereas most (62%) are treated with chemotherapy and/or
radiation.

1.4 Particle therapy and its imaging

Before delving into the field of particle therapy, a brief review of the broad field of
radiation therapy might be informative to the reader. As described in previous sections (1.1
and 1.3), radiation therapy consists in utilizing ionizing radiation in order to kill cancer
cells. From the discovery of x–rays (Röntgen 1898) and the first application of radiation
for cancer treatment (Grubbé 1933), both at the end of the 19th century, radiation therapy
experienced more than a century of rapid technological advancements. Comprehensive
historical reviews can be found in the work of Bernier et al. (2004) and Connell & Hellman
(2009). These technological advances, alongside with developments in medical imaging and
the corresponding clinical research, resulted in elaborate techniques which give us today the
capability to personalize treatments for accurate radiation dose delivery based on clinical,
biological and anatomical information.

Radiation therapy can be split in two categories, depending on the position of the ion-
izing radiation source relative to the patient. Brachytherapy is the category of radiation
therapy in which the source is directly placed into or adjacent to the tumor, hence inside
the patient. It started with surface application of radium in moulds or other applica-
tors (Paterson & Parker 1934) and continued in this form until the 70s. A drastic change
in this form of radiation therapy came with the development of the technique to plant ra-
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dioactive capsules or seeds in or near the tumor. External beam radiation therapy on the
other hand signifies that the source (usually from an accelerator but can also originate from
a radioactive substance) is positioned outside the patient and that radiation is directed to
the specific anatomical site to be treated. The main workhorse of modern external beam
radiation therapy is the electron linear accelerator (LINAC). Electrons are accelerated and
hit a target, producing x–rays of a broad energy spectrum. The first such accelerator
designed for radiotherapy was developed by 1948 by Fry et al. (1948) and produced 4 MV
x–rays. The broad energy spectrum of x–rays from LINACs, is characterized by the accel-
erating potential in which electrons travel before hitting the target that produces x–rays,
mainly via Bremsstrahlung. Hence the unit used is that of an electric potential, usually in
MV (mega–Volt).

Figure 1.4: Schematic representation of dose delivery in IMRT (Baumann et al. 2016).
A treatment session is split into a nmber of angles/fields. In within each field the use of
multileaf collimators allows the shaping of the beam and the modulation of the intra–field
fluence.

The state–of–the–art external beam radiation therapy with x-rays is the intensity mod-
ulated radiation therapy, abbreviated as IMRT (Brahme 1987) – an informative topical
review is provided by Bortfeld (2006). An illustration of the concept is shown in fig-
ure 1.4 (Baumann et al. 2016). The dose is delivered to the tumor from a number of differ-
ent angles using a LINAC with the capability to rotate around the patient and equipped
with dynamically controlled multileaf collimators (MLCs). At each angle the radiation field
can be shaped conformally to the tumor and the intra–field fluence is modulated in order
to achieve the desired dose distribution (Bortfeld et al. 1994). Superimposing a large num-
ber of fields allows to reach the prescribed dose in the tumor, while sparing radiosensitive
healthy organs. The optimization of the dose delivery/fluence patterns for each field is ob-
tained via inverse treatment planning (Xiao et al. 2013). The procedure is based on a high
quality x–ray CT image acquired prior to the treatment, containing a three dimensional
photon attenuation coefficient map of the patient. The tumor and several adjacent organs
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are delineated on that patient x–ray CT and dose prescriptions and limits are defined for
the tumor and for the healthy organs. For a given set of treatment angles, a computer
algorithm determines the optimal field shape and the intra–field fluence by minimizing a
cost function. The resulting treatment plan is one of the possible solutions that satisfy the
dose prescription and limits, for that given set of angles. A step further in the direction
of delivering the radiation from many different angles are techniques which employ the
concept of rotation with continuous beam delivery. A main benefit of these methods called
arc IMRT is the reduction of the time needed to complete a treatment session. Examples
of arc IMRT include tomotherapy (Mackie et al. 1993), intensity–modulated arc therapy
(IMAT) (Yu 1995) and volumetric modulated arc therapy (VMAT) (Otto 2007).

The denomination particle therapy is nowadays utilized to describe external beam ra-
diation therapy with heavy charged particles, mainly discriminating from photon therapy.
The ambiguous term heavy refers to particles heavier than electrons. This definition there-
fore excludes electrons and neutrons, occasionaly used in radiation therapy. The former
are used for treating superficial tumors (Hogstrom & Almond 2006) due to their favorable
dose distribution as a function of depth in the patient, while the latter are well suited
for treating slowly growing tumors that are resistant to x–rays (Jones & Wambersie 2007)
because of their increased biological effects. Although a detailed description of biological
effects of radiation is out of the scope of this work, specific aspects of the biological effects
of protons used for the therapy of cancer are investigated later in this manuscript.

Figure 1.5: Dose distributions normalized to their respective maximum, as a function
of depth in water shown for various clinical radiation beams: 20 MeV electrons, 18 MV
photons, 130 MeV protons and 300 MeV/u carbon–ions (Kaiser et al. 2019)
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Figure 1.5 depicts the dose distributions of different particle beams as a function of
depth in water. The photon dose distribution displays an initial secondary electron build–
up region, followed by a maximum in the dose deposit and then a slowly decreasing tail
governed by the exponential attenuation of the photon beam (Beer–Lambert law). For
comparison, the electron dose distribution with its maximum at approximately the same
location has a much steeper dose fall–off. For both particle species, increasing the energy
yields a broader maximum of the dose distribution, but also creates a slower decreasing
fall–off. Thus for deep seated tumors (at 10− 20 cm water equivalent depth), a significant
volume of healthy tissue receives high dose, which might actually be even higher than
what is deposited in the tumor when considering a single treatment field. Heavy charged
particles on the other hand, due to fundamentally different interactions in matter compared
to photons (see chapter 2) and reduced scattering compared to electrons, yield a much more
favorable dose distribution, which is called Bragg curve, named after William Henry Bragg
who discovered it in 1903 (Bragg & Kleeman 1905). The Bragg curve (see figure 1.5 proton
and carbon ions dose curves) is characterized by a distinct peak at a depth determined by
the initial beam energy, a shallow plateau upstream and a very steep fall–off downstream.
For ions heavier than protons a fragmentation tail is also present after the Bragg peak.
Therefore the main motivation for use of heavy charged particles in external beam radiation
therapy is the possibility to place the dose maximum region in to the tumor and spare
healthy tissues from high dose irradiation. To overcome the limitations of the photon dose
distribution and achieve similar results to heavy ions, a larger number of fields is required
(see also figure 1.4). Superimposing photon fields from different angles results in a dose
maximum in the tumor, at the expense though of spreading the dose to a larger volume
around it, when compared to protons as shown in figure 1.6.

Figure 1.6: Example of the dose distribution for (a) proton beam treatment and (b)
intensity–modulated radiation treatment (photons) of the prostate (delineated with a red
line). The photon creates a “low–dose bath”, whereas the proton plan effectively spares
more of the normal tissues from receiving the lower–dose radiation (Kamran et al. 2019)

Robert Wilson in his seminal paper in 1946 (Wilson 1946) predicted the potential
applications of fast protons in radiation therapy. The famous 184–inch (467.36 cm) Berkeley
cyclotron, capable of producing high–energy proton, deuterons and helium ions was utilized
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by Tobias et al. (1955) to investigate and eventually confirm the predictions of Wilson.
In the 1950s, heavier ion therapy with carbon, nitrogen, argon, neon, and silicon ions
was assessed. The Berkeley cyclotron continued playing a pivotal role in particle therapy
until its shutdown in 1987, and was succeeded by Bevatron/Bevalac which was used for
helium ions particle therapy, until its shutdown in 1993. The biomedical research and
patient treatments continued in a few research centers (Larsson et al. 1958, Kjellberg
et al. 1962, Suit et al. 1975). The first clinical facility dedicated proton therapy was built
at the Loma Linda University in California in 1990 (Slater et al. 1992, Slater 2007).

There are currently 91 exclusively proton and 12 proton and heavy ion therapy facili-
ties worldwide, with a large number of new facilities in the planning or building phase. In
Germany there are five particle therapy facilities, compared to a total of about 400 photon
based radiation therapy facilities. Three of them (Berlin, Dresden, Essen) offer proton
therapy and two of them (Heidelberg and Marburg) are capable of proton and heavier ion
therapy. These five facilities, together with the decommissioned proton center in Munich,
have treated so far about 20.000 patients. On a global basis, approximately three hun-
dred thousand cancer patients have been treated so far with protons or heavier ions (see
figure 1.7).

Figure 1.7: Cumulative number of patients treated with protons and carbon ions worldwide,
up to the year 2019. Data from the Particle Therapy Co–operative Group (PTCOG)
(www.ptcog.ch).

In terms of the technique of delivering the prescribed dose to the patient, particle
therapy is further split to passive beam delivery and active beam scanning. Passive beam
delivery consists in spreading an initially narrow beam using scattering foils to a size that
can cover laterally an area at least as large as the tumor. Patient–specific milled collimators
are employed to conform the beam to the lateral shape of the tumor. Longitudinally, the
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beam is spread by intercepting it with a rotating modulator wheel, whose varying thickness
results in a polyenergetic beams of particles stopping in different depths in the patient,
thus covering the tumor. Unlike passive proton beam delivery, in active beam scanning
a narrow quasi–monoenergetic beam (approximately 1 cm full width at half maximum) is
magnetically deflected to cover laterally the tumor. Such small sized beams are call pencil
beams. Longitudinally the tumor is covered by choosing beams of different energies, thus
moving the position of the Bragg peak in depth.

Imaging is an integral part of modern radiation therapy, hence of particle therapy
as well. In this manuscript the focus is on imaging for treatment planning, treatment
localisation and treatment monitoring. For treatment planning, the information required
is not only the morphology of the treated anatomical site, but also a volumetric map of
the stopping power of charged particles in that region (see chapter 2). Instead of merely
stopping power, which is strongly dependent on the energy of the particle, the nearly energy
independent relative stopping power to that of water (RSP) is used. The RSP map allows
to choose the energy of the beam in order to fully cover the tumor region, without placing
the Bragg peak in healthy tissues. The RSP map is currently obtained indirectly from an
x–ray CT image of the patient. The latter provides an attenuation coefficient map, which
is then converted to RSP via a semi–empirical calibration, for example the well established
stoichiometric calibration proposed by Schneider et al. (1996). This procedure results in
RSP errors of up to 3.5% in biological material (Paganetti 2012, Yang et al. 2012). These
errors can be significantly reduced by using dual energy x–ray CT (DECT). The patient
is imaged with two well separated energies which allow the estimation of the RSP of the
tissues (for detailed information read 3.6.1). The potential of DECT for reducing the
RSP error to about 1% was demonstrated in several studies (Yang et al. 2010, Hünemohr
et al. 2013, Bourque et al. 2014, Hudobivnik et al. 2016, Möhler et al. 2016, Han et al.
2016, Taasti et al. 2016, Lalonde et al. 2017, Saito & Sagara 2017a, Almeida et al. 2018).

Proton CT (pCT) is considered as a candidate for improving RSP accuracy, proposed
in 1963 by Cormack (1963). A pCT scanner concept that could reconstruct RSP by
detecting the positions, directions and residual energies of individual protons was described
in (Huesman et al. 1975). The main idea is that protons of sufficiently high energy for
penetrating the patient could be used to acquire proton radiographies from different angles.
Knowing the initial energy and measuring the residual energy for each proton one can
determine the water equivalent path length (WEPL) traversed in the patient. The WEPL
is defined as the length in water required to yield the same energy loss measured for
protons traversing the patient, and it is the line integral of the RSP, in analogy to the line
integral of the attenuation coefficient in x–ray radiography. Tomographic reconstruction
techniques (Penfold et al. 2009, Rit et al. 2013, Poludniowski et al. 2014, Hansen et al. 2016)
can be then applied in order to obtain three dimensional RSP maps of the patient. Contrary
to photons which travel mostly along straight paths, protons scatter frequently (described
in chapter 2) resulting in inherently lower spatial resolution images when compared to
x–ray CTs. To improve the spatial resolution of pCT images the proton paths can be
approximated by curved lines and this has to be accounted for in the image reconstruction.
This is done by measuring the position and direction of each proton before and after
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the imaged object, allowing for the construction of a curved path estimate. A few pCT
scanners being currently at the level of prototype are used for preclinical studies (Dedes
et al. 2020) and have achieved RSP accuracies ranging from 1.6% to 0.6% (Esposito et al.
2018, Giacometti et al. 2017a, Dedes et al. 2019).

Following treatment planning, the optimized therapeutic dose is delivered to the patient
in a number of treatment sessions (usually around 30 to 40) each on a different day, called
fractions. Prior to the delivery of each fraction of the treatment dose the patient has
to be positioned exactly as on the treatment planning session. Especially in the case of
particle therapy, due to the very steep dose gradients, any significant anatomical changes
have to be identified and potentially accounted for by adapting the initial treatment plan
to the new anatomy. Large remaining uncertainties in positioning or anatomical changes
may compromise the dose conformity to the tumor and the planned sparing of healthy
organs (Landry & Hua 2018). For these reasons, image guidance, the use of imaging prior
to each fraction, is of increasing importance in modern radiation therapy (Verellen et al.
2007). Although 2D imaging (radiography) may be adequate for patient positioning (Bel
et al. 1993, Pisani et al. 2000), volumetric imaging of the patient performed in the treatment
room (in–room imaging) and at the treatment position (on–isocenter imaging) would bring
the benefit of accurate plan adaptation (Jagt et al. 2020). Cone beam x–ray CT (CBCT)
is nowadays utilized by most photon therapy facilities as a good compromise of daily
volumetric in–room and on–isocenter imaging at low dose. Proton therapy facilities are
currently catching up in terms of image guidance. CBCT has certain limitations when
applied in particle therapy, which have been identified and partially corrected for (Landry
et al. 2015a, Landry et al. 2015b, Thing et al. 2016). Most of these limitations can be
circumvented by the use of pCT, which is capable of producing more accurate RSP maps
of the patient at lower imaging doses. The pCT imaging dose in healthy tissues can
be pushed to even lower values by applying techniques that allow for spatially varying
image quality and imaging dose, and are one of the main topics covered in detail in this
manuscript.

  

Figure 1.8: Example of the correlation of dose (left) with prompt–gamma (middle) and
with PET activity (right) in patient anatomy. The image was adapted from the simulation
study of Moteabbed et al. (2011).
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As previously described, the higher dose conformity of particle therapy brings the draw-
back of increased sensitivity to anatomical variations, patient positioning and RSP errors.
In addition to or combined with image guidance, one could exploit secondary radiation
generated during treatment by the therapeutic beam. Certain types of that secondary
irradiation are strongly correlated with the therapeutic ion range in the patient (see fig-
ure 1.8) and can be used to perform in–vivo ion range monitoring, without incurring
additional imaging dose to the patient. Different ion range monitoring techniques have
been proposed (Parodi & Polf 2018), with the majority of them being under development
or on the preclinical investigation level. The two most mature techniques that have already
been applied to patient irradiation are the positron emission tomography (PET) and the
prompt–gamma (PG) based range verification. An early comparison between PET and PG
for range monitoring on the simulation level was presented by Moteabbed et al. (2011).
PET is based on detecting the 511 keV annihilation photons originating from the β+ emit-
ting isotopes created in the patient by the therapeutic beam (Parodi et al. 2001, Enghardt
et al. 2004). Its clinical application was demonstrated by Parodi et al. (2007). An alter-
native method is based on the detection of prompt photons emitted by nuclei undergoing
de–excitation following nuclear interactions (Stichelbaut F 2003, Min et al. 2006), there-
fore called prompt–gammas. These MeV energy scale photons are emitted and reach the
detecting devices within nanoseconds or less from the time of interaction and their spa-
tial distribution is correlated to the ion beam path and the location of the Bragg peak
in the patient. A first clinical application was described by Richter et al. (2016). In this
manuscript, the nuclear modelling aspect relevant to PG emission and the applicability of
PG based range monitoring to prostate cancer patients are investigated. Recently a series
of studies took a step further (Tian et al. 2018, Tian et al. 2020, Tian et al. 2021), by
taking into account the aspect of range monitoring in the process of creating a treatment
plan for the patient.

1.5 Goals of the habilitation project

The scientific goal of this habilitation project was to pursue solutions to some of the open
questions pertaining to radiation therapy of cancer using heavy ions, in particular pro-
ton therapy. Research in this field is by its nature multidisciplinary, combining physics
with biomedical engineering, experimental work with advances on the theoretical back-
ground, particle physics with imaging techniques. The following chapters are arranged in
a conceptual rather than chronological order of investigation, highlighting that problems
representative of the whole particle therapy workflow, ranging from treatment planning to
treatment verification, were addressed.

As a prelude, the next chapter (chapter 2) deals with the basic physics describing
heavy charged particle interactions with matter, in the energy regime relevant to radiation
therapy. Chapter 3 presents a direct experimental comparison between pCT and DECT,
the first of this kind, addressing the since long standing question of the achievable RSP
accuracy for treatment planning by these two promising imaging modalities. Chapter 4
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explores a potential solution to the problem of image quality vs. imaging dose, on the
idealized simulation level, by employing fluence–modulated pCT (FMpCT), thus opening
the door for using pCT not only for treatment planning but also for daily low dose image
guidance and plan adaptation. The proof–of–concept FMpCT was put to the test experi-
mentally in a clinical proton therapy facility, as described in chapter 5. For FMpCT to be
applicable as an image guidance technique, the imaging quality has to be well understood.
This is covered in chapter 6, where the basic theory describing noise formation in proton
imaging and means to control it are outlined. In chapter 7 that theoretical background was
validated and combined with a fully realistic pCT scanner simulation platform which was
benchmarked against experimental data. FMpCT reaches its full potential when spatially
varying image quality can be controlled to reach specific prescriptions. This was developed
and demonstrated in chapter 8. With the complete workflow in place, chapter 9 describes
the experimental realization of the full concept of FMpCT. Assuming an accurate RSP
patient map of the anatomy of the treatment day, acquired in a dose efficient way, opti-
mal treatment plans can be calculated. Treatment planning for proton therapy is based
on specific radiobiological assumptions. The effect of the radiobiological uncertainties on
the dose delivered to the patient is studied in chapter 10 for simulated treatments of a
nasopharyngeal and a prostate cancer patient. Verification of the delivered treatment in
the form of prompt–gamma range monitoring is heavily relying on Monte Carlo simula-
tions. Chapter 11 assesses nuclear modeling of these processes and proposes improvements.
The sensitivity of PG range monitoring simulated on prostate cancer patients is explored
in chapter 12. Finally, in the context of novel particle accelerators for particle therapy,
a radiation protection study for CALA, the laser–ion accelerator facility of Munich, is
presented in chapter 13.
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Chapter 2

Basic physics of particle therapy

This chapter reviews the basic physics behind particle therapy. Excellent dedicated re-
views on the topic have been published by Chu et al. (1993), Newhauser & Zhang (2015),
Durante & Paganetti (2016), Gottschalk (2018) and others. A thorough examination of
the theoretical background of charged particle interactions with matter is beyond the scope
of this chapter. The aim is therefore to present in a brief and concise fashion the main in-
teraction mechanisms relevant to the energy regime utilized in particle therapy and expose
their impact on therapeutic and imaging particle beams, with a focus on protons.

2.1 Review of proton interaction mechanisms

The purpose of this section is to provide a summary of the main interaction mechanisms
of protons with matter, for the energy range below a few hundreds of MeV’s. The three
main types mechanisms are schematically described in figure 2.1.

When a proton travels trough matter, it experiences a large number of inelastic Coulomb
interactions, which transfer small amounts of energy from the proton to the electrons of
the medium (see figure 2.1(a)) via ionization and excitation of the atoms. For example,
the number of primary ionizations induced by a 10 MeV proton in liquid water is of or-
der 102/µm, each of them reducing the proton’s energy by a few tens of keV’s (Perris &
Zarris 1989). Due to the fact that the proton mass to electron mass ratio is approximately
1836, the deflection of the proton from its initial trajectory is considered negligible. There-
fore the net effect of these interactions is energy loss. Bremsstrahlung, which is a radiative
process for energy loss, although still possible for protons, is considered negligible due to its
large mass. Deflections of the proton direction mainly occur when it passes near an atomic
nucleus (see figure 2.1(b)), experiencing a repulsive Coulomb force in conjunction with the
usually larger mass of the nucleus. A myriad of these scattering events sum up to non-
negligible change of direction of the proton when it traverses adequate material thickness,
but still elastic scattering mainly yields small angle deflections. As an example for quan-
tifying this, the scattering angle distribution of 158.6 MeV protons after traversing 1 cm
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Figure 2.1: Illustration of proton interaction mechanisms (Newhauser & Zhang 2015):
(a) energy loss via inelastic Coulomb interactions with atomic electrons, (b) deflection of
proton trajectory due to repulsive Coulomb elastic scattering with a nucleus, (c) non-elastic
nuclear interaction and creation of secondary particles.

of water is nearly Gaussian, with more than 99% of the protons experiencing a direction
change of less than 1o (Gottschalk 2018). Finally there are non–elastic nuclear interactions
between protons and the atomic nuclei of the absorber medium (see figure 2.1(c)). The
projectile proton is absorbed and the excited nucleus de–excites via emission of secon-
daries such as photons, protons, neutrons, deuterons, tritons, alpha particles and heavier
nuclei. Nuclear interactions might also result to radioactive nuclei with long decay times.
In the radiation therapy energy range regime (80 MeV - 250 MeV), proton beams attenuate
approximately by 1% per cm in water (Paganetti 2016).

2.2 Energy loss

2.2.1 Stopping power

Although proton energy loss mainly occurs via frequent ionizations and excitations, it can
be regarded as a continuous loss along the proton’s trajectory. This assumption is called the
continuous slow down approximation (CSDA) and a way to characterize then the energy
loss is the linear stopping power, which is the energy loss rate per unit path length:
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S = −dE

dx
(2.1)

where dE is the energy loss along the proton path length dx. It is important to note that
the energy loss is a stochastic effect, meaning that not every proton with the same initial
energy, impinging the same material will undergo the exact same interactions yielding the
exact same energy loss. Therefore, equation 2.1 and all subsequent equations of stopping
power are only meaningful for a particle bean and they quantify the mean energy loss.

For a material of given chemical composition, the probability of interactions depends
on the number of atoms, hence on the mass density of the material. To factor out this
effect, the stopping power of a particle in a material can be defined independently of the
material mass density via the mass stopping power:

S

ρ
= − dE

ρdx
(2.2)

where ρ is the mass density of the material.
A simple mathematical expression that parametrizes the mass stopping power of a

particle species as a function of its energy was formulated by Bragg & Kleeman (1905):

S

ρ
= −E

1−p

ραp
(2.3)

where α is a material dependent constant, E is the energy of the beam and p is a dimen-
sionless constant depending on the particle type and the beam energy.

In the early 1930’s, Bethe (1930) developed a more precise formula for stopping power
of heavy charged particles, taking into account quantum mechanical effects and using the
assumption of unbound stationary electrons in the atom:

S

ρ
= − dE

ρdx
= 4πNAr

2
emec

2Z

A

z2

β2

[
ln

2mec
2γ2β2

I(1− β2)
− β2 − δ

2
− C

Z

]
(2.4)

where NA is Avogadro’s number, re and me are the classical electron radius and the electron
mass, c is the speed of light, Z and A are the atomic and mass numbers of the material, I is
the mean excitation potential of the material in eV which signifies the averaged excitation
potential per electron in the target atom, z is the charge of the projectile, β is the ratio
of the projectile’s speed to the speed of light and γ is the Lorentz factor. The term C

Z
is

the so called shell correction which is needed for protons of energy below approximately
100 MeV as at these energies Bethe’s initial requirement that the projectile’s velocity by far
exceeds the atomic electron’s velocity is not valid. Omitting the shell correction results in
overestimation of the stopping power at low projectile energies. The term δ

2
is the density
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correction, which adds to the Bethe formula the effect of shielding of remote electrons by the
electrons nearer to the projectile. This correction becomes important for highly relativistic
projectiles and high density absorber media and omitting it results in overestimation of
the stopping power at high projectile energies.

According to equation 2.4, we can deduce a few main dependencies of the stopping
power. The first is that the linear stopping power is proportional to the electron density
of the material (ρNA

Z
A

). It is worth noting here that for biological materials the ratio Z
A

does not deviate much from 0.5, which means that the dependency on the electron density
is dominated by the mass density. The stopping power also depends on the I value of
the material. The latter monotonically increases with Z and varies from approximately
19 eV for oxygen to approximately 820 eV for lead (Newhauser & Zhang 2015). Due to
the fact that the I value appears in the formula in the logarithmic term, its effect is small
in the energy range regime relevant for particle therapy. Concerning the projectile, the
stopping power is proportional to its charge squared (z2). It is also highly dependent on
the velocity (hence kinetic energy) of the projectile. For low energies (βγ < 3) the stopping
power increases as a function of 1

β2 . For βγ ≈ 3− 3.5 the stopping power as a function of
the projectile energy or velocity reaches a minimum. This βγ range is independent of the
particle species. Particles with such βγ are called minimum ionizing particles and their
mass stopping power is approximately 2 MeV · g/cm2. Above that βγ area the logarithmic
term becomes increasingly important and the stopping power increases with increasing
β2. For protons, βγ ≈ 3 − 3.5 corresponds to kinetic energies of 2 − 2.4 GeV, which are
far above the maximum therapeutic proton energies of about 250 MeV. In the proton
energy range of 50 − 250 MeV the stopping power in water drops from 12.45 MeV/cm to
3.91 MeV/cm (Seltzer 1993). As already mentioned, the energy transfer from protons to
atomic electrons happens in rather small amounts, due to the small mass of the electron
with respect to that of the proton. The maximum possible energy transfer from an ion of
mass M to an unbound stationary electron of mass me is:

∆max = 2mec
2β2γ2

[
1 + 2

me

M
γ +

(me

M

)2
]

(2.5)

where c is the speed of light, β is the ratio of the ion velocity to the speed of light and γ
is the Lorentz factor. Even very energetic protons, for example with a kinetic energy of
200 MeV, will transfer a maximum energy of 500 keV to an atomic electron (Newhauser &
Zhang 2015).

2.2.2 Absorbed dose

The absorbed dose is a quantity applicable to ionizing radiation. It is defined as the energy
e imparted to matter of a finite volume and of mass m:

D =
e

m
(2.6)
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The unit of absorbed dose is the gray (Gy) equal to one Joule per kilogram (J/kg). In
the case of indirectly ionizing radiation, energy is imparted to matter in a two step pro-
cess (Podgorsak 2016). In a first step, the indirectly ionizing radiation transfers energy to
secondary charged particles in the form of kinetic energy. In a second step, these charged
particles deposit some of their kinetic energy to the medium (resulting in absorbed dose)
and lose some of their energy in the form of radiative losses (bremsstrahlung, annihilation
in flight). Assuming charged particle equilibrium, the absorbed dose can be also expressed
as a function of the fluence of a beam of particles Φ(r) at a given point r:

D(r) = Φ(r) · S
ρ

(2.7)

where S/ρ is the mass stopping power of that particle type in the traversed medium. In the
general case of a charged particle beam described at a given point r by a fluence spectrum
Φ(r, E), the dose becomes:

D(r) =

∫ ∞
0

Φ(r, E) · S(E)

ρ
dE (2.8)

where S(E) denotes the energy dependent stopping power.

2.2.3 Range

The range of a particle beam is defined as the depth in the absorber where half of the
particles have come to rest. Since the energy loss is a stochastic effect, a definition of range
for a single particle would not be meaningful. As shown in figure 2.2, the particle beam
attenuates while traversing the medium due to nuclear interactions. Therefore, the range is
defined rather as the depth at which half of the particles that reached near the end–of–range
come to rest, instead of half of the initial number of particles. So far the range has been
defined as a depth in the medium. Given that charged particles and specifically protons
do not travel along straight lines because of scattering, a given depth in the absorber is
not necessarily the same in physical length as the actual path length particles travelled to
reach that depth. Hence the depth should be more precisely called the projected range,
while the path length is called the CSDA range. The ratio between the projected range and
the CSDA range of a particle beam is the detour factor. For protons of 50 and 250 MeV
the detour factor is 0.9985 and 0.9989, respectively (Seltzer 1993).

The CSDA range for a given initial energy E0 can be calculated numerically from the
linear stopping power dE

dx
:

R(E0) =

∫ 0

E0

(
dE

dx

)−1

dE ≈
0∑
E0

(
dE

dx

)−1

·∆E (2.9)
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Figure 2.2: Relative fluence Φ of a proton beam as a function of depth z in water
(Newhauser & Zhang 2015). Ratio of 1 corresponds to the number of protons just be-
fore the end–of–range. The gradual attenuation of protons up to that depth is caused by
nuclear interactions. The steep reduction at the end of range is caused by ions coming to
rest. The sigmoid shape of that area is caused by stochastic fluctuations in the energy loss
of individual protons.

The summation is an accurate numerical approximation when performed over small discrete
energy steps ∆E, during which the stopping power remains nearly constant. The CSDA
range for protons in liquid water as a function of energy was calculated from the NIST
database (Seltzer 1993) and is shown in figure 2.3. The CSDA range from about 1 MeV to
300 MeV seems to follow a power law. This behavior was utilized by Bragg and Kleemann
who formulated the Bragg-Kleemann rule (Bragg & Kleeman 1905) parameterizing the
CSDA range as a function of the initial energy of a particle beam:

R(E) = αEp (2.10)

where as in equation 2.3 α is a material dependent constant, E is the initial energy of
the particle beam and p is a dimensionless constant depending on the particle type and
the beam energy. For proton beams with energy below 200 MeV traversing water, α ≈
2.2× 10−3 cm/(MeV)p and p ≈ 1.77 (Bortfeld 1997).

2.2.4 Energy – Range straggling

As mentioned in the previous sections the energy loss is a stochastic effect and equations 2.4
and 2.9 provide mean values of energy loss and of range for a beam of particles. The
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Figure 2.3: Proton CSDA range in liquid water, expressed in g/cm2 (length multiplied by
the mass density, in this case 1 g/cm3) for a wide range of energies in MeV. The figure was
obtained using the NIST database (Seltzer 1993).

fluctuations of the energy loss within a beam lead to each particle of the beam travelling
a slightly different length until coming to rest and are responsible for the sigmoid shape
of the beam fluence at the end of range shown in figure 2.2. These fluctuations are called
energy straggling or range straggling.

The shape of probability density function (PDF) of these fluctuations depends on the
absorber thickness. Bohr (1915), Landau (1944) and Vavilov (1957) have formulated the-
ories describing the energy straggling PDF for thick, intermediate and thin absorbers,
respectively. For most radiation therapy applications we are concerned with thick ab-
sorbers, therefore the energy straggling distribution as described by Bohr’s theory will be
briefly presented.

For thick absorbers the energy straggling is distributed according to a Gaussian:

f(∆E)d∆E =
1

σ∆E

√
2π

exp
−
(
∆E −∆E

)2

2σ2
∆E

(2.11)

where ∆E is the energy loss in a single interaction with an atom, ∆E is the mean energy
loss in the absorber. For relativistic ions the variance σ2

∆E of the distribution is given by:
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σ2
∆E = 2πr2

emec
2ρNZx

z2

β2
∆Emax (2.12)

where re is the classical electron radius, me is the mass of the electron, c is the speed of
light, ρ is the mass density of the material, N is the number of atoms per unit volume of
material, Z is the atomic number of the absorber, x is the thickness of the absorber, z is
the charge of the projectile, β is the projectile’s velocity to the speed of light ratio and
∆Emax is the maximum possible energy transfer in one interaction.

A simple parametrization of the range straggling as a function of the ion range has
been proposed by Chu et al. (1993):

σ∆R = kRmAn (2.13)

where R is the ion range, A the ion mass number and k, m and n are empirically determined
constants. For protons the constant n vanishes as A = 1. Bortfeld (1997) determined for
protons in water k = 0.012 and m = 0.935 which results in the empirical rule of proton
range straggling (one standard deviation) in water being approximately 1% of the range.

2.3 Coulomb scattering

As briefly mentioned in section 2.1, protons can be elastically scattered by nuclei in the
absorber, which results in change of direction and negligible energy loss. Adopting the
description of Newhauser & Zhang (2015), elastic Coulomb scattering can be classified by
the number of scattering interactions Ns happening in an absorber. For Ns = 1 (single
scattering) and adequate description can be obtained via Rutherford’s scattering theory.
For 1 < Ns < 20 (plural scattering) theoretical modelling becomes complicated. For
Ns ≥ 20 (multiple scattering) which is relevant to particle therapy applications, the net
effect of a large number single scattering interactions can be modelled using a statistical
approach.

Figure 2.4 shows schematically the concept of multiple Coulomb scattering in two di-
mensions. From the passage in an absorber of thickness x, the myriad of single scattering
interactions (solid curved line) sum up to a net angular deflection θ with respect to the
initial direction and a net displacement y from the entry point in the absorber. To char-
acterize the net angular deflection we define the quantity of scattering power:

T =
d < θ2 >

dx
(2.14)

The statistical description of multiple Coulomb scattering aims at modelling the dis-
tribution of these net deflection angles for a large number of particles. Therefore we are
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Figure 2.4: Schematic representation of a particle trajectory in an absorber of thickness x.
The particle experiences a large number of single scattering events which result in a net
deflection θ and displacement y.

interested in the statistical moments of that distribution, hence the scattering power is
related to the mean deflection angle over a large number of particles. In addition, as
the mean is expected to be at zero, in order to have a meaningful characterization of the
deflection angle distribution we rather use the mean of the square of the deflection angles.

A complete theory of multiple Coulomb scattering was formulated by Molière (1948),
under the assumption of small angle scattering (sinθ ≈ θ). The probability P (θ) for
scattering with angle θ into a solid angle dΩ is:

P (θ)dΩ = ηdη

(
2 · e−η2 +

F1(η)

B
+
F2(η)

B2
+ . . .

)
(2.15)

where η = θ/
(
θ1B

1/2
)
, θ1 = 0.3965 · (Z · z/pβ)

√
ρδx/A, z is the charge of the particle, p

is the momentum of the particle, β is the ratio of the velocity of the particle to the speed
of light, Z and A are the atomic and mass numbers of the absorber, ρ is the mass density
of the absorber and δx is the traversed thickness. The functions Fi(η) and the parameter
B have been tabulated in published literature.

A simplified model was developed by Gottschalk et al. (1993) approximating the de-
flection angle distribution with a Gaussian functional form:

P (θ) ≈ 2θ

< θ2 >
exp

(
−θ2

< θ2 >

)
dθ (2.16)

Further work on simplifying Molière’s theory (Gottschalk 2010) led to a differential
approximation and the following widely used expression for the scattering power:
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T =
d < θ2 >

dx
= fdM(pv, p0v0) ·

(
ES

pv

)2

· 1

XS

(2.17)

where ES = 15 MeV, p0 and v0 are the initial momentum and velocity of the particle, p
and v are the momentum and velocity of the particle after traversing thickness x of the
absorber and XS is the scattering length of the material in cm given by:

1

XS

= ραNAr
2
e

Z2

A

[
2 ln(33219 · (AZ)−1/3)− 1

]
(2.18)

where ρ is the mass density of the absorber, α is the fine structure constant, NA Avogadro’s
number, re is the electron radius, Z and A are the atomic and mass numbers of the absorber.

The term fdM in equation 2.17 is a material-independent factor given by:

fdM = 0.5244 + 0.1975log10

[
1−

(
pv

p0v0

)2
]

+ 0.2320 · log10(
pv

MeV
)− 0.00981 · log10(

pv

MeV
) · log10

[
1−

(
pv

p0v0

)2
]

(2.19)

2.4 Nuclear interactions

Non–elastic nuclear reactions cause fragmentation of the target nucleus in the case of proton
beams, and of the target nucleus and the projectile in case of heavier ion beams. This
results in a gradual attenuation of the beam before particles reach their CSDA range (see
also figure 2.2). Figure 2.5 (Durante & Paganetti 2016) highlights this effect for different
ion species in water, all having the same CSDA range of approximately 20 cm. It is worth
noting that beam attenuation which is already non–negligible for protons (approximately
80% of the initial protons reach near their CSDA range of 20 cm), becomes a significant
effect for heavier ions (approximately 50% of the initial 12C-ions reach near their CSDA
range of 20 cm).

Several non–elastic nuclear cross section (σR) parameterizations have been proposed
in published literature. One of them assuming simple geometric approximations is that
of Bradt & Peters (1950):

σR = πr2
0

(
A1/3

p + A
1/3
T − b

)2

(2.20)

where r0 is the nucleon radius, Ap and AT the mass number of the projectile and the target,
and b a correction factor (overlapping factor).
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Figure 2.5: Beam attenuation as a function of depth in water, for different ions of the same
CSDA range of approximately 20 cm (Durante & Paganetti 2016).

For proton beams of particle therapy relevant energies an energy dependent parame-
terization derived by Sihver & Mancusi (2009) is:

σR(E) = σ0 · f(E,ZT) (2.21)

where σ0 is a Bradt–Peters factor determined as:

σ0 = πr2
0

[
1 + A

1/3
T − b0

(
1 + A

−1/3
T

)]2

(2.22)

where b0 is called the transparency parameter and is a polynomial expansion of the target’s
mass number:

b0 = 2.247− 0.915
(

1 + A
1/3
T

)
(2.23)

For proton energies higher than 200 MeV the factor f(E,ZT) is very close to one and
can be omitted, but for lower energies it needs to be accounted for and the parameterization
can take complicated functional forms.

For protons traversing biological relevant materials the non–elastic nuclear cross section
displays a threshold at approximately 8 MeV and it increases to a maximum at about
20 MeV, the latter corresponding to about 0.4 mm residual range in water. It thereafter
decreases up to approximately 100 MeV, equivalent to about 7.7 mm residual range in
water. From there and on it stays almost constant as a function of energy with a minor
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Figure 2.6: Non–elastic cross section of of protons on carbon as a function of energy
(Durante & Paganetti 2016).

positive slope. An example of the proton non–elastic cross section in carbon as a function
of energy is shown in figure 2.6 (Durante & Paganetti 2016).

Secondary fragments from non–elastic nuclear interactions contribute to the dose de-
posited by the therapeutic beam. Figure 2.7 (Grassberger & Paganetti 2011) shows an
example of the most important dose components stemming from a 160 MeV proton beam
in water. Dose from secondaries sums up to approximately 10% of the total dose, with
the most significant contributions originating from secondary protons and followed by
α–particles. Except for charged secondaries, photons and neutrons are also created as
products of non–elastic nuclear reactions. Their contribution to the therapeutic dose is
typically negligible in the treated area. Nevertheless, as their range is considerably larger
than that of charged secondaries, they can deposit dose in healthy tissues far from the
treated site. Especially neutrons have an energy dependent biological effectiveness up to
20 times higher than that of protons (ICRP 2007) and can increase the risk of second
cancer due to radiation therapy (Newhauser & Durante 2011).

2.5 Characteristics of the Bragg curve

All the aspects discussed in the previous sections of this chapter contribute in their own
way to the distinct shape of the dose as a function of depth. The so–called Bragg curve
was first observed by Bragg & Kleeman (1905) for α–particles. In this section the main
characteristics of the Bragg curve will be discussed.

Figure 2.8 (Newhauser & Zhang 2015) shows the absorbed dose of a monoenergetic
proton beam as a function of depth in the absorber. The longitudinal dose distribution
has this distinct shape as a function of depth when plotted along the central axis of a
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Figure 2.7: GEANT4 simulation of the absorbed dose as a function of depth of a 160 MeV
proton beam in water (Grassberger & Paganetti 2011). The different contributions to the
dose are shown as a percentage of the absorbed dose at that depth.

broad beam or when integrating the dose laterally at every depth. This happens due to
the equilibrium of lateral scattering away from the central axis exactly compensated by
scattering towards it. Otherwise the dose maximum at the end of range is severely reduced
and might not even be the maximum of the distribution. The general shape of the Bragg
curve as depth increases (from left to right in the figure) is characterized by a small buildup
at shallow depths, a rather flat plateau area and a pronounced dose maximum followed by
a sharp fall–off.

The first region of the Bragg curve is the electronic buildup. It is located near the
entrance to the absorber, at the beginning of the dose curve. It is formed due to the fact
that the proton beam will cause there the first ionizations and the produced δ-electrons
have enough energy (tens to hundreds of keV) to travel deeper in the absorber, further
ionize and deposit dose. The presence of small amounts of material before the absorber is
enough to create charged particle equilibrium and disguise the electronic buildup.

The protonic buildup, observed near the entrance of the beam to the absorber is the
region where an increase in the dose is observed due to the buidlup of secondary protons.
These secondary protons originate from non–elastic nuclear interactions.

The region extending from the entrance to the absorber, or from the electronic/protonic
buildup, up to the proximal of the peak is called sub–peak region or plateau. In this area of
the longitudinal dose profile the dose increases slowly and this effect is governed primarily
by the increase of stopping power with decreasing energy (S ∝ 1

β2 ). To a lesser extent,
the dose is increased vs. depth due to the contribution from secondaries originating from
non–elastic nuclear interactions. On the other hand, the gradual attenuation of the proton
beam contributes negatively to the dose buildup.
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Figure 2.8: Absorbed dose D as a function of depth z in water from a monoenergetic
154 MeV broad proton beam (Newhauser & Zhang 2015). The various regions labelled are
explained in the text.

The dose maximum near the end of range is the pristine Bragg peak. The increase
of stopping power with decreasing energy and the beam attenuation due to non–elastic
nuclear interactions determine the exact location and magnitude of the peak for a given
beam energy. The width of the peak is governed by the energy straggling. The depth
where the dose maximum occurs is denoted in figure 2.8 as zBP. The width of the peak
is often quantified by the distance between the proximal and the distal 80% of the dose
maximum (I80−80).

Beyond the pristine Bragg peak follows a sharp dose negative gradient named the distal
fall–off. The steepness of this falloff is determined by the initial beam energy and by the
energy straggling. It is usually quantified by the distance between two distal dose lev-
els, for example the distance between distal 80% to 20% of the maximum dose (Id80−20).
For heavier ions than protons a significant fragmentation tail falling slowly to zero fol-
lows (Kempe et al. 2006). It is caused by charged secondaries from non–elastic nuclear
interactions which are lighter than the primary ions.



Chapter 3

Comparison of proton CT and dual
energy x–ray CT

This chapter contains the work published in Physics for Medicine and Biology, volume 64,
issue 16, page 165002, in August 2019, with the title Experimental comparison of proton
CT and dual energy x–ray CT for relative stopping power estimation in proton therapy, by
Dedes et al. (2019).

3.1 Introduction

The increased use of protons for external beam radiation therapy of cancer offers the
potential of sparing of healthy tissues by achieving highly conformal dose distributions to
the tumor. Protons gradually slow down when traversing matter and their initial energy
can be chosen such that the therapeutic proton beam stops in the tumor. The range of
the protons in the patient is dependent on their energy and on the stopping power of the
tissue they traverse. The latter is commonly expressed as relative to water and denoted
as relative stopping power (RSP). A highly accurate RSP map of the patient in treatment
position is crucial for the calculation of optimal proton therapy treatment plans. Any
inaccuracies in the RSP map will be translated to proton range prediction errors, thus
compromising treatment plan quality by introducing range uncertainties, for which safety
margins are required (Paganetti 2012).

The current practice for obtaining RSP images is based on converting x–ray linear
attenuation coefficients, acquired with single energy x–ray CT (SECT) imaging, to RSP.
This procedure involves a stoichiometric calibration (Schneider et al. 1996) which can
result in up to 3.5% errors in the determination of RSP (Paganetti 2012, Yang et al. 2012).
Proton CT (pCT) is considered as a candidate for improving RSP accuracy. Already
in 1963, Cormack (1963) proposed that protons could be used for tomographic imaging.
Huesman et al. (1975) described a pCT scanner concept relying on the registration of
individual protons’ positions and directions, as well as the residual energy behind the
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patient. pCT scanners effectively measure RSP line integrals which can be processed by
dedicated reconstruction algorithms (Penfold et al. 2009, Penfold et al. 2010, Rit et al.
2013, Poludniowski et al. 2014, Hansen et al. 2016) to yield three–dimensional RSP maps.

Prototype pCT scanners have been designed and constructed (Takada et al. 1988,
Coutrakon et al. 2013, Sadrozinski et al. 2016, Johnson et al. 2016, Pettersen et al. 2016, Es-
posito et al. 2018). In recent studies, the RSP accuracy achieved by some of these proto-
types has been reported to be better than 1.6% for three inserts (Esposito et al. 2018) and
1.39% for seven inserts (Giacometti et al. 2017a). For the same seven inserts, Volz et al.
(2018) achieved accuracy better than 1% using helium ions with a pCT prototype scanner.

An alternative for obtaining RSP images of high accuracy is dual energy x–ray CT
(DECT) (Yang et al. 2010), where several studies (Hünemohr et al. 2013, Bourque et al.
2014, Hudobivnik et al. 2016, Möhler et al. 2016, Han et al. 2016, Taasti et al. 2016, Lalonde
et al. 2017, Saito & Sagara 2017b, Almeida et al. 2018) have demonstrated the potential
of reaching an RSP accuracy of about 1%. DECT methods for RSP estimation have been
recently validated using biological tissue samples (Taasti et al. 2017, Bär et al. 2018, Xie
et al. 2018, Möhler et al. 2018) and have been found to consistently outperform SECT
in terms of RSP accuracy. DECT scanners are currently making their way into proton
therapy clinics (Wohlfahrt et al. 2017a) and may impact clinical proton range calculation
(Hudobivnik et al. 2016, Wohlfahrt et al. 2017b).

While a comparison between ideal simulated pCT and DECT measurements in terms of
RSP accuracy has suggested that pCT may achieve superior results (Hansen et al. 2015),
there has so far been no direct comparison between the two modalities. This study aims
at filling this gap.

The current study is split in two. The main part presents for the first time an exper-
imental comparison of pCT and DECT in terms of RSP accuracy. For that purpose, two
different phantoms containing a total of 13 tissue equivalent inserts of known RSP have
been scanned in the phase II preclinical pCT prototype scanner and in a commercially
available DECT scanner. This allowed a direct comparison of the accuracy of the resulting
RSP images.

Since pCT technology is at a much earlier stage of development than state–of–the–art
dual source DECT scanners, we expect that pCT images may suffer from artifacts and
other effects absent in DECT. In the second part of our study, we thus supplemented
our experimental work with ideal and realistic pCT detector simulations. Validation of
the realistic simulations against experimental results allowed us to assess whether pCT
accuracy may be impacted by fundamental limitations of using protons for imaging, or
from design aspects of the pCT prototype we used. Additionally, the simulations were
used to pinpoint sources of image artifacts in the pCT scanner design.
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3.2 Material and methods

3.2.1 Experimental aspects

Known-RSP phantoms

Two phantoms containing plastic tissue equivalent inserts were used in this study (see
drawings in figure 3.2). The first phantom is the CTP404 module from the commercial
multislice Catphan R©600 phantom (The Phantom Laboratory, New York, USA), denoted
for simplicity in the rest of the manuscript as CTP404 phantom. The CTP404 phantom is
of cylindrical shape with a diameter of 150 mm and height of 25 mm, made of polystyrene.
The phantom contained eight radially placed cylindrical inserts of 12.2 mm radius and
25 mm height. It also contained other smaller inserts of various materials (tungsten carbide
wires, air and Teflon small cylindrical inserts and acrylic spherical inserts of various radii)
which are not relevant to this study. During the imaging scans, two of the inserts were
filled with air, while the rest contained materials whose RSP is summarized in table 3.4.
The reference RSP was obtained by means of variable water column measurements with a
4.4 mm FWHM 310.82 MeV/u carbon ion beam (Giacometti et al. 2017a).

The second phantom is a custom–made acrylic (PMMA) cylinder of 130 mm diameter
and 227 mm height, called henceforth LMU phantom. The phantom body contained seven
cylindrical holes of 30 mm diameter and of 55 mm height, in which different plastic tissue
equivalent materials were inserted. The seven inserts were arranged in three different layers
along the axis of the cylinder of the phantom body. In two of the layers one insert was
placed centrally and one off–center and in a third layer one insert was placed centrally and
two off–center. Due to the fact that the LMU phantom was in the vertical direction larger
than the scanner’s field of view, its three insert layers were scanned in three different runs.
Therefore, the LMU phantom is presented as three different images, hereafter called Top
Supremum (TopSup), Top Infimum (TopInf ) and Bottom (Bot). The reference RSP of the
seven inserts were obtained by means of variable water column measurements with a 4.4
mm FWHM 310.82 MeV/u carbon ion beam (Berndt 2016, Hudobivnik et al. 2016) and
are listed in table 3.4.

Proton CT scanner

The proton CT scans of this study were performed at the Northwestern Medicine Chicago
Proton Center using the phase II preclinical pCT prototype scanner of the Loma Linda
University and the of University of California Santa Cruz. The scanner hardware is de-
scribed in detail in Johnson et al. (2016). It comprises two tracking modules and an energy
detector for the determination of the water–equivalent path length (WEPL). The data ac-
quisition system is capable of acquiring broad beam proton events at a sustained rate in
excess of 1 MHz.

The front and rear tracking modules (upstream and downstream of the scanned object)
contain in total 32 single–sided silicon strip detectors (SSD) with a strip pitch of 228 µm
and a thickness of 400 µm. In each tracking module, the silicon strip detectors are arranged
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in four layers, two measuring the horizontal coordinates and two measuring the vertical
coordinates. The tracking system provides the capability of a four–point measurement
for each proton, allowing the estimation of the curved proton path using the measured
positions and calculated directions.

The WEPL detector (Bashkirov et al. 2016) consists of five polystyrene scintillator
stages (RSP ≈ 1.038), each with a thickness of 51 mm and a lateral area of 10×40 cm2.
Each scintillator stage is wrapped with 65 µm thick reflective material (VikuitTM ESR
film). The WEPL of a proton is deduced from the energy detector signal of the stage in
which the proton stopped, using a stage–specific energy–to–WEPL calibration curve. The
calibration procedure is described in section 3.2.3.

The WEPL calibration, as well as the conversion of the digitized signal from the tracker
(strip number) to physical coordinates, and the assembly of proton events from information
registered by the different parts of the detector are performed by dedicated raw data
processing software. The output of the processing software is fed to the reconstruction
algorithm (described in section 3.2.4) which produces a voxelized RSP map of the scanned
object.

Both the data acquisition required for the WEPL calibration and the imaging runs were
performed with a wobbled proton beam of 40 mm FWHM size, which was magnetically
deflected to sweep the field of view (FOV) of the scanner. The nominal proton energy was
200 MeV as defined in the accelerator library and the variation was found to be less than
0.2 MeV between runs. Finally, the phantoms used for imaging were placed on a rotating
stage and data were acquired while continuously rotating. Data were subsequently binned
in 360 projections, spaced at 1 degree steps. pCT scans took approximately 6 min.

Dual energy CT scanner and conversion to RSP

RSP estimates based on DECT images were calculated following a method proposed by
Saito & Sagara (2017a) and Saito & Sagara (2017b). For this purpose a PMMA calibration
phantom with 150 mm diameter and a central bore housing inserts from an electron density
phantom (RMI 467, Gammex, Middleton, USA, part of the Sun Nuclear Corporation) was
scanned using a dual–source DECT scanner (SOMATOM Definition FORCE, Siemens
Healthineers, Forchheim, Germany) at peak tube voltages of 90 kVp and 150 kVp with tin
filtration. The scan pitch was 0.7 and exposures of 168 mAs were set for both x–ray tubes
with automatic exposure control disabled. The CT dose index (CTDIvol) was 35.7 mGy.
Images were reconstructed using the Q32\3s image reconstruction kernel with the vendor’s
iterative reconstruction (ADMIRE) on a 0.39 mm×0.39 mm×3 mm grid. Both known–RSP
phantoms were scanned the same way. DECT scans took 17 sec.

Using the mean CT numbers HUk for the high-energy (k = H) and low-energy (k = L)
scans of the calibration phantom materials, scanner specific calibration parameters were
obtained by least–square fitting of the known electron densities relative to water ρe and
the ratio of effective atomic number Zeff to the following functions:

ρe = a
(1 + α)HUH − αHUL

1000
+ b (3.1)
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(
Zeff

Zeff,w

)3.3

− 1 = γL

(
uL

ρe

− 1

)
+ γ0 (3.2)

with the effective atomic number of water Zeff,w = 7.4774 and reduced CT number uL =
HUL/1000 + 1. The offset γ0 in equation (3.2) was added to Saito’s original proposal in
order to improve the accuracy of the fit. The calibration of the mean excitation energy
I relative to that of water Iw was done separately for soft tissues (Zeff < 8.8) and bone
tissues (Zeff > 8.8) by fitting equation (3.3).

ln
I

Iw

= C1

[(
Zeff

Zeff,w

)3.3

− 1

]
− C0 (3.3)

The resulting fit parameters are summarized in table 3.1. The figures showing the fits on
the data are shown in section 1 of the Supplementary Material.

Table 3.1: Calibration parameters (CP) required to convert DECT images to RSP, together
with their 95% confidence level (CL).

CP CL
α 0.3452 0.02
a 0.9928 0.01
b 0.9929 0.004
γL 9.0814 0.3
γ0 -0.0941 0.08

soft tissues bone tissues
CP CL CP CL

C1 0.2020 0.1 0.0662 0.009
C0 0.0821 0.03 0.0945 0.03

Applying these calibration parameters to the scans of the known-RSP phantoms, vox-
elized maps of relative proton stopping power values could be obtained according to the
Bethe equation:

RSP = ρe

ln
(

2mec2β2

I(1−β2)

)
− β2

ln
(

2mec2β2

Iw(1−β2)

)
− β2

(3.4)

with rest electron mass me, speed of light c, and proton speed relative to the speed of
light β. In this work, we used an Iw value of 78 eV according to the latest ICRU report
(Sigmund et al. 2009) and a β value of 0.4282, corresponding to a proton kinetic energy of
100 MeV.
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3.2.2 Proton CT Monte Carlo simulations

A GEANT4 (version 10.03.p01) based simulation application, modelling in detail all parts
of the pCT phase II prototype scanner, has been developed and published by Giacometti
et al. (2017a). The physics models used were the G4EmLivermorePhysics for the elec-
tromagnetic physics, the G4HadronPhysicsQGSP BIC HP for the inelastic interactions of
hadrons, the G4HadronElasticPhysicsHP for the elastic interaction of hadrons and the
G4IonBinaryCascadePhysics for the inelastic interactions of ions. In some particular
cases nuclear/hadronic interactions were switched off, so as to investigate their effect on
the RSP accuracy. Whenever this was the case, it is explicitly stated in the text, otherwise
the full set of physics was used. The maximum step length was chosen to be 6 µm for the
energy detector stages (one tenth of the wrapping material thickness) and 1 mm in the rest
of the simulation geometry. For this study an amended version of the simulation code was
used. In that version, the simulation includes parameterization of the non–linear response
of the scintillator to the deposited energy (Birks’ effect). The Birks’ factor kB = 0.0887
(Dickmann et al. 2019) was used to modify the deposited energy dE per step dx according
to

dE ′

dx
=

dE/dx

1 + kB · dE/dx
. (3.5)

The spatial dependence of the scintillator response (Bashkirov et al. 2016), related to
the position of the hit with respect to the location of the photomultiplier tube was also
implemented.

In addition, the simulation code emulates the digitization process of the real scanner,
yielding raw data in the same format as the actual scanner. This means, for each proton the
simulation outputs the tracker hits as strip numbers and the energy deposit in each stage
of the WEPL detector as analog to digital converter (ADC) numbers. This allowed the use
of a unified software workflow for experimental and simulated scans. The output of the
simulation (calibration and imaging runs) is processed in the same way as the experimental
data.

It is important to mention here that the four silicon strip detector modules comprising
each layer of a tracking module are arranged in a 1×4 matrix configuration, therefore
leaving three gaps in every layer. These gaps are 0.6 mm wide vertical stripes of insensitive
areas. Gaps are offset horizontally from layer to layer in order to reduce the probability
that a single proton crosses more than one of them. Special care was taken to minimize
these gaps, and it was estimated that, at the interface between two silicon detectors there
was an opening of about 0.1 to 0.2 mm, that was partially filled with glue. Nevertheless,
in the simulations, the whole 0.6 mm wide insensitive area of every gap was modelled as
air, which had implications on the reconstructed image quality, as shown later.

Besides the full detector simulation resulting in raw data aiming at closely modeling
experimental data, the simulation is also capable of producing idealized data. In this case,
the proton’s exact position, direction and energy are scored before and after the object at
planes coinciding with the trackers.
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For simplicity, pCT scans were simulated in step–and–shoot mode, in contrast to the
continuous acquisition in experiments. 360 projections at 1 degree steps were simulated
for all phantom cases.

An additional water phantom was simulated in order to investigate specific image arti-
facts. It was modelled after an existing water phantom consisting of a cylindrical PMMA
container with outer diameter of 150.5 mm and a height of 40 mm. The wall thickness of
the PMMA container was 6.35 mm and the container was filled with distilled water. For
the purposes of the current study, a larger version of the phantom (1.5 times larger in
diameter) with an outer diameter of 225.75 mm was also simulated. Simulations were per-
formed with both water cylinders centered at the imaging isocenter. To further investigate
the artifact related to the tracker gap, a set of three realistic simulations of the 150.5 mm
diameter water phantom was performed. In the first simulation, the phantom was centered
at the isocenter and the tracker gaps were assumed to be filled with air, as in the case of
all previous simulations. In the second simulation, the water phantom was placed with
a lateral offset of 40 mm to the isocenter and the tracker gaps were assumed to be filled
with air. Finally, in the third simulation, the water phantom was located 40 mm off the
isocenter and the tracker gaps were assumed to be filled with silicon.

3.2.3 Proton CT scanner calibration

The signal from the five–stage detector for each proton is converted to WEPL via a cal-
ibration procedure. The concept is described in Bashkirov et al. (2016) and a detailed
update based on the current calibration phantom is given in Piersimoni et al. (2017). The
calibration phantom is made of a polystyrene wedge which provides a WEPL gradient due
to the slopes of the wedge, as well as four polystyrene blocks, which when combined with
the wedge allow sampling of the entire WEPL range in the five–stage plastic scintillator
detector. The calibration runs, namely a run without any object and five runs (wedge alone
and wedge plus 1–4 blocks), are performed at the beginning of a scanning session, all with
200 MeV protons. The run without any object is used in order to map the spatial depen-
dence of the energy detector response as well as to provide a conversion from ADC counts
(digitized energy detector signal) to energy. The runs with the wedge phantom are utilized
for the creation of a look–up table, associating the known WEPL a proton traversed in
the calibration runs to the energy deposit in the stopping stage of the five–stage detector.
The known WEPL is obtained by calculating the length of the proton trajectory in the
calibration phantom from the tracker information, assuming straight paths and knowing
the calibration phantom’s RSP and geometry. The look–up table, referred to as WEPL
calibration, contains a WEPL value for each of the 340 energy deposit bins in each of the
five stages (in total 1700 energy bins of 0.25 MeV bin width). To obtain an optimal cali-
bration, fits and interpolations can be applied in regions where either a lack of sufficient
data or geometrical effects distort the calibration. The standard practice so far was to
make an attempt of correcting also for detector effects. This approach was based on the
expectation that the calibration curve should be continuous and smooth. In this study we
investigate whether this assumption is valid by toggling corrections.
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All these effects and the corresponding corrections are explained in section 3.2.6. Sub-
sequent imaging runs are processed using the look–up table and energy deposits of protons
in the stopping stage are converted to WEPLs.

Calibration curve variants

Alternative calibration curves (table 3.2) were generated to assess whether the calibration
procedure may contribute to image artifacts and decrease RSP accuracy. The calibration
obtained from experimental data as described previously and including all corrections is
referred to as ExpCalib1. A variant called ExpCalib2 was derived by omitting all applied
corrections (fits and interpolations). A last experimental calibration named ExpCalib3
was derived by omitting only the corrections related to the stage interfaces. We generated
additional calibrations using the simulation platform. The ExpCalib1 –equivalent calibra-
tion from simulations is called SimCalib1. In SimCalib2, corrections related to the stage
interfaces were omitted.

Table 3.2: Variants of the WEPL calibration with their main parameters.

Calibration Type of data Interpolation Stage interface
name correction correction
ExpCalib1 Experimental Yes Yes

ExpCalib2 Experimental No No

ExpCalib3 Experimental Yes No

SimCalib1 Simulation Yes Yes

SimCalib2 Simulation Yes No

3.2.4 Proton CT image reconstruction

The algorithm used to reconstruct the pCT images was a filtered back projection (FBP)
implementation that accounts for the curved proton paths. A detailed description of the
underlying principles of the algorithm is given in Rit et al. (2013). The path of every proton,
curved due to multiple Coulomb scattering, is approximated by a most likely path (MLP)
formulation, introduced by Schulte et al. (2008). For the determination of the curved path,
the position and direction information from the tracking modules is necessary. To eliminate
protons stemming from nuclear interactions, cuts on the energy and angular distributions
were applied. The cuts rejected protons whose energy or angle were outside three standard
deviations around their median energy and angle. For the cuts, protons were grouped
together in 2 mm × 2 mm pixels according to their position at the front tracker module.
The resulting proton–per–proton data were binned in projection images with 1 mm×1 mm
pixels. The projections were then filtered and back–projected. Finally, the pCT images
were reconstructed as RSP maps in a grid of 1 mm × 1 mm × 1 mm. The reconstruction
was applied to both experimental and simulated data without change of parameters.
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3.2.5 RSP accuracy quantification

The reconstructed pCT images, from simulations and experimental data as well as from
the DECT experimental scans, were compared in terms of RSP accuracy. The latter was
quantified for the cylindrical inserts of the phantoms as follows: in a cylindrical region of
interest (ROI) in the image, concentric with the inserts, the mean RSP (RSPmean) of the
voxels in that region was calculated. The accuracy is then the difference of the mean RSP
from the reference RSP (RSPref) in percentage:

RSPacc = 100 · RSPmean − RSPref

RSPref

%. (3.6)

The ROI radius was chosen to have 50% of the radius of the cylindrical inserts. Fur-
thermore, the ROIs spanned across 15 slices (1 mm each) for the pCT scans and across 5
slices (3 mm each) for the DECT scans. In addition to the RSP accuracy for each insert,
the mean absolute percentage error (MAPE) from all inserts and for each imaging modality
was calculated according to:

MAPE =

∑n
i=1 |RSPacc,i|

n
. (3.7)

where n is the total number of inserts and RSPacc,i is the accuracy in percent for every
insert i as calculated from equation 3.6.

3.2.6 Influence of problematic WEPL intervals on image artifacts

The RSP value of a voxel following image reconstruction is obtained from potentially
very different WEPL values, since it corresponds to the average of the projections’ values
over all projection angles. This is because protons intersecting a given voxel, but from
different acquisition angles, traverse very different paths in the object. In the special
case of cylindrical objects these paths are, in two dimensions, circle’s chords. The length
of these chords ranges from a minimum length, depending on the radial location of the
voxel and the acquisition angle, up to the object’s diameter. For example, central voxels
in a cylindrical homogeneous object are crossed only by protons of the maximum possible
WEPL for that particular object, whereas voxels at the edge of the cylinder will see a wider
WEPL distribution. If a certain WEPL interval is systematically distorted by the scanner,
this will lead to artifacts in localized regions in the image, depending on the phantom.
There are two types of calibration curve regions which may introduce image artifacts due
to inaccurate WEPLs: stage interfaces and intra–stage calibration curve kinks. Their
WEPL intervals are presented in table 3.3.

Protons stopping near the interface of two stages of the energy detector are of particular
interest since ambiguities in their signal may lead to image artifacts. Additionally, they
can distort the calibration curve. There is a number of corrections which can be applied
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in order to obtain a smooth curve in the region between two adjacent stages. Due to
a threshold of 1 MeV in the minimum energy required at the stopping stage, the first
four energy bins for every stage contain no WEPL value. They can be arbitrarily set to
the WEPL value of one of the next non–zero WEPL energy bins. Furthermore, the last
few highest energy bins of every stage are populated by a small number of protons. In
order to obtain a smooth curve there, an extrapolation correction can be applied, using
the values of lower energy bins. After the aforementioned corrections, there is a WEPL
discontinuity between the last energy bin of a stage and the first energy bin of the next
stage. This can be removed by using the first energy of the next stage in the extrapolation
correction described previously. To summarize, the fact that protons might deposit part
of their energy in non–active detector material at the interfaces or split their energy in
adjacent stages, in addition to the applied energy thresholds, results in inaccuracies and
uncertainties in the corresponding part of the WEPL calibration.

Intra–stage calibration curve kinks correspond to a discontinuity observed in the cal-
ibration curves due to the calibration phantom geometry. This discontinuity is observed
at about 60 MeV, in every stage except for the fifth (last) stage. The kink originates from
the interplay between the geometry of the calibration phantom, the calibration procedure
and the fact that the beam is divergent. The kink, which results in a severe artifact if left
uncorrected, can be mitigated to a large extent by interpolation correction, using parts
of the curve before and after the kink region. However residual WEPL inaccuracies may
remain. As opposed to the stage interface correction described above, this correction is
detector independent.

Table 3.3: WEPL ranges corresponding to either interpolation of calibration curve kinks,
or stage interfaces.

kinks stage interfaces
WEPL region WEPL range / mm

1 46.5 – 56.7 37.6 – 40.9
2 97.2 – 107.3 90.1 – 92.2
3 147.9 – 158.7 141.7 – 144.9
4 199.0 – 209.9 193.0 – 196.2

To investigate the impact of the WEPL regions in table 3.3 on the accuracy in the
image, we calculated heatmaps in image domain showing the percentage contribution of a
given WEPL range to a voxel of the reconstruction volume. This was done by thresholding
a given slice of the reconstruction volume from the experimental pCT images to the nearest
known RSP value and calculating a forward projection in parallel beam geometry. The
resulting sinogram was set to 1 if its value was within the given WEPL range and to 0
otherwise. Disregarding filtering, the binary sinogram was then backprojected and divided
by the number of query points in each summation. This resulted in an image with values
in the range [0, 1], which are 0 if the voxel is backprojected from WEPLs that are strictly
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outside the given WEPL range, and 1 if the voxel is backprojected from WEPLs that are
exclusively inside the given WEPL range. This, however, is not to be taken quantitatively,
as filtering for CT reconstruction was neglected.

3.2.7 Proton CT imaging dose estimation

In the case of the pCT scans, no direct dose estimation was possible. Therefore, the
imaging dose was calculated with the Monte Carlo simulation code described in 3.2.2. A
dose grid of 1 mm × 1 mm × 1 mm was defined and the dose to material was scored in
every voxel and for each projection. The dose delivered in a single scan was obtained by
simply summing the doses from all projections. The number of simulated protons per scan
(2.7× 108) was chosen to be approximately equal to that in the experimental scans. The
exact dose estimation was obtained by scaling the simulated dose with the factor required
to match the number of protons registered by the scanner in simulations to that in each
experimental scan. Only physical dose was considered.

3.3 Results

3.3.1 Proton CT – Dual energy CT comparison

Proton CT calibration

In figure 3.1 the WEPL calibration is plotted for experimental data with all corrections
(ExpCalib1), experimental data without any corrections (ExpCalib2) and for comparison,
for simulated data with corrections (SimCalib1). For more details about the calibration
parameters see table 3.2. The WEPL ranges to which corrections were applied are listed in
table 3.3. The relative agreement between ExpCalib1 and SimCalib1 varied from approxi-
mately 1% or lower for stages 1-3, up to 6% for stages 4 and 5. A severe kink appeared in
the calibration without interpolation correction (ExpCalib2), at approximately 60 MeV and
was to a large extent corrected via interpolation (ExpCalib1 and ExpCalib3). Removing
the additional corrections concerning the stage interfaces and high energy deposits (Exp-
Calib2) also led to a dramatic distortion of the calibration curve between adjacent energy
detector stages. Nevertheless, although the corrections related to stage interfaces yielded
a smoother curve, they exacerbated artifacts and led to reduced RSP accuracy. The RSP
MAPE achieved with pCT when using ExpCalib1 was 0.87% for experimental data and
0.86% for simulations. Maximum errors exceeded 1.5%. The optimal calibration applied
to experimental and realistic pCT simulations was obtained with interpolation at the kink
region, but without stage interface corrections. Therefore, unless mentioned otherwise,
ExpCalib3 was used for experimental pCT data and SimCalib2 for simulated pCT data.
Detailed RSP accuracy results from this optimized calibration variant are presented in the
following paragraph, together with results for DECT.



42 3. Comparison of proton CT and dual energy x–ray CT

Figure 3.1: Calibration curves for the experimental (ExpCalib1 and ExpCalib2 ) and sim-
ulated (SimCalib1) calibration runs. Vertical lines denote the transition between stages.
Shaded areas indicate the WEPL ranges listed in table 3.3. The shallowest stage is on the
left, and the deepest on the right. The step–like features located at approximately 60 MeV
for the first four stages are the kink regions. ExpCalib3 is not shown for clarity but would
overlap with ExpCalib2, except for the kink regions where it would overlap with ExpCalib1.

RSP accuracy

The reconstructed RSP images from experimental pCT and experimental DECT are pre-
sented in figure 3.2. As explained in section 3.2.5, the RSP accuracy was quantified in
cylindrical ROIs. The RSP accuracy as a function of the reference RSP is shown in fig-
ure 3.3 (top) for the experimental pCT and experimental DECT data, and in figure 3.3
(bottom) for the realistic simulation pCT and experimental DECT data. The experi-
mental pCT RSP accuracy showed a tendency towards underestimation, which was well
reproduced by the realistic simulation. For experimental pCT, inserts of PMP, Delrin and
Teflon had errors exceeding 1% (1.08%, 1.16% and 1.31% respectively). In the case of
realistically simulated pCT, all three central inserts had an RSP accuracy worse than 1%
due to a detector modeling effect which will be discussed later. DECT values were more
evenly distributed, and only cortical bone and Teflon had errors larger than 1% (1.17%
and 2.38% respectively). These results are also summarized in table 3.4, in addition to
the RSP accuracy obtained from ideal pCT simulations. The RSP MAPE achieved with
the phase II preclinical prototype scanner was 0.55%. For realistic pCT simulations it was
0.69%, dominated by the central inserts. Without the central inserts, the realistic pCT
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simulation MAPE was 0.50%, in good agreement with measurements. The RSP accuracy
for DECT was 0.67%. In the case of ideal pCT simulations the RSP MAPE was below
0.2%.

