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Abstract

ABSTRACT

Authentication has become an essential part of our daily lives. Examples include using
authentication tokens like keys to enter a building or vehicle, or the use of passwords, PINs,
and patterns to access digital accounts and devices. However, such traditional approaches
start to reach their limits, as the ever-increasing number of required authentications strains
both users’ memory and time.

Biometric methods make use of unique patterns in user physiology or behavior for the pur-
pose of authentication and are proposed as a potential solution. They do not require mental
effort, cannot be stolen or forgotten, and can operate in the background with no active user
engagement required. However, biometrics also come with drawbacks: their underlying ma-
chine learning models mostly act as black-boxes to users while at the same time being prone
to systemic biases and inconsistent recognition performance. Users get little insight into
what constitutes model decisions, let alone control over the authentication mechanism that
is to protect their data.

This thesis takes a user-centered approach to both enhance existing interfaces with biometric
systems and propose new ones with the aim to facilitate 1) user literacy and 2) agency over
the recognition process. We conducted studies to understand user preferences and needs
with regard to biometrics and designed biometric interfaces to support users in understanding
influencing factors on their authentication and take control over if and when to be recognized.
Overall, we explored how biometric interfaces could look like, how they could improve
interaction with biometric systems, and if they can contribute to an informed and secure use
of biometric authentication.
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Zusammenfassung

ZUSAMMENFASSUNG

Authentifizierung ist heute zu einem permanenten Bestandteil unseres täglichen Lebens ge-
worden. Beispiele dafür sind die Verwendung von Authentifizierungstoken wie Schlüsseln,
um ein Gebäude zu betreten oder ein Fahrzeug zu öffnen, oder der Gebrauch von Passwör-
tern, PINs und Mustern für den Zugriff auf Geräte und digitale Konten. Diese traditionellen
Ansätze stoßen jedoch allmählich an ihre Grenzen, da die ständig wachsende Zahl der erfor-
derlichen Authentifizierungen zu einer zunehmenden Belastung für Gedächtnis und Zeit der
Benutzenden wird.

Biometrische Methoden nutzen einzigartige Muster in der menschlichen Physiologie oder
im Verhalten der Nutzenden für die Authentifizierung und können eine mögliche Lösung für
diese Herausforderung darstellen. Sie erfordern keine geistige Anstrengung, können nicht
gestohlen oder vergessen werden und arbeiten im Hintergrund, ohne dass Benutzende aktiv
werden müssen. Biometrische Verfahren haben jedoch auch Nachteile: Die zugrundeliegen-
den maschinellen Lernmodelle sind meist undurchschaubar, während sie gleichzeitig an-
fällig für voreingenommene Entscheidungen und inkonsistente Erkennungsleistungen sind.
Die Nutzenden erhalten kaum Einblick in die Entscheidungen der Modelle, geschweige denn
Kontrolle über den Authentifizierungsmechanismus, der ihre Daten schützen soll.

In dieser Arbeit wird ein nutzer-zentrierter Ansatz verfolgt, um sowohl bestehende Schnitt-
stellen zu biometrischen Systemen zu verbessern als auch neue vorzuschlagen. Die Ziele
dieser Arbeit sind es 1) die Kenntnis der Nutzenden zu erweitern und ihnen 2) die Kontrolle
über biometrische Modelle zu erleichtern. Wir haben Studien durchgeführt, um die Präfe-
renzen und Bedürfnisse in Bezug auf biometrische Systeme zu verstehen und biometrische
Schnittstellen zu entwerfen, die die Nutzenden dabei unterstützen, Einflussfaktoren auf ihre
Authentifizierung zu verstehen und die Kontrolle darüber zu übernehmen, ob und wann sie
erkannt werden. Insgesamt haben wir untersucht, wie biometrische Schnittstellen aussehen
könnten, wie sie die Interaktion mit biometrischen Systemen verbessern können und ob sie
zu einer informierten und sicheren Nutzung biometrischer Authentifizierungmechanismen
beitragen können.
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INTRODUCTION & BACKGROUND
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PART I: INTRODUCTION & BACKGROUND

In this part, we introduce the topic of this thesis, our approach to answering our research
questions as well as relevant background information. As such it serves as both motivation
and structural overview for the rest of this thesis.

❖ Chapter 1 introduces the motivation for our work and the research questions we derive
from it. It outlines our contributions and research approach and gives an overview of
the rest of the thesis.

❖ Chapter 2 introduces relevant background information on the topics of authentica-
tion and biometrics and highlights the limitations of previous work that motivate our
investigations.
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1
Introduction

Biometrics leverage unique characteristics in human physiology or behavior for authenti-
cation and are increasingly used to protect (mobile) devices. However, they are inherently
based on machine learning models and are thus hard to predict and control, in particular for
end-users. In this thesis, we propose the use of user-centered biometric interfaces as an ap-
proach to foster user literacy about biometrics and empower them to take control over their
authentication mechanism.

In this chapter, we outline the motivation for our work and introduce the research questions
that guide the rest of this thesis. We summarize our contributions and introduce our research
approach to answer these questions. We conclude the chapter with an overview of the thesis.



1.1 Motivation

Many of the devices we interact with on a daily basis store highly sensitive and personal data
like images or medical and business information [151]. Beyond the stored data, they also
provide access to many essential services like financial applications, messages, or the user’s
social media presence. It is thus of great importance to protect access to those devices and
authentication has become a necessary part of interaction.

While passwords are still widely used to secure access to accounts, they have started to reach
their limits. As the amount of required authentication increases, users need to remember and
enter more and more passwords, straining users’ memory and requiring time.

As an alternative, the use of biometric methods has emerged and gained popularity over the
past years with an estimated 80% of mobile devices capable of using them in 20201. Bio-
metrics leverage unique characteristics in human physiology and behavior for authenticating
or identifying individuals [190, 285]. Most notably, fingerprint [141, 142] and face recogni-
tion [275] are available on most modern smartphones, but also other features like the user’s
iris, gait, or the way of typing on a keyboard [12, 43, 229] have been proposed. Compared
to other authentication approaches, biometrics do not need to be remembered and cannot
be lost or stolen [139]. They do not require additional user input for the sake of authenti-
cation beyond their presence or normal interaction with the device and can thus facilitate
authentication in the background.

However, this approach also takes away user control over authentication. When a user’s
behavior is captured constantly there is no clear point for them to express their intent to be
authenticated. Note, how this is also relevant for users, who do not actively use biometrics,
as recognition can be done without the user’s knowledge or consent, e.g. through entering
text on a website or by being recognized in public space (e.g. using face or gait recognition).
Previous work has shown that biometric models can be prone to external factors [29]. The
machine learning models underlying biometric recognition act as a black box to the users,
making their decisions hard to understand and leading to biases [48, 82, 298]. Their perfor-
mance can vary greatly between users [294], meaning that performance metrics commonly
used in machine learning to describe the quality of a model (e.g. accuracy or equal error
rate) may not be relevant and applicable to the individual. As a consequence, users can lose
trust and access, or in the worst case be harmed [298].

While experts and designers may be aware of those points, this knowledge does not neces-
sarily map to the users of a security system [4, 15] and incorrect mental models can lead to
insecure behavior [284]. Thus, focusing on the user is of great importance [4, 230]. Think-
ing back to the relevance of the data and applications protected with biometrics today, this
illustrates the need for action toward understanding users’ current knowledge of biometrics
and the individual factors that constitute their performance. The next step has to be commu-
nicating this knowledge to form trust and avoid potential errors. Finally, users need both the

1 https://www.statista.com/topics/4989/biometric-technologies/, last accessed
October 16, 2024
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1 Introduction

motivation and opportunity to act on their knowledge to control their biometric systems and
make an informed choice about which system to use or whether to use a biometric system in
the first place [277].

In this thesis, we investigate which information users are currently missing about their bio-
metric systems to both enhance existing interfaces with biometric systems and propose new
ones where none exist so far. We explore how such interfaces could look like and assess how
they can improve interaction with biometric systems. The results of this thesis can support
researchers and practitioners to design and investigate user-centered biometric interfaces and
contribute to a secure and informed use of biometrics.

1.2 Research Approach

In this section, we outline the research questions we derived to guide our research and the
types of contributions we made to those research questions. We also give an overview of the
methods used in this thesis and the rationale behind their choice.

1.2.1 Research Questions

Based on the illustrated challenges, we derive three steps to enable more secure and informed
use of biometric methods: As a first step, we need to understand user needs and what design
opportunities exist to address them. As a second goal, we propose to support users in gaining
a better understanding of biometric methods and, thus, improve their biometric literacy.
However, we argue, that knowledge alone is not enough and thus propose to offer users
options to control biometric models and, thus, gain agency over their authentication.

While the first step provides a foundation for our work, we propose to address the other goals
by designing biometric interfaces, that is, by creating or augmenting points where users and a
biometric model come in contact with each other (e.g. during enrollment or authentication).
We argue for following a user-centered approach when designing those interfaces, taking
into account user needs and personalizing information to the user and their context. We
summarize our goals as research questions that guide the work in this thesis below:

RQ1 What are user needs and how can they be addressed through the design of
biometric interfaces?

RQ2 How can users be supported to acquire biometric literacy through biometric
interfaces?

RQ3 How can biometric interfaces be leveraged to extend user agency?
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1.2.2 Research Contributions

Wobbrock and Kientz [289] outlined seven types of contributions to Human-Computer In-
teraction (HCI) research. Here we give an overview of the four types that our work makes
contributions to based on this categorization.

Empirical Research Contributions

In this thesis, we aim to understand user needs with regard to biometric interfaces and design
and evaluate approaches to address them. As such, empirical research is at the core of this
work and all projects that are part of it make empirical contributions in one way or another.
We provide empirical data on the use and perception of biometrics (Chapter 3) as well as
participants’ preferences for different methods (Chapter 4). Based on a focus group we
derive design opportunities for biometric interfaces (Chapter 5). We uncover differences
in the rating of similarity between humans and a face recognition model (Chapter 6) and
gain empirical insights into users’ willingness to change their authentication method based
on context (Chapter 7). We collect data on users’ interaction with indicators that illustrate
the state of a continuous authentication system (Chapter 8) and show that they are able to
intentionally modify their typing behavior (Chapter 9). We uncover differences in this ability
between a lab setup and use in the wild (Chapter 10) and show, that electromagnets can be
used to influence typing as well (Chapter 11).

Artifact Contributions

Where possible we designed prototypes or applications to give participants an impression
of how interaction with our solutions would look and feel. As many of our evaluations
involved participants interacting with a biometric system in the wild those artifacts mostly
took the form of apps. We developed an application that leverages context information to
suggest appropriate authentication mechanisms on mobile phones (Chapter 7). With another
application, we explored user interaction with indicators that gave insights into a mocked
continuous authentication system and warned users of upcoming re-authentications in the
wild (Chapter 8). We developed a game that supports players in learning to modify their
typing behavior (Chapter 10) and implemented a physical keyboard that does the same by
exerting force on a magnet attached to the user’s finger (Chapter 11). Overall, the use of
artifacts allowed us to gain both more realistic and long-term insights into users’ interaction
with our designs of biometric interfaces.

Methodological Contributions

While methodological contributions were not a focus of this work we developed some meth-
ods to enable our other investigations. Based on a focus group we contribute a design space
that provides guidance on factors to consider when building biometric interfaces (Chapter 5).
To gain a better understanding of face recognition models we proposed a method for finding
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and generating challenging samples that can be used to identify potential mismatches in per-
ceived similarity between human raters and a decision-making model (Chapter 6). Finally,
we proposed and demonstrated an approach to convert a security study to a game with the
goal of having participants use it in the wild (Chapter 10).

Dataset Contributions

Whenever we collected larger datasets in the course of our empirical evaluations we also
contributed them for further analysis by other research. We compared ratings of similarity
for pairs of face images between human raters and a face recognition model. We provide
all comparisons and the respective image pairs as a dataset (Chapter 6). Based on our in-
vestigation of users’ ability to modify their own typing behavior we contribute a dataset of
expected behavioral patterns and participants’ actual typing (Chapter 9). We do the same for
our game implementation that compares the same task between lab and remote participants
(Chapter 10).

1.2.3 Empirical Research Methods

Here we give an overview of the study paradigms and data collection methods we used
throughout this thesis and our rationale behind their use. More details can be found in the
respective chapters.

Lab Studies

We used lab studies as a means to gain control over the environment, vary specific variables,
and make repeated measurements (Chapter 9). A second motivation was to enable user
interaction with artifacts that were not portable and could not be used without the oversight
of a researcher (Chapters 4 and 11).

Field Studies

We employed field studies as a means to gain more realistic insights into users’ interaction
with our prototypes over a longer period of time. We used this for our evaluation of a mech-
anism to suggest switches to an appropriate authentication mechanism based on context and
an interface to provide insights into a (mocked) continuous authentication model (Chapters
7 and 8). As a special case, we developed a game with the goal of being playable outside a
study context to support users in controlling their typing behavior (Chapter 10).

