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Abstract	
The	human	body	relies	on	oxidized	glucose	as	 its	primary	 fuel.	Therefore,	oxygen	and	

glucose	metabolism	are	 tightly	 coupled.	Here,	we	examine	 this	 coupling	 in	 the	human	

brain	under	metabolic	challenges.	To	ensure	energy	homeostasis	even	in	cases	of	glucose	

de=iciency	(hypoglycemia),	the	body	has	developed	several	fallback	systems	for	adenosine	

triphosphate	 (ATP)	production.	To	 this	end,	 it	 can	oxidize	alternate	energy	substrates,	

such	as	fatty	acids,	ketone	bodies	or	lactate.	Evidence	on	the	extent	to	which	the	brain	

utilizes	these	alternate	energy	pathways	is	sparse.	According	to	the	Sel=ish	Brain	Theory,	

the	brain	prioritizes	its	own	energy	demand	over	that	of	other	organs.	Previous	studies	

do,	however,	 =ind	decreases	 in	 cerebral	glucose	metabolism	during	hypoglycemia.	 It	 is	

unclear	 whether	 these	 =indings	 imply	 a	 general	 downregulation	 of	 cerebral	 energy	

metabolism	 –	 an	 energy-saving	 measure	 –	 or	 whether	 the	 brain	 indeed	 switches	 to	

oxidation	 of	 alternate	 energy	 substrates.	 Therefore,	 the	 =irst	 project	 presented	 in	 this	

thesis	investigated	alterations	in	cerebral	oxygen	metabolism	during	hypoglycemia,	using	

multiparametric	quantitative	BOLD	(mqBOLD)	MR	imaging.	Results	demonstrate	stable	

levels	of	 the	cerebral	metabolic	 rate	of	oxygen	(CMRO2),	 concomitant	with	widespread	

changes	 in	 cerebral	 blood	 =low	 and	 oxygen	 extraction	 fraction	 in	 response	 to	

hypoglycemia.	 Further,	while	 acute	hypoglycemia	 is	 known	 to	 largely	 impair	 cognitive	

function,	 it	 was	 long	 unclear	 how	 long	 these	 cognitive	 de=icits	 persist.	 We	 present	

evidence	 that	memory	 consolidation,	 but	 neither	 encoding	 nor	 attention,	 is	 impaired	

under	restored	euglycemia	following	hypoglycemia.	In	favor	of	the	Sel=ish	Brain	Theory,	

steady	CMRO2	rates	suggest	the	utilization	of	alternate	energy	pathways	in	the	brain	under	

hypoglycemia,	such	as	astrocytic	glycogenolysis	and	ketolysis.	As	a	limiting	factor,	the	=irst	

study	did	not	quantify	cerebral	glucose	metabolism	(CMRglc)	concurrently,	mainly	due	to	

the	lack	of	imaging	methods	to	do	so	fully	quantitatively.	The	second	project	presented	in	

this	thesis	demonstrates	a	novel	way	to	simultaneously	measure	CMRO2	and	CMRglc.	For	

the	=irst	time,	we	successfully	combined	mqBOLD	and	18F-FDG	functional	PET	(fPET)	for	

simultaneous	quanti=ication	of	cerebral	oxygen	and	glucose	metabolism	under	different	

conditions	in	one	single	scanning	session,	aiming	for	this	unique	setup	to	be	applied	to	

future	 studies,	 thereby	 expanding	 current	 knowledge	 about	 the	 mechanisms	 behind	

cerebral	energy	metabolism.	
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1	General	introduction		
The	human	body’s	energy	metabolism	is	fundamentally	driven	by	the	production	

and	 utilization	 of	 adenosine	 triphosphate	 (ATP)	 as	 the	 universal	 currency	 of	 cellular	

energy.	ATP	 fuels	a	wide	range	of	physiological	processes,	 such	as	muscle	contraction,	

biosynthesis	 of	macromolecules	 (such	 as	 proteins	 and	 lipids),	 and	 neurotransmission	

(Khakh	&	Burnstock,	2009;	O.	H.	Petersen	&	Verkhratsky,	2016).	Hence,	through	ATP,	the	

heart	is	able	to	pump	blood,	the	body	is	able	to	repair	muscle	=ibers	after	a	workout,	and	

we	 are	 able	 to	 perceive	 and	 interact	with	 our	 environment.	 In	 short,	 ATP	powers	 the	

entire	 body	 and	 mind.	 Consequently,	 we	 rely	 heavily	 on	 it	 and	 cannot	 tolerate	 ATP	

de=iciency.	Insuf=icient	ATP	levels	lead	to	cellular	dysfunction,	metabolic	imbalances,	and,	

ultimately,	 cell	 death.	 To	 meet	 those	 energy	 demands	 required	 to	 maintain	 ATP	

homeostasis	even	under	adverse	circumstances,	the	body	has	developed	several	backup	

systems	that	tightly	regulate	intracellular	energy	levels	at	all	times.		

One	organ	that	is	particularly	interesting	when	studying	energetics	is	the	brain,	

the	driving	force	behind	energy	allocation.	The	human	brain	accounts	for	only	~2%	of	the	

body’s	weight	while	consuming	about	20%	of	 its	 total	energy	(Padamsey	&	Rochefort,	

2023).	Hence,	it	consumes	a	disproportionally	large	amount	of	energy	relative	to	its	mass.	

Any	 disruption	 in	 the	 brain’s	 ATP	 supply	 has	 detrimental	 effects,	 leading	 to	 cognitive	

impairment,	neurological	dysfunction	or	other	adverse	outcomes	(Johnson	et	al.,	2019;	

Sharma	et	al.,	2021).	To	expand	the	knowledge	about	the	energetics	of	the	human	brain,	

this	thesis	examines	the	interplay	between	oxygen	and	glucose,	two	crucial	substrates	in	

energy	metabolism.	More	speci=ically,	the	=irst	chapter	serves	as	a	general	introduction	to	

human	 energy	metabolism,	 laying	 the	 groundwork	 for	 the	 subsequent	 exploration	 of	

cerebral	 energy	 metabolism.	 The	 =irst	 research	 project	 investigates	 the	 relationship	

between	brain	and	peripheral	energy	metabolism	by	examining	the	effects	of	systemic	

glucose	de=iciency	on	the	brain’s	oxygen	metabolism	and	neurovascular	function,	using	a	

novel	magnetic	resonance	imaging	(MRI)	technique.	Further,	it	explores	the	relationship	

between	glucose	de=iciency	and	cognitive	functioning.	The	second	project	 introduces	a	

method	for	simultaneous	quanti=ication	of	oxygen	and	glucose	metabolism	in	the	human	

brain,	using	hybrid	positron	emission	tomography	(PET)-MR	imaging.	Findings	from	both	

studies	are	then	tied	together	in	a	general	discussion.	Ultimately,	with	this	thesis,	I	aim	to	
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add	to	the	understanding	of	human	energy	metabolism,	particularly	how	it	affects	brain	

function.		

	

1.1	Cellular	respiration		

Energy	cannot	be	generated	out	of	nowhere	but	can	only	be	converted	from	one	

form	to	another.	Usually,	our	main	way	to	provide	our	bodies	with	energy	is	through	food,	

particularly	through	carbohydrates,	as	found	in	legumes	or	grains.	The	human	body	needs	

a	 considerable	 amount	 of	 energy:	 on	 average	 2250	 kcal	 per	 day	 (Bernardin	&	Moller,	

2013)	which	is	equivalent	to	approximately	253	sugar	cubes.	This	is	not	to	say	that	it	is	a	

good	idea	to	consume	the	daily	2250	kcal	primarily	in	the	form	of	sugar	cubes.	On	the	

contrary,	that	would	result	in	a	number	of	health	issues,	including	metabolic	disorders,	as	

we	shall	learn	later.	A	balanced	diet	appears	to	be	the	better	option.	Balanced	in	this	case	

means	that	it	consists	of	the	three	macronutrients:	proteins,	fats	and	carbohydrates	–	each	

of	which	contributes	distinctly	to	the	maintenance	of	energy	homeostasis.		

After	 ingestion,	 proteins	 are	 broken	 down	 into	 their	 constituent	 amino	 acids,	

which	mainly	serve	as	building	blocks	for	the	synthesis	of	new	proteins	(Norton	et	al.,	

2015).	They	are	essential	for	facilitating	tissue	growth	and	repair	across	the	body,	and,	in	

the	 presence	 of	 energy	 de=iciency,	 can	 be	metabolized	 into	 simple	 sugar	molecules	 to	

provide	an	additional	source	of	energy	(Schutz,	2011).	 In	contrast	 to	proteins,	 fats	are	

often	perceived	as	more	harmful	to	our	health.	It	is	commonly	known	that	high	levels	of	

some	 fats,	 such	 as	 cholesterol,	 are	 related	 to	 various	 health	 problems,	 including	

cardiovascular	diseases	(Berger	et	al.,	2015).	However,	the	body	needs	a	certain	amount	

of	fat	for	healthy	functioning	(Schwingshackl	et	al.,	2021).	After	ingestion,	fat	is	broken	

down	into	fatty	acids	as	well	as	glycerol	(Friedman	&	Nylund,	1980).	These	fat	molecules	

are	 important	 building	 blocks	 for	 cell	 membranes	 and	 serve	 as	 precursors	 for	 the	

synthesis	of	various	lipid-based	molecules,	such	as	certain	hormones.	Additionally,	they	

can	be	stored	as	triglycerides	in	adipose	tissue	as	an	energy	reserve.	Lastly,	carbohydrates	

play	the	most	important	role	when	it	comes	to	meeting	acute	energy	requirements.	After	

ingestion,	 the	 digestive	 system	 breaks	 them	 down	 into	 simple	 sugars,	 called	 glucose,	

which	are	absorbed	 into	 the	bloodstream,	distributed	across	 the	body	and,	ultimately,	

taken	up	by	cells	(Gray,	1970).		
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A	summary	of	glucose	metabolism	within	the	cell	can	be	found	in	Figure	1.	In	the	

cytoplasm	of	the	cell,	one	mole	of	glucose	is	broken	down	into	two	pyruvates.	This	process	

is	called	glycolysis	because	glucose	is	lysed,	meaning	that	it	 is	broken	down.	Glycolysis	

produces	 2	 ATP.	 In	 the	mitochondria,	 the	 two	 pyruvates	 are	 further	metabolized	 into	

acetyl	 coenzyme	A	 (acetyl-CoA).	Acetyl-CoA	subsequently	enters	 the	 tricarboxylic	acid	

(TCA)	cycle,	which	is	also	commonly	known	as	the	Krebs	or	citric	acid	cycle.	Via	the	TCA	

cycle,	acetyl-CoA	undergoes	oxidative	phosphorylation,	leading	to	a	net	amount	of	32	ATP	

molecules.	This	 last	step,	oxidative	phosphorylation,	 requires	oxygen,	hence	 the	entire	

process	from	glycolysis	to	the	end	result	of	32	ATP	molecules	is	termed	aerobic	cellular	

respiration	(Brady	et	al.,	2012;	Gibney,	2009).		

	

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.1.1	Metabolic	challenges	

In	 the	 face	 of	metabolic	 challenges,	 such	 as	 during	 intense	 exercise,	 prolonged	

fasting	or	a	ketogenic	diet,	aerobic	cellular	respiration	is	not	possible	to	the	same	extent.		

	

1.1.1.1	Oxygen	de3iciency	

During	intense	exercise,	muscles	demand	a	higher	amount	of	oxygen	in	order	to	

meet	the	increased	energy	demands	associated	with	muscle	contraction	and	movement	

(Bangsbo,	 2000).	 This	 can	 create	 an	 imbalance	 between	 oxygen	 demand	 and	 oxygen	

supply,	requiring	an	alternate	way	of	sustaining	ATP	levels	since	oxygen	is	necessary	for	

Figure	 1.	 Schematic	 depiction	 of	 pathways	 involved	 in	 aerobic	 cellular	 respiration.	 During	 glycolysis,	
glucose	is	converted	into	pyruvate,	a	process	that	produces	2	ATP.	Further,	pyruvate	is	converted	into	
acetyl-CoA,	which	is	fed	into	the	TCA	cycle.	The	?inal	step,	oxidative	phosphorylation,	requires	oxygen	
to	?inally	generate	a	net	amount	of	32	ATP.	
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oxidative	 phosphorylation,	 the	 last	 step	 of	 aerobic	 cellular	 respiration	 (see	 Figure	 1).	

Conversely,	in	anaerobic	cellular	respiration	(see	Figure	2),	glucose	is	still	lysed	into	two	

pyruvates,	thereby	producing	2	ATPs,	but	then	not	further	metabolized	into	acetyl-CoA.	

Instead,	 pyruvate	 is	 converted	 into	 lactate,	 which	 can	 subsequently	 be	 used	 for	

gluconeogenesis,	which	is	the	synthesis	of	new	glucose.	The	energy	yield	of	non-oxidative	

glucose	metabolism	is	thus	2	ATP	(Byrne	et	al.,	2014).		

	

	

	

	

	

	

	

	

	

	

	

	

	 	

Apart	 from	 the	 ability	 to	 adapt	 to	 an	 increased	 oxygen	 demand	 (e.g.	 during	

exercise	 or	 heightened	 neuronal	 activity),	 anaerobic	 cellular	 respiration	 is	 crucial	 for	

those	cells	lacking	mitochondria	(Fernie	et	al.,	2004;	Melkonian	et	al.,	2024),	for	example	

erythrocytes	(red	blood	cells)	and	Escherichia	coli	bacteria,	as	found	in	the	digestive	tract.	

They	 depend	 exclusively	 on	 anaerobic	 respiration	 due	 to	 their	 inability	 to	 further	

metabolize	pyruvate	into	acetyl-CoA	–	a	process	occurring	in	the	mitochondria	of	a	cell.	

Thus,	 ATP	 production	 under	 anaerobic	 conditions	 is	 possible,	 albeit	 less	 ef=icient	

compared	to	aerobic	conditions	(2	vs.	32	ATP).	It	must	be	noted	that	even	with	suf=icient	

oxygen	 available,	 cells	 still	 undergo	 anaerobic	 cellular	 respiration	 (Brady	 et	 al.,	 2012;	

Byrne	et	al.,	2014).	This	is	called	aerobic	glycolysis	because	it	takes	place	under	aerobic	

conditions.	 Aerobic	 glycolysis	 is	 particularly	 interesting	 in	 the	 context	 of	 increased	

neuronal	activity,	as	we	will	discuss	later.		

	

Figure	 2.	 Anaerobic	 cellular	 respiration,	 yielding	 a	 total	 of	 2	 ATP.	 The	 difference	 to	 aerobic	 cellular	
respiration	is	that	here,	pyruvate	is	metabolized	into	lactate	instead	of	acetyl-CoA.	This	process	does	not	
require	oxygen	and	only	takes	place	in	the	cytoplasm	of	the	cell.	As	a	consequence,	cells	that	do	not	have	
mitochondria	can	undergo	anaerobic	cellular	respiration	but	not	aerobic	cellular	respiration.	
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1.1.1.2	Glucose	de3iciency	

During	prolonged	 fasting	or	when	 following	a	ketogenic	diet,	 the	body	 lacks	 its	

main	glucose	source:	carbohydrates.	While	this	might	seem	problematic	at	=irst,	we	only	

need	 to	 think	 a	 few	 thousands	 of	 years	 back:	 Before	 the	 agricultural	 revolution	 and	

subsequent	 progress	 in	 food	 preservation	 techniques,	 food	 availability	 was	 naturally	

limited,	with	periods	of	hunger	being	the	norm.	Consequently,	the	body	has	developed	

ways	 of	 dealing	with	 these	 periods	 of	 food	 scarcity	without	 compromising	 its	 energy	

balance.	Speci=ically,	four	alternate	pathways	of	ATP	production	when	glucose	availability	

is	limited	have	been	observed.	

	 The	=irst	pathway,	which	would	be	the	primary	response	to	glucose	de=iciency,	is	

glycogenolysis,	the	consumption	of	glycogen	storages	(Hems	et	al.,	1980;	Petersen	et	al.,	

2017).	Even	though	glucose	cannot	be	stored	directly,	it	can	be	converted	to	glycogen	and	

then	 stored	 inside	 cells.	Most	 glycogen	 is	 found	 in	 the	 liver	 and	muscles,	while	 other	

organs,	 such	 as	 the	 brain,	may	 contain	 smaller	 amounts,	 too	 (Brown,	 2004;	 Brown	&	

Ransom,	2007).	When	blood	glucose	levels	drop,	the	hormones	glucagon	and	epinephrine	

(adrenaline)	trigger	glycogenolysis,	the	process	of	breaking	down	glycogen	into	glucose	

molecules	(Exton	et	al.,	1972).	These	are	released	into	the	bloodstream	and	used	by	cells	

to	produce	ATP	 (see	Figure	1).	The	 time	 it	 takes	 for	 glycogen	 storages	 to	be	depleted	

depends	 on	 various	 factors,	 such	 as	 an	 individual’s	 metabolic	 rate,	 muscle	 mass	 and	

current	 level	 of	 physical	 activity.	 During	 exercise,	 glycogen	 storages	 can	 be	 depleted	

within	an	hour,	while	during	rest,	the	body	usually	has	enough	glycogen	to	last	for	a	day	

(Browning	et	al.,	2012;	Melanson	et	al.,	1999).	

In	case	the	carbohydrate	scarcity	persists,	the	body	switches	into	the	other	three	

alternate	 pathways	 of	 ATP	 production:	 gluconeogenesis,	 fatty	 acid	 oxidation	 and	

ketogenesis.	These	three	processes	can	take	place	concurrently	or	separately,	depending	

on	 the	 speci=ic	 metabolic	 conditions.	 They	 are	 depicted	 schematically	 in	 Figure	 3.	

Gluconeogenesis	refers	to	the	synthesis	of	new	glucose	molecules	from	non-carbohydrate	

sources,	such	as	amino	acids,	lactate	or	glycerol	(X.	Zhang	et	al.,	2019).	Once	converted	

into	glucose	molecules,	they	undergo	aerobic	cellular	respiration,	as	previously	discussed.		

Fatty	acids	 =irst	need	 to	be	released	 from	triglycerides	 in	adipose	 tissue,	where	

they	are	primarily	stored.	Once	released,	fatty	acids	are	metabolized	directly	inside	the	

mitochondria.	 There,	 they	 undergo	 a	 process	 called	 beta-oxidation,	 which	 results	 in	

acetyl-CoA.	As	previously	described,	acetyl-CoA	can	enter	the	TCA	cycle,	producing	ATP	
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through	oxidative	phosphorylation.	Thus,	in	fatty	acid	oxidation,	glycolysis	and	pyruvate	

metabolism	are	skipped	(see	Figure	3).	During	beta-oxidation,	large	amounts	of	acetyl-

CoA	 are	 produced,	 sometimes	 exceeding	 the	 immediate	 capacity	 of	 the	 TCA	 cycle	 to	

metabolize	them	(Masino	&	Rho,	2012).	As	a	result,	there	is	a	surplus	of	acetyl-CoA.	In	a	

process	called	ketogenesis,	the	liver	then	converts	these	additional	acetyl-CoA	molecules	

into	ketone	bodies	since,	after	all,	the	body	does	not	let	any	energy	substrates	go	to	waste.	

Ketone	bodies	are	water-soluble	and	can	be	transported	through	the	bloodstream	as	well	

as	across	 the	blood	brain	barrier	(BBB)	(Auestad	et	al.,	1991;	Kolb	et	al.,	2021;	Krebs,	

1966).	 In	 this	way,	ketone	bodies	are	a	highly	ef=icient	 form	of	 transporting	energy	 to	

tissues	 that	 have	 limited	 capacity	 to	 oxidize	 fatty	 acids	 directly,	 such	 as	 the	 brain	

(Schönfeld	&	Reiser,	2013).	Once	ketogenesis	has	been	set	in	motion,	the	body	enters	the	

metabolic	state	of	ketosis.	Via	ketolysis	–	the	lysing	of	ketone	bodies	back	into	acetyl-CoA	

–	the	body	is	eventually	able	to	perform	the	TCA	cycle	and	oxidative	phosphorylation	to	

produce	ATP	in	the	respective	tissue	(see	Figure	3).	Almost	all	cell	types	are	capable	of	

using	 ketone	 bodies	 as	 an	 energy	 resource.	 Solely	 hepatocytes	 (liver	 cells)	 and	

erythrocytes	are	incapable	of	metabolizing	them	(Orii	et	al.,	2008;	Z.	Zhang	et	al.,	2011).	

Erythrocytes	 lack	 mitochondria	 and	 are	 thus	 dependent	 on	 anaerobic	 metabolic	

pathways,	 and	 hepatocytes	 lack	 the	 necessary	 enzyme	 to	 process	 ketones.	 This	 is	 an	

advantage	 though,	 since	 the	 liver	 is	 the	 main	 site	 for	 ketogenesis.	 It	 would	 be	

disadvantageous	if	it	used	up	parts	of	the	ketone	bodies	itself	before	providing	them	to	

other	tissues.	

In	 summary,	 in	 order	 to	 ensure	 energy	 balance	 in	 the	 face	 of	 prolonged	

carbohydrate	de=iciency,	 the	body	has	developed	 four	 fallback	 systems	 (see	 Figure	3),	

varying	in	energetic	ef=iciency:			

1. Glycogenolysis:	the	production	of	glucose	from	glycogen	

2. Gluconeogenesis:	 the	 formation	 of	 glucose	 molecules	 from	 non-carbohydrate	

sources	

3. Fatty	acid	oxidation:	the	formation	of	acetyl-CoA	from	fatty	acids	

4. Ketogenesis:	the	formation	of	ketone	bodies	from	excess	acetyl-CoA	
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1.1.1.3	Experimental	models	of	metabolic	challenges	

In	order	to	explore	the	implications	of	metabolic	challenges	in	a	controlled	setting,	

researchers	employ	various	experimental	models.	Oxygen	de=iciency	can	be	studied	using	

hypoxia	setups,	where	subjects	(usually	rodents)	are	exposed	to	air	containing	reduced	

oxygen	 levels	 (Brierley,	 1977).	 Additionally,	 an	 increased	 oxygen	 requirement	 can	 be	

simulated	through	intense	exercise	(Xu	&	Rhodes,	1999).	In	both	scenarios,	researchers	

can	examine	the	physiological	responses	to	the	 imbalance	between	oxygen	supply	and	

demand.		

To	investigate	effects	of	glucose	metabolism	as	well	as	the	previously	mentioned	

fallback	systems,	researchers	often	study	individuals	following	speci=ic	dietary	regimens,	

such	as	a	ketogenic	diet	(Su	et	al.,	2000;	Zajac	et	al.,	2014).	In	this	speci=ic	type	of	diet,	

people	consume	disproportionally	small	amounts	of	carbohydrates	relative	to	proteins	

and	particularly	fats,	leading	to	ketosis	(Masood	et	al.,	2023).	Alternatively,	ketone	bodies	

can	be	infused	directly	into	the	bloodstream.	Through	this	approach,	for	example,	it	has	

been	discovered	that	the	brain	exhibits	a	preference	for	ketone	bodies:	When	injecting	

ketone	 bodies,	 the	 cerebral	metabolic	 rate	 of	 glucose	 (CMRglc)	 decreased,	 even	 under	

conditions	of	normal	blood	sugar	levels	(euglycemia)	(Hasselbalch	et	al.,	1996).	Hence,	

even	when	 there	 is	 suf=icient	 glucose	 available,	 the	 brain	 prefers	metabolizing	 ketone	

bodies	over	glucose	to	produce	ATP.		

Figure	3.	Schematic	depiction	of	alternate	pathways	of	ATP	production:	gluconeogenesis,	glycogenolysis,	
fatty	acid	oxidation	and	ketolysis.	During	gluconeogenesis,	new	glucose	is	synthesized	from	substrates	
like	lactate	and	amino	acids.	Glycogenolysis	refers	to	the	process	of	glycogen	breakdown	into	glucose.	In	
both	cases,	 the	newly	gained	glucose	 is	metabolized	as	depicted	 in	Figure	1.	Fatty	acids	 from	adipose	
tissue	 can	 either	 be	 converted	 into	 acetyl-CoA	 via	 beta-oxidation	 or	 undergo	 ketogenesis,	 thereby	
producing	 ketone	 bodies.	 Ketone	 bodies	 can	 be	 transported	 ef5iciently	 to	 cells.	Within	 the	 cell,	 they	
undergo	ketolysis	and	by	that	are	converted	into	acetyl-CoA.	Acetyl-CoA	can	then	be	fed	into	the	TCA	cycle	
and	subsequently	undergo	oxidative	phosphorylation.	
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Studies	that	examine	the	implications	of	acute	alterations	in	glucose	metabolism,	

such	as	during	low	and	high	blood	glucose	levels	(hypo-	and	hyperglycemia,	respectively)	

typically	 use	 hyperinsulinemic	 glucose	 clamping	 (Heise	 et	 al.,	 2016).	 This	 technique	

involves	 intravenous	 infusions	of	glucose	and	 insulin,	a	hormone	crucial	 for	regulating	

blood	sugar	 levels.	Glucose	 levels	are	monitored	closely	and	glucose	 infusion	rates	are	

adjusted	 accordingly	 to	 reach	 the	 target	 blood	 glucose	 level.	 In	 healthy	 individuals,	

normal	fasting	blood	glucose	levels	typically	range	between	70mg/dl	and	100mg/dl,	with	

postprandial	 levels	 of	 up	 to	 140mg/dl	 still	 considered	 normal	 (World	 Health	

Organization,	 n.d.).	 By	 deviating	 from	 these	 levels	 researchers	 can	 induce	 hypo-	 or	

hyperglycemia,	respectively.	Hyperinsulinemic	glucose	clamping	is	particularly	useful	in	

studying	insulin-induced	hypoglycemia,	a	common	side	effect	of	Type	1	Diabetes	Mellitus	

(T1DM)	(Genuth,	2006).	

The	 aforementioned	 models	 can	 be	 used	 across	 a	 spectrum	 of	 experimental	

settings	 to	 study	 the	 body’s	 adaptive	 responses	 to	 metabolic	 challenges.	 They	 allow	

researchers	to	investigate	various	aspects	of	metabolic	regulation	both	in	healthy	as	well	

as	 diseased	 individuals	 (e.g.	 patients	 of	 diabetes	mellitus)	 (e.g.	 Anderson	 et	 al.,	 2006;	

Heise	et	al.,	2016;	Laitinen	et	al.,	2008).	Furthermore,	these	challenges	can	be	applied	to	

study	distinct	adaptive	responses	of	different	organs,	such	as	the	brain	when	including	

them	in	neuroimaging	studies,	adding	to	a	comprehensive	understanding	of	how	the	body	

maintains	energy	homeostasis	(Anderson	et	al.,	2006;	T.	M.	Blazey	&	Raichle,	2019).	In	

the	 =irst	 research	 project	 later	 presented	 in	 this	 thesis,	 we	 applied	 hyperinsulinemic	

glucose	clamping	to	study	the	effects	of	systemic	glucose	de=iciency	on	cerebral	energy	

metabolism.	More	detailed	information	about	the	study	design	as	well	as	the	scienti=ic	

background	will	be	provided	below.	

	

1.1.2	Glucose	uptake	

Whether	derived	from	carbohydrates,	glycogen	or	proteins,	glucose	must	pass	the	

cell	membrane	to	fuel	following	metabolic	pathways.	There	is	a	common	conception	that	

glucose	transport	into	the	cell	is	driven	by	insulin.	However,	the	process	is	more	complex.	

Glucose	uptake	into	the	cell	is	controlled	by	a	family	of	membrane	proteins,	called	glucose	

transporters	(GLUT),	comprising	14	subtypes	distributed	across	the	body.	Among	these	

GLUT	subtypes,	only	GLUT4	is	an	insulin-dependent	transporter	(Huang	&	Czech,	2007;	
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Koepsell,	2020).	When	blood	glucose	levels	rise,	insulin	is	secreted	from	pancreatic	beta	

cells	 into	 the	bloodstream.	 Insulin	 then	binds	 to	 receptors,	 activating	GLUT4	proteins.	

These	are	primarily	expressed	in	tissues	like	skeletal	muscle,	adipose	tissue	and	the	heart	

muscle	(Abel,	2004;	Kraegen	et	al.,	1993;	Laybutt,	1993).	Thus,	insulin-dependent	glucose	

transport	is	crucial	for	general	physiological	functioning.	Nevertheless,	it	is	important	to	

note	 that	 many	 cellular	 processes	 are	 regulated	 by	 insulin-independent	 glucose	

transporters,	such	as	GLUT1,	GLUT2	and	GLUT3.	GLUT1,	the	most	common	transporter,	

is	 predominantly	 found	 in	 the	 BBB,	 astrocytes	 and	 erythrocytes.	 GLUT2	 is	 primarily	

located	 in	 the	 kidneys,	 liver,	 and	 pancreas,	 and	 GLUT3	 in	 the	 placenta,	 neurons	 and	

kidneys	(Koepsell,	2020;	Thorens	&	Mueckler,	2010).		

	

1.1.2.1	Disordered	glucose	uptake:	Diabetes	mellitus	

	 Diabetes	mellitus	(DM)	is	a	common	metabolic	disorder	that	currently	affects	~9%	

of	the	world	population	(Standl	et	al.,	2019).	While	both	type	1	and	type2	DM	(T1DM	and	

T2DM)	are	disorders	of	insulin	metabolism,	they	differ	in	their	underlying	mechanisms,	

prognosis	and	treatment.	T1DM	is	a	chronic	autoimmune	disease	characterized	by	the	

destruction	of	insulin-producing	beta	cells	in	the	pancreas.	Due	to	their	vital	involvement	

in	 insulin	 production	 and	 secretion,	 this	 leads	 to	 an	 absolute	 de=iciency	 of	 insulin,	

resulting	 in	high	 levels	of	blood	glucose	and	 insuf=icient	 levels	of	 intracellular	glucose	

(Alam	et	al.,	2014).	Common	symptoms	include	sudden	weight	loss,	dizziness,	extreme	

thirst	 and	 hunger,	 and	 blurry	 vision.	 T1DM	 is	 typically	 treated	 with	 insulin	 therapy	

adminstered	by	the	patients	themselves.	It	must	be	noted	however,	that	both	insuf=icient	

as	well	as	excessive	levels	of	insulin	have	adverse	consequences.	Therefore,	the	biggest	

challenge	 in	 managing	 T1DM	 comes	 from	 the	 risk	 of	 insulin-induced	 hypoglycemia,	

especially	considering	the	self-administrations	of	 insulin	 injections.	Various	situational	

factors	 (such	as	exact	 food	 intake,	 alcohol	 consumption,	 stress,	dysregulated	circadian	

rhythm	or	exercise)	affect	insulin	metabolism	(Borghouts	&	Keizer,	2000;	Catalano	et	al.,	

2022;	Pei	et	al.,	2003;	Schrieks	et	al.,	2015),	making	a	precise	calculation	of	the	required	

insulin	dose	dif=icult	which	frequently	results	in	hypoglycemia.	Therefore,	patients	must	

monitor	their	blood	glucose	levels	carefully	at	all	times.		

	 T2DM	is	the	more	common	type	of	DM	and	is	characterized	by	a	decreased	insulin	

sensitivity,	usually	caused	by	poor	diet	and	insuf=icient	physical	activity.	In	T2DM,	while	

pancreatic	beta	cells	are	intact,	cells	develop	a	resistance	to	insulin	(Ginter,	2012).	As	a	
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result,	they	require	higher	amounts	of	insulin	to	enable	glucose	transport	across	the	cell	

membrane.	Many	T2DM	patients	manage	the	condition	well	without	therapy.	Symptoms	

often	 improve	with	 lifestyle	alterations,	such	as	dietary	change	and	 increased	physical	

activity.		

	 Despite	being	classi=ied	as	a	metabolic	disorder,	DM	has	far-reaching	implications	

for	 various	 aspects	 of	 health.	 Particularly	 hypoglycemia	 as	 a	 result	 of	 insulin	 therapy	

seems	to	pose	a	problem.	DM	patients	with	recurrent	episodes	of	hypoglycemia	are,	for	

instance,	at	a	higher	risk	 for	cognitive	and	neurological	 impairments,	such	as	memory	

de=icits	 and	 Alzheimer’s	 disease	 (AD)	 compared	 to	 DM	 patients	 without	 recurrent	

hypoglycemia	(Chen	et	al.,	2017;	Profenno	et	al.,	2010;	Yaffe,	2013).	Regarding	underlying	

mechanisms	 of	 this	 relationship,	 it	 has	 been	 found	 that	 recurrent	 events	 of	 severe	

hypoglycemia	lead	to	elevated	levels	of	oxidative	stress	and	necrosis,	particularly	in	the	

hippocampus,	 a	brain	 region	 crucial	 for	memory	processing	 (Auer,	2004;	Dickerson	&	

Eichenbaum,	2010;	Won	et	al.,	2012)	.	The	adverse	consequences	of	hypoglycemia	are	not	

limited	 to	 recurrent	 hypoglycemic	 episodes,	 though.	 Studies	 showed	 acute	 cognitive	

performance	de=icits	under	hypoglycemia	in	DM	patients	when	compared	to	euglycemic	

conditions	 (Sommer=ield	 et	 al.,	 2003b),	 a	 =inding	 that	 has	 been	 replicated	 in	 healthy	

participants	(Sommer=ield	et	al.,	2003a).	Thus,	low	glucose	availability	in	the	periphery	

appears	to	have	large	effects	on	brain	function	and	integrity,	a	relationship	that	this	thesis	

aims	to	explore	further.		

	

1.2	Cerebral	energy	metabolism	

	 The	human	brain’s	disproportionately	high	energy	demand	relative	to	its	size,	as	

well	as	 compared	 to	other	species,	has	made	 the	understanding	of	how	 it	 spends	 this	

energy	a	focal	point	in	neuroscience	for	years.	It	is	known	that	the	majority	of	the	brain’s	

energy	–	60%	overall	and	75%	within	gray	matter	–	is	spent	on	signaling	(Engl	&	Attwell,	

2015).	Within	this,	74%	are	allocated	to	postsynaptic	information	integration,	a	number	

that	is	notably	lower,	at	34%,	in	rodents	(Attwell	&	Iadecola,	2002).		

To	provide	this	energy,	the	brain	generally	relies	on	a	constant	supply	of	energy	

substrates	from	the	periphery,	such	as	oxygen	and	glucose.	It	can	tolerate	some	levels	of	

hypoxia	(Hochachka,	1998),	but	anaerobic	cellular	respiration,	yielding	only	2	ATP,	is	soon	

insuf=icient	to	cover	cerebral	energy	demands.	Under	anoxic	conditions,	lacking	oxygen	
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entirely,	the	brain	can	manage	three	to	six	minutes	before	the	occurrence	of	irreparable	

damages	(White	et	al.,	1984)	.	Glucose	transport	across	the	BBB	and	into	neurons	mainly	

occurs	via	insulin-independent	transporters	(GLUT1	and	GLUT3)	(Koepsell,	2020).	It	is	

important	to	note	that	insulin-dependent	GLUT4	can	also	be	found	in	the	central	nervous	

system,	albeit	not	as	widespread	as	in	the	periphery	(Koepsell,	2020;	McNay	&	Pearson-

Leary,	2020).	Astrocytes	play	an	important	role	in	regulating	cerebral	glucose	metabolism	

due	 to	 their	 ability	 to	 store	 glycogen	 and	 shuttle	 lactate	 to	 neurons	 (Bak	 et	 al.,	 2018;	

Brown	&	Ransom,	2007;	Dienel,	2017).	Moreover,	astrocytes	are	able	to	metabolize	fatty	

acids	 via	 beta-oxidation	 and	 ketogenesis	 (Allaman	&	Magistretti,	 2013;	 Brocchi	 et	 al.,	

2022).	The	resulting	ketone	bodies	can	be	used	to	fuel	neurons.	In	that	sense,	astrocytes	

act	 as	 a	 buffer	 for	 neuronal	 energy	 demands,	 which	 can	 rapidly	 change	 due	 to	

spontaneous	changes	in	neuronal	activity.		

In	contrast	to	the	periphery,	the	brain	was	long	assumed	to	be	a	generally	insulin-

insensitive	 organ.	 In	 more	 recent	 years,	 however,	 studies	 found	 insulin	 receptors	

distributed	throughout	the	central	nervous	system	as	well	as	transport	mechanisms	of	

insulin	 across	 the	 BBB	 (Rhea	 et	 al.,	 2018;	 Schulingkamp	 et	 al.,	 2000).	 Contrary	 to	 its	

primary	role	as	a	regulator	of	cellular	glucose	uptake	in	the	periphery,	insulin’s	actions	

within	the	brain	appear	to	be	more	diverse.	To	a	small	extent,	insulin	is	still	involved	in	

glucose	uptake,	recognizable	by	the	expression	of	insulin-dependent	GLUT4	transporters	

in	some	brain	regions,	particularly	the	hippocampus	(McNay	&	Pearson-Leary,	2020).	The	

majority	of	cerebral	glucose	consumption	is,	however,	mediated	by	insulin-independent	

GLUT1	and	GLUT3,	predominantly	found	in	astrocytes	and	neurons,	respectively.	Further,	

astrocytic	insulin	signaling	was	shown	to	play	a	crucial	role	in	glucose	sensing	and	the	

control	of	systemic	energy	homeostasis	(Garcıá-Cáceres	et	al.,	2016;	Herrera	Moro	Chao	

et	al.,	2022).	Additionally,	 insulin	possesses	neuroprotective	properties	(Adzovic	et	al.,	

2015;	McNay,	2007).	For	instance,	in	stroke	patients,	these	neuroprotective	mechanisms	

act	both	indirectly	and	directly	(Yu	&	Pei,	2015).	Hyperglycemia	is	a	common	side	effect	

of	ischemic	stroke,	with	hyperglycemic	stroke	patients	at	higher	mortality	risk	compared	

to	euglycemic	stroke	patients.	Studies	show	that	insulin	injections	alleviate	this	effect	not	

only	 by	 lowering	 blood	 glucose	 levels	 but	 also	 by	 reducing	 in=lammatory	 markers,	

neuronal	 cell	 death	 and	 cortical	 infarction,	 thereby	 improving	 subjects’	 chances	 of	

survival	(Garg	et	al.,	2006;	LeMay	et	al.,	1988;	Voll	et	al.,	1989).	In	addition	to	this	rather	

indirect	effect	via	the	periphery,	other	studies	showed	a	direct	neuroprotective	effect	of	
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insulin	on	the	brain	independent	of	its	regulatory	effect	on	blood	glucose	levels:	Insulin	

injected	directly	into	cerebral	ventricles,	without	changing	blood	glucose	concentrations,	

reduced	the	amount	of	neuronal	cell	death	following	ischemia	(Zhu	&	Auer,	1994).		