The noise (one standard deviation) in a 25 mm diameter circular homogeneous ROI of
the LMU phantom (outside of inserts) was 2.1× 10−2 for experimental pCT and 5.0× 10−3

for experimental DECT. For the CTP404 phantom, the standard deviations in a similar
ROI were 2.6× 10−2 and 5.1× 10−3.

Table 3.4: RSP accuracy from experimental pCT (pCTexp), realistically simulated pCT
(pCTreal

sim ), ideally simulated pCT (pCTideal
sim ) and experimental DECT scans. The inserts are

ordered in increasing reference RSP values. The standard error of the mean was used to
express the uncertainty on the estimated RSP accuracy. The ROI size for the CTP404
phantom was 319 pixels for pCT and 985 pixels for DECT. For the LMU phantom, it
was 1773 pixels for pCT and 6285 pixels for DECT. The mean absolute percentage error
(MAPE) is shown for each simulation mode and imaging modality.

Insert Phantom RSPref pCTexp (%) pCTideal
sim (%) pCTreal

sim (%) DECT (%)
PMP CTP404 0.88 1.08± 0.11 −0.07± 0.09 −0.22± 0.11 −0.64± 0.02
Adipose LMU 0.97 −0.14± 0.04 −0.36± 0.03 −0.95± 0.04 −0.09± 0.01
LDPE CTP404 0.98 −0.49± 0.11 −0.18± 0.08 −0.08± 0.10 −0.46± 0.02
Breast LMU 0.99 −0.52± 0.04 0.05± 0.03 −0.39± 0.04 −0.25± 0.01
Polystyrene CTP404 1.02 −0.04± 0.10 0.02± 0.08 −0.04± 0.10 0.43± 0.02
Muscle LMU 1.06 −0.12± 0.04 −0.44± 0.03 −0.95± 0.03 −0.76± 0.01
Liver∗ LMU 1.06 0.04± 0.03 −0.17± 0.03 −1.47± 0.03 −0.73± 0.01
Bone200∗ LMU 1.11 −0.41± 0.03 −0.14± 0.03 −1.36± 0.03 0.48± 0.01
Acrylic CTP404 1.16 −0.30± 0.10 −0.10± 0.07 −0.44± 0.09 0.49± 0.01
Bone400∗ LMU 1.22 −0.84± 0.03 −0.44± 0.03 −1.11± 0.03 −0.50± 0.01
Delrin CTP404 1.36 −1.16± 0.09 −0.01± 0.07 −0.45± 0.09 0.38± 0.02
Cort. Bone LMU 1.69 −0.73± 0.02 −0.21± 0.02 −0.37± 0.02 1.17± 0.01
Teflon CTP404 1.79 −1.31± 0.05 −0.06± 0.05 −1.11± 0.05 2.38± 0.01
MAPE % 0.55 0.17 0.69 0.67
∗ central insert

Proton CT imaging dose

The imaging dose in the pCT simulated scans was approximately 1.5 mGy for all phantoms,
with variations less than 0.2 mGy in different inserts. This value was obtained considering
that 7.5× 105 protons were simulated per projection for a total of 2.7× 108 protons in a
scan with 360 projections. Scaling the dose calculated from simulations, as described in
section 3.2.7, we estimated the dose in the experimental scans to vary from 1.5 mGy to
1.9 mGy, depending on the phantom. This is compatible to the dose measured with an
ionization chamber during scans with the pCT phase II prototype scanner and reported
by Johnson et al. (2017).
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Figure 3.2: Reconstructed experimental pCT and DECT images. The left column contains
images reconstructed from experimental pCT data and the middle column from measured
DECT data. An RSP level of 1.0 and window of 1.5 were applied on the images for display
purposes. The right column contains drawings of the phantoms with the insert materials
labeled.
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Figure 3.3: The RSP accuracy as a function of the reference RSP from (top) experimental
pCT and (bottom) realistically simulated pCT is indicated with black circles. The RSP
accuracy from experimental DECT is indicated with open square markers. The dashed
and dotted horizontal lines indicate the MAPE for pCT and DECT, respectively.
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3.3.2 Simulation investigations of pCT artifacts

Appearance of artifacts in proton CT images

In figure 3.4 the reconstructed pCT images of the CTP404 and the LMU phantom are
shown. A narrow window (see figure caption) was chosen in order to highlight the image
artifacts, along with averaging 15 slices to reduce noise. Similar ring artifacts were observed
in experimental scans (figures 3.4 a, d, g, j) and realistic simulations (figures 3.4 b, e, h,
k), but not in ideal simulations (figures 3.4 c, f, i, l). The right column of figure 3.4 shows
a comparison of line profiles through the phantoms for the experimental and realistically
simulated pCT scans. In the case of experimental scans the strongest artifacts exceeded
2% in RSP and appeared mostly as RSP overestimation. In the case of the realistic
simulations, the strongest artifacts reached up to 2% in RSP and appeared mostly as RSP
underestimation. In the CTP404 phantom, the artifacts appeared distorted by the inserts
of higher or lower RSP, deviating from the appearance of conventional ring artifacts.

Nuclear interactions of protons in the scanned object can produce secondary protons or
heavier ions, which have mostly lower energy than the primary protons traversing the same
material and experience only electromagnetic interactions. These secondary particles, if
not efficiently removed by the cuts, will result in an overestimation of the RSP. Switching
off nuclear interactions in the simulations did not entirely remove these artifacts (results
not shown), confirming our hypothesis that detector and calibration effects are the main
source of artifacts.

Proton CT water phantom simulations

All images presented in this section were obtained with the realistic pCT simulation of water
phantoms detailed in section 3.2.2 and were averaged over 15 slices. In figure 3.5 simulations
of a pCT scan of the 150.5 mm diameter water phantom are shown for different modelling
of the tracker gaps and placements of the phantom. This allowed to identify artifacts
originating from the tracker. In the current implementation of the tracker geometry in the
simulation, these gaps were overestimated by the assumption that they were filled solely
with air. Protons traversing a gap experience a slightly lower WEPL (by approximately
0.8 mm). This results in their arrival to the five–stage energy detector with higher energy
than nearby protons that lose some additional energy by going through an additional
tracker layer. As shown in figure 3.5 (a) there is a lower RSP artifact (dark spot), located
at the center of the water phantom when the latter is placed at the isocenter. When
the water phantom was laterally displaced from the isocenter, as shown in figure 3.5 (b),
the dark spot remained at the isocenter, not coinciding anymore with the center of the
phantom. The dark spot almost disappears from figure 3.5 (c), when filling the tracker
gaps with silicon instead of modelling air.

The images of the 150.5 mm and the 225.75 mm diameter water phantoms are shown in
figure 3.6, where we observed that the location of the ring artifacts varied with the object
diameter, an observation consistent with rings originating from specific, problematic WEPL
ranges. Artifacts observed in the water phantom simulations were consistent in terms of
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amplitude with these from the other phantoms, both in experimental and realistically
simulated pCT scans. For example in figures 3.6 (a) and (b) they reached up to 1.5%.

Figure 3.4: Reconstructed pCT images. The first column contains images reconstructed
from experimental data, the second column from realistic simulations and the third column
from ideal simulations. An RSP level of 1.15 and window of 0.3 were applied on the images
in order to highlight the pCT image artifacts. The fourth column contains line profiles for
the experimental and realistically simulated pCT images. For the LMU TopSup, TopInf
and Bot the profiles were obtained along the vertical diameter. For the CTP404 phantom
the profile was obtained along the diameter that has a –30◦ angle with respect to the
vertical and does not cross any visible insert. For all images and profiles 15 slices were
averaged to better display artifacts.
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Figure 3.5: pCT images from realistic simulations processed with the SimCalib2 calibra-
tion. In (a), the water phantom was aligned to the isocenter, while in (b) and (c) it was
shifted by 40 mm with respect to the isocenter. In (a) and (b) the tracker layer gaps were
filled with air. In (c), the tracker layer gaps were filled with silicon. An RSP level of 1.0
and window of 0.3 were applied on the images for display purposes.

Figure 3.6: pCT images from realistic simulation processed with the SimCalib2 calibration
and tracker gaps filled with silicon. In (a) the 150.5 mm diameter water phantom and in
(b) the 225.75 mm diameter water phantom. An RSP level of 1.0 and window of 0.3 were
applied on the images for display purposes.

WEPL analysis

Following the methods described in section 3.2.6, we have identified WEPL value ranges
(see table 3.3) that correspond to ambiguities and uncertainties in the calibration due
to the four stage interfaces and to the kinks (see figure 3.1). Figure 3.7 contains maps
displaying for each pixel what fraction of the total number of protons which intersected
that pixel had WEPLs within the ranges listed in table 3.3. The value of 1 in the scale
(bright yellow – ”hot” regions) indicates pixels in which all protons from all projections
had WEPLs in these ranges. As it can be deduced from figures 3.7 (a–d), areas with high
fraction of lower accuracy WEPLs were overlapping with many of the inserts, and are in
good qualitative agreement with the artifacts seen in figure 3.4 and 3.6.
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Figure 3.7: Fraction of the number of protons with certain WEPLs (see table 3.3) crossing
a pixel for (a) CTP404 phantom, (b) LMU TopSup, (c) LMU TopInf, (d) LMU Bot, (e)
water phantom 150.5 mm diameter and (f) water phantom 225.75 mm diameter. The outer
dotted circles denote the hull of the cylindrical phantoms. The inner dotted circle in (a)
indicates the radius at which the centers of the inserts of the CTP404 phantom are located.
For (b–f), the inner dotted circles delineate the inserts of the LMU phantom. The images
were produced by thresholding experimental pCT images to the nearest reference RSP
values.
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3.4 Discussion

3.4.1 Proton CT – Dual energy CT comparison

The RSP MAPE achieved with an optimized calibration of the pCT phase II preclinical
prototype scanner was below 1%, at a physical dose of 1.5 mGy to 1.9 mGy, as summarized
in table 3.4 and shown as a function of the reference RSP of the inserts in figure 3.3. In spe-
cific, for experimental pCT it was 0.55%. This dose to noise relationship is in agreement to
Schulte et al. (2005) and Dickmann et al. (2019). The RSP MAPE accuracy from realistic
pCT simulations was slightly worse, 0.69%. This is mainly due to the exaggerated tracker
gaps in the simulation, resulting in high RSP errors for central inserts. When enforcing
a smoother connection of calibration curves between adjacent stages, RSP MAPE deteri-
orated to 0.87%. At the stage interfaces, different effects such as low numbers of protons
with very high energy deposits, sharing their energy to adjacent stages, depositing energy
to inactive material and imposed minimum energy threshold can contribute to a higher
ambiguity in that region of the calibration. Ignoring the interpolation of the kink region as
in ExpCalib2 led to markedly worse RSP MAPE. The RSP MAPE accuracy achieved with
DECT was 0.67%, at an imaging dose of 35.7 mGy. The relatively high DECT imaging
dose (about 20 times that of pCT) was used to provide a robust benchmark to compare
pCT and resulted in noise in DECT being 4 to 5 times lower than in pCT. However, we
did not aim at reducing the DECT imaging dose, and equivalent accuracy can be expected
for lower exposures (Landry et al. 2016). Nevertheless, below a certain threshold noise is
expected to impact DECT (Lee et al. 2019). Since the DECT reconstruction uses an iter-
ative algorithm to reduce noise, while pCT uses an analytical reconstruction, it is outside
the scope of this work to further discuss the noise differences. For both imaging modalities
the maximum RSP error exceeded 1%. For pCT the maximum RSP error was 1.31% for
the Teflon insert of the CTP404 phantom, while for DECT the highest RSP error was
2.38% also for the Teflon insert of the CTP404 phantom and the second highest was 1.17%
for the cortical bone insert of the LMU phantom. Excluding the Teflon insert, the RSP
MAPE for pCT and DECT were 0.49% and 0.53%, respectively.

3.4.2 Proton CT artifacts

For experimental and realistically simulated pCT scans, the RSP image contained artifacts
whose amplitude in some cases exceeded 2% in RSP. As seen in figure 3.4 (a, d, g, j) and (b,
e, h, k), realistic simulations and experimental scans both show artifacts in forms of rings
and approximately at the same locations. Nevertheless, in experimental pCT scans the
artifacts were expressed mostly as RSP overestimation, contrary to what happened in real-
istically simulated pCT scans. The presence of similar artifacts in realistic simulations and
experiment was the result of the detailed modeling of the scanner geometry and detection
effects (Birks’ effect), as already manifested in the agreement of the respective calibration
curves shown in figure 3.1.

In cylindrical phantoms, ring artifacts usually appear when the error in the WEPL
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determination of protons that traverse specific WEPLs is higher than for other protons. For
the case of the pCT phase II prototype scanner these can be attributed to the kink and stage
interfaces regions. The ring artifacts were mostly expected to occur at specific WEPL value
ranges (see table 3.3). Therefore they appeared at different radii in different phantoms,
depending on the radial distance from the center at which protons traversed chord lengths
corresponding to the previously mentioned WEPL ranges. This was confirmed by the
realistic simulations of a water phantom with two different radii shown in figure 3.6. In
the image of the 225.75 mm diameter phantom, the same ring artifacts are observed as in
the 150.5 mm diameter phantom, but at larger radii.

Qualitative spatial maps of lower WEPL accuracy, using the WEPL ranges listed in
table 3.3 were presented in figure 3.7. The image pixels which are sampled by a large
fraction of the protons having low accuracy WEPLs were expected to suffer from lower RSP
accuracy. This is indeed the case, as the areas with high fraction in each phantom seem
to overlap well with the artifacts shown in figure 3.4 and 3.6, confirming our assumptions
about the source of the problem. A relevant observation for this study is that several regions
of low accuracy WEPLs were located inside the tissue mimicking inserts, thus affecting the
achievable RSP accuracy. The strong correlation between the level of that fraction in an
insert and the quantified RSP accuracy, can be appreciated by examining the example of
the central inserts of the LMU phantom for experimental pCT. In the central insert of
the LMU TopSup (Liver), the fraction was lower compared to that in the LMU TopInf
(Bone200), and much lower than that in the LMU Bot (Bone400). The reverse trend, as
we would expect, was observed in terms of RSP accuracy, which was in experimental pCT
0.04% for Liver, −0.41% for Bone200 and −0.84% for Bone400.

In addition to the above–mentioned artifacts occurring at specific WEPL ranges, other
types of artifacts were also observed. The most prominent being a strong lower RSP artifact
at the center of the images (dark spot) which was present in all images of realistic pCT
simulations and is mostly visible in figures 3.4 (b, h and k). This artifact was caused by the
gaps in each tracker layer, described in section 3.2.2. When the simulation models air in the
tracker gaps, the position–fixed RSP artifact is visible and always located at the isocenter.
When the tracker gaps are filled with the same material as the active areas (silicon), the
main position–fixed artifact disappears. Less prominent position–fixed artifacts are still
visible in the image. It is possible that some minor effect of the tracker gaps is also present
in experimental pCT images, but given the fact that these inactive areas are mostly filled
with silicon or glue, this effect should be small. The tracker gaps artifact (dark spot) is
also responsible for the fact that in the realistically simulated pCT, where the gaps are
exaggerated, the correlation between the fraction of protons with low WEPL accuracy and
RSP accuracy was not preserved. In contrast to the experimental pCT results, for realistic
simulations all three central inserts of the LMU phantom suffered, as expected, from a
significant RSP underestimation. The RSP accuracy was -1.47%, -1.36% and -1.11% for
Liver, Bone200 and Bone400. An example of the realistic pCT simulation with the tracker
gaps filled is shown results in section 2 of the Supplementary Material.

As depicted in figure 3.4 (c, f, i, l), artifacts were not present in pCT images recon-
structed from ideal detector simulations, i.e. from ideal proton energies and positions.
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Therefore, it was concluded that they were not inherent to the applied FBP reconstruction
algorithm. The overall RSP accuracy in ideal pCT simulations was better than 0.2%, on
par with past ideal simulation based studies (Hansen et al. 2016), and suggesting that
successful artifact mitigation is required to fully exploit the phase II pCT prototype’s po-
tential for high accuracy RSP estimation. For three inserts of the LMU phantom (Adipose,
Muscle and Bone400) the RSP accuracy achieved with ideal pCT simulations was worse
(approximately at 0.4%) than for all other inserts. These inserts, with relatively large
differences amongst their reference RSP, were located in the same layer of the LMU phan-
tom and moreover were aligned along one line. Therefore, we hypothesized that, in some
projections, nuclear interaction and large angle scattering events might not be efficiently
filtered from the data with the current cuts. To confirm this hypothesis, an ideal pCT sim-
ulation of that phantom, with the nuclear interaction physics switched off, was performed.
The RSP accuracy of that simulation was below 0.1% for all three inserts, showing that for
some material and geometry configurations more efficient filtering of nuclear interaction
and large angle scattering events might be necessary.

3.5 Conclusion

In this first direct experimental comparison of RSP accuracy between a state–of–the–art
DECT scanner and the phase II pCT prototype scanner, we have demonstrated that both
modalities can currently achieve an RSP accuracy better than 1%. The pCT phase II
prototype scanner yielded slightly better RSP MAPE (0.55%) than the commercial DECT
scanner (0.67%). We could demonstrate, using a realistic simulation, that characteristic
artifacts cause the ideal pCT RSP accuracy of 0.17% MAPE to be degraded to 0.55%.
Mitigating these artifacts is thus critical to further improve pCT RSP accuracy.
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3.6 Supplementary material

3.6.1 DECT

The fits mentioned in subsection 2.1.3 of the main manuscript were obtained from data
acquired from the Gammex RMI 467 phantom, scanned at 90 kVp and at 150 kVp. Initially
a fit was performed on the known relative electron density ρe of the inserts, according to:

ρe = a
(1 + α)HUH − αHUL

1000
+ b (3.8)

where α, a and b are the fit parameters and HUH and HUL are the Hounsfield units (HU)
obtained at 150 kVp and 90 kVp, respectively.

The results of the fit, together with the data points used for the fit (RMI phantom)
are shown in figure 3.8. Additionally the data points from the inserts used in the LMU
phantom are shown.
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Figure 3.8: Fit on the known ρe. The data points of the RMI phantom were used for
fitting. The data for the LMU phantom are also plotted but were not used for fitting.

In the next step a fit on the known effective atomic number Zeff of the inserts was
performed:

(
Zeff

Zeff,w

)3.3

− 1 = γL

(
uL

ρe

− 1

)
+ γ0 (3.9)

where Zeff,w = 7.4774 is the effective atomic number for water, uL is the scaled HU at
90 kVp according to HUL/1000 + 1. γL and γ0 are fit parameters. The result of the fit is
shown in figure 3.9.

Finally a fit was performed on the known ionization potential I according to the equa-
tion:
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Figure 3.9: Fit on the known Zeff . The data points of the RMI phantom were used for
fitting. The data for the LMU phantom are also plotted but were not used for fitting.

ln
I

Iw

= C1

[(
Zeff

Zeff,w

)3.3

− 1

]
− C0 (3.10)

where Iw = 78 eV is the ionization potential of water and C0, C1 the fit parameters. The
resulting fit is shown in figure 3.10.
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Figure 3.10: Fit on the known I. The data points of the RMI phantom were used for
fitting. The data for the LMU phantom are also plotted but were not used for fitting. The
vertical dashed line indicates the transition between the soft tissue and bony tissue fits.
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3.6.2 pCT

As it was shown in the main part of the manuscript, modelling the tracker gaps material
as silicon instead of air removed the central dark spot artifact in the water phantom.
The central artifact in the LMU phantom coincided with the central inserts. Therefore
a test simulation of that phantom with the tracker gap material modelled as silicon was
performed. The result is shown in figure 3.11, where the effect of the tracker gap material
(air vs silicon) becomes apparent. The RSP accuracy of the central insert also improved in
the case of the tracker gaps being filled with silicon. For the TopSup part of the phantom
the central insert (Liver) improved from -1.47% to -0.48%. For the TopInf part of the
phantom the central insert (Bone200) improved from -1.36% to -0.84%. Finally, for the
Bot part of the phantom the central insert (Bone400) improved from -1.11% to 0.30%.
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Figure 3.11: Reconstructed pCT images of the LMU phantom. The first column contains
images reconstructed from realistically simulated data with the tracker gap material mod-
elled as air. The right column contains images reconstructed from realistically simulated
data with the tracker gap material modelled as silicon. An RSP level of 1.15 and window
of 0.3 were applied on the images in order to highlight the pCT image artifacts.



Chapter 4

Fluence modulation in proton CT

The investigation presented in this chapter was published in Physics for Medicine and
Biology, volume 62, issue 15, pages 6026–6043, in July 2017, with the title Application
of fluence field modulation to proton computed tomography for proton therapy imaging, by
Dedes et al. (2017).

4.1 Introduction

Proton computed tomography (pCT), initially proposed by Cormack (1963), has recently
seen considerable research interest as a means of reducing range uncertainties in proton
therapy (Paganetti 2012, Yang et al. 2012). By measuring the position and angle of each
proton, as suggested by Huesman et al. (1975), along with the energy loss behind the
patient, a relative stopping power to water (RSP) map can be directly reconstructed using
dedicated reconstruction algorithms (Penfold et al. 2009, Penfold et al. 2010, Rit et al.
2013, Hansen et al. 2014, Hansen et al. 2016). Recent detector developments coupled with
improved computing power have permitted the development and operation of two list-
mode pCT scanner prototypes based on broad (passively scattered) proton beam delivery
(Hurley et al. 2012, Sadrozinski et al. 2016). The RSP accuracy of pCT is expected to
improve the current clinical practice, which is based on the calibration of single energy CT
scans with a reported uncertainty of 3.5% (Yang et al. 2012). Additionally, pCT has the
potential to equal or outperform the accuracy achievable with dual energy CT (Hünemohr
et al. 2013, Hünemohr et al. 2013a, Hudobivnik et al. 2016, Möhler et al. 2016), according to
the simulation study of Hansen et al. (2015). Initial results from pCT prototypes operating
in list–mode suggest at least comparable accuracy to DECT with experimental RSP errors
currently below 1.4% for phantoms (Giacometti et al. 2017a).

Besides RSP accuracy, pCT benefits from good dose efficiency, yielding better contrast
to noise ratio at equivalent dose levels when compared to x–ray CT (Schulte et al. 2005).
Early results from pCT prototypes report doses of about 1 mGy to achieve acceptable image
quality (Sadrozinski et al. 2016). This is comparable to the imaging dose used by in–room
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cone–beam CT (CBCT) imaging, and lower than typical x–ray CT treatment planning
imaging doses (at least 10 mGy and ranging up to 100 mGy, see Table 7 in (Murphy
et al. 2007)). A recent DECT publication specific to proton therapy reported doses of
20 mGy (Hudobivnik et al. 2016). This aspect of pCT suggests the technique could be
used for daily low–dose in–room imaging and could compete with x–ray CBCT image
quality without the need of corrections, as needed for proton dose calculations on CBCT
images (Kurz et al. 2015, Landry et al. 2015a, Landry et al. 2015b, Park et al. 2015, Veiga
et al. 2015, Veiga et al. 2016). In x–ray CT, several dose reduction techniques have been
developed such as the use of bow–tie filters (Graham et al. 2007a, Mail et al. 2009) and
automatic exposure control (Mulkens et al. 2005, McCollough et al. 2006, Kalender et al.
2008). An exciting idea consists of prescribing image quality levels prior to CT scanning
using modulation of the x–ray fluence within the fan–beam (Graham et al. 2007b, Bartolac
et al. 2011, Bartolac & Jaffray 2013, Szczykutowicz & Mistretta 2013a, Szczykutowicz &
Mistretta 2013b). This approach is called fluence field modulated CT (FFMCT) and
was recently experimentally realized using the imaging system of a TomoTherapy machine
(Szczykutowicz & Mistretta 2014, Szczykutowicz et al. 2015). The FFMCT concept is very
similar to intensity modulated radiation therapy (IMRT) where the mega–voltage photon
fluence is modulated with a multi–leaf collimator. The main difficulty with modulating
the x–ray fluence of a conventional CT scanner is the lack of an equivalent modulation
device. For this reason experimental realization of FFMCT made use of the TomoTherapy
machine’s imaging system which is equipped with a 64 leaf binary collimator. Another
group has achieved FFMCT by using multiple aperture devices (Stayman et al. 2016).

Given the current rise in the number of proton therapy centers equipped with pen-
cil beam scanning (PBS), one can imagine imitating intensity modulated proton therapy
(IMPT) instead of IMRT, to create a pencil beam (PB) pCT system allowing fluence mod-
ulated pCT (FMpCT). FMpCT would rely on beam current or delivery time modulation
during the acquisition of a pCT projection to achieve the desired proton fluence modula-
tion. Using a treatment planning image as guide, an in–room FMpCT scan could thus be
acquired with high image quality in the beam path and a lower image quality in regions
receiving negligible therapeutic dose levels, leading to a lower integral imaging dose com-
pared to uniform fluence scans. Such an image could be used for patient positioning, dose
recalculation or even re–planning.

The objective of this study was to evaluate the feasibility of FMpCT using a PB pCT
Monte Carlo simulation framework and a state–of–the–art pCT reconstruction algorithm.
For a simple homogeneous virtual phantom and two patient CT–based virtual phantoms,
image quality at different modulation levels was investigated, as well as proton dose calcula-
tion accuracy. Furthermore, FMpCT was emulated using a selected subset of experimental
data acquired with a state–of–the–art scanner prototype for broad beam proton irradiation.
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4.2 Materials and methods

Proton CT simulation

The simulation platform used in this study is based on GEANT4 version 10.01.p02 (Agostinelli
et al. 2003) and has been used in previous studies for proton dose calculation in voxelized
geometries (Landry et al. 2015b, Schmid et al. 2015, Hudobivnik et al. 2016). The refer-
ence physics list QGSP BIC HP was used for the simulation of interaction of particles with
matter. The simulation platform uses CT images which are converted to mass density and
tissue composition using the approach of Schneider et al. (2000).

Existing list–mode pCT scanner prototypes rely on two tracker modules located up–
and down–stream of the scanned object. The tracker modules are made of pairs of two
orthogonal silicon strip detectors allowing position and direction detection. A calorimeter,
located after the second tracker module, records the residual energy loss. A more detailed
description can be found in (Sadrozinski et al. 2016) (see figures 1 and 2 in that publica-
tion). In this study, an ideal pCT scanner in the form of two scoring planes, before and
after the scanned object (which is centered at the origin) was simulated. The two ideal
scoring planes, which are of the same material as the surrounding world (air), record the
exact position, direction and energy of each traversing proton. The planes are positioned
perpendicularly to the X axis, which is parallel to the beam, at −15.88 cm and 15.88 cm,
both covering a surface of 60 × 60 cm2. This area was chosen for simplicity and does not
represent the field of view of a real scanner. The simulated imaging beam consists of a 2D
grid of non–divergent proton PBs arranged at 1 cm intervals in the YZ plane. Each PB
has a two–dimensional Gaussian proton distribution with σ = 4 mm in air. The Z extent
(parallel to the superior inferior patient axis) of the PB grid was adjusted according to each
virtual phantom, and the Y extent was set to 25 cm. In order to simulate a tomographic
scan, the scanned phantom was rotated around the Z axis at 1o steps, covering an angular
span of 360o.

4.2.1 Virtual phantoms

Three voxelized phantoms were used in this study. The phantoms were derived from x–ray
CT scans of IMRT patients.

1. A simple phantom was simulated by overwriting a 1.074× 1.074× 1 mm3 voxel size
CT image with a 10 cm radius cylinder with 0 HU. Outside the cylinder –1000 HU
was used. Note that when using the stoichiometric calibration, 0 HU corresponds to
a predefined human tissue composition and not water. For this case a single row of
PBs bisecting the cylinder was employed given the Z axis symmetry.

2. The second phantom was derived from a 1.074 × 1.074 × 1 mm3 voxel size CT scan
of a patient (Pat1) treated with IMRT for a brain metastasis with a small planning
target volume (PTV) located near the base of the skull. The PTV was 5 cm along
the Z axis.
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3. For the third phantom, a 1.074 × 1.074 × 3 mm3 voxel size CT scan of a paranasal
sinus cancer patient (Pat2) was used. The large PTV including lymph nodes was
14.3 cm along the Z axis. For (2) and (3), the PB grid extent in Z was set to cover
the PTV plus a margin (see section 4.2.4).

For each phantom, a 360 projections pCT scan with 104 protons per PB per projection
was simulated. The corresponding fluence at the first tracker was 9600 protons per cm2 in
a projection. For all simulations the dose to tissue per voxel was scored.

4.2.2 Fluence modulation

The concept of fluence modulation based on proton PB scans presented in this work relies
on the definition of regions of interest (ROIs), in which a high image quality is desirable.
The term image quality here refers to RSP noise levels and RSP accuracy. The ROIs should
ideally cover the beam path including the PTV and could be derived using diagnostic or
treatment planning imaging data. Phantom specific ROI generation will be presented
below.

A schematic representation of the concept is shown in figure 4.1 for a simplified ROI.
In this proof of principle study, the PB modulation pattern was obtained by calculating
a binary sinogram (PB index vs. projection angle). The sinogram entries were 1 if the
central axis of a PB intersects the ROI in a given projection and 0 otherwise. Using this
sinogram, the fluence of PBs assigned 0 is reduced by a given fluence modulation factor
(FMF), FMF<1, while those PBs assigned 1 preserve full fluence (FF). The modulation
was performed as a post–processing step to allow several FMpCT images from a single sim-
ulation. When reducing a PB’s fluence, list–mode data were randomly discarded, ensuring
that the energy and spatial distribution of the PBs was preserved.

4.2.3 Proton CT reconstruction framework

The reconstruction algorithm chosen for this study was a filtered backprojection (FBP)
implementation which accounts for the curved proton paths in the imaged object, mainly
due to multiple Coulomb scattering. The main principles of the algorithm are presented
in (Rit et al. 2013) and a comparison with different iterative algorithms is presented in
(Hansen et al. 2016). The algorithm is based on list–mode data, and the actual path of
every proton is approximated by a most likely path (MLP) formulation (Schulte et al. 2008),
which uses the position and direction information from the scoring planes.

Protons were selected with a 3 standard deviations cut on the energy and angular
distributions around their mean energy and angle per projection pixel, in order to filter
out nuclear reactions and large angle scattering events, whose energy loss and path cannot
be described by the Bethe formula and the MLP formalism. List–mode data were binned
in intermediate projection images with 1 × 1 mm2 pixels, which were then filtered and
back–projected. Scans simulated with low fluences can suffer from artifacts due to the
absence of proton information in some pixels of the intermediate projections. To counter
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Figure 4.1: Schematic representation of FMpCT using PBS. PBs whose central axis ge-
ometrically intersects the ROI preserve full fluence while the others have their fluence
reduced. The vertical lines represent the tracker planes for the horizontal PBs. The energy
measuring detector is omitted for simplicity.

this, sinogram interpolation (Hansen et al. 2016) was used for all reconstructions. Images
were reconstructed on the same grids as the CT scans used to generate the GEANT4 virtual
phantoms. For each phantom and each FMF, the following images were reconstructed: (1)
a FF image, (2) a FMF·FF uniform fluence image and (3) a FMpCT image with a fluence
of FMF·FF outside the ROI.

4.2.4 FMpCT ROIs and FMF

For the cylindrical phantom, simple circular ROIs with 1 cm radius were studied, as shown
in figure 4.2. The FMF was set to 0.1, 0.05 and 0.01. ROI1 was at the center of the
cylinder, ROI2 was 37.6 mm off–center and ROI3 was 75.2 mm off–center.

For Pat1 and Pat2, proton treatment plans using PBS were generated using a research
version of a commercial TPS (Raystation, Raysearch Laboratories, Sweden). For Pat1,
a single field uniform dose (SFUD) plan using a 220o gantry angle on the International
Electrotechnical Commission (IEC) scale was used to deliver 60 Gy to the PTV (15 cm3).
For Pat2, a 3–field IMPT simultaneous integrated boost plan with beams at 0o, 100o and
260o was used. The 0o field was used only superiorly to the nasal cavities. The high dose
PTV (174 cm3) received 60 Gy and the lymph node PTV (510 cm3 − 174 cm3 = 336 cm3)
50 Gy. For both Pat1 and Pat2, a FMpCT ROI was obtained by using the 10 Gy isodose
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line, ensuring inclusion of beam paths, PTVs as well as relevant organs at risk. The ROI
volumes were 220 cm3 for Pat1 and 2021 cm3 for Pat2, and the ROIs are shown in figure 4.3.
For Pat1 and Pat2 FMF was set to 0.1, 0.05 and 0.01.

Figure 4.2: Homogeneous 10 cm radius phantom with three different 1 cm radius ROIs
(from top to bottom). The two colors indicate high and low fluence. For each ROI, a
uniform FF scan (left), a uniform scan of lower fluence FMF·FF (right), and finally three
FMpCT scans of FF inside the ROI and FMF·FF outside (middle) were simulated.

4.2.5 Image quality

The image quality was quantified according to RSP accuracy and noise. For each virtual
phantom, a reference RSP distribution was obtained from GEANT4 and accuracy was cal-
culated as the mean of (RSP–RSPref)/RSPref in the FMpCT ROI. Noise was the standard
deviation of (RSP–RSPref)/RSPref in the same ROI. In this study, for both noise and ac-
curacy, relative differences of less than 0.5% (absolute value) were considered negligible.
Additionally, the imaging dose reduction in the FMpCT images with respect to the FF
images, as a function of FMF, was also quantified.
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Figure 4.3: (top row) Axial, coronal and sagittal slices of the CT image of Pat1, including
the FMpCT ROI and PTV. (bottom row) The same for Pat2, with an additional high dose
PTV (HD PTV).

4.2.6 Dose recalculation

To evaluate dose calculation accuracy on FMpCT images, the reference 3D RSPref distri-
butions were imported in the TPS with a custom lookup table and used to re–optimize the
treatment plans of Pat1 and Pat2. Subsequently, the FF, FMF·FF and FMpCT images
were also imported in the TPS and used for plan recalculation. For the SFUD beam of
Pat1, beam eye view range (80% of dose maximum) differences to the RSPref image were
computed for dose profiles showing maximum doses higher than 50% of the prescription
dose. The percentage of profiles within 1 mm and 2 mm of the RSPref dose distribution was
computed. Additionally, dose volume histograms (DVH) and 2%/2 mm gamma pass rates
were obtained for the SFUD dose distribution of Pat1 and the IMPT dose distribution of
Pat2. For gamma evaluation doses above 50% of the prescription dose were considered.

4.2.7 Experimental data

In addition to the simulated data, FMpCT was also attempted on experimental data ob-
tained with the phase II preclinical prototype pCT scanner (Sadrozinski et al. 2016) of the
Loma Linda University and U.C. Santa Cruz at which a pediatric head phantom (715-HN,
CIRS, Norfolk, VA) was scanned. The 90 projections scan with 2.5 · 106 protons per pro-
jection was performed at the Northwestern Medicine Chicago Proton Center (NMCPC)
facility, using a 200 MeV proton wobbled beam from the IBA universal nozzle for another
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study (Johnson et al. 2016). The registered proton fluence per projection in the experi-
mental data was 1.2 · 104 cm−2, similar to that from the simulated data. Although the
actual scan was not acquired with fluence modulated PBs, fluence modulation was emu-
lated during post–processing of the list–mode data. For every proton, a straight line path
was constructed from the entrance and exit coordinates provided by the tracking system
of the prototype. The protons whose straight paths did not intersect the defined ROI were
removed from the data with a removal probability of 1–FMF. The goal here was to assess
the impact of FMpCT on image quality compared to the FF image; the general perfor-
mance of pCT for this combination of scanner and phantom has been reported elsewhere
(Giacometti et al. 2017a). Thus, for this part of the study, the theoretical RSP (from
Giacometti et al. (2017a)) in the homogeneous brain section of the phantom was used as
reference for numerical analysis. Since no voxelized ground truth was available, the FF
pCT image was used as reference in RSP voxel–by–voxel accuracy images. Given the lower
number of protons in the experimental data (90 projections instead of 360), higher values
of FMF = 0.5, 0.3 and 0.1 were employed. A single cylindrical ROI of 1.5 cm radius was
considered (see figure 4.10 in the results section). The ROI was chosen to contain homoge-
neous phantom brain material for image quality analysis, given the absence of a voxelized
reference at the time of writing.

Figure 4.4: Upper row, left to right: FF image (104 protons per PB) and images obtained
with homogeneous fluence of 0.1·FF, 0.05·FF and 0.01·FF. Lower row, FMpCT images
corresponding to FF in each ROI (black circle) and 0.1·FF, 0.05·FF and 0.01·FF outside.
The grayscale corresponds to RSP values.
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4.3 Results

4.3.1 Uniform phantom

In figure 4.4, the reconstructed pCT images of the cylindrical phantom are shown. With
increasing FMF, the noise in the images increases as expected. In the case of the FMpCT
images, the noise and accuracy in the ROIs, indicated by the black circles, showed negligible
difference from those of the FF image for FMF = 0.1 and 0.05. At FMF = 0.01, the mean
value in the ROI deviated by –1.3% from the reference image (see table 4.4 in supplementary
material). The imaging integral physical dose was reduced from 2.3 mGy in the FF image
to 0.7 mGy in the FMF = 0.1 FMpCT image (see figure 4.12 in supplementary material).
Additionally, the results of the RSP noise and accuracy analysis did not vary as a function
of the ROI location (see figure 4.13 in supplementary material).

4.3.2 SFUD and IMPT cases

Figure 4.5 shows the uniform FF as well as FMpCT with FMF = 0.05 and 0.01 for Pat1,
where we observed better image quality in the FMpCT ROI used to cover the SFUD beam
path than outside. For FMF = 0.05, the RSP/RSPref in the FMpCT image is similar
in the ROI as the FF image, however for FMF = 0.01 slightly lower RSP values were
observed. Figure 4.6 presents noise and accuracy as a function of the FMF for Pat1,
where we observed that for FMF < 0.025 the noise increases more than expected from the
statistical dependence on (number of protons)−1/2 and that the accuracy begins to degrade
even with FMpCT.

Figure 4.5: (A) FF pCT image for Pat1. FMpCT images with FMF of (B) 0.05 and (C)
0.01. (A)–(C) The PTV (black) and FMpCT ROI (white) are overlaid on the pCT images.
(D)–(F) Corresponding relative RSP images.
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Figure 4.6: (A) Accuracy (mean, µ) of uniform and FMpCT images for various FMF (ex-
pressed as percentage of FF) in the ROI of Pat1. The horizontal solid line corresponds to
the FF accuracy. (B) Noise (1 standard deviation, σ) of the same distributions. The FM-
pCT data are multiplied by 10. The horizontal solid line corresponds to the FF noise×10
and the dashed line to σ10%(fluence%/10%)−1/2.

Figure 4.7 shows the pCT images for Pat2, where similar image quality preservation as
Pat1 was obtained from FMpCT. This can be appreciated in table 4.1 where the results
of the RSP noise and accuracy in the ROIs are tabulated for both patients. The noise
levels for Pat1 and Pat2 are comparable to those from the uniform cylinder (see table 4.4
in supplementary material) at FMF = 0.1 and FMF = 0.05 . At FMF = 0.01 , the patient
images exhibited higher noise. For both Pat1 and Pat2 the FMF = 0.01 caused a slightly
increased mean error of 0.6% and 0.5%, respectively, for the uniform fluence, and –0.7%
and –0.4%, respectively, for the FMpCT (visible in figures 4.5(F) and 4.7(F)), which is
comparable to what was observed with the cylindrical phantom.

In figure 4.8, the imaging dose distributions in the case of uniform FF and FMpCT
illustrate the imaging dose reduction achieved for both the SFUD and IMPT cases con-
sidered in this study. Table 4.2 presents the integral doses in the whole image as well as
outside the ROIs for both patients. For Pat1 with a small PTV, the integral dose reduction
was up to 49% for the whole image and 56% outside the ROI with FMF = 0.01. For Pat2,
smaller integral dose savings were realized due to the larger PTV and higher number of
beams with the same FMF, with a reduction of up to 22% for the whole image and 37%
outside the ROI. Interestingly, changing FMF from 0.1 to 0.01 had an effect of less than
5% on integral dose reduction for both cases.
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Figure 4.7: (A) FF pCT image for Pat2. FMpCT images with FMF of (B) 0.05 and (C)
0.01. (A)–(C) The lower dose PTV (black) and FMpCT ROI (white) are overlaid on the
pCT images. (D)–(E) Corresponding relative RSP images.

Table 4.1: RSP noise (1 standard deviation) and accuracy (mean) results in ROIs for the
SFUD (Pat1) and IMPT (Pat2) cases. The second column shows RSP noise values for
uniform scans with different FMF. The third column reports noise levels with FMpCT.
The fourth and fifth columns refer to the RSP accuracy in the ROIs for the same imaging
configuration.

(RSP–RSPref)/RSPref (%) (RSP–RSPref)/RSPref (%)
Noise Mean

Pat1 Uniform FMpCT Uniform FMpCT
FF 1.8 – -0.1 –

0.1 · FF 5.5 1.8 -0.1 -0.2
0.05 · FF 8.3 1.8 -0.2 -0.2
0.01 · FF 30.1 1.9 0.6 -0.7

Pat2
FF 1.4 – -0.2 –

0.1 · FF 4.2 1.5 -0.2 -0.2
0.05 · FF 6.3 1.6 -0.2 -0.2
0.01 · FF 32.5 1.6 0.5 -0.4
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Figure 4.8: (top row) Pat1 imaging dose distributions on the (A) FF image, (B) 0.1 FMpCT
and (C) the 0.01 FMpCT image. (bottom row) (D)–(F) Same for Pat2.

Table 4.2: Imaging dose in the complete volume and outside the ROI for both patients.

Integral dose reduction
Integral dose (mGy) 1− FMF · FMpCT/FF

Pat1 Whole
image

Outside
ROI

Whole
image

Outside
ROI

FF 2.57 2.56 – –
0.1 · FF 1.42 1.25 0.45 0.51
0.05 · FF 1.35 1.18 0.47 0.54
0.01 · FF 1.30 1.12 0.49 0.56

Pat2
FF 2.67 2.65 – –

0.1 · FF 2.13 1.76 0.20 0.34
0.05 · FF 2.10 1.71 0.21 0.35
0.01 · FF 2.08 1.67 0.22 0.37
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The dose calculation accuracy for the SFUD and IMPT treatment plans is presented
in figure 4.9 for FMF = 0.01. We observed that the dose distributions calculated on the
FMpCT images agreed with those calculated on the reference RSPref image in terms of
isodose levels and DVH curves. This was not the case for the uniform FMF = 0.01 image
where dose calculation accuracy was degraded as shown on the DVH of figure 4.9. This was
confirmed by the (2%, 2 mm) gamma index analysis presented in table 4.3. For FMF =
0.05, the DVH curves of uniform fluence and FMpCT were identical to the reference.

Figure 4.9: (top row) Pat 1 SFUD dose calculation on the (A) RSPref image, (B) 0.01·FF
image and (C) the 0.01·FMpCT image. (bottom row) Pat 2 IMPT dose calculation on the
(D) RSPref image, (E) 0.01·FF image and (F) the 0.01·FMpCT image. The corresponding
DVHs are shown on the right.

For the SFUD beam of Pat1, 96% of BEV dose profiles had range differences lower
than 2 mm versus RSPref for FMF = 0.01 FMpCT, while with the uniform FMF = 0.01
pCT only 1% of profiles passed this test. The FMF = 0.05 FMpCT results compared to
RSPref show limited range agreement improvement compared to reduced uniform fluence
(90% versus 87% respectively). When comparing the FMpCT and reduced uniform fluence
to the FF case a clear improvement was seen (99% versus 88% respectively). This result
indicates that at this modulation level (FMF = 0.05), FMpCT retains better agreement
with the FF image than the uniform FMF = 0.05 image. The worst pass rate for FMpCT
was 66% of profiles with range differences of less than 1 mm when comparing FMF = 0.01
and RSPref. However when comparing the same FMpCT image to the FF image, the
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Table 4.3: SFUD BEV range difference for Pat1. The percentage of profiles with range
differences (RDs) below 1 mm and 2 mm are shown. RD are reported using the dose
distribution calculated on the RSPref image and the FF image as reference. For Pat1 and
Pat2, the percentage of voxels passing the (2%, 2 mm) gamma evaluation is also reported.

Pat1 Pat1 Pat2
RD < 1 mm(%) RD < 2 mm(%) Gamma (2%/2 mm)

Uniform FMpCT Uniform FMpCT Uniform FMpCT Uniform FMpCT
FF - RSPref 93 – 99 – 99 – 99 –

0.05·FF - RSPref 87 90 99 99 99 99 99 99
0.01·FF - RSPref 0 66 1 96 90 98 59 99

0.05·FF - FF 88 99 99 99 – – – –
0.01·FF - FF 0 97 0 99 – – – –

pass rate rose to 97%, indicating that the lower pass rate was caused by a combination
of sub-mm FMpCT errors compared to FF, and sub–mm systematic FF errors compared
to RSPref. The range analysis was found to be sensitive to the air cavity abutting the
PTV (see figure 4.5(A)) which caused small range shifts in tissue to be expanded in air.
We verified that the 93% pass rate of FF pCT versus RSPref was caused by beam profiles
ending in the air cavity.

Figure 4.10: (A) FF pCT and (B) 0.5 (C) 0.3 and (D) 0.1 FMpCT images for the pedi-
atric head phantom and (E) their colorbar. (A)–(D) The FMpCT ROI (white) used for
modulation and analysis is overlaid on the pCT images. (G)–(I) Corresponding relative
RSP images and (F) their colorbar. In this case RSPref is the FF image.

The results of applying FMpCT to broad beam pCT scans of the pediatric head phan-
tom are shown in figure 4.10 for the three FMF investigated. We observed a similar trend
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of reduced accuracy at lower FMF, however this happened at higher FMF for the experi-
mental data. The noise and accuracy are reported in figure 4.11, where we observed that
FMpCT with FMF below 0.3 showed accuracy degradation larger than 1% as well as in-
creasing noise in the ROI. In Giacometti et al. (2017a), the theoretical RSP for the brain
material of the pediatric phantom is reported as 1.047; the mean value in the ROI of the
FF pCT image was 1.04± 0.03, i.e. –0.7% lower than the reference. Please note that the
theoretical RSP may differ from that measured in a proton beam due to uncertainties on
the material composition.

Figure 4.11: Accuracy (mean, µ) and noise (1 standard deviation,σ) of FMpCT images
(black data points) and uniform images (red data points) for various FMF (expressed as
percentage of FF) in the ROI of the pediatric head phantom. The horizontal dashed (solid)
line corresponds to the FF noise (accuracy).

4.4 Discussion

The results shown in figure 4.4 qualitatively support our hypothesis that FMpCT image
reconstruction is feasible when employing the binary fluence modulation scheme presented
in figure 4.1. For the three levels of fluence reduction outside ROI2, two distinct im-
age quality levels were seen in each image. The image quality metrics reported in ta-
ble 4.4 of the supplementary material show that in the case of homogeneous fluence, the
noise was approximately inversely proportional to the square root of the proton fluence,
while FMpCT reconstruction preserved image quality (both standard deviation and mean
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value) down to 5% of the FF. However for FMF = 0.01, we observed a break from the

(number of protons)−1/2 dependence of the noise as well as a –1.3% shift of the mean val-
ues in the ROI, indicating a limit to the modulation level feasible with FMpCT. A similar
effect was observed for the patient and experimental data. Our initial investigations on
the root of this error indicate that one cause of the problem is the inaccurate estimate of
the 3 standard deviations cuts from a small number of protons which then fail to eliminate
some protons that have encountered nuclear interactions.

The higher threshold where this happens for the experimental data compared to the
simulated data may be explained by the use of ideal detectors in the simulations. A follow
up study making use of the simulation framework presented in Giacometti et al. (2017a)
would help clarify this.

Given the nature of the FMpCT approach, the dose reduction was not uniform through-
out the images (see figures 4.8 and 4.12) but was the highest at the largest distance to
the ROI. The imaging dose reduction outside the ROI might be particularly important for
proton therapy imaging since the non–target treatment dose is usually lower than for con-
ventional x–ray based radiotherapy, potentially reducing the induction of secondary cancers
(Miralbell et al. 2002, Paganetti 2012, Fuji et al. 2013). Avoiding additional non–target
dose from image guidance is thus warranted.

For the homogeneous fluence imaging case, the imaging dose was uniform partly due
to the fact that the Bragg peak falls outside the object, which means that the protons
traversing it produce a relatively flat dose distribution along their path. This situation
is very different from kV x–ray CT where higher dose is observed at the object’s edge
due to the shape of the depth dose profile of photon beams (Bartolac et al. 2011, Arbor
et al. 2015).

The dose levels reported in this study for the virtual phantoms are based on MC
simulation of ideal detectors. Effect such as pileup would contribute to a higher dose
compared to our ideal simulation at equivalent image quality. However, the magnitude
of the relative dose reduction should not be greatly influenced by the efficiency of real
detectors. The lowest possible FMF where image quality is maintained would however
probably be higher for realistic detectors.

The experimental list–mode data made use of 90 projections with 1.2 · 104 cm−2 at
the center of a projection while the simulated list–mode data used 360 projections with
9.6 · 103 cm−2 (3.2 times more protons). For both experimental and simulated data, one
should keep in mind that the list–mode data used for image reconstruction are not equiva-
lent to the proton fluence incident on the first tracker module since they consist of protons
with entrance and exit coordinates. In the simulated data this excludes mostly protons
which underwent nuclear interactions. For the experimental data, various additional de-
tector effects exclude protons from the list–mode data, making estimation of the dose for
experimental scans based on simulated scan doses a rough approximation (about 1 mGy).
At the time of writing, no direct dose estimation was available for the experimental data.
A separate project involving a dosimetric phantom and appropriate detectors is underway
by some of the co–authors.
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In this first attempt at FMpCT, we made use of a simple binary fluence modulation
scheme; a more sophisticated fluence optimization approach may yield different spatial
dose distributions for equivalent image quality and deserves further investigation. The
conformity of the imaging dose to the ROI may be improved by employing continuously
varying fluence modulation profiles and an optimization procedure instead of the binary
scheme employed in this proof of principle study. The reason our simple modulation scheme
yielded rather acceptable results is attributed to the low attenuation of protons. Indeed,
the attenuation of protons traversing 20 cm of water is around 19% for 200 MeV protons
and 18% for 300 MeV protons (Quiñones et al. 2016). Additionally, the inelastic proton
cross section is almost independent of the proton energy in the energy range 100−300 MeV.
Compared to x–rays, for which 97% of 80 keV photons would be attenuated after 20 cm
of water, the calculation of the modulation pattern necessary to obtain the desired image
quality is thus more forgiving for FMpCT than FFMCT. Proton dose deposition in the
200 − 300 MeV range also has a lower material dependency (mass stopping power ratio)
than photons in the diagnostic energy range (mass energy absorption coefficient ratio),
yielding more homogeneous imaging dose distributions.

We have found very little published literature on the impact of CT noise on proton ther-
apy dose calculation, with one report stating that discontinuities in the CT number to RSP
lookup table might introduce range shifts in the presence of stochastic noise (Brousmiche
et al. 2015). This is not the case for proton CT which has a linear lookup table (Arbor
et al. 2015). High levels of noise on CT images can additionally cause a spread of the range
at which protons stop, the width of which (4 standard deviations) can reach a few percent
of the range at 5.0% CT number noise (Chvetsov & Paige 2010).

This study was based on the use of 1 cm (FWHM) proton PBs. This value is a realistic
estimation of the PB size available at clinical facilities. The current prototype scanner has
been used with PB of minimum size of 4 cm (FWHM). Due to pileup in the tracker, the
maximum counting rate for a PB size of 1 cm is approximately 200 kHz. For Pat1, this
would mean about 9 s per projection at full fluence, resulting into a total scan time of
13.5 min for 90 projections or 54 min for 360 projections. For realistic scan duration, the
electronics of the phase II prototype would have to be modified. The current electronics
were designed according to a conservative approach and assuming only scattered proton
beams. Therefore, an upgrade to faster electronics is not considered a technical obstacle
and significantly faster electronics have been already developed and used in other pCT
prototypes (Taylor et al. 2016). To achieve a pCT scan with 1 cm PBs, without any
hardware modification to the scanner, a reduction of the beam intensity will be required.
It remains to be investigated whether that can allow for a dynamic range necessary for
FMpCT studies. Alternatively, a more sophisticated fluence modulation technique than
the binary intersection pattern could compensate for the larger PB size.

Although initially explored in the context of pCT with advanced detectors tracking
individual protons, the method could also be applicable to integrating detectors such as
range telescopes (Krah et al. 2015, Farace et al. 2016) or using 2D detectors (Lee et al.
2015, Tanaka et al. 2016) being also under development. Moreover, the same concept could
be extended to imaging with other ions such as 4He and 12C (Shinoda et al. 2006, Hansen



74 4. Fluence modulation in proton CT

et al. 2014, Rinaldi et al. 2014).
The concept of fluence modulation can be supplemented by energy modulation as well,

as pCT imaging dose and noise levels are energy dependent, and we intend to investigate
it as a continuation of the current study.

4.5 Conclusion

In this work, we have applied the concept of fluence field modulation to proton CT, inspired
by earlier work applied to x–ray CT. Using Monte Carlo simulations of an ideal proton CT
scanner, we have confirmed that image quality could be varied across the proton CT image
by modulating the proton fluence in a binary fashion. Our approach was successful for both
homogeneous and anthropomorphic virtual phantoms, potentially allowing clinical imaging
dose reductions ranging from 37% to 56% outside the treatment area, while preserving full
fluence image quality inside regions of interest. We additionally virtually implemented the
method on broad beam proton CT experimental data and showed that fluence modulated
proton CT should be realizable if proton PB intensity and detector count rates can be
adjusted to achieve the desired modulation levels.
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4.6 Supplementary material

Figure 4.12 shows an example of the 2D dose distribution in a slice of the homogeneous
phantom, for the case of FF and FMpCT with 0.1·FF for ROI2.

Figure 4.13 shows FMpCT images with 0.1·FF for all three ROIs. The results of the
RSP noise and accuracy analysis as a function of the ROI location were as in table 4.4 and
did not vary with ROI location.
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Table 4.4: RSP noise (1 standard deviation) and accuracy (mean) results in ROI2. The
second column reports RSP noise values for uniform scans with fluence modulation as indi-
cated in the first column. The third column depicts the noise of FMpCT scans. Similarly,
the reconstructed RSP mean values in the fourth and fifth columns are given for uniform
and FMpCT simulated scans. The reference RSP of the simulated material was 1.02.

Modulation (RSP–RSPref)/RSPref (%) (RSP–RSPref)/RSPref (%)
Noise Mean

Uniform FMpCT Uniform FMpCT
FF 1.2 – -0.2 –

0.1 · FF 4.1 1.2 -0.2 -0.2
0.05 · FF 7.0 1.2 -0.3 -0.3
0.01 · FF 19.0 1.2 -0.2 -1.3

Figure 4.12: Imaging physical dose distribution in the homogeneous phantom for FF (left).
Same quantity shown for an FMpCT scan (0.1·FF) for ROI2 (center). The imaging integral
physical dose was reduced from 2.3 mGy in the FF image to 0.7 mGy in the FMpCT image.
(right)A dose profile drawn horizontally through ROI2 is shown.

Figure 4.13: Three different ROIs defined in the homogeneous phantom, indicated by the
black circles, are overlaid on FMpCT images of 0.1·FF.
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Chapter 5

Experimental fluence–modulated
proton CT

The material contained in this chapter was published in Medical Physics, in volume 45,
issue 7, pages 3287–3296, in July 2018, with the title Experimental fluence-modulated proton
computed tomography by pencil beam scanning, by Dedes et al. (2018).

5.1 Introduction

The use of x–ray computed tomography (CT) scans for relative (to water) proton stopping
power (RSP) estimation, a quantity necessary for dose calculation, contributes considerably
to range uncertainties in proton therapy (Paganetti 2012, Yang et al. 2012). The potential
of reducing these uncertainties by direct RSP measurements at the treatment position
has motivated the recent revival of proton computed tomography (pCT), which was first
proposed by Cormack (1963) in the early 1960s. By measuring the positions and residual
energies of the protons behind (and in some designs also in front of) the patient in a
series of projections, a RSP image can be reconstructed (Hansen et al. 2016, Penfold
et al. 2009, Penfold et al. 2010, Poludniowski et al. 2014, Rit et al. 2013). Currently,
several groups are known to be designing, building, or operating pCT (or heavier ion
CT) prototypes (Rinaldi et al. 2013, Sadrozinski et al. 2016, Taylor et al. 2016, Meyer
et al. 2017, Tanaka et al. 2018), and initial reports of RSP accuracy are encouraging
(Giacometti et al. 2017a).

The eventual use of pCT for frequent imaging in treatment position is supported by the
fact that pCT dose efficiency, evaluated by metrics such as contrast to noise ratio, is supe-
rior to x–ray CT (Schulte et al. 2005) and may allow lower imaging doses. Recently, pCT
scans using imaging doses as low as 1 mGy have been achieved (Sadrozinski et al. 2016).
The imaging dose from pCT may be further reduced by employing the concept of fluence
field modulation (Bartolac et al. 2011, Bartolac & Jaffray 2013, Graham et al. 2007b, Stay-
man et al. 2016, Szczykutowicz et al. 2015, Szczykutowicz & Mistretta 2013a, Szczykutow-
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icz & Mistretta 2013b), where the fluence of particles used for imaging is adjusted within
a projection to yield spatially varying image quality. For proton therapy guided by pCT,
we could thus envision imaging the therapeutic beam paths with high image quality (low
noise) and sacrificing image quality (high noise) where therapy–related dose computation
is not required. This is particularly attractive for proton therapy given the low–integral
dose nature of the modality (Fuji et al. 2013). A recent simulation study suggested that
fluence–modulated pCT (FMpCT) may yield imaging dose reduction of 30% and 50% in
head–and–neck and brain cancer patients, respectively, while preserving the dose calcula-
tion accuracy of a full fluence image (Dedes et al. 2017).

FMpCT may be achieved by acquiring pCT scans using the pencil beam scanning
(PBS) functionality of modern proton therapy facilities instead of the broad beams (cone
or wobbled beams typically) currently employed in most pCT prototypes (Sadrozinski et al.
2016). The use of PBS would greatly simplify the fluence modulation task by allowing the
prescription of proton fluence on a pencil beam by pencil beam basis. PBS scans have been
previously acquired for carbon ion CT with a flat panel detector (Telsemeyer et al. 2012)
as well as with an ionization chamber stack detector (Meyer et al. 2016, Magallanes 2017)
which functions in PBS mode by design (Rinaldi et al. 2013). Helium CT results obtained
from PBS have also been presented for a particle tracking scanner, and the same study
reported the acquisition of PBS pCT as well, but no results were reported (Volz et al. 2017).

In this study, we performed PBS pCT scans and first experimental realization of FM-
pCT by making use of the phase II preclinical prototype pCT scanner of the Loma Linda
University and U.C. Santa Cruz, together with the PBS capability of the Northwestern
Medicine Chicago Proton Center. Our aim was to demonstrate the equivalence, in terms
of image quality, of PBS and broad beam acquisitions, and the feasibility of FMpCT us-
ing a simple water cylinder phantom with a centrally located FMpCT region of interest
(FMpCT-ROI) for high image quality. Specifically, this work aimed at demonstrating that
(a) PBS pCT can achieve the same image quality as cone beam or wobbled beam pCT
in uniform fluence scenarios and (b) that FMpCT scans preserving image quality in the
FMpCT-ROI are feasible with PBS pCT.

5.2 Materials and methods

5.2.1 Experimental setup

The experimental part of this study was performed at the Northwestern Medicine Chicago
Proton Center using the phase II preclinical pCT prototype scanner of the Loma Linda
University and U.C. Santa Cruz, described in detail in Johnson et al. (2016). The scanner
consists of two tracking modules and a five–stage water equivalent path length (WEPL)
detector coupled to a data acquisition system capable of acquiring broad beam proton
events at a sustained rate in excess of 1 MHz.

The front and rear tracking modules together contain 32 single-sided silicon strip de-
tectors (SSD) with a strip pitch of 228 and 400µm thickness. Four SSDs are assembled
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on a printed circuit board (PCB) in a pattern that forms a continuous sensitive area of
8.95 × 35.6 cm2. Two back–to–back PCBs with orthogonal orientation form a 2D coordi-
nate detector, and each tracking module consists of two such 2D coordinate detectors. The
tracking system therefore provides four sets of 3D coordinates, allowing the estimation of
the curved proton path using the measured position and direction vector of each proton
before and after the object.

The five–stage plastic scintillating detector has a dynamic range of 0–260 mm WEPL.
Each 52 mm thick stage is made of polystyrene of RSP=1.038 and has a lateral area of
10×40 cm2. The WEPL information for every proton is given by the signal from the stage
in which the proton stopped (Bashkirov et al. 2016).

5.2.2 PBS beam line

The PBS beam was delivered in a clinically commissioned fixed beam line using a universal
nozzle manufactured by IBA (IBA, Belgium). The accelerator source for this room is an
IBA C230 cyclotron that has been in clinical use since 2010 at the Northwestern Medicine
Chicago Proton Center. For proton imaging, extremely low proton flux is needed. The
standard method of regulating dose using signal from the nozzle’s monitor chambers was
not feasible due to the very low signal to noise ratio of the imaging beam. Instead, spot
dwells were based on a fixed dwell time, which is the beam–on time at a specific position,
along with setting the cyclotron output current once to provide the desired total fluence
and flux.

5.2.3 Phantom

For this experimental proof–of–principle work, we chose a simple cylindrical water phan-
tom. The phantom was made of a PMMA cylindrical container with inner diameter of
137.8 mm and outer diameter of 150.5 mm. The height of the cylinder was 28 mm and the
two PMMA endcaps had a thickness of 6 mm each. The container was filled with water
and placed on a remotely controlled rotating stage.

5.2.4 PBS scan patterns

Proton CT images were acquired using active pencil beam (PB) scanning. A 200 MeV PB
with a spot size of 1.37 cm FWHM in air at isocenter was magnetically deflected in order
to cover an area of 30×10 cm2 in the case of the calibration runs (300 PBs) and 20×40 cm2

in the case of the imaging scans (200 PBs). The beam was turned off for the duration of
the deflection to the next point. Beam spot locations were spaced 1 cm apart. The pencil
beam grid was offset by a quarter of the PB spacing in the direction normal to scan’s axis
of rotation to avoid overlapping PB from opposing projections and thereby improve the
measurement uniformity.
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5.2.5 Pileup study

The pCT phase II scanner had been so far mostly used with broad proton beams: either
a passively scattered cone beam at the Loma Linda University Medical Center (Bashkirov
et al. 2016a), covering the whole field of view of the scanner, or at the Northwestern
Medicine Chicago Proton Center with a wobbled proton beam of 4–7 cm FWHM spot size
(Sadrozinski et al. 2016). The single report of scanner operation in PBS mode makes no
mention of pileup (Volz et al. 2017). Before performing the calibration and imaging runs,
a study was made on the detector performance for a 1.37 cm FWHM PB, concentrating
especially on the resulting pileup in the silicon strips of the tracker modules. The main
concern was that the amplifier time–over–threshold for the silicon strips could be such
that if two protons impinge on the same strip within a time window of less than about one
microsecond, the second one will be missed.

For the purpose of the pileup study, a 30× 10 cm2 field (300 PBs) was employed, with
the beam running at cyclotron currents of 2, 4, 6, 8, 10, and 12 nA in six different runs and
impinging upon the detector without any object in the field of view. The PB dwell time
was 8 ms. This dataset was employed to select a suitable cyclotron current, taking into
account the trade–off between pileup and acquisition speed. No formal optimization was
done, however, as a decision for the subsequent runs had to be made within a few minutes.

We have subsequently further analyzed the data from these six runs in order to un-
derstand the impact of pileup on the efficiency of individual proton detection in the same
PB. The efficiency to detect a proton “hit” in the silicon–strip detectors can be directly
measured in a given layer for either of the two views (vertical strips, coordinate V and hor-
izontal strips, coordinate T) by fitting a straight line to the hits in the other three layers to
predict the expected location of a hit in the layer of interest and verifying whether it was
recorded. With zero pileup that efficiency is generally found to be above 99%, with most
of the loss coming from the gaps between individual silicon wafers (Johnson et al. 2016).

5.2.6 Calibration run

A calibration procedure that transforms the detector single–proton measurement to WEPL
is necessary and is discussed in Bashkirov et al. (2016). The pCT collaboration has devel-
oped an improved version in which a polystyrene wedge phantom is used in ref. (Johnson
et al. 2017) instead of the stepped pyramid phantom. In addition to the wedge, four
polystyrene blocks are required to bring the proton Bragg peak into each stage of the
five–stage plastic scintillator detector (Bashkirov et al. 2016).

The calibration was performed at the beginning of a scanning session in five consecutive
runs, in addition to a run made without an object. The wedge provides a continuous WEPL
range that is traversed by protons, whose position and hence path length in the phantom
is provided by the tracking system. The first calibration run was acquired with only the
wedge, resulting in protons stopping at different depths in the last stage. Four additional
runs were acquired by adding every time one block behind the wedge, so that protons
stop in each of the four remaining stages. A run with no phantom was also acquired and
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was used to map the spatial dependence of the scintillator signals as well as to provide a
conversion from analog–to–digital converter (ADC) counts to MeV (Bashkirov et al. 2016).
The result of the calibration run was a look–up table transforming an energy measurement
to the traversed WEPL for a proton stopping in a particular stage. All calibration runs
were acquired using a 30 × 10 cm2 (300 PBs) field with a cyclotron current of 4 nA with
8 ms dwell time per PB position, with six repetitions of the scan pattern.

5.2.7 pCT scan acquisitions

Each scan consisted of 45 projections, acquired at eight–degree steps, with the phantom
rotating between the acquisitions of two consecutive projections (step–and–shoot mode).
Following the pileup study and calibration, a 20×10 cm2 scanning pattern with 27 ms dwell
time delivered in a single pass with a cyclotron current of 4 nA was chosen. This resulted
in a 400 kHz counting rate (averaged over a projection).

The fluence of each PB was controlled by changing its dwell time. For the full fluence
(FF) scan, the dwell time was kept at 27 ms. In that case, the acquisition of a single
projection required 7 s, and 2.2 million protons were recorded per projection. For the
FMpCT scans, a FMpCT–ROI was imaged with the FF, while for the remaining PBs
in the 20 × 10 cm2 imaging field, the PB fluence was reduced by 50% (FMpCT50) and
20% (FMpCT20) by reducing the dwell time to 13.5 and 5.4 ms, respectively. The central
FMpCT–ROI was defined as the region irradiated by the 5·10 central PBs. An uninten-
tional misalignment caused a shift of 1 cm in the PB scan pattern, resulting in a smaller
FMpCT–ROI covered by FF PBs in all projections. The final effective size of the FMpCT–
ROI was 3 cm in diameter and 10 cm in height.

5.2.8 Image reconstruction

Images were reconstructed for this study with a filtered backprojection (FBP) implemen-
tation that accounts for the curved proton paths in the imaged object, mainly due to
multiple Coulomb scattering. The main principles of the algorithm are presented in (Rit
et al. 2013). The path of every proton is approximated by a most likely path (MLP)
formulation introduced by Schulte et al. (2008), which uses the position and direction in-
formation from the tracking modules (see figure 3 in that publication for simulated proton
paths and their MLP).

Protons were selected with a 3 standard deviations cut on the energy and angular
distributions around their mean energy and angle per projection pixel. List–mode data
were binned in intermediate projection images with 0.8× 0.8 mm2 pixels, which were then
filtered and backprojected. Sinogram interpolation (Hansen et al. 2016) was used for all
reconstructions.

To better understand the noise behavior outside the FMpCT–ROI, images were addi-
tionally reconstructed from homogeneous scans with fluence virtually reduced to 50% and
20% of the FF scan. Those scans were not explicitly acquired during the experiment but
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were obtained from the FF dataset by assigning a uniform selection probability to every
proton.

Finally, the results of the PB pCT scans acquired in this experiment were compared
to an older scan of the same phantom imaged with a wobbled proton beam with a size of
4 cm FWHM (Sadrozinski et al. 2016). To ensure comparability, the wobbled beam scan
data were processed so as to contain the same number of protons per projection and the
same number of projections as the FF PB scan.

5.2.9 RSP noise and accuracy quantification

The image quality of the acquired pCT scans was quantified in terms of RSP accuracy and
RSP noise. Utilizing the cylindrical symmetry of the scanned object, the image quality
metrics were assessed in annular ROIs with increasing radius, covering different radial
extents of the phantom. For comparability, all ROIs contained approximately 1000 pixels,
resulting in variable annulus thicknesses. The RSP accuracy in an annulus was defined
as the mean value of the RSP distribution of all pixels contained in it, expressed as a
percentage difference from the theoretical value for water (RSP = 1). The RSP noise
in an annulus was defined in a similar manner, using the standard deviation of the RSP
distribution. Finally, the inner radius of each annulus denotes the radial distance from
the center of the cylindrical phantom. The ROIs are shown in figure 5.11 (supplementary
material).

5.2.10 Imaging dose

During the experiment, there was no possibility of dose estimation for each scan. In order
to quantify the dose gains of FMpCT with respect to the FF scans, we simulated the dose
in the water phantom using Monte Carlo simulations. A full simulation was employed
that modeled in high detail all the active and passive scanner elements. The simulation
application based on GEANT4, version 10.02.p1, was presented in Giacometti et al. (2017a).
The dose in the water phantom was estimated by a GEANT4 primitive dose scorer in a
1× 1× 1 mm3 voxel grid using a proton phase space distribution estimated from the front
tracking module. The resulting dose distributions were normalized to the FF scan to
estimate dose savings from FMpCT. Absolute doses were however not reported.

5.3 Results

Evaluation of pileup with pencil beam scanning

Figure 5.1 shows the efficiency measurements resulting from the pencil beam runs. The
highest trigger rate of 910 kHz is only about 30% below the maximum event rate that
the data acquisition can sustain. At the data rate (400 kHz) employed in the experiments
described below, the hit inefficiency caused by pileup is only about 1% and is thus negligible.
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Figure 5.1: The measured hit efficiency averaged over all eight tracker layers vs the trigger
rate. The falloff in efficiency with increasing rate is due to pileup in the amplifiers of the
silicon–strip detectors.

Figure 5.2 shows the fraction of events for which a proton track could be reconstructed
along the vertical and transverse directions as a function of the trigger rate corresponding
to the different cyclotron currents considered. We observed an increase in pileup with
increasing current, with the tracking efficiency dropping from 90% at 2 nA and 200 kHz to
85% at 12 nA and 900 kHz. The remainder of the experiments and the results presented in
this section were obtained with 4 nA and a trigger rate of 400 kHz.
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Figure 5.2: The fraction of triggered events for which proton tracks in the vertical (V) and
transverse (T) directions could be obtained as a function of the trigger rate or cyclotron
current.
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5.3.1 Comparison to established imaging with wobbled delivery

Figure 5.3 shows the detector’s stage–wise energy–to–WEPL calibration curves obtained
with an open field using the wobbled beam and PBS. The curves nearly overlap, indicating
that the PBS and wobbled beam calibrations are equivalent.