Surveys

We employed surveys for their ability to reach a large number of participants for tasks that
did not require interaction with a prototype. We employed this method to assess the use and
perception of biometric methods (Chapter 3) and to collect human ratings on the similarity
of pairs of face images for our comparison against a face recognition model (Chapter 6).

9



(Expert) Focus Groups

We used focus groups to validate and iterate designs for prototypes for our field studies
(Chapters 7 and 8). This was of particular importance for this type of study, as we had
no direct oversight over participants using our developed artifact and thus needed a diverse
set of feedback before deploying them. As a special case, we used an expert focus group
to find design considerations for biometric interfaces that we used to derive a design space
(Chapter 5).

Data Collection: Questionnaires, Interviews, and Experience Sampling

Most of our empirical studies were accompanied by questionnaires to gain additional insights
and understand the effects we observed in the quantitative results. In our lab studies, we also
employed interviews after the main tasks as a more interactive way for participants to share
their experiences. In the field studies, we employed experience sampling as a method to
capture feedback over a longer time frame.

1.3 Ethical Considerations

In Germany, where this research was conducted, there is no formal requirement for approval
from an Institutional Review Board (IRB) for the type of research we conducted in this
thesis. However, we always took great care to comply with all guidelines given by our in-
stitution and national data protection regulations. In particular, consent was always gathered
before collecting any data. Email addresses and other types of contact information were
stored separately from study data and only used for communication and compensation of the
participants.

1.4 Research Context

This thesis is based on research that I conducted at LMU Munich, the University of Applied
Sciences Munich, and the Research Institute CODE at the University of the Bundeswehr
Munich between December 2017 and September 2023. During this timeframe, I worked on
user-centered biometric interfaces and their evaluation in the wild. My work contributed to
the project “Biometrics++ — Leveraging Behavioral Biometrics Beyond Security to Both
Secure and Personalize Interactive Ubiquitous Computing Devices” funded by the Bavarian
State Ministry of Education, Science and the Arts in the framework of the Centre Digitisa-
tion.Bavaria (ZD.B) as well as to the project “Designing and Evaluating Scalable Behav-
ioral Biometrics Systems for Pervasive Computing Environments” funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation).
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PART I: INTRODUCTION & BACKGROUND

PART II: UNDERSTANDING USER NEEDS AND DESIGN OPPORTUNITIES

Chapter 3 Chapter 4 Chapter 5
Understanding Use and Perception

of Biometrics
Exploring User Preferences

for Biometrics
Design Opportunities for

Biometric Interfaces

PART III: BIOMETRIC INTERFACES TO SUPPORT USER LITERACY

Chapter 6 Chapter 7 Chapter 8
Exploring (personalized)

Performance of Face Recognition
using Generated Samples

Leveraging Context Cues to
Inform Authentication

Choice

Communicating the
State of Continuous

Authentication Systems

PART IV: BIOMETRIC INTERFACES TO SUPPORT USER AGENCY

Chapter 9 Chapter 10 Chapter 11

Exploring Intentional Keystroke
Control

Extending Intentional
Keystroke Control to the

Wild with Imitation Game

Supporting Key
Targeting using
Electromagnets

PART V: DISCUSSION & CONCLUSION

Table 1.1: Overview of the parts and chapters comprising this thesis.

1.5 Thesis Outline

This thesis consists of 13 chapters organized in five parts of which you are currently reading
the first. Parts I and V are framing our work on answering the research questions in Parts
II-IV with an introduction and a discussion (see Table 1.1). Here we give a more detailed
overview of what to expect in this thesis.

Part I

In this part, we already outlined the motivation for this work and introduced the overarching
research questions guiding our work. We also introduced the contributions our work makes
and the methods we use. In Chapter 2 we provide further background for this work by
introducing relevant concepts like authentication in general and biometrics in particular as
well as relevant work from related fields. We conclude this chapter with an overview of the
challenges that motivate our work.

11



Part II

We use this part to answer our first research question and lay the foundation for our further
exploration of biometric interfaces by understanding user needs and design opportunities. In
Chapters 3 and 4 we explore users’ use and preferences with regard to biometrics. We take
different approaches for the two chapters, one time focusing on the biometrics participants
use and their general perception of biometrics and in the other case comparing different
mechanisms to a non-biometric alternative to uncover preferences and advantages of both
options. Our investigations reveal some misconceptions and a demand for further informa-
tion as well as a need for retaining control over authentication. In Chapter 5 we add a design
perspective to those findings and explore how interfaces for biometric systems could look
like to address those points. Together with related work, this part informed our choice and
design of solutions proposed in the next parts and our focus on supporting user literacy and
agency over biometric systems.

Part III

The main focus of this part is our exploration of interfaces to support users in gaining a better
understanding of biometric methods and thus improve their biometric literacy as captured in
our second research question. We followed a breadth-first approach, exploring interfaces for
both different biometrics and different interaction scenarios. Our aim behind this approach
was to show the possibility and potential of enhancing existing interfaces to support user
interaction with biometric systems. In Chapter 6 we propose a method to gain insights into
the performance of a biometric model. We apply the approach to a face recognition model
and show, that it can not only be used to evaluate a model as a whole but can yield insights
into performance for single users. It can thus be used to improve the enrollment process
of a biometric system by providing users with a better estimation on how the model will
work for them specifically. In Chapter 7 we propose to show users information about con-
text factors that could impact fingerprint authentication, giving them both more information
about the biometric model and nudging them to switch to a more appropriate method. We
conclude this part with Chapter 8 where we explore how providing continuous and event-
based information about a model’s state can help users to better anticipate and cope with
re-authentications. This process can become necessary when the model is not sufficiently
certain that a legitimate user is interacting with it. We also introduce a mechanism for users
to take more control over the model by voluntarily re-authenticating when they anticipate
such a situation to avoid being interrupted in inconvenient situations.

Part IV

In this part, we explore our second design goal for biometric interfaces: supporting users in
gaining agency and control over the biometric systems they use (see RQ 3). Part III already
introduced some concepts in this direction but in this part, they are at the focus of our work.

12
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In contrast to the previous part we here follow a depth-first approach and explore the single
use-case of authentication by typing behavior for our investigation. We took this approach to
understand how to design interfaces for biometrics that are designed to run in the background
and thus do not normally offer user interaction (except for re-authentication requests) and to
compare different options for improving the same interaction. This was not possible in the
first part, as all tested approaches shared a common goal but were fundamentally different.
As a first step, we explore in Chapter 9 if users can gain control over being recognized
by a biometric system using typing behavior. To this end, we developed a visualization to
communicate typing features and used it to show that users were able to adjust their typing
accordingly. With our goal of supporting users in gaining this type of agency, we built a
game based on our study setup in Chapter 10 that was designed to support users in learning
to modify their typing on their own and in a playful manner. With Chapter 11 we explore the
use of electromagnets to free users from having to actively control their behavior to achieve
typing modifications. To summarize, we use this part to show that users can take agency
over authentication through typing behavior, how this can be achieved in the wild, and how
an approach could look like that requires less user involvement to achieve this goal.

Part V

We conclude this thesis with a discussion of the findings and implications of our work. In
Chapter 12 we offer our insights into design considerations for implementing biometric in-
terfaces and reflect on the methods used throughout this thesis. In Chapter 13 we summarize
the contributions we made to our research questions and outline potential directions for fu-
ture research before concluding the thesis with some final remarks.
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2
Background & Related Work

In this thesis, we propose the design and implementation of user-centered biometric inter-
faces. This places our research at the intersection of IT-Security and Human-Computer
Interaction (HCI) research, more commonly referred to as usable security [107].

In this chapter, we give an introduction to usable security and authentication before giving a
deeper overview of what biometrics are, how they work, in which forms they exist, and what
their challenges are. Related work on biometric interfaces is yet very sparse, so we introduce
insights on similar research from other fields. More detailed related work will be presented
in the chapters on a per-case basis.

We conclude this chapter with an overview of open challenges that motivate our work.



2.1 Authentication & Usable Security

There exist many different definitions for authentication, but in this work, we follow the
interpretation by Saltzer and Schroeder [227]:

Authenticate: To verify the identity of a person (or other agent external to the protec-
tion system) making a request.

In the context of this thesis, this request generally refers to gaining access to a device, ac-
count, or area that is protected by an authentication mechanism.

The type of authentication can be further categorized by the type of evidence a per-
son presents to make this request. Based on O’Gorman [199], authentication systems
can be broadly divided into three types: Knowledge-Based, Object-Based, and ID-Based.
Knowledge-Based systems utilize a secret, that the user knows and encompass approaches
like passwords, PINS, and patterns. Object-Based systems identify a person based on the
possession of an object, commonly a token, key, or their smartphone. ID-Based authentica-
tion uses things that are unique to a person, including their ID card and what is commonly
referred to as biometrics.

However, when users interact with authentication systems, they do not do so to authenticate
but because they want to access a protected good (e.g. unlocking a phone to read a new
message). As such, authentication is generally a secondary task [230, 231] and should also
be viewed as such. This motivates the field of usable security [107], arguing for designing
security systems in a way that users can easily and with low effort use them. This requires
a user-centered approach to design [310] and means that interfaces should be designed to
support users instead of seeing users as a weakness of security systems [4, 130, 230].

In this thesis, we adapt this philosophy to the design of biometric interfaces informed by
user needs and dedicated to supporting them in their interaction with biometric systems. We
give a more detailed overview of biometrics next.

2.2 Biometrics

Biometrics are a type of authentication system that uses unique characteristics in human
physiology or behavior to identify individuals. More formally, they are defined in ISO
2382-37 [136] as follows:

Biometrics: automated recognition of individuals based on their biological and be-
havioral characteristics.
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Based on Jain et al. [144], any human physiological or behavioral characteristic can be used
for this kind of authentication, as long as it fulfills four criteria:

1. Universality: each person should have the characteristic

2. Distinctiveness: any two persons should be sufficiently different in terms of the char-
acteristic

3. Permanence: the characteristic should be sufficiently invariant (with respect to the
matching criterion) over a period of time

4. Collectability: the characteristic can be measured quantitatively

2.2.1 Types of Biometrics

Biometrics are generally divided in physiological and behavioral methods.

Physiological biometrics leverage unique body features like faces [261, 269, 307], finger-
prints [174, 175, 297], hand or palm prints [166, 308] or the human iris [30, 73]. As such,
they usually require the user to actively present the respective feature for authentication.

Behavioral biometrics on the other hand are based on learned movements such as typing [42,
152, 214, 262] or touch [85, 263] behavior, or gait [104, 242, 251, 282]. Capturing those
features can only be done over time and thus needs users to execute the respective behavior
for authentication to be possible. Behavioral biometrics tend to be less stable and are overall
less adopted [57], but open up the opportunity for implicit authentication (see Section 2.2.4).

O’Gorman [199] observed, that the distinction in behavioral and physiological methods can
sometimes fall short. For example, voice exhibits both physiological features based on the
vocal tract and a behavioral element in the way it is used. Actually, all types of behav-
ior have some physiological component, as they are influenced by the human body. As
such, O’Gorman proposed a slightly more nuanced distinction by the type of biometric sig-
nal presented to the system and speak of stable and alterable biometric signals. However,
this distinction is not commonly used so we use the distinction between physiological and
behavioral biometrics for the remainder of this thesis.

We refrain from giving further details on any specific type of biometric method here, but
instead introduce them in the respective chapters where they become relevant.

2.2.2 General Functionality

A biometric system generally consists of four components [144] and follows a similar pro-
cess: 1) A sensor captures the respective features presented by the user. The captured data
is then 2) preprocessed and salient features need to be extracted. The so-created biometric
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templates are input to 3) a matching algorithm, which compares them to other templates
stored in 4) a database. The matcher then returns a decision on whether or not the user
should be authenticated.

Before first using the system, users have to enroll. This means that they have to follow the
same process with the difference, that no match will be made but instead the newly generated
biometric template is stored in the database. Only then can the user be recognized.

2.2.3 Authentication Modes

Authentication in the context of biometrics can be further distinguished into two main
modes: verification and identification. Here we follow the definition by Jain et al. [144]
who describe the terms as follows:

Verification: In the verification mode, the system validates a person’s identity by
comparing the captured biometric data with her own biometric template(s) stored in
the system database.

Identification: In the identification mode, the system recognizes an individual by
searching the templates of all the users in the database for a match.

In other words, the two modes differ in the user claiming an identity or not. If no identity
is claimed, a match has to be found between all known templates, otherwise, the user has
only to be verified against the template associated with the claimed identity. Throughout this
thesis, we use the term authentication as an umbrella term for those two options when the
exact form is not relevant in the current context.

