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1 General Introduction 

 In our daily lives, the act of searching is a ubiquitous and constant endeavor. Whether it's 

searching for keys, locating books on the bookshelf, or identifying a specific subway stop, we invest a 

significant amount of time looking for things in a world full of objects that are not relevant. However, 

our capacity to process information is very limited. To make effective use of our cognitive resources, 

the brain prioritizes information relevant to the task at hand and suppresses irrelevant information that 

might impede performance  (e.g., Treisman and Gelade 1980; J. M. Wolfe, Cave, and Franzel 1989; C. 

L. Folk, Remington, and Johnston 1992). 

Traditionally, visual selective attention has been considered to operate under the influence of 

two types of control signals: when attention is captured - by a salient stimulus, such as a bright flash 

of light, it is said to be under bottom-up (i.e., stimulus-driven, involuntary mechanisms) control (Jan 

Theeuwes 2010; Yantis and Egeth 1999); and, when attentional selection is driven by a deliberate act 

of will and is directed toward task-relevant information, it is considered to be under top-down (i.e., 

goal-driven,voluntary mechanisms) control (Egeth and Yantis 1997). For example, imagining 

someone driving with the goal of focusing on the important road signs and traffic signals (current 

selection goals). However, a flashy roadside billboard or a distracting notification in the car captures 

attention against the driver's intentions. This unintentional distraction could pose a risk by taking 

attention away from safe driving. 

Although major models of attentional control commonly depict attentional selection as a 

dichotomy, often referred to as a bottom-up versus a top-down process (J. Duncan and Humphreys 

1989; Geng and Witkowski 2019; Jonides and Yantis 1988; Jeremy M. Wolfe and Horowitz 2004; 

Töllner, Conci, and Müller 2015; H. J. Müller and von Mühlenen 2000). Awh (2012) and other 

researchers emphasized that attentional selection in many cases is neither solely determined by current 

behavioral relevance nor exclusively influenced by the stimulus salience (Anderson et al. 2021; 

Failing and Theeuwes 2018; A. Kristjánsson and Campana 2010; Kadel, Feldmann-Wüstefeld, and 

Schubö 2017; Hermann J. Müller et al. 2010). Instead, it is shaped by the history of previous 

attentional deployments, resulting in persistent and enduring selection biases, unrelated to to-down 

goals or the physical salience of items (see also Failing and Theeuwes 2018; Jan Theeuwes 2019). 

Currently, three general classes of phenomena related to lingering biases due to selection history have 

been identified, there are different types of inter-trial priming effects (A. Kristjánsson and Campana 

2010; Maljkovic and Nakayama 1994, 1996a; Tipper 1985), which describes how repetition of target- 

and distractor-defining features across consecutive trials improves performance on the current trial, 

and contextual cueing (M. M. Chun and Jiang 1998; Marvin M. Chun and Jiang 2003, 1999; Y. Jiang 

and Chun 2001; Goujon, Didierjean, and Thorpe 2015), i.e., improved target selection that is 
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supported by contextual regularities (spatiotemporal regularities) in the visual context picked up by 

the observer during the experiment. Also in recent years, increasing evidence has highlighted the 

significant impact of past rewarding experiences (and punishment) on shaping attention selection in 

response to stimuli (Chelazzi et al. 2013; Anderson 2013, 2016; Failing and Theeuwes 2018). The last 

form of selection history effects is statistical learning of target and distractor features or their spatial 

regularities (Sauter et al. 2021; Dirk van Moorselaar and Slagter 2019; Turk-Browne, Jungé, and 

Scholl 2005; B. Wang and Theeuwes 2018; Gaspelin, Gaspar, and Luck 2019; Fiser and Aslin 2002; 

Chen et al. 2022; Zellin et al. 2013; Kerzel et al. 2022). In general, statistical learning refers to the 

brain’s capacity to recognize and leverage environmental regularities through repeated exposures to 

specific contexts and situations (for a review, see A. Schapiro and Turk-Browne 2015). In the 

attention domain, statistical learning constitutes a strong determinant of stimulus priority and has been 

investigated in relation to various kinds of regularities in the spatial distribution of visual elements 

(typically the target), also known as spatial probability cueing (Druker and Anderson 2010; Geng and 

Behrmann 2002, 2005; Hoffmann and Kunde 1999; Shaw and Shaw 1977; Walthew and Gilchrist 

2006; Y. V. Jiang, Sha, and Remington 2015; Y. V. Jiang, Swallow, and Rosenbaum 2013; Y. V. Jiang 

et al. 2013; Sha, Remington, and Jiang 2017). For example, when looking for our keys, we often 

commence searching at the ‘usual’ places, like the hallway table or the kitchen counter. Likewise,  

learning to deprioritize the task-irrelevant location where salient distractors appear frequently can also 

improve search efficiency. Imagine you're a student attending a lecture in a large auditorium and you 

notice the professor consistently places distracting content in the lower-left corner. Over time, the 

lower-left corner of the slides may not capture your attention anymore. In the laboratory, such 

phenomenon has been systematically investigated in terms of so-called spatial ‘distractor probability 

cueing effects’ (e.g., Goschy et al. 2014; Sauter et al. 2018; D. van Moorselaar, Daneshtalab, and 

Slagter 2021; Allenmark et al. 2019). 

Many studies investigating probability-cueing effects concluded that spatial statistical 

learning is not dependent on awareness and thus implicit in nature (e.g., Y. V. Jiang, Swallow, and 

Rosenbaum 2013; Y. V. Jiang, Won, and Swallow 2014; Won and Jiang 2015). However, more recent 

studies have used more sophisticated awareness measures to investigate the relationship between 

explicit awareness and cueing of target locations, challenging the notion that statistic probability 

cueing is implicit (Huang, Donk, and Theeuwes 2022; Yu et al. 2023; Dirk van Moorselaar and 

Theeuwes 2023; Golan and Lamy 2023; Vicente-Conesa et al. 2021; Giménez-Fernández et al. 2020). 

The conflicting findings regarding awareness's role in learning static target regularities may be due to 

a variety of factors, such as the probability levels used in the various studies, the number of trials, and 

the method used for measuring awareness (Vadillo et al. 2020).  After improved the method of 

measuring awareness, some studies investigating static probability cueing effect fund that the level of 

conscious awareness correlates with the magnitude of the attentional bias (e.g., Geyer et al. 2020; 
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Giménez-Fernández et al. 2020), raising the question whether dynamic target-location regularities 

depend on participants’ awareness of the rule regarding target or distractor-location across trials. 

Last but not least, many recent studies have been done to characterize the electrophysiological 

correlates of statistical learned distractor suppression (e.g., Dirk van Moorselaar et al. 2020; Dirk van 

Moorselaar and Slagter 2019; Benchi Wang et al. 2019; Qiu et al. 2023). However, we still lack a 

thorough understanding of the underlying neural mechanisms concerning statistical learned attentional 

enhancement (both static and dynamic) within the priority map. In the current thesis, we used 

oculomotor evidence as well as neural markers, such as EEG components associated with visuospatial 

selection, to address these questions. 

The introduction starts with section (1.1) exploring theoretical perspectives on attentional 

selection. Apart from introducing the bottom-up capture of attention by distractors and the top-down 

control to minimize interference during visual attention. Additionally, we also emphasize a novel 

theory, termed “selection history” , that is introduced as an alternative source of influence. The second 

part of the introduction (1.2) introduces statistical learning effects regarding distractor and target 

locations. Additionally, we also discuss the latest studies investigating dynamic regularities of target 

and distractor. The third part of the introduction (1.3) mainly discusses the awareness of 

target-location probability cueing, which has been studied many years but still controversial. The 

fourth part (1.4) outlines the neural dynamics underlying statistical learning regarding target and 

distractor location learning in visual attention. The last subsection of the introduction (1.5) lists the 

main aims of the doctoral thesis.  

Chapter 2 encompasses the three distinct studies that form the core of the cumulative 

dissertation. Finally, in Chapter 3, the thesis is summarized and comprehensively discussed. As the 

last chapter, Chapter 3 summarizes three studies-a behavioral study, an eye-tracking study, and an 

EEG study. In the General Discussion section, a comprehensive conclusion and some 

recommendations for further research are provided.  

 

1.1 Theory of visual attention 

In our daily lives, we constantly engage in visual search activities. For instance, seeking our 

preferred brand of cereal in a bustling supermarket, identifying a specific car on a busy street, locating 

a particular book on the shelves, or scanning the luggage carousel for our suitcase at the airport. All 

those activities impose substantial/considerable demands on the visual system (Horowitz and Wolfe 

1998). Selective attention is a mechanism that helps us focus on limited resources and filter out 

distracting information (Treisman and Gelade 1980; Egeth and Yantis 1997; Marvin M. Chun and 
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Marois 2002; Jeremy M. Wolfe and Horowitz 2004; Geyer, Müller, and Krummenacher 2006; Mazza 

et al. 2007; C. L. Folk, Remington, and Johnston 1992). Attention selection has been considered as the 

result of interaction between top-down (goals of the observer) and bottom-up (the physical properties 

of the visual environment) mechanisms (Egeth and Yantis 1997; Yantis and Egeth 1999; 

Orchard-Mills, Alais, and Van der Burg 2013; Jeremy M. Wolfe et al. 2003; C. L. Folk, Remington, 

and Johnston 1992). 

Top-down visual attention is a voluntary process in which a particular location, feature, or 

object relevant to current behavioral goals is selected internally or focused upon (Katsuki and 

Constantinidis 2014), which can exert its influence through acts of will (Baluch and Itti 2011). For 

example, imagine you are planning a vacation to a new city, and you have a list of specific attractions 

and landmarks you want to visit. Additionally, this voluntary process can occur in response to 

exogenous or endogenous cues, as well as expectations set by prior knowledge or contingencies of the 

stimulus (Geng and Behrmann 2002, 2005; Moore and Egeth 1998; Drummond and Shomstein 2010). 

The contingent capture hypothesis, proposed by Folk et al. (1992), suggests that the selection and 

focus of attention are greatly influenced by the observer's top-down control settings, particularly their 

current perceptual goals or tasks. However, visual search is not merely driven by the “act of will”, 

some computational models have highlighted the role of salience (bottom-up) in attentional selection 

(Parkhurst, Law, and Niebur 2002; Itti and Koch 2001). Evidence supporting bottom-up attentional 

allocation has been established through diverse attentional capture paradigms, in which participants 

are engaged in a top-down search and their attention is diverted to the task-irrelevant stimuli, 

demonstrating that attention is captured by feature singletons (Charles L. Folk, Leber, and Egeth 

2002; J. Theeuwes 1991) and abrupt onsets (Yantis and Jonides 1984; J. Theeuwes 1991; Koshino, 

Warner, and Juola 1992; Juola, Koshino, and Warner 1995). 

Rather than considering visual selection as the result of either top-down or bottom-up process, 

some theories provided critical insights that attentional selection is determined by an interaction of 

both top-down and bottom-up factors (Yantis and Jonides 1990; J. M. Wolfe and Gray 2007). For 

instance, search-mode account, which assumes that two distinct search strategies are employed while 

people perform a task (Bacon and Egeth 1994; Leber and Egeth 2006). One is feature search mode, 

which hypothesized that observers can exert top-down selectivity, thereby eliminating capture by 

salient yet task-irrelevant stimuli that do not align with the current attentional set. In other words, 

applying top-down control allows for the avoidance of capture by the irrelevant salient singleton. 

Another attentional strategy is singleton detection mode, different from feature search mode, which is 

entirely salience driven and therefore optimized for detection of salient singletons (Bacon and Egeth 

1994). With an additional singleton task, Theeuwes (1992) found the irrelevant distractor singleton 

interferes with search for the target singleton. In this task, participants need to search for one specific 

and clearly defined salient singleton (e.g., a diamond among many circles) while another singleton 
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irrelevant for the task (e.g., a red shape among many green shapes) is simultaneously present. 

Theeuwes (1994) called this mode a stimulus-driven attentional capture model in which selection was 

entirely determined by the features of the items. Another Signal suppression hypothesis developed by 

Gaspelin et al. (2015) also emphasizing that physical salient stimuli can attract attention, but it also 

correlates with goal-driven theories (Charles L. Folk and Remington 1998; C. L. Folk, Remington, 

and Johnston 1992) claiming that inhibitory processes can effectively suppress these when top-down 

control is exerted. 

Instead of considering selection as only a result of the interaction between top-down and 

bottom-up processes, Awh and colleagues (2012) proposed that many instances of selection are driven 

by previous selection experiences, independent of both goal-driven and stimulus-driven factors, which 

they termed “selection history” (see also Failing and Theeuwes 2018; Hermann J. Müller et al. 2010). 

Observers are often unaware that these mechanisms are influencing their attention, making 

selection-history mechanisms are therefore typically considered to be implicit (Liesefeld et al. 2024). 

The selection-history phenomena that have been extensively investigated can be categorized into three 

main groups: statistical learning, inter-trial priming and value learning. 

In general, statistical learning refers to the brain’s capacity to recognize and leverage 

environmental regularities through repeated exposures to specific contexts and situations (for a 

review, see A. Schapiro and Turk-Browne 2015). In the attention domain, statistical learning refers to 

the finding that statistical regularities with regard to the locations, features or temporal characteristics 

of targets and distractors influence attentional priority (e.g., Benchi Wang et al. 2019; Geng and 

Behrmann 2002, 2005; Bacigalupo and Luck 2019). For example, if the target appears at a given 

location more often  than would be expected by chance, observer will respond to the target faster with 

lower error when the it appears at the high-probability location than other locations (Ferrante et al. 

2018; Geng and Behrmann 2002, 2005); if the distractor was presented at a location with 

high-probability, observers made fewer errors and faster responses relative to low probability, some 

oculomotor studies validated these findings, revealing that oculomotor capture was less likely when 

singleton distractors occurred at frequent locations rather than rare locations (Benchi Wang, Samara, 

and Theeuwes 2019; Di Caro, Theeuwes, and Della Libera 2019; Sauter et al. 2021). Alternatively, 

people will have greater difficulty selecting the target when it appears at the high-probability 

distractor location than at other locations (Sauter et al. 2018). 

Inter-trial priming, whereby that recent selection of a stimulus biases attention on subsequent 

stimuli sharing properties with previous stimuli (e.g., Á. Kristjánsson 2006; Maljkovic and Nakayama 

1994, 1996a). Depending on the specific properties of the prior stimuli, inter-trial priming could be 

categorized into feature intertrial priming (involving color or shape, Maljkovic and Nakayama 1994), 
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location intertrial priming (involving location, Maljkovic and Nakayama 1996a), dimension inter-trial 

priming (involving different dimensions, Found and Müller 1996; Lamy, Bar-Anan, and Egeth 2008). 

Finally,  value learning refers to the finding that stimuli that are reliably associated with either 

reward or aversive experience are endowed with higher attentional priority than neutral- value stimuli 

(Anderson, Laurent, and Yantis 2011). A wealth of researches and reviews (Anderson 2016; Chelazzi 

et al. 2013; Della Libera, Perlato, and Chelazzi 2011; Anderson 2013; Anderson, Laurent, and Yantis 

2011; Della Libera and Chelazzi 2006, 2009; Stanković, Müller, and Shi 2023) over recent years 

provided evidence that rewarding experience in the past have a large effect on attention selection.   

Hence, based on the evidence discussed earlier, attention selection is the result of the 

interaction between top-down, bottom-up, and previous selection experiences. Priority map is a notion 

that represents dynamic spatial representation that codes attentional priority at each location (Fecteau 

and Munoz 2006; Itti and Koch 2001; Zelinsky and Bisley 2015) 

1.2 Statistical learning as history effect: location probability cueing effect 

To efficiently adapt to the environment with overwhelming amounts of information, utilizing 

environmental regularities such as the likely location of a ‘target’ object, facilitates the optimal 

deployment of attention and cognitive resources. For example, when searching for a misplaced 

document, we instinctively start the search in familiar and likely locations, such as our desk or filing 

cabinet. In the laboratory, this phenomenon has been systematically investigated in terms of so-called 

spatial ‘probability cueing effects’, when a task-relevant target occurs with a high probability at one 

location, our attentional system can acquire this information to enhance search efficiency, facilitating 

target detection and corresponding response decisions (Druker and Anderson 2010; Geng and 

Behrmann 2002, 2005; Hoffmann and Kunde 1999; Y. V. Jiang, Swallow, and Rosenbaum 2013; 

Shaw and Shaw 1977). Some eye-tracking studies also found evidence of probability cueing effect, in 

terms of an increased frequency and reduced latencies of (early) saccades directed to targets at likely 

locations (Walthew and Gilchrist 2006; Jones and Kaschak 2012; Y. V. Jiang, Won, and Swallow 

2014). To facilitate visual search, prior learning about target location is not enough, it is essential to 

filter out irrelevant and distracting details simultaneously, which ensures a focused and efficient 

search.     

Thus spatial probability cueing is not limited to prioritizing the target location, many recent 

studies have shown that people can also learn a high probability of a salient but task-irrelevant 

distractor appearing at a specific location or in a specific region to de-prioritize the processing of such 

stimuli – referred as ‘distractor-location probability cueing’ (e.g., Sauter et al. 2018; Goschy et al. 

2014; Leber et al. 2016; Ferrante et al. 2018) 

 

https://paperpile.com/c/jwV27r/aRs2T/?prefix=involving%20location%2C
https://paperpile.com/c/jwV27r/s4ET5+cpJqi/?prefix=involving%20different%20dimensions%2C,
https://paperpile.com/c/jwV27r/sf4oV
https://paperpile.com/c/jwV27r/pTScx+hAdwh+wTl7e+nptXT+sf4oV+e8r55+cM5KR+aQ1TZ
https://paperpile.com/c/jwV27r/pTScx+hAdwh+wTl7e+nptXT+sf4oV+e8r55+cM5KR+aQ1TZ
https://paperpile.com/c/jwV27r/pTScx+hAdwh+wTl7e+nptXT+sf4oV+e8r55+cM5KR+aQ1TZ
https://paperpile.com/c/jwV27r/CozXg+Neprf+AGYV3
https://paperpile.com/c/jwV27r/CozXg+Neprf+AGYV3
https://paperpile.com/c/jwV27r/AlmEx+w614e+cmJQ8+J6LaJ+6qVcV+ooVXy
https://paperpile.com/c/jwV27r/AlmEx+w614e+cmJQ8+J6LaJ+6qVcV+ooVXy
https://paperpile.com/c/jwV27r/AlmEx+w614e+cmJQ8+J6LaJ+6qVcV+ooVXy
https://paperpile.com/c/jwV27r/AhhXi+x3lvS+GlVmh
https://paperpile.com/c/jwV27r/AhhXi+x3lvS+GlVmh
https://paperpile.com/c/jwV27r/lfvjg+lRW9v+JRjR9+TrSWn/?prefix=e.g.%2C,,,
https://paperpile.com/c/jwV27r/lfvjg+lRW9v+JRjR9+TrSWn/?prefix=e.g.%2C,,,
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It is worth mentioning that most of studies investigating spatial statistical learning, whether 

involving target or distractor locations, did use some static uneven probability manipulation, such as 

one location or region being more likely to contain the target, or a distractor, than any other location 

or region (e.g., Geng and Behrmann 2002, 2005; Shaw and Shaw 1977; Goschy et al. 2014; Sauter et 

al. 2018). The implicit assumption is that statistical learning can enhance or suppress specific (static) 

locations on the attentional priority map that governs the allocation of focal-selective attention (for a 

review, see Steven J. Luck et al. 2021). Nevertheless, the question remains whether or not such a 

modulation of selection priorities is stationary – accommodating a static spatial distribution of targets 

and distractors,  or dynamic, flexibly adapting to predictable changes in the distribution of targets and 

distractors.  

In recent years, several studies, including our own work, try to investigate the questions 

mentioned above (Li and Theeuwes 2020; Li, Bogaerts, and Theeuwes 2022; Yu et al. 2023). 

Accordingly, these studies have demonstrated that attentional selection can successfully adapt to such 

dynamic, cross-trial regularities in the placement of target items: RTs were faster to target when it 

occurs at predicted location by the dynamic rule, relative to random locations (Li and Theeuwes 2020; 

Yu et al. 2023). Notably, Li et al. (2022) found that the presence of a dynamic cueing effect depends 

on the nature of the search mode. Specifically, in spatially parallel searches (their Experiment 2), a 

dynamic cueing effect was observed, whereas in serial searches (Experiment 1), no such effect was 

observed. The task used in Li’s study (2022) is known to offer little bottom-up or top-down guidance 

(e.g., Moran et al. 2013), requiring serial scanning of the search array by focal attention to find and 

respond to the target item. 

 More specifically, in Li and Theeuwes’s (2020) design, some target locations were 

predictably coupled across trials; for instance, a target occurring at the left-most (or respectively, the 

top) display location on trial n would invariably lead to the next target, on trial n+1, occurring at the 

rightmost (or respectively, the bottom) location (but not vice versa). Although unbeknown to 

participants,  this target regularity nevertheless facilitated search and boosted accuracy, which is in 

line with our own study (Yu et al. 2023), in which search was facilitated when the target moved 

predictably across consecutive trials to the neighboring position in either clockwise or anticlockwise 

(blocked) direction.  

In studies involving static (spatially fixed) likely target locations, the ability to learn and 

predict these targets is observed to be effective under both serial and parallel search conditions. 

Conversely, when dealing with dynamic target-location regularities, this learning mechanism appears 

to operate exclusively under parallel search conditions, where simultaneous processing facilitates 

adaptation to changing target probabilities (Li and Theeuwes 2020; 2022). The question remains: 

why? 

 

https://paperpile.com/c/jwV27r/w614e+cmJQ8+ooVXy+lRW9v+lfvjg/?prefix=e.g.%2C,,,,
https://paperpile.com/c/jwV27r/w614e+cmJQ8+ooVXy+lRW9v+lfvjg/?prefix=e.g.%2C,,,,
https://paperpile.com/c/jwV27r/F5ukk/?prefix=for%20a%20review%2C%20see
https://paperpile.com/c/jwV27r/F5ukk/?prefix=for%20a%20review%2C%20see
https://paperpile.com/c/jwV27r/yGTX0+VwMni+cxjgn
https://paperpile.com/c/jwV27r/yGTX0+cxjgn
https://paperpile.com/c/jwV27r/yGTX0+cxjgn
https://paperpile.com/c/jwV27r/VwMni/?noauthor=1
https://paperpile.com/c/jwV27r/VwMni/?noauthor=1
https://paperpile.com/c/jwV27r/4xbyR/?prefix=e.g.%2C
https://paperpile.com/c/jwV27r/yGTX0/?noauthor=1
https://paperpile.com/c/jwV27r/cxjgn
https://paperpile.com/c/jwV27r/yGTX0+VwMni/?noauthor=0,1
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However, it remains controversial whether statistical learning of dynamic distractor location 

is possible. Wang et al. (2021) examined whether similar flexibility could be found in statistical 

learning of distractor locations. In their experiment, the ‘classical’ additional-singleton search 

paradigm with a circular display arrangement was applied, a salient color distractor ‘jumped’ by one 

location in either clockwise or counterclockwise direction across consecutive trials, with 100% 

predictability. Wang et al. found a reduced distractor interference in “regular” groups relative to 

“random” and baseline groups. However, the interference between two groups was diminished toward 

the end of testing, which implies that both groups likely employed a similar, spatially non-specific 

suppression strategy, particularly towards the end of the experiment. However, in another study 

deployed both the same design and a modified design, in Chapter 2.1 (Yu et al. 2023), we found that 

participants could not learn and exploit the dynamic distractor probability, at odds with Wang et al. 

(2021). Thus, it appears that the ability to benefit from dynamic distractor probability is affected by 

the experimental design. Therefore, further research is necessary to fully understand the underlying 

mechanisms of  proactive suppression of the predictable distractor location. 

 

1.3 Awareness of target-location probability cueing 

Statistical learning is generally assumed to be an implicit process, extracting statistical 

regularities from input without intent or explicit awareness (Turk-Browne, Jungé, and Scholl 2005; 

Turk-Browne et al. 2009). As one of main phenomena of statistical learning, contextual cueing 

demonstrates/illustrates that locating a target is easier when it appears in a previously searched visual 

layout compared to entirely new layouts that were previously unseen (M. M. Chun and Jiang 1998; 

Marvin M. Chun and Jiang 2003). The basic finding regarding awareness was that observers could not 

report which configurations they had seen before, suggesting little awareness of what they had learned 

(Marvin M. Chun and Jiang 2003; M. M. Chun and Phelps 1999; M. M. Chun and Jiang 1998; Y. 

Jiang and Chun 2001; for a review, see Goujon, Didierjean, and Thorpe 2015). 

In line with this, there are reports indicating that individuals can acquire and apply static 

regularities regarding the locations of prominent distractors without conscious awareness, namely, 

most participants were unable, in post-experimental awareness tests, to identify the frequent distractor 

location, and the cueing effect differed little between those who correctly selected vs. those who failed 

to select the frequent location (e.g., Failing, Wang, and Theeuwes 2019; Dirk van Moorselaar and 

Theeuwes 2022; B. Wang and Theeuwes 2018). Additionally, similar findings have been reported 

regarding the statistical learning of target locations (e.g., Li, Bogaerts, and Theeuwes 2022; Ferrante 

et al. 2018; Geng and Behrmann 2005). 

 

https://paperpile.com/c/jwV27r/5QdZW/?noauthor=1
https://paperpile.com/c/jwV27r/cxjgn
https://paperpile.com/c/jwV27r/5QdZW/?noauthor=1
https://paperpile.com/c/jwV27r/JCu5H+bKuUz
https://paperpile.com/c/jwV27r/JCu5H+bKuUz
https://paperpile.com/c/jwV27r/ddxlI+VlxvO
https://paperpile.com/c/jwV27r/ddxlI+VlxvO
https://paperpile.com/c/jwV27r/VlxvO+BVJnH+ddxlI+ybwOu+h15ai/?prefix=,,,,for%20a%20review%2C%20see
https://paperpile.com/c/jwV27r/VlxvO+BVJnH+ddxlI+ybwOu+h15ai/?prefix=,,,,for%20a%20review%2C%20see
https://paperpile.com/c/jwV27r/d3URS+6ZGMz+3JAN9/?prefix=e.g.%2C,,
https://paperpile.com/c/jwV27r/d3URS+6ZGMz+3JAN9/?prefix=e.g.%2C,,
https://paperpile.com/c/jwV27r/VwMni+TrSWn+cmJQ8/?prefix=e.g.%2C,,
https://paperpile.com/c/jwV27r/VwMni+TrSWn+cmJQ8/?prefix=e.g.%2C,,
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In experiments in which regularities regarding the target are manipulated, awareness is much 

higher, with about two-thirds of the participants able to report the high-probability target location 

(Huang, Donk, and Theeuwes 2022). Note, however, that this all depends on the probabilities used, 

the number of trials, and the way awareness is assessed. 

Nevertheless, with more sophisticated awareness measures used to investigate the relationship 

between explicit awareness and cueing of target locations, the notion that probability cueing is 

implicit in nature has been challenged (Huang, Donk, and Theeuwes 2022; Yu et al. 2023; Dirk van 

Moorselaar and Theeuwes 2023; Golan and Lamy 2023; Vicente-Conesa et al. 2021; 

Giménez-Fernández et al. 2020). A variety of factors may contribute to the conflicting findings 

regarding the role of awareness in learning static target regularities, such as the probability levels used 

in the various studies, the number of trials, when to measure the awareness and the method employed 

to assess awareness (Vadillo et al. 2020). For instance, participants were asked to rank the possible 

locations from the most probable to least probable and estimate  numerically how many times the 

target appearing in each quadrant  of the display (in a “serial”, contextual-cueing paradigm; cf. M. M. 

Chun and Jiang 1998), Giménez-Fernández et al. (2020) found that many participants were well aware 

of the uneven (static) spatial distribution of the target. The new approach mentioned above enable us 

to illustrate that participants exhibit high performance on these measures, thereby revealing awareness 

of the manipulation (Smyth and Shanks 2008; Vadillo et al. 2022; Vicente-Conesa et al. 2021) and 

also that the level of conscious awareness correlates with the magnitude of the attentional bias (Geyer 

et al. 2020; Giménez-Fernández et al. 2020). 

In a recent study of dynamic target-location probability cueing in pop-out search Chan (Yu et 

al. 2023), we likewise found a substantial number of participants to be explicitly aware of the dynamic 

(cross-trial) target regularity, and we observed the dynamic target-location probability-cueing effect to 

be significant only in the group of aware participants.Based on these findings, we hypothesize that at 

least the learning of dynamic target-location regularities in serial search is explicit in nature, 

dependent on (or correlated with) participants becoming aware of the rule governing the shifts in the 

target location across trials. 

 

1.4 Neural mechanism of history-based visual attention  

As there are many objects competing for your attention in life, the challenge for the brain is to 

prioritize information relevant to the task at hand and suppress irrelevant information that is unrelated 

to the current task goals (e.g., Treisman and Gelade 1980; J. M. Wolfe, Cave, and Franzel 1989; Egeth 

and Yantis 1997; C. L. Folk, Remington, and Johnston 1992).  

 

https://paperpile.com/c/jwV27r/LdQZc
https://paperpile.com/c/jwV27r/LdQZc+cxjgn+1qiAS+8n00F+tDCnu+o8mE7
https://paperpile.com/c/jwV27r/LdQZc+cxjgn+1qiAS+8n00F+tDCnu+o8mE7
https://paperpile.com/c/jwV27r/LdQZc+cxjgn+1qiAS+8n00F+tDCnu+o8mE7
https://paperpile.com/c/jwV27r/9Y3ag
https://paperpile.com/c/jwV27r/ddxlI/?prefix=in%20a%20%E2%80%9Cserial%E2%80%9D%2C%20contextual-cueing%20paradigm%3B%20cf.
https://paperpile.com/c/jwV27r/ddxlI/?prefix=in%20a%20%E2%80%9Cserial%E2%80%9D%2C%20contextual-cueing%20paradigm%3B%20cf.
https://paperpile.com/c/jwV27r/o8mE7/?noauthor=1
https://paperpile.com/c/jwV27r/7iUVi+USiHs+tDCnu
https://paperpile.com/c/jwV27r/axb4i+o8mE7
https://paperpile.com/c/jwV27r/axb4i+o8mE7
https://paperpile.com/c/jwV27r/cxjgn
https://paperpile.com/c/jwV27r/cxjgn
https://paperpile.com/c/jwV27r/eMp97+ZOfYl+AmJy0+L6pbd/?prefix=e.g.%2C,,,
https://paperpile.com/c/jwV27r/eMp97+ZOfYl+AmJy0+L6pbd/?prefix=e.g.%2C,,,
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Priority map is believed as the most generic and theoretically neutral term for describing a 

map at the top of the hierarchy that serves to prioritize some information over others (Liesefeld et al. 

2024). A spatial priority map means a representation of topographic space encoding the priority of 

individual locations combining signals originating from sensory input (bottom-up), current goal states 

(top-down or behavioral relevance), and statistical learning (history driven)-determine the weights 

within the spatial priority map (Jan Theeuwes, Bogaerts, and van Moorselaar 2022). Importantly, the 

priority map arises from a distributed network involving frontal, parietal, and temporal areas (for a 

review, Jan Theeuwes and Failing 2020). To be more specific, frontal brain areas, including the 

anterior cingulate, are presumed to be associated with top-down goals (Katsuki and Constantinidis 

2014); while early visual areas and structures such as the superior colliculus contribute to bottom-up 

salience calculations (Itti and Koch 2000) ; the medial temporal lobe, including the hippocampus 

system (hippocampus and associated medial temporal lobe structures; MTL) and other subcortical 

structures such as the basal ganglia (Hikosaka, Takikawa, and Kawagoe 2000), plays an important 

role in storing and representing selection history or visual statistical learning (e.g., Gaffan 1994; A. C. 

Schapiro et al. 2016; Holland and Bouton 1999; Rungratsameetaweemana, Squire, and Serences 

2019). These three signals converge into the priority map, potentially within the Frontal Eye Fields 

(FEF), ultimately influencing selection (e.g., Jan Theeuwes 2019) 

Statistical learning regarding target and distractor locations have been investigated intensively 

in studies both at a behavioral level (Druker and Anderson 2010; Geng and Behrmann 2002, 2005; 

Hoffmann and Kunde 1999; Y. V. Jiang, Swallow, and Rosenbaum 2013; Shaw and Shaw 1977; 

Sauter et al. 2018; e.g., Goschy et al. 2014; D. van Moorselaar, Daneshtalab, and Slagter 2021) and 

eye tracking studies (Walthew and Gilchrist 2006; Jones and Kaschak 2012; Y. V. Jiang, Won, and 

Swallow 2014), surprisingly very little is known about the underlying neural substrates driving 

learned distractor suppression and target enhancement. ERP studies can provide a direct window into 

how these processes unfold. Investigations utilizing ERPs to explore the mechanisms involved in both 

distractor suppression and target enhancement have primarily relied on analyzing the N2pc 

component, which numerous studies have provided compelling evidence for as a common 

electrophysiological marker may reflect the allocation of visuospatial attention within multi-stimulus 

displays (S. J. Luck and Hillyard 1994; M. Eimer 1996; Woodman and Luck 1999; for a review, see 

Martin Eimer 2014). The N2pc is an enhanced negative-going component of the EEG recorded in the 

posterior central electrode sites contralateral to the attended target objects in visual search displays, 

occurring about 200-350 ms after stimulus onset, (Kiss, Van Velzen, and Eimer 2008; Gaspar et al. 

2016), which generated in ventral extrastriate visual areas (Hopf et al. 2000). For instance, in a study 

investigating probability cueing effect regarding target locations, with additional singleton paradigm, 

recently Duncan et al. (2023) reported that targets located at high probability locations did elicit larger 

N2pc amplitudes relative to when targets located at low probability locations. However, van 

 

https://paperpile.com/c/jwV27r/HZxsc
https://paperpile.com/c/jwV27r/HZxsc
https://paperpile.com/c/jwV27r/lPvIQ
https://paperpile.com/c/jwV27r/1DxKf/?prefix=for%20a%20review%2C
https://paperpile.com/c/jwV27r/1DxKf/?prefix=for%20a%20review%2C
https://paperpile.com/c/jwV27r/xTSY6
https://paperpile.com/c/jwV27r/xTSY6
https://paperpile.com/c/jwV27r/Or0BP
https://paperpile.com/c/jwV27r/VajmW
https://paperpile.com/c/jwV27r/IlmZS+ABa8n+WEFT5+Tjy1l/?prefix=e.g.%2C,,,
https://paperpile.com/c/jwV27r/IlmZS+ABa8n+WEFT5+Tjy1l/?prefix=e.g.%2C,,,
https://paperpile.com/c/jwV27r/IlmZS+ABa8n+WEFT5+Tjy1l/?prefix=e.g.%2C,,,
https://paperpile.com/c/jwV27r/XIRdB/?prefix=e.g.%2C
https://paperpile.com/c/jwV27r/AlmEx+w614e+cmJQ8+J6LaJ+6qVcV+ooVXy+lfvjg+lRW9v+64Z6H/?prefix=,,,,,,,e.g.%2C,
https://paperpile.com/c/jwV27r/AlmEx+w614e+cmJQ8+J6LaJ+6qVcV+ooVXy+lfvjg+lRW9v+64Z6H/?prefix=,,,,,,,e.g.%2C,
https://paperpile.com/c/jwV27r/AlmEx+w614e+cmJQ8+J6LaJ+6qVcV+ooVXy+lfvjg+lRW9v+64Z6H/?prefix=,,,,,,,e.g.%2C,
https://paperpile.com/c/jwV27r/AhhXi+x3lvS+GlVmh
https://paperpile.com/c/jwV27r/AhhXi+x3lvS+GlVmh
https://paperpile.com/c/jwV27r/9jyzo+69NLs+xuJvX+gsLct/?prefix=,,,for%20a%20review%2C%20see
https://paperpile.com/c/jwV27r/9jyzo+69NLs+xuJvX+gsLct/?prefix=,,,for%20a%20review%2C%20see
https://paperpile.com/c/jwV27r/KU8uQ+TRxAh
https://paperpile.com/c/jwV27r/KU8uQ+TRxAh
https://paperpile.com/c/jwV27r/wiOdK
https://paperpile.com/c/jwV27r/TV8vQ/?noauthor=1
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Moorselaar et al. (2021) failed to find any difference in the N2pc elicited by targets occurring at the 

frequent relative to a rare distractor location. In another study investigating probability cueing effect 

regarding distractort locations, Sauter et al. (2017) found the distractor-elicited N2pc amplitude was 

significantly higher for distractors appearing at locations in the frequent than the rare (distractor) 

region in the midline-target/lateral-distractor condition; and importantly, the target-N2pc was delayed 

for targets that appeared in the frequent distractor location but not delayed for targets in the rare 

distractor location, suggesting that a great allocation of attentional resources is necessary to detect a 

target stimulus in a region that has been proactively suppressed due to learning the location of 

distractors. 

In addition to examining amplitude differences, researchers also extensively explore 

disparities in latency across diverse experimental conditions to gain deeper insights into the temporal 

dynamics of statistical learning processes related to target or distractor location. Sauter (2017) found, 

the target-N2pc was delayed for targets that appeared in the frequent distractor location but not 

delayed for targets in the rare distractor location, suggesting that a great allocation of attentional 

resources is necessary to detect a target stimulus in a region that has been proactively suppressed due 

to learning the location of distractors. While studies examining static distractor probability-cueing 

effects, comparatively fewer have emphasized differences in latency between likely and unlikely 

target locations. However, numerous studies focused on statistical learning have successfully 

demonstrated that a target elicits an N2pc with an earlier onset when its feature, such as shape or 

color, repeats compared to when it does not (Christie, Livingstone, and McDonald 2015; Becker, 

Grubert, and Dux 2014; Tay et al. 2019). Yet, in the domain of visual statistical learning about spatial 

regularities, the relevant literature fails to provide a coherent depiction of N2pc effects, and new 

evidence will be needed to resolve those inconsistencies.  

