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Summary

This thesis addresses label or annotation uncertainty within supervised classification models, aim-
ing to approach the problem from a statistical perspective. While variance and uncertainty, along
with tools for their quantification, are deeply rooted in statistics, the machine learning community
has only recently begun to explore them in complete depth. Generally, uncertainty is a rather
vague concept and, hence, difficult to define, detect, and quantify. The uncertainty inherent in
the ground truth labels used for training supervised classification models is often overlooked but
of immense importance.

To put the contributing articles in a broader context, the first part of the thesis gives an overview
of the two primary research domains. First, the focus lies on the fundamentals and the general
idea of statistical modeling, subsequently introducing two specific model classes central to the
contributing articles. Second, uncertainty in classification models is introduced and discussed.
Within this context, particular emphasis is placed on the inherent uncertainty within ground
truth labels, i.e., the label uncertainty. Analyzing this particular source of uncertainty requires
multiple annotations per observation, a condition that only a few benchmark datasets meet.
Central examples are, therefore, presented at the end of the first part.

The second part of the thesis builds on the assumption that each observation is associated with a
latent one-dimensional ground truth label. In the first contribution, we aim to assess the various
sources of label uncertainty based on this central assumption. A multinomial mixture distribution
is employed to model multiple annotations and to gain insights into the true class affiliations.
The model’s parameters are estimated via a stochastic Expectation Maximization algorithm and
analyzed to understand the “uncertainty drivers”. Based on the analyses of a benchmark dataset in
earth observation, this study concludes that the general class distinguishability, the heterogeneity
of the annotators, and external influencing factors, like geographic information, contribute to the
ambiguity in the final labels. The second contribution builds on this work and extends it in the
context of natural language inference. Again, a multinomial mixture model is employed to model
multiple annotations based on the assumption that a latent ground truth label exists. This work
focuses on the stability of the estimation procedure and explores it in terms of the number of
annotations and the number of observations. It concludes that sufficient annotations are a crucial
building block for adequately analyzing the associated uncertainty.

The central assumption is extended toward a multi-dimensional representation of the ground truth
label in the third part of this thesis. In many realistic applications, a singular label is unrealistic
and overly restrictive. Therefore, the third contribution proposes a Dirichlet multinomial model
to estimate multi-dimensional label embeddings from multiple annotations, expressing inherent
classification difficulty and uncertainty. The model’s versatility and relevance are demonstrated
through its application to three benchmark datasets from various domains. The estimated embed-
dings not only provide valuable insights into the inherent uncertainty but also serve as a starting
point for subsequent classification models.





Zusammenfassung

Diese Arbeit befasst sich mit der Unsicherheit von Annotationen in Klassifikationsmodellen und
nähert sich dem Thema aus statistischer Richtung. In der Statistik sind Varianz und Unsicherheit
zentrale Komponenten von jeglichen Modellen. Im Kontext des maschinellen Lernens hingegen
wurden diese Konzepte lange eher vernachlässigt und sind erst in den letzten Jahren mehr in den
Fokus der Wissenschaft gerückt. Im Allgemeinen ist Unsicherheit ein eher vages Konzept und
daher schwer zu analysieren und zu quantifizieren. Viele verschiedene Aspekte tragen dazu bei,
wie auch die Unsicherheit, die in den Annotationen steckt, die zum Training von Klassifikation-
smodellen verwendet werden. Diese werden generell als ”Ground Truth Labels“ angesehen, sind
aber oft fehlerhaft oder uneindeutig und sollten daher in die Gesamtbewertung der Unsicherheit
eines Modelles mit einfließen.
Der erste Teil der Arbeit gibt einen Überblick über die beiden primären Themen der angehängen
Forschungsarbeiten. Zuerst liegt das Augenmerk auf den Grundlagen der statistischen Model-
lierung. Dabei werden zwei spezifische Modellklassen vorgestellt, die in den Beiträgen eine zen-
trale Rolle spielen, und Methoden zur Schätzung solcher Modelle diskutiert. Anschließend liegt
der Fokus auf dem Konzept der Unsicherheit im Kontext von Machine Learning. In diesem Zusam-
menhang wird besonderes Augenmerk auf die Unsicherheit in den Labeln gelegt, auch bezeichnet
als Annotationsunsicherheit. Zur Analyse dieser Unsicherheitsquelle sind mehrere Annotatio-
nen pro Instanz nötig. Beispiele für passende Datensätze werden am Ende des Einleitungsteils
vorgestellt.

Der zweite Teil dieser Arbeit behandelt Forschungsarbeiten, unter der Annahme, dass jeder
Beobachtung ein latentes eindimensionales Label zugeordnet werden kann. Auf dieser Grundlage
werden im ersten Beitrag verschiedene Ursachen für Unsicherheit in Annotationen herausgear-
beitet und analysiert. Dabei nimmt man eine multinomiale Mischverteilung für die Annotationen
an, um Einblicke in die wahren Klassenzugehörigkeiten zu gewinnen. Die Parameter des Modells
werden mittels eines stochastischen iterativen Algorithmus geschätzt. Basierend auf den Ergebnis-
sen für einen Datensatz aus dem Bereich der Erdbeobachtung kommt diese Studie zu dem Schluss,
dass die allgemeine Unterscheidbarkeit von Klassen, die Heterogenität der Annotatoren und ex-
terne Einflussfaktoren zu Unsicherheiten in den Annotationen beitragen. Der zweite Beitrag baut
auf diese Arbeit auf und erweitert sie im Kontext von Natural Language Inference, ein Fachbereich,
der sich mit der Klassifizierung von natürlicher Sprache befasst. Auch hier wird ein multinomiales
Mischungsmodell verwendet, basierend auf der Annahme, dass ein latentes wahres Label existiert.
Diese Arbeit konzentriert sich auf die Stabilität des Schätzverfahrens und untersucht sie im Hin-
blick auf die Anzahl der Annotationen und die Anzahl der Beobachtungen.

Im dritten Teil der Arbeit wird die zentrale Annahme auf eine mehrdimensionale Darstellung
des wahren Labels erweitert. In vielen Anwendungen ist ein eindimensionales Label unrealistisch
und zu restriktiv. Daher wird im dritten Forschungsbeitrag ein bayesianisches Modell basierend
auf der Dirichlet-Multinomial Verteilung vorgeschlagen. Damit kann aus mehreren Annotationen
pro Instanz eine mehrdimensionale Repräsentation des ”Ground Truth Labels“ geschätzt werden,
um Unsicherheiten in den Annotationen adäquat auszudrücken. Die Vielseitigkeit und Relevanz
des Modells wird durch seine Anwendung auf drei verschiedenen Datensätzen demonstriert. Die
Ergebnisse bieten nicht nur wertvolle Einblicke in die inhärente Unsicherheit, sondern dienen
auch als Ausgangspunkt für nachfolgende Klassifikationsmodelle, um die Annotationsunsicherheit
mitberücksichtigen zu können.
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Part I.

Introduction and Background





1. Outline

Variance and uncertainty, along with the tools for quantifying them, are fundamental in the field
of statistics. However, the recent increase in interest from the machine learning and deep learn-
ing communities in fully exploring these concepts is a rather novel development. Uncertainty,
notoriously difficult to define, detect, or quantify, is recognized as of the utmost importance for
drawing reliable insights from any data. One contributing but often neglected part is the uncer-
tainty inherent in the ground truth labels used for supervised learning. Classification models, i.e.,
supervised models, are trained on labeled training data and rely on “gold” labels. The accuracy
of such labels is a crucial requirement for building reliable models and obtaining valuable results.
However, acquiring ground truth labels is often not straightforward and, in many applications,
even impossible for various reasons, including errors and ambiguities. A common strategy is to
gather multiple annotations per instance and then use the majority voting as a final label. This
simplifies subsequent steps while, of course, discarding valuable information about the uncertainty
inherent in the annotations. This thesis addresses this so-called annotation or label uncer-
tainty from a statistical perspective. By leveraging the toolbox of statistical modeling, this work
provides a starting point for further incorporating knowledge about label uncertainty into the
machine learning pipeline.

The first part of this cumulative thesis provides the articles’ scientific context and aims to connect
the two main concepts: statistical modeling and uncertainty in machine learning.
First, the general idea of and theory behind statistical models is covered in Chapter 2. Therefore,
two important model classes, Multinomial Mixture models and Dirichlet Multinomial models, are
introduced in more depth as these are vital for the contributing articles. Additionally, strategies
for estimating the parameters associated with the models, particularly from a Bayesian perspec-
tive, are covered. Lastly, the role of uncertainty and approaches for estimating it in the context
of statistical models are discussed briefly.
This bridges the gap to the second main topic of this thesis, uncertainty, and particularly an-
notation uncertainty in machine learning models, covered in Chapter 3. Thereby, its definition
and sources, as well as ways to quantify it, especially in the context of deep learning, are dis-
cussed. Subsequently, the focus is explicitly placed on the uncertainty inherent in the labels used
for training supervised machine learning models or, alternatively, the uncertainty reflected by
multiple annotations. Consequently, this work introduces specific multi-annotator datasets that
motivated this work and are extensively analyzed in the contributions.
Chapter 4 concludes the introduction with a short discussion and gives an outlook on possible
directions of future work, highlighting the relevance of the topic of annotation uncertainty beyond
the articles included in this work.

The first part of this thesis is followed by three contributing articles. Part II deals with approaches
towards label uncertainty building on the assumption of a one-dimensional ground truth, as spec-
ified further in Chapters 5 and 6. In contrast, Part III moves beyond this assumption. The contri-
bution in Chapter 7 proposes a model framework that allows the estimation of multi-dimensional
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1. Outline

representations of ground truth labels. Chapters 5, 6 and 7 contain the published versions of
the articles, along with a description of the contributions of all authors involved. Note that the
notation in the contributing articles differs from that in the introductory part if necessary.
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2. Statistical Modeling

“All models are approximations. Essentially, all models are wrong, but some are useful.”
— George E. P. Box

(* 1919, d 2013)

Parametric statistical modeling is one of the most fundamental concepts in statistics. This ap-
proach seeks to extract valuable information from sampled data and to analyze the data-generating
process. In this context, the term “process” refers to a probabilistic model characterized by pa-
rameters, offering a structured framework to describe and understand the generating mechanisms
behind the observed data. The textbooks by Davison (2003) or Kauermann et al. (2021) provide
an introduction to and thematic classification of the topic. A formal mathematical definition of
statistical models and the associated parameters is provided by McCullagh (1980). As stated by
Konishi and Kitagawa (2008), statistical models serve three main purposes: prediction, extrac-
tion of information, and description of stochastic structures. Specifically in the field of machine
learning and neural networks, the primary objective of models often was and still is the first one,
i.e., the prediction of future events or outcomes based on observed data. However, it is also essen-
tial to highlight the significance of extracting information and patterns from data to understand
underlying mechanisms better and describe and quantify stochastic structures that represent un-
certainties. These aspects constitute crucial components of data analysis, and the sole focus on
prediction can have severe and undesired consequences. In general, parametric statistical mod-
eling provides a flexible and powerful framework for analyzing data. Its versatility is evident in
numerous fields, including psychology, economics, biology, and engineering.

First, let us introduce the general framework of parametric statistical models and derive cen-
tral functions for estimation. Formally, the random variable Y is assumed to originate from a
parameterized probability model

Y ∼ F (y; θ).

The term F (y; θ) refers to the cumulative distribution function of the random variable Y and can
be defined as F (y; θ) = P(Y ≤ y). It depends on a parameter vector θ. Hence, the form of the
probability distribution function is commonly known up to some p-dimensional parameter vector
θ ∈ Rp. The true values of these parameters remain unknown and can only be approximated
in practice based on the observed data sample. Standard parametric distributions include the
Gaussian distribution for continuous data, the binomial distribution for count data with two
possible outcomes, or the exponential distribution for modeling the time between two events.
More examples and details can be found in the textbook by Kroese et al. (2014), for example.
The behavior of random variables is typically described by their density function f(.), defined
as f(y) = P(Y = y) for discrete random variables or as an integrable function where P(a ≤ Y ≤
b) =

∫ b
a f(y)dy for continuous random variables.

Given an actual data sample y = (y1, ..., yn), i.e., realizations of the random variable Y , and
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2. Statistical Modeling

the density f(y; θ), the Bayes rule can be applied. The Bayes rule is a fundamental theorem in
statistics and is used to decompose the conditional density:

fθ(θ|y) = fθ(θ) · fY (y|θ)
fY (y) ∝ fθ(θ) · fY (y|θ). (2.1)

This formula defines three central functions for the estimation of the parameter vector θ, namely
the posterior distribution fθ(θ|y), the prior distribution fθ(θ) and the likelihood function
fY (y|θ), also denoted by L(θ; y). The likelihood function represents the probability of generating
the current data sample, given the parameter θ, and relies exclusively on the observed data. On
the other hand, the prior distribution conveys the knowledge about θ before any data is observed.
The posterior distribution merges both by updating the knowledge of the parameter after new
data is observed. Ultimately, the goal is to find the “best” estimate for the true parameters θ given
the observed data sample y1, ..., yn, defined as θ̂ = s(y1, ..., yn). The function s(.), also known as
statistic, calculates the optimal parameter values based on the available data. Numerous methods
exist to obtain θ̂, and the appropriate choice depends on several factors, such as the underlying
model, the available data, and the researcher’s preferences and objectives. Some of the most
popular approaches will be shortly sketched here.
In frequentist statistics, the most common approach to derive optimal parameter estimates is
Maximum Likelihood estimation. Returning to the decomposition in (2.1), this approach
assumes a uniform prior, i.e., fθ(θ) is constant. Then, the estimates can be obtained by directly
maximizing the likelihood function,

θ̂ML = arg max
θ∈Θ

L(θ; y1, ..., yn). (2.2)

This approach assumes that the observed data are generated from a specific probability distribu-
tion, and the goal is to find the parameter values that make the observed data most likely. In
the field of statistics, it is widely used due to its simplicity and asymptotic properties, such as
consistency and efficiency. In practice, L(.) is often replaced by its logarithmic version for equal
results at less computation costs.
From a Bayesian viewpoint, however, the posterior distribution encapsulates all information about
the true parameter θ. Therefore, a natural estimate for the true parameters is the posterior mean
value, defined as

θ̂P Mean = Eθ(θ|y1, ..., yn).

The posterior mean is obtained by averaging all possible parameter values weighted by their
posterior probabilities. Hence, it incorporates both the uncertainty of the parameters and the
information the data provides. Alternatively, the mode of the posterior distribution can be chosen
as the optimal parameter value.

Connection to Machine Learning Machine learning (ML) models are also parametric statistical
models that aim to find optimal parameter values. Neural networks, for example, can be concep-
tualized as flexible and powerful statistical models that are capable of learning complex mappings
between input data and output predictions. Depending on the task and architecture, neural net-
works can exhibit characteristics of regression models, classification models, probabilistic models,
and latent variable models. Their versatility allows for various applications of networks in ML
and data analysis (Cheng and Titterington, 1994). However, the purpose of such complex models,
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2.1 Multinomial Mixture Model

1 2 · · · P − 1 P

1 j11 j12 · · · j1P −1 j1P
...

...
...

...
...

N jN1 jN2 · · · jNP −1 jNP

Table 2.1.: Sketch of a database of multiple annotations for N observations categorized into P
classes by J annotators, jip ∈ [0, J ] denotes the number of annotations for class p for
observation i.

particularly of deep neural networks, is often restricted to predicting future outcomes. According
to Shmueli (2010), models can be of explanatory or predictive nature. Both play a central role in
many statistical models. In contrast, deep neural networks often focus exclusively on prediction,
leading to accurate but complex black-box-like models. The term “black-box models” refers to
models whose internal workings are not easily interpretable or explainable, making it difficult to
understand final predictions. For many years, the primary metric for measuring and comparing
the performance of deep neural networks was their accuracy, i.e., how well the predictions match
the ground truth. From a statistical viewpoint, this is a minimal perception and should by far
not be the sole performance criterion. Instead, factors like the explainability or uncertainty of
the results are vivid to be considered upon evaluation. Due to the growing complexity of the
networks, explaining the results is not straightforward. This issues a whole area of research, often
referred to as explainable AI, see, e.g., the survey by Linardatos et al. (2020). The reliability
of the obtained results is closely connected to this issue. While accurate predictions are desired,
without a measure of uncertainty, they are often of limited use in practical and critical applica-
tions. Hence, uncertainty in ML models is a highly relevant topic and will be discussed in more
depth in Chapter 3.
However, specific settings enable us to evaluate aspects of the overall uncertainty using tools or
methodologies derived from classical statistical modeling. In particular, this work deals with the
problem of label uncertainty. In situations where multiple annotations are available for each in-
stance, potential ambiguity in the correct label is expressed via multiple annotations. Modeling
these annotations using the framework of parametric statistical models allows to extract informa-
tion about the amount or the sources of inherent label uncertainty. Annotations can thereby be
interpreted as multinomial count data, i.e., J annotators categorize N instances into P classes. Ta-
ble 2.1 presents an exemplary data structure. The two model classes discussed in the following are
suitable for handling data of such form. The primary goal is to model multiple annotations with
statistical tools and, hence, develop simple yet effective approaches to assess label uncertainty.

2.1. Multinomial Mixture Model

This section introduces the multinomial mixture model, which is frequently deployed to describe
categorical variables originating from different underlying components. The central assumption is
that each instance is associated with a random, possibly latent variable expressing affiliation to an
original component. The resulting clustered structure might be artificial but nevertheless helpful
for uncovering hidden structures and cluster-specific characteristics. Therefore, this model class
is well-suited for analyzing annotations, as outlined in Table 2.1, and is explained and applied in
depth in the contributions in Chapters 5 and 6. First, this subsection introduces general mixture

7



2. Statistical Modeling

models and some of their peculiarities before focusing on multinomial mixture models in the
context of modeling annotations.

2.1.1. Mixture Models

Taking a closer look at finite mixture models in general is worthwhile, as they serve as a funda-
mental concept in statistical modeling. Models based on mixture distributions provide a flexible
and convenient framework for representing complex data distributions by combining separate
components. Unlike simpler models, which postulate a single distribution for the entire dataset,
mixture models assume that the data is generated from a mixture of multiple component distri-
butions. This is particularly valuable when dealing with complex and heterogeneous data, where
observations are assumed to arise from different underlying processes or groups. Consequently,
employing a single distribution is inadequate for capturing the entire complexity of the data in
such situations. Figure 2.1 shows an exemplary case of simulated data originating from three
underlying Gaussian distributions. By fitting only one distribution, it is impossible to capture the
multi-modality of the data. Instead, the framework of mixture models allows the combination of
multiple Gaussians to describe the data more accurately, as shown by the density plots.
Mixture models have been applied in various application areas and numerous domains in prac-
tice. Exemplary, this model class is popular for processing language in the form of text or speech
(Reynolds and Rose, 1995) or genome classification (Allison et al., 2002).
Let us formally introduce the mixture model class, roughly following the notation used in the
contributing articles in Chapter 5 and 6. The density of a finite mixture distribution with K
mixing components of a random vector Y takes the form

f(Y = y) =
K∑

k=1
ηkfk(y),

where ηk, k = 1, ..., K denote the component-specific mixture weights, fulfilling ∑K
k=1 ηk = 1. Typ-

ically, the component densities fk(y) are known up to some component-specific parameter vector
θk. They can, therefore, be written as f(y|θk), which refers to the density function of the k-th
component distribution given the respective parameters. Hence, the probability of observing a
data point y is calculated as the weighted sum of probabilities from different component distri-
butions, each defined by its own set of parameters. In the remainder of this work and often also
in practice, the proposition “finite” referring to a finite number of hidden components is omitted.
However, infinite mixtures, i.e., K → ∞, of distributions also exist, see, e.g., Rasmussen (1999),
but will not be discussed further in this work.
For a recent general overview of mixture models, the reader is referred to McLachlan et al. (2019).
Detailed information on the model class can also be found in various textbooks, including McLach-
lan and Basford (1988), Frühwirth-Schnatter (2006) and Mengersen et al. (2011).

Latent Variables Mixture models are closely connected to the concept of latent variables, i.e.,
variables that remain unobserved and, hence, are not part of the dataset. Data analysis in the
presence of latent variables is a broad area of research, and numerous methods are available
depending on the nature of the observed and unobserved variables. For example, if both the
observed and the latent quantities are categorical, latent class models can be applied. More
details and a broad introduction are given by, e.g., McCutcheon (1987). Generally, assuming that

8



2.1 Multinomial Mixture Model
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Figure 2.1.: The figure shows the histogram of a dataset simulated using three Gaussian distri-
butions with different means and standard deviations. Fitting a mixture model with
the help of the R package mixtools (Benaglia et al., 2010) allows us to estimate the
underlying densities for K = 1, K = 2 and K = 3, which corresponds to the true
number of underlying components.

the “full” relevant dataset also contains unobservable quantities allows the expression of complex
distributions in simpler terms, similar to the core idea of mixture models. The distribution of
the observed variables can be obtained by marginalizing the joint distribution. Formally, a latent
variable model is a model over the set of observed variables Y and the set of unobserved variables
Z, following the joint density f(y, z; θ).
In mixture models with unknown allocations of the observations, the latent variables Z can be used
to represent the underlying structure of the data Y , i.e., the unknown affiliations to subgroups.
Each observation is associated with a “source” component, which is often impossible to observe
in practice and, therefore, latent. However, the observed variables depend on the latent affiliation
to one of the components. When mixture models are employed in the context of latent variables,
estimation of the optimal parameter values of the mixture distributions is not straightforward
in the typical sense. To utilize an estimation procedure like maximum likelihood estimation
(2.2), an iterative process has to be introduced. One widely popular method for this task is the
Expectation Maximization (EM) algorithm, as proposed by Dempster et al. (1977), or any of its
numerous variants. Details on the parameter estimation despite latent quantities and the iterative
EM algorithm are covered in Section 2.3.
Latent variables are also closely connected to the general uncertainty of a model, as discussed
further in Chapter 3. They contribute to the overall uncertainty of models in various ways if left
untreated or unconsidered within the pipeline, see Gruber et al. (2023).

Number of Components In general, mixture models comprise a finite number of component
distributions, denoted by K < ∞. It is worth noting that these models can handle an arbitrary
number of components, i.e., the specification of K is not strictly necessary beforehand.
In many applications, however, K is assumed to be known in advance. Hence, the problem simpli-
fies to allocating observations into the components 1, ..., K. For a fixed and known value K, empty
components can occur if categories are not represented in the observed sample, i.e., if ηk = 0 or if
ηk is close to zero. Empty components can cause instabilities in the estimation of the parameters
or degenerate solutions. Therefore, special attention should be paid to very small or even empty
categories in the dataset. In certain cases, removing or consolidating tiny classes, depending on
the specific application, may be inevitable to ensure stable estimation and interpretable results.
In the contributing article in Chapter 5, it was necessary to omit one class due to its infrequent
occurrence and the resulting instabilities in the estimation process.

9



2. Statistical Modeling

However, the problem is even more prevalent if the actual number of components remains un-
known. While this setting provides flexibility, which is desirable in some applications, it can also
cause additional uncertainties and problems related to model specification. Choosing the number
of components K to be larger than the actual number of clusters K∗ leads to overfitting and irreg-
ular parameter estimation. In extreme cases, each data point could be represented by a separate
component distribution, i.e., K = N . However, this issue also involves determining whether the
observed data is better represented by a mixture of distributions rather than a single distribution,
effectively questioning if K > 1 is appropriate. Overfitting the number of components is a common
problem in mixture modeling. Hence, numerous approaches have been proposed to handle such
model misspecifications and choose a suitable number of components. Frühwirth-Schnatter (2006)
discusses approaches to guarantee identifiability via formal constraints on the parameter space.
Simple examples are setting ηk > 0, ∀k = 1, ..., K, i.e., not allowing for empty components in
general or imposing a nonequality constraint on the component parameters. When the number of
components is unknown, Bayesian techniques, such as selecting a suitable prior distribution, can
be beneficial. These methods can achieve identifiability by bounding the posterior distribution or
applying shrinkage to the component parameters. The study by Rousseau and Mengersen (2011)
analyzes the behavior of the posterior under overfitting conditions in depth.
Additionally, model selection criteria can be calculated for various models to identify the most
suitable number of components. These measures are often based on the likelihood. A popular,
rather heuristic, criterion is the Akaike Information Criterion (AIC) proposed by Akaike (1974).
Commonly, model MK , where K represents the number of components, is selected to minimize
the quantity

AIC = −2 log f(y|θ̂K , MK) + 2dK .