Taken	together,	these	examples	show	the	importance	of	insulin	balance	for	intact	

brain	functioning.	Insulin’s	signaling,	glucose-regulatory	and	neuroprotective	functions	

suggest	that	its	role	within	the	central	nervous	system	is	manifold	and	cannot	be	equated	

to	insulin	function	in	the	periphery.		

	

1.2.1	The	oxygen-to-glucose	index	(OGI)	

	 As	previously	discussed,	cellular	respiration	can	occur	aerobically	(via	glycolysis,	

TCA	cycle,	oxidative	phosphorylation;	requiring	oxygen)	and	anaerobically	(via	glycolysis,	

lactic	 acid	 fermentation;	 not	 requiring	 oxygen).	 Since	 the	 former	 pathway	 involves	

oxygen,	whereas	 the	 latter	one	does	not,	 the	molar	 ratio	between	oxygen	and	glucose	

consumption	can	provide	 insights	 into	the	nature	of	 its	energy	metabolism.	This	ratio,	

known	as	the	oxygen-to-glucose	index	(OGI),	serves	as	a	measure	of	oxidative	vs.	non-

oxidative	glucose	metabolism.	It	is	calculated	as		

	

OGI =
CMRO2
CMRglc	

	

In	 purely	 oxidative	 cellular	 respiration,	 the	 ratio	 between	 oxygen	 and	 glucose	

consumption	would	be	6:1,	as	oxidizing	one	mole	of	glucose	requires	6	moles	of	oxygen	

(Brady	et	al.,	2012).	Theoretically,	the	OGI	would	hence	be	6.	If	glucose	metabolism	is	at	

least	in	part	nonoxidative,	less	oxygen	would	be	consumed	and	the	OGI	would	thus	be	<6.	

Conversely,	 an	 OGI	 of	 >6	 would	 indicate	 a	 higher	 consumption	 of	 oxygen,	 a	 lower	

consumption	 of	 glucose,	 or	 both.	 Such	 a	 deviation	 can	 indicate	 the	 utilization	 of	

alternative	substrates	other	than	glucose	for	ATP	production.	

	 Particularly	in	neuroenergetics,	the	OGI	has	been	studied	to	gain	insight	into	the	

metabolic	 ef=iciency	 (32	 vs.	 2	 ATP)	 and	 substrate	 preference	 of	 brain	 tissue	 under	

different	conditions.	In	healthy	adults,	neuroimaging	studies	have	found	a	resting	OGI	of	

approximately	5.5	(T.	Blazey,	Snyder,	Goyal,	et	al.,	2018;	Shulman	et	al.,	2001;	Sokoloff,	

n.d.),	which	is	close	to	the	theoretical	value	of	6	and	suggests	parts	of	glucose	metabolism	
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to	be	non-oxidative.	During	 increased	neuronal	activity,	 the	OGI	has	been	suggested	to	

drop	substantially,	one	study	reporting	a	decrease	of	90%	(Fox	et	al.,	1988).	This	would	

imply	 a	 strong	 uncoupling	 between	 oxygen	 and	 glucose	metabolism	 during	 neuronal	

activation.	 However,	 =indings	 from	 other	 studies	 suggest	 a	 weaker	 OGI	 drop	 during	

stimulation	(Davis	et	al.,	1998;	Donahue	et	al.,	2009;	Fujita	et	al.,	2006;	Kim	et	al.,	1999),	

albeit	still	implying	a	decrease.	It	is	not	entirely	clear	why	the	brain	switches	to	higher	

rates	of	non-oxidative	glucose	metabolism	upon	heightened	neuronal	activity.	 It	seems	

less	 ef=icient	 to	 convert	 glucose	 into	 lactate,	 thereby	 producing	 only	 2	 ATP.	 One	

explanation	 for	 a	 preference	 towards	 lactate	 fermentation	 over	 oxidative	

phosphorylation	 is	 its	 speed.	 Lactate	 fermentation	 has	 been	 found	 to	 be	 more	 rapid	

(Pfeiffer	2001).	Consequently,	despite	non-oxidative	glucose	metabolism	only	generating	

2	ATP	per	mole	of	 glucose,	 it	might	 eventually	be	more	ef=icient	 and	better	 suited	 for	

supporting	rapid	bursts	of	activity	in	neurons.	Empirical	data	regarding	the	exact	extent	

of	glucose/oxygen	uncoupling	during	neuronal	activity	is	lacking.	This	is	mainly	due	to	

the	inability	of	previous	studies	to	measure	oxygen	and	glucose	dynamics	simultaneously,	

which	will	 be	 described	 in	 detail	 below.	Moreover,	 there	 is	 a	 disagreement	 about	 the	

uniformity	of	the	OGI	across	the	cortex,	with	some	studies	stating	equal	OGI	across	the	

brain	and	others	=inding	differences	between	functional	brain	networks	(T.	Blazey,	Snyder,	

Su,	 et	 al.,	 2018;	Hyder	 et	 al.,	 2016).	 Again,	 consecutive	 data	 acquisition	 of	 CMRO2	 and	

CMRglc,	 opposed	 to	 simultaneous	 acquisition,	 impedes	 result	 interpretation.	 We	

addressed	 this	 gap	 in	 literature	 in	 the	 second	 manuscript	 of	 this	 thesis,	 where	 we	

combined	 recent	advances	 in	neuroimaging	 to,	 for	 the	 =irst	 time,	measure	oxygen	and	

glucose	metabolism	in	the	human	brain	simultaneously	and	dynamically.		

	

1.2.2	The	selPish	brain	

Given	 its	 high	 energy	 demand	 and	 importance	 for	 overall	 well-being	 and	

functioning,	researchers	proposed	that	the	brain	has	evolved	to	prioritize	its	own	energy	

demand,	which	can	come	at	 the	expense	of	other	bodily	systems,	 including	other	vital	

organs,	such	as	the	heart.	This	idea	was	summarized	as	the	Sel=ish	Brain	Theory	(Peters	

et	 al.,	 2004).	 First	 evidence	 for	 this	 theory	 came	 from	 early	 post-mortem	 studies	 in	

humans	 showing	 the	preservation	 of	 human	brain	mass	 during	 inanition,	while	 other	

organs,	 including	 the	 heart,	 liver	 and	 kidneys,	 lost	 about	 40%	 of	 their	mass	 (Krieger,	
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1921).	More	recent	in-vivo	studies	in	animals	and	humans	provided	further	evidence	for	

neuroprotection	during	metabolic	challenges	(Kind	et	al.,	2005;	Miller	et	al.,	2002;	Peters	

et	al.,	2011).	According	to	the	Sel=ish	Brain	Theory,	the	CNS	has	regulatory	mechanisms	

to	ensure	coverage	of	the	brain’s	energy	demands.		

One	 such	 mechanism	 is	 the	 limbic-hypothalamus-pituitary-adrenal	 (LHPA)	

system.	If	ATP	levels	 in	the	brain	drop,	neurons	in	the	ventromedial	hypothalamus	are	

disinhibited	which	 activates	 the	 sympathetic	 nervous	 system	 (SNS)	 and	 subsequently	

suppresses	pancreatic	insulin	production	(Hitze	et	al.,	2010).	Reduced	insulin	levels	lead	

to	 decreased	 glucose	 uptake	 by	 the	 insulin-dependent	 GLUT4	 transporters,	 thereby	

leaving	more	glucose	available	 for	other	tissues,	such	as	neuronal	tissue.	This	cerebral	

insulin	suppression	is	one	example	of	the	brain’s	active	pull-mechanisms,	supporting	the	

Sel=ish	 Brain	 Theory.	 In	 this	 context,	 the	 brain	 is	 not	 considered	 as	 solely	 relying	 on	

passive	supply	mechanisms	(push	factors).	Instead,	according	to	the	energy-on-demand	

principle,	it	is	depicted	as	an	organ	engaging	in	active	pull	mechanisms	to	cover	its	energy	

requirements	(Peters	et	al.,	2022).	Another	example	for	a	pull	mechanism	is	the	increase	

of	 subcutaneous	 lipolysis,	 triggered	 by	 the	 SNS	 and	 hypothalamus-pituitary-adrenal	

(HPA)	 axis	 (Lopaschuk	 et	 al.,	 2010)	 which	 provides	more	 fatty	 acids	 for	 cardiac	 and	

skeletal	 muscles	 –	 two	 tissue	 types	 with	 high	 energy	 demands	 –	 thereby	 increasing	

glucose	 availability	 for	 the	 brain.	 For	more	 examples	 on	 the	 brain’s	 pull	mechanisms,	

please	consult	the	review	paper	by	Peters	et	al.	(2022).		

According	 to	 the	 Sel=ish	 Brain	 Theory,	 the	 cerebral	 energy	metabolism	 should	

remain	largely	unaffected	by	decreased	levels	of	glucose	availability.	A	recent	PET	study,	

however,	 found	 decreased	 levels	 of	 glucose	 consumption	 (cerebral	 metabolic	 rate	 of	

glucose,	CMRglc)	during	acute	hypoglycemia	(T.	M.	Blazey	&	Raichle,	2019).	It	is	unclear	

whether	 these	 results	 imply	 a	 general	 downregulation	 of	 cerebral	 energy	metabolism	

during	glucose	de=iciency.	This	would	be	a	kind	of	energy-saving	measure	and	contradict	

the	Sel=ish	Brain	Theory.	Potentially,	a	general	reduction	in	cerebral	energy	metabolism	

could	 explain	 cognitive	 de=icits	 during	 hypoglycemia.	 Alternatively,	 decreased	 CMRglc	

levels	could	mean	that,	during	hypoglycemia,	the	brain	utilizes	other	energy	substrates.	

In	fact,	it	is	quite	likely	that	it	metabolizes,	for	instance,	astrocytic	glycogen	during	glucose	

de=iciency	(Choi	et	al.,	2003;	Ot z	et	al.,	2007),	but	what	remains	unclear	is	to	what	extent	

alternate	 substrates	 are	 utilized	 for	 ATP	 production	 and	 whether	 they	 are	 able	 to	

compensate	for	the	lack	of	glucose	entirely.	These	open	questions	were	our	motivation	



	 23	

for	the	=irst	projected	presented	in	this	thesis.	The	metabolism	of	alternate	substrates,	

such	as	lactate,	fatty	acids	or	ketone	bodies,	would	still	require	oxidative	phosphorylation	

for	 ATP	 production	 (see	 Figure	 3).	 Consequently,	 oxygen	 metabolism	 should	 remain	

unaffected.	 Therefore,	 in	 the	 =irst	 project,	 we	 measured	 cerebral	 oxygen	 metabolism	

under	hypoglycemia.	To	this	end,	we	applied	a	novel	neuroimaging	technique	to	measure	

the	cerebral	metabolic	rate	of	oxygen	(CMRO2),	as	described	in	the	next	section.		

	

1.2.3	Measuring	cerebral	energy	metabolism	in	vivo	

Ideally,	direct	measurement	of	ATP	within	the	human	brain	in	vivo	would	provide	

detailed	insights	into	cellular	energy	metabolism.	However,	such	direct	measurement	is	

not	 yet	 possible.	 One	 approach	 to	 approximate	 ATP	 levels	 in	 vivo	 is	 31-phosphorus	

magnetic	 resonance	spectroscopy	 (31P-MRS).	MRS	 is	a	non-invasive	 imaging	 technique	

that	measures	speci=ic	metabolite	concentrations	within	tissues	based	on	their	chemical	

composition	 (Dappert	 et	 al.,	 1992).	 While	 31P-MRS	 is	 able	 to	 detect	 phosphorus-

containing	compounds,	such	as	ATP,	phosphocreatine	or	inorganic	phosphate,	it	cannot	

distinguish	 between	 the	 individual	 compounds.	 Thus,	 ATP	 levels	 can	 only	 be	

approximated	 from	 this	 technique.	 Moreover,	 MRS	 has	 limited	 spatial	 resolution	 and	

sensitivity,	which	affects	the	precision	of	ATP	level	estimations.		

Even	if	direct	ATP	measurements	were	feasible,	it	would	not	offer	any	insight	into	

the	 mechanisms	 underlying	 ATP	 synthesis:	 e.g.	 oxidative	 vs.	 non-oxidative	 cellular	

respiration	 or	 the	 utilization	 of	 glucose	 vs.	 alternate	 substrates.	 Therefore,	measuring	

underlying	 metabolic	 compounds,	 such	 as	 oxygen	 and	 glucose,	 not	 only	 aligns	 with	

current	technical	possibilities	but	also	provides	valuable	information	about	the	speci=ic	

pathways	involved	in	ATP	synthesis.	

	

1.2.3.1	Measuring	cerebral	oxygen	metabolism	

The	current	standard	to	study	changes	in	brain	tissue	oxygenation	is	 functional	

magnetic	resonance	imaging	(fMRI).	This	non-invasive	MR	technique	picks	up	changes	in	

the	oxygenation	status	of	hemoglobin	 (Hb),	 a	protein	 that	 transports	oxygen	 from	 the	

lungs	to	tissues	throughout	the	body	and	carbon	dioxide	back	to	the	lungs	for	exhalation.	

fMRI	 is	 mainly	 applied	 to	 approximate	 neuronal	 activity.	 The	 underlying	 idea	 is	 that	

neuronal	 activation	 requires	 oxygen,	 which	 is	 extracted	 from	 the	 bloodstream	 for	
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oxidative	phosphorylation	and,	ultimately,	ATP	production.	 In	response	to	the	elevated	

oxygen	demand,	cerebral	blood	=low	(CBF)	increases,	delivering	new	oxy-Hb	to	the	brain.	

This	 increase	 in	 CBF	 often	 overcompensates	 for	 the	 required	 oxygen,	 resulting	 in	 a	

decrease	in	deoxy-Hb	concentrations	in	the	blood.	Fortunately	for	MR	researchers,	oxy-

Hb	 and	 deoxy-Hb	 have	 distinct	magnetic	 properties,	with	 the	 paramagnetic	 nature	 of	

deoxy-Hb	 causing	 localized	magnetic	 =ield	 distortions,	 thereby	 increasingly	 dephasing	

protons,	which	mitigates	the	MR	signal	(Byrne	et	al.,	2014;	Drew,	2019).	These	changes	

in	deoxy-Hb	between	different	conditions	can	then	be	picked	up	by	the	MR	scanner	and	

are	 re=lected	 in	 the	 Blood	 Oxygen	 Level	 Dependent	 (BOLD)	 contrast.	 Despite	 its	

advantages,	such	as	non-invasiveness,	relatively	short	acquisition	time	as	well	as	robust	

spatial	and	temporal	resolution,	the	BOLD	contrast	has	its	limitations.	It	neither	directly	

measures	 neuronal	 activity	 nor	 oxygen	 consumption	 (Buxton,	 2010).	 Instead,	 it	 relies	

entirely	on	the	assumption	that	changes	in	deoxy-Hb	concentrations	re=lect	changes	in	

oxygen	consumption,	complicating	data	 interpretation.	Changes	 in	deoxy-Hb,	and	with	

that	 in	 the	BOLD	signal,	 could	come	 from	both	 increased	oxygen	consumption	and/or	

increased	 provision	 with	 oxy-Hb.	 The	 BOLD	 signal	 thus	 mixes	 hemodynamic	 and	

metabolic	signals.	Moreover,	due	to	 its	relative	nature,	BOLD	imaging	can	only	provide	

information	 about	 its	 percentage	 change	 between	 conditions,	 limiting	 its	 utility	 for	

absolute	comparisons	across	brain	regions,	subjects	and	studies.		

Quantitative	measurements	of	oxygen	consumption.	A	more	direct	method	for	

measuring	 oxygen	 metabolism	 in	 the	 human	 brain	 is	 via	 oxygen-15	 PET	 (15O2-PET)	

(Herscovitch	et	al.,	1983;	Raichle	et	al.,	1983).	The	underlying	principle	of	PET	imaging	is	

the	 administration	 of	 radiotracers,	 which	 are	 radioactively	 labeled	 molecules.	

Radiotracers	decay	by	releasing	positrons,	which	then	interact	with	nearby	electrons	in	

the	body,	producing	gamma	rays.	These	gamma	rays	are	picked	up	by	the	PET	scanner	to	

create	images.	15O2-PET	combines	the	inhalation	of	15O2-labeled	gas	and	the	injection	of	

[15O]H2O	in	order	to	measure	cerebral	blood	volume	(CBV),	the	oxygen	extraction	fraction	

(OEF)	 and	CBF,	 separately	 (Herscovitch	 et	 al.,	 1983;	 Raichle	 et	 al.,	 1983).	 Using	 these	

parameters,	 one	 can	 then	 calculate	 the	 cerebral	metabolic	 rate	 of	 oxygen	 (CMRO2)	 via	

Fick’s	principle:	

	

CMRO2	=	CaO2	*	CBF	*	OEF	

	



	 25	

where	CaO2	represents	the	arterial	oxygen	content	(Fick,	1870,	p.	18).	CMRO2,	expressed	

in	 μmol/100g/min,	 provides	 a	 direct	 and	 absolute	 measure	 of	 oxygen	 metabolism,	
offering	 insights	 into	 cellular	 energy	metabolism.	However,	 PET	 generally	 comes	with	

some	drawbacks,	particularly	concerning	its	invasiveness.	One	of	the	primary	challenges	

in	 PET	 is	 the	 administration	 of	 the	 radiotracer.	 Due	 to	 its	 short	 decay	 time	 of	

approximately	two	minutes,	15O2-PET	typically	requires	higher	tracer	doses	to	ensure	an	

adequate	 amount	 of	 tracer	 available	 for	 imaging.	 This	 results	 in	 rather	 high	 levels	 of	

absolute	 radiation	exposure	which	 is	particularly	ethically	problematic	when	studying	

healthy	participants.	The	short	decay	time	also	leads	to	dif=iculties	in	coordinating	tracer	

production	and	administration.	Moreover,	 compared	 to	MRI,	PET	offers	poorer	 spatial	

resolution.	

In	recent	years,	researchers	have	developed	a	way	of	measuring	CMRO2	using	MRI,	

thereby	addressing	the	aforementioned	drawbacks.	Multiparametric	quantitative	BOLD	

(mqBOLD)	involves	the	acquisition	of	separate	MR	sequences	to	gain	information	on	CBF,	

CBV	and	tissue	oxygenation	(Christen	et	al.,	2012;	Hirsch	et	al.,	2014;	Kaczmarz	et	al.,	

2020).	CBV	is	measured	via	the	administration	of	a	gadolinium-based	contrast	agent	and,	

when	 combined	with	 information	 on	 tissue	 oxygenation,	 yields	 the	 oxygen	 extraction	

fraction	(OEF).	As	previously	described,	using	Fick’s	principal	(CMRO2	=	CaO2	*	CBF	*	OEF),	

these	 parameters	 can	 be	 combined	 to	 yield	 voxelwise	 CMRO2	 maps.	 CaO2,	 the	 arterial	

oxygen	 capacity	 can	 be	 measured	 via	 the	 individual’s	 hematocrit	 value	 and	 arterial	

oxygen	 saturation,	 determined	 by	 blood	 sampling	 and	 pulse	 oximetry,	 respectively.	 In	

Fick’s	principle,	by	multiplying	absolute	oxygen	provision	to	a	brain	region	(voxelwise	

CBF	maps	 in	ml/100g/min	 and	 CaO2)	with	 relative	 oxygen	 extraction	 from	 that	 brain	

region	 (voxelwise	 OEF	 maps),	 we	 can	 calculate	 how	 much	 oxygen	 was	 consumed	 in	

absolute	terms,	yielded	as	CMRO2	 in	μmol/100g/minute.	The	advancement	of	mqBOLD	

avoids	previous	limitations	of	both	15O2-PET	as	well	as	the	BOLD	contrast.	Compared	to	
15O2-PET,	mqBOLD	does	not	require	the	injection	of	a	radiotracer	and	is	thus	notably	less	

invasive.	mqBOLD	does,	however,	 involve	the	administration	of	a	contrast	agent	which	

must	be	noted	when	evaluating	its	 invasiveness.	Gadolinium-based	contrast	agents	are	

generally	well-tolerated	 and	 the	 newer,	macrocyclic	 agents,	 which	 are	 primarily	 used	

nowadays,	 only	 lead	 to	 small	 amounts	 of	 gadolinium	 residue	 in	 the	 brain	 (Thomsen,	

2017).	 So	 far,	 there	 have	 been	 no	 indications	 of	 adverse	 effects	 of	 these	 residues.	

Moreover,	the	BOLD	signal	is	not	only	a	compound	signal	of	different	processes,	thereby	
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complicating	interpretations,	but	it	is	also	a	relative	signal.	Hence,	in	BOLD	imaging,	one	

contrasts	different	conditions	and	calculates	the	relative	change	between	them.	Percent	

change	 values	 are,	 however,	 heavily	 affected	 by	 the	 baseline	 value,	 impeding	

comparability.	Also,	they	are	not	physiologically	interpretable.	Unlike	the	BOLD	contrast,	

mqBOLD	 yields	 absolute	 and	 quantitative	 maps	 of	 oxygen	 consumption.	 Therefore,	

CMRO2	values	are	interpretable	and	comparable	across	brain	regions,	subjects,	sessions	

and	 studies.	 In	 the	 two	manuscripts	 presented	 in	 this	 thesis,	 we	 therefore	 employed	

mqBOLD	to	measure	quantitative	brain	maps	of	oxygen	metabolism.	

	

1.2.3.2	Measuring	cerebral	glucose	metabolism	

 The	gold	standard	for	measuring	the	cerebral	metabolic	rate	of	glucose	(CMRglc)	is	

[18F]=luorodeoxyglucose	PET	(18F-FDG-PET).	18F-FDG,	commonly	referred	to	as	FDG,	is	a	

radiotracer	 that	 closely	 mimics	 glucose.	 After	 injection,	 the	 body	 processes	 FDG	 like	

glucose,	as	it	cannot	differentiate	between	the	two	substances.	As	a	consequence,	more	

FDG	is	brought	to	those	cells	with	increased	CMRglc.	However,	once	inside	the	cell,	FDG	

cannot	be	 further	metabolized	since,	unlike	glucose,	 it	 cannot	undergo	glycolysis.	As	a	

result,	the	PET	tracer	is	trapped	within	the	cell	and	accumulates	until	it	decays.	With	a	

half-time	of	109	minutes,	FDG	has	a	substantially	longer	decay	time	than	15O2,	allowing	

for	 single	 intravenous	 bolus	 injection	 just	 before	 the	 scan.	 This	 signi=icantly	 reduces	

radiation	 exposure	 for	 patients	 and	 participants	 compared	 to	 PET	 scans	 using	 other	

radiotracers.	 Furthermore,	 because	 of	 the	 longer	 decay	 time,	 coordination	 of	 tracer	

production	and	injection	timing	is	easier.		

Typically,	PET	images	are	averaged	over	the	entire	scanning	duration.	Thus,	when	

studying	 alterations	 in	 glucose	metabolism	 between	multiple	 conditions,	 at	 least	 two	

scanning	sessions	are	necessary	to	ensure	complete	tracer	decay.	This	not	only	increases	

total	 radiation	exposure	but	 is	 also	more	expensive	and	 time-consuming.	Additionally,	

acquiring	data	under	different	conditions	on	different	days	can	introduce	inaccuracies	in	

the	 data	 due	 to	 potential	 variations	 between	 scanning	 sessions.	 In	 order	 to	 enable	

continuous	 monitoring	 of	 glucose	 metabolism,	 researchers	 have	 developed	 18F-FDG	

functional	PET	(fPET)	(Hahn	et	al.,	2016;	Jamadar,	Ward,	Carey,	et	al.,	2019;	Rischka	et	al.,	

2018;	Villien	et	al.,	2014).	Instead	of	a	bolus	injection,	acquiring	fPET	data	involves	an	

initial	bolus	followed	by	a	continuous	infusion	of	FDG	into	the	participant’s	bloodstream.	

This	 constant	 infusion	 maintains	 a	 steady-state	 level	 of	 tracer	 in	 the	 bloodstream,	
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allowing	for	dynamic	imaging	of	glucose	metabolism	over	an	extended	period.	In	this	way,	

fPET	allows	for	the	measurement	of	multiple	conditions	within	a	single	scanning	session,	

as	successfully	applied	in	various	studies	(Hahn	et	al.,	2016,	2017;	Jamadar	et	al.,	2021).	

To	 accurately	 model	 tracer	 delivery	 to	 brain	 tissue,	 continuous	 arterial	 sampling	 is	

required	to	obtain	the	arterial	input	function	(AIF).	This	arterial	sampling	must	be	noted	

regarding	the	invasiveness	of	this	method.	

	

1.3	Aims	of	the	current	work	

A	healthy	energy	metabolism	and	intact	brain	function	seem	to	be	closely	linked.	

As	mentioned	in	the	context	of	diabetes,	a	dysregulated	energy	metabolism	is	associated	

with	 various	 pathologies,	 including	 neurodegenerative	 diseases,	 as	 well	 as	 cognitive	

de=icits	(Chen	et	al.,	2017;	Profenno	et	al.,	2010;	Yaffe,	2013).	Conversely,	optimizing	the	

body’s	 metabolism	 has	 shown	 promising	 results	 in	 the	 therapy	 of	 various	 medical	

conditions.	 This	 has,	 for	 instance,	 been	 shown	 for	 depression,	 anxiety	 disorder	 and	

autism,	disorders	that	are	often	associated	with	a	disrupted	gut	microbiome	(Peirce	&	

Alviña,	 2019;	 Pulikkan	 et	 al.,	 2019).	 Taking	 probiotics,	 thereby	 supporting	 the	 gut	

microbiome,	 alleviated	 symptoms	 of	 depression,	 anxiety	 and	 autism	 in	 these	 patients	

(Dinan	 et	 al.,	 2013;	 Dinan	 &	 Cryan,	 2013;	 Gao	 et	 al.,	 2023;	 Navarro	 et	 al.,	 2016).	

Conversely,	 anti-depressants	have	been	used	 to	 successfully	 treat	 in=lammatory	bowel	

disease	(Ford	et	al.,	2009).	Further,	patients	with	neurological	disorders,	such	as	epilepsy	

and	 autism,	 have	 shown	 improvement	 of	 symptoms	 after	 following	 a	 ketogenic	 diet	

(Barañano	 &	 Hartman,	 2008;	 Napoli	 et	 al.,	 2014).	 These	 are	 just	 some	 examples	 to	

illustrate	the	tight	connection	between	peripheral	energy	metabolism	and	healthy	brain	

function.		

The	current	thesis	explores	this	relationship	further	in	the	healthy	individual	by	

investigating	the	effect	of	systemic	glucose	de=iciency	on	brain	energy	metabolism	and	

cognitive	 function.	 We	 were	 interested	 in	 whether	 a	 downregulated	 cerebral	 energy	

metabolism	 under	 metabolic	 challenges	 could	 be	 a	 link	 between	 peripheral	 energy	

metabolism	 and	 healthy	 cerebral	 functioning.	 Therefore,	 we	 =irst	 needed	 to	 establish	

whether	 decreased	 systemic	 glucose	 availability	 generally	 reduces	 rates	 of	 cerebral	

energy	metabolism	or	whether	 the	 brain	 is	 capable	 of	 keeping	 up	 its	ATP	production	

through	the	oxidation	of	alternate	energy	substrates	other	than	glucose.		
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Project	 I	 examines	 the	 impact	of	acute	hypoglycemia	on	oxygen	metabolism	 in	

healthy	individuals,	using	mqBOLD.	
Þ Aim	 I.	 Quantify	 oxygen	 metabolism	 (CMRO2)	 in	 the	 healthy	 human	 brain	 in	

response	to	hypoglycemia	compared	to	euglycemia.	

Þ Aim	 II.	 Quantify	 oxygen	 metabolism	 (CMRO2)	 in	 the	 healthy	 human	 brain	 in	

response	to	hyperinsulinemia	compared	to	normal	insulin	levels.		

Þ Aim	 III.	 Investigate	 the	 impact	 of	 restored	 euglycemia	 (after	hypoglycemia)	 on	

memory	processing	as	well	as	attention.	

	

Project	II	 integrates	recent	advancements	in	MR	and	PET	imaging.	For	the	=irst	

time,	CMRO2	and	CMRglc	are	measured	simultaneously	under	different	conditions	within	

a	single	scanning	session,	applying	mqBOLD	and	18F-FDG-fPET	at	the	same	time.	

Þ Aim	 IV.	Demonstrate	 the	 feasibility	 of	 simultaneously	quantifying	 task-induced	

changes	in	oxygen	and	glucose	metabolism.	

Þ Aim	V.	Investigate	how	the	oxygen-to-glucose	index	(OGI)	changes	upon	increased	

neuronal	activation	and	whether	the	OGI	follows	a	uniform	distribution	across	the	

cortex.	
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Abstract	
The	continuous	supply	with	glucose	and	oxygen	is	essential	for	healthy	brain	function.	

Accordingly,	 the	 Sel=ish	 Brain	 Theory	 states	 that	 the	 brain	 prioritizes	 its	 own	 energy	

demand	 and	 is	 thus	 not	 susceptible	 to	 alterations	 in	 systemic	 availability	 of	 energy	

substrates.	However,	previous	studies	report	whole-brain	decreases	of	cerebral	glucose	

metabolism	 under	 hypoglycemia.	 It	 remains	 unclear	 whether	 this	 implies	 a	 general	

decrease	 in	 cerebral	 energy	 metabolism	 or,	 alternatively,	 the	 utilization	 of	 different	

energy	substrates.	In	this	context,	information	on	cerebral	oxygen	metabolism	(CMRO2)	is	

sparse.	The	present	study	investigates	CMRO2	under	hypoglycemia,	providing	insights	into	

the	 oxidation	 of	 energy	 substrates.	 Additionally,	 it	 explores	 the	 effects	 of	 restored	

euglycemia	after	prior	hypoglycemia	on	cognitive	function.	Results	indicate	no	changes	in	

CMRO2	 under	 hypoglycemia,	 even	when	 considering	 potentially	 confounding	 effects	 of	

hyperinsulinemia	in	insulin-induced	hypoglycemia.	Hypoglycemia	increased	blood	=low	

(CBF)	 in	 large	parts	 of	 the	brain,	while	only	 severe	hypoglycemia	 reduced	 the	oxygen	

extraction	 fraction	 (OEF).	 Further,	 memory	 consolidation,	 but	 neither	 encoding	 nor	

attention,	 was	 impaired	 under	 restored	 euglycemia	 in	 comparison	 to	 maintained	

euglycemia.	In	favor	of	the	Sel=ish	Brain	Theory,	the	steady	CMRO2	rates	suggest	utilization	

of	 alternate	 energy	 pathways	 in	 the	 brain	 under	 hypoglycemia,	 such	 as	 ketones	 and	

astrocytic	 glycogen.	 Despite	 this	 adaptability	 to	 alternative	 energy	 substrates,	 prior	

hypoglycemia	has	long-lasting	effects	speci=ically	on	memory	consolidation,	potentially	

resulting	from	glycogen	depletion	and	impaired	glutamate	synthesis.	
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Introduction		
The	 brain	 is	 the	 energetically	most	 expensive	 organ	 relative	 to	 its	 size.	 Under	

normal	conditions,	it	relies	on	oxidized	glucose	as	its	primary	fuel	and	thus	depends	on	a	

constant	 supply	 with	 glucose	 and	 oxygen	 to	 meet	 its	 metabolic	 demands.	 Therefore,	

during	periods	of	glucose	de=iciency,	 the	body	 initiates	a	number	of	counterregulatory	

mechanisms	to	maintain	energy	homeostasis	(Cryer,	1993).	This	involves	the	utilization	

of	alternative	energy	substrates,	such	as	ketone	bodies,	fatty	acids	and	lactate	(Kersten	et	

al.,	1999;	Kolb	et	al.,	2021;	Pan	et	al.,	2000).	These	energy	substrates	are	eventually,	just	

like	glucose,	oxidized	for	adenosine	triphosphate	(ATP)	production.	Despite	the	body’s	

ability	 to	 metabolize	 these	 substrates	 ef=iciently	 in	 the	 face	 of	 prolonged	 starvation,	

questions	remain	regarding	the	brain’s	reliance	on	them	under	acutely	low	blood	glucose	

levels	(hypoglycemia),	which	is	a	common	side	effect	in	diabetes	mellitus	(Genuth,	2006).	

The	 present	 study	 examines	 whether	 hypoglycemia	 results	 in	 reduced	 oxygen	

metabolism,	 and	 therefore	 reduced	 ATP	 production,	 or	 whether	 the	 utilization	 of	

alternative	energy	substrates	 is	suf=icient	to	maintain	normal	 levels	of	cerebral	energy	

metabolism.	

Previous	studies	on	cerebral	energy	metabolism	have	shown	reductions	in	brain	

glucose	 utilization	 during	 hypoglycemia.	 An	 infrared	 spectroscopy	 study	 for	 instance	

found	 a	 decrease	 in	 brain	 glucose	 uptake	 among	 healthy	 participants	 experiencing	

hypoglycemia	 (Boyle	et	al.,	1994),	a	 =inding	 that	was	con=irmed	by	a	more	recent	PET	

study	(Blazey	&	Raichle,	2019).	The	latter	study	reported	a	signi=icant	20-30%	reduction	

in	 the	 cerebral	 metabolic	 rate	 of	 glucose	 (CMRglc)	 across	 the	 entire	 brain	 during	

hypoglycemia.	 These	 =indings	 could	 imply	 a	whole-brain	 reduction	 in	 cerebral	 energy	

metabolism,	 hence	 a	 kind	 of	 energy	 conservation	 measure	 the	 brain	 takes	 under	

circumstances	 of	 restricted	 energy	 substrate	 availability.	 Alternatively,	 however,	 they	

could	mean	that	the	brain	switches	to	a	different	pathway	for	energy	production,	such	as	

those	described	above.	This	would	be	in	line	with	the	Sel=ish	Brain	Theory,	which	states	

that	the	brain	always	prioritizes	its	own	energy	demand	over	that	of	other	bodily	systems	

(Peters	et	al.,	2004).	First	evidence	for	this	theory	came	from	early	post-mortem	studies	

in	humans	showing	the	preservation	of	human	brain	mass	during	inanition,	while	other	

organs,	 including	 the	 heart,	 liver	 and	 kidneys,	 lost	 about	 40%	 of	 their	mass	 (Krieger,	

1921).	More	recent	in-vivo	studies	in	animals	and	humans	provided	further	evidence	for	

neuroprotection	during	metabolic	challenges	(Kind	et	al.,	2005;	Miller	et	al.,	2002;	Peters	
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et	al.,	2011).	The	Sel=ish	Brain	Theory	views	the	brain	as	an	organ	that	actively	demands	

energy	 substrates	 (pull	 mechanisms),	 instead	 of	 being	 passively	 supplied	 with	 them	

(push	mechanisms)	(Peters	et	al.,	2022).	These	pull	mechanisms	then	allow	the	brain	to	

adapt	to	=luctuations	in	energy	substrate	availability	and	maintain	energy	homeostasis,	

even	under	metabolically	 challenging	 conditions.	They	are	mainly	orchestrated	by	 the	

ventromedial	 hypothalamus	 (Miki	 et	 al.,	 2001),	 which,	 for	 instance,	 limits	 peripheral	

glucose	utilization,	thereby	sparing	more	for	the	brain	(Ahrén,	2000;	Mulder	et	al.,	2005).	

Moreover,	 astrocytes	 have	 been	 shown	 to	 actively	 increase	 their	 glucose	 uptake	 in	

response	to	energetic	demands,	driven	by	both	their	own	energy	requirements	and	those	

of	adjacent	neurons	(Blodgett	et	al.,	2007;	Pellerin	&	Magistretti,	1997).	Hence,	according	

to	the	Sel=ish	Brain	Theory,	cerebral	energy	metabolism	should	not	be	largely	affected	by	

decreased	 levels	 of	 systemic	 glucose	 availability.	 Considering	 studies	 demonstrating	

decreased	 glucose	 uptake	 under	 hypoglycemia	 (Blazey	 &	 Raichle,	 2019;	 Boyle	 et	 al.,	

1994),	 this	 would	 imply	 that	 the	 brain	 must	 rely	 on	 alternative	 substrates	 (such	 as	

ketones,	 lactate	 and	 fatty	 acids)	 during	 acute	 glucose	 de=iciency.	 Since	 alternative	

substrates	 would	 still	 need	 to	 be	 oxidized,	 cerebral	 oxygen	 metabolism	 should	 be	

maintained	 in	 that	 case.	 However,	 experimental	 evidence	 about	 the	 brain’s	 oxygen	

metabolism	under	glucose	de=iciency	is	lacking.		