Many studies have advanced our understanding of the role of endogenous alpha oscillations 

(8-12 Hz), suggesting their involvement more in the enhancement of relevant or the suppression of 

irrelevant stimuli (e.g., Foster and Awh 2019; Foxe and Snyder 2011). Traditionally, alpha oscillation 

is regarded as a neural signature of stimulus processing in attentional processes. Specifically, an 

increase in alpha-band amplitude, often referred to as alpha synchronization, at electrodes 

contralateral to a stimulus (relative to the amplitude over the ipsilateral hemisphere) has been 

proposed to indicate active suppression of that stimulus (e.g., Foxe and Snyder 2011; Jensen and 

Mazaheri 2010). Conversely, a decrease in lateralized alpha-band amplitude, is known as alpha 

desynchronization, has been considered a indicator of attentional facilitation of contralateral stimuli 

(Bacigalupo and Luck 2019; Forschack et al. 2022; Neuper, Wörtz, and Pfurtscheller 2006; Sauseng et 

al. 2005). However, compelling evidence for an unequivocal role of alpha rhythms in distractor 

suppression is somewhat limited. Several studies have demonstrated that alpha activity persists in 

tracking unattended regions even in the absence of distractor stimuli (Noonan et al. 2016; Sauseng et 

 

https://paperpile.com/c/jwV27r/64Z6H/?noauthor=1
https://paperpile.com/c/jwV27r/SuEdS/?noauthor=1
https://paperpile.com/c/jwV27r/SuEdS/?noauthor=1
https://paperpile.com/c/jwV27r/FJSvd+hU566+dq5Po
https://paperpile.com/c/jwV27r/FJSvd+hU566+dq5Po
https://paperpile.com/c/jwV27r/keMGH+Hfv6Z/?prefix=e.g.%2C,
https://paperpile.com/c/jwV27r/Hfv6Z+Dr7oi/?prefix=e.g.%2C,
https://paperpile.com/c/jwV27r/Hfv6Z+Dr7oi/?prefix=e.g.%2C,
https://paperpile.com/c/jwV27r/5Dcty+sqHTN+dSNtT+2Szdh
https://paperpile.com/c/jwV27r/5Dcty+sqHTN+dSNtT+2Szdh
https://paperpile.com/c/jwV27r/CnP34+2Szdh+1QrdQ
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al. 2005; Thut et al. 2006). Others found no increases of posterior alpha power in anticipation of 

distractors, for example, Dirk et al. (2021) found no increase in anticipatory alpha-band activity was 

observed over visual regions representing likely distractor location relative to unlikely distractor 

location. While, in another study investigating anticipatory distractor suppression caused by spatial 

statistical regularities, Wang et al. (2019) found that participants had learned that the salient distractor 

is more likely to appear at one specific location, so this location would be suppressed, as there was an 

increase in alpha power contralateral to this location relative to the ipsilateral location. Contrary to 

that finding, a recent study showed that distractor suppression was not associated with lateralized 

alpha power during the pre-stimulus period (Qiu et al. 2023). Furthermore, some studies emphasized 

the association between attentional facilitation and alpha power, they found a decrease of alpha power 

contralateral to the target location reappearing relatively late after target onset (Bacigalupo and Luck 

2019; van Diepen et al. 2016). Therefore, there is still a debate over whether alpha modulations reflect 

distractor suppression or a complementary mechanism that promotes target enhancement (Foster and 

Awh 2019; Noonan et al. 2016; Slagter et al. 2016). 

 

1.5 Aims of the thesis 

The goal of the current dissertation is to mainly advance our understanding of the cognitive 

and the neural dynamics underlying target enhancement induced by spatial statistical learning in 

visual search, and further to establish how to make use of both static and dynamic across-trial 

regularities of target locations to facilitate attention. To address these issues, classical behavioral 

experiments, eye-tracking and EEG techniques are employed.  

To begin with, in Chapter 2.1, four psychophysical experiments were performed to investigate 

whether statistical learning also extends to dynamic regularities governing the placement of targets 

and distractors on successive trials. To investigate this question, we adopted singleton classic 

additional-singleton paradigm and introduced cross-trial spatial regularities for the singleton color 

distractor (Experiment 1a) and, respectively, the singleton shape target (Experiment 1b). The location 

of the critical item (either the target or the distractor) would move by one location across trials in one 

direction, either clockwise or counterclockwise (counterbalanced across participants) with a high 

probability (80%), or the opposite direction with a low probability (10%), or jump randomly to a 

non-adjacent location (including location repetitions) (10%). To promote statistical learning taking 

place at the level of the priority map, we randomly swapped the target and the distractor color across 

trials, which, previous research indicates (Allenmark et al. 2019), limits learning at a level below the 

priority map (the level of specific features or feature dimensions). Also, by inducing a 

‘singleton-detection’ search mode (cf. Bacon and Egeth 1994), random color swapping produces 

 

https://paperpile.com/c/jwV27r/CnP34+2Szdh+1QrdQ
https://paperpile.com/c/jwV27r/64Z6H/?noauthor=1
https://paperpile.com/c/jwV27r/waB5T/?noauthor=1
https://paperpile.com/c/jwV27r/KZ0co
https://paperpile.com/c/jwV27r/5Dcty+hD2vO
https://paperpile.com/c/jwV27r/5Dcty+hD2vO
https://paperpile.com/c/jwV27r/keMGH+CnP34+694tm
https://paperpile.com/c/jwV27r/keMGH+CnP34+694tm
https://paperpile.com/c/jwV27r/9uDwZ
https://paperpile.com/c/jwV27r/O9bUh/?prefix=cf.
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larger distractor-interference effects compared to consistently separable distractor and target colors 

(Allenmark et al. 2019; D. van Moorselaar, Daneshtalab, and Slagter 2021), thus providing more room 

for demonstrating statistical learning effects.  

Subsequently, in Chapter 2.2, eye tracking technique was used (1) to examine whether 

participants would learn a simple dynamic (probabilistic) regularity in the positioning of target items 

across consecutive trials in a serial search task; (2) to investigate if such dynamic learning would rely 

on explicit awareness of the regularity. To achieve this goal, we used the same dynamic, cross-trial 

regularity as Chapter 2.1 did in a parallel search task. This involved shifting the target location in a 

circular display arrangement by one position, either clockwise or anticlockwise (blocked per 

participant) across trials with a probability of 80%, compared to only a 25%-probability in Li and 

Theeuwes (2020), we assumed a substantial number of participants would extract and utilize this 

regularity to speed performance even in serial search, which requires (a sequence of) eye movements 

to detect and respond to the target item. As for behavioral results, in particular, we expected faster 

task-final RTs if the cross-trial shift of the target location conforms with the rule (‘frequent’) versus 

when it didn’t (‘infrequent’- and ‘random’-shift trials), evidencing a dynamic target-location 

probability-cueing effect. We also hypothesize that participants who are 'aware' of the dynamic 

regularity will demonstrate a significant dynamic target-location probability-cueing effect, whereas 

those who are 'unaware' are not expected to benefit from the regularity. Additionally, we anticipate a 

positive correlation between participants' subjective certainty regarding the rule and the magnitude of 

their cueing effect. As for eye movements, we hypothesize if rule-based guidance is engaged early, 

aware participants' initial saccade may be predominantly directed towards the dynamically predicted 

'frequent' target location compared to infrequent and random locations. Alternatively, if rule-based 

guidance is delayed, we expect aware participants to employ fewer saccades to locate the target at the 

frequent location compared to other locations (excluding possibly the repeated one), and fewer 

saccades overall compared to unaware participants. Additionally, we also check early eye movements 

in the mixed condition (non-target identities were mixed, swapping randomly across trials) to assess 

how dynamic rule guidance on a given trial is modulated by preceding trial events conforming that 

either conforms or breaks the rule  (rule-based intertrial priming). Last, by recording eye movements, 

we are able to examine whether the earliest saccades performed during the serial search are influenced 

by explicit knowledge of where the new target is likely to be located. 

Finally, Chapter 2.3, combining the EEG approach with the serial search task, the dissertation 

first explores (1) how the statistical learning of target location modulate attentional selection across 

trials at the neural level, and how plastic changes induced by statistical learning impact later 

attentional processing, by examining the ERP component N2pc (latency and amplitudes); and (2) 

whether any prediction occurs because of target location enhancement occurs prior to search display 

onset, by examining the pre-stimulus alpha activity. 

 

https://paperpile.com/c/jwV27r/9uDwZ+64Z6H
https://paperpile.com/c/jwV27r/yGTX0/?noauthor=1
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2 Cumulative Thesis 

Cumulative thesis includes three quantitative-empirical studies (2.1 - 2.3). 

2.1 Asymmetric learning of dynamic spatial regularities in visual search: Robust 

facilitation of predictable target locations, fragile suppression of distractor 

locations 
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Abstract 
 

Static statistical regularities in the placement of targets and salient distractors within the search 

display can be learned and used to optimize attentional guidance. Whether statistical learning also 

extends to dynamic regularities governing the placement of targets and distractors on successive trials 

remains controversial. Here, we applied the same dynamic cross-trial regularity – one-step shift of the 

critical item in clock-/counterclockwise direction – to either the target or a distractor. In two 

experiments, we found and replicated robust learning of the predicted target location: processing of 

the target at this location was facilitated, compared to random target placement. But we found little 

evidence of proactive suppression of the predictable distractor location – even in a close replication of 

Wang et al. (2021), who had reported a dynamic distractor suppression effect. Facilitation of the 

predictable target location was associated with explicit awareness of the dynamic regularity, whereas 

participants showed no awareness of the distractor regularity. We propose that this asymmetry arises 

because, owing to the target’s central role in the task set, its location is explicitly encoded in working 

memory, enabling the learning of dynamic regularities. In contrast, the distractor is not explicitly 

encoded; so, statistical learning of dynamic distractor locations is more precarious. 

 

 

Keywords: probability cueing, color swapping, feature-based suppression, priority-based suppression 
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Introduction  

Our environment is extremely rich and complex, while our capacity for information 

processing is limited. The brain must prioritize information relevant to the task at hand, while 

resisting irrelevant information that might compete for our limited cognitive resources (C. L. Folk, 

Remington, and Johnston 1992; Charles L. Folk and Remington 1998, 2008; Wolfe, Cave, and Franzel 

1989; Egeth and Yantis 1997; Charles L. Folk, Leber, and Egeth 2002). Fortunately, rather than being 

random, our visual environment is highly structured. Thus, being able to extract and learn critical 

environmental regularities is useful for encountering and dealing with similar situations in the future. 

For example, it is easy to find a sushi box in a familiar supermarket without being distracted by other 

products, given that you know where the sushi boxes are located. In the laboratory, these phenomena 

have been systematically investigated under the label (spatial) ‘probability-cueing effects’ (Geng and 

Behrmann 2002, 2005). When a task-relevant target occurs with a high probability at a particular 

location, our attentional system can learn and effectively use this information for guiding search, 

facilitating target detection and response decisions (Druker and Anderson 2010; Geng and Behrmann 

2005, 2002; Jiang, Swallow, and Rosenbaum 2013; Hoffmann and Kunde 1999; Shaw and Shaw 

1977).  

Spatial probability cueing is not limited to prioritizing the target location. Rather, as has been 

shown in recent studies, people can also learn a high probability of a salient but task-irrelevant 

distractor appearing at a specific location or in a specific region to de-prioritize the processing of such 

stimuli (e.g., Ferrante et al. 2018; Goschy et al. 2014; Leber et al. 2016; Sauter et al. 2018; Sauter, 

Liesefeld, and Müller 2019; B. Wang and Theeuwes 2018a; Zhang et al. 2019). For example, Goschy 

and colleagues (2014) designed a visual search task that required participants to search for a tilted bar 

amongst vertical bars and indicate whether the target bar had a gap at the top or the bottom. In half of 

the trials, a colored bar was shown with a high probability (90%) in one half of the display and with a 

low probability (10%) in the other half. The ‘interference’ (i.e., the reaction time, RT, cost) 

engendered by a salient color distractor was greatly reduced if the distractor was presented in the 

high-probability (vs. the low-probability) region, indicating that search performance can also be 

boosted by statistical learning of distractor locations. In a control experiment, Goschy et al. further 

confirmed that the reduction of interference reduction is not merely owing to repetition of the 

distractor location across trials (which is more likely for likely distractor locations); rather, long-term 

statistical learning of likely distractor locations, and attendant proactive spatial suppression processes, 

contribute to the efficient search guidance. 

Collectively, the aforementioned studies have shown that observers can learn/exploit, from 

experience, the uneven spatial distributions of target and distractor in the search array over time, to 

minimize the interference generated by distractors and optimize target selection. However, whether 

statistical learning of target selection and distractor suppression are distinctive processes remains 

 

https://paperpile.com/c/FuCTAu/ShL30+JcGN+YIOJ+1NrO+8pTM+6BDGa
https://paperpile.com/c/FuCTAu/ShL30+JcGN+YIOJ+1NrO+8pTM+6BDGa
https://paperpile.com/c/FuCTAu/ShL30+JcGN+YIOJ+1NrO+8pTM+6BDGa
https://paperpile.com/c/FuCTAu/FCN3x+vDr9H
https://paperpile.com/c/FuCTAu/FCN3x+vDr9H
https://paperpile.com/c/FuCTAu/qZ1vn+vDr9H+FCN3x+vmVLZ+K60df+IK3l5
https://paperpile.com/c/FuCTAu/qZ1vn+vDr9H+FCN3x+vmVLZ+K60df+IK3l5
https://paperpile.com/c/FuCTAu/qZ1vn+vDr9H+FCN3x+vmVLZ+K60df+IK3l5
https://paperpile.com/c/FuCTAu/wVzUs+S2VCq+v5Tcw+f7vvC+DALcH+Yy0E0+Q5BTX/?prefix=e.g.%2C%20,,,,,,
https://paperpile.com/c/FuCTAu/wVzUs+S2VCq+v5Tcw+f7vvC+DALcH+Yy0E0+Q5BTX/?prefix=e.g.%2C%20,,,,,,
https://paperpile.com/c/FuCTAu/S2VCq/?noauthor=1
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controversial. Some researchers argue that distractor suppression involves distinct processes to target 

selection (e.g., Noonan et al. 2016), while others suggest that attentional allocation by statistical 

learning is a result of a unitary mechanism: enhanced and, respectively, suppressed activities on the 

search-guiding spatial-attentional priority map are just two sides of the same coin (Ferrante et al. 

2018). 

Of note, the majority of the probability-cueing studies demonstrating spatial statistical 

learning used a fixed uneven probability manipulation, such as one region/location having a higher 

occurrence of the target or distractor compared to the other region/locations (e.g., Geng and Behrmann 

2002, 2005; Shaw and Shaw 1977; Goschy et al. 2014; Sauter et al. 2018). The implicit assumption is 

that statistical learning can modulate the activation pattern on the spatial priority map, by enhancing 

or suppressing specific locations/regions (for a review, see Luck et al. 2021). However, the question 

remains whether or not such a modulation of selection priorities is stationary – adapting to a static 

spatial distribution of targets and distractors – or dynamic – adaptive to predictable changes in the 

distribution of targets and distractors.  

In a recent study, Li and Theeuwes (2020) introduced a dynamic cross-trial regularity to 

explore this question. In their paradigm, some target locations were predictably coupled across trials; 

for instance, a target occurring at the left-most (or respectively, the top) display location on trial n 

would invariably lead to the next target, on trial n+1, occurring at the rightmost (or respectively, the 

bottom) location (but not vice versa). Although apparently unbeknown to participants, this target 

regularity nevertheless facilitated search and boosted accuracy. In a more recent study, Wang et al. 

(2021) further explored whether such flexibility would also characterize statistical learning, and 

attendant suppression, of distractor locations. In their adaptation of the ‘classical’ additional-singleton 

search paradigm with a circular display arrangement, a salient color distractor ‘jumped’ by one 

location in either clockwise or counterclockwise direction across consecutive trials, with 100% 

predictability. Wang et al. found that participants could relatively rapidly learn this cross-trial 

regularity to facilitate search, compared to a control group performing the task under conditions in 

which placement of the distractor across trials was random (i.e., the ‘regular’ group showed a reduced 

distractor interference relative to the distractor-absent baseline compared to the ‘random’ group). 

Note, though, that in their study, the color of the odd-one-out (color-defined) distractor was either 

fixed (their Exp. 1) or changed randomly between two colors (their Exp. 2), while the distractor color 

was never the color of the (shape-defined) target (white). Thus, according to both feature- and 

dimension-based accounts of distractor handling (e.g., Liesefeld and Müller 2019; Müller et al. 2009; 

Won, Kosoyan, and Geng 2019): as long as the color of the distractors is separable from the target 

color, it would remain possible to (learn to) globally, in spatially non-specific manner, suppress the 

feature- or feature-contrast signals they generate in the color dimension and so uniformly reduce their 

weight in the computation of the priority map. Interestingly in this context, in Wang et al. (2021), the 

difference in interference between their separate ‘regular’ and ‘random’ groups was diminished 

 

https://paperpile.com/c/FuCTAu/o93IY/?prefix=e.g.%2C%20
https://paperpile.com/c/FuCTAu/wVzUs
https://paperpile.com/c/FuCTAu/wVzUs
https://paperpile.com/c/FuCTAu/FCN3x+vDr9H+IK3l5+S2VCq+f7vvC/?prefix=e.g.%2C%20,,,,
https://paperpile.com/c/FuCTAu/FCN3x+vDr9H+IK3l5+S2VCq+f7vvC/?prefix=e.g.%2C%20,,,,
https://paperpile.com/c/FuCTAu/6TfQu/?prefix=for%20a%20review%2C%20see%20
https://paperpile.com/c/FuCTAu/wYanC/?noauthor=1
https://paperpile.com/c/FuCTAu/2LxtP/?noauthor=1
https://paperpile.com/c/FuCTAu/3teXK+li3a3+O5poL/?prefix=e.g.%2C,,
https://paperpile.com/c/FuCTAu/3teXK+li3a3+O5poL/?prefix=e.g.%2C,,
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towards the end of testing. Given there was no spatial regularity participants in the ‘random’ group 

could possibly learn, this may be taken to suggest that both groups actually operated the same, 

spatially non-specific suppression strategy, at least towards the end. 

In fact, studies examining a static probability manipulation of distractor locations indicate that 

separability of the distractor and the target color influence the distractor-handling strategy that 

observers develop: without color swapping between the distractor and target colors, they tend to adopt 

a feature- or dimension-based suppression strategy; with color swapping, they develop 

priority-map-based suppression (Zhang et al. 2019; Allenmark et al. 2019).1 This echoes a similar idea 

proposed in the contingent-capture hypothesis (C. L. Folk, Remington, and Johnston 1992), namely, 

that the top-down attentional set for target-defining features determines which items are prioritized for 

selection: distractors can only be effectively down-weighted if they do not share 

search-critical-features with the target – where the attentional control set influences signal coding 

below the level of the priority map, in a spatially non-specific manner.  

Thus, given that statistical learning of item locations for attentional prioritization can occur at 

multiple levels in the functional architecture of search guidance, whether dynamic enhancement and 

suppression are purely based on the predictive location of the target and, respectively, distractor 

remains elusive. To systematically investigate this, we devised the same cross-trial transitional 

probability structure for predictable target locations and, respectively, predictable distractor locations. 

We hypothesized that if statistical learning of the predictable locations of the target and distractor are 

the ‘two sides of the same coin’, we should observe a similar pattern of dynamic spatial learning and 

attendant signal modulations – though in opposite directions: prioritizing target and suppressing 

distractor signals – on the attentional priority map. By contrast, if dynamic modulation of spatial 

priorities by statistical learning is tied to the positive search goal, namely, to find some pre-specified 

target, we would expect to see a dissociation between dynamically predictable target locations (which 

should be learnable) and distractor locations (which may not be learned, as they are only part of the 

negative task set).   

Specifically, in Experiment 1, we adopted the classic additional-singleton paradigm and 

introduced cross-trial spatial regularities for the singleton color distractor (Experiment 1a) and, 

respectively, the singleton shape target (Experiment 1b, see Figure 1). The location of the critical item 

(either the target or the distractor) would move by one location across trials in one direction, either 

clockwise or counterclockwise (counterbalanced across participants) with a high probability (80%), or 

the opposite direction with a low probability (10%), or jump randomly to a non-adjacent location 

1 That feature- or dimension-based distractor information is of reduced utility  under conditions of color swapping is 
consistent with other studies. For instance, Graves and Egeth (2015) found greater RT distractor interference when the colors 
were swapped between target and distractor across trials. Similarly, in eye-movement experiments with color swapping, 
Gaspelin and colleagues (Gaspelin and Luck 2018; Gaspelin, Gaspar, and Luck 2019) found the first saccade (after display 
onset) to be more likely to be directed to the singleton distractor than to the average of the other non-target items. Similarly, 
Becker (2010) found the irrelevant singleton-color distractor to attract an eye movement more frequently compared to 
non-target items when its defining (color) feature had switched, rather than repeated, from the previous trial. 

 

https://paperpile.com/c/FuCTAu/Q5BTX+hwXic
https://paperpile.com/c/FuCTAu/ShL30
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_stimulus
https://paperpile.com/c/FuCTAu/fIQZ7/?noauthor=1
https://paperpile.com/c/FuCTAu/t5kpO+ZYWAJ/?noauthor=0,0
https://paperpile.com/c/FuCTAu/0lMsR/?noauthor=1
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(including location repetitions) (10%). Note that, in contrast to Wang et al. (2021),this implements a 

within-participant design (with the same participants performing both the regular and the random, 

baseline condition), avoiding spurious effects attributable to random group differences. To promote 

statistical learning taking place at the level of the priority map, we randomly swapped the target and 

the distractor color across trials, which, previous research (Zhang et al. 2019; Allenmark et al. 2019) 

indicates, limits learning at a level below the priority map (the level of specific features or feature 

dimensions). Also, of course, by inducing a ‘singleton-detection’ search mode (cf. Bacon and Egeth 

1994), random color swapping produces larger distractor-interference effects compared to consistently 

separable distractor and target colors (Allenmark et al. 2019; van Moorselaar, Daneshtalab, and 

Slagter 2021), thus providing more room for demonstrating statistical learning effects.2   

What we found was that participants could successfully learn and exploit the dynamic target 

probability, consistent with Li and Theeuwes (2020); but they did not acquire the dynamic distractor 

probability, at odds with Wang et al. (2021). Given that our null-result with the dynamic 

distractor-location manipulation is at variance with the positive finding of Wang et al. (2021), we went 

on to perform a direct replication of their Experiment 1 (2021). However, even though we 

implemented the same stimuli (shape size and eccentricity, fixed distractor and target colors) and 

design (separate groups performing the ‘regular’ and ‘random’ conditions) in Experiment 2, we again 

find no evidence that participants were able to learn and exploit the regular (100% predictable) shift in 

the distractor location. By contrast, when the same dynamic manipulation was applied to the target 

location, we replicated (in a between-participant design) the significant facilitation effect observed in 

Experiment 1.  

Together, we take this pattern to point to an asymmetry in the learning of dynamic spatial 

regularities in visual search: while we can successfully prioritize dynamically predictable target 

locations, we are less (if at all) able to de-prioritize dynamically predictable distractor locations. 
 

Experiment 1 

In Experiment 1, we applied the cross-trial transitional location regularity separately to the 

distractor (Experiment 1a) and the target (Experiment 1b) in a paradigm requiring search for an 

odd-one-out target, with Experiment (a vs. b) as a between-subject factor. Note that the design of 

Experiment 1 was adapted from an unpublished study (carried out in the winter semester 2018/19). 

Given the importance of methodological issues for demonstrating the learning of dynamic distractor 

regularities, we report the Method and Results of this ‘pilot’ study in Appendix A.  
 

 

 

2 In fact, most statistical distractor-location learning studies of Theeuwes and colleagues, following the seminal paper 
(Theeuwes 1992), used random color swapping , Wang et al. (2021) being almost an exception. 
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Methods 

Participants  

24 healthy university students were recruited for Experiments 1a (mean age ± SD: 27.3 ± 4.2 

years; age range: 21–39 years; 13 females) and 1b (mean age ± SD = 26.0 ± 3.2 years; age range: 

21–33 years; 9 females) respectively. All participants reported normal or corrected-to-normal visual 

acuity. And all passed the Ishihara color test (Clark, 1924), ensuring they had normal color perception 

(especially for red and green). The participants can thus be regarded as representative of the standard 

population of healthy (young) adults.  

The sample size was determined based on previous studies, in particular, Li and Theeuwes 

(2020), who had implemented a similar design introducing cross-trial regularities (for the target), with 

an effect size of = 0.42 (average across all experiments). We conducted an a-priori power analysis, 𝑓 

with the effect size of = 0.42,  = .05, and 98% power (1- ), which yielded a minimum sample size 𝑓 α β

of n = 20  (G*Power 3.1; Faul et al., 2007). To be on the safe side, we increased the sample size to 24 

per tested group – an n that had also been used in another study with a similar design (Ferrante et al., 

2018). All participants provided written informed consent prior to the experiment and were paid 9 

Euro per hour or given correspondent course credit for their participation. This study was approved by 

the LMU Faculty of Pedagogics & Psychology Ethics Board. All data in Experiment 1 were collected 

in 2021. 
 

Apparatus and stimuli.  

The experiment was conducted in a sound-attenuated and moderately lit test room. 

Participants sat in front of the CRT display monitor, with a viewing distance of 60 cm. The search 

stimuli, presented at 1280 × 1024 pixels screen resolution and a refresh rate of 85 Hz, were generated 

by customized MATLAB R2019b (The Math- Works® Inc) code with Psychophysics Toolbox Version 

3 (PTB-3) (Brainard 1997). 

 

https://paperpile.com/c/i5GIi1/pIC01
https://paperpile.com/c/i5GIi1/RXlH/?noauthor=1
https://paperpile.com/c/i5GIi1/GYBVF/?prefix=G*Power%203.1%3B
https://paperpile.com/c/i5GIi1/mpWZi
https://paperpile.com/c/i5GIi1/mpWZi
https://paperpile.com/c/FuCTAu/QrKL
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Figure 1. (a) Illustration of three cross-trial target- or, respectively, distractor-location transitions in Experiment 1. In each 

experiment, there were three types of the location change of the critical item (target or distractor) across consecutive trials: 

with 80% probability, the critical item would move to the adjacent location, either in clockwise or counterclockwise 

direction (here, indicated by the red dashed circle marking the frequent location). The direction was for a given participant 

and counterbalanced across participants. With 10% probability, the critical item would shift to the adjacent location in the 

opposite direction (indicated by the green dashed circle marking the infrequent location). On the remaining 10% of trials, the 

critical item would move randomly to any of the other locations, including re-appearing at the same location (indicated by 

the yellow dashed circle marking a random location). (b) Schematic illustration of two types of search display in which we 

implemented the cross-trial transitional regularity of the critical item (marked by white dashed circles, which were not 

presented in the experiments) to the left. The critical item was a color singleton distractor in Experiment 1a, and the 

shape-defined target in Experiment 1b. 

 

As illustrated in Figure 1b, a search display was composed of eight items, each consisting of 

an outline shape (either diamond or circle) and an oriented bar (horizontal or vertical) inside it. The 

eight items were equidistantly arranged around an imaginary circle (radius 3.6° of visual angle). The 

diameter of the circle shapes was 1.4° of visual angle, the side length of the diamond shapes   1.9°, and 

the gray vertical or horizontal line inside the shapes 1.2°  0.3°. Each display contained one ×

singleton-shape target and seven non-targets. When a singleton distractor was present (replacing one 

of the non-targets), it differed in color from the seven other shapes, being either green (CIE [Yxy]: 

[16.8, 0.306, 0.549]) among homogeneous red shapes (CIE [Yxy]: [11.6, 0.605, 0.336]), or red 

amongst homogeneous green shapes. All search displays were presented on a black screen 

background (CIE [Yxy]: 1.72, 0.329，0.265]), with a white fixation cross (0.76° × 0.76°; CIE [Yxy]: 

79.7, 0.298, 0.298) in the center. 
 

Design and procedure  

A target, which was a shape-defined singleton, either a circle among diamonds or a diamond 

among circles, equally likely randomly assigned on each trial, was present on all trials. In order to 

 

https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_stimulus
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_stimulus
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realize a distractor-absent baseline in Experiment 1a without interrupting the structure of the 

cross-trial transitional probabilities of the distractor, we presented the singleton-distractor present and 

-absent trials in separate blocks. There were 16 blocks in Experiment 1a, with four 

singleton-distractor-absent blocks being randomly interleaved with the other, 12 

singleton-distractor-present blocks. Each block consisted of 60 trials, yielding a total of 960 trials (240 

distractor-absent trials and 720 distractor-present trials). Experiment 1b also consisted of 16 blocks, 

but without any singleton distractor. In both Experiments 1a and 1b, the target position was overall 

(across all trials) equally distributed among the eight possible locations, and participants had to 

respond to the orientation of the line inside the target as fast and accurately as possible. 

Importantly, the placement of the critical item – the color-singleton distractor in Experiment 

1a, and the shape-singleton target in Experiment 1b – across consecutive trials n and n+1 was made 

predictable in a probabilistic manner. Specifically, in the majority of trials (80%), the location of the 

critical (distractor or target) item was shifted to an adjacent position in either clockwise or 

counterclockwise direction (with the main direction being fixed for a given participant, but 

counterbalanced across participants); hereafter, this will be referred to as the frequent condition. On 

another 10% of the trials, the position of the singleton distractor was shifted to the adjacent location in 

the opposite direction to the frequent condition (i.e., if the main direction was clockwise, the shift was 

counterclockwise, and vice versa) – the infrequent condition.3 And on the remaining 10% of the trials, 

the position of the critical item was randomly selected among the six remaining alternative locations 

(including repeated presentation at the same location) – the random condition. Of note, the statistical 

regularities were only assigned to the position of the singleton distractor or, respectively, the singleton 

target. Its color and shape varied randomly across trials. That is, the colors of the distractor and the 

target (as well as the other, non-distractor item) could randomly swap across trials – as in previous 

studies (e.g., Allenmark et al., 2019; Theeuwes, 1992), but different from Wang et al.’s (2021) design, 

in which the colors of the distractor were never the target color. 

A trial started with a fixation cross presented in the center of the screen for 500 ms, followed 

by the search display (Figure 1b), which was shown until the participant gave a response. Participants 

were instructed to search for the shape-defined target and discriminate the orientation of the bar inside 

it by pressing the leftward- (‘horizontal’) or upward-pointing (‘vertical’) arrow on the keyboard with 

their right-hand index or middle fingers, respectively. If participants issued an incorrect response, a 

feedback display with the word “Error!” in the screen center was presented for 500 ms. The next trial 

started after an inter-trial interval of 500–750 ms. Between blocks, participants could take a break of a 

self-determined length.  

3 This condition was introduced to allow us to compare two conditions with the same inter-trial distance (movement of the 
critical item by one step) but different probability. With only the ‘random’ condition for comparison against the ‘frequent’ 
condition, we would have had too few ‘random’ trials on which the critical item moved the same distance as in the ‘frequent’ 
condition (but in the opposite direction). Figure 2c, comparing conditions with the equal distance, turned out ‘diagnostic’ at 
least in one of the experiments. 

 

https://paperpile.com/c/i5GIi1/suerJ+9xTkf/?prefix=e.g.%2C%20,
https://paperpile.com/c/i5GIi1/fW8w/?noauthor=1
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_stimulus
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At the end of the experiment, participants completed a post-experiment questionnaire in 

which they had to give two forced-choice responses: First, participants had to indicate whether or not 

they had noticed any regularity in the way Critical Items (CI: the target or distractor) had moved 

across trials. Next, they needed to report the specific regularity of the movement, by choosing one of 

seven options for the most frequent type of movement (CI moved to the opposite end of the circle; CI 

moved one step clockwise; CI moved one step counterclockwise; CI moved two steps clockwise; CI 

moved two steps counterclockwise; CI moved three steps clockwise; CI moved three steps 

counterclockwise.)  

 

Transparency and Openness 

The experimental code, raw data, and data analyses of the present study are publicly available 

at: https://github.com/msenselab/asymmetric_statistical_learning. 
 

Statistical analyses 

Analyses of variance (ANOVAs) and associated post-hoc tests were carried out using JASP 

0.15 (http://www.jasp-stats.org). All Bayes factors for ANOVA main effects and interactions are 

inclusion Bayes factors calculated across matched models. Accepting or rejecting the null hypothesis 

is based on the obtained Bayes factor.  

 

Results 

Experiment 1a: transitional regularity of the distractor location 

Error rates and Mean RTs 

Trials with extreme RTs (slower than 2500 or faster than 200 ms) were excluded from further 

analysis (4.5% of trials). While the average error rate was overall low (4.7%), more errors occurred on 

distractor-present vs. -absent trials (5.4% vs. 3.4%), t(23) = 3.627, p = .001, dz = .74, with the error 

rates being comparable among the three (the frequent, infrequent, and random) distractor-location 

transition conditions, F(2, 46) = 1.002, p = .375,  = 0.042, BFincl = .286. 𝜂
𝑝
2

The mean (correct) RTs for the four distractor conditions (the distractor-absent baseline along 

with the frequent, infrequent, and random distractor-location transition conditions) are shown in 

Figure 2. As can be seen, the mean RT was faster in distractor-absent vs. distractor-present blocks, 

with the interference caused by distractor presence being significant, t(23) = 6.167, p < .001, dz = 1.26. 

Similar to the error-rate pattern, the RTs for the three cross-trial distractor-location transition 

 

https://github.com/msenselab/asymmetric_statistical_learning
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_results_1a
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conditions did not differ significantly among each other, F(2,46) = .168, p = .847, = .007, BFincl = 𝜂
𝑝
2 

.134 (note that this Bayes factor argues in favor of the null hypothesis). That is, participants failed to 

learn the (frequent) cross-trial ‘movement’ of the location of the distractor to reduce its interference. 

This finding differs from that seen in ‘standard’ distractor-location probability-cueing paradigms, in 

which a fixed (stationary) frequent location/region of the distractor can be effectively learned to 

reduce distractor interference (e.g., Ferrante et al. 2018; Goschy et al. 2014; Leber et al. 2016; Sauter 

et al. 2018; Sauter, Liesefeld, and Müller 2019; B. Wang and Theeuwes 2018a; Zhang et al. 2019).   

   

 

Figure 2. (a) Mean RTs and (b) Error rates, with associated standard errors, for Experiment 1a, separately for the 

distractor-absent baseline and the random, infrequent, and frequent cross-trial transitional distractor-location conditions. (c) 

Mean RT as a function of the inter-trial distractor distance (0 indicates the distractor repeated at the same location, while 1 

denotes the distractor moved one position to its neighbor, including both the frequent and infrequent directions). Error bars 

represent one standard error of the mean.  
 

Further analyses, based on or including the random-cross-trial transition condition4, revealed 

no evidence of impaired target processing when, on random-distractor-placement trials, the target 

appeared at the dynamically predicted, ‘frequent’ distractor location: RTs to a target at the ‘frequent’ 

location (1104 ms) were not significantly longer than those to targets at the ‘infrequent’ (1099 ms) or, 

respectively, a ‘random’ location (1099 ms), F(2,46) = 0.579, p = .564, = .025, BFincl = .179. The 𝜂
𝑝
2 

absence of a target-location effect is different from standard (static) distractor-location 

probability-cueing paradigms (e.g., Goschy et al. 2014; B. Wang and Theeuwes 2018a), where it is 

often found that acquired proactive suppression of likely distractor locations also impacts processing 

of the target when it occurs at such a location, evidenced by prolonged RTs to targets at likely 

locations. But the absent target-location effect tallies with the absence of an interference reduction by 

distractors appearing at dynamically predicted, ‘frequent’ distractor locations (see Figure 2a). 

4 We acknowledge that analyses based on or including random-distractor-placement conditions are potentially ‘shaky’ given 
that the respective estimates are based on only a few trials per participant. 

 

https://paperpile.com/c/FuCTAu/wVzUs+S2VCq+v5Tcw+f7vvC+DALcH+Yy0E0+Q5BTX/?prefix=e.g.%2C%20,,,,,,
https://paperpile.com/c/FuCTAu/wVzUs+S2VCq+v5Tcw+f7vvC+DALcH+Yy0E0+Q5BTX/?prefix=e.g.%2C%20,,,,,,
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_results_1a
https://paperpile.com/c/FuCTAu/S2VCq+Yy0E0/?prefix=e.g.%2C%20,
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_results_1a
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On the other hand, there was some evidence of reactive short-term inhibition being placed on 

the current distractor location: distractor interference was numerically reduced, by 51 ms, when the 

distractor location repeated on random-distractor-placement trials compared to when the distractor 

moved one step in the frequent or infrequent direction, t(23) = -1.922, p = .067, dz = -0.392, BF10 = 

1.035. This is consistent with standard (static) distractor-location probability-cueing paradigms (see, 

e.g., the Supplementary in Sauter et al., 2018 for a detailed analysis of such effects). 

Thus, the picture that emerges from these auxiliary analyses is interesting: it is consistent with 

the absence of proactive suppression of dynamically predictable distractor locations, while pointing to 

static reactive suppression of the current distractor location.  
 

Awareness test 

Among the 24 participants, only three reported having noticed “a regularity” in the distractor 

movement. However, only one of the three correctly identified the specific movement direction 

actually present in the search displays.5  

Experiment 1b: transitional regularity of the target location 

Error rates and Mean RTs 

Outliers RTs (slower than 2500 or faster than 200 ms, 6.0%) were again removed prior to 

further analysis. Similar to Experiment 1a, the error rates were generally low (3.5% of trials) and 

comparable across the three transitional target location conditions, F(2, 46) = .320, p =  .728,  = 𝜂
𝑝
2 

.014, BFincl = .162. 

As depicted in Figure 3, the mean (correct) RTs were faster in the frequent cross-trial 

target-location transition condition relative to the infrequent and random conditions. A one-way 

repeated-measures ANOVA confirmed a significant Transition main effect, F (2,46) = 5.643, p = .006, 

= .197. Post-host comparisons with Bonferroni-correction revealed the RTs to be faster in the 𝜂
𝑝
2 

frequent (1094 ms) vs. both the infrequent (1158 ms), t(23) = 2.970, p = .014, dz = 0.606, and random 

(1155 ms), t(23) = 2.845, p < .001, dz = 0.581, transition conditions, with comparable RTs between the 

latter two conditions, t(23) = -0.125, p = 1.000, dz = -0.009, BF10 = .219. This pattern indicates that 

participants were able to exploit the cross-trial transitional regularity of the target placement to 

facilitate search performance.  