The parameter dK refers to the dimensionality of the parameter vector, i.e., the model complexity.
High-dimensional models are, therefore, penalized by the AIC. Alternatively, criteria like the BIC
or the Schwarz Criterion can be used, which work similarly. Another likelihood-based method for
model selection is hypothesis testing, i.e., employing a variant of the likelihood ratio test, where the
goodness-of-fit of two model specifications is compared. Note that the usual regularity conditions
do not hold, and therefore, one cannot assume that the test statistic follows a χ2 distribution
in this case. Instead, the respective p-values are often calculated via resampling approaches
(McLachlan and Rathnayake, 2014). These measures commonly serve as model selection tools
and can be computed for various model specifications to determine the best fit and, hence, the
optimal number of components. Details on the methods and their tailoring towards mixture
models are presented in Chapter 4 of Frühwirth-Schnatter (2006).

Label Switching A challenge specific to all variants of mixture models is the identifiability prob-
lem due to so-called “label switching”, see Redner and Walker (1984). The components found by
a mixture model do not have any inherent meaning or labeling and are, therefore, exchangeable.
This phenomenon does not affect the likelihood or constitute an issue from the mathematical
perspective. However, it can lead to problems related to the interpretation, specifically for the
specified multinomial mixture model, as discussed in Chapters 5 and 6. In this case, latent clus-
ters corresponding to given classes with inherent meaning and ordering should be recovered. To
address this problem and to provide a meaningful interpretation of the components, strategies to
either avoid label switching or resolve it after estimation need to be applied. For example, this
can be achieved by introducing identifiability constraints to ensure unique labeling or by choosing
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2.1 Multinomial Mixture Model

informative prior specifications that can break symmetries. Additionally, post-processing methods
like relabeling algorithms or permutation-based approaches have been developed for this purpose.
For an overview of the problem and possible solutions, see Celeux (1998) or Stephens (2000).
However, if allocating the observations to the components is straightforward, heuristic methods
specific to the application at hand suffice in most cases. In the contributing article in Chapter 5,
we apply a post-processing step to the final parameter estimates to ensure that the labeling of the
mixture components matches the labels provided by the original count observations. Therefore, a
permutation σ was constructed on the numbers {1, . . . K} such that σ(Ck) = p expresses that the
latent component Ck corresponds to the original label Lp. In this case, this can be accomplished
by comparing the posterior probabilities of the latent classes based on the annotators’ evaluations
and matching them to the voted classes. If the posteriors are crisp, i.e., if classification is straight-
forward, it is easy to determine a distinct permutation. However, if the categories are ambiguous,
a unique mapping cannot be guaranteed, and further constraints are necessary. Details on the
specific algorithm applied to address label switching can be found in Chapter 5.

2.1.2. Multinomial Mixture Models

A specific type of mixture model is the multinomial mixture model. It is used for modeling
categorical data. Hence, the data within the components follow separate multinomial distributions.
This model class is useful for modeling data represented as counts or frequencies and for multiple
annotations as sketched in Table 2.1. Furthermore, popular application areas of this specific
model class include text mining, where documents are represented as word frequency vectors, or
image segmentation based on the frequency of pixels. The contributions in Chapters 5 and 6 deal
with latent class affiliations and employ a multinomial mixture model for modeling the categorical
variables at hand. Therefore, K latent components are assumed. One defines the observed discrete
counts as Y (i) = (Y (i)

1 , ..., Y
(i)

P ), with P denoting the number of observed categories. The latent
variable Z(i) ∈ {1, . . . , K} corresponds to the unknown component affiliations of the instances
and can be re-written as Z(i) = (1{Z(i) = 1}, ...,1{Z(i) = K}) for notational simplicity. The
multinomial mixture model assumes

Z(i) ∼ Multi(η, 1) i.i.d.
Y (i)|(Z(i) = k) ∼ Multi(πk, J). (2.3)

The parameters of the first multinomial distribution η = (η1, ..., ηK) describe the overall prob-
ability of each latent class and can therefore be interpreted as prior probability. The second
distribution is parameterized by πk = (πk1, . . . , πkP ), corresponding to the multinomial proba-
bility of the respective component, specified given Z(i) = k. Quantity J denotes the number of
draws from the multinomial distribution. The multinomial probabilities can be summarized into
the matrix C = (πkp, k = 1, ..., K; p = 1, ..., P ), where index k refers to the true component and p
to the observed class. The probability density function of the multinomial distribution is defined
as

f(y; πk) = J !
y1! · · · yP !π

y1
k1 · · · πyP

kP . (2.4)

The likelihood contribution of image i is then obtained by calculating

P(Y (i); η, C) =
K∑

k=1
ηkP(Y (i); πk).
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2. Statistical Modeling

In the context of modeling annotations, the associated parameters can be interpreted in multi-
ple ways. Given that Z is latent, this model provides insights into the true ground truth labels
by estimating its parameters. The latent component corresponds to the true label of an ob-
served instance. Hence, the mixing probabilities η = (η1, ..., ηK) express the overall probability
of observing an instance from the respective class. Additionally, the estimated matrix C con-
tains the multinomial probabilities and can be interpreted as a confusion matrix. The entries
πkp, k = 1, ..., K, p = 1, ..., K represent correct and incorrect classification probabilities. This cor-
responds to the probability of a correct (p = k) or incorrect annotation (p ̸= k) given the true
class k. Note that for the application of modeling multiple annotations and assessing the “true”
ground truth label, the number of observed classes P equals the number of latent components
K. In theory and without any uncertainty about the true affiliations, one would expect “perfect”
annotation, i.e., the confusion matrix C would equal the unit matrix. Of course, this is not the
practice case, and the entries of C usually differ from zero or one, respectively. The contribution
in Chapter 5 analyzes this confusion matrix extensively and derives various insights into the label-
ing process. By inspecting the individual entries of the confusion matrix, it is possible to identify
classes that are harder for the annotators to distinguish and, hence, should be treated with more
caution. The associated posterior probabilities based on the estimated parameters are another
central result of the multinomial mixture model. These are defined as

τ
(i)
k = P(Z(i) = k|Y (i); η, C)

and result from the estimation with the EM algorithm, as described in Section 2.3. In the context
of modeling annotations, these estimates represent the probability that an instance belongs to the
true class k, given the observed annotations. If the labels are annotator-specific, the posterior
probabilities allow for analyzing the effect of the individual labeler, see Chapter 5. Chapter 6 uses
the posterior distributions of the true latent classes to define “decision borders” for the individual
classes. This strategy allows insights into the labeling process itself and the confusion happening
for ambiguous instances.

2.2. Dirichlet Multinomial Model

A natural extension of the model class presented in Section 2.1 is the Dirichlet multinomial model.
While the multinomial probabilities were assumed to be fixed or estimated directly from the data
beforehand, one can also take on a Bayesian perspective and assume a prior distribution for those
parameters, which will be discussed in the following.

Dirichlet Distribution A popular choice for the prior distribution of multinomial parameters is
the Dirichlet distribution. First, it is worthwhile to focus on the univariate version, the Beta
distribution. The latter is a continuous distribution defined on the interval [0, 1] and is, hence,
often referred to as a probability distribution over probabilities. It is specified by two parameters,
α and β, which control the shape of the distribution. The parameters act in a complementary
manner, i.e., the higher α, the more the distribution is skewed towards 1, and vice versa, the
opposite holds for β. If both parameters are large, the distribution will peak more with a smaller
variance. Values equal to 1 lead to a uniform distribution. The Beta distribution is particularly
popular in Bayesian statistics, as it is the conjugate prior to the binomial distribution. If prior and
posterior belong to the same family of distributions, the prior is called a conjugate prior for the

12



2.2 Dirichlet Multinomial Model

likelihood function. Returning to the Bayes theorem in Formula (2.1), the posterior, and hence all
information about the parameter θ, can be obtained as a product of the likelihood and the prior.
Conjugate priors are popular in Bayesian statistics as they allow for efficient and tractable updates
of beliefs as new data is observed. Using a conjugate prior often allows to derive a closed-form
expression for the posterior. Details can be found in various textbooks on Bayesian statistics,
e.g., by Robert et al. (2007) or Bernardo and Smith (2009). Other popular examples are Poisson
likelihood and Gamma prior or, in the case of continuous random variables, Gaussian likelihood
and Gaussian prior. For binary variables, placing a Beta distribution on the parameters of a
binomial distribution allows us to estimate the uncertainty in the binomial probability.
However, binary classification and the associated binomial distribution are insufficient in many
scenarios. Therefore, the Dirichlet distribution serves as a multivariate extension of the Beta
distribution (Minka, 2000). It constitutes the conjugate prior to the categorical and multino-
mial distribution and can again be interpreted as a probability distribution over probabilities for
multiple classes. If a Dirichlet prior is assumed for the parameters in a Bayesian framework,
the posterior also follows a Dirichlet distribution. Generally, it takes P non-negative parame-
ters α1, ..., αP . It describes the random variables Y1, ..., YP , P ≥ 2 such that yp ∈ (0, 1) and∑P

p=1 yp = 1. The density function is defined as

f(y; α) = 1
B(α)

P∏
p=1

yαp−1
p , (2.5)

where B(.) denotes the multivariate Beta function and is a normalizing constant. Figure 2.2
shows samples from Dirichlet distributions with varying parameter configurations. For K = 3,
the samples can be visualized nicely in a ternary plot, spanned by three dimensions that sum up
to 1, via the R package ggtern (Hamilton and Ferry, 2018).
Recently, the Dirichlet distribution has also been employed in the context of neural networks and,
in particular, uncertainty quantification in the form of evidential learning (Sensoy et al., 2018,
Ulmer et al., 2023). More details are provided in Section 3.2.

Dirichlet Multinomial Model The Dirichlet distribution is a popular prior choice for the parame-
ters of a multinomial model π1, ..., πP , as introduced in Formula (2.3). Combining the model (2.3)
with a Dirichlet prior results in the Dirichlet Multinomial model. The associated distribution,
also known as the multivariate Pólya distribution, is popular in statistics and ML for modeling
categorical variables under prior knowledge. Intuitively, the Bayesian view provides “smoothing”
to the predictive distribution of count data and allows the inclusion of categories, even if events
did not occur in the training data. This simplifies estimation and computation processes. The
respective Bayesian model finds widespread use in modeling various forms of count data, for ex-
ample, in the application areas of genetics (Nowicka and Robinson, 2016) or the clustering of
documents (Elkan, 2006).
Formally, the Dirichlet multinomial model results where the data Y follow a multinomial distri-
bution. The latter is parameterized by π, distributed according to a Dirichlet distribution with
hyperparameters α:

π ∼ Dir(α1, ..., αP ) with αp > 0
Y |π ∼ Multi(π, J).
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(a) α1 = 0.2, α2 = 0.2, α3 = 0.2
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(b) α1 = 1, α2 = 1, α3 = 1
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(c) α1 = 50, α2 = 50, α3 = 50
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(d) α1 = 3, α2 = 2, α3 = 1
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(e) α1 = 20, α2 = 10, α3 = 5
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(f) α1 = 50, α2 = 10, α3 = 5

Figure 2.2.: Each subfigure shows N = 1000 random samples from a Dirichlet probability distribu-
tion with different shape parameters as scatter points on a three-dimensional simplex.

Again, J denotes the number of draws from the multinomial distribution. Combining the two
probability functions (2.5) and (2.4) allows to integrate over the unknown parameter π, leading
to the probability density

f(y|α) =
∫

π
f(y|π)f(π|α)dπ = J !

y1!...yP ! · 1
B(α) ·

∫
π

∏
p

πyp+αp−1
p dπ

= J !
y1!...yP ! · Γ(∑ αp)∏

p Γ(αp) ·
∏

p(Γ(αp + yp))
Γ(∑p αp + yp) = J !

y1!...yP ! · Γ(∑ αk)
Γ(∑p αp + yp) ·

∏
p

Γ(αp + yp)
Γ(αp)

= J !
y1!...yP ! · B(α + y)

B(α) .

Additional details on the respective model can be found in the contributing article in Chapter 7.
Assuming a Dirichlet prior for the parameters in the context of modeling multiple annotations
allows one to express belief about the proportions of the correct categories. Again, the parameters
α control the shape of the distribution, see also Figure 2.2, and hence the expected probabilities
of the categories. The Dirichlet distribution is symmetric for equal values of αp, as the upper row
of Figure 2.2 shows. In particular, αp = 1∀p = 1, ..., P corresponds to a uniform distribution of
the points, see 2.2b. High values of αp express a higher weight of πp, and hence, in the context
of probabilities, a higher belief in category p. This is expressed in the bottom row of Figure 2.2,
where a tendency towards class 1 is evident. The parameters αp and αp′ can also be compared
in size. A value twice as large indicates that category p is twice as prevalent as category p′.
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2.3 Parameter Inference

Additionally, the sum α0 = ∑P
p=1 αp expresses the overall confidence in the prior belief. Larger

values, as in Figures 2.2c or 2.2f, indicate a strong a priori knowledge, while smaller sums reflect
a larger influence of the observed data.
In the context of modeling multiple annotations, this model class allows the extension of the
limiting assumption of a singular latent true label. Instead, one can estimate a P -dimensional
label representation for each instance based on the Dirichlet parameters α1, ..., αP expressing
prior beliefs about the corresponding categories for the individual observations. Again, details are
provided in Chapter 7.

Dirichlet Multinomial Mixtures A popular and even more flexible extension of the described
model class combines mixture models and Dirichlet priors by incorporating a mixture of Dirichlet
distributions over the category probabilities. Instead of a single distribution, this model class as-
sumes that the category probabilities π are generated from a mixture of Q Dirichlet distributions,
where Q denotes the number of components in the mixture. Again, the parameters ηq, q = 1, ..., Q
represent the mixing coefficients. For each component q, a separate Dirichlet distribution is de-
fined with parameters αq1, ..., αqP . As the shape parameters vary across the components, each
component can capture different data characteristics. Hence, the model class allows for more
heterogeneity and provides a more flexible framework for modeling categorical data with prior
beliefs. It is especially popular in the domain of biology and genomics. For example, Holmes et al.
(2012) employed a Dirichlet multinomial mixture model in the context of modeling and clustering
genomics data into meta-communities.

2.3. Parameter Inference

At the beginning of this chapter, some of the most popular straightforward approaches for es-
timating the parameters of a model were already quickly sketched. However, in the presence
of latent variables, maximum likelihood estimation cannot be carried out in a straightforward
manner and, instead, has to be done iteratively. The parameters in the model classes described
previously are either fixed or follow some prior distribution specified by hyper-parameters that
must be estimated. The following subsections discuss suitable estimation approaches to obtain
optimal parameter estimates despite latent variables and in Bayesian settings.

2.3.1. (Stochastic) Expectation Maximization

When dealing with latent variables, as presented in Section 2.1, direct parameter estimation via
maximum likelihood is impossible. This is where the Expectation Maximization (EM) algorithm
steps in, as proposed in the seminal paper by Dempster et al. (1977). The EM algorithm is an
iterative procedure that is crucial in determining parameter estimates despite missing or unob-
served quantities. Its widespread popularity in the field of statistics underlines its importance.
To calculate the maximum likelihood estimates for the set of parameters, denoted by θ, one
assumes a complete dataset W , which consists of the observed and unobserved data, i.e.,
W = (Y , Z). The interest lies in the log-likelihood of the complete data, which is defined as

log L(θ) = log f(w|θ). (2.6)
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2. Statistical Modeling

As a part of w remains unobserved, computation and maximization of the full-data likelihood is
impossible. Therefore, the EM algorithm is applied. Intuitively, it finds an approximation for the
full-data likelihood function first, then maximizes it to update the parameters and repeats the
procedure until convergence. The latent quantity Z is a random variable. Hence, as a function of
Z, the full-data likelihood function (2.6) is again a random variable. Taking its expectation given
the observed data y leads to the required approximation

E
(

log L(θ)|y, θ(t)
)

,

with θ(t) denoting the current parameter estimates. This is referred to as the expectation step.
The following step consists of maximizing this quantity to get new parameter estimates as

θ(t+1) = arg max
θ

E
(

log L(θ)|y, θ(t)
)

and is called the maximization step. The EM algorithm is an iterative procedure that is repeated
until convergence or until a valid stopping criterion is met. This iterative nature is a key aspect
of the algorithm.
It is a particularly convenient tool when working with mixture models. In this context, the unob-
served component affiliations are replaced by their expected value, given the data and the current
parameter estimates. Hence, the optimal parameter estimates can be obtained despite latent
component affiliations by iterating between the abovementioned steps. Putting the procedure
into concrete formulas for the multinomial mixture model, as introduced in Section 2.1, leads to
the following steps:

1. E-Step: Based on the observed data y and current parameter estimates (or the initialized
values) θ̂ = (η̂, π̂1, ..., π̂K), one takes the expectation of the full-data likelihood

E
(

log L(θ̂)|y, η̂, π̂1, ..., π̂K

)
.

Using the Bayes rule and plugging in the specific density functions, the posterior probabilities
can then be calculated as

τ̂
(i)
k = P(Z(i) = k|Y (i); η̂, π̂1, ..., π̂K) = P(Z(i) = k; η̂)P(Y (i)|Z(i) = k; π̂1, ..., π̂K)

P(Y (i); η̂, π̂1, ..., π̂K)

= η̂kP(Y (i); π̂k)∑K
k′=1 η̂k′P(Y (i); π̂k′)

.

These values express the probability of instance i being associated with the true component
k given the observed count vector y(i).

2. M-Step: The parameters are updated based on the posterior probabilities. For the multi-
nomial mixture model, closed-form maximum likelihood estimates are available:

η̂k = 1
n

n∑
i=1

τ̂
(i)
k

π̂pk =
∑n

i=1 y
(i)
p τ̂

(i)
k

n ·
∑n

i=1 τ̂
(i)
k

.
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It is possible to prove that the algorithm delivers local maxima or saddle points, i.e., that the
likelihood always increases. Wu (1983) provides mathematical details on the convergence proper-
ties. Nevertheless, a global optimum cannot be guaranteed, and suboptimal solutions may arise.
Therefore, it is recommended to choose a suitable initialization strategy and conduct multiple
runs with varying initialization of the parameters to improve the practical performance of the
algorithm. Different strategies have been proposed for this purpose, depending on the specific
application, see Baudry and Celeux (2015) for an overview.
Although the classical EM algorithm is a widely used estimation technique, it can also be very slow,
numerically intense, or even infeasible when dealing with complex data. As a result, simulation-
based variants have been developed. One of them is the stochastic EM algorithm (Celeux et al.,
1996). In this version of the original procedure, the E-step is replaced by a simulation, called S-
step. This leads to simulated true image classes, allowing for more straightforward estimation.
For the multinomial mixture model, in particular, simulation can be conducted as follows:

x. S-Step: Calculate the estimated posterior probabilities τ̂ (i) = (τ̂ (i)
1 , ..., τ̂

(i)
K ) based on the

current estimates of η and π1, ..., πK and sample realisations of the latent variable:

Z(i) ∼ Multi(τ̂ (i), 1).

This step allows the obtainment of complete data with simulated true classes, which can be used
to calculate new estimates based on the complete likelihood. Like the classical EM algorithm,
the procedure iterates between the S- and M-steps until convergence to estimate the unknown
parameters.
Not only is this variant numerically more straightforward and particularly useful in high-
dimensional applications, but the estimation uncertainty in the parameters can be directly quan-
tified. This is, of course, especially useful in the context of uncertainty assessment and quantifica-
tion. To calculate the variance of the parameters, Rubin’s formula resulting from multiple impu-
tations can be applied, see Rubin (1976) and Little and Rubin (2002). In the example above, esti-
mation uncertainty is specifically interesting for the misclassification probabilities πk, k = 1, ..., K.
The variance of the respective estimates can be calculated as

V ar(π̂k,−K |Z) =
diag(π̂k,−K) − π̂T

k,−Kπ̂k,−K∑n
i=1 1{Z(i) = k}

.

Details on the derivation of the formula can be found in Chapter 5.

2.3.2. Prior Parameters via Empirical Bayes

Empirical Bayes is a technique that is often employed to estimate parameters from the observed
data in a Bayesian framework. The approach can be interpreted as an approximation to a fully
Bayesian hierarchical view and, therefore, constitutes a sweet spot between complex Bayesian
models and traditional frequentist methods. Suppose Y follows a distributional model f(y|θ)
with a vector of unknown parameters θ. In a Bayesian setting, a prior distribution is assumed for
θ, i.e.

θ ∼ fθ(α),
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with hyperparameters α. If these hyperparameters are known, the Bayes rule allows to compute
the posterior distribution as defined in Formula (2.1). However, α generally remains unknown.
Information about it is contained in the denominator, i.e., the marginal distribution of the data.
In an empirical Bayes analysis, the latter is utilized to estimate the hyperparameters α by α̂
based on observed data, leading to an empirical prior distribution. Then, the posterior distribu-
tion can be easily obtained as f(θ|y, α̂) to infer the parameters of interest. In contrast to fully
Bayesian approaches, the prior parameters are estimated from the data, making the approach
computationally efficient and practical in many applications. Note that additional hierarchies can
be introduced as needed.
Empirical Bayes methods have been successfully employed for many years. An introduction to the
topic is given by Casella (1985), and for theory and applications of parametric empirical Bayesian
inference, the reader is referred to Morris (1983). Carlin and Louis (2000) give an overview of the
development of empirical Bayes over the years. Examples of the application of empirical Bayes
include Latent Dirichlet Allocation (LDA) for the analysis of documents (Blei et al., 2003), missing
data analysis (Follmann and Wu, 1995), or classification of micro-biological tissues (Demichelis
et al., 2006). In this thesis, all contributions in Chapters 5, 6 and 7 rely on empirical Bayes and
estimate the parameters on one of the specified hierarchies based on the available dataset.

2.3.3. Approximation of the Posterior

In a Bayesian setting, specifying a suitable prior distribution is typically non-trivial and, therefore,
often shifted to the next level. This hierarchical setup works well if information is available on
various levels of observation. However, for more complex problems, particularly for non-conjugate
priors, analytical calculation of the posterior and closed-form estimation of the parameters is no
longer possible. The posterior distribution takes the form

fθ(θ|y) = f(y; θ)fθ(θ)∫
f(y; ϑ)fθ(ϑ)dϑ

and if the prior distribution is known, the only unknown quantity in the equation is the denomi-
nator. Hence, one strategy for estimating the posterior is the approximation of the integral in the
denominator. Conventional numerical integration algorithms suffice for univariate parameters.
Alternatives such as Laplace approximation (Kass et al., 1991) or Monte Carlo approximation
of the integral, employing diverse simulation techniques, have been suggested in more complex
situations.
However, explicit approximation of the posterior runs into problems for multivariate parameters
θ. Therefore, an alternative approach is based on the idea of directly sampling from the posterior
distribution instead of calculating it explicitly, i.e.,

θ∗ ∼ fθ(θ|y).

This is commonly done by sampling a Markov Chain of correlated estimates, i.e., the chain
θ∗

1, θ∗
2, ... is generated. The distribution of this chain will converge to the posterior distribu-

tion fθ(.|y). This approach is called Markov Chain Monte Carlo (MCMC).
Of course, directly sampling from fθ(θ; y) is impossible, as the explicit value of the denominator
is still unknown. Therefore, alternative strategies have to be employed. A popular MCMC-based
method is the Metropolis-Hastings algorithm, as introduced first by Metropolis et al. (1953)
and a few years later generalized by Hastings (1970). This algorithm exploits the fact that the
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unknown quantity, i.e., the denominator, cancels out when comparing the density of two possi-
ble parameter values. First, an appropriate proposal distribution g(θ|θ∗

t ) needs to be selected.
Commonly, g is specified as a Gaussian distribution centered around the previous sample, i.e.,
N(θ∗

t , Σ). To construct a Markov Chain θ∗
1, θ∗

2, ..., θ∗
t , one applies the two following steps:

1. Draw a new value θ∗ from the proposal distribution g(θ|θ∗
t ) based on the current value θ∗

t :

θ∗ ∼ g(.|θ∗
t ).

2. Calculate the acceptance probability for θ∗ as

A(θ∗
t , θ∗) = min

{
1,

fθ(θ∗|y)
fθ(θ∗

t |y) · g(θ∗
t |θ∗)

g(θ∗|θ∗
t )

}
.

If θ∗ is accepted, add the new value to the Markov chain, i.e., set θ∗
t+1 = θ∗.

It can be proven that the sequence θ∗
1, θ∗

2, ..., θ∗
t generated by the Metropolis Hastings algorithm

follows the stationary distribution fθ(.|y), see e.g. Robert and Casella (2004).
For the procedure to work reasonably well in practice, some aspects should be considered. First,
the produced samples are correlated due to the nature of a Markov Chain. This issue can be
addressed by “thinning” the samples, i.e., only including every x − th sample to retain a set of
samples devoid of correlation. Second, several “burn-in” iterations are required before the algo-
rithm reaches the desired stationary distribution, i.e., a number of initial samples are discarded.
Third, if the parameter is high-dimensional, the acceptance rate might decrease drastically, im-
pacting the performance of the Metropolis-Hastings algorithm and demanding extensions that
can handle high-dimensional parameters, like, e.g., Gibbs sampling, as described by Geman and
Geman (1984), or Hamilton Monte Carlo introduced by Duane et al. (1987). In general, MCMC
algorithms are very popular in the field of Bayesian statistics, and various alternatives and adap-
tations to special cases have been proposed over the years. A comprehensive overview is given,
e.g., by Congdon (2007) or Berg (2004).