The	present	study	was	designed	 to	answer	 the	question	whether	hypoglycemia	

would	induce	reductions	in	cerebral	oxygen	metabolism	to	a	similar	extent	as	it	does	to	

CMRglc,	and	how	hypoglycemia	differentially	impacts	functional	brain	networks.	Previous	

studies	have	measured	the	cerebral	metabolic	rate	of	oxygen	(CMRO2)	of	the	entire	brain	

in	fetal	 lambs,	 =inding	signi=icant	decreases	in	both	CMRglc	and	CMRO2	 in	hypoglycemia	

compared	to	euglycemia	(Richardson	et	al.,	1985).	In	humans,	however,	cerebral	oxygen	

metabolism	under	hypoglycemia	has	not	been	studied	directly.	One	study	approximated	

brain	oxygen	uptake	by	combining	measurements	of	cerebral	blood	=low	(CBF)	with	the	

arterio-venous	differences	in	plasma	oxygen	content	and	found	no	changes	in	CMRO2	and	

CBF	in	response	to	hypoglycemia	(Lubow	et	al.,	2006).	While	this	method	may	give	an	

estimate	of	oxygen	consumption	of	the	brain,	it	is	neither	a	direct	measurement	of	CMRO2,	

nor	can	it	provide	information	on	spatial	variations	in	cerebral	oxygen	metabolism.	Using	

fMRI,	other	studies	measured	the	blood	oxygen	level	dependent	(BOLD)	contrast	during	

hypoglycemia.	 They	 found	 a	 lower	 BOLD	 signal	 under	 hypoglycemia	 compared	 to	

euglycemia	during	a	visual	task	(Anderson	et	al.,	2006).	The	BOLD	signal	is	a	compound	
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signal,	though,	mixing	information	about	both	hemodynamic	and	metabolic	changes.	A	

positive	 BOLD	 signal	 could	 result	 from	 either	 increased	 oxygen	 consumption	 and/or	

increased	 CBF.	 It	 is	 thus	 not	 a	 direct	measure	 of	 cerebral	 oxygen	metabolism.	 In	 the	

present	 study,	we	measured	CMRO2	 via	multiparametric	quantitative	BOLD	 (mqBOLD)	

(Christen	et	al.,	2012;	Hirsch	et	al.,	2014;	Kaczmarz	et	al.,	2020).	To	this	end,	we	acquired	

data	 on	 oxygenation	 and	 CBF	 separately.	 In	 this	 way,	 we	 were	 able	 to	 differentiate	

between	purely	hemodynamic	processes	and	actual	oxygen	consumption.			

	 We	induced	hypoglycemia	using	hyperinsulinemic	glucose	clamping	(Heise	et	al.,	

2016)	and	compared	it	to	euglycemia.	Previous	studies	measured	euglycemia	in	one	of	

two	 ways:	 While	 some	 studies	 applied	 hyperinsulinemic	 glucose	 clamping	 to	 induce	

arti=icial	euglycemia	(Bolo	et	al.,	2011;	Graveling	et	al.,	2013),	other	studies	did	not	apply	

any	intervention	and	therefore	measured	a	rather	natural	euglycemia	(McManus	et	al.,	

2020).	 Despite	 contrasting	 natural	 euglycemia	 with	 hypoglycemia	 better	 mimicking	

hypoglycemia	 resulting	 from	 insulin	 therapy	 in	 diabetics,	 this	 setup	 does	 not	 allow	

controlling	for	potential	confounding	effects	of	insulin.	The	majority	of	cellular	glucose	

uptake	 within	 the	 brain	 occurs	 independently	 of	 insulin	 via	 the	 glucose	 transporters	

GLUT1	and	GLUT3.	Further	studies	found,	however,	a	widespread	distribution	of	insulin-

dependent	glucose	transporters	GLUT4	across	the	brain,	particularly	in	the	hippocampus	

(El	Messari	et	al.,	2002;	Koepsell,	2020).	In	addition	to	its	role	in	glucose	uptake,	insulin	

in	the	brain	seems	to	act	as	a	signaling	molecule.	In	this	context,	it	has	been	demonstrated	

that	astrocytic	insulin	signaling	plays	an	important	role	in	glucose	sensing	and	the	control	

of	systemic	energy	homeostasis	(Garcıá-Cáceres	et	al.,	2016;	Herrera	Moro	Chao	et	al.,	

2022).	Moreover,	insulin	has	also	been	found	to	affect	the	neurovasculature,	with	intra-

nasal	administrations	altering	regional	CBF	(Akintola	et	al.,	2017;	Kullmann	et	al.,	2015,	

2017).	Insulin	is	thus	a	factor	that	should	be	accounted	for.	Consequently,	in	the	present	

study,	we	measured	insulin-induced	hypoglycemia	as	well	as	both	arti=icial	euglycemia	

and	 natural	 euglycemia.	 Arti=icial	 euglycemia	 involved	 the	 same	 amount	 of	 insulin,	

enabling	us	to	isolate	the	sole	effect	of	glucose	when	comparing	it	to	hypoglycemia.	For	

natural	euglycemia,	we	neither	infused	insulin	nor	glucose	but	merely	sodium	chloride,	

while	 keeping	 all	 other	 experimental	 parameters	 constant.	 By	 comparing	 the	 two	

euglycemic	 conditions	we	were	 able	 to	 examine	 the	 insulin	 effect	 on	our	measures	 of	

interest.	
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	 In	addition	to	effects	on	energy	metabolism,	acute	hypoglycemia	has	been	found	

to	impair	cognition.	While	a	general	cognitive	impairment	during	hypoglycemia	has	been	

consistently	 found	 in	 diabetics	 (Broadley	 et	 al.,	 2022;	 Sommer=ield	 et	 al.,	 2003b),	

additional	studies	suggest	a	similar	effect	 in	healthy	adults,	with	memory	systems	and	

processing	speed	being	compromised	in	particular	(Graveling	et	al.,	2013;	McAulay	et	al.,	

2001;	 Sommer=ield	 et	 al.,	 2003a).	 Still,	 it	 is	 unclear	 whether	 these	 cognitive	 de=icits	

pertain	 only	 to	 acute	 hypoglycemic	 periods	 or	 whether	 they	 are	 more	 enduring.	

Therefore,	 in	 the	 present	 study,	 we	 examine	 the	 effects	 of	 restored	 euglycemia	 after	

hypoglycemia	 on	 cognition	 and	 contrast	 it	 with	 consistently	 maintained	 euglycemia.	

Previous	experiments	on	a	drosophila	model	demonstrated	that	the	knockout	of	glucose	

transporter	expression	leads	to	impaired	long-term	memory	formation	(de	Tredern	et	al.,	

2021).	 This	 suggests	 a	 strong	 involvement	 of	 speci=ically	 glucose	 in	 memory	

consolidation.	In	the	current	study,	we	therefore	examined	whether	hypoglycemia	affects	

long-term	memory	even	when	euglycemia	has	already	been	restored,	while	controlling	

for	potential	attention	de=icits	following	hypoglycemia.	

	

Methods	
Participants	

A	 total	 of	38	participants	was	 recruited	 for	 the	 study,	which	 consisted	of	 three	

sessions	 on	 separate	 days.	 Seven	 participants	 had	 to	 be	 excluded	 due	 to	 abnormal	

reactions	to	the	experimental	setup,	such	as	signs	of	insulin	resistance	or	poor	vein	status,	

and	one	participant	dropped	out	after	the	=irst	session.	For	imaging	analyses,	four	more	

participants	had	to	be	excluded	due	to	insuf=icient	MR	data	quality.	Moreover,	to	ensure	

hypoglycemia	during	MR	scans,	we	only	 included	subjects	 that	did	not	exceed	a	blood	

glucose	concentration	of	65mg/dl	during	hypoglycemic	MR	acquisition.	This	 leads	to	a	

=inal	 imaging	 sample	 size	 of	 25	 participants	 (mean	 age=23.96	 ±2.3	 years),	 with	 23	

sessions	for	hypo,	25	for	eunat	and	19	for	euart.	Cognitive	data	collection	was	initiated	only	

after	 eight	 subjects,	which	 resulted	 in	 a	 =inal	 cognition	 sample	 size	 of	 23	participants	

(mean	age=23.65	±2.08	years).	

All	participants	were	healthy	males	with	no	family	history	of	metabolic	disorders.	

Their	 glucose	 metabolism	 was	 checked	 for	 large	 abnormalities	 prior	 to	 study	

participation	via	a	glucose	sensor	(FreeStyle	Libre	2,	Abbott	Laboratories)	that	subjects	
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wore	continuously	for	seven	days.	The	sensor	was	attached	to	the	upper	arm,	allowing	for	

the	measurement	of	tissue	glucose	levels	every	15	minutes	via	the	integrated	needle.	The	

ethics	board	of	the	university	hospital	of	the	Technical	University	of	Munich	approved	the	

experimental	protocol	and	all	participants	gave	written	informed	consent	prior	to	study	

initiation.	

	

Experimental	protocol	
On	three	separate	days,	we	induced	hypoglycemia	(hypo;	55mg/dl	blood	glucose	

concentration),	 arti=icial	 euglycemia	 (euart;	 90mg/dl)	 and	 natural	 euglycemia	 (eunat;	

~90mg/dl)	in	each	subject,	using	hyperinsulinemic	glucose	clamping	(Heise	et	al.,	2016).	

Participants	were	blind	 to	 the	 counterbalanced	order	of	 conditions.	Given	 that	 insulin	

sensitivity	decreases	throughout	the	day	(A.	Lee	et	al.,	1992;	Saad	et	al.,	2012),	all	data	

were	 acquired	 in	 the	 early	morning	 after	 participants	 had	 fasted	 overnight.	 Upon	 the	

participant’s	arrival	at	the	study	site,	intravenous	catheters	were	placed	in	both	arms,	and	

baseline	 parameters	 were	 measured.	 That	 included	 baseline	 levels	 of	 epinephrine,	

norepinephrine,	cortisol,	IGF-1,	insulin,	c-peptide,	CRP,	creatinine,	hematocrit	and	arterial	

oxygen	 saturation,	 as	well	 as	 the	 performance	 of	 a	 baseline	 blood	 gas	 analysis	 (BGA;	

Epoc®,	 Epocal	 Inc),	 yielding	 real-time	 blood	 glucose	 levels.	 Acquisition	 of	 the	 stress	

hormones	epinephrine,	norepinephrine	and	cortisol	served	to	control	for	stress	effects	

on	 our	 outcome	 measures.	 Particularly	 epinephrine	 is	 known	 to	 increase	 during	

hypoglycemia,	 thereby	 inducing	gluconeogenesis	 from	kidneys	and	 liver	 (Cryer,	1993).	

IGF-1	was	measured	to	control	for	its	potential	effects	in	glucose	utilization	and	insulin	

sensitivity	 (Clemmons,	 2004;	 Hernandez-Garzón	 et	 al.,	 2016).	 Insulin	 and	 c-peptide	

provided	 further	 information	 on	 insulin	 levels	 and	 synthesis.	 While	 each	 of	 these	

parameters	 was	 measured	 repeatedly	 throughout	 the	 course	 of	 the	 experiment,	 CRP,	

creatinine	and	hematocrit	were	only	measured	at	baseline	level.	CRP	served	as	a	control	

for	effects	of	acute	infections	on	energy	metabolism	(Powanda	&	Beisel,	2003).	Creatinine	

and	hematocrit	values	were	required	for	the	MRI	protocol.	Once	all	baseline	parameters	

had	 been	 measured,	 we	 started	 the	 one-step	 hyperinsulinemic	 glucose	 clamping	

procedure,	using	a	20%	glucose	solution.	Insulin	infusion	rates	were	body	weight	adapted	

to	0.12ml/h	per	kilogram	body	weight	and	kept	steady	within	as	well	as	across	sessions.	

At	6-minute	intervals,	we	performed	BGAs,	adjusting	glucose	infusion	rates	accordingly	

to	 reach	 or	 maintain	 the	 targeted	 blood	 glucose	 levels	 of	 55mg/dl	 and	 90mg/dl,	
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respectively	(Spinner	et	al.,	2016).	Moreover,	every	24	minutes,	we	took	additional	blood	

samples	 for	 epinephrine,	 norepinephrine,	 cortisol,	 IGF-1,	 insulin	 and	 c-peptide	which	

were	processed	and	analyzed	in	our	in-house	clinical	chemistry	laboratory.	

For	 the	 eunat	 condition,	we	 followed	 the	 same	 protocol,	 but	 instead	 of	 infusing	

glucose	 and	 insulin,	 we	 only	 infused	 sodium	 chloride	 (NaCl),	 thereby	 maintaining	

subjects’	natural	euglycemic	 levels.	By	conducting	the	three	conditions,	we	established	

the	 following	 intrasubject	 contrasts:	 Firstly,	 comparing	 hypo	 and	 euart	 allowed	 us	 to	

isolate	the	effect	of	reduced	blood	glucose	levels	(glucose	contrast),	as	both	conditions	

involved	 the	same	amount	of	 insulin.	Secondly,	 contrasting	euart	 and	eunat	provided	an	

insulin	 contrast.	 In	 both	 conditions,	 subjects	 maintained	 euglycemia,	 while	

hyperinsulinemia	was	induced	in	euart.		

Once	blood	glucose	levels	were	stabilized	in	the	target	range,	we	transferred	the	

subjects	into	the	MR	scanner	and	started	with	MRI	acquisition,	which	will	be	described	

in	detail	below.	During	MR	scanning,	we	continued	with	 the	clamping	setup	as	before,	

including	 infusions	 as	 well	 as	 blood	 sampling	 at	 6-minute	 intervals.	 See	 Figure	 1	 for	

information	on	blood	glucose	levels	across	participants	and	conditions.	

	

	
	

	

	

	

	

Figure	1.	Blood	glucose	levels	across	subjects	during	hyperinsulinemic	glucose	clamping.	Dashed	
lines	represent	the	targeted	glucose	levels	of	90mg/dl	and	55mg/dl.	Left:	Blood	glucose	levels	
during	 the	 preparatory	 phase	 before	 MR	 scanning.	 Clamping	 began	 at	 t=0.	 On	 average,	 MR	
scanning	was	started	54	minutes	after	clamping	onset.	Right:	Blood	glucose	levels	during	the	MR	
scan	per	sequence.	The	blood	glucose	level	during	an	MR	sequence	was	calculated	as	the	average	
of	the	blood	glucose	levels	before	and	after	the	respective	sequence.	
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In	 the	 scanner,	 participants	 performed	 an	 oddball	 task.	 During	 this	 task,	 they	

focused	on	a	white	=ixation	cross	on	dark	background	which	turned	red	every	30	seconds	

on	average.	They	were	instructed	to	press	a	key	on	a	button	box	whenever	they	saw	the	

=ixation	 cross	 turning	 red.	 This	 undemanding	 task	 enabled	 us	 to	 ensure	 participants’	

wakefulness	while	still	acquiring	resting	state	data.	It	is	a	necessary	measure	of	control	

as	hypoglycemia	can	induce	neuroglycopenic	symptoms,	such	as	fatigue	and	drowsiness	

(Mitrakou	et	 al.,	 1991),	which	 in	 turn	 substantially	 lower	 cerebral	 energy	metabolism	

(Madsen	et	al.,	1991).	Once	 the	MR	scan	was	completed,	we	stopped	all	 infusions	and	

transferred	the	participant	into	another	room	where	we	continued	glucose	infusions	until	

they	were	stably	euglycemic.	At	that	point,	we	started	cognitive	testing,	which	comprised	

a	memory	and	an	attention	task.	Hence,	the	cognitive	tasks	were	administered	outside	

the	scanner	as	well	as	under	restored	or	maintained	euglycemia.		

For	the	memory	task,	participants	learned	a	list	of	15	concrete	nouns,	presented	

successively	on	a	screen	(adapted	from	Sommer=ield	et	al.,	2003a).	They	were	instructed	

to	note	down	the	words	immediately.	This	procedure	of	encoding	and	immediate	recall	

was	repeated	one	more	time.	After	20	minutes,	they	were	prompted	to	recall	the	words	

another	 time	without	 learning	 them	again.	Approximately	 24	hours	 later,	 participants	

were	contacted	again	and	asked	to	recall	the	learned	words	one	last	time.	During	the	20-

minute	 period	 of	 initial	 consolidation,	 participants	 performed	 a	 visual	 attention	 task	

(Quirk,	2020).	In	this	task,	they	were	instructed	to	=ind	the	T	embedded	within	Ls,	and	

subsequently	indicate	with	the	four	arrow	keys	on	the	keyboard	in	which	direction	the	T	

was	rotated.	The	leftover	time	of	the	20-minute	initial	consolidation	period	was	=illed	with	

the	same	undemanding	oddball	task	as	in	the	MR	scanner.	This	ensured	standardization	

of	how	participants	spent	that	initial	consolidation	period.	For	a	schematic	depiction	of	

the	experimental	setup,	see	Figure	2.	An	internist	was	present	for	the	entire	duration	of	

glucose	clamping.		
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Image	acquisition	
	 In	the	present	study,	we	quanti=ied	subjects’	cerebral	oxygen	metabolism.	To	this	

end,	 we	 calculated	 voxelwise	 CMRO2	 parameter	maps	 using	mqBOLD	 (Christen	 et	 al.,	

2012;	Hirsch	 et	 al.,	 2014;	Kaczmarz	 et	 al.,	 2020),	which	 requires	 several	 separate	MR	

sequences.	 MR	 data	 acquisition	 was	 performed	 on	 a	 3T	 Ingenia	 Elition	 MRI	 scanner	

(Philips	 Healthcare,	 The	 Netherlands),	 using	 a	 32-channel	 head	 coil.	 Each	 session	

consisted	of	the	following	MR	sequences:	

• Multi-echo	 spin-echo	 T2	 mapping:	 3D	 gradient	 spin	 echo	 (GRASE)	 readout	 as	

previously	described	(Kaczmarz	et	al.,	2020).	8	echoes,	TE1	=	ΔTE	=	6	ms,	TR	=	

251	ms,	α=90°,	voxel	size	2x2x3.3	mm3,	35	slices.		

• Multi-echo	 gradient-echo	 T2*	mapping:	 As	 previously	 described	 (Hirsch	 et	 al.,	

2014;	Kaczmarz	et	al.,	2020),	12	echoes,	TE1	=	6ms,	ΔTE	=	5	ms,	TR=2229	ms,	

α=30°,	voxel	size	2x2x3	mm3,	gap	0.3	mm,	35	slices.		

• Pseudo-continuous	arterial	spin	labelling	(pCASL):	As	previously	described	(Alsop	

et	al.,	2015).	Implementation	according	to	previous	literature	(Göttler	et	al.,	2019;	

Kaczmarz	 et	 al.,	 2020).	 PLD:	 1800	ms,	 label	 duration:	 1800	ms,	 4	 background	

suppression	pulses,	2D	EPI	readout,	TE=11	ms,	TR=4500	ms,	α=90°,	20	slices,	EPI	

factor:	29,	acquisition	voxel	size:	3.28x3.50x6.00	mm3,	gap:	0.6	mm,	30	dynamic	

scans,	including	a	proton	density	weighted	M0	scan.		

Figure	2.	Schematic	depiction	of	the	experimental	setup,	where	b	denotes	baseline	measurements.	After	
baseline	measurements,	glucose	clamping	was	 initiated	at	 t=0,	 inducing	either	hypo-	or	euglycemia.	 In	
eunat,	only	NaCl	was	infused.	Once	blood	glucose	levels	were	stable,	MR	scanning	was	started.	During	the	
MR	 scan,	 glucose	 clamping	 was	 continued.	 After	 the	 MR	 scan,	 euglycemia	 was	 either	 restored	 (prior	
hypoglycemia)	or	maintained	(prior	euglycemia).	Finally,	we	conducted	cognitive	tests.	This	procedure	was	
repeated	three	times	per	participant,	thereby	inducing	hypo,	euart	and	eunat	on	three	separate	days.	The	
order	of	conditions	was	counterbalanced	and	participants	were	blind	to	it.	
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• Dynamic	susceptibility	contrast	(DSC):	As	previously	described	(Hedderich	et	al.,	

2019).	Injection	of	a	gadolinium-based	contrast	agent	as	a	bolus	after	5	dynamic	

scans.	Dosage:	0.2ml/kg	body	weight,	split	into	two	injections	of	0.1ml/kg	body	

weight	for	two	conditions	(hypo,	eunat).	For	the	third	condition	(euart),	DSC	data	

could	not	be	acquired	without	exceeding	 the	 recommended	dosage	 for	healthy	

participants.	Neither	could	the	total	dosage	of	0.2ml/kg	body	weight	be	further	

divided	without	compromising	signal	quality.	For	data	processing	of	euart,	the	DSC	

from	eunat	was	used.	Flow	rate:	4ml/s,	plus	25ml	NaCl.	Single-shot	GRE-EPI,	EPI	

factor:	49,	80	dynamic	scans,	TR=2.0s,	α=60°,	acquisition	voxel	size:	2x2x3.5	mm3,	

35	slices.	Prior	to	CA	administration,	healthy	kidney	function	was	ensured.	The	CA	

was	only	injected	at	creatinine	levels	of	≤	1.2mg/dl.	

• Additionally,	anatomical	data	was	acquired	in	one	session	for	anatomical	reference	

and	to	exclude	brain	lesions.	This	included	a	T1-weighted	3D	MPRAGE	pre-	and	

post-gadolinium	 (TI=100	 ms,	 TR=9	 ms,	 TE=4	 ms,	 α=8°;	 170	 slices,	

FOV=240x252x170	 mm3;	 voxel	 size:	 1.0x1.0x1.0	 mm3;	 acquisition	 time:	 2.05	

minutes)	 and	 a	 T2-weighted	 3D	 =luid-attenuated	 inversion	 recovery	 (FLAIR)	

image	(TR	=	4800	ms;	TE	=	293	ms,	α=40°;	140	slices;	FOV=240x248.9x168	mm3;	

acquisition	 voxel	 size:	 1.2x1.2x1.2	mm3;	 turbo	 spin-echo	 factor:	 170;	 inversion	

delay	1650	ms;	acquisition	time:	2:09	minutes).	
	

Data	processing	and	statistical	analyses	
Imaging	data	

	 CMRO2	calculation.	The	quanti=ication	of	all	parameter	maps	was	performed	with	

in-house	MATLAB	scripts	and	SPM12	(Wellcome	Trust	Centre	for	Human	Neuroimaging,	

UCL,	London,	UK).	Cerebral	blood	=low	(CBF)	parameter	maps	were	derived	from	pCASL	

data	 by	 building	 average	 pairwise	 differences	 of	 motion-corrected	 label	 and	 control	

images	and	a	proton-density	weighted	image	(Alsop	et	al.,	2015).	The	resulting	CBF	values	

are	 expressed	 in	ml/100g/minute.	 R2’,	 the	 transverse,	 reversible	 relaxation	 rate,	 was	

calculated	via		

	

𝑅2’	 = 	
1
𝑇2 ∗ 	−	

1
𝑇2	
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as	described	previously	(Blockley	et	al.,	2013,	2015;	Bright	et	al.,	2019).	Cerebral	blood	

volume	 (CBV)	 parameter	maps	were	 calculated	 from	 the	DSC	maps	 (Hedderich	 et	 al.,	

2019,	p.	20;	Kluge	et	al.,	2016)	and,	when	combined	with	R2’,	subsequently	yielded	the	

oxygen	extraction	fraction	(OEF)	(Christen	et	al.,	2012;	Hirsch	et	al.,	2014;	Yablonskiy	&	

Haacke,	1994)	via	the	following	formula	

	

OEF	=	!"#
$%&

	

	

Ultimately,	voxelwise	CMRO2	parameter	maps	were	calculated	by	combining	OEF	and	CBF	

via	Fick’s	principle	(Fick,	1870):	

	

CMRO2	=	CBF	*	OEF	*	CaO2 

 

CMRO2	is	expressed	in	units	of	μmol/100g/minute.	CaO2,	 the	arterial	oxygen	content,	is	

calculated	as	CaO2	=	0.335*Hct*55.6*O2sat,	where	Hct	is	the	subject’s	hematocrit	level	and	

O2sat	the	arterial	oxygen	saturation	measured	with	a	pulse	oximeter	(Bright	et	al.,	2019;	

Ma	et	al.,	2020).	All	 individual	parameter	maps	were	registered	to	the	=irst	echo	of	the	

subject’s	respective	multi	echo	T2	data.	Further,	we	masked	out	the	cerebellum	and	only	

considered	 voxels	with	 a	 grey	matter	 (GM)	 probability	 of	 >0.5.	 Additionally,	 in	 native	

space,	we	discarded	voxels	 in=luenced	by	cerebrospinal	=luid	(T2>90ms),	susceptibility	

artefacts	(R2’>9s-1),	voxels	with	elevated	blood	volume	(CBV>10%,	probably	driven	by	

larger	vessels)	and	voxels	with	physiologically	unexpected	values	(T2*>90ms,	OEF>0.9,	

CBF>90).	See	Figure	3	for	schematic	depiction	of	CMRO2	calculation.	
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Statistical	analyses.	For	statistical	analyses	of	 the	 imaging	data,	we	performed	

linear	mixed	modeling	 (LMM)	on	a	network	 level.	 Speci=ically,	we	used	 the	R	package	

robustlmer	(Koller,	2016)	to	predict	CMRO2.	LMM	allows	for	the	inclusion	of	=ixed	as	well	

as	 random	 effects	 in	 predicting	 an	 outcome	 variable.	 In	 our	 model,	 we	 included	 the	

interaction	between	condition	and	brain	network	(7	networks	according	to	Thomas	Yeo	

et	al.,	2011;	with	the	limbic	network	excluded	due	to	susceptibility	artefacts)	as	a	=ixed	

effect.	We	set	euart	as	a	reference	condition	to	enable	both	glucose	(hypo	vs.	euart)	and	

insulin	(eunat	vs.	euart)	contrasting.	Further,	we	speci=ied	the	visual	network	as	a	reference	

for	the	network	variable	since	previous	work	investigating	CBF	changes	in	response	to	

hypoglycemia	 suggested	 the	 least	 effect	 in	 that	 particular	 network	 (Blazey	&	 Raichle,	

2019).	The	random	model	term	(1|subject/condition)	treats	conditions	as	nested	within	

subjects	and	was	included	to	account	for	the	repeated	measures	design	of	the	study.	For	

the	dependent	variable,	regional	CMRO2	values	were	calculated	as	the	median	voxel	value	

within	400	Schaefer	regions	of	interest	(ROIs)	(Schaefer	et	al.,	2018)	to	reduce	voxel-level	

noise.	These	medians	were	then	entered	as	a	predictor	variable	per	subject	and	condition	

which	yielded	a	total	of	26,310	entries	to	the	model.		This	resulted	in	the	following	LMM:	

	

CMRO2	~	condition*network	+	(1|subject/condition)	

Figure	3.	Schematic	depiction	of	CMRO2	 calculation.	Deoxygenation	mapping,	CBV	and	
CBF	are	acquired	separately	to	produce	voxelwise	CMRO2	maps.	Figure	is	from	Hechler	et	
al.	(2023).	
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For	 ROI	 and	 network	 parcellations,	 we	 registered	 the	 atlases	 into	 native	 space	 and	

subsequently	performed	all	analyses	in	native	space.		

	

Additional	data	

All	other	data	were	analyzed	using	Python	(Python	Software	Foundation,	version	

3.8).	For	the	analysis	of	the	visual	attention	task,	we	applied	a	repeated	measures	ANOVA	

from	the	statsmodels	module	to	test	for	condition	effects	on	attention.	As	the	predictor	

variable,	we	used	reaction	time	in	seconds	because	our	main	interest	lay	in	changes	in	

processing	speed,	as	suggested	by	previous	literature	(Graveling	et	al.,	2013).	For	analyses	

of	the	memory	data,	we	applied	the	non-parametric	Friedman’s	test	(Friedman,	1937)	to	

investigate	 whether	 condition	 had	 a	 signi=icant	 impact	 on	 memory	 performance.	

Generally,	memory	 scores	were	 expressed	 as	 the	 number	 of	words	 remembered.	 The	

learning	score	was	calculated	as	the	average	performance	on	the	two	immediate	recall	

tasks.	Additionally,	for	performance	on	the	delayed	recall	tasks	(after	20	minutes	and	24	

hours),	we	used	a	generalized	linear	model	(GLM;	Nelder	&	Wedderburn,	1972)	to	include	

the	learning	score	as	a	predictor.		

Similarly,	blood	parameters	were	analyzed	using	a	repeated	measures	ANOVA	or	

Friedman’s	test,	depending	on	adherence	of	the	data	to	statistical	assumptions.	Post-hoc	

testing	was	performed	using	paired	t-tests	or	the	Wilcoxon	signed-rank	test	(Wilcoxon,	

1945),	 depending	 on	 the	 statistical	 method	 applied	 in	 the	 primary	 analysis.	 Blood	

parameters	 during	 MR	 acquisition	 were	 calculated	 by	 averaging	 blood	 values	 from	

timepoints	48	and	72	minutes	(see	supplementary	Figures	S1-S6).		

	

Results	
In	the	present	study,	we	employed	mqBOLD	to	study	the	effects	of	hypoglycemia	

on	cerebral	oxygen	metabolism	quantitatively.	Speci=ically,	we	were	interested	in	whether	

oxygen	 consumption	 in	 the	 brain	would	 be	 decreased	 to	 a	 similar	 extent	 as	 previous	

literature	has	suggested	for	glucose	(Blazey	&	Raichle,	2019;	Boyle	et	al.,	1994).	To	this	

end,	we	performed	hyperinsulinemic	glucose	clamping	and	acquired	mqBOLD	MR	scans	

concurrently.		

Subjects	 presented	 with	 average	 fasting	 blood	 glucose	 levels	 of	 87.33	 mg/dl	

(std=4.8),	 which	 is	 in	 a	 healthy	 range.	 More	 information	 on	 subjects’	 physiological	
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characteristics	as	well	as	all	blood	parameters	can	be	found	in	the	supplements	(Table	S1	

and	 Figures	 S1-S6).	 Apart	 from	 the	 changes	 explicitly	 stated	 here,	 no	 signi=icant	

differences	between	conditions	were	observed	 in	blood	parameters.	Most	 importantly,	

during	 MR	 acquisition,	 hypo,	 compared	 to	 euart,	 signi=icantly	 increased	 epinephrine	

(Wilcoxon	 signed-rank	 test;	 W=3.0,	 p<0.001)	 and	 signi=icantly	 decreased	 c-peptide	

(Wilcoxon	 signed-rank	 test;	 W=9.0,	 p<0.01).	 These	 changes	 were	 as	 expected,	 as	

hypoglycemia	 is	 known	 to	 affect	 stress	 hormones	 like	 epinephrine	 to	 trigger	

gluconeogenesis	(Cryer,	1993).	Decreases	in	c-peptide	show	a	reduction	in	endogenous	

insulin	production	in	response	to	hypoglycemia	(Woods	et	al.,	1974).	Consequently,	these	

results	 can	 be	 considered	 a	 validation	 of	 the	 hypoglycemic	 condition.	 Moreover,	 as	

expected,	insulin	levels	were	signi=icantly	different	between	insulin	contrast	conditions	

(euart	vs.	eunat;	Wilcoxon	signed-rank	test;	W=0,	p<0.001).	Importantly,	insulin	levels	did	

not	differ	between	hypo	and	euart	(Wilcoxon	signed-rank	test;	W=61.0,	p=0.49),	thereby	

creating	 a	 pure	 glucose	 contrast.	 No	 differences	 between	 conditions	 in	 oddball	 task	

performance	 during	 the	 MR	 scan	 were	 observed	 (Friedman’s	 test;	 χ2F=0.49,	 p=0.78),	

suggesting	similar	levels	of	wakefulness	in	all	conditions.		

	

Imaging	data	
CMRO2	

For	imaging	analyses,	we	performed	an	LMM	analysis.	As	previously	described,	we	

speci=ied	the	model	CMRO2	~	condition*network	+	(1|subject/condition)	to	examine	the	

effect	of	conditions	(hypo,	euart,	eunat)	on	CMRO2	in	each	brain	network	(Thomas	Yeo	et	al.,	

2011),	 while	 taking	 into	 account	 the	 within-subjects	 design.	 CMRO2	 input	 data	 was	

provided	as	grey	matter	(GM)	voxel	medians	per	ROI	(400	ROI	parcellation;	Schaefer	et	

al.,	2018)	to	reduce	voxel-level	noise.	

First,	we	tested	our	model	against	a	null	model	lacking	the	condition	term,	thereby	

examining	whether	the	model	improves	signi=icantly	when	including	our	intervention	as	

a	 predictor.	 Including	 the	 condition	 term	 explained	 signi=icantly	 more	 variance	

(χ2=865.88,	p<0.001),	with	the	=ixed	and	random	effects	combined	accounting	for	22.51%	

of	variance	 in	CMRO2.	We	also	 tested	whether	 including	epinephrine	 in	 the	 interaction	

term	 increased	 the	 explained	 variance	 since	 epinephrine	 differed	 between	 conditions	

during	MR	scanning.	However,	this	did	not	signi=icantly	increase	the	amount	of	explained	

variance	(χ2=25.26,	p=0.24).		
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Across	conditions,	participants	had	an	average	CMRO2	of	130.58	μmol/100g/min	

(see	intercept,	Table	1).	In	healthy	individuals,	CMRO2	 is	expected	to	vary	between	120	

and	160	μmol/100g/min	(Christen	et	al.,	2012;	Xu	et	al.,	2009).	Thus,	our	group	average	

=its	with	previous	literature,	validating	the	applied	methodologies.	See	Tables	S2	in	the	

supplements	 for	 values	on	 all	 imaging	parameters	 across	 subjects	 and	 conditions.	We	

found	no	signi=icant	associations	between	the	=ixed	effects	and	our	outcome	variable.	This	

suggests	 that	 neither	 hypoglycemia	 nor	 hyperinsulinemia	 signi=icantly	 affected	CMRO2	

(see	Table	1	and	Figure	4).	

	

Table	1.		

Results	of	the	linear	model	predicting	CMRO2	in	the	main	group.	

Fixed	effect	 Estimate	
μmol/100g/min		

95%	CI	 p-value	

(Intercept)	 130.58	 121.99		–													
139.13	

<0.001***	

Condition[eunat]	 -3.34	 -10.49	–	
3.79	

0.35	

Condition[hypo]	 -0.73	 -8.08			–	
6.62	

0.84	

Condition[eunat]:network[Cont]	 0.35	 -4.30			–	
4.99	

0.88	

Condition[hypo]:network[Cont]	 -0.43	 -5.16			–	
4.30	

0.86	

Condition[eunat]:network[Default]	 1.39	 -2.68			–	
5.45	

0.50	

Condition[hypo]:network[Default]	 2.51	 -1.63			–	
6.65	

0.23	

Condition[eunat]:network[DorsAttn]	 3.14	 -1.65			–	
7.93	

0.20	

Condition[hypo]:network[DorsAttn]	 -1.76	 -6.63			–	
3.12	

0.48	

Condition[eunat]:network[SalVentAttn]	 			0.94	
	

-3.82			–	
5.70	

0.70	

Condition[hypo]:network[SalVentAttn]	 0.23	 -4.62			–	
5.08	

0.93	

Condition[eunat]:yeo_nw[SomMot]	 1.86	 -2.34			–	
6.07	

0.39	

Condition[hypo]:	network[SomMot]	 0.20	 -4.08			–	
4.49	

0.93	

	

	
Note.		Result	parameters	of	the	following	model:	CMRO2	~	condition*network	+	(1|subject/condition)	for	
the	main	group.	Not	shown	here	are	the	parameters	for	main	effects	of	the	individual	networks.	The	entire	
model	 results	 can	 be	 found	 in	 the	 supplements.	 In	 summary,	 condition	 had	 neither	 a	 main-	 nor	 an	
interaction	effect	on	CMRO2.	R2=22.51%.	Network	abbreviations:	Cont	≙	Control;	Default	≙	Default	mode;	
DorsAttn	≙	Dorsal	attention;	SalVentAttn	≙	Salience;	SomMot	≙	Somatomotor.	Signi5icant	codes:		<0.001:	
***;	<0.01:	**,	<0.05:	*.	Analyses	were	performed	in	native	space.	
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Next,	 we	 were	 interested	 in	 whether	 more	 severe	 hypoglycemia	 would	 affect	

CMRO2	or	whether	the	brain	would	still	be	able	to	keep	up	 its	regular	 levels	of	oxygen	

metabolism.	 For	 that	 purpose,	 we	 created	 a	 more	 severely	 hypoglycemic	 subgroup	

according	 to	 previously	 de=ined	 glycemic	 thresholds	 for	 neuroglycopenic	 symptoms	

(Mitrakou	 et	 al.,	 1991).	 Accordingly,	 in	 this	 subgroup,	 we	 included	 subjects	 that	 had	

constant	blood	glucose	levels	of	below	49mg/dl	during	MR	scanning.	This	comprised	six	

participants	in	total.	Similar	to	the	main	group,	the	subgroup	did	not	show	differences	in	

CMRO2	in	response	to	hypoglycemia	or	hyperinsulinemia,	suggesting	the	maintenance	of	

regular	levels	of	cerebral	energy	metabolism	even	under	more	severely	low	blood	glucose	

levels.	For	detailed	information	on	all	model	results,	please	consult	the	supplementary	

material	(Table	S4).	

	

CBF	and	OEF	

	 Further,	we	were	interested	in	whether	hypoglycemia	and	hyperinsulinemia	did	

not	affect	cerebral	dynamics	at	all	or	whether	solely	CMRO2	was	spared.	Therefore,	we	

investigated	the	effect	of	our	interventions	on	the	subcomponents	of	CMRO2:	CBF	and	OEF.	

For	 that,	 we	 used	 the	 same	 linear	 model	 as	 previously	 described,	 only	 changing	 the	

predictor	variable	to	CBF	and	OEF,	respectively.		