5 Recent evidence from the Vadillo lab indicates that the ‘standard procedure to assess distractor-related awareness (which 
we adopted here, in line with almost virtually all extant studies of distractor-location probability cueing) likely 
underestimates the ‘true’ awareness as assessed by more rigorous measures (e.g., Vicente-Conesa et al. 2021). However, 
since we failed to find a behavioral effect (reduced interference by distractors at dynamically predicted locations), awareness 
does not have any explanatory value, i.e.: even if our procedure had underestimated the ‘true’ awareness, awareness cannot 
account for the behavioral null-effect (unless one assumes that awareness somehow interferes with the expression of the 
effect, rather than promoting it). 

 

https://paperpile.com/c/i5GIi1/zPF3O/?prefix=see%2C%20e.g.%2C%20the%20Supplementary%20in%20&suffix=%20for%20a%20detailed%20analysis%20of%20such%20effects
https://paperpile.com/c/i5GIi1/zPF3O/?prefix=see%2C%20e.g.%2C%20the%20Supplementary%20in%20&suffix=%20for%20a%20detailed%20analysis%20of%20such%20effects
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_exp1b
https://paperpile.com/c/FuCTAu/I0Y33/?prefix=e.g.%2C
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Figure 3. (a) Mean RTs and (b) Error rates, with associated standard errors, for Experiment 1b, separately for the random, 

infrequent, and frequent cross-trial transitional target location conditions. (c) Mean RT as a function of the inter-trial target 

distance (0 indicates the target repeated at the same location, while 1 denotes the target moved one position to its neighbor, 

including both the frequent and infrequent directions). Error bars represent one standard error of the mean. 

 

We also examined for short-term inter-trial positional-priming effects (e.g., Allenmark et al., 

2019, 2021; Sauter et al., 2018) by comparing RT performance across the various inter-trial target 

distances (Figure 3c), but failed to obtain a significant Distance effect, F(4,92) = 1.753, p = .145, = 𝜂
𝑝
2 

.071, BFincl = .329. The numerical facilitation, of 60 ms, for the inter-trial target distance of 1 vs. the 

target location repetition (distance 0) largely originated from the frequent cross-trial transition 

condition (which contributed 8 times more trials than the infrequent condition) (Figure 3a). This 

suggests that short-term inter-trial target location priming was not as strong as the dynamic, cross-trial 

probability cueing of the target location.  

 

Awareness test 

According to the questionnaire, 16 out of 24 participants reported noticing the regularity of 

the target movement, and ten of them indicated the right target movement direction. We classified 

those ten participants as the ‘aware’ group, and the other 14 participants as the ‘unaware’ group.  

To examine for any differences between the two groups in statistical learning, we estimated 

the probability-cueing effect in terms of the RT difference between the infrequent and frequent 

transition conditions for individual participants. A positive probability-cueing effect means that the 

mean RT is faster to a target appearing at the frequent vs. the infrequent location, while a negative 

probability-cueing effect indicates a reverse effect. Figure 4 plots the distribution of the 

probability-cueing effect for the two groups. The mean probability-cueing effects were 116 ms and 25 

ms for the aware and unaware groups, respectively – with the effect being robust for the aware group, 

t(9) = 2.356, p = .043, dz = .745, but not for the unaware group, t(13) = 1.480, p = .163, dz = .396, BF10 

= 0.660. Even though the (numerically large) difference between the two groups only approached 

significance (t(22) = 1.970, p = .062, dz = .816, BF10= 1.445), this pattern suggests that becoming 

 

https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_exp1b
https://paperpile.com/c/i5GIi1/suerJ+zPF3O+HzUDP/?prefix=e.g.%2C%20,,
https://paperpile.com/c/i5GIi1/suerJ+zPF3O+HzUDP/?prefix=e.g.%2C%20,,
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_exp1b
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_exp1b
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#fig_awareness
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aware of the dynamic probabilistic change of the target location across trials helped participants to 

more effectively deploy visuo-spatial attention to the predicted target location.6  
 

    

Figure 4. Violin plots of the probability-cueing effect ( ), separately for the aware and unaware 𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

groups of participants.   

 

Comparison of probability-cueing effects between Experiments 1a and 1b 

An independent-samples t-test comparing the probability-cueing effects between Experiment 

1a and Experiment 1b (–1.1 ms vs. 63.3 ms) turned out to be significant: t(46) = -2.480, p = .017 

(two-tailed), dz = -.716. In other words, participants could readily pick up the probabilistic change of 

the target position across trials and utilize it to enhance their search performance, whereas they found 

it hard to learn the same change of the distractor position across trials. 
 

Discussion 

In Experiment 1, we manipulated the cross-trial transitional location probability of the 

singleton distractor (Experiment 1a) and the singleton target (Experiment 1b) in a standard 

(additional-) singleton search paradigm. We found that the regularity of the cross-trial transition of the 

target location could be learned successfully to facilitate target search. In contrast, the dynamic 

regularity of the cross-trial distractor location had no significant effect on search performance and the 

Bayesian results supported the null hypothesis, even though the structure of the transitional 

probability manipulation was exactly the same for both experiments.  

The ability to exploit the cross-trial regularity of the target placement to guide search is 

consistent with Li and Theeuwes (2020). In their study, however, the cross-trial regularity was 100% 

certain and relatively simple (either from the left- to the rightmost position, or from the top to the 

6 Again, our ‘standard’ procedure to assess awareness of the dynamic target regularity may have underestimated the ‘true’ 
level as assessed by more rigorous measures  (e.g., Giménez-Fernández et al., 2020). However, this would only reinforce our 
proposal that “that becoming aware of the dynamic probabilistic change of the target location across trials helped 
participants to more effectively deploy visuo-spatial attention to the predicted target location”. 

 

https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_awareness
https://paperpile.com/c/FuCTAu/wYanC/?noauthor=1
https://paperpile.com/c/i5GIi1/R4p3r/?prefix=e.g.%2C%20Gim%C3%A9nez-Fern%C3%A1ndez%20et%20al.%2C&noauthor=1
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bottom location for half the participants, and in the reverse direction for the other half). Surprisingly, 

Li and Theeuwes reported that none of their participants had noticed this simple cross-trial regularity. 

The present experiment, by contrast, showed that awareness – that is, explicit learning – of the 

regularity boosted the dynamic target-location probability-cueing effect – suggesting that it reflects 

largely an endogenous, top-down-driven spatial-attentional orienting process (Posner 1980).  

In contrast to the facilitation by the transitional regularity of the target location, we failed to 

find any significant suppression of the dynamically predictable distractor location in Experiment 1a. 

This replicates the outcome of two pilot experiments with the same paradigm and a similar design 

(except that distractor-absent and present trials were presented in randomized order, rather than in 

mini-blocks, as in the present experiments; see Appendix A for details of the design and results). 

Although there is ample evidence that the probability of a fixed distractor location/region can be 

learned to suppress the salient distractor (Goschy et al. 2014; Sauter et al. 2018; B. Wang and 

Theeuwes 2018b; Allenmark et al. 2019; Zhang et al. 2019), thus far there is only one study, by Wang 

et al. (2021), reporting that a regular (100% predictable) cross-trial change of the distractor location 

(clockwise or counterclockwise) could be implicitly (i.e., without awareness) learned to reduce the 

interference of the upcoming distractor. It should be noted, however, that in Wang et al. (2021), the 

colors of the distractor (single color in their Experiment 1, and two colors in their Experiment 2) were 

never the target color (the target was invariably white), and the differential distractor interference 

between their ‘random’ (baseline) group and their ‘regular’ group almost vanished towards the end of 

testing. Thus, it remains a possibility that the distractor-suppression strategy developed by their 

participants might involve dimension-based, or even feature-based, distractor filtering (Liesefeld and 

Müller 2019), which operates below the level of the priority map. On this account, the cross-trial 

regularity might increase the rate at which (a spatially unspecific) dimension-based suppression 

strategy is acquired (compared to the ‘random’ baseline group), rather than fostering spatial learning, 

and attendant de-prioritization, of the dynamically predicted distractor location. In contrast to Wang et 

al. (2021), in our design, we randomly swapped the target and distractor colors across trials to make 

observers adopt a priority-map-based suppression strategy (Allenmark et al. 2019) – and failed to find 

any robust statistical learning of the cross-trial dynamics. The fact that responses were faster on trials 

on which the distractor appeared at the same (i.e., an unlikely) vs. the likely location (Figure 2c) 

suggests that distractor suppression was mainly driven by short-term (inter-trial) reactive inhibition 

(or ‘negative priming’) of the repeated (fixed) location, rather than the long-term learning of the 

dynamically predictable location.  

 

 

 

 

https://paperpile.com/c/FuCTAu/ZLy0D
https://paperpile.com/c/FuCTAu/S2VCq+f7vvC+480DI+hwXic+Q5BTX
https://paperpile.com/c/FuCTAu/S2VCq+f7vvC+480DI+hwXic+Q5BTX
https://paperpile.com/c/FuCTAu/2LxtP/?noauthor=1
https://paperpile.com/c/FuCTAu/2LxtP/?noauthor=1
https://paperpile.com/c/FuCTAu/3teXK
https://paperpile.com/c/FuCTAu/3teXK
https://paperpile.com/c/FuCTAu/2LxtP/?noauthor=1
https://paperpile.com/c/FuCTAu/hwXic
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Experiment 2 

Experiment 1a yielded no evidence that participants could extract and utilize the dynamic 

spatial regularity regarding the distractor across the trials. This null-result is at variance with Wang et 

al. (2021), who reported a positive finding, namely, enhanced suppression of dynamically predictable 

(‘regular’) versus non-predictable (‘random’) placement of the salient color distractor. Of note, 

however, there are major differences between their experiments and our Experiment 1a: in their 

Experiment 1, the distractor and the target color were fixed (although the distractor color was variable 

in their Experiment 2, the target color was fixed)  – as compared to random color swapping across 

trials in our Experiment 1a; further, they used separate groups of participants performing the ‘regular’ 

and the ‘random’ (i.e., the baseline) condition – whereas we measured the baseline within 

participants; finally, the (clockwise/anti-clockwise) shift of the distractor locations on consecutive 

trials was 100% predictable in their ‘regular’ condition – whereas it was only 80% predictable in our 

Experiment 1a (as we wanted to compare a regular shift with non-predictable shifts in the opposite 

direction, 10%, or a random direction, 10%, within the same task episode). The target shape was 

fixed, too (rather than randomly varying in our Experiment 1a), effectively allowing for a 

‘feature-search’ mode (cf. Bacon and Egeth 1994). Any of these differences, or combination of 

differences, might have been critical for our failure to find a dynamic distractor-location 

probability-cueing effect.7 Given this, we set out to directly replicate Wang et al. (2021), in particular, 

their Experiment 1, in which, in addition to the target shape being constant, the distractor color was 

perfectly predictable (and invariably different from the target color) to ascertain whether a dynamic 

distractor-location cueing effect is replicable under their conditions. 

In addition, in Experiment 2b, we implemented an analogous design with 100% dynamic 

predictability of the target location in the ‘regular’ group and 0% predictability in the ‘random’ group. 

Of note, we conducted Experiment 2 online, whereas Wang et al.’s (2021) Experiment 1 

(equivalent to our Experiment 2b) was performed in the laboratory. In this respect, our Experiment 2a 

is not an exact replication of their Experiment 1. 
 

Method 

Participants 

48 ‘valid’ healthy participants were recruited via Prolific (Palan & Schitter, 2018) for 

Experiment 2a (mean age ± SD: 33.73 ± 6.29 years; age range: 20–42 years; 18 females), and 48 for 

Experiment 2b (mean age ± SD: 25.26 ± 5.53 years; age range: 18–41 years; 12 females). Both 

7 It is clear, however, that none of these differences did impede our ability to demonstrate a dynamic target-location 
probability-cueing effect in Experiment 1b – in line with the existence of an asymmetry between the two types of statistical 
learning: statistical learning of dynamic distractor locations, if existent at all, is less robust than the learning of dynamic 
target locations. 

 

https://paperpile.com/c/FuCTAu/2LxtP/?noauthor=1
https://paperpile.com/c/FuCTAu/yxKJH/?prefix=cf.%20
https://paperpile.com/c/FuCTAu/2LxtP/?noauthor=1
https://paperpile.com/c/FuCTAu/2LxtP/?noauthor=1
https://paperpile.com/c/i5GIi1/FlSP
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experiments were performed on the online platform Pavlovia. All participants self-reported normal or 

corrected-to-normal visual acuity and normal color vision, and they were all paid £ 5.80 for their 

service. For both experiments, the participants were randomly allocated to one of two groups: the 

‘random’ (baseline) group, in which the distractor (Experiment 2a) or, respectively, the target 

(Experiment 2b) occurred unpredictably at any of the eight display locations, and the ‘regular’ 

(experimental) group in which the distractor or, respectively, the target shifted predictably from one 

trial to the next. In Experiment 2a, four participants who had accuracies lower than 80% (1 in the 

‘regular’ group and 3 in the ‘random’ group) were excluded from data analysis, and their ‘invalid’ 

data sets were replaced by recruiting another 4 participants; in Experiment 2b, 2 participants failed to 

reach the response-accuracy criterion and were replaced by recruiting another 2 participants. The 

experiment was approved by the LMU Faculty of Pedagogics & Psychology Ethics Board. Data 

collection took place in September 2022.  

Apparatus and Stimuli 

Participants were told to perform the experiment in a quiet, and moderately lit, environment, 

on full screen (laptop or external monitor). The display monitor was to be placed on a table surface, 

with the participant being seated on a chair, with their hands comfortably resting on the (response) 

keyboard in front of them and viewing the monitor at arm’s length (i.e., a distance of approximately 

60 cm); and the display brightness was to be set to a middle contrast. Since each participant ran the 

experiment on their own system, the monitor sizes were potentially quite different. In order to ensure 

comparable physical stimulus size(s) on the various display monitors used by the different 

participants, we had participants adjust a rectangle on their screen to the standardized size of a credit 

card at the beginning of the experiment. This way, all stimuli were then scaled according to the 

respective monitor size, so as to also keep the stimulus size in degrees of visual angle comparable 

across participants. 

The screen background was black (Red-Green-Blue [RGB]: 0, 0, 0). The primary search 

display contained one outline diamond (subtending 2° × 2° of visual angle), the search target, among 

seven outline circles (2° in diameter), the non-targets; or, respectively, it contained one circle among 

seven diamonds. Searching for a diamond or circle was fixed per participant, but counterbalanced 

across participants per group. The display elements were arranged around a virtual ring, of radius 

(eccentricity) 4°, with a white fixation cross (0.67° × 0.67°; RGB: 255, 255, 255) in the center, and 

they all contained a small vertical or horizontal gray line (RGB: 128, 128, 128; 0.3° × 1.5°; the two 

orientations were equally frequent, but allocated randomly to a given element). In ‘distractor’ 

Experiment 2a, on distractor-absent trials (presented in mini-blocks), all display elements were 

colored in gray (RGB: 128, 128, 128); on distractor-present trials (presented in the other mini-blocks), 

one of the non-target display elements was colored in red (RGB: 255, 0, 0). In ‘target’ Experiment 2b 
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(in which there was never a distractor), all display elements were uniformly gray. In both experiments, 

participants responded to the line orientation in the singleton-shape target by pressing the up-ward or 

left-ward pointing arrow key on their computer keyboard using their right index and middle fingers, 

respectively. 

The experiment was built using the PsychoPy3 version 2022.2.2 software (Peirce et al., 2019) 

and run online using the Pavlovia web hosting service (Open Science Tools Limited, Nottingham, 

UK).   

 

Design and procedure 

  

 Our replication ‘distractor’ Experiment 2a followed essentially the design and procedure of 

Wang et al.’s (2021) Experiment 1 precisely, with two minor exceptions. First, the instructions were 

given in English. Second, the questionnaire used to test for awareness of the dynamic regularity was 

the same as that we had used in Experiment 1. 

 Analogous adaptations were introduced in ‘target’ Experiment 2b. One difference to 

Experiment 2a concerned the ‘awareness’ test: in Experiment 2b we had participants additionally rate 

their confidence in their responses (on a scale of 1 = “not confident at all” to 5 = “completely 

confident”), and, following the question of whether they had noticed a regularity in the cross-trial 

target placement, all participants in the ‘regular’ group had to answer a forced-choice question about 

the direction (clockwise vs. counter-clockwise) and the size (1, 2, or 3 steps) of the target shift. 

Experiment 2a consisted of ten blocks, each of one mini-block of 80 distractor-present trials 

and one of 40 distractor-absent trials. Distractor-absent trials were presented in separate mini-blocks 

to ensure 100% predictability of the dynamic distractor-location change on distractor-present trials. 

Half of the participants started with the mini-block of distractor-absent trials, and the other half with 

the mini-block of distractor-present trials. Experiment 2b also consisted of 10 blocks, each of 80 trials, 

equating the number of predictable target-shift trials with that of predictable distractor-shift trials in 

Experiment 2a. 

 

Results 

Experiment 2a: transitional regularity of the distractor location 

Error rates and Mean RTs 

Trials with extreme RTs (slower than 1600 or faster than 200 ms) were excluded from further 

analysis: 2.6% and 4.1% for the ‘random’ (baseline) and ‘regular’ (experimental) distractor-placement 

groups, respectively. The overall rate of response errors was 4.3% (4.9% and 3.7% for the ‘random’ 
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and ‘regular’ groups, respectively), which is comparable to the 2.1% error rate in Wang et al.’s 

Experiment 1.  

         
Figure 5. (a) Mean RTs, and associated standard errors, on distractor-present and -absent trials, separately for the ‘random’ 

and ‘regular’ groups in Experiment 2a. (b) Bar chart of the distractor-interference effect (RTdistractor-present – RTdistractor-absent), 

separately for the ‘random’ and ‘regular’ groups. (c) Distractor interference as a function of the inter-trial distractor distance 

(0 indicates that the distractor occurred at the same location, 1 that the distractor moved to a directly adjacent location, etc.; 

note that for the ‘regular’ group, the distractor invariably moved to the adjacent location, in either clockwise or 

counter-clockwise direction). Error bars represent one standard error of the mean. (d) Distractor interference across the 

experimental trial blocks, separately for the ‘random’ and ‘regular’ groups. 

 

Figure 5a presents the mean RTs for the ‘random’ and ‘regular’ groups. A mixed ANOVA on 

mean RTs with the within-subject factor Distractor Condition (distractor-present vs. -absent) and the 

between-subject factor Group (‘random’ vs. ‘regular’ distractor placement) revealed only the main 

effect of Distractor Condition to be significant, F(1,46) = 93.511, p < .001,  = .670. The absence of 𝜂
𝑝
2

a Group main effect, F(1,46) = 3.074, p = .086,  = .063, BFincl = 0.552, indicates that the two groups 𝜂
𝑝
2

were well balanced in terms of their baseline response speed. Importantly, the Distractor Condition  ×

Group interaction was non-significant, F(1,46) = 0.011, p = .918,  < .001, BFincl = 0.258 (with the 𝜂
𝑝
2

Bayes factor arguing in favor of the null-hypothesis), that is: there was no difference in distractor 
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interference between the ‘random’ (baseline) and ‘regular’ (experimental) groups (38.96 ms vs. 38.14 

ms; see also Figure 5b). 

         Figure 5c re-plots the distractor-interference effect as a function of the inter-trial distractor 

distance (i.e., the distance, in item positions, between the distractor on the preceding trial n-1 and the 

current trial n) for the ‘random’ (baseline) group, that is, the only group for which this effect could be 

examined. A repeated-measures ANOVA revealed the main effect of Distance to be significant, 

F(4,92) = 7.891, p < .001,  = .255. As can be seen from Figure 5c, this effect reflects an 𝜂
𝑝
2

(asymptotic) increase in interference as the inter-trial distractor distance increased. Recall that in the 

‘regular’ group, the distractor invariably moved to the adjacent location (consistently in either 

clockwise or counter-clockwise direction) from one trial to the next (i.e., the distance is invariably 1), 

the effect of inter-trial distractor distance (established in the ‘random’ group) could be a possible 

confound for the effect of the ‘regularity’. To rule this out, we compared the distractor interference 

between the two groups including only those trials in the ‘random’ group on which the distractor had 

moved to an adjacent location. An independent-samples t-test comparing the distractor interference 

effects for distance 1 revealed no difference between the ‘random’ and ‘regular’ groups, t(46) = 

-0.565, p = .575, dz = -0.163, BF10 = 0.327: the interference was 31.74 in the ‘random’ group and 

36.28 in the ‘regular’ group (i.e., if anything, the interference effect was larger in the ‘regular’ group, 

when successful learning of the regularity would have predicted the effect to be smaller). This 

null-effect (corroborated by the Bayes factor) suggests that our participants did not learn the dynamic, 

and 100% predictable, cross-trial regularity in the placement of the distractor in the ‘regular’ group. 

This differs from the results found in Experiment 1 of Wang et al.’s (2021) as outlined in Appendix B.   

Additionally, following Wang et al. (2021), we examined for any differential learning speed 

between the two groups across the ten blocks of the experiment  (Figure 5d): However, a Group  ×

Block ANOVA yielded no significant effects: Group, F(1, 46) = .039, p =  .844, < .001, BFincl = 𝜂
𝑝
2 

.161; Block, F(9, 414) = .754, p = .659, = .016, BFincl = .005; interaction, F(9, 414) = .533, p = 𝜂
𝑝
2  

.851, = .011, BFincl = .011. The small Bayes factor associated with the interaction indicates that, 𝜂
𝑝
2 

over the course of the experiment, the ‘regular’ group did not learn faster to deal with the distractor 

than the ‘random’ group. 

 

Awareness test 

Among the 48 participants, three participants in the ‘regular’ group and three in the ‘random’ 

group immediately reported having noticed a regularity in the cross-trial distractor placement. 

However, upon being pressed, none of the three participants in the ‘regular’ group correctly identified 
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the specific regularity present in their condition (as there was no regularity in the ‘random’ group, 

reports of a regularity were necessarily spurious). 

Experiment 2b: transitional regularity of the target location 

Error rates and Mean RTs 

Trials with extreme RTs (slower than 1600 or faster than 200 ms) were excluded from further 

analysis: 0.9% and 1.0% for the ‘random’ (baseline) and ‘regular’ (experimental) target-placement 

groups, respectively. The overall rate of response errors was 3.9% (4.4% and 3.3% for the ‘random’ 

and ‘regular’ groups, respectively), which is comparable to Experiment 2a. 

Importantly, as can be seen in Figure 6, participants in the ‘regular’ group benefited from the 

100% predictable (1-step clockwise or counter-clockwise) shift of the target location across trials: 

their RTs were, on average, 72 ms faster than those of the ‘random’ group (575 ms vs. 647 ms, t(46) = 

2.380, p = 0.011, dz = 0.687) – replicating the target-location effect obtained in Experiment 1b. 
 

 
Figure 6. Mean RTs, and associated standard errors, separately for the ‘random’ and ‘regular’ groups, in Experiment 2b. 

 

Awareness test 

Of the 24 participants in the ‘regular’ group, 17 reported having noticed a regularity in the 

cross-trial target placement. 15 of them correctly reported the type of regularity (1-step clockwise or 

counter-clockwise shift) they had encountered, with near-complete confidence (ratings of 4.67 for the 

direction and, respectively, 4.47 for the number of steps). One of the two (17 minus 15) remaining 

participants correctly indicated the shift direction, but not the number of steps; the other selected the 

wrong direction – both with low confidence. Of the seven participants who first indicated they had not 

noticed a regularity, all picked the correct type of regularity, also with high confidence (direction and 

step number: 4.71 and 4.43, respectively). Thus, at least when pressed, 23 of the 24 participants 

correctly identified the direction of the target shift with high confidence, and in fact, there was no 

difference in RTs between those who immediately reported having noticed a regularity vs. those who 
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did not and had to be pressed to make a forced-choice decision (suggesting that the latter were simply 

more reluctant to spontaneously report ‘awareness’). By contrast, in the ‘random’ group, only three 

participants reported having noticed a (non-existent) regularity (confidence: 2.67). 

 

Omnibus analysis of Experiment 2  

To examine whether the critical (‘regular’ vs. ‘random’) between-group effect in Experiment 

2b is truly indicative of dynamic target-location learning, we compared this effect against that in 

Experiment 2a, where the group effect simply reflects a random difference in the baseline response 

speed between participants assigned to the two groups. A two-way ANOVA of the target-only trials 

(i.e., in Experiment 2: the distractor-absent trials), with the between-subject factors Experiment (2a, 

2b) and Group (‘regular’, ‘random’), revealed the interaction to be significant: F(1, 92) = 9.01, p = 

.003,  = .089 – due to a significant Group effect in ‘target’ Experiment 2b, but not in ‘distractor’ 𝜂
𝑝
2 

Experiment 2a. (The main effect of Experiment was also significant, F(1, 92) = 16.61, p > .001,  = 𝜂
𝑝
2 

.154, owing to response speed being overall slower in ‘distractor’ Experiment 2a than in ‘target’ 

Experiment 2b, as expected.) Coupled with the fact that participants were aware of the dynamic 

regularity in Experiment 2b, we take this to indicate that the Group effect reflects true facilitation by 

the regularity, rather than being simply a spurious group difference.  

 

Discussion 

Recall that our Experiment 1a had failed to produce any evidence that the participants were 

able to learn and exploit the (statistically, 80%, predictable) cross-trial shift in the distractor location 

(whereas the participants in Experiment 1b were able to acquire and utilize the exact-same regularity 

implemented in the cross-trial target shift). As the null-result in Experiment 1a contrasts with the 

positive findings reported by Wang et al. (2021), in Experiment 2a we conducted a direct replication 

of their Experiment 1 to examine whether our non-finding was due to the methodological changes we 

had introduced in our task design compared to the Wang et al. (2021) study, in particular: the reduced 

(80% vs. 100%) predictability of the positional change in our design and the reduced predictability of 

the distractor (vs. target) color (50% due to random color-swapping vs. 100% given no swapping). 

Our replication experiment, however, again provided no evidence of participants (in the ‘regular’ 

group) being able to exploit the regular, 100% predictable shift of the same-color distractor to reduce 

the interference it generated (compared to the ‘irregular’ group). And, again, no participants in the 

‘regular’ group were able to explicitly tell in which direction the distractor had (invariably) shifted 

across trials. 
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In contrast, using an analogous design in Experiment 2b to examine dynamic target-location 

learning, we found participants in the ‘regular’ group to exhibit robust RT facilitation by the 100% 

predictable shift of the target location. This effect was coupled with (high-confidence) awareness of 

the dynamic regularity (in all but one participant). 

Thus, consistent with Experiment 1, Experiment 2b confirmed dynamic target-location 

learning to be a robust phenomenon associated with awareness of the regularity, whereas Experiment 

2a provided no evidence of dynamic distractor-location learning even under the same conditions used 

by Wang et al. (2021). 

It should be noted, however, that Wang et al. (2021) performed their Experiment 1 in the 

laboratory, whereas we conducted our replication Experiment 2a online. Physical stimulus properties 

are, of course, more difficult to control under online conditions, where much depends on participants’ 

compliance with the instructions regarding viewing distance, monitor brightness, etc. Within these 

limits, we at least ensured comparable stimulus dimensions on our participants’ display monitors by 

having them adjust a rectangle on their screen to the (standard) size of a credit card at the beginning of 

the experiment and then scaling the stimuli accordingly. Also, the overall performance and data 

quality in Experiment 2a appeared to be quite comparable to Wang et al. (2021), apart from a 

somewhat more marked speed-accuracy trade-off: the mean RTs, and associated standard deviations, 

were 717.6 (175.2) ms in our Experiment 2a vs. 770.2 (180.9) ms in Wang et al.’s (2021) Experiment 

1; the corresponding rates of outlier RTs were 3.4% vs. 1.9%, and the rates of response errors 4.3% vs. 

2.1%. Most importantly, the baseline distractor-interference effects (in the ‘random’ group) were 

near-identical: 39 ms in our Experiment 2a vs. 42 ms in Wang et al.’s (2021) Experiment 1 (of course, 

we found a similar interference effect, of 38 ms, in the ‘regular’ group, whereas Wang et al. reported a 

reduced effect, of 21 ms). Thus, while we did not conduct an exact, on-site replication of Wang et al. 

(2021) and so cannot rule out that their pattern of findings would be replicable under the exact-same 

laboratory conditions, it remains that dynamic distractor-location learning is more fragile than 

dynamic target-location learning. 
 

 

General Discussion 

 

Summary of findings and relation to the extant literature       

The present study was designed to investigate whether dynamic target-location enhancement 

and, respectively, distractor-location suppression purely based on probabilistic cross-trial transitional 

regularities are possible. Implementing the same cross-trial transitional regularity (80% likely 

one-step clockwise or counter-clockwise shift) of the critical item, either the search target 

(Experiment 1b) or a task-irrelevant distractor (Experiment 1a), we found robust dynamic search 

guidance when the target location shifted predictably (vs. randomly) across consecutive trials, but no 
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reduction of distractor interference when the distractor location shifted predictably across trials. The 

same asymmetry was obtained in Experiment 2, which was modeled after Wang et al. (2021), 

implementing a 100% predictable distractor shift in Experiment 2a and a 100% predictable target shift 

in Experiment 2b. Facilitated processing of the target at the predicted location appeared to be 

associated with conscious awareness of the dynamic regularity: in Experiment 2b, all but one 

participant had recognized the cross-trial regularity, and in Experiment 1b only those participants who 

explicitly recognized the regularity exhibited a robust facilitation effect. In contrast, there was no 

evidence of participants becoming aware of the regular shift of the distractor item. 

The statistical learning of the target position that we observed in Experiment 1b is broadly 

consistent with the probability cueing of the target location reported in the literature (Geng and 

Behrmann 2002, 2005; Shaw and Shaw 1977). For example, manipulating the likelihood of target 

presentation unevenly between the left and right sides of the display (80% vs. 20%), Geng and 

Behrmann (2002) found search to be facilitated when the target actually appeared within the more 

probable region. Of note, though, most of the previous target-location probability-cueing studies used 

a stationary (i.e., spatially fixed) uneven probability manipulation (either location- or region-based), 

finding that search guidance can successfully adapt to these environmental statistics to enhance 

performance. A recent study, by Li and Theeuwes (2020), showed that this adaptability also extends to 

dynamic location manipulations: when the target on trial n-1 (appearing, say, at the leftmost display 

location) predicted the location of the target on trial n (in the example, the right-most location) with 

100% certainty, participants were also able to learn this cross-trial regularity to facilitate search 

performance. Here, we showed that a dynamic cross-trial regularity can also be learned when it is 

probabilistic (rather than deterministic) in nature. Similar to earlier studies (e.g., Geng and Behrmann 

2002), we implemented an uneven cross-trial transitional probability structure (80% for cross-trial 

frequent, 10% for infrequent, and 10% for random transitions) and showed that participants could 

learn this probabilistic regularity and use it to facilitate target detection. It is important to note that, in 

our study, the global probability of the target occurrence remained equal across all possible locations – 

only the cross-trial transitional probability differed in the direction of the target movement (clockwise 

or counterclockwise). This suggests that the search-guidance system can learn and adapt to dynamic 

as well as fixed probability structures that govern where the target appears, and modify the 

computation of attentional priorities accordingly.  

In contrast to robust cross-trial dynamic probability-cueing of the target location, we found no 

evidence that participants were able to learn the same dynamic probability structure when this was 

applied to predict the distractor location in Experiment 1a (80% probabilistic manipulation), 

Experiment 2a (100% deterministic manipulation), and two pilot experiments (with a total of 102 

participants). This is different from the many studies with a fixed uneven distribution of the distractor, 

which have collectively shown that display locations/regions with a high probability of distractor 

occurrence can be effectively de-prioritized to reduce the interference caused by the irrelevant pop-out 
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stimulus (Ferrante et al. 2018; Goschy et al. 2014; Leber et al. 2016; Sauter et al. 2018; Sauter, 

Liesefeld, and Müller 2019; B. Wang and Theeuwes 2018a; Zhang et al. 2019; Kerzel, Huynh Cong, 

and Burra 2021; Luck et al. 2021). For instance, likely distractor locations may be proactively 

suppressed – that is, some ‘no-go’ tag may be placed on them – on the attentional priority map (e.g., 

Ferrante et al. 2018; see also Gaspelin, Leonard, and Luck 2015; Gaspelin and Luck 2018), 

dampening the build-up of the priority signal at such locations. Support for this also comes from a 

recent study by Kong et al. (2020) who combined a variation of Gaspelin et al.’s (2015) 

‘capture-probe’ paradigm with a static distractor-location probability-cueing paradigm. On a random 

one-third of trials, a 200-ms search display was directly followed by a 100-ms probe display 

consisting of oriented line segments. One of the display locations was then probed, that is, participants 

had to reproduce the orientation of the line previously shown at this location. Examining the 

distribution of reproduction responses for the precision of the internal representation and the guess 

rate (using a standard mixture model), Kong et al. (2020) found the guess rate to be increased and the 

precision to be somewhat decreased following a distractor at the likely vs. an unlikely location. 

Huang, Donk, and Theeuwes (2022) reported a similar result even when the probe display was not 

preceded by a search display (i.e., when there was no distractor, however briefly presented, that could 

initiate reactive processes). These findings are  consistent with information uptake from the likely 

distractor location being proactively suppressed. Thus, while proactive suppression of fixed likely 

distractor locations is a readily available strategy for the search-guidance system to reduce attentional 

capture, our findings suggest that proactive suppression of dynamically predictable distractor locations 

is much more delicate – at least with the same dynamic probability structure (and the same number of 

learning trials) that we used for the target location. 

 

Relation to inconsistent findings 

Our non-finding in Experiment 1a is at variance with Wang et al. (2021), who reported that a 

very similar cross-trial transitional regularity of the distractor (clockwise or counter-clockwise shift by 

one step) did reduce distractor interference. Importantly, however, there are several key differences 

between their study and our Experiment 1a. First, the regularity they implemented was deterministic 

(100%), rather than probabilistic (our structure predicted the distractor location with 80% probability). 

There is evidence from reward-association learning of ‘incentive salience’ that probabilistic regimens 

are more effective than deterministic regimens (e.g., Cho and Cho 2021; Sali, Anderson, and Yantis 

2014). So this may not (alone) be a critical difference – given also that our participants had no 

problem learning exactly the same probabilistic structure in relation to the target location. 

Another key difference between Wang et al.’s (2021) and our study is that the color of the 

(color-defined) distractor was distinct from the fixed target color in their experiments (even in their 

Experiment 2, in which the distractor could appear in two possible colors). In our Experiment 1a, we 
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purposely implemented random swapping, across trials, of the distractor and target (i.e., more 

generally, the non-distractor) colors to reduce possible dimension- (or feature-based) distractor 

suppression which operates in a spatially non-specific manner. As shown in our previous studies 

(Zhang et al. 2019; Allenmark et al. 2019), whether participants adopt dimension-/feature-based or a 

priority-map-based suppression much depends on the overlapping of the distractor and target features: 

with color swapping between target and distractor, participants tend to adopt a priority-map-based 

suppression strategy; without color swapping, they are likely to develop a dimension-based strategy 

(globally reducing the weight of color signals in priority computations). 

Thus, given the perfect separability of the distractor and target (as well as the remaining 

non-target) colors in Wang et al.’s (2021) study, their participants might have adopted a global – that 

is, spatially unspecific – strategy of suppressing the color dimension, or specific color features, not 

only in the baseline condition with the ‘random’ structure, but also condition with the ‘regular’ 

structure. Some evidence of this may be gleaned from the fact that, while distractor interference 

generally (i.e., in both groups) decreased across the ten trial blocks of their experiments, the ‘random’ 

group learnt to deal nearly as efficiently with distractors as the ‘regular’ group by the end of testing. 

In the ‘random’ group, this practice-dependent improvement can only be attributed to global learning, 

as there was no spatial regularity that could be learnt. Accordingly, the on average (i.e, across all trial 

blocks) reduced interference exhibited by the ‘regular’ group in Wang et al. (2021) may, at least in 

part, be owing to expedited global learning when successive distractors appear in a spatially 

contiguous display region, compared to when they crisscross the display in a haphazard manner. Thus, 

a faster rate of global learning under ‘regular’ vs. ‘random’ conditions might have played a role in the 

result pattern of Wang et al. (2021).8 

Alternatively, their result pattern might also be explained by reactive suppression placed 

post-capture on the distractor location, in order to disengage attention and re-orient it to the target (for 

oculomotor evidence, see, e.g., Sauter et al., 2021). If reactive suppression is somewhat fuzzy, 

affecting adjacent locations, and if it is carried over across trials, it would, on average, have a greater 

impact with the regular movement of the distractor to an adjacent location, as compared to the random 

placement. Wang et al. (2021) argued against this possibility based on their failure to observe a 

reliable inter-trial negative priming effect in their ‘random’ condition (effect of 8 ms, p = .701). 

Recall, though, that in their design, this condition was performed by a different group of participants: 

they could not examine for such effects directly in the ‘regular’ group, because the dynamic distractor 

regularity was deterministic (100% predictability). In contrast, with our probabilistic design in 

Experiment 1a (80% predictability), in which the ‘random’ baseline was estimated within (rather than 

between) participants, we did find evidence of cross-trial carry-over of reactive inhibition placed on 

the distractor location on a given trial: if the distractor repeated at the same location, its interference 

8  Recall, though, that we observed no differential reduction of distractor interference between the ‘regular’ and ‘random’ 
groups over the ten trial blocks in our Experiment 2a, but this might have been missed in our online experiment. 
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tended to be reduced compared to when it appeared at a different location (1049 ms vs. 1093 ms, i.e., 

effect of 44 ms, p = .039). However, even though this effect appeared to be spatially relatively precise 

(focused on the actual distractor location; see Figure 2c), a somewhat more fuzzy inhibition 

(spreading from the distractor towards adjacent locations) could have contributed to the reduced 

distractor interference in the ‘regular’ vs. the ‘random’ condition of Wang et al. (2021). 