2.4. Uncertainty in Statistical Models

To bridge the gap to the second topic of this thesis, uncertainty in the area of ML, it is worthwhile
to sketch the role of uncertainty in statistical models briefly. A major goal of traditional statisti-
cal modeling is to uncover underlying stochastic structures and, hence, to express the associated
uncertainties. Typically, one distinguishes between aleatoric and epistemic uncertainty, which will
be introduced in more detail in Chapter 3. However, a third type of uncertainty can be defined:
statistical uncertainty (Hüllermeier and Waegeman, 2021). It is concerned with uncertainty due
to the limited data basis used during any associated model’s training phase. Assessing this uncer-
tainty is crucial for obtaining reliable estimates, especially if the respective data basis is small. In
the field of statistical modeling, numerous methods have been developed to appropriately express
the uncertainties associated with parameter estimates.
The statistical uncertainty in θ̂ or another quantity is commonly expressed via confidence in-
tervals. For a parameter θ, the interval is defined as

P(l(Y ) ≤ θ ≤ u(Y )) ≥ 1 − α.
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The lower and upper boundaries l(Y ) and u(Y ) are thereby random variables based on Y cho-
sen to minimize the resulting interval. Exact intervals can be obtained based on distributional
assumptions and variance estimates. Generally, one is interested in quantifying the estimation
variance in the parameter estimates θ̂, expressing the associated uncertainty. For maximum like-
lihood estimates, a closed-form solution to calculate the variance exists in many cases. Returning
to the example of the multinomial mixture model, the parameters are estimated via a stochastic
EM algorithm. This setup allows quantifying the variance in the parameter estimates, as briefly
discussed in Section 2.3. Details on theory and computation can be found in the contributing
article in Chapter 5.
In a Bayesian context, methods based on MCMC sampling are popular and convenient with re-
spect to estimation uncertainty. The variance of the resulting simulations from the posterior
distribution is a natural way to express the uncertainty of the final parameter estimate and to
construct confidence intervals if needed.
Another widespread universal approach for assessing estimation uncertainty is bootstrapping, a
rather straightforward resampling method. While numerous variants of this approach exist today,
Efron (1979) first proposed the empirical bootstrap. Based on an observed sample (y1, ..., yn) mul-
tiple new samples (y∗b

1 , ..., y∗b
n ), b = 1, ..., B are generated by drawing with replacement uniformly

at random. Based on these samples, B estimates θ̂∗b, b = 1, ...B can be calculated and, hence, an
empirical distribution of the desired estimate can be formed. This distribution allows the conve-
nient computation of additional measures, like variance, standard deviation, bias, or confidence
intervals. Hence, it provides insights into the (un-) certainty of the original parameter estimate
without distributional assumptions. This fairly simple yet powerful approach is employed in the
contribution in Chapter 5. By bootstrapping the negative log-likelihood, we derive insights into
the heterogeneity of the annotation behavior of individual experts. Additionally, the stability
of the general estimation procedure is evaluated via bootstrapping. The contributing article in
Chapter 6 also employs this approach to assess the stability of the parameter estimates under
varying amounts of observations and annotations.

However, decomposing the overall uncertainty into fixed components is controversial and often
insufficient. Instead, all possible sources of uncertainty should be considered and appropriately
analyzed. Label uncertainty, a crucial aspect, is central to this thesis. The toolbox of statistical
modeling offers interesting possibilities for assessing such uncertainties. In particular, the models
introduced in Sections 2.1 and 2.2 allow us to analyze label uncertainty based on multiple anno-
tations. More details will be provided in Section 3.3 and in the respective contributing articles,
see Chapters 5, 6 and 7.
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“Scientific knowledge is a body of statements of varying degrees of certainty -
some most unsure, some nearly sure, but none absolutely certain.”

— Richard P. Feynman
(* 1918, d 1988)

As discussed in the previous section, uncertainty, and its quantification are central concepts in
statistics. Providing variance estimates or confidence intervals to showcase the reliability of the
proposed methods and their results is considered a fundamental step. In contrast, the predictions
of ML algorithms, particularly of deep neural networks, are often solely evaluated in terms of
accuracy and the relevance of uncertainty has been neglected for many years. With the increasing
popularity and success of deep learning, the need for reliable predictions and models is appar-
ent. This shift in focus has led to a rising interest in uncertainty and the need for quantification
methods, marking a significant change in the field in recent years. While complex networks can
achieve impressive prediction accuracy, often under optimal benchmarking conditions, they fre-
quently lack the reliability crucial for deployment in safety-critical real-world applications. Given
the sheer size and complexity of the models, there is an urgent need to develop appropriate meth-
ods for assessing and quantifying the associated uncertainty.
Extensive textbooks on uncertainty include, for example, Smith (2013) and Sullivan (2015). Sev-
eral recent reviews and survey papers also shed light on the topic from various perspectives.
Hüllermeier and Waegeman (2021) give an extensive overview of handling uncertainty in ML
models. Gawlikowski et al. (2023) discuss its sources and types in depth and propose approaches
for estimating uncertainty in deep neural networks. They also provide an overview of various
benchmarks, implementations, and uncertainty estimation in real-world applications. Abdar et al.
(2021) cover many existing methods for quantifying uncertainty, various application fields, and
related open issues. Uncertainty in big data analytics is discussed by Hariri et al. (2019). Gruber
et al. (2023) tackle the problem from a statistical perspective and focus on uncertainties arising
from the data. The relevance and necessity of uncertainty estimates are apparent in many applica-
tion areas. These include, for example, the analysis of medical images for diagnosis and treatment
(Ching et al., 2018 or Kompa et al., 2021), remote sensing with satellite imagery (Zhu et al., 2017)
or natural language processing (Xiao and Wang, 2019). Uncertainty- and risk-aware models are
also crucial in the deployment of algorithms, for example, in autonomous driving (Shafaei et al.,
2018 or Brechtel et al., 2014). This chapter introduces the general topic and popular directions
for quantifying uncertainty for deep neural networks. Afterward, the focus is placed on supervised
models and the uncertainty associated with the training data labels.
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3. (Label) Uncertainty in Machine Learning

3.1. Definition and Types of Uncertainty

Typically, uncertainty was and still is decomposed into an aleatoric and an epistemic part in
the context of ML, a distinction dating back to Hacking (1975) for describing probabilities from
two different perspectives. Statistical uncertainty, as briefly described in the previous chapter, is
often considered negligible in the age of big data and massive training datasets.
Epistemic uncertainty refers to the uncertainty of the model. It can be described as uncertainty
that arises due to the lack of knowledge, e.g., arising from insufficient or inappropriate training data
or misspecified models. Therefore, it can be reduced by acquiring additional data or developing
better models, hence the description as “reducible”. On the other hand, aleatoric uncertainty, also
called data uncertainty, is the inherent stochasticity of the observations. It is often also referred
to as “irreducible uncertainty”. However, this categorization is, in fact, ambiguous and does not
account for the multiple sources and types of uncertainty, as stated early on by Hora (1996) and
explored in depth more recently by Gruber et al. (2023) or Baan et al. (2023). Following the
statistical viewpoint adopted by Gruber et al. (2023), classical probability models can be used to
disentangle the types of uncertainty. Given a set of input variables X and output variables Y 1,
aleatoric uncertainty can be described by

Y |x ∼ fY |X(.|x).

Aleatoric uncertainty originates from the stochastic relationship between X and Y and, therefore,
refers to the variance V ar(Y |x). The remaining uncertainty can be defined as the epistemic part.
Overall, uncertainty is heavily impacted by the data at hand. Misspecified models, i.e., model
uncertainty, can arise from omitted quantities, errors in either the observed or the target variables,
or violations of the i.i.d. assumption. Additionally, areas like survey design, treatment of missing
data, and deployment settings heavily impact uncertainty. While the distinction between aleatoric
and epistemic parts of uncertainty can be helpful to some extent, the common definition is too
limiting in most applications. Instead, various possible sources must be considered for a compre-
hensive assessment of uncertainty and the role of the data at hand should not be underestimated
(Gruber et al., 2023).

3.2. Uncertainty Quantification

Quantifying the inherent uncertainty of a model’s outputs is crucial, particularly for deep neural
networks. It is an essential step to address significant challenges, such as the lack of transparency
and trust in their predictions, as well as their susceptibility to attacks. Therefore, understanding
and quantifying associated uncertainties is key to building reliable models.
In recent years, numerous methods for quantifying uncertainty have been explored and are now
increasingly implemented into the framework of deep networks, see Gawlikowski et al. (2023).
Most methods can be classified into one of three major streams. First, deterministic methods
provide uncertainty estimates based on one forward pass through a deterministic network. Al-
ready early on, prior networks were developed by Malinin and Gales (2018) for explicitly modeling

1Note that the common notation in ML is adopted here. However, defining Y as the output variables, or labels in
the context of supervised models, is in line with Y

(i)
1 , ..., Y

(i)
p referring to the vector of annotations for instance

i in the previous section. Summarizing Y
(i)

1 , ..., Y
(i)

p via some aggregation strategy results in output variables
Y (i).
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3.2 Uncertainty Quantification

distributional uncertainties. This is achieved by introducing a prior distribution, e.g., a Dirich-
let distribution, to represent the distributional uncertainty. Deterministic methods also include
evidential neural networks, see Sensoy et al. (2018) or Ulmer et al. (2023) for a recent survey.
These methods allow the output of uncertainty estimates by gathering “evidence” from the input
data and, hence, determining the level of certainty or confidence in the associated predictions.
The second stream of methods for uncertainty quantification can be described as Bayesian ap-
proaches, which include all kinds of stochastic neural networks. Similar to Bayesian methods
known from classical statistics, the ultimate goal is to infer the posterior distribution via some ap-
proximation strategy. A popular related, though not strictly Bayesian, approach in this direction
is Monte Carlo Dropout, as developed by Gal and Ghahramani (2016). Lastly, it is also possible
to combine the predictions of multiple deterministic networks in ensembles, as demonstrated
by Lakshminarayanan et al. (2017). These ensemble-based methods offer a relatively simple and
efficient method for computing uncertainty estimates.
However, in most applications, the resulting uncertainty estimates alone are insufficient to express
the overall uncertainty comprehensively. While low predictive uncertainty seems desirable, inter-
preting resulting estimates is not always straightforward. Additionally, many methods struggle to
disentangle the multiple and interacting sources of uncertainty, further complicating interpretation
(Valdenegro-Toro and Mori, 2022).

Uncertainty quantification techniques are commonly employed in combination with downstream
tasks. For example, estimates of predictive uncertainties can be used to detect out-of-
distribution data at test time. When models trained on specific datasets encounter samples
from unknown classes or entirely different datasets, they cannot provide reliable predictions for
these instances. This should be reflected in the associated uncertainty estimates. Another inter-
esting use case is Active Learning. This learning regime is based on the idea that the required
amount of training data can be tremendously reduced by letting the algorithm choose which ob-
servations to learn from. Settles (2009) describes this property as “curiosity” of the algorithm.
In particular, a neural network is initially trained based on a small set of labeled data. Based on
some query strategy, the network decides, which samples will be selected from a larger pool of un-
labeled training data and labeled by an oracle, i.e., a human labeler. Hence, the training dataset
is increased, and a new model is trained at each iteration. A common strategy for selecting new
observations is uncertainty sampling (Lewis, 1995). Therefore, predictive uncertainties are calcu-
lated for the unlabeled pool. Choosing data points with high uncertainty estimates, i.e., instances
that the current model is uncertain about, helps the model learn faster and more accurately with
less training data, as shown by, e.g., Gal et al. (2017) or Nguyen et al. (2019).

Another concept closely related to estimating uncertainties is calibration. In the context of
classification, it refers to the property that probabilities derived from a model adequately reflect
the certainty in these predictions. Modern neural networks are often poorly calibrated and over-
confident (Guo et al., 2017). However, to retrieve valuable predictions, not only a model’s accuracy
but also its confidence should be high. Guo et al. (2017) define those quantities as

acc(Bm) = 1
|Bm|

∑
i∈Bm

1(ŷ(i) = y(i))

conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂(i)

based on “bins” Bm, m = 1, ..., M , which split the data into M equally spaced regions. These
values are commonly visualized in reliability diagrams to assess network calibration. Alternatively,
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3. (Label) Uncertainty in Machine Learning

the difference in expectation between a model’s confidence and accuracy, approximated by the
expected calibration error (ECE), can be calculated. A lower value is desirable, as it indicates
better calibration and a better match between the predicted and the actual probabilities.
Several post-processing methods are available to re-calibrate a model’s prediction. A famous
example is temperature scaling (Guo et al., 2017). The temperature parameter in the softmax
function is adjusted for better calibration of the network’s prediction and less overconfidence.
Another popular approach is called label smoothing. Adding a small amount of uncertainty, i.e.,
smoothing, to the target labels during training leads to better generalization, see Szegedy et al.
(2016).

3.3. Label Uncertainty

In supervised learning, training a model relies on large amounts of annotated training data. Here,
uncertainty, in fact, is already present in the labeling process of the instances. Ambiguous anno-
tations carry a non-neglectable amount of uncertainty that this work treats as a possible source
or one layer of the overall uncertainty, termed label or annotation uncertainty. Effectively
dealing with label uncertainty is essential for enhancing the reliability and accuracy of ML models.
This issue must be addressed and incorporated into the final uncertainty estimates of classification
models to assess its global uncertainty comprehensively.

3.3.1. Generation of Labels

Labeled data are the foundation of supervised ML models, and hence, huge efforts have been
made in recent years to generate large labeled datasets for all kinds of domains. Classification
algorithms commonly rely on the existence of a gold label associated with each training instance.
However, obtaining such gold labels can be non-trivial depending on the complexity of the task at
hand. A popular strategy is acquiring multiple annotations per instance in the first labeling stage
to ensure consistent labeling and high quality. This is commonly done through human effort.
Crowdsourcing offers an inexpensive and efficient way to generate (multiple) annotations. How-
ever, while labeling by laypersons provides a cheap and relatively quick approach to gathering
multiple evaluations for each instance via platforms like Amazon Mechanical Turk, one might
sacrifice quality. The severity of this issue, of course, depends on the application at hand. While
exploiting the crowd’s wisdom has achieved promising results on some tasks, others require a more
sophisticated labeling strategy. In some application areas, like the classification of medical X-ray
scans (e.g., Dgani et al., 2018 or Zhou et al., 2021) or satellite images in the domain of earth
observation (e.g., Zhu et al., 2020), annotation is non-trivial for layperson and untrained workers.
Domain knowledge, detailed classification instructions, and training of the labelers are required
for satisfactory annotation. Hence, the instances are assessed by experts instead of laypersons,
which is costly and time-consuming. Therefore, multiply labeled training data are particularly
rare in interesting application areas where annotation is not straightforward.
Three examples of datasets containing multiple annotations will be shortly introduced in Section
3.4.
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(a) Plane (b) Cat (c) Dog (d) Deer (e) Truck

Figure 3.1.: The figure displays exemplary images from the dataset Cifar-10H, see Section 3.4.
Each subfigure refers to one category and contains an unambiguous (top row) and an
ambiguous (bottom row) example.

3.3.2. Label Problems

Uncertainty in the annotations can arise from numerous sources that must be treated in special
ways. A common problem, particularly when dealing with large amounts of real-world data,
is label noise. This term specifically refers to the lack of high-quality labels, see Frénay and
Verleysen (2013) for an introduction. Some evidence exists that deep neural networks are not as
sensitive to noisy labels due to their complexity (Rolnick et al., 2017). However, learning despite
label noise and robust training are important tasks and calibration techniques can be used to
minimize the negative effects (Lukasik et al., 2020). For an overview of the methodology, see Song
et al. (2023) or Algan and Ulusoy (2021).
Furthermore, systematic label bias can be an issue related to annotation uncertainty. Exemplary
sources are annotation guidelines, the expertise of the labelers, or the quality of data sources.
Biased data can have negative impacts, especially related to the fairness of the subsequent model,
and should be treated appropriately and with caution, see Jiang and Nachum (2020).
Another contributing issue to label uncertainty is ambiguity. In some classification scenarios,
it is unclear which label to assign to a particular instance. Figure 3.1 shows exemplary cases for
classifying tiny images into well-separated classes, see Section 3.4 for details on the respective
dataset. Amongst other sources, ambiguity can arise due to subjectivity, the inherent complexity
of the labeling task, inconsistent guidelines for annotators, or overlapping categories. A method
for learning despite ambiguous labels is label distribution learning, as introduced by Geng et al.
(2013), Geng (2016) or Gao et al. (2017). In this case, a probability distribution over possible
labels is assigned instead of a single label, and the loss function is adapted accordingly.
However, ambiguity in labels is often inevitable. Suppose the annotation task at hand is complex
and, hence, is associated with a complex classification problem. In that case, human labelers are
likely to make mistakes but also to disagree with each other rightfully. The ambiguity in the
resulting annotations reflects the ambiguity in the task itself. Hence, aggregating the annotations
into a single label discards important information, and the question arises of how to represent the
underlying ground truth adequately.

3.3.3. How to represent the ground truth?

Even if label quality generally benefits from acquiring multiple annotations per instance, the ques-
tion of how to use the multivariate data structure for modeling and learning remains. Variation
in the annotations is often undeservedly considered problematic and, hence, should be resolved.
The most straightforward approach is disregarding the annotation variation and compressing the
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3. (Label) Uncertainty in Machine Learning

information into a singular label. This is commonly done via aggregation, for example, by major-
ity voting or probabilistic methods. A comprehensive survey on annotation analysis is provided by
Paun et al. (2022). Majority voting and other aggregation methods work well for simple annotation
tasks, i.e., tasks with a high expected agreement. They can help filter spamming annotators or
wrong answers by exploiting the crowd’s wisdom compared to singular evaluations. However, this
strategy is unfavorable for more complex and possibly subjective annotation tasks. Summarizing
the annotations and, hence, “resolving” the label variation leads to a major loss of information.
In some areas, disagreement in annotations is considered beneficial. Plank (2022) proposes the
term “human label variation” in the context of natural language processing (NLP). It refers to
inherent annotation disagreement arising from genuine disagreement or valid subjectivity. Figure
3.2 shows the label distribution for the exemplary tiny images from the category deer from Figure
3.1. Inspecting the annotations for the upper example shows that aggregation into a single label
can indeed have positive filtering effects if the images are unambiguous. In contrast, choosing the
majority-voted class as a final label for the bottom image is not only incorrect, but it also discards
all information on the ambiguity of the image. Therefore, uncertainty in the respective final label
is ignored completely.
In many real-world applications, classifying instances is complex and often ambiguous. In the
domain of NLP, a growing body of work emphasizes the significance of inherent disagreements in
labeling (Pavlick and Kwiatkowski, 2019, Nie et al., 2020 and Leonardelli et al., 2021). However,
this issue is also prevalent in various image classification tasks, particularly with low-resolution
or domain-specific images. Relevant example datasets will be introduced in Section 3.4. In such
applications, the truth might indeed lie “somewhere in between” and a singular label cannot do
justice to the complexity of the problem. Therefore, the variation in the annotation reflects the
inherent complexity and provides valuable information. Neglecting and ignoring human label
variation from the start harms the subsequent steps of the ML pipeline and induces additional
uncertainty in the final predictions. Hence, interest in this prevalent issue has increased recently,
and various strategies to approach variation in multiply labeled data were developed to preserve
as much information as possible. A novel version of a famous benchmark dataset for image clas-
sification was introduced by Peterson et al. (2019) for incorporating human uncertainty via soft
labels. The authors show that incorporating the annotation variation can lead to more robust
classification models. Koller et al. (2024) explicitly integrate label uncertainty into the training
process through distributional labels derived from multiple annotations. They show that incorpo-
rating this additional knowledge enhances generalization to unseen data and better performance
in terms of calibration. A survey on different strategies of learning from disagreement in the
annotations is given by Uma et al. (2021). However, acquiring multiple labels per instance, in
general, remains a costly and labor-intensive process. This can be problematic for fixed annota-
tion budgets. A framework that is often deployed to reduce the human labeling effort is active
learning, as introduced shortly in the previous section. Recent work also explores the combination
of active learning principles and label variation, mainly in the area of NLP (Baumler et al., 2023,
Wang and Plank, 2023).

All contributing articles in the remainder of this thesis focus on analyzing label uncertainty based
on multiple annotations. The overall goal is to assess and quantify the ambiguity in the “gold”
labels of various datasets while also developing a more appropriate representation of the ground
truth. Therefore, methodology from classical statistical modeling is applied, as introduced in
Chapter 2.
In the contributions in Chapters 5 and 6, the central assumption is the existence of a one-
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Figure 3.2.: The figure shows the label distribution for two images from the category deer. The
top row displays the annotation results for a relatively unambiguous image, while
the bottom row shows the annotations for an ambiguous image, where disagreement
among the labelers is evident.

dimensional latent ground truth label for each observation. Hence, there is no ambiguity or
uncertainty about the true class itself, only about the annotator’s opinion regarding the correct
class. This setup can be statistically described by a multinomial mixture model, as introduced in
Section 2.1. This model enables us to retrieve information about the latent class affiliations and
the uncertainty in the annotations. The model parameters provide insights into various factors
that contribute to this uncertainty. Based on the conducted analyses in the article in Chapter
5, parts of it can be attributed to the general ambiguity of the classes in some applications, the
annotators’ heterogeneity, and the data’s external distinguishing properties. The work in Chapter
6 applies the same model setup in the context of language classification, a subdomain of NLP.
This contribution focuses on the stability of the estimation and emphasizes the importance of
acquiring a sufficient amount of annotations, especially for uncertain observations.
Chapter 7 contains a subsequent article that modifies the central assumption of a one-dimensional
ground truth label and instead assumes that the truth can be multi-dimensional. According to
Plank (2022), human label variation generally does not constitute a problem but instead should
be embraced. In many applications, the restriction of observations to a single class is overly strict
and does not do justice to the complexity of the problem. Therefore, the contribution proposes to
move away from a single ground truth label and instead estimate multi-dimensional ground truth
representations for each observation based on the annotations. In other words, the observations
are embedded into a P -dimensional space, with P denoting the number of classes. A Bayesian
model framework using the Dirichlet multinomial model, as introduced in Section 2.2, is proposed
to estimate suitable embeddings. The resulting embeddings provide insights into the correlation
structure of the classes. Additionally, they express individual instances’ classification difficulty
and uncertainty and serve as a more appropriate representation of the underlying ground truth.
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Dataset Type #N #J Type of Annotators Annotator-ID Source
So2Sat LCZ42 images 250k 11 Experts yes Zhu et al. (2020)
Cifar-10H images 10k [47,63] MTurk yes Peterson et al. (2019)
Plankton images 12k [1,192] Citizen Scientists yes Schmarje et al. (2022)
ChaosNLI text 4.6k 100 MTurk (qualified) no Nie et al. (2020)
SNLI text 570k 5 MTurk no Bowman et al. (2015)
MDAgreement text 10k 5 MTurk yes Leonardelli et al. (2021)

Table 3.1.: Examples of openly available multi-annotation datasets.

3.4. Multi-Annotator Datasets

Naturally, appropriate assessment of label uncertainty requires observations with multiple labels.
Most benchmark datasets for building classification models undergo thorough annotation processes
to maintain a baseline level of label accuracy. Still, before the final dataset is released, these
annotations are often streamlined. As the vast majority of models have been developed to predict
one-dimensional target categories and are optimized and evaluated in this regard, the aggregation
of annotations and, hence, the assumption of a single gold label per instance has been the standard
practice for many years (Plank, 2022). However, as discussed in Section 3.3, this overly simplifying
point of view can lead to serious uncertainty-related issues in the final predictions.
Analyzing and quantifying label uncertainty explicitly requires datasets containing the original
annotations per instance, which are relatively rare but of immense importance. Existing datasets
in this context differ depending on the application and task at hand. This refers to the size of
the dataset (#N), the number of available annotations per instance (#J), the competence of the
annotators, and the availability of annotator-specific information, amongst many more. Table
3.1 contains examples of multi-annotator datasets. The contributing articles in this thesis aim
to assess label uncertainty mainly based on three specific multi-annotator datasets, which will be
introduced shortly in the following.