	 The	model	 CBF	~	 condition*network	 +	 (1|subject/condition)	 explained	 a	 total	

variance	 of	 44.7%	 in	 CBF.	 Across	 conditions,	 subjects	 had	 an	 average	 CBF	 of	 43.56	

ml/100g/min,	 =itting	 well	 to	 the	 range	 of	 38-54	 ml/100/min	 reported	 in	 previous	

literature	(Gusnard	&	Raichle,	2001;	K.	Zhang	et	al.,	2014).	We	found	a	signi=icant	increase	

in	 CBF	 under	 hypo	 compared	 to	 euart	 in	 the	 control	 network	 (46.18	 ml/100g/min;	

p<0.001),	default	mode	network	(45.84	ml/100g/min;	p<0.001)	and	salience	network	

(44.09	ml/100g/min;	p<0.05)	(see	Figure	4).	Hyperinsulinemia	did	not	affect	CBF.	For	the	

purpose	of	conciseness,	Table	2	only	includes	signi=icant	interaction	effects.	The	entire	

model	output	can	be	found	in	the	supplements	(Table	S5).		
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Table	2.		

Results	of	the	linear	model	predicting	CBF	in	the	main	group.	

Fixed	effect	 Estimate	
ml/100g/min		

95%	CI	 p-value	

(Intercept)	 43.56	 40.27		–													
46.87	

<0.001***	

Condition[eunat]	 -1.23	 -4.23–	
1.80	

0.42	

Condition[hypo]	 0.33	 -2.75			–	
3.46	

0.83	

Condition[hypo]:network[Cont]	 2.29	 1.16			–	
3.41	

<0.001***	

Condition[hypo]:network[Default]	 1.95	 0.95	–	
2.92	

<0.001***	

Condition[hypo]:network[SalVentAttn]	 1.20	 0.04			–	
2.35	

0.04*	

	

	

	

	

	

In	 the	 severely	hypoglycemic	 subgroup	 (average	CBF:	43.08	ml/100g/min),	we	

found	 signi=icant	 CBF	 increases	 in	 the	 control	 network	 (51	 ml/100g/min;	 p<0.001),	

default	mode	network	 (50.1	ml/100g/min;	p<0.001),	dorsal	 attention	network	 (48.24	

ml/100g/min;	 p<0.05),	 salience	 network	 (48.14	 ml/100g/min;	 p<0.05)	 and	

somatomotor	network	(47.84	ml/100g/min;	p<0.05)	(see	Table	3	and	Figure	5).	Hence,	

CBF	 increased	 in	 every	 network	 but	 the	 visual	 network	 in	 response	 to	 hypoglycemia.	

Again,	hyperinsulinemia	had	no	effect.		

	

	

	

	

	

	

	

	

	

	

Note.	Result	parameters	of	the	following	model:	CBF	~	condition*network	+	(1|subject/condition)	for	the	
main	group.	Not	shown	here	are	the	parameters	for	main	effects	of	the	individual	networks	as	well	as	
nonsigni5icant	interaction	effects.	All	model	results	can	be	found	in	the	supplements.	R2=44.7%.	Network	
abbreviations:	 Cont	 ≙	 Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	
Salience;	 SomMot	 ≙	 Somatomotor.	 Signi5icant	 codes:	 	 <0.001:	 ***;	 <0.01:	 **,	 <0.05:	 *.	 Analyses	 were	
performed	in	native	space.	
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Table	3.		

Results	of	the	linear	model	predicting	CBF	in	the	subgroup.	

Fixed	effect	 Estimate	
ml/100g/min		

95%	CI	 p-value	

(Intercept)	 43.08	 39.83		–													
46.33	

<0.001***	

Condition[eunat]	 -0.64	 -3.56	–	
2.26	

0.66	

Condition[hypo]	 3.13	 -1.28			–	
7.48	

0.16	

Condition[hypo]:network[Cont]	 4.79	 3.15			–	
6.42	

<0.001***	

Condition[hypo]:network[Default]	 3.89	 2.46		–	
5.33	

<0.001***	

Condition[hypo]:network[DorsAttn]	 2.03	 0.34			–	
3.72	

0.01*	

Condition[hypo]:network[SalVentAttn]	 1.93	 0.25		–	
3.61	

0.02*	

Condition[hypo]:	network[SomMot]	 1.63	 0.15		–	
3.12	

0.03*	

	

	

	

	

	

The	model	 OEF	~	 condition*network	 +	 (1|subject/condition)	 explained	 a	 total	

variance	of	18.88%	 in	OEF.	Usually,	OEF	values	 range	between	0.3	and	0.5	 (Epp	et	al.,	

2023;	 Gusnard	&	Raichle,	 2001).	 In	 line	with	 that,	 in	 our	 data,	 subjects’	 average	OEF	

across	conditions	was	0.42.	Neither	hypoglycemia	nor	hyperinsulinemia	affected	OEF	in	

the	 main	 group	 (see	 Figures	 S6	 and	 S7	 in	 the	 supplements).	 In	 the	 more	 severely	

hypoglycemic	 subgroup,	 however,	 OEF	 was	 reduced	 in	 every	 network	 under	

hypoglycemia	 (see	 Table	 4	 and	 Figure	 5).	 In	 this	 case,	 the	 main	 effect	 of	 hypo	 was	

signi=icant	(p<0.01),	meaning	that	OEF	in	hypo	was	signi=icantly	lower	than	during	euart	

in	 the	 reference	 network,	 i.e.	 the	 visual	 network.	 Since	 the	 effects	 in	 the	 remaining	

networks	are	compared	to	this	main	effect,	nonsigni=icant	interaction	terms	mean	that	

effects	 in	 these	networks	 are	not	 different	 from	 the	main	 effect.	Hence,	 they	 all	 show	

signi=icant	reductions	 in	hypo	compared	to	euart.	Again,	hyperinsulinemia	did	not	have	

any	effect.		

Note.	Result	parameters	of	the	following	model:	CBF	~	condition*network	+	(1|subject/condition)	for	the	
subgroup.	 Not	 shown	 here	 are	 the	 parameters	 for	main	 effects	 of	 the	 individual	 networks	 as	well	 as	
nonsigni5icant	 interaction	 effects.	 All	 model	 results	 can	 be	 found	 in	 the	 supplements.	 Network	
abbreviations:	 Cont	 ≙	 Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	
Salience;	 SomMot	 ≙	 Somatomotor.	 Signi5icant	 codes:	 	 <0.001:	 ***;	 <0.01:	 **,	 <0.05:	 *.	 Analyses	 were	
performed	in	native	space.	
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Table	4.		

Results	of	the	linear	model	predicting	OEF	in	the	subgroup.	

Fixed	effect	 Estimate	
ratio		

95%	CI	 p-value	

(Intercept)	 0.42	 39.83		–													
46.33	

<0.001***	

Condition[eunat]	 -0.01	 -3.56	–	
2.26	

0.39	

Condition[hypo]	 -0.03	 -1.28			–	
7.48	

0.002**	

Condition[hypo]:network[Cont]	 -0.01	 3.15			–	
6.42	

0.24	

Condition[hypo]:network[Default]	 -0.001	 2.46		–	
5.33	

0.87	

Condition[hypo]:network[DorsAttn]	 -0.002	 0.34			–	
3.72	

0.77	

Condition[hypo]:network[SalVentAttn]	 -0.01	 0.25		–	
3.61	

0.46	

Condition[hypo]:	network[SomMot]	 -0.01	 0.15		–	
3.12	

0.10	

	

	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

Note.	Result	parameters	of	the	following	model:	OEF	~	condition*network	+	(1|subject/condition)	for	the	
subgroup.	 Not	 shown	 here	 are	 the	 parameters	 for	main	 effects	 of	 the	 individual	 networks	 as	well	 as	
nonsigni5icant	interaction	effects.	All	model	results	can	be	found	in	the	supplements.	R2=20.7%.	Network	
abbreviations:	 Cont	 ≙	 Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	
Salience;	 SomMot	 ≙	 Somatomotor.	 Signi5icant	 codes:	 	 <0.001:	 ***;	 <0.01:	 **,	 <0.05:	 *.	 Analyses	 were	
performed	in	native	space.	
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Figure	4.	Glucose	(left	plots)	and	insulin	(right	plots)	contrasts	(main	group)	for	CMRO2	(upper	row)	
and	 CBF	 (lower	 row)	 per	 brain	 network.	 Datapoints	 re5lect	 parameter	 averages	 per	 ROI	 across	
subjects.	The	dashed	 line	 represents	 the	angle	bisector.	CMRO2	was	maintained	 in	both	contrasts,	
while	 CBF	 increased	 signi5icantly	 in	 response	 to	 hypoglycemia	 (glucose	 contrast)	 in	 the	 control,	
default	mode	and	salience	networks.	OEF	was	maintained	as	well.	OEF	plots	 can	be	 found	 in	 the	
supplements	(Figure	S7,	Table	S7).	Network	abbreviations:	Cont	≙	Control;	Default	≙	Default	mode;	
DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	 Somatomotor.	 Analyses	 were	
performed	in	native	space.	Detailed	parameters	can	be	found	in	supplementary	Tables	S3	and	S5.		
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Figure	5.	Glucose	contrasts	for	the	main	group	(left	plots)	and	severely	hypoglycemic	subgroup	(right	
plots)	for	CMRO2	(upper	row),	CBF	(middle	row)	and	OEF	(lower	row)	per	yeo	network.	Datapoints	
re5lect	parameter	averages	per	ROI	across	subjects.	The	dashed	line	represents	the	angle	bisector.	In	
the	subgroup,	CMRO2	was	maintained	again,	while	CBF	 increases	were	ampli5ied	compared	 to	 the	
main	group.	In	the	subgroup,	CBF	increased	in	all	but	the	visual	network.	OEF	decreased	signi5icantly	
in	all	networks	 in	the	subgroup.	Network	abbreviations:	Cont	≙	Control;	Default	≙	Default	mode;	
DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	 Somatomotor.	 Analyses	 were	
performed	in	native	space.	Detailed	parameters	can	be	found	in	supplementary	Tables	S4,	S6	and	S8.		
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Cognitive	data		
	 Cognitive	data	was	acquired	after	the	MR	scan,	once	euglycemia	was	restored	(if	

previously	hypoglycemic)	or	maintained	(if	previously	euglycemic).	From	now	on,	we	will	

therefore	 refer	 to	 the	 conditions	 as	 restored	 euglycemia	 (prior	 hypo)	 and	maintained	

euglycemia	 (prior	 euart),	 respectively.	 At	 the	 point	 of	 cognitive	 testing,	 there	 were	 no	

differences	 anymore	 in	 epinephrine	 (Friedman’s	 test;	 χ2F=1.69,	 p=0.43)	 or	 any	 other	

stress	parameter	between	conditions.	Further,	the	previously	observed	reductions	in	c-

peptide	 in	 response	 to	hypoglycemia	disappeared	once	 euglycemia	had	been	 restored	

(restored	vs.	maintained	euglycemia:	Wilcoxon	signed-rank	test;	W=27.0,	p=0.35).	These	

=indings	demonstrate	that	not	only	had	blood	glucose	levels	been	restored	but	also	that	

physiological	reactions	to	prior	hypoglycemia	had	stopped.		

	

Memory	

	 In	the	memory	task,	subjects	were	instructed	to	learn	a	list	of	15	concrete	nouns	

presented	to	them	successively	on	a	screen.	Subjects	did	not	show	differences	in	encoding	

(Friedman’s	test;	χ2F=1.37,	p=0.5)	between	restored	and	maintained	euglycemia.	After	20	

minutes	 of	 consolidation,	 subjects	 still	 showed	 no	 differences	 between	 restored	 and	

maintained	 euglycemia	 in	 memory	 performance	 (Friedman’s	 test;	 χ2F=2.63,	 p=0.27).	

However,	 recall	 after	 a	 24-hour	 consolidation	 period	 was	 signi=icantly	 impaired	 in	

restored	vs.	maintained	hypoglycemia	(Wilcoxon	signed-rank	test;	W=14.0,	p<0.01),	even	

when	controlling	for	initial	learning	performance	(GLM,	p=0.03	for	the	effect	of	restored	

vs.	maintained	euglycemia	on	memory	consolidation	24	hours	later).	Including	condition	

and	learning	performance	as	predictors	explained	60.7%	of	the	variance	in	memory	recall	

after	24	hours.	See	Figure	6	for	a	summary	of	the	memory	performance.	There	were	no	

differences	in	memory	performance	for	the	insulin	contrast.	
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Attention	

	 Previous	 literature	 suggests	 decreased	 speed	 of	 information	 processing	 under	

acute	hypoglycemia	(Graveling	et	al.,	2013;	McAulay	et	al.,	2001).	It	is	thus	dif=icult	to	say	

whether	 other	 cognitive	 impairments	 under	 acute	 hypoglycemia	 are	 caused	 by	 this	

delayed	processing	speed.	Here,	subjects	performed	a	visual	attention	task,	instructed	to	

=ind	 a	 speci=ic	 stimulus	within	 similarly	 looking	 stimuli.	 Statistical	 testing	 showed	 no	

differences	 between	 conditions	 in	 reaction	 times	 (repeated	measures	ANOVA;	 F=1.39,	

p=0.26).	This	suggests	a)	that	impairments	in	processing	speed	might	be	limited	to	acute	

periods	 of	 hypoglycemia	 and	 b)	 that	 the	 previously	 described	 effects	 of	 restored	

euglycemia	 after	 hypoglycemia	 are	 rather	memory-speci=ic	 instead	 of	 a	more	 general	

cognitive	impairment.	

	

	

	

	

Figure	6.	Memory	performance	after	hyperinsulinemic	glucose	clamping.	A.	Immediate	memory	
performance,	considered	as	 learning.	B.	 	Memory	performance	after	a	20-minute	consolidation	
period.	 C.	 	 Memory	 performance	 after	 a	 24-hour	 consolidation	 period.	 Performance	 was	
signi5icantly	worse	(p=0.03)	in	restored	euglycemia	than	in	maintained	euglycemia.	
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Discussion	
CMRO2	

The	present	study	was	conducted	to	investigate	whether	hypoglycemia	in	healthy	

individuals	 reduces	 CMRO2	 to	 a	 similar	 extent	 as	 it	 reduces	 CMRglc	 (Blazey	&	 Raichle,	

2019).	 Hence,	 if	 cerebral	 energy	 metabolism	 generally	 decreases	 in	 response	 to	

hypoglycemia,	we	would	 =ind	 decreases	 in	 CMRO2	 in	 accordance	with	 those	 in	 CMRglc.	

Steady	 levels	 of	 CMRO2,	 however,	 would	 imply	 the	 utilization	 of	 alternate	 energy	

substrates,	 like	ketone	bodies,	 lactate	and/or	 fatty	acids,	because	these	substrates	still	

need	 to	 be	 oxidized	 for	 ATP	 production.	 Our	 results	 show	 no	 changes	 of	 CMRO2	 in	

response	to	hypoglycemia.	Even	in	severe	hypoglycemia,	CMRO2	levels	were	maintained.	

This	suggests	that,	even	in	the	face	of	low	systemic	glucose	availability,	the	brain	is	able	

to	 keep	 up	 its	 energy	 metabolism	 and	 ATP	 production	 at	 normal	 levels	 by	 using	

alternative	energy	substrates.	This	is	in	line	with	the	Sel=ish	Brain	Theory	(Peters	et	al.,	

2004),	which	states	that	the	brain	prioritizes	its	own	energy	requirements	even	under	

conditions	of	low	energy	availability.	According	to	this	theory,	the	brain	is	depicted	as	an	

organ	 that	 actively	 demands	 energy	 substrates	 (pull	 mechanisms),	 instead	 of	 being	

passively	supplied	with	them	(push	mechanisms)	(Peters	et	al.,	2022).	These	active	pull	

mechanisms	are	initiated	mainly	by	the	ventromedial	hypothalamus	and	the	sympathetic	

nervous	system	(SNS).	They	are,	for	example,	responsible	for	decreased	pancreatic	insulin	

secretion	in	response	to	hypoglycemia	(Hitze	et	al.,	2010).	The	brain	mainly	comprises	

glucose	transporters	GLUT1	and	GLUT3,	which	are	insulin-independent	in	contrast	to	the	

insulin-dependent	GLUT4.	While	GLUT4	are	present	in	the	brain,	glucose	transport	into	

neural	 cells	 still	 happens	mainly	 independent	 of	 insulin	 (Koepsell,	 2020).	With	 lower	

levels	of	circulating	insulin	due	to	reduced	pancreatic	insulin	secretion,	more	glucose	is	

spared	 for	 insulin-insensitive	 tissues,	 like	 large	parts	of	 the	brain	 (Koepsell,	 2020).	 In	

accordance	 with	 the	 concept	 of	 SNS-mediated	 insulin	 suppression,	 our	 data	 revealed	

decreased	levels	of	c-peptide,	a	byproduct	of	insulin	synthesis.	Other	examples	of	these	

active	pull	mechanisms	that	have	been	found	to	be	driven	by	the	SNS	include	increases	of	

glucagon	secretion	(Chan	et	al.,	2007,	2011)	and	consequently	increased	glycogenolysis,	

higher	 rates	of	gluconeogenesis	 (X.	Zhang	et	al.,	 2019)	and	ketogenesis	 (Kubera	et	al.,	

2014)	 as	 well	 as	 increased	 muscular	 lactate	 release	 (Qvisth	 et	 al.,	 2008),	 thereby	

providing	alternate	energy	resources.		
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Further,	we	=ind	no	signi=icant	effect	of	hyperinsulinemia	on	any	of	our	parameters,	

suggesting	that	all	described	effects	are	mainly	glucose-driven.	While	our	results	suggest	

that	cerebral	energy	metabolism	is	maintained	under	hypoglycemia	by	the	utilization	of	

alternative	substrates,	our	data	cannot	provide	information	on	which	speci=ic	substrates	

are	metabolized.	Most	likely,	as	suggested	by	previous	literature	on	prolonged	fasting,	the	

brain	uses	astrocytic	glycogen,	ketone	bodies	and	fatty	acids	to	compensate	for	glucose	

de=iciency	(Aizawa	et	al.,	2016;	Cahill,	2006;	Garcia	Corrales	et	al.,	2021;	Lima	et	al.,	2015;	

Ot z	 et	 al.,	 2007).	 The	 exact	 extent	 to	 which	 each	 of	 the	 substrates	 is	 used	 is	 unclear.	

However,	even	with	suf=icient	levels	of	glucose	available,	the	brain	exhibits	a	preference	

for	ketone	bodies	compared	to	glucose	(Hasselbalch	et	al.,	1996).	Further,	studies	found	

signi=icantly	 higher	 levels	 of	 lactate	 in	 the	 extracellular	 =luid	 surrounding	 neurons	

compared	to	plasma	lactate	levels	under	hypoglycemia	(Abi-Saab	et	al.,	2002).	This	is	in	

line	with	the	theory	that	the	brain	readily	depletes	astrocytic	glycogen	storages	during	

hypoglycemia	and	shuttles	them	to	neurons	in	the	form	of	lactate.	Although	fatty	acids	are	

probable	 contributors	 to	 the	 maintenance	 of	 cerebral	 energy	 metabolism,	 their	 slow	

transportation	across	the	blood	brain	barrier,	slow	rates	of	metabolism	(Alberghina	et	al.,	

1993)	and	high	oxygen	requirement	(Kolwicz,	2021)	make	it	unlikely	for	them	to	serve	as	

the	primary	alternate	source	of	energy	under	hypoglycemia.		

	

CBF	and	OEF	
	 Despite	no	changes	in	CMRO2,	we	found	alterations	in	its	underlying	components,	

CBF	and	OEF.	During	hypoglycemia,	there	were	signi=icant	increases	in	CBF	in	the	control,	

default	mode	and	salience	networks.	These	 =indings	 =it	well	with	existing	 literature	on	

hypoglycemia	effects	on	CBF,	reporting	increases	in	the	medial	prefrontal	cortex	(Teves	

et	al.,	2004),	anterior	cingulate	cortex	(Dunn	et	al.,	2018;	Teh	et	al.,	2010),	dorsolateral	

prefrontal	 cortex,	 and	 angular	 gyrus	 (Dunn	 et	 al.,	 2018),	 all	 part	 of	 one	 of	 the	 three	

aforementioned	networks.	 In	 contrast,	 animal	 studies	 report	whole-brain	 increases	 in	

CBF	in	response	to	hypoglycemia	in	rats	(Bryan	et	al.,	1987;	Choi	et	al.,	2001).	This	might	

be	due	to	generally	lower	hypoglycemia	targets	chosen	for	animal	studies	(~30mg/dl).	In	

line	with	this,	in	our	more	severely	hypoglycemic	subgroup,	the	CBF	effect	was	ampli=ied.	

Here,	we	found	signi=icant	CBF	increases	in	every	network,	except	for	the	visual	network.		

	 In	the	main	group,	the	larger	increases	in	the	higher	cognitive	networks	(control	

and	default	mode	networks)	may	be	due	to	 their	overall	higher	metabolic	demand.	As	
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Figure	S7	in	the	supplements	demonstrates,	CBF	increases	during	hypoglycemia	correlate	

signi=icantly	and	positively	with	baseline	CMRO2	values	(p<0.001).	In	general,	higher	rates	

of	CBF	could	serve	to	provide	the	brain	more	ef=iciently	with	the	remaining	glucose	and	

alternative	substrates.	Previous	studies	 interpreted	increased	=low	rates	 in	brain	areas	

during	hypoglycemia	as	an	 indicator	 for	heightened	neuronal	activity	 in	 these	regions,	

implying	 their	 involvement	 in	 the	 autonomic	 response	 to	 hypoglycemia	 (Teves	 et	 al.,	

2004).	 If	 CBF	 increases	were	 caused	 by	 neuronal	 activation,	 however,	we	would	 have	

found	concomitant	CMRO2	patterns.	Instead,	CBF	and	CMRO2	seem	to	be	uncoupled	during	

hypoglycemia.	Alternatively,	CBF	alterations	could	be	driven	by	ketone	bodies.	High	levels	

of	ketones	have	been	shown	to	cause	CBF	surges	even	under	euglycemia	(Hasselbalch	et	

al.,	1996),	thereby	potentially	acting	as	signaling	molecules	of	glucose	de=iciency.	Further,	

epinephrine	increases	blood	=low	(Thomas	et	al.,	1997).	Since	we	found	higher	levels	of	

epinephrine	 in	 hypo	 vs.	 euart,	 this	 could	 explain	 the	 CBF	 results,	 too,	 but	 plasma	

epinephrine	levels	start	rising	at	blood	glucose	concentrations	of	75mg/dl	already	(J.	J.	

Lee	et	al.,	2017).	Hence,	elevated	epinephrine	alone	cannot	account	for	CBF	alterations.	

Also,	even	acute	hypoglycemia	induces	in=lammatory	processes	(Iqbal	et	al.,	2019;	Ratter	

et	 al.,	 2017),	 which	 can	 increase	 blood	 =low	 (Fassbender	 et	 al.,	 1996).	 Lastly,	 certain	

neurological	 conditions,	 such	 as	 ischemic	 stroke	 and	migraines,	 have	 been	 associated	

with	the	concept	of	luxury	perfusion,	which	describes	hyperperfusion	of	the	brain	as	a	

result	 of	 lost	 cerebrovascular	 autoregulation	 (Haggenmüller	 et	 al.,	 2023).	 It	 has	 been	

hypothesized	that	this	could	be	the	case	during	hypoglycemia,	too,	but	evidence	is	lacking.		

In	contrast	to	CBF,	we	did	not	=ind	any	signi=icant	OEF	alterations	in	response	to	

hypoglycemia.	 Typically,	 when	 CBF	 increases	 upon	 enhanced	 neuronal	 activity,	 it	

overcompensates	 for	 the	 increased	 oxygen	 demand,	 thereby	 overall	 decreasing	 the	

relative	 amount	 of	 oxygen	 extracted	 from	 the	 blood.	 In	 theory,	 the	 unaltered	 oxygen	

extraction	fraction	in	our	data	would	imply	an	increased	absolute	oxygen	extraction.	The	

extent	 was	 not	 large	 enough,	 though,	 to	 affect	 CMRO2.	 Moreover,	 OEF	 does	 seem	 to	

decrease	 in	 all	 networks	 (see	 Table	 S7	 in	 the	 supplements),	 but	 not	 to	 a	 statistically	

signi=icant	extent.	Supporting	this,	in	the	more	severely	hypoglycemic	subgroup,	we	=ind	

OEF	 reductions	 in	 all	 networks,	 re=lecting	 the	 larger	 increases	 in	 CBF	 and	 thereby	

overcompensation	of	oxygen	delivery.		
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Cognition	
	 In	 addition	 to	 studying	 cerebral	 oxygen	 dynamics,	 the	 present	 study	 was	

conducted	 to	 investigate	 whether	 prior	 hypoglycemia,	 once	 restored	 to	 euglycemia,	

affects	cognition.	Previous	studies	showed	memory	as	well	as	attention	deficits	during	

acute	hypoglycemia	(Graveling	et	al.,	2013;	Sommerfield	et	al.,	2003b,	2003a),	with	the	

attentive	 deficit	 complicating	 the	 interpretation	 of	 such	 results.	 They	 could	 imply	 a	

general	cognitive	impairment	due	to	decreased	attention	during	task	performance	or	an	

interference	of	hypoglycemia	with	e.g.	memory-specific	cellular	processes.			

Our	results	suggest	that	restored	euglycemia	after	a	hypoglycemic	period	impairs	

memory	consolidation	while	encoding	as	well	as	attention	remain	unaffected.	Unaltered	

processing	speed	in	the	attention	task	suggests	three	things:	1)	Attention	deficits	appear	

to	 be	 restricted	 to	 periods	 of	 acute	 hypoglycemia.	 2)	 Impaired	 consolidation	 during	

restored	 euglycemia	 seems	 to	 reflect	 a	 domain-specific	 issue	 instead	 of	 a	 general	

cognitive	 impairment.	 3)	 The	 clear	 difference	 between	 attention	 and	 memory	

performance	could	indicate	an	uncoupling	of	these	processes	during	acute	hypoglycemia	

as	well.	Further,	the	fact	that	encoding	did	not	differ	between	conditions	rules	out	the	

possibility	 that	 impaired	 consolidation	 is	mediated	 by	 poorer	 learning	 ability	 during	

restored	euglycemia	compared	to	maintained	euglycemia.		

The	underlying	mechanisms	of	decreased	memory	consolidation	when	learning	

under	restored	euglycemia	are	not	entirely	clear.	It	 is	well	established	that	there	is	an	

increased	energy	demand	during	long-term	memory	formation	in	the	hippocampus.	This	

brain	region	is	particularly	important	for	memory	formation,	while	comprising	insulin-

dependent	GLUT4	glucose	transporters	(El	Messari	et	al.,	2002;	McNay	et	al.,	2000).	The	

resulting	 decreased	 glucose	 metabolism	 during	 low	 blood	 glucose	 levels	 might	 thus	

account	 for	 memory	 deficits	 during	 acute	 hypoglycemia	 but	 it	 cannot	 explain	 the	

impairment	of	memory	consolidation	specifically	during	restored	euglycemia,	especially	

with	learning	remaining	unaffected.	In	this	context,	past	studies	suggest	an	important	

role	 of	 lactate	 shuttling	 from	 glial	 cells	 to	 neurons	 in	 long-term	 but	 not	 short-term	

memory	(Gao	et	al.,	2016;	Newman	et	al.,	2011;	Suzuki	et	al.,	2011).	This	lactate	comes	

primarily	 from	 glycogen	 stored	 in	 astrocytes.	 Under	 hypoglycemia,	 these	 glycogen	

repertoires	are	utilized	and,	depending	on	the	duration	and	severity	of	hypoglycemia,	

depleted	 (Ot z	 et	 al.,	 2007),	 sparing	 no	 glycogen	 for	 subsequent	 long-term	 memory	

formation.	Further,	it	was	shown	that	inhibiting	glycogen	breakdown	leads	to	difficulties	
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in	 long-term	 memory	 formation,	 with	 glucose	 unable	 to	 substitute	 for	 the	 lack	 in	

glycogen	(Gibbs	et	al.,	2006;	Suzuki	et	al.,	2011).	This	demonstrates	that	glycogen	is	not	

solely	a	storage	form	of	glucose	but	serves	specific	functions.	

Moreover,	about	30	minutes	after	learning,	studies	found	a	decrease	of	glycogen	

in	 the	 forebrain	 of	 neonate	 chicks,	 scaling	 with	 elevated	 levels	 of	 glutamate	 and	

glutamine,	 suggesting	 glutamate/glutamine	 synthesis	 from	 glycogen	 to	 promote	

memory	 consolidation	 (Bak	 et	 al.,	 2018;	 Hertz	 et	 al.,	 2003;	 O’Dowd	 et	 al.,	 1994).	

Supporting	synaptic	plasticity,	glutamate	contributes	to	memory	formation	(Barnes	et	

al.,	2020).	Depleted	glycogen	reserves	due	to	prior	hypoglycemia	would	imply	decreased	

de	 novo	 synthesis	 of	 glutamate	 after	 learning	 and,	 consequently,	 impaired	 memory	

consolidation.	In	addition,	glutamate	is	essential	for	sharp	wave	ripples	(SWRs)	(Behrens	

et	al.,	2005;	Colgin	et	al.,	2004;	Maier	et	al.,	2003;	Papatheodoropoulos	&	Kostopoulos,	

2002).	 SWRs	 are	 oscillatory	 patterns	 of	 neural	 activity	 in	 the	 hippocampus	 observed	

during	 periods	 of	 rest.	 They	 are	 thought	 to	 play	 a	 crucial	 role	 in	 long-term	memory	

formation	(Schreiner	et	al.,	2023;	Yang	et	al.,	2024).	In	fact,	they	are	even	considered		a	

cognitive	biomarker	 for	episodic	memory	consolidation	and	retrieval	(Buzsáki,	2015).	

Thus,	the	depletion	of	astrocytic	glycogen	storages	due	to	hypoglycemia	and	following	

deficient	 glutamate-glutamine	 cycling	 could	 explain	 why	 we	 find	 impaired	 memory	

consolidation,	specifically,	while	other	cognitive	domains	remain	unaffected.		

	

Conclusion	
	 The	 present	 study	 aimed	 to	 investigate	 quanti=ied	 oxygen	 metabolism	 under	

hypoglycemia	 and	 hyperinsulinemia.	Hypoglycemia	 did	 not	 affect	 CMRO2	 levels.	 Taken	

together	 with	 previous	 literature	 demonstrating	 whole-brain	 CMRglc	 decreases,	 this	

suggests	 the	 utilization	 of	 alternative	 energy	 substrates	 to	 maintain	 steady	 levels	 of	

cerebral	energy	metabolism	even	in	the	face	of	severe	hypoglycemia.	It	must	be	noted,	

however,	that	we	did	not	acquire	data	on	cerebral	glucose	metabolism	in	this	study.	Future	

studies	that	simultaneously	acquire	oxygen	and	glucose	metabolism	during	hypoglycemia	

would	 be	 able	 to	 evaluate	 this	 uncoupling	 of	 CMRO2	 and	 CMRglc	 more	 reliably.	

Hyperinsulinemia	 did	 not	 show	 any	 effects	 in	 the	 measured	 parameters,	 while	

hypoglycemia	 increased	 CBF	 in	 large	 parts	 of	 the	 brain.	 More	 severe	 hypoglycemia	

decreased	 OEF	 on	 a	 whole-brain	 level.	 Further,	 we	 examined	 the	 effect	 of	 restored	

euglycemia	 vs	 maintained	 euglycemia	 on	 cognition.	 Memory	 consolidation	 was	
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signi=icantly	 impaired	 under	 restored	 euglycemia,	 while	 learning	 as	 well	 as	 attention	

remained	 unaffected.	 Taken	 together,	 these	 =indings	 demonstrate	 the	 =lexibility	 of	

cerebral	energy	metabolism,	being	able	to	adapt	its	energy	resources	even	in	the	face	of	

acute	severe	hypoglycemia.	Still,	our	cognitive	results	show	that	brain	function	does	not	

remain	unimpaired	and	that	these	effects	of	hypoglycemia	might	even	be	more	enduring	

than	previously	assumed.	
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Lubow,	J.	M.,	Piñón,	I.	G.,	Avogaro,	A.,	Cobelli,	C.,	Treeson,	D.	M.,	Mandeville,	K.	A.,	Toffolo,	

G.,	&	Boyle,	P.	J.	(2006).	Brain	oxygen	utilization	is	unchanged	by	hypoglycemia	in	

normal	humans:	Lactate,	alanine,	and	 leucine	uptake	are	not	suf=icient	 to	offset	

energy	 de=icit.	 American	 Journal	 of	 Physiology-Endocrinology	 and	 Metabolism,	

290(1),	E149–E153.	https://doi.org/10.1152/ajpendo.00049.2005	

Ma,	 Y.,	 Sun,	 H.,	 Cho,	 J.,	 Mazerolle,	 E.	 L.,	 Wang,	 Y.,	 &	 Pike,	 G.	 B.	 (2020).	 Cerebral	 OEF	

quanti=ication:	A	comparison	study	between	quantitative	susceptibility	mapping	

and	dual-gas	calibrated	BOLD	imaging.	Magnetic	Resonance	in	Medicine,	83(1),	68–

82.	https://doi.org/10.1002/mrm.27907	



	68	

Madsen,	P.	L.,	Schmidt,	J.	F.,	Holm,	S.,	Vorstrup,	S.,	Lassen,	N.	A.,	&	Wildschiødtz,	G.	(1991).	

Cerebral	oxygen	metabolism	and	cerebral	blood	 =low	 in	man	during	 light	sleep	

(stage	 2).	 Brain	 Research,	 557(1–2),	 217–220.	 https://doi.org/10.1016/0006-

8993(91)90137-K	

Maier,	 N.,	 Nimmrich,	 V.,	 &	 Draguhn,	 A.	 (2003).	 Cellular	 and	 Network	 Mechanisms	

Underlying	Spontaneous	Sharp	Wave–Ripple	Complexes	in	Mouse	Hippocampal	

Slices.	 The	 Journal	 of	 Physiology,	 550(3),	 873–887.	

https://doi.org/10.1113/jphysiol.2003.044602	

McAulay,	 V.,	 Deary,	 I.	 J.,	 Ferguson,	 S.	 C.,	 &	 Frier,	 B.	M.	 (2001).	 Acute	Hypoglycemia	 in	

Humans	 Causes	 Attentional	 Dysfunction	 While	 Nonverbal	 Intelligence	 Is	

Preserved.	 Diabetes	 Care,	 24(10),	 1745–1750.	

https://doi.org/10.2337/diacare.24.10.1745	

McManus,	R.,	Ioussoufovitch,	S.,	Froats,	E.,	St	Lawrence,	K.,	Van	Uum,	S.,	&	Diop,	M.	(2020).	

Dynamic	 response	 of	 cerebral	 blood	 =low	 to	 insulin-induced	 hypoglycemia.	

Scienti3ic	Reports,	10(1),	21300.	https://doi.org/10.1038/s41598-020-77626-6	

McNay,	E.	C.,	Fries,	T.	M.,	&	Gold,	P.	E.	(2000).	Decreases	in	rat	extracellular	hippocampal	

glucose	 concentration	 associated	with	 cognitive	 demand	 during	 a	 spatial	 task.	

Proceedings	 of	 the	 National	 Academy	 of	 Sciences,	 97(6),	 2881–2885.	

https://doi.org/10.1073/pnas.050583697	

Miki,	T.,	Liss,	B.,	Minami,	K.,	Shiuchi,	T.,	Saraya,	A.,	Kashima,	Y.,	Horiuchi,	M.,	Ashcroft,	F.,	

Minokoshi,	 Y.,	 Roeper,	 J.,	 &	 Seino,	 S.	 (2001).	 ATP-sensitive	 K+	 channels	 in	 the	

hypothalamus	are	essential	for	the	maintenance	of	glucose	homeostasis.	Nature	

Neuroscience,	4(5),	507–512.	https://doi.org/10.1038/87455	

Miller,	S.	L.,	Green,	L.	R.,	Peebles,	D.	M.,	Hanson,	M.	A.,	&	Blanco,	C.	E.	(2002).	Effects	of	

chronic	 hypoxia	 and	 protein	 malnutrition	 on	 growth	 in	 the	 developing	 chick.	

American	 Journal	 of	 Obstetrics	 and	 Gynecology,	 186(2),	 261–267.	

https://doi.org/10.1067/mob.2002.119629	

Mitrakou	A,	Ryan	C,	Veneman	T,	Mokan	M,	Jenssen	T,	Kiss	I,	Durrant	J,	Cryer	P,	Gerich	J.

	 Hierarchy	 of	 glycemic	 thresholds	 for	 counterregulatory	 hormone	 secretion,



	 69	

	 symptoms,	and	cerebral	dysfunction.	Am	J	Physiol.	1991	Jan;260(1	Pt	1):E67-74.

	 doi:	10.1152/ajpendo.1991.260.1.E67.	PMID:	1987794.	

Mulder,	A.	H.,	Tack,	C.	J.,	Olthaar,	A.	J.,	Smits,	P.,	Sweep,	F.	C.	G.	J.,	&	Bosch,	R.	R.	(2005).	

Adrenergic	receptor	stimulation	attenuates	insulin-stimulated	glucose	uptake	in	

3T3-L1	 adipocytes	 by	 inhibiting	 GLUT4	 translocation.	 American	 Journal	 of	

Physiology-Endocrinology	 and	 Metabolism,	 289(4),	 E627–E633.	

https://doi.org/10.1152/ajpendo.00079.2004	

Nelder,	J.	A.,	&	Wedderburn,	R.	W.	M.	(2024).	Generalized	Linear	Models.	