Figure 5.3: Calibration plots for the five consecutive energy detector stages based on the
wobbled (dashed line) and pencil beam scanning (solid line) beams. The horizontal scale
refers to the energy deposition in the stage in which the proton apparently stopped.

Figure 5.4 shows reconstructed pCT images from full fluence scans of the water cylinder
phantom acquired with a wobbled beam and with pencil beam scanning. The images are
generally similar, with the wobbled beam exhibiting a slightly darker artifact at the center
of the water cylinder. Using a ROI covering 90% of the water cylinder’s radius, the mean
(standard deviation) of the water RSP were 1.011 (0.053) and 0.993 (0.049) for the wobbled
and pencil beams, respectively. Figure 5.5 makes use of annular ROIs (see figure 5.11 –
supplementary material) to present the RSP accuracy and noise. We observed that the
pencil beam scanning images had better accuracy (results closer to 0% error), and that the
difference between the wobbled and PBS images was limited to about 1%. Both images
showed increasing noise with radius. There was good agreement between the noise levels in
the center of the cylinder, but slightly higher values for the wobbled beam were observed
at the object’s edge.



86 5. Experimental fluence–modulated proton CT

Figure 5.4: pCT images (image values are RSP) acquired with pencil beam scanning and
a wobbled beam.

Figure 5.5: (a) Error on mean RSP of water estimated using annular ROIs in pCT images
acquired with pencil beam scanning and a wobbled beam. (b) Corresponding standard
deviation (noise).
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Figure 5.6: Front tracker proton counts for (a) full fluence (FF), (b) FMpCT with FMF
0.5, and (c) 0.2. The horizontal axis is parallel to the cylindrical phantom’s diameter and
the vertical axis is parallel to the phantom’s rotation axis. (d) Horizontal profiles of proton
counts per bin averaged along the vertical axis of (a–c). (d) A 1–dimensional median filter
was applied for display purposes.
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5.3.2 FMpCT

Figure 5.6 presents the front tracker proton counts showing the pencil beam fluence used
for each projection of the FF and FMpCT scans. Individual pencil beams are resolvable
as well as the quarter detector shift employed to increase the in–slice dose uniformity. We
observed that due to an experimental misalignment of the pencil beam scanning system
and the phantom’s rotation stage, the high fluence region (5 PBs) was shifted by one pencil
beam. We also noticed a slight horizontal tilt attributed to the scanner not being perfectly
leveled. The pattern of darker lines is attributed to gaps between active tracker elements.

Figure 5.7 presents the reconstructed PBS pCT images for varying levels of uniform
fluence as well as FMpCT images with FMF of 0.5 and 0.2. The expected increase of noise
with lower proton fluence was observed for uniform fluence images, while with FMpCT,
the image quality in the center of the phantom appears qualitatively preserved and the
noise at the object’s edge tends to approach the uniform fluence scenario.

Figure 5.7: PBS pCT RSP images with (a) homogeneous full fluence (FF) and reduced
uniform fluence by factors (b) 0.5 and (c) 0.2. (d,e) PBS FMpCT RSP images with FMF
of (d) 0.5 and (e) 0.2.

This finding was quantified in figure 5.8, where the standard deviation in the annular
ROIs is reported for the images presented in figure 5.7. We can observe that in the low noise
ROI, the standard deviation of the FMpCT images matches the one obtained from the FF
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image, while the uniform low fluence images have overall higher noise. For FMpCT images,
the noise increases rapidly with the distance from the ROI, approaching the uniform fluence
cases at the edge of the object.

Figure 5.8: Standard deviation (noise) of RSP of water estimated from pCT images using
annular ROIs. The extent of the FMpCT–ROI is indicated in gray.

Figure 5.9 reports the RSP error (for water) of the mean values for the uniform FF
and FMpCT images in the annular ROIs. We see that the use of FMpCT with FMF 0.5
does not alter the RSP accuracy inside and outside the low noise ROI. A slight variation of
accuracy for FMF 0.2 was observed in the low noise FMpCT–ROI. This can be observed
in table 5.1 where we see that the mean value in the case of FMpCT with FMF 0.2 is 0.2%
lower than in the corresponding uniform fluence case.

Table 5.1: Mean RSP noise and standard deviation in the FMpCT–ROI. The second
column shows RSP mean values for uniform scans with different FMF. The third column
reports mean values with FMpCT. The fourth and fifth columns refer to the corresponding
RSP standard deviations in the same ROI.

Mean Standard deviation
Pat1 Uniform FMpCT Uniform FMpCT
FF 0.992 – 0.047 –

0.5 · FF 0.992 0.992 0.066 0.046
0.2 · FF 0.992 0.990 0.109 0.044
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Figure 5.9: Error on mean RSP of water estimated from pCT images using annular ROIs.

Figure 5.10 presents the relative dose distributions, normalized to their maximum, of
the FF and FMpCT scans. We observed the expected dose reduction outside the FMpCT–
ROI when compared to the mostly uniform FF dose. At the object’s edge, the imaging
dose was 60% and 40% of the FF dose for FMpCT with FMF of 0.5 and 0.2, respectively,
while in the center, the same dose was obtained for all cases. Due to the misaligned high
fluence pattern, an intermediate 80% of FF dose halo was observed around the maximum
dose region.

Figure 5.10: Normalized pCT scan doses in a central slice of the phantom (circumfer-
ence indicated by dashed line). (a) Full fluence (FF), FMpCT with (b) FMF 0.5 and
(c) FMF 0.2.
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5.4 Discussion

In this experimental study, we have demonstrated that the phase II pCT scanner prototype
could be operated in PBS mode at acceptable pileup levels. Previous mentions of scanner
operation in proton PBS mode did not present pileup analyses (Volz et al. 2017). The
chosen cyclotron current of 4 nA led to a scanner trigger rate of approximately 400 kHz.
This was lower than the 1 MHz rate achievable with wobbled or cone beams (Sadrozinski
et al. 2016). In retrospect, even at the 1 MHz rate typically used with this scanner, the
pileup inefficiency would be acceptable. Although 96% hit efficiency would result in only
70% of protons being measured with all eight hits, our analysis generally allows a single
missing hit in both views, considerably reducing the impact of the inefficiency. Further-
more, when a phantom is placed in the beam, multiple scattering broadens the beam in
the rear tracker, significantly reducing pileup. Note that loss of single hits in the front
tracker is relatively unimportant given that the incoming beam direction is well known.

The experiment was performed using slow step–and–shoot acquisition mode. The sug-
gested increase in cyclotron current and pencil beam size might facilitate scan acquisition
using continuous rotation. The step–and–shoot mode we employed would not be compat-
ible with the time constraints associated with clinical operation. Realizing FMpCT with
PBS based on continuous rotation in a reasonable time frame (about 1 min) is one the
main challenges to this approach, and subsequent studies will aim at evaluating whether
this goal is achievable with current beamlines and acquisition rates.

We made use of a quarter PB spacing shift to interleave PBs from opposing projections,
thus rendering the dose in a slice homogeneous. However, in the vertical dimension, in-
terleaving is not possible and the dose distribution shows peaks and valleys corresponding
to the PB pattern shown in figure 5.6. It might be necessary to reduce the PB spacing in
that direction to ensure homogeneous image quality.

The accuracy of the RSP for water was mostly within 1% for the PBS pCT scan and
comparable or better than what had been achieved with the wobbled beam. For both scan
acquisition methods, we observed increasing noise with object radius. This is currently the
subject of a separate investigation and requires careful modeling of noise reconstruction in
pCT as well as understanding of the various sources of projection noise, including detector
effects. These might be modeled using the simulation platform of Giacometti et al. (2017a).
The slightly higher noise levels at the object’s edge observed with the wobbled beam may
be caused by a falloff of the fluence at the edge of the beam; however, this has yet to be
verified.

We were able to confirm the results of a previous simulation study suggesting that
FMpCT should be feasible without loss of accuracy in the FMpCT-ROI (Dedes et al. 2017).
We saw a very slight change (0.2%) in the water RSP when employing the 20% FMF. This
appears consistent with the findings of Dedes et al. (2017), where accuracy was degraded
when using FMF lower than 30% (see figure 11 in that reference). The FF noise level
in the FMpCT–ROI was preserved for both FMF values, and we observed that the noise
level outside the FMpCT–ROI approached the uniform low fluence results with increasing
distance from the FMpCT–ROI. At a given FMF, the FMpCT scan noise was always lower
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than the uniform fluence scan noise since the full fluence PBs cross any given voxel at least
once.

The relative maximum dose reduction achieved in this study was 40% and 60% for FMF
of 50 and 20, and is comparable to what was achieved in the simulation study of Dedes et al.
(2017). Of course, these dose savings highly depend on the shape of the FMpCT–ROI.
In this study, we opted for a simple central FMpCT–ROI, thus allowing us to neglect the
synchronization of the PB fluence pattern and rotation angle. This was deemed sufficient
for a proof–of–principle study, and next experiments will aim at performing FMpCT for
arbitrarily shaped FMpCT–ROI. The unfortunate misalignment of the PB high fluence
pattern meant that the dose fall–off with distance from the FMpCT–ROI’s edge was not
as sharp as it could have been.

5.5 Conclusion

In this study, we have demonstrated that FMpCT scans are feasible. Furthermore, we have
shown that PBS pCT scans can achieve equivalent accuracy as those obtained from broad
beams. Image accuracy and noise were successfully preserved in the central FMpCT–ROI
chosen for this study, and dose reduction of up to 60% at the object’s edge was realized.
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5.6 Supplementary material

Figure 5.11: The annular regions of interest (ROI) used to analyse the relative stopping
power (RSP) images reconstructed in this work. The inner radius and area are reported
above each ROI.
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Chapter 6

Noise reconstruction in proton CT

This chapter contains the work published in Physics for Medicine and Biology, volume 63,
issue 21, page 215009, in October 2018, with the title Two dimensional noise reconstruction
in proton computed tomography using distance–driven filtered back-projection of simulated
projections, by Rädler et al. (2018) – (senior author: Dedes).

6.1 Introduction

Relative proton stopping power (RSP), the ratio of the proton stopping power of a given
material to that of water at a given energy, is necessary for most clinical dose calcula-
tion methods used in proton therapy. RSP is currently estimated by x–ray computed
tomography (CT) scans in clinical practice (Taasti et al. 2018). The conversion from
photon attenuation coefficients to RSP contributes considerably to range uncertainties
(Paganetti 2012, Yang et al. 2012). The potential of reducing these uncertainties by direct
RSP measurements at the treatment position has motivated the recent revival of proton
computed tomography (pCT), which was first proposed by Cormack in the early 1960s
(Cormack 1963). Modern pre–clinical pCT scanners measure the positions and residual
energies of the protons behind (and in some designs also in front of) the patient in a series
of projections, from which an RSP image can be reconstructed (Hansen et al. 2016, Penfold
et al. 2009, Penfold et al. 2010, Poludniowski et al. 2014, Rit et al. 2013). Many groups are
known to be designing, building or operating pCT (or heavier ion CT) prototypes (Rinaldi
et al. 2013, Sadrozinski et al. 2016, Taylor et al. 2016, Meyer et al. 2017, Tanaka et al. 2018)
and initial reports of RSP accuracy support these endeavours (Giacometti et al. 2017a).

The concept of fluence field modulation computed tomography (FFMCT), initially sug-
gested for x–ray CT by Graham et al. (2007b) and pioneered by the Toronto (Bartolac
et al. 2011, Bartolac & Jaffray 2013) and Madison groups (Szczykutowicz & Mistretta
2013a, Szczykutowicz & Mistretta 2013b), allows the tailoring of the spatial distribu-
tion of image noise and dose by modulating the x–ray fluence within a given CT pro-
jection. Fluence modulation has been realized by employing a digital beam attenua-
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tor (Szczykutowicz & Mistretta 2014), the binary collimator of a Tomotherapy machine
(Szczykutowicz et al. 2015), multiple aperture devices (Stayman et al. 2016) or piecewise-
linear dynamic attenuators (Shunhavanich et al. 2018). While fluence modulation capa-
bility is crucial in achieving FFMCT, a mathematical model relating x–ray fluence and
image noise and/or radiation dose is required to optimize the FFMCT fluence pattern
(Bartolac et al. 2011). Several publications cover the theory of noise reconstruction for
x–ray CT for parallel (Gore & Tofts 1978, Huesman et al. 1977, Huesman 1984, Kak
& Slaney 1988, Buzug 2008), fan (Wunderlich & Noo 2008) and cone beam (Zhang &
Ning 2008, Shäfer et al. 2015) acquisitions.

Clinical implementation of FFMCT would thus rely on prior imaging data to generate
a patient model, which would be used as input to algorithms predicting noise projections
required for noise reconstruction (Bartolac et al. 2011). The patient model could thus be
established on the basis of prior diagnostic imaging studies or even using an atlas.

Dedes et al. (2017) proposed adapting FFMCT to proton computed tomography (pCT)
scans acquired with pencil beam scanning (PBS) beamlines found in modern proton therapy
facilities. While they could show the feasibility of fluence modulated pCT (FMpCT) in
a simulation study, they relied on a “forward planning” approach where simple geometric
considerations guided a binary fluence modulation on a pencil beam by pencil beam basis.
The same approach was employed for the recent experimental realization of FMpCT using
the proton tracking phase II pCT prototype of the Loma Linda University and University
of California Santa Cruz (Dedes et al. 2018). Further developments in FMpCT thus require
the modeling of the relation between proton fluence and pCT image noise to allow using an
optimization strategy where pencil beam fluence could be continuously adjusted to achieve
image noise prescriptions.

Preliminary work by Schulte et al. (2005) for the noise of the central pixel in a pCT
image of a water cylinder, using proton projections binned at the rear tracker, laid the
groundwork for noise reconstruction in pCT. However, Schulte et al. (2005) did not account
for the impact of multiple Coulomb scattering (MCS) near object edges, and was published
prior to the development of state of the art filtered backprojection (FBP) along most likely
paths (MLP) (Rit et al. 2013), which makes use of distance driven binning (DDB) to
create depth dependent projections for which rear tracker binning is a special case. As we
will present in this paper, these effects have a non–negligible, non–trivial impact on two
dimensional (2D) image noise in pCT.

The goal of this paper was thus to realize 2D noise reconstruction for simulated pCT
scans of a water cylinder, assuming an ideal version of proton tracking pCT scanners, and
accounting for the impact of MCS and the distance driven binning (DDB) which underpins
FBP along MLPs. To do so, we extended the FBP along most likely paths to allow noise
reconstruction, and made use of projection noise calculated on the basis of Monte Carlo
(MC) simulations of ideal pCT scans, as well as from a dedicated analytical model.
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6.2 Material and methods

6.2.1 MC simulation and geometry

In order to validate the noise reconstruction methods presented in the following sections, a
MC simulation of a pCT scan of a water cylinder with a diameter of 25 cm was carried out,
assuming ideal detectors (see figure 6.1). We chose a 260 mm× 50 mm rectangular proton
field covering the whole diameter of the cylinder and 50 mm along the cylinder’s axis.
The fluence of the beam was chosen to be 200 protons/mm2, all protons were launched
perfectly parallel with random starting positions from the source plane, and the initial
proton energy (Ein = 250 MeV) was monoenergetic. The proton path was tracked on
two parallel planes on the front and rear side of the water cylinder (see figure 6.1 for the
details of the geometry), perpendicular to the incident beam, returning the initial and final
position and momentum direction of each proton along with their exit energies.

The simulation platform was based on GEANT4 version 10.01.p02 (Agostinelli et al.
2003). The reference physics list QGSP BIC HP was used for the simulation of the interac-
tion of particles with matter, which relies on G4EmStandardPhysics for electromagnetic
interactions. MCS is modeled via the G4WentzelIVIModel (Ivanchenko et al. 2010). The
tabulation of energy loss, range and inverse range, which are calculated during initializa-
tion, are done with 84 bins. More details on the energy loss are described in (GEANT-
Collaboration et al. 2016).
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Figure 6.1: Geometry of the MC simulation.
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6.2.2 Noise reconstruction formalism for pCT

Literature refers alternatively to noise images (one standard deviation, σ) or variance
images (σ2), with similar naming at the projection level. In this paper, we have opted
to systematically employ the term noise reconstruction, which implies the trivial step of
taking the square root of variance reconstructions. The noise reconstruction formalism
presented below applies for pCT images reconstructed through distance driven binning
(DDB), which was introduced by Rit et al. (2013). By doing so, one is able to include the
influence of MCS, as protons traversing curved paths will be binned into different detector
pixels at different binning depths. The fluence modulation approach, as proposed by Dedes
et al. (2017), is based on parallel pencil beam irradiation. Therefore, we will solely discuss
the parallel beam case in 2D slices.

In section 6.2.2, after a brief summary of the image reconstruction, we will review the
quantification of noise in the pCT projections followed by the noise reconstruction of pCT
binned at the rear tracker. The noise reconstruction including DDB is shown thereafter,
given the noise projections binned at variable depth. We discuss the calculation of noise
projections binned at the rear tracker and with DDB in section 6.2.3.

Image reconstruction

The coordinate system used in this paper is illustrated in figure 6.2. The FBP of an image
slice f(x, y), given the discrete projection values pγn(m∆ξ) acquired at discrete angles
γn with a ∆ξ spacing on the one–dimensional projection grid using a discrete number of
projections Np, is given by

f(x, y) =
π

Np

Np∑
n=1

hγn(x cos(γn) + y sin(γn)), (6.1)

where hγ(j∆ξ) are the convolved projections

hγn(j∆ξ) = ∆ξ

D/2−1∑
m=−D/2

pγn(m∆ξ)g((j −m)∆ξ). (6.2)

We chose the simplest convolution kernel from Ramachandran and Lakshminarayanan
(Ramachandran & Lakshminarayanan 1971) (Ram–Lak), which results from band limiting
the ramp kernel

g(j∆ξ) =


1/(2∆ξ)2 for j = 0,

0 for j even (j 6= 0),

−1 for j odd.

(6.3)
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Figure 6.2: Setup of the acquisition and the coordinate systems. The source (yellow circle)
moves along the dotted green line in order to generate one projection.



100 6. Noise reconstruction in proton CT

For a reconstruction using a given image pixel grid, with the pixel centers located
at (xp, yp), the convolved projections of equation 6.1 require interpolation, as the sam-
pled projection values do not necessarily coincide with the sample points ξn(xp, yp) =
xp cos(γn) + yp sin(γn). Interpolation reduces the noise and should be taken into account,
when estimating noise in reconstructed images from noisy projection images (Huesman
et al. 1977, Kak & Slaney 1988). For a linear interpolation between the two adjacent
pixels j and j + 1, the complete reconstruction from the FBP becomes

f(xp, yp) =
π

Np

∆ξ·

Np∑
n=1

D/2−1∑
m=−D/2

pγn(m∆ξ) {g((j −m)∆ξ) · [1− u] + g((j + 1−m)∆ξ) · u} , (6.4)

where both j = j(ξn) and the weights u = u(ξn) are determined by the location of the
query point relative to the two adjacent projection sample values

u(ξn) =
ξn − j∆ξ

∆ξ
. (6.5)

Statistical limitations of the acquisition

Proton tracking pCT reconstruction with FBP relies on binning individual protons into
projection pixels. For regular FBP (i.e. non–DDB), this can be done by using the data
from the rear or front trackers. For FBP along most likely paths based on DDB, the
paths of individual protons are reconstructed and protons are binned into projections with
variable η (see figure 6.2) (Rit et al. 2013).

After binning the protons into their respective pixels, one calculates their water equiv-
alent path length (WEPL) through

WEPLi =

∫ Eiout

Ein

dE

SW(E)
, (6.6)

where SW(E) is the stopping power of water and i refers to individual measured protons
with energy Ein before the object and measured energy Ei

out beyond. Then one estimates
the mean to obtain the projection value

pγn(j∆ξ) =
1

Nγn(j∆ξ)

Nγn (j∆ξ)∑
i=1

WEPLi, (6.7)

where Nγn(j∆ξ) is the number of protons in pixel j∆ξ at the projection angle γn. At each
pixel, the mean carries an intrinsic uncertainty in itself, typically expressed as the standard
deviation of the mean. The variance of equation 6.7 is then
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σ2
γn(j∆ξ) =

σ2
WEPL,γn

(j∆ξ)

Nγn(j∆ξ)
. (6.8)

The variance of the WEPL (without index i since we refer to average WEPL in a pro-
jection pixel), σ2

WEPL, in turn depends on the uncertainty of the proton energies, which is
generally attributed to energy straggling (Schulte et al. 2005) (additional detector uncer-
tainties will not be taken into account in this study). Therefore, the error of the exit energy
propagates into the WEPL values, which is described by the error propagation formula.
The first order approximation is sufficient as the second order contribution is already four
orders of magnitude below the first order term. With the mean energy of the detected
protons Eout, one obtains

σ2
WEPL =

(
∂WEPL

(
Eout

)
∂E

)2

· σ2
Eout

=
σ2
Eout

S2
W(Eout)

. (6.9)

Together with equation 6.8, the variance of the projection value is given by Schulte et al.
(2005)

σ2
γn(j∆ξ) =

σ2
Eout,γn

(j∆ξ)

Nγn(j∆ξ) · S2
W(Eout,γn(j∆ξ))

. (6.10)

2D noise reconstruction without DDB

The basics of the noise reconstruction from the FBP for pCT were outlined by Schulte
et al. (2005) for the central pixel of pCT images, and are analogous to the x–ray CT noise
reconstruction techniques shown by Huesman et al. (1977) or Gore & Tofts (1978). Since
the projection values pγn(m∆ξ) carry an error, we will treat them as random variables,
with their mean and variance given by equations 6.7 and 6.10 respectively. In general, the
variance of a weighted sum of random variables Xi with the weights ai is

Var

[
M∑
i=1

aiXi

]
=

M∑
i,j=1

aiajCov [Xi, Xj] =
M∑
i=1

a2
iVar[Xi] + 2

M∑
i,j|i<j

aiajCov [Xi, Xj] . (6.11)

The summation over pγn(m∆ξ) in equation 6.4 is threefold: the sum over the angles,
the projection values (convolution) and the interpolation. We use the approximation that
there is no covariance among the projection values pγn(m∆ξ) since individual protons are
tracked and pileup is assumed negligible.

But, due to the convolution, the filtered projections carry a mutual dependency. Each
filtered projection hγn(j∆ξ) value is the linear combination of the surrounding projection
values pγn(m∆ξ). As the projection values pγn(m∆ξ) are independent, we have
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Cov
[
pγn(m∆ξ), pγn′ (m

′∆ξ)
]

= δn,n′δm,m′Var [pγn(m∆ξ)] = δn,n′δm,m′σ
2
γn(m∆ξ), (6.12)

since Cov[X,X] = Var[X]. δij is the Kronecker delta, which is defined as

δij =

{
0 if i 6= j,

1 if i = j.
(6.13)

The weights from equation 6.11 become

ai →
π

Np

∆ξ · g((j(ξn)−m)∆ξ) [1− u(ξn)]

aj →
π

Np

∆ξ · g((j(ξn) + 1−m)∆ξ)u(ξn).
(6.14)

Finally, the noise of the image can be reconstructed through

Var [f(xp, yp)] =

(
π

Np

∆ξ

)2

·

Np∑
n=1

{
[1− u]2 Vγn(j∆ξ) + 2 [1− u]uCγn(j∆ξ, (j + 1)∆ξ) + u2Vγn((j + 1)∆ξ)

}
(6.15)

where j = j(ξn) and u = u(ξn), just as in equation 6.4. Following (Wunderlich & Noo 2008),
we introduced the variance and covariance terms

Vγn(j∆ξ) =

D/2−1∑
m=−D/2

g2((j −m)∆ξ)σ2
γn(m∆ξ), (6.16)

Cγn(j∆ξ, j′∆ξ) =

D/2−1∑
m=−D/2

g((j −m)∆ξ)g((j′ −m)∆ξ)σ2
γn(m∆ξ). (6.17)

When summing pγn(m∆ξ)g((j(ξn)−m)∆ξ) [1− u(ξn)] and pγn(m∆ξ)g((j(ξn)+1−m)∆ξ)u(ξn)
for interpolation, we produce two variance and two covariance terms through Var[a1X +
a2X] = a2

1Var[X] + a2
2Var[X] + 2a1a2Cov[X,X]. The Cγn term is the covariance of the

filtered projections and only the inner two sums of equation 6.4 bear this covariance, as
we do not convolve in the angular dimension.

Wunderlich & Noo (2008) noticed that by defining

gC(j∆ξ) = g(j∆ξ)g((j + 1)∆ξ), (6.18)
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equation 6.17 can be written as a convolution

Cγn(j∆ξ, (j + 1)∆ξ) =

D/2−1∑
m=−D/2

gC((j −m)∆ξ)σ2
γn(m∆ξ). (6.19)

In general, the noise reconstruction algorithm is similar to a FBP. We merely use a
different prefactor, interpolation and different convolution kernels.

Furthermore, one is able to approximate the effect of the interpolation and reduce it to
a single factor. A simplified variance reconstruction is then given by

Var [f(xp, yp)] = finterp,µ

(
π

Np

∆ξ

)2 Np∑
n=1

Vγn(j∆ξ), (6.20)

where finterp,µ = 2/3− 2/π2. In quantitative terms, the linear interpolation in combination
with the Ram–Lak filter reduces the standard deviation by about 32% (more precisely:√

2/3− 2/π2 ≈ 0.681193). See appendix A.0.1 for the detailed derivation of this approx-
imation. For our 2D noise reconstruction, including the 2D noise reconstruction using
DDB, we utilize this simplification.

2D noise reconstruction including DDB

Given the projections from a single binning depth (e.g. the rear tracker), we had to
use one–dimensional interpolation between the sampled (and convolved) data points (see
equation 6.4). In order to take the projections from different depths into account, a two–
dimensional interpolation is necessary. However, as the projections from two neighboring
depths are hardly any different, the interpolation along η has a negligible contribution to
the variance reconstruction, if the spacing ∆η is sufficiently small. For the reconstruction of
a 2D slice, the Radon space becomes now three–dimensional (γ, ξ, η) through the additional
dimension in the η–direction: pγn(j∆ξ)→ pγn(j∆ξ, k∆η). The DDB noise reconstruction
becomes then

Var [f (xp, yp)] =

(
π

Np

∆ξ

)2

·

Np∑
n=1

{
[1− u]2 Vγn(j∆ξ, k∆η) + 2 · [1− u]uCγn(j∆ξ, (j + 1)∆ξ, k∆η)

+ u2Vγn((j + 1)∆ξ, k∆η)
}
, (6.21)

where k∆η is closest to the corresponding binning depth (nearest neighbor interpolation).
A more detailed discussion can be found in appendix A.0.2. The additional simplification
involving the interpolation factor finterp,µ (see equation 6.20) can also be applied here.
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6.2.3 Noise of the projections

Recall that for 2D noise reconstruction, we need to know the variance of all the projections
binned at different depths, which consists of the variance of the energy, the number of
protons within the pixels and the stopping power, evaluated at Eout

σ2
pγn

(j∆ξ, k∆η) =
σ2
Eout,γn

(j∆ξ, k∆η)

Nγn(j∆ξ, k∆η) · S2
W(Eout,γn(j∆ξ, k∆η))

. (6.22)

The latter is certainly the easiest to calculate, as we can use the Eout–values straight
from the scan and evaluate the stopping power of water at Eout. The remaining two
components of the variance require more detailed discussions.

In this section, we first show an analytical approach to calculate and explain the energy
straggling and proton counts for rear tracker projections using theoretical proton energy
straggling and scattering models, commonly used in the pCT reconstruction. Results from
this model will be compared to the results of the MC simulation.

Since the extension of the analytical model to arbitrary distances for DDB is non-
trivial, we subsequently report how the noise of DDB projections was calculated from the
MC simulation data.

These calculations of the noise in pCT projections are an extension of Schulte’s (Schulte
et al. 2005) work detailing the noise at the center of a cylindrical object, which will be
referred to as central pixel model.

Noise of rear tracker projections

Proton counts
For the 2D noise reconstruction, the proton counts N could be taken directly from the MC
simulation or scan data. However, for the proton fluence used in this work (200 protons/mm2),
the statistical fluctuation of the proton counts at the rear detector is large. This fluence
corresponds to an imaging dose of about 3 mGy (Schulte et al. 2005), which is already
relatively high in the context of daily image guidance with pCT.

Accurate and smooth proton count data can be calculated through the transport theory,
i.e. Fermi–Eyges theory–(Gottschalk 2012, Fermi 1940, Eyges 1948). It is a bivariate
Gaussian theory, which is able to predict proton MCS with sufficient accuracy. More
complete models, e.g. Molière’s theory (Molière 1947, Molière 1948) are not necessary, as
the additional tails of the distributions, as predicted by Molière’s theory, will be subject
to the 3 standard deviations data cuts, i.e. the rejection of protons which have undergone
large angle scattering or nuclear interactions (Schulte et al. 2005). F(ξ, θ, η)dξdθ is the
probability to find a proton within the lateral displacement [ξ, ξ + dξ] and traveling along
the angle [θ, θ + dθ] at depth η, which was initially at ξ0 = 0 and θ0 = 0 at depth η0 = 0

F(ξ, θ, η)dξdθ =
1

2π
√
B(η)

exp

[
−1

2

A0(η)ξ2 − 2A1(η)ξθ + A2(η)θ2

B(η)

]
dξdθ, (6.23)
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where

B(η) = A0(η)A2(η)− A2
1(η). (6.24)

For the scattering integrals

An(η) =

∫ η

0

(η − x)2 T (x)dx (6.25)

we chose (as it is chosen in other pCT related work e.g. (Quiñones et al. 2016) or (Bopp
2014)) the scattering power proposed by Gottschalk (2010), which reads

TdM = fdM(p, v, p1, v1) · 1

Xs

(
Es
pv

)2

, (6.26)

where Es = 15.0 MeV, Xs is the material dependent scattering length and

fdM ≡ 0.5244 + 0.1975 log10

[
1−

(
pv

p1v1

)2
]

+ 0.2320 log10

[ pv

MeV

]
−0.0098 log10

[ pv

MeV

]
log10

[
1−

(
pv

p1v1

)2
]
. (6.27)

In order to carry out these integrals, we used the analytical expression of the cylindrical
hull, but a prior reconstruction could also be used in the case of patient imaging. Our
primary interest is the spatial distribution of the protons, thus we calculate A2(η), since

〈ξ2(η)〉 =

∫ ∞
−∞

∫ ∞
−∞

ξ2F(ξ, θ, η)dξdθ = A2(η). (6.28)

The additional proton drift from the object edge (hull) to the tracker can be calculated
using a quadratic law under the assumption that the scattering power of air is negligible
(Gottschalk 2012)

A2(D(ξ) + d(ξ)) = A0(D(ξ))d2(ξ) + 2A1(D(ξ))d(ξ) + A2(D(ξ)). (6.29)

See figure 6.3 for the definition of d(ξ) and D(ξ).
We can apply this theory to determine the rear tracker fluence by calculating the width

of the proton beam for any ξ. Then we superimpose the distributions, weighted by their
corresponding attenuation caused by nuclear reactions, as already described by Schulte
et al. (2005). The exponential attenuation of the initial fluence Φ0 is given by
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Figure 6.3: Transport theory applied to pCT. For the red colored proton beam, we have
to evaluate the scattering integrals of equation 6.25, while for the subsequent blue colored
drift through air, the quadratic law of equation 6.29 is sufficient. Prior to entering the
object, the width of proton beam is considered infinitely small, i.e. we consider a parallel
beam. Note that the scattering is exaggerated.

Φ(WEPL) = Φ0 · e−Nσnuc·WEPL = Φ0 · e−κ·WEPL, (6.30)

where N is the target (nuclei) density, σnuc is the nuclear cross section, and κ = Nσnuc is
the linear attenuation coefficient.

The attenuation coefficient can be determined by taking elastic (≈ 80 mb) and inelastic
(≈ 270 mb) cross sections into account (values taken from (Quiñones et al. 2016) → figure
3.9 and → figure 3.12 for “G4 O“ above approximately 150 MeV; Schulte et al. (2005)
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determined the attenuation coefficient, neglecting the elastic contribution, in a similar
fashion) which results in an attenuation coefficient κ = 0.0131 cm−1. The normalized
fluence at each detector pixel is the sum of all beams that scatter into a given pixel.

Standard deviation of the exit energy
The determination of the standard deviation of the exit energy σEout at each detector pixel
is a somewhat more challenging task. Schulte et al. (2005) suggested to calculate it from
the exit energy Eout, or the WEPL value, in combination with an evaluation of Payne’s
(Payne 1969) or Tschalär’s (Tschalär 1968a, Tschalär 1968b) theories, which establish a
connection between the exit energy or the WEPL to the energy straggling. However, if we
want to perform 2D noise reconstruction, then Schulte’s approach is not valid away from
the central pixel due to the interplay of MCS and the high gradient of the object’s hull along
ξ. In the following, we will present an analytical approach, much like (Schulte et al. 2005),
which includes Tschalär’s/Payne’s theoretical energy straggling and also accounts for the
effect of MCS. Given the proton transport and thus A2(ξ) for every exit detector pixel,
that we used to determine the proton counts earlier in section 6.2.3, we can answer the
inverse question as well: given some exit detector pixel j∆ξ, what is the distribution of
initial proton positions (or initial position distribution, short IPD) on the front tracker,
that scatter into j∆ξ. This process is demonstrated in figure 6.4. We take the distributions
of the surrounding entrance pixels of j∆ξ and calculate how much they contribute to the
exit pixel sited at j∆ξ. Additionally, we weight the result with the attenuation.

j

Figure 6.4: Visualization of the calculation of the initial distribution from the given proton
distributions at the rear tracker. The proton distributions at the detector were spread
horizontally for visual clarity. This has no geometrical meaning. We calculate the initial
distribution of the pixel j∆ξ delimited by the solid lines. The probabilities for the sur-
rounding positions to scatter into j∆ξ is given by the areal overlap of their distributions
within j∆ξ. The corresponding probabilities are then arranged in the initial distribution
along the dotted lines.

We include the effect of the MCS through the IPD. Since protons from different initial
positions (IP) scatter into the same pixel, they must traverse different path lengths, i.e.
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different parts of the objects. Therefore they lose different amounts of energy, which
eventually broadens the energy spectrum. We used a straight line approximation between
the entry point and the detector pixel coordinate, which may seem a poor approximation
for a 25 cm diameter object. However, notice that the broadest IPD of the detector pixel
at the center covers approximately only two centimeters.

Our goal is to calculate the distribution of mean exit energies that are collected within
each detector pixel. This can be done by mapping the IPD with some function F (j∆ξ, IP)
to the corresponding distribution of energy losses. This function in turn can be calculated
through sinogram interpolation, taken from a prior scan in combination with the straight
line approximation. See appendix A.0.3 for details.

Now we transform the IPDs into distributions of Eout. The transformation is given by

pµ(j∆ξ, µn) =
∑

x∈F−1(j∆ξ,µn)

fIP(x). (6.31)

In general, the IPDs are closely distributed around their corresponding exit detector
pixel. Despite the fact that the IPDs are the broadest at the center, the transformed
distributions of mean energy losses will more closely resemble a delta distribution. Put
simply, no matter where the protons that scatter into the central pixel enter the object,
on average they have lost approximately the same amount of energy. On the other hand,
at the object edges the energy transformation varies more rapidly. Even though the IPDs
become increasingly narrow at the edges, the corresponding Eout distribution might be
broader, if the traversed thickness decreases rapidly, which is the case with the 25 cm
cylinder we used. In other words, only small changes of the IPD cause large changes in
the average energy loss. This is due to the more rapidly changing hull and therefore more
rapidly changing path lengths.
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Figure 6.5: Energy straggling determined via solving the integral given in equation 6.34
for protons with an initial energy of Ein = 250 MeV.
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Finally, at this stage we will apply the theoretical energy straggling (see figure 6.5),
which is governed by the differential equation of Tschalär (Tschalär 1968a, Tschalär 1968b),
here expanded up to the first order

dσ2
E(x)

dx
= χ2(E(x))− 2

∂χ1(E(x))

∂E
σ2
E(x), (6.32)

where χ1 is given by the stopping power and χ2 is the straggling parameter

χ1(E) = K1
1

β2(E)

[
ln

(
2mc2β2(E)

I(1− β2(E))

)
− β2(E)

]
χ2(E) = K2

1− β2(E)/2

1− β2(E)
.

(6.33)

For protons stopping in water, we have K1 ≈ 170 keV/cm and K2 ≈ 0.087 MeV2/cm.
Equation 6.32 can be solved analytically, as outlined by Payne (1969):

σ2
E(E) = χ2

1(E)

∫ Ein

E

χ2(E ′)

χ3
1(E ′)

dE ′. (6.34)

The last step involves the calculation of the standard deviation of the energy σE from
the distribution of mean energy losses Eout. Each detector pixel collects protons that tra-
versed different material thicknesses with different intensities (or normalized probabilities
pµ). Thus the energy distributions at the detector pixels consist of a superposition of the
individual energy spectra with their respective means µn and standard deviations σn. We
can retrieve the detector distribution from the distribution of means by convolving the
means distributions with the normal distribution from the energy straggling theory. Note
that this is not shift–invariant convolution, as the Gaussian convolution kernel is energy
dependent.

If µDet(j∆ξ) is the mean energy loss at each exit detector pixel (j∆ξ), i.e. the projection
value prior to the transformation into WEPL, then the variance of the energy is given by

σ2
E(j∆ξ) =

∑
n

pµ(j∆ξ, µn)
(
σ2
n + (µn − µDet(j∆ξ))

2
)
. (6.35)

As the distribution is particularly narrow at the center of the water cylinder (all protons
traversed a similar length, the diameter), the only contribution to the standard deviation
comes from a single mean energy loss, which is equivalent to calculating the standard
deviation solely from the straight line from the front to the rear tracker. In general, there
are three opposing effects at each detector pixel, which influence each other. Firstly, the
IPD, which is broad at the center and narrow at the edges. Secondly, the mean energy loss
distribution, which is broad at the edges and narrow at the center. Finally, the convolution
of pµ with Gaussians according to Tschalär’s theory, which has a big influence at the center
(since it predicts broader Gaussian distributions at large energy losses) and a small effect
at the edges, as the additional effect of energy straggling is small at small energy losses.
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Noise of DDB projections

For the calculation of the noise of DDB projections at depth η we made use of the path of
every proton for which entrance and exit coordinates were recorded by the MC simulation.

The paths were reconstructed by cubic splines with adjusted velocity boundary condi-
tions, similar to (Fekete et al. 2015), using the position and momentum direction informa-
tion from the tracker planes. Li et al. (2006) showed that the use of regular cubic splines
has little effect on the spatial resolution in the pCT reconstruction, and the improved for-
mulation by Fekete et al. (2015) provides paths which are nearly congruent with the path
determined by the original MLP formulation (Schulte et al. 2008).

In section 6.2.3, we refer to issues with low count statistics when generating projec-
tions from the proton fluence used in our MC simulations. To circumvent this issue, a
high–statistics MC dataset was generated by combining all simulated projections. This
smoother dataset was used for the DDB 2D noise reconstruction by exploiting the rota-
tional symmetry of our water cylinder, after scaling back the counts N to the original
fluence.

Prior to binning the data into projections, protons were selected with a 3 standard devi-
ations cut on the energy and angular distributions around their mean energy and angle per
projection pixel. This was done based on front tracker binning, as in the implementation
of Rit et al. (2013)

Thus for a given η, the proton tracks crossing 1 mm bins were used to calculate σ2
pγn

using equation 6.22 where σ2
Eout,γn

was obtained from Gaussian fitting of the Eout distribu-
tion of the binned protons. Nγn was simply the number of proton paths crossing the bin
and S2

W was evaluated at Eout.

6.2.4 RSP image reconstruction and noise quantification

RSP images were reconstructed for this study with an implementation of DDB FBP, using
the formalism of section 6.2.2. The main principles of the algorithm are presented in (Rit
et al. 2013). The path of every proton was obtained from the splines described in the
previous section 6.2.3. The data cuts of section 6.2.3 were used.

The validation of the 2D noise reconstructions was performed against the noise calcu-
lated from RSP images reconstructed from the MC simulation data. Utilizing the radial
symmetry of the water cylindrical phantom, annular regions of interest (ROIs) with vary-
ing radii were defined. The number of pixels in each ROI was fixed to 1000 to ensure
statistical accuracy, with the radial thickness varying accordingly. The noise from the MC
RSP image at a given radius was defined as the standard deviation of the distribution of
RSP values within a ROI. The standard deviation was calculated from a Gaussian fit in
each RSP distribution. For the central pixel and improved models, the noise determination
as a function of the distance from the center of the object was calculated by means of a
line profile across a diameter on the 2D noise reconstruction. The pixel grid used for all
image reconstructions shown was 280 mm× 280 mm with 1 mm× 1 mm pixels.

Ideal WEPL projections for parallel rays, calculated analytically for the water cylinder,
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were discretized on the same grid as the rear–tracker or DDB binned projections. These
were used to reconstruct RSP images as described above. We used these images to evaluate
the impact of partial volume effects (for example at the object’s edge) and reconstruction
from discretized projections on the standard deviation calculated with the annular ROIs.
This was done by calculating the standard deviation analytically instead of using Gaussian
fits.

6.3 Results

Equation 6.22 gives σ2
WEPL of a projection as a function of SW, σEout and N within the

pixels. In figure 6.6, each of the aforementioned components is shown along the lateral
coordinate, for the MC data, the central pixel model and the improved model taking into
account the effect of MCS. The three curves for SW and N were nearly indistinguishable,
while for σEout and σ2

WEPL good agreement between the MC data and the improved rear
tracker model accounting for MCS was observed. The largest σWEPL error between the
MC data and the improved model was about 8% at ξ = 100 mm. The central pixel model,
which ignores MCS, failed to correctly predict σEout and σ2

WEPL away from the object’s
center.
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Figure 6.6: Results from rear tracker binning (η = 260 mm) for a single projection as
profiles along the lateral coordinate ξ for the components of equation 6.22 for the central
pixel model, the improved model and MC data. The stopping power evaluated at the mean
exit energy (upper left) is shown only for the MC data, as the three curves overlapped.
Data from high statistics MC simulations were used.
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Figure 6.7 shows the effect of the binning location on σWEPL. The distance is measured
from the front tracker (η = 0). Binning at the rear tracker (η = 260 mm) results in
high noise at the edges of the object (equivalent to the MC data σWEPL of figure 6.6).
We observed that the increase of σWEPL with ξ approaching the object’s edge was most
pronounced at the rear tracker, and that this effect gradually disappeared as η approached
0 near the front tracker.
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Figure 6.7: Noise projection profiles along the lateral coordinate ξ, shown as a function
of the longitudinal coordinate of the binning position η. η = 0 corresponds to a binning
at the front tracker, while η = 260 mm at the rear tracker. Data from high statistics MC
simulations were used.

Figure 6.8 presents a 2D noise reconstruction obtained using either noise projections
obtained by binning the protons at the rear tracker (equation 6.15) or with DDB (equa-
tion 6.21). The effect on the noise image of the “interference” between the 2D image pixel
grid and the 1D projection grid, as well as that of using a constant term for the linear
interpolation as explained in 6.2.2, are shown. Generally, with rear tracker binning, the
noise increased towards the object’s edge, while for DDB it appeared constant with a slight
decrease at the edge. High noise was observed at the object’s boundary.

Finally, in figure 6.9, profiles through the 2D noise reconstructions based on the central
pixel model, the improved model for rear tracker binning and DDB (in this case direct use
of MC data, see section 6.2.3) are compared to that obtained from the MC reconstructed
RSP image (using annular ROIs), as a function of the radius from the center of the object.
For indicative purposes, the standard deviation for the RSP image from discretized ideal
projections is also shown. We observed that the improved model and MC data–based
DDB accurately reproduced the behavior of the noise observed in the reconstructed RSP
images. When using rear tracker binning, an increase of 60% in image noise was observed
at the edge of the 12.5 cm radius object when compared to its center. This effect was poorly
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captured by the central pixel model, which underestimated noise by up to 40% in this case.
Interestingly, DDB negated the radial noise increase observed with rear tracker binning,
producing generally lower noise values which decreased less than 5% with radius. The ideal
projections yielded large standard deviations at the object’s edge which corresponded to
the spikes observed in the noise from the annular ROIs.
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Figure 6.8: Noise images reconstructed without DDB (a,b) and with DDB (c,d). The left
column (a,c) shows the effect of ‘interference’ between the 2D image pixel grid and the
1D projection grid. The right column (b,d) shows the smoothed versions reconstructed by
using a constant term for the linear interpolation. The results from rear tracker binning
were obtained from the improved model while for the DDB directly from high statistics
MC data. Notice the different scales.
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Figure 6.9: Noise profile comparison, as a function of the radius, between MC, the central
pixel model, the improved model and exact mathematical projections, for rear tracker
binning (upper) and distance driven binning (lower) reconstructions. The noise from the
MC and from the exact mathematical projections RSP image is obtained from the annular
ROIs. The noise of the central pixel model and improved model are obtained from a line
profile along the diameter of the reconstructed noise map (with the simplified interpolation
effect, i.e. figure 6.8 (b) & (d)).
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6.4 Discussion

In this study, we presented a formalism for 2D noise reconstruction in pCT based on a
beam of incident protons traveling in parallel. 2D noise reconstructions of a cylindrical
water phantom were obtained from variance projections (equation 6.22) using an FBP
algorithm, either for rear tracker binning or DDB.

For projection noise, results from MC simulation data, a central pixel model and an
improved model were shown for rear tracker binning (see figure 6.6). Good agreement was
obtained for rear tracker binning when using the improved model and the MC data. We
made use of the improved analytical model, in addition to MC simulations, to better isolate
the contributions to projection noise and help explain the shortcomings of the central pixel
model, which were not readily deduced from MC data. As a side note, the central pixel and
improved models yielded smoother variance projections and noise images as they do not
suffer from statistical fluctuations as MC does, while being less demanding on computing
resources. This may increase convergence speeds when optimizing fluence patterns for
FMpCT.

An important finding of this work is the influence of MCS on the calculation of the
variance projections. As shown in figure 6.6, the result of the calculation of the variance
projection using the central pixel model, which neglects the effect of MCS, deviates consid-
erably from the results obtained with MC. The deviation mainly stems from the estimation
of the variance of the energy in a pixel. Even for a mono–energetic proton beam, there
are two main contributions to the variance of the energy. The first is the proton energy
straggling. It is the dominant contribution at the center of the object and as it is accounted
for in the central pixel model, both analytical models (central pixel and improved) and MC
yield very similar results for the variance projections in this region of the phantom. The
second contribution to the variance of the energy comes from MCS. Protons can scatter in
a pixel having traversed very different paths. This leads to an increase of the variance of
the energy beyond the level expected from energy straggling of protons which follow very
similar paths and cannot be described by the central pixel model. The improved model
takes this effect into account and therefore reaches very good agreement with the MC.
Nevertheless, the results shown in this study refer to a homogeneous cylindrical phantom.
Homogeneous water is yet a typical assumption for the MLP, especially if no prior image
is available. The impact of heterogeneities as well as more complex phantom surfaces will
have to be incorporated to the improved model.

As shown in figure 6.7, the shape of the noise projection profiles along the lateral coordi-
nate ξ changes when binning protons at different depths along the longitudinal coordinate
η. The noise projection is described by higher noise at the edges of the object. For rear
tracker binning (η = 260 mm), this effect is very pronounced due to the importance of
drift along the increasing air gap between the object and the rear tracker which causes
protons with widely different paths to reach the same projection pixel. DDB mitigates
this for projections with η in the object by using the MLP. This can also be appreciated
in figure 6.9 where we observed that the image noise from DDB is about 80% lower at
100 mm radius than for rear tracker binning, and more interestingly, relatively flat vs. the
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object’s radius.
Good agreement between the results from our noise reconstruction formalism and noise

analysis using annular ROIs on the reconstructed image was observed. Slight deviations at
the object’s edge could be attributed to effects present in the reconstruction of discretized
ideal projections (see figure 6.9). In order to reduce the computational time needed, we
exploited the radial symmetry of the phantom and the resulting radial symmetry of the
reconstructed noise map and therefore used annular ROIs for the quantification of the noise
from the MC. This assumes that there is no correlation between the different pixels, which
is not entirely true (Wunderlich & Noo 2008). A noise quantification from MC that would
bypass this assumption would be done pixel–wise on a large set of different RSP images.
In that case, the noise in every pixel would be the standard deviation of the RSP values
of that pixel from all RSP image realizations.

Note that any analytical noise reconstruction depends on the choice of the convolution
kernel. It has a significant impact on the noise, via the corresponding frequency window-
ing. Alternatives include the Shepp–Logan or the Hanning convolution kernels, which show
greater noise suppression and reduction of ringing artifact (Buzug 2008). In the present
work, we chose the Ram–Lak kernel, given in equation 6.3 or shown in figure A.1 of the
appendix. Its alternating side–lobes cancel one another in the expression of the convolu-
tion kernel, which results in minimal correlation (only nearest neighbors contribute to the
covariance) as discussed in appendix A.0.1. The general pCT noise reconstruction with an
arbitrary filter is given by equation 6.21 , where different expressions for g (j∆ξ) can be
implemented in equations 6.16 and 6.17.

How different convolution kernels affect the noise in the reconstructed image has been
investigated by e.g. Zhang & Ning (2008) for x–ray cone–beam CT.

In addition to the intrinsic physical effects mentioned above, real detector performance
will also affect the noise in a pCT image. In reality, the energy of every proton can be
measured with finite accuracy. This will be manifested as increased variance of the energy.
Bashkirov et al. (2016) reported that for their pCT setup, the energy detector uncertainty
was 3 mm water equivalent path length for any given object’s water equivalent thickness.
Similarly, the tracking system position resolution will impact the estimation of the proton
trajectory, which in its turn will magnify the MSC effect on the final noise image. Finally,
other detector limitations such as pileup and non–uniform detector performance could
alter the noise image with respect to what is reconstructed assuming that every proton
that exits the object can be detected with the same accuracy. Further work will aim at
carefully investigating the impact of detector uncertainties by making use of the validated
simulation platform of Giacometti et al. (2017a) as well as experimentally acquired pencil
beam scanning data from Dedes et al. (2018).

The formalism for 2D noise reconstruction we presented was developed for FMpCT;
Figure 6.10 illustrates how a clinical implementation would rely on prior imaging data to
generate a patient model used for calculating σ2

pγn
as input to noise reconstruction. σ2

pγn
would be calculated on the basis of an extension of the improved model we presented, or
using MC simulation to fully account for heterogeneities in the patient. By comparing
the noise reconstruction for a given fluence to a prescribed Var [f(xp, yp)], the fluence may
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be optimized in an iterative procedure, as in (Bartolac et al. 2011). The patient model
may be generated on the basis of an existing diagnostic CT scan, a previous full fluence
pCT scan or even a pseudo–CT generated from a magnetic resonance imaging scan (Rank
et al. 2013, Koivula et al. 2016, Maspero et al. 2017). In addition to incorporating a
realistic detector model, future work will also establish the FMpCT fluence optimization
strategy, the development of the corresponding PBS modulation as well as the validation
of noise reconstruction using experimental data.

Figure 6.10: Flowchart illustrating how a fluence pattern would be optimized on the basis
of the noise reconstruction formalism presented in this work.
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6.5 Conclusion

In this paper, we developed a 2D image noise reconstruction formalism to account for both
rear tracker binning and DDB in pCT in homogeneous media, assuming parallel proton
beams for eventual use in FMpCT fluence optimization. We obtained good agreement
between our formalism and with noise estimated from reconstructed images using annular
ROIs. The use of DDB slightly decreased the image noise when compared to rear tracker
binning and yielded more uniform noise throughout the image. MCS should not be ne-
glected when predicting image noise for pixels away from the center of an object in a pCT
scan.
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Chapter 7

Image noise contributions in
proton CT

The material contained in this chapter was published in Physics for Medicine and Biol-
ogy, volume 64, issue 14, page 145016, in July 2019, with the title Prediction of image
noise contributions in proton computed tomography and comparison to measurements, by
Dickmann et al. (2019) – (senior author: Dedes).

7.1 Introduction

The use of proton computed tomography (pCT), initially proposed by Cormack (1963),
promises superior accuracy of relative stopping power (RSP) images required for proton
therapy dose calculations employed in treatment planning or for various adaptive proton
therapy strategies. Instead of using a stoichiometric calibration to convert x–ray linear
attenuation coefficients to proton stopping power (Paganetti 2012, Yang et al. 2012), pCT
scanners directly measure RSP line integrals, which can be used to reconstruct RSP images
using dedicated reconstruction algorithms (Li et al. 2006, Penfold et al. 2009, Penfold et al.
2010, Rit et al. 2013, Poludniowski et al. 2014, Hansen et al. 2016). First prototype proton
(and heavier ion) CT scanners (Rinaldi et al. 2013, Coutrakon et al. 2013, Sadrozinski
et al. 2016, Johnson et al. 2016, Meyer et al. 2017, Pettersen et al. 2016, Esposito et al.
2018) obtain an RSP line integral — the water equivalent path–length (WEPL) — by
measuring the proton’s residual energy behind the patient and converting it to WEPL using
a calibration obtained prior to the measurement. Reports on RSP accuracy (Giacometti
et al. 2017a, Esposito et al. 2018, Volz et al. 2018) suggest that pCT (and heavier ion CT)
could equal or outperform accuracy currently achievable with dual–energy CT (Hudobivnik
et al. 2016, Wohlfahrt et al. 2017b). Dosimetric accuracy was studied in simulations (Arbor
et al. 2015, Meyer et al. 2019) and suggests good performance of using ion CT images for
treatment planning.

Apart from RSP accuracy, pCT benefits from its dose–efficiency (Schulte et al. 2005).
Reported doses for experimental operation of certain designs and for central pixel noise
levels comparable to those of x–ray CT are at only 1 mGy (Sadrozinski et al. 2016).
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This is comparable or lower to an in–room cone beam CT (Alaei & Spezi 2015) and
can pave the way for daily in–room imaging prior to each treatment session to prevent
inaccurate dose delivery during treatment due to positioning errors or anatomical changes.
An emerging modality to further reduce imaging dose is fluence modulation, which was
originally proposed for x–ray CT (Graham et al. 2007a, Bartolac et al. 2011). Fluence–
modulated imaging aims at a dose reduction in parts of the patient by delivering an inho-
mogeneous imaging dose, and, therefore achieving different noise levels within the image.
Fluence modulation has recently gained a strong research interest, particularly due to
technical improvements allowing implementation of such systems in x–ray CT (Bartolac &
Jaffray 2013, Szczykutowicz & Mistretta 2013a, Szczykutowicz & Mistretta 2013b, Szczyku-
towicz et al. 2015, Stayman et al. 2016, Gang et al. 2017, Mao et al. 2018, Shunhavanich
et al. 2019, Huck, Parodi, Stierstorfer & Fung 2019).

Fluence modulation is particularly meaningful for dose recalculation during particle
therapy, where good image quality is only required in the proximity of the beam path and
imaging dose can be reduced in healthy tissue where an increased noise level is accept-
able (Dedes et al. 2017). This could allow for frequent imaging prior to treatment while
maintaining the low integral dose to normal tissue achievable with particle therapy. For
imaging with pCT, imaging dose can be accurately delivered in prescribed patterns using
the pencil beam scanning functionality of current treatment systems, and the feasibility
of FMpCT has been demonstrated both in simulations and proof–of–concept experiments
(Dedes et al. 2017, Dedes et al. 2018). Investigations so far focused on static non–optimized
fluence maps. To optimize FMpCT plans such that they yield a prescribed image noise
map, a prior treatment planning CT may be used as a guide from which pCT noise levels
at any fluence setting can be deduced. This requires a method to reconstruct image noise
maps from raw pCT data as well as a Monte Carlo simulation that can accurately predict
such raw data. A noise reconstruction has been developed in Rädler et al. (2018) for use
with filtered backprojection along curved proton paths (Rit et al. 2013). It has so far only
been investigated for idealized pCT data of a homogeneous water cylinder. Monte Carlo
simulations based on GEANT4 have been used to study a pCT scanner in Giacometti et al.
(2017a).

The objective of this study was to demonstrate the feasibility of using a realistic Monte
Carlo simulation to accurately predict three–dimensional image noise maps for a given
fluence setting. This extends previous studies on pCT noise that either relied on an ide-
alized detector geometry (Rädler et al. 2018) or on a central pixel noise model (Schulte
et al. 2005). Data for this study were acquired at a specific pCT prototype scanner de-
scribed in Sadrozinski et al. (2016). We compared simulated noise predictions to exper-
imental data for three different phantoms, including an anthropomorphic head phantom.
We aimed at explaining the shape of resulting image noise maps by disentangling noise
contributions in the simulation. Therefore, we hypothesized noise contributions due to
multiple Coulomb scattering, energy straggling within the object, uncertainty of the track-
ing information, energy detection process, and beam energy spread. Finally, we exploited
simulated noise maps to apply a fluence profile that yields homogeneous image noise and
thus has the same effect as a bow–tie filter for x–ray CT.



7.2 Materials and methods 121

7.2 Materials and methods

7.2.1 Experimental setup

Experimental data for this study were acquired using the phase II preclinical pCT prototype
scanner developed at Loma Linda University and the University of California, Santa Cruz
with details published in Johnson et al. (2016). The single proton tracking scanner consists
of two tracking modules, one prior to and one after the imaging object, and a five–stage
scintillating detector, which is described in Bashkirov et al. (2016). The scintillators are
built from the polystyrene–based material UPS-923A (Artikov et al. 2005) with an RSP
of about 1.038, according to Bashkirov et al. (2016). For each proton, two positions before
and two after the object, as well as five energy deposits are recorded. For each pair of
position information a direction vector can be calculated. A schematic drawing of the
scanner geometry is shown in figure 7.1.

Figure 7.1: True–to–scale schematic drawing of the pCT prototype scanner with front
and rear tracking modules and the five–stage scintillating energy detector. Additionally, a
wedge–shaped calibration phantom together with two bricks is in place. Up to four bricks
can be placed in addition to the wedge as indicated by dashed lines. Three schematic
proton representations indicate how the wedge in combination with the bricks scans the
dynamic range of the detector (Bragg peak is not to scale and multiple Coulomb scattering
is ignored).

Experimental data were acquired at the Northwestern Medicine Chicago Proton Center
by wobbling a narrow beam (FWHM ≈ 40 mm) of 200 MeV protons over a FWHM area of
80 mm× 200 mm for phantom runs and 80 mm× 300 mm for calibration runs, respectively.
During phantom runs, the object was rotated continuously at a speed of 1 rpm to acquire
tomographic data for 6 min at a rate of about 106 registered protons per second.
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7.2.2 Calibration and reconstruction

For each proton, the energy deposit above 1 MeV to the furthest stage (referred to as
stopping stage) was mapped to a WEPL using a two–step calibration procedure. In a
first step, each stage’s channel numbers of the analog–to–digital converter (ADC numbers)
obtained in a degrader–free acquisition were mapped to pre–calculated energy values to
compensate spatial non–uniformities of the detector response and to achieve an absolute
energy measurement. These five energy values EG4

n were obtained in a previous study by
Bashkirov et al. (2016). In a second step, data of a wedge–shaped calibration phantom
(described in the next section) were used to map the stopping stage’s energy deposit to
a known WEPL. During subsequent acquisitions, this lookup–table was used to calculate
unknown WEPL from measured energy deposits to the stopping stage.

With the spatial information of the tracking modules, a most likely path as described in
Schulte et al. (2008) was estimated that then was used to reconstruct tomographic images
by binning the WEPL data to virtual projections at every depth of interaction. This
process of distance–driven binning is detailed in Rit et al. (2013) and aims at improving
spatial resolution in pCT images reconstructed using filtered backprojection. Prior to
reconstruction, we performed a rejection of proton histories, referred to in the field as cuts.
Protons were rejected if their WEPL or direction information was outside of 3σ boundaries
around the median value for bins defined by a 2D grid based on the front tracker position
information. This is a standard procedure for pCT (Schulte et al. 2008, Rit et al. 2013).

For reconstruction distance–driven binning was performed at a grid of 180×50 bins lat-
erally and at 180 depths longitudinally with a uniform voxel size of 1 mm in all dimensions.
Bins for the calculation of cuts were calculated on a uniform grid of 2 mm by 2 mm. Both
RSP and noise maps were reconstructed to a volume of 180×180×50 voxels with a uniform
voxel size of 1 mm in all dimensions. Both the projection grid and the reconstruction grid
were centered at the isocenter.

7.2.3 Phantoms

The following phantoms were used in this study. Wherever RSP values for physical phan-
toms are stated with uncertainties, these were experimentally determined using measure-
ments with a variable water column.

To calibrate the setup, a wedge–shaped calibration phantom made from polystyrene
(RSP = 1.030± 0.003, Piersimoni et al. (2017)) was used. The flattened peak of the
wedge faces the front tracker as shown in 7.1. It has a maximum longitudinal thickness of
50.8 mm while the lateral width is 209 mm. Between zero and four polystyrene bricks with
a thickness of 50.8 mm each were placed behind the wedge to cover the whole dynamic
range of the detector up to 254 mm.

For tomographic acquisitions, a water phantom, the sensitometric CTP404 phantom
(Phantom Laboratory, New York, USA) as well as a pediatric head dosimetry phan-
tom (ATOM R©, Model 715 HN, CIRS Inc., Norfolk, USA) were used. The water phan-
tom consists of a water–filled PMMA cylinder (RSP ≈ 1.17) with an outer diameter
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of 150.5 mm and a wall thickness of 6.35 mm. The CTP404 phantom’s cylindrical body
made from epoxy (RSP = 1.144± 0.001, Giacometti et al. (2017a)) has a diameter of
150 mm and multiple cylindrical inserts with RSP ranging from air (RSP < 0.01) to Teflon
(RSP = 1.790± 0.002, Giacometti et al. (2017a)). The pediatric head phantom is a re-
alistic anatomical model of a 5–year–old child built from tissue–equivalent materials and
was used in previous pCT studies (Giacometti et al. 2017b). Since the height of the head
phantom was larger than the height of the detector aperture, it needed to be scanned in
two consecutive acquisitions with an overlap of several millimeters.

7.2.4 Simulation platform

To simulate acquisitions, a dedicated Monte Carlo simulation platform was used that mod-
els the complete geometry of the detector. The platform was described and validated for
its RSP fidelity in Giacometti et al. (2017a). It is based on the GEANT4 framework, version
10.2.p01, as presented in Agostinelli et al. (2003). The reference physics list QGSP BIP HP

was used for the simulation of the interaction of particles with matter. For a highly ac-
curate description of electromagnetic interactions, the G4EmLivermorePhysics model was
used for electrons and photons. The cut for secondary particle production in the energy
detector was defined at 6 µm while for the rest of the scanner at 1 mm.

In this work, we extended the platform to model non–linear effects of light production
in the scintillator (7.2.6) and to incorporate a realistic beam model (7.2.7). Moreover, we
aimed at quantifying the accuracy of image noise (sections 7.2.8 and 7.2.9). All phantoms
mentioned in the previous section were simulated as analytical phantoms based on their
known geometry and materials, except for the pediatric head phantom, for which a high–
resolution voxelized implementation based on x–ray CT scans as presented in Giacometti
et al. (2017b) existed. For all phantoms, RSP accuracy was ensured by fine–tuning the
I–value in the simulation such that agreement to reference values was better than 0.1 %
for protons with an energy of 150 MeV. The I–value of water was 78.0 eV, according to
the latest ICRU recommendation.

7.2.5 Verification of noise reconstruction

In order to calculate image noise maps, we used a noise reconstruction method developed
for use with distance–driven binning by Rädler et al. (2018). For every bin p with a given
mean WEPL in the distance–driven projection, the expected standard deviation of the
mean for n protons intersecting that bin was calculated as

σp = σWEPL/
√
n, (7.1)

where σWEPL is the per–proton standard deviation of the underlying set of WEPL and
σp is the expected standard deviation of the mean of n WEPL. This yielded a three–
dimensional distance–driven noise projection, which was reconstructed after convolving
it with a special noise filter, consisting of the square of the reconstruction filter (e.g.
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the filter of Ramachandran & Lakshminarayanan (1971) in Rädler et al. (2018)). As
described in Rädler et al. (2018), effects of projection value interpolation (as part of filtered
backprojection) on the image noise can be calculated per voxel or as an effective mean over
the entire volume. In this study, the second option was chosen as it is computationally
more efficient and the high–frequency voxel–wise components are not relevant for a future
application using fluence modulation, since they are smaller than any clinical proton pencil
beams.

In the publication of Rädler et al. (2018), the method was only applied to simulated
ideal pCT data with a parallel beam. Accuracy was only evaluated using annular ROIs,
and not on a voxel–by–voxel basis, which is standard (see for example Wunderlich & Noo
(2008)). Therefore, in a first noise reconstruction validation study, we simulated N = 40
independent noise realizations for a tomographic scan of the water phantom. Each of the
noise realizations was reconstructed independently, which allowed us to calculate a voxel–
wise standard deviation over N samples, which is referred to as batch method. This served
as the ground truth to be compared to the distance–driven noise reconstruction of a single
noise realization.

7.2.6 Non–linearities in the detection process

When irradiated by high–LET particles, such as protons of low energy, the light production
in the scintillators becomes a non–linear function of the deposited energy due to the effect
of quenching as investigated by Birks (1951). To allow for a quantitative prediction of
the measurement uncertainty, the simulation needed to account for this non–linearity. In
the case of the five–stage energy detector and using the theory of Birks (1951), a proton
stopping in stage n and with a residual rangeRn within that stage will produce the distorted
energy measurement

E ′n(Rn) = Sn ·
0∫

Rn

dx
dE/dx

1 + kB · dE/dx
, (7.2)

where kB is the empirical Birks’ factor and Sn is a scaling factor specific for each stage,
which is fixed during the calibration. In appendix B.0.1 equation B.5, we calculate the
scaling factor taking into account the specific calibration procedure. We find a formulation
for E ′n(WEPL) as a function of the WEPL instead of the range. This formulation depends
only on the Birks’ factor kB as well as the thickness of each scintillating stage lstage and the
residual range in the detector material at the entrance of the detector R0. The required
material specific stopping power dE/dx was calculated as a function of the residual range
R for the correct material composition using the GEANT4 platform.

At the same time, we were able to obtain energy measurements E∗n(WEPL) from
experimental data using the wedge phantom, which covers the whole dynamic range
WEPL ∈ [0, 254] mm of the detector. For each proton the energy deposit E∗n was cal-
culated as well as the WEPL based on the tracking information and the known geometry.
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For the whole dataset, this yielded a 2D–histogram of E∗n against WEPL, from which the
relationship E∗n(WEPL) was deduced by finding the most frequent energy deposit for each
WEPL.

This allowed us to find the estimation of the three unknowns kB, R0 and lstage by
minimizing the cost function

C =
∑
n

[ ∑
WEPL

(E ′n(WEPL)− E∗n(WEPL))
2

]2

(7.3)

using the quasi–Newton method of Broyden (1970). The Birks’ factor kB was then used
to modify each incremental energy deposit in the simulation as

d ADC

dx
∝ dE ′

dx
∝ dE/dx

1 + kB · dE/dx
, (7.4)

where d ADC is the increment of the simulated ADC number. The scaling factor Sn was
neglected here due to the arbitrary scaling of the ADC number.

7.2.7 Realistic beam model

To realistically model the initial positions and directions of protons in the simulation, we
exploited the fact that such measurements are directly available from experimental data.
Each proton’s position was projected to a point at 400 mm in front of the isocenter, and,
therefore, 232.8 mm in front of the first tracking module, along a straight line according to
its direction vector. To avoid interplay–effects between the proton placement and the track-
ing strip, the position information was blurred with a random number normal–distributed
around zero and with a standard deviation equal to the distance between two tracking
strips.

The experimental dataset, on which this study was based, used different field widths
for the calibration and the subsequent phantom acquisitions. Modeling noise of phantom
acquisitions correctly required to use the smaller field width of these measurements. Un-
fortunately, degrader–free runs were only available for the calibration runs with the larger
field width. However, acquisitions with a the water phantom in the beam path were used
to create a beam model. We therefore accounted for the additional attenuation due to
the phantom by randomly selecting protons with a probability anti–proportional to the
transmittance.

The initial energy of each proton could not be measured directly, because in the
degrader–free run the calibration forces it to be E0 =

∑
nE

G4
n + ∆Etracker = 200 MeV,

where ∆Etracker = 3.65 MeV is the assumed mean energy loss in the tracking modules and
air. It was, however, possible to determine the beam energy spread σbeam, which is likely
to have a strong impact on the resulting image noise. Assuming that electronic readout
noise is negligible compared to σbeam, we performed degrader–free simulations without at-
tenuation correction and for values of σbeam ∈ {0.5, 0.6, . . . , 1.0}MeV. We calculated the
resulting spread σE5 of the energy deposit in the last stage using Gaussian fits. Since the
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simulations considered the optimal Birks’ factor as described in the last section, it was
possible to compare this σE5 to the one obtained from a measurement and choose σbeam

such that σE5 matches the experimental value.

7.2.8 Comparison to experimental data in the projection and
noise contributions

To ascertain that the modeling in sections 7.2.6 and 7.2.7 resulted in accurate noise pre-
dictions, we simulated a projection of the wedge–shaped calibration phantom with zero to
three bricks and compared them to experimental data in terms of standard deviation. Due
to the larger extent of the phantom compared to reconstructions, projections were binned
to 250 × 50 bins laterally and at 250 depths longitudinally. The voxel size and all other
parameters are described in section 7.2.2.

After applying the WEPL calibration and cuts, two sets of distance–binned projections
were generated from the data. The first was the average calibrated WEPL. The second
was the per–proton WEPL standard deviation σWEPL = σp ·

√
n̄, where σp is the standard

deviation according to equation 7.1 and n̄ is the average fluence in the projection. The nor-
malization to a fluence of one proton per bin makes results comparable to, e.g. Bashkirov
et al. (2016). After rejecting data outside the hull of the wedge, this resulted in a list of
WEPL–noise–pairs, with every pixel in the projection giving one entry in the list. For each
binning depth, these pairs were binned by WEPL to multiples of 1.5 mm and for each bin
the median noise value was calculated.

We hypothesize that noise in the projection can be attributed to five different contri-
butions as listed in table 7.1. In order to study these contributions to image noise, noise
calculations were performed for simulations using the following scoring methods, which
disentangle each of these effects.