In the domain of image classification, annotation uncertainty is common if the task at hand is
complex, possibly due to ambiguous images or similar categories. A prominent example in this
regard is the classification of satellite images into so-called local climate zones (LCZs), which is
studied in depth in the articles in Chapter 5 and 7. The respective dataset for analyzing annotation
uncertainty is a subset of the benchmark dataset So2Sat LCZ42 for earth observation, developed
by Zhu et al. (2020) and published within the framework of the work of Koller et al. (2024). The
full version of the dataset serves as a benchmark for classifying satellite images into climatic zones
to automatically develop climate maps and, therefore, monitor the development of urban climate.
A control stage was introduced upon development to ensure label quality, where multiple earth
observation experts annotated a subset of the original images from major European cities and
some additional global cities (N = 160K). Figure 3.3 shows the respective classes, as well as
satellite images and images taken from Google Earth. The classification scheme was developed
by Stewart and Oke (2012) and today constitutes a gold standard in categorizing the earth’s
surface. In this case, the low resolution of the images themselves and the ambiguous nature of the
classification scheme complicate the annotation process and demand special attention and skills.
Labeling satellite images is challenging even for trained experts, leading to a major amount of
disagreement and, hence, label uncertainty. As shown in Table 3.1, the number of annotations is
relatively small. However, the provided annotations are expert-specific, which allows us to assess
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Figure 3.3.: Visualization of the 17 climatic classes in various formats (upper image: Sentinel-1,
middle image: Sentinel-2, lower image: high-resolution Google Earth image), Source:
Zhu et al. (2020).

the annotators’ individual effects. The respective images also stem from highly heterogeneous
sources, i.e., geographic locations, which can further complicate the assessment by annotators.

Another famous dataset in the context of human label uncertainty in image classification is Cifar-
10H, as introduced by Peterson et al. (2019). The authors extend the test set of a famous
benchmark dataset, Cifar-10 (Krizhevsky et al., 2009), with multiple annotations to explore the
effects of incorporating human uncertainty into the classification model. While the classification
scheme consists of unambiguous, well-separated classes, the size of the images still defies easy
classification in some cases, see Figure 3.1 and Figure 3.2. Workers from Amazon Mechanical
Turk annotated the images. On the one hand, the study reveals annotation errors, which can
be resolved by aggregating the crowdsourced annotations. On the other hand, the dataset also
contains a few ambiguous images, for which the correct class is not apparent from the annotations.
The dataset provides annotator-specific labels and the original labels of the individual instances,
which correspond to the search term used to find the respective image via web searches.
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Context/Premise Statement/Hypothesis [E, N, C]
A man running a marathon talks to his friend. There is a man running. [100, 0, 0]
A live band on a lawn jamming out. A band is practicing new tunes in the garage. [0, 1, 99]
Two people riding bikes in the rain at skate park. It is springtime outside. [2, 98, 0]
A man in a black hat and jacket is sitting down. A man is being arrested for breaking a window. [0, 49, 51]
A woman holding a child in a purple shirt. The woman is asleep at home. [1, 53, 46]
An elderly woman crafts a design on a loom. The woman is sewing. [35, 31, 34]

Table 3.2.: Exemplary sentences of the dataset ChaosSNLI. Annotators were instructed as fol-
lows: “Given a context, a statement can be either: definitely correct (Entailment); or
definitely incorrect (Contradiction); or neither (Neutral). Your goal is to choose the
correct category for a given pair of context and statement.”, Source: Nie et al. (2020)

Label uncertainty also plays a vital role in the context of NLP. A subfield of this prominent
domain is natural language inference (NLI). NLI refers to the classification of language and is
concerned with determining the inference relation between two sentences, which can be classified as
entailment, contradiction, or neutral. Language is, of course, particularly prone to subjectivity and
individual perception. Therefore, label variation is likely to arise due to high human disagreement.
Multiple datasets have been introduced to assess label variation in this context. The article in
Chapter 6 focuses on the dataset ChaosSNLI, a subset of the larger ChaosNLI dataset based on
ambiguous examples from the Stanford Natural Language Inference (SNLI) corpus, as introduced
by Nie et al. (2020). Upon constructing the dataset, one annotator developed entailing, neutral, or
contradicting statements to an original premise. Hence, each resulting sentence pair is associated
with a subjective ground truth. The goal of the remaining annotators is then to classify the
pairs of statements into entailment, neutral, or contradicting, according to their relationship.
However, language itself is highly ambiguous, and so is the individual perception of the human
annotators. These issues undermine the actual meaning of a “ground truth”. Instead, multiple
plausible categories could be considered “correct”, as emphasized by Nie et al. (2020). This is also
obvious in the dataset, where a high rate of disagreement among the annotators can be observed
despite the existence of a subjective ground truth label. Table 3.2 provides a schematic overview
and examples. Qualified workers from Amazon Mechanical Turk carried out the annotation.
To prohibit the skewing effect of spamming annotators, quality was controlled by tracking the
performance of the individual annotators on unambiguous examples, see Nie et al. (2020) for
details. Although the large number of annotations enables the exploration of interesting questions
regarding labeling strategies, the dataset only contains aggregated label counts and does not
provide information specific to individual annotators.
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4. Concluding Remarks

This dissertation addresses label uncertainty in classification models from a statistical point of
view. Uncertainty is a rather vague but crucial topic for building reliable and valuable models.
While most supervised models for classification build on the assumption of available gold labels,
one goal of this thesis is i) to question the validity of the category associated with each instance and
ii) to re-assess the general assumption of singular ground truth labels for all kinds of classification
problems. The contributing articles show that employing statistical models and analyzing the
data-generating process allows for various insights into this specific source of uncertainty.

Contributions Part II focuses on modeling multiple annotations based on the central assumption
of a single latent ground truth label for each observation. The contributing article in Chapter 5
aims to assess the inherent uncertainty in the annotations in the context of the classification of
satellite imagery. By treating annotations as multinomial count data and employing a mixture
model, the data-generating process can be modeled under the assumption of a latent true label.
This approach provides insights into the confusion probabilities of the annotators and the pos-
terior distributions of the true labels. Based on the resulting estimates, it is possible to assess
the main factors contributing to label uncertainty, like annotator-specific effects or external prop-
erties of the instances. The proposed statistical model is highly adaptable and can be applied
to different application areas, as shown in Chapter 6. Here, the mixture modeling approach is
applied to a dataset from the domain of NLI, again providing insights into the latent posterior
distributions. Additionally, this work assesses the stability of the proposed estimation procedure
via a bootstrapping approach under various conditions. By systematically varying the number
of annotations and observations, this work showcases the importance of sufficient annotations for
ambiguous instances and, hence, aims to provide guidance for future annotation tasks. However,
the question remains whether the assumption of a singular gold label is actually valid. A growing
body of work, primarily in the field of NLP, see Plank (2022), Nie et al. (2020) and Zhang et al.
(2021), suggests the opposite.
Therefore, Part III moves beyond this limiting assumption. In the contribution in Chapter 7, a
latent label representation, so-called embedding, is estimated via a Bayesian model framework
based on the Dirichlet-multinomial model. The resulting vector representations capture anno-
tation ambiguities as well as actual classification difficulty of instances. The proposed universal
approach can be easily applied to various multi-annotator settings if the assumption of a single
gold label per instance is too limiting and unrealistic.

Discussion and Outlook While the proposed methods and models provide interesting and highly
relevant insights, they serve more as a first step than a finished solution toward increasing aware-
ness of annotation uncertainty and the need for a more appropriate representation of uncertain
labels. This issue is highlighted by the present contributions in various domains and application
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areas. Incorporating the results in future work is inevitable as part of the primary goal of reli-
able and uncertainty-aware classification models. Two possible future research directions will be
sketched shortly to emphasize the topic’s relevance.
First, the results of all contributions can be almost directly incorporated into the ML pipeline. Es-
timating the posterior distributions of the latent true label for each instance or multi-dimensional
label embeddings can preserve information about uncertainty within the full set of annotations.
Hence, they serve as more reliable label representations. Building ML models based on these rep-
resentations incorporates the uncertainty of the original annotations and could, therefore, lead to
more reliable and comprehensive uncertainty estimates. Koller et al. (2024) show that by employ-
ing approaches like label distribution learning, classification models already benefit from using the
empirical label distribution instead of simple one-hot labels in terms of calibration. Incorporating
the additional information in the form of the latent posteriors or latent Bayesian label embeddings
could further enhance the results by allowing for a more accurate and realistic representation of
a “ground truth”.
Furthermore, the second contribution concludes that for ambiguous observations, a sufficient num-
ber of annotations per instance is more crucial than a large sample size. While this finding is
reasonable from a data-generating viewpoint, quantitative measures and clear guidance on how
and when to annotate observations still need to be explored. Hence, future work in this direction
could concentrate on deploying strategies inspired by Active Learning to develop multi-annotator
datasets without unnecessary human labeling effort. The primary goal is to ascertain whether
obtaining an additional annotation for a given instance or collecting more instances proves more
advantageous within a fixed annotation budget.
Generally, this thesis highlights the importance of incorporating label uncertainty into the overall
pipeline of ML models and the utility of the statistical modeling toolbox for this purpose. However,
to completely assess and quantify uncertainty, the collaboration of machine learners, statisticians,
and domain experts is crucial and should be fostered further in the future. By leveraging their
interdisciplinary expertise, more robust and reliable models can be developed, and uncertainties
can be captured and addressed more accurately. Ultimately, collaborative efforts will lead to more
trustworthy and effective ML applications.
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Abstract
Image classification is often prone to labelling uncertainty. To generate suitable training data, images are 
labelled according to evaluations of human experts. This can result in ambiguities, which will affect 
subsequent models. In this work, we aim to model the labelling uncertainty in the context of remote 
sensing and the classification of satellite images. We construct a multinomial mixture model given the 
evaluations of multiple experts. This is based on the assumption that there is no ambiguity of the image 
class, but apparently in the experts’ opinion about it. The model parameters can be estimated by a 
stochastic expectation maximisation algorithm. Analysing the estimates gives insights into sources of label 
uncertainty. Here, we focus on the general class ambiguity, the heterogeneity of experts, and the origin city 
of the images. The results are relevant for all machine learning applications where image classification is 
pursued and labelling is subject to humans.
Keywords: expert evaluations, labelling uncertainty, mixture models, multiple labellers, stochastic expectation 
maximisation
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1 Introduction
Machine learning has achieved impressive standards in recent years. In particular, in image ana-
lysis and classification, deep learning has completely changed the way to approach image data. 
Today, machine learning is increasingly used for the classification of images, with applications 
for instance in medical image analysis, face recognition, machine vision, and many more. In this 
paper, we focus on satellite images and their use to classify the world into so-called local climate 
zones (LCZ) as a categorisation of the surface. The concept of LCZ, as proposed in Stewart and 
Oke (2012), has achieved a general standard in remote sensing and is based on the assumption that 
the structure of the landscape influences the local climate. The LCZ scheme categorises the surface 
of the world into 17 classes that are supposed to influence local climate behaviour. The classes dif-
fer in surface structure (e.g. related to the density or height of trees and buildings) and surface cov-
er (unsealed or sealed). A schematic description and exemplary satellite images are shown in 
Figure 1. This categorisation serves as an international standard for the mapping and analysis 
of urban areas and massive effort has been spent in developing algorithms that transform satellite 
images into an LCZ map. For this purpose, deep learning offers promising solutions to achieve 
high-quality maps and has already proven its utility in this regard, see, e.g. Qiu et al. (2019) or 
Qiu et al. (2018). Zhu et al. (2022) combine earth observation data with deep learning and reveal 
detailed morphology of urban agglomerations across the globe. For an extensive overview of chal-
lenges, advances and resources of deep learning in the field of remote sensing, we refer to Zhu et al. 
(2017).
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Machine learning is thereby based on labelled data, that is we are in the context of supervised 
learning, see, e.g. Friedman et al. (2001). In this context, the problem of acquiring labels is very com-
mon and often solved by crowdsourcing, as introduced by Estellés-Arolas and González-Ladrón-de 
Guevara (2012). A lot of effort has already been spent in analysing the quality of such labels, e.g. by 
Raykar and Yu (2011) or Karger et al. (2013) in the case of multi-class classification. Dawid and 
Skene (1979) also investigated the observed variation and its effect on the resulting measurements. 
More recently, Chang et al. (2017) developed a framework for improving the standard workflow of 
crowdsourcing by incorporating knowledge about labelling by experts. Northcutt et al. (2021) also 
proposed confident learning in large (crowdsourced) databases with mislabelling, also referred to as 
ontological uncertainty. Although promising results can be achieved by exploiting the wisdom of the 
crowd, it is not suitable for our area of application. The classification of satellite images into LCZ is 
non-trivial and relies on special knowledge and detailed classification instructions. Therefore, the 
insights from crowdsourcing theory are helpful to a certain degree but cannot be transferred directly 
for the classification of LCZ. In particular, our use case requires that experts label images by hand, 
classifying hundreds of images into one of the 17 categories. This process is apparently time- 
consuming and not without ambiguities. In fact, different experts come to different conclusions 
when classifying images. The quantification of uncertainty is therefore particularly crucial as data 
sources are highly inhomogeneous and labelled image data are rare, see Russwurm et al. (2020). 
All in all, classifying satellite images into their corresponding LCZs demands a complicated and 
time-consuming annotation process.

Using noisy or even deficient labels for the training of deep learning models leads to huge uncer-
tainties and can result in serious challenges. Our problem concentrates on so-called label noise and 

Figure 1. Example of image scenes of the 17 LCZ classes (upper image: Sentinel-1, middle image: Sentinel-2, lower 
image: high-resolution aerial image from Google Earth). Source: Zhu et al. (2020).
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we refer to Frenay and Verleysen (2014) for an extensive survey. We are also faced with label am-
biguity, where methods like label distribution learning have been introduced by, e.g. Geng (2016). 
Another approach is to incorporate the human component. Dgani et al. (2018) discuss methods of 
training neural networks despite unreliable human annotations and Peterson et al. (2019) incorp-
orate this human uncertainty to increase the robustness of classification algorithms. Luo et al. 
(2021) investigate label distribution learning also in the particular field of remote sensing.

The problem of labelling uncertainty goes well beyond the particular problem considered here. 
It is found also, e.g. in medical image analysis as described in Zhang et al. (2020) or Ju et al. (2021), 
face identification (Kamar et al., 2012) or more generally in crowdsourcing areas (Phillips et al., 
2018). In this work, we consider data, where each image has been classified by multiple experts 
but the true class remains unknown. This relates to the setting of latent class models, as introduced 
by Lazarsfeld (1950), where a set of observed variables is related to a set of latent variables. 
Goodman (1974) extended the original idea by using Maximum Likelihood methods and today, 
numerous variants of latent class analysis exist (Magidson et al., 2020). These methods are helpful 
in many applications where the goal is to uncover hidden groups or structures in observed data. In 
this work, we aim to quantify the uncertainty of the experts about some of the images by applying 
a classical finite mixture model. We refer to McLachlan and Peel (2000) or McLachlan et al. 
(2019) for a general description of the model class. See also Fraley and Raftery (2002) for the re-
lation of mixture models and model-based clustering and Cadez et al. (2001) for an application to 
transaction data. To link the application to mixture models we assume a latent ground truth. To be 
specific, we employ a multinomial mixture model and our ultimate goal is to estimate the ‘true’ 
confusion matrix, i.e. without knowing the ground truth of an image. This will allow us to inves-
tigate the inevitable uncertainty in human image labelling. Moreover, we investigate if and how 
this uncertainty differs for images from different regions of the world, i.e. if and how the accuracy 
of annotation differs locally.

The quantification of uncertainty is receiving increasing interest in machine learning in recent 
years. We refer to Gawlikowski et al. (2023) or Hüllermeier and Waegeman (2021) for a general 
overview. Typically, uncertainty is decomposed into two parts: aleatoric uncertainty and epistemic 
uncertainty, sometimes also labelled as irreducible and reducible uncertainty. Such decomposi-
tions are not uniquely defined, and here we focus on an additional layer of uncertainty, which is 
often omitted, namely that the ground truth remains unknown. In our case, for each satellite 
image, we only have the annotations given by the human experts but the true LCZ is not given.

The paper is organised as follows. In Section 2, we give a detailed description of the data at hand 
and describe the annotation process that has been applied to generate the data. In Section 3, we 
introduce our statistical approach and the models used to quantify the labelling uncertainty. 
Section 4 discusses the results of the particular data set at hand. Section 5 concludes the paper.

2 Data
We will analyse label uncertainty based on the earth observation benchmark data set So2Sat 
LCZ42 (Zhu, 2021). For a detailed description of the full data set, we refer to Zhu et al. 
(2020). It comprises the LCZ labels of Sentinel-1 and Sentinel-2 image patches in 42 urban ag-
glomerations across the globe. The images come in so-called patches, each covering an area of 
320 × 320 m. Figure 1 shows an illustration of the LCZs, as well as examples of corresponding 
remote-sensing image patches. The data set was created by a complicated and labour-intensive 
labelling project. For selected cities, polygons of different sizes were extracted, delineated such 
that the surface was largely homogeneous within each polygon. Within these polygons, equidis-
tant images were then selected and initially labelled by a panel of two experts, which also used 
auxiliary data such as high-resolution satellite images from Google Earth. This procedure re-
sulted in ‘clusters’ of images, manually labelled by a larger panel of 11 experts. We here focus 
exclusively on these 11 votes per image. The produced labels do not serve as final labelling 
but rather as a validation stage. At this stage, one aims to assess overall labelling quality by com-
paring the opinion of the experts to the previously found label and possibly correcting it accord-
ingly. A detailed layout of the labelling procedure and the validation stage can be found in Zhu 
et al. (2020). Finding the suitable LCZ for a polygon is impossible for a layperson and even 
labour-intense and non-trivial for trained experts. As the definition of LCZs is very vague in 
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its nature, a rigorous labelling workflow and decision rules had to be designed to ensure the high-
est labelling quality possible. Overall, we look at 159,581 images from 9 cities leading to a data 
structure as sketched in Table 1.

The voting data already suggests some degree of certainty for the experts. For 77.18 % of the 
images, the experts agree on one single LCZ. We observe so-called ‘voting patterns’ for the other 
images. Eleven experts voting for 17 classes leads to 1117 possible patterns, of which only 243 oc-
cur in the data set. This observation suggests that only a few classes are frequently confused, while 
others can always be distinguished.

The votes are not distributed evenly among the classes. As Figure 2 shows, the majority of votes 
were for classes A, D, and G, whereas other classes hardly occur in the votings. Looking at the dif-
ferent cities, there is a large difference in not only the number of patches per city but also in the 
distribution of votes within the cities, see Figure 2. We suspect a spatial correlation within the cities 
that influences the collection of votes. Looking at the plots, the distributions of votes in the differ-
ent cities vary quite a lot. For example, class G dominates in London or Zurich, while it hardly 
occurs in Paris. One should also note that the number of images inspected by the experts is also 
different in each city, which might impact the quality of the voting process.

Another interesting aspect of the data is its clustered structure. The images were selected 
through cluster sampling of polygons including homogeneous areas. In Figure 3, we show exem-
plary the locations of the selected images in Berlin. The clustered structure is apparent. Other cities 
look comparable.

Finally, we look at the data from the voters’ view. Figure 4 shows a histogram of the votes cast 
by each expert. We recognise heterogeneity among the voters, where the voting behaviour differs 
mostly for urban classes (1–10), while the distributions for the non-urban classes A–G are pretty 
similar. We will therefore also aim to question if and how the voters’ classification differs.

3 Annotation uncertainty
3.1 Description of model
To achieve the goal of exploring labelling uncertainty, we look at the votes cast by earth observa-
tion experts. Each image patch i, i = 1, . . . , n is assessed by a set of experts indexed with 
j, j = 1, . . . , J. The experts thereby classify each image individually into the LCZ k, where 
k = 1, . . . , K. The corresponding vote of the expert is denoted by V(i)

j ∈ {1, . . . , K}. It is notation-
ally helpful to rewrite this vote into the K dimensional indicator vector, which we denote in bold 
with V (i)

j = (1{V(i)
j = 1}, . . . , 1{V(i)

j = K}), with 1{ · } as indicator function. This allows to accumu-

late the labellers’ votes into the data points Y(i) = (Y(i)
1 , . . . , Y(i)

K ) with Y(i)
k = J

j=1 1(V(i)
j = k). This 

vector can be considered as the vote distribution for image i.
We assume further that each image comes from a single true class (=ground truth), which is a 

reasonable assumption based on the clustered data structure described above. Hence, we assume 
that there is no ambiguity in the image class, but apparently, there are ambiguities in the voters’ 
opinions about this class. We denote with Z(i) ∈ {1, . . . , K} the true class of image i, which appar-
ently remains unknown. Like above, we can reformulate the true class as K dimensional index vec-
tor Z(i) = (1{Z(i) = 1}, . . . , 1{Z(i) = K}). Our intention is now to get information on Z(i) or Z(i), 
respectively, given the voters’ distribution Y(i). We will therefore apply Bayesian reasoning using 

Table 1. Sketch of the database

Image ID 1 2 3 4 5 6 7 8 9 10 A B C D E F G City

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 Berlin

2 0 0 0 0 0 0 0 0 4 0 0 0 0 7 0 0 0 Berlin

· · · · · · · · ·

3650 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 5 Zurich

· · · · · · · · ·
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a mixture modell approach, which requires formulating a distribution framework. For the true 
classes, we assume a multinomial distribution, also called prior distribution, i.e.

Z(i) ∼ Multi(π, 1) i.i.d., 

Figure 2. Class distribution of the votes per city, along with the number of image patches per city. The top left figure 
shows the distribution for all images, the remaining figures show the distribution in Berlin (row 1), Cologne and 
London (row 2), Madrid and Milan (row 3), Munich and Paris (row 4), Rome and Zurich (row 5).

J R Stat Soc Series C: Applied Statistics, 2024, Vol. 73, No. 1                                                               147

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/73/1/143/7308413 by Ludw

ig-M
axim

ilians-U
niversitaet M

uenchen (LM
U

) user on 20 F
ebruary 2024

47



where π = (π1, . . . , πK) with πk as so-called prior probability that image i is from the true LCZ k for 
k = 1, . . . , K. Given the true class of the image, we further assume that the labellers’ votes also fol-
low a multinomial distribution, i.e.

Y(i) ∣ Z(i) ∼ Multi(θZ(i) , J), (1) 

where θZ(i) = (θZ(i)1, . . . , θZ(i)K). The parameters express the probabilities of voting for classes 
1, . . . , K given the true class is Z(i) ∈ {1, . . . , K}. We collect the coefficients into the matrix

Θ = (θ pk, p, k = 1, . . .K), 

Figure 3. Spatial distribution of images and polygons across Berlin.

Figure 4. Distribution of votes, split by expert.
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which will be estimated from the data. Again, θpk refers to the voting probabilities, given Z(i) = p. 
We will also demonstrate how to estimate vector π if no prior knowledge about the general distri-
bution of the LCZ is given or if any prior knowledge is intended to be ignored. Note that this ap-
proach corresponds to empirical Bayes estimation by estimating the prior to maximise the 
marginal likelihood, see, e.g. Robbins (1992).

Given that the true classes are unobserved, we are in the framework of mixture models. We ob-
tain the likelihood contribution of the ith image by summing over all classes, that is

P(Y (i), π, Θ) = K

k=1

πkP(Y(i), θk), (2) 

where θk is one column of the true confusion matrix and the probability in the sum results from the 
model (1). Apparently, this is getting clumsy, so we apply the expectation maximisation (EM) al-
gorithm, or more precisely, a stochastic version of it.

3.2 Stochastic EM algorithm
The main idea of the EM algorithm, introduced by Dempster et al. (1977), is that the latent image 
class Z(i) is replaced by its expected value, given the data and the current estimates. For mathem-
atical details, we refer to Appendix A. This gives complete data so that the above estimates can be 
easily derived. These steps are carried out iteratively. While the EM algorithm in general is a handy 
tool, it is also very slow and numerically intense. In fact, in our example, we would need to calcu-
late the posterior expectation for all images. Instead, we make use of the stochastic EM algorithm 
(SEM) as proposed in Celeux et al. (1996). Here, the E-step is replaced by a simulation step, lead-
ing to simulated true image classes and hence allowing for simple estimation. Like the EM algo-
rithm, one iterates between two steps to estimate the unknown parameters.

Let π̂<t> and Θ̂<t> be the estimates in the t-th iteration step of the algorithm. Taking these pa-
rameters, we can calculate the posterior probabilities

τ(i)<t>l = P(Z(i) = l ∣ Y(i); π̂<t>, Θ̂<t>) = P(Z(i) = l; π̂<t>)P(Y (i) ∣ Z(i) = l; Θ̂<t>)

P(Y (i); π̂<t>, Θ̂<t>)

= π̂<t>lP(Y (i); θ̂<t>l)
K

l′=1 π̂<t>l′P(Y(i); θ̂<t>l′ )
.