2.2.4 Explicit and Implicit Authentication

Most traditional authentication mechanisms like passwords or tokens require an explicit user
action, e.g. entering the secret or presenting the identifier. Similarly, many physiological
biometric features enable explicit authentication, e.g. fingerprints or iris recognition. In
contrast to explicit authentication, the term implicit authentication1 describes the process by
which a user is authenticated without requiring explicit interaction. In implicit authentica-
tion systems, the initial explicit authentication step to gain access to a device is replaced or
complemented by a continuous evaluation of the user’s identity that is reflected in a score
(or device confidence level (DCL)). Similar to a fallback in explicit authentication systems
(e.g. the use of a PIN when the fingerprint scan fails), an explicit so-called re-authentication
is required in case the model can not verify the user’s identity.

1 also called transparent or continuous authentication (e.g., [63])
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Some methods suggested for implicit authentication rely on the user’s context [24, 125, 188,
218], but the method is most prevalently used with behavioral features. Examples include
mechanisms that authenticate users based on gait recognition [76], continuous eye-tracking
[192], or the users’ tap or app-execution behavior [39, 71, 226, 247].

2.2.5 Error Types and Performance Measures

When making an authentication decision, biometric models can make two types of errors.
They can wrongly authenticate a non-legitimate user (false positive) or wrongly reject the
legitimate user (false negative). To describe a model, those errors are collected over all sam-
ples the system was tested on to yield the False Acceptance Rate (FAR) and False Rejection
Rate (FRR) for false positive and false negative decisions respectively. A high FAR is a
security problem because it means more non-legitimate users could wrongly bypass the au-
thentication. A high FRR on the other hand poses a usability problem as the legitimate user
may have to spend multiple tries to gain access or has to re-authenticate often.

Biometric models are generally machine learning models and are driven by a decision func-
tion on which a threshold is applied. This threshold can be varied to be more or less strict
and thus favor one or the other type of error. Thus, designers of biometric models have to
make a trade-off between usability and security of their model.

To get a comparable measure for the performance of a model, an established measure is the
Equal Error Rate (EER) which is described as the point where FRR and FAR are equal.
Other popular performance metrics are Accuracy, Precision, Recall, F1 score, and ROC
curves [206]. We will not go into detail about all of them but remark, that they all describe the
ability of the model to make correct decisions on a global level, i.e. based on the presented
set of training data.

2.3 Commercial Biometric Systems

Commercial biometric systems are widely available these days. Here we introduce some of
the available sensors and services offering biometric authentication. Note, that this section
is intended to give an overview and the commercial solutions listed here are by no means an
exhaustive list of available products.
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2.3.1 Inbuilt Biometric Systems

The main source of distribution and use for biometrics are built-in solutions for modern
mobile phones and laptops. Both Android and Apple devices offer fingerprint readers and
face recognition in the form of Apple Face-ID2 and Androids Face Unlock3 feature.

They can also include capabilities for behavioral biometrics like the use of gait recognition
in the Smart Lock feature4 offered on Android Devices. Windows offers support for both
face and fingerprint recognition in the form of Windows Hello5.

Those types of biometrics are likely the ones users interact with the most, as they come
shipped with devices they use in their daily lives and do not require additional setup.

2.3.2 External Biometric Sensors and Security Solutions

To use biometrics in contexts where they are not shipped with a system, companies offer both
sensors and full-fledged security solutions. Exapmples are USB devices like the Kensington
VeriMark6 that can be plugged into a laptop to enable fingerprint authentication. Fujitsu
offers a similar solution with the PalmSecure7 that can be attached to a laptop to enable
biometric recognition based on a palm vein scan. The company IrisID offers both standalone
scanners and solutions for iris identification8.

In addition to extending the capabilities of (mobile) devices, biometric sensors are often
offered as systems for access control. This includes Solutions such as the aforementioned
IrisID systems or the Ekey-Uno9 that extends smart lock systems with the functionality for
unlocking with fingerprints.

Finally, many systems offer multiple authentication mechanisms and biometrics in a pack-
age. An example is the eufy Smart Lock E13010 offering capabilities for unlocking with a

2 Apple Face-ID: https://support.apple.com/en-us/102381, last accessed October 16, 2024
3 Android Face Unlock: https://support.google.com/pixelphone/answer/9517039, last

accessed October 16, 2024
4 Google Smart Lock: https://support.google.com/android/answer/9075927, last

accessed October 16, 2024
5 Windows Hello: https://learn.microsoft.com/en-us/windows-hardware/design/d
evice-experiences/windows-hello, last accessed October 16, 2024

6 Kensington VeriMark: https://www.kensington.com/de-de/software/verimark-setup
/, last accessed October 16, 2024

7 Fujitsu PalmSecure: https://www.fujitsu.com/de/services/security/offerings/bio
metrics/, last accessed October 16, 2024

8 IrisID: https://www.irisid.com/, last accessed October 16, 2024
9 ekey-UNO: https://www.ekey-uno.net/, last accessed October 16, 2024
10eufy Smart Lock E130: https://us.eufy.com/products/t8510, last accessed October 16, 2024
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smartphone, key, fingerprint or a knowledge-based secret. The Tenon Smart Lock11 offers
both face and fingerprint recognition to unlock doors.

Overall, commercial solutions in this category offer users the option to post-hoc enable bio-
metric recognition for their devices or integrate them as a part of their smart home solutions.

2.3.3 Biometrics as a Service

Finally, some types of biometrics do not require additional hardware and are thus commer-
cially offered as a service. Examples include the Microsoft Azure AI Face service12 offering
business customers models for face detection and face recognition. Similarly, Clearview.ai13

is offering face recognition for law enforcement.

Some solutions also leverage behavioral biometric features like TypingDNA14 which pro-
vide typist verification based on keystroke dynamics. BehavioSec15 combines different be-
havioral traits like keystrokes, device movement, mouse movement, and touch features for
user verification and fraud prevention.

In general, there is a large pool of services, that offer some kind of fraud detection and
worker monitoring to ensure that services are not accessed by unauthorized third parties.
Here, combinations of biometric features and other usage data is leveraged, but it often re-
mains unclear, how exactly they are used. Examples include NetHone16 using behavioral
biometrics as part of their account protection solution and Castle17 leveraging diverse user
interaction features to prevent account abuse and automatically triggering responses. Bio-
Catch18 makes use of behavioral features to prevent online fraud and PuriLock19 leverages
keyboard and mouse interactions to verify current users and prevent compromised sessions.

Overall, those solutions are rather targeted at businesses and larger companies and often do
not give clear insights into what constitutes the models they use. The wide variety of such
solutions also underlines the importance that the use of biometrics has for businesses these
days to protect their networks, detect intrusion, and prevent fraud.

11Tenon Smart Lock: https://www.aptenontech.com/products/automatic-electroni
c-doorbell-face-recognition-smart-lock/, last accessed October 16, 2024

12Azure AI Face service: https://learn.microsoft.com/en-us/azure/ai-services/co
mputer-vision/overview-identity, last accessed October 16, 2024

13Clearview.ai: https://www.clearview.ai/, last accessed October 16, 2024
14TypingDNA: https://www.typingdna.com/, last accessed October 16, 2024
15LexisNext BehaioSec: https://risk.lexisnexis.com/products/behaviosec, last accessed

October 16, 2024
16NetHone: https://nethone.com/solutions/user-lifecycle-fraud-prevention, last

accessed October 16, 2024
17Castle: https://castle.io/, last accessed October 16, 2024
18BioCatch: https://www.biocatch.com/, last accessed October 16, 2024
19PuriLock: https://plurilock.com/products/defend/, last accessed October 16, 2024
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2.4 Challenges of Biometric Authentication

While biometric models can offer a fast and convenient way of authentication, they also
come with a range of possible drawbacks. Jain et al. [140] propose a list of five concerns
for biometric authentication that systems should address: Performance, Bias and Fairness,
Security, Explainability and Interpretability, and Privacy. Here we give an overview of those
challenges.

2.4.1 Performance

While the accuracy of modern-day biometric recognition systems often exceeds human-level
performance [140], they very much rely on the quality of input they receive. As such, noise
to this input can greatly deteriorate their performance. Chugh et al. [56] found fingerprint
performance impacted by the quality of samples with factors like motion blur, or changes to
the fingerprint due to humidity, all of which decreased recognition performance. Similarly,
external factors like light conditions or pose variations can have an effect on face recog-
nition [116]. Bhagavatula et al. [29] found those effects also mirrored in the usability of
those biometrics in a lab study where participants would use them under varying conditions.
Sieger et al. [250] found that voice or speaker recognition is not usable in crowded places.

In addition to external factors, the users themselves seem to provoke differing biometric
system performance as well. Yager and Dunstone [294] found that system performance can
vary greatly depending on the user and Cabrera et al. [48] showed such effects for specific
user groups.

Finally, scalability can become an issue. In particular for recognition models that rely on a
one-to-many comparison, more users make the task more difficult. As an example, Pfeuffer
et al. [203] found the performance of their system to identify users in VR to deteriorate with
increasing numbers of users.

Those challenges both highlight the need for further improvements to models’ performance
in border cases as well as for biometric interfaces to communicate those cases to the end-
users of biometric methods.

2.4.2 Bias and Fairness

Biometric models are often prone to (demographic) biases, that is, they perform better for
certain groups and worse for others. This effect is mainly researched in the field of face
recognition, where multiple studies found models to be biased [48, 116, 164, 264, 298].
While biases vary strongly between different models, related work uncovered both biases in
face recognition systems towards people of color [48, 298] as well as women [164]. Another
known bias is fingerprint models performing worse for infants [89, 138].
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Possible reasons for such biases can be biased datasets (i.e., certain groups are under-
represented in the data) and algorithmic optimizations, that lead to the model focusing on
overall performance rather than optimizing for corner-cases [140].

As this problem is as of now still open and unsolved, biometric interfaces can help mitigate
its effects and communicate the existence of such biases to the users before they decide to
use a biometric system. In Chapter 6 we introduce an introspective method that may be
used for uncovering such effects on a personal level to allow for better anticipating model
performance.

2.4.3 Security

Jain et al. [140] categorize potential threats to biometric models by the part of the recognition
process they attack. They speak of presentation attacks targeting the sensing module, ad-
versarial attacks targeting the feature extraction and template theft and subsequent template
reconstruction attacks aimed at the template database.

Presentation attacks can have both the goal of evading recognition (e.g. through damaging a
fingerprint [301]) or gaining access to a protected device (e.g. using an artificial finger [13]).
The equivalent to such presentation attacks for behavioral biometrics is called a mimicry
attack. This involves a human (or artificial input [193, 302]) trying to emulate the legitimate
users’ input. This was successfully done for e.g. keystroke dynamics [158, 159, 160, 265].
Similarly, Yampolskiy and Govindaraju [296] observed that gait-based authentication could
be tricked by an impersonator imitating the walk of the registered user.

Adversarial attacks entail the process of so-called adversarial examples [16, 114, 127] by
adding small and human-imperceptibly perturbations that can lead to misclassification. Such
attacks have been shown to be successful in the context of faces [74] but can also be used to
protect users’ privacy in video conferencing [245].

When an attacker gains access to the database, they can reconstruct the original input from
the biometric templates. This has been shown possible for several biometrics, e.g. face
recognition [172], fingerprints [50], and iris recognition[7].

There are various countermeasures to each of those types of attacks, that we will not go into
detail here. However, this shows that similar to other types of authentication, attacks are a
real possibility and have shown to be successful numerous times.
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2.4.4 Explainability and Interpretability

Due to their use of deep machine learning models, the decisions of biometric models can
be hard to interpret. However, it is important both for developers and users of biometrics to
understand the models’ behavior and potentially improve it. The most common approach for
this is visual highlighting of relevant input areas. Stylianou et al. [257] propose a method that
highlights regions that contribute to pairwise similarity (e.g. of two faces). Yin et al. [299]
trained a model in such a way that its features correspond to face areas, enabling saliency
maps that correspond to meaningful facial features. Engelsma et al. [88] highlight extracted
feature points for fingerprint recognition. Shi and Jain [248] propose to embed faces as a
probability distribution instead of single points or feature vectors. In this model, the variance
of the distribution corresponds to the uncertainty of the corresponding features and can thus
also be used for visualization. Finally, Terhörst et al. [264] took a different approach and
analyzed the impact of face features on performance. Some features were predictive of
decreased performance and could thus give labeled explanations of model biases.

All of those approaches were designed for model inspection by developers and explorations
of their use for end-users are as of now largely missing. The focus is as of now mainly on
the use of visual inspection using heatmaps. In Section 2.5.1 we give some more details on
explainable artificial intelligence independent of the biometrics use case and how its methods
could be extended to facilitate more user-centered biometric interfaces.

2.4.5 Privacy

In a study by Elliott et al. [86] participants voiced their concerns when using biometrics
including which applications and who would have access to their data. Such concerns are
not uncommon and unfortunately often warranted (e.g. [268]). In particular behavioral data
is very sensitive, as it can reveal information on health [223] or allow for building movement
profiles. In the EU, the General Data Protection Regulation GDPR20 requires data protection
by design and defines biometric information as personal data, requiring special protection.