1. WEPL scoring. Dynamic scoring in GEANT4 of each proton’s exact WEPL by multi-
plying the stepping length with the current material’s RSP calculated for the current
proton energy. Exact coordinates when crossing the tracking planes were recorded.
Noise is caused only by scattering of protons with different paths into the same
distance–driven bin.

2. Energy scoring. Scoring of the proton’s energy at tracking planes before and after
the phantom and conversion of the energy loss to WEPL. Exact coordinates when
crossing the tracking planes were recorded. Noise is caused by multiple Coulomb
scattering as well as energy straggling within the object.

3. Energy scoring (realistic position). Energy scoring, but using the position informa-
tion estimated by the tracking modules. Noise is increased due to the additional
uncertainty of the tracking information.

4. Realistic scoring (σE = 0 MeV). Fully realistic simulation, but setting the beam
energy spread to 0 MeV. Noise is increased compared to energy scoring due to energy
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straggling in the detector and the calibration process, but it is lower compared to
realistic scoring, which includes the beam energy spread, and its impact can be
quantified.

5. Realistic scoring. Fully realistic simulation, including the described beam model
with the determined beam energy spread. This model contains all known noise
contributions.

Table 7.1: Calculation of the five noise contributions as a difference of the five scoring
techniques. Numbers in brackets refer to the listing of scoring techniques in 7.2.8.

noise contribution difference of scoring techniques
scattering (i)
energy straggling (ES) in the object (ii) – (i)
tracking (iii) – (ii)
energy detection process (iv) – (iii)
beam energy spread (v) – (iv)

To quantify the relative noise contribution of scattering, energy straggling in the object,
tracking, the energy detection process and the beam energy spread, we calculated the
difference in projection noise values for the five scoring techniques as indicated in 7.1. Since
the cuts of proton histories depend on the underlying standard deviation, the efficiency of
data filtering may vary across datasets and impair this analysis as a different set of protons
was used to calculate each dataset. However, considerable differences of the cuts efficiency
were only observed at the edge of the phantom and only for the WEPL scoring technique,
where the analyses including this scoring technique may not be quantitative. To correctly
assess the relative noise contributions, this part investigates variance values, which are
the square of the standard deviation values we calculated so far. This is because variance
contributions add up linearly, while standard deviation contributions need to be added
quadratically. The variance difference between the scoring techniques was calculated for
each WEPL bin and normalized to the variance using realistic scoring.

The previous analyses were performed on very homogeneous data of the continuous
part from the wedge–shaped calibration phantom. To demonstrate the impact of hetero-
geneities, we calculated standard deviation profiles for the steep edge of the calibration
phantom. The evaluation of this dataset is shown in appendix B.0.2.



128 7. Image noise contributions in proton CT

7.2.9 Comparison to experimental data with heterogeneous and
anthropomorphic phantoms

To investigate the performance of the Monte Carlo simulation for predicting image noise
maps, we simulated pCT data for the water phantom, the CTP404 phantom as well as
the pediatric head phantom (see section 7.2.3) using the realistic scoring technique. For
the same phantoms, experimental data were acquired using the prototype pCT scanner.
We reconstructed both RSP and noise images. All image noise maps were normalized to
an average projection fluence of f0 = 20 mm−2. For the water phantom and the CTP404
phantom, which are symmetric in the z–direction, 16 slices were averaged after noise re-
construction.

In a first step, we manually selected two corresponding slices and registered the 2D–
RSP image of the simulation onto the experimental reconstruction using a rigid registration
allowing translation and rotation. This registration was then applied to the corresponding
slices of the image noise maps. In the following evaluation, only pixels inside the object’s
outer hull as determined by an RSP threshold of 0.15 were considered.

The registration allowed a calculation of the pixel–wise relative error map ∆σ in terms
of an estimation of the standard deviation as

∆σ =
σRSP,sim − σRSP,exp

σRSP,exp

, (7.5)

where σRSP is the registered data of the image noise reconstruction for experimental and
simulated data, respectively.

Using the WEPL scoring technique (see 7.2.8), we reconstructed images showing the
simulated scatter–only standard deviation σscatter. The non–scatter standard deviation
σnon-scatter, i.e. the expected standard deviation in absence of scatter, was calculated as

σnon-scatter =
√
σ2

RSP − σ2
scatter, (7.6)

where σRSP is the total standard deviation. Again, a varying cuts efficiency may impair
this analysis in particular at the edges of objects.

Using standard GEANT4 functionality of the simulation platform, the imaging dose
was scored for every projection angle and then summed. Mean imaging dose values for
individual slices were calculated within the phantom.

As a sanity check, we calculated RSP and standard deviation histograms of the whole
volume of the head phantom. Results of this verification are presented in appendix B.0.3.

7.2.10 Application: a bow–tie filter for proton CT

To demonstrate the feasibility of using Monte Carlo simulated noise data for fluence mod-
ulation, we calculated a fluence modulation profile for the homogeneous water phantom
which has the same effect as a bow–tie filter in x–ray CT. The simplest concept of an x–ray
bow–tie filter aims at homogeneous noise at the detector as described in Harpen (1999) or
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Graham et al. (2007a). While in x–ray CT this can be achieved by aiming at homogeneous
fluence at the detector, this does not hold true for pCT because of the impact of multiple
Coulomb scattering as discussed in Rädler et al. (2018) for an idealized scanner. Instead,
a modulated fluence is required that yields a constant noise level at the detector, which in
turn will make noise flat in the image, as can be derived from the variance reconstruction
formula presented in Rädler et al. (2018).

The artificial fluence modulation profile was calculated solely based on simulated data.
It was then applied to experimental data by randomly selecting protons with an acceptance
probability p(u) as a function of the lateral coordinate u (no modulation was needed
orthogonal to that due to the symmetric phantom). Given a simulated image noise profile
σp,sim(u) in the projection binned at the isocenter, we calculated a fluence modulation

p(u) = min

(
σ2
p,sim(u)

σ2
0

, 1

)
(7.7)

that forces the standard deviation in the projection to the value σ0. Note that the flu-
ence modulation is proportional to variance and, therefore, to the square of the stan-
dard deviation. In the given case, it was only possible to reduce fluence, and, therefore,
σ0 ≥ maxu σp,sim(u). However, this condition could also be violated at the cost of a result-
ing non–homogeneous fluence where noise is highest in the original acquisition. A violation
is required at the object’s hull, where noise tends to be elevated. In these regions, an un-
reasonably high skin dose would result from forcing the noise level to be the same as inside
the object. In this study, we prescribed a projection standard deviation of σ0 = 5.48 mm,
and, therefore, a variance of σ2

0 = 30 mm2.

7.3 Results

7.3.1 Verification of noise reconstruction

Figure 7.2 shows the standard deviation ground truth calculated with N = 40 noise real-
izations as well as the noise reconstruction for the water phantom simulation. Both image
noise maps agreed well. The residual difference was caused by the approximation of the
effect of projection value interpolation in our noise reconstruction and displayed as a star–
shaped increase in noise that was centered at the center of rotation and that spanned the
whole reconstruction volume. In the relative difference map shown in (c) the star–shaped
pattern reoccurred as a under–representation of the noise reconstruction. The agreement
between the ground truth and the noise reconstruction was good with the mean error over
the whole phantom being −2.5 % and the root–mean–square error 4.1 %. Also the pro-
file plots in (d) revealed that there was a slight underestimation of noise from the noise
reconstruction.
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Figure 7.2: Standard deviation images calculated for the water phantom (a) with N =
40 noise realizations as a ground truth, (b) with one noise realization using the noise
reconstruction; (c) the relative difference to the ground truth (reconstruction - ground
truth)/ground truth; (d) diagonal profiles across (a) and (b). Grayscale center (C) and
window (W) settings were the same in (a) and (b).

7.3.2 Non–linearities in the detection process

Figure 7.3 (a) shows a two–dimensional histogram of the relative proton counts for WEPL
versus energy deposit in the stopping stage. Data were obtained from an experimental ac-
quisition of the wedge–shaped calibration phantom, for which the WEPL was geometrically
calculated for every proton. Each of the five lines in the histogram corresponds to one of
the five stopping stages. For example, the line at the lowest WEPL values corresponds to
the fifth stage as protons with a low WEPL can penetrate all other stages before stopping
in the last one. With increasing WEPL, the energy deposit decreases until suddenly the
stopping stage changes and the energy deposit is high again.

For each stage, there was some WEPL range at multiples of the WEPL of one brick
WEPLbrick = l · RSP = 52.3 mm for which counts decreased and which is visible in the
histogram as a vertical line of lower intensity. At this point, data need to be merged
between protons going through n bricks and the center of the wedge, and protons going
through n + 1 bricks, but missing the wedge (see figure 7.1). These flat regions of the
calibration phantom and in particular divergent protons leaving the lateral edge of bricks
cause the observed change in statistics. However, since each WEPL bin was evaluated
individually to obtain the relationship E∗n(WEPL), this did not affect the evaluation.

Table 7.2 reports the three free parameters, which were optimized by minimizing the
cost–function in equation 7.3. Note that these parameters were found solely from experi-
mental data.

In figure 7.3 (b), the same histogram is shown for a simulated dataset and for kB =
0 mm MeV−1 and, therefore, neglecting quenching effects. For a given WEPL, energy
deposits were considerably higher compared to the experimental data. Figure 7.3 (c) shows
simulated data using the optimized Birks’ factor. The energy deposits decreased and agreed
with experimental data shown in figure 7.3 (a). For experimental data, there was a cut–off
related to the measurement process below an energy deposit of around 20 MeV for the first
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stage (WEPL around 250 mm), which was not present in the simulated data.

Figure 7.3: Two–dimensional histograms showing relative proton counts for water–
equivalent pathlength versus energy deposit in the stopping stage based on data of the
wedge–shaped calibration phantom for (a) experimental data, (b) the standard simulation
without modeling quenching, and (c) the extended simulation with correct modeling of
quenching. The sum of all counts is normalized to unity.

Table 7.2: Optimization result of the three free parameters to model quenching effects in
the detector.

parameter fit estimate
Birks’ coefficient kB 0.0887 mm/MeV
residual range at entrance R0 237.9 mm
stage thickness lstage 49.7 mm

Figure 7.4 shows calibration curves that were used to calculate a WEPL given the energy
deposit to the stopping stage for each individual proton. These curves were obtained for
each stage during the calibration process. Three calibrations were calculated based on
data shown in figure 7.3 (a) - (c). As expected from the raw data, the calibration curve
of the simulation without quenching disagreed with the one of the experimental data and
the simulation using the optimized Birks’ factor.
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Figure 7.4: Calibration curves mapping a given energy deposit in the stopping stage to
a water–equivalent path length for experimental data, the standard simulation without
modeling quenching, and the extended simulation with correct modeling of quenching.

7.3.3 Realistic beam model

Figure 7.5 shows the resulting spread of the last stage’s calibrated energy deposit σE5 as a
function of σbeam together with a quadratic fit to this relationship. In experimental data,
where σbeam cannot be measured directly, we determined the energy spread of the last
stage to be σE5 = (3.47± 0.02) MeV. According to the quadratic fit, this corresponded to
a beam energy spread of σbeam = (0.66± 0.02) MeV. The uncertainty of σE5 is given by
a one standard deviation confidence interval of the fit parameter and the uncertainty of
σbeam was calculated as an error propagation thereof through the quadratic fitting function.
Both uncertainties are visualized in figure 7.5 as shaded areas.

7.3.4 Comparison to experimental data in the projection domain
and noise contributions

Figures 7.6 (a) - (c) shows the WEPL standard deviation as a function of the WEPL
for projection data of the wedge–shaped calibration phantom. Data are shown at three
different binning depths: at the front tracker position (a), at the isocenter (b), and at the
rear tracker position (c). While the first five color–coded curves show the noise level for
simulations with different scoring techniques at increasing complexity, the last curve was
obtained from experimental data. See section 7.2.8 for the definition of terms printed in
italic type in the following paragraphs.

The lowest noise level was recorded for WEPL scoring. While for binning at the front
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Figure 7.5: Relationship between the beam energy spread σbeam and the spread of the
energy deposit of the last stage σE5 for a degrader–free measurement. Circles indicate
simulated data to which a quadratic model was fitted. Shaded areas indicate a one standard
deviation confidence interval. The intersection of this fit with the σE5 of a measurement
was chosen to be the correct σbeam to be used in simulations.

tracker standard deviation was below 0.2 mm, it increased to values between 1 mm and
2 mm for binning at the rear tracker with a general increase of noise with the WEPL.
Additionally, at multiples of the brick thickness (indicated by the dashed lines in figure 7.6),
an abrupt decrease of standard deviation of about 0.25 mm was observed for binning at
the isocenter and at the rear tracker, which will be explained in section 7.4.4.

For energy scoring, noise increased with increasing WEPL and pronounced effects at
multiples of the brick thickness were only observed for rear tracker binning. Use of energy
scoring (realistic position) had only a minor effect on the standard deviation compared to
energy scoring.

For realistic scoring, using the same calibration method as in a measurement, the de-
pendency of the standard deviation on WEPL became less pronounced. Table 7.3 presents
mean WEPL standard deviation over the whole WEPL range. There is a considerable
increase in standard deviation due to the beam energy spread. The curve for the fully
realistic simulation, as well as its mean value, agreed within their uncertainty with the
experimental data.

In figures 7.6 (d) - (f), the relative contributions to WEPL variance are shown, and
can be attributed to the following effects (see section 7.2.8): scattering, energy straggling
in the object, tracking, the energy detection process and the beam energy spread. While
scattering was negligible at the front tracker (d), the accumulated contribution at the
rear tracker (f) reached about 20 %. The contribution of the tracking uncertainty was
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Figure 7.6: (a) - (c) Standard deviation level in the projection domain for different scoring
techniques used in a simulation and comparison to the experimentally determined noise
level; (d) - (e) relative variance contributions attributed to physical effects as calculated
by subtraction of data in (a). All data are shown at three different depths of the distance–
driven binning: at the front tracker for (a) and (d), the isocenter for (b) and (e) and the
rear tracker position for (c) and (f). Dashed lines indicate multiples of the brick thickness.
Note that the legend in (a) - (c) spans across all three plots.

Table 7.3: Mean WEPL standard deviation over the 0 mm to 184 mm WEPL range for
two different scoring techniques as well as for experimental data binned at three different
depths.

scoring mean standard deviation / mm
front tracker isocenter rear tracker

realistic scoring (σE = 0) 2.99± 0.18 3.19± 0.19 3.71± 0.14
realistic scoring 3.41± 0.20 3.61± 0.21 4.12± 0.16
measurement 3.35± 0.19 3.57± 0.18 4.09± 0.11

negligible over the whole WEPL range. The main source of noise in the projection of
the wedge phantom was the detection process as well as energy straggling in the object.



7.3 Results 135

Both contributions had an approximately constant sum, while the contribution of energy
straggling in the object increased proportionally to the WEPL. The variance added by the
beam energy spread had a constant value of about 20 % independent of the WEPL.

7.3.5 Comparison to experimental data with heterogeneous and
anthropomorphic phantoms

In figure 7.7, RSP and image noise reconstructions of experimental and simulated data, for
three different phantoms are shown: the homogeneous water phantom, the sensitometric
CTP404 phantom with tubular inserts as well as three slices of the CIRS pediatric head
phantom. Figure 7.7 (a) shows the RSP reconstruction of the experimental data. Standard
deviation maps shown in figure 7.7 (b) and (c) all show an increased noise level at the hull
of the object. In general, experimental and simulated data agreed well visually and subtle
noise features near heterogeneities of the CTP404 phantom and the head phantom were
captured.

In the RSP images of the homogeneous water phantom, ring artifacts were apparent at
the center and one at a larger radius. These were caused by inaccuracies of the calibration
at multiples of the brick thickness and are known to degrade RSP accuracy as reported
in Sadrozinski et al. (2016). These ring artifacts became more smeared out in the more
heterogeneous phantoms such as the CTP404 and are barely visible in the head phantom,
except for the very homogeneous region in the brain (slice 3).

The overall good agreement between simulation and measurement was supported by
the difference maps relative to the noise level of the experimental data in figure 7.7 (d).
The relative error was increased primarily in regions where ring artifacts also impact the
RSP accuracy, as it was seen for the water phantom, but also for the CTP404 phantom and
the homogeneous part of the head phantom (slice 3). Table 7.4 summarizes the mean and
the root mean square error for the simulated versus the experimentally acquired standard
deviation maps. While the water phantom and the CTP404 phantom both had a negative
offset, the head phantom showed both slices where the simulated noise maps over– and
under–estimated the experimental level. Root mean square errors are below 10 % for all
acquisitions.

In figure 7.7 (e), profile plots across the standard deviation maps going horizontally
through the isocenter are shown for simulation and measurement. The position coordinate
was normalized from the phantom entrance to the exit point. For all phantoms, subtle
spatial fluctuations in noise level were captured. The absolute noise level in the center
was lower for the homogeneous water phantom and slice 3 of the head phantom (around
0.025). For the more heterogeneous CTP404 phantom and slice 2 of the head phantom,
the standard deviation was increased to about 0.03, while for the most heterogeneous
slice 1, the noise level exceeded 0.05, i.e. a two–fold increase compared to the homogeneous
phantoms. Noise levels as the mean standard deviation within a centered circular region
with a radius of 20 mm are summarized in table 7.5. The scatter–only noise contribution
obtained with WEPL scoring and shown as a third profile, behaves correspondingly. For
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Figure 7.7: RSP and image noise reconstructions of experimental and simulated data for
three phantoms. The RSP reconstruction of the experimental data (a), standard devia-
tion maps for experimental (b) and simulated (c) data, a relative difference map between
measurement and reconstruction (d), as well as a horizontal profile plot through the noise
reconstructions (e) are shown. Profiles in (e) also include a simulated scatter–only re-
construction. The diameter of the three head phantom slices was 171 mm, 146 mm and
170 mm, respectively, and 150 mm for the two other phantoms. Grayscale center (C) and
window (W) settings are given for each display.

the homogeneous water phantom the scatter contribution went to zero at the center and
increased towards the edges. For the CTP404 phantom and slice 3 of the head phantom
it was 0.01 at the center and had a similar, but less pronounced increase towards the
edges. While for slice 2 of the head phantom it reached 0.015, for slice 1 the scatter–only
standard deviation was above 0.025. The non–scatter contribution σnon-scatter according
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Table 7.4: Relative mean and root mean square noise prediction errors for the phantom
slices shown in figure 7.7. Errors are the pixel–wise difference between the simulated
standard deviation versus the experimental data, relative to the experimental data.

phantom (slice) mean error / % root mean square error / %
water phantom −2.9 6.7
CTP404 phantom −5.6 6.4
head phantom (1) −4.6 6.8
head phantom (2) −3.6 5.3
head phantom (3) 3.2 6.2

to equation 7.6 was mostly constant for all phantoms. In the central region excluding
the edges it was σnon-scatter = 0.028± 0.004, where the uncertainty is calculated over all
phantoms.

Table 7.5: Noise levels (mean standard deviation) within a centered circular region and
mean imaging doses calculated using the simulation platform.

phantom (slice) noise level noise level imaging dose / mGy
(simulation) (experiment) (simulation)

water phantom 0.022± 0.001 0.024± 0.001 0.85± 0.04
CTP404 phantom 0.027± 0.001 0.029± 0.001 0.86± 0.04
head phantom (1) 0.044± 0.003 0.046± 0.002 0.82± 0.04
head phantom (2) 0.030± 0.001 0.030± 0.001 0.84± 0.04
head phantom (3) 0.026± 0.001 0.027± 0.001 0.88± 0.04

To allow for a comparison of noise levels in other and future studies, table 7.5 reports
average imaging doses. Experimental imaging doses are expected to be similar as the
number of protons was matched and the effect of pile–up was found to be small in previous
studies (Dedes et al. 2018). Reconstruction parameters that impact image noise, such as
the voxel size, are given in section 7.2.2.

7.3.6 Application: a bow–tie filter for proton CT

In figure 7.8 (a), standard deviation maps are shown for experimental data of the water
phantom without post–processing fluence modulation, and in figure 7.8 (b) with a fluence
modulation according to equation 7.7 that aims at equalizing noise in the projection do-
main and, therefore, also in the image. Since this part was based on experimental data,
fluence modulation was done by rejecting events and only fluence reduction was possible.
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Therefore, the modulated image noise map in figure 7.8 (a) had a higher average noise level
compared to the unmodulated map in figure 7.8 (b). While standard deviation was clearly
lower in the center of figure 7.8 (a) compared to the outside, the virtual bow–tie modulation
succeeded in having a homogeneous noise level. At the outer hull of the phantom, noise is
purposely kept high as discussed in section 7.2.10. In figure 7.8 (c), horizontal profile plots
across the image noise maps are shown, which demonstrated again the homogeneous profile
that can be reached with the virtual bow–tie filter. Figure 7.8 (d) shows the fluence at the
front tracker. While fluence was homogeneous in the unmodulated data, it was reduced
in the center of the object in order to achieve homogeneous image noise. RSP accuracy of
the fluence–modulated reconstruction was not degraded compared to the non–modulated
reconstruction.

Figure 7.8: Fluence modulation to reach a homogeneous noise level in the water phantom:
(a) the unmodulated standard deviation map and (b) the standard deviation map after
applying the fluence modulation, (c) horizontal profiles through the standard deviation
maps, (d) fluence profiles at the front tracker. Note that the grayscales in (a) and (b) have
a different center (C), but the same window (W) setting.

7.4 Discussion

7.4.1 Verification of noise reconstruction

Using a ground truth generated from independent noise realizations, we were able to show
that noise reconstruction predicts the image standard deviation with a root–mean–square
error of only a few percent. Accurate image noise maps for FMpCT may be calculated very
efficiently at computational costs similar to a standard filtered backprojection reconstruc-
tion and without the need to simulate multiple independent noise realizations for every
fluence pattern. The remaining star–shaped discrepancy between the noise reconstruc-
tion and the ground truth is systematic and due to approximation of interpolation effects,
which was extensively discussed in Rädler et al. (2018). This pattern is independent of the
imaged object and did not impact evaluations in this study, as the same reconstruction
algorithm was applied to both experimental and simulated data and a systematic error
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would cancel out in a relative comparison. Furthermore, for FMpCT, such high–frequency
components were not relevant in the given scope, as fluence can only be modulated within
the extension of one pencil beam.

7.4.2 Non–linearities in the detection process

By fitting Birks’ law to experimental data, we obtained a Birks’ coefficient allowing the
simulation of quenching effects in the energy detector’s five scintillators. The initial range of
protons at the entrance of the detector and the stage thickness were also fitting parameters.
The CSDA range of 200 MeV protons in polystyrene is 250.0 mm as calculated from the
PSTAR database (Berger et al. 2005). This value needs to be reduced by an equivalent
of the physical tracker thickness of 2 × 0.4 mm in silicon (see Johnson et al. (2016)) and
the energy loss in air, and, therefore, the fitting result given in table 7.2 were reasonable.
The physical stage thickness was 51 mm and thus also this fitting result was in the correct
range. Uncertainties in the knowledge of the precise beam energy, the trackers’ and the
scintillators’ RSP, as well as the impact of wrapping materials around the scintillator stages,
did not allow to precisely calculate these two values. Given that the fit resulted in values
close to the expected ones, it confirmed that leaving them as free parameters is a valid
procedure.

The determined Birks’ factor in table 7.2 multiplied by the density of polystyrene
(ρ = 1.06 g/cm3) was kB · ρ = 9.4× 10−3 gMeV−1cm−2, which agreed with values for
polystyrene published in literature of kB · ρ = 9× 10−3 gMeV−1cm−2 in Tretyak (2010) or
kB · ρ = 14× 10−3 gMeV−1cm−2 in Reichhart et al. (2012).

Using the optimized Birks’ factor, the agreement between the simulation and experi-
mental data increased considerably. A subtle remaining difference between the simulation
and the experimental data was that no protons are recorded with an energy deposit of
less than 20 MeV in the first stage. This was because the first stage is needed for trigger-
ing recording of an event in experiments and, therefore, protons below this threshold are
generally not considered. In the simulation, each proton was treated individually and a
threshold was not needed nor considered. This, however, was no problem, because none of
the phantoms in this study had WEPL above 200 mm.

The parametrization of Birks’ law came at almost no additional computational cost
for data simulation while a full–scale simulation of the optical photon transport, which is
possible with GEANT4, would be unfeasible in terms of computational speed considering
the amount of data needed for pCT applications.

In particular, the shape of the calibration curve was highly impacted by quenching.
For WEPL accuracy, the exact shape of the calibration curve is irrelevant, since in any
case the energy deposit gets assigned the correct WEPL. Therefore, in Giacometti et al.
(2017a) a high RSP fidelity was achieved even without a quenching model. However,
non–linearities in the detection process may impact accuracy of the WEPL image noise
prediction. This is because the change in WEPL caused by a given change in the energy
deposit (e.g. due to range straggling in a prior stage) is proportional to the inclination of
the calibration curve, which is incorrect when neglecting quenching. Furthermore, having
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calibrated energy deposits of the simulation agree with those of a measurement, allowed
to fine–tune the beam energy spread in the next section.

7.4.3 Realistic beam model

By exploiting tracking information from experimental data, we created a virtual beam
model to be used in simulations. The estimated beam energy spread given in section 7.3.3
was lower than the value typically expected for a proton treatment facility of about 0.5 %
to 1 % of the initial beam energy as described in Schippers (2017), which would be around
1 MeV to 2 MeV in the case of 200 MeV protons. However, in order to reduce fluence to a
level that can be handled by the pCT scanner, momentum slits of the accelerator needed
to be closed down to a minimum which is atypical for treatment operation, and which may
explain the lower energy spread.

7.4.4 Comparison to experimental data in the projection domain
and noise contributions

Using different scoring techniques, we disentangled noise contributions in simulated data.
For the continuous part of the wedge–shaped calibration phantom, we observed that the
scatter–only component was low for front tracker binning and highly elevated for rear
tracker binning. This was because of the lateral widening of the beam envelope as protons
traverse the phantom. Due to the geometry of the calibration phantom shown in figure 7.1
with the wedge facing the front tracker, for a given front tracker location, protons will
go through a small distribution of WEPL. However, for a given rear tracker location,
protons can have scattered from a larger cone due to the drift in air (a passage with a low
scattering probability) after the phantom and thus the WEPL distribution was broader.
Because the accumulated mean scattering angle increases with the WEPL there was an
increased WEPL uncertainty towards higher WEPL.

Moreover, an abrupt decrease of the standard deviation was observed at multiples of
the brick thickness. This has a similar geometrical reason as the region of reduced statistics
described in section 7.3.2. Assume a proton going through the center of the wedge phantom.
By adding a brick and moving to the periphery of the wedge, the WEPL stays almost
constant and so does the accumulated mean scattering angle. However, the geometrical
distance of the drift in air is reduced and, therefore, noise decreases (in figure 7.1 compare
the upper proton with the lower proton with one additional brick).

The main contribution of projection variance came from energy straggling, which occurs
both within the imaging object as well as in the scintillating detector. Energy straggling
in the object increased proportionally to the WEPL. Energy straggling in the detector
decreased accordingly such that the total contribution of energy straggling stayed constant.
Apart from energy straggling in the scintillator, noise in the detection process was also
increased due to the impact of the calibration curve, which itself is noisy and of varying
slope. Further noise contributions to the detection process, such as the energy resolution
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of the scintillator and electronic noise, are assumed to be small and independent of the
WEPL. They were discussed in Bashkirov et al. (2016), where the design of the detector
was chosen such that WEPL noise is close to the energy straggling limit. Their remaining
contribution may be covered by the beam energy spread estimated in section 7.2.7.

We showed that the contribution of the tracking uncertainty due to the finite resolution
of the location and direction measurement is negligible compared to other sources of uncer-
tainty. A considerable contribution, however, came from the beam energy spread, which
contributed a fraction of about 20 % despite the fact that in section 7.2.7 it was estimated
to be lower than the energy spread during treatment. This completes the work of Rädler
et al. (2018) and is the first noise simulation of a realistic detector system considering all
relevant contributions.

7.4.5 Comparison to experimental data with heterogeneous and
anthropomorphic phantoms

By calculating image noise maps for various phantoms with different amounts of hetero-
geneities and comparing them to experimental data, we demonstrated the feasibility of
using Monte Carlo simulated data to predict image noise in complex geometries. Remain-
ing errors were below 10 % and, therefore, small compared to the overall fluctuation of
image noise for the anthropomorphic head phantom which varied within a factor of 2.3
in experimental data (see appendix B.0.3). Therefore, fluence modulation based on the
simulated noise maps should be feasible.

Furthermore, we showed that the absolute image noise level depends on the heterogene-
ity of the phantom. The increase of the noise level in heterogeneous phantoms is driven by
multiple Coulomb scattering along heterogeneities, which were shown to be considerably
different even between two slices of the same (anthropomorphic) phantom. This means
that in a clinical setting, the imaging dose advantage of pCT over conventional x–ray CT
might be less than expected, as the previous study investigating the density resolution of
pCT (Schulte et al. 2005) used a phantom with homogeneous materials and thus may have
predicted a reduced noise level compared to a clinically relevant geometry.

The non–scatter noise contribution was found to be comparable for all phantoms (ex-
cluding the edge). This agrees with section 7.4.4 and experiments of Bashkirov et al.
(2016), who found WEPL–variance to be constant over the whole WEPL–range for a ho-
mogeneous phantom without heterogeneities. The impact of a single heterogeneity in a
controlled setting was demonstrated in appendix B.0.2.

7.4.6 Application: a bow–tie filter for proton CT

We calculated the profile of a virtual bow–tie filter, which makes noise flat at the detector
level. The modulation profile was found based on the simulated noise prediction. The
resulting noise profile in image domain was flat as desired and mean RSP accuracy was
maintained. This result showed the feasibility of using Monte Carlo simulated noise predic-
tions to modulate the fluence in experimental scans according to a given noise prescription.
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The virtual bow–tie fluence profile was fundamentally different compared to the fluence
profile expected in x–ray CT, which is high in the center of the patient to compensate
for the stronger attenuation. For proton CT instead, fluence must be lower in the cen-
ter and higher at the periphery to compensate for noise introduced due to scattering at
the object’s hull. However, unlike in fan–beam x–ray CT, where imaging is based on the
straight path of primary photons, we cannot expect the shape of a bow–tie filter based on
a homogeneous water–equivalent model to be generally valid for proton CT. As we showed,
noise maps for the pediatric head phantom differ considerably from the ones observed for
the water phantom. Therefore, this virtual bow–tie filter is only valid for a given phantom
and is presented here to demonstrate the capability of predicting, prescribing and creating
a specific noise pattern.

7.5 Conclusion

We demonstrated the feasibility of using image noise reconstruction to generate tomo-
graphic image noise maps using the cone–beam geometry of a prototype pCT scanner by
comparing data to a simulated ground truth. By modeling quenching effects, we were
able to match calibrated energy deposits of the five–stage energy detector to Monte Carlo
simulated data. This allowed us to determine the beam energy spread of the given inci-
dent proton beam. Together with experimental tracking data, this allowed us to create an
accurate beam model to be used in the simulation that matches the experimental beam in
terms of positions, direction vectors, energy and energy spread. In the projection domain,
we compared the Monte–Carlo–predicted noise levels with experimental data and disen-
tangled noise contributions. While the contribution of scattering to noise is negligible in
the center of a homogeneous phantom, it becomes a dominating source of noise around
heterogeneities for an anthropomorphic head phantom. This is a novel finding for a real-
istic detector model compared to a previous study (Rädler et al. 2018) that investigated
the impact of multiple Coulomb scattering at the edge of a homogeneous phantom for an
idealized detector.

In conclusion, we improved a Monte Carlo simulation to yield accurate image noise
maps, which we compared to experimental data. The accuracy of predicted noise is better
than the expected fluctuations within a head phantom. Therefore, fluence–modulated
proton CT based on Monte Carlo simulated image noise maps should be feasible. At
the same time, it was shown that a simple ray–tracing model mapping a WEPL to its
uncertainty would not be feasible. To demonstrate the use of calculated image noise maps,
we obtained a virtual fluence modulation profile to achieve a bow–tie–like homogeneous
noise level in the image. While this was successful for a homogeneous water phantom, such
fluence modulation profiles will depend on the patient geometry and cannot be generalized.
This suggests that patient–specific fluence–modulation is a crucial component for dose–
efficient pCT imaging.



7.5 Conclusion 143

Acknowledgments

Dr. Valentina Giacometti is gratefully acknowledged for developing and sharing the GEANT4
simulation platform used in this study. We thank Nick Detrich for support during data
acquisition. This work was supported by the German Research Foundation (DFG) project
#388731804 “Fluence modulated proton computed tomography: a new approach for low–
dose image guidance in particle therapy” and the DFG’s Cluster of Excellence Munich–
Centre for Advanced Photonics (MAP), by the Bavaria–California Technology Center (Ba-
CaTeC) project Nr. 28 [2015-2] and by the Franco–Bavarian university cooperation center
(BayFrance).



144 7. Image noise contributions in proton CT



Chapter 8

Optimization algorithm for
fluence–modulated proton CT

The investigation presented in this chapter was published in Medical Physics, volume 47,
issue 4, pages 1895–1906, in April 2020, with the title An optimization algorithm for dose
reduction with fluence–modulated proton CT, by Dickmann et al. (2020) – (senior author:
Dedes).

8.1 Introduction

Cancer treatment using intensity–modulated proton and heavier ion therapy is effective,
and comes at a low risk of side–effects for the patient compared to conventional treatment
modalities using x–rays. The good tolerance is believed to be linked to the low dose to
normal tissue when using protons for treatment (Weber et al. 2012, Verma et al. 2016, Naka-
jima et al. 2017, Kim et al. 2019). At the same time, low–dose, frequent and accu-
rate imaging, ideally at the treatment site, is required to ensure a safe delivery of the
therapeutic doses (Landry & Hua 2018, Nenoff et al. 2019). Proton therapy treatment
planning requires a spatial map of the relative stopping power (RSP), which in current
clinical practice is acquired through a conversion from x–ray CT images (Hudobivnik
et al. 2016, Wohlfahrt et al. 2017b, Taasti et al. 2018). X–ray CT images are typically
not acquired in treatment position and not prior to every treatment fraction, in order to
keep treatment time short and imaging dose low enough that they do not compromise
the dose benefit of proton therapy (Alaei & Spezi 2015). Direct imaging of RSP using
proton CT (pCT) (Rinaldi et al. 2013, Schulte et al. 2005, Johnson et al. 2016, Esposito
et al. 2018, Volz et al. 2018, Meyer et al. 2019) has been proposed to increase accuracy
and to allow for a frequent, dose efficient acquisition in treatment position. Accuracies
achievable with current prototypes are comparable to state–of–the art clinical dual energy
x–ray CT (Yang et al. 2012, Hudobivnik et al. 2016, Hansen et al. 2015, Dedes et al. 2019).

A further reduction of imaging dose can be achieved by modulating the imaging fluence
field during the acquisition and thereby achieving a task–specific image quality. Fluence–
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modulated scans (Graham et al. 2007b) can either aim for homogeneous variance across the
whole volume, or for region–of–interest imaging, where only the relevant part of the image
is acquired at low noise and imaging dose is reduced elsewhere. Algorithms (Bartolac
et al. 2011, Hsieh & Pelc 2014, Gang et al. 2019, Wang et al. 2019) and experimen-
tal prototypes (Bartolac & Jaffray 2013, Szczykutowicz & Mistretta 2014, Szczykutow-
icz et al. 2015, Stayman et al. 2016, Huck, Fung, Parodi & Stierstorfer 2019) have been
developed for fluence modulation in x–ray CT. Recently, fluence–modulated proton com-
puted tomography (FMpCT) has also been proposed (Dedes et al. 2017) and its initial
experimental feasibility using pencil beam scanning was investigated (Dedes et al. 2018).
The best achievable dose efficiency through fluence modulation or other techniques is a
key requirement for x–ray CT (Lell & Kachelrieß 2020) and most likely will be for pCT
as it moves closer to the clinics. Moreover, region–of–interest imaging is of high interest
for particle therapy treatment planning and dose verification, where only a fraction of the
image volume (the treatment beam path) is of relevance (Dedes et al. 2017). A challenge
for FMpCT is that simple Poisson noise modeling is not sufficient, as image variance for
pCT depends on the object’s heterogeneity, and several contributions, including multi-
ple Coulomb scattering, have to be taken into account for fluence–modulation (Rädler
et al. 2018, Dickmann et al. 2019).

In this work, we present a method for fluence–field optimization in pCT using pencil
beam scanning. We employ a pCT scanner–specific Monte Carlo simulation (Giacometti
et al. 2017a), which was shown to reproduce experimental variance levels for a typical flu-
ence field (Dickmann et al. 2019). The problem of finding relative modulation factors for
each pencil beam such that the summed fluence pattern results in a prescribed image vari-
ance map is a computationally expensive optimization problem which generally requires
alternating between the reconstructed image domain (where the variance prescription is
defined) and the projection domain (the detector data at each projection angle from which
the image is reconstructed, and where the fluence modulation is defined). Therefore we
separated the problem into first solving for the projection domain variance yielding a given
prescribed variance in the image domain and subsequently optimizing pencil beam weights
leading to this projection domain variance. To realistically describe pencil beams in the
optimization and in simulations, we established a pencil beam model based on experimen-
tal data. In a simulation study, we estimated dose savings for fluence–modulated pCT
using three different phantoms, and compared our proposed solution with a straightfor-
ward intersection–based fluence modulation (Dedes et al. 2018). We also verified that the
resulting variance map approaches the target variance. Both a constant variance target
as well as two regions–of–interest (ROIs) following typical treatment beam paths were
investigated.
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8.2 Materials and methods

8.2.1 Simulation framework

The Monte Carlo simulation framework (Giacometti et al. 2017a) used in this study is a
detailed model of the phase II pCT prototype scanner (Johnson et al. 2016). It is based on
the GEANT4 toolkit (Agostinelli et al. 2003) version 10.2.p01. Details about the modeling of
physics processes can be found in literature, where the platform was validated for its fidelity
in terms of RSP (Giacometti et al. 2017a, Dedes et al. 2019). A previous study (Dickmann
et al. 2019) improved the platform for reproducing variance levels of experimental scans.
With respect to that work, the beam model was modified, and is described below. Imaging
doses, in the form of absorbed physical dose, were scored on a centered grid of 125×125×35
voxels with a uniform voxel size of 2 mm and summed for all projection angles.

The simulation framework outputs data in the same format as the prototype scanner.
It records position and direction information of individual protons before and after the
object, as well as the proton’s residual energy. Using a calibration (Bashkirov et al. 2016),
the residual energy can be mapped to a WEPL, which is the line integral over the RSP of
the object along the curved path of the proton. Because measurements are available for
every detected proton, these data are referred to as “list–mode.”

8.2.2 Image reconstruction

To reconstruct RSP images from the list–mode data, a most likely path (Schulte et al. 2008)
is estimated for every proton from the tracking information. The path information is taken
into account by performing distance–driven binning and applying a special cone–beam
filtered backprojection algorithm(Rit et al. 2013). In total, 90 projections from rotation
angles covering a full rotation were used. This relatively low number of projections was
chosen to satisfy experimental timing constraints and to allow for a future experimental
validation of this work. Reconstructions were performed on a grid of 250 × 250 × 70
voxels with a uniform size of 1 mm. For performing data cuts,(Schulte et al. 2005, Schulte
et al. 2008, Rit et al. 2013) the grid was 125 × 125 pixels with a uniform size of 2 mm.
Binning of data into distance–driven projections was performed on a grid of 250×250×70
voxels with a uniform size of 1 mm. All grids were centered on the isocenter.

Assume a voxel centered in (u, v, d) in the three–dimensional distance–driven projection,
where d is the binning depth and u and v are the coordinates normal to it. We can identify
a set of protons such that the most likely path of every proton crosses the voxel volume
around (u, v, d). The number of protons in that set is then referred to as the “counts”
C(u, v, d). These counts only consider protons used for image reconstruction and therefore
are reduced compared to the incident protons due to interactions with the object and cuts
on the data. In contrast to that, counts in the absence of interactions and cuts are referred
to as F (u, v, d) throughout the paper. The point u = v = d = 0 is the location of the
isocenter, where the rotation axis is located.
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8.2.3 Phantoms

In the simulation study, three different phantoms with a physical counterpart were used.
The water phantom is a cylindrical container made from polystyrene (outer diameter
150.5 mm, wall thickness 6.35 mm) and filled with distilled water. The CTP404 phan-
tom (Phantom Laboratory, New York, USA) is a commercial sensitometric phantom with a
cylindrical shape (diameter 150 mm) and several tissue–equivalent inserts and two cylinders
filled with air. Both phantoms were implemented in the simulation as analytical models.
The pediatric head phantom (ATOM R©, Model 715 HN, CIRS Inc., Norfolk, USA) models
the anatomy of a 5–year–old child and was implemented as a voxelized phantom in the sim-
ulation (Giacometti et al. 2017b). Previous publications (Dickmann et al. 2019, Giacometti
et al. 2017a, Giacometti et al. 2017b) can be consulted for details about the phantoms.

8.2.4 Gaussian pencil beam model

To allow for the flexible simulation of FMpCT data, an analytical pencil beam model was
derived from experimental tracking data acquired at the pencil beam scanning beamline
of the Northwestern Medicine Chicago Proton Center without phantom. Using the timing
information of the scanner, a count rate was calculated in steps of 0.8 ms, allowing for the
separation of individual pencil beams as the count rate dropped in between two spots. The
separated data were processed individually by estimating most likely paths and performing
distance–driven binning (Rit et al. 2013).

For each pencil beam b, this resulted in a three–dimensional experimental counts map
Cb(u, v, d). We fitted the Gaussian model

G(u, v, d) =
N0

2πσ′uσ
′
v

· exp

(
−(u− u′0(d))2

2σ′2u
− (v − v′0(d))2

2σ′2v

)
(8.1)

to each pencil beam’s Cb, where N0 is the total number of protons per pencil beam, and
(u′0(d), v′0(d)) is the pencil beam center at depth d. The pencil beam center is assumed
to diverge linearly with the binning depth, such that u′0(d) = u0 · (1 + δu · d) and v′0(d)
analogously, where (u0, v0) is the pencil beam center at d = 0 and δu and δv are the linear
divergence factors. By construction, the isocenter–beam for u0 = v0 = 0 is parallel to the
d–axis. The σ′u = σu ·

√
1 + δ2

uu
2
0 and σ′v analogously are the beam widths projected to a

plane normal to the d–axis while σu and σv are the actual beam widths. This resulted in
a fit with seven open parameters (N0, u0, v0, σu, σv, δu, δv), which was performed for each
individual pencil beam by minimization of the squared deviation. The parameters σu, σv,
δu and δv were not specific to one pencil beam, and estimates for them were therefore found
as the mean value over all pencil beams. N0, v0 and u0 were open parameters specific to
a given pencil beam, but overwritten in subsequent simulations of different pencil beam
patterns. They are therefore not reported.
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Simulation of pencil beams

All datasets were generated by shooting a regular grid of simulated proton pencil beams. At
d = 0, neighboring pencil beams were interspaced by ∆PB,u = 12 mm along u and ∆PB,v =
8 mm along v. The pencil beam grid was offset in u by ∆PB,u/4 = 3 mm so that the summed
fluence from two opposing angles was homogeneous. This helped to reduce the total number
of pencil beams and thereby reduce the complexity of the optimization. In the simulation
platform, protons were emitted from a point (u0 ·(1+δu ·d0), v0 ·(1+δv ·d0), d0)+(ru, rv, 0),
where d0 = −400 mm and ru and rv are normally distributed random numbers with a
standard deviation of σu and σv respectively. The point d0 is just before the front tracker
and was chosen in agreement to previous investigations (Dickmann et al. 2019). Protons
were assumed to have an initial direction vector of (u0δu, v0δv, 1). The beam centers (u0, v0)
were chosen according the pencil beam grid defined above. For non–modulated scans, N0

was set to a default value N0 = N for all pencil beams. For modulated scans it was
N0 = mα

bN for a pencil beam modulated with a factor mα
b . The proton’s initial energy was

set to (200.00± 0.66) MeV, which is the standard mean energy used experimentally. The
energy spread was determined in a previous study (Dickmann et al. 2019) and agrees with
experimental data acquired at the beamline at Northwestern Medicine Chicago Proton
Center, albeit with a wider spot size setting.

Pencil beam reference counts

To optimize pencil beam weights, a reference of the proton counts for every pencil beam
is needed. This reference serves as a basis function for the fluence modulation and should
not take into account interactions with the object. It can be generated for every pencil
beam b using the Gaussian model

Fb(u, v, d) = G(u, v, d)
∣∣∣
N0=N,u0=ub,v0=vb

(8.2)

assuming a pencil beam center (ub, vb) according to the regular grid and a constant number
of protons N which is equal for all pencil beams.

Optimization of pencil beam weights

Using the Fb as basis functions, it is possible to generate an arbitrary counts field Cα for
rotation angle α by finding weights wαb , such that Cα is expressed as a linear combination of
the reference counts Fb from equarion 8.2. Weights were found by minimizing the squared
deviation, and therefore

wαb (Cα) = arg min
wαb

∫∫
du dv

(
Cα(u, v, 0)−

∑
b

wαb Fb(u, v, 0)

)2

. (8.3)

Integration was performed over u and v, but only the isocenter binning depth d = 0 was
considered. Optimization was performed using the method of Nelder and Mead (Nelder &
Mead 1965).
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8.2.5 Proposed algorithm for fluence field optimization

Fluence field optimization requires finding a set of fluence modulation factors mα
b ∈ [0, 1]

for pencil beam b at rotation angle α, such that the resulting pCT reconstruction best
achieves a given image variance target Vtarget(x, y, z). The proposed method for fluence
field optimization is performed in the projection domain (denoted by coordinates (u, v, d)
and the rotation angle α) instead of the image domain (denoted by coordinates (x, y, z)).
The method is sketched in figure 8.1 and consists of the following three steps, which will
be detailed in the next sections:

1. For a given phantom, find the resulting variance V α
unit(u, v, d) in the projection domain

for a unit fluence simulation with mα
b = 1 for all pencil beams.

2. For a given image variance target Vtarget(x, y, z), find a stack of variance levels in the
projection domain V α

target(u, v, d) that yields the image variance target.

3. Calculate the pixel–wise counts target Cα
target(u, v, d). Then, optimize weights that

yield the counts target according to equation 8.3.

The algorithm extends ideas from literature for x–ray CT (Bartolac et al. 2011, Hsieh
& Pelc 2014) to requirements of pCT such as the three–dimensional projections due to
distance–driven binning (Rit et al. 2013) and a more complex noise model (Rädler et al.
2018, Dickmann et al. 2019). It is, to our knowledge, not equivalent to any existing
approach as it is performed in projection domain and computationally feasible without
simplification to a parallel–beam geometry.

Figure 8.1: Workflow for optimization of fluence modulation factors mα
b , given an object

model and a variance target Vtarget.
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Step 1: Variance at unit fluence prediction

To find variance levels at unit fluence for a given phantom, we employed a Monte Carlo
simulation using the beam model described in section 8.2.4 and mα

b = 1 for all pencil
beams and rotation angles. This step requires an object model according to section 8.2.3
and resulted in counts Cα

unit(u, v, d), which were reduced compared to the reference counts
Funit(u, v, d) =

∑
b Fb(u, v, d) due to interactions with the object. For every point (u, v, d)

in the projection, a set of n = Cα
unit(u, v, d) WEPL, {p}, was found such that the voxel

around (u, v, d) was crossed by the most likely path of each of the selected protons (Rit
et al. 2013). The unit fluence variance was then the squared error of the mean

V α
unit(u, v, d) = Var[{p}]/Cα

unit(u, v, d). (8.4)

Given a variance projection stack V α
unit(u, v, d) the corresponding image variance Vunit(x, y, z)

can be calculated analytically as reconstruction was performed using filtered backprojec-
tion. Please refer to previous publications (Dickmann et al. 2019, Rädler et al. 2018)
for details about variance calculations for pCT and for variance reconstruction in gen-
eral (Wunderlich & Noo 2008).

Step 2: Iterative variance forward projection

Finding a stack of variance projections V α
target(u, v, d) whose variance reconstruction (Rädler

et al. 2018) yields a given image variance target Vtarget(x, y, z) is a problem with a large
set of solutions. We therefore aimed to find the inverse operation of variance reconstruc-
tion (Wunderlich & Noo 2008), i.e. a “variance forward projection.” An initial guess
V α

0 (u, v, d) could be obtained by performing ray–tracing (Joseph 1982) through the im-
age variance target Vtarget(x, y, z) followed by a ramp–filtration. The additional filtration
was motivated by the fact that variance reconstruction is very close to a simple unfiltered
backprojection (Wunderlich & Noo 2008). Since ray–tracing is the inverse operation to fil-
tered backprojection, an additional ramp–filtration was required. While such forward– and
backprojection yield Vtarget again, this often yields unphysical negative variance projection
values and amplifies noise. Therefore, a median filter was applied to the ramp–filtered
projections followed by thresholding to positive values.

To minimize the error introduced by thresholding, we employed an iterative approach
by applying variance reconstruction to the i–th set of variance projections V α

i (u, v, d)
yielding a variance volume Vi(x, y, z). Again, using ray–tracing, the difference volume
Vtarget(x, y, z) − Vi(x, y, z) was forward–projected and added to the current stack of vari-
ance projections. In every iteration, variance projection values were forced to be positive.
This will converge to a set of physical (i.e. strictly positive) variance projections that yield
an image variance approaching Vtarget(x, y, z).

Step 3: Fluence optimization

By definition, the variance projection values in equation 8.4 are inversely proportional to
the number of contributing protons C. Therefore, the pixel–wise counts required to achieve
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the variance target could be calculated as (V α
unit/V

α
target) ·Cα

unit. However, for low counts, we
need to consider that C follows a Poisson distribution (contrary to a normal distribution
at sufficiently high counts) and therefore an additional correction function

k(C) = C ·
∞∑
n′=1

PC(n′) · βn′,C = C2

∞∑
n′=1

PC(n′)

n′
(8.5)

needs to be introduced, where PC(n′) = Cn′ exp(−C)/n′! is the Poisson probability of
detecting n′ protons instead of the expectation value of C and βn′,C = C/n′ is the relative
change in variance if n′ instead of C protons were detected. The function k(C) was stored
in a lookup table for all relevant integer values of C up to 300 by numerically calculating
the infinite sum for 1000 summands. Since limC 7→∞ k(C)/C = 1 and k(300)/300 = 1.0033
we assumed k(C) = C for all C > 300. Furthermore, k(C) was thresholded to return at
least Cmin = 8 protons to avoid detector elements with missing information.

We used an optimization according to equation 8.3 to find pencil beam weights wαb (Cα
target)

which achieve the pixel–wise projection counts target of

Cα
target(u, v, d) = k

[
V α

unit(u, v, d)

V α
target(u, v, d)

· Cα
unit(u, v, d)

]
. (8.6)

Due to the fact that Cα
unit and Cα

target are both affected by interactions with the object, the
optimization also needed to be performed for unit fluence allowing for an elimination of
the effect of attenuation and scattering. This resulted in fluence modulation factors

mα
b =

wαb (Cα
target)

wαb (Cα
unit)

(8.7)

with numerator and denominator as defined in equation 8.3. Due to the normalization,
these factors were corrected for interactions with the object and thus could be used to
simulate an FMpCT scan according to section 8.2.4.

Reference approach

A simpler approach for fluence field optimization, which was used in previous works (Dedes
et al. 2018), is to perform a binary modulation with two fluence levels. In image domain,
a ROI is defined as a set of voxels that should be imaged with high fluence. A pencil beam
is assigned a high imaging fluence if its central axis intersects the ROI, and a low imaging
fluence otherwise. The fluence modulation factors were

mα
b =

{
1 if intersecting
γ otherwise

, (8.8)

where 0 < γ < 1 is the modulation strength, which was chosen to be equal to the contrast
of the variance prescription of the proposed method.
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8.2.6 Simulation study

In a simulation study we prescribed three different image variance targets, which can be
appreciated in figure 8.2: (1) constant variance VROI throughout the imaged object; (2)
FMpCT prescription A (variance VROI inside one quadrant of the imaged object and 4·VROI

elsewhere); and (3) FMpCT prescription B (VROI inside a central rectangular region and
4 · VROI elsewhere). Variance targets are used in step 2 of the proposed algorithm, and
therefore independent of the imaged object. In agreement to previous investigations (Dedes
et al. 2018) the prescription contrast of 4 was chosen such that it is higher than the variance
dynamic range of a unit fluence scan (Dickmann et al. 2019), but reasonably achievable
without expecting regions with vanishing counts or distortions of RSP accuracy.

C/W = (2/4) VROI

constant variance prescription FMpCT prescription A FMpCT prescription B

Figure 8.2: Three different image variance targets for the simulation study. The ROI region
and the out–of–ROI region are indicated in green and red respectively. The display center
(C) and window (W) is noted below the figure.

Previous investigations (Dickmann et al. 2019) have shown that a uniform fluence does
not yield a constant variance for pCT. Therefore, the constant variance prescription is the
most dose–efficient image, if the complete image is required for diagnosis. Prescriptions A
and B model two treatment scenarios, where the treatment beam path is coming from 0
and 90 degrees in A and from 90 and 180 degrees in B. Prescriptions were slightly blurred
as sharp gradients in image variance cannot be achieved due to the ramp filtration involved
in reconstruction. Throughout this work we use the nomenclature “constant”, “A” and
“B” to refer to the three prescriptions.

For all phantoms we first simulated a high dose unit fluence dataset with mα
i = 1. The

mean incident proton fluence was chosen to be 133 mm−2 such that it yielded a typical
imaging dose for pCT of about 1.4 mGy (Schulte et al. 2005), when summed over all
projections. We then chose the value of VROI for each phantom as the 95th–percentile
value of the variance in the unit fluence scan. For the water phantom this was VROI =
4.61× 10−4, for the CTP404 phantom VROI = 5.89× 10−4, and for the head phantom
VROI = 11.96× 10−4. These values are consistent with previous studies (Dickmann et al.
2019).

For the CTP404 phantom RSP values of the phantom body and of two inserts inside the
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ROI were evaluated and compared to the unit fluence scenario. The body consisted of epoxy
(RSP = 1.144), and inserts were made from Teflon (RSP = 1.791) and polymethylpentene
(RSP = 0.883). RSP values were calculated with GEANT4 at a proton energy of 150 MeV
and agreed with previous experiments (Giacometti et al. 2017a).

For a fair comparison of imaging doses, we computed the 95th–percentile variance value
vROI

95 inside the ROI (inside the whole phantom for unit fluence) and calculated a linear
correction factor η = vROI

95 /VROI. Doses and counts were multiplied by η, variances were
multiplied by 1/η. The choice of the 95th–percentile value over the mean or the maximum
value is a compromise between the requirement that variances should be at VROI or lower,
and tolerating outliers. As the water and the CTP404 phantom were thin, the percentile
value was calculated only within the displayed central slice. For the head phantom, which
covered the entire height of the detector aperture, it was calculated over the full volume.
To avoid the variance evaluation being dominated by increased noise at the hull of the
phantom as discussed in previous works (Dickmann et al. 2019, Rädler et al. 2018), we
determined the shape of the hull by setting an RSP threshold of 0.5 and eroding the hull
by 7 mm. Values outside this region were disregarded. The ROI region and the out–of–ROI
region are indicated in figure 8.2 for fluence modulations A and B.

8.3 Results

8.3.1 Gaussian pencil beam model

In an experimental dataset without phantom we determined the beam spreads of the
Gaussian beam model to be σu = (4.04± 0.08) mm and σv = (5.24± 0.09) mm. The
divergence was δu = (5.2± 0.6) 10−4mm−1 and δu = (5.8± 1.4) 10−4mm−1. The beam
spread in the u direction was significantly smaller compared to the beam spread in v
direction. Divergence in the u and v direction did not differ outside of the uncertainty
bounds. The distances from the isocenter to a virtual source were 1/δu = (1.9± 0.2) m
and 1/δv = (1.7± 0.4) m, which agrees with the position of the scanning magnets, which
is 1.8 m from the isocenter. The stated parameters were used in all following evaluations.

8.3.2 Variance optimization

Iterative variance forward projection

For step 2 of the proposed method, figure 8.3 (a) shows error measures as a function of the
iteration number. The RMS error as well as the mean error between the current variance
volume Vi(x, y, z) and the variance target Vtarget(x, y, z) are calculated within the field–
of–view. The fastest convergence is observed for the constant variance prescription, while
both FMpCT prescriptions A and B show a remaining RMS error that only reduces slowly
in every iteration. The mean error quickly drops to zero within the first iterations. The
relative change in RMS error for all prescriptions was below 1 % per iteration when they
were stopped. Figure 8.3 (b) to (d) show Vi(x, y, z) for prescription B at three different
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iterations. At iteration 20, the high–variance region has reached the correct value, while
in the low–variance region artifacts remain, but decrease up to the last iteration.
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Figure 8.3: (a) Root–mean–square error (solid) and mean error (dashed) as a function of
the iteration number of the three image variance targets. (b) – (d) Reconstructed variance
volumes for prescription B for different iterations. The display center (C) and window (W)
is noted below the figure.

Fluence optimization

To validate the use of the correction function k(C), figure 8.4 shows k(C)/C together with
the relative increase of the image variance VC at mean counts C. The relative increase
is calculated as (VC · C)/(VC∞ · C∞) for C∞ = 310 for simulated pCT data. Both curves
agree, which shows that variance increases over–proportionally for low counts and that the
correction function k(C) describes this well.
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Figure 8.4: Overproportional increase of image variance with decreasing counts in a sim-
ulation with varying mean proton number C and agreement with the fluence correction
function k(C)/C.
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Figure 8.5: Intermediate results of the fluence optimization process for the pediatric head
phantom and the orthogonal beams variance target: (a) unit fluence variance V α

unit(u, 0, 0),
(b) variance target V α

target(u, 0, 0), (c) pixel–wise target counts Cα
target(u, 0, 0), and (d) target

counts as fitted by the beam model. Data are shown as a function of the rotation angle α
and the detector coordinate u. For display a center of 0.4 mm2 and a window of 0.8 mm2

has been applied for variances, and a center of 80 and a window of 160 for counts.

Figure 8.5 shows intermediate steps of the fluence optimization for the pediatric head
phantom and variance prescription A. All projection data are shown as sinograms plotted
as a function of the detector position in u direction and the rotation angle. Only data for
v = d = 0 are shown. In figure 8.5 (a), variance at unit fluence V α

unit(u, 0, 0) is shown (step 1
of the algorithm), which is high at the periphery of the object and around heterogeneities,
as discussed in previous works (Dickmann et al. 2019). Figure 8.5 (b) shows the variance
target V α

target(u, 0, 0) as a result of the iterative optimization (step 2). Figure 8.5 (c) shows
the pixel–wise counts target for fluence modulation Cα

target(u, 0, 0) (step 3) as given by
equation 8.6. Parts of the variance target in (b) are assigned a value of 0, and receive the
unit fluence in (c). In figure 8.5 (d), the counts target is fitted by the pencil beam model
to get the weights required for fluence modulation (also step 3). This can be calculated as∑

bw
α
b Fb(u, v, d). Some small features of (c) are not present in (d) if they are smaller than

the extension of a pencil beam.

8.3.3 Simulation study

Figures 8.6 and 8.7 show simulated fluence modulations for all phantoms. RSP, variance
and dose maps are shown together with the counts sinograms. For the water phantom
imaged with unit fluence (figure 8.6 (a)), counts and dose were homogeneous throughout
the phantom, variance was reduced in the center. This reduction was compensated in
figure 8.6 (b) for the constant variance target, where instead counts and imaging dose were
reduced in the center and variance was homogeneous across the phantom, except for a
steep increase at the hull. The fluence modulations in figure 8.6 (c) and (e) for variance
targets A and B can already be appreciated in the RSP maps. Variance levels followed the
prescription with a sharp gradient. For prescription A some streaks of high variance were
observed within the ROI. Using the reference approach in figure 8.6 (d) and (f), conformity
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Figure 8.6: Simulation study for the water phantom and variance targets as indicated in
the titles. Sinograms are shown for v = d = 0. Center (C) and window (W) settings for
display of RSP and variance values are given.

of variance and dose maps with the ROI was degraded, in particular for prescription B,
where variance and dose are at the same level as in the unit fluence scan for most of the
phantom and the change in variance cannot be seen in the RSP maps. In the counts
sinograms, regions of increased counts roughly agreed with those using the optimization,
but were uniform, as required. Instead, using the optimization, a heterogeneous counts
pattern was observed.

For the CTP404 phantom (figure 8.7 (a,b)) and the head phantom (figure 8.7 (c,d)),
variance increased around heterogeneities both in unit fluence and fluence–modulated
scans. For the head phantom in particular the palate exhibited locally elevated vari-
ance levels. The fluence modulation with prescription A was less conformal, compared to
those of the water phantom. In particular for the CTP404 phantom variance contrast was
impaired. Counts sinograms for prescription A in figure 8.6 (c) and figure 8.7 (b,d) are
similar, but phantom–specific differences are noticeable.
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Figure 8.7: Simulation study for the CTP404 and the head phantom, and variance targets
as indicated in the titles. Sinograms are shown for v = d = 0. Center (C) and window
(W) settings for display of RSP and variance values are given.

Mean imaging doses are summarized in figure 8.8, where for fluence modulations the
mean dose over the whole phantom as well as mean doses in the ROI region and the
out–of–ROI region are reported. For the water phantom, prescribing constant variance
resulted in a dose reduction of 8.9 % compared to the unit fluence dose. For the region–of–
interest fluence modulations, dose saving outside the ROI was 40.5 % for prescription A and
25.7 % for prescription B. Using the simple reference approach, dose reductions were less
pronounced and dropped to 29.2 % and 13.2 % respectively. For the FMpCT prescription
A and the CTP404 phantom as well as the head phantom, dose savings outside the ROI
were slightly lower compared to the 40.5 % of the water phantom (35.4 % and 38.9 %
respectively). For all phantoms, fluence modulations A and B achieved a lower dose outside
the ROI compared to the unit fluence, but after normalization with η required a higher
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dose inside the ROI by 9.2 % to 19.2 %. Doses inside the ROI were approximately constant
for the reference approach. Mean doses over the whole phantom were reduced by 7.2 % to
13.1 % using the reference approach and by 9.8 % to 18.6 % for the FMpCT optimizations.

For the CTP404 phantom, the two inserts and the body inside the ROI had an RSP
value of 1.776, 0.881, and 1.143, compared to 1.776, 0.879, and 1.143 for the unit fluence
case.
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display of RSP and variance values are given.

Figure 8.9 shows the head phantom with unit fluence (a,b) and for the constant variance
target (c,d) both in a sagittal view (a,c) and a coronal view (b,d). Dose is homogeneous
for the unit fluence imaging, but the variance is notably lower in the back of the head and
around the spinal cord compared to regions around the palate and the nasal cavities. These
variations were compensated for in the fluence modulations achieving more homogeneous
variance levels at reduced doses in regions where variance was low for unit fluence. Mean
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dose over the whole phantom was 1.15 mGy compared to 1.37 mGy in the unit fluence
case (16.0 % reduction). Around the palate and the nasal cavities, dose is increased in the
fluence–modulated scan, which is not expected and may be due to the normalization by η.

8.4 Discussion

8.4.1 Gaussian pencil beam model

We found parameters of a Gaussian pencil beam model that allowed us to describe pencil
beams at arbitrary fluences and positions. This is a key component of the fluence modu-
lation scheme, as it allows to find a linear combination of a regular grid of pencil beams
that achieves the required counts as calculated by our algorithm. Uncertainty bounds for
fits in v direction were consistently larger than those in u direction, in particular for the
divergence parameter δ. This was because the detector aperture is smaller in u direction
and less data points were available. The beam spread σv was significantly larger than σu.
While this anisotropy is not expected for clinical operation, it may have been caused by
operating the beam line in research mode and modifying beam optics settings to keep pro-
ton fluence low and viable for the scanner. For future experimental studies, certain model
parameters, such as the beam energy spread, may require adjustment to exactly match
experimental variance levels.

8.4.2 Variance optimization

Iterative variance forward projection

Using an iterative approach, we calculated stacks of variance projections that yield a desired
variance map in image space. Depending on the complexity of the variance prescription,
this required a different amount of iterations and a non–zero RMS error remained. The
easiest case (constant variance target), did not require negative variance values (a con-
stant stack of variance projections would yield a constant image variance) and therefore
converged quickly. The two inhomogeneous variance targets A and B did suffer from the
positivity requirement and therefore only slowly converged towards a reduced RMS error.
While with negative variance values, a (close to) zero RMS error would be possible, this
was not the case when requiring physical variance values. The variance target stacks there-
fore already contained an inherent error, which impacted the achievable variance contrast.
However, it did not impact fluence modulation in general, as the prescribed fluences could
be rescaled, such that VROI was achieved inside the ROI.

Fluence optimization

We calculated the counts target according to equation 8.6, which could run into a lower and
an upper limit. Firstly, to ensure that that data was available throughout the projection,
we required at least Cmin = 8 protons in every pixel. Secondly, to avoid unreasonably
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high imaging doses, only fluence modulation factors mα
b ≤ 1 were allowed, even if the

variance target from the previous step (iterative variance forward projection) was zero.
This was relevant in particular at the hull of the object, which is also a limited area
to be traversed by a therapeutic proton beam. Again, both limits impacted achievable
variance contrast, but VROI could be achieved in the ROI by rescaling with η. Due to the
limitation to pencil beams with a finite size, small variance features were averaged out,
which may impact homogeneity of the achieved variance, in particular for phantoms with
strong heterogeneities.

8.4.3 Simulation study

We simulated FMpCT scans for different phantoms and variance targets demonstrating
two possible applications for dose reduction using fluence modulation: (1) for achieving
constant variance throughout the object and (2) concentrating imaging dose in a high
image quality ROI and reducing it elsewhere.

The dose reduction for constant variance with the homogeneous water phantom was
8.9 %, which already is considerable. As shown in previous investigations (Dickmann et al.
2019), variance for hetereogeneous phantoms is dominated by multiple Coulomb scattering,
which depends on the local heterogeneity of the phantom. Therefore, variance maps of the
head phantom in coronal and sagittal views were varying greatly. Assuming that good
image quality is required in the complete field–of–view, a fluence–modulated scan can
reduce the imaging dose by 16.0 % compared to a unit fluence scan, without any loss of
diagnostic value. Equivalently, the signal–to–noise ratio could have been improved by 35 %
at equal dose.

For all phantoms and two different image variance targets we could demonstrate consid-
erable dose savings of 25.7 % to 40.5 % outside of the ROI. At the same time, the imaging
dose inside the ROI increased compared to the unit fluence acquisition. Assuming that
the ROI agrees with the treatment beam path and that treatment doses are several orders
of magnitude higher than imaging doses, this increase is probably not relevant. At the
same time, proton therapy allows for minimal doses outside the treatment beam path,
requiring that this advantage is not compromised by frequent imaging. Mean imaging
doses over the whole phantom were reduced for all combinations of phantoms and variance
targets. Using a sensitometric phantom we showed that RSP accuracy is not compromised
by fluence modulation. RSP errors were comparable for modulated and un–modulated
scans, and all below 1 %, which is within the magnitude expected from literature (Schulte
et al. 2005, Giacometti et al. 2017a, Dedes et al. 2019).

Imaging doses in fluence–modulated scans showed local increases and doses partially
spilled out of the ROI. This may have impaired results in this study and could be caused
by the fact that optimization was exclusively performed with a variance objective. Future
studies should therefore include a dose objective outside of the ROI while keeping the vari-
ance objective inside the ROI, further developing ideas from studies for x–ray CT (Bartolac
et al. 2011). Moreover, the optimal choice of the contrast in the image variance prescription
should be studied in the future, but is out of scope for this work.
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Using a simple intersection–based approach also showed dose savings compared to unit
fluence acquisitions. However, dose savings were considerably less compared to the opti-
mized FMpCT scans and conformity of variance with the prescription was degraded. By
construction, a prescription of constant variance is not possible with this approach.

Future work should also address the impact of iterative image reconstruction, which
is frequently used for pCT imaging (Penfold et al. 2009, Penfold et al. 2010, Hansen
et al. 2014, Hansen et al. 2016, Schultze et al. 2019). In contrast to the direct filtered
backprojection algorithm used in this study, iterative reconstruction employs a regular-
ization method (typically total variation), which reduces noise and whose optimal weight
depends on the object and the fluence level (Tian et al. 2011). While most fluence mod-
ulation studies for x–ray CT have been performed using filtered backprojection (Graham
et al. 2007b, Bartolac et al. 2011), a first study (Gang et al. 2019) investigated a joint op-
timization of the fluence field and a spatially varying regularization parameter in the itera-
tive reconstruction. For pCT, a comparison of iterative and direct reconstruction (Hansen
et al. 2016) showed comparable image quality. Preliminary work of the authors using an
iterative reconstruction algorithm (Hansen et al. 2014) and fluence modulation suggests
feasibility of combining the two methods for pCT.

8.5 Conclusion

We developed a novel method for fluence–modulated proton computed tomography us-
ing pencil beam scanning and demonstrated its feasibility in a simulation study. Dose
reductions achieved by prescribing uniform variance were considerable, in particular for
an anthropomorphic head phantom. This suggests the need for employing non–uniform
fluence patterns in future pCT studies, whenever dose efficiency is a key requirement. Fur-
thermore, the proposed method allows us to prescribe arbitrary image variance targets,
which were shown to further reduce imaging dose outside of a given region–of–interest.
This can be of particular interest in the context of particle therapy and allow for daily
imaging at a reduced imaging dose to healthy tissue outside of the treatment beam path.
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Chapter 9

Experimental realization of fluence
optimization for proton CT

This chapter contains the work published in Physics for Medicine and Biology, volume
65, issue 19, page 195001, in September 2020, with the title Experimental realization of
dynamic fluence field optimization for proton computed tomography, by Dickmann et al.
(2020a) – (senior author: Dedes)

9.1 Introduction

Radiotherapy using protons allows to precisely deliver the planned dose to the tumor while
minimizing radiation exposure of critical structures outside of the treatment beam path.
Proton therapy, therefore, is believed to have better outcome with less severe side effects
compared to conventional radiotherapy using x–rays for certain anatomical sites (Weber
et al. 2012, Park et al. 2015, Nakajima et al. 2017). During treatment, protons stop inside
the tumor, where, just before stopping, their energy loss spikes within the so–called Bragg
peak. While this allows to achieve sharp dose gradients and to spare healthy tissues, proton
therapy is sensitive to range uncertainties (Paganetti 2012) and thus requires frequent
and accurate imaging (Engelsman et al. 2013, Landry & Hua 2018). The current clinical
practice for acquiring spatial maps of the relative to water proton stopping power (RSP) of
the patient is to employ x–ray CT images and to apply a calibration converting interaction
of photons with matter (attenuation) to interaction of protons with matter (RSP). This
yields range errors of up to 3 % (Yang et al. 2012), which need to be considered with
additional dose margins and conservative beam directions, and necessarily increase the
dose to healthy tissue.