Thus, there are potential alternative mechanisms (i.e., expedited global learning and/or 

spatially fuzzy negative intertrial priming) which may have been operating besides any genuine 

learning of the dynamic distractor regularity by participants ‘regular’ group. While the latter is not 

conclusively ruled out by our unsuccessful attempts to demonstrate dynamic distractor-location 

learning, our experiments at least show that observers acquire a simple dynamic probabilistic 

regularity much more readily with regard to the location of targets, compared to the location of 

distractors. 

 

Role of explicit awareness in spatial statistical learning? 

Thus, the question remains why dynamic suppression of predictable distractor locations is so 

hard to acquire, whereas dynamic facilitation of predicted target locations is established easily. A clue 

to answering this question is provided by the ‘awareness’ results. In Experiment 1b (80% 

predictability of the shifting target location) and, especially, in Experiment 2b (100% predictability), 

participants became substantially aware of the dynamic target regularity, and those who correctly 

selected the right regularity in the awareness test in Experiment 1b showed a larger facilitation effect 

compared to the ‘unaware’ participants. In Experiment 2b, all but one participant were ‘aware’, so the 

equivalent comparison could not be performed. Note, though, that the general response speed was 

faster in Experiment 2b (in which the color of the display items was consistent across trials) than in 

Experiment 1b (in which the items’ color changed randomly across trials). When taking the 

differential RT levels into account, the facilitation effect in Experiment 2b was relatively larger than 

that in Experiment 1b9 – consistent with awareness of the regularity facilitating performance even, or 

especially, when the target color is certain. This is not to say that the dynamic target regularity cannot 

be implicitly learned (see, e.g., Li and Theeuwes 2020)10, but the learning effect appears to be larger 

for ‘aware’ than ‘unaware’ participants. The fact that explicit awareness greatly boosted the dynamic 

facilitation effect suggests that participants did develop a dynamic top-down set to prioritize the next 

target location in the regular (clockwise or counterclockwise) direction (endogenous orienting in 

10 Recall that Li and Theeuwes (2020) reported that their observers were unaware of their regularity of a target at, say, the 
rightmost display location being invariably followed by a target at the leftmost location (or vice versa for other observers). 
Although this shift was 100% predictable, it occurred only on 25% of the trials within a block, i.e.: the remaining 75% of 
trials involved random placement of the target at other locations and random location shifts across trials. Thus, even though 
the critical shift was 100% predictable, it was a relatively rare event – which may have hampered participants becoming 
aware of the regularity. 

9 The 72 ms effect in Experiment 2b corresponds to an 11% decrease of the RT in the baseline (random) condition (647 ms), 
while the 63 ms effect in Experiment 1b only corresponds to a 5% decrease of the much slower baseline RT (1156 ms, 
averaged across the infrequent and random conditions) in that experiment.   
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Posner 1980 terms). Developing such an anticipatory top-down set is likely encouraged by the target 

being the central item in the task set: observers have to set up a target template in working memory 

and compare any selected item against this template, and then reject it if there is a mismatch or, 

alternatively, proceed to extracting the response-relevant feature for the response if there is a match. 

Given the central place of the target in the task set, even seemingly irrelevant ‘features’ such as its 

location may be explicitly encoded, providing the basis for recognizing and exploiting the regularity 

in the placement/movement of the target across consecutive trials. In contrast, if a distractor is 

mistakenly selected, it only needs to be rejected as a non-target item, that is, as not matching the target 

template; in other words, there is no need to process the distractor for, and explicitly represent, any 

featural information about the distractor, including its location. As a result, there is little, if any, 

explicit learning of higher-order dynamic statistical regularities in the placement of the distractor. 

   However, with static statistical regularities – that is, with a fixed display location or region 

being more likely to contain a distractor than other locations –, a plethora of recent studies have 

reported distractor-location probability-cueing effects in the absence of conscious awareness of a bias 

in the distractor distribution.11 We have recently shown that these static cueing effects depend purely 

on the local distractor probability (Allenmark et al. 2022), and that the frequency with which 

distractors occur at a particular location modulates the responsivity of neurons in early (i.e., 

retinotopic) visual cortex areas, from V1 to V4 – with higher frequency rendering a stronger 

down-modulation (Zhang et al. 2021). Also, we proposed that the ‘tuning’ signal for the 

down-modulation of entry-level feature coding is provided by the reactive suppression of a particular 

location when a selected (distractor) item at this location produced a mismatch decision: the more 

often this happens for a particular location, the less the responsivity of V1–V4 neurons with 

corresponding receptive fields. This naturally explains the static distractor-location probability-cueing 

effect: it reflects an essentially static mechanism (top-down inhibiting the current distractor location, 

so as to disengage attention and re-deploy it to the target location), which does not require conscious 

knowledge of the distractor location to work. 

In contrast, a dynamically predictable target location can be tracked successfully if the rule is 

explicitly (consciously) represented in working memory, as part of the task set. This rule can then be 

applied to flexibly prioritize a likely next target location, perhaps by top-down pre-activating the 

anticipated location on the attentional priority map. Further, neuroscientific work is necessary to 

examine the brain mechanisms underlying dynamic target-location prediction, though these are likely 

to involve the frontoparietal attention network: a richly interconnected network linking the 

intraparietal sulcus (IPS), the inferior parietal lobe (IPL), and dorsal premotor cortex (PMC), 

including the frontal eye field (FEF). According to Ptak’s (2012) model of this network, the posterior 

parietal cortex has functional characteristics that point to a central role of this region in the 

11 We acknowledge, though, that these reports are likely to underestimate to what extent (some) participants were actually 
aware of the bias, given they used non-optimal procedures to assess awareness (see Vincente-Conesa et al., 2021). 
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computation of a feature- and dimension-independent attentional-priority map. “Feature maps 

computed in the sensory cortex and current behavioral goals as well as abstract representations of 

associated actions (action templates) generated in the prefrontal and premotor cortex (PMC) feed into 

the parietal priority map. The dorsolateral prefrontal cortex (DLPFC) maintains behavioral goals in 

working memory and protects them from distracting information. The inferior parietal lobe (IPL) 

initiates a shift of attention and maintains attention on the relevant stimulus” (Ptak 2012, 512). Given 

this, it is conceivable that dynamic spatial expectations originating in the DLPFC and PMC can also 

be integrated in the priority map. 

 

Conclusion  

The present study investigated statistical learning of the same dynamic, cross-trial 

probabilistic regularity of the target and (additional-singleton) distractor location in visual search. We 

found robust facilitation of the dynamically predictable target location, but no suppression of the 

dynamically predictable location of the distractor (the latter being at variance with another report in 

the literature). While hardly any participants reported having noticed the cross-trial regularity of the 

distractor, 42% (Experiment 1b) to 96% (Experiment 2b) of the participants correctly selected the 

cross-trial target regularity in a post-search explicit-recognition test; further, awareness of the target 

regularity greatly enhanced cross-trial cueing of the target location (Experiment 1b). We propose that 

this asymmetry, in the dynamic cueing and awareness effects, arises because the target occupies a 

central place in the task and so is explicitly encoded in working memory for template matching and 

extraction of the response critical feature; as a result, the dynamic cross-trial change in its location is 

also registered and can be used to top-down prioritize the upcoming target location. In contrast, the 

distractor is not an explicit part of the task set (e.g., it is not necessary to set up a distractor template in 

working memory in order to reject distractors that captured attention). Consequently, observers would 

gain only little, if any, explicit awareness of regular distractor-location changes, which could be 

translated into an anticipatory (top-down) suppression strategy. While not ruling out an element of 

implicit learning, this would limit to what degree dynamic distractor regularities can inform search 

guidance. 
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Abstract 

People can learn and use both static and dynamic (cross-trial) regularities in the positioning of target 

items during parallel, ‘pop-out’ visual search. Static target-location learning also works in serial 

search, however, acquiring dynamic regularities is hindered by the demands of item-by-item scanning. 

Also, questions have been raised regarding whether explicit awareness is necessary for using dynamic 

regularities to optimize performance. The present study re-examined if dynamic regularities can be 

learned in serial search when regular shifts of the target location occur frequently, and if such learning 

correlates with awareness of the dynamic rule. We adopted the same regularity used by Yu et al. 

(2023) to demonstrate dynamic learning in parallel search: a cross-trial shift of the target location in a 

(counter-)clockwise direction within a circular array in 80% of the trials, compared to irregular shifts 

in the opposite direction (10%) or some other random direction (10%). The results showed that about 

70% of participants learned the dynamic regularity, with performance gains correlating with 

awareness: the more accurately they estimated the likelihood of the target shifting in the frequent 

direction, the greater their gains. Importantly, part of the gains accrued already early during the 

search: a large proportion of the very first and short-latency eye movements were directed to the 

predicted location, regardless of the target appeared there. We discuss whether this rule-driven 

behavior is causally mediated by conscious control.  

  

 

Keywords: probability cueing, statistical learning, parallel/serial search, search guidance, eye 

movements, oculomotor scanning, inter-trial priming, conscious awareness 
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Introduction 

Our visual environment is exceedingly rich and complex, yet our capacity to process 

information is limited. To make effective use of our cognitive resources, the brain prioritizes 

information relevant to the task at hand and suppresses irrelevant information that might impede 

performance (e.g., Egeth & Yantis, 1997; Folk et al., 1992; Treisman & Gelade, 1980; Wolfe et al., 

1989). Selection of relevant and de-selection of irrelevant information is aided by the structured 

nature of our environment, allowing us to extract and learn recurrent patterns and regularities that 

benefit us in similar future situations. For example, when looking for our keys, we often start 

searching at the usual places, like the hallway table or the kitchen counter. Using environmental 

regularities, such as the likely location of a target object, helps us deploy attention and cognitive 

resources efficiently. Effects such as this, known as spatial ‘probability cueing’, have been extensively 

investigated in laboratory settings. When a task-relevant target appears at a likely location, the 

attentional system can acquire this information to enhance search efficiency, expediting target 

detection and attendant response decisions (Druker & Anderson, 2010; Geng & Behrmann, 2002, 

2005; Hoffmann & Kunde, 1999; Jiang et al., 2013; Shaw & Shaw, 1977). Probability cueing is also 

evident in oculomotor scanning, with an increased frequency and reduced latencies of early saccades 

directed to targets at likely locations (Jiang et al., 2014; Jones & Kaschak, 2012; Walthew & Gilchrist, 

2006). Recently, research has demonstrated an analogous effect: observers can learn to attentionally 

suppress likely locations of salient but task-irrelevant distractor items in the search displays – referred 

to as ‘distractor-location probability cueing’ (e.g., Allenmark et al., 2019; Goschy et al., 2014; Sauter 

et al., 2018; van Moorselaar et al., 2021). 

It is noteworthy that the majority of studies examining spatial statistical learning, whether of 

target or distractor locations, have used static uneven probability manipulation. For example, one 

display location or region is more likely to contain the target or a distractor than any other location or 

region (e.g., Geng & Behrmann, 2002, 2005; Goschy et al., 2014; Sauter et al., 2018; Shaw & Shaw, 

1977). The resulting probability-cueing effects are attributed to statistical learning that enhances or 

suppresses specific static locations on the attentional priority map, which governs the allocation of 

focal-selective attention (for a review, see Luck et al., 2021). 

More recently, several studies have extended the study of probability cueing from static target 

and distractor distributions to dynamic scenarios to ascertain whether statistical learning of selection 

priorities would also work with predictable changes in the likely locations of targets or distractors 

across trials (Li et al., 2022; Li & Theeuwes, 2020; Yu et al., 2023). Together, these studies showed 

that attentional selection can successfully adapt to dynamic, cross-trial regularities in target 

placement: reaction times (RTs) were faster to targets appearing at the location predicted by the 

dynamic rule compared to random locations (Li & Theeuwes, 2020; Yu et al., 2023). Importantly, 

though, Li et al. (2022) found this statistical learning to critically depend on spatially parallel search, 
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which operates simultaneously across all display items. In their Experiment 2b, parallel search 

enabled dynamic cueing effects, while serial search, which proceeds item-by-item (their Experiment 

1), did not produce such effects. In Li and Theeuwes’s (2020) design, certain target locations were 

predictably coupled across trials. For instance, a target at the left-most location in a circular display 

array on trial n would invariably lead to the next target on trial n+1 appearing at the right-most 

location (but not vice versa). When the target was a bottom-up salient shape-singleton item, among 

differently but homogeneously shaped non-target items, summoning focal attention automatically, 

participants were able to extract the dynamic target location shift across trials. This was evidenced by 

facilitated response to targets at the new, predictable location compared to random locations. Yu et al. 

(2023) also found that search performance improved when the target predictably moved across 

consecutive trials to a neighboring position, either clockwise or counterclockwise direction (blocked) 

– a somewhat simpler dynamic regularity compared to that introduced by Li and Theeuwes (2020).12 

In contrast to Yu’s (2023) parallel search condition, Li and Theeuwes (2020) observed no RT 

facilitation when the task required search for a rotated T-shape target among rotated L-shaped 

non-targets – a non-finding replicated by Li et al. (2022)13. This task, offering little bottom-up or 

top-down guidance (e.g., Moran et al., 2013), requires serial scanning of the search array with focal 

attention to find and respond to the target. The findings by Li and colleagues (Li et al., 2022; Li & 

Theeuwes, 2020) suggest that dynamic, cross-trial regularities in target placement may not be 

extractable or usable to improve performance under serial search conditions. 

Thus, with static (spatially fixed) likely target locations, target-location probability learning 

works under serial and parallel search conditions (Geng & Behrmann, 2002). However, with dynamic 

target-location regularities, it seems to work only under parallel conditions, not serial (Li et al., 2022; 

Li & Theeuwes, 2020). The question is: why? 

 

Why would dynamic target-location probability-cueing be dependent on the – parallel vs. serial 
– search mode? 

While Li and colleagues offer little explanation, a possible answer might be related to the 

complexity of monitoring attention allocations over time, within and across trials. Under parallel 

search, the target “pops out”, meaning it is almost always the first and only item that summons 

13 Li et al. (2022) focused solely on a serial search condition. They found no dynamic target-location probability-cueing 
effect when the target was purely shape-defined throughout the experiment. But when the target was a color singleton 
(pop-out) item during an initial learning phase, participants acquired a cueing effect, which persisted in a subsequent test 
phase, even after the color information was removed. 

12 In Li and Theeuwes’s (2020) design, regular target shifts occurred in 25% of the trials. When a target on trial n occurred at 
either of two critical positions, such as the top or left-most positions, the next (trial n+1) target would always appear at a 
specific position on the opposite side of the search display, for instance, moving from the left-most to the right-most 
position. This rule was deterministic, in that a target at a critical position predicted the location of the next target with 
absolute (100%) certainty. In contrast, Yu et al. (2023) implemented regular target shifts in 80% of the trials, moving the 
target by one position in a particular – say, clockwise – direction (the regular direction, clockwise or counterclockwise, was 
counterbalanced across participants). In the remaining 20% of trials, the target shifted irregularly, either by one position 
counterclockwise or to a random location. Thus, the rule was probabilistic, in that it applied only on a proportion (the 80% 
majority) of trials. 
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attention. When the target is selected, it is identified as the task-relevant item, and the 

response-critical information is extracted and search terminated. As a result, the current target location 

is ‘marked’ by the system as task-critical, enabling a higher-order ‘working-memory’ system, which 

monitors attention allocations over time (where was attention allocated to and where is it to go next?), 

to pick up cross-trial dependencies in the positioning of consecutive targets within a regularly 

structured (circular) display array. 

Under serial search, by contrast, search involves attentional inspection of various non-target 

items before eventually selecting the target, after which the search is terminated. Monitoring attention 

allocations over time becomes considerably more complex, as the locations of already inspected 

non-target items need to be marked and remembered to avoid re-visiting them. As a result, the 

location of the target, once eventually selected, stands out less compared to a pop-out target. In 

addition, the search on the next trial might again start at a randomly selected location (likely a 

non-target), making it harder to track dynamic regularities of the target placement across trials. 

Compared to dynamic regularities, static regularities are easier to pick up even under serial search 

conditions, as the search almost always ends at the same location. This consistency allows knowledge 

of fixed target-location probabilities to be gradually accumulated across sequential trial episodes. 

Thus, the increased working memory demands in monitoring attention allocations within 

trials and search-terminating target locations across trials under serial vs. parallel search would 

particularly impact the acquisition of dynamic regularities in target placement. In contrast, static 

regularities may be extracted relatively efficiently even in serial search. Nevertheless, we hypothesize 

– and test in the present study – that, depending on the frequency with which a dynamic rule is 

invoked and possibly its complexity, participants may be able to extract the regularity even in serial 

search and use it to optimize performance. 

In fact, a large body of evidence shows that people are capable of learning inter-trial statistical 

dependencies in ‘implicit’ learning tasks, even in visual statistical-learning tasks involving complex 

(e.g., second-order) dependencies (Turk-Browne et al., 2008) as well as difficult (e.g., dual-target) 

search tasks (Allenmark et al., 2024). Thus, there is no a-priori reason to expect that dynamic 

target-location learning would not be feasible in demanding, serial search tasks.   

 

Is (dynamic) target-location probability cueing implicit in nature? 

It is widely assumed that statistical learning is implicit in nature, extracting statistical 

regularities from the input without explicit awareness or intent (Turk-Browne et al., 2005, 2009). 

Consistent with this, many studies report that individuals can learn and use static regularities related to 

salient distractor locations without awareness, that is: most participants cannot identify the frequent 

distractor location in post-experimental awareness tests, and the cueing effect differs little between 

those who correctly select the frequent location and those who do not (e.g., Failing et al., 2019; van 
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Moorselaar & Theeuwes, 2022; B. Wang & Theeuwes, 2018). Similar findings apply to the statistical 

learning of target locations (Ferrante et al., 2018; Geng & Behrmann, 2005; Li et al., 2022).  

However, the idea that probability cueing is implicit in nature has come under scrutiny. 

Studies using more sophisticated awareness measures to probe the relationship between explicit 

awareness and the cueing of target locations present conflicting indications regarding the role of 

awareness in statistical learning (Giménez-Fernández et al., 2020; Golan & Lamy, 2023; Huang et al., 

2022; van Moorselaar & Theeuwes, 2023; Vicente-Conesa et al., 2021; Yu et al., 2023). These 

discrepancies may arise from various factors, such as the probability levels used, the number of 

learning trials, and the methods for assessing awareness (Theeuwes et al., 2022). For instance, 

Giménez-Fernández et al. (2020) found that many participants were actually aware of the target’s 

unequal (static) spatial distribution when asked to rank the possible locations from most probable to 

least probable and estimate the number of times the target appeared in each display quadrant (in a 

“serial”, contextual-cueing paradigm; cf. Chun & Jiang, 1998). In a recent study of dynamic 

target-location probability cueing in pop-out search (Yu et al., 2023), many participants were also 

explicitly aware of the dynamic (cross-trial) target regularity, and the cueing effect was significant 

only in ‘aware’ participants. 

Based on these findings, we hypothesize that learning dynamic target-location regularities in 

serial search is explicit in nature, depending on (or correlating with) participants becoming aware of 

the rule governing the shifts in the target location across trials.14 

 

Role of inter-trial target-identity swapping, positional priming, and rule-based priming 

Besides serial search making greater demands on the tracking of attention allocations within 

trials and target placements across trials, the difficulty increases if the target identities (e.g., shape) 

change randomly, alternating with the non-target identities, across trials, as opposed to remaining 

fixed. Note that feature swapping is a standard feature in ‘additional-singleton’ paradigms (e.g., 

Theeuwes, 1991), where it promotes a spatially parallel ‘singleton-detection’ search mode (cf. Bacon 

& Egeth, 1994). In such paradigms, statistical learning of distractor locations is influenced by whether 

there is random feature swapping across trials (e.g., Allenmark et al., 2019), likely because further 

processing is required to establish the dimensional or featural identity of both distractor and target 

items. Of note, swapping of the color that singled out the target from the color-homogeneous 

background items was also implemented in Yu et al. (2023). This did not hinder (aware) participants 

from acquiring the dynamic rule, likely because the target popped out of the search array.  

Random swapping of target and non-target features is less common in serial search studies. 

Conceptually, without swapping, observers can set up a fixed ‘target template’ to compare any 

14 This would also be consistent with Li et al. (2022), where only two of a total of 57 participants could be said to have 
become explicitly aware of the dynamic regularity implemented in their study: failure to become aware of the regularity 
would predict the absence of a cueing effect. 
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selected item and make a target/non-target decision. This allows for a top-down bias towards selection 

of critical features that differentiate the target from non-target items. In contrast, with swapping, 

observers need to create two templates and determine, for each trial, which is the target and which the 

non-target template. Establishing this requires inspecting multiple items: if two inspected items share 

essentially the same features, they are likely non-targets – defining the non-target template. By 

default, the other description becomes the target template. Typically, under swapping conditions, the 

search system carries over the template from one trial to the next (Geyer et al., 2006; Kristjánsson et 

al., 2002; Maljkovic & Nakayama, 1994) – the implicit assumption being that critical task settings 

stay the same, and additional information is required to change or update the task set, expediting 

search on no-swap relative to swap trials. Nevertheless, given the added complexity in attention 

allocations to establish the target template under random swapping, one would expect dynamic 

target-location learning to be less robust under randomly variable vs. fixed target identity conditions. 

Note that two other types of intertrial priming may be at work, especially during serial search. 

The first is positional intertrial priming (Krummenacher et al., 2009; e.g., Maljkovic & Nakayama, 

1996), characterized by raised attentional priority for the target location on a given trial and carry-over 

of this positional selection bias to the next trial. This type of intertrial priming might be particularly 

prominent under serial search conditions that provide no other sources of guidance (e.g., 

feature-based) to the target location. In this situation, the system might strongly prioritize inspection 

of locations where a target was detected in the previous search episode. Any dynamic rule-based 

target-location probability-cueing effect would have to compete with this positional priming effect, 

thus providing an important reference against which to compare the probability-cueing effect. 

Finally, assuming a dynamic target-location regularity is acquired as a top-down ‘prior’ 

predicting the next location, the weight of this prior on a given trial might depend on whether the 

target placement on the preceding trial was consistent with the rule (rule-conforming) or inconsistent 

(rule-breaking). Rule-conforming target placements might strengthen the weight of the rule, while 

rule-breaking placements might weaken it – leading to a rule-based intertrial-priming effect. Again, 

these rule-based priming effects might be particularly prominent under serial search conditions, where 

there are no, or few, other sources of guidance to the target location. 

 

Objective and rationale of the present study 

The present study aimed to examine whether participants would learn a simple dynamic 

(probabilistic) regularity in target placement across consecutive trials in a serial search task, and 

whether such dynamic learning would rely on explicit awareness of the regularity. We used the same 

dynamic, cross-trial regularity as Yu et al. (2023) had in a parallel search task. This involved shifting 

the target location in a circular display arrangement by one position, either clockwise or 
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counterclockwise (blocked per participant), across trials with a probability of 80% (see Figure 1) for a 

depiction of search displays and the dynamic regularity in the positioning of sequential target items). 

With regular shifts occurring in 80% of the trials, compared to only a 25%-probability in Li 

and Theeuwes (2020), we expected a substantial number of participants to extract and use this 

regularity to speed up performance even in serial search. In particular, we expected faster task-final 

RTs on trials on which the cross-trial shift of the target location conformed with the rule 

(‘frequent’-shift trials in Figure 1) vs. trials on which it did not (‘infrequent’- and ‘random’-shift 

trials).   

Inspired by the findings of Yu et al. (2023), we expected that only participants who, based on 

a post-experiment awareness test, were ‘aware’ of the dynamic regularity would exhibit a dynamic 

target-location probability-cueing effect. ‘Unaware’ participants, by contrast, were not expected to 

benefit from the regularity. We also expected a correlation between participants’ subjective certainty 

about the rule and their cueing effect.   

In addition to examining the search-final RTs, we also tracked participants’ eye movements 

while they scanned through the search displays for the target. RTs reflect the culmination of various 

processes contributing to the final response decision. However, without sophisticated methods to 

decompose RTs,  they are limited in revealing which component processes occurred at what time 

during a trial to produce the required response. Tracking eye movements provides critical data,  

particularly in complex search tasks requiring the serial allocation of attention, which inherently 

involves sequential eye movements to find and respond to the target. Accordingly, here, we examined 

participants’ eye movement to gain further insights into the time course of dynamic target-location 

probability cueing (for oculomotor studies of static distractor-location probability cueing, see, e.g., 

Allenmark, Shi, et al., 2021; Di Caro et al., 2019; Sauter et al., 2021; B. Wang et al., 2019). In fact, 

our task required participants to expressly fixate the target item and, upon confirming it as the target, 

execute a simple manual detection response. 

Thus, recording participants’ eye movements allowed us to examine, in aware participants, at 

what stage(s) of the search their saccadic behavior would be guided by the acquired rule or regularity 

“prior,” beyond any bottom-up and top-down guidance signals provided by the search task. In 

particular, if rule-based guidance influences behavior very early, the first saccade (from the initial, 

central fixation spot) might be directed straight to the dynamically predicted ‘frequent’ target location, 

compared to other locations – in particular, an ‘infrequent’ position in the opposite direction to the 

rule that shares the same distance from the last target location as the ‘frequent’ location, or the same 

location occupied by the target on the last trial (positional intertrial priming). In any case, even if 

rule-based guidance takes longer than the first eye movement to come into play, we would expect that 

aware participants would require fewer saccades to locate the target at the frequent location compared 

to other locations (except possibly the repeated one), and fewer saccades than unaware participants. 

These oculomotor dynamics would eventually manifest in cueing effects in the search-final RTs. 

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_illustration
https://paperpile.com/c/L9t4ZY/PJ0SZ/?noauthor=1
https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_illustration
https://paperpile.com/c/L9t4ZY/sJ9fu/?noauthor=1
https://paperpile.com/c/L9t4ZY/AIoIg+XCtvu+LiO3p+dz2S4/?prefix=for%20oculomotor%20studies%20of%20static%20distractor-location%20probability%20cueing%2C%20see%2C%20e.g.%2C,,,
https://paperpile.com/c/L9t4ZY/AIoIg+XCtvu+LiO3p+dz2S4/?prefix=for%20oculomotor%20studies%20of%20static%20distractor-location%20probability%20cueing%2C%20see%2C%20e.g.%2C,,,
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Additionally, by mixing ‘frequent’ and ‘random’ (baseline) target placements within blocks, 

rather than segregating them into separate blocks (e.g., L. Wang et al., 2021), we could assess how 

dynamic rule guidance on a given trial is modulated by preceding trial events that either conform to or 

break the rule (rule-based intertrial priming). The eye-movement record can trace this influence back 

to even the earliest saccades executed on a trial.   

We also examined the issues outlined above under conditions where the target identity 

remained constant across trials and, respectively, under conditions where target and non-target 

identities were mixed, swapping randomly across trials. The latter condition imposes additional task 

demands, requiring extended serial scanning of several items to determine the target and non-targets 

on each trial. Simply inspecting the item at the location predicted by the dynamic rule would not be 

sufficient to confirm its target status. The mixed condition might weaken or interfere with rule 

application or, conversely, strengthen reliance on the rule, as all relevant information for 

decision-making would likely be available at the predicted location (the frequent target position) and 

its vicinity (likely containing a non-target item). Again, early eye movements would provide insights 

into the (sub-)processes generating the task-final RTs under these conditions. 

Finally, in addition to examining whether any probability-cueing effects in the task-final RTs 

correlate with participants’ awareness of the dynamic regularity, recording eye movements allows us 

to examine whether already the earliest saccades executed during serial search are informed by 

explicit knowledge of where the new target is likely to be located. 
 

 
Figure 1. (a) Illustration of the three cross-trial target-location transition conditions. There were three types of change of the 
target location across consecutive trials: With 80% probability, the critical item would move to the adjacent location, in 
either clockwise or counterclockwise direction (here, indicated by the red dashed circle marking the ‘frequent’ location). The 
frequent direction was fixed for a given participant and counterbalanced across participants. With 10% probability, the 
critical item would shift to the adjacent location in the opposite direction (indicated by the green dashed circle marking the 
‘infrequent’ location). In the remaining 10% of trials, the critical item would move randomly to any of the other locations, 
including re-appearing at the same location (indicated by the yellow dashed circle marking a ‘random’ location). (b) 
Examples of sequences from trial blocks with random swapping (mixed) and, respectively, no-swapping (fixed) of the target 
identity across trials. In the mixed condition, the target identity changes randomly from trial to trial; in the fixed condition, it 
stays the same. 
 

 

https://paperpile.com/c/L9t4ZY/i74ia/?prefix=e.g.%2C%20
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Methods  

Transparency and Openness Statement 

Our report details the methodology used to determine the sample size, incorporating both a 

theoretical comparison and a power analysis. We also fully disclose the criteria for data inclusion and 

exclusion in pre-processing and all subsequent analyses. Regarding these criteria: no participants were 

excluded from the study, and all criteria for trial-based inclusion and exclusion were pre-determined 

prior to data analysis. We report all data manipulations in the study. The experimental code, raw data, 

and data analyses of the present study are publicly available at: 

https://github.com/msenselab/learning-in-serial-search. The experiment was conducted in 2022. 

 

Participants  

A total of 34 healthy university students from LMU Munich participated in this study (mean 

age ± SD: 26.32 ± 3.81 years; ranging from 20 to 33 years; 25 females, 9 males). All participants 

reported normal or corrected-to-normal vision, and passed the Ishihara color test (Clark, 1924), 

confirming unimpaired red-green color perception.  

To ensure robust statistical power for addressing the questions at issue, we estimated our 

sample size based on previous studies (Li et al., 2022; Li & Theeuwes, 2020; Yu et al., 2023), which 

employed a similar manipulation of the dynamic (cross-trial) target-location regularity and reported an 

average effect size of = 0.42 (average across all experiments). An a-priori power analysis, conducted 𝑓 

with an effect size of = 0.42, an  = .05, and 98% power (1– ), indicated a minimum sample size of 𝑓 α β

n = 20 (G*Power 3.1; Faul et al., 2007). Given that our study introduced a more complex letter-search 

paradigm, and we were interested in the relation between awareness of the dynamic regularity and the 

cueing effect, we initially increased the sample size to 24. Then, prompted by an anonymous reviewer, 

we added another 10 participants during the revision, to potentially increase the number of 

participants in the subgroup group of observers who failed to become aware of the dynamic 

target-location regularity (the ‘unaware’ group). The study was approved by the LMU Faculty of 

Pedagogics & Psychology Ethics Board. All participants provided written informed consent prior to 

the experiment and received 9.00 Euro per hour or equivalent course credits for their participation.  

 

Apparatus  

The experiment was conducted in a sound-attenuated, dimly lit testing chamber. Participants 

were seated 55 cm away from a 24-inch CRT display monitor that displayed the search stimuli at a 

screen resolution of 1920 × 1080 pixels and a refresh rate of 120 Hz. We employed PsychoPy (v. 

2022.2.2) to control stimulus presentation, manual-response recording, and eye-movement tracking.  

 

https://github.com/msenselab/learning-in-serial-search
https://paperpile.com/c/L9t4ZY/UBpHd
https://paperpile.com/c/L9t4ZY/PJ0SZ+EErtj+sJ9fu
https://paperpile.com/c/L9t4ZY/nkz7j/?prefix=G*Power%203.1%3B
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Gaze position for the dominant eye was captured using an SR Research EyeLink 1000 

desktop-mount eye-tracker (Osgoode, Ontario, Canada), operating at a sampling rate of 1kHz. 

Participants registered their responses using a QWERTZ keyboard by pressing the space button with 

either their left- or right-hand index finger.  

 

Stimuli and Design 

The search displays (see Figure 1) featured a white fixation cross at the center, set against a 

gray screen background. Each display contained eight items: a single target shape, either a “T”- or  

“L”-shaped letter, among seven non-target shapes, “L”- or “T”-shaped letters). When the target was a 

“T”, the non-targets were all “L”-shaped, and vice versa. 

The eight display items, each subtending 1.25° × 1.25° of visual angle (CIE [Yxy]: 70.5, 

0.330, 0.326), were equally spaced on a virtual circle, at an eccentricity of 7° (yielding a 

center-to-center distance of 5.4° between adjacent items). To elevate task difficulty and encourage 

serial search, the “L”-shaped items featured a slight offset at the line junction, measuring 0.3°. Both 

“T” and “L” shapes appeared randomly in one of the four orthogonal orientations (0°, 90°,180°, or 

270°). A shape-defined target, either a “T” or an “L”, was present on every trial. The target could 

appear at any of the eight possible display locations, with its location uniformly distributed across all 

trials. Participants were tasked to locate the target with their eyes (i.e., making a saccade to it and 

fixating) and then promptly press the spacebar to confirm target identification. Upon their response, a 

feedback message was shown for 500 ms, indicating either “Correct (response)” in green or “Incorrect 

(response) ” in red. 

Crucially, the positioning of the target within the circular array was probabilistically 

predictable across consecutive trials n and n+1. In 80% of the trials, the target shifted to an adjacent 

location, in a consistent clockwise or counterclockwise direction – we refer to this as the “frequent 

(target) location”. The primary direction of this shift was constant for each participant, but 

counterbalanced across participants. In another 10% of the trials, termed “infrequent condition”, the 

target moved to an adjacent location in the opposite direction to that of the frequent condition. For the 

remaining 10% – the “random condition” –, the target’s position was chosen randomly among the six 

remaining alternative locations (including repeated presentation at the same location). Note that upon 

any irregular shift (including “infrequent” shifts by one position in counter-direction, position 

repetitions, and any larger “random” shifts), a regular shift (in the “frequent” direction) on the 

subsequent trial would proceed from the last target location. This is exactly the same dynamic 

regularity introduced in Yu et al.’s (2023) parallel-search Experiment 1. 

The experiment consisted of 16 blocks: 8 “target-fixed” blocks, in which the target remained 

the same across trials, were randomly interleaved with the other 8 “target-swapping” blocks (in which 

the target identity changed randomly from trial to trial). Each block consisted of 60 trials, yielding a 

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_illustration
https://paperpile.com/c/L9t4ZY/sJ9fu/?noauthor=1
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total of 960 trials for the whole experiment. Of note, the target-swapping condition was manipulated 

between blocks (but within participants). In blocks with swapping, the shape of the target (as well as 

that of the other, non-target items) could randomly swap across trials, in line with prior studies (of 

mainly singleton) search (e.g., Allenmark et al., 2019; Theeuwes, 1992). 

 

Procedure 

Each trial began once a stable fixation on the central fixation cross was detected (i.e., fixation 

within a virtual circle of 2° radius for at least 500 ms). Following a randomized (fixation) duration 

between 700 and 1000 ms, the circular search array was presented and remained visible until the 

participant responded. 

Participants were instructed to localize the target within the display array by making an eye 

movement to it and then press the spacebar as fast as possible to confirm that they had actually located 

the target (rather than a non-target item); they were told that they were free to move their eyes in their 

search for the target. A trial was marked as ‘correct’ when participants fixated on the target item (i.e., 

within a circular region of 2.5° radius centered on the target) during the key-press response. If 

participants fixated a non-target item or no item at all, the feedback message “Incorrect” appeared at 

the screen center for 500 ms. Each new trial started with the reappearance of the central fixation cross. 

Between blocks, participants could take a break of a self-determined length. 

To determine participants’ awareness regarding the dynamic regularity of the target locations 

across trials, a post-experimental questionnaire was administered. It consisted of three forced-choice 

questions: First (Q1), participants had to indicate whether or not they had noticed any regularity in the 

target’s placement across trials, selecting from six options (Was there any regularity? – Definitely no; 

Probably no; Possibly no; Possibly yes; Probably yes; Definitely yes). Second, they had to specify the 

dominant (regular) direction of the movement, by choosing one of two options for the most frequent 

type of movement (moved clockwise; moved counterclockwise.) Third (Q3), based on their previous 

answers, they estimated the frequency, in percentage terms, of the target moving in that direction 

(from 0% to 100%). 

 

Data Analyses 

Eye-data pre-processing 

The recorded eye-position data were analyzed offline. Saccades were identified based on 

their velocity distribution, using a moving average over twenty successive eye-position samples 

(Engbert & Mergenthaler, 2006). Default settings were used to determine the on- and offset of 

saccades. A saccade was marked as landing on the target or a non-target if its endpoint fell within 2.5° 

 

https://paperpile.com/c/L9t4ZY/pnBlU+5xGnL/?prefix=e.g.%2C,
https://paperpile.com/c/L9t4ZY/D44nQ
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from the center of the respective item (see Figure 1b). Trials with response errors (i.e., participants 

pressing the spacebar while fixating outside the target region) were relatively low (4.9%) and 

excluded from further analysis. 

 

RT Analyses and Reliability of Probability Cueing 

RT analyses were performed on individuals’ mean RTs after excluding error trials (i.e., trials 

in which participants did not fixate within the 2.5° region around the target but gave a manual, 

spacebar response, which happened in approximately 5.2% of the trials, on average). If necessary, the 

RT data were examined by ANOVA, followed by post-hoc pairwise t-tests. We report effect sizes (ηp
2 

or Cohen’s dz), and for multiple comparisons the adjusted p-values along with the number of 

comparisons.  

Previous studies have shown that using correlation analyses to infer implicit learning depends 

heavily on the assumption that the measures of awareness and ‘contextual cueing’ or, respectively, 

‘priming’ are perfectly reliable (Vadillo et al., 2016, 2022). However, a lack of correlation between the 

awareness scores and the cueing/priming effects may result from the low reliability of both measures, 

which prevents any meaningful inference to be drawn from the null correlation. To assess the 

reliability of the dynamic target-location probability-cueing effects in the present study, we adopted 

the permuted split-half method recommended by Vadillo et al. (2022). Specifically, for each 

participant and condition, we split trials randomly in half and then calculated the probability-cueing 

effects separately for each half. We then calculated the correlation of these effects across participants. 

A high correlation (r > .5) between the two halves indicates reliable probability cueing. We repeated 

this process for 1000 random splits, averaged the results using Fisher’s z-transformation, and 

corrected the correlation using the Spearman-Brown prediction formula (Vadillo et al., 2022).  