Using sensitive data to build biometric models in a privacy-preserving manner is a challeng-
ing task. Aggarwal et al. [6] suggest the use of federal learning for face recognition models.
In this approach, models are trained locally and fused afterward to avoid amassing a central
dataset of private (biometric) data. Other approaches are based on Homomorphic Encryption
(e.g. [145]), proposing to train biometric models on encrypted data.

However, in the end, privacy is also always a question of user acceptance. As such it is
vital to inform them about the collected data and the uses and risks associated with using a
biometric model.

20GDPR: https://gdpr-info.eu/, last accessed October 16, 2024
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2.5 Learning from other Fields

Research on biometric interfaces is sparse and often limited to very specialized use cases
(e.g., enabling mimicry attacks [159, 265] or locking approaches for implicit authentica-
tion [157]). Thus, our work actively borrows concepts and methods from other fields. Here
we give a general overview of other research areas that we leveraged as inspiration to inform
biometric interfaces and their evaluation. However, as our work relates to widely different
fields, we highlight more specific background and related work in the respective chapters of
this thesis.

2.5.1 Explainable AI

Explainable Artificial Intelligence (xAI) is a field concerned with allowing introspection
into complex (machine learning) models and making them understandable. With biometrics
being a special case of machine learning models, findings and techniques of explainable AI
are also relevant here. Models can either be conceptualized to be interpretable (transparent-
box) by design [118, 299] or post-hoc techniques can be used to gain insights into a given
black-box (i.e. non-transparent) model.

Such post-hoc techniques include text and local explanations, visualizations, explanations by
example or simplification, and the use of feature relevance [14]. Some of those techniques
also have the potential to explain model decisions and contributing factors in user-centered
interfaces. For example, textual explanations [27] can give insights into the reasoning pro-
cess of a model. Similarly, explanations or visualizations of feature relevance [217, 264, 299]
can give direct insights into contributing factors, as long as the respective features are mean-
ingful. Visualizations [200, 241] are the most used technique in exploring decisions of bio-
metrics so far (see Section 2.4.4), though they are mostly targeted at developers and experts
and it is unclear if they can be interpreted by end-users. Finally, explanations by exam-
ple [33] can be a viable method of illustrating corner cases in an easy to comprehend way
for end-users.

As such, explainable AI proposes techniques that can help uncover and communicate weak-
nesses and influencing factors in machine learning models. However, they follow a model-
focused approach where the focus is on analyzing models for further development to uncover
weaknesses in general. In this thesis, we instead put (end-)users and their interaction with
a biometric system at the center of our investigation. Nonetheless, we both use insights
gained through explainable AI methods as well as post-hoc techniques like explanations and
examples to communicate those findings to the end-users in our proposed interfaces.
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2.5.2 Interfaces in Usable Security

When looking at other areas of usable security, in particular on knowledge-based authenti-
cation we observe two main directions of interfaces. On the one hand, there are interfaces
designed to mitigate different kinds of attack vectors where researchers propose extensions
or completely novel interactions for that purpose. On the other hand, there are interfaces that
use nudging techniques to convince users to choose more secure secrets. Here, we give a
short overview of some of those approaches and illustrate, what we can learn for the design
of biometric interfaces.

Mitigating Observation and Reconstruction Attacks

One driver of interface design in usable security has been the mitigation of common attack
vectors. Such threats can be, for example, observation attacks, where an attacker observes
the user entering their secret (and can then use that to gain access), or reconstruction attacks,
where an attacker can reconstruct the secret from some kind of residue. Some possible attack
vectors are shoulder surfing [84], thermal attacks [2], or video-based observations. De Luca
et al. [72] proposed and evaluated authentication at the back of the device to make it invis-
ible to an attacker and Khamis et al. [155] suggested a combination of different modalities
for entering a secret to make observation more difficult. Similarly Von Zezschwitz et al.
[278] suggested an interface facilitating swiping gestures with directional cues that disap-
peared on touch to make observation harder. To protect patterns from being leaked through
smudge traces on the device, von Zezschwitz et al. [281] designed a pattern interface in
a way that would leave less interpretable smudges. A similar approach was suggested for
graphical passwords by transforming the underlying image [237]. To counteract attacks on
the fallback authentication mechanism Tiefenau et al. [267] suggest augmenting the unlock
screen by adding information about the reason for the switch (e.g. too many failed attempts
at authentication by fingerprint).

Those examples show, that a focus on different threats can be a valuable approach to de-
signing new interfaces. However, the main focus of this related work was on protecting the
secrets used for authentication. For biometrics, those secrets are generally always in plain
sight. For example, the users’ faces or movements can easily be recorded by cameras, and
interacting with everyday objects leaves fingerprints on them. As such, it is hard to hide
those features, and attack mitigation is often a task for the biometric systems themselves
(e.g. by detecting replay attacks).

Still, we make an attempt at designing interfaces with attack vectors in mind in Part IV of
this thesis, where we explore if users can actively change their typing and how they can be
supported in doing so (e.g. to evade recognition). Apart from that, we follow a broader
interpretation for designing biometric interfaces against threats and focus on non-adversarial
impact factors on general performance in the form of demographic and external factors.
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Nudging Users to Secure Choices

Besides creating interfaces to mitigate attacks, another big application for interfaces in us-
able security is convincing users to make good privacy- and security choices.

An underlying observation for this type of interface is, that users tend to choose similar
secrets. Examples are picking keys in a row like “1234” as a password, starting a lock
pattern in the bottom right corner [280] or choosing salient points in images for graphical
passwords [37]. This can then inform the design of nudges as an effective tool to convince
users to make more secure choices. Von Zezschwitz et al. [280] used different background
images to nudge users to start their patterns in different locations. Seitz et al. [240] used
the decoy effect to influence password choice. While they found no effect of their decoy,
presenting a comparison alone was enough to nudge users to choose more secure passwords.
Similarly, the use of password strength indicators has been shown to be effective in nudging
users to choose stronger options [165, 272]. Seitz and Hussmann [239] designed a game and
found it effective in increasing users’ awareness of password strength.

However, nudges can not only be used to improve the choice of secrets. Busse et al. [46]
evaluated the effectiveness of incentives to foster the adoption of two-factor authentication
for games, finding, that they can be an effective nudge. De Luca et al. [70] augmented a
keyboard with visual cues, nudging users to avoid unsafe decisions (e.g. entering a password
on an unprotected website). Tiefenau et al. [266] made privacy settings graspable in the form
of a “privacy hat” and could nudge users to more actively engage in controlling them.

While the use of nudges in usable security is technically speaking also a design choice aimed
at threat mitigation (e.g. guessing attacks), they also motivate a new and interesting perspec-
tive for our work. The design of nudging interfaces generally follows a two-step process of
first uncovering a kind of unsafe or otherwise undesirable behavior and then nudging users
through explanations or other approaches toward better options. We use a similar approach
in this thesis by understanding user needs and designing biometric interfaces to support their
literacy and nudging them to secure choices while preserving user agency.

When using biometric systems, users do not have agency over the input and thus are techni-
cally unable to choose a more secure variant. However, similar to knowledge-based nudges,
introspection into the underlying mechanisms can be used to inform user decision-making.
Knowing how biometrics perform for the individual (e.g. leveraging their demographic
background and activity profile) can help users in choosing an appropriate model or cor-
rect setting if they are available.

2.5.3 Evaluation of Security Mechanisms

Evaluating security mechanisms is generally a challenging task as authentication is not the
users’ primary task and thus gaining reliable insights into their use of authentication mech-
anisms can be difficult. A recent literature review on the methods used in usable security
research found that interviews, experiments, and questionnaires were the most prevalent
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methods [80]. Both interviews and questionnaires are mostly suited to assess participants’
perceptions. However, they often rely on self-reporting which does not necessarily align
with actual choices (see e.g. the privacy paradox [108]). To assess interactions with an
authentication mechanism experiments are needed.

When designing usable security experiments, many aspects have to be considered [80]. As
security is a secondary task, evaluating it as a primary task in a study can lead to overly
optimistic results with low ecological validity. Similarly, a lab setting and study framing by
itself can already lead to participants behaving differently and caring more for security[83],
in particular as they may come in contact with a mechanism or the threat it is designed
against more often than they would in reality [107]. As an example, participants in the lab
study by Von Zezschwitz et al. [278] unanimously stated they would use the introduced
authentication approach in their daily lives. However, a subsequent field study found this
not to be the case. Conducting studies in the field can thus paint a more valid picture of the
actual use of security mechanisms. However, such studies are also less controlled and many
external factors can lead to decreased internal validity.

Finally, many security studies inherently have to involve the risk that the tested mechanism
is designed against. The most ecologically valid approach to do so would be to observe
the user interacting with the mechanism while this risk naturally occurs (e.g. an attacker
is trying to observe their PIN). However, this is generally not practical and can put users
and their data and devices at risk. The common solution is to simulate risks and attacks.
However, this comes with the aforementioned limitations. As an example, De Luca et al. [72]
tested the effectiveness of back-of-device authentication against observations by recording
participants’ interactions and post-hoc trying to reconstruct the inputs.

When evaluating biometric interfaces, we are confronted with all of those challenges and
every decision in the end is a trade-off between different goals. We used surveys and in-
terviews to understand user needs and contextualize our experimental findings. Otherwise,
we always tried to allow users to interact with our proposed solutions in as realistic a way
as possible and thus opted for field studies when we could. Chapters 9 and 10 describe our
approach of first studying an effect (here ability to modify typing behavior) under controlled
settings in the lab before implementing a version that was suitable for an in-the-wild study
and comparing both approaches.
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2.6 Summary: Challenges for Biometric Interfaces

Here we give a short summary and overview of the challenges for biometric interfaces and
how they motivate our work.

In many fields of usable security, there exists a plethora of user interfaces, designed to enable
new ways of authentication, help users make secure choices, or protect them from risks. For
biometrics, such work is still largely missing. Existing work is mainly model-centric, in-
troducing new biometric methods, understanding their biases, and giving insights to experts
and developers. This calls for and motivates the user-centered approach of this thesis.

Biometrics rely on complex pattern matching and machine learning models, making them
hard to understand and predict. However, related work has shown, that biometrics have
several shortcomings, including demographic biases and context-dependent performance.
Current ways of reporting the performance of biometric models focus on global metrics like
accuracy and thus do not account for individual factors. However, for the individual, such
effects can be highly important and call for interfaces that communicate such insights to
foster user literacy and informed use of biometrics.

Techniques like nudging are an effective and often-used tool in usable security research to
encourage secure and privacy-preserving user choices while preserving their agency. For
biometrics, this is more difficult, as many biometric features cannot be easily changed and
thus user agency over the performance of their system is limited. Continuous biometrics
additionally introduce the concept of constant authentication which can enhance security
but also take away user agency over if and when to be recognized. This calls for approaches
to return agency back to the users and motivates our investigation of active control of typing
features and nudges to mitigate shortcomings of biometrics.
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PART II: UNDERSTANDING USER NEEDS AND
DESIGN OPPORTUNITIES

In the previous part, we gave an introduction and overview of this thesis. Here we report
on our work to gain a better understanding of how biometrics are used as well as what user
preferences and concerns are when interacting with them. We conclude this part by exploring
considerations and opportunities for the design of biometric interfaces. This work serves as
a foundation to inform our further investigations on biometric interfaces presented in Parts
III and IV.

❖ Chapter 3 reports on the results of two surveys that were conducted towards the be-
ginning and the end of this thesis to capture the use and perception of biometrics and
potential advances and changes that happened while this thesis was written.

❖ Chapter 4 introduces a lab study we did to understand user preferences when inter-
acting with different biometric mechanisms in comparison to traditional approaches.

❖ Chapter 5 proposes a design space derived from an expert focus group that can be
leveraged to inform the design of biometric interfaces.
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3
Understanding Use and Perception of

Biometrics

This chapter is based on the following publication:
Lukas Mecke, Alia Saad, Sarah Prange, Uwe Gruenefeld, Stefan Schneegass, and
Florian Alt. 2024. Do They Understand What They Are Using? — Assessing Percep-
tion and Usage of Biometrics. arXiv preprint arXiv:2410.12661 [186]

The aim of this thesis is the design of biometric interfaces to support users in their inter-
action with biometric authentication models. However, when designing for users, the first
step is understanding their current interactions, knowledge base, and needs. This chapter is
dedicated to this goal.

Most modern smartphones offer some kind of biometric authentication method like finger-
print [142], face recognition [275] (for example, “Face ID” on iPhones), or gait recogni-
tion [254] as part of Google’s “Smart Lock” feature on Android1. However we know, that

1 https://support.google.com/android/answer/9075927, last accessed October 16, 2024

https://support.google.com/android/answer/9075927


those biometrics are inherently based on machine learning models, making them prone to
external factors [29] and biases [82]. As a consequence, their behavior can be hard to pre-
dict, – even for experts [228]. This leads us to the assumption, that this is even harder for
end-users and that they may often not fully understand the biometric systems they use. As
a consequence, they may also be unfamiliar with their strengths and weaknesses, and the
potential consequences of attacks.