The simulation-based E-step is now carried out by drawing

Z(i)
<t> ∼ Multi(τ(i)

<t>, 1), 

where τ(i)
<t> = (τ(i)<t>1, . . . , τ(i)<t>K). We obtain complete data with these simulated true classes, leading 

to new estimates based on the complete likelihood.
Using this standard SEM procedure, we produce a chain of estimates (or simulated values) at 

each iteration, namely (Θ̂<t>)t≥0 and (π̂<t>)t≥0 and therewith (τ̂<t>)t≥0. The final estimate can 
then be calculated as the mean value of the produced estimates starting at iteration t0, the end 
of the burn-in, i.e. the mean parameter resulting from the last T − t0 iterations. For the parameter 
Θ describing the voting probabilities this results in

Θ̂final = 1
T − t0

T

t=t0

Θ̂<t>.

The stochastic version of the EM has two advantages. First, it is numerically more straightforward, 
though it requires additional computation. Second, we can directly quantify the uncertainty of the 
estimates. We are interested in the estimation variance of the parameters, primarily of course in the 
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estimate of the (mis)classification matrix Θ. We refer to Rubin’s formula resulting from multiple 
imputations, see Rubin (1976) and Little and Rubin (2002). Note that the matrix estimate of Θ 
does not have full rank since the rows sum up to one. We therefore drop the last column and write 
the matrix estimate into a vector ϑ̂ = (θ̂T

1,−K, . . . , θ̂T
K,−K), where θ̂l,−K is the K − 1 dimensional sub-

vector resulting from the first K − 1 columns of θ̂l. We obtain

Var(ϑ̂) = EZ(Var(ϑ̂ ∣ Z)) + VarZ(E(ϑ̂ ∣ Z)), (3) 

where the subscript Z refers to expectation and variance with respect to the latent classes Z(i) for 
i = 1, . . . , n. Note that for given Z we are in a complete data scenario and it is not difficult to show 
that in this case subvectors θ̂l,−K and θ̂l′,−K of ϑ̂ are independent for l ≠ l′. This leads to the variance

Var(θ̂l,−K ∣ Z) = diag(θl,−K) − θT
l,−Kθl,−K

n
i=1 1{Z(i) = l)

, 

which is estimated in the t-th iteration step by replacing θl,−K through its estimate, i.e.

Var(θ̂l,−K ∣ Z<t>) = diag(θ̂<t>l,−K) − θ̂T
<t>l,−Kθ̂<t>l,−K

n
i=1 1{Z(i)

<t> = l}
.

Replacing now the expectation in equation (3) through the simulated steps from the EM algorithm 
allows us to estimate the variance through

Var(ϑ̂) = 1
T − t0

T

t=t0+1

blockdiag Var(θ̂l,−K ∣ Z<t>)
 

+ 1
T − t0 − 1

T

t=t0+1

ϑ̂<t> − ϑ̂final
( 

ϑ̂<t> − ϑ̂final
( T

, 

with obvious definition of ϑ̂final.

3.3 Label switching
Like in every mixture model, the resulting classes are subject to label switching, i.e. the numbering 
of the resulting classes does not match the original numbering of the LCZs. In other words, while 
the classes labelled by the voters have explicit meaning and therefore an interpretable order, the 
latent classes are subject to permutation and have no explicit interpretation. For the mixture mod-
el, we assume 17 true classes which are ordered at convergence as C = {C1, C2, . . . }. On the ob-
servation side the experts categorise the satellite images into 17 classes denoted by 
L = {L1, L2, . . . }. We now need to match the latent classes C to the labelled classes L. It is import-
ant to note that the labels of the clusters returned by the algorithm are unidentifiable. Therefore, to 
ensure a clear assignment, we need a bijective function going from the cluster labels C to the voter 
labels L. Or putting it differently, we need to construct a permutation σ() on the numbers {1, . . .K} 
such that σ(Cl) = k means that the latent class Cl corresponds to the LCZ Lk. This could be 
achieved by looking at the posterior probability of the latent classes given the voters’ opinions. 
Note that for a single vote V(i) we obtain P(Z(i) = l ∣ V(i) = k) ∝ P(V(i) = k ∣ Z(i) = l)πl or written 
in matrix form

P(Z(i) = {1, . . . , K}T ∣ V(i) = {1, . . . , K}) ∝ diag(π)ΘT .

This suggests constructing the permutation σ() such that its inverse fulfils

σ−1(k) = arg maxl(diag(π)ΘT)). (4) 
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This still might not lead to a unique definition. We, therefore, apply rule (4) in descending order of 
the relative frequency of the labellers’ votes and choose the arg max from the not-allocated classes 
only. A detailed layout of the algorithm is provided in the Appendix B. After finding the correct 
permutation of the numbers, we rename the original clusters according to the respective local cli-
mate zone label.

4 Sources of uncertainty in the votes
We are now in the position to approach different questions related to human annotation of satel-
lite images. These are: 

1. How distinguishable are the LCZs in general, that is can we estimate the ‘true’ confusion 
matrix?

2. Is there an expert bias, that is are the experts heterogeneous or homogeneous with respect to 
the labelling?

3. Is the voting behaviour influenced by geographic differences, that is does the ‘true’ confusion 
matrix differ in the different cities where the data come from?

All three questions are tackled subsequently.

4.1 Ambiguity of LCZs
A very general aspect for quantifying the uncertainty in the voting data set are the LCZs them-
selves. By looking at the definition and characterisation of the classes, it is obvious that some 
are very similar and might not be easily distinguishable, even for experts. This is for example 
the case for classes 3 and 7, which both describe urban low-rise environments. Contrarily, there 
are LCZs that are easy to discover on images and that are likely to be never confused by humans, 
e.g. class 17 covering water areas. In general, it is presumably more difficult to distinguish urban 
classes, i.e. LCZs 1–10 than non-urban classes which are LCZs A–G.

The parameter of main interest is the confusion matrix Θ̂, i.e. the estimated true confusion ma-
trix of the classes.

To obtain a stable estimation and interpretable results, we restricted the estimation procedure 
described in the previous section to K = 16 instead of K = 17, omitting LCZ 7 (lightweight low-rise 
building types). This is reasonable, not only due to the semantic interpretation of ‘slums’, which 
are very unlikely to occur at all in European cities but also necessary due to the lacking data basis. 
As mixture models are generally able to handle any arbitrary number of classes, including a class 
without sufficient observations or votes in this case, this will lead to instability and confusion in the 
estimation results.

Figure 5 shows the resulting estimate based on the full data. The entries on the diagonal contain 
the probability of correctly classifying images. In contrast, entries θlk describe the probability of 
classifying an image that truly belongs to class l into LCZ k instead. Looking at the diagonal of 
the matrix, it is obvious that correct classification is highly dependent on the number of votes a 
class received from the experts. Apparently, classes 2, 6, 8, 10, A, B, D, E, and G are very well sep-
arable, whereas classes 3, 4, 9, and C are often not detected correctly. Note that said classes re-
ceived a very small number of votes in the labelling process so the misclassification should not 
be over-interpreted. This can be seen from the frequency distribution indicated at the bottom of 
the plot and also the estimated prior distributions (right-hand side of the matrix), which show a 
strong tendency of the voters for classes A, D, and G. Apart from correct classification probabil-
ities, we can also detect classes that are not that easy to distinguish, like, e.g. class 3, where the 
voting probabilities are distributed among classes 2, 3, and 6.

Generally, our results depend on the input votes as the algorithm can only detect classes where 
the data basis is sufficient. Furthermore, it should be mentioned here our true confusion matrix is 
subject to the implemented label-switching process. As the multinomial mixture model produces 
‘meaningless’ clusters that must be assigned to LCZs afterwards, the resulting estimates and their 
interpretation are based on the assignment strategy, which might not be unambiguous. Generally, 
however, we obtain interpretable insight into the inevitable ambiguity when classifying LCZs.
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4.2 Expert heterogeneity
As explained in the beginning, the task of classifying is not trivial, even for trained earth observa-
tion experts. Therefore, it is obvious that the human assessment causes some confusion and uncer-
tainty within the data. The experts are assumed to be subject to some bias, that might impact or 
even skew the results. The model described in the previous section allows for assessing the impact 
of each individual expert and their heterogeneity. As shown in Section 2, the distribution of votes 
for each expert can differ quite a lot, in particular for urban classes. Therefore, it is worthwhile to 
investigate the individual impact of the voters further. If experts were homogeneous, their voting 
behaviour would not differ, and dropping the votes of one expert at a time should not change the 
final estimated distribution.

Looking at Figure 4, we already get a general overview of the observed voting behaviour of the 
experts. While the distribution of votes is similar for all experts for the non-urban LCZs (A–G), the 
distribution varies noticeably for the urban classes (1–10). Therefore, it is worth further examining 
the voting behaviours and their impact on the results.

The parameter of interest here is τ̂(i)
l , expressing the posterior probability of image i to belong to 

the true class l according to the applied model and algorithm. In order to analyse the difference 
between the voting behaviours, we calculate the posterior probabilities excluding a single expert. 
This leads to 11 estimates τ̂(i)

(−j)l, where the bracketed index −j refers to the excluded voter j.

Figure 5. The matrix shows the true confusion of the voted local climate zones (columns) with the true classes 
(rows), along with the estimated prior probabilities on the right side and the relative vote frequency on the bottom of 
the plot.
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A very straightforward way of quantifying heterogeneity is calculating the log-likelihood. Here, 
we assume that the distribution of the categorical variable is the same for all subgroups. In this 
particular application, the subgroups consist of 11 experts, which classify images into 16 LCZs. 
Assuming a multinomial distribution the j-th expert contributes to the negative log-likelihood 
through

Λj = −N

i=1

K

k=1

1{V(i)
j = k} · log (τ(i)k ), (5) 

where 0 · log (0) is defined as 0. We replace τ(i)k by the estimate excluding the j labeller and define the 
resulting negative log-likelihood as

Λ̂j = −N

i=1

K

k=1

1{V(i)
j = k} · log (τ̂(i)(−j)k). (6) 

Statistic Λ̂j is a random quantity, which we will now explore through bootstrapping. We, there-

fore, draw N images with replacement and denote with V(i∗)
j the vote of the j-th labeller for the 

bootstrapped image i∗. This leads to the bootstrap quantity

Λ̂∗
j = −N

i=1

K

k=1

1{V(i∗)
j = k} · log (τ(i∗)

(−j)k). (7) 

We repeat this step B times to obtain Λ̂∗b
j for b = 1, . . . , B. To put the magnitude of these boot-

strapped values into perspective, we look at the absolute differences to the overall mean and define

Dj :=





Λ̂j − 1

J − 1

J

l=1,l≠j

Λ̂l







and the resulting bootstrapped versions

D∗b
j :=






Λ̂∗b

j − 1
J − 1

J

l=1,l≠j

Λ̂∗b
l






.

If the experts are homogeneous, then Dj should be in the range of 0, while if experts are hetero-
geneous, the range of Dj will vary. We, therefore, look at the densities of the bootstrapped distan-
ces as shown on the left side of Figure 6. The plots show a clear difference between the 
bootstrapped differences and therefore a clear separation of the experts regarding voting behav-
iour. To confirm this we run an additional bootstrap under the assumption that experts are homo-
geneous. To do so we conduct a randomised version of the former analysis by replacing the votes 
of expert j in equation (7) with a random vote. In other words, for each image we randomly per-
mute the experts. This leads to the densities displayed on the right side of Figure 6, showing homo-
geneous curves for randomised votes.

We can investigate this further and check whether the experts’ voting behaviour and their homo-
geneity differ for different cities. In Figure 7, we show the same bootstrapped densities as described 
above for each city separately. It appears that the experts conduct their voting differently in com-
parison to the rest and this varies over the different cities. For some cities, the voting behaviour 
seems more homogeneous, which might however also mirror smaller sample sizes as in cities 
like Milan, Rome, or Zurich. Overall, the analysis shows that while some of the experts align 
well with the overall voting behaviour, others conduct a more heterogeneous and individual vot-
ing, leading to confusion and an ambiguous majority voting.
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Depending on the application at hand, expert heterogeneity is often not only accepted but also 
desired. In this particular case, experts received the same training on how to conduct classification 
of satellite images and are generally assumed to produce homogeneous votings.

4.3 Geographic differences
The last question we want to consider is geographic variation, as an external influencing factor. 
The polygons used for the voting procedure come from nine different European cities, which 
are known to be quite diverse in terms of structure and architecture. While this might be intended 
to cover all LCZs as well as possible, it complicates the assessment of the images. The question is 

Figure 6. On the left-hand side, the densities of the differences of the bootstrapped goodness-of-fit statistics for 
each expert are shown. On the right-hand side, the densities belong to randomised versions, showing a clear 
difference between the actually observed and random votes.

Figure 7. The plot shows the densities of the differences of the bootstrapped goodness-of-fit statistics for each 
expert, split up per city.
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whether earth observation experts have difficulties in assigning certain images to certain climate 
zones, depending on the respective region. Looking at Figure 2, we see differences in the sample 
sizes and also the vote distributions in different cities. Additionally, Figure 7 shows that the voting 
behaviour of experts is subject to the location of the images. This brings us to the question of 
whether certain LCZs are harder to identify in some cities than in others. Apparently, this might 
have a relevant impact on the assessment by the experts and influence the voting behaviour, which 
leads to uncertainty in the training data set. However, one has to note here that the voting distri-
bution always depends on the initial draw of images or polygons in each city. The pursued strategy 
might lead to imbalanced labels and therefore a bias in the voting probabilities. We here are how-
ever interested in the confusion matrix and whether this matrix differs in the different cities. Maps 
with the location of the used images are shown in Appendix C.

Following this idea, one assumes that the distribution of Z in different cities can differ, i.e. the 
parameters π1, . . . , πK of the multinomial model are different for different regions. The model 
should be able to represent those differences in terms of different estimated posterior probabilities. 
But the crucial aspect here are the misclassification probabilities matrices Θ. Does the voting be-
haviour of experts look different in different regions? In order to answer this question, we will fur-
ther investigate the differences in voting probabilities in various locations. This can be achieved by 
calculating the matrix for all regions separately:

Θ(s)for s = {1, . . . , S}.

To illustrate the problem, we focus on three regions first: Berlin, London, and Munich. Figure 8
shows these regional confusion matrices ΘB, ΘL, and ΘM for the example cities. The values on 
the diagonal refer to the probability of correctly classifying an image to its corresponding LCZ. 
The three cities were chosen as examples as they differ in their general structure and have a large 
number of labelled patches. As the plots and the values of the matrices show, the voting probabil-
ities and therefore the probability of correct classification of certain classes are different. This sup-
ports the claim that some classes might be more difficult to spot in some cities than in others.

Looking at the general setting and comparing all pairs of cities, we can conduct statistical tests to 
assess the geographic differences in the voting behaviour of experts. After estimating Θ(s) and Θ(s′) 
separately, we want to test the hypothesis H0 : Θ(s) = Θ(s′). Therefore, we make use of the vector-
isations of Θ and the variance estimates of the parameters, as described in Section 3. The difference 
between the vectorisations of the confusion matrices is denoted by

δ̂ = ϑ̂(s) − ϑ̂(s′), 

with E(δ̂) = 0 if H0 holds. Additionally, we know that Var(δ̂) = Var(ϑ̂(s)) + Var(ϑ̂(s′)). The test 
statistic is constructed as

T = Var(δ̂)−1/2δ̂, 

where Var(δ̂)−1/2 is calculated by using a singular value decomposition. Under H0 it holds

T ∼a N(0, I), 

which suggests using ordinary one-sample t-tests to test the null hypothesis of equal confusion ma-
trices for cities s and s′. Repeating this procedure for all pairs of cities leads to the p-values reported 
in Table 2. On a significant level of 0.05, we can assume that the confusion matrices are different 
for 11 of 34 city pairs. Returning to the exemplary matrices in Figure 8, we conclude that ΘB is 
significantly different from ΘL, but not from ΘM. In other words, we can demonstrate that mis-
classification probabilities differ in the different cities.

It should be noted that we omitted estimation variability in the derivation of the p-values above. 
In other words, we considered the city-specific confusion matrices as fixed. This is to some extent 
plausible since the sample size is rather large and hence the estimation variance of Θ is small. To 
confirm this, we run a few outer bootstrap loops, which are described and reported in the online 
supplementary material.
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Figure 8. The matrices shows the true confusion of the voted local climate zones (columns) with the true classes 
(rows), for Berlin (top left matrix), London (top right matrix), and Munich (bottom matrix).

Table 2. p-Values of the pairwise tests for differences between cities, with (*) denoting significance on a level of 0.05

Cologne London Madrid Milan Munich Paris Rome Zurich

Berlin 0.760 0.011 (*) 0.429 0.136 0.677 0.809 0.390 0.003 (*)

Cologne 0.006 (*) 0.945 0.237 0.000 (*) 0.837 0.346 0.001 (*)

London 0.001 (*) 0.103 0.506 0.015 (*) 0.208 0.397

Madrid 0.065 0.106 0.938 0.470 0.004 (*)

Milan 0.415 0.021 (*) 0.414 0.008 (*)

Munich 0.112 0.902 0.740

Paris 0.213 0.001 (*)

Rome 0.116
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5 Discussion
The paper demonstrates that the labelling of images is subject to error, misclassification, and het-
erogeneity of labellers. The results are relevant for all machine learning applications where image 
classification is pursued on multiply labelled data. Ambiguity is inevitable and the current paper 
aims to quantify this. It is important to note that error and uncertainty in the labelling process 
might stem from different sources and is multi-dimensional, as we showed in Section 4. In the con-
text of classifying satellite images into climate zones, we were able to detect three primary sources 
of label uncertainty. These can be analysed based on the assumption that a latent ground truth la-
bel exists, on which the labellers condition their assessment.

First, the distinguishability of classes is not equal. This aspect is crucial not only for the earth 
observation domain but also relevant for most applications of image classification, be it medical 
image or face recognition. On the one hand, our analysis confirms that urban classes are much 
more challenging to identify than non-urban classes. On the other hand, the identifiability of 
classes also depends strongly on the database. Therefore, balanced classes are desirable and could 
improve and stabilise the labelling procedure.

Second, a fundamental aspect is labellers’ heterogeneity and voting behaviour. Here, special 
training of the labellers was required as the classification of satellite images is a non-trivial 
task, even for earth observation experts. As the experts received the same training, one would 
expect homogeneity. However, we demonstrated an approach to assess homogeneity and 
found differences between the labellers. These can play a huge role, particularly if the panel 
of human labellers differ between the images, a problem not occurring in our data by design 
of the labelling process. Generally, labeller heterogeneity should not be neglected in the ana-
lysis of uncertainty.

Third, external properties of the instances to be classified can impact the labelling accuracy 
and therefore increase label uncertainty. In our case, the origin city for each image impacted the 
classification probabilities. While we only analysed this aspect by using separately estimated 
parameters, one could also include the variable in the model and inspect its impact. We have 
dispensed with this here, as the resulting model would have required estimating a huge number 
of parameters. Nevertheless, we note that incorporating external knowledge about the images 
could presumably lead to improved results. As already indicated in Section 4.3, the cause of the 
observed differences can not only be the voting behaviour of the experts but also arise due to 
the pursued strategy of selecting images and polygons for labelling. Imbalanced classes might 
induce a bias and increase the variance in the results which should be taken into account. This 
is an important aspect and leads to a number of new questions, related to the topics of survey 
methodology, sampling theory, and active learning, see, e.g. Settles (2009) or more recently 
Budd et al. (2021).

As a next step, it would be helpful to include the uncertainty in the machine learning process as 
well. The labelling process only serves as a preprocessing step for the data at hand and produces 
labelled training data. This data has been used for building elaborate models and networks to clas-
sify satellite images into LCZ automatically. Therefore, if the training data is flawed or suffers 
from high label uncertainty already, the same holds for the subsequent models. The results ob-
tained by analysing the sources of labelling uncertainty and being able to quantify them could cre-
ate possibilities to improve and stabilise machine learning processes in terms of overall 
uncertainty, a topic apparently beyond the scope of this paper.
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Appendix A. EM algorithm
We look at the (artificial) complete likelihood, resulting when Z(i) is known, i.e. the true image 
class is given. In this case, the complete log-likelihood results by assuming independence among 
the images and voters as

log p(Y, Z; π, Θ) = n

i=1

log p(Y (i), Z(i); π, θ) = n

i=1

log p(Z(i), π) + n

i=1

log p(Y(i) ∣ Z(i); θZ(i) )

= n

i=1

log πZ(i) + n

i=1

K

k=1

Y(i)
k log θZ(i)k + parameter-free terms

= n

i=1

K

l=1

1{Z(i)=l} log πl + n

i=1

K

k=1

K

l=1

1{Z(i)=l}Y
(i)
k log θlk + parameter-free terms.

This is a fairly simple model and could easily be estimated by maximum likelihood leading to the 
estimates

π̂l = 1
n

n

i=1

1{Z(i) = l}; θ̂lk =

n

i=1

1{Z(i) = l}1{Y(i) = k}

n

i=1

1{Z(i) = l}
.

Apparently, the likelihood above assumes that the true image class is given in the data. This is 
not the case, which brings us to the popular estimation strategy of the EM algorithm, described 
below.

Appendix B. Label switching in SEM
Put into an algorithmic format, we get the following procedure: 

1. For L = {L1, . . . , LK} and C = {C1, . . . , CK}: 
(a) Sort L in descending order according to the relative frequency of the labellers’ votes.
(b) Apply the permutation to all l = 1, . . . , K, s.t.: σ−1(k) = arg maxl(P(Z(i) = l ∣ V(i) = k)).

2. If a relation k → l found in step (b) is unique, delete Ck and Ll from C and L.
3. Repeat until a unique allocation C → L is found.

Appendix C. Location of images and polygons
As mentioned in Section 4.3, the observed differences between the cities might not be caused solely 
by different voting behaviours. The pursued sampling strategy and selection of images and poly-
gons possibly lead to imbalanced labels and therefore bias in the observed results. Looking at the 
coordinates of the images and their distribution across the cities, as shown in Figure C1 supports 
this hypothesis.
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Abstract
In this work, we analyze the uncertainty that
is inherently present in the labels used for su-
pervised machine learning in natural language
inference (NLI). In cases where multiple anno-
tations per instance are available, neither the
majority vote nor the frequency of individual
class votes is a trustworthy representation of the
labeling uncertainty. We propose modeling the
votes via a Bayesian mixture model to recover
the data-generating process, i.e., the posterior
distribution of the “true” latent classes, and thus
gain insight into the class variations. This will
enable a better understanding of the confusion
happening during the annotation process. We
also assess the stability of the proposed estima-
tion procedure by systematically varying the
numbers of i) instances and ii) labels. Thereby,
we observe that few instances with many labels
can predict the latent class borders reasonably
well, while the estimation fails for many in-
stances with only a few labels. This leads us
to conclude that multiple labels are a crucial
building block for properly analyzing label un-
certainty.

1 Introduction

Commonly, binary or multi-class classification set-
tings in machine learning assume that a single gold
label—representing the “true” class of an instance—
can easily be acquired via human annotation. How-
ever, there are numerous examples where remark-
able variations between different annotators exist,
challenging the validity of this assumption (Uma
et al., 2021). This issue is especially prevalent
in datasets relating to the difficult task of perceiv-
ing human language, such as natural language in-
ference (NLI). In NLI, the textual entailment of
two sentences is to be determined. There exists
an increasing body of work documenting inher-
ent disagreement in labeling for NLI (Pavlick and

Figure 1: Scatter plot of the vote distribution of
ChaosSNLI. Each point represents one instance. Its
location is determined by the vote distribution. Corner
points represent 100 votes for the respective class, i.e.,
entailment, neutral, contradiction for the bottom right,
top, and bottom left, respectively. Solid black lines rep-
resent the border of class membership by majority vote.
The color of the points is determined by the estimated
latent class given by our model. Black diamonds de-
scribe the center points of the latent classes. Solid red
lines represent the borders of latent class membership.

Kwiatkowski, 2019; Nie et al., 2020; Zhang and
de Marneffe, 2021; Jiang et al., 2023). Such hu-
man label variation can be caused by context de-
pendency and subjectivity, amongst others, and is
ubiquitous (Plank, 2022). Moreover, human la-
bel variation is different from annotation errors, as
plausible, linguistic reasons for such variation exist
(Jiang and de Marneffe, 2022).

To provide new grounds to study human vari-
ation in labeling, Nie et al. (2020) collected the
ChaosNLI (Collective HumAn OpinionS on Nat-
ural Language Inference) dataset. ChaosNLI
comprises 100 labels per instance from quality-
controlled annotators for each of the ambiguous
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instances from multiple NLI-related datasets. In
this paper, we analyze ChaosSNLI, a sub-dataset
of ChaosNLI based on the Stanford Natural Lan-
guage Inference (SNLI) data (Bowman et al., 2015).
Several works on NLI (Pavlick and Kwiatkowski,
2019; Nie et al., 2020) show that many instances
exhibit high human disagreement or uncertainty,
i.e., human labelers do not agree on a single class,
resulting in a high spread of the annotators’ votes
among multiple classes. Less work has looked at
label variation and stability from a data-generating
process viewpoint in light of uncertainty.