To avoid conversion errors, RSP maps can directly be acquired using proton CT (pCT),
as originally proposed by Cormack (1963) and later experimentally realized by Hanson
et al. (1977). A pCT scanner measures the residual energy of protons after traversing the
patient or an object (for a review of contemporary pCT scanners see Johnson (2017)). Since
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protons gradually lose energy, and given that the initial proton energy is known, the energy
loss is directly linked to a water equivalent path length (WEPL), that is the path length in
water, along which a proton would lose the same amount of energy. For a proton crossing
an object, the WEPL is a line integral through the RSP along the curved path of the proton
in the same way that the logarithmic intensity is a line integral through the attenuation
coefficient for x–ray CT. Unlike in x–ray CT, however, line integrals are not along straight
lines and spatial resolution can suffer severely if not accounted for correctly (Krah et al.
2018). Therefore, pCT scanners typically also measure proton positions and directions
prior and after the patient allowing to estimate the proton’s trajectory and incorporating
it in the reconstruction algorithm (Li et al. 2006, Rit et al. 2013, Hansen et al. 2016).
A recent study by Dedes et al. (2019) comparing the accuracy of state–of–the–art dual–
energy x–ray CT to the performance of a prototype pCT scanner concluded that errors are
on par between the two modalities and suggested that artifact reduction may considerably
improve the pCT performance.

Besides having good RSP accuracy, pCT images may potentially be acquired at very low
imaging doses of only 1− 2 mGy per tomography (Hansen et al. 2013, Meyer et al. 2019)
based on an estimate using a homogeneous phantom (Schulte et al. 2005). Dickmann
et al. (2019) showed increased noise levels due to the heterogeneity in an anthropomorphic
phantom suggesting that imaging doses may range from 2 mGy to 6 mGy for the same
noise level in heterogeneous phantoms. A low imaging dose is especially important for
particle therapy, where the delivery of the treatment is divided in up to 30 fractions and
changes in positioning of the patient or movement of internal organs must be tracked by
imaging as frequently as possible to ensure a safe delivery of the therapeutic dose (Landry &
Hua 2018). However, imaging for online adaptation only requires knowledge about the RSP
within the limited sub–volume covered by the treatment beams. To exploit this, we recently
developed an algorithm for dose reduction with FMpCT, an imaging technique adapted
from Bartolac et al. (2011) to pCT by Dedes et al. (2017). The optimization method
(Dickmann et al. 2020) tries to achieve an inhomogeneous image noise prescription using
dynamically modulated fluence fields. Modulation is achieved by pCT acquisition using a
grid of pencil beams. The output of the optimization algorithm are relative weights for
pencil beams within every projection of the tomography. Using a Monte Carlo simulation,
a corresponding “planned noise distribution” can be calculated, which is the noise map
expected for the optimized set of pencil beam weights. The Monte Carlo code models
the geometry of an existing prototype pCT scanner (Giacometti et al. 2017a) and realistic
pencil beams at a clinical facility (Dickmann et al. 2020). It was also validated for fidelity
in terms of image noise (Dickmann et al. 2019) and RSP accuracy (Giacometti et al. 2017a,
Dedes et al. 2019). We prescribed low image noise (high image quality) within the volume
covered by typical treatment beam configurations, which we label the region of interest
(ROI), and high image noise (low image quality) elsewhere. This resulted in a considerable
dose saving outside of the ROI by up to 40 %, which depends on the phantom and shape
of the ROI. The dose saving was shown to be superior to the simpler intersection approach
used by Dedes et al. (2019). However, since the noise–planning study employed the same
Monte Carlo code as was used to generate data input to the optimizer, an experimental
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validation was indispensable.

The aim of this work, therefore, was to experimentally validate and reproduce the com-
putational results obtained by Dickmann et al. (2020). We employed the same fluence
patterns and used the same three phantoms that were modeled there. To employ modu-
lated fluence patterns, we interfaced the control system of a pencil beam scanning (PBS)
beamline at the Northwestern Medicine Chicago proton center and obtained tomographies
using the preclinical phase II pCT scanner (Johnson et al. 2016, Bashkirov et al. 2016). We
evaluated our ability to accurately control image noise by comparing experimental image
noise maps to the corresponding planned noise as well as to the prescription. In the process,
we identified image artifacts stemming from the pencil beam acquisitions and operation of
the beamline in research mode and removed them successfully with a correction method.
Finally, we tested the accuracy of RSP values by comparing mean values and distributions
inside and outside of the ROI.

9.2 Materials and methods

9.2.1 Experimental setup

Data for this work was acquired using the phase II pCT scanner developed by Johnson et al.
(2016) and Bashkirov et al. (2016). As depicted in figure 9.1, the scanner consists of two
tracking modules, one prior and one after the phantom, and a scintillating energy detector.
Protons emitted from the PBS beamline are individually registered by four silicon strip
detectors in each of the two tracking modules, resulting in coordinate measurement pairs
prior and after the phantom. The tracking system maintains a detection efficiency above
99% at trigger rates up to 1 MHz for the entire field–of–view and is capable of recovering
missed hits if at least three of the four position measurements are available (Johnson
et al. 2016). It has also been shown to safely sustain hit efficiency at 400 kHz under
increased local count rates when operating with pencil beams (Dedes et al. 2018). The
two coordinate measurement pairs allow for an estimation of the proton’s direction vector
before and after the object, which helps to determine a most likely path through the
object (Schulte et al. 2008). Eventually, the proton’s residual energy is measured using
a five–stage scintillating energy detector. Because the mean initial energy of the protons
is known and they gradually lose energy when traversing the object, the residual energy
measurement can be used to calculate the WEPL along the proton’s path. This uses
a calibration curve generated with an object of known geometry and RSP (Piersimoni
et al. 2017). To allow for tomographic data acquisition, the phantom is mounted on a
rotation stage.

The scanner is located at the Northwestern Medicine Chicago proton center, a clinical
facility for proton therapy equipped with a beamline (PROTEUS R©PLUS, Ion Beam Appli-
cations SA, Louvain-la-Neuve, Belgium) with full PBS capability. Delivery of the proton
fluence using pencil beams was a key requirement for this study, as it allowed employing
individually modulated proton fluence fields. While the scanner is typically operated using
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Figure 9.1: The phase II pCT scanner installed on a robotic arm at the Northwestern
Medicine Chicago proton center. The important components of the scanner are indicated
as well as the pencil beam scanning (PBS) nozzle.

a broad beam, data acquisition using PBS and static fluence fields has been shown to be
feasible by Dedes et al. (2018) using protons and Volz et al. (2018) using helium ions (at
another facility).

9.2.2 Image reconstruction and noise for proton CT

Data output from the scanner is in so–called “list–mode.” Thus, for every registered pro-
ton, this list includes five quantities: position and direction vector prior to the object and
subsequent to it as well as the WEPL inferred from the energy measurement. To obtain
a three–dimensional map of the RSP from this data, WEPL information was binned to
pixelated projections and averaged within each pixel. Prior to binning, data cuts were
applied, removing protons with direction or WEPL information outside of a three stan-
dard deviation interval in each pixel of the projection, which is a common procedure in
proton imaging (Schulte et al. 2005, Rit et al. 2013). The standard deviation in each pixel
was calculated from the difference between the 30.85–th percentile value and the median,
which corresponds to a 0.5–standard–deviation interval and is less sensitive to the non–
Gaussian tails of the distribution. Data cuts eliminated about 25% of recorded protons
in air and 15% inside a homogeneous phantom. Protons were predominantly rejected due
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to overestimated WEPL information caused by spurious signals in the energy detector. A
three–dimensional volume could be reconstructed using a special cone–beam filtered back-
projection algorithm (Rit et al. 2013) making use of the most likely path information and
thereby improving the spatial resolution in the image.

This study investigated the uncertainty of RSP values, i.e. image noise or image vari-
ance. This quantity could be calculated directly from the list–mode data by estimating
the Gaussian variance of the WEPL values within each pixel of the projection and using
variance reconstruction (Wunderlich & Noo 2008, Rädler et al. 2018). Projection noise and
hence also image noise for pCT is predominantly affected by the incident proton fluence,
i.e. the number of protons contributing to the mean WEPL value in one pixel of the pro-
jection. Therefore, modulation of the incident fluence was the principal lever for adjusting
image noise. However, to carefully predict the absolute level of image noise in pCT for a
given fluence level, various contributions had to be taken into account. A previous study
by Dickmann et al. (2019) identified (1) the incident energy spread output from the ac-
celerator, (2) energy straggling inside the object and (3) inside the detector, as well as (4)
multiple Coulomb scattering, to be the main causes of image noise for pCT. In particular,
multiple Coulomb scattering was found to strongly depend on the object’s heterogeneity.
Consequently, prior knowledge of the object’s geometry is required to precisely predict the
image noise level at a given incident fluence using a validated Monte Carlo simulation such
as in Dickmann et al. (2019).

9.2.3 Fluence optimization algorithm

FMpCT may be performed by employing a regularly spaced set of pencil beams and in-
dividually modulating the fluence of each pencil beam resulting in inhomogeneous image
noise distributions as originally shown by Dedes et al. (2017) and Dedes et al. (2018).
To prescribe arbitrary image noise distributions, we employed the optimization algorithm
of Dickmann et al. (2020), which requires an object model to calculate individual pencil
beam weights. The algorithm consists of three steps, which are briefly summarized here
and can be studied in detail in the original publication:

1. For a given phantom geometry, use a Monte Carlo simulation to predict variance
levels in the projection for unit fluence (i.e., all relative weights set to unity).

2. Use an iterative method to calculate a stack of variance projections that yield the
prescribed image noise map (thus transfer the problem from image space to projection
space).

3. Calculate the required relative fluence as the ratio of the two variance quantities
taking into account a non–linear inverse relationship between fluence and variance.
Then, fit a pencil beam model to the required fluence to get relative pencil beam
weights.

The algorithm thus outputs relative pencil beam weights resulting in a planned noise
distribution, which can be calculated to check the agreement with the initial noise pre-
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scription by employing the optimized pencil beam weights in a Monte Carlo simulation.
Note that the planned noise was the best achievable noise distribution by our optimization
algorithm and could differ from the prescription. Moreover, the optimizer tried to achieve
peak noise equal to the prescription in the ROI and thus average noise may be below the
prescription.

9.2.4 Phantoms

We used three phantoms in this study: a cylindrical water phantom, an anthropomorphic
head phantom and a sensitometry phantom. The water phantom consisted of a cylindrical
container made from polystyrene and was filled with distilled water. The head phantom
(ATOM R©, Model 715 HN, CIRS Inc., Norfolk, USA) mimicks the head of a 5–year old child
using tissue–equivalent materials. The sensitometry phantom was the cylindrical CTP404
module of the Catphan R© 600 phantom (Phantom Laboratory, New York, USA) and features
several inserts of different materials. To obtain the planned noise distributions and fluence
patterns, phantom models were used in the Monte Carlo simulation by Dickmann et al.
(2020), and details can be found therein. RSP values of the phantoms were characterized
experimentally in other studies (Dedes et al. 2019, Giacometti et al. 2017b) and are also
matched in the Monte Carlo engine by adjusting the mean excitation energy.

9.2.5 Noise prescriptions and pencil beam grids

We aimed at achieving the following image acquisitions: (1) unit fluence with all rela-
tive pencil beam weights set to one, which corresponded to the standard acquisition with
PBS in pCT and served as a comparison, (2) a prescription of constant image noise VROI

throughout the phantom, which was shown to reduce dose at equal peak–noise level, and
(3) a ROI imaging task with a prescribed variance VROI inside one quadrant of the image
(i.e. the ROI; corresponding to a potential two–beam treatment configuration in proton
therapy), and a higher prescribed variance 4 · VROI outside the ROI, which allowed for
dose reduction. In all evaluations we labeled the three cases (1) unit, (2) constant, and
(3) FMpCT. The value of VROI was chosen to be the peak variance of the unit fluence
acquisition and thus depended on the phantom (Dickmann et al. 2019). For the water
phantom this was VROI = 4.61× 10−4, for the head phantom VROI = 11.96× 10−4 and for
the sensitometry phantom VROI = 5.89× 10−4. A graphical representation of the FMpCT
ROI is included in figures 9.3, 9.4 and 9.6. Note that the ROI corresponded to prescription
A in Dickmann et al. (2020), which yielded imaging dose savings of 40% and 39% outside
the ROI for the water and head phantoms, respectively.

The arrangement of the pencil beam grids was also chosen in agreement with the compu-
tational planning study. From an evaluation of experimental data, Dickmann et al. (2020)
obtained an elliptical shape of the pencil beam with a full width at half maximum (FWHM)
of FWHMu = (9.5± 0.2) mm in the horizontal u–direction and FWHMv = (12.3± 0.2) mm
in the vertical v direction (the rotation axis was oriented along v). Pencil beams were in-
terspaced by ∆PB,u = 12 mm in u and by ∆PB,v = 8 mm in v. This corresponded to
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approximately 1.3 · FWHMu in u and 0.65 · FWHMv in v. In u the spacing was effectively
also 0.65 · FWHMu, because we used a quarter pencil beam shift: the whole pencil beam
grid was offset in u by ∆PB,u/4 = 3 mm. This compensated for the larger interspace in
this direction, as pencil beam patterns at 0◦ and 180◦ were thus offset by ∆PB,u/2 with
respect to each other, resulting in a smooth total fluence despite the larger interspace.
This is analogous to the quarter detector pixel shift used to increase the sampling rate in
x–ray CT. Note that such a quarter pencil beam shift could only be performed in the u
direction, and that it depends on a precise alignment of the pencil beams with respect to
the coordinate system of the scanner.

9.2.6 Interfacing the PBS beam line

We interfaced the control system of the PBS beam line at the proton center to deliver
the optimized fluence plans, in order to experimentally validate that noise maps achieved
with pencil beam weights output from the optimization algorithm yield the planned noise
maps and are close to the prescribed image noise maps. This required transforming the
pencil beam grid description (center coordinates and relative weights) to machine instruc-
tions. The fluence was modulated by changing the dwell time of each pencil beam spot, as
in Dedes et al. (2018), and keeping the current constant at 1.3 nA. The instructions for the
accelerator were thus set points for the scanning magnets as well as absolute dwell times.
A program developed specifically for this study then converted those set points to currents
applied to the scanning magnets, which required proprietary beam line information.

The maximum dwell time (the one corresponding to a relative weight of one) was chosen
such that approximately four times (4×) the required number of protons was registered
and the correct number of protons (1×) was selected in post–processing. In a first step, we
acquired data at unit fluence without any phantom. From this data we later extracted the
average number of hits within a central region of the front tracker. The same number was
generated using data from the Monte Carlo simulation (with 1× fluence) and the acceptance
ratio raccept between experiment and simulation was calculated. For all subsequent scans,
we then randomly accepted protons with a probability equal to raccept, which was constant
for all projections of all acquisitions, and rejected all other protons. Although the exact
number of protons could have been delivered by fine tuning the maximum dwell time or the
beam current on the spot, we opted for this conservative approach considering the limited
available beam time.

To ensure that the pencil beam patterns were delivered in synchrony with the scanner
rotation, the phantom was rotated at fixed time intervals large enough to allow for a
manual initiation of each pencil beam pattern, which led to considerably longer scanning
times than the 6 to 10 min that are typically needed for scans with this prototype pCT
scanner when the beam is continuously on.



170 9. Experimental realization of fluence optimization for proton CT

9.2.7 Image noise evaluation

We acquired unit fluence as well as FMpCT data for the water phantom and the head
phantom. For the water phantom, a constant noise fluence modulation was additionally
acquired. All acquisitions were performed on the same day, except for the unit fluence
acquisition of the water phantom, which was acquired on a separate day. RSP and vari-
ance maps were calculated from the acquired data. All reconstruction parameters were
chosen as in Dickmann et al. (2020). Image variance maps were compared to the planned
noise distribution, as well as to the prescriptions. To illustrate the fluence patterns, we
calculated so–called “counts sinograms” that display the number of protons (after data
cuts) contributing to the calculation of the mean WEPL in each pixel of the detector and
for each rotation angle.

9.2.8 RSP evaluation

To verify that the FMpCT acquisition does not compromise the RSP accuracy of pCT
inside the ROI, we performed two scans with the sensitometry phantom: one with unit
fluence and one with the FMpCT noise prescription. Inserts of the phantom as well as
the phantom body were masked and distributions of RSP values inside the masks were
analyzed and compared between the fluence–modulated and the uniform fluence scan. In
agreement with Dedes et al. (2019), the mask of an insert was chosen to be a cylinder with a
radius of 5 mm, which is half of the radius of the insert. The phantom’s body is made from
epoxy and inserts consist of polymethylpentene (PMP), low–density polyethylene (LDPE),
polystyrene, acrylic, Delrin and Teflon, for which water–column RSP measurements can
be found in Dedes et al. (2019). The ROI of the FMpCT scan encompassed the PMP and
the Teflon inserts which have the lowest and highest RSP values respectively. We chose
to investigate these inserts with the largest expected RSP error (Dedes et al. 2019) so
that this evaluation can serve as a conservative upper limit estimate and because only two
inserts could be accommodated in the ROI due to the geometry of the phantom.

9.2.9 Pencil beam WEPL correction

In retrospective analysis of the acquired data, RSP ringing artifacts were observed which we
assumed to stem from a spatially varying incident energy distribution within each pencil
beam of the grid, and which were more severe than the calibration artifacts discussed
in Dedes et al. (2019). The distribution was assumed to be similar for all pencil beams.
Since incident energy is not measured by the pCT scanner but instead assumed to be
200 MeV, a spatially varying distribution will distort the image.

To isolate this effect, we used a scan without phantom for which on average we expected
a WEPL of 0.0 mm after data post processing. In a first step, we calculated the count rate
over time and separated individual pencil beams at the drop in count rate between two
spots. For each pencil beam p we then calculated the center of mass coordinate (up, vp) at
the second tracking plane of the front tracker module. For each proton, the coordinates
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(ũ, ṽ) = (u− up, v − vp) relative to the center of mass of the corresponding pencil beam p
(again at the second plane of the front tracker) were determined. We then fitted a quadratic
correction function

∆WEPL(ũ, ṽ) = a+ buũ+ bvṽ + cuũ
2 + cvṽ

2, (9.1)

where a, bu, bv, cu were cv are free fitting parameters. The fitting parameters were found
by minimizing the cost function

CF =
N∑
n=1

(∆WEPL(ũn, ṽn)− wn)2, (9.2)

where the sum is over all N protons from all pencil beams, and (ũn, ṽn) is the coordinate
of proton n relative to the center of mass of its pencil beam, and wn its measured WEPL
value.

To correct data of a subsequent phantom scan using equation 9.1, all pencil beams
in the dataset needed to be separated and center of mass coordinates calculated for each
of them. Then, a proton with WEPL w belonging to pencil beam p and with relative
coordinates (ũ, ṽ) was assumed to instead have a WEPL of w′ = w −∆WEPL(ũ, ṽ).

We performed reconstructions of the constant noise prescription for the water phantom
both with and without pencil beam correction to show its effect on the data. To further
illustrate the pencil beam spot and its energy distribution, we binned all protons that were
used to find the correction function to a grid in relative coordinates (ũn, ṽn) and calculated
the number of counts relative to the pencil beam center as well as their mean WEPL. From
the binned counts distribution we also calculated the FWHM in both directions, which we
refer to as FWHMu,exp and FWHMv,exp.

9.2.10 Fluence sums

Since the acquisition with the quarter–shifted pencil beam grid described in section 9.2.5
depends strongly on a precise delivery of the fluence and misalignments could cause distor-
tions of the resulting fluence patterns, we investigated if fluence was delivered as intended
in the planning study by calculating “fluence sums”: for every proton we estimated a
most likely path ~l(d) = (u(d), v(d)) based on the tracking information, where u and v
are the lateral coordinates and d is the (signed) distance from the isocenter plane. For
every projection n acquired at angle αn we then calculated a three–dimensional counts
map Cn(u, v, d) which counts the number of most likely paths intersecting each voxel. The
fluence sums F (x, y, z) were then calculated as the sum over all Cn, where each Cn was
rotated along the v–axis according to its rotation angle αn and thus

F (x, y, z) =
N∑
n=1

Cn(x cosαn + y sinαn,−x sinαn + y cosαn, z), (9.3)
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where N is the number of projections. Fluence sums were calculated both for the experi-
mental data and for the corresponding planning Monte Carlo data.

To investigate the robustness to changes of the spot size and the alignment of the fluence
pattern, we performed an additional Monte Carlo planning study using the pencil beam
FWHMu,exp and FWHMv,exp determined in section 9.2.9 instead of FWHMu and FWHMv

used during optimization and noted in section 9.2.5. We added an artificial shift su in the
u–direction to this data by calculating the fluence sums with the modified equation

F (x, y, z) =
N∑
n=1

Cn(x cosαn + y sinαn + su,−x sinαn + y cosαn, z). (9.4)

Fluence sums were calculated for five misalignments between su = −1.5 mm and su =
1.5 mm.

9.3 Results

9.3.1 Pencil beam WEPL correction

Figure 9.2 (a) shows the counts distribution summed over all pencil beams in coordinates
relative to the pencil beam center. The expectation value (marked with a cross) is in
the center as expected. The shape of the pencil beam is not isotropic: the FWHM,
indicated by a dashed line, is elliptical and wider in the ũ–direction. The FWHM was
FWHMu,exp = 8.6 mm in the ũ–direction and FWHMv,exp = 6.9 mm in the ṽ–direction,
which is slightly smaller than FWHMu = 9.5 mm in the ũ–direction in the Monte Carlo
planning study and considerably smaller than FWHMv = 12.3 mm in the ṽ–direction.

Figure 9.2 (b, c) displays the average WEPL and the fitted correction function ∆WEPL.
The correction function described the WEPL distribution well, especially within the in-
dicated FWHM ellipse. There was a clear dependency of the WEPL distribution in the
ũ–direction. The dependency in the ṽ–direction was weaker, but still captured by the fit
of the correction function. The parameters of the correction function were determined
as a = 0.956 mm, bu = 9.63× 10−2, bv = −0.884× 10−2, cu = −2.08× 10−3 mm−1, and
cv = −1.52× 10−3 mm−1.

In figure 9.2 (d) profiles through counts, average WEPL and the correction along ũ
and for ṽ = 0 mm are shown. In the center of the pencil beam a negative WEPL of
around −1.0 mm was observed. Again, there was a good agreement between the fit and
the averaged WEPL, in particular for the center of the beam spot. The expectation value
and the FWHMu,exp interval for the counts distribution are indicated by solid lines under
the distribution, which was slightly left–skewed: the mode was shifted to the right but the
expectation value was at ũ = 0 mm as desired.

In figure 9.2 (e, f) two reconstructions of the water phantom for the constant noise
prescription are displayed with and without the pencil beam correction. Rings in the
image were efficiently removed by the correction. Minor rings and a dip in the center
of the phantom remained. The average value over the whole water region (RSP = 1.0)
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changed slightly from 0.990± 0.024 (without correction) to 0.993± 0.023 (with correction).
All further reconstructions employed the pencil beam correction.
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Figure 9.2: Illustration of the effect of the pencil beam WEPL correction: (a) number
of counts over all registered pencil beams, (b) the average uncorrected WEPL, (c) the
optimized correction function, (d) profile plots for (a) to (c) along ũ for ṽ = 0 mm (counts
are in arbitrary units on the secondary axis), (e) an uncorrected RSP reconstruction and
(f) the corrected reconstruction. (a) to (d) are given in coordinates (ũ, ṽ) relative to the
pencil beam center. In (a) to (d) the expectation value and the FWHM ellipse is indicated
(for (d) as a projection to the ũ–axis). (b) and (c) share the same color scale.
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9.3.2 Image noise evaluation

Before reconstruction, we randomly accepted raccept = 25.62 % of the measured protons
after determining the actual delivered number of protons in a single run without phantom.
This value is reasonable considering that we planned to acquire four times the required
data (see section 9.2.6).

Figure 9.3 displays experimental results for the water phantom in (a) to (c) together
with Monte Carlo results from the planning study in (d). The first row displays RSP maps
for all acquisitions. The ROI for the FMpCT noise prescription is indicated by a dashed
line in the RSP maps. For the constant noise prescription, this ROI was the entire phantom
volume, except for the edges. In (c) and (d) a clear modulation of the noise pattern is
already visible in the RSP image.

The variance map in the second row of figure 9.3 for unit fluence (a) showed the expected
reduction in the center and an increase with increasing radius, peaking at the edges. In
comparison to that the constant noise prescription in (b) was visibly more uniform, but
rings distorted the flatness. Those rings could later be linked to the smaller spot size
described before, together with a slight misalignment of the fluence pattern. The variance
map in (c) confirmed what is already visible in the corresponding RSP map: noise for the
FMpCT acquisition was low inside the ROI and high elsewhere. The planned noise in (d)
was similar to the achieved noise in (c) inside the ROI, but slightly higher outside. Faint
variance rings were also visible in the low variance area.

The third row displays line profiles through the variance maps as indicated by the
dashed lines in the second row. Moreover, profiles through the prescription for (b) to (d)
are displayed and the planned noise is added in (b) for comparison. Inside the ROI, the
achieved experimental variance in (b) and (c) was in agreement with the planned noise. The
prescription was achieved, considering that the optimizer tried to achieve peak variance or
lower inside the ROI. In the center of (b) and outside of the ROI in (c) the experimental
variance differed slightly from the prescription. However, also the planned noise in (d)
differed from the prescription in this region.

The last row of figure 9.3 displays counts sinograms. Data is shown only for the same
slice that is displayed in the first and second rows. Sinograms were not changing with the
rotation angle for the unit fluence acquisition in (a). Nevertheless, the single pencil beam
contributions were visible. The constant noise prescription in (b) featured reduced fluence
in the center of the phantom which increased towards the edges. The counts sinograms for
the FMpCT noise prescription in (c) and (d) agreed between simulation and experiment.

Figure 9.4 shows the same evaluations for the head phantom, albeit only for unit fluence
and the FMpCT noise prescription. For unit fluence in (a) the variance map in the second
row featured increased noise levels around strong heterogeneities (e.g. the nasal cavities)
and the edges, as expected from previous studies. Additionally, variance rings were also
noticeable, which were not expected from the simulation study (shown only as profile)
and were caused by the smaller pencil beam size in combination with a misalignment as
described before. The strongest variance peaks were also visible for the FMpCT noise
prescription in (b), but in particular inside the ROI the variance distribution was flat as
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intended. Variance profiles in the third row indicate agreement of the experimental data
with the planned noise (c). Both the achieved noise and the planned noise were below the
prescription as the optimizer tried to achieve peak variance inside the ROI.
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Figure 9.3: Proton CT acquisitions for the water phantom: (a) unit fluence scan, (b)
constant noise prescriptions and (c) FMpCT scan together with (d) the planned noise dis-
tribution for the FMpCT scan. The four rows display: the reconstructed RSP maps, the
corresponding variance maps, profiles through the variance maps, the prescription and the
corresponding planned noise, and counts sinograms. The ROI for the noise prescriptions is
indicated by a dashed line in the RSP maps. Center (C) and window (W) settings for dis-
playing maps are given below each map. For the counts sinograms this was C/W = 140/280
protons.
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Figure 9.4: Proton CT acquisitions for the head phantom: (a) unit fluence scan and (b)
FMpCT scan together with (c) the planned noise distribution for the FMpCT scan. The
four rows display: the reconstructed RSP maps, the corresponding variance maps, profiles
through the variance maps, the prescription and the corresponding planned noise, and
counts sinograms. The ROI for the noise prescriptions is indicated by a dashed line in the
RSP maps. Center (C) and window (W) settings for displaying maps are given below each
map. For the counts sinograms this was C/W = 140/280 protons.
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9.3.3 Fluence sums

In figure 9.5 (a, b) fluence sums are displayed (a) for all cases of the experimental study
and (b) for the corresponding planning study. On the left of each column, one slice of
the fluence sum, is shown and on the right of each column a perpendicular view is shown
calculated along the dashed line indicated in the first panel. In general, the fluence sums
of experiment and planning study showed similar modulations. Differences were caused by
the smaller pencil beam size in the experimental data as well as by a slight misalignment
of the grids. This was most noticeable in the perpendicular view where the single pencil
beam contributions were visible in the experimental data, but were smeared out in the
planning study which assumed a larger pencil beam spot size. This predominantly affected
the direct vicinity of the rotation axis, which is in the center of the perpendicular view.
The water/unit acquisition in (a) had constant fluence in the x′–direction and just a slight
drop of the summed fluence close to the rotation axis. Modulations due to the pencil beam
size were visible in the z–direction. The two other water phantom acquisitions and the
head/unit data in (a) showed distinct pencil beam spots both in the x′ and z–direction
and in particular suffered from a distinct drop of fluence in the center, which hints that the
fluence patterns were slightly misaligned in these scans and that the exact quarter pencil
beam shift partially failed. In contrast to that, the head/FMpCT data in (a) also showed
pencil beam patterns in both directions, but exhibited an increase of the summed fluence
close to the rotation axis, which suggests that a misalignment happened in the opposite
direction. All experimental acquisitions, except for water/unit consequently showed rings
in the summed fluence in the xy–plane, and most prominently in the center of the volume.

The effects of the smaller pencil beam size (FWHMu,exp = 8.6 mm, FWHMv,exp =
6.9 mm) and a misalignment in the fluence pattern were further investigated in simulations
in figure 9.5 (c). The simulated fluence sum with a shift of su = 0 mm showed a very similar
pattern as the water/unit data in (a). As the shift gets larger towards su = −1.5 mm, an
interference pattern occurs in the x′–direction as well as a prominent drop of fluence in the
center. With positive values of su the fluence increased in the center.

9.3.4 RSP evaluation

Figure 9.6 displays two scans of the sensitometry phantom: one with unit fluence (a)
and one with the FMpCT noise prescription (b). As indicated in (c) the Delrin, acrylic,
polystyrene and LDPE inserts were outside of the ROI and were imaged with high variance
— the PMP and Teflon inserts were inside the ROI and were imaged with low variance.

In figure 9.6 (d) histograms are shown for the RSP distributions inside the inserts of
the phantom as well as for the phantom body. For each insert, both the histogram of the
unit fluence data and that of the fluence–modulated data are shown. Data were separated
according to ROI–membership and the body was partially inside and partially outside
the ROI. For the inserts outside of the ROI the distributions of the FMpCT scan were
considerably broader compared to the unit fluence distributions. For the inserts inside the
ROI, RSP distributions had a similar spread for the unit fluence scan and the FMpCT
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Figure 9.5: Fluence sums for (a) all experimental acquisitions of the water and head
phantom and (b) for the corresponding Monte Carlo data. In (c) Monte Carlo data for
the water phantom at unit fluence with the smaller spot size of the experimental data
and different shifts su of the fluence pattern are shown. The three–dimensional fluence
volume is displayed for one slice (showing the x and y coordinates) and as a perpendicular
view along the indicated dashed line (showing the z coordinate together with a linear
combination of the x and y coordinate, here indicated as x′). The color scale used for all
displays is indicated with the last panel.

scan, which is expected as the variance prescription inside the ROI was equal to the peak
variance in the unit fluence scan. The body exhibited only a slight broadening of its RSP
distribution. There was no visible shift of the mean value of any of the distributions.

This was analyzed in detail in table 9.1 where for all inserts the water–column RSP
value (Dedes et al. 2019) is given as well as relative errors for four datasets: data with and
without pencil beam energy correction as well as for unit fluence and for the FMpCT noise
prescription. Uncertainties are given as the error of the mean over all voxels inside the
masked volume, thus yielding smaller uncertainties for the larger body mask. We calcu-
lated the mean absolute percentage error (MAPE) from the absolute value of the relative
deviation of the measured and expected RSP for each of these datasets once averaging over
all inserts (MAPE–ALL) and once averaging only over the two inserts inside the ROI of
the FMpCT prescription (MAPE–ROI). Corresponding standard errors were calculated by
error propagation.

In the unit fluence data, RSP errors improved for all inserts, except for the PMP
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Figure 9.6: (a) Unit fluence scan and (b) FMpCT noise prescription for the sensitometry
phantom together with (c) materials of the inserts and the ROI. (d) Histograms of the
RSP value distributions inside the inserts and the body for both reconstructions. (PMP:
polymethylpentene, LDPE: low–density polyethylene)

insert, when applying the pencil beam energy correction. The corresponding change of
the MAPE–ALL, however, was less than its standard error. For the FMpCT acquisition,
the MAPE–ROI of inserts inside the ROI was slightly increased by the correction, but
the change was only a fraction of the corresponding standard error. Here in particular,
the PMP (in the ROI) and LDPE (outside the ROI) inserts were degraded and all others
improved. Changes in all inserts between corrected and uncorrected data were overlapping
within the standard error of the mean, except for the body (compare distributions in
figure 9.6 (d)). In the FMpCT scan using the correction, the MAPE–ROI was elevated
compared to the corresponding unit fluence acquisition. Both inserts inside the ROI are
slightly above 1% error, which is consistent with Dedes et al. (2019): the error there was
1.08% for PMP (corrected FMpCT: 1.06%) and –1.31% for Teflon (corrected FMpCT:
–1.32%). For a further comparison, results from Dedes et al. (2019) are listed in the last
column of table 9.1. In particular the MAPE–ALL and the MAPE–ROI agree between
the two studies. Thus, the accuracy achieved in this study is comparable to Dedes et al.
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Table 9.1: RSP values and errors for all inserts and the body of the sensitometry phantom
for unit fluence and the FMpCT noise prescription. Scans with and without the pencil
beam corrections were analyzed. For comparison, the last column shows results from Dedes
et al. (2019) using the same phantom. The mean absolute percentage error is calculated
from the absolute relative deviation of the measured and expected RSP values for the two
inserts inside the ROI (MAPE–ROI) as well as for all inserts (MAPE–ALL). Uncertainties
are given as the standard error of the mean over all voxels inside the masked volume and
calculated by error propagation for MAPE–ALL and MAPE–ROI. (PMP: polymethylpen-
tene, LDPE: low–density polyethylene)

uncorrected error in % corrected error in % error in %
Insert RSP unit FMpCT unit FMpCT Dedes (2019)
inside ROI

PMP 0.883 0.18± 0.31 0.79± 0.36 0.51± 0.31 1.06± 0.35 1.08± 0.11
Teflon 1.790 −1.31± 0.18 −1.49± 0.21 −1.16± 0.17 −1.32± 0.21 −1.31± 0.05
outside ROI

LDPE 0.979 −0.33± 0.32 0.24± 0.64 −0.12± 0.31 0.52± 0.65 −0.49± 0.11
polystyrene 1.024 −0.12± 0.30 −0.25± 0.66 0.06± 0.29 −0.11± 0.67 −0.04± 0.10
body/epoxy 1.144 −1.39± 0.02 −1.66± 0.03 −1.20± 0.02 −1.54± 0.03 —
acrylic 1.160 −0.80± 0.27 −0.80± 0.57 −0.54± 0.27 −0.63± 0.57 −0.30± 0.07
Delrin 1.359 −0.93± 0.21 −1.02± 0.45 −0.78± 0.21 −0.83± 0.45 −1.32± 0.21
MAPE–ALL 0.72± 0.09 0.89± 0.18 0.63± 0.09 0.86± 0.18 0.76± 0.05
MAPE–ROI 0.74± 0.18 1.14± 0.21 0.84± 0.18 1.19± 0.21 1.20± 0.06

(2019) and consequently competitive to state–of–the–art clinical dual–energy x–ray CT.

9.4 Discussion

9.4.1 Pencil beam WEPL correction

In retrospective analysis of the acquired data we identified a possible incident spatial dis-
tribution of proton energy as the cause of RSP ringing artifacts in the reconstructed images
seen in figure 9.2 (e). Such an energy distribution is not expected for the clinical treat-
ment mode but may arise from the operation in research mode and reduction of the output
fluence by closing slits in the beam line. Analysis of the proton data after transforming
to coordinates relative to each pencil beam center allowed to isolate this energy spread
(which manifested in a non–zero WEPL distribution in a scan without phantom). Fitting
of this WEPL distribution and a subsequent subtraction allowed to flatten the WEPL
distribution and to efficiently remove RSP rings in all acquisitions. Remaining rings and
distortions visible in the water phantom scan are caused by inaccuracies in the detector
calibration and known to distort pCT imaging accuracy (Dedes et al. 2019). While pre-
vious FMpCT publications (Dedes et al. 2018) also employed pencil beam scanning for
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static fluence modulation, their absolute noise levels were higher compared to this study
which partially masked the RSP ringing artifacts. Further analysis based on de–noising
confirmed that similar distortions were also present in their data.

Analysis of the pencil beam spot revealed an elliptical shape, which was expected
from previous investigations (Dickmann et al. 2020). However, the spot size was smaller
than expected in both directions. In particular in the ṽ–direction the spot size was almost
halved. Operation of the scanner at very low proton fluence requires closing the momentum
and divergence slits of the accelerator to values beyond what is commissioned for clinical
use. Even though slit positions and magnet settings were equal as when estimating beam
parameters in Dickmann et al. (2020), it is likely that maintenance of the beam line that
was performed in between the acquisitions caused this change, although the ultimate cause
could not be identified. For clinical operation such a change was not observed. While we
investigate the impact of the distorted fluence delivery using Monte Carlo simulations in
the next section, it was not possible to repeat the the experimental study with an amended
optimization as this did not seem justified given the overall successful fluence modulation
observed in this data. In general, if taken into account correctly, a smaller pencil beam
size may be beneficial for the fluence optimization as more subtle modulations and smaller
ROIs can be achieved. However, we re–optimized the fluence for the smaller pencil beam
size and the impact on the large ROI chosen in this study was small.

Correcting for a shift in the incident energy distribution may have a minor impact on
noise in the image. However, it is important to note that noise was originally distorted by
the shifted WEPL values and the pencil beam correction brings it back the the original,
expected value. Correction is therefore mandatory and we expect a better agreement with
simulations (which do not contain the pencil beam effect) after correction.

9.4.2 Fluence sums

Analysis of the fluence sums and comparison of the experimental data to Monte Carlo
data from the planning study revealed the effect of the smaller pencil beam spot size,
in particular in the z–direction, which corresponds to the ṽ–direction of the spot size.
While the simulation study, which was performed with a larger spot size, employed smooth
modulation patterns, the experimental scans exhibited the pencil beam spot structure. All
scans suffered from the smaller spot size in the z direction (across the slices). Hence, in
variance maps, we also expect an equivalent modulation of noise values across the slices.

One scan had a mostly smooth distribution within the slice (xy–plane). The other
scans suffered from an additional misalignment of the quarter–shifted pencil beam pattern,
which was characterized by a considerably reduced or, in one case, increased fluence close
to the rotation axis, as well as a further unintended circular fluence pattern within the
slice. This effect occurred in addition to the smaller spot size. The water/unit acquisition
appears to have a better alignment than subsequent acquisitions. This is possible since
it was performed on a different day. The alignment also may have changed within the
magnitude of a millimeter while exchanging phantoms. We could show, using simulations,
that misalignments of the order of ±0.5 mm may introduce variance rings. Nevertheless,
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the variance modulations of the FMpCT prescription are much larger than the distortions
caused by the pencil beam spot size and the misalignment of the pattern. Therefore, the
general FMpCT prescription was still achieved.

Dose savings were not investigated in this experimental study. However, the agreement
of the fluence justifies the assumptions that experimental dose savings will be comparable
to those evaluated in the planning study, which were up to 40% outside of the ROI for the
FMpCT noise prescription. We therefore believe that this method will help to considerably
reduce imaging dose for future pCT acquisitions.

9.4.3 Image noise and RSP evaluation

After correcting for the pencil beam WEPL distortion, the experimental scans using two
phantoms and three fluence patterns (unit fluence, constant and FMpCT noise prescrip-
tion) showed a very good agreement to what was expected from the planned noise distri-
bution. Distortions from the prescription were limited to regions outside of the ROI where
also the plan did not yield the prescription. This was because the optimizer tried to achieve
a peak variance equal to the prescription and remaining spikes in the planned noise distri-
bution forced the mean variance to be lower than the prescription. Consequently, also the
out–of–ROI variance was below the prescription, as the variance contrast between high–
noise and low–noise region is limited as discussed in Dickmann et al. (2020). In particular,
for the constant noise prescription, which showed a very flat planned variance distribution,
rings slightly distorted the variance map in the experimental data. These rings were not
related to the pencil beam WEPL correction, but could be explained by the smaller pen-
cil beam spot size and a slight misalignment of the patterns as described in the previous
section. Nevertheless, agreement with the simulation study and with the prescription was
satisfactory and the experimental realization of FMpCT was successful.

Evaluation of RSP values in a sensitometry phantom confirmed that the RSP accuracy
was only slightly affected by the FMpCT acquisition and that the spread of the distribution
of RSP values increased outside of the ROI but remained constant inside the ROI. While
we observed slight degradations of RSP accuracy in some inserts, changes were mostly
within the standard error of the mean (see table 9.1). RSP errors for unit fluence PBS
scans agreed with values reported by Dedes et al. (2019) with the same phantom and a
broad beam. We therefore conclude that the PBS acquisition is feasible and does not
deteriorate the pCT accuracy if the pencil beam correction is applied. An investigation
of the RSP accuracy in the FMpCT prescription for the two inserts inside the ROI with
the most extreme RSP values led to a slight degradation due to FMpCT which was still
within the standard error of the mean. It is important to note that the FMpCT ROI on
purpose covered the two inserts which also showed the largest errors in Dedes et al. (2019),
where the authors suggest that RSP errors are related to the design of this prototype
scanner and could be avoided in a future scanner. Additionally, the FMpCT RSP errors
for the inserts inside the ROI were very similar to those reported in Dedes et al. (2019).
In the absence of artifacts using an idealized Monte Carlo simulation, Dedes et al. (2017)
found no degradation of RSP accuracy with even stronger fluence modulations than those
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used in this study. In the data presented in this study, all observed measurement errors
were of the order of magnitude expected for a typical pCT scan. We, therefore, conclude
that FMpCT can reduce dose (and increase noise) outside of a ROI while maintaining the
required accuracy inside the ROI.

9.4.4 Lessons learned for future FMpCT acquisitions

Data in this study was acquired in a step–and–shoot mode, allowing enough time in be-
tween two projections for the scanner to rotate and for preparation of the next pattern.
Consequently, the acquisition of one tomography took about 90 min, which would not be
feasible for a patient scan. However, the beam–on time was 35.8 min for unit fluence to-
mographies and 20.3 min for FMpCT tomographies. This difference was caused due to the
need of manually initiating the beam delivery for each projection, for which we generously
prolonged the time the rotation stage rests at one angle to about three times the time
needed to deliver the fluence. Considering that we also acquired four times the necessary
data as discussed in section 9.2.6, the beam–on time required to record one of the datasets
shown in this study would be only 9.2 min per tomography for unit fluence and 5.2 min for
FMpCT scans, which is comparable to other acquisitions with this prototype scanner using
a broad beam. If a synchronization between the scanner rotation and the beam delivery
were possible (e.g. using a pulse generator) the phantom could potentially be rotated
near–continuously and fluence be delivered with minimal beam–off time. Additionally, as
discussed in Dedes et al. (2017), it may be possible to operate the scanner at a higher rate
than 400 kHz without loss of efficiency.

Moreover, we observed inaccuracies in the fluence delivery, which may be avoided with
automated software procedures to determine the size, the location and the proton count
of the beam spot. This would allow to achieve the planned fluence delivery with a higher
accuracy compared to this first experimental validation. It would also allow to directly
deliver the correct proton fluence (and dose) without the need of a retrospective random
rejection of protons with a constant rejection probability, as done in this study. A better
automated alignment procedure may allow to avoid ringing in the summed fluence deliv-
ery. However, in conclusion of this study, it is advised that future FMpCT optimizations
should employ a pencil beam grid with a considerably reduced spacing of pencil beams and
requiring no quarter shifting of the pattern. This would prevent a constructive interference
of the grids observed in this study and increase the robustness to a slight misalignment
or change in spot size. Since the total number of protons per projection would be kept
constant with a more dense pencil beam pattern, also the beam–on time and thus the total
acquisition time would remain unchanged.

9.5 Conclusion

This study is the first experimental realization of using an optimization algorithm for
dynamically modulated pCT to achieve task–specific image noise distributions. To this
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end, we interfaced the control system of a PBS beam line to employ dynamically modulated
fluence patterns for an experimental validation of FMpCT. We identified an incident beam
energy dependence due to the pencil beam fluence delivery that caused ringing in the RSP
maps. A proposed correction method captured the dependence and successfully removed
rings. The resulting variance distributions showed a good agreement with the plans and
the variance prescription and minor distortions of the fluence delivery were identified and
can be avoided in the future.
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Chapter 10

Biological uncertainties in proton
treatment planning

The investigation presented in this chapter was published in Physica Medica, volume 36,
pages 91–102, in April 2017, with the title Quantification of the uncertainties of a biological
model and their impact on variable RBE proton treatment plan optimization, by Resch et al.
(2017) – (senior author: Dedes).

10.1 Introduction

By the end of 2015 more than 130.000 cancer patients have been treated with high energy
proton beams (Jermann 2016). The main rationale for this technology is the proton depth
dose profile, which is characterized by the Bragg peak with high dose deposition at the
end of the proton range followed by a steep dose fall-off. This allows reducing the dose
deposited in organs at risk (OARs). Furthermore, the integral dose to the patient can
approximately be reduced by a factor of 2 by using protons instead of photon intensity
modulated radiation therapy (Lomax et al. 1999). The relative biological effectiveness
(RBE) of protons is considered to be equal to 1.1 in clinical practice (ICRU78 2007).
However, in vitro experiments show that the RBE is increasing towards the end of the beam
range (Wouters et al. 1996), where the linear energy transfer (LET) rises sharply (Sørensen
et al. 2011, Jäkel 2008, Suit et al. 2010). As the RBE weighted dose (RWD) increases with
dose averaged LET (LETd), the effective beam range increases by a few millimeters (Grün
et al. 2013, Carabe et al. 2012). However, the RBE not only depends on LETd, but also
on dose and tissue type (Tommasino & Durante 2015, Dasu & Toma-Dasu 2013).

For a certain cell type, the linear quadratic (LQ) model with the linear parameter α
and the quadratic parameter β is commonly used to model in vitro cell survival experi-
ments. The ratio of the two parameters, (α/β), is clinically used to distinguish late and
early reacting tissues (corresponding to a low and high (α/β), respectively) (Tommasino &
Durante 2015). RBE models based on the linear quadratic formulation of cell survival pro-
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posed by Wilkens & Oelfke (2004), Carabe-Fernandez et al. (2007), Wedenberg et al. (2013)
or McNamara et al. (2015) describe the RBE as a function of dose and LETd. The latter
two models additionally include the (α/β)x of photons to account for RBE dependence
on tissue type. However, (α/β)x values exhibit large error bars, which cause considerable
RBE variations when applied in biological models (Carabe et al. 2013). In addition to
the uncertainty of the (α/β)x, RBE modeling suffers from considerable uncertainties in
experimental in vitro cell survival experiments (Paganetti 2014). Therefore, some authors
suggest that the uncertainties in biological data are too high to apply RBE models in clin-
ical practice (Paganetti et al. 2002), and suggest further investigations (Paganetti 2014).
The clinical impact of the (α/β)x uncertainty has been quantified in (Carabe et al. 2013)
in the framework of the Carabe-Fernandez model (Carabe-Fernandez et al. 2007), but so
far no study has reported on the uncertainty introduced by the fit to the experimental
data. The purpose of this study was to investigate the uncertainty of the RBE weighted
dose by considering both the uncertainty of the (α/β)x and the intrinsic uncertainty of
the biological model originating from the fit to experimental data. The Wedenberg et al.
(2013) model was chosen as RBE model, since it was fitted to different cell types in con-
trast to the Carabe-Fernandez et al. (2007) or Wilkens & Oelfke (2004) model, which were
fitted solely on V79 cell data. Furthermore, it was statistically tested to represent the fit-
ted data well (Wedenberg et al. 2013). To ensure optimal dose and LETd calculation, the
treatment plans were created by a Monte Carlo simulation (Agostinelli et al. 2003) based
treatment planning system (TPS) using clinically applied fractionation schemes (Dasu &
Toma-Dasu 2013, Friedrich et al. 2014).

Additionally, we adapted the biological effect optimization method developed by Wilkens
and Oelfke in order to yield a homogeneous RWD distribution when applying the We-
denberg et al. (2013) model (Wilkens & Oelfke 2005, Schell & Wilkens 2010, Friedrich
et al. 2014). Tissue specific (α/β)x values were used and assigned in a way that aims to
reduce the consequences of potential (α/β)x uncertainties.

10.2 Materials and methods

10.2.1 Biological model

The biological model used in this work was proposed by Wedenberg et al. (2013). Similar
to other phenomenological models (Wilkens & Oelfke 2004, Carabe-Fernandez et al. 2007,
Frese et al. 2011, McNamara et al. 2015), the Wedenberg model is based on the linear
quadratic model (LQ) in which the cell survival fraction (S) is described as a function of
the absorbed dose (D)

S = exp(−αD − βD2). (10.1)

The quadratic parameter for β protons (βp) is assumed to be independent of LETd

and the linear parameter (αp) is considered to increase linearly with LETd (Wedenberg
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et al. 2013):

αp

αx
:= 1 +

q

(α/β)x
· L; βp := βx (10.2)

where αx, βx and (α/β)x are the parameters of the reference photon radiation, L the LETd

and q a free parameter, which can be estimated by a fit to experimental cell survival data.
Wedenberg et al. (2013) fitted equation 10.2 to a set of 24 data points of 10 different
cell lines from 6 cell survival studies, which resulted in q equal to 0.435 [CI 95%(0.366,
0.513)] Gy · µm · (keV)−1. Using the assumptions in equation 10.2 together with the defi-
nition of RBE = Dx/Dp, RBE can be expressed as a function of (α/β)x, LETd (L) and
proton dose (D):

RBE

((
α

β

)
x

, L,D

)
= − 1

2D

(
α

β

)
x

+
1

D
×

√
1

4

(
α

β

)2

x

+

(
qL+

(
α

β

)
x

)
D +D2 (10.3)

The functional form of equation 10.3 is plotted in figure 10.1. The RBE in the We-
denberg model increases monotonically with LETd and decreases with increasing (α/β)x.
There is only a small dose dependence for high (α/β)x and a considerable increase in RBE
with decreasing dose for low (α/β)x.

Figure 10.1: RBE dependence of the Wedenberg model on (α/β)x, LETd and dose. In
the left and the middle figure, dose is kept constant at 2 Gy and LETd is kept constant
at 3 keV/µm in the right figure. The uncertainty bands correspond to the 95% CI and
originate in the fit. The horizontal black line represents the RBE = 1.1 approximation.

10.2.2 Dose and LET calculation

For this study, a Monte Carlo simulation–based treatment planning tool for clinical calcu-
lations in CT geometries was developed, following a similar concept as in (Mairani et al.
2013). A particle therapy extension of CERR ((Deasy et al. 2003, Schell & Wilkens 2010),
Matlab/2014a) was used as TPS and GEANT4 (version 10.01) (Agostinelli et al. 2003) for
dose and LETd calculation.

Firstly, the lateral and axial pencil beam (PB) positions were determined in the TPS.
The beam spots were placed on a 5 mm grid in lateral direction and with 3 mm spacing
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in axial direction. In order to get the energies of the PBs, the Hounsfield units of the CT
image were converted into stopping power ratios (RSPs). From the RSPs along the central
ray of the PB, the water equivalent path length (WEPL) and hence the PB energies using
an energy–range look–up table generated with GEANT4 were determined.

Secondly, the geometrical positions and corresponding energies of the PBs were ex-
ported to GEANT4 together with the patient CT, which was converted into density and
elemental composition following Schneider’s approach (Schneider et al. 2000) calibrated for
the CT scanner (Toshiba Aquilion LB, Toshiba Medical Systems, the Netherlands) located
at Klinikum Großhadern, and ionization potential according to ICRU report 49 (ICRU49
1993). Note that the conversion of CT numbers in the TPS and MC simulations need to
yield the same RSP in order to prevent shifts between the range determination using the
WEPL calibration in the TPS and intrinsic calculation in the GEANT4 simulations. From
extensive testing, linear interpolation of the RSP sampling points used for GEANT4 input
was found to yield the most consistent results and was hence used in the TPS. The dose
and LETd were converted on the fly following the dose–to–water concept (Paganetti 2009)
and each PB was simulated in GEANT4 with 105 primary protons (events). This corre-
sponds to a total number of approximately 1.5 · 108 and 5 · 107 simulated events (GEANT4),
for the two studied patient cases, which are described in detail in section 10.2.4 (patient
settings). Both the CT and the dose scoring voxel sizes were 1.074× 1.074× 3 mm3. LETd

scoring was successfully benchmarked against literature for different voxel sizes (Wilkens
& Oelfke 2003, Cortés-Giraldo & Carabe 2015).

Finally, the three-dimensional dose and LETd distributions of each PB were passed
back to the TPS and used for TP optimization (see appendix C.0.1) and (Wilkens &
Oelfke 2005, Schell & Wilkens 2010).

10.2.3 Biological effect optimization

Wilkens & Oelfke (2005) presented a biological effect optimization method based on the
LQ model and a biological model which was fitted to Chinese hamster cell (V79) survival
data (Wilkens & Oelfke 2004). This method was adapted in order to use the Wedenberg
model instead of the original biological model and implemented into the TPS. Details
about the implementation and the derivation can be found in the original paper (Wilkens
& Oelfke 2005) and the appendix C.0.2.

10.2.4 Settings

Patient settings

According to equation 10.3, the RBE depends on (α/β)x. Therefore, two different tumor
types were chosen for investigation, a nasopharyngeal cancer patient with a high (α/β)x
and a prostate cancer patient with a low (α/β)x. As the debate on the optimal fractionation
scheme for prostate cancer is not settled, a standard and a hypofractionation TP with 35
fractions of 2 Gy(RBE) and 5 fractions of 7.6 Gy(RBE) respectively (Chan et al. 2016)
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were investigated. The prescribed doses and treatment settings are listed in table 10.1.
TP optimization objectives were: brainstem (center: D2 < 54 Gy(RBE), surface: D2 <
63 Gy(RBE))(Debus et al. 1997, Mayo et al. 2010), optic nerve (D2 < 56 Gy(RBE))(Mayo
et al. 2010a), rectum (D2 < 105%), bladder (D2 <105%), where the index i of Di is %
volume. The necessary biological parameters αx and βx including the 95% CI are listed in
table 10.2. In overlapping regions of OARs and the PTV, the (α/β)x of the OARs were
chosen for consistency with (Carabe et al. 2013).The structures were adopted from the
intensity–modulated radiation therapy (IMRT) treatment scenario.

Table 10.1: Treatment settings used in this study. Prescribed dose (Dpr), number of
fractions (n) and dose per fraction (D). Beam angles (φ) are reported on the IEC-scale.
?In this study we investigated the first phase of the treatment. In the second phase a 20 Gy
boost was applied to a smaller volume.

Tumor Dpr n D φ
[Gy(RBE)] [Gy(RBE)] [o]

Nasopharyngeal 50? 25 2 0, 110, 260
Prostate stand. 70 35 2 90, 270
Prostate hypo. 38 5 7.6 90, 270

Investigating the uncertainties of the RWD

In order to investigate the uncertainties of the RWD using the Wedenberg model, the TPs
for the nasopharyngeal and the prostate cancer patient were optimized using the RWD
resulting from a constant RBE equal to 1.1. Dose weighted by a constant RBE will further
be referred to as RWD1.1. After the optimization procedure, the variable RWD according
to the Wedenberg model using equation 10.3 was calculated, denoted as RWDw in the
following. The individual error bars were calculated separately using the lower and upper
limits of the 95% CI interval of the fit parameter q and (α/β)x ratio, respectively. The
upper limit of the total uncertainty was estimated by using the upper limit of q and the
lower limit of (α/β)x and vice versa for the lower limit. The (α/β)x were assigned for
each tissue individually according to table 10.2. In this study, the RWD1.1 is said to be
significantly different from the RWDw if it is not within the 95% CI originating in the
uncertainty of either q, (α/β)x or both depending on the origin of uncertainty we want to
address.

Biological effect optimization

The biological effect optimization following Wilkens’ approach was performed on the na-
sopharyngeal and prostate cancer patient. In order to take the uncertainty of the (α/β)x
ratio into account, a conservative strategy to assign (α/β)x to each organ was chosen.
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Table 10.2: The tissue parameters used in this study (Carabe et al. 2013, Schell & Wilkens
2010, Fowler et al. 2001, Joiner & van der Kogel 2009). Due to lack of literature values:
*50% uncertainty assumed for the nasopharyngeal cancer and the eye, **αx and βx of the
rectum used in the bladder.

Tissue αx βx (α/β)x CI
[Gy-1] [Gy-2] [Gy] [Gy]

Prostate tumor 0.036 0.024 1.5 (1.2, 5.6)
Nasopharyngeal tumor 0.112 0.011 10 (5.0, 15.0)*

Rectum 0.040 0.010 4.0 (2.5, 5.0)
Bladder 0.040** 0.010** 4.0 (3.0, 7.0)
Brainstem 0.053 0.027 2.1 (1.5, 3.9)
Optical nerve 0.051 0.026 1.6 (0.5, 10.3)
Eye 0.040 0.020 2.0 (1.0, 3.0)*

All organs were separated into two types, targets and OARs. In a conservative strategy,
the biological effect should be underestimated in a target and overestimated in an OAR
by potential parameter errors. Therefore, the upper limit of the (α/β)x CI as listed in
table 10.2 was assigned to targets and the lower limit of (α/β)x was assigned to OARs
(inverse dependence of RBE to increasing (α/β)x in equation 10.3). Due to the lack of
literature values for αx and βx to the corresponding (α/β)x ratio uncertainty, which were
necessary for the biological effect optimization (equation C.7, appendix C.0.2), the αx and
βx values had to be altered such that they matched the desired (α/β)x ratio. This variation
followed also a conservative approach. In the targets, the original βx value was lowered
in order to increase the (α/β)x ratio, whereas in the OARs, βx was increased in order to
reduce the (α/β)x ratio, while αx was kept constant in both cases. Since αx and βx of the
bladder were not available in literature, the values of the rectum were used. TPs optimized
using the variable biological effect will be denoted as TPBEO, whereas TPs optimized using
a constant RBE equal to 1.1 will be referred to as TP1.1.

10.3 Results

10.3.1 Uncertainties of the RBE weighted dose (RWD)

The TP1.1 in this section have been optimized using the constant RBE equal to 1.1, as
described in section 10.2.4 (Investigating the uncertainties of the RWD) and according
to the established clinical practice. The variable RWDw using the Wedenberg model was
calculated after the aforementioned optimization procedure.
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Nasopharyngeal cancer patient

The RBE weighted dose volume histogram (DVH) for the nasopharyngeal cancer patient
is shown in figure 10.2. The RWD1.1 shows the desired steep dose fall–off in the CTV.
Additionally, the RWDw calculated by the Wedenberg formula is plotted together with the
uncertainty band caused either by the uncertainty of the fit parameter q or the uncertainty
of the (α/β)x. The major contribution to the uncertainty band of the RWDw in the CTV,
(left) optic nerve and the (left) eye was the uncertainty of (α/β)x whereas the contributions
of (α/β)x and q in the brainstem were approximately equal. In the CTV, the fixed RBE
value resulted in a consistently higher RWD1.1 than the nominal RWDw, calculated by
the Wedenberg model including the uncertainty band originating in the uncertainty of q.
However, the RWD1.1 was inside the uncertainty band caused by the uncertainty of (α/β)x.
In the case of the left optic nerve, the constant RBE was outside of the confidence interval
of q and on the lower limit of the uncertainty band of (α/β)x. In the left eye and the
brainstem, the fixed RBE was significantly lower than the variable RBE regardless of the
origins of uncertainty.

In figure 10.2(a), the corresponding DVH including the total uncertainty band, i.e., the
combined uncertainties of (α/β)x, is plotted. This figure demonstrates that the RWD1.1

was inside the total uncertainty band of the RWDw in the target, although the nominal
RWDw value was consistently lower. Also in the left optic nerve, the RWD1.1 was within
the total uncertainty band of the model, but further off the nominal value and in contrast
to the target region, the RWDw was higher than the RWD1.1 due to a lower (α/β)x. In
the left eye and the brainstem, the RWD was significantly underestimated by the constant
RBE approximation. Several characteristic values of the DVH plotted in figure 10.2 are
listed numerically in table 10.3.

Note that the RBE was lower in the CTV than in the left eye although the LETd was
mostly higher. This originates in the lower dose in the eye and the inverse dependency of
RBE on dose (see figure 10.2). In the cumulative volume histogram, the LETd appears
highest in the brainstem. As a consequence, the RWDw in the overlapping region of
the brainstem and the PTV was up to 20% higher than RWD1.1 (see figure 10.3). The
optimization objective of decreasing RWD1.1 in this structure caused an increase in LETd

and consequently RWDw, as LETd is a free parameter in TP1.1 optimization. This LETd

effect was additionally amplified by the lower (α/β)x the brainstem compared to the CTV.
As expected, elevated LETd values were observed towards the end of the beam range and
the lateral penumbra (figure 10.3(c)) and correspondingly increasing RWD values with
discontinuities at tissue boundaries.
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Figure 10.2: Graphs (a and b) show the cumulative DVH for the CTV, brainstem, left eye
and left optic nerve of the TP1.1 for the nasopharyngeal tumor patient. In (a), the uncer-
tainties caused by q and (α/β)x are plotted as dark and lightly shaded area, respectively.
In (b), the total uncertainty band is plotted. The RWD1.1 is shown as black dashed lines
while the colored solid lines represent the nominal RWDw values. The corresponding dose
averaged LET volume histogram is plotted in (c). Cumulative volumes may not sum up to
1 (a and c), as only voxels receiving at least 1% of the dose prescribed to the target (i.e.,
0.02 Gy(RBE)/fraction) were considered.
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Table 10.3: DVH parameters (DP) for several regions of interests (ROIs) for the nasopha-
ryngeal and prostate cancer patient corresponding to figures 10.2 and 10.4. The CI caused
by either the fit parameter q (CIq) or the (α/β)x ratio (CI(α/β)x) and the total RWDw range
(CIt), respectively, are listed. The index i of Di indicates % volume.

ROI DP RWD1.1 RWDw CIq CI(α/β)x CIt
[Gy(RBE)] [Gy(RBE)] [Gy(RBE)] [Gy(RBE)] [Gy(RBE)]

Nasopharyngeal cancer patient

CTV D 49.3 48.3 (47.5, 48.8) (47.3, 50.3) (46.7, 51.0)
D98 48.5 47.5 (46.8, 48.0) (46.5, 49.3) (46.0, 50.0)
D50 50.0 48.8 (48.3, 49.5) (48.0, 50.8) (47.5, 51.8)
D2 51.8 51.0 (50.3, 52.0) (49.8, 53.5) (49.2, 54.8)

Optic nerve D 46.3 51.8 (50.0, 53.3) (46.3, 54.5) (45.5, 56.5)
D50 48.3 52.5 (50.8, 53.8) (47.5, 55.0) (46.7, 56.8)
D10 49.3 57.0 (55.0, 59.3) (49.8, 60.8) (48.7, 63.5)
D2 50.3 60.0 (55.0, 59.3) (49.8, 60.8) (48.7, 63.5)

Eye D50 5.0 6.0 (5.8, 6.3) (5.5, 7.0) (5.2, 7.5)
D2 39.0 45.8 (44.0, 47.5) (44.0, 48.0) (42.7, 50.0)

Brainstem D50 12.8 17.3 (16.3, 18.3) (15.5, 18.3) (14.7, 19.3)
D2 49.5 55.8 (53.8, 57.5) (53.3, 56.8) (51.5, 58.8)

Prostate cancer patient – standard fractionation TP

CTV D 70.4 79.1 (76.7, 81.6) (72.8, 79.8) (71.4, 82.6)
D98 69.0 77.0 (74.9, 79.5) (71.4, 80.5) (69.7, 81.6)
D50 70.4 78.8 (76.3, 81.2) (72.8, 79.5) (71.1, 82.3)
D2 72.1 83.3 (80.2, 86.1) (76.0, 84.0) (73.9, 87.2)

Rectum D2 70.7 75.3 (73.2, 77.0) (73.9, 77.0) (72.1, 79.5)
Bladder D2 49.7 54.6 (52.9, 56.0) (51.8, 56.0) (50.4, 57.8)

Prostate cancer patient – hypofractionation TP

CTV D 38.1 37.1 (36.7, 37.5) (36.6, 37.1) (36.3, 37.6)
D98 37.3 36.1 (35.8, 36.6) (35.8, 36.2) (35.4, 36.6)
D50 38.1 37.0 (36.6, 37.4) (36.5, 37.0) (36.7, 37.4)
D2 39.0 39.0 (38.3, 39.6) (38.3, 39.1) (37.7, 39.7)

Rectum D2 38.7 37.2 (36.9, 37.6) (37.1, 37.4) (36.8, 38.0)
Bladder D2 26.6 26.7 (26.0, 26.7) (26.0, 26.7) (25.7, 27.0)
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Figure 10.3: Representative RWD distribution of the TP for the nasopharyngeal cancer
patient applying a constant RBE during TP1.1 optimization. (a) RWD1.1 [Gy(RBE)], (b)
RWDw [Gy(RBE)] and (c) LETd [keV/µm]. The CTV (purple), PTV (blue), eyes (red
and green), brainstem (green) and the optic nerves (green and orange) are delineated. No
values are displayed in the nasal cavities with CT values equal to air.
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Prostate cancer patient

Figure 10.4 shows the DVH of the standard fractionation (a and c) and hypofractionation
TPs (b and d) for the prostate cancer patient. For both fractionation schemes and all
ROIs, the magnitude of the uncertainty caused by either of the two sources of uncertainty
was comparable. However, the RWDw uncertainty band reflects the asymmetry of the CI
of (α/β)x around the nominal value for prostate cancer (see table 10.2). The uncertainty
bands were distorted towards lower RWDw values. The uncertainty bands caused by q
were almost symmetrical (but not completely, due to the square root in the RBE function
in equation 10.3). In figure 10.4 (c) and (d), the DVHs of the two TPs including the
total uncertainty band are plotted. The RWD1.1 was significantly underestimated in the
standard fractionation TP. The hypofractionation TP exhibited a significant overestimation
of RWD1.1 with respect to the total uncertainty of the Wedenberg et al. model. The
bladder did not receive a crucial dose in both TPs. The LETd of the CTV in the standard
fractionation TP ranged from 3 to 4 keV/µm. However, LETd were mostly lower for the
hypofractionation TP and ranged from 2 to 5 keV/µm. In the rectum, LETd values were
slightly higher than in the CTV ranging from 2.5 to 5 and 2 to 5 keV/µm for the standard
fractionation and hypofractionation TP, respectively.

Figure 10.5 (e) and (f) show the LETd distribution of a representative CT slice. High
LETd values could be found towards the end of the spread out Bragg peak and in the
lateral penumbra, hence the rectum and bladder. The RWDw distribution in (c) and (d)
follows the LETd distribution. The RBE increases towards the end of the beam range and
caused an up to 25% higher RWDw than the prescribed dose in the region between the
CTV and the PTV, whereby the RWD1.1 was distributed homogeneously at the prescribed
dose level. Along tissue boundaries the RWDw distribution showed discontinuities due to
the discontinuity of (α/β)x.
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Figure 10.4: DVH of the standard fractionation (a and c) and hypofractionation (b and
d) TP1.1 for the prostate cancer patient. In (a) and (b), the uncertainty bands caused by
q and (α/β)x are plotted as dark shaded and colored shaded area, respectively. The total
uncertainty band is shown in (c) and (d). The RWD1.1 is shown by dashed black lines
while the colored lines represent the nominal RWDw values. In (e), the dose averaged LET
cumulative volume histogram of the standard fractionation (solid lines) and hypofraction-
ation (dashed lines) TP1.1 is plotted. Volumes might not sum up to 1 as only doses higher
than 1% of the prescribed dose were considered in all histograms.
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Figure 10.5: Representative RWD and LETd distributions of the standard fractionation
(a,b,e) and hypofractionation TP1.1 (c,d,f) for the prostate cancer patient applying a con-
stant RBE during TP1.1 optimization. In (a and c) RWD1.1 [Gy(RBE)], (b and d) RWDw

[Gy(RBE)] and (e and f) LETd [keV/µm]. The CTV (green), PTV (red) and the rectum
(pink) are delineated.
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10.3.2 Biological effect optimization

Figures 10.6 and 10.7 show the results of the TPs for the two patient cases using the bio-
logical effect optimization (TPBEO). The RBE weighted doses of the TPBEO (RWDw,BEO)
and of the previous RBE = 1.1 optimized TP1.1 (RWDw) are shown.

Nasopharyngeal cancer patient

Figure 10.6 (a) shows the cumulative RWD volume histogram of TPBEO and TP1.1 for
the nasopharyngeal cancer patient. The new optimization strategy (TPBEO) yielded a
RWDw,BEO fall-off in the CTV at the prescribed dose level equal to 2 Gy(RBE), as it was
obtained for RWD1.1 in the previous TP1.1. In the optic nerve, the two objective variables
in the optimization, namely the RWDw,BEO in the TPBEO and RWD1.1 in the TP1.1, were
also comparable. However, RWDw was noticeably higher than RWDw,BEO. Similarly to
the optic nerve,the RWDw,BEO in the brainstem was noticeably lower than RWDw. Note
that the RWDw,BEO was calculated using the worst case (α/β)x, whereas the nominal
(α/β)x were used to calculate RWDw. Consequently, comparing only the nominal RWDw

and RWDw,BEO would yield a bias in favor of RWDw and therefore the uncertainty band
needs to be taken into account. The worst case (α/β)x assignment was reflected in the
RWDw,BEO uncertainty band, which suggests a potential underestimation of the RWDw,BEO

in the CTV, whereas RWDw,BEO was potentially overestimated in the OARs.On the other
hand, the uncertainty band around the nominal RWDw (see figure 10.2) was approximately
symmetric.

Figure 10.6 (b) shows the corresponding RWDw,BEO distribution of are presentative CT
slice. RWDw,BEO was homogeneously distributed inside the CTV at the prescribed dose
level. In contrast to RWDw, RWDw,BEO did not exhibit hot spots in the brainstem.