 

Results  

Awareness test 

Given the recent finding (Yu et al., 2023) that awareness plays a – likely critical – role in 

learning dynamic cross-trial regularities, we first classified participants into an ‘aware’ and an 

‘unaware’ group. Then, we examined search performance separately for the two groups. Among the 

34 participants, 24 both reported having noticed “a regularity” in the cross-trial target movement and 

correctly identified the specific type of regularity they had encountered in the search displays. These 

participants were assigned to the aware group. The remaining eight participants could not identify the 

pattern based on their questionnaire responses and were designated as the unaware group. 

 

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_illustration
https://paperpile.com/c/L9t4ZY/B3XNO+pyivI
https://paperpile.com/c/L9t4ZY/B3XNO/?noauthor=1
https://paperpile.com/c/L9t4ZY/B3XNO
https://paperpile.com/c/L9t4ZY/sJ9fu/?prefix=Yu%20et%20al.%2C%20&noauthor=1
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Response times 

Figure 2 depicts the mean RTs (calculated across individual participants’ means) for the three 

cross-trial Target-Location Transition conditions (frequent, infrequent, random), separately for the two 

Target-Constancy block types (target identity fixed vs. mixed) and the two groups (aware vs. 

unaware).   

 
Figure 2. Mean RTs as a function of the cross-trial target-location transition (random, infrequent, frequent transition) and 

cross-trial target constancy (target identity fixed, mixed per block), separately for the aware and the unaware groups of 

participants. Error bars represent one standard error.  

 

A mixed-design ANOVA with the within-participant factors cross-trial Target-Location 

Transition (random, infrequent, frequent) and cross-trial Target Constancy (target identity fixed, 

mixed per trial block) and the between-participant factor Awareness (aware, unaware) revealed 

significant main effects of Target Constancy, F(1,32) = 87.193, p < .001, = 0.732, and Location  𝜂
𝑝
2 

Transition, F(2,64) = 6.737, p = .002, = 0.174. RTs were faster overall (by > 500 ms) when the  𝜂
𝑝
2 

target identity was fixed per block compared to when it changed randomly across trials. And RTs were 

overall faster when the target location shifted by one position in the frequent direction across trials 

(2345 ms) compared to both a shift by one position in the infrequent (i.e., counter-) direction (2451 

ms) or a random shift (2547 ms). Additionally, the Location-Transition  Awareness interaction was ×

significant, F(2,64) = 9.223, p < .001, = 0.224, due to only the aware group, but not the unaware 𝜂
𝑝
2 

group, showing a systematic Location-Transition effect.  

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_rt
https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_results_1a
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To better understand the interaction, we focused on comparing the frequent vs. infrequent 

locations and calculated the target-location probability-cueing effects (see next section). 

Awareness and Dynamic Target-Location Probability Cueing 

Figure 3 depicts the target-location probability-cueing effects ( ) in 𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

the two Target-Constancy conditions, separately for the aware and the unaware groups. An ANOVA 

of the cueing effect confirmed a significant main effect of the (between-participant) factor Awareness, 

F(1,32) = 10.81, p = .002, = 0.253: aware participants exhibited an overall greater  𝜂
𝑝
2 

probability-cueing effect compared to unaware participants (297 ms vs. -85 ms), and more precisely, 

the latter was actually significantly negative (-85 ms), t(9) = -3.708, p = .005. Thus, becoming aware 

of the dynamic, cross-trial regularity in the placement of the target helped participants optimize their 

search performance while failing to become aware was detrimental to performance. 

One important question concerns how reliable these probability-cueing effects are. To assess 

reliability, we adopted the permuted split-half method (Vadillo et al., 2022). For the aware group, the 

probability-cueing effect was highly reliable (fixed target identity: split-half reliability r = .932; mixed 

target identity: r = .842). For the unaware group, the reliability was moderate for the mixed target 

identity (r = .571), but relatively low for the fixed target identity (r = .211). 

 
Figure 3. Probability-cueing effect ( ) in the fixed vs. mixed Target-Constancy blocks, separately 𝑅𝑇

𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡
− 𝑅𝑇

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

for the aware and unaware groups of participants.   
 

 

 

Positional intertrial priming 

Next, we examined for short-term (i.e., inter-trial) positional priming effects (e.g., Allenmark 

et al., 2019; Allenmark, Gokce, et al., 2021; Sauter et al., 2018) by comparing the mean RTs across 

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_pc
https://paperpile.com/c/L9t4ZY/B3XNO
https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#figur_pc
https://paperpile.com/c/L9t4ZY/pnBlU+WRLtk+XkFqP/?prefix=e.g.%2C%20,,
https://paperpile.com/c/L9t4ZY/pnBlU+WRLtk+XkFqP/?prefix=e.g.%2C%20,,
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the various inter-trial target distances. The results are plotted in Figure 4, where distance 0 means that 

the target repeated at the exact same location, which could happen in the random transition condition; 

distance 1 means that the target moved one position to its previous neighbor, including both the 

frequent and infrequent directions; all other distances are from trials in the random transition 

conditions. Positional (inter-trial) priming (Krummenacher et al., 2009; Maljkovic & Nakayama, 

1996) would predict an RT advantage for cross-trial repetitions of the target location, providing a 

strict baseline against which to assess any effect of knowing that the target shifts regularly to the 

adjacent position in a specific direction across trials. 

 
Figure 4. RTs (calculated from individual participants’ medians) as a function of the inter-trial target distance (0 indicates 

the target repeated at the same location, while 1 denotes the target moved one position to its neighbor, including both the 

frequent and infrequent directions) in the trial blocks with fixed and mixed target identity, separately for the aware and the 

unaware groups of participants. Data points marked by green triangles and red circles represent frequent and, respectively, 

infrequent cross-trial shifts. Error bars represent one standard error of the mean. 

 

We conducted a linear mixed-effects model (LMM) with the within-participant factors 

inter-trial target Distance and Target Constancy (target identity fixed, mixed per block) and the 

between-participant factor Awareness (aware, unaware), assuming slopes vary across participants. The 

LMM revealed significant effects of Distance, F(1,32.3) = 17.42, p < .001, and Target Constancy, 

F(1,35.85) = 71.17, p < .001, but no main effect of Awareness, F(1, 32.01)=.053, p = .82. Of the 

interactions, that between Distance and Awareness, F(1,32.3) = 8.0, p = .008, and that between 

Distance and Target-Constancy, F(1,76.43) = 9.22, p = .003, were significant; the remaining 

interactions were non-significant (Fs < 3.55, p > 0.064). Following up the Distance  Awareness ×

interaction by post hoc comparisons (with Bonferroni correction) showed that, for the aware group, 

RTs were significantly faster with both distances 0 and 1 vs. each of the distances 2, 3, and 4, ts(33) > 

4.871, pbonfs < .001, ds > 0.611 (there was no difference between distances 0 and 1, t(33) = .148, pbonf  

= 1, dz = 0.019, and among distances 2, 3, and 4, ts(33) < 1.546,  pbonfs = 1, dzs < 0.194). For the 

unaware group, by contrast, the distance functions were relatively flat; statistically, there were no 

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_dist
https://paperpile.com/c/L9t4ZY/k4Sl8+yW74n
https://paperpile.com/c/L9t4ZY/k4Sl8+yW74n
https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#figur_dist
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significant differences between distances 1, 2, 3, and 4; distance 0 showed some RT advantage 

(minimum advantage: 143 ms, non-significant; average advantage: 200 ms, t(9) = 1.908, p = .089, dz = 

0.281). This overall effect pattern was mainly driven by blocks in which the target identity was fixed, 

which also allowed generally faster search performance. 

Thus, there was an advantage for distance 0 – that is, a positional repetition-priming effect – 

for both the aware and (to a weaker extent) the unaware group, whereas there was an advantage for 

distance 1 – that is, in this analysis, the combined shift of the target in the frequent and infrequent 

direction – only for the aware group. This pattern was more prominent in target-fixed blocks of trials, 

compared to blocks with target identity varying randomly across trials – accounting for the significant 

three-way interaction. 

Of note, however, for the aware group (and collapsed across the two Target-Constancy 

conditions), the advantage for distance 1 was entirely due to target shifts in the frequent direction; 

shifts in the infrequent direction caused a performance slowing relative to both shifts in the frequent 

direction (infrequent 1 vs. frequent 1, t(23) = 4.027, p < .001, dz = 0.822) and exact-same position 

repetitions (infrequent 1 vs. distance 0, t(23) = 5.258, p < .001, dz = 1.073), without a difference 

between frequent shifts and position repetitions (frequent 1 vs. repetition, t(23) = -0.434, p = .668, dz 

= -0.089). Again, this pattern was mainly driven by blocks where the target identity was fixed. 

Thus, for the aware group, the positional repetition-priming effect was of a comparable 

magnitude to the dynamic probability-cueing effect. The latter, however, is a genuine effect, rather 

than simply representing a spatially fuzzy location repetition effect (spreading from the exact same to 

the neighboring locations), because targets at the location in the infrequent direction (which had the 

same separation from the 0-distance, reference position as the frequent location) were associated with 

an RT cost. Thus, at the very least, one would conclude that the attentional ‘spotlight’ was skewed 

toward the frequent and away from the infrequent direction. 

Inter-trial Priming from Rule-conform (vs. Rule-breaking) Target Shifts 

Another possible inter-trial effect might arise from the target on the preceding trial being 

positioned consistent with the rule (i.e., having moved to the predicted, frequent location) vs. having 

shifted in a rule-inconsistent manner (e.g., having moved in the opposite direction to the frequent 

location). Rule-consistent shifts might reinforce the rule (or, respectively, inconsistent shifts might 

weaken the rule), leading to a rule-based inter-trial priming effect. To look for this, we submitted the 

probability-cueing effect on a given trial n to an ANOVA15 with the within-participant factors 

Previous (trial n–1) Target Location (target at frequent vs. infrequent location) and cross-trial Target 

Constancy (fixed vs. variable) and the between-participant factor Awareness (aware vs. unaware). The 

data are plotted in Figure 5. 

15 Levene’s homogeneity-of-variance test revealed that one condition (Fixed/Frequent) violated the homogeneity assumption 
across groups. However, the between-group difference was not the main focus of this analysis.  

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_int
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Figure 5. Probability-cueing effect ( ) on a given trial n dependent on whether the preceding target 𝑅𝑇

𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡
− 𝑅𝑇

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

(on trial n–1)  had occurred at the frequent vs. the infrequent location, separately for trial blocks with fixed and mixed target 

identity and separately for the aware and unaware groups of participants. Error bars represent one standard error of the mean. 

There was a main effect of Target Constancy, F(1,32) = 7.579, p = .009, = 0.188, with the 𝜂
𝑝
2 

probability-cueing effect being greater in target-identity fixed (303 ms) vs. mixed (70 ms) trial blocks, 

and a main effect of Awareness, F(1,32) = 5.549, p = .025, = 0.14816, with the cueing effect being 𝜂
𝑝
2 

overall positive for the aware group (271ms), but negative for the unaware group (-16 ms). Although 

the Awareness  Previous-Target-Location interaction was not significant, F(1,32) = 2.297, p = .139, ×

= 0.067, the probability-cueing effect was numerically greater when the previous target had 𝜂
𝑝
2 

occurred at the frequent location (i.e., 312 ms for a rule-consistent shift) compared to an infrequent 

location (i.e., 221 ms for a rule-breaking shift) (see also a significant pattern which emerged in the  

eye-movement analysis below, Figure 13). This pattern appeared to be reversed for the unaware 

group. In other words, for aware participants, consecutive rule-consistent shifts of the target tended to 

reinforce the effect of the (discovered) regularity (or, respectively, the effect of the regularity was 

weakened by a preceding rule-breaking shift). This was not the case for unaware participants, who, by 

definition, had not discovered the rule. 

Of note, in the aware group, the probability-cueing effect was still significantly positive even 

when the target appeared at an infrequent location (i.e., after a rule-breaking shift) on the previous 

trial, t(23) = 3.120, p = .005, dz = 0.224. In other words, a rule-breaking shift on the preceding trial 

just weakened, but did not abolish, the beneficial effect of the regularity. 

Correlation Between Awareness and Dynamic Target-Location Probability Cueing 

The correlations between the awareness ratings and the probability-cueing effect show 

differential patterns between the ‘aware’ and ‘unaware’ groups (Figure 6), but the categorization of 

16 The main effect of awareness turned out significant after adding 10 more participants to the original sample of 24 
participants (see Method),  pBefore =  0.126 vs. pAfter =  0.025. 
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the two groups is highly correlated with the ratings. We first checked for multi-collinearity using 

variance inflation factors (VIFs), finding high collinearity between awareness and Q1 (VIF=17.27) 

and awareness and Q3 (VIF=14.63). We then opted for the ridge linear regression to obtain more 

stable and reliable estimates. In the ridge regression, we included the category Awareness (A) as a 

dummy variable (0: unaware, 1: aware), as well as the awareness rating (Q) and the interaction 

between the rating and Awareness as predictors to predict the probability-cueing effect (PC).   

. 𝑃𝐶 =  𝑎
0
 +  𝑎

1
· 𝐴 +  𝑏

1
· 𝑄 + 𝑏

2
· 𝑄 · 𝐴

The slope coefficient b is closely related to the correlation coefficient r through the following equation 

, where sy and sx are the standard deviations of the dependent and independent variables, 𝑏 = 𝑟 ·
𝑠

𝑦

𝑠
𝑥

respectively. This relationship permits us to infer correlations based on the significance of coefficients 

b1 and b2. Specifically, for the unaware group (A=0), b1 constitutes the main slope coefficient, while 

for the aware (A=1) group, the sum of b1 and b2 (i.e., b1+b2) constitutes the main coefficient.  

The ridge regression with Awareness and Q1 rating yielded the following results: a0 = 

-187.54, a1 = -79.67 (95% CI [-338.9, 182.3]), b1 = 35.0 (95% CI [-4.1, 93.8]), and b2 = 74.87 (95% 

CI [31.95, 120.4]). Based on the 95% confidence intervals (CIs), the correlation was non-significant 

for the unaware group (the CI of the slope b1 includes negative values) but was significant for the 

aware group (based on the slope b1+b2).  

 Conducting the ridge regression on Awareness, Q3 rating, and their interaction revealed a 

similar pattern: a0 =-244.47, a1 = 11.08 (95% CI [-133.49, 257.96]), b1 = 3.25 (95% CI [-0.734, 

7.884]), and b2 = 5.1 (95% CI [2.368, 7.5]). The correlation was non-significant for the unaware group 

but significant for the aware group (see Figure 6).  

 

 
Figure 6. (a) Probability-cueing effect as a function of Q1 confidence rating (1-6), separately for the aware and unaware 

groups. (b) Probability-cueing effect as a function of Q3 frequency rating (0%–100%). The linear fits were obtained through 

the ridge regression (see the main text).  
 

Eye-movement Results  
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Due to the absence of a significant (positive) probability-cueing effect for the unaware group 

in the manual RTs, we focused the analysis of the oculomotor behavior on the the aware group (see 

Appendix B for the results of the unaware group) – aiming to gain a deeper understanding of the 

underlying mechanisms driving the dynamic probability-cueing effects in a serial search paradigm. 

 
Number of saccades until reaching the target and dwell-time on the target 
 

We first examined the average number of saccades required to reach the target in an ANOVA 

with the factors of cross-trial Target-Location Transition (frequent, infrequent, random) and cross-trial 

Target Constancy (fixed, mixed). This ANOVA revealed both main effects to be significant: F(2,46) = 

17.873, p < .001, = 0.437 and, respectively, F(1,23) = 15.146, p < .001, = 0.397. As can be seen  𝜂
𝑝
2  𝜂

𝑝
2 

from Figure 7a, significantly fewer saccades were required, on average, when the target appeared at 

the frequent location (4.3 saccades) compared to both the infrequent location (5.6 saccades), t(23) = 

4.554, p < .001, dz = 1.163, and a random location (5.9 saccades), t(23) = 5.632, p < .001, dz = 1.439, 

without a difference between the later two conditions, t(23) = 1.077, p = .861, dz = 0.275. The required 

number of saccades was also overall lower in fixed target-identity trial blocks compared to 

randomized blocks, though the difference was not as stark overall (5.0 vs. 5.5 saccades) and of similar 

magnitude for all Location-Transition conditions (the interaction was non-significant: F(2,46) = .992, 

p = .378, =  0.041). Thus, the Target-Location effect in the RTs – the expedited RTs to targets at the 𝜂
𝑝
2 

frequent location – is reflected in the savings in the number of fixational eye movements required to 

reach the target positioned at the frequent location. 

Figure 7b presents the average duration of fixations before reaching the target in trial blocks 

with fixed vs. mixed target identity, dependent on the cross-trial Target-Location Transition. A 

Target-Location Transition  Target-Constancy ANOVA yielded both main effects to be significant: ×

Target-Location Transition ( F(2,46) = 5.978, p = .005, = 0.206) and Target Constancy, F(1,23) =  𝜂
𝑝
2 

7.066, p = .014, = 0.235. The pre-target fixation durations were reduced for targets at the frequent  𝜂
𝑝
2 

vs. the infrequent and random locations (194 ms vs. 201 ms and 200 ms), while being overall, by 

some 8 ms, increased in blocks with mixed vs. fixed target identity. 

An analogous ANOVA of the total fixation duration on the target (see Figure 7c) yielded a 

significant interaction, F(2,46) = 3.352, p = .044, = 0.127, besides a main effect of Target  𝜂
𝑝
2 

Constancy, F(1,23) = 10.095, p = .004, = 0.305. The interaction was due to the fixational  𝜂
𝑝
2 

dwell-time on the target being shorter in the frequent condition, only in the fixed block (frequent vs. 

infrequent and random combined, 787 ms vs. 825 ms: t(23) = 2.672, p = .014, dz = 0.545). 
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Figure 7. (a) Average number of saccades until reaching the target. (b) Average duration of the fixations before the first 

saccade to the target, in trial blocks with fixed vs. mixed target identity (cross-trial Target Constancy), dependent on the 

cross-trial Target-Location Transition (random, infrequent, frequent). Error bars represent one standard error of the mean. (c) 

Total target fixation duration, in trial blocks with fixed vs. mixed target identity, depending on the cross-trial Target-Location 

Transition (random, infrequent, frequent). Error bars represent one standard error of the mean.  

 

First fixation locations 

One might assume that participants who learned the dynamic cross-trial regularity directed 

their eyes immediately to the frequent target location on a significant proportion of trials. To 

corroborate this, for the aware group, we analyzed the locations of the very first fixation, that is, the 

location to which aware participants made the very first saccade on a trial, directly from the central 

fixation marker. Figure 8c plots the proportions of first fixations directed to the frequent target 

location, in comparison with the repeated location and the infrequent location, dependent on the 

target-location cross-trial transition (frequent, infrequent, random), separately for the target-identity 

fixed and mixed blocks of trials. 

A three-way repeated-measures ANOVA of the proportions of first fixation locations, with 

Fixated Location (infrequent, frequent), Target Identity (fixed, mixed within blocks), and Target 

Transition (frequent, infrequent, and random conditions) as within-subject factors, revealed a 

significant main effect of Fixated Location, F(2,46) = 8.034, p = .001, = 0.259. Post-hoc  𝜂
𝑝
2 

comparisons showed that the frequent location (0.269) was significantly more likely to be the target of 

the very first saccade than the infrequent location (0.097), t(33) = 3.304, pbonf  = .006 for comparing a 

family of 3, dz = 0.969, but not compared to the repeated location (0.285), t(33) = -0.313, pbonf  = 1, dz 

= 0.092. As can be seen from Figure 8c, this difference derives mainly from the fixed target-identity 

condition – statistically corroborated by a significant Fixated-Location  Target-Constancy ×

interaction, F(2,46) = 4.914, p = .012, = 0.176)17.  𝜂
𝑝
2 

17 The interaction between Fixated Location and Target Constancy became significant after adding 10 more participants to 
the original sample of 24 participants (see Method),  pBefore =  0.215 vs. pAfter =  0.012. 
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Of note, the repeated location was prioritized as the target of the first saccade to a similar 

degree as the frequent location, reflecting positional intertrial priming. However, prioritization of the 

frequent location is a genuine phenomenon, as the infrequent position (equidistant from the repeated 

location) was clearly deprioritized. 

Furthermore, there was no interaction of Fixated Location with the cross-trial Target-Location 

Transition (F(4,92) = 0.310, p = .871, = 0.013). This is interesting because when the first fixation  𝜂
𝑝
2 

went to the frequent location and the transition was ‘frequent’, the target would actually be located at 

this position. Still, when the transition was ‘infrequent’ or ‘random’, the target would not be at the 

frequent position. The analogous would apply to the other Fixation-Location conditions. Thus, the 

lack of a Fixated-Location  Target-Transition interaction implies that the increased proportion of ×

first saccades directed to the frequent location was driven by the discovered regularity; in other words, 

the rule was applied whether or not the target was located there. 

 

 
 

 

Figure 8. (a) illustration of the experimental conditions aligned to the top locations and (b) Heatmaps of the landing 

positions of the first saccade, depending on the cross-trial Target-Location Transition (frequent, infrequent), for blocks with 

target identity being fixed vs. mixed (i.e., randomly variable) across trials. As illustrated in (a), the fixation locations were 

rotated such that the target location on trial n-1 is at the top, and the frequent location that (one position) to the right, and the 
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infrequent location to the left (i.e., for participants with counterclockwise target shifts, the frequent and infrequent locations 

were flipped right/left flipped). Gaussian filters with smoothing kernels of 0.3° were used to generate all heat maps. (b) 

Heatmaps for trials on which the target had shifted in the frequent and, respectively, infrequent direction, separately for trial 

blocks with fixed and mixed target identity. As can be seen, the first saccades were most likely to be directed to the frequent 

and repeated locations, irrespective of whether the target shifted in the frequent (regular) or the infrequent (irregular) 

direction; the infrequent location is not more likely to receive a saccade than the random locations (excepting the repeated 

location). (c) and (d) proportions and, respectively, latencies of initial saccades directed to the frequent, repeated, and 

infrequent locations (first fixation location) dependent on the cross-trial target-location transition (frequent, infrequent, 

random), separately for the target-identity fixed and mixed blocks of trials. Error bars represent one standard error of the 

mean. 

 

An analogous ANOVA of the latencies of the first saccade (depicted in Figure 8d) also 

revealed (only) a main effect of Fixated Location, F(2,44) = 5.674, p = .006, = 0.205. The first  𝜂
𝑝
2 

saccades were elicited very rapidly upon search display onset, with an average latency of around 200 

ms. Post-hoc comparisons revealed the latencies to be significantly shorter for saccades to the 

frequent vs. the infrequent location (190 ms vs. 204 ms), t(24) = -3.364, pbonf  = .005, dz = -0.328, with 

a numerical difference for saccades to the frequent vs. the repeated location (190 ms vs. 196 ms). A 

distribution analysis revealed the difference between the frequent and infrequent locations to be 

already evident in the very ‘fastest’ time bins (i.e., the first 22%) of the vincentized latency 

distributions ( (1,7305) = 110.32, p < .001), with latencies in the range from between 100 and 150 χ2

ms, which would be considered to be too short to be influenced by cognitive control (e.g., Findlay, 

1997; Sauter et al., 2021). 

Interestingly, also, all first saccades in the general direction of the repeated location (i.e., 

saccades to the frequent, repeated, and infrequent locations) were elicited faster compared to saccades 

in the other, random directions, the latencies of the latter averaging 220 ms (random vs. frequent: t(22) 

= 6.003, p < .001, dz = 0.698; random vs. repeat: t(22) = 4.821, p < .001, dz = 0.560; random vs. 

infrequent: t(22) = 3.406, p = .007, dz = 0.39618). 

18 The difference between infrequent and random cross-trial shifts of the target location became significant after adding 10 
more participants,  pBefore =  0.116 vs. pAfter =  0.007. 
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Figure 9. Cumulative probabilities of the first, second, and third fixation falling at a particular location (Saccade Landing 

Location: frequent, repeated, infrequent location) as a function of the cross-trial Target-Location transition (Target Location: 

frequent, random, infrequent), separately for the fixed and the mixed Target-Identity condition (upper and lower rows, 

respectively). Error bars represent one standard error of the mean. 

 

While the landing positions of the first saccades were little influenced by the actual location 

of the target, a somewhat different picture emerges when looking at the second and, especially, the 

third fixation (see Figure 9) in the condition with fixed target identity, where the targets located at the 

frequent location appear to play a role. Examining the cumulative proportions of the first, second, and 

third fixations falling at a particular location (frequent, repeated, infrequent) as a function of the 

cross-trial Target-Location transition (frequent, random, infrequent) shows, first, of all, a similar 

increase in the proportion for the frequent and repeated locations (and a shallower increase for the 

random locations); that is, both the frequent and the repeated location stay relatively prioritized. 

Interestingly, though, when the 2nd and, especially, the 3rd fixation fall at the frequent location, the 

cross-trial transition matters: relatively more fixations fall on the frequent location when the target 

occurs there (following a ‘frequent’ transition) compared to when it appears at the infrequent location 

(fixations of frequent location: Fixation-Location  Target-Location Transition interaction, F(2,46) = ×

6.102, p = .004, = 0.210; frequent vs. infrequent transition, 3rd fixation: t(23) = 4.618, p < .001, dz  𝜂
𝑝
2 

= 0.283). Conversely, for the second and, especially, third fixations at the repeated and, respectively, 

the infrequent location, fewer fixations land at these locations when the target appears at the frequent 

location (fixations of repeated location: Fixation-Location  Target-Location Transition interaction, ×

F(2,46) = 4.027, p = .024, = 0.149; frequent vs. infrequent transition, 3rd fixation: t(23) = -2.844, p  𝜂
𝑝
2 
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= .097, dz = -0.389; fixations of infrequent location: Fixation-Location  Target-Location Transition ×

interaction, F(2,46) = 22.441, p < .001, = 0.494; frequent vs. infrequent transition, 3rd fixation:  𝜂
𝑝
2 

t(23) = -6.711,  p < .001, dz = -.1.111). This means that, while the first saccade directed to the frequent 

location is largely rule-driven, the second and, especially, the third saccade are also influenced by the 

identity of the item at the frequent location: a target at the frequent location acts like an attractor (over 

and above the rule-based prioritization of this location), increasing the likelihood of saccades to the 

frequent location and reducing the likelihood of saccades to random and infrequent locations. This 

pattern is seen, however, only in the fixed Target-Identity condition (in the mixed condition, there was 

no consistent pattern of interactions), suggesting that it reflects top-down enhancement of critical 

target features (at the frequent location) by the fixed target template. Interestingly, though, the 

enhancement appears to be focused on the frequent location. 

In the mixed condition, by contrast, the template valid on a given trial can only be established 

during the search itself – so, there is no (or relatively little) early search guidance by the target 

template. This is consistent with an analysis of the saccade patterns following a first saccade to the 

target at the frequent location. As depicted in Figure 10, when the target identity is fixed, participants 

show little tendency to go on to inspect one or two further locations in the immediate neighborhood of 

the frequent location: in some 50% of the trials, they do not check any location, and in about 25% 

each they check either one or both neighbors. In the mixed condition, by contrast, they are highly 

likely to check both neighbors (> 60%) or one neighbor (> 30%) and only very rarely neither (< 10%). 

This differential pattern (statistically evidenced by a significant interaction between Scanning Pattern 

    [inspection of both, one, or neither neighborhood location] and Target Constancy: F(2,46) = 66.604, p 

< .001, = 0.743, besides a main effect of scanning pattern, F(2,46) = 5.556, p = .007, = 0.195) 𝜂
𝑝
2 𝜂

𝑝
2 

indicates that in the mixed target-identity condition, participants continue scanning to establish the 

target template valid on a given trial. This would likely explain why the required number of saccades 

(and, consequently, the task-final RT) was increased under mixed-identity conditions and why the 

dynamic cueing effect was somewhat washed out. 
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Figure 10. The proportion of saccades directed to one or both neighbors, or neither neighbor, immediately after making the 

first saccade to the frequent, target-containing location, separately for the fixed and the mixed Target-Identity condition.  

Error bars represent one standard error of the mean. 

 

Awareness and Dynamic Probability Cueing of the First Eye Movement  

 

Figure 11. (a) Probability-cueing effect in terms of the first fixation location, as a function of the Q1 confidence rating (1-6), 

for the group of aware participants. (b) Probability-cueing effect in terms of the first fixation location, as a function of the 

Q3 frequency rating (0%–100%).  

 

Given that the first saccade made by participants in the aware group was more often directed 

to the frequent than the infrequent location, we went on to ascertain whether this difference was also 

correlated with our quantitative awareness measures (based on questions Q1 and Q3). Accordingly, 

we calculated the probability-cueing effect based on the first fixation as the difference in the 

proportions of first fixations between the frequent and infrequent locations and performed a 

correlation analysis on effect and the awareness measures. Before the correlation analysis, we 

assessed (for the aware group) the reliability of the probability-cueing effect measured in terms of the 

differential proportions of first saccades directed to the frequent vs. the infrequent location, separately 

for the blocks with fixed and mixed target identities. The aware group's reliability was high in both 

blocks (fixed: r = .94; mixed: r = .911). The analysis revealed the probability-cueing effect to be 

positively correlated with both Q1 (slope = 0.139, r = 0.45, p = .02, = 0.20) and Q3 (slope = 0.008, 𝑅2

r = 0.52, p = .009, = 0.27) – see Figure 11 for depictions. In other words, the more accurately 𝑅2

participants estimated the frequency and showed confidence in the dynamic regularity, the more likely 

they were to direct their first saccade to the frequent, compared to the infrequent, location. 

 

Awareness and Dynamic Probability Cueing of the Number of Required Saccades 
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Figure 12. (a) Probability-cueing effect in terms of the number of saccades until reaching the target, as a function of the Q1 

confidence rating (1-6), for the group of aware participants. (b) Probability-cueing effect regarding the number of saccades 

until reaching the target as a function of the Q3 frequency rating (0%–100%). 

 

The probability-cueing effects measured in terms of the number of saccades required to reach 

the target at the frequent vs. the infrequent location were also highly reliable (in the aware group), as 

revealed by permuted split-half tests (fixed target identity: r = .909; mixed target identity: r = .945). 

The correlation between aware participants’ probability-cueing effect (in terms of the required number 

of saccades) and their Q1 confidence rating of the regularity turned out marginally significant (slope = 

0.73, r = 0.39, p = .05, = 0.15), while that with their Q3 rating of the probability with which the rule 𝑅2

applied was significant (slope = 0.05, r = 0.55, p = .005, = 0.31) – see Figure 12 for depictions. 𝑅2

Thus, the more participants were aware of the dynamic regularity, the fewer saccades they required to 

find the target at the frequent (compared to the infrequent) location. 

 

 

Inter-trial Priming of the First Eye Movement from Rule-conform (vs. Rule-breaking) Target Shifts 

Figure 13 provides a plot of the probability-cueing effect in terms of the first eye movement 

(i.e., proportion of saccades to the frequent minus the infrequent location) dependent on the target 

location on the previous trial (i.e., trial n–1 target at frequent vs. infrequent location), separately for 

trial blocks with fixed vs. mixed target identity. An ANOVA of this cueing effect with the factors 

Previous (trial n–1) Target Location and cross-trial Target Constancy revealed the main effect of 

Previous Target Location to be significant, F(1,23) = 4.695, p = .041, = 0.170: the proportion of  𝜂
𝑝
2 

first saccades directed to the frequent (vs. the infrequent) location was significantly greater after 

rule-conforming (.179) than after rule-breaking target shifts (.108) on the preceding trial. Of note, 

though, the cueing effect was significantly greater than zero even in the latter condition  (t(23) = 
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2.829, p = .009), consistent with rule violations only weakening, but not abolishing, the effect of the 

regularity. 

 
Figure 13. Probability-cueing effect in the first eye movement (proportion of saccades to frequent minus infrequent location) 

dependent on the target location on the preceding trial (i.e., trial n–1 target at frequent vs. infrequent location), separately for 

trial blocks with fixed vs. mixed target identity.  Error bars represent one standard error of the mean. 
 

Discussion 

The present eye-tracking study aimed to investigate three main questions: (1) whether 

participants can learn a dynamic, cross-trial statistical regularity regarding the location of the target in 

a serial search task; (2) if so, when the guidance by this regularity would come into play during the 

search, examined through sequential oculomotor scanning and the task-final RTs for evidence of a 

dynamic target-location probability-cueing effect; and (3) whether participants’ explicit awareness of 

the regularity would be systematically related to their probability-cueing effect. Additionally, we 

examined how guidance by the regularity compares to positional intertrial priming, how it is 

modulated by rule-based (rule-conforming vs. rule-breaking) intertrial priming, and whether it is 

influenced by the target identity being known in advance (fixed) vs. having to be established during 

the task. 

The main findings were as follows: about 70% of participants successfully learned and 

utilized the cross-trial statistical regularity in target placement in a serial search task that Yu et al. 

(2023) had previously shown to be acquired in a parallel, pop-out task. This finding appears to 

conflict with earlier reports suggesting that the added demands imposed by serial search prevent 

participants from picking up dynamic regularities (Li et al., 2022; Li & Theeuwes, 2020). Importantly, 

however, only those who, based on a post-experimental awareness test, were classed as aware of the 

regularity did exhibit a dynamic probability-cueing effect; unaware participants showed no sign of a 

(positive) effect. In aware participants, search guidance from the discovered regularity kicked in very 

early: a large proportion of their very first saccades (from the display center) was already directed to 

the location predicted by the dynamic rule, in a addition to a bias to saccade to the location that had 

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#figur_it_fix
https://paperpile.com/c/L9t4ZY/sJ9fu/?noauthor=1
https://paperpile.com/c/L9t4ZY/PJ0SZ+EErtj/?noauthor=0,0
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contained the target on the previous trial; unaware participants displayed only the latter bias. The 

guidance effect exerted by the dynamic rule in aware participants was modulated by whether the 

target placement on the previous trial was consistent with the rule. Finally, aware participants were 

able to use the rule almost as efficiently when the target identity was non-predictable as when it was 

fixed. In the subsequent sections, we consider these findings in more detail. 

Dynamic cross-trial regularities in target placement can be learned even in serial search 

The present findings demonstrate that dynamic cross-trial regularities in target placement can 

be successfully learned and used to optimize performance even in highly demanding serial search 

tasks, not just in simple pop-out tasks that can be performed spatially in parallel. This conclusion 

applies at least to the regularity implemented here: a shift of the target location within a circular 

display arrangement by one position in either a clockwise or counterclockwise direction (fixed per 

participant) – exactly the same regularity as that used by Yu et al. (2023) in a parallel search task. 

Interestingly, relative to the random-condition baseline, the performance gains from successfully 

learning the rule were at least as large in the present serial search task as in Yu et al.’s (2023) parallel 

search task: the gains (infrequent minus frequent transition) here amounted to 339 ms, or 12.5% of the 

random-baseline RT (2707 ms), compared with a 9.4% gain (116 ms/1236 ms) in parallel search. In 

other words, the inherent incentive to acquire the rule was comparable between the two types of tasks. 

Our finding of a cueing effect appears to be at variance with Li and colleagues (Li et al., 

2022; Li & Theeuwes, 2020). They reported that participants could not pick up a different type of 

dynamic regularity in serial search, but another sample of participants could successfully extract in 

parallel search (learning phase) and subsequently use it to expedite serial search (test phase). The 

main difference between Li and colleagues’ studies (Li, Bogaerts, and Theeuwes 2022; Li and 

Theeuwes 2020) and Yu et al. (2023) and the present study lies in the complexity of the regular 

cross-trial shift and the frequency with which such shifts were encountered during search. In our 

design, the proportion of trials on which the target moved to the location predicted by the dynamic 

regularity (80%) was more than three times larger than that in the design of Li and Theeuwes (only 

25%). Also, our dynamic target-location shift was relatively simple: either clockwise or 

counterclockwise, consistent with how participants might ‘normally’ serially scan a circular search 

array. In contrast, the shift introduced by Li and Theeuwes was more complex: if the current target 

was in, say, the left-most array position, the next target would then invariably appear at the right-most 

location (but not vice versa). Apart from such shifts occurring only relatively rarely (on some 25% of 

trials), they would also run counter to normal scanning routines. Thus, it might be that both the 

frequency with which regular dynamic shifts occur and whether or not they fit with routinized 

scanning procedures (Seitz et al., 2023) might be critical factors determining whether or not a 

dynamic regularity is successfully acquired in serial scanning.  

 

https://paperpile.com/c/L9t4ZY/sJ9fu/?noauthor=1
https://paperpile.com/c/a7OuoS/1ruGy/?noauthor=1
https://paperpile.com/c/L9t4ZY/PJ0SZ+EErtj/?noauthor=0,0
https://paperpile.com/c/L9t4ZY/PJ0SZ+EErtj/?noauthor=0,0
https://paperpile.com/c/a7OuoS/acXeK+dn436
https://paperpile.com/c/a7OuoS/acXeK+dn436
https://paperpile.com/c/a7OuoS/1ruGy/?noauthor=1
https://paperpile.com/c/L9t4ZY/hOdgO
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Based on the present findings, however, we can conclude that serial search does not per se 

preclude the possibility of extracting and utilizing dynamic regularities to optimize performance. 

 

Dynamic target-location probability cueing acts early during search 

Beyond analyzing task-final RTs, our analysis of the oculomotor scanning behavior showed 

that dynamic target-location probability cueing acts ‘early’ during serial search: already one-third of 

the very first saccades (from the initial fixation marker in the display center) were directed to the 

predicted frequent location. Another position receiving almost the same proportion of first saccades 

was the location that had contained the target on the previous trial, consistent with a positional 

repetition-priming effect (Krummenacher et al., 2009; Maljkovic & Nakayama, 1996).  

Notably, at least under conditions with fixed target identity, a numerically greater proportion 

of first saccades was directed to the predicted location compared to the repeated location, indicating a 

tendency for the target-location cueing effect to dominate the repetition-priming effect19. Even under 

conditions of target-identity swapping, the frequent location received a much greater proportion of 

first saccades than the infrequent location, even though both were equidistant from the repeated 

position. This shows that the search priorities (or the attentional ‘spotlight’) were systematically 

biased towards the frequent direction and away from the infrequent direction. Importantly, this early 

biasing of search was independent of the actual target location, reflecting a genuine rule-based effect. 