Uncertainty in machine learning and NLP
is, however, gaining increased attention re-
cently (Hüllermeier and Waegeman, 2021; Gruber
et al., 2023; Baan et al., 2023). Different lines of re-
search study sources of uncertainty in various parts
of machine learning, such as the data itself, the
model choice, the estimation procedure, and model
deployment (Gruber et al., 2023). Early works
characterize uncertainty in terms of reducible and
irreducible randomness (Hüllermeier and Waege-
man, 2021), while some works argue that this line
is fuzzy (Gruber et al., 2023; Baan et al., 2023).

Variation in labels is part of the uncertainty in
the data and is ubiquitous given the inherent am-
biguity of language (Zhang et al., 2021). Yet, un-
derstanding the uncertainty in labels enables us
to not only empirically investigate human confu-
sion in annotated data, but also to gain insights
on the classification task itself. For example, the
complexity of detecting certain classes or the com-
position of class structures can be derived from
voting patterns—this information can provide use-
ful insights into task characteristics.

Therefore, in order to analyze the uncertainty
in the label vote distribution of ChaosSNLI, we
model the data-generating process and analyze the
stability of the resulting estimation. To do so, we
employ a Bayesian mixture model and recover the
latent “true” class label, see also Hechinger et al.
(2024). More precisely, we obtain the posterior
probability for each of the classes and can thus
assess the certainty for the class labels given the
votes.

Our results could further be incorporated into
a machine learning pipeline, e.g., by fitting a
model on our latent classes instead of majority
vote classes or class frequencies. This is, how-
ever, beyond the scope of this paper. In this work,
we focus on the fundamental step of quantifying
labeling uncertainty instead. We propose an estima-

tion procedure and analyze its stability for different
amounts of i) instances and ii) labels. Our work
shows that more labels are more beneficial for sta-
ble estimation of uncertainty, while only a few in-
stances already suffice. We also suggest new tools
for visual assessment of the uncertainty in labels
for three-way classification tasks (see Fig. 1).

Contributions With this paper, we contribute to
a better understanding of label variation via a deep
assessment of trustworthiness by 1) quantifying
labeling uncertainty with Bayesian mixture mod-
els, 2) providing a novel visual tool for a better
assessment of labeling uncertainty, and 3) deriving
practical guidance for labeling tasks. We identify
the benefit of using fewer cases with many labels
rather than the other way around.1

2 Related Work

The need to analyze diverse human opinions in
natural language inference is discussed by works
including Pavlick and Kwiatkowski (2019) and Nie
et al. (2020). Nie et al. (2020) show that some state-
of-the-art models (including BERT, RoBERTa, XL-
NET, AL- BERT, DistilBERT, and BART) are nei-
ther designed nor able to capture human variation
in labels and are therefore not appropriate. Their
work also states that predicting the majority vote
and predicting the human label distribution are dis-
tinct and seemingly conflicting objectives. In their
benchmark study, all considered models performed
consistently worse on examples with low human
agreement. This indicates that analyzing label vari-
ation is of significant relevance for a more complete
understanding of natural language inference.

Hovy et al. (2013) already advocated that major-
ity voting might be the simplest but not most ap-
propriate strategy for finding the correct label and,
that modeling the votes leads to improved predicted
label accuracy. The authors propose a method to
separately model annotations from spamming and
non-spamming annotators. Our methods differ in
the way variation in labels is modeled. Hovy et al.
(2013) explicitly model the behavior of annotators
and assumes non-spamming annotators always pro-
vide the correct label, while votes by spamming an-
notators are drawn from a multinomial distribution.
In contrast, our approach models human confusion
in the annotation process, assuming equal levels of
annotation skills. This is a reasonable assumption

1Code and data available at: https://github.com/
corneliagru/label-variation-nli
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for ChaosSNLI as all annotators undergo strict qual-
ity control, see Nie et al. (2020) for details. Nev-
ertheless, both methods share the goal of estimat-
ing the distribution of the data-generating process
and its parameters via an expectation-maximization
(EM) algorithm.

Paun et al. (2018) compare various Bayesian ap-
proaches for modeling annotation. Based on their
taxonomy, we employ a pooled model, i.e., assum-
ing equal quality of the annotators. They conclude
that such pooled models underperform, as the as-
sumption that all annotators share the same ability
is inappropriate in typical crowdsourcing settings.
However, when information on individual annota-
tors is unavailable, as is the case for the investigated
ChaosSNLI dataset, pooling is inevitable.

The benefits of harnessing multiple labels are
presented in Zhang et al. (2021). They demonstrate
that improvements in accuracy can be achieved
by varying the number of annotations for some
examples within a given annotation budget. Our
findings show a more nuanced picture supporting
their claims, as we show the necessity of multi-
ple annotations but a flattening value curve (see
section 5).

3 Dataset and Problem Setting

We examine label uncertainty in NLI, a task for
which textual entailment of two sentences is typ-
ically classified as either entailment, neutral, or
contradiction. In ChaosSNLI (Nie et al., 2020),
multiple annotations for each instance are provided.
Example sentences of ChaosSNLI with their re-
spective votes are shown in Table 1. Since those
annotators do not necessarily agree with each other,
we face a high degree of (human) label uncertainty.
We chose this dataset as it provides a unique ground
to explore label variation. Having access to a high
amount of labels per instance is particularly valu-
able, but unfortunately not a common setting.

Our analysis is based on N = 1, 514 instances
with J = 100 labels, each, that originate from
the development set of the SNLI dataset (Bowman
et al., 2015). The original SNLI development set
was generated by a multistep procedure, where first
an initial annotator provides a text description of
an image, i.e., generating the premise. Second, a
different annotator constructs three hypotheses as
an entailing, neutral, and contradicting description
of the premise. Third, four more annotators, inde-
pendent of the first two steps, provide labels for

the premise-hypothesis pairs, i.e., classify the pairs
into entailment, neutral or contradiction. This pro-
cedure yields five annotations per instance in total.
In ChaosSNLI, examples, where only three out of
those five annotators agree, are then relabeled by
100 quality-controlled annotators. For details on
the quality control procedure, we refer to Nie et al.
(2020). This relabeling procedure leads to a dataset,
where instances with a high degree of uncertainty
are overrepresented. Such a biased sample is valu-
able, as our main interest lies in understanding
exactly those uncertain and hard-to-classify cases.

In the dataset, we observe that the most com-
mon class according to majority voting is neutral,
with 53.7% of all examples, while entailment and
contradiction amount to 27.8% and 18.5%, respec-
tively. This already suggests that identifying neu-
tral seems to be more challenging than discerning
the other classes, as human annotators do not agree
on those especially challenging examples that were
collected for ChaosSNLI.

To gain a better understanding of label uncer-
tainty in NLI, we analyze the annotations for the
premise-hypothesis pairs available in ChaosSNLI.
In order to detect hidden structures and compre-
hend label variation, we follow a statistical ap-
proach for modeling the label distribution. It is thus
distinct from classical machine learning, where
models are optimized for predictive power. How-
ever, our approach can ultimately be incorporated
as a preprocessing step for predictive models. A
precise description of our methodology can be
found in section 4.

4 Modeling Approach

The main goal of this work is to explore the un-
certainty inherent in the (multiple) labels of the
sentence pairs in ChaosSNLI which is expressed
by the distribution of the annotations. In order to
formally describe the dataset with its multiple an-
notations and to assess label uncertainty, we use
tools from statistical modeling. The multinomial
mixture model provides the possibility to put multi-
ple annotations into a distributional framework and
subsequently estimate the associated parameters.
Based on these parameters, a latent ground truth
label can be derived for each instance, incorporat-
ing the uncertainty expressed by the distributions
of the annotations over all instances. We follow the
methodology proposed in Hechinger et al. (2024)
for modeling multiple annotations via a Bayesian
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Context/Premise Statement/Hypothesis [E, N, C]
A boy in an orange shirt sells fruit from a street cart. A boy is a street vendor. [90, 10, 0]
A woman wearing a red hat and black coat. The woman is asleep. [0, 87, 13]
People walk amongst a traffic jam in a crowded city. The cars are zooming past the people. [3, 15, 82]
A woman holding a child in a purple shirt. The woman is asleep at home. [1, 53, 46]

Table 1: Examples of ChaosSNLI. Annotators answered the question: “Given a context, a statement can be either:
definitely correct (Entailment); or definitely incorrect (Contradiction); or neither (Neutral). Your goal is to choose
the correct category for a given pair of context and statement.”

mixture model.

First, let us introduce a formal description of the
data. Each instance is a pair of (X(i),Y (i)), i =
1, . . . , N , where X(i) denotes the sentence pair
of premise and hypothesis and Y (i) denotes the
corresponding vote distribution. For this work, our
focus lies on the latter exclusively, i.e., we only
consider the vector of annotations for each instance.
To explicitly represent votes for K possible classes
by J different annotators, Y (i) is set to Y (i) =

(Y
(i)
1 , . . . , Y

(i)
K ) with Y

(i)
k =

∑J
j=1 1(V

(i)
j = k).

Here, V (i)
j denotes the individual vote for instance

i by annotator j. In ChaosSNLI we do not have
access to individual annotator-specific votes, but
observe Y (i) directly. As mentioned above, we
model the uncertainty inherent in the labels, so
we omit X(i) and only analyze Y (i). It is worth
mentioning that incorporating the actual text is still
possible for downstream tasks, but is out of the
scope of this work.

In order to make use of the multinomial mix-
ture model, we assume that each instance is as-
sociated with one true label, i.e., there exists an
unambiguous ground truth. However, due to the
inherent uncertainty in the perception of language,
annotators are not easily capable of recovering
the ground truth and they might vote for differ-
ent classes. We denote the latent ground truth
of each instance X(i) with Z(i) ∈ {1, . . . ,K}.
Again, to match our notation with the definition
of a multivariate variable, we define Z(i) as a one-
hot encoded vector indicating the latent class, i.e.,
Z(i) = (1{Z(i) = 1}, . . . ,1{Z(i) = K}).

In the context of this particular dataset, as de-
scribed in section 3, there exists a clearly defined
ground truth that annotators should recover. This is
due to the fact, that the annotator had one specific
class in mind while inventing the hypothesis. Thus,
the assumption of exactly one underlying “true” la-
bel is justified. However, this methodology can be
applied beyond scenarios with known ground truth.

In cases where no such information is available, the
distributions of votes can serve as a valuable tool
for deducing the latent labels.

Model Framework Let us now proceed to the
analysis of the voting distribution Y (i), which car-
ries information about the latent true labels. We
employ the following Bayesian modeling frame-
work. First, considering the ground truth labels to
be unobserved (or unobservable), they are assumed
to follow a multinomial distribution

Z(i) ∼ Multi(π, 1) i.i.d.,

where π = (π1, . . . , πK) denote the prior prob-
abilities for all classes. This distribution is also
called the prior distribution. Given the true classes,
the annotations are also assumed to be distributed
multinomially, i.e.,

Y (i)|Z(i) ∼ Multi(θp, J). (1)

This multinomial distribution describes the data
likelihood conditional on Z. Here, the parameter
vector θp depends on the latent true class Z(i), i.e.,
the multinomial probabilities vary based on what
we consider to be the true label. Hence, this pa-
rameter describes the probability of voting for a
class given the true label. We can summarize the
multinomial probability vectors of each latent, true
class into a matrix Θ = (θpk, p, k = 1, . . . ,K),
which can be interpreted as a confusion matrix. For-
mally, θpk describes the probability of an annotator
voting for class k given the instance has the true
class p, i.e., using the notation in Eq. (1) we have
θp = (θp1, θp2, . . . , θpK).

The key component of the model is the posterior
distribution, i.e., the probabilities for an instance
to truly belong to each of the classes given the
observed annotations. These probabilities are cal-
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culated as

τ (i)p = P (Z(i) = p|Y (i);π,Θ)

=
P (Z(i) = p;π)P (Y (i)|Z(i) = p;Θ)

P (Y (i);π,Θ)

=
πpP (Y (i);θp)∑K

p′=1 πp′P (Y (i);θp′)
.

The class with the maximal posterior serves as an
estimate for the latent ground truth, it is however
also possible to use τ in downstream tasks directly,
i.e., for training a classifier on the probabilities
instead of discrete class labels and thus directly
incorporate the label uncertainty.

It is important to note that the prior modeling
assumption of a single ground truth does not dictate
the reality to be discrete, much more it enables us to
compute the posterior distribution and quantify the
evidence for each class, given the vote distribution.
It thus allows us to model settings with ambiguous
labels.

Estimation Procedure The model above in-
cludes unknown parameters, which we suggest es-
timating through maximum likelihood. As we are
in the latent variable framework, straightforward
estimation of the model parameters via maximum
likelihood is, however, not possible. Instead, we
apply an iterative estimation procedure to obtain pa-
rameter estimates. With the help of the expectation-
maximization (EM) algorithm as introduced by
Dempster et al. (1977), we can replace the latent
class label Z(i) with its expectation for each voting
distribution. The expected latent class is thereby
calculated given the data and the current parameter
estimates and can be used afterward to update the
estimates, leading to an iterative procedure that is
performed until convergence. The algorithm can
be outlined as follows, with additional details avail-
able in Hechinger et al. (2024) and in Appendix A.
For the current parameter values at estimation it-
eration (t), Θ = Θ(t) and π = π(t), one iterates
over the two steps:

1. E-Step: Calculate the expectation of the full
data likelihood given the data and the cur-
rent estimates. Applying Bayes’ rule, this
simplifies to the computation of the expected
latent class, given by posterior probabilities
τ
(i)
p , i = 1, ..., N and p = 1, ...,K.

2. M-Step: Update the parameters Θ = Θ(t+1)

and π = π(t+1) based on the posterior τ .

The final estimates are denoted as Θ̂ and π̂. Our
modeling approach harnesses the information re-
trieved from the annotations from all instances, as
in every EM-step all instances are used for recal-
culating the estimates. This enables our method to
incorporate knowledge about all annotation uncer-
tainties and provide a comprehensive and holistic
view of label variation.

Label Switching The classes obtained through
mixture models are subject to label switching, i.e.,
their numbering is arbitrary and does not corre-
spond to the original order anymore. This is a
common issue in mixture models and can be re-
solved in various ways depending on the specific
application at hand, as outlined by Stephens (2000).
In this case, we apply a simple heuristic permu-
tation to the latent classes. The original classes
entailment, contradiction, neutral, denoted with
index k = 1, 2, 3, are assigned to the respective
latent classes p = 1, 2, 3 based on the diagonal en-
tries of the estimated confusion matrix Θ. E.g., the
class entailment is assigned to the mixture com-
ponent, where the highest voting probability is
entailment. This corresponds to the permutation
σ−1(p) = argmaxk(θ̂p) and the latent classes are
re-ordered accordingly.

To summarize, by allowing for human uncer-
tainty, i.e., human confusion while labeling a cer-
tain instance, we can recover information on a la-
tent class Z. The posterior distribution of the latent
class is then a more trustworthy representation of
the “true” class an instance belongs to, since all
information contained in the full dataset is used for
estimation, and not only the specific label distribu-
tion.

5 Results

5.1 Introspection by Visualization
As described earlier, the dataset ChaosSNLI (Nie
et al., 2020) consists of J = 100 annotations for
K = 3 classes. We propose to analyze human label
variation in NLI with a novel visualization tool, to
help gain insights into labeling. Figure 1 illustrates
the distribution of votes present in ChaosSNLI,
which we then contrast to the majority vote and
our model’s estimated class membership votes.

Each point in Figure 1 represents one instance,
where its location is determined by the empirical
distribution of votes. It is clearly visible by the
density of dots that most instances cluster around
the top of the plot, i.e., with many votes for neutral.
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This is consistent with the distribution of majority
votes (with neutral being observed 53.7% of times,
as discussed in section 3). Furthermore, we observe
that there is little confusion between contradiction
and entailment, as almost no points lie close to the
lower horizontal line or the vertical line starting in
the center. This observation is intuitively plausible,
due to the contrasting nature of the two labels of
entailment vs. contradiction. Interestingly, this
visualization tool helps us to quickly identify that
there are cases in the datasets where many labels for
both entailment and contradiction were observed.

In order to analyze our modeling result in rela-
tion to majority voting, we examine the borders
between the three classes. Figure 1 shows the bor-
ders of the majority voting as solid black lines,
which connect the center points of the axes, i.e.,
50:50 votes for two of the classes, to the center, i.e.,
33.33 votes for all three classes.

The borders between the latent classes are shown
as red lines. To calculate these borders between two
latent classes, we determine the vote combinations
that lead to equal posterior probabilities. That is,
we calculate the specific vote distribution Y (i) such
that τk = τj for two classes k, j ∈ {1, 2, 3}, k ̸= j,
while there are no votes for the third class. This
gives us the critical points lying on the axis con-
necting classes k and j. For the middle point, i.e.,
the connection between all three classes, the equa-
tion τ1 = τ2 = τ3 is solved for the corresponding
vote distribution. This results in four critical points.
By connecting the points on the axes to the cen-
ter, we obtain the new borders of the latent classes,
which are now based on posterior probability es-
timates and not just on the empirical distribution
of the votes for one instance. In other words, they
are estimated by taking all data into account. The
exact border points are described in Appendix A.

In Figure 1, for all instances that lie between the
black and red borders, the latent class label does
not agree with the majority vote. It is especially
evident that the latent class neutral comprises a
smaller fraction of vote distributions than it would
have by majority voting (black line). More pre-
cisely, considering all cases with a majority vote
for neutral, our model agrees for 83.3%, however,
entailment is estimated for 6.9% of cases and con-
tradiction for the remaining 9.8%, i.e., 16.7% of
the majority vote neutral are assigned a different
label by our model. This is however desirable, as
many votes for one of the more informative classes
(entailment or contradiction) strongly speak for

exactly those classes, even if there is no majority.
For example, having 40 votes for contradiction, 60
for neutral, and none for entailment, indicates that
entailment is unlikely. Likewise, if neutral would
be the “true” latent class, at least some votes for
entailment are expected. Thus, in this setting, a
latent contradiction is most probable. Analogous
reasoning can be applied for instances with many
votes for entailment, without entailment as the ma-
jority. Further, we argue that negative votes by the
annotators can be regarded as a stronger signal for
the instance actually being contradiction as fewer
of them are required for our model to assign the
label contradiction, compared to entailment. This
becomes evident from Figure 1 as the red border
between neutral and contradiction is much closer
to the neutral corner compared to its counterpart
between neutral and entailment.

To summarize, the model especially refines the
class neutral and alleviates the issue that the major-
ity class neutral does not only contain true neutral
statements, but might also be conflated with exam-
ples where the annotators were indecisive or had
conflicting interpretations (Nighojkar et al., 2023).

5.2 Stability Analysis

Having provided a visualization tool that allows
valuable insights into the dataset, we are now in-
terested in the stability of the modeling procedure.
One common approach to assess the estimation un-
certainty and stability of the resulting parameter
estimates is to employ a resampling method, like
bootstrapping (Efron, 1979). We therefore analyze
the stability of the estimation procedure in relation
to three aspects:

1. overall stability,

2. stability in the number of instances, N ,

3. stability in the number of labels, J .

Overall stability In order to assess the uncer-
tainty of the estimation procedure itself, we em-
ploy a classical bootstrap. That is, we sample from
the data with replacement2 and subsequently esti-
mate the model parameters. Repeating this multiple
times allows us to assess how the estimation would
change if we had different datasets coming from
the same distribution as the initial one.

2i.e., the same instance can be present multiple times, while
other instances might not be included at all.
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Figure 2: The ternary plot contains the decision borders
between the three classes calculated based on B = 50
bootstrapped estimates as gray lines. The range of the
gray lines is outlined in orange. The blue dashed line
indicates the mean of the bootstrapped versions and the
red line shows the original borders for comparison.

We run B bootstrap iterations, producing boot-
strapped versions of the parameter estimates π and
Θ. Based on these values, the borders of the la-
tent classes can be recalculated B times. Figure 2
shows the estimated borders for B = 50 bootstrap
replicates in gray alongside the borders computed
based on the full dataset in red (cf. Fig. 1). This
leads us to conclude that the estimation of the pa-
rameters and, therefore, the latent classes is stable
for the full dataset. Due to the high number of in-
stances in the dataset, this result is not surprising.
However, the question arises whether stable estima-
tion is also possible with a smaller dataset. Reduc-
ing N , the number of multiple annotated instances
on the one hand, and reducing J , the number of an-
notations for the instances on the other hand, could
lead to substantially reduced labeling effort. Hence,
these aspects will be analyzed in the following.

Stability of Number of Instances In many real-
world applications, the number of instances that can
be annotated multiple times is often limited to a
couple of hundred instances (as an example, the ear-
lier multi-annotated NLI dataset from Pavlick and
Kwiatkowski (2019) contained five annotations for
less than 500 instances as available in ChaosNLI).
Therefore, it is worthwhile to examine the stabil-
ity of the estimation procedure and the resulting
estimates for a smaller dataset in terms of sample
size (less than 1.5k instances). Specifically, we are
interested in the location of the decision borders
regarding the latent classes and their stability for

fewer instances.
Therefore, we employ a bootstrap again but

this time randomly sample smaller datasets, i.e.,
N < 1, 514 with replacement to artificially re-
duce the sample size. Figure 3 shows B = 50
bootstrapped borders of the latent classes for var-
ious numbers of samples N with fixed J = 100.
While the bootstrapped borders still show quite
some variation for very small sample sizes (e.g.,
N = 50), the average of all bootstrapped borders
already aligns quite well with the original borders.
For a sample size of N = 100, the variation has
already decreased noticeably, and for even larger
samples, like N = 500, which is only one-third of
the original sample size, almost no differences to
the original results are visible. Hence, we conclude
that reducing the sample size leads to reasonably
good and stable estimation results if a certain mini-
mum of instances is kept.

Stability of Number of Labels While this work
focuses on the ChaosSNLI dataset with J = 100
annotations, the original SNLI development dataset
only contains five labels per instance. In prac-
tice, annotating instances many times is costly and
might seem inefficient. Hence, we are also inter-
ested in the stability of the estimation procedure in
terms of the number of labels as well as the mini-
mal number of labels needed per instance for stable
parameter estimates.

Again, we draw bootstrap samples from the orig-
inal dataset. This time, the sample size is kept
constant at N = 1000 but the number of annota-
tions per sample is reduced. Therefore, we ran-
domly choose J < 100 annotations from the orig-
inal ones. The resulting bootstrapped borders are
shown in Figure 3. As expected, only using J = 5
annotations leads to large variations and unstable
results. For J = 25 annotations, the procedure is
already quite stable. For more than J = 50 anno-
tations, the results show diminishing returns: they
depict similar behavior to the original ones with
the double amount of J , i.e., J = 100 (see Fig. 2).
Therefore, we note that acquiring a smaller number
of labels for each instance is possible, but a suffi-
cient amount of annotations is needed for stable
estimation. Particularly, the number of annotations
seems to be more crucial for the stability of the
results than the sample size. Additional results for
simultaneously varying the amount of N and J
that further support this finding can be found in
Figure 4, Appendix A.
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(a) N = 50 (b) N = 100 (c) N = 250 (d) N = 500

(e) J = 5 (f) J = 10 (g) J = 25 (h) J = 50

Figure 3: The ternary plots show the bootstrapped latent class borders as gray lines, the range of the gray lines in
orange, the mean of the bootstrapped as blue dashed lines, and for comparison, the original borders as red lines
for various sample sizes and annotations. In the top row J is set to J = 100 and N ∈ {50, 100, 250, 500}. In the
bottom row, we set N = 1000 and J ∈ {5, 10, 25, 50}. The total number of annotations, i.e., N · J , is below each
plot.

6 Discussion

Reliable and correct labels are crucial for classifica-
tion models. While it is common practice to gather
multiple annotations to ensure high-quality labels,
these are often summarized into one single final la-
bel via a majority vote (Paun et al., 2018). However,
this strategy leads to a major loss of information
and uncertain ground truth labels in applications
where a high degree of label variation is present.
The statistical approach pursued in this work offers
the possibility to condense information, given in
multiple labels through the whole dataset, into a
single ground truth label. To evaluate the results,
we compared the borders between the classes, i.e.,
we examined the voting combinations where the
ground truth label changes for an instance. By
choosing the estimated latent ground truth instead
of the majority vote, these borders shifted reason-
ably, from a semantic perspective.