Other fields of authentication have already shown how better understanding their users can
help to improve the interaction. Collecting commonly used passwords led to password poli-
cies and approaches to aid users in understanding the strength of their passwords (e.g. [239]).
Similarly, knowledge of how users chose graphical patterns allowed for approaches to nudge
users to a more secure choice (e.g. [37]). The aim of this chapter is to create a similar knowl-
edge base to support and inform the design of biometric interfaces.

However, the perception of biometrics may also evolve with the availability and adoption of
new technology [99], so sampling a single point in time may not be sufficient. To address
this, we propose to compare the perception and use of biometrics for two points in time.

We thus designed and conducted an online survey in two rounds (first round, 2019: N=57,
second round, 2023: N=47) assessing participants’ knowledge about biometrics, their cur-
rent use of this technology, and their perception of security and usability. We explicitly
covered both physiological and behavioral biometrics to be able to make a comparison.

We found, that most participants indicated being unable to define or explain biometrics.
However, our open-text answers revealed that many participants were able to name correct
examples and have some basic understanding while in-depth knowledge was often lacking.
More participants actively used biometrics for authentication in the second round of our sur-
vey. Contrary to our expectation we did not observe other clear effects between the rounds.
Behavioral biometrics seemed overall less known in both rounds and were also consistently
rated worse than physiological mechanisms.

In this chapter we contribute 1) an online survey conducted in two rounds assessing
users’ perception and use of biometric methods. We 2) identify common themes and
misconceptions, and 3) discuss how our insights can be used to improve biometric
interfaces and foster future informed use of biometric methods.

3.1 Background and Research Approach

Here we give a short overview of previous related work on the use and perception of biomet-
rics before discussing our learnings and deriving the research questions guiding this work.
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3.1.1 Understanding Biometrics Perception

Large parts of the literature about biometrics focus on technical aspects, such as data collec-
tion (e.g., [204, 258]), feature extraction (e.g. [106]) or classification (e.g. [259, 296]). Here
we give an overview of work investigating user perception of biometrics.

Furnell and Evangelatos [103] used Likert scale questions to understand users’ awareness
and usage of biometrics, finding that participants preferred methods they had previously
heard of and considered easy to use. In a study by Elliott et al. [86] participants voiced
their concerns when using biometrics including cleanliness of the devices, safety, and which
applications and who would have access to their data. Bhagavatula et al. [29] compared the
usability of fingerprint, face recognition, and PIN under different conditions. They found
fingerprint to be the overall preferred method with mixed results for face recognition (e.g.,
because it was unusable in dark environments). A survey on the perception of facial recogni-
tion [135] found that despite 90% of the participants being familiar with the technology, only
5% claimed adequate knowledge to build a solid opinion on its usage and its implications. In
a large-scale survey (N=10,000), Franks and Smith [98] found that 76% of the respondents
used biometric technology, mainly fingerprint and facial recognition. Saad et al. [225] inves-
tigated the impact of the Covid-19 pandemic on device usage and authentication in an online
survey. They found that the pandemic countermeasures (e.g., sensitization measures, wear-
ing masks) negatively affected biometric-based authentication approaches such as finger-
print and face recognition. In a usability questionnaire on both physiological and behavioral
methods, Alhussain et al. [8] showed that 87.3% of participants believed that biometrics
(particularly fingerprints) help to protect critical information on their phones. Karatzouni
et al. [150] conducted a focus group and found that participants showed interest in adopting
biometrics to enhance privacy while also having concerns about constantly being recorded.
In an online survey by Rasnayaka and Sim [213], security awareness levels reflected users’
willingness to adopt biometric-dependent continuous authentication and Buckley and Nurse
[36] found that context is fundamental with regard to acceptability, despite the general ob-
servation that users find familiar biometrics most convenient. Sieger et al. [250] found
that voice or speaker recognition is not suitable in crowded places. Similarly, a survey by
Ellavarason et al. [85] showed that users were concerned with external factors affecting iden-
tification performance (for example, surrounding noise on voice recognition). In general, the
fingerprint was often chosen as the most secure biometric identification approach [29, 36].

3.1.2 Implications of Related Work

Related work often focused on technical aspects of biometrics (for example, with the aim
to improve the underlying models), specific methods (e.g., only face recognition[135]), or
specific contexts (e.g., [29, 225]). Furthermore, related work often used predefined questions
– leaving participants less room to express their own experiences – and assessed knowledge
of biometrics after giving a definition (e.g., [47]) instead of exploring their initial association.
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For this chapter, we extend previous work by taking a more holistic approach and including
both behavioral and physiological biometrics without a specific scenario. We allow for more
open (and unprimed) responses – in particular when assessing knowledge – and investigate
use in daily life and changes over time. To our knowledge, no previous work attempted to
compare their results over a larger time span to observe changes.

3.1.3 Research Questions

Overall, we aim to assess which biometrics participants know and use, and if they understand
them. As a second step, we try to gain insights into users’ perceptions of the usability and
security of biometrics and uncover potential misconceptions they might have.

Our work is thus guided by the following research questions:

RQ1 Literacy: Do participants know what biometrics are and can they explain how they
work?

RQ2 Perception & Usage: What is participants’ personal view about biometrics and where
do they see their value, both in their daily life and in general?

RQ3 Usability & Security: How do participants perceive usability and security aspects of
biometric methods and how do they think they can be improved?

3.2 Survey

Here, we introduce our study design, the structure of the survey, our recruitment strategy,
and the data analysis approach.

3.2.1 Study Design

Our study design follows a mixed-methods approach with two independent variables. To
extend previous work, we distinguish between TYPES of biometrics and explore our research
questions for both physiological and behavioral methods. To uncover potential changes over
the past years we compare quantitative results between ROUNDS and employ a two-step
coding approach (see Section 3.2.4).

3.2.2 Survey Structure

To address our research questions (Section 3.1.3), we designed an online survey that we
repeated in two rounds to explore changes over time. The survey comprised eight parts as
described below. Refer to Appendix A for the full list of questions.
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A Preface: Participants were informed about the study and consented to the data collec-
tion. To test awareness and understanding, it was important to ensure that participants
did not look up terms or return to change their answers once they were given a def-
inition. We asked participants to follow those guidelines and disabled returning to
previous questions in the survey.

B Demographics: This part included questions about the participant’s age, gender, and
occupation. Participants were also asked to estimate their technical knowledge on a
5-point Likert scale.

C Biometric Methods: In this part, we asked participants if they were familiar with the
concept of biometric methods and – in case they were – to explain the concept and
how it works. If they were unfamiliar with the concept, we asked them to answer with
their thoughts instead.

D Briefing: At this point, we gave participants the following definition of biometrics and
a short explanation2:

Biometrics: automated recognition of individuals based on their biological and
behavioral characteristics (ISO 2382-37) [136].
In other words, a biometric system uses unique characteristics in human physi-
ology or behavior to accurately identify individuals.

We then asked participants for biometric methods they knew, methods they used in
their daily lives, and other application areas of biometrics they knew or could think of.
Finally, we asked them to think of other characteristics that could be used for biometric
identification.

E Interlude: In this part, we explained the term authentication and gave examples for
biometrics:

One of the main application areas for biometrics nowadays is authentication.
That means that a user can verify their identity to, for example, access an ac-
count or device.
Common examples for physiological biometrics include fingerprint recogni-
tion, face recognition, and iris scans.
Common examples for behavioral biometrics include gait recognition (walking
patterns), keystroke dynamics (typing behavior), and interaction behavior (e.g.
credit card usage surveillance to prevent fraud).

We then asked for the participants’ smartphone OS and authentication scheme. We
moved this from part B to avoid bias towards smartphone authentication in parts C-D.

2 Note that we did not expect participants’ answers in part C to exactly match this definition, but rather wanted
to ensure a common ground of knowledge for the rest of the survey.
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F Biometric Perception: In this part, we asked participants to answer perception ques-
tions about using biometrics on a 5-point Likert scale.

G Performance & Security: Here, we asked for participants’ confidence in biometrics,
the impact changes in their appearance or behavior might have, and their fallback
strategy if the biometric system did not work. We further asked for the hack’s con-
sequences for them, their approach to attacking a biometric system (to explore their
understanding of possible attack vectors), and their ideas to improve biometrics.

H Conclusion: Finally, we gave participants the option to comment on their previous
answers, leave a general comment, and leave their email to participate in the raffle.

Parts C, F, and G were repeated for physiological and behavioral biometrics with part C being
counterbalanced. We did so to avoid bias in the awareness and understanding questions
based on previously answering the questions for the other biometric group. We did not
counterbalance the later parts of the survey, as definitions and examples for both groups
were given in parts D and E, respectively.

Overall, we tried to avoid biases where possible and used counterbalancing where this was
not the case (e.g. we counterbalanced the order of questions about physiological and behav-
ioral biometrics). On the other hand, we wanted to ensure that all participants were on the
same page regarding the terms used. Thus, we structured the survey to provide definitions
and additional information only after we had asked for previous experiences and knowledge
and before other questions where the knowledge was relevant/needed.

3.2.3 Participants & Recruitment

In both rounds, we followed the same recruiting strategy and advertised the study via social
networks and university mailing lists. To not prime participants prior to survey participation,
we kept the invitation (title: “Survey about biometric perception”) and introduction to the
survey on an abstract level. We recruited N=57 participants in the first round (December

Round 1 Round 2

Gender 33 (58%) 26 (55%) Female
24 (42%) 15 (32%) Male
0 (0%) 6 (13%) Not stated

Age 29.2 27.4 Mean
18-66 18-64 Range

Technical Knowledge 3.3 3.3 Mean

Table 3.1: Demographics of the participants of the first (N=57) and second (N=47) round of our
survey. Technical knowledge was assessed on a 5-point Likert scale.
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2019) and N=47 in the second round (January 2023). The survey was conducted in English
and participants in each round could voluntarily participate in a raffle for three 30AC online
shopping vouchers. In both samples, participants were mostly students from non-technical
fields with a slight bias towards female participants. They had a mean age between 27 and
29 years and medium technical knowledge. Table 3.1 provides an overview.

3.2.4 Data Analysis

Four authors analyzed the responses to the open questions. We started with the responses
given in the first round, following the approach for thematic analysis by Braun and Clarke
[34] – an approach for inductive theme generation. After an initial phase of familiarization
with the provided statements, we independently applied open coding to the statements of the
first round3. In a review meeting, we discussed and iteratively refined the codes. We then
constructed an online affinity diagram [122] of these open codes and organized them into
groups, which were in a next step further refined into themes using an online whiteboard4.

As a result of the analysis, we derived a codebook containing the first round’s themes,
groups, and codes. The same authors continued the analysis with a deductive approach
by independently applying the codebook to the statements of the second survey round. Our
rationale behind this two-step approach was to find differences between the rounds based on
codes disappearing or new codes emerging in the second round. We reviewed the coding in
a final meeting (see Appendix A for the final codebook). Due to the exploratory nature of
our study, we refrain from reporting inter-rater agreement scores [177]. Any disagreements
were resolved through discussion.

3.2.5 Limitations

We used two independent samples which may have induced underlying differences in the
groups that did not result from the temporal distance. To minimize this effect, we exactly
replicated our recruitment strategy and compared the demographics from both rounds; find-
ing them to be very similar (see Section 3.2.3). Our sample was self-selected and biased
towards young female students and thus, our results may not apply to the general popula-
tion. Security behaviors as stated in our survey might differ from participants’ real-world
behavior. Lastly, experimenter bias may have impacted our results. To address this, four re-
searchers were involved in the analysis of open-ended questions (see Section 3.2.4). As such,
we believe that this would not influence the resulting discussion and practical implications.

3 In particular, we did not pre-assume participants’ statements to exactly match the ISO definition given in
Section 3.2.2 (part D), but followed an open coding approach based on the collected answers.

4 Miro: https://miro.com, last accessed October 16, 2024
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Round 1 Round 2
Yes No NA Yes No NA

Familiar 12 (21%) 45 (79%) – 7 (15%) 40 (85%) – PB
4 ( 7%) 53 (93%) – 5 (11%) 42 (89%) – BB

Access 32 (56%) 11 (19%) 14 30 (64%) 11 (23%) 6 PB
27 (47%) 6 (11%) 24 24 (51%) 3 ( 6%) 20 BB

Change 32 (56%) 10 (18%) 15 31 (66%) 8 (17%) 8 PB
32 (56%) 5 ( 9%) 20 31 (66%) 2 ( 4%) 14 BB

Table 3.2: Participants’ answers to the questions if they were familiar with the concept of
physiological/behavioral biometrics (PB/BB), if they believed someone could access a device
protected by PB/BB, and if changes in their physiology/behavior would impact a PB/BB system.