Figure 10.6: Biological effect optimized TP (TPBEO) for the nasopharyngeal cancer patient.
In (a) the DVH is shown, where the nominal RWDw,BEO is represented with a colored
straight line and the total uncertainty band as shaded area. For comparison, the TP1.1

optimized using the constant RBE equal to 1.1 is shown in black. The dashed black line
represents RWD1.1 and the solid black line represents nominal RWDw. In (b) RWDw,BEO

distribution for a representative CT slice.
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Prostate cancer patient

Figures 10.7 shows the DVHs of the TPBEO for the prostate cancer patient. For both
fractionation regimens, the biological effect optimization yielded a RWDw,BEO fall–off at
the prescribed dose levels(2 and 7.6 Gy(RBE)) in the CTV. The uncertainty band of the
RWDw,BEO indicated potentially higher doses than prescribed in the CTV, and potentially
lower doses in the OARs for both fractionation schemes (a and b). In contrast to the
biological effect optimized TPBEO, RWDw was significantly over– and underestimated in the
standard (a) and hypofractionation (b) RBE=1.1 optimized TP1.1, respectively. Therefore,
only the biological effect optimization yielded the prescribed RWD in the CTV when
considering variable RBE.

In the rectum, the nominal RWDw of the standard fractionation TP1.1 was notice-
ably higher than RWDw,BEO, even though the worst case (α/β)x assignment disadvantages
RWDw,BEO. The uncertainty band of the RWDw,BEO indicated potentially lower RWD,
whereas the uncertainty band of the RWDw was approximately symmetric and did not favor
lower RWD. In the hypofractionation regimen,the RWDw was lower than the RWDw,BEO

in the rectum. However, RWDw was also lower than RWD1.1 and the two optimization
objectives of TP1.1(RWDw) and TPBEO(RWDw,BEO) were comparable.

Figures 10.7 (c and d) show the RWDw,BEO distribution. RWDw,BEO was homogeneously
distributed inside the CTV in the standard fractionation and hypofractionation TPs.

Figure 10.7: The biological effect optimized TPBEO for the prostate cancer patient. The
standard fractionation and hypofractionation TPs are plotted in the left (a and c) and
right (b and d) column, respectively. In (a and b) the DVH is shown including the total
uncertainty bands. The TPBEO is drawn as colored line, whereas the RBE = 1.1 optimized
TP is drawn in black for comparison. RWDw is shown with a solid line, RWD1.1 with a
dashed line and the uncertainty band around RWDw as dark shaded area. Graphs (c) and
(d) show the RWDw,BEO distribution in a representative CT slice.
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10.4 Discussion

The generic beam model used in this study assumed a constant initial beam size for all
energies, although this is not achievable in all centers. However, LETd dependence on spot
size in a homogeneous field is not expected as the lateral LETd dependence of a single PB
is small (Wilkens 2004) and LETd enters the RBE in equations 10.3 in the square root.
Therefore, it is assumed that a constant spot size is a valid approximation for the purpose
of this study.

The RBE in the Wedenberg formulation is a function of three variables, (α/β)x, LETd

and dose. The dependence on the first variable, (α/β)x, can be observed when comparing
the nasopharyngeal cancer patient with the standard fractionation TP of the prostate can-
cer patient, where the dose levels (2 Gy(RBE)) matched. Although the LETd in the former
was slightly lower, the increase of RBE in the prostate cancer patient can be attributed to
the lower (α/β)x.

The inverse dose dependence of RBE caused the RBE significantly greater than 1.1 in
the standard fractionation TP1.1 and the RBE significantly lower than 1.1 in the hypofrac-
tionation TP1.1 for the prostate cancer patient. The LETd in the standard fractionation
plan was slightly higher than in the hypofractionation plan, as the TPs were optimized
independently. LETd is a free parameter in the RBE = 1.1 optimization and can therefore
vary for similar dose distributions (Grassberger et al. 2011). However, LETd enters the
RBE formula in the square root and consequently small LETd variations cause even smaller
RBE variations.

The RBE higher and lower than 1.1 for the standard fractionation and hypofraction-
ation regimen differs from the results in (Carabe et al. 2013), but agrees with the ob-
servations in (Dasu & Toma-Dasu 2013). The differences come from the different RBE
dependence of the Carabe–Fernandez model on dose compared to the Wedenberg et al.
model (see figure 3 in (Giovannini et al. 2016)). The study by Carabe et al. (2013) re-
ported the RWD uncertainties caused by (α/β)x as an average over 5 patients, whereas the
present study presented only 1 patient for each cancer type. For the standard fractionation
prostate scheme, the D90 RWD CI in (Carabe et al. 2013) was (+6, +55)% to the RWD1.1,
whereas in this study the corresponding CI was (+4, +16)% (only considering (α/β)x).
As only averaged values were reported in (Carabe et al. 2013), it cannot be determined
whether the discrepancies originate in the different models or the averaging over different
patients. Nevertheless, in accordance to (Carabe et al. 2013), relative RBE uncertainties
in this study decreased with increasing dose per fraction. Here, the relative RWDw CI of
D98 was +/–2% in the hypofractionation TP1.1 for the prostate cancer patient, whereas it
was (–6, +10)% in the standard fractionation TP1.1.

All these results are based on the assumption of the applicability of the Wedenberg
model, which is based on the LQ model to describe cell survival to irradiation, but complica-
tions in OARs are only partially correlated to cell death (Joiner & van der Kogel 2009). For
OARs, approaches taking different biological endpoints into account, might be more suit-
able than the concept of (α/β)x. Although the LQ model is well established, a recent study
proposed a modified LQ model, which results in a slightly reduced RBE (Kuperman 2016).
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However, this RBE reduction becomes more pronounced with increasing LET and most
LETd values in this study were rather low (mostly 2–4 keV/µm, see figures 10.2 and 10.4).
Furthermore, the RBE model is fitted to in–vitro cell survival experiments and cells might
react differently to ionizing radiation in–vivo. There are several models which try to
describe the RBE and there is no proof that one model yields better agreement to the
available data than the others. The disagreement between these models by a few per-
cent (McNamara et al. 2015, Giovannini et al. 2016) may be interpreted as additional
systematic uncertainty, but is partially included in the uncertainty of the fit parameter.
The Wedenberg et al. model was chosen for this study on the grounds that there is a statis-
tical analysis which demonstrates that the model represents the fitted data well. However,
it has been fitted to a considerably smaller data set than the McNamara et al. (2015)
model. The Carabe–Fernandez and the Wilkens and Oelfke model have only been fitted
to V79 cells whereas the model used in this study was fitted to different cell lines. Since
all RBE models are fitted to experimental data, it is expected that all models exhibit un-
certainties originating in the fit. The Carabe–Fernandez and McNamara et al. model have
two free parameters unlike the Wedenberg et al. or Wilkens and Oelfke model, which have
only one.

Overlapping ROIs with different (α/β)x values are problematic and it is not clear which
value should be assigned. In this study and in (Carabe et al. 2013), the (α/β)x of the OAR
was chosen for the intersections. Consequently, the RBE and RWD at the transitions
are discontinuous and problematic in the biological effect optimization. This explains the
reduced RWD in the PTV along the boundary to the OARs. The conservative way of
assigning the (α/β)x ratios as investigated in this study is a possibility to account for
the (α/β)x uncertainties during the optimization procedure. But the concept suffers from
the lack of αx and βx values to the corresponding (α/β)x ratio and although we used a
reasonable approximation to derive these values, they are still artificial. The LQ parameters
αx and βx can only be determined from in–vitro cell survival experiments, whereas an
effective, cohort–averaged (α/β)x ratio can also be obtained from clinical studies (Stavrev
et al. 2015).

Instead of optimizing a cost function of the biological effect, the RWD (i.e., RBE×Dose)
can be used. The advantage of the RWD method is that the separate knowledge of αx and
βx is not needed. The disadvantage is an increased computational effort (see equation 10.3).
Therefore, the gradient of the RBE is typically neglected in the optimization, justified
with its assumed small contribution to the total gradient (Mairani et al. 2013). However,
optimizing the biological effect allows us to take the full gradient in the optimization
procedure into account and therefore allows for a fast optimization. The RBE depends on
the LETd and the dose, thus minimizing the LETd or the dose in an OAR separately does
not necessarily result in a lower biological effect. Hence, the biological effect optimization
is a possibility to directly account for that and additionally for the sensitivities of different
tissue types.

Additionally to the uncertainties in RWD, proton therapy suffers from setup and range
uncertainties (Lomax 2008). These uncertainties are typically accounted for in the deriva-
tion of the PTV margins (Park et al. 2012). In order to minimize the clinical conse-
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quences of these uncertainties, robust treatment planning techniques are currently investi-
gated (Casiraghi et al. 2013, McGowan et al. 2015, Ammazzalorso et al. 2014, Hopfgartner
et al. 2012). However, robust treatment planning could also improve by taking biological
uncertainties in account.

This study showed only 2 exemplary patient cases. For generalization of the results,
further studies investigating more patients are required.

10.5 Conclusion

In this study the uncertainties of the RWD estimation in the framework of the Wedenberg
model have been investigated for exemplary cases of nasopharyngeal and prostate cancer
tumors. For the nasopharyngeal cancer patient, the uncertainty of (α/β)x dominated.
Nevertheless, the uncertainty originating in q was not negligible. For both fractionation
schemes in the prostate cancer patient, the uncertainty of either of the two sources of un-
certainty was of comparable magnitude. Therefore, neglecting the uncertainty originating
in the fit to experimental data would lead to a considerable underestimation of the total
uncertainty. Biological modeling can hence benefit by a reduction of both q and (α/β)x
uncertainties.

In the CTV, the RWD1.1 was higher than the RWDw in the nasopharyngeal cancer
patient, but within the total uncertainty band. Although dose and LETd were comparable
in the standard fractionation TP of the prostate cancer patient (low (α/β)x), the RWD
was significantly underestimated by the RBE = 1.1 approximation. However, in the hy-
pofractionation plan for the prostate cancer patient, RWD was significantly overestimated
by the RBE = 1.1 approximation. In contrast to the CTVs, the RWD1.1 significantly un-
derestimated the RWDw in all OARs apart from the optic nerve with respect to the total
uncertainties.

In the conservative optimization strategy presented in this paper, the worst case tissue
specific (α/β)x was used in the biological effect optimization. The RWDw to OARs could
be reduced while yielding a homogeneous RWDw distribution in the target. Since it is
unlikely that the accuracy of the (α/β)x ratio increases in a short term, a possibility to go
beyond RBE = 1.1 could be to consider the uncertainties in a robust optimization strategy.
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Chapter 11

GEANT4 hadronic models for
prompt–gamma emission

The material contained in this chapter was published in Physics for Medicine and Biology,
in volume 59, in issue 7, in April 2014, with the title Assessment and improvements of
GEANT4 hadronic models in the context of prompt–gamma hadrontherapy monitoring, by
Dedes et al. (2014).

11.1 Introduction

The utilization of ions for radiotherapy purposes provides significant advantages in com-
parison to conventional x–ray radiotherapy. Massive charged particles have a maximum
energy deposit close to the end of their range. This, combined with an energy dependent
finite range, results in a sharp energy deposit called the Bragg peak. The characteristic
dose–depth profile of ions allows for a high conformation of the dose to the tumor volume.
Consequently, the main advantage of hadrontherapy is the potential to significantly reduce
dose to healthy tissues, while delivering the prescribed dose to the malignant tissue. Fur-
thermore, in the case of carbon ions, the increased biological effectiveness in the Bragg
peak region is advantageous when treating radioresistant tumors.

The sharpness of the dose deposit which characterizes hadrontherapy, makes the online
monitoring of the dose a major challenge. Several methods have been proposed for mon-
itoring of the dose and/or the ion path in the patient. Positron emission tomography is
the only modality used in clinical practice so far (Pawelke et al. 1997, Parodi et al. 2007)
that provides control of the delivered dose after treatment. It takes advantage of the
positron emission and annihilation, originated from β+ radioactive nuclei that are pro-
duced by nuclear reactions in the patient’s body. Methods which exploit other types of
radiation are currently under study and development. Efforts are mainly invested in the us-
age of secondary proton and prompt–gamma emission, induced by nuclear reactions in the
body of the patient during irradiation. Both for prompt–gammas (Min et al. 2006, Testa
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et al. 2008, Testa et al. 2009) and for protons (Henriquet et al. 2012, Gwosch et al. 2013)
correlation between the ion path and the emission profiles has been observed, which makes
them promising candidate modalities for real–time hadrontherapy monitoring.

Monte Carlo simulation tools play an important role in the study and development of
real–time monitoring systems for hadrontherapy. They are thoroughly used in feasibility
studies, for detector optimization and finally they will be used during monitoring in order
to identify deviations from the treatment plan. In the present work we use the GEANT4
toolkit (Agostinelli et al. 2003, Allison et al. 2006) in order to assess its performance
and accuracy in the description of prompt-gamma emission from carbon ion irradiation.
Similar studies, focusing on proton irradiation, have been done in the past. In Jarlskog
& Paganetti (2008), physics settings for GEANT4 that best reproduce various experimental
results related to proton therapy have been proposed. In Verburg et al. (2012), a detailed
comparison between different Monte Carlo codes, dedicated nuclear reaction codes and
experimental data of prompt–gamma emitted depth profiles and specific prompt–gamma
spectral line cross sections is presented.

Having identified discrepancies between simulated and experimental data, we focus on
the quantum molecular dynamics (QMD) model (Niita et al. 1995, Koi 2010) in order
to improve GEANT4 predictions in hadrontherapy relevant observables. The QMD model
describes the dynamic part of ion–ion collision and, interfaced to statistical de–excitation
models, it produces the final states of the nuclear interaction. We use physical free pa-
rameters of the model, which are known to have a major impact on the nuclear reaction
dynamics and products, in order to achieve better description of prompt–gamma yields
obtained with various beam energies. As proposed by past theoretical studies (Hartnack
et al. 1998, Maruyama et al. 1998) the main initial constraints of the parameters come
from the optimization of the QMD description of well established nuclear properties such
as nuclear density and nuclear binding energy. In our work, we perform this optimization
mainly considering nuclei anticipated in a hadrontherapy application, rather than much
heavier nuclei which were used in order to obtain the default values of the parameters used
in the current GEANT4 implementation. We present the impact of our optimization com-
pared to the available prompt–gamma experimental data. Furthermore, as we intend to
improve the performance of GEANT4 concerning several typical hadrontherapy monitoring
observables rather than focusing only on prompt–gamma emission, we also investigate the
impact of our optimization on the prediction of charged particle emission.
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11.2 Materials and methods

11.2.1 Experiments

The feasibility of hadrontherapy monitoring by means of prompt–gamma detection has
been demonstrated and confirmed by several experimental studies (Min et al. 2006, Testa
et al. 2008). Some of those experiments have been performed by our group at various facil-
ities. Experiments using carbon ion beams at the Grand Accélérateur National d’Ions
Lourds (GANIL, Caen, France), the GSI Helmholtzzentrum für Schwerionenforschung
(GSI, Darmstadt, Germany), the Heidelberger Ionenstrahl–Therapiezentrum (HIT, Heidel-
berg, Germany), and using proton beams at the Westdeutsche Protonentherapiezentrum
Essen (WPE, Essen, Germany) and at the HIT.

The main common characteristic of all the aforementioned experimental setups is the
detection of prompt–gammas emitted from the target, at an angle of 90o with respect to
the beam axis. For this purpose we have used scintillating detectors behind a collimator
in order to scan the target along the direction of the impinging beam. Measurements have
been also performed at 60o and 120o (Testa et al. 2009). Those experiments have shown
that the signal to background ratio could be improved when avoiding forward angles, due to
the fact that prompt–gammas are emitted isotropically while massive particles are mainly
oriented towards the forward region. However, the geometrical simplicity of sampling
at 90o with respect to the beam axis when aiming to obtain a depth profile, made the
perpendicular geometrical layout the preferred selection.

CATANIA 80 MeV/u 12C

This experiment was performed at the Laboratori Nazionali del Sud (LNS) Instituto
Nazionale di Fisica Nucleare (INFN) di Catania, by a collaboration of Italian groups from
Rome, Frascati and Catania (Agodi et al. 2012). An array of four LYSO detectors of
15 × 15 × 15 mm3 was placed at 90o with respect to the beam line, at 740 mm from a
40× 40× 40 mm3 PMMA target (approximate chemical composition as atomic ratio: 8%
H, 60% C, 32% O).

GANIL 95 MeV/u 12C

A barium fluoride (BaF2) detector, of hexagonal shape with 50 mm edge and 140 mm
length, was positioned along with some additional lead shielding at 605 mm from the beam
axis. A 200 mm thick collimator with a 2 mm slit also made of lead was placed between the
target and the detector. The target consisted of 27 PMMA slices 50× 50× 2.2 mm3 each.
In order to suppress most of the neutron background, an energy threshold of 2 MeV on the
collected energy in the detector and a time window of 2.7 ns in the time–of–flight (TOF)
spectrum (around the prompt–gamma peak) were used. Finally, a background subtraction
method based on the TOF measurement has been developed to retrieve net gamma yields.
The data were first presented in Testa et al. (2010) and the results of the newest analysis
used here were published later in (Pinto et al. 2015).
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GSI 310 MeV/u 12C

A BaF2 detector, similar to the one described above was positioned at a distance of 1345 mm
from the beam axis with a 200 mm thick lead collimator between the target and the detec-
tor. The target consisted of five plastic flasks filled with water. Each flask had dimensions
of 120× 250× 40 mm3. Special care was taken to prevent open spaces between flasks. The
collimator had a slit of 4 mm. Some lead shielding was added to the setup and several
water containers were placed after the collimator and before the detector in order to slow
down neutrons, and thus to better identify prompt–gammas by TOF. An energy threshold
of 2 MeV on the collected energy in the detectors and a time window of 3 ns were applied.
The same background subtraction as for the GANIL experiment was used. The data were
first presented in Testa et al. (2010) and the results of the newest analysis used here were
published later in (Pinto et al. 2015).

WPE 160 MeV p

This experiment has been performed at the Westdeutsche Protonentherapiezentrum Essen
(WPE) by IBA and ULB (Université Libre de Bruxelles) (Smeets et al. 2012). A cylindrical
PMMA target of 75 mm radius and 200 mm length has been irradiated with a 160 MeV
proton beam. At 90o with respect to the beam direction and the PMMA cylinder axis, a
cylindrical NaI crystal was placed at a distance of 500 mm. The dimensions of the crystal
were 76.2 mm in length and diameter and the cylinder was oriented with its axis being
perpendicular to the beam direction. A 100 mm thick lead wall was placed between the
target and the detector, at a distance of 200 mm from the target axis. In the lead wall a
52 × 50 mm2 hole was either open or blocked, so as to register the two respective energy
spectra. Finally, a net energy spectrum was calculated by the subtracting the open/closed
wall spectra.

In the next sections we compare data from the aforementioned experiments with GEANT4
Monte Carlo simulations. In order to perform this comparison in a reliable manner, we
have modeled the experimental setup in the following way: rather than an ideal particle
detection in the sense of counting particles entering a volume that simply matches the
geometrical characteristics of the actual detector, therefore taking into account only the
geometrical acceptance, we have modeled the detector material and all the interactions of
every particle that reaches the simulated detector. That means that for every simulated
particle that enters the detector volume, all interactions are simulated and both the initial
impinging particle and all the created secondaries are tracked until they get absorbed or
escape the detector volume. What is registered is the total energy deposit in the detector
and the TOF of the initial particle. The analysis of the simulations follows closely what
was done for measured data. The selection of an event in the detector is done by applying
the same criteria as for the measurements, on the total deposited energy and TOF, without
any other a priori identification of the impinging particle. The results simulated are then
compared to the experimental data (again hits in the detector represented by an energy
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deposit and a registered TOF), which are calibrated and corrected for the dead time.

The scope of this study is to assess the performance of the hadronic models available
in the GEANT4 toolkit in the context of hadrontherapy applications and furthermore to
propose improvements.

11.2.2 GEANT4 hadronic models

General description

The GEANT4 simulation toolkit offers a large variety of physics models for the simulation
of several processes which can occur during the transportation of particles through matter.
In addition to that, there is quite often more than one model describing the same process
(either complementary in terms of energy regime validity or valid for the same energy
range). Therefore the user can select not only among the physical processes that are
essential for his/her study, but also choose among alternative description/models for a
given physical process. In the current work we will mainly discuss the influence of the
hadronic nuclear models on the predictive performance of GEANT4 in the context of the
prompt–gamma hadrontherapy monitoring. In table 11.1 we present the theoretical models
used in this study for the simulation of a low energy nuclear collision, grouped in three
phases which describe such an interaction: the collision, the equilibration and the de–
excitation phase.

In the simulation of the proton beam experiment we have used the binary cascade
(BIC) model. In the simulation of our carbon beam experiments we have used two of the
available nuclear models, the QMD model (Niita et al. 1995, Koi 2010) and the binary light
ion (BLI) reaction model1. We should note here that the QMD model, contrary to the BLI
model, does not make use of the precompound model (see footnote 1) as a transition to the
de–excitation phase. For both cases the de–excitation phase is the same. A detailed table
of the hadronic physics lists used can be found in appendix D.0.1. In the next subsection
we give a brief description of each of the aforementioned models.

Table 11.1: Different phases of a nuclear reaction in GEANT4 and the corresponding theo-
retical models used in the current study. ’Ions’ refers to all the charged particles heavier
than protons in the framework of this study.

Particle Collision phase Equilibration phase De–excitation phase

Ions
Quantum molecular dynamics ∅

Binary light ion reaction

Precompound

Statistical multi–fragmentation
Fermi break–up, Evaporation

Nucleons Binary cascade

1http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/BackupVersions/
V9.4/fo/PhysicsReferenceManual.pdf
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Quantum molecular dynamics (QMD) model

The collision process which is handled by QMD is described in a collective/dynamic ap-
proach. All the nucleons in the projectile and target nuclei are considered as participants
in the process and are tracked simultaneously during the collision. Each nucleon state is
represented by a Gaussian wave function φ(r) of width

√
L,

φ(r) ≡ 1

(2πL)3/4
· exp

(
−(r − ri)

2

4L
+

i

~
r · pi

)
, (11.1)

with i being the imaginary unit, and ri and pi annotating the centers of position and
momentum of the i-th nucleon. The total wave function of the system is considered to
be the direct product of all the nucleon wave functions participating to it. During a
collision, the equation of motion of each nucleon is described by Newtonian equations and
the stochastic nucleon–nucleon collision term. The Newtonian equations are derived by the
Hamiltonian (H) derivatives on momentum and position. The stochastic nucleon–nucleon
collision term is the free body collision between two nucleons, under the condition that it
is not Pauli blocked.

It is important here to provide some additional information about the terms of the
QMD Hamiltonian. The Hamiltonian H = T + V , consists of the kinetic energy term
T and the potential energy term V . The potential energy term is further decomposed
to a Skyrme type potential (Skyrme 1958), a Coulomb potential related to electrostatic
interactions and a symmetry term which accounts for the instability of nuclei due to the
difference between proton and neutron numbers. The Skyrme interaction is characterized
by an effective potential which reduces the description of N–N body interactions to a two-
body contact interaction (closely related to that of the free nucleon–nucleon scattering)
and a three–body repulsive contact interaction, which describes the effect of the presence
of additional nucleons on the two–body interactions. Averaged over all nucleons, the net
result of Skyrme type interactions is equivalent to a two–body nuclear density dependent
interaction.

For the calculation of a collision event, QMD implemented in GEANT4 follows the sub-
sequent steps:

• The projectile and the target nuclei are initialized in their ground states.

• The constituents of the system are propagated under the influence of their mutual
potential, taking into account the hard scattering interactions:

– calculation of interaction densities, forces and the Hamiltonian

– propagation of all particles according to Hamilton’s equation of motion

– perform all hard scatterings within the hardcoded time limit

– decision for each hard scattering whether its final state is Pauli blocked.
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• Clustering of all the participant nucleons to excited fragments, according to their
momenta and distances. Excited fragments created after clustering are forwarded to
the de–excitation part.

The clustering distance ∆R2 is given by the following equation:

∆R2 = (ri − rj)
2 (1 + γ2

ijβ
2
ij

)
≤ R2 (11.2)

where γij is the Lorentz factor, βij the ratio of the speed of the j-th particle to the speed
of light with respect to the i-th particle in the cluster and R2 a distance cut–off value. In
the end of this iterative algorithm some of the nucleons are identified as clusters (heavy or
light nuclei) and some are left isolated (secondary protons and neutrons).

Binary cascade (BIC) model

BIC (Folger et al. 2004) treats the collision of nucleons with nuclei. It is an intranuclear
cascade approach in which the primary projectile nucleon and the secondary particles are
propagated in the nucleus. Interactions take place exclusively between a primary or a
secondary projectile–like particle and an individual nucleon of the nucleus, contrary to the
collective and simultaneous approach of QMD where the nucleons of the target nucleus can
interact with each other, through the Skyrme type potential.

The projectile particle is transported towards the target nucleus. Once inside the nu-
cleus, the projectile nucleon has its energy corrected taking into account Coulomb effects.
Instead of using a self–generating potential as in QMD, in the case of BIC the collective
nuclear effect of an homogeneous nucleus upon primary and secondary particles is approx-
imated by an effective time independent nuclear potential. Particles are propagated inside
this nuclear field by numerically solving the equation of motion. The basis of the descrip-
tion of the reactive part of the scattering amplitude is the two–particle binary collision.
The resulting secondaries are checked for the Pauli exclusion principle. If a secondary par-
ticle has a momentum lower than the Fermi momentum, the interaction is suppressed and
the original primary particle is tracked to the next collision. If the interaction is allowed,
the secondaries are treated as new primaries, interacting in the target nucleus. The cas-
cade finally terminates when the average and maximum energy of secondaries are below a
given threshold. The remaining fragment is treated by the precompound and de–excitation
models. More details can be found in the GEANT4 Physics Manual, chapter 26.

Binary light ion (BLI) reaction model

This is an extension of the BIC for light ion reactions. It is a hybrid model between
a classical cascade model and the QMD description. In analogy to the BIC, the initial
cascade is prepared in the form of two detailed three–dimensional nuclei. The lightest of
the collision partners is selected to be the projectile. The nucleons of the projectile are
then entered, using their positions and momenta, into the initial stage of the cascade. The
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participant nucleons that are transported into the target nucleus have again exclusively
binary scattering with the target’s internal nucleons.

It bears a similarity to QMD in the sense that here also, each participant is described
by a Gaussian wave packet and the total wave function is assumed to be the direct product
of each individual wave function. Nevertheless, in the BLI the Hamiltonian from which
the equations of motion are derived is calculated from a simple time independent optical
potential. One additional and essential difference compared to QMD is that a participant
particle in BLI is either a primary particle, i.e. a nucleon in the projectile/target nucleus,
or a secondary particle generated in the collision process, which is also propagated in the
target nucleus. But scattering between participant particles of the same system (either of
the target or the projectile) is not taken into account. As in the case of BIC, secondary
products of the cascade are checked by Pauli’s exclusion principle before stored.

Precompound model

The precompound model can provide either a possibility to extend at low energy range
the hadron kinetic model for nucleon–nucleus inelastic collisions, or to act as a smooth
transition phase between the kinetic stage of the reaction (i.e. BLI) and the equilibrium
stage where the equilibrium de–excitation models take over. In the case where the pre-
compound model is used as a low energy dynamic part of the collision, the recommended
maximum single nucleon projectile energy is 170 MeV. When using BIC or BLI models,
the passage to the precompound model as an equilibration phase of the nuclear reaction
is decided as follows: as long as there are still particles above the kinetic energy threshold
of 75 MeV, cascade will continue. If this is not the case and when the mean kinetic energy
of the participants is lower than 15 MeV, the cascade stops and the precompound model
handles the reaction.

The initial information required for the calculation of the precompound nuclear stage is
the mass number A, the atomic number Z, the four–dimensional momentum–energy vector
P 0, the excitation energy U and the numbers of excitons, holes and charged excitons. The
exciton number is n = p+h, where p is the number of particles and h the number of holes.
All cascade nucleons with kinetic energies above the Fermi energy are called particles. The
holes are results of cascade interactions which occupy states below the Fermi energy and
occur when particles strike nucleons from a nucleus. A more comprehensive description on
the simulation of the precompound reaction and the modeling of pre–equilibrium emissions
of n, p, d, t, 3He and α particles can be found in the GEANT4 Physics Manual.

De–excitation

After the collision and equilibration phase (wherever available), nuclear fragments have
reached a state of statistical equilibrium with a non–zero excitation energy. The next step
is to de–excite those fragments according to the different processes that depend on A, Z
and excitation energy. This phase is handled in GEANT4 by the Excitation Handler class.
It is responsible for dispatching individual fragments to the models that perform the actual
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de–excitation of the compound nucleus, based on various parameter ranges of applicability
of the models (depending on the atomic and mass numbers, excitation energy etc). In the
end of the de–excitation process a list of secondary single particles (i.e. nucleons), and
nuclear fragments in a final state of zero excitation energy are produced. The Excitation
Handler manages five de–excitation models: evaporation (of light particles), fission, Fermi
break–up (FBU), multi–fragmentation and photon evaporation.

The handling of all available de–excitation models in GEANT4 version 9.4 is the following:
each product of the nuclear interaction is forwarded to the handler which takes the decision
of the model route to be followed. If the fragment is a single nucleon (no de–excitation can
take place) it is stored directly as a final product of the collision. In case it is not a nucleon,
several criteria are checked: isotope abundance, excitation energy per nucleon, A and Z
of the fragment. Depending on those criteria, the fragment follows a two–step approach.
The first is a hierarchical linear course applied only once: if the fragment has an excitation
energy lower than a given threshold (1 keV) and it is a stable isotope, it is considered a
final product. Otherwise, different mechanisms are tried in the following sequence: FBU,
then statistical multi–fragmentation (SMF) and finally evaporation. The fragment that is
handled by any of those three processes breaks/creates one or more de–excitation products
which are stored in a temporary list.

This list is then used for the second step. The only difference in this stage compared
to the first one, is that SMF is not available and that the whole process is applied in an
iterative approach until only final state products are obtained (no possible further de–
excitation). This second step is: unless the temporary product is a single nucleon then
first FBU is tried and if it is not applicable, then evaporation. It is constantly checked if a
fragment other than a single nucleon has energy lower than a given threshold (1 keV) and
if it is a stable isotope (to be considered again as a final stable product). In the end of
those two steps, the first applied only once and the second iterative, there are only final
stable products that are passed to the transportation algorithm.

It is useful to describe briefly each de–excitation model that was mentioned above and
also state the criteria applied to the candidate fragment in order to qualify for each of
those de–excitation models.

The FBU model predicts final states as results of an excited nucleus with mass number
A < 17 and atomic number Z < 9. The model describes the situation of light nuclei where
the excitation energy per nucleon is often comparable with nucleon binding energy. There-
fore the light nucleus can break up in two or more fragments whose types and properties
depend on the available phase space. For the break–up of such a nucleus to be possible,
there should be a sufficient excess of energy in the system, which will be attributed to
all fragments of a given break–up configuration as kinetic energy. The calculation of the
available energy (Ekin) takes into account the mass and the excitation energy of the initial
excited nucleus, the excitation energies and the masses of the potentially produced frag-
ments and finally, the Coulomb barrier. This energy is derived by the following equation:
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Ekin = U +M(A,Z)− ECoulomb −
n∑
b=1

(mb + εb) (11.3)

where the Coulomb energy is approximated by:
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U and M(A,Z) are the excitation energy and the mass of the initial excited nucleus, n is
the number of potential fragments, mb and εb are the masses and the excitation energies
of the potential fragments, Vo is the volume of the system corresponding to the normal
nuclear density and κ = V/Vo is a free parameter. The default value of this parameter is 6
and the physical meaning of V is the freeze–out volume of the expanding excited nucleus.
The probability (statistical weight) for a nucleus to break up into n components (nucleons,
deuterons, tritons, alphas etc) is given by:
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where Sn is the spin factor (gives the number of states with different spin orientations),
Gn is the permutation factor (takes into account the identity of components in the final
state), Ω = (2π~)3 is the normalization volume, and Γ is the gamma function.

The SMF model is used to predict final states resulting from a highly excited nucleus.
The basic criterion to be fulfilled by the excited nucleus is that its excitation energy should
exceed 3 MeV/u. At those excitation energies the mechanism of a complete break of the
nucleus into fragments becomes dominant. The excited primary fragments propagate inde-
pendently in the mutual Coulomb field and undergo further de–excitation. Further details
concerning SMF are omitted from the current report due to the fact that this de–excitation
channel was not available in the GEANT4 version used for this study (9.4). Comprehensive
information on the model can be found in GEANT4 Physics Reference Manual.

The evaporation model handles an excited nucleus which is characterized by its mass
number A, atomic number Z and excitation energy U . Depending on those characteristics
the nucleus can eject single nucleons (p, n), light fragments (d, t, 3He, α) and photons. The
emission of particles by an excited compound nucleus has been successfully described by
comparing with the evaporation of molecules from a fluid. The first statistical treatment
of compound nuclear decay is due to Weisskopf & Ewing (1940). In that approach the
probability to go from a state i to another state d and vice versa is related to the density
of states of the two systems (detailed balance principle):

ρiPi→d = ρdPd→i (11.6)
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Therefore the probability that a parent nucleus i with and excitation energy U emits a
fragment j in its ground state with kinetic energy ε is:

Pj(ε)dε = gjσinv(ε)
ρd(Emax − ε)

ρi(U)
εdε (11.7)

where ρi(U) is the level density of the evaporating nucleus, ρd(Emax) is that of the residual
nucleus after emission of a fragment j and E max is the maximum energy carried by the
ejectile. gj is a coefficient taking into account the spin and the mass of the ejectile, and
σinv is the inverse reaction cross section. The inverse cross section reaction is expressed by
means of an empirical equation, fixing parameters which give a good fit to the continuum
theory. In addition, for charged ejectiles, the Coulomb barrier is taken into account. An
alternative model is the generalized evaporation model (GEM), which also considers the
emission of heavier nuclei than α particles and uses a more accurate level density function
for the total decay width. In the current study, the GEM was used. More information can
be found in GEANT4 Physics Reference Manual.

The two remaining de–excitation channels, fission and photon evaporation, are incorpo-
rated (nested calls) in the evaporation channel, although they can be also called separately.
Those channels are competitive to particle/light fragment emission. More specifically, fis-
sion takes place for excited nuclei with mass number A > 65, therefore it is not of great
importance for our current studies. On the contrary, photon evaporation is an essential
de–excitation mechanism for the hadrontherapy energy and projectile–target combination
domain, and especially for the prompt–gamma monitoring application. During the calcu-
lation of each channel’s evaporation probability, photon emission is one of the candidates
taken into account. Despite the very low probability for relatively high excitation energies,
this channel can still in principle compete with particle emission. In case evaporation is
selected, the new nucleus is iteratively processed by the excitation handler in order to be
further de–excited, unless it is already in its ground state. For each iteration, probabilities
are recalculated and a new evaporation channel is selected. Nevertheless, the impact of
photon evaporation is much more important when the excited nucleus has no other de–
excitation channel available than photon emission. In that case, instead of emitting only
one photon and recalculating all the channel probabilities, a cascade of photon emissions
takes place.

There are two different mechanisms in GEANT4 that describe photon emission. The
first is the continuous photon emission. This mechanism is in competition with the parti-
cle emission channels and the term continuous characterizes the emitted gamma energies
(not quantized). Only giant dipole resonances (GDR, mass–charge center separation) E1-
transitions are considered as the main source of emission from highly excited nuclei. The
probability of such an emission is related to the inverse reaction cross section (photoab-
sorption) which is given by the expression:

σγ(εγ) =
σoε

2
γΓ

2
R(

ε2γ − E2
GDR

)2
+ Γ2

Rε
2
γ

(11.8)
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where σo = 2.5A mb, ΓR = 0.3EGDR and EGDR = 40.3A−1/5 MeV are empirical parameters
of the GDR. The second type of (photon) evaporation process consists of discrete photon
emission. Excited fragments whose excitation energy is below the highest level of a discrete
gamma transition, de–excite via a cascade of photon emissions of discrete energies. Those
photon emissions follow tabulated nuclear levels and E1, M1 and E2 transitions. At this
step, competition between discrete energy photons, GDR photons and particle evaporation
is neglected. For the energy range and nuclei type of hadrontherapy the main source of
photons from nuclear de–excitation comes from the discrete emission mechanism (approx-
imately an order of magnitude higher than from the continuous one). It is important to
note that, usually, excited fragments within the discrete nuclear levels energy domain do
not initially have exactly the energy of one of the tabulated nuclear levels. In the GEANT4
implementation of discrete transitions this is solved by selecting the nearest nuclear level
as a starting excitation energy and then performing one of the allowed discrete transitions.
For this reason, an energy tolerance is used as a criterion applied when seeking the nearest
level. This tolerance is by default equal to 10 TeV, which means that it is always possible
to find an initial nuclear level and then proceed to the allowed transitions according to the
tabulated data. The discrepancy between experimental prompt–gamma yields and GEANT4
simulated yields has been also addressed in the past (Lestand et al. 2012), using the value
of the tolerance as a free parameter. In this approach, although the desired reduction
in prompt–gamma emission is achieved when significantly reducing the energy tolerance
value (100 keV), it leads to the problem of residual excited fragments. Those fragment
are in that method artificially considered as being in the ground state, although they are
effectively left infinitely into an undefined excited state.

11.2.3 Parameters for QMD model optimization

The calculation of an ion–ion collision described by the QMD model and its implemen-
tation in the GEANT4 toolkit involve a large number of parameters. Those parameters
can be divided into three classes, as described in Hartnack et al. (1998): reaction pa-
rameters, which define the kinematics of a single event (projectile and target masses,
energy etc). Physics parameters that correspond to a detailed description of the inter-
actions (interaction range, potential parameters etc). Those physical parameters may be
changed within a reasonable range and their deduction is a particular goal of the com-
parison with experiments. Technical parameters (time step size, total reaction time etc),
that are used for increased computing time performance of the calculations and should
not affect the observables. After a thorough study of the model as implemented in the
GEANT4 toolkit, we have identified two key parameters that have a considerable effect
on the outcome of a simulated collision and therefore to the final state products occur-
ring after the de–excitation phase. Those two quantities are the square of the width
of the Gaussian wave packet L describing each nucleon state (see equation 11.1), and
the maximum distance criterion R (see equation 11.2) used to assemble the excited nu-
clei after the collision phase, which will be forwarded to the de–excitation models. The
user can access those parameters only from the GEANT4 source code. L is defined in
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/source/processes/hadronic/models/qmd/src/G4QMDParameters.cc, as the wl variable,
with the default value of 2 fm2 (described in the code as having units of length, instead of
the correct squared length, as in the original publication (Niita et al. 1995)). R is defined in
/source/processes/hadronic/models/qmd/src/G4QMDMeanField.cc as the rclds variable,
described as the distance for cluster judgment with a default value of 4 fm.

The wave packet width
√
L in fm should, in approximation, be in the order of the

range of the strong interaction, namely in the order of the fm. Actually the strong force
is repulsive at distances lower than 0.8 fm (i.e. strong force between quarks in a nucleon),
attractive at larger distances (residual nuclear force between nucleons) up to about 3 fm
where it becomes negligible, reaching a maximum strength approximately at 0.8−1 fm. The
parameter L determines the effective interaction range of the nuclear potential, thus influ-
encing the final states of the collision. As further explained in (Niita et al. 1995, Hartnack
et al. 1998, Maruyama et al. 1998), the value of L is a free parameter of the QMD model,
and as a consequence it can be optimized for certain configurations of projectile/target
nucleus species. Apart from the description of the collision, the interaction range has a
deep impact on the description of nuclear properties of a single nucleus, such as the surface
properties as well as the binding energy of the modeled nucleus. Those properties, along-
side with experimental data describing particle fluences, can be used for the determination
of the most appropriate value of the parameter. For heavy ion collisions relatively high
values of L are used, while for Ca–Ca and lighter systems values down to 1 fm2 have been
used to various QMD model flavors. Note that there is a factor of 4 difference in the
definition of values of L between the mathematical formalism of Hartnack et al. (1998)
and the formalism used both in the present paper and in the GEANT4 QMD implementa-
tion. Therefore a value of 4 fm2 in Hartnack et al. (1998) is equivalent to a value of 1 fm2

in the GEANT4 formalism. Throughout this work we will be using the GEANT4 notation,
mathematically consistent with the form of equation 11.1.

Our adaptation of QMD for better performance in the domain of hadrontherapy is
based on three types of observables:

• In regard to prompt–gamma emission we examine two types of yields. The first one
concerns the prompt–gamma depth profiles, compared to the ones obtained in the
experiments described in section 11.2.1. The main aim of this work is to obtain the
best possible agreement with the experimental prompt–gamma profiles. A second
type of observable is the number of emitted prompt–gammas in the target, accessible
only by Monte Carlo simulations. Although this quantity cannot be directly com-
pared to measurements, it provides an indication of the influence of the adaptation
of QMD on the total number of produced prompt–gammas.

• The modeling of an ion–ion collision starts with a basic description of the projectile
and target nuclei. The parameters of the model, apart from the final states of the
collision, also affect the description of the initial nuclei. Therefore, we utilize some
of well established nuclear properties in order to obtain physical limits for the free
parameters and additional justification of the selection of those parameters that pro-
vide the best agreement with the experimental data. In the current study the nuclear
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properties considered are the binding energy per nucleon and the nucleon density of
the nucleus.

• In order to obtain a more complete overview of the adaptation of QMD towards a
better description of prompt–gamma emission, we also study the effect of the pro-
posed changes on the emission of charged secondary particles. For this purpose we
use experimental data that are relevant to hadrontherapy applications. Such mea-
surements have been performed at GANIL, using a 95 MeV/u 12C beam impinging
on PMMA targets of various sizes (Braunn 2010, Braunn et al. 2011). We focus on
the angular distributions of charged particles.

11.3 Results

11.3.1 GEANT4 performance

For the comparison between experimental data (section 11.2.1) and simulations, GEANT4
version 9.4 was used. In all cases, unless otherwise mentioned, both the particle trans-
portation step size and the particles production cut (in range) used were the default
1 mm. For the hadronic interactions of ions with matter the QMD model was used (un-
less mentioned otherwise, in those cases the BLI model was alternatively tested). Proton
and neutron hadronic interactions with matter were simulated by the BIC model. Espe-
cially for neutrons with energy lower than 20 MeV, the high precision models available in
GEANT4 were used (G4NeutronHPElastic, G4NeutronHPInelastic, G4NeutronHPCapture,
G4NeutronHPFission, see appendix D.0.1). Those models use tabulated cross sections for
the elastic and inelastic interactions, fission and capture of neutron by different nuclei.
Finally, for the electromagnetic interactions of particles with matter we have used the
so–called G4EmStandardPhysics option3 GEANT4 models package.

At the time of the study, the publicly available GEANT4 version was the 9.4. Until
the completion and submission of it, versions 9.5 and 9.6 were released. Although all the
results presented in the current document were obtained with version 9.4, their validity in
versions 9.5 and 9.6 was verified. In figure 11.1, the prompt–gamma emission in the cases
of 95 and 310 MeV/u 12C, impinging on PMMA or water target is shown (beam and target
characteristics were selected so as to match those of the GANIL and GSI experiments,
described in section 11.2.1). The emission profiles in versions 9.5 and 9.6 are compatible to
those obtained with 9.4, within 10%. Therefore, the content and conclusions of this study,
are relevant also for GEANT4 9.5 and 9.6.

In order to assess the performance of GEANT4 in the context of hadrontherapy mon-
itoring by means of prompt–gamma detection, we have compared the energy spectrum
obtained with an 80 MeV/u 12C beam on PMMA target and the absolute yields of the
depth profiles for 12C beams of 95 MeV/u and 310 MeV/u using PMMA and water tar-
get respectively, with the predictions of GEANT4. For the case of proton beam, we have
used the prompt–gamma energy spectrum obtained by irradiating a PMMA target with
160 MeV protons.
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Figure 11.1: Comparison of the simulated prompt–gamma emission for three different
GEANT4 releases (9.4, 9.5 and 9.6). Left, from a 95 MeV/u 12C beam in a PMMA target.
Right, from a 310 MeV/u 12C beam in a water target (the steep drop after 20 cm is due to
the geometrical limit of the target volume).

Throughout all our comparisons, as observed in figure 11.2, GEANT4 simulations con-
sistently overestimate the prompt–gamma yields by a factor of about 1.8 to 2.8, over an
energy range from 80 to 310 MeV/u for the case of 12C. For the case of 160 MeV protons,
the integral of the open/closed wall difference prompt–gamma energy spectrum from 1
to 10 MeV is overestimated by a factor of 1.7. From the presented results it is obvious
that the GEANT4 nuclear models in their current status, cannot describe quantitatively the
experimental profiles with sufficient accuracy.

In the next sections we proceed a step further towards the improvement of the existing
models, in order to obtain a more realistic quantitative description of the experimental
data. For this study we focus on the QMD ion–ion reaction model and therefore on the
prediction of prompt–gamma yields from 12C beams. This decision was based on the fact
that QMD yields slightly better results than BLI (see figure 11.2 upper right), but most
importantly because the QMD model is expected to provide a more realistic and complete
description of the N–N particle system interaction, as described in section 11.2.2.
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Figure 11.2: GEANT4 comparison with the experiments described in section 11.2.1. Upper
left, the prompt–gamma energy spectrum obtained in Catania (Agodi et al. 2012) by
irradiating a PMMA target with a 80 MeV/u 12C beam. Upper right, the prompt–gamma
depth profile obtained at GANIL by the irradiation of a PMMA target by a 95 MeV/u
12C beam (systematic uncertainty of approximately 20%). Lower left, the depth profile
obtained from a water target with a 310 MeV/u 12C beam (systematic uncertainty of
approximately 2%). Lower right, the open/closed wall difference prompt–gamma energy
spectrum obtained by IBA at WPE (Smeets et al. 2012), by the irradiation of a PMMA
target with 160 MeV protons. The error bars denote statistical error of one standard
deviation.
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11.3.2 Prompt–gamma emission

As a first step, we have studied the impact of L on the number of photons, protons, neutrons
and alpha particles produced/emitted in a 50×50×50 mm3 PMMA target irradiated with
95 MeV/u 12C beam (this was the target of the actual GANIL experiment). The results
are presented in figure 11.3 in terms of secondary particles emitted in the target. The
default value of the parameter in GEANT4 QMD is L = 2 fm2. As seen in the results, using
the default parameter value gives the maximum of the emitted gamma distribution. For
the range scan of the L values shown in figure 11.3, no physical limitation was taken into
consideration (some of the values depicted there be will later on excluded as unphysical),
as at this stage it is crucial to stress the sensitivity of photon emission to the value of
the parameter L. Two conclusions can be drawn from those results. First, that as the
default value yields a maximum of gamma emissions in the target, any selection of either
lower or higher values will reduce gamma emission. The second conclusion regards proton,
neutron and alpha yields (chosen here as a representative of light nuclei emission). Proton
and neutron yields seem almost unchanged when using 0.7 fm2 < L < 2 fm2 while they
increase dramatically when using L < 0.5 fm2 or L > 2 fm2. Alpha particle yields seem to
be affected in a similar pattern as photons.

Figure 11.3: Emitted particles per 104 12C ions of 95 MeV/u impinging on a 50×50×50 mm3

PMMA target as a function of the nucleon wave packet width squared L. The error bars
denote statistical error of one standard deviation. The absence of error bars signifies that
one standard deviation would lead to bars smaller than the size of the point markers in
the graph.
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The variation of the L parameter influences the QMD reaction dynamics and conse-
quently,the produced excited final states. The impact of the variation of L on the emitted
prompt–gammas is further explained in figure 11.4 which describes several observables of
95 MeV/u 12C and their secondaries’ induced collisions in PMMA. On the left, the species
of excited nuclear fragments created exactly at the end of the dynamic part of the reaction,
just before the de–excitation process, are shown. In the middle, the distribution of exci-
tation energies of all excited fragments produced by the dynamic (QMD) part and on the
right the energy spectra of prompt–gammas produced in the target are shown. For lower
L values, QMD produces lighter and less excited nuclear fragments that will be forwarded
to the de–excitation phase. Consequently, those fragments require fewer de–excitations
(usually gamma emissions) until they reach their ground state.

Figure 11.4: Left, the species of excited nuclear fragments created exactly at the end of
the dynamic part of the reaction (QMD). Middle, the distribution of excitation energies of
all excited fragments produced by the dynamic part (QMD). Right, the energy spectra of
prompt-gamma produced in the target. All distributions are shown for different values of
L.

The second parameter of QMD under study is the maximum distance R used in clus-
tering of the nucleons after the collision. The process is applied after the lapse of 100 fm/c
which is the time that each collision lasts. At this point the collision process freezes and
all nucleons in the system (former projectile and target) are accessed and clustered ac-
cording to their momenta and distances. All nucleons that lay at distances ∆R2 smaller
than R2 and whose momentum difference is not exceeding a certain threshold are consid-
ered to belong to the same heavier fragment. The clustering distance ∆R2 is described by
equation 11.2. In figure 11.5 we present the distribution of ∆R2 between nucleons, which
occurs for collisions of 95 MeV/u 12C in PMMA target. For indicative reasons we mention
that the GEANT4 QMD default clustering maximum distance is 4 fm (corresponding to a
R2 = 16 fm2). Figure 11.6 shows the impact of different R values on the number of emitted
gammas in 50× 50× 50 mm3 PMMA target irradiated with a 95 MeV/u 12C beam.
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Figure 11.5: Distribution of the square distance between nucleons (equation 11.2), used for
the assembly of excited fragment at the end of the dynamic part of the collision (QMD).
By default nucleons at a distance lower than R2 = 16 fm2 are considered to belong to the
same cluster/fragment.

Figure 11.6: Emitted particles per 104 12C ions of 95 MeV/u impinging on a 50×50×50 mm3

PMMA target as a function of the maximum clustering distance R. The error bars denote
statistical error of one standard deviation. The absence of error bars signifies that one
standard deviation would lead to bars smaller than the size of the point markers in the
graph.
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Similarly to what has been shown for L, figure 11.7 shows that for smaller values of
R the QMD collision products are lighter and less excited fragments, resulting in fewer
gamma emissions during de–excitation.

Figure 11.7: As in figure 11.4, but for different values of R and for L = 2 fm2.

Both R and L variations affect prompt–gamma emission yields, without changing the
characteristic emission lines of the emitted spectra. Nevertheless, the impact of L on the
prompt–gamma emission is more significant than that of R, as one can see in figures 11.3
and 11.6. Furthermore, the parameter L influences not only the dynamics of the reaction
but also the creation of the projectile and target systems, which can be benchmarked using
nuclear properties.

11.3.3 Nuclear properties

The L parameter values for which one achieves a large reduction of emitted photons is for
values of L ≤ 1 fm2 or L ≥ 3 fm2. As there are two possible parameter ranges, that differ
by such a large factor, the selection of L has to be constrained by additional properties
of the collision system. In that way we will be able to define an L–value range that will
reduce gamma emission significantly, but at the same time yield a reasonable prediction of
basic nuclear properties. As such properties we considered the binding energy per nucleon
and the nucleon/charge density of the nucleus, which are independent of the subsequent
de–excitation phase.

In figure 11.8 we present the deviation of the GEANT4 QMD calculated binding energy
per nucleon for five different nucleus species, from the values obtained from the National
Nuclear Data Center (NUDAT2) of the Brookhaven National Laboratory. We selected
12C,16O and 40Ca nuclei based on their abundance in the human body, as well as in the
targets used in our experiments. In addition, we extended our study to 4He, as an example
of very light nuclei, but also included 127I as a token of much heavier nuclei. Such heavy
elements, though less abundant in a patient, have often been used for the selection of
the default value of the wavepacket width. The L range studied was from 0.5 to 3 fm2.
For L ≤ 2 fm2, for all studied nuclei, the binding energy per nucleon calculated by QMD
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is consistent with the NUDAT2 values within a fraction of a per cent, dominated by
statistical fluctuations. Therefore a selection of a value lower than the default will decrease
the emission of prompt–gammas (as shown in section 11.3.2), while at the same time
it will reproduce the expected binding energies accurately. On the contrary, for values
of L ≥ 2 fm2, the calculated binding energy per nucleon diverges up to 70%. For the
heaviest of the studied nuclei (40Ca and 127I), deviations remain small throughout the
whole parameter range, while the lighter the nucleus the more significant they become.
Therefore, for a typical hadrontherapy application, where the majority of the nuclei will
be light, the preferable selection for a new value of L would be lower than the default of
2 fm2, achieving lower prompt–gamma emission and better binding energy calculation for
a wide range of nuclei.

Figure 11.8: Difference in the binding energy per nucleon (BE/N) between GEANT4 QMD
calculations and NUDAT2 values for 4He, 12C, 16O, 40Ca and 127I ground state nuclei.

Subsequently we study the dependence of the nuclear density on the parameter L. In
figure 11.9, the nuclear density of 12C nuclei as a function of the radial distance from the
center of the nucleus, calculated for different values of the parameter L (ranging from 0.8 to
4 fm2) is shown. The nuclear density is calculated as the number of nucleons within a radius
r + ∆r divided by the spherical shell volume V (r + ∆r) − V (r) and compared with data
and theoretical calculations found in Gasques et al. (2002), where their experimental data
have been analyzed using the assumption of either Fermi or harmonic oscillator shapes of
the 12C nucleon density. Their theoretical calculations are based either on Dirac–Hartree–
Bogoliubov (DHB) or Fermi (2pF) distribution. The results show general agreement of
QMD with the data taken from Gasques et al. (2002) for the regions close to the center of
the nucleus (r ≤ 2 fm), while it seems that QMD fails to reproduce the nuclear halo (tail for
r ≥ 2 fm). In specific, for r ≤ 2 fm, 0.8 fm2 ≥ L ≤ 2 fm2 values seem to yield results close to
the available data points and the theoretical DHB calculation, which describes the central
nuclear region data better than the Fermi distribution. For the same region, L ≥ 2 fm2 for
which also the simulated binding energies deviate from the experimental values, nuclear
density is still comparable to that of data and DHB calculation. For r ≥ 2 fm, where QMD
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deviates both from the theoretical calculations and the experimental data for the whole L
parameter range, low L values (L ≤ 2 fm2) seem to affect the shape of the tail towards the
right direction (extending nuclear halo), without achieving though a very good agreement
with data.

Figure 11.9: 12C nucleon density. Left, GEANT4 calculations for different values of L.
For indicative reasons, the theoretical Fermi distribution (2pF) is also shown. Right,
experimental nucleon density values (Gasques et al. 2002) obtained by using in the analysis
the assumption of (a) Fermi or (b) harmonic oscillator shapes of the 12C nucleon density. In
the right figure, the points represent the experimental values and the lines the theoretical
Dirac–Hartree–Bogoliubov (DHB) calculation or the Fermi distribution (2pF).

11.3.4 Charged particle emission

Although the main goal of this work is the improved description of prompt–gamma emis-
sion, a reasonable prediction of charged particle emission has to be maintained. In order to
test the proposed optimization of the QMD model in terms of charged particle emission, we
compared GEANT4 predictions with the data taken from Braunn (2010) and Braunn et al.
(2011). Contrary to the approach for the simulation of the prompt–gamma experimental
setups, we have applied an ideal detection approach for the simulation of this experiment.
Nevertheless, the absence of a realistic detector simulation is expected to have a very small
impact on the presented results. This was verified in (Braunn 2010), pages 84–85, where a
comparison between the results obtained with a full detector simulation and with an ideal
detection approach is presented. A good agreement was found between the two approaches
for detection angles above 10o. Therefore the detection efficiency could be considered close
to 100%, permitting the usage of an ideal detection approach. This is not valid for detec-
tion angles lower than 10o and especially for charged fragments with Z = 1 and Z = 2,
where differences up to 35% and 15% were respectively reported. Finally, in addition to
the ideal detection based only on geometrical acceptance, realistic particle detection energy
thresholds as applied to the measurements were used (Braunn et al. 2011).
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Figure 11.10: Comparison of angular distributions of charged particles with GEANT4 pre-
dictions. Charged fragments of Z = 1 to 6 (H to C), produced by collisions of 95 MeV/u
12C on a 5 mm thick PMMA target. Data taken from Braunn (2010).
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Figure 11.11: Comparison of angular distributions of charged particles with GEANT4 pre-
dictions. Charged fragments of Z = 1 to 6 (H to C), produced by collisions of 95 MeV/u
12C on a 2 cm thick PMMA target. Data taken from Braunn (2010).

This experiment has been performed at GANIL, using a 95 MeV/u 12C beam and
PMMA targets with thicknesses varying from 5 to 40 mm. In figures 11.10 and 11.11 we
present experimental data for the angular distributions of charged fragments with Z = 1 to
Z = 6 in counts per incident ion per steradian (count/ion/sr). Further information with the
corresponding numbers of figures 11.10 and 11.11 can be found in the tables D.2 and D.3
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in appendix D.0.2. For the 5 and 20 mm thick targets, we compare the measurements with
the GEANT4 results for three values of L: default value 2, 1 and 0.8 fm2 (two values in the
parameter space constrained by the studies presented in the previous sections). The results
obtained with L = 1 fm2 and L = 0.8 fm2 are in all cases comparable with the predictions
of the default QMD (L = 2 fm2). Furthermore, using values of L lower than 2 fm2 improves
the predictions of GEANT4 in comparison to the experimental data, in the majority of the
angles and fragment charges for both target thicknesses tested. The only occasion where
the optimized QMD provides consistently a larger discrepancy with the experimental data
than the default QMD (L = 2 fm2), is for Z = 2 (He isotopes) and especially in the case
of the 20 mm thick target.

11.3.5 Prompt–gamma yields – Optimized QMD

In figure 11.12 we compare the predictions of GEANT4 to the measurements obtained
from the experiments described in section 11.2.1. In all three cases presented (upper
left: 80 MeV/u 12C beam at PMMA – prompt–gamma energy spectrum, upper right:
95 MeV/u 12C beam at PMMA – prompt–gamma depth profile, bottom: 310 MeV/u 12C
beam at PMMA – prompt–gamma depth profile), experimental data are better described
when using L ≤ 1 fm2.

For the energy spectrum, the initial (QMD L = 2 fm2) overestimation of the integral
by 100% improves to about 30% for L = 1 fm2 (or –2% for L = 0.8 fm2). For the 95 MeV/u
12C profile, the initial discrepancy of 86% at the entrance of the target and of 165% at the
maximum of the profile decreases to 37% at the entrance and 70% at the maximum of the
profile for L = 1 fm2, or –4% at the entrance and 23% at the maximum of the profile for
L = 0.8 fm2. Finally, for the 310 MeV/u 12C profile, the initial overestimation was 115%
at the entrance of the target and 178% at the maximum of the profile. This discrepancy
has changed to –4% at the entrance and 72% at the maximum for L = 0.8 fm2.

In both 95 MeV/u 12C and 310 MeV/u 12C profiles, some discrepancy, although much
smaller than the initial one, is still observed even when using the proposed values of L.
Two important characteristics of this difference between measurements and experiments
are that it is more pronounced close to the end of the ion range, and furthermore that it
increases at higher beam energy (23% for 95 MeV/u 12C and 72% for 310 MeV/u 12C in the
case of L = 0.8 fm2). Those features can be explained by figures 11.13 and 11.14, where
we present the simulated depth profile of emitted gamma–rays in the target as well as the
distinction between the gamma–rays emitted by ion induced nuclear reactions (QMD) and
p/n induced reactions (BIC). As there is an increasing number of p/n induced reactions
along the ion path, the effect of the QMD optimization gradually becomes less important
at larger depths in the target, where the description of the dynamic part of nuclear reaction
is handled more often by the BIC model. In the extreme case of 310 MeV/u 12C, in terms
of prompt–gamma emission, QMD does not even play the major role beyond the first few
cm of the ion path. At this energy, as expected, we also observe the largest discrepancy
between experimental and simulated profiles. Despite that, even at 310 MeV/u 12C, for the
first few cm of the ion path where QMD plays the major role as shown in figure 11.14, we
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observe that the proposed lower values of L reproduce accurately the experimental point
(figure 11.12 bottom, point at 20 cm).

Figure 11.12: GEANT4 comparison with the experiments described in section 11.2.1. Upper
left, the energy spectrum obtained in Catania (Agodi et al. 2012) by irradiating a PMMA
target with a 80 MeV/u 12C beam. Upper right, the prompt-gamma depth profile obtained
at GANIL by the irradiation of a PMMA target by a 95 MeV/u 12C beam. Bottom, the
depth profile obtained from a water target with a 310 MeV/u 12C beam. The error bars
denote statistical error of one standard deviation.
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Figure 11.13: 95 MeV/u 12C simulated prompt–gamma emission in a PMMA target, for
L = 2 fm2 (left) and L = 0.8 fm2 (right). The total emission profile as well as the contri-
butions from ion induced (QMD) and p/n induced (BIC) reactions are shown.

Figure 11.14: 310 MeV/u 12C simulated prompt–gamma emission in a PMMA target,
for L = 2 fm2 (left) and L = 0.8 fm2 (right). The total emission profile as well as the
contributions from ion induced (QMD) and p/n induced (BIC) reactions are shown.
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11.4 Conclusions

In the presented study, we have investigated the performance of some of the most widely
used internal nuclear models of GEANT4 in the field of hadrontherapy. GEANT4 simulations
are shown to overestimate the emission of prompt–gammas by a factor between 2 and 3 in
the case of 12C and to a lesser extent for proton beams, when using the quantum molecular
dynamics (QMD) or binary light ion (BLI) reaction model for ion and the binary cascade
model for proton and neutron inelastic reactions.

Furthermore, we have focused on the QMD model in order to improve the description
of ion–ion nuclear reaction and the subsequent emission of prompt–gammas. The QMD
calculation of ion–ion reaction dynamics involves a number of parameters, either technical
or physical. As the model was never optimized for Medical Physics applications, that
means for mainly light nuclei interactions, we used the nucleon Gaussian wave packet
width, which is a free physical parameter in QMD, in order to better describe light ion
systems and their collisions.

To define a more appropriate value for this parameter, we have benchmarked QMD
with the nuclear properties of binding energy per nucleon and nuclear density. In addition,
we have checked that an improved description of those properties, which yields better
agreement with experimental prompt–gamma data, also maintains the same quality or
improves the description of charged fragment emission.

Finally, there are remaining discrepancies between prompt–gamma depth profiles and
the corresponding simulated ones, which become more important for higher beam energies
and closer to the end of the primary ions’ path. Those discrepancies are attributed to
the contribution of secondary protons or neutrons induced nuclear reactions and are not
handled by the QMD model. Therefore, a similar study/optimization for proton/neutron
nuclear models has to be performed. This is also indicated by the comparison between
experimental data from clinical proton beams and GEANT4 simulations shown in the current
study (see figure 11.2 – prompt–gamma spectrum from 160 MeV protons).

Acknowledgments

This research project has been supported by the Regional Program for Research in Hadron-
therapy (PRRH, under CPER 2007–13 funding) and the ENVISION European project
(grant agreement no241851). It was performed in the frame of the Labex PRIMES (ANR–
11–LABX–0063) of Université de Lyon.



Chapter 12

Prompt–gamma imaging sensitivity
to proton range variations

This chapter contains the work published in Physics for Medicine and Biology, in vol-
ume 60, issue 24, pages 9329–47, in December 2015, with the title Monte Carlo study on
the sensitivity of prompt–gamma imaging to proton range variations due to interfractional
changes in prostate cancer patients, by Schmid et al. (2015) – (senior author: Dedes)

12.1 Introduction

Protons are increasingly used in external beam radiotherapy due to their advantageous
physical dose distribution. Recent advancements in active scanning of proton pencil beams
have allowed the clinical implementation of intensity modulated proton therapy (IMPT).
IMPT allows higher target conformity than broad proton beams based on passive scat-
tering. The higher dose conformity of protons comes at the cost of increased sensitivity
to anatomical variations and patient positioning errors. Therefore, to fully exploit the
advantages of IMPT, an accurate and precise real–time monitoring of the spot–by–spot
dose delivery, or the proton range as surrogate, is desired. To do so it may be possible to
exploit secondary radiation generated at the time of proton irradiation without incurring
additional imaging dose to the patient.

Different methods have been proposed for in–vivo ion range monitoring exploiting
secondary radiation. Currently, the only approach being evaluated in different clini-
cal centers (Massachusetts General Hospital–Boston USA, National Cancer Center Hos-
pital East–Kashiwa Japan, Heidelberg Ion Beam Therapy Center–Heidelberg Germany,
Gunma University Heavy Ion Medical Center–Gunma Japan) is based on positron emis-
sion tomography (PET) (Parodi et al. 2001, Enghardt et al. 2004, Knopf et al. 2008, Hsi
et al. 2009, Nishio et al. 2010, Zhu et al. 2011, Bauer et al. 2013, Knopf & Lomax 2013).
The method is based on the detection of coincident photons stemming from the decay of
β+–emitters. The latter are produced mainly by nuclear reactions induced by the proton
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beam impinging on target nuclei in tissue. The method has drawbacks: PET scanners
are costly and are challenging to install in the treatment room. Transportation from the
treatment room to a dedicated PET scanner degrades signal to noise ratio due to loss of
activity from physical and biological decay. Additionally, due to the nature of interaction
cross sections, the β+–emitter production fall–off is located several millimeters upstream
of the Bragg peak.

Recently, alternative methods based on the detection of prompt photons emitted by nu-
clei undergoing de-excitation following nuclear interactions have been proposed (Stichelbaut F
2003, Min et al. 2006). These photons are generally emitted within nanoseconds or less
from the time of interaction, potentially allowing for online monitoring. The interaction
cross sections for the generation of excited nuclei emitting prompt–gamma are peaked at
lower energies than those for the generation of β+–emitters, suggesting a prompt–gamma
emission fall–off located closer to the Bragg peak (Moteabbed et al. 2011). Different tech-
niques have been investigated in order to exploit the physical correlation of the prompt–
gammas with the range of the protons. Studies of the spatial distribution of the prompt–
gamma counts, which displays a fall–off of similar shape and with a depth correlated to
that of the Bragg peak, have been performed by several investigators (Kim et al. 2019,
Frandes et al. 2010, Kormoll et al. 2011, Min et al. 2011, Richard et al. 2011, Smeets
et al. 2012, Janssen et al. 2014, Pinto et al. 2014, Priegnitz et al. 2015). The exploita-
tion of the additional prompt–gamma energy information has also been considered (Polf
et al. 2009, Polf et al. 2013, Verburg & Seco 2014). More recently, the use of temporal dis-
tributions of prompt–gammas was also proposed as a tool to deduce proton range (Golnik
et al. 2014, Hueso-González et al. 2015).

Several phantom studies based on the methods mentioned above have investigated the
correlation of prompt–gammas to the proton range either with experiments or simulations,
generally employing homogeneous or slab geometries. A first patient study reported simu-
lations for passively scattered broad proton beams and few pencil beams for head and neck,
prostate and thoracic spine tumours, but did not systematically investigate the method for
IMPT (Moteabbed et al. 2011). In that work, differences between the proton range defined
as the 50% fall–off of the dose amplitude and the prompt–gamma fall–off (also defined as
the location of the 50% of the prompt–gamma signal amplitude) were analysed. Gueth
et al. (2013) investigated the use of machine learning methods to detect range shifts for a
single prostate cancer patient using IMPT.

In this work, we systematically investigate the sensitivity of prompt–gamma signals
to detect spot–by–spot variations in IMPT dose deposition caused by daily anatomical
variations. We aim at determining the accuracy and precision of prompt–gamma based
range monitoring in real anatomical scenarios. Furthermore we want to assess whether
tissue heterogeneities parallel to the beam direction can significantly alter the shape of
prompt–gamma distributions and thus weaken their correlation to the proton range de-
duced by the deposited dose depth profile. To this end, five clinical datasets containing
three computed tomography (CT) scans of prostate cancer patients acquired at different
time points were used to generate and evaluate IMPT treatment plans in terms of proton
range and prompt–gamma emission profiles in a Monte Carlo simulation study. We in-
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vestigated two methods to identify the prompt–gamma fall–off based on shifting against a
reference profile (Knopf et al. 2009, Helmbrecht et al. 2012, Frey et al. 2014) and by fitting
a fall–off function (Janssen et al. 2014).

12.2 Materials and methods

12.2.1 Patient data

For this study planning CT scans of 5 prostate cancer patients undergoing intensity mod-
ulated radiotherapy (IMRT) were used. For each patient a set of 3 planning CT scans,
labelled CT1, CT2 and CT3, were acquired on consecutive days. Changes in the rec-
tal filling and femoral heads position were the main anatomical changes between the
different CT scans for each patient. The planning CT scanner was a Toshiba Aquil-
ion LB (Toshiba Medical Systems, the Netherlands) and images were reconstructed on a
1.074 mm× 1.074 mm× 3 mm grid. The three images are used clinically to estimate vari-
ations in patient anatomy over the course of treatment at the contouring and planning
stage. Contouring of the clinical target volume CTV, bladder and rectum was performed
individually on each scan, following rigid registration to CT1. Treatment planning was
performed on CT1 using, in a conservative approach, the union of the three contour sets
for the CTV, bladder and rectum. The photon therapy PTV was obtained by a 1 cm
expansion of the union CTV and was used in this work as well.

12.2.2 Treatment planning

Intensity modulated proton therapy treatment plans were generated using a MATLAB
(Mathworks, Natick, USA)–based research treatment planning system (TPS) based on
CERR (Deasy et al. 2003), featuring a proton pencil beam algorithm (Schell & Wilkens
2010). The plans consisted of 2 parallel opposed scanned proton beams each delivering
a uniform dose to achieve a prescription of 3 Gy effective dose (2.73 Gy physical dose) to
the PTV per fraction. Dose was calculated on the same voxel grid as the CT. The CT
number to relative stopping power to water (RSP) lookup table required by the pencil
beam algorithm was derived using the approach of Schneider et al. (1996) adapted to the
CT scanner used in this study.

The spots from one beam were exported from the TPS to a Monte Carlo dose calculation
engine based on GEANT4 (Agostinelli et al. 2003). Only the highest intensity spots were
taken into account since they are most distal to the patient surface and deposit the largest
fraction of the dose. This study assumes spot-by-spot verification of the proton range and
the distal layer is the most interesting for in vivo monitoring since it contains the highest
intensity spots, which should yield the best signal to noise ratio. Additionally these spots
fully cross the treated anatomy. A typical spot delivered about 108 protons to the patient.
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12.2.3 Monte Carlo simulation

Monte Carlo simulations were performed with GEANT4 version 10.0, patch–01. The de-
veloped application was based on an extension of the DICOM example. All primary and
secondary particles (protons, electrons, photons, neutrons, positrons, ions and nuclear
fragments) were transported and their interactions were simulated according to theoretical
models or tabulated cross sections. A range cut of 1 mm was used as secondary production
threshold, comparable to the CT grid size. We used the G4RegularNavigation algorithm
to navigate in regular voxelized geometries, which allows for increased simulation speed
with low memory consumption.