Additionally, we showed that the parameters of
the model and, hence, the borders can be estimated
reliably based on the available instances and anno-
tations. However, in many realistic applications,
the data basis might be smaller in terms of both

aspects. Hence, we also conducted a stability anal-
ysis for random subsets of the number of instances
(N ) and the number of votes per instance (J) of
the dataset. The results show that stable estimation
is already possible for a smaller dataset and that
human labeling effort can be decreased, without
loss of information. The quantity of accessible
labels proves to be more important for ensuring
a stable model performance than the sample size.
We assume that this is because the annotations bear
the majority of the inherent uncertainty. Therefore,
acquiring multiple labels, particularly for uncertain
instances, i.e., instances where label variation is
expected, is advisable.

While the results and decision borders obtained
via the proposed model in this work showcase the
problem of label uncertainty, future directions of
research could include the incorporation of this
information into the ML pipeline or the develop-
ment of a quantitative measure for label uncertainty.
This could then lead to a detailed strategy for ac-
quiring labels efficiently. Though these questions
are highly relevant and should be tackled in the
future, they are beyond the scope of the current
work.
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7 Conclusion

In conclusion, by analyzing ChaosSNLI we show-
case the suitability of Bayesian mixture models to
recover the true data-generating process of annota-
tion tasks with access to multiple labels. Our work
provides a framework to deal with multi-annotation
settings in classification and is applicable regard-
less of the underlying task, i.e., NLI. Furthermore,
our results suggest that in the annotation process,
the focus should lie on increasing the number of la-
bels per instance, instead of more instances in total,
as this promotes capturing the labeling uncertainty.

Limitations

Our proposed method analyzes uncertainty in la-
bels for a three-way classification task. However,
since the concept of uncertainty is by definition
vague and fuzzy, it is important to determine which
aspects of uncertainty should be or can be speci-
fied. In our work, we focus on modeling the anno-
tation process. If other aspects of uncertainty are
of relevance, our method might not be the most ap-
propriate anymore. This points to the individuality
of dealing with uncertainty and that no one-fits-all
approach exists.

Further limitations might arise upon the appli-
cation of the model to other datasets. 1) Multiple
annotations per instance are needed. 2) Visual as-
sessment of class memberships (c.f. Fig 1) or the
stability of class borders (c.f. Fig 3) works reason-
ably well for up to three classes. Analyzing datasets
with labels of higher dimensions is straightforward,
as shown by Hechinger et al. (2024) for the classi-
fication of ambiguous images. However, assessing
the stability of class borders needs to be done quan-
titatively, e.g., by computing confidence intervals
of the bootstrapped borders. 3) In case annotator
IDs are available, we recommend extending our
approach in order to incorporate all available in-
formation. This could be done by determining the
impact of individual annotators or a general anno-
tator effect on the results, e.g., by discarding votes
by certain annotators and re-estimating the model,
see Hechinger et al. (2024).

Our work contributes to the understanding of
NLI tasks and provides guidance for the early stage
of data collection. Therefore, analyzing the impact
on the full machine learning pipeline, i.e., improve-
ments on the predictive power of classifiers is be-
yond the scope of this paper, but is open for future
work.
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A Appendix

Details on Model and Estimation
The EM algorithm is initialized with π(0) =

(13 ,
1
3 ,

1
3), and Θ(0) is drawn from a Dirichlet distri-

bution where α is set to be a vector with K entries,
where each value is 2·K. In this case α = (6, 6, 6).

The model estimated on the full dataset (i.e.,
N = 1514, J = 100), which is also depicted in
Figure 1, results the following final parameter esti-
mates:

π̂ = (0.314, 0.448, 0.238)

Θ̂ =



θ̂entailment

θ̂neutral

θ̂contradiction


 =



0.73 0.24 0.03
0.14 0.79 0.07
0.03 0.31 0.66




In both parameters, the order of entries/columns is
entailment, neutral, contradiction.

Based on the estimated parameters obtained via
the procedure described in section 4 the decision
borders are defined by connecting the points ([E,
N, C]):

• center point: [35.98, 28.15, 35.86]

• EC axis: [48.46, 0.0, 51.54]

• EN axis: [42.03, 57.97, 0.0]

• NC axis: [0.0, 70.13, 29.87]

Combined Stability Analysis
Figure 4 shows the estimation results and their
bootstrapped stability for various sample sizes and
numbers of annotations. Reducing N and J simul-
taneously leads to unstable results for very small
datasets. However, this visualization supports the
earlier finding that a sufficient number of annota-
tions is more crucial than a large sample for stable
and reliable estimation.
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J = 5 J = 25 J = 50 J = 100

N = 50

N = 250

N = 500

N = 1000

Figure 4: The Figure shows the bootstrapped latent class borders as gray lines, the range of the gray lines in orange,
the mean of the bootstraps as blue dashed lines and the original borders as red lines for different values of N and J .
The total number of annotations, i.e., N · J , is below each plot.
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ABSTRACT

Uncertainty in machine learning models is a timely and vast field of research. In supervised learning, uncertainty
can already occur in the first stage of the training process, the annotation phase. This scenario is particularly
evident when some instances cannot be definitively classified. In other words, there is inevitable ambiguity in
the annotation step and hence, not necessarily a single "ground truth" associated with each instance.

The main idea of this work is to drop the assumption of a ground truth label and instead embed the annotations
into a multidimensional space. This embedding is derived from the empirical distribution of annotations in
a Bayesian setup, modeled via a Dirichlet-Multinomial framework. We estimate the model parameters and
posteriors using a stochastic Expectation Maximisation algorithm with Markov Chain Monte Carlo steps. The
methods developed in this paper readily extend to various situations where multiple annotators independently
label instances. To showcase the generality of the proposed approach, we apply our approach to three benchmark
datasets for image classification and Natural Language Inference, where multiple annotations per instance are
available. Besides the embeddings, we can investigate the resulting correlation matrices, which reflect the
semantic similarities of the original classes very well for all three exemplary datasets.

Keywords Annotation Uncertainty, Multiple Labels, Label Variation, Stochastic EM Algorithm, Dirichlet-Multinomial
Model, Classification and Clustering
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1 Introduction

Machine Learning models are increasingly used for a growing number of applications, one of which is supervised
classification, for example in the form of images or texts. While such models have achieved impressive standards over
the last years in terms of accuracy, the assessment of uncertainty remains an active field of open problems and research
challenges. Recent survey articles discussing the field include Gawlikowski et al. [2023] or Hüllermeier and Waegeman
[2021]. Uncertainty thereby has numerous and intertwined sources as discussed in Gruber et al. [2023] or Baan et al.
[2023] and is heavily impacted at multiple stages of the common machine learning pipeline. Gruber et al. [2023] also
explicitly emphasize the role of the data itself for appropriately assessing uncertainty entirely.

In the field of deep learning, multiple major streams of research related to the quantification of uncertainty exist. Besides
ensemble methods and Bayesian approaches, evidential neural networks have been gaining attention as a deterministic
method of uncertainty quantification (Sensoy et al., 2018). Specifically, these methods conceptualize learning as the
acquisition of evidence, where each new training example adds support to a learned evidential distribution. A recent
survey by Ulmer et al. [2023] provides an extensive overview of evidential deep learning and discusses its strengths
and weaknesses in depth. However, some lines of work also advise caution when employing evidential networks for
uncertainty quantification. Jürgens et al. [2024] state that generally, epistemic uncertainty is not reliably represented by
those methods and Meinert et al. [2023] showcase the issue of overparameterization for evidential regression.

However, while some parts of the overall uncertainty are already heavily studied in research, less attention has been
paid to one of the major prerequisites for training classification models, namely the (un-)availability of reliable ground
truth labels for the training data and their uncertainty. In fact, uncertainty already starts in the labeling process for
supervised machine learning, where human annotators label images or texts. Any supervised model will rely on these
“ground truth” labels, inherently incorporating their associated uncertainty. We refer to this type of uncertainty as “label
uncertainty”. Commonly, such gold labels are acquired with human labeling effort, leading to multiple annotations per
instance. Depending on the complexity of the problem at hand, it might suffice to aggregate the annotations into a single
ground truth label, e.g. by majority voting. However, in many realistic application areas, such as the classification of
complex images or the assessment of language and speech, this assumption does not hold true.
Of course, humans are naturally prone to errors, leading to unreliable annotations or mistakes, and therewith, label noise
or label errors. The problem was already tackled and discussed early in the statistical literature, see for example Dawid
and Skene [1979]. In recent years, more and more methods have been developed for handling data despite human
errors, for example in the context of neural networks (Dgani et al., 2018). Peterson et al. [2019] argue that incorporating
human ambiguity can improve classification models in terms of robustness. However, training supervised machine
learning models based on noisy or deficient labels can lead to poor performance and high uncertainties, see e.g. Frénay
et al. [2014] or more recently Frénay and Verleysen [2014] for an overview. Also, the labels might introduce some bias,
as shown by Jiang and Nachum [2020], that needs to be identified and corrected if possible. Different algorithms have
been introduced to tackle the problem of noisy labels, see Algan and Ulusoy [2021] for an extensive survey on various
methods.

However, ambiguity in annotations cannot always be attributed to the fallibility of human annotators. Instead, label
variation is also likely to arise if the assumption of a singular ground truth label for each instance is questionable.
In the context of language, Plank [2022] discusses the sources of label variation. Particularly, the authors argue that
the absence of a singular ground truth is often reasonable and should not be considered erroneous by default. In this
line, the survey by Uma et al. [2021] discusses the disagreement of annotators. The authors conclude that suitable
evaluation methods are required if a single gold label cannot be assigned. Various works in multiple domains show that
disregarding label variation and leaving it untreated can indeed lead to quality issues and uncertainties. The common
approach to simply summarise the annotations into a single label does not only discard valuable information, it is also
an inappropriate representation of the truth and introduces remarkable amounts of uncertainty, in particular in the “gold”
label (Davani et al., 2022, Uma et al., 2021 or Aroyo and Welty, 2013).

2
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This problem is prevalent across various classification domains, specifically for application areas characterized by
inherent ambiguity. To showcase this, let us first consider the domain of natural language processing (NLP) or more
specifically natural language inference (NLI), where ambiguity is ubiquitous due to the subjective interpretation of
language and speech. This issue has been already extensively discussed, see e.g. Plank [2022]. NLI corresponds to the
task of discerning the logical relationship between two sentences, typically whether one entails the other, contradicts
it, or is unrelated to it. Naturally, the perception of language differs for the human annotators causing high rates of
disagreement (Nie et al., 2020, Pavlick and Kwiatkowski, 2019). Table 1 shows exemplary sentences, which are highly
ambiguous. This ambiguity is clearly reflected by the annotations. Gruber et al. [2024] provide a statistical approach
for modeling the data-generating process in order to gain a better understanding of the label uncertainty. However,
their modeling approach assumes a latent ground truth label associated with each sentence pair. While this is only a
modeling assumption, numerous works claim that the assumption of a single ground truth is not appropriate for NLI
tasks and instead, a more realistic representation of the labels should be used, see e.g. Aroyo and Welty [2015], Uma
et al. [2021] or Plank [2022].
Similar problems arise in the domain of image classification if either the categories or the images themselves are
ambiguous. Depending on the nature of the problem, assigning a singular ground truth label is often simply impossible.
Our second example comes from the field of remote sensing and satellite image classification. The ultimate goal is to
categorize images into local climatic zones (LCZs), a classification scheme for satellite images developed by Stewart
and Oke [2012]. A huge effort has been made to develop complex deep neural networks for this task (e.g., Zhu et al.,
2020, Qiu et al., 2019 or Qiu et al., 2020). These models rely on large amounts of labeled data and, hence, it is necessary
to manually annotate a vast amount of satellite images. Annotation of such images requires specialized expertise in
earth observation and hence, the labeling is conducted by trained experts instead of laypersons. However, even with
their domain knowledge, annotators frequently disagree due to the complexity of the task and the inherent ambiguity of
both, the images and the categories. Figure 1 illustrates the climatic classes with accompanying low-resolution satellite
images and high-resolution images from Google Earth, highlighting the challenges in classification and the potential
for disagreement. Nevertheless, the annotations are commonly aggregated into a majority vote discarding valuable
information about the initial disagreement (Zhu et al., 2020), and the uncertainty associated with the ground truth labels
remains untreated. Hechinger et al. [2024] approach this problem from a statistical perspective and employ a Bayesian
mixture model to estimate the latent posterior label distributions for the images based on the annotations. Based on the
proposed modeling framework they assess factors contributing to the uncertainty and variation in the annotations. Their
work especially showcases the heterogeneity of the individual annotators and the diversity of the images themselves.
These factors lead to remarkable variation within the annotations and, hence, express the complexity of the labeling
task. Their work is again based on the modeling assumption of a singular ground truth label for each image. However,
the validity of this assumption in practice is questionable due to the ambiguous nature of the images themselves.
Lastly, situations without a distinct ground truth might also arise for presumably straightforward classification tasks, as
shown in Figure 2. The exemplary images are part of the benchmark dataset Cifar-10H, introduced by Peterson et al.
[2019]. The dataset is designed such that each instance is assigned to a single unambiguous class, at least in theory.
Still, some images defy easy classification due to ambiguities caused by the size or quality of the picture, leading to
high disagreement rates within the annotations. Consequently, relying solely on majority voting to assign a singular
label in such cases does not accurately reflect the underlying truth. We take this data set as a third example to showcase
our modeling approach.

In this work, we propose to move away from the premise of a sole ground truth. The three examples sketched above
underpin that the assumption of a ground truth is not always appropriate. Therefore, we explicitly allow for ambiguity
for each instance. This view extends to many real-world applications, where it is likely to encounter instances that can
not be classified uniquely but are associated with a mixture or combination of different classes. In this paper, we aim to
statistically model such situations in a distributional framework. Namely, we employ a Dirichlet Multinomial model,
as discussed in Minka [2000] or Mosimann [1962]. Variants of this model class have been e.g. used for clustering of
text documents (Yin and Wang, 2014) or genomics data (Holmes et al., 2012 or Harrison et al., 2020). Avetisyan and

3
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Human Votes
Context/Premise Statement/Hypothesis [C, N, E]
A man running a marathon talks to his friend. There is a man running. [0, 0, 100]
A black and white dog running through shallow water. Two dogs running through water. [42, 14, 44]
A woman holding a child in a purple shirt. The woman is asleep at home. [46, 53, 1]
An elderly woman crafts a design on a loom. The woman is sewing. [34, 31, 35]

Table 1: The table shows 4 examples of sentence pairs from ChaosSNLI, along with the annotations, see Gruber et al.
[2024]. Each pair of context and statement is classified by 100 human annotators with the categories “contradiction”
(C), “neutral” (N) and “entailment” (E).

Figure 1: The figure shows the categories of the LCZ classification scheme (Stewart and Oke, 2012), along with
exemplary images for each class from three different sources (top row: Sentinel 1, middle row: Sentinel 2, bottom row:
Google Earth), images taken from Zhu et al. [2020].

Fox [2012] deploy a Dirichlet-Multinomial Mixture model to estimate survey response rates. Eswaran et al. [2017]
also connected this model class to uncertainty quantification and modeled beliefs as Dirichlet distributions to capture
uncertainty. In this work, we propose a Dirichlet Multinomial model to estimate embedded ground truth values that
express the classification difficulty and uncertainty for the respective images based on human annotations. Specifically,
we construct an embedding space so that each image is located in a K dimensional space, with K as the number of
categories. To do so, we pursue an empirical Bayes approach in combination with Markov Chain Monte Carlo (MCMC)
sampling and a stochastic version of the Expectation Maximization (EM) algorithm for estimation, as proposed by
Celeux et al. [1996]. The presented strategy gives insights into the correlation (or confusion) patterns between different
classes and simultaneously allows to express and quantify uncertainty.

Moving forward, the results can subsequently be integrated into the machine learning pipeline by directly training a
model on the acquired embedded labels rather than relying on the majority-voted classes. Approaches in this direction

4
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(a) Original label: Boat (b) Original label: Frog (c) Original label: Cat (d) Original label: Deer

Figure 2: The figure shows exemplary images from Cifar-10H, where a high disagreement rate between the annotators
could be observed hinting at the ambiguity of the images.

are based on the idea of label distribution learning, which incorporates the ambiguity of labels (e.g. Geng, 2016,
Gao et al., 2017 or Xu et al., 2019). Koller et al. [2024] suggest integrating the label uncertainty into the training
process by using distributional labels based on multiple votes for better generalization for unseen data and more stable
performance in terms of uncertainty calibration. Extending their ideas by using a more sound representation of the
labels, i.e. the label embeddings estimated by our approach, could allow us to improve the predictions even more in
terms of uncertainty. We will sketch the idea but this paper emphasizes the statistical modelling step and not on the
incorporation into a machine learning pipeline.

The paper is structured as follows. Section 2 describes the distributional framework and the algorithm used for
estimation. First, we consider a binary case with two classes only for clarification purposes and then move on to the
more general multiclass case. The results on three different datasets are reported in Section 3. We consider some
possible further steps and applications in Section 4. Section 5 concludes the paper with a detailed discussion.

5
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2 Model

2.1 Notations

Each image i, with i = 1, ..., n is assessed by a set of annotators (labelers, voters) indexed with j, where j = 1, ..., Ji.
We consider the images as independent and the same holds for the annotators. The labelers classify each image
individually into the class k, where k = 1, ...,K. The corresponding vote of the expert is denoted by Vij ∈ {1, . . . ,K}.
It is notationally helpful to rewrite this vote into the K dimensional indicator vector, which we denote in bold with
V ij = (1{Vij = 1}, ...,1{Vij = K}), with 1{·} as indicator function. This allows to accumulate the annotators’
votes into Y i = (Yi1, ..., YiK) with Yik =

∑Ji

j=1 1(Vij = k). This vector can be considered as the vote distribution for
image i. To keep the notation simple we will drop index i from the number of voters per image and write J subsequently.
We emphasize though, that images can be labeled by different numbers of voters, as our examples demonstrate.

2.2 Binary Case: K = 2

For a more straightforward presentation and interpretation of our modeling strategy, we start with the binary case
K = 2. We assume a binary label representation, which is embedded into the two-dimensional space. That is, each
instance (image or text) is allocated with

Zi = (Zi1, Zi2) ∈ R2.

The vector Zi can be interpreted as embedding or embedded ground truth values, meaning that we represent the
labeled instance i as a point in a two-dimensional space. To simplify the notation we will drop the index i in the
following.

The embedding steers ambiguity as well as the uncertainty of the labeling process. This is achieved by relating Z to the
coefficients of a Beta distribution. To be specific we define αZ = exp(Z1) and βZ = exp(Z2) as parameters of a Beta
distribution, from which we draw the binomial parameter π as

π ∼ Beta(αZ , βZ).

Given π, we obtain the image labels by drawing from the binomial distribution

Y |π ∼ B(J, π),

where J is the number of votes or annotations of the respective image. Note that J can vary for different instances,
which for simplicity of notation we ignore here. Apparently, if π is close to 0 or 1, the image has no or little ambiguity,
i.e. it is easy to label. Note that π remains unobserved, so that given Z, we have

P (Y = y|Z) ∝
∫

π

(
J

y

)
πy(1− π)(1−y)παZ (1− π)βZdπ

∝
(
J

y

)
B(αZ + y, βZ + J − y)

B(αZ , βZ)
, (1)

where B(.) denotes the univariate Beta function.
Within this model setup, we can derive a couple of interpretations. Interpreting Z ∈ R2 as ground truth, we obtain the
Beta-Binomial model (1). This in turn allows us to derive the mean value of π through

E(π|Z) =
exp(Z1)

exp(Z1) + exp(Z2)
.
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Additionally, we can also quantify uncertainty by calculating the variance, which results as

V ar(π|Z) =
exp(Z1) exp(Z2)(

exp(Z1) + exp(Z2)
)2(

exp(Z1) + exp(Z2) + 1
) .

For different values of Z, we plot the mean and the (log)-variance of the Beta-Binomial distribution in Figure 3. The
variance expresses the uncertainty, which is how likely an image/text is misclassified given the data at hand. The larger
Z1, the more likely the instance is classified as “one”. On the contrary, the larger Z2, the more likely the image/text is
classified as “zero”. Moreover, the smaller the values of Z1 and Z2 and the smaller the difference between them, the
larger the variance. Hence, the concrete location of Z1 and Z2 expresses how likely it is that we can quantify an image
or text in one category and how certain we are with respect to the class.
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Figure 3: The figure shows the mean (left) and log-variance (right) of the Beta-Binomial distribution for different
values of Z, expressed through color.

Apparently, Z is latent, but we aim to draw information about Z given the votes Y . The two variables are connected
via the Beta-Binomial model (1) and we can estimate the distribution of Z for given votes Y by drawing Markov Chain
Monte Carlo (MCMC) samples. To do so, we sample from the posterior

f(Z|Y = y) ∝ f(y|Z) · fprior(Z)

∝
(
J

y

)
B(αZ + y, βZ + J − y)

B(αZ , βZ)
· fprior(Z).

As prior distribution for Z, we use a bivariate normal with mean µ and variance matrix Σ and estimate these parameters
following an empirical Bayes approach. While this prior distribution is presumably too simple to completely capture the
true hidden structure in the data and hence does not constitute the underlying data-generating process, it is a convenient
modeling assumption. Postulating a multivariate Gaussian distribution for the latent embedded ground truth provides
numerical stability during estimation and allows to express uncertainty, even if only one annotation is available.

With Yi as votes on image i, Ji referring to the number of annotations on image i and Zi ∈ R2 as the embedded
“true location” of image i within the two-dimensional space, we run the estimation algorithm laid out in Figure 4. We
also refer to Appendix A for additional computational details. As a result, we obtain estimates ẑi for each image by
averaging the MCMC samples for instance i of the last iteration. The point itself expresses the classification difficulty
for the respective image and is thus far more informative than a singular ground truth label.
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1. Initialize the prior parameters µ and Σ and set them to µ(m) and Σ(m), m = 1.
2. For i = 1, . . . , n: Draw an MCMC sample from

f(Zi|Yi = yi) ∝
(
Ji
yi

)
B(exp(Zi1) + yi, exp(Zi2) + Ji − yi)

B(exp(Zi1), exp(Zi2))

· exp(−0.5(Zi − µ(m))T ·Σ(m)−1 · (Zi − µ(m)))

and take ẑ
(m)
i = E(Zi|Yi) as the mean of the MCMC samples.

3. Update

µ̂(m+1) =
1

n

n∑

i=1

ẑ
(m)
i

Σ̂
(m+1)

=
1

n

n∑

i=1

(ẑ
(m)
i − µ̂(m+1))(ẑ

(m)
i − µ̂(m+1))T

and repeat from Step 2.

Figure 4: Estimating the embeddings.

2.3 Multiclass Case: K > 2

The binary model can now be easily extended to more than two classes by employing the Dirichlet distribution. Now,
Z = (Z1, ..., ZK) ∈ RK is the embedded ground truth and we obtain the parameters αk = exp(Zk),∀k = 1, ...,K.
From these, we can draw

π ∼ Dir(α1, ..., αk).

This results in the multinomial parameter vector π = (π1, ..., πK), where K corresponds to the number of classes.
Given π, the votes are assumed to be drawn from a multinomial distribution:

Y |π ∼ Mult(π, J),

with J denoting the number of votes. This leads to the two probability functions

f(Y = y|π) = J !

y1!...yK !

∏

k

πyk

k

f(π|α) =
1

B(α)

∏

k

παk−1
k .

In this case, the function B(.) denotes the multivariate version of the Beta function. The vector π remains unobserved
and we can calculate the probability of Y given Z by marginalizing over π:

P (Y = y|α) =

∫

θ

f(y|π)f(π|α)dπ =
J !

y1!...yK !
· 1

B(α)
·
∫

π

∏

k

πyk+αk−1
k dπ

=
J !

y1!...yK !
· Γ(

∑
αk)∏

k Γ(αk)
·
∏

k(Γ(αk + yk))

Γ(
∑

k αk + yk)
=

J !

y1!...yK !
· Γ(

∑
αk)

Γ(
∑

k αk + yk)
·
∏

k

Γ(αk + yk)

Γ(αk)

=
J !

y1!...yK !
· B(α+ y)

B(α)
.
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Again, the embedded ground truth values Z can be estimated given the votes Y using MCMC samples with the
stochastic EM algorithm. Following the binary case and assuming a multivariate Gaussian prior for the embeddings Z
leads to the posterior distribution

f(Z|Y ) ∝ f(Y |Z)fprior(Z).

We obtain a Dirichlet-Multinomial model by assuming a K-dimensional embedded ground truth Z for each image. The
parameter π = (π1, ..., πK) follows a Dirichlet distribution given Z, and we can easily derive expectation and variance
for all entries Zk ∈ Z, k = 1, ...,K:

E(πk|Z) =
exp(Zk)∑K

k′=1 exp(Zk′)

Cov(πk, πk′ |Z) =
1

1 +
∑K

k′=1 exp(Zk′)
· exp(Zk)∑K

k′=1 exp(Zk′)
·
(
1− exp(Zk)∑K

k′=1 exp(Zk′)

)
.