3.3 Results

In the following, we present our quantitative and qualitative findings. We structure this sec-
tion based on the themes identified in our thematic analysis (see Appendix A for the code-
book) and add quantitative results from our survey where they thematically fit. We indicate
the number of participants mentioning specific themes to provide a descriptive overview of
our data. However, we cannot assume that participants not mentioning a specific aspect is
equivalent to them not knowing the answer. Thus, we only conduct statistical tests on our
quantitative results. We cite participants from both samples with their IDs as assigned by our
survey tool and indicate the respective survey round (e.g. P12R1 would refer to participant 12
who was part of the first round of our survey). We distinguish between types of biometrics
by using PB and BB in subscript for physiological and behavioral biometrics respectively.

3.3.1 Definition and Function of Biometrics

We asked participants to define and explain, with their existing knowledge, what biometrics
are and how such methods work. Participants were encouraged to guess if they were un-
familiar with biometrics. We prefaced this open question with a binary choice, where only
a minority of participants in both rounds indicated they were familiar with either physio-
logical (familiarR1 = 21%, familiarR2 = 15%) or behavioral (familiarR1 = 7%, familiarR2 =
11%) biometrics (Table 3.2). Using Fisher’s exact test, we found no effects of the type of
biometrics or the round on reported familiarity.

While we did not expect participants to exactly replicate a technical definition (such as given
in Section 3.2.2, part D), we saw that many of them mentioned features related to biometrics,
either remaining rather generic (e.g. naming just “physiological features”) or giving concrete
examples like face geometry or fingerprints (NR1 = 45 and NR2 = 19). Some participants
also explicitly mentioned where they had heard of biometrics (P181R1: “I only know the
word biometric from ID suitable photographs”, P98R1:“Like in Mission: Impossible – Rogue
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(b) Known behavioral biometrics

Figure 3.1: Known biometrics as mentioned by the participants. We excluded mentions of
unrelated methods as well as biometrics that were mentioned by less than 3 participants across
both rounds.

Nation where they measure how you walk”). Fewer participants included a correct or related
verb (e.g. recognize or authenticate) in their definition (NR1 = 32 and NR2 = 15) or only
mentioned an example related to biometrics (NR1 = 24 and NR2 = 12). At the same time,
a large number of participants showed some missing knowledge (NR1 = 48 and NR2 = 34)
by either explicitly stating to have no idea (NR1 = 29 and NR2 = 4) or referring to other
concepts. Those often revolved around related topics like medicine and health (e.g. P130R1:
“The status of ones health in numbers”), body functions (e.g. P129R1: “It could be about the
way we perceive the locations of our extremities”) or influences on behavior (e.g. P124R1:
“trying to derive how people behave from their physical features”, P280: “How and why we
behave as we do”). Almost all participants left at least one of the questions about defining
and explaining biometrics empty (NR1 = 53 and NR2 = 42). Finally, some participants
explicitly expressed confusion concerning the terms physiological and behavioral biometrics
(NR1 = 2 and NR2 = 9). Interestingly, one participant expressed that the term physiological
biometric seems to be incorrect, saying “face, fingerprints, and such for me are anatomical
characteristics, not physiological” (P297R2).

After giving participants a definition of biometrics in the survey, we asked them to name
all biometric methods they knew (see Figure 3.1). The most mentioned physiological ap-
proaches were fingerprint (NR1 = 40, NR2 = 36), iris or retina scans (NR1 = 30, NR2 = 23),
and face recognition (NR1 = 27, NR2 = 29). For behavioral biometric methods, the most
common mention was voice recognition (NR1 = 14, NR2 = 11), followed by gait (NR1 = 8,
NR2 = 3), handwriting or signatures (NR1 = 7, NR2 = 4), and typing or keystroke dynamics
(NR1 = 7, NR2 = 3). Overall, participants knew more physiological methods, which is also
reflected in the high number of participants who indicated being unable to name a single
behavioral method (NR1 = 24 and NR2 = 20). Many participants mentioned features that
are associated with biometrics but not commonly used in the consumer market. Examples
are features used in a forensic context (e.g. DNA or teeth) and for profiling and tracking pur-
poses (e.g. movement, mouse movement, online behavior). Some participants mentioned

43



0 50 100 150 200

Faster
Reliable

Easy to use
Consistent Performance

More Secure
Suited

Can be faked
Concerns (privacy)
Concerns (hacks)

Concerns (access)

Perception of Physiological Biometric Methods

0 50 100 150 200

Faster
Reliable

Easy to use
Consistent Performance

More Secure
Suited

Can be faked
Concerns (privacy)
Concerns (hacks)

Concerns (access)

Perception of Behavioral Biometric Methods

Figure 3.2: Participants’ ratings on the Likert statements combined for both rounds of our online
survey. Participants that did not give a rating are indicated in gray. See Appendix A for the full
questions.

features like height or eye color (also called soft biometrics [68]) that have some biomet-
ric value but are not commonly used alone but rather in conjunction with other biometrics.
Notably, voice was mentioned both as a behavioral and physiological trait. While voice
recognition is often considered to be a behavioral biometric method the distinction is not
completely clear cut and voice does have a clear physiological component to it [144].

3.3.2 Perception and Usage of Biometrics

In the survey, participants mentioned several aspects related to the usage of biometrics. Many
participants gave concrete usage examples of biometrics (NR1 = 29, NR2 = 27), such as
fingerprint, face recognition, ID cards, and signatures, among others. Moreover, they men-
tioned specific devices and use cases in which biometrics are utilized (NR1 = 19, NR2 = 23),
primarily mentioning mobile devices and computers. A few participants provided reasons
as to why they use biometrics (NR1 = 4, NR2 = 7): for example, they stated that biometrics
are easy, fast, safe, and less error-prone. One participant stated to “use the facial recognition
and fingerprint scanner on [their] phone and tablet, to unlock [their] devices more easily
and avoid the danger of other people seeing [their] PIN code or password” (P324R2). In
contrast, a few participants stated directly that they do not use biometrics and use, for exam-
ple, passwords instead (NR1 = 1, NR2 = 3). Some more participants gave reasons against
using biometrics (NR1 = 14, NR2 = 7), mentioning not having a reason for using them, hav-
ing concerns about privacy and recovering from data getting compromised or pointing out
issues with the recognizer/classifier. Some participants just did not like the thought of using
biometrics with P20R1 finding face recognition “creepy and insecure” and P317R2 stating to
“feel more comfortable not using it”.

We also asked participants about their mobile device authentication scheme (see Table 3.3 for
full results). The most common combination used was fingerprint authentication (NR1 = 30,
NR2 = 23) with a PIN as a fallback (NR1 = 28, NR2 = 25). While face recognition was not
used among our participants in the first round of the survey, 12 participants (26%) used this
scheme for authentication in the second round.
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Round 1 Round 2

Operating System 38 (67%) 28 (60%) Android
17 (30%) 18 (38%) iOS
2 (4%) 1 (2%) Other

Unlock 30 (53%) 23 (49%) Fingerprint
9 (16%) 5 (11%) PIN
8 (14%) 2 (4%) Pattern
8 (14%) 3 (6%) Slide/None
2 (4%) 2 (4%) Password
0 (0%) 12 (26%) Face Recognition

Fallback 28 (51%) 25 (53%) PIN
15 (26%) 7 (15%) None
7 (12%) 6 (13%) Pattern
4 (7%) 9 (19%) Password
2 (4%) 0 (0%) Other

Table 3.3: Operating system and authentication schemes used by the participants of the first and
second round of our survey.

Finally, we also asked participants to rate a collection of Likert statements on the usabil-
ity and security of biometrics on a scale from 1 (strongly disagree) to 5 (strongly agree).
Figure 3.2 shows the results. We compared ratings across rounds with a Mann-Whitey U
test, finding significant differences only for participants’ perceptions of the consistency of
biometrics. Participants in the second round disagreed with the performance of biometrics
being equal for all users while they were neutral in the first session (Z=4092.00, p=.014).

To find potential differences in the perception of physiological and behavioral biometrics,
we conducted Wilcoxon tests excluding answers where neither type of biometrics was rated.
Physiological biometrics were rated significantly faster compared to Pin/Password than be-
havioral biometrics (MdnPB = 5, MdnBB = 3, Z=5.60, p<.001). Similarly, they were rated
more reliable (MdnPB=4, MdnBB=3, Z = 3.80, p<.001) and easier to use (MdnPB = 5,
MdnBB=3, Z=4.96, p<.001). Participants rated physiological biometrics as significantly
more secure compared to PIN/Password than behavioral biometrics (MdnPB = 4, MdnBB
= 3, Z=2.41, p<.014) and found them better suited to protect their personal data (MdnPB =
4, MdnBB=3, Z=4.06, p<.001). In contrast, concerns about privacy (MdnPB = 3, MdnBB = 4,
Z=-3.14, p=.001), about being hacked (MdnPB = 3, MdnBB = 4, Z=-4.45, p<.001) and about
loosing access (MdnPB = 3, MdnBB = 4, Z=-4.45, p<.001) were all rated significantly higher
for behavioral biometrics.
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3.3.3 Attacks and Challenges

The majority of participants in both rounds of our survey indicated their belief that someone
else could access their device when using physiological (accessR1 = 56%, accessR2 = 64%)
or behavioral (accessR1 = 47%, accessR2 = 51%) biometrics (see Table 3.2). Notably, a
large group of participants indicated they did not know if this was possible – particularly
for behavioral methods (43% and 42% in the two rounds respectively). We saw very similar
results regarding the effect of changes on biometric methods. A majority of participants
believed that changes in their physiology or behavior would have an impact on the respective
biometric methods (impactR1 = 56%, impactR2 = 66%). We did not find effects of biometric
type or survey round on both of those measures when using a Fisher’s exact test.

In their open-text responses, almost all participants mentioned aspects related to attack-
ing biometrics and current challenges. Many participants mentioned non-malicious rea-
sons why biometrics could fail. They gave generic reasons (NR1 = 18, NR2 = 23), such as
changed hardware or a longer time span between authentication attempts and physical rea-
sons (NR1 = 20, NR2 = 24), such as cosmetics, haircuts, or injuries. For example P297R2
named “diseases of skin [and] injuries” as potential reasons for fingerprint not working,
adding they had personal experience with non-detection from “very dry skin with deep cuts
from outdoor work”. Finally, participants mentioned behavioral reasons (NR1 = 2, NR2 = 7),
such as an impact resulting from mood or a purposefully changed behavior (e.g. P16R1: “I
type much faster when I argue with my girlfriend. This might bias the system”). Moreover,
they saw different attack vectors for biometrics. They mentioned software-based attacks
(NR1 = 13, NR2 = 10), including hacking or circumventing of biometrics. They described
the application of force (NR1 = 7, NR2 = 9), including destroyed hardware, removed body
parts, or an attack during sleep (e.g. P314R2: “When sleeping/unconscious most of the phys-
iological biometrics can be used without my consent”). Participants further mentioned imi-
tation/replay attacks (NR1 = 36, NR2 = 36), including deepfakes and mimicry attacks (e.g.
P328R2: “trying to build an imprint of a fingerprint or (more elaborate): building a face-
mask”), and gave some other attack vectors (NR1 = 11, NR2 = 5), including social engineer-
ing or outsourcing attacks (e.g. P21R1: “I would pay someone to do it for me”). Furthermore,
many participants expressed perceived weaknesses of biometrics that exist from their per-
spectives (NR1 = 29, NR2 = 20), such as the possibility of faking them or the collection
of their identity by governments or companies. A few participants stated that they do not
believe that biometrics can be attacked or it would not have an impact (NR1 = 9, NR2 = 4).
For example, as an answer to whether physiological changes could impact biometrics, P98R1
answered: “Not for fingerprints”.

3.3.4 Consequences of an Attack

Most participants explained how they would deal with a successful attack on their biometric
authentication and voiced potential damage resulting from such an attack. In case of a suc-
cessful attack, participants highlighted different actions they would take. Most participants
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stated that they would fall back to another authentication method (NR1 = 50, NR2 = 43),
while several participants stated they would try to control the damage (NR1 = 24, NR2 = 21),
by, for example, informing contacts, recovering data or resetting their device. A differ-
ent strategy was seeking support (NR1 = 24, NR2 = 10), by contacting the police or their
provider (e.g. P67R1: “I would research the right institution to call in this case or go to the
police”). Concerning the potential damage resulting from a successful attack, participants
mention that the attacker could misuse (e.g. P124R1: “I would be unable to prove that this
person is not me”) or simply access their data (NR1 = 17, NR2 = 18) or that they would lose
their data (NR1 = 17, NR2 = 11). A few participants stated that an attack would have no
impact or they did not intend to react to it (NR1 = 9, NR2 = 4).