The physics used to simulate interactions of all primaries and secondaries was the pre-
defined QGSP BIC HP GEANT4 physics list. This includes multiple scattering and ionization
for charged particles, as described in the standard GEANT4 electromagnetic package, which
offers a good compromise between performance and speed. For the considered energies, the
binary cascade model (BIC) was used for ion–ion and hadron–ion inelastic interactions.

A lookup table for CT number to mass density and tissue composition was generated
for the Monte Carlo simulation based on the work of Schneider et al. (2000). The lookup
table was adapted to the CT scanner used in this study.

Dose and prompt–gamma scoring

Separate Monte Carlo simulations were performed for each distal spot. The dose of the
selected spot was scored on the CT grid. Photons with energy higher than 2.5 MeV were
counted in two different ways: (1) they were scored within the voxel corresponding to their
emission point (these distributions are noted with PGi where i corresponds to the CT scan
number) and (2) they were detected outside the patient at a scoring plane of dimensions
540 mm × 120 mm. The lateral position of the scoring plane was centred on the beam
central axis and positioned above the patient surface (170 mm above the isocenter). The
location of the scoring plane is illustrated in figure 12.1. The prompt–gamma photons
reaching the scoring plane were stored in a phase space distribution PSi (i corresponds
to the CT scan number) by saving their detection position, energy and momentum at the
scoring plane, as well as their original emission position within the patient. For analysis,
prompt–gamma photons within different angular acceptance windows were investigated
(±2o,±3o and ±4o normal to the scoring plane). To generate profiles, for both PGi and
PSi, lateral integration normal to the incident beam direction was performed. For PGi,
the lateral integration was over non–zero contributions in the yz plane of figure 12.1. For
PSi the lateral integration was along z in the scoring plane of figure 12.1. Along the proton
beam direction (x in figure 12.1) prompt–gamma counts were binned to the voxel grid
(1.074 mm spacing).

Simulation of the full planned proton fluences (approximately 108 protons per spot),
which is necessary to obtain realistic statistics for PSi, is time consuming (approximately
860 h per spot on a single CPU). For this reason we decided to perform analysis on PGi us-
ing a fraction of the full planned proton fluences corresponding to the geometrical detection
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Figure 12.1: The anterior side of the box (parallel to zx) was used as scoring plane. The
front edge of the plane is indicated in the figure. The angle indicated in the figure is
calculated in the xy plane. The isocenter is labelled CT–center.

efficiency. The purpose is to have in the PGi obtained with the scaled proton fluence, the
same number of prompt–gammas as in the PSi obtained from the full proton fluence. To
validate this approach, 36 out of the selected 180 distal spots of one patient were simulated
on CT1 and CT2 with full proton fluences to serve as baseline. The number of spots was
limited by calculation time and the spots were chosen to sample the distribution of range
shifts observed in patients. For validation, PS1 and PS2 of the 36 spots were compared, as
well as the corresponding PG1 and PG2.

The highest intensity layer of the optimized plan of patient 1 used for PG calculation
contained 7.8 × 107 protons corresponding to a 0.35% rescaling of the full plan fluence.
This scaling factor yields PG profiles with the same number of prompt–gammas as in the
PS using ±3o angular acceptance for a full plan.

12.2.4 Data analysis

In this work, the spot–by–spot proton range was estimated using the prompt–gamma
emission profiles as surrogate and labelled RPG . The data analysis was performed for PSi
in the same manner as for PGi, hence all following considerations explicitly reported for
PGi are also representative for PSi. RPG was correlated with the proton range estimated
directly from the dose distribution Rdose. The range differences ∆Rdose and ∆RPG (∆RPS)
between two fractions, corresponding to two CT scans, were analysed. To find ∆RPG two
methods were investigated: (1) fitting a sigmoid function to the prompt–gamma profiles
PGi in the region where the emission decreases (fall–off) and rises (patient’s surface) and
(2) shifting the prompt–gamma profiles PG2/3 against a reference profile PG1 until the
root mean square (RMS) error in a region of interest is minimized.
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Region of interest identification

For both methods, it is necessary to define two regions of interest covering the prompt–
gamma profile fall and rise. To find the fall–off region, it is not sufficient to identify
the profile maximum as this point is not necessarily followed by the fall–off as seen in
figure 12.2, where the prompt–gamma production is higher in bone at 200 mm depth.
To define the fall–off region an integration of the prompt–gamma profile in anti-beam
direction is performed: IPG(x) =

∑x
i=1 PG (xPGend − i) where xPGend is the last bin of the

profile, with x indicating the bins along the profile. The intersection point X intersec of
linear fits to the background (shallow rise: IPG(x) < 4%) and main profile (steep rise:
10% < IPG(x) < 40%) defines a window [X intersec – 40 bins, X intersec + 80 bins]. Here bins
refer to the width of the CT voxel in the beam direction. In this window the most distal
point p out of the 5 points with the highest values is identified. Subsequently the fall–off
region is defined as [p – 10 bins, p + 50 bins] when used for fitting profiles and as [p, p +
60 bins] when used for shifting profiles. The latter is illustrated in figure 12.2(B).

Figure 12.2: The x axis describes the position in the underlying CT scan in the beam
direction. The blue curve IPG represents the integrated prompt–gamma emission profile
PG in–beam (A) and anti–beam direction (B). The position where the red and orange lines
intersect is called X intersec. In a window around X intersec the most proximal/distal out of
the highest 5 points is called point p and is used to define (A) the patient’s surface and
(B) the fall–off region. The prompt–gamma profiles as well as the integrated profiles are
normalized to their maximum value for visualization purposes. Here regions used for the
shifting approach are displayed.

To identify the patient surface region from the prompt–gamma profile, the integration
is performed in the in–beam direction, thus IPG(x) =

∑x
i=1 PG(i). The thresholds for

fitting the shallow and steep rise were IPG(x) < 2% and 5% < IPG(x) < 20% respectively.
Within the window [X intersec – 20 bins, X intersec + 10 bins] the most proximal out of the
5 points with highest prompt–gamma profile is used to define the point p. Subsequently
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the patient surface region is defined as [p – 50 bins, p + 10 bins] when used for fitting
profiles and as [p – 30 bins, p] when used for shifting profiles. The latter is illustrated in
figure 12.2(A).

When using the fitting method to find changes in prompt–gamma deduced ranges
∆RPG, the prompt–gamma range RPG is identified for each profile separately. This is done
by applying a sigmoidal fit at both the patient surface [p – 50 bins, p + 10 bins] and fall–off
regions [p – 10 bins, p + 50 bins]. The fitted function a + (1 − a)erf [b(x− c)] contains
three parameters, where parameter c refers to the inflection point of the error function.
This point c, as estimated from the prompt–gamma distribution, is either considered the
location of the patient surface, labelled RPG pat.surf., or dose fall–off, labelled RPG falloff . The
range is defined as RPG = RPG pat.surf. – RPG falloff . The slope of the prompt–gamma profile
fall–off corresponds to the parameter b, and changes in b from RPG1 to RPG2/PG3 indicate
differently shaped PG profiles which can be used for evaluation, as shown in section 12.2.4
(PG profile quality assessment).

In the shifting method, two PG of the same spot obtained from 2 CT scans of one
patient, using CT1 as spatial reference, are compared using the RMS error. The difference
in depth ∆RPG = ∆RPG pat.surf. – ∆RPG falloff is found by shifting pixel by pixel PG2/3 on
PG1 until the RMS error in the fall–off region [p, p + 60 bins] and the patient surface
region [p – 30 bins, p] (separately) is minimized. The resulting shifts are ∆RPG falloff and
∆RPG pat.surf., respectively. Interpolation is used to obtain sub–bin shifts. A large RMS
error after alignment suggests shape differences between the two profiles (see section 12.2.4
– PG profile quality assessment).

To evaluate the suitability of the prompt–gamma surrogate for dose for in vivo range
verification, the spot–by–spot proton range differences between CT1 and CT2/3 estimated
from the laterally integrated depth dose profiles are used as reference for the comparison
of range differences obtained for the prompt–gamma emission. The lateral integration was
over the area with non–zero dose contributions and over a single pencil beam. The proton
range Rdose is in the literature generally defined by the 80% distal dose fall–off. However,
this definition does not account for Bragg peaks distorted by range mixing effects due to
tissue heterogeneities. To use a range definition which is more robust than the 80% fall–
off, the shifting method was also applied to the dose. The spot–by–spot dose profiles of
CT2/3 were shifted to the dose profiles of CT1, until the RMS calculated within the fall–off
window defined by the 80% level of maximum dose [d80 – 10 bins, d80 + 55 bins] was
minimized, where d80 is the depth of the 80% dose level. The obtained shift was labelled
∆Rdose falloff. The difference ∆Rdose pat.surf., corresponding to changes in the position of the
patient surface between CT1 and CT2/3, was estimated from the CT number profiles along
the central axis of the pencil beam. A CT number threshold of −200 HU was used to define
a shifting window [d–200HU – 55 bins, d–200HU + 10 bins] where d–200HU is the depth where
CT number becomes −200 HU. The shifting method was used to identify patient surface
differences between CT2/3 and CT1, with ∆Rpat.surf. taking the value of the shift.
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PG profile quality assessment

Figure 12.3 shows the potential impact of variations in patient anatomy on dose deposition
during the course of treatment. Due to displacement of lateral heterogeneities between
fractions, mainly caused by rectal filling variations and femoral head rotations, the pencil
beam dose distribution in later fractions may differ significantly from the initial plan. In
figure 12.4, differently shaped Bragg peaks with corresponding prompt–gamma profiles are
shown for 4 different spots calculated on CT2. Variations in the slope of the PG fall–off
from CT1 to CT2/3 are generally related to range mixing caused by changes in the patient’s
anatomy. These changes were detected using the parameter b of the fitting function, and
spots with ∆1

b
= | 1

b2
− 1

b1
| > 5 mm were identified as distorted spots. A corresponding

definition for distorted Bragg peaks with the shifting method was established using the
RMS after the prompt–gamma profile alignment, with RMS > 0.0065 corresponding to
distorted spots.

Figure 12.3: (Top row) Patient 1 (Pat1) CT scans taken on consecutive days. The plan
optimized on CT1 is applied on CT2/3. The dose distributions of the highest intensity spots
are displayed. Contours for CTV, PTV, bladder and rectum are drawn. Overshooting due
to anatomical changes is visible. (Bottom row) The same for patient 3 (Pat3).

12.3 Results

12.3.1 Energy threshold and acceptance angle

In figure 12.5, the prompt–gamma spectrum from PS1 for one pencil beam is presented.
In human tissue, the main contributing elements to prompt–gamma emission are 16O, 12C
and 14N (Verburg et al. 2012). The capture of a thermal neutron by hydrogen [ 1H(n,γ)2H ]
can emit a gamma at an energy of about 2.2 MeV (Kozlovsky et al. 2002). Those prompt–
gammas are not strongly correlated to the proton range. In addition there are annihilation
processes emitting 511 keV gammas. These latter gamma lines, although correlated to the
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Figure 12.4: Tissue heterogeneities lead to differently shaped Bragg peaks (laterally inte-
grated deposited dose). Four Bragg peaks with the corresponding prompt–gamma emission
profiles are displayed, together with the fitted sigmoidal function. (A)–(D) represent four
different spots delivered to CT2. In (B), the dose fall–off is not as sharp as in (A), which
is reflected by the prompt–gamma profile. (C) and (D) show profiles with large variation
compared to a typical steep pristine Bragg peak in the patient (A).

proton range, cannot provide a real-time range verification, due to their timing dependence
on the β+–emitting nuclei half–life. Thus in this study a detection threshold of 2.5 MeV was
used for all cases. In the considered example and energy window, the main contribution is
from 12C at 4.44 MeV, from proton induced reactions on 12C or 16O.

The acceptance angle of prompt–gammas reaching the phase space plane was set to
±3o. This was based on the study of the impact of varying the acceptance angle from ±2o

to ±4o on the PS1 profile at the fall–off and at the patient surface, shown in figure 12.6. For
comparison we also present PG1. The trade–off between statistics and fall–off sharpness is
quantified in table 12.1. The smaller the angle the better the profile is correlated with that
from the emission point. In this study the acceptance angle of prompt–gammas reaching
the phase space plane was chosen as ±3o as a reasonable compromise. Angles between
±0.5o to ±3o have been used previously (Lopes et al. 2012, Smeets et al. 2012, Janssen
et al. 2014). The proton fluence for PG was adapted such that the prompt–gamma counts
correspond to the ±3o acceptance angle of PS.



242 12. Prompt–gamma imaging sensitivity to proton range variations

Figure 12.5: Energy spectrum of prompt–gamma photons detected at the phase space
plane for a 190 MeV proton beam (2.4× 108 primary protons) reaching the distal edge of
the prostate. The vertical dashed line corresponds to the chosen threshold. No angular
acceptance was applied here.

Figure 12.6: Total prompt–gamma photon counts obtained on the phase space plane (PS)
for 2.4× 108 incident protons; an energy threshold of 2.5 MeV is applied. PS for different
acceptance angles (±4o, ±3o and ±2o) are displayed for (A) the rise and (B) the fall–off
region. Prompt–gamma photons scored at the emission point PG for the rescaled proton
fluences are shown by the dashed line.
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Table 12.1: Overview of the of the prompt–gamma profile rise (patient’s surface) and fall–
off deduced from the parameter b and c of the sigmoidal fit, where b is related to the slope
of the curve and c to the inflection point. The number of all scored prompt–gammas for
different angles are given.

Parameter of the sigmoidal function PG PS±2o PS±3o PS±4o

Pat. surf. c (mm) 72 72 71 70
Pat. surf. 1/b (mm) 2.5 5.1 6.1 7.5

Fall–off c (mm) 286 287 287 288
Fall–off 1/b (mm) –4.6 –6.0 –7.2 –9.5

Prompt–gamma count 103 000 68 000 103 000 137 000

12.3.2 PS versus PG range assessment

In figure 12.6, PS corresponding to an acceptance angle of ±3o with full incident proton
fluence is compared with PG obtained using the reduced incident proton fluence. Fig-
ure 12.7(A) shows the comparison of range difference ∆RPG and ∆RPS with respect to
∆Rdose using the shifting method for 36 spots of patient 1 for CT1 and CT2, where PS was
calculated with the full plan proton fluence. The shift behaviour of ∆RPS is compared to
the shift behaviour of ∆RPG , showing comparable results. In figure 12.7(B), the residual
shift differences of the distributions ∆RPG – ∆Rdose and ∆RPS – ∆Rdose are displayed as
boxplots, where the red line indicates the median, the extent of the box reflects the 25th

and 75th percentiles (P25 and P75) and the whiskers depict the range of the distribution
excluding outliers. Box plot outliers were defined as values above P75 + 1.5(P75 – P25)
and below P25 – 1.5(P75 – P25). The notches represent the confidence levels around the
median of the particular data set. The distributions of range shift differences between
prompt–gamma and dose were evaluated in terms of precision (defined as half the 95%
inter–percentile range IPR) and accuracy (median). An IPR of 1.7 mm was calculated
from the PS distribution (∆RPS – ∆Rdose ) while for PG (∆RPG – ∆Rdose ) it was found to
be 1.3 mm. The same median was observed in both distributions and overlap of the notches
suggests negligible differences. Hence, for further analyses, only PG was investigated.

12.3.3 Comparison of prompt–gamma ranges of consecutive CT
scans

In figures 12.8 and 12.9, the proton range differences ∆RPG in patient 3 between CT1

and CT2(CT3) are displayed in beam’s eye view (BEV). The shifting method and the
fitting method have a comparable performance. Both methods show good correlation
between ∆RPG and ∆Rdose also for large deviations between CT1 and CT3 which are
due to variations in anatomy. Figure 12.8 shows ∆RPG2 (corresponding to CT2 versus
CT1) shifts of less than 1 cm. In figure 12.9, ∆RPG3 suggests large anatomical changes for
patient 3 between CT1 and CT3 with shifts of more than 3 cm (see figure 12.3). Assuming a
linear correlation between ∆Rdose and ∆RPG , the IPR was calculated excluding distorted
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Figure 12.7: (A) Shift differences from PG1 to PG2 (∆RPG) marked with blue circles. The
red squares refer to shift differences of PS1 versus PS2 (∆RPS). Spots with RMS > 0.00065
are shown with open symbols (see section 12.2.4 – PG profile quality assessment). The
IPR of 1.7 mm was calculated from the ∆RPS – ∆Rdose distribution, and is indicated by
the dashed blue lines. For ∆RPG – ∆Rdose the IPR was found to be 1.3 mm. (B) Notched
boxplots of the shift difference between ∆RPG – ∆Rdose (PG1 versus PG2) and ∆RPS –
∆Rdose (PS1 versus PS2) for the distribution from 36 spots. The notches indicate the
estimated 95% confidence level of the median.

spots as defined above. The IPR ranged from 1.7 mm to 2.7 mm for the data presented in
figures 12.8 and 12.9. The medians were generally smaller than 0.5 mm.

Results of the shifting and fitting methods for all patients are summarized by box
plots in figures 12.10 and 12.11, respectively. The box plots are generated after removal
of distorted spots from the distributions, as defined in section 12.2.4 (PG profile quality
assessment). Residual shifts between the range difference obtained by dose ∆Rdose and
the range difference obtained by prompt–gamma emission ∆RPG are displayed for the
patient’s surface as well as for the fall–off region separately. The combination of the range
differences at the patient surface and the fall–off regions yields the total range differences.
Additionally, the IPR is reported for each distribution. For the total range differences, the
IPR varied between 1.4 mm and 2.9 mm for the shifting method and 1.5 mm and 3.6 mm
for the fitting method.
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Figure 12.8: (A), (B) Beam’s eye view range differences of prompt–gamma profiles (∆RPG)
for patient 3 from the distal spot layer obtained (A) by shifting PG2 on PG1 and (B)
by analysing the inflection point of the fitted function. The symbol size in (A), (B) is
proportional to the number of emitted prompt–gamma photons and the magnitude of
∆RPG is color coded. Square and triangular spots indicate distorted spots for the shifting
and fitting methods respectively. (C), (D) Correlation of the range differences obtained
from prompt–gamma profiles and dose are shown for the shifting and fitting methods
respectively. The dashed lines indicate the IPR.
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Figure 12.9: (A), (B) Beam’s eye view of range differences of prompt–gamma profiles
(∆RPG ) for patient 3 from the distal spot layer, obtained (A) by shifting PG3 on PG1 and
(B) by analysing the inflection point of the fitted function. The symbol size in (A), (B)
is proportional to the number of emitted prompt–gamma photons and the magnitude of
∆RPG is color coded. Square and triangular spots indicate distorted spots for the shifting
and fitting methods respectively. (C), (D) Correlation of the range differences obtained
from prompt–gamma profiles and dose are shown for the shifting and fitting methods,
respectively. The dashed lines indicate the IPR.
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Figure 12.10: Correlation of position differences between ∆RPG and ∆Rdose for CT1 and
CT2,3 using the shifting method. Boxplots representing the distribution of differences
between ∆RPG and ∆Rdose are displayed for all CT scan pairs. Results are shown for
the patient surface and fall–off region separately, as well as their combination, resulting in
total range differences. The IPR of the total shift and the range of the distribution are
indicated above the plots. The IPR for the separate components are indicated in round
brackets under the plots. All values are in mm.
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Figure 12.11: Correlation of position differences between ∆RPG and ∆Rdose for CT1 and
CT2,3 using the fitting method. Boxplots representing the distribution of differences be-
tween ∆RPG and ∆Rdose are displayed for the all CT scan pairs. Results are shown for
the patient surface and fall–off region separately, as well as their combination, resulting in
total range differences. The IPR of the total shift and the range of the distribution are
indicated above the pots. The IPR for the separate components are indicated in round
brackets under the plots. All values are in mm.
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Figure 12.12 reports the correlation between ∆Rdose and ∆RPG for all distributions
using the shifting method. A total of 148 spots identified as distorted are not included,
which corresponds to about 9% of the 1738 spots. The IPR of the combined distributions
(1590 spots) was estimated to be 1.9 mm for the shifting as well as for the fitting method.

Figure 12.12: (A) ∆RPG versus ∆Rdose for all spots considered in this study using the
shifting method. The solid line is the identity and the dashed lines marks IPR for all data
points excluding distorted spots. Out of 1738 spots, 143 spots are identified as distorted.
(B) ∆RPG versus ∆Rdose for spots with ∆Rdose between −− 10 and 10 mm.
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12.4 Discussion

In this Monte Carlo study, spot–by–spot proton range verification through prompt–gamma
profiles was investigated for IMPT prostate cancer patients. Two methods, based on shift-
ing and fitting the prompt–gamma depth profiles, were developed to detect the prompt–
gamma fall–off and the beam entrance at the patient’s surface to derive the relative total
range differences.

The differences of the location of the patient surface, of the prompt–gamma fall–off, as
well as of the total range of the protons determined with both methods from the prompt–
gamma profiles for the different CTs, were compared to the equivalent information obtained
from the dose distributions and CT scans. For the patient’s surface a precision (IPR)
varying between 0.9 mm and 1.4 mm was observed for both methods. For the fall–off a
precision ranging between 1.2 mm to 3.0 mm and 1.0 mm to 3.2 mm was observed for the
shifting and fitting approaches, respectively, depending on the CT scan pair investigated.
Medians for all distributions were below 0.5 mm. The determination of the patient entrance
was more precise than that of the fall–off for both methods. This can be explained by the
fact that the patient entrance is a sharper anatomical characteristic, where effects such
as range mixing and the difference in the prompt–gamma emission cross sections—due to
different proton energies—are negligible when compared to the fall–off region deeper in
the patient. These characteristics are accentuated by making use of PG for the analysis,
as discussed below. The obtained precision (IPR) of the total relative range differences
(∆Rdose – ∆RPG ) for the shifting method varies between 1.4 mm and 2.9 mm and for the
fitting method between 1.5 mm and 3.6 mm. Spots which have a ∆Rdose – ∆RPG outside of
the 2.5/97.5 percentiles used for the precision determination yield minimum and maximum
deviation values of −4 mm and 6.2 mm for the shifting method, and −36.4 mm and 5.1 mm
for the fitting method. For both methods, the accuracy of ∆Rdose – ∆RPG , expressed as
the median of the distributions, is below 1 mm.

To make such a study feasible in terms of computing time, we have used the profiles of
prompt–gammas scored at their emission point (PG). In order to have a realistic estimation
of the performance of our methods, the PG profiles analyzed had the same number of
prompt–gammas as the profiles scored outside the patient with an angular acceptance
of ±3o (PS). The analysis based on the PG profiles yields underestimated IPR results
(1.3 mm versus 1.7 mm, section 12.3.2), due to the fact that the rise and the fall–off of the
PG profiles are steeper than the ones of the PS profiles. To quantify this effect, we have
compared the precision (IPR) obtained with the shifting method from the PG profiles and
the PS profiles from one patient and two CT scans. Using the PG profiles, the precision
(IPR) of ∆Rdose – ∆RPG is IPR= 1.3 mm, increasing to IPR= 1.7 mm for the PS profiles.
The sub–millimeter difference in both IPR and median supports the use of PG profiles
instead of the PS profiles.

The PS does not represent or model a specific camera designed for proton range verifi-
cation by means of prompt–gamma detection. It is an idealized scoring plane, describing
prompt–gammas outside the patient (in a location just in front of a potential camera) and
with an angular acceptance compatible to that of some collimated camera designs. The
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exact shape of the profile recorded by a real camera could differ significantly from that from
our PS. For example, the exact collimator septa geometry and the field of view of a camera
can have a very large impact on the number of recorded number of prompt–gammas (geo-
metrical efficiency). As the detection efficiency of MeV photons from scintillating crystals
is rather high, the scintillator itself is not expected to have a large effect on the detected
profile in terms of statistics. Pinto et al. (2014) reported that GEANT4 simulations using
the same physics parameters as in this work may overestimate prompt–gamma counts by
about 15% when compared to experimental measurements (see figure 6 in that work). The
same over–estimation is expected from this work. Finally, the PS profiles analyzed in this
study would most likely be measured by a collimated slit or multi–slit camera based on a
segmented scintillator. Our findings may not apply to different detection systems such as
a Compton camera.

Large tissue heterogeneities such as air pockets close to the end of range can lead to
distorted Bragg peaks (figure 12.13). In the case of figure 12.13 protons stop immediately
beyond an air cavity in CT2, causing a low intensity spike of prompt–gamma emission
beyond the cavity (PG2), and a somewhat broadened Bragg peak (dose2–the cavity is
not readily seen in the dose distribution since dose in air was scored). The prompt–
gamma production in air is low, which causes a steep fall–off at the upstream edge of
the cavity. Our method is identifying in PG2 the steep main fall–off as the one related
to the proton range (see section 12.2.4 – Region of interest identification), instead of the
distal fall–off of the prompt–gamma spike. Therefore, it tries to align the steep main fall–
off from PG2 to the unique fall–off of PG1. This results in a very small shift between
PG1 and PG2 (see figure 12.13, where the shift between PG2 and PG2 aligned is almost
negligible). Conversely, a large shift is seen in the dose. In such cases, the difference of
range shifts obtained from the dose distribution and the prompt–gamma is large, resulting
in a poor correlation in ∆Rdose – ∆RPG . Such problematic spots can be identified from
the corresponding prompt–gamma profiles by using the RMS values and the slope of the
fitted function for shifting and fitting methods, respectively.

The above–mentioned precision values express the statistical effect of a large number of
spots. Another source of uncertainty is the statistical uncertainty on each profile (random
noise due to the stochastic nature of a Monte Carlo simulation algorithm). This has
not been taken into account explicitly in our results. Nevertheless, the large number of
spots (more than 1000) partially emulates this statistical uncertainty, due the fact that
many spots cross similar anatomical characteristics, therefore having differences of mainly
statistical nature.

For the data analysis, definitions of the patient entrance and fall–off regions are required.
The extension of those regions was not the same for PG and dose, or patient surface and
fall–off (see section 12.2.4 – Region of interest identification). The main criterion for this
optimized selection of the extension was the reliable identification of the region for a large
number of spots. Small changes to the extension of the regions have been tested and had
no noticeable impact on the obtained results.

Finally, the findings of this study may be different for other anatomical sites where
larger amounts of tissue heterogeneities are observed, such as head and neck or lungs.
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Figure 12.13: (A) Original pencil beam dose distributions on CT1 and CT2, labelled dose1

and dose2. The shifted dose2 is labelled dose2 aligned. The shift is obtained by aligning
dose2 to dose1 in the shaded fall–off region. A large shift is required to align dose2, due
to the very different shape of the distributions caused by an air pocket (located between
position 225 pixels and 250 pixels). (B) The corresponding PG1 and PG2 emission profiles
are shown, in addition to the shifted PG2 emission profile (labelled PG2 emission aligned).
The different shifts between (A) and (B) result in a bad correlation between ∆RPG versus
∆Rdose for this pencil beam.
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12.5 Conclusion

In this work the accuracy and precision of the detection of relative inter–fractional range
shifts in prostate IMPT using the detection of prompt–gamma emission profiles was in-
vestigated using a comprehensive set of clinical data. Our results suggest that for 95% of
distal spots in prostate IMPT treatments, relative range shifts from one fraction to an-
other can be recovered by measurement of the prompt–gamma profile within ±2 mm using
either profile fitting or profile shifting methods. Methods to identify unreliable spots were
presented and were shown to increase the reliability of prompt–gamma based range verifi-
cation. Although translation of these results to the clinical setting will strongly depend on
the performance of available collimated prompt–gamma detector systems, the theoretical
detectability shown in this work confirms prompt–gamma to be a promising modality for
in vivo range verification on a spot–by–spot basis.
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Chapter 13

Radiation protection modeling of the
CALA facility

The investigation presented in this chapter was published in the Journal of Radiological
Protection, in volume 40, issue 4, page 1048, in September 2020, with the title Radiation
protection modeling for 2.5 petawatt-laser production of ultrashort x–ray, proton and ion
bunches: Monte Carlo model of the Munich CALA facility, by Englbrecht et al. (2020) –
(senior author: Dedes).

13.1 Introduction

Since the theoretical prediction of electron acceleration driven by high peak power fem-
tosecond (fs) lasers in 1979, the development of techniques to increase the peak power of
lasers, led to the development of fs short petawatt (PW) class lasers for particle accelera-
tion (Tajima & Dawson 1979, Strickland & Mourou 1985).

The ”Centre for Advanced Laser Applications” (CALA) in Garching, near Munich
(Germany) is intended for laser–based acceleration of electron beams for brilliant x–ray
generation (”Laser–driven Undulator x–ray Source” beamline (LUX), ”Electron and Thom-
son Test Facility” beamline (ETTF), ”Source for Powerful Energetic Compact Thomson
Radiation Experiments” beamline (SPECTRE)) and laser-driven nanosecond bunches of
protons and heavy ions (”Laser–driven Ion Acceleration” beamline (LION), ”High Field”
beamline (HF)) for the investigation of the laser–acceleration and application of energetic
protons and ions.

Laser–accelerated ion bunches have been proposed for use in radiation therapy of can-
cer (Linz & Alonso 2016). Albeit the source characteristics of laser–accelerated ion bunches
differ significantly from those of conventional sources, the former can be utilized in a wide
range of novel biomedical applications and offer distinct advantages: reasonable compact-
ness and cost effectiveness, synchronisation to laser pulses at a picosecond level, simple
target and hence particle species changeability, broad energy spectrum, small source size,
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down to nanosecond bunch duration, allowing to use new bunch detection techniques and
to study ultrashort biological effects (Schreiber et al. 2016, Esarey et al. 2009, Richter
et al. 2016, van de Water et al. 2019).

Laser–accelerated electron beams can be used for various imaging applications (e.g.
through the generation of x–ray and gamma ray secondary sources) and, at the same time,
enable and validate innovative radiation generation mechanisms (Wenz et al. 2015, Wenz
et al. 2019).

The source characteristics can be changed through the choice of laser parameters and
targets. Based on electron bunches accelerated in a plasma, these sources can be tailored
to have the necessary properties of being compact and of delivering collimated, incoherent,
and fs pulses of x–ray radiation (Esarey et al. 2009, Gonsalves et al. 2015, Lu et al. 2007).

The ionizing radiation emerging from the experiments using the up to 2.5 PW laser
pulses with 25 fs duration will be mixed particle species of high intensity, high maximum
energy, broad energy spectrum and short duration; thus posing new challenges on shielding
and monitoring compared to conventional radiation protection. The mixed particle species’
nature of the bunches impedes the usage of conventional particle specific shielding concepts.
Conventional radiation protection mazes are designed such that particles need to undergo
at least two scatters to escape the room. Such designs, which avoid straight penetrations
as straight paths, can not be applied in CALA, since the optical laser pulses need to enter
the experimental caves though straight penetration holes. Their diameter should be also
large enough to keep the power density on the laser mirrors below their damage threshold.

As part of the legal regulations, areas in the CALA building have to be subdivided
in the radiation protection categories unclassified, supervised and exclusion areas, based
on the predominant prompt dose–rate to be expected (BfUNnS 2018). Personal electronic
dosimeters, as required in controlled radiation protection areas, have been reported to
be unusable due to under-response already for bunches of millisecond duration (Borne
et al. 2002, Ankerhold et al. 2009, Ambrosi et al. 2010).

Detailed dose rate estimations from Monte Carlo simulations can provide the insight
necessary to categorize the local radiation exposure, especially since the envisioned particle
source terms are still subject of active research and have not yet been reached experimen-
tally.

We report here the results of Monte Carlo simulations of different source types relevant
to various CALA experiments, in terms of calculated dose rates, with respect to established
dose limits.

13.2 Materials and methods

13.2.1 CALA laser systems

The Centre for Advanced Laser Applications hosts two unique laser systems to drive the
ionizing radiation produced in laser–plasma experiments: ATLAS–3000 and PFS–pro.
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Table 13.1: Laser systems installed in CALA and some of their main operation parameters.

ATLAS–3000 PFS–pro

Power [1012W] 2500 10
Pulse length [fs] 25 ≤ 30
Pulse Energy [J] 60 0.1
Wavelength [nm] 750–850 700–1400

Shot frequency [Hz] 1 1000

ATLAS–3000 laser system

The workhorse of CALA is the ”Advanced Titanium-Sapphire Laser” system ATLAS–3000,
which uses the chirped pulsed amplification (CPA) technique and has been operated for
20 years now and subsequently upgraded to reach a peak power of up to 2.5 PW. Its main
specifications are summarized in table 13.1. This peak power makes ATLAS the highest
peak power laser system operated by a university in Europe in 2020. ATLAS is used to
drive the experiments in LION, HF, ETTF, LUX and SPECTRE.

Its infrared pulses (central wavelength λ = 800 nm) contain an energy (after pulse
compression) of up to 60 Joule in a duration of 25 fs and are guided as a 28 cm diameter
beam via the evacuated laser beam delivery from the laser hall to five dedicated experi-
mental rooms called caves. There, they are focused by off–axis parabolic mirrors down to
micrometer small spot sizes.

By placing solid targets or gas jets in the focus, the intensity of up to 1023 W/cm2

drives electrons or ions to relativistic velocities (see table 13.2). Those targets absorb the
laser and represent the source of energetic particles, i.e. the source of the accelerator. The
pulse repetition frequency on target can reach up to 1 Hz.

PFS–pro laser system

The ”Petawatt Field Synthesizer laser system” (PFS–pro) is the second laser system under
development in CALA with unique broadband laser characteristics (see table 13.1). Once
completed, PFS–pro will seed the SPECTRE experiment.

Using a repetition frequency of up to 1 kHz, the SPECTRE experiment will use the
highly energetic photons (50 keV – 200 keV) to generate x–rays by acceleration of electrons
up to 70 MeV (see table 13.2). The x–rays will be used for medical imaging, among other
applications.

13.2.2 CALA building and cave infrastructure

The five caves corresponding to the five CALA experiments are arranged around a central
beam dump of 5.85 m thickness (figure 13.1). Due to the design of the CALA facility,
the walls of the experimental caves, the roof and the floor as well as the central beam
dump are the critical components that shield the exterior and the other experimental
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Table 13.2: Simulated particle source parameters of the five experiments in CALA: LION
and HF (Schreiber et al. 2016, Daido et al. 2012, Macchi et al. 2013, Lindner et al. 2018)
as well as LUX and ETTF (Esarey et al. 2009, Gonsalves et al. 2015, Lu et al. 2007) are
seeded by ATLAS–3000. SPECTRE can be seeded by ATLAS and PFS–pro.

Beam Energy Spectral Full divergence Charge Shot
component spectrum shape angle per pulse frequency

LION 12C 10 – 400 MeV/u Box 180 mrad 0.016 nC 1 Hz
p+ 10 – 200 MeV Box 180 mrad 0.16 nC 1 Hz
e- 10 – 1000 MeV e−x 103 / E[MeV] mrad 1.6 nC 1 Hz

HF 97Au 1 – 10 MeV/u Box 200 mrad 0.016 nC 1 Hz
12C 10 – 200 MeV/u Box 200 mrad 0.016 nC 1 Hz
p+ 10 – 200 MeV Box 200 mrad 0.16 nC 1 Hz
e- 10 – 1000 MeV e−x 103 / E[MeV] mrad 1.6 nC 1 Hz

LUX e- 5000 MeV Mono 2 mrad 1 nC 1 Hz
e- 10 – 5000 MeV Box 2 mrad 1 nC 1 Hz

ETTF e- 5000 MeV Mono 2 mrad 1 nC 1 Hz
e- 10 – 5000 MeV Box 2 mrad 1 nC 1 Hz

SPECTRE e- 70 MeV Mono 10 mrad 0.025 nC 1000 Hz
e- 500 MeV Mono 10 mrad 0.25 nC 1 Hz
e- 10 – 500 MeV Box 10 mrad 0.5 nC 1 Hz

areas. Surrounding the five experimental caves are: a hall southeast of the central beam
dump (labeled as ”Experimental hall” in figure 13.1) that will host x–ray cabins for x–ray
experiments, on the south a laboratory area (labeled as ”Laboratory” in figure 13.1) and
several corridors. The laser beam line (indicated by the dashed lines in figure 13.1) enters
the five experimental caves through several penetration holes through the interior walls of
CALA.

The central beam dump, walls, roof and cave doors consist of magnetite concrete (or-
ange in figure 13.2) and magnetite aggregate of various water content (purple in figure 13.2)
in a sandwich–like structure between either concrete or steel container walls. Such tech-
nically easy to realise sandwich–like construction was used for radiation protection build-
ings previously (Forster 2020). For CALA, the magnetite was compacted to a density of
ρ = 4.0 t/m3 and allowed for thinner shielding walls at lower cost. The used magnetite
filling without cementitious interconnection is sustainable, since it can be reused after the
operation of CALA will have ended, in contrast to regular heavy concrete (Forster 2020).
The floor is made of 75 cm standard concrete using Portland cement to shield the ground-
water from the radiation. The roof on top of the caves is 90 cm of compacted magnetite
aggregate filled into rectangular steel pipes.

All caves (except of HF) are 18 m long, 3 m wide and 4.25 m high. The shorter HF
cave is 13.81 m long, 4.3 m wide and 4.25 m high. A false floor is placed at 1 m above the
concrete floor. The 20 cm radius laser penetration holes are located 50 cm below the false
floor (see figure 13.3 for details of the modelled geometry at the beam line level). These
holes are locations where dose can potentially leak outside of the experimental caves and
are of particular interest in our study. Movable steel doors of 1 m thickness filled with
magnetite aggregate seal the entrance to the caves during experiments.

Due to the high power density of the laser pulses, the interaction between pulse and
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Figure 13.1: Structural and radiation zoning layout of the CALA facility. The five ex-
perimental caves are arranged around the central beam dump. East of the beam dump
is an experimental hall hosting experiments inside x–ray cabins. Each active cave is an
exclusion area (red), supervised areas are access limited (yellow). Areas like the transport
corridor and a laboratory room are unclassified areas (green) based on the expected dose
rate estimate. Sliding doors (moving in the direction of the arrows) can lock the active
caves. Laser pulses can enter the caves through the transport beam line (dashed lines).

solid or gas target is performed in high vacuum (10−6 mbar). Above the false floor, the
caves contain large vacuum chambers (depicted as white boxes in figure 13.2). The cubic
modules (1.21× 0.98× 1m3) are made of 2.5 cm thick aluminium plates mounted on steel
frames and are connected to the beamline vacuum pipe system. Each chamber weighs 1.2 t.

The details of the structures in each experimental cave relevant to this radiation pro-
tection investigation are described in the following.

13.2.3 CALA experiments

Laser–driven Ion Acceleration (LION)

The LION experiment (see figure 13.1) places 10 nm – 1000 nm thin plastic, metal or
diamond–like carbon foils targets into the focused ATLAS pulses. The targets are located
232 cm above the concrete floor. The high electric field of the laser pulse drives the electrons
out of the foil. They form a sheath at the target rear boundary (Snavely et al. 2000). The
arising field gradient between displaced electrons and foil nuclei can reach up to TeV/m
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Figure 13.2: Layout of the CALA geometry model implemented in FLUKA. The 2D cross
section was taken at the height in which the laser impinges onto the targets. These positions
are indicated with a star in each cave and the beams are propagated in general eastwards.
The vacuum chambers (in white) as well as the LION (gray–blue) and HF beam dumps
(gray) are also shown. The labels indicate critical locations where the dose was quantified
within cylindrical volumes. Turquoise and yellow colours correspond to two different radii
of these cylindrical volumes.

and accelerates the hydrogen or carbon contamination on the foil surface up to hundreds
of MeV (see table 13.2), which then propagate to the east towards the LION beam dump.

On its south side the LION cave borders with the LUX cave and on the east side
with the HF beam line. On the north and west side it adjoins the north corridor and the
entrance hall to the experimental areas, respectively.

Walls of 1.0 m – 1.2 m thickness are employed in order to keep the dose rates outside
the cave below the designated levels. The wall in forward direction towards the east is 2 m
thick and shields the HF cave during beam operation in LION. Three laser penetration
holes (see figure 13.3) are running through the north (corridor – LION) and south walls
(LION – LUX).

The cave geometry model (see figure 13.2) contains a set of four vacuum chambers for
the acceleration experiment and two for offline tests without ATLAS.

A dedicated, hybrid beam dump (see figure 13.2) was designed for LION with the
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Figure 13.3: Layout of the CALA geometry model implemented in FLUKA. The 2D cross
section was taken at the height in which the laser enters the caves. The labels indicate
critical locations where the dose was quantified within cylindrical volumes.

purpose of stopping the beam and containing as much as possible of the primary and
secondary particles’ fluence and dose. The size of the beam dump is 1.5 m× 1.5 m× 1.5 m.
It is made of heavy concrete, except for a cubic volume of 0.5 m × 0.5 m × 0.5 m filled
with water. The water tank is placed in the middle of the beam dump on the vertical and
horizontal dimension and starts at the front face of the beam dump.

High–Field (HF)

The HF experiment aims to explore the acceleration and interaction characteristics of
ultrashort and intense ion bunches (Lindner et al. 2017). Electrons, protons and heavier
ions will be accelerated using foil targets (see table 13.2). The goal is preparatory research
for the generation of extremely neutron–rich isotopes to answer questions in astrophysical
nucleosynthesis of heavy elements like gold and uranium by experimentally realizing the
fission–fusion reaction mechanism, which is yet inaccessible using conventional particle
accelerators (Habs et al. 2010).

On its south side, the HF cave borders with the experimental hall for x–ray experiments
outside the ETTF and LUX cave and the central beam dump. On the west side the LION
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cave is behind the 2 m thick wall. On the north and east side it adjoins the north corridor
and the entrance hall to the experimental areas, respectively.

Two vacuum chambers (see figure 13.2) are connected by a 25 cm long pipe (r =
15.9 cm) to a special chamber for the HF experiment (0.85× 0.8× 1.25 m3).

Since the primary radiation from the laser–driven source in HF is similar to LION–
protons and heavier ions, the HF beam dump is similar. The heavy concrete beam dump
is 1 m × 1 m × 1 m and stops the ion bunches and secondary particles, which are emitted
227 cm above the concrete floor. The beam dump geometry model is shown in figure 13.2.

The outer walls of HF are 1 m thick. Two laser penetration holes (see figure 13.3) are
running through the north (corridor – HF) wall.

Laser–driven Undulator x–ray Source (LUX)

The LUX experiment is set for generating brilliant x–ray undulator radiation using a
magnetic undulator seeded by up to 5 GeV laser accelerated electrons. In full operation,
it may serve as a prototype laser–plasma–accelerator based free–electron laser (FEL) for
biomedical x–ray imaging experiments.

On its north side, LUX is separated from LION by a 1.2 m wall. On its south side
it borders the ETTF cave via a 1 m wall and the east side of the cave terminates with
the central 5.85 m thick central beam dump. Three laser penetration holes are running
through the north and three through the south walls (see figure 13.3).

Two vacuum chambers for laser preparation are connected by a 3 m long pipe (r =
35 cm) to three chambers for the interaction of pulse and gas target (220 cm above the
concrete floor and propagating to the east). A 2.1 m long permanent magnet (B = 0.85 T)
follows 4.87 m after the chamber. The magnet serves as diagnostic element for the electron
spectrum and as a radiation protection device by bending the electrons downwards into
the 5.85 m central beam dump.

Only the generated x–rays pass the magnet travelling straight and may traverse the
central beam dump through a cylindrical 7.5 cm radius channel which is on axis with
the laser propagation. All the above elements have been implemented in the LUX cave
geometry model (see figure 13.2).

Electron and Thomson Test Facility (ETTF)

The ETTF experiment is a fundamental research experiment to generate brilliant hard x–
rays via Thomson–backscattering and betatron radiation from ATLAS–3000 pulses. Up to
5 GeV laser–accelerated electrons (see table 13.2) and their characteristics like charge, space
charge, timing and acceleration mechanism are probed experimentally, in order to provide
x–rays best suited for biomedical experiments like phase contrast imaging or ultrafast
phenomena in solids and matter in the plasma state (Wenz et al. 2015, Wenz et al. 2019).

On its north side, ETTF borders with LION and south with SPECTRE, both separated
from ETTF by a 1 m thick wall. Like LUX, the east end of the cave is the 5.85 m central
beam dump with a 7.5 cm radius cylindrical channel for x–rays. Three laser penetration
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holes have the same dimensions as for LUX and are running through the north and through
the south walls (see figure 13.3).

Three sets of chambers (five, two and five chambers in each set) connected by pipes
were implemented into the geometry model (see figure 13.2). The interaction point of
the laser pulse and the target is located 220 cm above the concrete floor and the beam
propagates eastwards. The last set of chambers hosts the same 2.1 m permanent magnet
(B = 0.85 T) as in LUX. The magnet again is used for electron energy diagnostic and as a
radiation protection device by bending the electrons downwards.

For one special experiment only, the magnet will be removed, causing the 5 GeV beam
to be directly aiming at the x–ray penetration hole in the 5.85 m central beam dump. In
order to keep the experimental hall dose within the legal dose rate limits, the channel will
be shielded using lead bricks before and after the channel.

Source for Powerful Energetic Compact Thomson Radiation Experiments (SPEC-
TRE)

The SPECTRE experiment uses both ATLAS (up to 300 TW) and PFS–pro as driving
laser. Using ATLAS, SPECTRE aims to accelerate electron bunches of 0.25 nC – 0.5 nC
up to 500 MeV for x–ray generation. At the PFS–pro repetition rate of up to 1 kHz, a
tunable source of x–rays for biomedical experiments using up to 70 MeV electron beams
will be established. Further source characteristics are listed in table 13.2.

On its north side, SPECTRE borders with ETTF and on the south with a laboratory,
both separated from SPECTRE by 1 m thick walls. The north wall has three laser pen-
etration holes (see figure 13.3). The east wall of 1.9 m thickness shields the experimental
hall from radiation created in SPECTRE and has two cylindrical holes to allow for the
extraction of the x–rays. For most experiments, the two holes will be plugged with S235JR
steel bars.

A set of four chambers is installed and uses a 40 cm permanent magnet (B = 0.85 T)
for energy diagnostic and radiation protection. The chambers and the magnet are included
in the SPECTRE geometry model as shown in figure 13.2.

The particle bunches will be emitted 219.5 cm above the concrete floor and propagate
eastwards.

13.2.4 Monte Carlo simulations

All radiation protection calculations presented in this study were performed with the
FLUKA Monte–Carlo code version FLUKA2011.2x.2. FLUKA is a general purpose tool
for calculations of particle transport and interactions with matter, covering an extended
range of applications (Ferrari et al. 2005, Böhlen et al. 2014). It can simulate with high
accuracy the interaction and propagation in matter of about 60 different particles, with
energies ranging from the keV to the TeV scale.

The PRECISIOn physics settings were chosen for all simulations. Neutrons were trans-
ported down to thermal energies, electrons down to 1.5 MeV, photons to 1 keV and all
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other particles down to 100 keV. Option EMF was used to request a detailed transport of
electrons, positrons and photons.

A detailed geometry model of the five experimental caves and surrounding structures
was implemented. The geometry model included the walls, doors, roof, vacuum chambers,
spectrometer magnets and beam dumps, all characterised by their dimensions, elemental
composition, mass density and for the magnet, field strength. The vacuum pipes for the
laser and other chamber content have not been included in the model.

Two horizontal cross sections of the detailed geometry model are shown: one at the
height where the laser pulses impinged on the target (figure 13.2) and one at the height
where the laser enters the experimental caves (figure 13.3).

As sources, electrons (< 5 GeV), protons (< 200 MeV), 12C–ions (< 400 MeV/u) and
197Au–ions (< 10 MeV/u) were simulated using spectra, divergences and bunch–charges
based on expectations from recent experimental results (Gaillard et al. 2011, Gonsalves
et al. 2015). Source characteristics are summarised in table 13.2. The assumed particle
energies and bunch charges were optimistic upper boundaries that account for the most
challenging scenarios in terms of radiation protection.

The bunch divergences expected experimentally for proton or laser ion acceleration
experiments (LION, HF) are, almost entirely, covered by the in–cave beam dumps and
have hence been modelled using the scaling law in table 13.2 or worst case values. There
are ions also emitted at larger angles, but due to their low energy fluence they would not
be relevant for radiation protection. For laser–driven electron acceleration the generated
particle beam is very directional, with a divergence of typically one mrad (Döpp et al. 2018).
The angular pointing jitter is of a similar order and thus approximated using a fixed value
(table 13.2).

For LION and HF, the simulated sources were mixed radiation fields (ions plus elec-
trons). To simplify the simulations while allowing for detailed interpretation of the results,
each initial component of a mixed radiation field was simulated separately and summed
up in post processing to yield the total equivalent dose.

For the dosimetric evaluation of the results, the equivalent dose in units of pSv/primary
particle was scored in a three dimensional Cartesian mesh (USRBIN scorer) with a voxel
size of 10 cm × 10 cm × 10 cm. To allow for a detailed investigation of different contribu-
tions, the total equivalent dose was decomposed to dose from neutrons, photons and, when
deemed necessary, from electrons.

At critical locations, where elevated doses were expected, the dose equivalent was also
scored in cylindrical air volumes of various radii and 5 cm thickness. The locations of
these cylindrical scorers is indicated in figure 13.2, and 13.3, bearing the scorer’s name.
In turquoise are indicated scorers with 50 cm radius and in yellow with radii of 15 cm to
32.4 cm, depending on the size of the hole preceding them.

The radiation dose limits (see next section 13.2.5 for more details) are expressed in units
of micro–Sievert per hour (µSv/h). The scored dose in pSv/primary needed therefore to be
converted to µSv/h via a conversion factor. The conversion factor c was generally different
for each simulation and source component and was calculated as follows:
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c = N ·R · U. (13.1)

where N is the number of particles produced per laser shot, R the number of laser shots
per hour (repetition rate) and U = 10−6 is a dimensionless conversion factor from pSv to
µSv.

13.2.5 Radiation limits

The CALA facility, in terms of radiation protection, can be regarded in three categories:
exclusion, supervised and unclassified areas. The upper radiation dose rate limits were
defined in agreement with the Bavarian Environment Agency (Bayerisches Landesamt für
Umwelt).

In the CALA plan showed in figure 13.1, the north and west corridors and the southern
laboratory are the only unclassified areas. The radiation dose rate limit in an unclassified
area is 0.5µSv/h in order to ensure an accumulated dose of less than 1 mSv per year,
assuming a 2000 h annual occupancy. A local maximum of about 2µSv/h is tolerable if
monitored and/or not accessible.

All experimental caves, the air space above them and the experimental hall were cat-
egorised as supervised areas. The CALA design goal for supervised areas was 2.5µSv/h
with a local maximum allowed to reach 7.5µSv/h. These locations will then be made
inaccessible or marked with a warning sign.

When the laser is in full operation in a cave, then that particular cave is closed and
classified as an exclusion area, while the other caves remain supervised areas. There is
no upper dose rate limit specified in exclusion areas, as long as the dose rate limits in
surrounding supervised or unclassified areas are not violated.

During the present trial operation of the CALA facility, continuous dose measurements
are performed with passive thermoluminescent dosimeters (TLDs) on up to ten locations
and evaluated monthly. Their values have to be reported quarterly to the Bavarian Envi-
ronment Agency.

Thus, controlled areas with the duty to wear personal electronic dosimeters can be
avoided. This might change in future operation because of activations and the result-
ing dose rate they might cause. However, this has not been observed yet in CALA but
would cause no basic problems since the radiation would not be pulsed and dosimeters are
available.

13.3 Results

Our simulations showed that, due to the high particle fluence (≈ 1010particles/cm2) in a
cave during operation, the dose rate can exceed 1.5 kSv/h. The peak dose rate occurred,
for each cave, in the respective beam dump, but dose rates higher than 10µSv/h were
present in large sections of each cave during operation of the laser (e.g. figure 13.4).
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Figure 13.4: Dose rate distributions in and around the LION cave, plotted at the source
height for different versions of the LION beam dump and for the 12C ion beam component.
(top) a version of the beam dump made entirely of concrete, (middle) the same beam dump
volume filled with water and (bottom) the optimised beam dump, combining both water
and concrete volumes. Some of the scoring locations relevant to LION are also indicated.

Depending on the cave and the beam dump geometry and location, different critical
points were identified as indicated in figure 13.2 and 13.3. These critical points were in
general located either behind open holes (vacuum pipes) or behind walls, but in positions
where large fluences of particles were directed. The dose escaping a cave, during operation
in that particular cave, and quantified at these critical locations, were summarised in
tables 13.3 – 13.7. Dose rates above the dose rate limit are highlighted as bold numbers in
the tables. For the experiments producing protons and heavier ions (LION and HF), the
dose rate is listed as an electron beam component (same for all sources) and the respective
proton or heavy ion beam component.

All estimated dose rates listed in tables 13.3 – 13.7 entail statistical uncertainties.
These uncertainties were strongly dependent on the absolute dose rate and on the particle
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fluence in the location under consideration. For calculated dose rates larger than 1µSv/h,
the statistical uncertainty ranged from 1% to 9%, with the mean error being 6%. For
calculated dose rates between 0.1µSv/h and 1µSv/h the error ranged from 1% to 40%,
with the mean error being 15% and errors above 20% associated uniquely to dose rates
below 0.5µSv/h.

13.3.1 LION

As summarised in table 13.3, two source types were simulated for the LION cave: 12C ions
and protons. The same electron beam component was assumed for each of the two source
types. For each beam component, the major contributions to dose rates (by neutrons and
photons) alongside with the total dose rate are listed. Finally, the overall total dose rate
for a given source type is shown in the right most column.

In the vast majority of critical locations the dose from neutrons was at least one order
of magnitude higher than that from photons, which was the next highest contribution.
Dose imparted to these critical points by other particles was negligible.

For the proton source, the total dose rate at all critical locations was below the 0.5µSv/h
and 2.5µSv/h limit, for unclassified and supervised areas, respectively. For the 12C ion
source, the dose rate exceeded the limits in two locations: opposite to the beam dump on
the corridor (LIc) the dose rate was estimated to be 1.06µSv/h (0.5µSv/h limit) and on
one location on the roof of the cave it was calculated to be 3.31µSv/h (2.5µSv/h limit).

The results in table 13.3 were obtained with the hybrid (water – concrete) beam dump
geometry, which helped to reduce the dose in the north corridor and through the laser
penetration holes. Exemplary results are shown in figure 13.4, comparing a full concrete
beam dump (figure 13.4 – top), a full water beam dump of the same volume (figure 13.4 –
middle) and the hybrid beam dump of the same volume (figure 13.4 – bottom).

13.3.2 HF

Table 13.4 lists the dose rate calculations for HF, at the critical points shown in figures 13.2
and 13.3. Three source types were simulated for the HF cave: protons, 12C ions and 197Au
ions. The same electron beam component was assumed for each of the three source types.
For each beam component, the major contributions to dose rates from neutrons and photons
and the total dose rate are listed.

The proton source calculations showed that the dose rate limit of 0.5µSv/h was mildly
exceeded in two locations, at the corridor outside the HF cave (0.80 and 0.52µSv/h, respec-
tively). Behind one of the laser penetration holes leading to the north corridor (hole22),
the dose rate was estimated to be 1.26µSv/h, substantially higher than the 0.5µSv/h, but
well below 2.5µSv/h. In the same locations the dose rate for the 12C source was found
to be 0.77, 0.74 and 0.52µSv/hh. The dose rate outside of the HF cave for the 197Au
source has been calculated to be always below 0.5µSv/h. In all cases the dose rate due to
neutrons was at least an order of magnitude higher than due to photons.
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Table 13.3: Dose rate calculations for LION, at critical locations indicated in figures 13.2
and 13.3. The upper half of the table lists results for the 12C source, while the lower half
presents the same for the proton source.

Dose rate Dose rate [µSv/h]

limit Detector Electron beam component Carbon beam component

[µSv/h] position n γ Total n γ Total Total

0.5 LIc 6.86×10−2 1.07×10−3 7.11×10−2 9.62×10−1 1.55×10−2 9.90×10−1 1.06
0.5 hole1 1.76×10−2 1.29×10−2 3.25×10−2 1.95×10−1 9.10×10−3 2.07×10−1 2.40×10−1

0.5 hole8 8.01×10−2 1.45×10−3 8.21×10−2 2.73×10−1 4.10×10−3 2.81×10−1 3.63×10−1

0.5 hole15 1.63×10−3 2.89×10−3 4.53×10−3 4.75×10−1 8.22×10−3 4.92×10−1 4.97×10−1

LION 2.5 LItoHF 6.39×10−4 1.14×10−5 6.55×10−4 2.04×10−1 2.60×10−3 2.13×10−1 2.13×10−1

Carbon 2.5 LItoLU 8.54×10−2 1.28×10−3 8.82×10−2 1.61 2.70×10−2 1.65 1.73
2.5 LIroof 2.10×10−1 1.72×10−3 2.13×10−1 3.03 3.79×10−2 3.10 3.31
2.5 LIdoC 1.22×10−2 1.38×10−4 1.24×10−2 6.37×10−3 2.90×10−4 6.66×10−3 1.94×10−2

2.5 hole3 3.54×10−2 2.74×10−2 6.29×10−2 2.32×10−1 1.07×10−2 2.44×10−1 3.07×10−1

2.5 hole10 9.44×10−2 5.85×10−3 1.26×10−1 2.87×10−1 4.20×10−3 4.00×10−1 5.26×10−1

2.5 hole17 6.47×10−3 1.87×10−4 6.68×10−3 4.96×10−1 7.35×10−3 5.08×10−1 5.15×10−1

Electron beam component Proton beam component

0.5 LIc 6.86×10−2 1.07×10−3 7.11×10−2 1.75×10−2 3.79×10−4 1.80×10−2 8.91×10−2

0.5 hole1 1.76×10−2 1.29×10−2 3.25×10−2 7.43×10−2 3.22×10−3 7.94×10−2 1.12×10−1

0.5 hole8 8.01×10−2 1.45×10−3 8.21×10−2 2.72×10−2 7.29×10−4 2.85×10−2 1.12×10−1

0.5 hole15 1.63×10−3 2.89×10−3 4.53×10−3 1.13×10−2 3.07×10−4 1.17×10−2 1.62×10−2

LION 2.5 LItoHF 6.39×10−4 1.14×10−5 6.55×10−4 6.25×10−4 7.71×10−6 6.41×10−4 1.30×10−3

Proton 2.5 LItoLU 8.54×10−2 1.28×10−3 8.82×10−2 4.46×10−2 7.32×10−4 4.55×10−2 1.34×10−1

2.5 LIroof 2.10×10−1 1.72×10−3 2.13×10−1 8.52×10−2 1.34×10−3 8.72×10−2 3.00×10−1

2.5 LIdoC 1.22×10−2 1.38×10−4 1.24×10−2 6.34×10−4 2.85×10−5 6.62×10−4 1.30×10−2

2.5 hole3 3.54×10−2 2.74×10−2 6.29×10−2 6.82×10−2 2.44×10−3 7.39×10−2 1.37×10−1

2.5 hole10 9.44×10−2 5.85×10−3 1.26×10−1 1.09×10−1 3.73×10−3 1.14×10−1 2.40×10−1

2.5 hole17 6.47×10−3 1.87×10−4 6.68×10−3 5.28×10−3 5.71×10−4 6.13×10−3 1.28×10−2

13.3.3 LUX

The simulation results in table 13.5 summarise the dose rates at various positions outside
the LUX cave for the two different electron spectra listed in table 13.2.

Since the primary source consists of highly penetrating electrons, the total dose rate is
reported alongside with the individual contributions from neutrons, gammas and electrons.

For most scoring positions and for both the monoenergetic and the broad energy spec-
trum, the neutron dose rate was found to be the highest contribution to the total dose rate.
The calculated dose rates from the broad spectrum electron source were mostly lower than
the corresponding ones from the monoenergetic 5 GeV electron beam and always lower
than the 2.5µSv/h design limit.

For the 5 GeV monoenergetic electron source, at all positions, except for the critical
location behind the channel of the central beam dump (LUtoHALL), the dose rate was
kept below the 2.5µSv/h design limit. At that particular location, the dose rate calculated
was 6.95µSv/h, which is still below the 7.5µSv/h maximum local dose rate limit.
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Table 13.4: Dose rate calculations for HF, at critical locations indicated in figures 13.2
and 13.3. The upper third of the table lists results for the proton source, the middle third
for the 12C source, while the lower third holds for the 197Au source.

Dose rate Dose rate [µSv/h]

limit Detector Electron beam component Proton beam component

[µSv/h] position n γ Total n γ Total Total

0.5 hole22 2.83×10−1 1.65×10−2 3.07×10−1 9.01×10−1 1.32×10−2 9.56×10−1 1.26
0.5 hole23 2.70×10−2 5.83×10−3 3.34×10−2 1.16×10−1 4.86×10−3 1.22×10−1 1.55×10−1

HF 0.5 HFc1 1.70×10−1 3.21×10−3 1.76×10−1 6.12×10−1 1.10×10−2 6.27×10−1 8.03×10−1

Proton 0.5 HFc2 4.11×10−1 7.37×10−3 4.26×10−1 9.57×10−2 1.06×10−3 9.69×10−2 5.23×10−1

0.5 HFtoHALL 8.22×10−2 1.52×10−3 8.58×10−2 2.65×10−1 5.76×10−3 2.73×10−1 3.59×10−1

0.5 HFtoLI O(10−5) O(10−6) O(10−5) 0.00 1.14×10−8 1.30×10−8 1.30×10−8

2.5 HFroof 2.95×10−1 4.87×10−3 3.54×10−1 4.49×10−1 4.84×10−3 4.56×10−1 8.10×10−1

Electron beam component Carbon beam component

0.5 hole22 2.83×10−1 1.65×10−2 3.07×10−1 2.02×10−1 6.05×10−3 2.10×10−1 5.17×10−1

0.5 hole23 2.70×10−2 5.83×10−3 3.34×10−2 1.49×10−1 3.67×10−3 1.56×10−1 1.89×10−1

HF 0.5 HFc1 1.70×10−1 3.21×10−3 1.76×10−1 5.70×10−1 1.09×10−2 5.91×10−1 7.66×10−1

Carbon 0.5 HFc2 4.11×10−1 7.37×10−3 4.26×10−1 2.98×10−1 6.57×10−3 3.15×10−1 7.41×10−1

0.5 HFtoHALL 8.22×10−2 1.52×10−3 8.58×10−2 3.65×10−1 7.14×10−3 3.83×10−1 4.69×10−1

0.5 HFtoLI O(10−5) O(10−6) O(10−5) 1.34×10−5 2.09×10−7 1.36×10−5 1.36×10−5

2.5 HFroof 2.95×10−1 4.87×10−3 3.54×10−1 4.97×10−1 5.05×10−3 5.05×10−1 8.59×10−1

Electron beam component Gold beam component

0.5 hole22 2.83×10−1 1.65×10−2 3.07×10−1 1.25×10−4 3.07×10−1

0.5 hole23 2.70×10−2 5.83×10−3 3.34×10−2 1.97×10−5 3.34×10−2

HF 0.5 HFc1 1.70×10−1 3.21×10−3 1.76×10−1 1.29×10−6 1.76×10−1

Gold 0.5 HFc2 4.11×10−1 7.37×10−3 4.26×10−1 8.19×10−6 4.26×10−1

0.5 HFtoHALL 8.22×10−2 1.52×10−3 8.58×10−2 O(10−6) 8.58×10−2

0.5 HFtoLI O(10−5) O(10−6) O(10−5) O(10−6) O(10−5)
2.5 HFroof 2.95×10−1 4.87×10−3 3.54×10−1 O(10−4) 3.54×10−1
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Table 13.5: Dose rate calculations for LUX, at critical locations indicated in figures 13.2
and 13.3. The upper half of the table lists results for the 5 GeV monoenergetic electron
source, while the lower half holds for the broad spectrum electron source.

Dose rate limit Dose rate [µSv/h]

[µSv/h] Detector position n γ e− Total

2.5 LUroof 7.64× 10−1 1.16× 10−2 4.27× 10−3 7.95× 10−1

2.5 LUtoLI 1.45× 10−1 3.43× 10−3 0.00 1.49× 10−1

2.5 LUtoET 8.51× 10−1 1.15× 10−2 8.43× 10−3 9.13× 10−1

2.5 LUdoC 1.36× 10−1 9.72× 10−4 0.00 1.37× 10−1

2.5 LUtoHF 1.69 2.60× 10−2 8.02× 10−3 1.82
LUX 2.5 LUtoHALL 7.49× 10−1 8.11× 10−2 6.08 6.94
5 GeV 2.5 hole2 7.35× 10−2 2.41× 10−3 0.00 7.59× 10−2

2.5 hole5 7.45× 10−2 1.47× 10−2 2.79× 10−3 9.19× 10−2

2.5 hole9 6.40× 10−2 4.94× 10−3 0.00 6.89× 10−2

2.5 hole12 1.14× 10−1 1.15× 10−2 5.79× 10−3 1.31× 10−1

2.5 hole16 3.71× 10−1 4.55× 10−2 7.73× 10−3 4.25× 10−1

2.5 hole19 7.86× 10−1 4.64× 10−2 5.71× 10−3 8.42× 10−1

2.5 LUroof 4.66× 10−1 5.60× 10−3 9.76× 10−4 4.72× 10−1

2.5 LUtoLI 4.20× 10−2 1.25× 10−3 1.83× 10−2 6.51× 10−2

2.5 LUtoET 3.88× 10−1 5.95× 10−3 0.00 3.94× 10−1

2.5 LUdoC 7.04× 10−2 1.05× 10−3 3.36× 10−6 7.14× 10−2

2.5 LUtoHF 6.29× 10−1 1.18× 10−2 0.00 6.87× 10−1

LUX 2.5 LUtoHALL 5.52× 10−2 2.76× 10−2 2.31 2.40
Broad 2.5 hole2 8.84× 10−2 3.97× 10−3 5.46× 10−4 9.45× 10−2

2.5 hole5 1.49× 10−1 2.92× 10−3 2.59× 10−3 1.54× 10−1

2.5 hole9 2.36× 10−2 4.30× 10−3 6.82× 10−4 2.86× 10−2

2.5 hole12 8.17× 10−2 6.32× 10−3 4.51× 10−3 9.25× 10−2

2.5 hole16 2.66× 10−1 1.72× 10−2 6.78× 10−3 2.90× 10−1

2.5 hole19 3.05× 10−1 2.77× 10−2 8.63× 10−3 3.44× 10−1

13.3.4 ETTF

The simulation results in table 13.6 summarise the dose rates at various positions outside
the ETTF cave for three experiments: the broad spectrum electron source with the spec-
trometer magnet in place and a 5 GeV monoenergetic electron source with and without
the spectrometer magnet.

Since the primary source is the same as in LUX and consisting of highly penetrating
electrons, the total dose rate is again reported alongside with the individual contributions
from neutrons, gammas and electrons.

For the broad spectrum source, the dose rates in all scoring locations remained below
the 2.5µSv/h design limit. Out–of–cave doses from neutrons were in general found to
be one order of magnitude higher than photon doses and two orders lower compared to
electrons.
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The lower energy electrons from the broad spectrum source bent downwards, at large
angles after travelling in the spectrometer magnet, caused the highest total dose rate
of 1.11µSv/h to occur behind the nearest laser penetration hole (hole21), inside LUX.
Similar to LUX, electrons are scattered through the 5.85 mm central beam dump channel
(ETtoHALL1) and gave rise to a calculated dose rate of 1.04µSv/h.

For the 5 GeV monoenergetic source scenario with the spectrometer magnet, the highest
dose rate of 3.76µSv/h was calculated to occur behind the central beam dump hole (ET-
toHALL1), as depicted in figure 13.5. That was higher than the design limit of 2.5µSv/h,
but less than the maximum allowed local dose rate value of 7.5µSv/h.

For that particular source and experimental cave, the highest simulated dose rate for
CALA of 1.6 kSv/h was recorded inside the central beam dump. In this inaccessible loca-
tion, the particle fluence locally was calculated to be up to 1.6× 1010particles/cm2.

The monoenergetic 5 GeV beam without the spectrometer magnet presented a chal-
lenging scenario for radiation protection. This is highlighted in figure 13.6, where the dose
rate at beam line level is shown for the case with (left) and without (right) spectrometer
magnet.

The employed 50 cm lead bricks at both ends of the central beam dump channel were
able to hinder direct electron penetration through the channel. The highest dose rates
in the scenario were 2.61µSv/h on the roof of the building (ETroof), 3.84µSv/h in the
SPECTRE cave (ETtoSP), 5.33µSv/h and 6.83µSv/h in the two of the eastern laser
penetration holes (hole18 and hole21) to LUX and SPECTRE respectively.

Although the aforementioned dose rates exceeded the design limit of 2.5µSv/h, they
were below maximum local dose limit of 7.5µSv/h.
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Table 13.6: Dose rate calculations for ETTF, at critical locations indicated in figures 13.2
and 13.3. The upper third of the table lists results for the 5 GeV monoenergetic electron
source, the middle third for the same source without magnet but with lead shielding, while
the lower third lists the results for the broad spectrum electron source.