Each entry of Z corresponds to one of the K classes. The concrete values can again be interpreted in two ways. On the
one hand, Zk hints at how likely the image is classified into category k. On the other hand, the difference between the
entries of Z, i.e. the distance between classes k and k′ for k′ ̸= k, corresponds to the certainty about the category k

versus k′.

Following the estimation procedure described in Section 2.2 adapted to the multiclass case leads to values ẑi for all
images i = 1, ..., n. Like above, these values form an embedding of the image in the K dimensional space. These
embeddings express the classification (un-)certainty of the individual images in terms of distribution. The concrete
algorithm is comparable to the case K = 2 discussed above and therefore not explicitly laid out here again.
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Dataset #Images N #Classes K #Distinct Annotation Patterns #Annotations J
ChaosSNLI 1514 3 832 100

So2Sat LCZ42 159581 16 360 11
Cifar-10H 10000 10 3406 [50,63]

Table 2: Overview of the datasets.

3 Results

To showcase the generality and versatility of the proposed approach in various applications, the proposed model is
applied to the three datasets described in the introduction. The datasets are typical examples in the field of multiple
annotations and annotator disagreement and hence provide ground for analyzing the uncertainty associated with the
labels. Table 2 contains general information about the three datasets discussed in this section.

3.1 ChaosSNLI

First, we explore the advantages of the proposed methodology in the context of the classification of language, i.e. the
domain of NLI, as shortly introduced in Section 1. The multi-annotator dataset ChaosSNLI* is based on the development
set of the Standford Natural Language Inference (SNLI) dataset (Bowman et al., 2015) and was introduced in the
context of label ambiguity by Nie et al. [2020]. It contains multiple annotations for sentence pairs, i.e. pairs of premise
and hypothesis. For each premise, three hypotheses are originally generated by an annotator, as an entailing, neutral,
and contradicting description of the premise. The resulting sentence pairs of premise and hypothesis can therefore be
classified as entailment, neutral or contradiction. Note that a subjective ground truth, namely the original intention of
the first annotator, is available for this specific dataset. However, it cannot be recovered by the annotators in many cases
and the dataset ChaosSNLI especially showcases this problem as it contains sentence pairs exhibiting a high rate of
disagreement. Particularly, N = 1514 sentence pairs are re-assessed by a large number of annotators, i.e. J = 100, and
assigned to one of the three classes, as shown in Table 1. Due to the ambiguous nature of language and the individual
perception, the disagreement rate in the annotations is high and the original true label cannot be recovered reliably.
For the classification of language, the existence of a single “gold” label is especially doubtful and hence, the need for
alternative and more appropriate representations of labels persists. Applying the methodology proposed in Section 2
allows us to estimate embedded ground truth vectors for the observations based on the provided annotations, which will
be analyzed in this subsection.

First, let us return to the exemplary sentence pairs provided in Table 1 and inspect the respective embeddings. Figure 5
shows the estimated values for the exemplary sentence pairs, along with the observed annotations as well as the MCMC
samples. While the estimated values for observation 34 (upper left plot) express clear affiliation to class entailment,
all other embeddings reflect the ambiguity within the sentence pairs and also the associated annotations. Not only are
the class-specific estimated values rather small and hence similar across the three categories, we also see a tendency
towards class neutral for ambiguous instances, even though the majority vote might advocate otherwise. This expresses
ambiguity with respect to classification and the “weaker” interpretation of class neutral compared to the other two
categories. If all three classes received annotations, it is semantically unlikely that the respective instance can be
uniquely classified into either entailment or contradiction. Hence, the model favours class neutral in such situations.

For this particular application, the classes themselves are by definition uncorrelated or negatively correlated. This
property is also expressed by the resulting estimated embeddings. To visually inspect the results, we employ dimension-
ality reduction techniques for easier exploration. We specifically utilize principal component analysis (PCA) to extract
the principal components from the estimated embeddings. PCA is a widely used technique for linear dimensionality
reduction, commonly employed for exploratory analysis and visualization of high-dimensional data. For detailed

*Download available from https://github.com/easonnie/ChaosNLI (accessed on 04th of February 2024)
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ID Context/Premise Statement/Hypothesis
34 A man running a marathon talks to his friend. There is a man running.
1168 A black and white dog running through shallow water. Two dogs running through water.
1177 A woman holding a child in a purple shirt. The woman is asleep at home.
1371 An elderly woman crafts a design on a loom. The woman is sewing.

Figure 5: The plots show the estimated embedded ground truth vectors for exemplary sentence pairs from the dataset
ChaosSNLI. The actual estimated vector is shown as orange line, the green lines represent the MCMC samples and the
actual annotations are shown as grey bars.

information on the methodology, refer to e.g. Jolliffe [2002]. Here, we especially focus on the visualization benefits
of the technique. Namely, it is possible to plot the observations in a so-called two-dimensional biplot after applying
PCA. Figure 6 shows the respective plot for the dataset ChaosSNLI. The estimated embeddings are projected onto the
two-dimensional space, spanned by the two first principal components. The embeddings of the instances are visualized
as scattered points, where their overall similarity is expressed by proximity. In this case, no specific clustering is
apparent. By coloring the scattered points according to the observed majority voting, we observe some overlap of the
singular classes in the two-dimensional embedding space. Additionally, the vectors correspond to the original variables,
i.e. the categories and dimensions of the embeddings. The angles between the vectors express the degree of correlation
between the variables, i.e. small angles suggest a high positive correlation. However, in this case, the angles between
variable neutral and the other two variables are roughly 90 degrees, indicating no correlation between the quantities. In
contrast, the angle between variables entailment and contradiction is close to 180 degrees, hence expressing a negative
correlation. Of course, this is reasonable from a semantic perspective and in line with the interpretation of the classes.
Additional results for the ChaosSNLI dataset are reported in Appendices B and C.
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Figure 6: The biplot shows the estimated embeddings for ChaosSNLI, projected into two dimensions. The scatterpoints
represent the instances, colored by majority vote. The original dimensions are represented as arrows.

3.2 So2Sat LCZ42

To showcase the generality of the proposed approach, we now move on to the analysis of a multi-annotator dataset for
image classification. In the domain of image classification, the assumption of a singular ground truth label is especially
doubtful if the images themselves are ambiguous. A prominent example is the classification of low-resolution satellite
images. We analyze the earth observation benchmark dataset So2Sat LCZ42*, see Table 2 for a brief overview. For
a detailed description of the complete dataset, we refer to Zhu et al. [2020]. The task is to classify satellite images
into one of 17 Local Climate Zones (LCZ). See also Figure 2 for a sketch of the LCZ. Note that zone 1 to 10 refer to
urban areas while zones A to G are non-urban. The data comprises humanly classified satellite images from urban
agglomerations in Europe, of which some images were assessed multiple times during the labeling phase to ensure label
quality. Overall, we look at images from 9 European cities with multiple annotations. Figure 1 shows the categories for
the classification of satellite images. The distribution of votes across the classes is quite imbalanced, and particularly
LCZ 7 rarely occurs in the dataset. Due to its composition (lightweight low-rise building types, i.e. “slums”), it is
doubtful to be observed in European cities. Therefore, we excluded LCZ 7 and restricted the model to K = 16 instead
of K = 17, see also Hechinger et al. [2024]. The voting patterns suggest that most images seemed easy to classify. For
77.18 % of the images, the annotators agree on one single LCZ. Again, we apply the proposed framework and estimate
an embedded ground truth value ẑ(i) for each instance represented as a vector of annotations.

First, it is again helpful to examine the explicit estimates for some exemplary instances. We get the sampled embeddings
from Step 2 in the algorithm shown in Figure 4, where the parameters are set to the final estimated parameters. Figure 7
shows the explicit estimates, as well as the MCMC samples for four random images. The resulting posterior mean value
(i.e. the estimated ground truth) is shown as an orange line and the observed votes as grey bars at the bottom of the plot.
The first image with ID 18 (upper left plot) shows a non-confusion case, i.e. all experts agreed on class E. Looking at
the ground truth estimate, we see a clear spike for the respective class, indicating that classification for this image is
rather easy. Image 66 (upper right plot) gets nine votes for class C and two votes for class B, i.e. the voting pattern is

*Download available from: https://mediatum.ub.tum.de/1659039 (accessed on 03rd of Febuary 2024)
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restricted to non-urban classes. Here, we observe negative values for urban classes 1-10 and small positive values for all
non-urban classes. Hence, the voting pattern is reflected in the estimated ground truth in terms of the magnitude of the
values. Image 185 (lower left plot) shows confusion of two urban classes, namely classes 6 and 9. In this case, the
estimated ground truth values clearly correspond to these votes with almost all other values being negative or very close
to zero. The image might be ambiguous regarding the correct ground truth, as those two values are quite close. Lastly,
confusion happened for urban classes only for the image with ID 349 (lower right plot). The majority of experts voted
for class 4, three experts chose class 5, class 2 received 2 votes and one expert voted for class 1. This is also reflected in
the estimated ẑk values. We estimate similar positive values for classes 4, 5 and 2 and a slightly smaller value for class
1, reflecting the voting patterns but also incorporating additional information about the confusion risk of the classes.

Figure 7: The plots show the MCMC samples as green lines and their mean value as an orange line for exemplary
randomly chosen images. Additionally, the actual votings from the experts are shown as grey bars.

While low-resolution satellite images are of course prone to ambiguity, in this particular application, the classes
themselves are also ambiguous and not easy to distinguish (Hechinger et al., 2024). Hence, the ambiguity of the classes
contributes to the uncertainty in the annotations. This property is nicely expressed by the vectors shown in the biplot in
Figure 8a, as well as the estimated correlation matrix of the ground truth embeddings in Figure 8b. This matrix can
be interpreted as a generalized confusion matrix, in the case where a ground truth is not guaranteed. A high positive
correlation indicates a high confusion risk. On the contrary, negative correlation values suggest that classes are well
distinguishable. The correlation patterns between classes are visible in the correlation matrix, see Figure 8b. Exemplary,
we investigate the correlation values for LCZ 2. Apparently, it is positively correlated with classes 3, 5 and 6, shows
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(a) Biplot. (b) Correlation Matrix.

Figure 8: The subfigures show additional results for the dataset So2Sat-LCZ42. The biplot of the projected embeddings,
as well as the correlation matrix of the estimates, show similarities of the categories leading to ambiguities and
confusion.

weaker positive correlations to the other urban classes 1, 4 and 9 and is negatively correlated to all other classes. A
semantic inspection of the description of the classes, given in Figure 1, makes this observation rather plausible. Class 2
refers to compact middle-rise areas and can therefore easily be confused with either other compact (LCZ 3), mid-rise
areas (LCZ 5) or also open low-rise areas (LCZ 6), while distinction from classes 1, 4 and 10 as well as from nonurban
classes A-G should be less difficult. We also see a strong correlation between class 8 and class 10, i.e. confusion of
large low-rise areas (8) and heavy industry areas (10). This is again reasonable from a semantic perspective. Concerning
nonurban classes A-G, we observe a higher correlation between classes A (dense trees) and D (low plants) as well as
between B (scattered trees) and C (bush/scrub). The same holds for classes E and F, referring to bare rock/paved areas
and bare soil/sand. Again, these classes are similar in their composition and confusion or overlap might occur. The
matrix also shows that urban and nonurban classes (LCZ 1-10 vs. LCZ A-G) have mostly negative or close to zero
correlation values, supporting the claim that confusion about these two types of LCZs rarely occurs. Overall, the entries
of the estimated ground truth estimate are correlated in a way that has a meaningful interpretation and aligns with the
initial hypotheses. The MCMC procedure additionally enables us to inspect the variation of the correlation matrix. The
variances of the individual values are quite small and on average very close to zero, indicating a stable estimation and
reliable results. The standard deviations of the entries in Figure 8b are displayed in Appendix D.

3.3 Cifar-10H

The third dataset is a version of Cifar-10, a popular benchmark dataset for image classification, as introduced by
Krizhevsky et al. [2009]. The subset Cifar-10H* as introduced by Peterson et al. [2019] contains multiple annotations
for images in the test set, reflecting the uncertainty stemming from differences in human perception. Here, the natural
images are categorized into unambiguous classes, see Table 2. The original dataset has been extended with soft
labels, i.e. multiple annotations, to achieve better generalization for classification models, specifically on out-of-sample
datasets, see Peterson et al. [2019] and Battleday et al. [2020]. Therefore, N = 10000 images of K = 10 classes from

*Download available from https://github.com/jcpeterson/cifar-10h (accessed on 24th of August 2023)
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the test set of Cifar-10 were annotated by 2571 Amazon Mechanical Turk workers. After an initial training phase, each
worker annotated 200 images, 20 per category. To identify and remove low-performance annotators, attention checks
were introduced after every 20 trials.
The current setting differs from the previously discussed dataset. Most images belong to one of the unambiguous
categories and can be reliably classified by untrained annotators. Nevertheless, it is helpful to additionally inspect
label embeddings reflecting the individual human perception, which can still be ambiguous. Due to the small size
of the images, the pictured class is also not always identifiable, as shown in Figure 2. The dataset contains a high
degree of human consensus due to its nature but also enough images where the annotation is still uncertain. This is
also visible in the majority votes. While each class contains originally 1000 images, the number of images classified
into the categories according to the majority vote varies slightly between 981 and 1015. Additionally, the images can
be easily assessed and evaluated against the annotations, in contrast to the dataset presented previously. By applying
the proposed model we generate embeddings of the images in the appropriate label space, which contain a notion of
uncertainty and reflect the original annotations, without the loss of information by taking the majority voting.

Returning to the exemplary images from Figure 2, the estimated ground truth embeddings are shown in Figure 9. The
upper plot in Figure 9 shows the label embedding for an image of a ship, which is clearly visible in the picture and
therefore also identifiable by the annotators. This is reflected in the respective label embedding with a high positive
value for class ship. For the second image, two annotators did not agree with the others and labeled the picture of a frog
as horse or deer. Most of the labelers could correctly assign the label frog. The estimated label embedding reflects
this by assigning the highest value to the class frog and small positive values to the other two classes. Nevertheless,
the classification of the image is apparently easy, which is expressed by the embedding. This does not hold for the
images, which correspond to the two lower plots. The correct label for the third image was cat, correctly identified
by the majority vote. Nevertheless, the image is quite ambiguous, which is reflected in the annotations and therefore
also in the label embedding. Only using the majority vote would therefore lead to a correct label while losing a large
amount of information about the inherent uncertainty. For the last image, the annotators did not agree at all and could
not recover the label deer. In fact, almost every class received votes. In this case, the label embedding clearly reflects
this confusion by assigning similar values close to zero to all classes, reflecting the classification uncertainty.

Next, we repeat the analyses for the previous datasets, i.e. plotting the estimates of the embeddings onto a 2-dimensional
biplot via PCA as well as calculating their correlation matrix. The biplot of the projected embeddings is displayed in
Figure 10a and shows a clear separation between classes referring to animals and classes referring to objects. This is
also expressed by the correlation matrix, shown in Figure 10b. Again, this reflects possible similarities between images
from correlated classes, which occur due to individual human perception despite the clear separation of the classes by
definition.
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Figure 9: The plots show the estimated embeddings (orange) for exemplary images of the dataset Cifar-10H, along with
the votes (bars) and the MCMC samples (green).
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(a) Biplot. (b) Correlation Matrix.

Figure 10: The subfigures show additional results for the dataset Cifar-10H via the biplot and the correlation matrix of
the estimated embeddings.
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4 Outlook

Naturally, the question arises of how to use the information gained from embedding the ambiguous labels into a
multidimensional space. The two main goals are to improve the supervised model assigned with the corresponding
classification task and to possibly refine its uncertainty estimates. In many applications, training the classification
model based on averaged labels or labels obtained via majority voting is still common practice. In the case of high
annotator disagreement due to ambiguities, this can lead to major problems related to the associated uncertainties
(Plank, 2022, Baan et al., 2023 and Davani et al., 2022). Koller et al. [2024] propose to instead integrate the annotation
uncertainty via the empirical distribution of the annotations. Their work shows that incorporating this uncertainty leads
to better generalization and calibration of the classification model. However, the benefit of the empirical distribution
of course strongly depends on the number of annotations and is limited to the observed disagreement for one single
instance only. The idea of estimating label embeddings via a distributional approach presented in this work offers
a possibility to overcome said limitations. In particular, it is possible to train a classification model directly on the
estimated embeddings ẑ = (ẑ1, ..., ẑn), resulting from the estimation process as the mean of the MCMC samples
in the last iteration. These embedded ground truth values retain information about all annotations for the respective
observation and additionally incorporate knowledge about the annotations globally, across all instances. This leads to a
more sound representation of the labels expressing uncertainties due to ambiguities of the instances themselves and also
ambiguities due to the similarity of specific categories. Hence, this approach naturally handles images that cannot be
directly classified into one class only. To integrate the embeddings into a deep learning framework, several strategies
are available. While it is possible to directly learn the embedded ground truth vectors via a regression framework,
reformulating the label embeddings into a Dirichlet function also allows us to stay within the world of classification.
Either way, by incorporating the embeddings as labels in a machine learning framework, we expect the model to be
better calibrated and yield more expressive predictive uncertainties. While this is beyond the scope of this paper, the
results presented here serve as a valuable starting point for future work.
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5 Discussion

For classification models, the dependence on labeled training data is a common practice, i.e. each instance is linked
to an established ground truth label or “gold” label. Generating these ground truth labels requires substantial human
effort and is prone to errors causing uncertainty. However, unreliable labels cannot always be attributed to human
failure. In many applications, assigning a single label is unrealistic or even impossible due to the ambiguity of the
instances themselves. A single ground truth label often cannot account for the complexity of e.g. images or sentences.
This is often expressed through a high rate of disagreement in the annotations received from human labelers. Hence,
the single-label approach results in a substantial loss of information and introduces additional uncertainty into the
classification process. Therefore, moving beyond this limiting assumption is necessary in certain applications. This can
be done by considering more flexible and adaptive strategies.
This paper focuses on classifying text or images addressing the specific case where we cannot assume that every
observation can be uniquely classified into one class. Based on multiple annotations per observation, we propose to
embed the images into a K-dimensional space instead of restricting them to a single label.

The proposed estimation procedure leads to interesting results, as reported in Section 3. We estimate label embeddings
for three different datasets, emphasizing the generality of our approach and its usefulness in diverse settings. First,
we apply the method to the dataset ChaosSNLI from the domain of language classification. The dataset contains
especially ambiguous sentence pairs and a high number of annotations per instance. The assumption of a singular gold
label is especially doubtful for the classification of language, due to its inherent ambiguity and subjectivity. Instead,
multi-dimensional embeddings can serve as a more appropriate representation of the underlying truth. We show that
the estimated vectors not only express the uncertainty associated with the instances due to the observed annotator
disagreement but also the uncertainty due to a possibly insufficient number of annotations. Second, we move on to
the domain of image classification and apply the proposed method to the earth observation dataset So2Sat LCZ42.
Here, the satellite images themselves exhibit a high degree of ambiguity but also the categories are similar in terms of
their composition, complicating the assignment of a singular label even more. Therefore, we inspect the correlation
matrix based on the estimated embeddings. This matrix can be interpreted as a generalized confusion matrix, where
a high correlation refers to a high confusion risk and vice versa. The correlation values directly reflect the semantic
similarities of the LCZs. A small fraction of uncertainty remains as we only inspect a limited number of images. The
chosen model framework allows estimating a distribution of the embeddings, namely a multivariate Gaussian, where
the variance matrix expresses the uncertainty. Third, we move away from expert labels and inspect the performance of
our model on a crowd-sourced dataset, namely the multiply annotated dataset Cifar-10H. The results show that even
the classification of images into well-separated and naturally distinguishable categories could benefit from using label
embeddings instead of hard-coded labels. The proposed model and the estimation framework are very flexible and
hence, the presented work can be easily adapted to any classification problem with multiple annotations.

These insights can be valuable in multiple regards and pave the way for future research in various directions. While
the presented results already deliver interesting insights into the annotation tasks, they of course rather serve as a
preprocessing step for further work. The long-term goal is to use label embeddings within a complete machine-learning
framework. In particular, we are interested in training classification models on multi-dimensional embeddings instead
of single labels, i.e. incorporating information about label uncertainty directly into the model. This work can also serve
as a basis for analyzing different design choices for label generation for image classification problems. The trade-off
between the number of instances and the number of annotators is a well-known problem, related to experimental design.
For problems with a high degree of ambiguity, determined by the proposed model, acquiring more annotations instead
of more instances is beneficial. Vice versa, if classification is “easy”, i.e. the embeddings reflect clear class affiliations,
a smaller number of annotations might be sufficient and one should concentrate on generating more labeled instances
instead. We believe that our modeling framework could be of great benefit for future steps towards better handling label
uncertainty for machine learning models.
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Figure 11: The biplots show the projected embeddings, colored by majority vote (left) and by original subjective ground
truth label (right).

A Implementation Details

The algorithm presented in Figure 4 was initialized with

µ(1) = (0, ..., 0) ∈ RK

Σ(1) =




10 0 ... 0 0

0 10 ... 0 0
...

...
. . .

...
...

0 0 ... 10 0

0 0 ... 0 10




∈ RK×K .

Specifically, we employed the Metropolis Hasting algorithm implemented in the function MCMCmetrop1R() from
the R package MCMCpack (Martin et al., 2011) for drawing MCMC samples (mcmc = 1000) from the logarithmic
version of the posterior. Thereby, burnin = 50 samples were discarded during the burn-in phase and thin = 20

was used as thinning interval. The starting value theta.init was set to ẑ
(m−1)
i , i.e. the previously estimated

embedding vector, or to (0, ..., 0) in the first iteration. Additional details and the code can be found on github via
https://github.com/katharinahech/labelembeddings

B ChaosSNLI: Majority Vote vs. Ground Truth

The dataset ChaosSNLI is especially interesting in the context of analyzing label variation and ambiguities. It does not
only contain a huge number of annotations but also provides a subjective ground truth label for each pair of sentences
due to its generation process, see Nie et al. [2020] for details. However, due to the general ambiguity of language, the
subjective "true" label does not constitute a reliable ground truth in general. Nevertheless, it is interesting to examine
the difference between the original label and the majority-voted label, as shown in Figure 11. While the left plot shows
the biplot of the projected embeddings colored by the majority vote, the points in the right plot are colored according to
the original "gold" label. For the latter, we see less separation of the three classes in the two-dimensional space. In
particular, instances with the original label neutral are often classified into contradiction or entailment according to the
majority vote. This observation suggests that the class "neutral" is harder to detect as the other classes are inherently
more informative, see also Gruber et al. [2024].
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Figure 12: The biplot shows the projected estimated embeddings for a version of the dataset ChaosNLI, where for
random instances 5, 25 or 100 annotations were sampled. The points are colored according to the number of annotations
and concentration ellipses are shown for easier visual exploration.

C ChaosSNLI: Impact of the Number of Annotations

The dimensions of the dataset also allow us to investigate the dependence of the results on the number of annotations, J .
Following the sampling strategy proposed by Gruber et al. [2024], we randomly sample annotations for a fraction of the
original dataset and thereby create a new version, consisting of observations with a varying number of annotations.
Specifically, J100 = 100 annotations remain for N100 = 514 observations, while for N5 = 500 resp. N25 = 500

instances J5 = 5 resp. J25 = 25 annotations were randomly sampled. Figure 12 shows the biplot created based on the
estimated ground truth embeddings for the sampled dataset. The plot inherently expresses the variance of the instances,
comparable to Figure 3. Points located close to the center of the graphic exhibit a high degree of variance. In contrast,
instances that lie far from the origin have a smaller variance, as shown for K = 2 in Figure 3. Interestingly, Figure 12
clearly reveals that observations with fewer annotations lie closer to the center of the plot compared to similar instances
with a higher number of annotations, indicating higher variance and higher uncertainty. This is of course a highly
desirable property of the embedded ground truth vectors. The estimated values express both, the uncertainty due to
the disagreement of the labelers as well as the uncertainty due to an insufficient number of annotations. Figure 12
additionally hints at the fact that a certain number of annotations is necessary to fully capture the associated ambiguity
(Gruber et al., 2024). The concentration ellipses for J100 and J25 are almost similar, whereas the ellipse for J5 is
notably smaller, indicating a higher variance of instances with only five annotations.

D So2Sat LCZ42: Standard Deviation of the Correlation Matrix

As mentioned in Section 3, the MCMC samples enable us to additionally inspect the variance of the correlations of the
estimated embeddings. Figure 13 explicitly shows the respective variances of entries of the correlation matrix given in
Figure 8b.
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Figure 13: Standard deviation of the entries of the correlation matrix.
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