The early prioritization of the frequent and repeated locations was maintained during further 

scanning, evidenced by these locations continuing to attract the largest proportions of second and third 

saccades. However, under conditions of fixed target identity, the second and the third saccade were 

also affected by whether the target actually appeared at the predicted frequent location: a target 

appearing at the frequent location increased the proportion of second and third saccades directed to 

this location, whereas it decreased the proportions of saccades directed to the repeated and infrequent 

locations. This suggests that by the second and third saccade, the priority of the frequent location was 

determined not only by the dynamic rule but also increasingly modulated by the fit of the item at the 

predicted location to the (fixed) target template. This suggests that top-down template-based 

enhancement of priority signaling is focused on the predicted location, rather than being ‘broadcast’ 

equally to all locations (e.g., Wiegand et al., 2024). Interestingly, the persistence of the prioritization 

of the frequent and repeated locations beyond the first few saccades implies that the prioritization is 

coded in scene-based (environmental), rather than retinal coordinates, with the coordinates 

dynamically updated across sequential eye movements. 

 

Rule-based intertrial priming 

19 As can be seen from Figure 14 below, a disadvantage for the frequent vs. repeated conditions developed into advantage by 
the final ‘epoch’ 4 of the experiment.  

 

https://paperpile.com/c/L9t4ZY/k4Sl8+yW74n
https://paperpile.com/c/L9t4ZY/9XJIn/?prefix=e.g.%2C%20
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While the frequent target location is favored as a result of having acquired the dynamic rule, 

this rule-based prioritization is itself modulated by short-term trial history: it is stronger on a given 

trial n when the target shift on the preceding trial n–1 conformed with the rule (i.e., the target moved 

to the frequent location) and weaker when the shift violated the rule (i.e., the target moved to the 

infrequent location). This effect is evident in the proportions of first saccades, and there was a trend in 

the same direction in the task-final RTs. Within a Bayesian framework (e.g., Allenmark et al., 2018; 

Allenmark, Gokce, et al., 2021), the dynamic rule can be conceived as an acquired long-term ‘prior’ 

determining the selection priorities. The weight assigned to this prior on a given trial is modulated by 

trial history: the current weight is larger following rule-conforming and smaller following 

rule-breaking target shifts. Importantly, however, intertrial weight changes only modulate the effect of 

the long-term prior, as shown by the significant cueing of the target location even after rule-violating 

trials. The weight assigned to the prior is not reduced to zero. 

To our knowledge, this rule-based intertrial priming effect is novel and has not been reported 

before. Of course, there are reports of intertrial priming effects associated with statistical learning of 

static regularities. For instance, interference caused by a salient distractor increases when the 

distractor occurs at a previous target location and decreases when it occurs at a previous distractor 

location; conversely, search is expedited when the target appears at a previous target location and 

slowed when it appears at a previous distractor location (see, e.g., Sauter et al. 2018). These effects 

may be modulated by a static ‘rule’, reflecting how likely the target or distractor is to occur at a 

particular fixed location. However, these are essentially positional intertrial effects, attributable to 

some facilitatory or inhibitory ‘tags’ placed on the respective position as a result of having 

encountered a target or a distractor there on the previous trial. In contrast, our dynamic scenario, by 

definition, involves regular changes of the target location on consecutive trials, favoring an account of 

the priming effect as being genuinely rule-related. Nevertheless, it may exert its influence in 

location-based coordinates, such as on a common map representing attentional (and oculomotor) 

priorities. 

Dynamic probability-cueing is modulated but not abolished by target-identity swapping 

Further of interest, dynamic target-location probability cueing was not abolished by random 

swapping of the target identity across trials. However, under these conditions, search RTs were overall 

prolonged, with an increased number of fixations, and the cueing effect was reduced from 420 ms in 

fixed- to 257 ms in mixed-identity blocks in the aware group. This is not surprising since more 

fixations were necessary to identify the target and distinguish it from non-targets, especially on 

identity-swap as compared to identity-repeat trials. Even when the first saccade was directed to the 

predicted location, further processing steps, including comparisons with (and saccades to) the 

neighboring items, would have been necessary to ascertain the target identity. This is exacerbated on 

identity-swap trials, where the ‘default’ assumption that the target identity stays the same as on the 

 

https://paperpile.com/c/L9t4ZY/BFzkT+XkFqP/?prefix=e.g.%2C,
https://paperpile.com/c/L9t4ZY/BFzkT+XkFqP/?prefix=e.g.%2C,
https://paperpile.com/c/a7OuoS/GxxKb/?prefix=see%2C%20e.g.%2C
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previous trial proves wrong, requiring a change in the “target template.” This effect mirrors 

feature-based priming effects in pop-out or feature-conjunction search (Geyer et al., 2006; 

Kristjánsson et al., 2002; Maljkovic & Nakayama, 1994). Interestingly, even though the 

probability-cueing effect was reduced on identity-swap compared to identity-repeat trials, it remained 

significantly larger than zero. This suggests that having acquired the dynamic regularity in target 

placement did facilitate performance even under the most demanding search conditions. 

Whether these conditions allow the efficient acquisition of dynamic regularity in the first 

instance is a different question. Our data are non-conclusive in this regard. For the first four out of the 

total eight blocks, the cueing effect differed little between aware participants starting with the fixed 

vs. those starting with the mixed target-identity condition. The latter group, however, showed a 

numerically nearly doubled effect after switching to the fixed condition, while the former did not 

exhibit any gain following the switch to the mixed condition. Although the critical interaction was 

non-significant (F(1,14) = 0.86, p = .369)20, this pattern is more consistent with the mixed 

target-identity condition interfering with the expression of the cueing effect, rather than impeding the 

acquisition of the dynamic regularity itself. The expression of the effect would be affected due to the 

need to establish the target template valid on a trial, even if the target at the frequent location target is 

the first item inspected (see above).  

 

Awareness of the dynamic rule and target-location probability cueing in serial search 

Unlike the majority of studies of probability-cueing effects, which conclude that spatial 

statistical learning is implicit and not dependent on awareness (e.g., Jiang et al., 2013, 2014; Won & 

Jiang, 2015), we found strong evidence that awareness is involved in the present dynamic 

target-location cueing effect. First of all, only participants classified as ‘aware’ (70% of participants) 

based on our post-experimental questionnaire showed a dynamic cueing effect in both the task-final 

RTs and the earliest eye movements. In contrast, ‘unaware’ participants (30%) showed no cueing 

effect in either early or later performance indices; they only exhibited a tendency to saccade to the 

previous target location. Secondly, in ‘aware’ participants, the strength of the cueing effect, even in 

the proportion of first eye movements directed to the predicted location, correlated significantly with 

their belief in the rule’s applicability: the more accurately participants estimated the frequency of the 

target shifting in the regular direction, the larger their cueing effect (uncompromised by low 

reliability). 

Several factors, including reliability, dichotomization, unbalanced groups, could potentially 

reduce both the effect sizes in group comparisons and correlations. Thus, the significant relationship 

between dynamic target-probability cueing and awareness of the dynamic regularity suggests a strong 

20 The degrees of freedom are reduced because one of the aware participants had insufficient trials in one of the conditions 
and was so excluded from analysis.   

 

https://paperpile.com/c/L9t4ZY/FpxYm+H5nkQ+Yjnpz
https://paperpile.com/c/L9t4ZY/FpxYm+H5nkQ+Yjnpz
https://paperpile.com/c/L9t4ZY/myYlz+51Nu8+Hfifm/?prefix=e.g.%2C,,
https://paperpile.com/c/L9t4ZY/myYlz+51Nu8+Hfifm/?prefix=e.g.%2C,,
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link at the latent level.21 The finding of ‘explicitness’ aligns with other studies that used sensitive 

awareness tests (e.g., Giménez-Fernández et al., 2020; Golan & Lamy, 2023), and the study of 

dynamic target-location cueing in parallel search (Yu et al., 2023). In particular, it is in line with the 

significant correlation reported by Giménez-Fernández et al. (2020), whose measures of awareness we 

adopted in present study. Interestingly, our study demonstrated the role of awareness in a relatively 

small sample (24 out of a total of 34 participants) – suggesting that, at least in this dynamic scenario, a 

large sample size may not be crucial for demonstrating a critical impact of ‘awareness’ in statistical 

learning. 

What exactly is the role of awareness in the dynamic cueing effect? Our findings indicate that 

the effect depends on awareness, as only the ‘aware’ participants benefited, while the ‘unaware’ group 

did not. Despite a significant correlation between awareness of the dynamic regularity and the cueing 

effect, this does not necessarily mean that the effect is ‘voluntary’ in nature or that participants 

consciously applied the rule on each trial. Recall that the latencies of the first saccade to the predicted 

location (some 190 ms) and to the repeated and infrequent locations (somewhat over 200 ms) were 

shorter compared to random locations (> 220 ms). This pattern suggests that there is an ensuing 

competition, upon display onset, of the search items at locations in the region of the previous target 

position, that is, the position to which a saccade had just been executed (on trial n-1) and for which 

activity remains elevated across trials on some (integrative) oculomotor priority map, likely, in the 

superior colliculus (e.g., Veale et al., 2017). Thus, while the repeated location remains a strong 

attractor for the first saccade on the new trial (trial n), this competition is then resolved in favor of the 

frequent location, perhaps through a rule-related input injected into the priority representation via 

frontal-eye-field neurons that represent the dynamically updated, goal-related priority. Given that the 

display array was not visible during the intertrial interval and there were no placeholders, the updating 

of the saccade goal likely happened after search-display onset. In this case, latencies below 200 ms 

may not be sufficient for consciously mediated inputs to influence saccade programing.22 Accordingly, 

one would have to assume that rule-based dynamic goal updating, while perhaps initially requiring 

conscious control to be set up, eventually becomes a rather automatized, ‘implicit’ process that runs 

off without ‘explicit’ cognitive intervention (cf. Schneider and Shiffrin 1977). Thus, it may be 

premature to conclude from the correlation between awareness of the dynamic regularity and the 

cueing effect that this effect is causally mediated by awareness on each (or most) trial (s). 

Overall, there is no dynamic target-location probability-cueing effect in serial search without 

awareness of the regularity. Yu et al. (2023), who implemented the same cross-trial regularity, 

demonstrated that this also applies to dynamic target-location cueing in parallel search. They found 

that the same regularity did not produce a cueing effect when it was implemented in a pop-out 

22 This would also be consistent with Findlay (1997), who concluded from his study of saccade target selection during 
pop-out and feature-conjunction searches that “the generation of the first saccade is a relatively automatic process, rather 
than one which is subject to cognitive control” (p. 628).   

21 We thank Dr. M. Vadillo for communicating this point to us. 

 

https://paperpile.com/c/L9t4ZY/OvSDV+8jCP9/?prefix=e.g.%2C,
https://paperpile.com/c/L9t4ZY/sJ9fu
https://paperpile.com/c/a7OuoS/yH9Ri/?noauthor=1
https://paperpile.com/c/L9t4ZY/ePQBN/?prefix=e.g.%2C
https://paperpile.com/c/jwV27r/s4qn2/?prefix=cf.
https://paperpile.com/c/L9t4ZY/sJ9fu/?noauthor=1
https://paperpile.com/c/L9t4ZY/HPBr4/?noauthor=1
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distractor in parallel search, because participants did not become aware of the regularity in the 

cross-trial distractor-location shift – whereas participants became aware of the exact-same shift when 

implemented in the pop-out target.23 Thus, we propose that participants’ awareness of the regularity 

(Giménez-Fernández et al., 2020; and, on the part of the experimenter, establishing awareness by 

sensitive measures; cf. Vadillo et al., 2016, 2020) is crucial for dynamic probability-cueing effects to 

develop in any type search, whether serial or parallel.  

 

Why do unaware participants show a negative probability-cueing effect? 

An intriguing finding is that the unaware participants displayed a significantly negative 

(rather than a positive or no) RT probability-cueing effect (see Figure 3), coupled with their first 

saccades being somewhat more likely to land at the infrequent than the frequent locations (see Figure 

14). Given the small sample size, we can only speculate why this occurs. 

One possible reason is that some participants’ oculomotor scanning behavior is dominated by 

a backward-looking ‘trial-history’ effect, which interferes with acquiring a forward-looking rule-based 

prediction, thus biasing their selection priorities. Specifically, assume that repetition priming enhances 

the priority of not just the last target location (trial n–1), but also the location on the preceding trial 

(trial n–2), though the enhancement of the latter is reduced due to the longer decay time of the 

memory trace. This “trial-history” effect would lead to both the repeated (trial n–1) location and the 

infrequent (trial n–2) location act as attractors for an eye movement. The decay-dependent gradient 

from the trial n–1 to the n–2 location could produce a scanning bias counter to the direction of the 

dynamic target shift. Thus, if participants’ scanning behavior is strongly influenced by such a ‘history’ 

bias, their search would be facilitated for targets located at the infrequent location compared to the 

frequent location – producing a negative cueing effect. At the same time, this backward scanning bias 

might also hinder participants from becoming aware of the dynamic regularity, because initial 

scanning in the ‘infrequent’ direction would make it harder to relate the location of the current target 

(established only after multiple fixations on trial n) to that of the previous target. In contrast, 

participants with a weaker history-dependent, backward bias (e.g., due to a fast decay of the trial n–2 

memory trace) would be more likely to scan from the repeated to the frequent (rather than the 

infrequent) target location. As a result, they may become more readily aware of the dynamic 

regularity, because they find the target rapidly on a significant proportion of trials. Consequently, they 

would discern the rule and develop a positive probability-cueing effect. 

 

23 This would also explain Li and Theeuwes’ (2020) non-finding: their participants did not become aware of their (more 
complex and less likely) dynamic target-location regularity and accordingly exhibited no cueing effect. 

 

https://paperpile.com/c/L9t4ZY/pyivI+6WLtS+OvSDV/?prefix=and%2C%20on%20the%20part%20of%20the%20experimenter%2C%20establishing%20awareness%20by%20sensitive%20measures%3B%20cf.,,
https://paperpile.com/c/L9t4ZY/pyivI+6WLtS+OvSDV/?prefix=and%2C%20on%20the%20part%20of%20the%20experimenter%2C%20establishing%20awareness%20by%20sensitive%20measures%3B%20cf.,,
https://paperpile.com/c/a7OuoS/dn436/?noauthor=1
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Figure 14. Upper panels: Proportions of first saccades landing on the frequent, repeated, and infrequent locations, 

respectively, as a function of experimental Epoch (1-4), separately for the aware and unaware groups. Lower panels: 

Probability-cueing effect measured in terms of the landing position of the first saccade (proportion frequent minus infrequent 

locations). Error bars represent one standard error.  

 

In line with this scenario, Figure 14 shows distinct patterns in the distribution of first saccades 

between the aware and unaware groups. In the aware group, almost three times as many first saccades 

(29%) were directed to the repeated location compared to the infrequent location (10%). In contrast, 

in the unaware group, only some 1.5 times as many first saccades (23%) were directed to the repeated 

vs. the infrequent location (14%). Overall, both groups made a similar amount of first saccades to the 

repeated-infrequent region (aware: 19.5%; unaware: 18.5%). This pattern suggests that the repetition 

bias is more focused on the repeated location in the aware group, whereas it is more distributed across 

both the repeated and infrequent locations in the unaware group, indicative of an extended ‘history’ 

effect. Additionally, Figure 14 shows that learning in the aware group is characterized by a marked 

increase in first saccades directed to the frequent locations across the four experimental epochs: from 

20% in the first block to 35% in the last block. By Epoch 4, saccades to the frequent location 

dominate saccades to the repeated location, coupled with a decrease in first saccades to the infrequent 

location (from 12% to 8%) – explaining the cumulative growth of the cueing effect across the 

experiment. In contrast, the unaware group showed no change in the proportions of first saccades to 

the frequent location (remaining at 13%), indicating no learning of the dynamic regularity. 

 

Conclusion 

 

https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#figur_saccade_landing
https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_saccade_landing
https://docs.google.com/document/d/1-NltuQ0Uj67ylec3plIxNu4nU7D82eHw_qlbOsm_kW0/edit#fig_saccade_landing
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Our findings show that, contrary to previous reports, participants can extract dynamic 

regularities in the cross-trial placement of the target even in serial search (involving sequential eye 

movements) and utilize them to improve task performance – at least when the regular cross-trial target 

shift is relatively simple and occurring frequently. This finding is non-trivial, as the exact-same 

regularity is not picked up when implemented in a salient, ‘pop-out’ distractor in parallel search (Yu et 

al., 2023). Crucially, this dynamic target-location probability-cueing effect is evident even in the 

proportion and latency of the very first saccade elicited upon search-display onset, driven purely by 

the learnt rule and not the actual target location. Furthermore, it correlates with participants’ 

awareness of the dynamic regularity. Given how fast the rule-injected bias can operate after display 

onset (evident in the very fastest first saccades, between 100 and 150 ms post-display onset), the 

cueing effect itself may not be consciously mediated. In this case, awareness plays a crucial role in 

acquiring the effect in the first instance. Alternatively, the rule-based biasing may already be prepared 

during the intertrial interval, allowing the cueing effect to ramp up rapidly after search display onset. 

More work, including electrophysiological measures, is needed to clarify this. Also, further work is 

required to map the boundary conditions for observable cueing effects, considering both the 

complexity of dynamic target regularities and the frequency with which they occur. 

 
Supplementary 

Appendix A: Extra RT Analyses 

Does target-identity swap influence performance in mixed trial blocks? 

To check whether target swapping might affect performance in mixed-block trials, we 

conducted a 2 × 2 × 3 ANOVA with the within-participant factors cross-trial Target Identity 

(repetition vs. switch), and cross-trial Target-Location Transition (frequent, infrequent), and the 

between-participant Awareness (aware vs. unaware). This ANOVA revealed RTs to be overall faster 

on trials where the target was repeated rather than switched, F(1,32) = 29.575, p < .001, = 0.480  𝜂
𝑝
2 

(Target-Identity main effect). There was also a significant Awareness × the Target-Location Transition 

interaction, F(1,32) = 10.609, p = .003, = 0.24924, due to the aware (but not the unaware)  𝜂
𝑝
2 

participants exhibiting a probability-cueing effect (i.e., faster RTs to targets at frequent vs. infrequent 

locations). See Figure A1 for a depiction of this effect pattern. 

24 The interaction between Awareness and Target-Location Transition became significant after adding 10 more participants to 
the original sample of 24 participants (see Method), pBefore  =  0.064 vs.  pAfter =  0.003. 

 

https://paperpile.com/c/L9t4ZY/sJ9fu
https://paperpile.com/c/L9t4ZY/sJ9fu
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Figure A1. RTs as a function of the cross-trial target-location transition (the frequent, infrequent) for trials n in which the 

target (identity) repeated vs. switched relative to trial n–1, separately for the aware and unaware groups of participants. Error 

bars represent one standard error.  

Does the progression of learning differ between the aware and unaware groups? 

Figure A2 illustrates the mean probability-cueing effect across the experimental ‘epochs’ 

(each comprising four consecutive trial blocks) for the aware and unaware groups. As can be seen, the 

learning patterns differ between the two groups. Linear mixed-model analysis revealed a main effect 

of Epoch (β = 84.53, SE = 30.28, t =  2.792, p = .006), and an Epoch  Awareness interaction (β = ×

-118.80, SE = 55.83, t = -2.128, p = .006). Also, statistical learning of the dynamic target-location 

regularity is evident in, and grows progressively across epochs, in the aware group (being significant 

already in the first epoch, t(23)=2.167, P=0.041, and effectively doubling by the end of the fourth 

epoch); in contrast, whereas there is no evidence of positive learning (in any of the epochs, not even 

the final ones; t’s< 0 ) in the unaware group, and in fact there was a significantly negative probability 

cueing effect in the third epoch (t(9) = -2.84, p = .019). 

 
Figure A2. The probability-cueing effect as a function of experimental Epoch (1-4), separately for the aware and unaware 

groups. Error bars represent one standard error.  

RT Analysis Based on Equalized Number of Trials Across Conditions  

 

https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_results_1a
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Our design necessarily involved an imbalance in the number of trials between the frequent 

and the infrequent, and the random conditions. Consequently, the RT variability might be higher in the 

latter, rare conditions compared to the frequent conditions, affecting statistical results. To rule this out, 

we randomly selected an equivalent number of trials (10%) from each condition (i.e., the frequent 

condition; the infrequent and random conditions already comprised 10% of the total number of trials) 

and then reanalyzed the RT data. The pattern of results (see Figure A3) remained essentially the same 

as in the analysis with all trials. A mixed-design ANOVA revealed significant main effects of  

Location Transition, F(2,64) = 6.366, p = .003,  = 0.166, and Target Constancy, F(1,32) = 74.886, p  𝜂
𝑝
2

< .001,  = 0.701. Additionally, the Location-Transition  Awareness interaction (F(2,64) = 8.400, p  𝜂
𝑝
2 ×

< .001,  = 0.208) and the Location-Transition  Target-Constancy  Awareness interaction,  𝜂
𝑝
2 × ×

F(2,64) = 3.070, p = .053,  = 0.088, were significant. Accordingly, the imbalance of the number of  𝜂
𝑝
2

trials across conditions in our design does not impact the statistical comparisons.  

 
 

 
Figure A3. Mean RTs as a function of the cross-trial target-location transition (random, infrequent, frequent transition) and 

cross-trial target constancy (target identity fixed, mixed per block), separately for the aware and the unaware groups of 

participants. Error bars represent one standard error.  

Appendix B: Analysis of Eye-movements in the Unaware Group  

Given that there was no probability cueing effect in the unaware group, we only reported 

eye-movement analyses in the main text for the aware group. For completeness, we included the 

eye-movement analyses of the unaware group here.  

Figure B1(a) presents the mean number of saccades required to reach the target in trial blocks 

with fixed vs. mixed (i.e., randomly varying) target identity for the three cross-trial target-location 

transition conditions (frequent, infrequent, random). An ANOVA revealed the Target-Constancy  ×

 

https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_results_1a
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Target-location Transition interaction to be significant, F(2,18) = 5.888, p = .011, = 0.395.  𝜂
𝑝
2 

Although post hoc tests yielded no significant comparisons, the interaction appears driven by the 

increased number of saccades in the frequent and random transition conditions vs. the infrequent 

condition in the mixed block. Importantly, there was no systematic advantage for frequent vs. 

infrequent and random transitions in either (fixed, mixed) block type. 

 

 
Figure B1 (a) Number of saccades until reaching the target under fixed vs. mixed target identities conditions, for the three 

cross-trial target-location transition conditions (frequent, infrequent, random). Error bars represent one standard error of the 

mean. (b) Average pre-target fixation duration in trial blocks with fixed vs. mixed target identity (cross-trial Target 

Constancy), dependent on the cross-trial Target-Location Transition (random, infrequent, frequent). Error bars represent one 

standard error of the mean. (c) . Total target fixation duration in trial blocks with fixed vs. mixed target identity (cross-trial 

Target Constancy), dependent on the cross-trial Target-Location Transition (random, infrequent, frequent) for target 

transition conditions (the random, infrequent, and frequent). Error bars represent one standard error of the mean.  

 

Figure B1(b) presents the average pre-target fixation duration in trial blocks with fixed vs. 

mixed target identity (cross-trial Target Constancy), dependent on the cross-trial Target-Location 

Transition (random, infrequent, frequent) for the unaware group. A repeated-measures ANOVA of the 

average pre-target fixation duration, with the factors cross-trial Target-Location Transition (frequent, 

infrequent, random) and Target Constancy (mixed vs. fixed), yielded only a main effect of Target 

Constancy, F(1,9) = 12.417, p = .006, = 0.580: pre-target fixations were shorter in blocks with  𝜂
𝑝
2 

fixed vs. randomly varying target identity (189 ms vs. 205 ms). 

Figure B1(c) presents the total target fixation duration in trial blocks with fixed vs. mixed 

target identity for the three cross-trial target-location transition conditions (frequent, infrequent, 

random). An ANOVA yielded only a main effect of the Target Constancy: F(1,9) = 12.706, p = .006,

= 0.585, with the fixation duration on the target being shorter in blocks with fixed vs. randomly  𝜂
𝑝
2 

varying target identity (766 ms vs. 873 ms). 

 

 

https://docs.google.com/document/d/1YgudeSWBkLty3xNWZmHYxnF46sZjmjbvtkyKnqTS8Os/edit#figur_RTs
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Figure B2. (a) and (b) Heatmaps of the landing positions of the first saccade, depending on the cross-trial Target-Location 

Transition (frequent, infrequent), for blocks with target identity being fixed vs. mixed (i.e., randomly variable) across trials. 

As illustrated in 8a, the fixation locations were rotated such that the target location on trial n-1 is at the top, and the frequent 

location one to the right, and the infrequent location to the left (for participants with counterclockwise target shifts, the 

frequent and infrequent locations were flipped right/left flipped). Gaussian filters with smoothing kernels of 0.3° were used 

to generate all heat maps. (b) Heatmaps for trials on which the target had shifted in the frequent and, respectively, infrequent 

direction, separately for trial blocks with fixed and mixed target identity. As can be seen, the first saccades were most likely 

to be directed to the repeated location; the frequent location was not more likely to receive a saccade than the infrequent or 

random locations (excepting the repeated location). (c) and (d) proportions and, respectively, latencies of initial saccades 

directed to the frequent, repeated, and infrequent locations (first fixation location) dependent on the cross-trial target-location 

transition (frequent, infrequent, repeated), separately for the target-identity fixed and mixed blocks of trials. Error bars 

represent one standard error of the mean. 

 

Awareness and Dynamic Probability Cueing of the First Eye Movement (Unaware) 

For the group of unaware participants, there were no significant correlations between the 

probability-cueing effect in the first fixations and the confidence they associated with their Q1 

response (slope = 0.007, r = 0.36, p = .30,  = 0.13) and the rated frequency in their Q3 response 𝑅2

(slope = -0.0001, r = –0.10, p = .78,  = 0.01) 𝑅2
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Figure B3. Probability-cueing effect in the first fixation location as a function of the Q1 confidence rating (1-6), for the 

group of unaware participants. (b) Probability-cueing effect in the first fixation location as a function of Q3 frequency rating 

(0%–100%).  

 

 

 

 

 
Awareness and Dynamic Probability Cueing of the Number of Required Saccades 

For the group of unaware participants, there were no significant correlations between the 

probability-cueing effect in the first fixations and the confidence they associated with their Q1 

response (slope = -0.1, r = -0.31, p = .39,  = 0.09) and the rated frequency in their Q3 response 𝑅2

(slope = -0.01, r = –0.40, p = .25,  = 0.16). 𝑅2
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Figure B4. Probability-cueing effect in terms of the number of saccades until reaching the target, as a function of the Q1 

confidence rating (1-6), for the group of unaware participants. (b) Probability-cueing effect in terms of the number of 

saccades until reaching the target as a function of Q3 frequency rating (0%–100%).  

Inter-trial Priming of the First Eye Movement from Rule-conform (vs. Rule-breaking) Target 
Shifts (for unaware group) 

Figure B5 provides a plot of the probability-cueing effect in terms of the first eye movement 

(i.e., the proportion of saccades to the frequent minus the infrequent location) dependent on the target 

location on the previous trial (i.e., trial n–1 target at frequent vs. infrequent location), separately for 

trials blocks with fixed vs. mixed target identity. An ANOVA of this cueing effect with the factors 

Previous (trial n–1) Target Location and cross-trial Target Constancy revealed no significant effects. 

In particular, the main effect of Previous Target Location was non-significant, F(1,9) = 0.579, p = 

.459, = 0.062, that is, the proportion of first saccades directed to the frequent (vs. the infrequent)  𝜂
𝑝
2 

location was not different following rule-conforming (-0.012) as compared to rule-breaking target 

shifts (0.007) on the preceding trial. 

 
Figure B5. Probability-cueing effect in the first eye movement (proportion of saccades to frequent minus infrequent 

location) dependent on the target location on the preceding trial (i.e., trial n–1 target at frequent vs. infrequent location), 

separately for trial blocks with fixed vs. mixed target identity.  Error bars represent one standard error of the mean. 
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Abstract 

Target facilitation can be achieved via spatial statistical learning of the target. Although many 

behavioral studies have found participants' performance was improved when targets occur at frequent 

locations relative to infrequent, the electrophysiological correlates of statistically learned target 

enhancement, however, have not been well studied. Moreover, a recent behavioral study (Turatto and 

Valsecchi 2022) has proved that the learned distractor suppression could cause long-lasting changes in 

the priority map, which affects the future computation of target salience at the same location to 

facilitate attention selection. It remains to be seen whether the learned target enhancement can also 

cause long-term changes in the priority map. Thus in the current study, the EEG data were collected 

while participants searched for a target in a serial search task with an unbalanced distribution of 

targets. N2pc (lateralized event-related potentials) and lateralized alpha (8–12 Hz) power were used to 

track the temporal dynamics of effects. The experiment consisted of two phases: the probability 

manipulation of target location was implemented in the training phase; the probability manipulation of 

target location was removed in the testing phase, and the distractor was also introduced which shared 

a similar feature as the target. Behaviorally, we found robust learning of predicted target locations in 

the training phase: processing of the target at frequent locations was facilitated, compared to 

infrequent target placement. In the testing phase, we found that the long-term learning even persisted 

when the target in the training phase became the distractor. Electrophysiologically, the learned target 

enhancement is not associated with lateralized alpha power during the pre-stimulus period. Yet the 

targets at frequent locations induced larger N2pc amplitude and earlier N2pc latency in the training 

phase. Thus, we confirm that facilitation resulting from target spatial statistical learning can cause 

plastic changes on the priority map. 

 

Keywords: target enhancement, spatial statistical learning, N2pc component, alpha power, visual 

attention 
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Introduction 

The dynamic world demands humans to efficiently adapt to the environment with 

overwhelming amounts of information. In this case, utilizing environmental regularities such as the 

likely location of a ‘target’ object, can facilitate an optimal deployment of attention and cognitive 

resources. For example, when searching for an important document, we often begin our search in 

familiar and probable locations, like our desk or filing cabinet. In the laboratory, this phenomenon has 

been systematically investigated in terms of so-called spatial ‘probability cueing effects’, when a 

task-relevant target occurs with a high probability at one location, our attentional system can acquire 

this information to enhance search efficiency, facilitating target detection and corresponding response 

decisions (Druker and Anderson 2010; Geng and Behrmann 2002, 2005; Hoffmann and Kunde 1999; 

Jiang et al. 2013; Shaw and Shaw 1977). For example, Geng and Behrmann (2002, 2005) manipulated 

the distribution of the target location in a way that the target appeared with 80% probability in one 

location and with 20% probability in the other locations. They found that mean reaction times (RTs) 

were significantly faster when the target was presented in the frequent compared to the infrequent 

location. Such facilitation effects support the view that statistical learning can bias attention and 

optimally adjust the weights within an assumed spatial priority map, leading to efficient selection 

properties (for a review, see Theeuwes, Bogaerts, and van Moorselaar 2022).  

This view was also supported by a recent study that examined statistical learning regarding 

distractor locations (Turatto and Valsecchi 2022; Goschy et al. 2014; Sauter et al. 2018; Zhang et al. 

2019). For example, Turatto and Valsecchi (2022) demonstrated that the suppressive signals may not 

only bias attention but also lead to long-lasting plastic changes in the activation landscape of spatial 

priority maps, affecting target selection even when the singleton distractor in the training phase 

became the target in the testing phase (Turatto and Valsecchi 2022). However, the question remains 

whether or not target enhancement signals can cause such long-lasting plastic changes in the priority 

map. 

While statistical learning regarding target location has been investigated intensively in studies 

at the behavioral level (Druker and Anderson 2010; Geng and Behrmann 2002, 2005; Goschy et al. 

2014; Sauter et al. 2018), knowledge about neural mechanisms underlying this phenomenon is 

limited. Investigations utilizing ERPs to explore the mechanisms involved in target enhancement have 

primarily relied on analyzing the N2pc component (Duncan, Theeuwes, and van Moorselaar 2023; 

Hickey, Di Lollo, and McDonald 2009), which has been demonstrated by numerous studies to be a 

common electrophysiological marker associated with the rapid assignment of visuospatial attention in 

multi-stimulus displays (e.g., Luck and Hillyard 1994; M. Eimer 1996; Woodman and Luck 1999; for 

a review, see Martin Eimer 2014). The N2pc is an enhanced negative-going component of EEG 

recorded in the posterior central electrode sites contralateral to the attended target objects in visual 
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search displays, occurring about 200-350 ms after stimulus onset (Kiss, Van Velzen, and Eimer 2008; 

Gaspar et al. 2016), which generated in ventral extrastriate visual areas (Hopf et al. 2000). A recent 

study reported a close relationship between N2pc and the target locations of the probability cueing 

effect. By applying an additional singleton paradigm, Duncan et al. (2023) reported that targets 

located at high probability locations did elicit larger N2pc amplitudes relative to when targets located 

at low probability locations. Additionally, some studies suggested endogenous alpha oscillations (in 

the 10 Hz range) are involved in the enhancement of relevant or the suppression of irrelevant stimuli 

(Foster and Awh 2019; Slagter et al. 2016). Specifically, a decrease in lateralized alpha-band 

amplitude, known as alpha desynchronization, has been considered an indicator of attentional 

facilitation of contralateral stimuli (Bacigalupo and Luck 2019; Forschack et al. 2022; Neuper, Wörtz, 

and Pfurtscheller 2006; Sauseng et al. 2005). One study demonstrated that rapid-response trials were 

associated with a prediction of target location, as reflected by alpha band (8-12 Hz) laterization 

(Spaak et al. 2016). However, the prediction caused in that study is not because of target spatial 

statistical learning. Thus further studies will be needed to address this question regarding the role of 

alpha oscillation in target spatial statistical learning.  

In the present study, we examined the direct impact of statistical learning on selection 

mechanisms by manipulating the probability that the target would appear at various display locations. 

EEG signals were also recorded while participants performed the serial search task in order to 

characterize the neural mechanisms underlying target enhancement caused by target spatial statistical 

learning. Our hypothesis posited that targets situated in regions with higher probabilities would yield 

better performance compared to targets located in areas with lower probabilities. Additionally, we 

were interested in examining whether such learning of likely target locations can also lead to 

long-lasting plastic changes in the activation landscape of spatial priority maps, facilitating target 

selection. However, it is not clear if such long-lasting plastic changes, if exist, is bound to the target 

identity, or the location. If the learned probability cueing is bound to the target identity, the selection 

and rejection of the target or distractor would be faster. In this case, when the target becomes a 

distractor during testing, we expect the disengagement from the distractor would be quicker. In 

contrast, if the learned probability cueing is only associated with the location, attentional guidance 

towards the learned location would cause great surprise and cost when it is a distractor. This 

location-based guidance, if exists, would be independent of the target identity, and occurs earlier in 

the visual processing, likely manifested in the early component N2pc. On this ground, we designed a 

study with the training and test sessions. In the training session, the target occurrence was uneven. We 

expect a standard target-location probability cueing effect. However, in the training session, the target 

and the distractor occurrence was equally likely across display. Moreover, we used the previous target 

as the distractor to disassociate the learning association is identity-based or location-based. . 
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Methods  

Participants 

Twenty-four participants (mean age 24.96 years, age range 19 to 31 years; 15 females) were 

recruited at Ludwig-Maximilians-University (LMU) Munich for this experiment. All participants 

were right-handed and had normal or corrected-to-normal visual acuity and (self-reported) normal 

color vision. Informed consent was obtained from all participants before the experiment. They were 

paid 9 Euro per hour for their participation or received course credits. The sample size was 

determined based on the crucial target-location effect reported in the previous study (Yu et al. 2023), 

which is sufficient to detect effects of size dz = 0.65 and above with a power of  0.8 (α = 0.05, 

one-tailed). The study protocol was approved by the Ethics Committee of the LMU Faculty of 

Psychology and Pedagogics.  

Apparatus and Stimuli 

The experiment was performed in a dimly lit, sound-attenuated, and electrically shielded 

experimental booth. Visual stimuli were generated by PsychoPy (v. 2022.2.2), presented on a 23-inch 

liquid crystal display monitor (ASUS, Taiwan; refresh rate 60 Hz; display resolution: 1,920 × 1,080 

pixels). Participants viewed the stimuli from a distance of 62 cm (eye to screen). They were instructed 

to sit as relaxed as possible to minimize muscle activity and other ‘noise’ that could impact the quality 

of the EEG signal during task performance, and maintain fixation on the central fixation while doing 

the task. They issued manual responses by pressing the keys ( “S” and “L” for respectively clockwise 

and counterclockwise rotation) on the keyboard with their right-hand or left-hand index fingers as fast 

and as accurately as possible. 

The search displays for the training and test phase (see Figure 1) featured a white fixation ( 

1.2° × 1.2°) cross at the center, set against a gray screen background (CIE [Yxy]: 22.4, 0.312, 0.318). 

Each display contained eight items equidistantly arranged around an imaginary circle (radius: 8.3° of 

visual angle). For the training phase, one single target shape, either a white “T” or “T”-like shape, 

among the non-target “L” and “F” shapes. When the target was a “T”, the “T”-like shape was a 

distractor, and vice versa. All stimuli subtended 1.6° of visual angle in width and height  (CIE [Yxy]: 

55.4, 0.309, 0.326). To increase task difficulty and encourage serial search, the “T”-like shape 

featured a slight offset at the line junction, measuring 0.27°. For the testing phase, the search display 

was identical to that in the training session, except that it consisted of four items. “T”, “T”-like letter, 

“L” and “F”. Target is either “T” or “T”- like letter. For example, if “T” is the target in the training 

phase, then the “T”- like letter will be the target in the testing phase. The “F”-shape non-targets were 

included to increase the difficulty of the task.  
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Figure 1. Visual search displays examples of the experiment. (a) An example of the search display for the training session of 

the experiment. The illustration shows different conditions: High-probability target and low-probability target condition and 

the target is indicated by red dashed circles. Participants had to search for a target (either the letter T or T like letter, the 

target is balanced across participants). The high-probability region was also balanced across participants. Specifically, for 

half of the participants, the high-probability target region is located on the right; for the other half, it is located on the left. (b) 

Schematic representation of the spatial and salience regularities of the target. High-probability target locations are shown in 

red, while low-probability target locations are shown in green. Percentages at each location represent the probabilities of 

each target type to appear in a given location. The high-probability region was counter-balanced across participants. (c) An 

example search display for the testing session of the experiment. The target is indicated by a red dashed circle and the 

distractor is indicated by a blue dashed circle. In distractor-present trials, both the target and distractor were equally 

distributed in the search display. (d) Experimental timeline: The experiment was divided into different sessions. During 

Sessions 1 and 3 (training phases), participants were familiar with the task and uneven target distributions on the display (the 

regularity regarding target location was unknown to participants). During sessions 2 and 4 (testing phases), participants were 

tested with a target or a distractor sharing a similar identity to the training target. The phases of training and testing were 

intertwined. 
 