Newman,	L.	A.,	Korol,	D.	L.,	&	Gold,	P.	E.	(2011).	Lactate	Produced	by	Glycogenolysis	in	

Astrocytes	 Regulates	 Memory	 Processing.	 PLoS	 ONE,	 6(12),	 e28427.	

https://doi.org/10.1371/journal.pone.0028427	

O’Dowd,	B.	S.,	Gibbs,	M.	E.,	Ng,	K.	T.,	Hertz,	E.,	&	Hertz,	L.	(1994).	Astrocytic	glycogenolysis	

energizes	memory	 processes	 in	 neonate	 chicks.	Developmental	 Brain	 Research,	

78(1),	137–141.	https://doi.org/10.1016/0165-3806(94)90018-3	

Ot z,	G.,	Seaquist,	E.	R.,	Kumar,	A.,	Criego,	A.	B.,	Benedict,	L.	E.,	Rao,	J.	P.,	Henry,	P.-G.,	Van	De	

Moortele,	 P.-F.,	 &	 Gruetter,	 R.	 (2007).	 Human	 brain	 glycogen	 content	 and	

metabolism:	Implications	on	its	role	in	brain	energy	metabolism.	American	Journal	

of	 Physiology-Endocrinology	 and	 Metabolism,	 292(3),	 E946–E951.	

https://doi.org/10.1152/ajpendo.00424.2006	

Pan,	J.	W.,	Rothman,	D.	L.,	Behar,	K.	L.,	Stein,	D.	T.,	&	Hetherington,	H.	P.	(2000).	Human	

Brain	β-Hydroxybutyrate	and	Lactate	Increase	in	Fasting-Induced	Ketosis.	Journal	

of	 Cerebral	 Blood	 Flow	 &	 Metabolism,	 20(10),	 1502–1507.	

https://doi.org/10.1097/00004647-200010000-00012	

Papatheodoropoulos,	 C.,	 &	 Kostopoulos,	 G.	 (2002).	 Spontaneous	 GABAA-dependent	

synchronous	 periodic	 activity	 in	 adult	 rat	 ventral	 hippocampal	 slices.	

Neuroscience	 Letters,	 319(1),	 17–20.	 https://doi.org/10.1016/S0304-

3940(01)02505-8	



	70	

Pellerin,	 L.,	&	Magistretti,	 P.	 J.	 (1997).	Glutamate	Uptake	Stimulates	Na	 +	 ,K	 +	 -ATPase	

Activity	 in	 Astrocytes	 via	 Activation	 of	 a	 Distinct	 Subunit	 Highly	 Sensitive	 to	

Ouabain.	 Journal	 of	 Neurochemistry,	 69(5),	 2132–2137.	

https://doi.org/10.1046/j.1471-4159.1997.69052132.x	

Peters,	A.,	Bosy-Westphal,	A.,	Kubera,	B.,	Langemann,	D.,	Goele,	K.,	Later,	W.,	Heller,	M.,	

Hubold,	C.,	&	Müller,	M.	J.	(2011).	Why	Doesn’t	the	Brain	Lose	Weight,	When	Obese	

People	Diet?	Obesity	Facts,	4(2),	2–2.	https://doi.org/10.1159/000327676	

Peters,	A.,	Schweiger,	U.,	Pellerin,	L.,	Hubold,	C.,	Oltmanns,	K.	M.,	Conrad,	M.,	Schultes,	B.,	

Born,	J.,	&	Fehm,	H.	L.	(2004).	The	sel=ish	brain:	Competition	for	energy	resources.	

Neuroscience	 &	 Biobehavioral	 Reviews,	 28(2),	 143–180.	

https://doi.org/10.1016/j.neubiorev.2004.03.002	

Peters,	A.,	Sprengell,	M.,	&	Kubera,	B.	(2022).	The	principle	of	‘brain	energy	on	demand’	

and	 its	 predictive	 power	 for	 stress,	 sleep,	 stroke,	 obesity	 and	 diabetes.	

Neuroscience	 &	 Biobehavioral	 Reviews,	 141,	 104847.	

https://doi.org/10.1016/j.neubiorev.2022.104847	

Powanda,	M.	 C.,	 &	 Beisel,	W.	 R.	 (2003).	Metabolic	 Effects	 of	 Infection	 on	 Protein	 and	

Energy	 Status.	 The	 Journal	 of	 Nutrition,	 133(1),	 322S-327S.	

https://doi.org/10.1093/jn/133.1.322S	

Quirk,	 C.	 (2020).	 PsychopyVisualSearch.

	 GitHub.https://github.com/colinquirk/PsychopyVisualSearch	

Qvisth,	 V.,	 Hagström-Toft,	 E.,	 Enoksson,	 S.,	 &	 Bolinder,	 J.	 (2008).	 Catecholamine	

Regulation	 of	 Local	 Lactate	 Production	 in	 Vivo	 in	 Skeletal	Muscle	 and	Adipose	

Tissue:	Role	of	β-Adrenoreceptor	Subtypes.	The	Journal	of	Clinical	Endocrinology	

&	Metabolism,	93(1),	240–246.	https://doi.org/10.1210/jc.2007-1313	

Ratter,	J.	M.,	Rooijackers,	H.	M.	M.,	Tack,	C.	J.,	Hijmans,	A.	G.	M.,	Netea,	M.	G.,	de	Galan,	B.	E.,	

&	Stienstra,	R.	(2017).	Proin=lammatory	Effects	of	Hypoglycemia	in	Humans	With	

or	Without	Diabetes.	Diabetes,	66(4),	1052–1061.	https://doi.org/10.2337/db16-

1091	



	 71	

Richardson	BS,	Hohimer	AR,	Bissonnette	JM,	Machida	CM.	Insulin	hypoglycemia,	cerebral

	 metabolism,	and	neural	function	in	fetal	lambs.	Am	J	Physiol.	1985	Jan;248(1	Pt

	 2):R72-7.	doi:	10.1152/ajpregu.1985.248.1.R72.	PMID:	3970187.	

Saad,	A.,	Dalla	Man,	C.,	Nandy,	D.	K.,	Levine,	 J.	A.,	Bharucha,	A.	E.,	Rizza,	R.	A.,	Basu,	R.,	

Carter,	R.	E.,	Cobelli,	C.,	Kudva,	Y.	C.,	&	Basu,	A.	(2012).	Diurnal	Pattern	to	Insulin	

Secretion	and	Insulin	Action	in	Healthy	Individuals.	Diabetes,	61(11),	2691–2700.	

https://doi.org/10.2337/db11-1478	

Schaefer,	A.,	Kong,	R.,	Gordon,	E.	M.,	Laumann,	T.	O.,	Zuo,	X.-N.,	Holmes,	A.	J.,	Eickhoff,	S.	B.,	

&	Yeo,	B.	T.	T.	(2018).	Local-Global	Parcellation	of	the	Human	Cerebral	Cortex	from	

Intrinsic	 Functional	 Connectivity	 MRI.	 Cerebral	 Cortex,	 28(9),	 3095–3114.	

https://doi.org/10.1093/cercor/bhx179	

Schreiner,	 T.,	 Grif=iths,	 B.	 J.,	 Kutlu,	 M.,	 Vollmar,	 C.,	 Kaufmann,	 E.,	 Quach,	 S.,	 Remi,	 J.,	

Noachtar,	 S.,	 &	 Staudigl,	 T.	 (2023).	 Spindle-locked	 ripples	 mediate	 memory	

reactivation	 during	 human	 NREM	 sleep.	

https://doi.org/10.1101/2023.01.27.525854	

Sommer=ield,	A.	J.,	Deary,	I.	J.,	McAulay,	V.,	&	Frier,	B.	M.	(2003a).	Moderate	hypoglycemia	

impairs	 multiple	 memory	 functions	 in	 healthy	 adults.	Neuropsychology,	 17(1),	

125–132.	https://doi.org/10.1037/0894-4105.17.1.125	

Sommer=ield,	A.	J.,	Deary,	I.	J.,	McAulay,	V.,	&	Frier,	B.	M.	(2003b).	Short-Term,	Delayed,	

and	Working	Memory	 Are	 Impaired	 During	 Hypoglycemia	 in	 Individuals	With	

Type	 1	 Diabetes.	 Diabetes	 Care,	 26(2),	 390–396.	

https://doi.org/10.2337/diacare.26.2.390	

Spinner,	 C.	 D.,	 Kern,	 K.	 E.,	 Zink,	 A.,	 Wolf,	 E.,	 Balogh,	 A.,	 Noe,	 S.,	 Von	 Werder,	 A.,	

Schwerdtfeger,	 C.,	 Schmid,	 R.	 M.,	 &	 Iakoubov,	 R.	 (2016).	 Neither	 boosted	

elvitegravir	 nor	 darunavir	 with	 emtricitabine/tenofovir	 disoproxil	 fumarate	

increase	 insulin	resistance	 in	healthy	volunteers:	Results	 from	the	STRIBILD-IR	

study.	Antiviral	Therapy,	21(7),	627–631.	https://doi.org/10.3851/IMP3049	

Suzuki,	A.,	Stern,	S.	A.,	Bozdagi,	O.,	Huntley,	G.	W.,	Walker,	R.	H.,	Magistretti,	P.	J.,	&	Alberini,	

C.	 M.	 (2011).	 Astrocyte-Neuron	 Lactate	 Transport	 Is	 Required	 for	 Long-Term	



	72	

Memory	 Formation.	 Cell,	 144(5),	 810–823.	

https://doi.org/10.1016/j.cell.2011.02.018	

Teh,	M.	M.,	 Dunn,	 J.	 T.,	 Choudhary,	 P.,	 Samarasinghe,	 Y.,	 Macdonald,	 I.,	 O’Doherty,	M.,	

Marsden,	P.,	Reed,	L.	J.,	&	Amiel,	S.	A.	(2010).	Evolution	and	resolution	of	human	

brain	 perfusion	 responses	 to	 the	 stress	 of	 induced	 hypoglycemia.	NeuroImage,	

53(2),	584–592.	https://doi.org/10.1016/j.neuroimage.2010.06.033	

Teves,	D.,	Videen,	T.	O.,	Cryer,	P.	E.,	&	Powers,	W.	J.	(2004).	Activation	of	human	medial	

prefrontal	cortex	during	autonomic	responses	to	hypoglycemia.	Proceedings	of	the	

National	 Academy	 of	 Sciences,	 101(16),	 6217–6221.	

https://doi.org/10.1073/pnas.0307048101	

Thomas,	M.,	Sherwin,	R.	S.,	Murphy,	 J.,	&	Kerr,	D.	(1997).	Importance	of	Cerebral	Blood	

Flow	to	the	Recognition	of	and	Physiological	Responses	to	Hypoglycemia.	46.	

Thomas	Yeo,	B.	T.,	Krienen,	F.	M.,	Sepulcre,	J.,	Sabuncu,	M.	R.,	Lashkari,	D.,	Hollinshead,	M.,	

Roffman,	J.	L.,	Smoller,	J.	W.,	Zöllei,	L.,	Polimeni,	J.	R.,	Fischl,	B.,	Liu,	H.,	&	Buckner,	

R.	L.	(2011).	The	organization	of	the	human	cerebral	cortex	estimated	by	intrinsic	

functional	 connectivity.	 Journal	 of	 Neurophysiology,	 106(3),	 1125–1165.	

https://doi.org/10.1152/jn.00338.2011	

Wiegers,	E.	C.,	Rooijackers,	H.	M.,	Tack,	C.	J.,	Philips,	B.	W.,	Heerschap,	A.,	van	der	Graaf,	M.,	

&	de	Galan,	B.	E.	 (2019).	Effect	of	 lactate	administration	on	brain	 lactate	 levels	

during	hypoglycemia	in	patients	with	type	1	diabetes.	 Journal	of	Cerebral	Blood	

Flow	 &	 Metabolism,	 39(10),	 1974–1982.	

https://doi.org/10.1177/0271678X18775884	

Wilcoxon,	F.	(2024).	Individual	Comparisons	by	Ranking	Methods.	

Woods,	S.C.,	Porte	Jr.,	D.,	1974.	Neural	control	of	the	endocrine	pancreas.	Physiol.	Rev.	54,

	 596–619.	

Xu,	 F.,	 Ge,	 Y.,	 &	 Lu,	 H.	 (2009).	 Noninvasive	 quanti=ication	 of	 whole-brain	 cerebral	

metabolic	rate	of	oxygen	(CMRO	2	)	by	MRI:	Quanti=ication	of	CMRO	2.	Magnetic	

Resonance	in	Medicine,	62(1),	141–148.	https://doi.org/10.1002/mrm.21994	



	 73	

Yablonskiy,	D.	A.,	&	Haacke,	E.	M.	(1994).	Theory	of	NMR	signal	behavior	in	magnetically	

inhomogeneous	 tissues:	 The	 static	 dephasing	 regime.	 Magnetic	 Resonance	 in	

Medicine,	32(6),	749–763.	https://doi.org/10.1002/mrm.1910320610	

Yang,	W.,	Sun,	C.,	Huszár,	R.,	Hainmueller,	T.,	Kiselev,	K.,	&	Buzsáki,	G.	(2024).	Selection	of	
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Supplementary	material	
	

Table	S1	

Additional	subject	characteristics.	

Variable	 Mean	±std	

Age	 24.03	±2.1	years	

Weight	 77.34	±7.15	kg	

BMI	 22.93	±2.46	kg/m2	

Body	fat	 18.22	±4.61%	

Fasting	blood	glucose	 87.33	±4.8	mg/dl	

	

	

	

Table	S2	

Imaging	parameters,	mean	±SD	across	subjects	and	conditions	within	GM.	

CMRO2	
[μmol/100g/min]	

CBF	
[ml/100g/min]	

OEF	
[ratio]	

CBV	
[%]	

141.68	
(19.66)	

49.84	
(6.82)	

0.38	
(0.03)	

4.79	
(0.18)	

	

	

	

	

	
§Please	note:	Figures	S1-S6	depict	blood	parameters	across	the	experiment	per	condition.	

Measurements	 at	 t=0	 re=lect	 baseline	 levels,	 acquired	 before	 clamping	 was	 initiated.	

Timepoints	t=48	and	t=72	are	used	for	assessment	of	epinephrine	differences	during	the	

MRI	scan.	After	t=72,	clamping	was	stopped.	At	t=96,	previous	hypoglycemia	had	been	

restored.	At	this	point,	cognitive	tests	were	administered.	Signi=icant	codes:	<0.001:	***,	

<0.01:	**,	<0.05:	*.	Shown	are	mean	values	per	condition,	together	with	95%	con=idence	

intervals.	

	

	

Note.	All	subjects	were	healthy	males	with	no	family	history	of	metabolic	disorders.	

Note.	These	values	are	based	on	 the	parameter	 thresholds	mentioned	 in	 the	
methods	section.	
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Figure	 S1.	 Epinephrine	 levels	 across	 the	 experiment	 per	 condition.	 During	 the	 MR	 scan,	
epinephrine	levels	were	signi5icantly	higher	in	hypo	vs.	euart	(p<0.001).§	

Figure	 S2.	 Norepinephrine	 levels	 across	 the	 experiment	 per	 condition.	 Throughout	 the	
experiment,	norepinephrine	levels	never	signi5icantly	differed	between	conditions.§	
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Figure	 S3.	 Cortisol	 levels	 across	 the	 experiment	 per	 condition.	 Throughout	 the	 experiment,	
cortisol	levels	never	signi5icantly	differed	between	conditions.§	

Figure	S4.	IGF-1	levels	across	the	experiment	per	condition.	Throughout	the	experiment,	IGF-1	
levels	never	signi5icantly	differed	between	conditions.§	
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Figure	S5.	C-peptide	levels	across	the	experiment	per	condition.	During	MR	scanning,	c-peptide	
was	signi5icantly	lower	in	hypo	than	in	euart	(p<0.01).§	
	

Figure	 S6.	 Insulin	 levels	 across	 the	 experiment	 per	 condition.	 As	 expected,	 insulin	 was	
signi5icantly	higher	in	euart	than	eunat	after	clamp	start	(p<0.001).	§		
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Table	S3	

Results	of	the	linear	model	predicting	CMRO2	in	the	main	group.	

Fixed	effect	 Estimate	
μmol/100g/min		

95%	CI	 p-value	

(Intercept)	 130.58	 121.99		–													
139.13	

<0.001***	

Condition[eunat]	 -3.34	 -10.49	–	
3.79	

0.35	

Condition[hypo]	 -0.73	 -8.08			–	
6.62	

0.84	

network[Cont]	 19.76	 16.26	–	
23.26	

<0.001***	

network[Default]	 15.23	 12.16			–	
18.29	

<0.001***	

network[DorsAttn]	 1.58	 -2.03			–	
5.18	

0.39	

network[SalVentAttn]	 -9.42	 -13.01			–	
-5.83	

<0.001***	

yeo_nw[SomMot]	 -6.19	 -9.35			–	
-3.02	

<0.001***	

Condition[eunat]:network[Cont]	 0.35	 -4.30			–	
4.99	

0.88	

Condition[hypo]:network[Cont]	 -0.43	 -5.16			–	
4.30	

0.86	

Condition[eunat]:network[Default]	 1.39	 -2.68			–	
5.45	

0.50	

Condition[hypo]:network[Default]	 2.51	 -1.63			–	
6.65	

0.23	

Condition[eunat]:network[DorsAttn]	 3.14	 -1.65			–	
7.93	

0.20	

Condition[hypo]:network[DorsAttn]	 -1.76	 -6.63			–	
3.12	

0.48	

Condition[eunat]:network[SalVentAttn]	 			0.94	
	

-3.82			–	
5.70	

0.70	

Condition[hypo]:network[SalVentAttn]	 0.23	 -4.62			–	
5.08	

0.93	

Condition[eunat]:yeo_nw[SomMot]	 1.86	 -2.34			–	
6.07	

0.39	

Condition[hypo]:	network[SomMot]	 0.20	 -4.08			–	
4.49	

0.93	

	
	
	
	
	
	 	

Note.	 Result	 parameters	 for	 the	 main	 group	 of	 the	 following	 model:	 CMRO2	 ~	 condition*network	 +	
(1|subject/condition).	Marginal	R2	/	conditional	R2	=	5.33%	/	22.51%.	Network	abbreviations:	Cont	≙	
Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	
Somatomotor.	Signi5icant	codes:		<0.001:	***;	<0.01:	**,	<0.05:	*.	Analyses	were	performed	in	native	space.	
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Table	S4	

Results	of	the	linear	model	predicting	CMRO2	in	the	subgroup.	

Fixed	effect	 Estimate	
μmol/100g/min		

95%	CI	 p-value	

(Intercept)	 130.29	 121.17		–													
139.35	

<0.001***	

Condition[eunat]	 -0.67	 -7.60	–	
6.92	

0.93	

Condition[hypo]	 -0.67	 -11.60	–	
10.25	

0.90	

network[Cont]	 19.76	 16.24	–	
23.27	

<0.001***	

network[Default]	 15.23	 12.15	–	
18.30	

<0.001***	

network[DorsAttn]	 1.58	 -2.05	–	
5.20	

0.39	

network[SalVentAttn]	 -9.42	 -13.02	–	
-5.82	

<0.001***	

yeo_nw[SomMot]	 -6.19	 -9.37	–	
-3.01	

<0.001***	

Condition[eunat]:network[Cont]	 -2.23	 -7.14	–	
2.69	

0.37	

Condition[hypo]:network[Cont]	 2.36	 -4.39	–	
9.12	

0.49	

Condition[eunat]:network[Default]	 -0.82	 -5.12	–	
3.47	

0.71	

Condition[hypo]:network[Default]	 5.91	 -0.01	–	
11.83	

0.05	

Condition[eunat]:network[DorsAttn]	 1.02	 -4.04	–	
6.08	

0.69	

Condition[hypo]:network[DorsAttn]	 0.17	 -6.81	–	
7.15	

0.96	

Condition[eunat]:network[SalVentAttn]	 			-2.43	
	

-7.46	–	
2.60	

0.34	

Condition[hypo]:network[SalVentAttn]	 0.43	 -6.51	–	
7.37	

0.90	

Condition[eunat]:yeo_nw[SomMot]	 -2.00	 -6.44	–	
2.44	

0.38	

Condition[hypo]:	network[SomMot]	 2.85	 -3.28	–	
8.97	

0.36	

	
	 	Note.	 Result	 parameters	 for	 the	 subgroup	 of	 the	 following	 model:	 CMRO2	 ~	 condition*network	 +	
(1|subject/condition).	Marginal	R2	/	conditional	R2	=	5.49%	/	22.26%.	Network	abbreviations:	Cont	≙	
Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	
Somatomotor.	Signi5icant	codes:		<0.001:	***;	<0.01:	**,	<0.05:	*.	Analyses	were	performed	in	native	space.	
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Table	S5	

Results	of	the	linear	model	predicting	CBF	in	the	main	group.	

Fixed	effect	 Estimate	
ml/100g/min		

95%	CI	 p-value	

(Intercept)	 43.56	 40.27		–													
46.87	

<0.001***	

Condition[eunat]	 -1.23	 -4.23	–	
1.80	

0.42	

Condition[hypo]	 0.33	 -2.74	–	
3.56	

0.83	

network[Cont]	 14.50	 13.67	–	
15.34	

<0.001***	

network[Default]	 10.11	 9.38	–	
10.84	

<0.001***	

network[DorsAttn]	 8.31	 7.45	–	
9.17	

<0.001***	

network[SalVentAttn]	 8.97	 8.11	–	
9.83	

<0.001***	

yeo_nw[SomMot]	 8.25	 7.49	–	
9.01	

<0.001***	

Condition[eunat]:network[Cont]	 0.75	 -0.36	–	
1.85	

0.18	

Condition[hypo]:network[Cont]	 2.29	 1.16	–	
3.41	

<0.001***	

Condition[eunat]:network[Default]	 0.74	 -0.23	–	
1.71	

0.13	

Condition[hypo]:network[Default]	 1.94	 0.95	–	
2.92	

<0.001***	

Condition[eunat]:network[DorsAttn]	 0.94	 -0.21	–	
2.08	

0.11	

Condition[hypo]:network[DorsAttn]	 0.98	 -0.19	–	
2.14	

0.10	

Condition[eunat]:network[SalVentAttn]	 			0.34	
	

0.79	–	
1.48	

0.55	

Condition[hypo]:network[SalVentAttn]	 1.20	 0.04	–	
2.35	

0.04*	

Condition[eunat]:yeo_nw[SomMot]	 0.45	 -0.56	–	
1.45	

0.38	

Condition[hypo]:	network[SomMot]	 0.99	 -0.28	–	
2.02	

0.06	

	
	 	Note.	 Result	 parameters	 for	 the	 main	 group	 of	 the	 following	 model:	 CBF	 ~	 condition*network	 +	
(1|subject/condition).	Marginal	R2	/	conditional	R2	=	12.24%	/	44.70%.	Network	abbreviations:	Cont	≙	
Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	
Somatomotor.	Signi5icant	codes:		<0.001:	***;	<0.01:	**,	<0.05:	*.	Analyses	were	performed	in	native	space.	
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Table	S6	

Results	of	the	linear	model	predicting	CBF	in	the	subgroup.	

Fixed	effect	 Estimate	
ml/100g/min		

95%	CI	 p-value	

(Intercept)	 43.08	 39.83		–													
46.33	

<0.001***	

Condition[eunat]	 -0.64	 -3.56	–	
2.26	

0.66	

Condition[hypo]	 3.12	 -1.28	–	
7.48	

0.16	

network[Cont]	 14.50	 13.65	–	
15.35	

<0.001***	

network[Default]	 10.11	 9.37	–	
10.85	

<0.001***	

network[DorsAttn]	 8.31	 7.43	–	
9.19	

<0.001***	

network[SalVentAttn]	 8.97	 8.10	–	
9.84	

<0.001***	

yeo_nw[SomMot]	 8.25	 7.48	–	
9.02	

<0.001***	

Condition[eunat]:network[Cont]	 -0.14	 -1.33	–	
1.04	

0.81	

Condition[hypo]:network[Cont]	 4.79	 3.15	–	
6.42	

<0.001***	

Condition[eunat]:network[Default]	 -0.04	 -1.09	–	
0.99	

0.93	

Condition[hypo]:network[Default]	 3.89	 2.46	–	
5.33	

<0.001***	

Condition[eunat]:network[DorsAttn]	 0.16	 -1.06	–	
1.39	

0.79	

Condition[hypo]:network[DorsAttn]	 2.03	 0.34	–	
3.72	

0.02*	

Condition[eunat]:network[SalVentAttn]	 			-0.46	
	

-1.68	–	
0.76	

0.46	

Condition[hypo]:network[SalVentAttn]	 1.93	 0.25	–	
3.61	

0.02*	

Condition[eunat]:yeo_nw[SomMot]	 -0.70	 -1.77	–	
0.38	

0.20	

Condition[hypo]:	network[SomMot]	 1.63	 0.15	–	
3.12	

0.03*	

	
	 	Note.	 Result	 parameters	 for	 the	 subgroup	 of	 the	 following	 model:	 CBF	 ~	 condition*network	 +	
(1|subject/condition).	Marginal	R2	/	conditional	R2	=	14.05%	/	42.27%.	Network	abbreviations:	Cont	≙	
Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	
Somatomotor.	Signi5icant	codes:		<0.001:	***;	<0.01:	**,	<0.05:	*.	Analyses	were	performed	in	native	space.	
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Table	S7	

Results	of	the	linear	model	predicting	OEF	in	the	main	group.	

Fixed	effect	 Estimate	
ratio		

95%	CI	 p-value	

(Intercept)	 0.42	 0.40		–													
0.43	

<0.001***	

Condition[eunat]	 -0.01	 -0.02	–	
0.00	

0.17	

Condition[hypo]	 -0.01	 -0.03	–	
0.00	

0.15	

network[Cont]	 -0.07	 -0.07	–	
-0.06	

<0.001***	

network[Default]	 -0.04	 -0.05			–	
-0.03	

<0.001***	

network[DorsAttn]	 -0.07	 -0.07	–	
0.06	

<0.001***	

network[SalVentAttn]	 -0.10	 -0.10	–	
-0.09	

<0.001***	

yeo_nw[SomMot]	 -0.09	 -0.09	–	
-0.08	

<0.001***	

Condition[eunat]:network[Cont]	 0.00	 -0.01	–	
0.01	

0.76	

Condition[hypo]:network[Cont]	 -0.01	 -0.02	–	
0.00	

0.10	

Condition[eunat]:network[Default]	 0.00	 -0.01	–	
0.01	

0.85	

Condition[hypo]:network[Default]	 0.00	 -0.01	–	
0.01	

0.44	

Condition[eunat]:network[DorsAttn]	 0.00	 -0.01	–	
0.01	

0.46	

Condition[hypo]:network[DorsAttn]	 -0.01	 -0.02	–	
0.00	

0.19	

Condition[eunat]:network[SalVentAttn]	 			0.00	
	

-0.01	–	
0.01	

0.78	

Condition[hypo]:network[SalVentAttn]	 0.00	 -0.01	–	
0.01	

0.51	

Condition[eunat]:yeo_nw[SomMot]	 0.01	 0.00	–	
0.02	

0.21	

Condition[hypo]:	network[SomMot]	 0.00	 -0.01	–	
0.01	

0.90	

	
	 	Note.	 Result	 parameters	 for	 the	 main	 group	 of	 the	 following	 model:	 OEF	 ~	 condition*network	 +	
(1|subject/condition).	Marginal	R2	/	conditional	R2	=	9.64%	/	18.88%.	Network	abbreviations:	Cont	≙	
Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	
Somatomotor.	Signi5icant	codes:		<0.001:	***;	<0.01:	**,	<0.05:	*.	Analyses	were	performed	in	native	space.	
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Table	S8	

Results	of	the	linear	model	predicting	OEF	in	the	subgroup.	

Fixed	effect	 Estimate	
ratio		

95%	CI	 p-value	

(Intercept)	 0.42	 0.40	–													
0.44	

<0.001***	

Condition[eunat]	 -0.01	 -0.02	–	
0.01	

0.39	

Condition[hypo]	 -0.03	 0.05	–	
-0.01	

0.0016**	

network[Cont]	 -0.06	 -0.07	–	
-0.06	

<0.001***	

network[Default]	 -0.04	 -0.05	–	
-0.03	

<0.001***	

network[DorsAttn]	 -0.07	 -0.07	–	
-0.06	

<0.001***	

network[SalVentAttn]	 -0.10	 -0.10	–	
-0.09	

<0.001***	

yeo_nw[SomMot]	 -0.09	 -0.09	–	
-0.08	

<0.001***	

Condition[eunat]:network[Cont]	 0.00	 -4.30			–	
4.99	

0.79	

Condition[hypo]:network[Cont]	 0.00	 -0.01	–	
0.01	

0.24	

Condition[eunat]:network[Default]	 0.00	 -0.02	–	
0.01	

0.94	

Condition[hypo]:network[Default]	 0.00	 -0.01	–	
0.01	

0.87	

Condition[eunat]:network[DorsAttn]	 0.00	 -0.01	–	
0.01	

0.70	

Condition[hypo]:network[DorsAttn]	 0.00	 -0.01	–	
0.01	

0.77	

Condition[eunat]:network[SalVentAttn]	 			0.00	
	

-0.01	–	
0.01	

0.58	

Condition[hypo]:network[SalVentAttn]	 0.00	 -0.02	–	
0.01	

0.46	

Condition[eunat]:yeo_nw[SomMot]	 0.00	 -0.01	–	
0.01	

0.52	

Condition[hypo]:	network[SomMot]	 0.01	 0.00	–	
0.02	

0.10	

	
	
	
	
	
	
	
	

Note.	 Result	 parameters	 for	 the	 subgroup	 of	 the	 following	 model:	 OEF	 ~	 condition*network	 +	
(1|subject/condition).	Marginal	R2	/	conditional	R2	=	10.31	%	/	20.70%.	Network	abbreviations:	Cont	≙	
Control;	 Default	 ≙	 Default	 mode;	 DorsAttn	 ≙	 Dorsal	 attention;	 SalVentAttn	 ≙	 Salience;	 SomMot	 ≙	
Somatomotor.	Signi5icant	codes:		<0.001:	***;	<0.01:	**,	<0.05:	*.	Analyses	were	performed	in	native	space.	
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Figure	S8.	 Correlations	between	baseline	metabolism	 (CMRO2	 in	
eunat)	and	CBF	 increase	 in	 the	glucose	contrast	 (hypo-euart)	per	
ROI,	color-coded	per	network.	The	black	line	represents	the	line	of	
best	5it.	CBF	increase	in	hypo	correlates	signi5icantly	and	positively	
with	baseline	metabolism.	Network	abbreviations:	Cont	≙	Control;	
Default	≙	Default	mode;	DorsAttn	≙	Dorsal	attention;	SalVentAttn	≙	
Salience;	 SomMot	 ≙	 Somatomotor.	 Analyses	 were	 performed	 in	
native	space.	
	

Figure	S7.	Glucose	(left	plot)	and	insulin	(right	plot)	contrasts	(main	group)	for	OEF	per	brain	
network.	 Datapoints	 re5lect	 parameter	 averages	 per	 ROI	 across	 subjects.	 The	 dashed	 line	
represents	the	angle	bisector.	OEF	does	seem	to	decrease	in	hypo,	but	only	insigni5icantly.	This	
effect	could	also	be	driven	by	an	OEF	increase	in	euart	(see	insulin	plot	on	the	right).	None	of	the	
OEF	contrasts	in	the	main	group	were	signi5icant.	Network	abbreviations:	Cont	≙	Control;	Default	
≙	Default	mode;	DorsAttn	≙	Dorsal	attention;	SalVentAttn	≙	Salience;	SomMot	≙	Somatomotor.	
Analyses	were	performed	in	native	space.	
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Abstract	
The	 brain	 relies	 on	 oxidized	 glucose	 as	 its	 primary	 fuel.	 Despite	 robust	 coupling	 of	

cerebral	oxygen	and	glucose	consumption	during	rest,	the	oxygen	to	glucose	index	(OGI)	

has	been	suggested	to	drop	signi=icantly	during	neuronal	activation.	However,	empirical	

evidence	regarding	the	extent	of	this	uncoupling	is	scarce,	mainly	due	to	the	inability	of	

previous	studies	to	measure	CMRO2	and	CMRglc	concurrently	during	tasks.	Therefore,	in	

the	 present	 study,	 we	 integrated	 multiparametric	 quantitative	 BOLD	 (mqBOLD)	 with	

functional	 PET	 (fPET)	 to	 simultaneously	 quantify	 cerebral	 oxygen	 and	 glucose	

metabolism	 during	 visual	 stimulation	 and	 rest	 within	 a	 single	 scan.	 Results	 show	

increases	 in	both	CMRO2	 and	CMRglc	in	visual	areas,	concomitant	with	 focal	blood	 =low	

increases.	Moreover,	OGI	values	during	rest	were	close	to	the	theoretical	value	of	6	which	

is	in	line	with	previous	literature.	In	response	to	visual	stimulation,	the	OGI	decreased	by	

6.6-21.6%.	 For	 the	 =irst	 time,	 the	present	 study	demonstrates	 feasibility	 of	 combining	

mqBOLD	and	fPET	to	study	CMRO2	and	CMRglc	simultaneously.	This	setup	has	the	potential	

to	be	applied	to	various	experimental	settings,	providing	valuable	information	about	the	

extent	of	oxidative	glucose	metabolism	in	the	human	brain	under	different	conditions	in	

health	and	disease.		
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Introduction	
	 The	human	brain,	while	 accounting	 for	only	2%	of	our	body	weight,	 consumes	

about	 20%	 of	 our	 energy,	 making	 it	 one	 of	 the	 energetically	 most	 expensive	 organs	

relative	 to	 its	mass	 (Padamsey	&	Rochefort,	2023).	The	brain	predominantly	 relies	on	

oxidized	glucose	as	its	fuel	and	thus,	due	to	limited	energy	storage	capacities,	depends	on	

a	constant	supply	of	oxygen	and	glucose.	Typically,	cerebral	metabolic	rates	of	oxygen	and	

glucose	 (CMRO2	 and	 CMRglc,	 respectively)	 are	 tightly	 coupled,	with	 6	moles	 of	 oxygen	

required	to	 fully	oxidize	1	mole	of	glucose.	This	process	of	aerobic	cellular	respiration	

eventually	 generates	 32	 molecules	 of	 adenosine	 triphosphate	 (ATP),	 the	 universal	

currency	for	cellular	energy.	However,	under	certain	conditions,	the	molar	ratio	between	

CMRO2	and	CMRglc,	also	known	as	the	oxygen-to-glucose	index	(OGI),	can	deviate	from	its	

expected	 value	 of	 ~6	 (Fox	 et	 al.,	 1988).	 An	 OGI	 of	 <6	 indicates	 increased	 rates	 of	

nonoxidative	glucose	metabolism,	where,	instead	of	being	further	metabolized,	glucose	is	

converted	 into	 lactate,	 a	 process	 that	 produces	 only	 2	 ATP.	 Conversely,	 an	 OGI	 of	 >6	

suggests	the	oxidation	of	energy	substrates	other	than	glucose,	such	as	 lactate	or	fatty	

acids,	as	observed	during	prolonged	fasting	(Kersten	et	al.,	1999;	Kolb	et	al.,	2021;	Pan	et	

al.,	 2000).	 Generally,	with	 oxygen	 and	 glucose	 being	 the	 primary	 fuels,	 understanding	

their	 dynamics	 is	 crucial	 for	 further	 insights	 into	 neuroenergetics.	 Therefore,	 in	 the	

present	study,	we	integrated	recent	advances	in	functional	neuroimaging,	simultaneously	

acquiring	 multiparametric	 quantitative	 BOLD	 (mqBOLD)	 and	 functional	 18F-FDG-PET	

(fPET)	data.	This	allowed	us,	for	the	=irst	time,	to	measure	CMRO2	and	CMRglc	at	the	same	

time	and	under	different	conditions	in	one	scanning	session.		

	 In	 previous	 studies,	 CMRO2	 and	 CMRglc	 were	 acquired	 separately	 in	 different	

sessions,	typically	using	15O2-PET	and	18F-FDG-PET	(Fox	et	al.,	1988;	Fox	&	Raichle,	1986;	

Leenders	et	al.,	1990;	Vafaee	et	al.,	2012),	impeding	comparability	across	modalities,	and	

thus	potentially	 introducing	 inaccuracies	 in	OGI	calculation.	While	FDG-PET	 is	still	 the	

gold	standard	to	measure	glucose	metabolism,	it	typically	involves	a	bolus	injection	of	the	

radiotracer	FDG	prior	to	scan	initiation,	followed	by	a	waiting	period	to	enable	FDG	to	

distribute	throughout	the	body	and	accumulate	in	cells.	Thereby,	conventional	FDG-PET	

does	 not	 allow	 for	 dynamic	 imaging	 of	 glucose	 metabolism	 over	 time.	 If	 one	 were	

interested	 in	alterations	 in	glucose	metabolism	 induced	by	 interventions	or	 tasks,	one	

would	need	 to	acquire	multiple	PET	scans	on	separate	days,	 increasing	 the	amount	of	

radiation	exposure	for	patients,	as	well	as	=inancial	and	time	investments.	Additionally,	
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inter-session	 variations	 can	 cause	 inaccuracies	 in	 result	 interpretation.	More	 recently,	

researchers	have	developed	functional	FDG-PET	(fPET),	involving	a	bolus	administration	

followed	by	a	continuous	infusion	of	the	radiotracer	 instead	of	a	single	bolus	 injection	

(Hahn	et	 al.,	 2016;	 Jamadar	et	 al.,	 2019;	Rischka	et	 al.,	 2018;	Villien	et	 al.,	 2014).	The	

constant	infusion	maintains	a	steady-state	level	of	tracer	in	the	bloodstream,	allowing	for	

dynamic	 imaging	 of	 glucose	 metabolism	 over	 time.	 In	 this	 way,	 fPET	 enables	 the	

measurement	 of	multiple	 conditions	within	 a	 single	 scanning	 session,	 as	 successfully	

applied	in	previous	studies	(Hahn	et	al.,	2016,	2017;	Jamadar	et	al.,	2021;	Villien	et	al.,	

2014).		