3.3.5 Future Suggestions & Improvements

Finally, participants listed different suggestions that could improve biometric systems in the
future. Many participants mention novel forms of biometrics (NR1 = 37, NR2 = 34), in-
cluding body and facial movements. P343R2 suggested using “genetics through noninvasive
tissue sampling (high level of security should sequencing in real time become possible)”.
Moreover, participants stated new applications for which biometrics can be used in the fu-
ture (NR1 = 7, NR2 = 5), including payments (e.g. P19R1:“Maybe payment with DNA iden-
tification”), forensics, public contexts, and sports. Finally, many participants gave general
improvements for biometrics (NR1 = 27, NR2 = 30), including tweaking thresholds, updat-
ing models with more data, increasing the precision of sensors, and use hard to replicate
methods. Finally, another often mentioned improvement was “using more than one type of
[physiological or] behavioral biometric system” (P304R2).

3.4 Discussion

3.4.1 Do they understand what they are using?

Many participants indicated to be unfamiliar with biometric methods, i.e. they were unable
to define or explain the concept. Even though only a few participants indicated knowing
what biometrics are, a far larger number were able to give examples, name features used,
or correctly associate them with authentication. Thus, asking open questions in addition to
the self-assessment allowed us to see that many participants seemed to have at least some
knowledge about biometrics and answers often included important aspects of the definition
we used. A related study found many participants to be aware of face recognition [135], but
only a few had deeper knowledge. In our study, we did not focus on face recognition but
observed a similar effect for biometrics in general.

However, some participants had only an abstract association (e.g. from having heard the
term in the context of their passport). We also received many answers that were not related
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to biometric authentication but referred to, for example, body functions, health, or influences
on behavior. This can mean one of two things: either participants were indeed not familiar
with biometrics or they just had a different association with the terms used.

Unfamiliarity can be problematic in several ways. On the one hand, understanding what
features are collected and how they are used is essential for informed consent to use those
approaches. On the other hand misconceptions and missing knowledge can lead to users
needlessly abandoning biometrics or not adopting them in the first place.

Regarding the term itself, we believe that many participants may have made a connection
from biometrics to biology and metrics and thus assumed a connection to e.g. body func-
tions rather than security. One participant also explicitly preferred the term anatomical over
physiological biometrics. Potentially, renaming physiological biometrics to e.g. appearance-
based identification could aid in clarifying their function.

3.4.2 How do they cope with problems?

While many participants had very sophisticated ideas about how biometric systems could
be attacked, surprisingly few participants mentioned attacking the fallback method. How-
ever, every modern biometric system uses a fallback like a PIN to enable access in case the
biometric factor fails. Many participants stated they believe biometrics to be more secure
than using those traditional methods but practically, this currently cannot be the case. This is
something that biometric interfaces should clearly communicate to users during enrollment.

At the same time about half of our participants thought that someone else could access
their device if protected by a biometric system; showing a contradicting tendency. Many
participants indicated they would switch from biometrics to other authentication methods in
case they experienced issues with changes (e.g. in their appearance) or were to be attacked.
Others had no idea how to cope with problems and suggested outsourcing their solution, e.g.
to family members or service providers.

Overall, this means we observed two opposite tendencies, with some participants believing
that biometrics could not be attacked and being very confident in their security while others
mistrusted the technology and had no clear plan for how to handle issues should they come
up. As always, the truth lies somewhere in between. Education may help users to gain a
more reflected impression of biometrics, avoid a false sense of security, and prepare them
for potential issues.

3.4.3 Do they know behavioral biometrics?

In contrast to the majority of related work, we actively distinguished physiological and be-
havioral biometrics to understand how perception and understanding differed between the
two. While many participants could name physiological biometrics, the only behavioral
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method mentioned by more than 20% of the participants in both rounds was voice recogni-
tion. Similarly, more participants did not know if changes would affect behavioral systems
and if an attacker could gain access to such a system. Participants had significantly more
concerns about behavioral biometrics and rated them slower, less reliable, and harder to use
than their physiological counterparts.

All those aspects imply that knowledge of behavioral methods is less prevalent among our
participants, leading to increased uncertainty. This intuitively makes sense, as behavioral
methods are normally designed to be transparent and facilitate authentication without ex-
plicit action or even knowledge of the user. Yet, this is also a risk, as behavioral traits can be
used for (unwanted) profiling and tracking purposes (e.g. recognizing users on a website by
their mouse movements [210] or in public places by their gait [276]) even though behavioral
biometrics are not (yet) widely used.

3.4.4 Comparison Between the Two Survey Rounds

We designed our study to find potential differences in the use and perception of biometrics
over time. To achieve this we openly coded the first round and used the resulting code-
book on the answers from the second round to be able to find newly emerging themes and
codes. Given the increasing adoption of biometrics in users’ daily lives over the recent years
we would have expected to see a change in users’ perception and knowledge between our
rounds. However, this was not the case: no codes emerged or disappeared between rounds
(see Appendix A).

Our quantitative results show that the usage of biometrics as the primary authentication
mechanism on smartphones increased from 53% in the first round of our survey to 75% in
the second round, i.e. three out of four of our participants indicated using either fingerprint
or face recognition. Participants indicated significantly less agreement with the performance
of biometrics being equal for all users, which may hint at an increased awareness of biases in
those models. However, this is speculation so far and would need further confirmation in a
future study. Apart from that – and again contrary to our expectation – the increased adoption
did not seem to have led to significant differences in perception. For instance, we did not
observe changes in perceived ease of use, reliability, or general concerns. While it is unclear
to which degree participants need a detailed understanding of biometric methods in order to
confidently and securely employ them in their daily lives we argue that a better understanding
of the risks and potential shortcomings could ultimately foster safe use and trust. Continued
research on this topic will be needed. We further believe in the approach of comparing data
over a longer time frame, though it may be worthwhile to explore other methods (e.g. using
more closed questions or conducting interviews) as well to better understand such effects.
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3.5 Implications

In this chapter, we presented our investigation of user perception of physiological and be-
havioral biometrics. Our results show, that most participants actively use biometric methods
in their daily life and prefer them over traditional methods. At the same time, most partici-
pants lacked in-depth knowledge about how biometrics work and showed uncertainties with
regard to handling potential problems caused by an attack or changes in their physiology or
behavior. Between the two rounds of our survey, we saw a strong increase in the adoption
of biometric methods and it is very plausible that this trend will continue with improving
algorithms and sensors.

This chapter highlights a need for clear communication when it comes to the functionality
of biometrics and the security they can offer. It further shows a demand to illustrate and
mitigate the effects of changes and external factors on biometric systems.

In Part III we propose biometric interfaces to address these needs. Chapter 6 introduces a
method to illustrate the personal performance of face recognition with generative samples.
Chapters 7 and 8 describe interfaces to communicate the internal state of a biometric system
as well as the impact of context factors on it. They also offer mitigation strategies to avoid
interruptions and switch authentication mechanisms. In Chapter 12 we discuss how we
propose to handle communicating terminology.

50



4
Exploring User Preferences for Biometrics

This chapter is based on the following publication:
Lukas Mecke, Ken Pfeuffer, Sarah Prange, and Florian Alt. 2018. Open sesame!
user perception of physical, biometric, and behavioural authentication concepts to
open doors. In Proceedings of the 17th International Conference on Mobile and Ubiq-
uitous Multimedia (MUM ’18) [183]

In the previous chapter, we explored the use and perception of biometrics through two sur-
veys. Our focus there was to understand how well users comprehend the biometrics they use
and how they perceive their usability, security, and reliability. In this chapter, we follow a
similar goal but aim to understand what aspects of the interaction users value between dif-
ferent types of authentication. This knowledge is valuable to inform the design of biometric
interfaces respecting user preferences.

As a use case, we focus on access control through doors. This is a common task that users
are familiar with and encounter on a daily basis. It also allows for exploring a scenario



Figure 4.1: In this work we investigate user perception of different authentication mechanisms
at doors. Namely, those are (1) a key, (2) a (mock) palm vein scanner, and (3) (mock) gait-based
recognition.

beyond digital devices where the value that is protected by the authentication is immediately
graspable for users (e.g. access to their homes). While biometric authentication systems
have been investigated for electronic devices (e.g. [43, 226]), applications for analog devices
are still mostly unexplored. However, both physiological and behavioral biometrics offer
the potential to improve interactions here, as the process of unlocking a door could be done
seamlessly [105] and - in contrast to most existing approaches - without requiring to either
memorize and enter a PIN or carry a physical token like a key or smartphone.

For our comparison, we chose a setup including both a physiological and a behavioral bio-
metric method with a physical key as a baseline condition representing the status quo. To
avoid potential impacts of external factors or inconsistent performance [29, 48, 294] of the
biometrics between the participants we opted for mocking the interaction with those systems.

In this chapter, we thus conducted a Wizard-of-Oz study, assessing the user perception of
different authentication mechanisms for unlocking a door. We investigated (1) a physical
key as the baseline, (2) a mock palm vein scanner representing a physiological biometric
system, and (3) mock gait-based authentication as its behavioral counterpart (see Fig. 4.1).
We asked participants to rate the mechanisms and indicate their perception of the usability
and security of the compared authentication mechanisms.

We found, that users liked the concept of seamless authentication using biometrics, but still
appreciated the control they gained from possessing a physical key. Participants had security
concerns for gait recognition and found recovery from authentication failures cumbersome.

In this chapter we contribute 1) a lab study comparing authentication at doors with
different authentication methods and 2) insights into user preferences and concerns as
well as advantages of the different methods.
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4 Exploring User Preferences for Biometrics

4.1 Background and Research Approach

Here we give some background on palm vein scanners and gait-based authentication be-
fore discussing considerations for authentication at doors and deriving research questions to
guide our work.

4.1.1 Palm Vein Scanners

In 1968 the first patent for a palm print identification system was granted to N. Altman [10].
The modern palm vein scanner takes an infrared image of the palm to detect vein patterns
that are matched to a saved template. Romanowski et al. investigated the acceptability and
ease-of-use of a palm vein scanner in 2016 [221]. In their study, 75% of the 55 participants
found the technology to be non-intrusive, and 77% did not experience any delays during
authentication. The company Fujitsu, as a creator of mass-market palm vein scanners, an-
nounced in 2018 that they will replace passwords and smartcards for 80,000 employees in
their Japanese headquarters in favor of their palm vein scanner PalmSecure [101]. With these
efforts showing high potential, we study palm vein biometric authentication for the purpose
of accessing doors.

4.1.2 Gait-Based Authentication

Initially, gait-based recognition became a subject of psychology research in 1977. Cut-
ting and Kozlowski [64] noticed that a person could recognize familiar others simply by
an abstract display of the movements made while walking. Visual gait motion data can be
processed with pattern recognition methods and matched with registered data [20].

A different approach was explored by Xu et al. [293] who created a gait recognition system
for smartwatches, namely “Gait-Watch”, that identifies the user’s distinct way of moving.
Sprager and Juric [254] give an overview of this method of recognizing gait from inertial
measurements. This unobtrusive form of gait recognition without the use of visual motion
capture has also found practical applications for mobile phones e.g. in Google’s “Smart
Lock” feature on Android1.

4.1.3 Considerations for Authentication at Doors

As a baseline for our study, we chose to use a physical key as the currently most used
unlocking mechanism. Functionally, this also is very similar to using a token and results
should thus transfer between those two mechanisms.

1 https://support.google.com/android/answer/9075927, last accessed October 16, 2024
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We wanted to use a physiological mechanism, that avoids additional interaction (e.g. stand-
ing still in front of a camera to capture iris information [229]) and is not affected by other
context factors like noise or light. This left us with using fingerprints or palm-vein scans as
mechanisms that can be integrated into the interaction with a door. Both approaches are as
of now not directly integrated into the interaction with a door handle (i.e. they require ac-
tively presenting the feature to a sensor). However, to communicate our concept of seamless
integration we decided to mock such an interaction and chose the palm vein scanner as the
more plausible option (assuming a scanner would be integrated into the handle).

While other proximity-based mechanisms (e.g., NFC technologies) require the user to be
at close distance to the door, a functional gait-based system would authenticate users by
their natural way of approaching the door. Behavioral authentication by such motion is often
based on probabilistic measures of walking over time, which requires a larger area. However,
in principle, it allows for a completely implicit, i.e. effortless, access through doors.

4.1.4 Research Questions

We derived the following research questions to guide our research:

RQ1 Preferences: What type of authentication do participants prefer for authentication at
doors?

RQ2 Perception: How do participants perceive the interaction with and the security and
usability of the different authentication methods?

4.2 Evaluation

The focus of our study was the evaluation of user perception and preferences of the interac-
tion with biometric authentication systems at doors. We tested three different mechanisms to
unlock a door, using mock-ups and a physical door barrier controllable by the experimenter.
Here we give an overview of our study design and the physical setup we built, as well as the
procedure of our study and the participants.