Design and Procedure 

Each trial began with a fixation cross for 500 ms, followed by a search display, the circular 

search array was presented and remained visible until the participant responded. Participants were 

tasked to locate the target and then promptly press either the “S” (left-pointing) or the “L” 
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(right-pointing) key to confirm target identification. Upon their response, a feedback message showed 

for 500 ms, indicating either “Correct (response)” in green or “Incorrect (response) ” in red. 

To obtain enough trials for EEG analysis, the experiment included two training phases and 

two testing phases, which were interleaved. In each training phase (480 trials, divided into 10 blocks 

with each of 48 trials), the search display consisted of eight shapes with a shape-defined target, either 

a “T” or T-like letter (counterbalanced among participants). Target was present on every trial and 

could appear at any of the eight possible display locations, with its location uniformly distributed 

across all trials. The remaining non-targets were "Ls" and "Fs", oriented randomly in one of two 

orthogonal directions (90° or 270°). In addition, particular regularities regarding uneven spatial 

distribution of targets across trials were built in.  Specifically, in the majority of trials (80%), the 

targets appeared in the high-probability location (see  Figure 1b). On the remaining 20% of the trials, 

targets were evenly divided among low-probability locations. 

In each testing phase (520 trials, divided in 10 blocks of 520 trials), the distractor was absent 

in 31% (16 distractor absent-trials in each block) of the trials. In distractor-absent trials, the target was 

equally likely to appear at each location, whereas in distractor-present trials its location was chosen 

randomly in each trial among the locations not occupied by the distractor. Moreover, in 

distractor-present trials, the distractor was the previous trained target, presented together with the new 

target. Both the target and distractor were equally distributed.  

Electrophysiological recording and preprocessing analysis  

The electroencephalogram (EEG) was continuously sampled at 1 kHz from 64 Ag/AgCl 

active electrodes (actiCAP system; Brain Products, Munich, Germany). Electrodes were mounted on 

an elastic cap (Easy Cap, FMS, Munich, Germany) placed according to the international 10-10 

System. To monitor for blinks and eye movements, two electrodes were placed in the superior and 

inferior orbits and at the outer canthi of the eyes to record electrooculograms. All electrophysiological 

signals were amplified using BrainAmp amplifiers (Brain Products) with a 0.1-Hz to 250-Hz 

band-pass filter. During data acquisition, all electrodes were referenced to FCz and re-referenced 

offline to the average of both mastoids. All electrode impedances were kept below 5 kΩ prior to the 

experiment.  

All EEG data analysis was performed using the Fieldtrip toolbox (Oostenveld et al. 2011), 

EEGLAB toolbox (Delorme and Makeig 2004), and ERPLAB (Lopez-Calderon and Luck 2014). 

Firstly, the continuous EEG data were manually inspected to remove apparent noise, such as 

electromyographic (EMG) bursts or wireless signal interference. Subsequently, the raw data was 

band-pass filtered using a 0.1-Hz to 30-Hz Butterworth infinite-impulse-response (IIR) filter (24 
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dB/Oct). Next, an ocular infomax independent-component analysis (ICA) was performed to remove 

eye blinks and horizontal eye-movement artifacts.  

After the preprocessing of the continuous EEG, data were epoched from -200 to 800 ms 

relative to search display onset and baseline-corrected using the prestimulus interval. Next, incorrect 

trials and trials with large artifacts, such as any absolute amplitude exceeding ±60 μV, bursts of 

electromyographic activity as defined by voltage steps larger than 50 μV per sampling point, and 

activity changes lower than 0.5 μV within an interval length of 500 ms (indicating dead channels),  

were removed on an individual-channel basis before further ERP averaging.  

 L-ERP analysis 

To examine the three lateralized ERP (L-ERP) components of interest (N2pc) on critical 

trials, EEG epochs were averaged separately for contralateral and ipsilateral parieto-occipital 

electrodes (PO7 and PO8) relative to the target location for each condition. These ERPs were then 

used to calculate the L-ERP components by subtracting the ipsilateral from the contralateral 

waveforms. We adopted the mean-amplitude approach to provide a metric for the components of 

interest, as it is less affected by noise (e.g., Larson et al. 2013). To quantify the N2pc, the mean 

amplitude of the difference waveforms (at the lateral occipital electrodes PO7/PO8) was calculated 

across the 200-320 ms time window post-stimulus onset, following the criteria used in previous 

studies (Qiu et al. 2023; van Moorselaar and Slagter 2019; Tay et al. 2019; Mazza, Turatto, and 

Caramazza 2009). For N2pc component latency estimation, we used fractional area latency (area = 

50%). This measurement involved computing the area under the ERP (N2pc) waveform over a given 

latency range (220-370 ms) and then finding the time point that divides that area into a prespecified 

fraction (Steven J. Luck 2014; Hansen and Hillyard 1980). Typically the fraction will be in one-half, 

in which case this would be called a 50% area latency measure, meanwhile, we only choose the 

negative area to minimize the effect of noise or overlapping components. 50% area latency is 

considered more reliable than peak latency, due to its less sensitivity to noise than peak latency, and it 

is also the most reliable way of measuring changes in latency across conditions or groups, leading to 

the best statistical power (Steven J. Luck 2014; Kiesel et al. 2008).   

 

Time-frequency analysis 

To study frequency-specific activity over time, a time-frequency analysis (Mallat 2009) was 

performed on individual epochs. This was done by transforming epochs into power values using a 

continuous wavelet transform (CWT) in the time domain ( ) to different frequencies ( ). The 𝑡 𝑓

modulated Gaussian sine functions are defined as:  where  denotes the 𝑊(𝑡, 𝑓) =  𝐴𝑒
−𝑡2

2σ
𝑡
2

 𝑒𝑖2π𝑓𝑡 𝑊
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complex convolution with the wavelet function,  is the time, and  is the frequency which increased 𝑡 𝑓

from 1 to 30 Hz in 30 logarithmically spaced steps. To keep a good trade-off between temporal and 

frequency precision, the Morlet parameter : , or , represents the number of 𝑐 𝑐 = 𝑓
0

2πσ
𝑡( ) 𝑐 = 𝑓

0
 / σ

𝑓

wavelet cycles which was increased from 3 to 10 cycles in linearly spaced steps to have a good 

balance between time and frequency resolution. To ensure a reliable analysis with sufficient temporal 

distance to the stimulus onset and to avoid edge and smearing effects, a 1500-ms long segmentation 

(i.e., –1500 to 1000 ms relative to the onset) was used for time-frequency decomposition. We assumed 

that any anticipatory suppression would be detectable within the pre-stimulus time window [-1500, 0 

ms]. The resulting power was baseline-corrected using a time window of −1300 to −1000 ms: a time 

window without any task-related processing and distant from the stimulus onset. The results of the 

wavelet transformations were then averaged across participants and conditions to obtain a measure of 

total power (Cohen 2014). Finally, the time-frequency power was quantified as mean power within 

8–12 Hz for further statistical analysis.  

To investigate whether the presence of a high-probability location on the left or right of the 

horizontal midline resulted in a lateralization of alpha-power, we first calculated a lateralization index 

over the broadband frequency range; this was done by taking frequency-band data for all frequency 

bins calculated over in contralateral sensors across all time points and subtracting them from those 

calculated over ipsilateral sensors. This matrix was then divided by the value of adding both ipsilateral 

and contralateral frequency values together (van Moorselaar and Slagter 2020): (𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 − 

𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙) / (𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙), a positive number then would indicate that contralateral 

power is larger than ipsilateral power, and vice versa for negative numbers. Critically, this index does 

not require a baseline. Statistical analyses were limited to electrode pairs PO7/8, PO3/4, and O1/2, 

which were selected on the basis of visual inspection of the topographic distribution of averaged alpha 

power (8–12 Hz) across the anticipatory time window (-1000 to 0 ms) and also were matched to those 

used in Wang et al. (Wang et al. 2019) who previously found alpha lateralization following statistical 

distractor learning. This analysis was further repeated using only the average alpha band frequencies 

in the total alpha band (8-12 Hz). 

 

Results 

Mean RTs  

Training phase - Statistical learning of Target location 

For the analysis of the correct mean RTs, we excluded the error trials (2.1%) as well as outliers 

(3.5%), defined as RT outliers if RTs exceed the median absolute deviation from the median or below 

0.1 second. Figure 2 shows the mean RTs for the target appeared at the frequent and infrequent 

 

https://paperpile.com/c/S8ppNd/DG7eX
https://paperpile.com/c/S8ppNd/8BcU
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regions, respectively. A paired-sample t-test between different target conditions (frequent vs. 

infrequent) showed a significant difference, manifesting the target probability cueing effect, t(23) = 

4.803, p < .001, dz = 0.98. Responses were faster when the target appeared in the frequent region 

(827.72 ms) compared to that in the infrequent condition (1038.8 ms). The results thus confirmed 

previous findings (Geng and Behrmann 2002) that visual search was more efficient when the target 

appeared at frequent (high probability) than at infrequent (low probability) locations.  

 
Figure 2. Mean RTs as a function of target-position (frequent and infrequent) condition in the training phase. Error bars 

represent the standard error.  

Testing phase  

In the testing phase, the target and distractor appeared equal-likely in all eight possible 

locations, while the distractor was the previous trained target in the training phase. Given that the 

target occurrence in the training phase had two regions, we remained to divide the display into two 

regions: the previous distractor frequent region (‘frequent’) and the previous distractor infrequent 

region (‘infrequent’). Considering the distractor absence condition, we further divided trials into three 

categories: The distractor-absent, the distractor-at-frequent, and the distractor-at-infrequent.  

The error trials and outliers were relatively low in the testing phase: error rate (5.7%), and 

outlier rate (3.4%). A repeated measures ANOVA revealed significant difference among three 

distractor conditions (distractor-absent: 0.011, distractor-frequent: 0.107, distractor-infrequent: 0.102), 

F(2,46) = 47.313, p < .001, = .673, the error rate for the distractor-absent condition is significantly 𝜂
𝑝
2 

lower than both distractor-frequent (t(23) = -8.644, p < .001, dz = -1.764) and distractor infrequent 

conditions (t(23) = -8.186, p < .001, dz = -1.671). 

 

 

 

Testing phase-Statistical learning of Distractor location (or Distractor probability cueing effect) 

 

https://paperpile.com/c/jQSgG8/niOWf
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The mean RTs for the distractor-absent, the distractor-at-frequent, and the 

distractor-at-infrequent conditions were 1140.5, 1401.0, and 1361.8 ms respectively (Figure 3a). A 

repeated-measures ANOVA for the mean RT revealed a significant difference among distractor 

conditions, F(2,46) = 33.139, p < .001, = .590. A post hoc analysis revealed that the significance 𝜂
𝑝
2 

was mainly contributed by the fast responses in the absent condition compared to the 

distractor-present condition ( distractor-absent vs distactor-at-frequent: t(23) = -7.549, p < .001, dz = 

-1.541; distractor-absent vs distactor-at-infrequent: t(23) = -6.414, p < .001, dz = -1.309; 

distactor-at-frequent vs distactor-at-infrequent: t(23) = 1.135, p = .787, dz = 0.232). Given that we 

were most interested in the transfer effect of the probability cueing, we computed the difference 

between the distractor-at-frequent and the distractor-at-infrequent locations (-39.2 ms). As we 

hypothesized that learning the target-based probability cueing would enhance the guidance toward the 

previous-defined target (now distractor) identity and expected a cost insurged when the distractor 

appeared at the frequent location, we applied one-tailed t-test, which yield a significant difference 

between two regions, t(23) = 1.86, p = .038 (one-tail), dz = 0.380, evidencing significant distractor 

interference. 

 

 
Figure 3. (a) Mean RTs as a function of distractor-location (Absent, frequent and infrequent) in the testing phase. (b) 

Distractor Probability-cueing effect ( ) on a given trial n dependent on whether the preceding 𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

distractor (on trial n–1)  had occurred at the frequent vs. infrequent location (depend on target’s conditions in the training 

phase). 

 

Testing phase-Statistical learning of Target location  

Figure 4a presents the mean RTs for three different target conditions (frequent, infrequent, and 

midline). A repeated-measure ANOVA with the within-participant factors target condition (frequent 

and infrequent) and distractor condition (distractor absent and distractor present (mid)), revealed a 

significant main effect of target condition (trials were excluded from analysis when target was 

presented on midline), F(1,23) = 8.807, p = .007, = 0.277, RTs were significantly faster in frequent  𝜂
𝑝
2 
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(1066.65 ms) condition relative to infrequent (1154.69 ms) condition, with a pattern of RTs consistent 

with what we found in the training phase. Similar to the training session, the presence of the distractor 

significantly slowed down responses: distractor present (1231.96 ms) vs. distractor absent (989.38 

ms), F(1,23) = 67.036, p < .001, = 0.745.  There was no significant interaction between target  𝜂
𝑝
2 

conditions and distractor presence condition, F(1,23) =0.047, p < .830, = 0.002.  𝜂
𝑝
2 

Figure 4b provides a bar plot of target probability-cueing ( ) effects 𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

for the presence and absence of the salient distractor. They were comparable: the distractor-absent 

(90.27 ms) and the distractor-present (85.80 ms), t(23) = 0.217, p = .830, dz = 0.044. Additionally,  

when distractor was absent, a robust target-cueing effect was found in the testing phase (target 

probability cueing effect was significantly greater than 0),  t(23) = 2.676, p = .0007, dz = 0.546; when 

distractor was present (midline), a robust target-cueing effect was also found (target probability cueing 

effect was significantly greater than 0), t(23) = 2.971, p = .003, dz = 0.606, suggesting that participants 

continue to use the learning strategy they had gained during the training phase to guide their visual 

search during the unbiased testing phase. 

 

 
Figure 4. (a) Mean RTs as a function of target-location  (frequent, infrequent and midline), separately for distractor absent 

and distractor present (midline) conditions in the testing phase. (b) Target Probability-cueing effect (

) on a given trial n dependent on whether the preceding target (on trial n–1)  had occurred at the 𝑅𝑇
𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

− 𝑅𝑇
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡

frequent vs. infrequent location, separately for distractor absent and present conditions. 

 

 

Electrophysiological data  
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Training phase  

Figure 5 shows the lateralied ERPs for the target-only conditions. By visual inspection, all 

waveforms exhibit a more negative-going deflection in the 200-320 ms time window (N2pc). 

Area Latency (50% percent )  Figure 6a shows the N2pc latency within the time window 

220-370 ms showed that  N2pc for target-frequent condition (M = 287.64-ms) emerged significantly 

(26.92 ms) earlier than that for target-infrequent condition (M = 314.56-ms), t(1525) = 2.078, p = .028, 

dz = 0.519 (one tailed).  

Peak mean Amplitude  Figure 6b shows that the mean amplitudes of N2pc in the time 

window 200-320 m were different across different target conditions. Paired sample t-test between the 

target-frequent condition and the target-infrequent condition revealed that the mean amplitude of 

N2pc for target-frequent condition (-2.57 µV ) is significantly more negative than that for 

target-infrequent condition (-1.00 µV),  t(23) = 1.722, p = .049, dz = 0.351 (one-tailed, with the 

hypothesis that the amplitude of N2PC is greater in infrequent conditions than in frequent conditions), 

indicating the attention was better guided toward the frequent relative the infrequent location.  

 

 

 
Figure 5. Grand-average ERP waveforms in the training phase. Subpanels A and B show the target-related contra-and 

ipsilateral waveforms, at electrodes PO7/PO8, from 200 ms pre-stimulus to 800 ms post-stimulus for targets that appeared at 

the frequent location and infrequent location. (A) The black waveforms indicate the target-frequent condition, where the 

25 Eight data were excluded from statistical analysis since they failed to show latency. . 
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target was 80% likely to occur; (B) The red waveforms indicate target-infrequent condition, where the target was 20% likely 

to occur. The solid lines represent the contralateral waveforms, the dashed lines the ipsilateral waveforms. (C) Panel C shows 

the difference between contra- and ipsilateral waveforms for the target-frequent and -infrequent locations. The light gray and 

green areas indicate N2pc latency time window (220-370 ms), and N2pc amplitude time window (20-320 ms). 

 

 
 

Figure 6. Mean target-related N2pc amplitude and latency in the training phase (i.e., left panel (a) and right panel (b), 

respectively). The target-related N2pc amplitude and latency are plotted as a function of the target location ( frequent vs. 

infrequent). Error bars depict the one standard SEMs. 

Testing phase 

Figure 7 shows the lateralied ERPs for the distractor-present (Target at midline) conditions 

(Figure 7A,B), distractor-present (Distractor at midline) conditions (Figure 7C,D), target-only 

conditions (Figure 7E,F). By visual inspection, all waveforms exhibit a more negative-going 

deflection in the 200-320 ms time window (N2pc). 

Target at Midline, Distract at Target-Frequent or Target-Infrequent Region: Examining Disractor cost 
in Visual Search 

Area Latency (50% percent ) Figure 8a showed that 50% area latency analysis within the time 

window 220-370 ms were different across distractor conditions, when the target was located at the 

midline location. Paired sample t-test revealed that N2pc for target-frequent condition  (M =284.29 

ms) was still emerged earlier (20.59 ms) than that for target-infrequent condition (M = 304.88 ms),  

t(12) = -1.795, p = .049, dz = -0.49726. 

Peak mean Amplitude  Figure 8b shows that the mean amplitudes of N2pc in the time 

window 200-320 ms were different across different distractor conditions, with the target located on 

the midline. Paired- sample t test between distractor-frequent condition and -infrequent condition 

revealed that the mean amplitude of N2pc for distractor-frequent condition (-2.84 µV ) is significantly 

26  Eleven data were excluded from statistical analysis due to failure of detection.  
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more negative than that for distractor-infrequent condition (-1.06 µV),  t(23) = 2.036, p = .027, dz = 

0.416 (one-tailed, with the hypothesis that the amplitude of N2pc is greater in infrequent conditions 

than in frequent conditions). 

Distractor present (at Midline), Target at Frequent or Infrequent Region: Examining Target 
facilitation effect in Visual Search  

Area Latency (50% percent ) Figure 8c showed that 50% area latency analysis within the time 

window 220-370 ms were different across target conditions, when the distractor was located at the 

midline location. There was no significant difference of the N2pc latencies between the 

target-frequent condition  (293 ms) and the target-infrequent condition (301 ms),  t(16) = .410, p = 

.344, dz = 0.100 (one tail t-test)27. 

Peak mean Amplitude  Figure 8d shows that the mean amplitudes of N2pc in the time 

window 200-320 m were different across different target conditions, with the distractor located at the 

midline location. Paired- sample t-test between target-frequent condition and target-infrequent 

condition revealed that the mean amplitude of N2pc for target-frequent condition (-2.62 µV ) is 

significantly more negative than that for target-infrequent condition (-1.18 µV),  t(23) = 1.724, p = 

.049, dz = 0.352 (one-tailed, with the hypothesis that the amplitude of N2pc is greater in infrequent 

conditions than in frequent conditions). 

Distractor absent, Target at Frequent or Infrequent Region: Examining Target facilitation effect in 
Visual Search  

Area Latency (50% percent ) Latency analysis within the time window 220-370 ms showed 

that N2pc latencies for target-frequent condition (M = 298.29-ms) did not significantly differ from 

target-infrequent condition (M = 310.400-ms) (see Figure 8e), t(16) = .777, p = .224, dz = 0.188 

(one-tailed)28.  

Peak Mean Amplitude  According to Figure 8f, in terms of visual detection, N2pc 

amplitudes in the time window 200-320 ms varied across target conditions (frequent vs. infrequent) 

when the distractor was absent. However, numerically, the paired-sample t-test between 

target-frequent condition and target-infrequent condition revealed that the mean amplitude of N2pc 

for target-frequent condition (-2.38 µV ) is not significantly larger than that for target-infrequent 

condition (-0.98 µV), t(23) = 1.396, p = .088, dz = 0.285(one-tailed, with the hypothesis that the 

amplitude of N2pc is greater in infrequent conditions than in frequent conditions). This 

non-significant result may be due to the fact that we do not have enough trials for the distractor-absent 

condition. 

28 Seven participants’ data were excluded from statistical analysis due to failure of detection. 
27 Seven participants’ data were excluded from statistical analysis due to failure of detection. 
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Figure 7. Grand-average ERP waveforms in the testing phase. Subpanels A and B illustrate the distractor-related contra- and 

ipsilateral waveforms, at electrodes PO7/PO8, from 200 ms pre-stimulus to 800 ms post-stimulus for distractor at the 

frequent location, with target at the midline location (A); and the distractor at infrequent location with target at the midline 

location (B). Subpanels C and D illustrate the target-related waveforms for target at the frequent location, with distractor at 

midline location (C); target at the infrequent location, with distractor at midline location (D). Subpanels E and F present the 

target-related waveforms for targets located at a frequent and infrequent location, respectively. The red solid lines represent 

the contralateral waveforms, the red dashed lines the ipsilateral waveforms. Panel (E) illustrates the difference between 

contra- and ipsilateral waveforms for six experimental conditions. The light gray and green areas indicate the N2pc latency 

time window (220-370 ms), and the N2pc amplitude time window (20-320 ms). 
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Figure 8. Mean distractor-related N2pc amplitude and latency in the testing phase (i.e., left panel and right panel, 

respectively). (a) and (b) The distractor-related N2pc amplitude and latency are plotted as a function of the distractor 

location (frequent vs. infrequent). (c) and (d) The Target-related N2pc amplitude and latency are plotted as a function of the 

target location ( frequent vs. infrequent, distractor was presented at midline location). (e) and (f) Target-related N2pc 

amplitude and latency are plotted as a function of the target location ( frequent vs. infrequent, and distractor was absent). 

Error bars depict the one standard SEMs. 
 

Time-frequency results 

As outlined in the Methods section, we further calculated the lateralized alpha-band power 

during the pre-stimulus period for two conditions (target present at the frequent location, and target 

present at the rare location) in the training phase, and for four types of conditions (i.e., distractor 

present at the frequent location meanwhile target at the middle line, distractor present at the rare 

location meanwhile target at the middle line, target present at the frequent location meanwhile 

distractor at the middle line, and target present at the rare location meanwhile distractor at the middle 

line) in the testing phase. Fig. 9 depicts the overall lateralization index alpha-band power (8–12 Hz) 

for two conditions in the training phase. Fig. 10 depicts the overall lateralization index alpha-band 

power (8–12 Hz) for two conditions in the testing phase. 

The cluster-based permutation tests across the 8–12 Hz frequency band between the 

contralateral and ipsilateral region over the pre-stimulus interval from -1000 to 0 ms (p < .05, 
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cluster-corrected, 1000 iterations). Again, the analysis failed to find any reliable clusters exhibiting 

enhanced pre-stimulus oscillations between two conditions (target present at the frequent location, and 

target present at the rare location) in the training phase. In the testing phase, we did not found any 

significant reliable difference in the lateralizatied alpha-band power between distractor-location 

conditions (i.e., distractor present at the frequent location meanwhile target at the middle line, 

distractor present at the rare location meanwhile target at the middle line), nor between target-location 

conditions (i.e., target present at the frequent location meanwhile distractor at the middle line, target 

present at the rare location meanwhile distractor at the middle line). To search for potential 

anticipatory lateralization power between groups in each condition, further the permutation tests on 

the lateralization index failed to reveal any significant difference between groups in each condition. 

Taken together, the time-frequency analyses failed to provide any evidence that the proactive alpha 

lateralization observed prior to the search display. This non-finding is at variance with some reports in 

the literature (Wang et al. 2019), but consistent with others (van Moorselaar, Daneshtalab, and Slagter 

2021).  

 
Figure 9. Time-frequency anticipatory lateralization alpha-power in the Training phase. For each condition, the lateralization 

index was calculated by subtracting contralateral power from ipsilateral and dividing the result by their combined power 

shows the grand average time-frequency oscillation (time series: -1000 to 0 ms prior to the search-display onset; 

frequency-band: 1 to 30 Hz) for the lateralization power index which was calculated by subtracting contralateral power from 

ipsilateral and dividing the result by their combined power across electrodes O1/2, PO3/4, and PO7/8 electrode clusters. (A) 

The left panel presents the lateralization with reference to the training phase when target presented at the frequent location 

for group1, middle panel with reference to target presented at the frequent location for group2, and the right panel presents 

the combination of group1 and group2 when target is presented at the frequent location. (B) The left panel presents the 

lateralization with reference  to the training phase when target is presented at the infrequent location for group1, middle 

panel with reference to this condition for group2, and the right panel presents the combination of group1 and group2 when 
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target is presented at the infrequent location. A cluster permutation test of each of these conditions revealed no significant 

clusters for the lateralization alpha-power. 

 
 
Figure 10. Time-frequency anticipatory lateralization alpha-power in the testing phase. For each condition, the lateralization 

index was calculated by subtracting contralateral power from ipsilateral and dividing the result by their combined power 

shows the grand average time-frequency oscillation (time series: -1000 to 0 ms prior to the search-display onset; 

frequency-band: 1 to 30 Hz) for the lateralization power index which was calculated by subtracting contralateral power from 

ipsilateral and dividing the result by their combined power across electrodes O1/2, PO3/4, and PO7/8 electrode clusters. (A) 

The left panel presents the lateralization with reference to the testing phase when distractor presented at the frequent location 

but target at the midline location for group1, middle panel with reference to this condition for group2, and right panel 

presents the combination of group1 and group2 with reference to that distractor presented at the frequent location while 

target at the midline location. (B) The left panel presents the lateralization with reference to the testing phase when distractor 

presented at the infrequent location but target at the midline location for group1, middle panel with reference to this 

condition for group2, and right panel presents the combination of group1 and group2 with reference to that distractor 
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presented at the infrequent location while target at the midline location. (C) The left panel presents the lateralization with 

reference to the testing phase when target presented at the frequent location but distractor at the midline location for group1, 

middle panel present the same condition for group2, and right panel presents the combination of group1 and group2 with 

reference to the testing phase when target presented at the frequent location but distractor at the midline location. (D) The 

left panel presents the lateralization index with reference to the testing phase when target presented at the infrequent location 

but distractor at the midline location for group1, middle panel present the same condition for group2, and right panel 

presents the combination of group1 and group2 with reference to the testing phase when target presented at the infrequent 

location but distractor at the midline location. A cluster permutation test of each of these conditions revealed no significant 

clusters for the lateralization alpha-power. 

 

Discussion 

Many previous studies have shown that our attentional system can learn and effectively use 

spatial probability information for guiding search, facilitating target detection and response decisions 

(Druker and Anderson 2010; Geng and Behrmann 2005, 2002; Jiang, Swallow, and Rosenbaum 2013; 

Hoffmann and Kunde 1999; Shaw and Shaw 1977; Ferrante et al. 2018). The current study was 

designed to investigate the electrophysiological correlates of learned attentional facilitation and 

whether the learned target enhancement can cause long-term plastic changes on attention selection.  

Behaviorally, our study confirmed that target enhancement resulting from spatial statistical 

learning can cause long-term plastic changes and lead to efficient target selection during visual search. 

We found the target-location probability cueing effect in the training phase: The mean RTs were 

significantly faster in target-frequent condition compared to target-infrequent. In the testing phase, we 

observed that the learning developed during the training phase can be transferred to the testing phase, 

in which the uneven probability of target location was removed, and target in the training phase 

became the distractor in the testing phase. However, the target location statistical learning effect 

diminished from the training (211.08 ms) to the testing phase (88 ms). implying that the long-term 

plastic changes in response to spatial target learning may be some degree of inflexibility in visual 

processing - our attention focus can not update accordingly. For example, when we visit a country 

where traffic travels on the other side of the road, it takes us some time to readjust our attention to the 

new direction of movement. Furthermore, the interaction between target condition and distractor 

presence condition was not significant in our study, which is inconsistent with a similar study (Exp1, 

Ferrante et al. 2018) but used a singleton distractor. It may be due to the fact that the distractor and 

target share a similarity in our study so that attention would not be captured by pop out singleton 

which will capture more attention. So when participants were doing tasks their attention bias was 

mainly from learning (prior knowledge) instead of a pop out distractor.  

Electrophysiologically, we found that N2pc latency was earlier for targets appearing in 

frequent locations than targets appearing in infrequent locations in the training phase. Latency results 

 

https://paperpile.com/c/S8ppNd/aG5n+vU6a+zBsq+ggOi+ocXU+AVmw+gAd8
https://paperpile.com/c/S8ppNd/aG5n+vU6a+zBsq+ggOi+ocXU+AVmw+gAd8
https://paperpile.com/c/S8ppNd/gAd8/?prefix=Exp1%2C
https://paperpile.com/c/S8ppNd/gAd8/?prefix=Exp1%2C


114 

are consistent with the pattern of RTs observed during the Training. We assume that the optimal 

performance observed in the frequent condition might be the result from the increased activation on 

the spatial priority map. Interestingly, with visual inspection for the infrequent condition, the attention 

was also biased to frequent location first after stimulus onset, and then turned to the opposite side of 

the visual display. It is noteworthy, however, this learned attentional enhancement was not 

accompanied by known encephalographic markers of attentional selection - lateralized anticipatory 

alpha power relative to anticipated target location. Instead, a more negative N2pc amplitude at 

target-frequent locations relative to target-infrequent locations was observed, indicating enhanced 

attentional allocation to learned target locations, consistent with the findings in another study 

(Duncan, Theeuwes, and van Moorselaar 2023) using the singleton paradigm to investigate 

electrophysiological markers of statistical learned attentional enhancement. Another main finding in 

the testing phase is that we found that no matter where the target or distractor was located, the N2pc 

amplitude for frequent conditions was always greater than that for infrequent conditions, confirming 

the findings of the previous study (Chapter 2.2).  

Interestingly, we observed both target location cueing effect and distractor location cueing 

effect (opposite to target location cueing effect) in the testing phase. Target location cueing effect was 

expected because attention is biased towards frequent locations due to the training. However, it is 

unclear as to why the cueing effect for the distractor appears to be opposite that for the target. To 

quantify the distractor cueing effect, we subtract RTs of the distractor at frequent locations from RTs 

of distractors at frequent locations. Participants show slower RTs when the distractor appears at 

frequent locations. This is because attention is initially directed towards these frequent locations 

regardless of where the target or distractor is, and participants need to disengage attention from 

frequent locations to focus on the target on the other side, resulting in a time cost. Participants show 

faster RTs when the distractor appears at infrequent locations. This is because attention is still biased 

towards the frequent locations, so when the distractor appears at infrequent locations, there's less 

interference from the pre-existing attentional bias. Importantly, the findings from EEG analysis were 

consistent with findings from behavioral results. We observed, when target occurred at midline 

locations, the N2pc latency for distractor-frequent condition start significantly earlier than the N2pc 

latency for distractor-infrequent condition, meanwhile the N2pc amplitude for distractor-frequent 

condition was more more negative than that of distractor-infrequent condition, suggesting 

distrator-frequent location got more attention resource. From other conditions in EEG analysis, it 

appears that participants always start locating their attention at frequent locations regardless of the real 

location of the distractor or target. In this regard, it can be inferred that the spatial statistical learning 

that occurs during the training phase has resulted in long-lasting plastic changes on visual selection, 

and that its effect is somehow not responsive (flexible) to the new environment. 
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Furthermore, some studies reported that increasing the salience of targets compared to 

surrounded distractors leads to a monotonic increase on the N2pc amplitude observed in EEG 

recordings, which also heightened amplitude reflects enhanced attentional allocation toward the target 

facilitated by the improved saliency contrast between the targets and distractors (Berggren and Eimer 

2020; Zhao et al. 2011; Töllner et al. 2011; Mazza, Turatto, and Caramazza 2009a). However, in our 

EEG experiment which involving serial search, instead using a singleton target, we used a target who 

share similarity with distractor item, we found that the amplitude of N2pc for target-frequent location 

is more significant negative/larger than target- infrequent condition, interestingly, the p value from our 

training phase is bigger then the p value from another study which involving parallel search (Duncan, 

Theeuwes, and van Moorselaar 2023). Thus, our findings confirm the idea that the ease of 

distinguishing targets from background elements contribute to probability cueing effect which is 

indicated by N2pc amplitude, and providing insights into attentional selection and target processing in 

visual search tasks. 

Alpha power is strongly modulated by the allocation of spatial attention (Sauseng et al. 2005; 

Thut et al. 2006). Many studies focus on investigating the role of alpha power in statistical learning of 

distractor suppression (Ferrante et al. 2023; van Moorselaar and Slagter 2019; Qiu et al. 2023). In 

addition the alpha band is also considered as an important neural signature to understand target 

enhancement in attentional processes. Some studies emphasized the association between attentional 

facilitation and alpha power: they found a decrease of alpha power contralateral to the target location 

reappearing relatively late after target onset (Bacigalupo and Luck 2019; van Diepen et al. 2016). It 

was reported, however, that limited evidence was provided for the role of pre-stimulus alpha activity 

in statistical learning of target facilitation. In the current study, no changes in pre-stimulus alpha-band 

activity were observed as a function of target location condition. In contrast, another study reported 

that prior knowledge of target location can trigger significant preparatory alphas modulation over 

visual cortex (Spaak et al. 2016). However, Spaak et al. did not manipulate the probability of target 

locations through the experiment. Thus, we assume that alpha power can not reflect target spatial 

statistical learning, consistent with another study that failed to show reliable tuning towards 

high-probability target location (Duncan, Theeuwes, and van Moorselaar 2023). They also suggested 

that the prediction result from target spatial statistical learning might not be controlled under the 

top-down neural mechanism.  
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Conclusion 

In sum, in this study we have demonstrated the mechanisms involved in target spatial 

statistical learning of target location and long-term plastic changes on the spatial priority map. 

Behaviorally, we replicated the classical target-location probability cueing effect, showing that 

participants can statistically learn to facilitate target selection caused by target at frequent locations 

(vs. infrequent) (Druker and Anderson 2010; Geng and Behrmann 2002, 2005; Hoffmann and Kunde 

1999; Jiang et al. 2013; Shaw and Shaw 1977), as well as long-term plastic changes on the spatial 

priority map - we found target probability cueing effect in both distractor-present and -absent 

conditions. We also found the spatial learning acquired in the training phase could be transferred to 

the testing phase, suggesting that long-lasting target-associated spatial statistical learning is somewhat 

inflexible. Electrophysiologically, statistical learning of the likely target location manifested in an 

early N2pc post-display onset and bigger N2pc amplitude, suggesting more attention resources were 

biased to target-frequent location rather than target-infrequent location. However, the target location 

enhancement was not observed in lateralized alpha power during the pre-stimulus period. The 

non-finding of alpha power imply that alpha-band was not modulated by uneven probability of target 

locations across displays, which is in line with other studies investigating neural mechanisms of 

spatial statistical learning effect (e.g, Qiu et al. 2023; Duncan, Theeuwes, and van Moorselaar 2023). 
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3 General Discussion 

The present dissertation explores the behavioral and neural mechanisms involved in statistical 

learning  mechanisms of target location and how this location knowledge facilitates visual search. It 

examines the interplay between dynamic spatial statistical regularities of target locations and our 

explicit awareness of these patterns, and investigates how our neural responses are shaped by these 

learned regularities. To do this, we used psychophysics, eye-tracking techniques and 

electrophysiological methods. In the subsequent sections, I will briefly summarize the key findings 

from each empirical study and their contribution to our understanding. In the end, I will outline 

potential future research directions and wrap up with a summary. 

 

3.1 Summary of Results 

3.1.1 Learning of dynamic spatial regularities in visual search and the role of 

explicit awareness in spatial statistical learning 

To briefly recap the first study (Chapter 2.1), by adopting the classic additional-singleton 

paradigm and introducing cross-trial spatial regularities for the singleton color distractor (Experiment 

1a) and singleton shape target (Experiment 1b), we found that the regularity of the cross-trial 

transition of the target location could be learned successfully to facilitate target search. In contrast, the 

dynamic regularity of the cross-trial distractor location had no significant effect on search 

performance. Since Experiment 1a failed to yield any evidence that participants could extract and 

utilize the dynamic spatial regularity regarding the distractor across trials, which is at variance with 

Wang et al. (2021), we decided to conduct Experiment 2. In Experiment 2a, a direct replication of 

Wang’s Experiment 1 was conducetd to examine whether our non-finding was due to the 

methodological changes we had introduced in our task design compared to Wang's (2021) study, and 

Experiment 2b was designed to examine dynamic target-locations learning with analogous design. 

However, we observed no evidence of dynamic distractor-location learning but only dynamic 

target-location learning in the  ‘regular’ group. Also, no participants were able to explicitly tell the 

distractor's movement pattern in Experiment 2a, alternatively, Experiment 2b confirmed dynamic 

target-location learning to be a robust phenomenon associated with awareness of regularity. 

The statistical learning of the target position that we observed in Experiment 1b is broadly 

consistent with the probability cueing of the target location reported in the literature (Geng and 

Behrmann 2002, 2005; Shaw and Shaw 1977), which we introduced before (General introduction). 