Originally,	 CMRO2	was	 measured	 via	 15O2-PET	 (Mintun	 et	 al.,	 1984),	 involving	

inhalation	 of	 15O2-labeled	 gas	 and	 the	 injection	 of	 [15O]H2O	 to	 cerebral	 blood	 volume	

(CBV),	 the	 oxygen	 extraction	 fraction	 (OEF)	 and	 cerebral	 blood	 =low	 (CBF)	 separately	

(Herscovitch	et	al.,	1983;	Raichle	et	al.,	1983).	CBF	increases	in	response	to	heightened	

energy	demand	upon	neuronal	activation.	This	is	called	neurovascular	coupling.	However,	

the	 elevated	 CBF	 rate	 overcompensates	 for	 required	 nutrients,	 thereby	 ultimately	

reducing	the	relative	amount	of	oxygen	being	extracted	from	the	blood	for	the	oxidation	

of	 energy	 substrates.	 Combining	 CBF	 and	 OEF,	 one	 can	 calculate	 CMRO2	 in	

μmol/100g/min	via	Fick’s	principle	(Fick,	1870):	

	

CMRO2	=	CaO2	*	CBF	*	OEF	

	 	

where	CaO2	denotes	 the	arterial	oxygen	content.	However,	 15O2-PET	has	 its	drawbacks,	

such	as	a	 short	 radiotracer	decay	 time	of	approximately	 two	minutes.	 It	 thus	 requires	

multiple	injections	within	a	single	session	and	consequently	higher	total	tracer	doses	to	

ensure	suf=icient	tracer	availability	for	imaging.	Moreover,	again,	this	method	would	not	

allow	 for	 multiple	 conditions	 to	 be	 scanned	 within	 one	 session,	 let	 alone	 to	 be	

simultaneously	employed	with	FDG-fPET.	Using	hybrid	PET-MR	scanners,	however,	fPET	

can	be	combined	with	MR	techniques	for	CMRO2	measurements.	In	this	context,	calibrated	

BOLD	 imaging,	 an	MRI	 technique	 involving	 gas	 challenges	 (hypoxia/hypercapnia)	 and	

CBF	acquisition,	has	been	used	 to	measure	CMRO2	 (Kim	et	al.,	1999).	Calibrated	BOLD	

experiments	do,	however,	not	measure	CBV	directly,	but	estimate	it	from	CBF,	which	has	

been	 found	 to	 be	 an	 important	 confounding	 variable	 (Blockley	 et	 al.,	 2013;	 Liu	 et	 al.,	
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2019).	Moreover,	these	experiments	follow	a	complex	setup	involving	air	masks	for	the	

application	of	gas	challenges.	

An	 alternative	 approach	 is	 multiparametric	 quantitative	 BOLD	 (mqBOLD)	

imaging,	which	involves	separate	measurements	of	the	transverse	relaxation	rate	R2’	and	

CBV	 that	 can	 be	 combined	 into	 a	 more	 direct	 assessment	 of	 the	 OEF,	 as	 well	 as	 the	

measurement	of	CBF	(Christen	et	al.,	2012;	Hirsch	et	al.,	2014;	Kaczmarz	et	al.,	2020).	A	

more	detailed	description	on	mqBOLD	acquisition	and	data	processing	will	be	provided	

below.	The	advancement	of	mqBOLD	avoids	previous	limitations	of	both	calibrated	BOLD	

imaging	 as	 well	 as	 15O2-PET.	 In	 the	 present	 study,	 we	 combined	 mqBOLD	 with	 the	

aforementioned	 advances	 in	 fPET	 to	 simultaneously	 quantify	 oxygen	 and	 glucose	

metabolism	under	different	conditions	in	one	single	scanning	session.	

	 Given	the	methodological	focus	of	this	study,	we	chose	a	visual	stimulation	task	

contrasted	with	a	rest	condition	to	validate	our	approach.	During	rest,	CMRO2	and	CMRglc	

are	 robustly	 coupled,	with	studies	 reporting	an	OGI	close	 to	 the	 theoretical	value	of	6	

(Blazey,	Snyder,	Goyal,	et	al.,	2018;	Hyder	et	al.,	2016;	Shulman	et	al.,	2001).	In	response	

to	 increased	 energy	 demand	 during	 visual	 stimulation,	 CBF	 typically	 increases	 in	 the	

visual	 cortex	 (Attwell	 et	 al.,	 2010;	Attwell	&	 Iadecola,	 2002),	 enhancing	 the	 supply	 of	

glucose	and	oxygen	to	active	regions.	Accordingly,	early	PET	studies	noted	a	CBF	increase	

of	~50%	(Fox	et	al.,	1988).	However,	while	CMRglc	 showed	similar	 increases,	 reported	

CMRO2	 increases	 were	 substantially	 smaller	 (~5%),	 resulting	 in	 an	 OGI	 of	 0.4	 during	

visual	stimulation	 in	one	study	(Fox	et	al.,	1988).	This	uncoupling	between	CMRO2	and	

CMRglc	 suggests	 that,	 despite	 suf=icient	 oxygen	 availability,	 not	 all	 of	 the	 additionally	

delivered	glucose	 is	oxidized	to	produce	32	ATP.	 Instead,	some	glucose	 is	converted	to	

lactate,	thereby	producing	merely	2	ATP	per	mole	of	glucose.	The	underlying	mechanisms	

of	this	preference	for	lactate	fermentation	over	oxidative	phosphorylation	are	not	fully	

understood.	 One	 theory	 is	 that	 lactate	 fermentation	 is	 faster	 (Pfeiffer,	 2001).	

Consequently,	despite	it	only	generating	2	ATP	per	mole	of	glucose,	it	might	eventually	be	

more	ef=icient	and	better	suited	for	supporting	rapid	bursts	of	activity	in	neurons.	In	their	

study,	Fox	et	al.	(1988)	further	demonstrate	that,	despite	signi=icant	increases	in	CBF	and	

CMRglc	 of	 ~50%,	 the	 disproportionately	 smaller	 increase	 in	 CMRO2	 results	 in	 a	 mere	

increase	of	8%	in	ATP	production	during	visual	stimulation.	Thereby,	they	underline	the	

importance	of	 considering	both	oxygen	and	glucose	dynamics,	 as	 reliance	on	 just	 one	

parameter	may	not	yield	suf=icient	 information	about	alterations	 in	ATP	production.	 It	
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remains	 unclear	whether	 the	 drop	 in	 OGI	 is	 as	 substantial	 as	 described	 by	 Fox	 et	 al.	

(1988),	though.	Calibrated	BOLD	studies	found	larger	increases	in	CMRO2	in	response	to	

visual	stimulation,	ranging	from	12-30%	(Davis	et	al.,	1998;	Donahue	et	al.,	2009;	Fujita	

et	 al.,	 2006;	 Hoge	 &	 Pike,	 2001;	 Kim	 et	 al.,	 1999).	 One	 study	 even	 reported	 a	 15.1%	

increase	 alongside	 a	 21.4%	 rise	 in	 CBF	 (Germuska	 et	 al.,	 2019),	 resulting	 in	 a	

ΔCBF:ΔCMRO2	ratio	of	1.42,	contrasted	to	previously	found	ratio	of	10	(Fox	et	al.,	1988).	

Moreover,	other	studies	reported	a	lower	increase	in	CMRglc,	ranging	from	22-28%	(W.	

Chen	 et	 al.,	 1993;	 Newberg	 et	 al.,	 2005;	 Vlassenko	 et	 al.,	 2006)	 instead	 of	 previously	

reported	~50%	(Fox	et	al.,	1988).	Evidently,	there	is	huge	variance	in	past	results.	None	

of	 these	 studies,	 however,	 measured	 changes	 in	 CMRO2	 and	 CMRglc	 concurrently.	 To	

accurately	evaluate	OGI	alterations	in	response	to	increased	neuronal	activity,	it	is	crucial	

to	acquire	within-subject	data	on	glucose	and	oxygen	changes	at	the	same	time	and	within	

a	single	session.	

	 Despite	remaining	questions	regarding	the	exact	extent	to	which	CMRO2	and	CMRglc	

are	 uncoupled	 during	 neuronal	 activation,	 in	 the	 present	 study	we	 still	 expect	 larger	

increases	in	CMRglc	than	CMRO2	in	response	to	visual	stimulation.	We	assume	that	these	

increases	 will	 be	 accompanied	 by	 an	 increase	 in	 CBF.	 With	 this	 study	 we	 aim	 to	

demonstrate	 the	 simultaneous	 applicability	 of	 mqBOLD	 and	 fPET,	 thereby	 fully	

quantifying	CMRO2	and	CMRglc	at	the	same	time.	Additionally,	we	aim	to	provide	further	

insights	into	OGI	alterations	during	neuronal	activation.  

 

Methods	
Participants	

A	total	of	25	healthy,	right-handed	participants	was	recruited	for	this	study.	Four	

subjects	had	to	be	excluded	entirely,	two	due	to	artifacts	in	anatomical	images	(most	likely	

due	to	signals	from	the	camera,	see	below),	and	one	each	due	to	large	motion	artifacts,	

and	 errors	 in	 accurately	 timing	 the	 onset	 of	 visual	 stimulation,	 scanning	 and	 tracer	

injections.	Moreover,	we	had	to	discard	=ive	MR	datasets	due	to	image	artifacts,	mainly	in	

T2*	data.	This	resulted	in	a	=inal	MR	sample	size	of	16	(mean	age:	37	years	 	±11.32;	9	

females,	 7	 males).	 Four	 participants	 were	 excluded	 from	 PET	 analyses:	 one	 due	 to	

dif=iculties	in	arterial	sampling	and	three	due	to	insuf=icient	FDG	doses.	This	resulted	in	a	

=inal	 PET	 sample	 size	 of	 17	 (mean	 age:	 33.29	 years	 ±9.79;	 9	 females,	 8	 males).	 13	
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participants	overlapped,	contributing	both	MR	and	PET	data	 to	 the	 =inal	analyses.	The	

study	 was	 approved	 by	 the	 ethics	 board	 of	 the	 university	 hospital	 of	 the	 Technical	

University	of	Munich	and	all	participants	gave	written	informed	consent	prior	to	study	

initiation.	

	

Experimental	protocol	
	 Participants	arrived	at	the	study	site	following	an	overnight	fast.	After	measuring	

baseline	 parameters	 (body	 weight,	 baseline	 blood	 glucose,	 blood	 pressure,	 arterial	

oxygen	saturation),	an	anesthesiologist	placed	two	catheters:	an	intravenous	catheter	in	

the	participant’s	left	forearm	for	the	administration	of	the	radiotracer	and	contrast	agent,	

and	an	arterial	 catheter	 in	 the	 right	 radial	 artery	 for	 arterial	 blood	 sampling.	Prior	 to	

scanning,	venous	blood	samples	were	collected	and	sent	to	the	in-house	clinical	chemistry	

laboratory	 for	 analysis	 of	 creatinine	 and	 hematocrit	 values,	 both	 required	 for	 the	

mqBOLD	 analysis.	 Subjects	 were	 then	 transferred	 into	 the	 scanner	 and	 imaging	 data	

acquisition	was	initiated.	A	detailed	description	of	image	acquisition	parameters	can	be	

found	below.	During	PET-MR	scanning,	the	subject	was	presented	with	blocks	of	full-=ield	

visual	stimulation	(STIM,	checkerboard	moving	with	8Hz),	alternating	with	resting-state	

blocks	 (REST,	 white	 =ixation	 cross	 on	 black	 background)	 at	 approximately	 6-minute	

intervals.	PET	scanning,	visual	presentation	and	the	radiotracer	infusion	pump	(Harvard	

Apparatus,	Cambridge,	Massachusetts,	United	States)	were	started	simultaneously.	For	

the	18F-FDG,	participants	received	a	decay-corrected	total	dose	of	3.6	MBq	per	kg	body	

weight.	20%	of	the	total	syringe	volume	were	injected	as	a	bolus	(=low	rate:	1ml/s)	to	

increase	 signal-to-noise	 ratio	 (SNR)	 (Rischka	 et	 al.,	 2018).	 The	 remaining	 80%	 were	

infused	continuously	over	the	total	PET	duration	of	70	minutes	(=low	rate:	0.2ml/min).	

Throughout	 these	 70	minutes,	 arterial	 blood	was	 sampled	 continuously	 via	 a	 Twilite	

blood	sampling	system	(Swisstrace,	Zurich,	Switzerland).	It	was	crucial	for	participants	

to	 keep	 their	 eyes	 open	 during	 the	 entire	 experiment,	 as	 previous	 studies	 showed	

signi=icant	 reductions	 in	 metabolic	 activity	 in	 the	 visual	 cortex	 under	 closed	 eyes	

compared	to	open	eyes	(Uludağ	et	al.,	2004).	Given	the	rather	tedious	nature	of	the	tasks,	

we	installed	a	camera	(MRC	Systems	GmbH,	Heidelberg,	Germany)	on	top	of	the	head	coil	

to	closely	monitor	participants’	wakefulness.	Figure	1A		shows	a	schematic	depiction	of	

the	experimental	protocol.		
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Image	acquisition	
All	 data	were	 acquired	 on	 a	 3T	 Biograph	 PET-MR	 scanner	 (Siemens,	 Erlangen,	

Germany),	 using	 a	 12-channel	 phase-array	 head	 neck	 coil.	Anatomical	 images	 served	
anatomical	 reference	 and	 exclusion	 of	 brain	 lesions.	 This	 included	 a	 T1-weighted	 3D	

MPRAGE	pre-	 and	 post-gadolinium	 (TI=900	ms,	 TR=2300	ms,	 TE=2.98	ms,	 α=9°;	 160	

slices,	voxel	size:	1.0x1.0x1.0	mm3;	acquisition	time:	5:03	minutes)	and	a	T2-weighted	3D	

=luid-attenuated	inversion	recovery	(FLAIR)	image	(TR	=	5000	ms;	TE	=	394	ms,	α=40°;	

140	slices,	voxel	size:	0.5x0.5x1	mm3	EPI	factor:	130,	acquisition	time:	3:27	minutes).	

	

mqBOLD		

The	mqBOLD	(Christen	et	al.,	2012,	p.	0;	Hirsch	et	al.,	2014;	Kaczmarz	et	al.,	2020)	

protocol	consisted	of	the	following	MR	sequences:	
• T2:	6:16	min	2D	Turbo	spin	echo	acquired	only	in	REST	(8	echoes,	TE1	=	ΔTE	=	16	

ms,	TR=4870	ms,	α=90°,	voxel	size	2x2x3	mm3,	36	slices).		

• T2*	(Hirsch	et	al.,	2014;	Kaczmarz	et	al.,	2020):	7:32	min	multi-echo	gradient-echo	

mapping	acquired	in	STIM	and	REST	(12	echoes,	TE1	=	6ms,	ΔTE	=	5	ms,	TR=2340	

ms,	α=30°,	voxel	size	2x2x3	mm3,	gap	0.3	mm,	36	slices	(32	slices	in	one	subject);	

1	concatenation	(4	concatenations	in	one	subject)).	The	images	were	corrected	for	

magnetic	 background	 gradients	 with	 a	 standard	 exponential	 excitation	 pulse	

(Baudrexel	et	al.,	2009;	Hirsch	&	Preibisch,	2013)	half-resolution	data	acquisition	

of	the	k-space	center	(Nöth	et	al.,	2014).	

• ASL	 (Alsop	 et	 al.,	 2015):	 5:09	 min	 pseudo-continuous	 arterial	 spin	 labelling	

(pCASL)	acquired	 in	STIM	and	REST	(post-labeling	delay	(PLD):	1800	ms,	 label	

duration:	1800	ms,	4	background	suppression	pulses,	2D	EPI	readout,	TE=22.12	

ms,	TR=4600	ms,	α=180°,	24	slices,	EPI	factor:	31,	acquisition	voxel	size:	3x3x6.6	

mm3,	 gap:	 0.6	mm,	30	dynamic	 scans,	 including	 a	proton	density	weighted	M0	

scan).	

• Dynamic	susceptibility	contrast	(DSC)	(Hedderich	et	al.,	2019):	2.38	min	single-

shot	GRE-EPI	acquired	after	 the	 injection	of	a	gadolinium-based	contrast	agent	

(CA)	 as	 a	 bolus	 after	 5	 dynamic	 scans	 in	 both	 conditions	 (EPI	 factor:	 128,	 80	

dynamic	 scans,	 TE=40	ms,	 TR=1890	ms,	 α=70°,	 acquisition	 voxel	 size:	 2x2x3.5	

mm3,	27	slices	(26	slices	in	one	subject))	Dosage:	0.2ml/kg	body	weight,	split	into	

two	injections	of	0.1ml/kg	body	weight	(min.	6ml,	max.	8ml)	for	two	conditions	
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(for	the	=irst	=ive	subjects	only	in	REST).	Flow	rate:	4ml/s,	plus	20	ml	NaCl.	Prior	

to	 CA	 administration,	 healthy	 kidney	 function	 was	 ensured.	 The	 CA	 was	 only	

injected	at	creatinine	levels	of	≤	1.2mg/dl.	

	

fMRI	

	 We	also	acquired	a	4:08min	BOLD	fMRI	task-localizer	using	single-shot	EPI	(EPI	

factor:	64,	 voxel	 size	=	3.0x3.0.3.0	mm3,	 FOV:	192x192x192mm3,	TE=30	ms,	TR=2.0	 s,	

α=90°,	120	dynamic	scans	plus	2	dummy	scans,	36	slices,	interleaved	acquisition	together	

with	a	0:54	min	B0	=ield	mapping	scan	(2	echoes,	TR=400	ms,	TE1=4.92	ms,TE2=7.38	ms,	

α=60°,	voxel	size:	3x3x3	mm3,	36	slices,	interleaved	acquisition).	

	

Data	processing	&	statistical	analyses	
mqBOLD	processing	and	CMRO2	calculation	

	 Quantitative	 MR	 parameter	 maps	 were	 calculated	 with	 in-house	 scripts,	 using	

MATLAB	and	 SPM12	 (Wellcome	Trust	 Centre	 for	Human	Neuroimaging,	UCL,	 London,	

UK).	Quantitative	T2	and	T2*	maps	were	obtained	by	mono-exponential	=its	of	the	multi-

echo	spin	and	gradient	echo	data	(Hirsch	et	al.,	2014;	Kaczmarz	et	al.,	2020;	Preibisch	et	

al.,	 2008).	 Corrections	 were	 performed	 for	 macroscopic	 magnetic	 background	 =ields	

(Hirsch	&	Preibisch,	2013)	and	motion	using	redundant	acquisitions	of	k-space	center	

(Nöth	et	al.,	2014).	R2’,	the	transverse,	reversible	relaxation	rate,	was	calculated	via	 

	

𝑅2’	 = 	
1
𝑇2 ∗ 	−	

1
𝑇2	

	

	

R2’	depends	on	the	vascular	deoxygenated	hemoglobin	(deoxy-Hb)	content	(Blockley	et	

al.,	 2013,	 2015;	 Bright	 et	 al.,	 2019).	 However,	 confounds	 from	 uncorrectable	 strong	

magnetic	 =ield	 inhomogeneities	 at	 air-tissue	 boundaries,	 iron	 deposition	 in	 deep	 grey	

matter	 (GM)	 as	 well	 as	 white	 matter	 structures	 needed	 to	 be	 considered	 (Hirsch	 &	

Preibisch,	2013;	Kaczmarz	et	al.,	2020).	The	cerebral	blood	volume	(CBV)	was	derived	

from	DSC	maps	via	 full	 integration	of	 leakage-corrected	ΔR2*-curves	 (Boxermann,	 J.L.,	

Schmainda,	K.M.,	Weisskoff,	 R.M.,	 2006)	 and	normalization	 to	 a	white	matter	 value	 of	
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2.5%	(Hedderich	et	al.,	2019;	Kluge	et	al.,	2016;	Leenders	et	al.,	1990).	Combining	CBV	

and	R2’	subsequently	yielded	the	OEF	via	

	

OEF	=	 !"#
'	·	$%&

	

	

(Christen	et	al.,	2012;	Hirsch	et	al.,	2014;	Yablonskiy	&	Haacke,	1994),	where	c	 = 	γ	 · )
*
·

	π	 · 	Δ	χ0	 · hct	 · 	B0,	 the	 gyromagnetic	 ration	 γ	 =	 2.675	 ·	 108	 s-1	 T-1,	 the	 susceptibility	

difference	between	fully	deoxygenated	and	oxygenated	hemoglobin	Δ	χ0	=	0.264	·	10-6,	the	

magnetic	=ield	strength	B0	=	3T	and	the	small-vessel	hematocrit	hct,	which	was	estimated	

as	85%	of	subject-speci=ic	(large-vessel)	hematocrit	levels	(Eichling	et	al.,	1975;	Hirsch	et	

al.,	2014).	CBF	maps	were	obtained	from	pCASL	data	as	in	Alsop	et	al.	(2015)	to	calculate	

CBF	 from	averaged,	pairwise	differences	of	motion-corrected	 label	and	control	 images	

and	 a	 proton-density	 weighted	 image.	 Finally,	 for	 each	 subject	 and	 condition,	 we	

calculated	 the	 voxelwise	 CMRO2	 by	 combining	 all	 parameter	maps	 via	 Fick’s	 principle	

(Fick,	1870):	

	

CMRO2	=	OEF	·	CBF	·	CaO2	

	

where	CaO2	is	the	arterial	oxygen	content,	calculated	as	CaO2	=	0.334	·	hct	·	55.6	·	O2sat,	

with	O2sat	being	the	arterial	oxygen	saturation	measured	by	pulse	oximetry	and	hct	the	

subject-speci=ic	hematocrit	value	(Bright	et	al.,	2019;	Ma	et	al.,	2020).	All	parameter	maps	

of	each	individual	subject	were	registered	to	the	=irst	echo	of	their	respective	multi	echo	

T2	data.	Figure	1E	summarizes	calculation	steps	and	shows	examples	of	parameter	maps	

in	native	space.		

	 Case-speciPic	 adjustments.	 For	 some	 subjects,	 we	 had	 to	 make	 speci=ic	

adjustments	due	 to	missing	data.	For	 three	subjects,	we	acquired	T2*	data	only	 in	 full	

resolution	instead	of	additional	acquisitions	in	half-resolution	for	motion	correction.	This	

affected	the	T2*	value	range,	resulting	in	values	that	were	too	low.	These	subjects’	T2*	

parameter	maps	were	consequently	upscaled	so	that	their	GM	median	matched	that	of	

the	 other	 13	mqBOLD	 subjects.	 Results	 are	 based	on	 the	upscaled	T2*	maps.	 For	 =ive	

subjects,	we	only	acquired	one	DSC	in	REST.	For	them,	we	estimated	their	respective	CBV	

maps	in	STIM	based	subject-averaged	CBV	increases	from	the	rest	of	the	cohort	(n=11).	
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Venous	 versus	 arterial	 CBV	 increases.	 CBV	 measurements	 based	 on	 the	

intravascular	injection	of	contrast	agents	measure	total	CBV,	including	arterial	as	well	as	

venous	blood	volume	within	each	voxel	(Hua	et	al.,	2019).	For	stimuli	shorter	than	40s,	

CBV	increases	may	be	ignored	due	to	the	passive,	slow	increase	of	venous	CBV	(Simon	&	

Buxton,	 2015).	 However,	 for	 prolonged	 stimulation,	 as	 applied	 in	 the	 present	 study,	

venous	CBV	increase	only	accounts	for	29%	(Huber	et	al.,	2014)	to	50%	(Kim	&	Ogawa,	

2012)	of	total	CBV	increase.	Thus,	considering	total	CBV	increase	might	underestimate	

CMRO2	changes,	speci=ically	during	visual	or	somatosensory	stimulation,	where	large	total	

CBV	 increases	 are	 usually	 observed.	 As	 our	 visual	 stimulation	 persisted	 over	 a	 few	

minutes,	we	measured	changes	 in	CBV	by	acquiring	two	DSC	scans,	one	per	condition.	

DSC	 is	a	measure	of	 total	CBV,	 therefore,	we	calculated	CMRO2	 group	results	assuming	

30%	of	total	CBV	changes	being	venous,	based	on	results	on	7T	during	visual	stimulation	

in	human	subjects	(Huber	et	al.,	2014).	

Artifacts	 and	 GM	 masking.	 To	 exclude	 voxels	 from	 brain	 areas	 affected	 by	

artifacts,	we	calculated	the	temporal	signal-to-noise	ratio	(tSNR)	from	fMRI	BOLD	images	

per	subject	and	voxel	in	standard	2mm	MNI	space.	Voxels	in	the	lowest	15th	percentile	

across	 more	 than	 66%	 of	 participants	 were	 masked	 out,	 primarily	 localized	 in	

susceptibility-prone	 regions,	 like	 fronto-	 and	 temporo-basal	 areas.	 Additionally,	 we	

masked	out	the	cerebellum	and	considered	only	voxels	with	a	GM	probability	>0.5.	The	

resulting	SNR-GM	mask	in	standard	space	was	applied	to	the	input	matrices	for	partial	

least	squares	analyses.		

For	 native	 space	 analyses,	 we	 further	 masked	 out	 areas	 in=luenced	 by		

cerebrospinal	=luid	(T2>150ms),	susceptibility	artifacts	(R2’>11	s-1),	voxels	with	elevated	

blood	 volume	 (CBV>12%,	 probably	 driven	 by	 large	 vessels)	 and	 voxels	 with	

physiologically	 unexpected	 values	 (T2*>90ms,	 OEF>1,	 CBF>120).	 These	 masking	

parameters	were	applied	for	calculations	of	baseline	parameters	(see	Table	1).	Here,	per	

imaging	 parameter,	 we	 calculated	 a	 whole-brain	 median	 across	 voxels	 per	 subject	 in	

native	space	and	subsequently	computed	the	mean	and	standard	deviation.	Similarly,	for	

calculations	 of	 delta	 and	 percent	 change	 values,	 we	 computed	 median	 values	 across	

voxels	within	 the	 respective	ROI	mask	 (see	Table	2	 and	Figure	2),	with	 all	 thresholds	

applied	in	native	space	as	previously	described	and	subsequently	normalized	to	standard	

space.	We	then	took	the	mean	and	standard	deviation	across	subjects.	Delta	and	percent	

change	were	calculated	per	subject	as	the	within-ROI	median	STIM	value	minus	within-
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ROI	median	REST	value	(and	divided	by	median	REST	for	percent	change	values).	These	

values	are	shown	in	Table	2.	

	

PET	processing	and	CMRglc	calculation	

For	 PET	 data	 processing,	 we	 reconstructed	 the	 raw	 long-listmode	 data	 of=line,	

using	the	ordered	subsets	expectation	maximization	(OSEM)	algorithm.	The	data	were	

divided	into	93	frames	of	45	seconds	each,	with	an	additional	frame	of	15	seconds	at	the	

end	(matrix:	344,	3D	iterative	reconstruction	method,	zoom:	2.0,	=ilter:	allpass,	iterations:	

4,	subsets:	21,	scatter	correction:	relative).	Subsequently,	the	reconstructed	PET	images	

were	motion	corrected,	spatially	smoothed	(Gaussian	=ilter,	FWHM	=	6	mm)	and	low-pass	

=iltered	(360s).		

For	CMRglc	calculation,	subject	speci=ic	arterial	input	functions	(AIF)	were	derived	

from	 arterial	 blood	 data.	 Preprocessing	 was	 performed	 with	 in-house	 Python	 scripts	

(Python	 Software	 Foundation,	 version	 3.8).	 Initially,	 we	 estimated	 the	 blood	 delay	 by	

determining	 the	 time	 between	 injection	 start	 and	 peak	 in	 the	 blood	 data.	 Next,	

background	radioactivity	was	estimated	and	the	blood	TAC	were	modelled	by	 =itting	a	

sum	of	three	exponential	functions	to	the	raw	blood	data	(Feng	et	al.,	1993).	Blood	TAC	

were	 then	 converted	 to	 plasma	 TAC,	 using	 the	 reference	 FDG	 plasma-to-blood	 ratio	

function	 (Phelps	 et	 al.,	 1979)	 along	 with	 subject-speci=ic	 hematocrit	 values.	 For	 two	

subjects	with	erroneous	arterial	blood	sampling,	we	calculated	a	population-based	AIF	by	

averaging	across	remaining	participants’	AIFs,	as	previously	described	(Castrillon	et	al.,	

2023;	Vriens	et	al.,	2009).	Addressing	the	delay	of	measurable	FDG	uptake,	we	shifted	the	

task	onsets	 by	 two	minutes	 as	 recommended	by	previous	 literature	 (Stiernman	et	 al.,	

2021).	Subsequently,	we	calculated	CMRglc	separately	for	STIM	and	REST	by	dividing	the	

PET	time-series	data	into	four	REST	and	four	STIM	periods.	We	calculated	the	net	uptake	

rate	 constant	 (Ki)	 using	 the	 Patlak	 plot	 model	 (Patlak	 &	 Blasberg,	 1985)	 based	 on	

(shifted)	 STIM	 and	 REST	 frames	 of	 the	 preprocessed	 PET	 images	 and	 the	 individual,	

preprocessed,	AIF.	Next,	we	calculated	voxel-wise	CMRglc	 separately	 for	each	STIM	and	

REST	period	by	multiplying	the	Ki	map	with	the	plasma	glucose	concentration	value	of	

each	subject,	multiplied	by	100	to	get	values	per	100g,	and	then	divided	it	by	a	lumped	

constant	of	0.65	(Wu,	2003).	Finally,	the	average	CMRglc	maps	across	all	four	STIM	and	

REST	 blocks	 were	 calculated	 and	 normalized	 to	 standard	 2mm	 MNI	 (Montreal	

Neurological	Institute,	McGill	University)	space	via	the	mean	PET	and	anatomical	images.	
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Oxygen-to-glucose	index	(OGI)	

	 The	 oxygen-to-glucose	 index	 is	 an	 indicator	 for	 the	 underlying	mechanisms	 of	

energy	metabolism.	In	aerobic	cellular	respiration,	6	moles	of	oxygen	are	required	to	fully	

oxidize	1	mole	of	glucose,	=inally	yielding	32	ATP	(Byrne	et	al.,	2014).	Consequently,	the	

OGI	in	aerobic	cellular	respiration	amounts	to	6.	An	OGI	of	>6	indicates	the	oxidation	of	

other	substrates	than	glucose	for	ATP	production	(e.g.	lactate,	fatty	acids),	while	an	OGI	

of	 <6	 suggests	 non-oxidative	 glucose	 metabolism,	 hence	 glucose	 being	 converted	 to	

lactate,	yielding	2	ATP.	Here,	the	OGI	was	calculated	voxelwise	as	

	

OGI =
CMRO2
CMRglc	

	

in	native	space	per	subject	and	condition.	We	thresholded	all	OGI	maps	as	suggested	by	

previous	literature	(Blazey,	Snyder,	Su,	et	al.,	2018).	To	this	end,	we	took	the	median	GM	

OGI	 (median=5.02),	 calculated	 the	 median	 absolute	 deviation	 (MAD=2.41)	 and	

subsequently	thresholded	the	maps	at	GM	median	+	5*MAD	=	17.07.	Subsequently,	the	

OGI	maps	were	registered	into	standard	space	(interpolation	method:	nearest	neighbor),	

where	we	calculated	the	mean	OGI	across	all	GM	voxels	within	the	respective	group	masks	

(see	 Figure	 3A)	 per	 subject	 and	 condition.	 For	 functional	 network	 comparisons	 (see	

Figure	3B,	we	took	the	mean	OGI	across	GM	voxels	within	the	respective	network	in	native	

space,	per	subject.	The	limbic	network	was	excluded	due	to	its	proneness	to	susceptibility	

artifacts.	OGI	comparisons	between	conditions	(see	Figure	3A)	or	networks	(see	Figure	

3B)	 were	 conducted	 using	 paired	 t-tests,	 correcting	 for	 multiple	 comparisons	 (FDR-

corrected	for	15	tests	in	Figure	3B).	

	

fMRI	BOLD	processing	and	task	analysis	

The	BOLD	fMRI	localizer	data	was	preprocessed	using	fMRIPrep	20.2.4	(Esteban,	

2019)	 in	 a	 docker	 container,	 based	 on	 Nipype	 1.6.1	 (Gorgolewski	 et	 al.,	 2011).	 This	

included	 segmentation,	 estimation	 of	 motion	 parameters	 and	 other	 confounds,	

susceptibility	distortion	correction,	coregistration	in	native	T1w	space	and	normalization	

to	MNI152	ICBM	2mm	Non-linear	6th	Generation	Asymmetric	Average	Brain	Stereotaxic	

Registration	Model	(Montreal	Neurological	Institute,	McGill	University).	fMRIPrep	utilizes	

FSL	5.0.9	(Jenkinson	et	al.,	2012;	Smith	et	al.,	2004)	boundary-based	registration	(BBR)	
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to	 register	 BOLD	 fMRI	 EPI	 time	 series	 data	 to	 T1w	 data,	 FSL	 FAST	 for	 brain	 tissue	

segmentation	and	ANTs	2.3.3	for	spatial	normalization	to	standard	space	(Avants	et	al.,	

2008),	a	multiscale,	mutual-information	based,	nonlinear	registration,	concatenating	all	

transforms	and	applying	all	registration	steps	at	once.	This	=inal	normalization	matrix	was	

then	also	applied	 to	all	quantitative	mqBOLD	parameter	maps,	after	6-dof	 (degrees	of	

freedom)	 coregistration	 to	 native	 T1w	 space,	 to	 transform	 all	 images	 to	 MNI	 2mm	

standard	 space.	 Further,	 task	 analysis	 was	 done	 following	 recent	 recommendations	

(Esteban	et	al.,	2020),	setting	up	a	general	linear	model	(GLM)	with	CSF	and	white-matter	

signal,	dvars,	framewise-displacement	and	translations	and	rotations	in	x-,	y-	and	z-axis	

as	confounds,	high-pass	=ilter	of	120s	and	6mm	smoothing.	For	analyses	based	on	native	

GLM	masks,	we	used	individual	1st	level	z-maps,	z>3.1.	

	

Partial	least	squares	analysis	

To	 detect	 differences	 between	 STIM	 and	 REST	 in	 our	 parameter	maps,	we	 ran	

partial	 least	 squares	 (PLS)	 analyses,	 using	 the	 Python	 pyls	 library	 (Python	 Software	

Foundation,	version	3.8).	Mean-centered	PLS	is	a	data-reduction	method	that	computes	

latent	variables	and	corresponding	brain	patterns,	which	optimally	relate	brain	signals	to	

experimental	design	factors,	such	as	groups	or	conditions	(McIntosh	&	Lobaugh,	2004).	

In	the	present	study,	the	input	data	matrix	consisted	of	one	row	per	subject	containing	all	

voxels	within	 the	 SNR-GM-mask	 in	 standard	2mm	space,	 and	 stacked	 STIM	and	REST	

conditions.	For	BOLD	fMRI	data,	median	values	of	percent	signal	change	(relative	to	the	

median	REST	value)	across	20	seconds	(10	TRs)	per	task	condition	were	used,	with	the	

initial	10	seconds	per	task	block	excluded	to	account	for	the	hemodynamic	response	lag.	

For	non-quantitative	PET	data,	median	values	of	percent	signal	change	(relative	to	the	

median	REST	value)	across	 the	entire	duration	of	 the	condition	blocks	were	used,	but	

shifted	by	6	TRs	to	ensure	that	‘peaks’	and	‘valleys’	in	the	time-course	did	not	cancel	out	

during	median	calculation.	For	quantitative	data,	OEF,	CBF,	CMRO2	or	CMRglc	values	per	

voxel	 and	 subject	were	used	and	 stacked	 for	both	REST	and	STIM	conditions.	Using	a	

dummy-coding	 matrix,	 the	 pyls	 library	 computes	 within-condition	 averages,	 mean-

centering	 them	 columnwise	 (Krishnan	 et	 al.,	 2011).	 The	 resulting	 matrix,	 Rmean-

centered	(q	x	p),	comprising	q	conditions	and	p	voxels,	is	then	subjected	to	singular	value	

decomposition.	This	results	in:	

R’mean-centered	=	USV’	
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Up	x	q	 are	 the	voxel	weights	 (brain	saliences),	one	 row	per	 latent	variable	 (LV)	 i	which	

re=lects	how	much	this	voxel	contributes	to	the	effect	captured	by	LVi.	Vq	x	q	are	the	task	

saliences	(one	row	per	LV)	that	 indicate	how	each	condition	contributes	 to	 the	spatial	

pattern	identi=ied	by	LVi.	Sq	x	q	are	the	singular	values	per	LV	that	re=lect	the	strength	of	the	

relationship	 extracted	 by	 LVi	 (McIntosh	&	Mišić,	 2013).	 The	 signi=icance	 of	 the	 latent	

variables,	i.e.,	the	entire	multivariate	pattern,	is	tested	via	permutation	tests	(here:	2000	

permutations),	 the	reliability	of	 the	brain	saliences,	 i.e.,	 the	voxel’s	contribution	 to	 the	

latent	variables,	is	deduced	via	bootstrap	resampling	(here:	2000	samples).	Brain	regions	

showing	 signi=icant	 effects	 are	 identi=ied	 via	 the	 ratio	 of	 the	 brain	 saliences	 to	 the	

bootstrap	standard	error	(bootstrap	ratio	≙	BSR),	where	a	BSR	>2/<-2	is	analogical	to	a	

con=idence	interval	of	95%,	if	the	bootstrap	distribution	is	normal	(Krishnan	et	al.,	2011;	

McIntosh	&	Mišić,	2013).		

In	the	present	paper,	we	performed	PLS	analyses	on	a	group	level	to	identify	brain	

regions	that	differentiate	between	the	STIM	versus	the	REST	condition.	Application	of	the	

same	analyses	to	BOLD	fMRI,	fPET	and	quantitative	MR	data	enabled	comparison	across	

all	modalities.	Statistical	maps	were	thresholded	with	a	BSR	of	±2	and	only	clusters	with	

more	than	30	voxels	were	included	in	the	visual	masks.	For	correct	interpretation,	BSR	

maps	 must	 be	 compared	 to	 the	 design	 scores	 (design	 variables	 multiplied	 by	 brain	

saliences)	of	each	condition	within	each	LV	to	yield	the	direction	of	task	differences	that	

is	captured	within	the	BSR	pattern.	In	the	present	work,	BSRs	are	depicted	using	a	blue-

red	 color	 gradient,	with	 red	 indicating	higher	 voxel	 values	 in	 STIM	 than	 in	REST	and,	

conversely,	blue	indicating	higher	voxel	values	in	REST	than	in	STIM.		