Dose rate limit Dose rate [µSv/h]

[µSv/h] Detector position n γ e− Total

2.5 ETroof 7.85× 10−1 1.28× 10−2 3.87× 10−2 8.37× 10−1

2.5 ETtoLU 2.46× 10−1 4.91× 10−3 3.45× 10−3 2.63× 10−1

2.5 ETtoSP 7.58× 10−1 1.49× 10−2 3.21× 10−3 7.83× 10−1

2.5 ETdoC 5.35× 10−2 5.03× 10−4 0.00 5.40× 10−2

2.5 ETtoHALL1 1.10× 10−1 7.51× 10−2 3.46 3.76
ETTF 2.5 ETtoHALL2 6.34× 10−1 1.09× 10−2 1.29× 10−2 6.67× 10−1

5 GeV 2.5 hole4 3.83× 10−2 5.30× 10−3 5.66× 10−3 5.34× 10−2

2.5 hole7 4.83× 10−2 4.48× 10−3 0.00 5.28× 10−2

2.5 hole11 4.88× 10−2 5.78× 10−3 0.00 5.46× 10−2

2.5 hole14 1.04× 10−1 4.87× 10−3 0.00 1.09× 10−1

2.5 hole18 8.02× 10−1 5.09× 10−2 6.50× 10−3 8.66× 10−1

2.5 hole21 5.34× 10−1 5.42× 10−2 8.47× 10−3 6.29× 10−1

2.5 ETroof 2.50 8.47× 10−2 6.32× 10−3 2.61
2.5 ETtoLU 2.07 4.80× 10−2 6.10× 10−2 2.20
2.5 ETtoSP 3.50 8.69× 10−2 3.17× 10−2 3.84
2.5 ETdoC 3.96× 10−3 8.92× 10−5 0.00 4.05× 10−3

2.5 ETtoHALL1 3.95× 10−1 5.50× 10−4 0.00 4.11× 10−1

ETTF 2.5 ETtoHALL2 1.69× 10−2 1.29× 10−4 0.00 1.87× 10−2

5 GeV 2.5 hole4 2.63× 10−1 3.84× 10−2 0.00 3.02× 10−1

no Magnet 2.5 hole7 4.39× 10−1 3.49× 10−2 8.98× 10−2 5.64× 10−1

2.5 hole11 2.57× 10−1 3.34× 10−2 1.19× 10−3 2.91× 10−1

2.5 hole14 3.62× 10−1 4.21× 10−2 1.71× 10−2 4.22× 10−1

2.5 hole18 4.77 3.42× 10−1 2.12× 10−1 5.33
2.5 hole21 5.86 3.93× 10−1 5.43× 10−1 6.83
2.5 ETroof 6.86× 10−1 9.94× 10−3 8.19× 10−4 7.00× 10−1

2.5 ETtoLU 2.20× 10−1 3.80× 10−3 2.86× 10−3 2.28× 10−1

2.5 ETtoSP 4.63× 10−1 1.03× 10−2 2.02× 10−3 4.86× 10−1

2.5 ETdoC 2.92× 10−2 3.16× 10−4 0.00 2.95× 10−2

2.5 ETtoHALL1 3.52× 10−2 5.01× 10−2 8.84× 10−1 1.04
ETTF 2.5 ETtoHALL2 2.27× 10−1 3.81× 10−3 2.83× 10−3 2.35× 10−1

Broad 2.5 hole4 4.51× 10−2 4.40× 10−3 4.68× 10−3 6.38× 10−2

2.5 hole7 3.92× 10−2 8.15× 10−3 7.16× 10−4 4.80× 10−2

2.5 hole11 6.41× 10−2 8.23× 10−3 1.04× 10−3 7.34× 10−2

2.5 hole14 4.93× 10−2 5.30× 10−3 7.62× 10−4 5.53× 10−2

2.5 hole18 7.01× 10−1 8.60× 10−2 2.35× 10−2 8.19× 10−1

2.5 hole21 9.86× 10−1 7.78× 10−2 3.98× 10−2 1.11
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Figure 13.5: Dose rate in ETTF shown on a vertical plane, for a 5 GeV monoenergetic
electron source intersected by a spectrometer magnet.

Figure 13.6: Dose rate distributions for the ETTF cave at the beam line level for 5 GeV
monoenergetic electron source. (Left) normal setup with spectrometer magnet, (right)
without spectrometer magnet. In the latter 50 cm lead were employed at both ends of the
beam dump channel as shielding.
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13.3.5 SPECTRE

For the SPECTRE cave, three source types were simulated (for details see table 13.2): a
500 MeV electron source at a repetition rate of 1 Hz. A broad spectrum electron source with
energies up to 500 MeV, also generated with 1 Hz repetition frequency. Finally, 70 MeV
monoenergetic electrons with 1 kHz repetition frequency.

Table 13.7 summarises the dose rates outside the cave in all scoring locations for the
three source configurations. Except for one case, the calculated dose rates were at least
one order of magnitude below the respective limits, either that of 2.5µSv/h for supervised
areas or that of 0.5µSv/h for unclassified areas. The sole exception to this was in the
critical location behind one of the laser penetration holes leading to ETTF (hole20), for the
70 MeV monoenergetic electrons with 1 kHz repetition frequency. There the dose rate was
quantified to exceed the 2.5µSv/h design limit (3.62µSv/h), but still below the maximum
allowed local dose rate of 7.5µSv/h. Neutrons in general dominated again the out–of–cave
doses.
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Table 13.7: Dose rate calculations for SPECTRE, at critical locations indicated in fig-
ures 13.2 and 13.3. The upper third of the table lists results for the 70 MeV monoenergetic
electron source at 1 kHz, the middle third for the 500 MeV monoenergetic electron source
at 1 Hz, while the lower third represents the broad spectrum electron source at 1 Hz.

Dose rate limit Dose rate [µSv/h]

[µSv/h] Detector position n γ e− Total

2.5 SProof 5.07× 10−3 2.33× 10−3 0.00 7.40× 10−3

2.5 SPtoET 6.92× 10−4 8.54× 10−4 0.00 1.55× 10−3

2.5 SPdoC 0.00 1.47× 10−4 0.00 1.47× 10−4

2.5 SPtoHALL1 0.00 0.00 0.00 0.00
SPECTRE 2.5 SPtoHALL2 0.00 0.00 0.00 0.00
70 MeV 2.5 SPtoHALL3 0.00 0.00 0.00 0.00

0.5 SPtoLAB 0.00 0.00 0.00 0.00
2.5 hole6 2.03× 10−2 9.05× 10−3 0.00 2.94× 10−2

2.5 hole13 1.54× 10−2 1.05× 10−2 0.00 2.59× 10−2

2.5 hole20 1.30 1.39 9.25× 10−1 3.62

2.5 SProof 4.82× 10−2 8.19× 10−4 1.15× 10−4 4.91× 10−2

2.5 SPtoET 6.29× 10−2 1.34× 10−3 6.55× 10−4 6.67× 10−2

2.5 SPdoC 5.89× 10−3 9.22× 10−5 0.00 5.98× 10−3

2.5 SPtoHALL1 5.15× 10−2 1.42× 10−3 1.90× 10−3 5.48× 10−2

SPECTRE 2.5 SPtoHALL2 5.09× 10−2 6.96× 10−4 0.00 5.16× 10−2

500 MeV 2.5 SPtoHALL3 1.63× 10−2 2.02× 10−4 0.00 1.65× 10−2

0.5 SPtoLAB 3.20× 10−2 6.03× 10−4 1.79× 10−4 3.28× 10−2

2.5 hole6 1.53× 10−2 1.54× 10−3 4.12× 10−4 1.73× 10−2

2.5 hole13 1.62× 10−2 1.91× 10−3 5.66× 10−4 1.87× 10−2

2.5 hole20 1.43× 10−1 2.05× 10−2 1.06× 10−2 1.79× 10−1

2.5 SProof 3.21× 10−2 5.85× 10−4 0.00 3.27× 10−2

2.5 SPtoET 3.05× 10−2 6.61× 10−4 0.00 3.12× 10−2

2.5 SPdoC 1.69× 10−3 9.00× 10−5 0.00 1.78× 10−3

2.5 SPtoHALL1 1.47× 10−2 9.63× 10−4 0.00 1.56× 10−2

SPECTRE 2.5 SPtoHALL2 1.43× 10−2 1.07× 10−3 0.00 1.54× 10−2

Broad 2.5 SPtoHALL3 6.87× 10−3 8.69× 10−5 2.74× 10−4 7.23× 10−3

0.5 SPtoLAB 1.29× 10−2 2.52× 10−4 0.00 1.34× 10−2

2.5 hole6 9.22× 10−3 1.71× 10−3 7.53× 10−4 1.17× 10−2

2.5 hole13 1.62× 10−2 2.16× 10−3 3.05× 10−3 2.14× 10−2

2.5 hole20 2.01× 10−1 1.51× 10−1 3.77× 10−1 8.33× 10−1
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13.4 Discussion

As presented in section 13.3 and detailed in tables 13.3 – 13.7, by employing adequate beam
dumps matched to beam–divergence, magnets, passive shielding and laser pulse repetition
limits, the simulated dose rates remained mostly below the design limits of the CALA
facility (0.5µSv/h for unclassified and 2.5µSv/h for supervised areas).

The highest dose areas in each cave were directly correlated to the location of the
respective beam dump. For the LUX, ETTF and SPECTRE caves, the beam was termi-
nated in the central beam dump, at the eastern end of each cave. This meant that the dose
was higher in that part of these caves and in the experimental hall behind it. LION and
HF contain individual beam dumps, approximately located at the center of these caves.
Therefore, the high dose areas in these caves were estimated to be in their middle, which
in its turn resulted in the highest dose rates outside these caves to occur behind the walls
in the direct vicinity of the beam dumps.

Common to all caves, as expected, was the trend for high dose rates to be present
behind the laser penetration holes that are near beam dumps. The locations behind the
holes, however, are below the false floor, hence not readily accessible.

Secondary neutrons were in the majority of the cases the dominant contribution to dose
rates calculated outside a cave in operation. The initial beam and charged secondaries
were usually fully contained in the beam dumps, but secondary neutrons created in these
volumes with highly directional fluences, gave rise to considerable doses outside the caves.
A different situation was observed when beams were hitting the central beam dump and
the x–ray extraction channels were open (LUX, ETTF, SPECTRE caves). In these cases,
high energy electrons not adequately bent by the spectrometer magnets were the main
component of the calculated out–of–cave high dose rate. The leakage of electrons through
the x–ray extraction channels can be further increased due to scattering in the chamber
walls intersecting the beam. Thicker walls significantly increase the angular distribution
of the electron beam, allowing a larger part of it to go through the beam dump channels.

The high energy electrons produced in ETTF and SPECTRE yield a non–negligible
fluence of muons (up to about 1000 muons/cm2), approximately two orders of magnitude
lower than the maximum neutron fluence. These muons are predominantly produced at
shallow locations of the central beam dump. They display a broad energy spectrum with
energies reaching up to a few GeV. Muons with such energies have a maximum range in
water of 3 − 4m, which means that they cannot escape the central 5.85 m thick concrete
beam dump. Therefore, their contribution to the dose rate outside the caves is negligible.

The maximum quantified dose rate outside a cave in operation was 6.94µSv/h and
was estimated for a monoenergetic 5 GeV electron source, behind the central beam dump
of LUX (LUtoHALL). That location is one of the critical points of the CALA design.
Despite the massive central beam dump, two channels through it are required in order to
allow for the transport of x–ray beams from the experimental caves LUX and ETTF to
the experimental hall to the east. Behind these two channels dose rates were expected to
be high. The almost 3–fold excess of the 2.5µSv/h design limit for supervised areas was
mainly attributed to high energy electrons escaping through one of the central beam dump
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channels. The dose was below the maximum locally allowed dose rate of 7.5µSv/h, which
means that this particular location can be made temporarily inaccessible.

A similar dose rate (6.83µSv/h) was calculated to leak through one of the laser pene-
tration holes towards SPECTRE (hole21), in the case of the most demanding configuration
in ETTF, that of a monoenergetic 5 GeV electron source without a spectrometer magnet.
Due to the lack of magnetic deflection, almost the entire electron beam hit a small area
of the central beam dump (the lead blocking the beam dump channel) and created a high
radiation environment in a small section of the ETTF cave. The creation of secondary
neutrons there was the primary dose rate component leaking through the laser penetration
hole most proximal to the beam dump. As in the previous case, this dose rate was also
below the maximum locally allowed rate of 7.5µSv/h.

Excess of the dose rate limit for unclassified areas (0.5µSv/h limit) was estimated for
a few occasions concerning the LION and HF caves simulated operation. For LION the
highest dose rate (1.06µSv/h) occurred at the north corridor (LIc) in the 12C source case
and was mainly attributed to the directional neutron fluence escaping the hybrid beam
dump. For HF, the respective excess dose rate of 1.06µSv/h was calculated behind one of
the laser penetration holes (hole22) for the proton source case. Again the main component
of the dose rate originated from secondary neutrons, backscattered from the concrete beam
dump. The fact that for HF, contrary to LION, it was the proton rather than the 12C
source the most demanding scenario in terms of radiation protection was due to the fact
that the maximum 12C ion energy in HF was assumed to be half of that in LION (for
details see table 13.2).

Due to the 12C–ion energy spectrum in LION, elevated dose rates, mostly stemming
from secondary neutrons were calculated. This necessitated the design of an optimised
beam dump for that cave. A full concrete beam dump of the same volume would stop the
beam before penetrating deep enough and most of the produced secondaries would back–
scatter (see figure 13.4 – top). A full water beam dump would stop the beam deeper in
the beam dump, but the lower density and stopping power of water compared to concrete
would still allow a large fraction of the generated secondaries to escape, especially towards
the forward direction (see figure 13.4 – middle). The hybrid beam dump stops the beam
approximately in the middle of its volume, containing more efficiently the secondaries by
enclosing them in a water cavity surrounded by concrete (see figure 13.4 – bottom).

One of the main goals of the CALA radiation protection design was to allow caves
and experimental areas neighbouring a cave, in which the laser is in operation, to remain
accessible. This goal was in general achieved in our simulation study, with a few exceptions
at a handful of locations (dose rates > 2.5µSv/h): in the experimental hall, when LUX
or ETTF (only for 5 GeV monoenergetic) were in operation, due to the electron leakage
through the central beam dump channels. In SPECTRE and LUX when ETTF was in
operation with 5 GeV monoenergetic electrons without spectrometer magnet due to neutron
dose. In ETTF when SPECTRE was in operation with 70 MeV at the high repetition rate
of 1 kHz, again due to neutrons.

In this study we have calculated the dose rate from each individual cave being in oper-
ation, without assuming cumulative effects due to operation of multiple caves in parallel.
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Four out of the five CALA caves (LION, HF, LUX and ETTF) are seeded by the ATLAS–
3000 laser and will not be operated simultaneously. ETTF and SPECTRE (seeded by the
PSF–pro laser) can in principle be operated at the same time, which means that their cumu-
lative dose rate should be taken into account. A critical location which would be accessible
during a simultaneous operation of ETTF and SPECTRE is the vicinity of ETtoHALL2
and SPtoHALL1. This is the area with the highest overlap of dose leakage originated by
ETTF and SPECTRE. At this location, the cumulative dose rate for the worst case sce-
nario sources (ETTF 5 GeV monoenergetic, SPECTRE 500 MeV monoenergetic) would be
7.22× 10−1µSv/h (6.67× 10−1µSv/h + 5.48× 10−2µSv/h), which is much lower than the
required dose rate limit.

Additional, beyond the nominal, material and equipment intersecting the electron beam
might significantly change the source characteristics. This in its turn can have a large
impact on the dose rate outside the caves. An extreme example of such a scenario is
the 5 GeV ETTF electron beam passing through the thick 2.5 cm vacuum chamber walls
instead of the 3 mm extraction window. This was estimated to increase the dose rate in
the critical location ETtoHALL1 by up to a factor of 10. Therefore, constant monitoring
of the dose rate at multiple locations outside the caves is envisaged.

There are a few factors that justify the design choice of the facility without a maze at
the entrance to each cavern, maximising cavern space. The first is the fact that the use of
thick concrete doors mitigates the need for a maze (in most radiation treatment facilities,
the maze makes up for the shielding required due to the use of glass and thin metal doors).
In addition, for all experimental caverns except for HF, the entrance is located at 180◦

with respect to the laser propagation direction towards the target. This is the direction
with the lowest particle fluence, thus resulting to a low dose rate. Furthermore, the source
parameters used in this MC study and yielding in some cases dose rates near the allowed
limits, are rather optimistic (worst case scenario for shielding). Especially for biomedical
applications, higher energies/fluences are not necessary.

Finally, in the unlikely case that the laser and targetry enable us to reach higher ener-
gies/fluences in the far future of CALA, decreasing the repetition rate for some particular
experiments/sources would allow us to remain within the radiation protection limits.

13.5 Conclusion

Monte Carlo simulations were used to design and validate the radiation protection setup
of the multi–purpose laser–particle acceleration facility CALA. Our study showed that
dose from secondary neutrons was the major contribution in dose rates calculated outside
experimental caves in operation. In addition to that, any holes or extraction channels would
allow parts of the beam to escape the caves, also resulting in high dose rates. The presented
design achieved the goal of dose rates below 7.5µSv/h outside any cave in operation. The
present trial operation of CALA is used to assure that the provisions concerning the dose
limits are met.
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Chapter 14

Summary, conclusions and future
outlook

In this final chapter, the main findings of this manuscript are briefly presented. Emphasis
is put on the limitations or open questions left in each study and, wherever possible,
directions for future investigations are outlined.

Imaging for proton treatment planning

The current clinical practice for obtaining the relative stopping power (RSP) patient maps
required for proton treatment planning is based on single energy x–ray CT. The linear
attenuation coefficient map is converted to RSP via a semi–empirical calibration, resulting
in large errors (up to 3.5%) for some tissue types. Dual energy x–ray CT (DECT) and
proton CT (pCT) both outperform single energy x–ray CT in terms of RSP accuracy, and
are therefore considered as candidates for imaging for proton treatment planning. While
there have been indirect comparisons between the two modalities, often in the simulation
level and excluding real detector effects for pCT, the first direct experimental comparison
of the two was presented in this manuscript. For that purpose, an experimental campaign
was organized in Munich and Chicago, utilizing the most advanced preclinical pCT scanner
and a commercial DECT scanner.

Image artifacts of an amplitude exceeding 2% in RSP were found to deteriorate the
overall RSP accuracy achievable with pCT. By establishing an improved scanner calibra-
tion algorithm, with the aid of MC simulations, the overall pCT RSP accuracy improved
from 0.87% to 0.55%, approaching the RSP accuracy achievable with an idealized pCT
scanner (0.17%). The experimental pCT RSP accuracy was equivalent to that reached by
a commercially available state–of–the–art DECT scanner (0.67%).

The fact that a prototype pCT scanner already achieved comparable or better RSP
accuracy with a state–of–the–art commercial DECT scanner highlights the potential of
the former for proton treatment planning. Improvements of the scanner design might push
the RSP accuracy limit closer to that of ideal simulations (0.1-0.2%). The work with
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the phase II scanner prototype and its five–stage energy detector showed that avoiding
stopping protos near stage interfaces could improve image quality. This could for example
be realized with the same scanner design by modulating the energy of the initial beam
when scanning the object, in such a way that protons reaching the detector would stop
away from stage boundaries. That approach was recently demonstrated experimentally
by Dickmann et al. (2021)(Dedes–senior author). Such a solution would require though
either an approximate prior knowledge of the object or image acquisition at two energies,
thus twice the imaging dose. A dedicated scanner design operating exclusively with energy
modulation was constructed by the ProtonVDA company and is currently tested (Sarosiek
et al. 2021). Alternatively, optimization of the calibration procedure could also result in an
increase of the scanner performance. An empirical artifact correction calibration adapted
from x–ray CT (Kachelrieß et al. 2006) was applied to pCT experimental data and resulted
in significant artifact reduction and RSP accuracy of 0.46% (Dedes–senior author, under
review).

With a sub–1% RSP accuracy, DECT is a commercially available imaging solution that
can used for proton treatment planning. In addition to the RSP accuracy, it inherently
achieves better spatial resolution compared to proton imaging. A drawback of DECT is the
increased dose to the patient. A factor of 5–10 higher is not negligible for ionizing radiation
imaging dose. Furthermore, pCT images can be easily acquired with the patient placed
at the treatment position, thus minimizing positioning uncertainties and in conjunction
to low dose, be utilized for daily image guidance and plan adaptation. Finally, although
RSP accuracy was quantified in this study, a full dosimetric evaluation that will show
how the image quality achieved with the different modalities translates to clinical proton
treatment plans should be performed. In a first step, Meyer et al. (2019) have quantified
this in a simulation study assuming ideal detection systems and such investigations should
be extended to account for realistic scanners.

Proof–of–concept FMpCT

The trade–off for decreasing image noise is increasing imaging dose, the latter being a
crucial aspect for imaging modalities employing ionizing radiation. For particle therapy
image guidance and plan adaptation though, only a fraction of the patient anatomy is
required to be imaged accurately. A paradigm is the need for accurate imaging of the
region which the therapeutic particle beam will traverse to reach the tumor, whereas the
rest of the patient is to be spared as much as possible from receiving either therapeutic
or imaging dose. To circumvent this trade–off, images of spatially varying quality can be
acquired and reconstructed. This is the basic concept behind fluence modulated proton
CT (FMpCT), where the fluence of the proton beam is modulated within every projection.

A proof–of–concept study employed ideal simulations (no detector effects), in which
proton pencil beams were used in order to modulate the fluence within a projection. A
very simple fluence modulation algorithm considered either an intersection of the central
beam axis with a region of interest (ROI) – thus no pencil beam fluence modulation,
called full fluence (FF) – or no intersection with that ROI resulting in pencil beam fluence
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modulation with a fluence modulation factor (FMF) with respect to FF. Images were
reconstructed by means of a filtered backprojection (FBP) algorithm. It was confirmed
that FMpCT is feasible and that in general the image quality in the ROI was not affected
by the high noise outside. For simple homogeneous objects, FMpCT retained the FF image
quality (better than 0.3% in RSP accuracy and 1.2% in noise) for FMF down to 5% of the
FF, while in uniform low fluence images noise increased considerably. Similar results were
observed for simulations on patient anatomies, with FMpCT retaining the same noise and
RSP accuracy as the FF down to 5% of FF, while uniform fluence image noise increases
rapidly with decreasing fluence. Calculating treatment plans on FMpCT resulted in proton
range which was in very good agreement with that calculate on FF images. Supporting
the concept of FMpCT, significant imaging dose savings were quantified in simulations,
ranging from 30% to about 60% outside of the ROI, where healthy tissue sparing is desired.
Emulating fluence modulation on previously acquired experimental data of a pediatric head
phantom, by discarding protons, confirmed the hypothesis FMpCT. It was also observed
that the lowest level of FMF, below which RSP accuracy deteriorates significantly rose
from 1% in ideal simulation to 30% emulated FMpCT on real data.

The concept was demonstrated experimentally using the pencil beam scanning capabil-
ity of a clinical proton facility. For a cylindrical uniform phantom FMF of 50% and 20%
was probed. Inside the central ROI, FMpCT and uniform fluence images achieved a sub–
1% RSP accuracy and as planned, FMpCT noise remained at the level of FF image noise,
in contrast to uniform 50% and 20% images, whose noise in the ROI increased significantly.

The simulation study and the experimental demonstration of FMpCT confirmed the
postulated potential of the technique for preserving high image quality in a specific region of
the image, while decreasing imaging dose outside. The simplicity of the fluence modulation
algorithm which took into account intersection of the ROI by the beams in a binary fashion
was a limiting factor that would not allow for more conformal shaping of the noise and dose
inside and outside of the ROI, respectively. Furthermore, in this forward approach, the
noise level in the ROI could not be a–priori predicted or prescribed. This would necessitate
a fluence optimization algorithm and detailed theory of pCT noise, both subsequently
developed. Specific limitations of the FMpCT concept were outlined. When employing a
weak modulation (FMF>50%) the gain compared to uniform fluence in terms of preserving
noise in the ROI and reducing dose outside of it would be low. This limitation would be
aggravated by a large sized ROI. At the opposite extreme, strong modulation (FMF<30%)
resulted in deterioration of the image quality in the ROI, when comparing FMpCT and
FF images.

Image noise reconstruction for pCT

The quantification of pCT image noise can be estimated in a straightforward manner
from the RSP variance in homogeneous regions of an image. The drawback of this simple
method is that it is constrained to small regions due to the spatial distribution of noise in
pCT and it is of limited use in the case of highly heterogeneous objects, such as human
patients. Therefore, a voxelwise pCT noise map is necessary in order to fully capture all
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noise patterns, allowing for prescribing and achieving spatially varying image quality. A
voxelwise pCT noise map could be obtained by n–realizations of an image, but this would
require either time consuming simulations of the imaging process based on a prior image,
or repeated image acquisitions, thus increasing the imaging dose to the patient. An elegant
solution to this problem is the direct reconstruction of noise, from the same data acquired
for a single pCT RSP image.

A 2D pCT noise reconstruction algorithm was formulated, yielding the voxelwise RSP
variance maps. Due to the linearity of the problem in FBP reconstruction, RSP variance
images are reconstructed from WEPL variance projections, in analogy to the RSP image
reconstructed from WEPL projections. In the projection level, protons are binned in pixels.
For RSP reconstruction, the mean WEPL of all the protons in every projection pixel is
determined. For variance reconstruction, the WEPL variance in every projection pixel
needs to be determined. The WEPL variance (σ2

WEPL) in a projection pixel was found to
be proportional to the variance of the energy distribution (σ2

E) of the protons binned in
a projection pixel and anti–proportional to the number of protons (N) in that projection
pixel. Given that for a fixed initial proton beam energy σ2

E in a projection pixel determined
by the object, the number of protons in a projection pixel is the only free parameter allowing
for controlling the σ2

WEPL. One of the main findings of the 2D pCT noise formalism is that
multiple Coulomb scattering plays an important role in noise formation. Protons binned in
the same projection pixel can previously traverse completely different paths in the object
due to multiple Coulomb scattering. This results into increased σ2

E and thus increased
noise near heterogeneities and at the object boundaries. This effect was found to be
reduced when taking into account multiple Coulomb scattering in the image reconstruction.
Subsequently, a realistic MC simulation of the scanner was used in order to further validate
the 2D noise reconstruction. Furthermore, by enhancing the simulation platform to account
for non–linearities in the detection process and using a realistic beam model derived from
experimental data, noise reconstructed from experimental and simulated pCT images were
found to be in good agreement (less than 10%), providing a reliable tool for further pCT
studies. Using it allowed for disentangling contributions to noise. In addition to the
highly object dependent noise from multiple Coulomb scattering, the next most important
contribution to noise came from energy straggling in the object and in the detector. For
the phase II pCT scanner the sum of energy straggling in the object and in the detector
is almost constant and object independent, as the less material a proton traverses in the
object, the longer it travels in the energy detector until it stops. The energy spread of the
initial proton beam also adds a constant amount of noise.

From the conclusion that noise in pCT is highly object dependent, an obvious limita-
tion that arises is that it is not possible to assume generic patient models for the prediction
of noise. In order to acquire FMpCT images optimized for spatially varying image quality,
prior knowledge of the object is necessary. This can come from a previous pCT image. A
convenient alternative would be a diagnostic x–ray CT image that can be used as an input
to the pCT simulation platform, which was shown to reproduce accurately noise in exper-
imental pCT images. Furthermore, the formulation of a robust pCT noise reconstruction
unveiled that previous models capable of predicting noise at the center of a homogeneous
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object significantly underestimate noise in clinically relevant geometries. Therefore, the
dose efficiency (imaging dose for a given noise level) advantage of pCT over x–ray CT
might not be as large as it was assumed in the past.

Noise optimized pCT

A further step towards optimized FMpCT is the capability to achieve a prescribed spatially
varying image quality. It necessitates determining a fluence pattern for each acquisition
angle, such that the resulting pCT reconstruction achieves a given image variance target.

The validated pCT MC simulation platform was used in order to develop a variance
prescription algorithm. Finding relative modulation factors for each pencil beam such that
the summed fluence pattern results in a prescribed image variance map is a computation-
ally expensive problem, generally requiring alternating between the reconstructed image
domain and the projection domain. The proposed image variance prescription method was
formulated as an optimization algorithm. For a given image variance target, the variance
projections were are found via forward projection. The set of solutions is large and con-
straints such as non–negativity have to be imposed. The variance image is reconstructed
and the difference to the variance target is derived via forward projection and added to
the variance projections of the previous iteration. Using this algorithm it was shown that
pCT images with a contrast of four in variance could be achieved for homogeneous and
anthropomorphic phantoms, resulting in dose savings ranging from 25.7% to 40.5% outside
the low variance ROI. On the other hand, an increase of the dose of 9.2% to 19.2% was
observed in the ROI. This can be considered as a negligible increase, considering that this
effect occurs in the area where subsequently a therapeutic amount of dose will be deposited.
The methodology was demonstrated experimentally. Fluence patterns optimized based on
MC simulations were delivered in real pCT scans. The prescribed variance contrast of
four was achieved also in experimental scans, showcasing the applicability of the whole
workflow.

One significant limitation of the presented algorithm was that it does not explicitly
account for dose reduction. Dose savings were achieved indirectly by prescribing higher
noise, but a more controlled and direct dose prescription and optimization would be desir-
able. This was achieved in a subsequent study, with the formulation of a joint noise and
dose optimization (Dickmann et al. 2020a). Furthermore, there is a large set of solutions in
the projection level, with only a subset being realizable, resulting in a few constraints: the
projection noise cannot be negative, there should be no projection pixels with zero protons
for the FBP reconstruction to work and finally the number of protons should be finite. All
these constraints limit the achievable variance contrast. In the experimental demonstration
a slight degradation of the RSP accuracy was observed for the case of FMpCT, but as the
ROI contained only two inserts the RSP accuracy needs to be more carefully quantified in
the future. In general RSP accuracy was always at the level of 1% or better. In addition,
as fluence patterns are optimized in the (sub–)mm scale, the whole process is sensitive
to misalignments and beam size changes of that order. Finally, for technical reasons the
interfacing with the beam delivery system allowed only step–and–shoot image acquisition.
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This led to a tenfold increase of the image acquisition time, for the same beam–on time.
This problem can be circumvented by using a continuous rotation of the object and con-
tinuous image acquisition, which would require synchronising the rotation stage with the
fluence patterns to be delivered.

Biological uncertainties in proton treatment planning

In proton radiation therapy, a constant relative biological effectiveness (RBE) of 1.1 with
respect to the reference photon radiation is currently assumed. Biological experiments show
that the RBE is not constant throughout therapeutic proton fields and several models
have been proposed to calculate it. Many of these models predict the RBE based on
the delivered dose D, the dose weighted linear energy transfer LETd, the ratio of the
coefficients of the linear quadratic model of describing cell survival for photon irradiation
(α/β)x and a free parameter q used for fitting the LETd proton linear quadratic model
coefficients to experimental cell survival data. Both (α/β)x and q determination entails
large uncertainties.

In this manuscript a study was presented in which these uncertainties for a published
biological model were quantified and their impact on proton treatment plans (TPs) were
explored. For two patients cases, intensity modulated proton therapy (IMPT) TPs were
optimized and simulated assuming constant RBE and the dose was recalculated using the
variable RBE model. For the nasopharyngeal patient, differences in dose in the tumor
between the constant and variable RBE model was within the model uncertainties, but
in two out of the three considered healthy organs at risk (OAR) the dose in the constant
RBE model was considerably underestimated. For the prostate patient, the dose was found
to be significantly different between the constant and variable RBE models in the tumor
and in one of the two OARs considered. The findings also suggested that the uncertainty
on both (α/β)x and q can be important, depending on the patient, and that they should
both taken into account when estimating non–constant RBE. Subsequently, a direct dose
optimization accounting for uncertainties of the variable RBE model was performed and
resulted in reducing dose in the OARs while maintaining tumor coverage with respect to
the constant RBE plans.

Although uncertainty on q parameter could be reduced by fitting the models on a
broader range of experimental data, the uncertainty on (α/β)x for different organs and
tumors in different patients is unlikely to be reduced in the foreseeable future. Therefore,
robust TP optimization taking into account these uncertainties is beneficial. One limita-
tion of the presented work is that it was performed on only two patients. A large and more
diverse cohort would be necessary in order to reach more definitive conclusions. Further-
more, LETd which is one of the parameters of the RBE model can be different for very
similar dose distributions. This means that results might differ when the same therapeutic
dose is delivered by a different configuration of treatment fields. Nevertheless the LETd

enters the RBE formula in the square root and consequently small LETd variations cause
even smaller RBE variations. The baseline RBE weighted dose strongly depends on the
exact RBE functional dependence to dose, as described by a specific model. Therefore,
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any conclusions about the agreement or disagreement between the constant RBE dose and
the RBE weighted dose can vary when different models are used. Finally, the basis of the
presented comparison is the well established linear quadratic model. Although this is a
valid basis for describing cell survival determining the effect of radiation in the tumor, it
does not account for complications and second cancer risks in healthy organs.

Prompt–gamma range monitoring

The finite range of protons and heavy ions in matter results in steep dose gradients which
are favorable for use of radiation therapy. The advantage of highly conformal dose dis-
tributions and sparing of surrounding healthy tissues comes with the drawback of high
sensitivity to range uncertainties. To overcome this problem, monitoring of the ion range
in the patient is deemed necessary. As the therapeutic beam does not exit the patient,
range monitoring has to rely on secondary radiation, induced by the therapeutic beam.
Prompt–gamma (PG) emission, which occurs almost instantaneously with the proton or
heavy ion beam interacting with the patient is an excelled candidate for in–vivo, real–time
range monitoring.

MC simulations are used extensively for estimating the applicability of PG range mon-
itoring and will be likely used for comparing the measured PG distribution in a patient to
the expected one according to the treatment plan. Their accuracy in modelling the PG
emission and detection is therefore of high importance. It has been observed that GEANT4
overestimates the production of prompt–gammas by 80%–180% for 12C beams of therapeu-
tic energies. In the work presented in this manuscript the focus was put on the assessment
and improvement of the QMD inelastic nuclear interaction model for a better description
of prompt–gamma emission. One of the free parameters of the QMD model (the nucleon
wave packet width L) which was identified to strongly affect prompt–gamma emission,
was initially optimized for heavy nuclei not relevant to particle therapy. Benchmarking
the QMD model against binding energy per nucleon and nuclear density data, an optimal
value for this parameter was found. Using that value, QMD produces lighter fragments
of lower binding energy, which resulted in less frequent de–excitation via photon emission.
In addition, the optimized L parameter value resulted in an overall improvement of the
prediction of charged secondary angular yields, benchmarked against experimental data.
With these settings, the discrepancy in predicting measured prompt–gamma emission re-
duced from 86%–165% to a few % up to 30% for all cases except for around the Bragg
peak in the case of high energy 12C beams where it was reduced from 180% down to 70%.

The remaining discrepancies in the prompt–gamma emission originates from the nuclear
reactions induced by the secondaries lighter fragments, mostly protons. This is why they
are concentrated around and beyond the Bragg peak. They cannot therefore be improved
from the optimization of the QMD model which only handles nucleus–nucleus reactions.
Furthermore, what should also be investigated in the future is a more holistic optimization
taking into account other particle therapy related observables such as β+ emitters.

In an effort to systematically investigate the accuracy and precision of range detec-
tion from prompt–gamma emission profiles, a set of five prostate cancer patient inten-
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sity modulated proton therapy (IMPT) treatments were simulated. For each patient, the
treatment was planned and simulated on an initial CT and resimulated in two subsequent
CTs containing realistic interfractional anatomical changes. Prompt–gamma depth profiles
were also simulated in order to detect spot–by–spot variations due to the aforementioned
anatomical changes. Two methods, shifting and fitting, were applied on prompt–gamma
depth profiles in order to identify range shifts from one CT to another due to anatomi-
cal changes. These prompt–gamma deduced range shifts were compared to range shifts
deduced from the dose.

The accuracy with which range shifts in could be detected in clinical relevant anatomies
and treatment plans was well below 1 mm and the precision was within ±2 mm, estimated
over 1738 highest intensity spots. These results confirmed the potential of PG proton–
range monitoring in clinical scenarios. To achieve this level of accuracy and precision
a method of identification of distorted spots based on PG metrics was developed. The
method discarded approximately 10% of the spots in anatomical locations where severe
profile distortions were caused, impeding a reliable range shift identification.

In order to reduce computation time, this study was performed on the emitted prompt–
gamma profiles and not on the profiles of the prompt–gammas exiting the patient. The
emission profiles are idealized as photons do not cross the patient and display much sharper
rise and fall–off. Nevertheless, the two type of profiles were compared and their differences
in terms of deduced range were found to be sub-mm, which was also confirmed by a subse-
quent study (Tian et al. 2018). Furthermore, no specific detection system was simulated.
This means that the conclusions drawn from this study could potentially be affected by
detection effects such as efficiency, energy and spatial resolution, geometrical coverage and
others. A follow up prompt–gamma range monitoring study based on a real detection
system (Tian et al. 2021) confirmed the validity of the above mentioned conclusions. The
simulated proton treatment plans were constrained to the pelvic region, but no significant
deterioration of the quantified performance was observed for head and neck cancer pa-
tients (Tian et al. 2018, Tian et al. 2020). Finally, a minimum number of emitted prompt–
gammas per spot, meaning a lower dose limit per spot, is required in order to achieve good
sensitivity. It has been shown (Tian et al. 2018, Tian et al. 2020, Tian et al. 2021), this can
be achieved by creating treatment plans that take the prompt–gamma monitoring aspect
into account while retaining their dosimetric quality.

Radiation protection for laser–based ion accelerators

Particle therapy relies on compact, reliable and cost effective accelerators for the production
of therapeutic beams. In particular for proton therapy the accelerator work horse is the
cyclotron. Conventional accelerators convert the high voltage pulses from the modulator
into pulsed radio frequency (RF) energy. The RF pulses are the sent to the accelerating
structure to setup an electric field which is used for charged particle acceleration. The
strength of this field is in the order of MV/cm. Alternatively, tens or even hundreds GV/cm
can be achieved when focusing high–power short–pulsed laser on specific solid state targets.
Laser–based ion and electron acceleration for biomedical application is explored in the
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Centre for Advanced Laser Applications (CALA). 2.5 PW laser pulses with 25 fs duration
yield mixed particle–species of high intensity, high energy and pulsed, thus posing new
challenges compared to conventional radiation protection. The radiation protection aspect
of CALA was investigated in a simulation study, assuming biomedically relevant beams of
electrons (< 5 GeV), protons (< 200 MeV), 12C (< 400 MeV/u) and 197Au (< 10 MeV/u)
ions. The goal was to achieve the radiation protection design specifications (< 0.5µSv/h
for unclassified areas, < 2.5µSv/h for supervised areas, < 7.5µSv/h maximum local dose
rate).

By employing adequate beam dumps matched to beam–divergence, magnets, passive
shielding and laser pulse repetition limits, the simulated dose rates remained mostly below
the design limits of the CALA facility. In the majority of the cases, secondary neutrons
were the dominant contribution to dose rates calculated outside a cave in operation, while
the initial beam and charged secondaries were usually fully contained in the beam dumps.
High dose rates outside the caves were observed behind holes envisaged for guiding the
laser beam in the caves or for extracting produced x–rays to neighbouring experimental
halls. The high energy 12C beam produced in one of the experimental halls necessitated the
design of an optimised beam dump, consisting of a central water compartment surrounded
by concrete. This optimized geometry results into the beam stopping deep into the water
compartment with minimal backscattering, while the secondaries which are then directed
mostly forward are essentially surrounded by the concrete compartment.

This radiation protection study has demonstrated a design adequate for beams intended
for biomedical applications. For different applications requiring higher energies and fluxes
at the same repetition rate, a revised design would be required. Nevertheless, such beam
characteristics are not expected to be achieved in the near future. Another aspect that
emerged from that work is that the typical maze design for radiation shielding can be
mitigated by the use of thick and heavy concrete doors (requiring dedicated mechanical
solutions) and vice versa. Finally, it was found that any additional, beyond the nominal,
material and equipment intersecting the particle beams might have a significant effect
on the dose rate escaping a cave. For example, as it was simulated, a variation of the
thickness of the vacuum chamber walls intersecting a high energy electron beam led to a
large increase of the out–of–cave dose rate. Therefore, constant monitoring of the dose
rate at multiple locations outside the caves is required and envisaged for CALA.
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Appendix A

Appendix to ”Noise reconstruction in
proton CT”

A.0.1 Approximate variance reconstruction

In this section, we describe how equation 6.15 can be approximated through equation 6.20.
Consider the two convolution kernels g2(j∆ξ) (equation 6.3) and gC(j∆ξ) (equation 6.18)
(shown in figure A.1) of the convolutions necessary for the reconstruction of the variance
in Vγn (equation 6.16) and Cγn (equation 6.19) respectively. With the Ram-Lak filter,
gC(j∆ξ) takes an especially simple form. Due to the alternating structure of g(j∆ξ), a
shift by 1∆ξ cancels all side lobes. Only adjacent pixels mutually influence each other
(different apodization windows may have more complex convolution kernels).

In figure A.1, one can see that g2(j∆ξ) and gC(j∆ξ) have both very limited reach.
As a consequence, each filtered projection value is approximately only a weighted sum of
its nearest neighbors (for the Ram-Lak covariance kernel, it is exactly only one nearest
neighbor). Under the assumption that the projections are locally approximately constant,
we are able to approximate all projection values (noise values) with the one at the center
of the convolution kernel

Vγn(j∆ξ) ≈ σ2
γn(j∆ξ)

D/2−1∑
m=−D/2

g2(m∆ξ) (A.1)

Cγn(j∆ξ, (j + 1)∆ξ) ≈ σ2
γn(j∆ξ)

D/2−1∑
m=−D/2

gC(m∆ξ). (A.2)

As the sum of equation A.1 converges quickly, we can extend it to infinity. Thus, with the
expression of the Ram-Lak filter (equation 6.3), we are able to evaluate the sum analytically
(for example with the Fourier transform, as described in (Martin 2010))
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Figure A.1: Variance and covariance filters (black lines) for unit detector spacing ∆ξ = 1.

D/2−1∑
m=−D/2

g2(m∆ξ) ≈
∞∑

m=−∞

g2(m∆ξ)

=
1

(2∆ξ)4
+

2

(π∆ξ)4
·
∞∑
m=1

1

(2m− 1)4︸ ︷︷ ︸
π4/96

=
1

12(∆ξ)4
.

(A.3)

With the Ram-Lak filter, the sum in equation A.2 has only two (equal) terms (see figure
A.1)

D/2−1∑
m=−D/2

gC(m∆ξ)
equation 6.18,equation 6.3

= − 1

2π2(∆ξ)4
. (A.4)

Finally, we can factorize equation 6.15:

Var [f(xp, yp)] =

(
π

Np

∆ξ

)2 Np∑
n=1

σ2
γn(j∆ξ)

12(∆ξ)4

{
(1− u)2 + 2(1− u)u

−12

2π2
+ u2

}
(A.5)

The factorized term is the approximation of the convolution, given by equation A.1, while
the term in curly brackets comprises the interpolation effect on the noise. The reconstruc-
tion in terms of the interpolation effect is then given through
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Var [f(xp, yp)] =

(
π

Np

∆ξ

)2 Np∑
n=1

Vγn(j∆ξ)finterp(u), (A.6)

where

finterp(u) = (1− u)2 + 2(1− u)u
−12

2π2
+ u2. (A.7)

Since there is no preferred query point for the interpolation, we assume u to be uniformly
distributed in [0, 1], therefore finterp can be approximated by its mean

finterp,µ =

∫ 1

0

finterp(u)du =
2

3
− 2

π2
. (A.8)

Replacing finterp(u) by finterp,µ in equation A.6 yields the expression given in equation 6.20.
In reality, the distribution of u-values is not perfectly uniform. Figure A.2 shows the

mean of equation A.7 for a finite set of projections. The resulting structures in figure A.2 are
caused by the ’interference’ between the 2D image pixel grid and the 1D projections grid.
It is an inherent property of accurate noise reconstruction, which eventually superimposes
with the noise projections.
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Figure A.2: Exact noise reduction per pixel for an image, reconstructed with linear inter-
polation and the Ram-Lak filter. The image measures 280mm× 280mm with 1mm× 1mm
voxel size. The structures are a consequence of the interference with the 1mm spaced pro-
jections. Notice that the center is particularly high, as its pixel center is for most angles
close to a sampled projection value and thus profits from the interpolation less. Pixels with
higher values happen to fall on the discrete projection values more often than in between.
Deviations from the approximation are, however, in general quite small.
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A.0.2 2D noise reconstruction including DDB

Here we will present a more thorough discussion of the 2D interpolation involved in the
DDB variance reconstruction, as mentioned in section 6.2.2. We will discuss the effect of
this two–dimensional interpolation on the pCT noise based on bilinear interpolation (see
figure A.3). With the bilinear interpolation, the reconstruction becomes

f(xp, yp) =
π

Np

∆ξ

Np∑
n=1

D/2−1∑
m=−D/2

pγn(m∆ξ, k∆η)g((j −m)∆ξ) [1− u] [1− v]

+ pγn(m∆ξ, k∆η)g((j + 1−m)∆ξ)u [1− v]

+ pγn(m∆ξ, (k + 1)∆η)g((j −m)∆ξ) [1− u] v

+ pγn(m∆ξ, (k + 1)∆η)g((j + 1−m)∆ξ)uv,

(A.9)

where

v = v(ηn) =
ηn − k∆η

∆η
, (A.10)

and ηn = ηn(xp, yp) = −xp sin (γn) + yp cos (γn). Just as in equation 6.15, the dependencies
j = j (ξn) and k = k (ηn) are implicit.

Just as we had before, projection values from different angles γn as well as along the
ξ-coordinate m∆ξ are independent. However, this holds only true for m∆ξ–values binned
at the same depth η. Since, due to the bilinear interpolation, we sum up projection values
from different depths, we have to take their covariance into account.

Cov
[
pγn(m∆ξ, k∆η), pγn′ (m

′∆ξ, k′∆η)
]

= δn,n′δm,m′Cov [pγn(m∆ξ, k∆η), pγn(m∆ξ, k′∆η)]

≡ δn,n′δm,m′Cγn(m∆ξ, k∆η, k′∆η)
(A.11)

Without further specifying this covariance term and following the procedure from above
(equation 6.11, equation 6.14, equation 6.15), the variance of equation A.9 becomes
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Figure A.3: Interpolation for a 2D image reconstruction (a) without and (b) with DDB.
(a) For binning at the rear tracker, the value at the pixel center (black dot) requires a
1D interpolation (at the dashed line) of the convolved projection values (red and blue
dot), which are a weighted linear combination of all projection values and thus mutually
dependent due to the prior convolution with the convolution kernels (red and blue zigzag
lines), as shown in figure A.1. (b) In the DDB case, a 2D interpolation is necessary, where
projections, binned at different depths (i.e. k∆η and (k + 1)∆η), are involved. The four
hatched pixels contribute to the value at the pixel center (black dot). The convolution
is still only along ξ. The detector spacing ∆ξ and the depth spacing ∆η are only drawn
different for visual clarity.
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Var [f (xp, yp)] =

(
π

Np

∆ξ

)2 Np∑
n=1

{
[1− u]2 [1− v]2 Vγn(j∆ξ, k∆η) + u2 [1− v]2 Vγn((j + 1)∆ξ, k∆η)

+ [1− u]2 v2Vγn(j∆ξ, (k + 1)∆η) + u2v2Vγn((j + 1)∆ξ, (k + 1)∆η)

+ 2 · [1− u]u [1− v]2Cγn(j∆ξ, (j + 1)∆ξ, k∆η, k∆η)

+ 2 · [1− u]2 [1− v] vCγn(j∆ξ, j∆ξ, k∆η, (k + 1)∆η)

+ 2 · [1− u]u [1− v] vCγn(j∆ξ, (j + 1)∆ξ, k∆η, (k + 1)∆η)

+ 2 · [1− u]u [1− v] vCγn((j + 1)∆ξ, j∆ξ, k∆η, (k + 1)∆η)

+ 2 · u2 [1− v] vCγn((j + 1)∆ξ, (j + 1)∆ξ, k∆η, (k + 1)∆η)

+ 2 · [1− u]uv2Cγn(j∆ξ, (j + 1)∆ξ, (k + 1)∆η, (k + 1)∆η)
}
,

(A.12)

where the equivalent expressions of Vγn and Cγn in two dimensions are

Vγn(j∆ξ, k∆η) =

D/2−1∑
m=−D/2

g2((j −m)∆ξ)σ2
γn(m∆ξ, k∆η), (A.13)

Cγn(j∆ξ, j′∆ξ, k∆η, k′∆η) =

D/2−1∑
m=−D/2

g((j −m)∆ξ)g((j′ −m)∆ξ)Cγn(m∆ξ, k∆η, k′∆η). (A.14)

The covariance values between two data points from the same depth (k = k′) becomes
again Cγn(m∆ξ, k∆η, k∆η) = σ2

γn(m∆ξ, k∆η), just like in equation 6.12. The remain-
ing covariances are between projection values from adjacent depths, which we have not
yet discussed. Note that projection values pγn(m∆ξ, k∆η) and pγn(m∆ξ, (k + 1)∆η) are
calculated from almost the same data set of protons, given that the pixel spacing in the
η–direction (∆η) is sufficiently small. This is due to that fact that within [k∆η, (k + 1)∆η]
only very few protons outside of m∆ξ will scatter laterally into m∆ξ and at the same
time only very few protons within m∆ξ will scatter to neighboring pixels. Thus projection
values from any two neighboring depths are hardly different (below approximately 0.2 mm
WEPL for the reconstruction of our simulation (see section 6.2.1), using ∆η = 1mm) and
can therefore be considered equal. We can thus assume that depth adjacent projection
values are perfectly correlated while the two diagonal pixels in the bilinear interpolation
have no correlation

Cγn(m∆ξ, k∆η, k′∆η) = δk,k′σ
2
γn(m∆ξ, k∆η). (A.15)
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As there is now no difference between the projection values at k∆η and (k+ 1)∆η, we can
now make the replacement

Cγn(j∆ξ, j′∆ξ, k∆η, k′∆η)→ Cγn(j∆ξ, j′∆ξ, k∆η). (A.16)

The noise reconstruction including DDB is then given by the expression of equation 6.21.
It is similar to the noise reconstruction of the rear tracker binning (equation 6.15), as we
neglected the covariance along η. The v–dependence in equation A.12 cancels under the
approximation of equation A.16. The index k = k(ηn) is still query point dependent, but
as the projection values of two neighboring depths are considered to be equal, nearest
neighbor or linear interpolation along η is sufficient for the noise map reconstruction.

A.0.3 Sinogram interpolation

We can estimate the function F (ξ, IP) that maps the IPs to the corresponding energy loss
along the straight line from the IP–hull intersection to some exit detector pixel j∆ξ by
interpolating across the Radon space, as the various straight proton paths, that contribute
to one pixel, are line integrals from neighboring projections coming from different angles
γn. The set of angles results from the IP–hull intersection coordinate (i.e. projecting the
IPs onto the hull) and the exit detector pixel coordinate. Therefore every IP determines
an angle γIP(j∆ξ), which is different for every j∆ξ. The set of the corresponding ξ values
in the Radon space is determined by

ξ(j∆ξ, IP) = xbin cos (γIP(j∆ξ)) + ybin sin(γIP(j∆ξ)), (A.17)

where (xbin, ybin) is the coordinate of the exit detector bin j∆ξ on the rear tracker in the
image space (x, y). The determination of F (j∆ξ, IP) is demonstrated in figure A.4. This
process is similar to transforming parallel beam projections to fan beam projections, where
(xbin, ybin) can be considered the source point. The set of angles is quite irregular though,
depending on the object hull.
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Figure A.4: Mapping of the Radon space in units of the exit energy (a) to F (j∆ξ, IP) (b).
The data on the white lines in (b) was interpolated from the data shown in (a) along the
corresponding curved lines, where the dashed lines in both figures belong together and are
supposed to give orientation.
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Appendix B

Appendix to ”Image noise
contributions in proton CT”

B.0.1 Derivation of the distorted energy deposit

The scaling factor Sn in equation 7.2 is fixed during the calibration procedure where for
a degrader–free run the energy deposits of all stages are forced to be equal to values
EG4
n = {25.25, 28.01, 32.76, 42.62, 67.71}MeV pre–calculated by GEANT4 (see details in

Bashkirov et al. (2016)). Therefore we find

EG4
n = Sn ·

Rfn∫
Rin

dx
dE/dx

1 + kB · dE/dx
, (B.1)

where Ri
n and Rf

n are the proton’s residual ranges at the entrance and at the exit of the
stage, respectively. Now, let lstage be the thickness of each scintillating stage and R0 be the
residual range in the detector material of a proton at the entrance of the detector without
any degrader. Then we find for the degrader–free calibration run

Ri
n = R0 − (n− 1) · lstage, (B.2)

Rf
n = R0 − n · lstage. (B.3)

For a proton that additionally passed through a WEPL during the calibration with the
wedge–shaped phantom or during a measurement, we can calculate

Rn = Ri
n −WEPL/RSPdet, (B.4)

where RSPdet = 1.038 is the relative stopping power of the detector material (see Bashkirov
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et al. (2016)). By using equations 7.2, B.1, B.2, B.3, B.4 this yields

E ′n(WEPL) = EG4
n ·

0∫
Rin−WEPL/RSPdet

dx
dE/dx

1 + kB · dE/dx

Rfn∫
Rin

dx
dE/dx

1 + kB · dE/dx

, (B.5)

where E ′n(WEPL) is the expected energy measurement for a given Birks’ factor kB.

B.0.2 Noise contributions at a discontinuity

As a side study to investigations in section 7.2.8, and to demonstrate the impact of het-
erogeneities, we calculated standard deviation profiles for the steep edge of the calibration
phantom with two bricks (upper part of the phantom as seen in figure 7.1). There, the
WEPL rapidly drops from 101.8 mm to zero. The same scoring techniques as for the
smooth part of the phantom were exploited. Figure B.1 shows a lateral profile of standard
deviation for the steep edge of the phantom. In the vicinity of the discontinuity located
at 104.5 mm from the isocenter, standard deviation is increased to 27 mm in the measure-
ment, which is an increase by a factor of 8.1 compared to the homogeneous region. WEPL
scoring standard deviation representing the scatter–only contribution is at 16 mm and thus
more than half of the total standard deviation. Agreement between the measurement and
realistic scoring is satisfactory.

Figure B.1: Standard deviation profile along the lateral coordinate for a discontinuity of
two bricks (∆WEPL = 101.6 mm) and for front tracker binning. The discontinuity in
WEPL is located at 104.5 mm from the isocenter. Note that the scale is different by a
factor of 10 compared to figure 7.6 (a).
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This shows that a discontinuity of 101.6 mm increased the WEPL standard deviation
by a factor of 8.1. This distinct increase of noise was driven by the scatter–only component,
which was negligible for the homogeneous phantom in figure 7.6, but contributed a large
noise fraction at the heterogeneity. Therefore, heterogeneities are likely to dominate image
noise in certain regions and need to be considered using a precise patient model. To achieve
the same noise level at the edge as for the homogeneous wedge phantom, the dose would
need to be increased by a factor of 65. However, this is an extreme case and neglects the
smoothing effect of interpolation and filtering during the reconstruction. Moreover, this
does not mean that the dose increase would be required considering the low diagnostic
value of RSP at the skin. The Monte Carlo simulation modeled scattering correctly, as the
resulting noise increase is captured well when compared to the measurement.

B.0.3 Full–volume RSP and noise histograms

As a sanity check, we calculated RSP and standard deviation histograms of the whole
volume of the pediatric head phantom. For this, the two acquisitions of the superior and
the inferior part of the phantom needed to be merged. The phantom’s outer hull was
determined per slice as described in section 7.2.9 and values outside of it were neglected.
Slices close to the detector’s upper and lower edges were also excluded, because noise
increases dramatically there.

Figure B.2: RSP and standard deviation histograms for simulated and experimental data
of all slices of the pediatric head phantom.

Figure B.2 shows histograms of RSP and standard deviation. While the RSP distribu-
tion showed a Gaussian shape around a mean value slightly above 1, the distribution of
standard deviation values exhibited a broader structure. For simulated data, the standard
deviation 5– to 95–percentile range was between 0.026 and 0.064 while for measurements
it was between 0.026 and 0.061. This is an increase from the lower to the higher percentile
value by a factor of 2.5 or 2.3, respectively. Note that the lower percentile value is close to
the non–scatter contribution σnon-scatter in section 7.3.5.
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In conclusion, over the complete volume of the pediatric head phantom, agreement of
standard deviation histograms was comparable to the agreement of RSP histograms.



Appendix C

Appendix to ”Biological uncertainties
in proton treatment planning”

C.0.1 Dose and LET scoring

In the GEANT4 simulations, the reference physics list QGSP BIC HP was used and the dose
in each voxel was calculated according to

Dw =
ρm
ρw

Sw
Sm

Dm, (C.1)

where Dm is the dose to material, ρm and ρw the mass density of the material in the voxel
and the density of water (G4 WATER) respectively. The unrestricted stopping powers of
water (Sw) and of the material (Sm) were computed at the proton energy by the GEANT4
function ComputeTotalDEDX.

The LETd in voxel i (Li) was the average over all steps Sn for all particles N

Li =

N∑
n=1

Sn∑
s=1

ε2sn
lsn

N∑
n=1

Sn∑
s=1

εsn

, (C.2)

where ε is the energy deposition (GetTotalEnergyDeposit) and lsn the length of step
s of event n (GetStepLength). Since the dose–to–water concept was used for dose cal-
culation, the energy deposition ε was scaled with (Sw/Sm), which is equivalent to equa-
tion C.1. While the energy deposition of any particle type was scored in dose calcu-
lation, only primary and secondary protons were taken into account for LETd calcula-
tion (Grassberger & Paganetti 2011). In GEANT4, the incident lateral PB shape was mod-
eled as a two–dimensional Gaussian with a FWHM equal to 9.4 mm and the initial energy
spread was assumed to be normally distributed with a standard deviation equal to 0.5% of
the nominal energy, which is a realistic value in modern proton therapy facilities (Pedroni
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et al. 2005, Grevillot et al. 2010). In CERR, the weights of the PBs were determined by
the minimization of a Chi–squared cost function

χ2 =
∑

i∈T

(
Di(w)−DT

)2
, (C.3)

with the Matlab/2014a routine fmincon as described in (Schell & Wilkens 2010). DT de-
notes the desired dose in structure T and Di(w) the dose in a voxel i for a current set of
M spot weights w = (w1, w2, ..., wM) (Wilkens & Oelfke 2005).

C.0.2 Biological effect optimization

In the presence of a set of M beam spots (PBs), the dose in a voxel i (Di) can be expressed
as

Di(w) =
M∑
j=1

wjDij, (C.4)

where the Dij matrix contains the dose deposited for unit fluence by beam j in voxel i and
w denotes the relative fluence weights of all M beam spots. Accordingly to the Dij matrix
the Lij matrix is defined for LETd. Hence the total dose average LET for a set of M PBs
in the voxel i can be calculated by

Li(w) =
1

Di

M∑
j=1

wjDijLij, for Di > 0

(C.5)

Li(w) = 0, for Di = 0

Instead of optimizing for a uniformly distributed RBE weighted dose (RWD), a de-
sired biological effect is optimized. In the LQ model, the biological effect is the negative
logarithm of the survival fraction (equation 10.1) ε = −ln(S) = αD + βD2. Therefore
the desired biological effect in a tissue T (εT ) can directly be determined from clinical
experience with photon irradiation (here, using the values from tables 10.1 and 10.2). A
quadratic deviation cost function can be formulated as

Fε(w) =
∑
i∈T

(
εi(w)− εT

)2
, (C.6)

using equation 10.2 to calculate the αp and βp parameter. Hence,



307

Fε(w) =
∑
i∈T

(
αTxDi(w) + qβTx Li(w)Di(w) + βTxD

2
i (w)− εT

)2
(C.7)

and the first partial derivative

∂Fε(w)

∂wk
=

∑
i∈T

2
(
αTxDi(w) + qβTx Li(w)Di(w) + βTxD

2
i (w)− εT

)
(C.8)

·
(
αTxDik + qβTx LikDik + 2βTxDi(w)Dik

)
,

which is necessary for the gradient based optimization. Cost functions for OARs and
multiple targets can be defined in the same way, optionally multiplied with a penalty
factor and added to a total cost function. Note that the αTx and βTx are tissue specific
parameters.
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Appendix D

Appendix to ”GEANT4 hadronic models
for prompt–gamma emission”

D.0.1 GEANT4 physics list

Table D.1: GEANT4 models used for the simulation of hadronic interactions.

Physical process particle GEANT4 process GEANT4 model Energy range

Elastic

p, d, t, 3He, α
G4HadronElasticProcess G4HadronElastic –

GenericIon

n G4HadronElasticProcess
G4NeutronHPElastic ≤ 20 MeV

G4HadronElastic ≥ 19 MeV

Inelastic

p G4ProtonInelasticProcess G4BinaryCascade –

n G4NeutronInelasticProcess
G4NeutronHPInelastic ≤ 20 MeV

G4BinaryCascade ≥ 19 MeV

d G4DeuteronInelasticProcess
G4QMDReaction –

G4BinaryLightIonReaction –

t G4TritonInelasticProcess
G4QMDReaction –

G4BinaryLightIonReaction –

3He G4IonInelasticProcess
G4QMDReaction –

G4BinaryLightIonReaction –

α G4AlphaInelasticProcess
G4QMDReaction –

G4BinaryLightIonReaction –

GenericIon G4IonInelasticProcess
G4QMDReaction –

G4BinaryLightIonReaction –

Fission n G4HadronFissionProcess
G4NeutronHPFission ≤ 20 MeV

G4LFission ≥ 19 MeV

Capture n G4HadronCaptureProcess
G4NeutronHPCapture ≤ 20 MeV

G4LCapture ≥ 19 MeV
Decay GenericIon G4Decay G4RadioactiveDecay –
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D.0.2 GANIL fragmentation experiment

Table D.2: Angular distribution of production rates of charged fragments in count/ion/sr
for a 5 mm thick PMMA target. Data (Braunn 2010) are compared with the QMD default
value of L = 2 fm2, as well as with L = 1 fm2, L = 0.8 fm2.

Z = 1 Z = 1
Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2 Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2

7o 1.40× 10−1 1.89× 10−1 1.51× 10−1 1.58× 10−1 2.10× 10−1 1.52× 10−1 1.20× 10−1 1.20× 10−1

10o 7.50× 10−2 1.55× 10−1 1.22× 10−1 1.27× 10−1 1.10× 10−1 9.52× 10−2 6.20× 10−2 5.13× 10−2

16o 3.00× 10−2 8.75× 10−2 6.60× 10−2 7.42× 10−2 1.80× 10−2 2.29× 10−2 1.45× 10−2 1.39× 10−2

20o 3.00× 10−2 5.26× 10−2 4.56× 10−2 5.30× 10−2 9.80× 10−3 6.36× 10−3 6.33× 10−3 6.33× 10−3

30o 8.40× 10−3 2.43× 10−2 2.08× 10−2 2.17× 10−2 1.80× 10−3 8.95× 10−4 1.39× 10−3 1.30× 10−3

40o 9.40× 10−3 1.29× 10−2 1.12× 10−2 1.12× 10−2 6.40× 10−4 2.86× 10−4 4.48× 10−4 4.39× 10−4

60o 2.10× 10−3 3.38× 10−3 3.65× 10−3 3.80× 10−3 4.70× 10−5 6.97× 10−5 6.61× 10−5 6.42× 10−5

70o 1.20× 10−3 1.41× 10−3 1.86× 10−3 2.04× 10−3 3.00× 10−5 2.94× 10−5 2.57× 10−5 1.83× 10−5

Z = 3 Z = 4
Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2 Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2

7o 4.20× 10−2 2.10× 10−2 2.02× 10−2 2.02× 10−2 2.10× 10−2 1.45× 10−2 2.01× 10−2 2.01× 10−2

10o 1.30× 10−2 1.26× 10−2 1.04× 10−2 1.09× 10−2 5.50× 10−3 8.86× 10−3 8.01× 10−3 7.26× 10−3

16o 8.10× 10−4 1.42× 10−3 1.86× 10−3 2.10× 10−3 2.30× 10−4 5.01× 10−4 9.19× 10−4 8.09× 10−4

20o 8.50× 10−4 1.10× 10−4 5.37× 10−4 5.37× 10−4 2.00× 10−4 4.00× 10−5 1.87× 10−4 1.87× 10−4

30o 4.60× 10−5 9.17× 10−6 4.77× 10−5 8.26× 10−5 8.20× 10−6 ∅ 2.75× 10−5 3.12× 10−5

Z = 5 Z = 6
Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2 Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2

7o 2.50× 10−2 3.24× 10−2 2.92× 10−2 2.92× 10−2 3.40× 10−2 2.97× 10−2 2.20× 10−2 2.20× 10−2

10o 3.40× 10−3 1.20× 10−2 7.22× 10−3 5.08× 10−3 3.10× 10−3 8.53× 10−3 4.35× 10−3 2, 59× 10−3

16o 4.40× 10−5 1.28× 10−4 3.39× 10−4 3.76× 10−4 2.10× 10−5 5.50× 10−5 1.38× 10−4 1.49× 10−4

20o 3.20× 10−5 ∅ 3.20× 10−5 3.20× 10−5 1.00× 10−5 5.00× 10−6 2.17× 10−5 2.17× 10−5

30o 1.10× 10−6 ∅ 1.83× 10−6 8.00× 10−6 1.30× 10−7 ∅ 1.83× 10−6 ∅
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Table D.3: Angular distribution of production rates of charged fragments in count/ion/sr
for a 2 cm thick PMMA target. Data (Braunn 2010) are compared with the QMD default
value of L = 2 fm2, as well as with L = 1 fm2, L = 0.8 fm2.

Z = 1 Z = 1
Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2 Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2

7o 3.60× 10−1 3.94× 10−1 3.48× 10−1 3.81× 10−1 7.40× 10−1 3.53× 10−1 3.11× 10−1 3.08× 10−1

10o 2.90× 10−1 3.37× 10−1 2.94× 10−1 3.17× 10−1 4.10× 10−1 2.49× 10−1 1.75× 10−1 1.56× 10−1

16o 9.30× 10−2 2.19× 10−1 1.91× 10−1 2.06× 10−1 8.80× 10−2 1.01× 10−1 5.47× 10−2 4.51× 10−2

33o 4.00× 10−2 4.56× 10−2 4.51× 10−2 4.95× 10−2 5.10× 10−3 3.10× 10−3 1.92× 10−3 1.67× 10−3

40o 2.10× 10−2 2.41× 10−2 2.58× 10−2 2.77× 10−2 1.50× 10−3 8.57× 10−4 5.30× 10−4 4.61× 10−4

60o 2.40× 10−3 9.72× 10−3 5.09× 10−3 5.58× 10−3 5.20× 10−5 2.20× 10−5 3.20× 10−5 2.39× 10−5

Z = 3 Z = 4
Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2 Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2

7o 1.40× 10−1 3.85× 10−2 4.41× 10−2 6.02× 10−2 5.70× 10−2 2.13× 10−2 4.85× 10−2 6.73× 10−2

10o 4.90× 10−2 2.99× 10−2 2.55× 10−2 3.08× 10−2 1.70× 10−2 1.60× 10−2 2.06× 10−2 2.26× 10−2

16o 4.60× 10−3 1.01× 10−2 6.93× 10−3 6.98× 10−3 1.20× 10−3 3.56× 10−3 3.12× 10−3 2.70× 10−3

Z = 5 Z = 6
Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2 Data L = 2 fm2 L = 1 fm2 L = 0.8 fm2

7o 7.20× 10−2 5.80× 10−2 8.10× 10−2 7.20× 10−2 1.00× 10−1 4.19× 10−2 4.64× 10−2 4.52× 10−2

10o 1.10× 10−2 3.21× 10−2 2.02× 10−2 1.45× 10−2 6.10× 10−3 5.29× 10−3 5.34× 10−3 5.33× 10−3

16o 8.50× 10−4 2.54× 10−3 1.20× 10−3 7.06× 10−4 5.40× 10−4 4.06× 10−4 3.94× 10−4 3.61× 10−4
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Montemaggi, P., Rübe, C. E., Holmes, T., Kong, F.-M., Wang, J., Yu, Y., Doyle, L.,
Troicki, F. T., Poli, J. & Speer, T. W. (2013). Inverse treatment planning, Encyclo-
pedia of Radiation Oncology, Springer Berlin Heidelberg, pp. 397–398.

Xie, Y., Ainsley, C., Yin, L., Zou, W., McDonough, J., Solberg, T. D., Lin, A. & Teo, B.-
K. K. (2018). Ex vivo validation of a stoichiometric dual energy CT proton stopping
power ratio calibration., Phys. Med. Biol. 63: 055016.

Yang, M., Virshup, G., Clayton, J., Zhu, X., Mohan, R. & Dong, L. (2010). Theoretical
variance analysis of single-and dual-energy computed tomography methods for calcu-
lating proton stopping power ratios of biological tissues, Phys. Med. Biol. 55(5): 1343.

Yang, M., Zhu, X. R., Park, P. C., Titt, U., Mohan, R., Virshup, G., Clayton, J. E. &
Dong, L. (2012). Comprehensive analysis of proton range uncertainties related to
patient stopping-power-ratio estimation using the stoichiometric calibration., Phys.
Med. Biol. 57: 4095–4115.

Yu, C. X. (1995). Intensity-modulated arc therapy with dynamic multileaf collimation: an
alternative to tomotherapy, Phys. Med. Biol. 40(9): 1435–1449.



344 BIBLIOGRAPHY

ZfKD (2016). Cancer in germany, Technical report.
URL: https://www.krebsdaten.de/Krebs/EN/Content/Publications/Cancer in Germany/
cancer chapters 2015 2016/cancer c00-c97 all sites.pdf? blob=publicationFile

Zhang, Y. & Ning, R. (2008). Investigation of image noise in cone-beam CT imaging due
to photon counting statistics with the Feldkamp algorithm by computer simulations,
J. X-ray Sci. Technol. 16: 143–158.

Zhu, X., España, S., Daartz, J., Liebsch, N., Ouyang, J., Paganetti, H., Bortfeld, T. R. &
Fakhri, G. E. (2011). Monitoring proton radiation therapy with in-room PET imaging,
Phys. Med. Biol. 56(13): 4041–4057.



Acknowledgements

This manuscript may have a sole author, but in reality it is the outcome of the aspirations
of a large number of people. I feel thankful and lucky that my scientific career has been
so far quite the opposite of a lonely trip.

I am grateful to Dr. Denis Dauvergne and Dr. Étienne Testa for giving me the chance
to make the transition to the field of Medical Physics and to work for almost three years in
the outstandingly supportive and friendly environment of IPNL Lyon. A special mention
goes to Dr. Simon Rit. It was just a hinge of fate that brought me to work alongside him
in the topic of proton imaging, which turned out to become a long lasting cooperation and
my main research focus during the past ten years.

I would like to express my gratitude to Prof. Katia Parodi for bringing me to the, back
then newly founded, LMU Department of Medical Physics in Munich. Working next to a
renown scientist like her, in a stimulating environment full of challenges and opportunities,
transformed my scientific career beyond what I had ever imagined. It has been eight
exciting years, during which I have learned a great deal about Medical Physics and I have
matured and evolved as a scientist.

I am indebted to Prof. Reinhard Schulte, Prof. Robert Johnson and Dr. Mark Pankuch.
It has been a great pleasure working with them. I cherish our collaboration and I always
enjoy visiting them in Loma Linda, Santa Cruz or Chicago.

Throughout the past eleven years I had the privilege to work together with a large
number of bright and diligent students. Many thanks to Jonas Hoppmann, Yuki Asano,
Susanne Schmidt, Alexander Wiselsperger, Andreas Resch, Ludovica de Angelis, Martin
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