For instance, in a study by Geng and Behrmann (2002), where the likelihood of target presentation 
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was manipulated unevenly between the left and right sides of the display (80% vs. 20%), search 

facilitation was observed when the target appeared within the more probable region. Of note, though, 

most of the previous target-location probability-cueing studies used a stationary (i.e., spatially fixed) 

uneven probability manipulation (either location- or region-based), finding that search guidance can 

successfully adapt to these environmental statistics to enhance performance. A recent study, by Li and 

Theeuwes (2020), showed that this adaptability also extends to dynamic location manipulations: when 

the target on trial n-1 (appearing, say, at the leftmost display location) predicted the location of the 

target on trial n (in the example, the right-most location) with 100% certainty, participants were also 

able to learn this cross-trial regularity to facilitate search performance. In the current study, we 

showed that a dynamic cross-trial regularity can also be learned when it is probabilistic (rather than 

deterministic) in nature. Similar to earlier studies (e.g., Geng and Behrmann 2002), we implemented 

an uneven cross-trial transitional probability structure (80% for cross-trial frequent, 10% for 

infrequent, and 10% for random transitions) and showed that participants could learn this probabilistic 

regularity and use it to facilitate target detection. Importantly, in our study, the global probability of 

the target occurrence remained equal across all possible locations – only the cross-trial transitional 

probability differed in the direction of the target movement (clockwise or counterclockwise). This 

suggests that the search-guidance system can learn and adapt to dynamic as well as fixed probability 

structures that govern where the target appears, and modify the computation of attentional priorities 

accordingly 

In contrast to robust cross-trial dynamic probability-cueing of the target location, we found no 

evidence that participants were able to learn the same dynamic probability structure when this was 

applied to predict the distractor location in Experiment 1a (80% probabilistic manipulation), 

Experiment 2a (100% deterministic manipulation), which differs from previous studies that have 

demontrated that display locations/regions with a high probability of distractor occurrence can be 

effectively de-prioritized to reduce the interference caused by the irrelevant pop-out stimulus (Ferrante 

et al. 2018; Goschy et al. 2014; Leber et al. 2016; Sauter et al. 2018; Sauter, Liesefeld, and Müller 

2019; Benchi Wang and Theeuwes 2018; Zhang et al. 2019; Kerzel, Huynh Cong, and Burra 2021; 

Steven J. Luck et al. 2021). For example, likely distractor locations may be proactively suppressed by 

placing a 'no-go' tag on them within the attentional priority map (e.g., Ferrante et al. 2018; see also 

Gaspelin, Leonard, and Luck 2015; Gaspelin and Luck 2018), thereby dampening the build-up of the 

priority signal at those locations. Support for this also comes from a recent study by Kong et al. 

(2020) who combined a variation of Gaspelin et al.’s (2015) ‘capture-probe’ paradigm with a static 

distractor-location probability-cueing paradigm. And they found that the guess rate to be increased 

and the precision to be somewhat decreased following a distractor at the likely vs. an unlikely 

location. Huang, Donk, and Theeuwes (2022) reported a similar result even when the probe display 

was not preceded by a search display (i.e., when there was no distractor, however briefly presented, 
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that could initiate reactive processes). These findings align with the proactive suppression of 

information uptake from likely distractor locations. Hence, although proactive suppression of fixed 

likely distractor locations is a readily available strategy for the search-guidance system to reduce 

attentional capture, our findings imply that proactive suppression of dynamically predictable distractor 

locations is considerably more intricate, particularly under the same dynamic probability structure and 

number of learning trials used for the target location in our study. 

While our experiments show that observers acquire a dynamic probabilistic regularity more 

readily regarding the location of targets compared to distractors, questions persist regarding why it is 

difficult to acquire dynamic suppression of predictable distractor locations, whereas it is easy to 

establish dynamic facilitation of predicted target locations. The clue to answering this question is 

provided by the ‘awareness’ results. 

In both Experiment 1b (80% predictability of the shifting target location) and  Experiment 2b 

(100% predictability), participants became substantially aware of the dynamic target regularity. 

Additionally, participants who correctly identified the right regularity in the awareness test also 

showed a larger facilitation effect compared to those who were unaware. Note, though, that the 

general response speed was faster in Experiment 2b (in which the color of the display items was 

consistent across trials) than in Experiment 1b (in which the items’ color changed randomly across 

trials), with a higher level of awareness. This is not to say that the dynamic target regularity cannot be 

implicitly learned  (see, e.g., Li and Theeuwes 2020), but the learning effect appears to be larger for 

‘aware’ than ‘unaware’ participants. In light of the fact that explicit awareness greatly boosted the 

dynamic facilitation effect, it is reasonable to conclude that participants did develop a dynamic 

top-down set to prioritize the next target location in the regular (clockwise or counterclockwise) 

direction (endogenous orienting in Posner 1980 terms). Developing such an anticipatory top-down set 

is likely encouraged by the central role of the target in the task set: observers compare selected items 

to a target template in working memory, and then reject them if they are mismatched, or extract the 

response-relevant feature if they match. As the target occupies a central position in the task set, even 

seemingly irrelevant features, such as its location, may be explicitly encoded, providing the basis for 

recognizing and exploiting consistency in the placement and movement of the target between trials. 

Alternatively, when a distractor is mistakenly selected, the cognitive system only needs to recognize it 

as a non-target item and reject it based on its deviation from the target template. Unlike target items, 

there is no necessity to process or explicitly represent detailed features of the distractor, including its 

location. Consequently, there's minimal explicit learning of higher-order dynamic statistical 

regularities related to the placement of distractors. 

  However, a number of studies investigating static statistical regularities have shown that 

distractor-location probability cueing effects can occur without conscious awareness of a bias in the 
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distractor distribution -that is, with a fixed display location or region being more likely to contain a 

distractor than other locations. One recent research has demonstrated that static cueing effects are 

purely dependent on the local distractor probability (Allenmark et al. 2022), and higher frequency of 

distractor occurrence at a particular location result in stronger down-modulation of neural responsivity 

in early visual cortex areas (V1–V4) (Zhang et al. 2021). Also, the down-modulation of neural activity 

in response to frequent distractor occurrence is proposed to be driven by a "tuning" signal. This signal 

is activated when a selected distractor at this location produces a mismatch decision. The more 

frequently this mismatch occurs at a particular location, the less the responsiveness of V1–V4 neurons 

with corresponding receptive fields. This mechanism naturally explains the static distractor-location 

probability-cueing effect, as it reflects an essentially static process of top-down inhibition of the 

current distractor location. This inhibition aims to disengage attention from the distractor and redeploy 

it to the target location, all without the need for conscious knowledge of the distractor location. 

In contrast, successfully tracking a dynamically predictable target location hinges on explicit 

representation of the rule in working memory as part of the task set. And this rule can then be applied 

to flexibly prioritize an anticipated next target location, perhaps by top-down pre-activating the 

anticipated location on the attentional priority map. Further, according to Ptak’s (2012) model of this 

network, the posterior parietal cortex plays a central role in a computing feature- and dimension - 

independent attentional-priority map. This map integrates feature maps computed in the sensory 

cortex, current behavioral goals and abstract representations of associated actions (action templates) 

generated in the prefrontal and premotor cortex (PMC). The dorsolateral prefrontal cortex (DLPFC) 

maintains behavioral goals in working memory, shielding them from distracting information, while 

the inferior parietal lobe (IPL) initiates and maintains attention on the relevant stimulus” (Ptak 2012, 

512). Given this model, it is plausible that dynamic spatial expectations from DLPFC and PMC can 

also be integrated in the priority map. 

3.1.2 Dynamic target spatial learning in serial search involves awareness: from 

behavioral and oculomotor evidence 

In the second study (Chapter 2.2), we concentrated on examining (1) whether, in a serial 

search task, participants can learn a simple dynamic (probabilistic), cross-trial regularity regarding the 

location of the target within a search display, and if so, (2) when during the search guidance by the 

regularity would come into play - the latter by examining (sequential) oculomotor scanning of the 

displays, as well as the task-final RTs, for evidence of a dynamic target-location probability-cueing 

effect; further (3) whether dynamic learning would rely on explicit awareness of the regularity. To do 

this, our second study adopted the same dynamic, cross-trial regularity as Chapter 2.1 did in a parallel 

search task. This involved shifting the target location in a circular display arrangement by one 
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position, either clockwise or anticlockwise (blocked per participant) across trials with a probability of 

80%.  

According to study 2 of this dissertation, the following main findings were obtained: First, we 

found that people can effectively learn and utilize dynamic cross-trial regularities in target placement 

across trials, even in challenging, sequential search tasks. Such ability is not limited to parallel tasks 

where items stand out immediately and can be processed simultaneously. This at least applies to the 

regularity implemented here: a shift of the target location, within a circular display arrangement, by 

one position in either clockwise or counterclockwise direction (fixed per participant) – exactly the 

same regularity as that used in Chapter 2.1 in a parallel search task, which allowed for much faster 

completion times. Interestingly, relative to the random-condition baseline, the performance gains from 

successfully learning the rule turned out at least as large in the present, serial search task as in the 

parallel task of Chapter 2.1: the gains (infrequent minus frequent transition) here amounted to 339 ms, 

that is, 12.5% of the random-baseline RT (2707 ms) – which compares with a 9.4%-gain (116 

ms/1236 ms) in parallel search. The intrinsic motivation to grasp the rule was similar in both types of 

task. 

However, this finding appears to be at odds with earlier reports suggesting that the added 

demands imposed by serial search hinder participants from detecting dynamic regularities (Li and 

Theeuwes 2020; Li, Bogaerts, and Theeuwes 2022), who reported participants to be unable to pick up 

different type of regularity in serial search. The main difference between Li and colleagues’ (Li and 

Theeuwes 2020; Li, Bogaerts, and Theeuwes 2022; Yu et al. 2023) and our study (Chapter 2.2) lies in 

the complexity of the regular cross-trial shift and the frequency of encountering such shifts during 

search. More specifically, the proportion of trials on which the target moved to the location predicted 

by the dynamic regularity (80%) was three times greater in our design than in Li and Theeuwes' (only 

25%). Additionally, we used a relatively simple dynamic target-location shift: either clockwise or 

counterclockwise, similar to how a circular search array might normally be scanned serially by 

participants. According to Li and Theeuwes, if the current target is in the leftmost array position, the 

next target will invariably appear at the rightmost position (but not vice versa). In addition to the fact 

that such shifts occur only relatively rarely (on approximately 25% of trials), they would also 

contradict the normal scanning  routines. Thus, it is possible that the frequency with which regular 

dynamic shifts occur and the degree to which these shifts are compatible with routine scanning 

procedures (Seitz et al. 2023) may be critical factors determining whether or not a dynamic regularity 

is successfully acquired in serial scanning.  

On the basis of our current findings, we can conclude that serial search doesn't prevent the 

extraction and utilization of dynamic regularities to optimize performance.  
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The second main finding is that we found that dynamic target-location probability cueing can 

act early during serial search. We found a large number of participants successfully learned to utilize 

the same cross-trial (statistical) regularity in the placement of the target and optimize performance in a 

serial search task. In addition to analyzing task-final response times, examination of oculomotor 

scanning behavior revealed that dynamic target-location probability cueing influences early stages of 

serial search. Notably, a significant proportion (approximately one-third) of initial saccades were 

directed towards the predicted, frequent location, suggesting an early engagement of cueing effects. 

Another position receiving almost the same proportion of first saccades was the location that had 

previously contained the target, consistent with a positional repetition-priming effect (Maljkovic and 

Nakayama 1996b; Krummenacher et al. 2009). Interestingly, under conditions of fixed target identity, 

a greater proportion of initial saccades were directed towards the predicted location compared to the 

repeated locations, indicating the dominance of the target-location cueing effect over 

repetition-priming. Moreover, in any case, even under conditions of target-identity swapping, the 

frequent location received a much greater proportion of first saccades than the infrequent location, 

even though both were equidistant from the repeated position. This shows that search. 

This indicates that the search priorities (or, correspondingly, the attentional spotlight) were 

systematically biased towards the frequent direction and away from the infrequent direction. Of note, 

this early biasing of search turned out to be quite independent of where the target was actually located 

in the display, that is: it reflects a genuine rule-based effect. 

The early prioritization of the frequent and repeated locations was maintained during further 

scanning, evidenced by these locations continuing to attract the largest proportions of second and third 

saccades. However, when the target identity was fixed, it was found that the second and third saccade 

were influenced by whether the target actually appeared at the predicted, frequent location. A target 

appearing at the frequent location increased the proportion of (second and third) saccades directed to 

this location, whereas it decreased the proportions of saccades directed to the repeated and infrequent 

locations. That is, the priority of the frequent location on the second and third saccades was not only 

determined by the dynamic rule but also by the fit of the item at the predicted location to the fixed 

‘target template’. This suggests that template-based (top-down) enhancement of priority signaling is 

focused on specifically the predicted location, rather than being ‘broadcast’ equally to all locations 

(Wiegand et al. 2024). Interestingly also: the fact that the prioritization of the frequent and repeated 

locations persisted beyond the first few saccades would imply that the prioritization is coded in 

scene-based (environmental), rather than retinal, coordinates: the coordinates are dynamically updated 

across sequential eye movements.  

The last but not least point of discussion concerns the role of awareness for the dynamic 

target-location probability-cueing effect in serial search. In contrast to the majority of studies that 
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explored probability-cueing effects and concluded that spatial statistical learning was not dependent 

on awareness and was therefore "implicit" in nature (e.g., Y. V. Jiang, Swallow, and Rosenbaum 2013; 

Y. V. Jiang, Won, and Swallow 2014; Won and Jiang 2015), we found strong evidence of the present, 

dynamic target-location cueing effect involving awareness. First of all, only participants classed as 

‘aware’ (⅔ of participants) based on our post-experimental questionnaire showed a dynamic cueing 

effect in both the task-final RTs and the earliest eye movements; ‘unaware’ participants (⅓), by 

contrast showed no sign of a cueing effect in either early or late(r) measures of performance (they 

only exhibited a tendency to saccade to the previous target location). Second, in ‘aware’ participants, 

the strength of the cueing effect, even in the proportion of first eye movements directed to the 

predicted location, strongly correlated significantly with how realistically they believed the rule 

applied: the more accurately participants estimated the frequency with which the target shifted in the 

regular direction, the larger their cueing effect. Showing an element of ‘explicitness’ is in line with 

other studies that used more sensitive awareness tests (e.g., Giménez-Fernández et al. 2020; Golan 

and Lamy 2023), as well as our experiment of dynamic target-location cueing in parallel search (Yu et 

al. 2023) Chapter 2.1 (Yu et al. 2023). In particular, it is in line with the significant correlation 

reported by Giménez-Fernández et al. (2020), whose measures of awareness we adopted in present 

study. Interestingly, however, here a role of awareness was seen in a relatively small sample (in 16 out 

of a total of 24 participants) – arguing that, at least in the present, dynamic scenario, a large sample 

size may not be crucial for demonstrating ‘awareness’. 

However, exactly what is the role of awareness in the dynamic cueing effect? The effect is, in 

some way, dependent on awareness, as only the group of ‘aware’ participants showed a benefit, but 

not the ‘unaware’ group. But, despite a significant correlation between awareness of the dynamic 

regularity and the cueing effect, does this mean that this effect is a ‘voluntary’ in nature, that is, 

mediated by participants deliberately applying the rule to guide their search on each (or most) trial(s)? 

While this is a possibility, recall that the latencies of first saccade to the predicted location were rather 

short (some 190 ms), as were, in fact, the latencies to the repeated and infrequent locations (somewhat 

over 200 ms) which were both shorter compared to random locations (> 220 ms). This pattern 

suggests an ensuing competition, upon display onset, of the search items at locations in the general 

direction of the previous target position (to which the task had just required a saccade to be executed), 

for which activity remains elevated across trials on some (integrative) oculomotor priority map, likely, 

in the superior colliculus (e.g., Veale, Hafed, and Yoshida 2017). Thus, while the repeated location 

remains a strong attractor for the next eye movement (the first saccade on the new trial), this 

competition is then resolved in favor of the frequent location, perhaps through a rule-related input 

injected into the priority representation via frontal-eye-field neurons that represent the dynamically 

updated, ‘goal’-related priority. Given that the display array was not visible during the intertrial 

interval (there were no placeholders), the updating of the saccade goal may happen only after 
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search-display onset. In this case, latencies (well) below 200 ms may not be sufficient for consciously 

mediated inputs to influence saccade programing.29 Accordingly, one would have to assume that 

rule-based dynamic goal updating, while perhaps initially requiring conscious control to be set up, 

eventually becomes a rather automatized, ‘implicit’ process that runs off without ‘explicit’ cognitive 

intervention (cf. Schneider and Shiffrin 1977). Thus, it may be premature to conclude from the 

correlation between awareness of the dynamic regularity and the cueing effect that this effect is 

causally mediated by awareness on each (or most) trial(s). 

Overall, it remains that there is no dynamic target-location probability-cueing effect in serial 

search when there is no awareness of the regularity. In Chapter 2.2, where we implemented the same 

cross-trial regularity, we argued that this also applies to dynamic target-location cueing in parallel 

search. By implication, we attributed our finding that the same regularity did not produce a cueing 

effect when it was implemented in a pop-out distractor in parallel search to the fact that participants 

did not become of the regularity in the cross-trial distractor-location shift – whereas participants 

became aware of the exact-same shift when implemented in the pop-out target.30 Thus, we propose 

that participants becoming aware of the regularity (and, on the part of the experimenter, establishing 

awareness by sensitive measures; cf. Vadillo, Konstantinidis, and Shanks 2016; Vadillo et al. 2020; 

Giménez-Fernández et al. 2020) is crucial for dynamic probability-cueing effects in any type – serial 

or parallel – of search to develop. 

3.1.3 Target spatial statistical learning and its plastic changes on attentional 

processing: behavioral and electrophysiological evidence 

To briefly review the third study (Chapter 2.3), the purpose of the study was to investigate (1) 

how target spatial statistical learning modulate attentional selection across trials at the neural level, by 

examining N2pc component; (2) whether the learning spatial regularity can cause long lasting changes 

affect attention selection when the regularity regarding target locations was removed, and its related 

electrophysiological evidence; (3) whether any anticipatory facilitation occurs before search display 

onset, by examining the pre-stimulus alpha activity. A serial search paradigm was employed in the 

current study, participants need to find and respond to the target (either the letter T or T like letter, the 

target is balanced across participants) in the training phase, where the probability manipulation of 

target location was implemented across trials; participants were required to find and respond to the 

30 This would also explain Li and Theeuwes’ (2020) non-finding: their participants did not become unaware of 
their (more complex and less likely) dynamic target-location regularity and accordingly exhibited no cueing 
effect. 

29 This would also be consistent with Findlay (1997), who concluded from his study of saccade target selection 
during pop-out and feature-conjunction searches that “the generation of the first saccade is a relatively automatic 
process, rather than one which is subject to cognitive control” (p. 628).   
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target while ignoring a distractor (the distractor was the target in the training phase) which shared 

similarity with the target in the testing phase. 

Behaviorally, our study confirmed that spatial statistical learning enhances target selection 

during visual search, leading to efficient target selection. In the training phase, participants showed 

faster reaction times (RTs) in target-frequent conditions compared to target-infrequent conditions, 

indicating a target-location probability cueing effect. This learning transferred to the testing phase, 

albeit with diminished effect, suggesting some inflexibility in visual processing. 

Electrophysiologically, we found that N2pc latency was earlier for targets appearing in frequent 

locations than targets appearing in infrequent locations in the training phase. Latency results are 

consistent with the pattern of RTs observed during the Training. We assume that the optimal 

performance observed in the frequent condition might be the result from the increased activation on 

the spatial priority map. Interestingly, with visual inspection for the infrequent condition, the attention 

was also biased to frequent location first after stimulus onset, and then turned to the opposite side of 

the visual display. It is noteworthy, however, this learned attentional enhancement was not 

accompanied by known encephalographic markers of attentional selection - lateralized anticipatory 

alpha power relative to anticipated target location. Instead, a more negative N2pc amplitude at 

target-frequent locations relative to target-infrequent locations was observed, indicating enhanced 

attentional allocation to learned target locations, consistent with the findings in another study (D. H. 

Duncan, Theeuwes, and van Moorselaar 2023) using the singleton paradigm to investigate 

electrophysiological markers of statistical learned attentional enhancement. Another main finding in 

the testing phase is that we found that no matter where the target or distractor was located, the N2pc 

amplitude for frequent conditions was always greater than that for infrequent conditions, confirming 

the findings of the previous study (Chapter 2.2) 

An interesting observation from the testing phase was that both target location cueing effect 

and distractor location cueing effect (opposite to target location cueing effect) were observed. Target 

location cueing effect was expected because attention is biased towards frequent locations due to the 

training. However, it is unclear as to why the cueing effect for the distractor appears to be opposite 

that for the target. To quantify the distractor cueing effect, we subtract RTs of the distractor at frequent 

locations from RTs of distractors at frequent locations. Participants show slower RTs when the 

distractor appears at frequent locations. This is because attention is initially directed towards these 

frequent locations regardless of where the target or distractor is, and participants need to disengage 

attention from frequent locations to focus on the target on the other side, resulting in a time cost. 

Participants show faster RTs when the distractor appears at infrequent locations. This is because 

attention is still biased towards the frequent locations, so when the distractor appears at infrequent 

locations, there's less interference from the pre-existing attentional bias. Importantly, the findings 

from EEG analysis were consistent with findings from behavioral results. We observed, when target 
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occurred at midline locations, the N2pc latency for distractor-frequent condition start significantly 

earlier than the N2pc latency for distractor-infrequent condition, meanwhile the N2pc amplitude for 

distractor-frequent condition was more more negative than that of distractor-infrequent condition, 

suggesting distrator-frequent location got more attention resource. From other conditions in EEG 

analysis, it appears that participants always start locating their attention at frequent locations 

regardless of the real location of the distractor or target. In this regard, it can be inferred that the 

spatial statistical learning that occurs during the training phase has resulted in long-lasting plastic 

changes on visual selection, and that its effect is somehow not responsive (flexible) to the new 

environment. 

Further of interest, some studies reported that increasing the salience of targets compared to 

surrounded distractors leads to a monotonic increase on the N2pc amplitude observed in EEG 

recordings, which also heightened amplitude reflects enhanced attentional allocation toward the target 

facilitated by the improved saliency contrast between the targets and distractors (Berggren and Eimer 

2020; Zhao et al. 2011; Töllner et al. 2011; Mazza, Turatto, and Caramazza 2009). However, in our 

EEG experiment which involved serial search, instead of using a singleton target, we used a target that 

shared similarity with the distractor item, we found that the amplitude of N2pc for target-frequent 

location is significant negative/larger relative to target-infrequent condition, which was also 

confirmed by another study using a singleton target (D. H. Duncan, Theeuwes, and van Moorselaar 

2023). Thus, our findings confirm the idea that the ease of distinguishing targets from background 

elements contribute to probability cueing effect which is indicated by N2pc amplitude, and providing 

insights into attentional selection and target processing in visual search tasks. 

Many studies focus on investigating the role of alpha power in statistical learning of distractor 

suppression (Ferrante et al. 2023; Dirk van Moorselaar and Slagter 2019; Qiu et al. 2023). In addition 

the alpha band is also considered as an important neural signature to understand target enhancement in 

attentional processes. Some studies emphasized the association between attentional facilitation and 

alpha power: they found a decrease of alpha power contralateral to the target location reappearing 

relatively late after target onset (Bacigalupo and Luck 2019; van Diepen et al. 2016). It was reported, 

however, that limited evidence was provided for the role of pre-stimulus alpha activity in statistical 

learning of target facilitation. In the current study, no changes in pre-stimulus alpha-band activity 

were observed as a function of the target location condition. In contrast, an early study reported that 

prior knowledge of the target location can trigger significant preparatory alphas modulation over the 

visual cortex (Spaak et al. 2016). However, Spaak et al. did not manipulate the probability of target 

locations through the experiment. Thus, we assume that alpha power can not reflect target spatial 

statistical learning, which is consistent with a recent study that also failed to show reliable tuning 

toward high-probability target location (D. H. Duncan, Theeuwes, and van Moorselaar 2023). They 
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also suggested that the prediction result from target spatial statistical learning might not be controlled 

under the top-down neural mechanism.  

 

3.2 Future research directions 

The findings from this dissertation open up exciting directions for future research. 

Specifically, Studies 1 and 2 both look into how learning likely target locations are likely to enhance 

perceptual and decision processes during visual search. We conclude that 1) Predictable target 

locations can significantly facilitate search in both serial and parallel search modes. 2) Being aware of 

dynamic regularity of the target is crucial for learning this dynamic probability-cueing, independent of 

serial or parallel search. Beyond these shared findings, Study 1 reveals that when a dynamically 

predictable target location is successfully tracked with explicitly (consciously) rules, it allows us to 

flexibly prioritize a likely next target location, possibly achieved through top-down pre-activation of 

the anticipated location on the attentional priority map.  

Further investigation through neuroscientific research is necessary to better understand the 

brain mechanisms underlying dynamic target-location prediction. These mechanisms are likely to 

involve the frontoparietal attention network, a richly interconnected network encompassing regions 

such as the intraparietal sulcus (IPS), the inferior parietal lobe (IPL), and dorsal premotor cortex 

(PMC), including the frontal eye field (FEF) (A. Kristjánsson et al. 2007). Also, considering that we 

observed a significant facilitation effect in the dynamically predictable target location, yet no 

corresponding suppression effect in the dynamically predictable location of the distractor in Study 1, 

which suggests potential disparities in cognitive processing between these phenomena. Thus, future 

studies are also needed to investigate neural processing differences between target enhancement 

resulting from learning across-trial target locations and distractor suppression resulting from learning 

across-trial distractor locations. From a clinical perspective, leveraging the dynamic spatial statistical 

regularities of distractor and target feature/locations can greatly aid cognitive interventions in patients 

with attention deficit hyperactivity disorder (ADHD) or autism. For instance, therapists can design 

cognitive training tasks that specifically target attentional control by systematically incorporating 

these regularities. By repeatedly exposing individuals to distractor and target patterns in a controlled 

environment, therapy can enhance cognitive flexibility and improve attentional allocation. 

Additionally, clinicians can develop personalized strategies to help patients actively identify and 

prioritize relevant information while suppressing distractions in daily life settings, ultimately 

improving cognitive functioning and quality of life. In Study 2, crucially, the dynamic target-location 

probability-cueing effect is evident even in (both the proportion and latency of) the very first saccade 

elicited upon search-display onset, which is purely motivated by the learned rule and not by the actual 

location of the target in the display. Further, it correlates with participants’ awareness of the dynamic 
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regularity. However, given how fast the rule-injected bias can operate after display onset (it is evident 

already in the very first saccades, elicited between 100 and 150 ms post-display onset), the cueing 

effect itself may not be consciously mediated. In this case, though, awareness would play a crucial 

role in acquiring the effect in the first instance. Alternatively, the rule-based biasing may already be 

‘prepared’ in the intertrial interval, allowing the cueing effect to ramp up rapidly after search display 

onset. More work, for instance involving electrophysiological measures, is necessary to clarify this. 

Also, further work would be required to map the boundary conditions, in terms of both the complexity 

of dynamic target regularities and the frequency with which they occur, for a cueing effect to be 

observable. 

Study 3 provides strong empirical evidence to understand the neural mechanisms involved in 

target-location enhancement and long-term plastic changes caused by it. On electrophysiological 

measures, statistical learning of the likely target location was manifested in a post-display onset N2pc, 

but not in lateralized alpha power pre-stimulus. 

3.3 Conclusions  

This dissertation provided strong empirical evidence to understand the behavioral and 

neuropsychological mechanisms involved in spatial statistical learning effect (both dynamic and 

static). In a detailed investigation, we found that individuals could significantly improve their search 

performance by leveraging dynamic cross-trial regularities, while we failed to find similar effects for 

dynamic distractor regularities in Chapter 2.1. With oculomotor evidence, Chapter 2.2 reveals that 

participants were able to extract dynamic regularities in target placement during serial search tasks 

and utilized them to improve search performance. Remarkably, this dynamic learning effect manifests 

from the very first saccade following the search display onset, implying a pre-attentive adjustment of 

attentional focus based dynamic rules, allowing the cueing effect to occur fast after search display 

onset. This cueing effect is tightly linked to participants' awareness of the regularities. Additionally, 

Chapter 2.3 expands behavioral and electrophysiological evidence of statistical learning in target 

selection, demonstrating long-lasting spatial prioritization (transferability from the training to the 

testing phase) of target locations and attentional biasing. The enduring effects on spatial prioritization 

and attentional guidance are mirrored in the changes of N2pc amplitudes and latencies, though we did 

not observe any modulation of alpha-band activity. 

To conclude, the current thesis not only confirms the pivotal influence of spatial statistical 

learning on target selection but also deepens our understanding of the underlying perceptual and 

decision processes that facilitate target selection enhancement. Through rigorous empirical 

investigation, I’ve illuminated how learning of  dynamic and static probability distribution of the 
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target location significantly alters attentional guidance, underscoring the power of selection history 

through environmental regularities that our brains adapt to and optimize with.  
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Deutsche Zusammenfassung 

In Kapitel 2.1 wollten wir untersuchen, ob Teilnehmer dynamische Regelmäßigkeiten bei der 

Platzierung von Zielen und Distraktoren in visuellen Suchaufgaben lernen und nutzen können. 

Insbesondere wurde untersucht, ob die Teilnehmer ihre Aufmerksamkeitssteuerung auf der Grundlage 

dynamischer Verschiebungen der Ziel- und Ablenkungspositionen in aufeinanderfolgenden Versuchen 

anpassen können.   Es wurden zwei Experimente mit dem Additional-Singleton-Paradigma 

durchgeführt. In Experiment 1 wurden versuchsübergreifende räumliche Regelmäßigkeiten für 

singuläre Farbdistraktoren (Experiment 1a) und singuläre Formziele (Experiment 1b) eingeführt. Die 

Position des kritischen Objekts (Ziel oder Distraktor) bewegte sich über die Versuche hinweg mit 

unterschiedlicher Wahrscheinlichkeit in verschiedene Richtungen. Experiment 2 war eine direkte 

Replikation von Wangs Experiment 1 (2021), bei dem dasselbe Design und dieselben Stimuli 

verwendet wurden, wobei der Schwerpunkt auf Ablenkungsregularitäten lag. Wir fanden heraus, dass 

die Teilnehmer dynamische Zielwahrscheinlichkeiten erfolgreich erlernten und ausnutzten, was die 

Verarbeitung an vorhersehbaren Zielorten erleichterte. Es gab jedoch kaum Hinweise auf eine 

proaktive Unterdrückung vorhersehbarer Distraktoren, selbst in einer Wiederholung einer früheren 

Studie, in der solche Effekte berichtet wurden. Die Erleichterung von vorhersagbaren Zielorten war 

mit einem expliziten Bewusstsein für die dynamische Regelmäßigkeit verbunden, während die 

Teilnehmer kein Bewusstsein für die Regelmäßigkeit der Distraktoren zeigten. Wir vermuten, dass 

diese Asymmetrie in den dynamischen Cueing- und Awareness-Effekten dadurch entsteht, dass das 

Ziel einen zentralen Platz in der Aufgabe einnimmt und daher explizit im Arbeitsgedächtnis für den 

Template-Matching und die Extraktion des für die Antwort kritischen Merkmals kodiert wird; 

infolgedessen wird die dynamische, trialübergreifende Veränderung seiner Position ebenfalls 

registriert und kann zur Top-Down-Priorisierung der bevorstehenden Zielposition verwendet werden. 

Im Gegensatz dazu ist der Distraktor kein expliziter Teil der Aufgabenstellung (z.B. ist es nicht 

notwendig, ein Distraktor-Template im Arbeitsgedächtnis anzulegen, um Distraktoren, die die 

Aufmerksamkeit auf sich gezogen haben, zurückzuweisen). Folglich würden die Beobachter, wenn 

überhaupt, nur ein geringes explizites Bewusstsein für regelmäßige Änderungen der 
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Distraktorposition erlangen, was in eine antizipatorische (Top-down) Unterdrückungsstrategie 

umgesetzt werden könnte. Dies schließt zwar ein Element des impliziten Lernens nicht aus, würde 

aber das Ausmaß einschränken, in dem dynamische Ablenkungsregelmäßigkeiten die Suchführung 

beeinflussen können. 

Menschen können nicht nur statische, sondern auch dynamische (versuchsübergreifende) 

Regelmäßigkeiten in der Positionierung von Zielobjekten bei der parallelen visuellen "Pop-out"-Suche 

lernen und nutzen. Während das Erlernen statischer Zielpositionen auch bei der seriellen Suche 

funktioniert, scheint das Erlernen dynamischer Regelmäßigkeiten durch die Anforderungen des 

Item-by-Item-Scannens verhindert zu werden. Außerdem wurde die Frage aufgeworfen, ob das 

explizite Bewusstsein eine Rolle bei der Nutzung (zumindest) dynamischer Regelmäßigkeiten zur 

Leistungsoptimierung spielt. In Kapitel 2.2 haben wir daher erneut untersucht, ob dynamische 

Regelmäßigkeiten bei der seriellen Suche erlernt werden können, wenn regelmäßige Verschiebungen 

der Zielposition häufig auftreten, und ob ein solches Lernen mit dem Bewusstsein für die dynamische 

Regel korreliert. Zu diesem Zweck haben wir dieselbe Regelmäßigkeit wie in Kapitel 2.1 verwendet, 

um das dynamische Lernen bei der parallelen Suche zu demonstrieren: eine versuchsübergreifende 

Verschiebung des Zielortes z.B. im Uhrzeigersinn innerhalb einer kreisförmigen Anordnung in 80% 

der Versuche, die mit unregelmäßigen Verschiebungen in die entgegengesetzte (z.B. gegen den 

Uhrzeigersinn; 10%) oder eine andere, zufällige Richtung (10%) verglichen wurde. Unsere Ergebnisse 

zeigen, dass Teilnehmer im Gegensatz zu früheren Berichten dynamische Regelmäßigkeiten in der 

trialübergreifenden Platzierung des Ziels sogar bei der seriellen Suche (mit sequenziellen 

Augenbewegungen) extrahieren und zur Verbesserung der Aufgabenleistung nutzen können - 

zumindest wenn die regelmäßige trialübergreifende Zielverschiebung relativ einfach ist und häufig 

auftritt. Dieser Befund ist nicht trivial, da die gleiche Regelmäßigkeit nicht erkannt wird, wenn sie in 

einem auffälligen "Pop-out"-Distraktor bei der parallelen Suche umgesetzt wird (Kapitel 2.1). 

Entscheidend ist, dass dieser dynamische Zielort-Wahrscheinlichkeits-Cueing-Effekt sogar in der 

allerersten Sakkade (sowohl in der Proportion als auch in der Latenz), die bei Beginn der Suche auf 

dem Display ausgelöst wird, zu beobachten ist. Außerdem korreliert sie mit dem Bewusstsein der 

Teilnehmer für die dynamische Regelmäßigkeit. Wenn man jedoch bedenkt, wie schnell die durch die 

Regel ausgelöste Verzerrung nach Beginn der Anzeige wirken kann (sie zeigt sich bereits bei den 

schnellsten ersten Sakkaden, die zwischen 100 und 150 ms nach Beginn der Anzeige ausgelöst 

werden), kann es sein, dass der Cueing-Effekt selbst nicht bewusst vermittelt wird. In diesem Fall 

würde das Bewusstsein jedoch eine entscheidende Rolle dabei spielen, den Effekt überhaupt erst zu 

erzielen. Alternativ könnte die regelbasierte Verzerrung bereits im Intertrial-Intervall "vorbereitet" 

sein, so dass der Cueing-Effekt nach Beginn der Suchanzeige schnell ansteigt. Um dies zu klären, sind 

weitere Arbeiten, z. B. mit elektrophysiologischen Messungen, erforderlich. Außerdem wären weitere 

Arbeiten erforderlich, um die Randbedingungen für die Beobachtung eines Cueing-Effekts zu 
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bestimmen, und zwar sowohl in Bezug auf die Komplexität der dynamischen Zielregelmäßigkeiten als 

auch in Bezug auf die Häufigkeit ihres Auftretens. 

Zielerleichterung kann durch räumliches statistisches Lernen des Ziels erreicht werden. 

Obwohl in vielen Verhaltensstudien festgestellt wurde, dass sich die Leistung der Teilnehmer 

verbesserte, wenn die Ziele an häufigen Orten im Vergleich zu seltenen Orten auftraten, sind die 

elektrophysiologischen Korrelate der statistisch erlernten Zielerleichterung noch nicht gut untersucht 

worden. Darüber hinaus hat eine neuere Verhaltensstudie (Turatto und Valsecchi 2022) gezeigt, dass 

die erlernte Unterdrückung von Distraktoren lang anhaltende Veränderungen in der Prioritätskarte 

hervorrufen kann, die sich auf die künftige Berechnung des Zielgedächtnisses an derselben Stelle 

auswirken und so die Aufmerksamkeitsauswahl erleichtern. Es bleibt abzuwarten, ob erlernte 

Zielanreicherung ebenfalls langfristige Veränderungen in der Prioritätskarte hervorrufen kann. Daher 

wurden in Kapitel 2.3 EEG-Daten erhoben, während die Teilnehmer in einer seriellen Suchaufgabe mit 

einer unausgewogenen Verteilung der Ziele nach einem Ziel suchten. N2pc (lateralisierte 

ereigniskorrelierte Potenziale) und lateralisierte Alpha-Power (8-12 Hz) wurden verwendet, um die 

zeitliche Dynamik der Effekte zu verfolgen. Das Experiment bestand aus zwei Phasen: In der 

Trainingsphase wurde die Wahrscheinlichkeitsmanipulation des Zielortes implementiert; in der 

Testphase wurde die Wahrscheinlichkeitsmanipulation des Zielortes entfernt und zusätzlich ein 

Distraktor eingeführt, der eine ähnliche Eigenschaft wie das Ziel hatte. In der Trainingsphase 

beobachteten wir ein robustes Lernen der vorhergesagten Zielorte: Die Verarbeitung des Ziels an 

häufigen Orten wurde im Vergleich zu seltenen Zielplatzierungen erleichtert. In der Testphase zeigte 

sich, dass das langfristige Lernen auch dann anhielt, wenn das Ziel während der Trainingsphase zu 

einem Distraktor wurde. Elektrophysiologisch ist die erlernte Zielverstärkung nicht mit einer 

lateralisierten Alpha-Leistung während der Prä-Stimulus-Periode verbunden. Dennoch induzierten 

Ziele an häufigen Orten eine größere N2pc-Amplitude und eine frühere N2pc-Latenz in der 

Trainingsphase. Somit bestätigen wir, dass die Erleichterung, die aus dem räumlichen statistischen 

Lernen von Zielen resultiert, plastische Veränderungen in der vorherigen Karte verursachen kann. 
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