	

Other	statistical	analyses	

Most	statistical	analyses,	except	the	ones	in	native	space,	were	based	on	median	

voxel	values	within	a	group	visual	region	of	interest	(ROI)	in	standard	space,	by	taking	the	

across-subjects	median	value	per	voxel	in	STIM	and	in	REST.	Delta	values	for	OEF,	CBF,	

CMRO2	and	CMRglc,	as	shown	in	Table	2	and	in	the	boxplots	in	Figure	2,	were	calculated	for	

each	 voxel	 (STIM	minus	 REST),	 and	 then	 averaged	 (median)	 across	 voxels	within	 the	

respective	ROI	or	mask	per	subject.	Subsequently,	we	tested	for	signi=icant	differences	in	

REST	 compared	 to	 STIM	 via	 paired-samples	 t-tests,	 across	 subjects.	 For	 native	 space	
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analyses,	 as	 shown	 in	Figure	2,	we	 calculated	median	values	within	each	native-space	

activation	ROI	(output	of	the	=irst	level	GLM,	thresholded	with	z>3.1)	per	subject.	

	

Results	
	 In	 the	 present	 study,	 we	 integrated	 FDG-fPET	 with	 mqBOLD	 for	 simultaneous	

quanti=ication	of	cerebral	oxygen	und	glucose	metabolism	in	healthy	participants	during	

a	 visual	 stimulation	 task,	 involving	 alternating	 blocks	 (~6	 minutes)	 of	 a	 moving	

checkerboard	 (STIM)	 and	 =ixation	 cross	 (REST)	 (Figure	 1A).	 Due	 to	 neurovascular	

coupling,	we	expected	 to	see	 increases	 in	CBF	and,	consequently,	 reductions	 in	OEF	 in	

visual	regions	in	response	to	visual	stimulation	(see	physiological	model	in	Figure	1B).	

This	is	due	to	the	large	increase	in	CBF	overcompensating	the	rise	in	oxygen	consumption,	

resulting	in	a	relative	decrease	in	oxygen	extraction.	This	mechanism	is	re=lected	in	an	

increased	 BOLD	 signal.	 Similarly,	 we	 expected	 increases	 in	 both	 oxygen	 and	 glucose	

metabolism	 (CMRO2	 and	 CMRglc,	 respectively),	 albeit	with	 less	 prominent	 increases	 in	

CMRO2.	 This	 is	 based	 on	 previous	 literature	 demonstrating	 an	 uncoupling	 of	 cerebral	

oxygen	and	glucose	metabolism	during	increased	neuronal	activation	(Fox	et	al.,	1988).	

Additionally,	we	acquired	a	BOLD	fMRI	task-localizer,	consisting	of	eight	30-second	task	

blocks,	alternating	between	REST	and	STIM.	Mean	values	at	baseline	of	all	quantitative	

parameter	maps	were	in	physiologically	plausible	ranges	(see	Table	1).	

	

	

Table	1	

Baseline	(REST)	values,	mean	(SD)	across	subjects,	within	GM.	

R2’	
[1/s]	

CBV	
[%]	

OEF	
[ratio]	

CBF	
[ml/100g/min]	

CMRO2	
[μmol/100g/min]	

CMRglc	
[μmol/100g/min]	

8.1	
(2.2)	

5.5	
(0.3)	

0.51	
(0.17)	

54.1	
(8.9)	

172.5	
(30.7)	

32.8	
(6.4)	
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Figure	1.	Data	acquisition	and	underlying	physiological	parameters.	A.	 Image	acquisition	protocol.	PET	
and	 MR	 data	 were	 acquired	 simultaneously.	 Following	 the	 FDG	 bolus	 injection,	 the	 radiotracer	 was	
continuously	 infused	 at	 a	 constant	 rate	 throughout	 the	 entire	 duration	 of	 the	 PET	 scan	 (green	 box).	
Concurrent	MR	 acquisition	 (blue	 box)	 included	mqBOLD	 sequences.	 Participants	were	 presented	with	
alternating	blocks	of	a	moving	checkerboard	and	a	5ixation	cross.	Finally,	we	acquired	BOLD	localizer	data	
as	well	as	the	two	DSC	scans,	involving	the	administration	of	a	gadolinium-based	contrast	agent.	The	entire	
imaging	 protocol	 took	 approximately	 90	 minutes.	B	 &	 C.	 The	 physiological	 BOLD	model.	 Heightened	
neuronal	activation	results	in	an	increase	in	energy	demand.	In	response,	CBF	and	CBV	are	increased,	with	
large,	 overcompensating	 CBF	 increases	 eventually	 leading	 to	 a	 reduction	 in	 OEF	 and	 deoxy-Hb.	 The	
reductions	 in	 deoxy-Hb	 can	 be	 detected	 as	 changes	 in	 the	 BOLD	 signal.	 CMRO2	 and	 CMRglc	 typically	
increase	 in	 response	 to	 neuronal	 activity,	 albeit	 to	 different	 extents.	 This	 relationship	 is	 known	 as	
neurometabolic	coupling.	D.	The	fPET	signal,	being	independent	of	changes	in	oxygenation,	re5lects	glucose	
consumption.	Shown	here	is	the	CMRglc	median	map	averaged	across	17	participants	in	standard	space.	
E.	Multiparametric	quantitative	BOLD	(mqBOLD).	Quanti5ication	of	transverse	relaxation	times	T2	and	T2*,	
combined	with	measurements	of	cerebral	blood	volume	(CBV)	and	cerebral	blood	5low	(CBF)	allow	for	full	
quanti5ication	of	CMRO2.	Resulting	parameter	maps	yield	voxelwise	CMRO2	values	 in	μmol/100g/min.	
Using	these	calculation	steps	in	the	present	study,	we	are	able	to	quantify	CMRO2	in	REST	and	STIM.	Axial	
slices	 show	parameter	maps	 in	REST,	 averaged	across	16	 subjects	 in	 standard	 space,	non-thresholded.	
Boxplots	show	median	GM	values	per	subject	in	standard	space.		
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SigniPicant	group	level	changes	in	response	to	visual	stimulation	
	 In	all	parameters	of	interest,	PLS	analyses	revealed	signi=icant	changes	in	response	

to	visual	stimulation,	indicated	by	a	signi=icant	=irst	latent	variable	for	BOLD,	CBF,	OEF,	

CMRO2	(p<0.001)	and	CMRglc	(p<0.01).	We	found	signi=icant	increases	in	visual	regions	

(both	visual	regions	from	the	17	network	parcellation	atlas	(Thomas	Yeo	et	al.,	2011))	in	

BOLD,	CBF,	CMRO2	and	CMRglc,	while	the	OEF	was	reduced	in	these	areas	(see	Figure	2A).	

Hence,	the	directions	of	change	were	as	expected.	OEF	decreases	were	most	likely	due	to	

an	 overcompensation	 of	 CBF,	 thereby	 delivering	more	 oxygen	 than	 required	 to	 active	

regions.	Consequently,	the	relative	amount	of	oxygen	extracted	from	the	blood	decreases.	

Within	the	visual	areas,	changes	in	BOLD,	CBF	and	OEF	were	more	extended	compared	to	

the	rather	focal	increases	in	CMRO2	and	CMRglc.	Furthermore,	the	=irst	latent	variable	of	

the	CBF	data	indicated	signi=icant	=low	decreases	across	the	cortex	outside	of	visual	ROIs,	

suggesting	a	=low	redistribution	towards	visual	areas	upon	visual	stimulation.	A	similar	

pattern,	although	less	pronounced,	can	be	observed	in	the	CMRO2	data,	probably	driven	

by	the	aforementioned	CBF	alterations.	In	some	isolated	regions,	we	also	observed	OEF	

reductions	across	the	cortex.	Changes	in	BOLD	and	CMRglc	are	restricted	to	the	examined	

visual	regions,	outlined	by	the	black	contour	(see	Figure	2A,	right	column).		

	 Next,	 we	 created	 BOLD	 and	 PET	 masks	 (containing	 2833	 and	 237	 voxels,	

respectively)	from	the	respective	signi=icant	activation	voxels	and	used	them	to	mask	the	

parameter	maps.	 Figure	 2B	 depicts	 the	 distribution	 across	 these	masks,	with	median	

across	subjects,	alongside	median	delta	and	percent-change	values.	To	test	for	signi=icant	

changes	across	subjects	in	all	parameters	during	STIM,	we	calculated	median	values	per	

subject	within	each	ROI,	based	on	the	individually	thresholded	parameter	maps,	see	Table	

2	and	Methods.	In	response	to	visual	stimulation,	we	found	BOLD	increases	of	1.2%	and	

2.5%	 in	 the	BOLD	 and	PET	 group	ROIs,	 respectively.	Within	 the	 same	ROIs	we	 tested	

whether	there	were	concomitant	changes	in	CBF,	CMRO2	and	CMRglc.	We	found	signi=icant	

increases	 in	 CBF	 and	 CMRglc	 in	 both	 ROIs	 (see	 Table	 2).	 CMRO2	 increases	 were	 not	

statistically	signi=icant	across	subjects	within	the	depicted	ROIs	(p=0.09	and	p=0.06	for	

BOLD	and	PET	ROIs,	respectively,	see	Table	2).	
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Table	2	

Mean	values	(SD)	across	subjects	within	BOLD	and	PET	ROIs.	

ROI	 BOLD	
[%]	

	 CBF	
[ml/100g/min]	

	

	 CMRO2	
[µmol/100g/min]	

	 CMRglc	
[µmol/100g/min]	

	 	 	 REST	 ΔCBF	 	 REST	 ΔCMRO2	 	 REST	 ΔCMRglc	

BOLD

-ROI	

1.2%	 	 50.4	(10.9)	 6.9**	

(4.6)	
	

14.5%	

	 183.8	

(43.7)	

7.5	

(16.2)	
(p=0.09)	
4.3%	

	 34.7	

(8.9)	

6.5**	

(4.1)	
	

19.4%	

PET-

ROI	

2.5%	 	 53.7	(12.2)	 14.3**	

(8.6)	
	

26.7%	

	 193.6	

(49.1)	

17.8	

(34.3)	
(p=0.06)	
9.0%	

	 35.0	

(8.5)	

14.7	

(9.6)	
	

40.5%	

Note.	This	table	shows	mean	and	SD	values	across	subjects	within	both	group	ROIs	during	REST	(baseline),	
as	well	 as	 absolute	 delta	 and	 percent	 change	 values	 for	 STIM	minus	REST).	 The	 exact	 calculations	 are	
outlined	 above.	 Signi5icance	 was	 tested	 on	 REST	 vs.	 STIM	 median	 subject	 values	 with	 paired	 t-tests.	
Signi5icance	of	ΔCMRglc	within	the	PET-ROI	was	not	tested,	as	this	would	be	circular	reasoning.	**p<0.001.	
	

Across	 subjects,	 in	 native	 space	 ROIs	 obtained	 from	 =irst	 level	 GLM	 results,	 in	

contrast	to	group	ROIs	derived	from	PLS	in	Table	2,		the	BOLD	signal	increased	on	average	

(median)	by	1.67%.	CMRglc	increased	on	average	by	19.2%	in	STIM	vs.	REST	(p<0.001)	

and	CBF	increased	about	14.38%	(p<0.001).	However,	despite	CMRO2	increasing	by	4.3%	

on	 average	within	 these	 ROIs,	 the	magnitude	was	 not	 statistically	 signi=icant	 (p=0.1).	

Lastly,	OEF	decreased	by	8.23%	(p<0.001).	
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Figure	2.	Group	level	results	for	REST	vs.	STIM.	A.	Statistical	maps	of	the	PLS	results	for	the	1st	latent	
variable	 per	 imaging	 parameter	 contrasting	 STIM	 to	 REST	 conditions.	 The	 1st	 latent	 variable	 was	
signi5icant	for	all	parameters	(CMRglc:	p<0.01,	else:	p<0.001).	The	color	gradient	denotes	the	bootstrap	
ratio	(BSR),	with	red	voxels	 indicating	STIM	>	REST	and	blue	voxels	REST	>	STIM.	Left	column:	Non-
thresholded	BSR	maps	per	parameter.	Right:	Axial	slices	showing	statistical	maps	with	BSR	thresholded	
at	±2,	corresponding	to	p<0.05.	The	black	contour	marks	visual	regions	A	and	B	from	the	17	network	
parcellation	 according	 to	 Yeo	 et	 al.	 (2011).	 Within	 visual	 areas,	 we	 found	 signi5icant	 effects	 in	 all	
parameters,	with	 increases	 in	BOLD,	CBF,	CMRO2	and	CMRglc,	and	decreases	 in	OEF.	B.	Absolute	and	
percent	change	(delta	values)	for	all	parameters	across	subject-averaged	voxels	within	the	BOLD	and	PET	
group	visual	ROIs	(containing	2833	and	237	voxels,	respectively)	as	well	as	across	subjects	within	native-
space	BOLD	visual	ROIs,	resulting	from	a	GLM	1st	 level	analysis.	Within	these	masks,	CBF	and	CMRglc	
showed	signi5icant	increases	in	STIM	compared	to	REST,	while	OEF	decreased.	CMRO2	increased,	too,	but	
not	signi5icantly.		
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SigniPicant	reductions	in	OGI	in	response	to	visual	stimulation	
	 As	a	next	step,	we	calculated	the	oxygen-to-glucose	index	(OGI)	in	REST	and	STIM.	

The	 OGI	 serves	 as	 a	 measure	 of	 oxidative	 and	 non-oxidative	 glucose	 metabolism.	 In	

theory,	6	moles	of	oxygen	are	required	to	fully	oxidize	1	mole	of	glucose.	Thus,	an	OGI	of	

approximately	6	implies	oxidative	glucose	metabolism,	whereas	an	OGI	of	<6	suggests	the	

presence	of	non-oxidative	glucose	metabolism.	We	calculated	the	OGI	in	native	space,	as	

described	 in	 the	methods	 section.	Results	 are	based	on	one	median	value	per	 subject	

within	whole-brain	GM	as	well	as	within	the	BOLD	and	PET	group	masks	(see	Figure	3A).	

Intriguingly,	 in	 all	 three	 masks	 (whole-brain	 GM,	 BOLD,	 PET),	 the	 mean	 OGI	 across	

subjects	in	REST	equals	6.0.	This	corresponds	exactly	to	the	theoretical	value	of	oxidative	

glucose	metabolism,	where	6	moles	of	oxygen	oxidize	1	mole	of	glucose.	Moreover,	in	all	

three	masks,	we	=ind	signi=icant	OGI	decreases	in	STIM	compared	to	REST	(OGISTIM	=	5.6,	

p<0.05;	 OGISTIM	 =	 5.3,	 p<0.01;	 OGISTIM	 =	 4.7,	 p<0.001	 for	whole-brain,	 BOLD	 and	 PET	

masks,	 respectively)	 (see	Figure	3A).	The	 largest	drop	occurs,	 as	expected,	 in	 the	PET	

mask	and	amounts	to	a	decrease	of	21.6%.		

	

Uniform	OGI	across	networks	

Additionally,	 we	 calculated	 the	 OGI	 per	 brain	 network	 as	 described	 above.	

Previous	 studies	 examining	 the	uniformity	of	 the	OGI	 across	brain	networks	 reported	

discrepant	 results.	 While	 some	 results	 suggest	 uniform	 OGI	 distributions	 across	 GM	

(Hyder	et	al.,	2016),	other	researchers	analyzing	the	same	data,	but	accounting	for	within-

subject	 effects,	 report	 differences	 between	 brain	 networks,	 particularly	 between	 the	

visual	and	default	mode	network	(Blazey,	Snyder,	Su,	et	al.,	2018).	In	the	present	data,	we	

=ind	no	differences	in	mean	OGI	between	networks,	both	in	REST	and	in	STIM	(see	Figure	

3B).	This	is	in	favor	of	the	idea	of	a	uniform	OGI	across	GM.	However,	our	data	show	quite	

large	variance,	necessitating	caution	in	ultimate	result	interpretation.		
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As	described	in	the	methods	section,	CBV	values	were	corrected	for	arterial	CBV	

increase.	 This	 means	 we	 only	 considered	 30%	 of	 CBV	 increase	 for	 OEF	 and	 CMRO2	

calculations.	The	results	shown	here	are	all	based	on	this	correction.	

	

	

Discussion	
	 In	the	present	study	we	combined	multiparametric	quantitative	BOLD	(mqBOLD)	

and	18F-FDG	functional	PET	(fPET)	on	a	hybrid	PET-MR	scanner	to	simultaneously	acquire	

cerebral	metabolic	rates	of	oxygen	and	glucose	(CMRO2	and	CMRglc,	respectively)	during	

visual	stimulation	(STIM)	and	rest	(REST)	within	a	single	scanning	session.	For	the	=irst	

Figure	 3.	 Oxygen-to-glucose	 index	 (OGI)	 across	 conditions.	 OGI	 was	 calculated	 in	 native	 space	 and	
corrected	 for	outliers,	as	described	previously.	For	analyses	within	group	masks,	native	OGI	maps	were	
registered	into	standard	space.	Analyses	on	network	level	were	entirely	performed	in	native	space.	A.	OGI	
in	REST	and	STIM	for	whole-brain	GM	as	well	as	within	BOLD	and	PET	group	masks.	In	REST,	the	OGI	was	
equal	 to	 6.0	 in	 each	 of	 the	 three	masks,	 corresponding	 exactly	 to	 the	 theoretical	 value	 expected	 from	
oxidative	glucose	metabolism.	In	all	three	masks,	the	OGI	dropped	signi5icantly	during	STIM	compared	to	
REST	(p<0.05,	p<0.01,	p<0.001,	respectively).	B.	OGI	within	brain	networks	(Yeo	et	al.,	2011).	Our	results	
do	not	suggest	any	differences	in	mean	OGI	between	networks	in	both	REST	and	STIM.	In	all	networks,	the	
OGI	drops	from	REST	to	STIM.	Network	abbreviations:	VIS	≙	visual,	DAN	≙	dorsal	attention,	FPN	≙	fronto-
parietal/control,	 VAN	≙	 ventral	 attention/salience,	 SMN	≙	 somatomotor,	DMN	≙	default	mode,	 LIM	≙	
limbic	(excluded	here).		
	



	106	

time,	we	showed	that	it	is	possible	to	measure	CMRO2	and	CMRglc	concurrently.	Validating	

this,	results	showed	signi=icant	increases	in	both	parameters	in	visual	areas	during	STIM	

compared	to	REST	(see	Figure	2A).	These	increases	were	accompanied	by	focal	increases	

in	CBF	and	the	BOLD	signal	as	well	as	OEF	decreases	in	visual	ROIs.	Further,	we	found	

widespread	reductions	of	CBF	across	 the	cortex	(except	 for	visual	areas),	 suggesting	a	

redirection	of	blood	=low	towards	visual	regions	during	STIM.		

	 Within	 the	 group	masks,	we	 do	 not	 =ind	 signi=icant	 increases	 of	 CMRO2	 during	

STIM.	 With	 4-9%	 change,	 CMRO2	 increases	 are	 smaller	 than	 we	 expected	 based	 on	

literature	 (Davis	 et	 al.,	 1998;	 Donahue	 et	 al.,	 2009;	 Kim	 et	 al.,	 1999).	 Similarly,	 CBF	

increases	(15-27%)	were	also	smaller	than	expected	(Kim	et	al.,	1999;	Mintun	et	al.,	2001;	

Newberg	et	al.,	2005),	suggesting	that	CBF	could	be	the	 limiting	 factor	 in	weak	CMRO2	

increases.	We	 suspect	 our	 CBF	 data	 to	 be	 too	 noisy,	 primarily	 resulting	 from	 the	 12-

channel	coil	used	in	our	study.	OEF,	BOLD	and	CMRglc	alterations	are	well	within	ranges	

reported	in	previous	literature	(W.	Chen	et	al.,	1993;	Davis	et	al.,	1998;	Mintun	et	al.,	2001;	

Newberg	et	al.,	2005;	Vlassenko	et	al.,	2006).	

	 Our	baseline	CMRO2	value	of	172.5	μmol/100g/min	(see	Table	1)	is	in	the	upper	

range	 compared	 to	 other	 studies	 =inding	 baseline	 CMRO2	 medians	 of	 ~130	

μmol/100g/min	(Epp	et	al.,	2023;	Raichle	et	al.,	2001).	Here,	the	key	factor	seems	to	be	

the	chosen	method	for	T2-mapping.	Initially	for	mqBOLD,	2D	turbo	spin	echo	sequences	

were	utilized,	leading	to	a	GM	CMRO2	mean	value	of	174.94	μmol/100g/min	(Christen	et	

al.,	2012,	p.	201),	which	matches	well	with	our	data.	However,	a	2D	TSE	sequence	has	

been	suggested	to	introduce	stimulated	echoes	that	distort	T2	relaxation,	leading		to	too	

high	T2,	R2’	and,	ultimately,	in=lated	CMRO2	values.	More	recently,	it	has	been	suggested	

to	employ	a	3D	GRASE	sequence	for	T2-mapping	to	reduce	this	transverse	relaxation	bias	

(Kaczmarz	 et	 al.,	 2020).	 Studies	 reporting	 baseline	 CMRO2	 values	 around	 130	

μmol/100g/min	usually	use	T2-GRASE	imaging	(Epp	et	al.,	2023).	Thus,	our	CMRO2	values	

might	be	slightly	in=lated	due	to	the	TSE	sequence.	

Next	to	alterations	in	individual	imaging	parameters,	we	calculated	the	oxygen-to-

glucose	index	(OGI)	in	both	REST	and	STIM	within	group	masks	as	well	as	per	network.	

The	 OGI	 represents	 the	 molar	 ratio	 of	 oxygen	 and	 glucose	 consumption,	 thereby	

providing	 information	 about	 oxidative	 and	 non-oxidative	 glucose	 metabolism.	 Purely	

oxidative	 glucose	metabolism	 leads	 to	 an	 OGI	 of	 6,	 while	 values	 below	 6	 suggest	 the	

presence	 of	 non-oxidative	 glucose	 metabolism.	 The	 latter	 has	 been	 found	 during	
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increased	 neuronal	 activity,	 with	 =irst	 studies	 suggesting	 an	 OGI	 drop	 of	 90%	 during	

stimulation	(Fox	et	al.,	1988).	Subsequent	studies	still	suggested	an	OGI	decrease	upon	

increased	 energy	 demand	 but	 not	 as	 large	 as	 previously	 reported	 (Davis	 et	 al.,	 1998;	

Donahue	et	al.,	2009;	Kim	et	al.,	1999).		

Our	results	showed	a	baseline	OGI	of	6.0,	both	on	a	whole-brain	level	as	well	as	

within	 visual	 ROIs.	 This	 corresponds	 exactly	 to	 the	 theoretical	 value	 of	 6	 for	 purely	

oxidative	glucose	metabolism.	Past	studies	reported	a	resting	OGI	of	around	5.5	(Blazey,	

Snyder,	 Goyal,	 et	 al.,	 2018;	 Hyder	 et	 al.,	 2016;	 Shulman	 et	 al.,	 2001).	 Considering	 our	

slightly	 in=lated	CMRO2	values,	 it	 is	 likely	 that	our	 true	baseline	OGI	values	are	slightly	

below	 6	 and	 thus	 within	 the	 range	 of	 previously	 reported	 numbers.	 Moreover,	 we	

observed	a	signi=icant	reduction	in	OGI	in	response	to	visual	stimulation,	again	both	on	a	

whole-brain	level	(6.6%)	as	well	as	within	visual	ROIs	(11.6-21.6%).	As	percent	values	

normalized	by	baseline	CMRO2,	these	numbers	are	not	affected	by	the	in=lation	of	CMRO2	

values.	Further,	our	results	suggest	uniform	OGI	values	across	networks,	both	in	rest	as	

well	as	under	visual	stimulation.	This	is	in	line	with	a	previous	study	(Hyder	et	al.,	2016)	

but	 contradicts	 another	 (Blazey,	 Snyder,	 Su,	 et	 al.,	 2018).	Our	data	 show	 large	 across-

subject	 variance	 with	 medium	 sample	 size,	 though,	 necessitating	 caution	 in	 ultimate	

result	interpretation.		

	

Limitations	
	 While	 our	 study	 offers	 interesting	 insights	 into	 the	 brain’s	 oxygen	 and	 glucose	

dynamics	as	well	as	promising	results	for	future	studies,	some	limitations	must	be	noted.	

First	 of	 all,	 as	 mentioned	 before,	 even	 though	 we	 measured	 CBV	 directly,	 we	 had	 to	

estimate	venous	CBV	changes.	We	estimated	 them	to	be	30%	of	 total	CBV	changes,	as	

suggested	by	a	previous	ultrahigh	=ield	MRI	study	(Huber	et	al.,	2014).	For	future	studies,	

we	encourage	researchers	 to	measure	venous	CBV,	 for	 instance	via	speci=ic	multi-echo	

VASO	(vascular	space	occupancy)	techniques	such	as	SS-SI-VASO	(Huber	et	al.,	2014),	the	

VERVE	technique	(venous	refocusing	for	volume	estimation)	(J.	J.	Chen	&	Pike,	2010),	or	

by	combining	LL-FAIR	(Look-Locker	=low-sensitive	alternating	inversion	recovery)	with	

contrast-agent	 techniques	 to	measure	 both	 total	 and	 arterial	 CBV	 (Wesolowski	 et	 al.,	

2019).	Second,	while	we	were	able	to	employ	both	mqBOLD	and	fPET	on	a	simultaneous	

PET-MR	scanner,	the	SNR	was	limited	by	a	12-channel	coil.	We	strongly	recommend	using	

a	32-channel	coil	if	possible.	It	must	be	noted	that	changes	in	(total)	CBV	and	CBF	within	
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the	BOLD	ROI	 in	our	data	are	both	around	12%.	Yet,	 the	CBV	and	CBF	 increases	exert	

opposite	effects	on	the	direction	of	CMRO2	changes,	thus	diminishing	CMRO2	effects.	We	

assume	that	measuring	venous	CBV	changes	together	with	a	pCASL	sequence	with	higher	

sensitivity	for	task-induced	changes,	would	have	resulted	in	higher	delta	CMRO2	values,	

comparable	to	values	reported	in	the	literature.	Third,	as	discussed,	using	a	TSE	sequence	

for	T2	mapping	leads	to	in=lated	CMRO2	values.	There	are	corrections	for	these	in=lations	

(Nöth	et	al.,	2017),	requiring	additional	acquisition	of	B1	and	B0	gre=ield	mapping.		

	

Conclusion	
	 In	 the	 present	 study,	 we	 were	 able	 to	 quantify	 cerebral	 oxygen	 and	 glucose	

metabolism	simultaneously	and	dynamically.	Validating	this,	we	found	changes	in	CMRglc,	

CMRO2,	CBF,	OEF	and	BOLD	in	visual	areas	during	visual	stimulation.	Further,	we	observed	

decreases	 in	OGI	 upon	 visual	 stimulation	 of	 11.6-21.6%	 in	 visual	 ROIs,	 suggesting	 an	

increase	 in	 non-oxidative	 glucose	metabolism	 during	 increased	 neuronal	 activity.	 The	

complex	 setup	 of	 the	 study	 comes	 with	 some	 methodological	 hurdles	 to	 which	 we	

provided	possible	solutions	in	order	to	avoid	them	in	the	future.	The	unique	combination	

of	mqBOLD	and	fPET	described	here	has	the	potential	to	be	applied	to	various	studies,	

furthering	knowledge	about	underlying	mechanisms	of	energy	metabolism	in	the	human	

brain.			
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Liem,	 F.,	 Jacoby,	N.,	 Stojić,	H.,	 Cieslak,	M.,	Urchs,	 S.,	…	Gorgolewski,	K.	 J.	 (2020).	



	112	

Analysis	of	task-based	functional	MRI	data	preprocessed	with	fMRIPrep.	Nature	

Protocols,	15(7),	2186–2202.	https://doi.org/10.1038/s41596-020-0327-3	

Feng,	D.,	Huang,	S.-C.,	&	Wang,	X.	(1993).	Models	for	computer	simulation	studies	of	input	

functions	 for	 tracer	 kinetic	 modeling	 with	 positron	 emission	 tomography.	

International	 Journal	 of	 Bio-Medical	 Computing,	 32(2),	 95–110.	

https://doi.org/10.1016/0020-7101(93)90049-C	

Fick,	 A.	 (1870).	 Ueber	 die	 Messung	 des	 Blutquantums	 in	 den	 Herzventrikeln.	

Sitzungsberichte	Der	Physikalisch-Medizinischen	Gesellschaft	Zu	Würzburg,	16.	

Fox,	P.,	&	Raichle,	M.	E.	(1986).	Focal	physiological	uncoupling	of	cerebral	blood	=low	and	

oxidative	 metabolism	 during	 somatosensory	 stimulation	 in	 human	 subjects.	

Proceedings	 of	 the	 National	 Academy	 of	 Sciences,	 83(4),	 1140–1144.	

https://doi.org/10.1073/pnas.83.4.1140	

Fox,	P.,	Raichle,	M.,	Mintun,	M.,	&	Dence,	C.	 (1988).	Nonoxidative	glucose	consumption	

during	 focal	 physiologic	 neural	 activity.	 Science,	 241(4864),	 462–464.	

https://doi.org/10.1126/science.3260686	

Fujita,	N.,	Matsumoto,	K.,	Tanaka,	H.,	Watanabe,	Y.,	&	Murase,	K.	(2006).	Quantitative	study	

of	 changes	 in	 oxidative	 metabolism	 during	 visual	 stimulation	 using	 absolute	

relaxation	 rates.	 NMR	 in	 Biomedicine,	 19(1),	 60–68.	

https://doi.org/10.1002/nbm.1001	

Germuska,	M.,	Chandler,	H.	L.,	Stickland,	R.	C.,	Foster,	C.,	Fasano,	F.,	Okell,	T.	W.,	Steventon,	

J.,	 Tomassini,	 V.,	 Murphy,	 K.,	 &	 Wise,	 R.	 G.	 (2019).	 Dual-calibrated	 fMRI	

measurement	 of	 absolute	 cerebral	 metabolic	 rate	 of	 oxygen	 consumption	 and	

effective	 oxygen	 diffusivity.	 NeuroImage,	 184,	 717–728.	

https://doi.org/10.1016/j.neuroimage.2018.09.035	

Gorgolewski,	K.,	Burns,	C.	D.,	Madison,	C.,	 Clark,	D.,	Halchenko,	Y.	O.,	Waskom,	M.	L.,	&	

Ghosh,	S.	S.	(2011).	Nipype:	A	Flexible,	Lightweight	and	Extensible	Neuroimaging	

Data	 Processing	 Framework	 in	 Python.	 Frontiers	 in	 Neuroinformatics,	 5.	

https://doi.org/10.3389/fninf.2011.00013	



	 113	
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4	General	discussion		
	 In	the	present	thesis,	I	examined	the	dynamics	of	oxygen	and	glucose	metabolism	

in	the	human	brain.	As	one	of	the	energetically	most	expensive	organs,	the	brain	primarily	

relies	on	oxidized	glucose	as	its	fuel.	Given	that	it	does	not	possess	large	energy	storage	

capacities,	it	depends	on	a	constant	supply	of	oxygen	and	glucose.	To	further	understand	

the	implications	of	this	dependency,	the	=irst	project	investigated	how	reduced	availability	

of	glucose	affects	cerebral	metabolism	of	oxygen.	Subsequently,	the	second	project	aimed	

to	expand	on	current	methodologies	by	introducing	a	novel	possibility	to	concurrently	

measure	glucose	and	oxygen	consumption	dynamically,	thereby	providing	opportunities	

for	 future	 studies	 to	 investigate	 oxidative	 glucose	 metabolism	 more	 reliably.	 In	 the	

following,	 I	 will	 discuss	 implications	 of	 the	 individual	 projects	 as	 well	 as	 how	 their	

respective	=indings	interconnect.	

	

4.1	Implications		
	 Given	its	heavy	reliance	on	ATP	production	for	sustaining	healthy	functioning,	the	

body	has	developed	 several	 fallback	 systems	 to	 ensure	 energy	homeostasis	 even	 if	 its	

primary	fuel,	oxidized	glucose,	 is	 insuf=iciently	available.	 In	cases	of	prolonged	glucose	

de=iciency,	 it	 can,	 for	 instance,	 synthesize	 new	 glucose	 (gluconeogenesis),	 consume	

glucose	storages	(glycogenolysis)	or	utilize	alternative	substrates,	such	as	ketone	bodies	

and	fatty	acids	for	ATP	production	(Bartlett	&	Eaton,	2004;	Exton	et	al.,	1972;	Krebs,	1966;	

X.	Zhang	et	al.,	2019).	What	was	unknown,	though,	 is	whether	the	brain,	 in	the	face	of	

glucose	de=iciency,	utilizes	similar	mechanisms	to	maintain	energy	balance,	whether	 it	

maintains	glucose	metabolism	entirely	or	whether	it	decreases	its	energy	metabolism,	at	

least	in	part.	According	to	the	Sel=ish	Brain	Theory,	the	brain	prioritizes	its	own	energy	

requirements,	often	coming	at	the	expense	of	other	bodily	systems	(Peters	et	al.,	2004,	

2022).	In	this	context,	studies	examining	brain	glucose	uptake	during	hypoglycemia	found	

decreases	of	cerebral	metabolic	rates	of	glucose	(CMRglc)	under	low	blood	glucose	levels	

(T.	M.	Blazey	&	Raichle,	 2019;	Boyle	 et	 al.,	 1994).	 It	was	unclear	whether	 this	 =inding	

implies	a	general	 reduction	 in	brain	glucose	metabolism,	possibly	as	an	energy-saving	

measure,	or	whether	the	brain	utilizes	alternate	energy	substrates	for	ATP	production.	

The	=irst	manuscript	presented	in	this	thesis	addressed	this	exact	question:	Does	cerebral	

energy	metabolism	decrease	during	hypoglycemia	or	is	it	maintained,	most	likely	by	the	
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utilization	of	other	 substrates?	To	 this	end,	we	measured	cerebral	oxygen	metabolism	

during	hypoglycemia	and	euglycemia,	using	mqBOLD,	a	novel	MR	technique	to	quantify	

the	cerebral	metabolic	rate	of	oxygen	(CMRO2)	by	acquiring	data	on	blood	oxygenation,	

cerebral	blood	volume	(CBV)	and	cerebral	blood	=low	(CBF)	separately	(Christen	et	al.,	

2012;	Hirsch	et	al.,	2014;	Kaczmarz	et	al.,	2020).	Results	showed	steady	levels	of	CMRO2	

during	hypoglycemia,	 suggesting	maintained	cerebral	energy	metabolism	via	alternate	

energy	substrates.	This	conclusion	can	be	drawn	because	alternate	substrates	(e.g.	ketone	

bodies,	 fatty	 acids,	 astrocytic	 glycogen)	 still	 need	 to	 be	 oxidized	 for	 ATP	 production.	

Decreased	levels	of	CMRglc	together	with	steady	levels	of	CMRO2	thus	imply	the	oxidation	

of	different	substrates.	

	

4.1.1	Alternative	oxidative	energy	pathways		

While	our	results	suggest	that	cerebral	energy	metabolism	is	maintained	by	the	

utilization	 of	 alternative	 substrates,	 our	 data	 cannot	 provide	 information	 on	 which	

speci=ic	substrates	are	metabolized	to	which	extent.	In	response	to	periods	of	starvation,	

the	body	typically	uses	fatty	acids,	ketone	bodies	and	glycogen	in	addition	to	the	limited	

levels	of	glucose	as	fuels	for	energy	production.		

Fatty	 acids	 (FAs)	 are	 released	 from	 triglycerides	 in	 adipose	 tissue	 and	 then	

undergo	beta-oxidation,	 thereby	producing	acetyl-CoA,	which	enters	 the	TCA	cycle	 for	

ATP	production.	Some	organs	with	high	energetic	costs,	such	as	the	heart,	largely	rely	on	

beta-oxidation	for	energy	provision	(Lopaschuk	et	al.,	2010).	The	brain,	being	one	of	the	

energetically	 most	 expensive	 organ,	 has	 been	 found	 to	 be	 able	 to	 oxidize	 and	 even	

synthesize	FAs	in	its	glial	cells	(Aizawa	et	al.,	2016;	Garcia	Corrales	et	al.,	2021).	However,	

relative	to	other	organs	with	high	energetic	turnovers,	the	brain	relies	on	FAs	to	a	smaller	

extent	(Schönfeld	&	Reiser,	2013).	This	is	in	part	due	to	the	slow	transportation	of	FAs	

across	the	blood	brain	barrier	(BBB)	(Alberghina	et	al.,	1993)	and	relatively	slow	rates	of	

beta-oxidation,	 implying	 an	 inability	 of	 FA	metabolism	 to	 quickly	 adapt	 to	 the	 rapidly	

changing	energy	requirements	of	the	central	nervous	system	caused	by	sudden	bursts	of	

activity	in	neurons.	Also,	beta-oxidation	requires	more	oxygen	to	produce	one	molecule	

of	ATP	than	any	other	energy	substrate,	making	them	unfavorable	for	the	brain.		

Under	prolonged	fasting,	in	addition	to	beta-oxidation,	the	liver	converts	FAs	into	

ketone	 bodies,	 which	 are	 highly	 ef=icient	 energy	 suppliers.	 Ketone	 bodies	 are	 water-
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soluble	and	can	readily	cross	the	BBB.	Neural	cells	are	able	to	take	up	ketone	bodies	and	

convert	 them	 into	acetyl-CoA,	which	 is	 subsequently	 fed	 into	 the	TCA	cycle.	While	 the	

majority	of	ketone	bodies	are	produced	in	the	liver	(Krebs,	1966),	astrocytes	have	been	

found	to	synthesize	ketone	bodies	from	FAs	as	well	(Auestad	et	al.,	1991;	Blázquez	et	al.,	

1998).	While	only	accounting	for	approximately	5%	of	cerebral	energy	metabolism	after	

an	overnight	fast	(Cunnane	et	al.,	2016),	ketone	bodies	can	cover	up	to	60%	of	the	brain’s	

energy	requirements	during	starvation	(Cahill,	2006).	Even	though	glucose	remains	the	

brain’s	primary	fuel,	research	showed	a	preference	of	the	brain	to	use	ketone	bodies	over	

glucose	when	both	substrates	are	available	 (Hasselbalch	et	al.,	1996).	Considering	 the	

brain’s	seemingly	high	af=inity	for	ketone	bodies	as	a	metabolic	fuel,	it	comes	naturally	to	

wonder	 why	 they	 are	 not	 utilized	 as	 a	 primary	 source	 of	 energy.	 This	 is	 due	 to	

continuously	high	levels	of	ketone	bodies	leading	to	ketoacidosis,	an	overacidi=ication	of	

the	body	(Ghimire,	2023).	This	is	a	known	dif=iculty	in	diabetes	mellitus	and	leads	to	a	

variety	of	adverse	symptoms	reaching	from	headaches	and	vomiting	to	coma	(Nyenwe	&	

Kitabchi,	2016).	Therefore,	while	ketone	bodies	can	be	a	highly	ef=icient	source	of	energy	

for	a	limited	period	of	time,	the	brain	still	relies	on	glucose	as	its	primary	and	default	fuel.		

In	addition	to	the	utilization	of	FAs	and	ketone	bodies,	lactate	is	another	valuable	

source	 of	 energy.	 As	 a	 byproduct	 of	 anaerobic	 cellular	 respiration,	 lactate	 was	 long	

considered	a	mere	waste	product.	More	recently,	however,	it	has	been	found	to	not	only	

fuel	increased	energy	demand	during	exercise	(van	Hall	et	al.,	2009)	but	also	to	be	utilized	

during	insuf=icient	energy	supply	(Lima	et	al.,	2015).	Lactate	is	produced	from	glucose	

and	can	be	shuttled	between	cells	to	ensure	energy	homeostasis.	As	such,	it	is	shuttled	

from	astrocytes	 to	 neurons	 in	 order	 to	 adjust	 to	 rapidly	 changing	 energy	 demands	 of	

neuronal	 activity	 (Pellerin	 &	Magistretti,	 1994).	While	 astrocytes	 can	 produce	 lactate	

acutely,	 they	can	also	store	glycogen	which,	 in	 the	 face	of	 insuf=icient	energy	supply,	 is	

released	in	the	form	of	lactate	(Brunet	et	al.,	2010;	Suzuki	et	al.,	2011).	In	line	with	the	

theory	that	the	brain	uses	up	glycogen	storages	under	hypoglycemia	(Ot z	et	al.,	2007),	a	

study	 found	 signi=icantly	 higher	 levels	 of	 lactate	 in	 the	 extracellular	 =luid	 in	 neuronal	

tissue	under	hypoglycemia	compared	to	plasma	lactate	levels	(Abi-Saab	et	al.,	2002).	With	

respect	to	amounts	of	glycogen	stored	in	astrocytes,	a	study	approximated	storages	to	last	

only	a	few	minutes	in	case	of	aglycemia	(Brown,	2004).	Under	hypoglycemia,	however,	an	

experiment	 in	 rats	 found	 glycogen	 to	 last	 for	 more	 than	 two	 hours,	 with	 glycogen	

replenishment	overcompensating	upon	restoration	of	euglycemia	(Choi	et	al.,	2003).		
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Most	 likely,	 during	 acute	 hypoglycemia,	 the	 brain	 utilizes	 each	 of	 the	

aforementioned	 energy	 substrates	 (glycogen,	 lactate,	 fatty	 acids,	 ketone	 bodies,	 spare	

glucose)	but	 it	 is	unclear	 to	which	degree	exactly.	The	subjective	extent	 to	which	each	

metabolite	 is	 used	 would	 probably	 depend	 on	 various	 factors,	 like	 metabolic	 health,	

physical	 condition,	 age	 or	 body	 composition	 as	 well	 as	 hypoglycemia	 severity	 and	

duration.	 It	 must	 be	 noted	 that	 elevated	 insulin	 levels	 have	 been	 found	 to	 inhibit	

ketogenesis	 (Laffel,	 1999).	 Under	 normal	 circumstances,	 that	 makes	 sense	 since	

increased	 insulin	 secretion	 is	 a	 consequence	 of	 increased	 blood	 glucose	 levels.	

Consequently,	 there	would	be	no	need	 to	provide	additional	 energy	 substrates.	 In	our	

study,	 however,	 hypoglycemia	was	 induced	 by	 hyperinsulinemia,	meaning	 that	 insulin	

levels	were	increased	despite	low	blood	glucose	levels.	From	our	data,	we	cannot	answer	

whether	the	presence	of	hypoglycemia	would	disinhibit	alternative	energy	pathways	even	

under	hyperinsulinemia	but	previous	data	shows	energy	supply	to	shift	from	glucose	to	

ketones	in	the	face	of	insulin	resistance	and	prolonged	hyperinsulinemia	(S.	Yang	et	al.,	

2015).	It	is	quite	likely	that	(astrocytic)	glycogen	is	utilized	during	acute	hypoglycemia	

since	glucagon,	the	hormone	promoting	glycogen	consumption,	is	increasingly	secreted	

during	 hypoglycemia	 (Gerich	 et	 al.,	 1975).	Moreover,	 due	 to	 their	 proximity,	 it	 seems	

logical	for	on-site	energy	storages	(i.e.	astrocytic	glycogen)	to	be	among	the	=irst	alternate	

energy	sources.	Also,	cerebral	glycogen	has	been	suggested	to	be	consumed	even	during	

increased	 energy	 demand	 caused	 by	 cognitive	 processes	 (Christie	 &	 Schrater,	 2015).	

Ketone	 bodies	 are	 likely	 to	 be	 utilized	 due	 to	 their	 rapid	metabolism	 (Edmond	 et	 al.,	

1987),	 particularly	 in	 comparison	 to	 fatty	 acids.	 Moreover,	 intravenous	 injections	 of	

ketone	bodies	have	shown	to	increase	CBF	(Hasselbalch	et	al.,	1996;	Svart	et	al.,	2018),	

which	=its	our	further	imaging	results.	Taken	together,	even	though	we	cannot	de=initely	

conclude	 which	 alternate	 substrates	 are	 utilized	 during	 hypoglycemia,	 it	 seems	most	

likely	 that	 the	brain	uses	astrocytic	glycogen	storages	and	 lactate,	as	well	as	 local	and	

peripheral	ketone	bodies	in	addition	to	the	remaining	glucose	to	fuel	its	ATP	production.	

Future	 studies	 are	 required	 to	 determine	 the	 exact	 extent	 to	 which	 each	 of	 these	

substrates	is	metabolized	in	the	face	of	hypoglycemia.	
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4.1.2	Effects	of	hypoglycemia	on	neurovasculature		

In	 response	 to	 hypoglycemia,	we	 found	 increased	 levels	 of	 CBF,	 particularly	 in	

higher	 cognitive	 brain	 networks.	 In	 the	 more	 severely	 hypoglycemic	 subgroup	

(<49mg/dl;	 de=ined	 as	 a	 threshold	 for	 neuroglycopenic	 symptoms	 by	 Mitrakou	 et	 al.	

(1991))	 we	 found	 CBF	 increases	 in	 all	 but	 the	 visual	 network.	 The	 exact	 underlying	

mechanisms	of	increased	blood	=low	rates	are	unknown	but	they	could	be	attributed	to	

increased	 levels	 of	 stress	 hormones,	 ketone	 bodies	 and	 in=lammatory	markers.	 Stress	

hormones,	 like	 epinephrine,	 have	 been	 shown	 to	 increase	 blood	 =low	 (Thomas	 et	 al.,	

1997)	and	in	our	study	epinephrine	increased	signi=icantly	in	response	to	hypoglycemic	

glucose	clamping.	Further,	elevated	levels	of	ketone	bodies	are	known	to	increase	blood	

=low	(Hasselbalch	et	al.,	1996).	Lastly,	blood	=low	rates	rise	in	response	to	in=lammation	

(Fassbender	et	al.,	1996).	Even	acute	hypoglycemic	periods	have	been	shown	to	induce	

in=lammatory	processes	(Iqbal	et	al.,	2019;	Ratter	et	al.,	2017),	suggesting	them	to,	at	least	

in	part,	cause	 the	CBF	 increases.	One	alternative	explanation	that	was	mentioned	only	

brie=ly	in	the	manuscript	is	that	the	CBF	enhancement	could	compensate	for	low	blood	

glucose	levels.	That	would	mean	that,	due	to	less	milligram	glucose	available	per	deciliter	

of	blood,	the	brain	increases	the	=low	rate.	This	explanation	may	seem	the	most	intuitive	

at	 =irst.	However,	 there	 are	 two	 counterarguments.	 First	 of	 all,	 if	 blood	 =low	 increases	

served	the	provision	with	additional	glucose,	CMRglc	levels	would	not	drop	to	the	extent	

they	 do	 (T.	 M.	 Blazey	 &	 Raichle,	 2019).	 Secondly,	 CBF	 increases	 resulting	 from	

hypoglycemia	 (in	our	 case	maximally	~6%)	are	weaker	 than	CBF	 increases	 caused	by	

increased	neuronal	activity	 (~30-50%)	(Davis	et	al.,	1998;	Fox	et	al.,	1988;	Kim	et	al.,	

1999;	Liu	et	al.,	2020).	In	case	of	neuronal	activation,	higher	=low	rates	partly	serve	the	

provision	 of	 tissues	 with	 nutrients,	 like	 oxygen	 and	 glucose,	 required	 to	 fuel	 the	

heightened	 energy	 demand.	 Although	 these	 CBF	 increments	 are	 usually	 larger	 than	

necessary,	it	seems	unlikely	that	a	=low	increase	of	merely	6%	would	primarily	serve	the	

provision	 with	 additional	 glucose,	 compensating	 for	 lower	 blood	 glucose	 levels	 with	

faster	=low.	Thus,	while	increased	CBF	surely	provides	more	glucose,	this	does	not	seem	

to	be	the	primary	reason	for	the	observed	CBF	increases.	

	 Next	 to	 CBF	 alterations,	 we	 observed	 reductions	 in	 OEF	 in	 the	 more	 severely	

hypoglycemic	 subgroup.	These	OEF	decreases	most	 likely	 re=lect	 the	 increases	 in	CBF,	

which	supply	the	brain	with	more	oxygen.	Consequently,	the	relative	amount	of	oxygen	

being	extracted	from	the	blood	decreases,	a	process	that	is	re=lected	in	the	BOLD	contrast.	
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Our	signi=icant	changes	in	CBF	and	OEF,	concomitant	with	no	changes	in	CMRO2,	illustrate	

that,	while	BOLD	fMRI	may	be	a	valid	method	for	estimating	blood	oxygenation	changes	

in	response	to	neuronal	activation,	one	should	be	careful	applying	it	to	investigations	of	

metabolism.	Our	data	suggest	OEF	to	re=lect	counterregulatory	mechanisms	in	response	

to	hypoglycemia	rather	than	changes	in	neuronal	activity	or	oxygen	consumption.		

	

4.1.3	Effects	of	restored	euglycemia	on	cognitive	function		

Even	 though	 the	brain	 seems	able	 to	keep	 its	 energy	metabolism	stable	during	

hypoglycemic	rest,	it	is	important	to	note	that	hypoglycemia	still	impacts	brain	function.	

Acute	hypoglycemia	has	consistently	been	found	to	impair	various	domains	of	cognition,	

with	memory	being	impaired	in	particular	(Sommer=ield	et	al.,	2003a,	2003b).	This	might	

be	 due	 to	 memory	 processes	 being	 especially	 energetically	 expensive,	 with	 glucose	

shuttling	from	glial	cells	to	neurons	playing	a	key	role	(McNay	et	al.,	2000).	Possibly,	these	

processes	are	inhibited	during	low	glucose	availability	(de	Tredern	et	al.,	2021).	Further,	

the	hippocampus,	one	of	the	most	crucial	brain	areas	for	memory	processing	(Dickerson	

&	 Eichenbaum,	 2010),	 has	 been	 found	 to	 be	 particularly	 vulnerable	 to	 hypoglycemia	

(Auer	1984;	Auer,	2004).		

In	 our	 study,	we	were	 interested	 in	whether	 these	 cognitive	 impairments	 only	

pertain	 to	 acute	 hypoglycemic	 episodes	 or	 are	 more	 enduring,	 while	 controlling	 for	

potential	 confounding	 effects	 of	 decreased	 attention.	 It	 is	 known	 that	 people	 with	

recurrent	 hypoglycemic	 episodes	 (as	 especially	 observed	 in	 diabetics)	 show	 general	

cognitive	 de=icits	 even	during	 euglycemia	 (Chen	 et	 al.,	 2017).	What	 remained	unclear,	

though,	 was	 whether	 hypoglycemia,	 when	 induced	 onetime	 and	 rather	 brie=ly,	 would	

impair	 cognition	 also	 in	 healthy	 people	 once	 they	 returned	 to	 normal	 glucose	 levels.	

Therefore,	 in	our	 study,	once	MR	scanning	was	completed,	we	 restored	or	maintained	

subjects’	 euglycemia	 (depending	 on	 whether	 they	 were	 hypoglycemic	 or	 euglycemic	

beforehand)	and	subsequently	 started	cognitive	 testing.	Here,	we	 tested	 for	de=icits	 in	

attention	as	well	as	memory	in	restored	euglycemia	compared	to	maintained	euglycemia.	

Our	data	 showed	no	 impairments	 in	 attention	or	 learning	under	 restored	euglycemia.	

However,	 24	 hours	 post	 intervention,	 subjects	 performed	 signi=icantly	 worse	 on	 the	

memory	test	when	euglycemia	was	restored	rather	than	maintained.	This	suggests	that	

previous	 hypoglycemia	 has	 an	 isolated	 effect	 on	 memory	 consolidation	 even	 though	
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learning	occurred	under	restored	euglycemia.	This	 is	most	 likely	caused	by	a	glycogen	

de=icits	post	hypoglycemia	(Ot z	et	al.,	2007)	since	the	breakdown	of	astrocytic	glycogen	

has	been	shown	to	be	crucial	for	memory	formation	(Boury-Jamot	et	al.,	2016).	Glycogen	

is	also	involved	in	de	novo	synthesis	of	glutamate,	a	neurotransmitter	that	is	essential	for	

sharp	wave	ripples	(SWRs)	(Behrens	et	al.,	2005;	Colgin	et	al.,	2004;	Maier	et	al.,	2003;	

Papatheodoropoulos	&	Kostopoulos,	2002).	As	oscillatory	patterns	of	neural	activity	in	

the	hippocampus	during	rest,	SWRs	are	 the	underyling	mechanism	of	memory	replay	

and,	with	that,	of	memory	consolidation.	It	was	found	that	memories	tagged	by	SWRs	

during	wakefulness	are	more	likely	to	be	replayed	during	sleep	(W.	Yang	et	al.,	2024).	

Subsequently,	these	are	the	memories	most	likely	to	be	consolidated	since	it	has	been	

shown	that	memory	replay	during	sleep,	particularly	mediated	by	ripples,	is	crucial	for	

memory	consolidation	(Schreiner	et	al.,	2023).	This	is	one	potential	explanation	of	how	

acutely	low	levels	of	glycogen/glutamate	can	impair	 long-term	memory	consolidation.	

Our	=indings	imply	that	altered	brain	function,	as	previously	demonstrated	during	acute	

hypoglycemia,	does	not	end	once	glycemic	levels	are	returned	to	baseline.	This	poses	the	

question	 of	 what	 happens	 in	 the	 brain	 after	 hypoglycemia	 and	 further	 validates	 our	

decision	to	perform	different	clamping	conditions	on	separate	days.	Contrasting	data	that	

has	 been	 acquired	 on	 different	 days	 can	 introduce	 confounds	 due	 to	 intersession	

variability.	 However,	 our	 data	 suggest	 that,	 due	 to	 enduring	 effects	 of	 hypoglycemia,	

acquiring	data	of	different	conditions	on	separate	days	is	inevitable.	The	only	alternative	

would	be	to	always	acquire	hypoglycemic	data	last,	but	that	introduces	order	effects,	that	

have	been	suggested	to	be	problematic	 in	metabolism	research	(Stapleton	et	al.,	1997;	

Tyler	et	al.,	1988).	

In	 this	 =irst	 project,	we	 found	 steady	 levels	 of	 cerebral	 oxygen	metabolism	and	

interpreted	these	=indings	as	an	uncoupling	between	oxygen	and	glucose	consumption	

during	 hypoglycemia.	 However,	 it	must	 be	 noted	 that	 our	 interpretations	 are	 entirely	

based	on	previous	literature	showing	substantial	drops	in	CMRglc	on	a	whole-brain	level.	

In	 the	present	 study,	we	did	not	measure	 cerebral	 glucose	metabolism	 in	 response	 to	

hypoglycemia.	 For	more	 reliable	 data	 as	 well	 as	 information	 about	 the	 extent	 of	 this	

potential	CMRO2/CMRglc	uncoupling,	it	would	be	necessary	to	measure	CMRO2	and	CMRglc	

simultaneously.	The	 second	manuscript	 in	 this	 thesis	demonstrates	how	 this	 could	be	

accomplished	in	future	studies.		
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4.1.4	Simultaneous	measurements	of	oxygen	and	glucose	metabolism	

	 The	second	study	presented	in	this	thesis	is	rather	a	methodological	and	proof-of-

concept	study.	Here,	we	combined	novel	neuroimaging	techniques	to	acquire	CMRO2	and	

CMRglc	simultaneously	within	a	single	scanning	session.	Just	like	in	the	=irst	study,	we	used	

mqBOLD	to	measure	CMRO2	(Christen	et	al.,	2012,	p.	201;	Hirsch	et	al.,	2014;	Kaczmarz	et	

al.,	2020).	For	acquisition	of	CMRglc	data,	we	applied	18F-FDG	functional	PET	(fPET)	(Hahn	

et	al.,	2016;	Jamadar,	Ward,	Carey,	et	al.,	2019;	Jamadar,	Ward,	Li,	et	al.,	2019;	Rischka	et	

al.,	2018;	Villien	et	al.,	2014).	In	PET	imaging	of	glucose	metabolism,	the	radiotracer	FDG	

is	 injected,	 which	 closely	 mimics	 glucose.	 FDG	 then	 accumulates	 in	 those	 cells	 with	

increased	glucose	metabolism	and	its	decay	can	be	picked	up	by	the	PET	scanner.	In	the	

past,	investigating	alterations	in	CMRglc	between	conditions	involved	separate	PET	scans	

on	separate	days.	This	 is	because	a	PET	tracer	 is	 typically	 injected	as	a	bolus	and	PET	

images	are	then	averaged	across	the	scanning	session.	In	fPET,	however,	after	an	initial	

bolus,	the	tracer	is	infused	continuously	at	a	constant	rate,	thereby	maintaining	a	steady-

state	 level	 of	 tracer	 in	 the	 bloodstream,	 allowing	 for	 dynamic	 imaging	 of	 glucose	

metabolism	 over	 an	 extended	 period.	 In	 this	 way,	 we	 were	 able	 to	 simultaneously	

measure	CMRO2	and	CMRglc	in	different	conditions	in	a	single	scanning	session.	To	the	best	

of	our	knowledge,	this	is	the	=irst	time,	these	neuroimaging	techniques	were	combined	

for	 concurrent	quanti=ications	of	 cerebral	 oxygen	and	glucose	 consumption.	Given	 the	

methodological	focus	of	the	study,	we	chose	to	contrast	the	rest	condition	with	a	visual	

stimulation	paradigm,	where	we	presented	a	moving	checkerboard	to	the	participants.	

Results	demonstrated	that	we	successfully	measured	CMRO2	and	CMRglc	at	the	same	time	

and	under	different	tasks,	indicated	by	signi=icant	increases	of	both	parameters	in	visual	

regions	during	stimulation.	CMRO2	changes	were	lower	than	we	had	expected,	probably	

due	to	noise	in	the	data	caused	in	part	by	the	utilization	of	a	12	channel	head	coil	instead	

of,	as	in	the	=irst	project,	a	32	channel	head	coil.	

	 The	simultaneous	acquisition	of	CMRO2	and	CMRglc	allowed	for	reconsideration	of	

the	 oxygen-to-glucose	 index	 (OGI),	 the	 molar	 ratio	 between	 oxygen	 and	 glucose	

consumption.	In	fully	oxidative	glucose	metabolism,	the	OGI	equals	6,	as	6	moles	of	oxygen	

are	required	to	oxidize	one	mole	of	glucose	for	ATP	production.	During	rest,	we	found	an	

OGI	of	exactly	6,	which	is	most	likely	slightly	too	high	due	to	potentially	in=lated	absolute	

CMRO2	values.	These	are	probably	due	to	the	utilization	of	a	turbo	spin	echo	sequence	for	

T2-mapping	opposed	to	a	GRASE	sequence.	These	resulting	CMRO2	values	are	still	in	the	
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range	 of	 previously	 reported	 data	 (Christen	 et	 al.,	 2012),	 though,	 and	 are	 not	 to	 be	

confused	 with	 the	 aforementioned	 rather	 low	 levels	 of	 CMRO2	 change.	 Given	 these	

circumstances,	we	expect	true	CMRO2	values	to	be	slightly	lower,	resulting	in	an	OGI	<6	as	

reported	by	 literature	(T.	Blazey,	Snyder,	Goyal,	et	al.,	2018;	Shulman	et	al.,	2001).	The	

previously	described	methodological	 issues	do	not,	 however,	 affect	 evaluations	 of	OGI	

changes	in	response	to	visual	stimulation.	Here,	we	found	signi=icant	decreases	in	OGI	of	

~12-22%	in	visual	areas,	hence	an	increase	of	non-oxidative	glucose	metabolism	despite	

suf=icient	oxygen	available.	This	drop,	albeit	signi=icant,	 is	not	as	 large	as	 the	assumed	

90%	decrease	in	OGI	found	in	an	earlier	study	integrating	CMRO2	and	CMRglc	measured	in	

different	subjects	(Fox	et	al.,	1988).	The	underlying	mechanisms	of	the	increase	in	non-

oxidative	 glucose	metabolism	 in	 response	 to	 increased	 neuronal	 activity	 are	 not	well	

understood.	At	 =irst	glance,	 it	 seems	counterintuitive	 that	 the	brain	would	 increase	an	

energy	pathway	(i.e.	non-oxidative	conversion	of	glucose	into	lactate)	that	only	yields	2	

ATP	in	contrast	to	oxidative	phosphorylation	resulting	in	32	ATP.	However,	non-oxidative	

glucose	 metabolism	 also	 has	 some	 advantages.	 Firstly,	 it	 is	 faster	 than	 oxidative	

phosphorylation	(Pfeiffer,	2001),	so	even	though	it	yields	less	ATP,	it	might	eventually	be	

more	ef=icient	in	meeting	the	rapid	and	localized	increases	in	energy	demands	of	active	

neurons.	Secondly,	non-oxidative	glucose	metabolism	does	not	only	produce	2	ATP	but	

also	 lactate,	 which	 was	 long	 considered	 to	 be	 a	 mere	 waste	 product.	 More	 recently,	

however,	 lactate	has	been	found	to	be	an	alternate	 fuel	source	and	signaling	molecule,	

mediating	metabolic	 coupling	 between	 neurons	 and	 glial	 cells	 (van	Hall	 et	 al.,	 2009).	

Through	 the	 production	 and	 subsequent	 shuttling	 of	 lactate,	 astrocytes	 are	 able	 to	

support	neuronal	function	during	periods	of	increased	activity.		

	 Despite	some	methodological	dif=iculties	in	this	second	study,	we	were	successful	

in	 demonstrating	 that	 concurrent	 quanti=ication	 of	 oxygen	 and	 glucose	 metabolism	

during	 different	 tasks	 is	 possible.	 We	 offered	 realistic	 solutions	 to	 a	 number	 of	

methodological	 issues,	 so	 that	 in	 the	 future,	 this	 setup	 can	 be	 applied	 to	 various	

experimental	settings.		

	

4.2	Limitations	

	 Both	studies	presented	in	this	thesis	came	with	some	limitations,	some	of	which	

have	already	been	mentioned	and	discussed.	In	the	=irst	project,	the	biggest	limitation	is	
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that	 we	 only	 measured	 oxygen	 metabolism	 during	 hypoglycemia	 but	 not	 CMRglc.	

Therefore,	our	interpretations	of	the	data	are	entirely	based	on	the	assumption	that	past	

studies	were	 correct	 in	 =inding	CMRglc	to	 decrease	 in	 response	 to	 hypoglycemia	 (T.	M.	

Blazey	&	Raichle,	2019;	Boyle	et	al.,	1994).	Conversely,	if	CMRglc	levels	are,	just	like	CMRO2	

levels,	 kept	 stable	 during	 hypoglycemia,	 this	 would	 imply	 no	 utilization	 of	 alternate	

substrates.	However,	this	would	still	be	in	line	with	the	Sel=ish	Brain	Theory	(Peters	et	al.,	

2004),	 assuming	 the	 brain	 to	 prioritize	 its	 own	 energy	 demand	 even	 under	 adverse	

circumstances,	such	as	hypoglycemia.	Of	course,	simultaneous	measurements	of	CMRO2	

and	CMRglc,	as	presented	in	the	second	project,	would	have	been	bene=icial	but	we	=irst	

needed	to	validate	the	approach	of	combining	fPET	with	mqBOLD.	Moreover,	both	studies	

require	 complex	 experimental	 setups	 and	 combining	 these	 would	 imply	 constant	

infusions	 of	 insulin,	 glucose	 and	 the	 radiotracer,	 injections	 of	 the	 contrast	 agent,	

performing	arterial	blood	sampling	continuously	and	venous	blood	sampling	at	6-minute	

intervals	–	all	while	the	subject	lies	in	the	scanner.	Additionally,	the	continuous	acquisition	

of	PET	data	would	cause	time	pressure	in	performing	venous	sampling	which,	as	we	can	

say	from	experience,	can	take	some	time	due	to	restricted	accessibility	of	the	catheters	

within	the	scanner	bore	as	well	as	blood	in	syringes.	I	still	think	that	these	two	setups	can	

be	integrated	in	the	future	but	one	needs	to	be	aware	of	the	high	complexity	that	comes	

along	with	combining	them.		

	 Another	limiting	factor	in	the	=irst	study	is	that	we	interpret	stable	CMRO2	levels	as	

stable	rates	of	cerebral	energy	metabolism.	However,	while	energy	substrates	like	glucose	

ketone	bodies,	fatty	acids	or	lactate	are	all	oxidized,	they	have	different	ATP	yields.	The	

phosphate	 to	 oxygen	 (p/o)	 ratio	 re=lects	 the	 ef=iciency	 of	 oxidative	 phosphorylation	

(Hinkle,	2005).	The	p/o	ratio	of	 fatty	acids,	 for	 instance,	 is	 lower	 (~2.33)	 than	 that	of	

ketone	bodies	(~2.50),	and	the	p/o	ratio	of	glucose	is	still	higher	(~2.58),	although	only	

marginally	relative	to	ketones	(Kolwicz,	2021).	Hence,	to	generate	the	same	amount	of	

ATP	as	glucose,	one	would	need	slightly	more	oxygen	if	the	energy	substrates	are	ketones	

and	 considerably	more	 oxygen	 if	 the	 alternate	 energy	 substrates	 are	 fatty	 acids.	 The	

process	is,	however,	even	more	complex	since	the	rates	of	metabolism	are	signi=icantly	

different	between	energy	substrates,	with	ketone	bodies,	for	instance,	having	a	7-9	times	

faster	 rate	 of	 energetic	 turnover	 than	 glucose	 (Edmond	 et	 al.,	 1987).	 Thus,	 for	 future	

studies,	 it	 might	 be	 insightful	 to	 acquire	 more	 information	 on	 which	 substrates	 are	

metabolized	 to	which	extent.	To	 this	end,	one	could,	as	previously	described,	measure	
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CMRglc	 concurrently	 to	 evaluate	 the	 extent	 of	 reduction	 in	 glucose	 metabolism,	 but,	

additionally,	 one	 could	 draw	 blood	 samples	 for	 analyses	 of	 peripheral	 glucagon,	 fatty	

acids	 and	 ketone	 bodies.	 It	must	 be	 noted,	 however,	 that	 these	may	 involve	 advanced	

analysis	techniques.	Moreover,	these	measurements	would	not	provide	information	about	

cerebral	substrate	utilization.	

	 Limitations	of	 the	second	manuscript	have	been	discussed	extensively,	with	the	

biggest	limiting	factor	probably	being	the	estimation,	instead	of	direct	measurement,	of	

venous	 CBV	 increase	 during	 visual	 stimulation.	 While	 literature	 implies	 that	 our	

estimations	 are	 justi=ied	 (Huber	 et	 al.,	 2014),	 future	 studies	 can	 avoid	 this	 issue	 by	

measuring	venous	CBV	directly,	which	is	possible	e.g.	via	VASO	techniques	(Huber	et	al.,	

2014).	The	other	main	limitation	of	that	manuscript,	the	12	channel	coil,	can	easily	be	

=ixed	by	the	utilization	of	a	32	channel	coil,	if	available	at	the	study	site.		

	

5	Conclusion	and	outlook	
In	the	present	thesis,	I	presented	two	manuscripts	that	investigate	cerebral	oxygen	

and	 glucose	 dynamics.	 Further	 understanding	 the	 relationship	 between	 these	 two	

metabolites	yields	valuable	information	about	the	underlying	nature	of	cerebral	energy	

metabolism,	with	oxidized	glucose	being	the	predominant	fuel.	The	=irst	project	examined	

how	glucose	de=iciency	affects	 the	brain’s	oxygen	metabolism	and	 found	stable	CMRO2	

rates.	 This	 suggests	 that	 the	 brain	 is	 indeed	 sel3ish,	 as	 suggested	 by	 the	 Sel=ish	 Brain	

Theory.	However,	the	brain	does	not	seem	to	be	unaffected	by	hypoglycemia.	 In	fact,	 it	

seems	 to	 be	 affected	 more	 enduringly	 than	 previously	 assumed,	 demonstrated	 by	

impaired	 memory	 consolidation	 even	 when	 learning	 took	 place	 during	 restored	

euglycemia.	 The	 second	 project	 demonstrated	 the	 feasibility	 of	 acquiring	 quantitative	

data	 on	 glucose	 and	 oxygen	 consumption	 concurrently,	 thereby	 providing	 a	 basis	 for	

future	 studies	 to	 apply	 simultaneous	measurements	 of	 CMRO2	 and	 CMRglc	 to	 different	

experimental	settings.	Additionally,	 in	that	study,	we	reported	a	drop	in	the	oxygen-to-

glucose	 index	 upon	 increased	 neuronal	 activity.	With	 this,	we	 found	 an	 uncoupling	 of	

oxygen	and	glucose	metabolism	in	both	projects:	There	seems	to	be	decreased	oxidative	

glucose	 metabolism	 during	 hypoglycemia	 and	 increased	 non-oxidative	 glucose	

metabolism	during	visual	stimulation.		
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Ideally,	 future	 studies	 could	 combine	 the	 two	 projects	 presented	 here	 and	 in	

addition	 to	 CMRO2	simultaneously	measure	 CMRglc	during	 hypoglycemia.	 As	 described	

before,	there	is	a	range	of	technical	and	organizational	aspects	that	need	to	be	considered	

before	study	initiation,	but	I	do	think	that	it	is	possible.	This	would	offer	a	unique	chance	

to	 validate	 the	 decrease	 in	 oxidative	 glucose	 metabolism	 during	 hypoglycemia.	

Hypoglycemic	 and	 euglycemic	 conditions	 should,	 as	 previously	 mentioned,	 not	 be	

scanned	within	the	same	scanning	session	due	to	longer	lasting	effects	of	hypoglycemia	

on	 brain	 function.	 However,	 the	 opportunity	 to	measure	multiple	 conditions	within	 a	

singular	scanning	session	provided	by	fPET	could	be	used	to	investigate	how	brain	energy	

metabolism	 changes	 after	 hypoglycemia,	 once	 euglycemic	 levels	 have	 been	 restored.	

Hence,	data	on	restored	euglycemia	could	be	acquired.	Moreover,	while	studying	the	basis	

of	 cerebral	 energy	 metabolism	 under	 rest	 offers	 interesting	 insights	 already,	 future	

studies	could	investigate	whether	CMRO2	levels	are	still	kept	stable	during	hypoglycemia	

when	engaging	 in	cognitive	tasks.	Previous	 fMRI	studies	suggested	 increased	neuronal	

activity	 upon	 visual	 stimulation	 under	 euglycemia	 but	 when	 repeating	 the	 same	

stimulation	 under	 hypoglycemia,	 neuronal	 activity	 was	 reported	 not	 to	 increase	

(Anderson	et	al.,	2006).	As	put	 forward	before,	BOLD	fMRI	 is	not	the	 ideal	method	for	

studying	 alterations	 in	 energy	 metabolism.	 But	 it	 would	 be	 interesting	 to	 apply	 our	

aforementioned	imaging	methods	and	examine	whether	the	brain	also	behaves	sel=ishly	

during	cognitive	tasks	or	whether	it	is	merely	capable	of	maintaining	normal	metabolic	

rates	during	rest.	This	would	be	particularly	interesting	for	cognitive	processes	that	are	

known	to	be	energetically	expensive,	like	memory	formation.	There	is	a	lot	of	potential	

for	the	methods	and	experimental	setups	I	described	in	this	work,	and	I	hope	with	this	

thesis	 to	have	 contributed	 to	 the	knowledge	about	 cerebral	 energy	metabolism	under	

metabolically	 challenging	 conditions	 as	well	 as	 provoked	 curiosity	 to	 study	 this	 topic	

further	in	the	future.		
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R.,	 Chonde,	 D.	 B.,	 Fowler,	 J.	 S.,	 Rosen,	 B.	 R.,	 &	 Hooker,	 J.	 M.	 (2014).	 Dynamic	

functional	imaging	of	brain	glucose	utilization	using	fPET-FDG.	NeuroImage,	100,	

192–199.	https://doi.org/10.1016/j.neuroimage.2014.06.025	

Voll,	 C.	 L.,	 Whishaw,	 I.	 Q.,	 &	 Auer,	 R.	 N.	 (1989).	 Postischemic	 insulin	 reduces	 spatial	

learning	de=icit	following	transient	forebrain	ischemia	in	rats.	Stroke,	20(5),	646–

651.	https://doi.org/10.1161/01.STR.20.5.646	

White	 BC,	Wiegenstein	 JG,	Winegar	 CD.	 Brain	 ischemic	 anoxia.	 Mechanisms	 of	 injury.

	 JAMA.	1984	Mar	23-30;251(12):1586-90.	PMID:	6366268.	

Won,	S.	J.,	Yoo,	B.	H.,	Kauppinen,	T.	M.,	Choi,	B.	Y.,	Kim,	J.	H.,	Jang,	B.	G.,	Lee,	M.	W.,	Sohn,	M.,	

Liu,	 J.,	 Swanson,	 R.	 A.,	 &	 Suh,	 S.	W.	 (2012).	 Recurrent/moderate	 hypoglycemia	

induces	 hippocampal	 dendritic	 injury,	 microglial	 activation,	 and	 cognitive	

impairment	 in	 diabetic	 rats.	 Journal	 of	 Neuroin3lammation,	 9(1),	 182.	

https://doi.org/10.1186/1742-2094-9-182	

World	 Health	 Organization.	 (n.d.).	 Mean	 fasting	 blood	 glucose	 (mmol/L)(age

	 standardized	estimate).	WHO.		

www.who.int/data/gho/indicator-					metadata-registry/imr-details/2380	

Xu,	F.,	&	Rhodes,	E.	C.	(1999).	Oxygen	Uptake	Kinetics	During	Exercise:	Sports	Medicine,

	 27(5),	313–327.	https://doi.org/10.2165/00007256-199927050-00003	

Yaffe,	K.	(2013).	Association	Between	Hypoglycemia	and	Dementia	in	a	Biracial	Cohort	of	

Older	 Adults	 With	 Diabetes	 Mellitus.	 JAMA	 Internal	 Medicine,	 173(14),	 1300.	

https://doi.org/10.1001/jamainternmed.2013.6176	

Yang,	S.,	Xia,	J.,	Zhang,	Y.,	Fan,	J.,	Wang,	H.,	Yuan,	J.,	Zhao,	Z.,	Pan,	Q.,	Mu,	Y.,	Xin,	L.,	Chen,	Y.,	

&	Li,	K.	(2015).	Hyperinsulinemia	shifted	energy	supply	 from	glucose	to	ketone	

bodies	 in	 early	 nonalcoholic	 steatohepatitis	 from	 high-fat	 high-sucrose	 diet	



	 155	

induced	 Bama	 minipigs.	 Scienti3ic	 Reports,	 5(1),	 13980.	

https://doi.org/10.1038/srep13980	

Yang,	W.,	Sun,	C.,	Huszár,	R.,	Hainmueller,	T.,	Kiselev,	K.,	&	Buzsáki,	G.	(2024).	Selection	of	
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PhD	so	you	have	no	idea	how	easygoing	I	actually	am.	Prepare	to	be	stunned.	You	dealt	

with	me	being	sleep	deprived,	happily	discussed	MRI	data	at	 the	dinner	table	and	not	

once	complained	about	the	alarm	clock	ringing	at	3:15am	on	a	Sunday	“morning“	so	that	

I	could	go	acquire	my	data.	This	thesis	would	have	never	seen	the	light	of	day	without	you	

covering	my	back	–	especially	during	these	last	couple	of	weeks	before	submission.	Thank	

you	for	believing	in	me	when	I	didn't	and	for	never	mocking	my	code.		
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