4.2.1 Study Design

We designed the study as a within-subject Wizard-of-Oz lab study with a single independent
variable. We varied the UNLOCK MECHANISM on three levels, having participants unlock
the door using a physical key, a palm vein scanner integrated into the door handle, and gait-
based authentication using a Kinect. Both biometric mechanisms were non-functional (i.e.
mock-ups). The order in which participants experienced the authentication mechanisms was
counterbalanced.
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4 Exploring User Preferences for Biometrics

Figure 4.2: Mock-up of a palm vein scanner, made of a thin sheet of metal with some cushion-
ing. It gripped the door handle and was connected to the door lock by visible wires to support
the illusion of a running system (left). Participants were asked to grip it to authenticate (right).

4.2.2 Apparatus

An important aspect of Wizard-of-Oz studies is to offer a system that is as believable as
possible in mimicking a real system. To support the impression of a functional system, we
added a number of technical enhancements: foil and wires at the door handle mocking the
palm vein scanner (Figure 4.2), a feedback screen showing the users’ skeleton tracked by
a Kinect sensor (Figure 4.3, LEDs indicating success of authentication) and a mechanical
door lock controllable by the experimenter (Figure 4.4). We give details below.

Door setup

For our study, we used a door with a regular key lock between two rooms. We marked
a path and a starting position for the authentication process on the floor with blue tape (see
Fig. 4.5). Participants were asked to walk along this path and unlock the door while walking,
using one of the three conditions.

To make participants believe that their actions were unlocking the door we remotely un-
locked the door by lifting the mechanical blockade using a wifi connection, as soon as a
fully implemented system would have recognized the user. We controlled the door lock
mechanism using an ESP32 running Arduino software2. We offered feedback for the bio-
metric conditions in the form of a green LED turning on after successful authentication and
a blinking red LED accompanied by a long beep otherwise (Figure. 4.4, right).

2 ESP32: https://www.espressif.com/en/products/hardware/esp32/overview, last
accessed October 16, 2024
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Figure 4.3: Our setup for the mock gait-based authentication used a Kinect to display the body
structure of detected humans in the area to create the impression of a running authentication
system.

Designing the Authentcation

We took special care to make the interaction with our mocked biometric systems as believ-
able as possible. Here we give details on the implementation of all authentication options.

Physical Key. To authenticate, participants had to insert the key into the keyhole, rotate it
twice, and press the door handle.

Palm Vein Scanner. We mocked the palm vein scanner as a metallic surface embracing the
door handle that participants had to touch to “unlock” the door. It was connected to our
door-lock by visible wires to support the impression of being functional (compare Fig. 4.2).

Gait-based Authentication. We placed a Microsoft Kinect3 in the middle of the experiment
room to create the impression of capturing the participants’ walking behavior between the
starting position and the locked door. We placed an additional monitor in the experiment
room, which displayed the skeleton data captured by the Kinect in real-time (see Fig. 4.3).
The captured data was not used for authentication but had the sole purpose of giving the
users the impression that the system could indeed capture their walking behavior.

3 Microsoft Kinect: https://developer.microsoft.com/en-us/windows/kinect, last
accessed October 16, 2024
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4 Exploring User Preferences for Biometrics

Figure 4.4: Left: The back view of the door. The mechanical door lock was controlled over a
wireless network. Right: The front view of the door. Additional feedback regarding the success
of an authentication attempt was provided by colored lights at the front side. The green LED on
the left indicates success, and the red LED on the right failure.

4.2.3 Procedure

As participants arrived at the lab, we first introduced the purpose of the study. We then had
them fill in a demographic questionnaire. After that, participants were asked to use the dif-
ferent door-unlocking mechanisms. The order was counterbalanced. Each mechanism was
tested three times. To allow for experiencing situations in which the system failed to authen-
ticate the user in the biometric conditions, we caused one attempt to be unsuccessful with
the occurrence again being counterbalanced. Prior to the biometric conditions, participants
were required to register themselves by “training the system” (i.e., participants had to use
the system a few times prior to the actual study to make the system “capture their data”).

After three successful authentications, participants were interviewed and asked to rate Likert
statements (1: strongly disagree, 5: strongly agree) about perceived usability and security.
We repeated the questionnaire for all tested unlocking mechanisms.
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Figure 4.5: The floor plan we applied in our study setup: Participants were asked to walk along
the dotted line from the starting position (rectangle in the top right). Participants had to open the
door between the experimenters’ room and the interview room using either 1) a key, 2) a (mock)
palm vein scanner, or 3) (mock) gait-based recognition.

An additional semi-structured open interview concluded the study session. We asked the par-
ticipants to compare the three authentication systems and if they saw any dangers or benefits
when using biometric techniques to open a door. Afterward, we asked the participants to
explain their ranking of the authentication systems, how each system could be improved, if a
combination should be considered, if they would use it in a daily context, and if the system(s)
felt secure. In the last part of the interview, we asked participants how they would handle
different situations. We asked what they would do in case of a power blackout (for palm vein
scan and gait), if they lost their physical key, if they suffered from a broken arm (palm vein
scan) and if they had additional luggage, which would alter their walking behavior. After the
last question, we revealed that it was a Wizard-of-Oz study.

4.2.4 Participants

We recruited 15 participants (Mdn age = 23, 14 male, 1 female) for our study. Eleven Partic-
ipants were students with about half of them being enrolled in IT-related degree programs.
From our demographics questionnaire, we found data privacy being an important concern
(Mn = 3.47) among the participants.

4.3 Results

Here we report on the results of our study, in particular participants’ ranking of authentica-
tion mechanisms, their ratings on the Likert statements, and their open Feedback from the
interviews.
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Figure 4.6: Participants’ ranking of the three authentication methods. The palm vein scanner
performed best with 10 votes for 1st place. Gait recognition was ranked worst.

4.3.1 Ranking

Figure 4.6 shows the rating of authentication mechanisms in our study. Participants mostly
preferred the palm vein scanner (10 out of 15 participants ranked it as their most preferred
authentication method). Four participants preferred the physical key. The least preferred
method was gait-based authentication.

4.3.2 Likert Ratings

The ratings of Likert statements were overall in line with the ranking (See Figure 4.7). For
the statistical analysis, we used a Friedman test and a Wilcoxon signed-rank test. For the
post-hoc multiple comparisons between conditions, we applied Bonferroni corrections.

Participants reported all methods to be rather easy to use (Mnpalm = 4.6, Mnkey = 3.6,
Mngait = 3.6), with no statistically significant differences found (χ2(2)=4.2, p=.12). Sim-
ilarly, the difficult to use question received low ratings (Mnkey = 1.4, Mngait = 1.33,
Mnpalm = 1.2) with no significant differences (χ2(2)=2.3, p=.31).

As expected, users had more knowledge about the key than the other methods (χ2(2)=26.8,
p=.001). The key was already known by all participants (Mnkey = 5), while the other meth-
ods were rarely known (Mngait = 1.6, Mnpalm = 1.47). Hence, users had significantly more
knowledge about the key than the palm vein scanner (Z=-3.5, p=.001) and the gait-based
method (Z=-3.4, p=.002).

Regarding comfort (χ2(2)=26.8, p=.001), users perceived the palm vein scan as the most
comfortable method (Mnpalm = 4.2, Mngait = 3.6, Mnkey = 2.6), which is supported by
a statistically significant difference between the key and the palm vein scanner (Z=-2.83,
p=.005).

For the category speed (χ2(2)=9.8, p=.007), the palm vein scanner was perceived as the
fastest method (Mn = 4). In comparison, participants perceived the gait-based authentication
(Mn = 3.4) and the key (Mn = 2.4) slower. A statistically significant difference was found
between the vein scanner and the key (Z=-2.83, p=.005).

All methods received low scores (Mnkey = 1.93, kinect mn= 1.47, Mnpalm = 1.13) for being
cumbersome (χ2(2)=9.8, p=.007). In addition, the analysis reported a significant difference

59



Figure 4.7: Participants’ answers to our Likert statements on a scale from 1 (strongly disagree)
to 5 (strongly agree).

between the palm vein scanner and the key (Z=-2.67, p=.008), indicating that users found
the key slightly more cumbersome.

The results on security indicate that users perceive the gait-based method as less secure
(Mn = 1.8), whereas the other options were rated as moderately secure (Mnpalm = 2.93,
Mnkey = 3.2). The analysis of security (χ2(2)=8.1, p=.018) revealed that users found the
key significantly more secure than gait-based access (Z=-2.4, p=.016).

In real life scenarios (χ2(2)=17.4, p=.001), users would use the key and palm vein scanner
(Mnkey = 4.6, Mnpalm = 4) rather than the gait-based authentication (Mn = 2.6). This is
supported by the statistical analysis as users rated the gait method significantly lower than
the key (Z=-3.4, p=.001) and the vein scanner (Z=-2.8, p=.004).

4.3.3 User Feedback

We concluded the study sessions with semi-structured open interviews. The answers gener-
ally align with the quantitative data results. Here we give an overview.

Comfort of Use & Reliability

The hand vein scanner was believed to be fast, comfortable, and – similarly to the key –
moderately secure. The key was also considered moderately fast, but slower than the bio-
metric conditions. Some considered it to be the most cumbersome, feeling burdened by the
mechanical task of unlocking the door. The gait-based authentication had mixed opinions in
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terms of being comfortable, but it was perceived fast when the authentication worked. How-
ever, participants expected the door to open by itself, when they were approaching it (like an
automatic sliding door). Participants expressed concerns about the need to always walk in
the same fashion to authenticate via their gait. Some felt it was draining to forcefully walk
the same way. Others found the method very comfortable to use. Having additional luggage
with them did not seem to be a serious concern for the participants. They stated they would
put it to the side and authenticate as usual.

Possession & Control

Participants mentioned that the physical property of a key gave them a feeling of security,
as well as enabled the option to duplicate and borrow it from others. Using biometric au-
thentication as the sole way of entering a room on the other hand seemed to be intriguing
since they would not have to worry about forgetting or losing a physical key. When asked
what would happen if they were not able to authenticate with biometrics, most participants
suggested calling the company that provided the door lock.

Setup Effort

Our biometric authentication mechanisms (i.e., conditions (2) and (3)) required a setup pro-
cess (mocking the process of training a biometric system). The palm vein scanner was
familiar to the participants since most of them compared it to fingerprint scanners used on
phones. Hence, the registration process was likewise familiar. Gait-based recognition felt
more cumbersome to set up and the participants were worried about false positives and false
negatives. The registration for biometrics was considered inconvenient by one participant.

Perception of Security

Participants stated the key to be reliable and secure, though a physical token can be lost
or forgotten. In contrast, participants appreciated that biometrics cannot be lost but were
also worried about exposed data. The gait-based authentication was criticized for being too
inconsistent and insecure. Participants were worried about imitators. Some were also con-
cerned about the security of our unlocking mechanisms in general, as locks can be "picked"
or technology can be "hacked".

Fallback Solutions

At the end of the interview, we asked, what options participants would consider if the door
could not be unlocked. For the key, every participant had an idea of what to do as they could
call a lock and key service or use a spare key. In comparison, not everyone could name a
backup plan for the biometric techniques. Only some reported they would call a support
hotline of the manufacturer of the authentication system. Three participants would allow the
manufacturer to remotely open the door if they were locked out. In terms of combinations
of the systems, participants suggested that a physical key could be used as a backup option
or that more than two systems could be used in sequence to enhance security.
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Wizard-of-Oz

When we asked the participants if they had noticed anything strange, two of them stated that
they were unsure about the system properly working. However, the participants denied that
this had any effect on their answers to the questionnaire. This was the final question we
asked before revealing that it was a Wizard-of-Oz study. We observed that the participants
were focused on the acoustic and visual feedback and did not try to open the door when no
success signal was given for the biometric mechanisms.

4.4 Discussion

We conducted our study in a Wizard-of-Oz setting to assess how users would perceive the
usability of three unlocking methods that represent physical, biometric, and behavioral au-
thentication. Our focus is on real-world physical door access, which is underexplored in the
literature but important considering the number of doors people access every day. Thus, the
main contribution is a better understanding of which authentication users prefer, and why.
In particular, we summarize our findings on user perception in the following key points:

4.4.1 Users Prefer Biometrics but Keep the Key

The biometric hand vein scanner was the premiere choice for most participants, as it is faster,
more comfortable, and easier to use compared to the other authentication methods. However,
the key was rated higher than the hand vein scanner with regards to which technology par-
ticipants would actually use. This might be explained by keys offering a moderately secure,
fast, and comfortable authentication, while also being affordable and known to everyone.
Participants knew how to react if the key was lost and a fallback was needed. In general, the
participants valued the possession of a physical object and the option of sharing it. This is
not possible for the tested biometric authentication systems.

4.4.2 Recovery Effort Hampers Gait-Based Authentication

Both, the hand vein scanner and the gait-based condition, were criticized for being inconsis-
tent. We assume that the forced failed authentication in our study design led to this obser-
vation. Notably, the use of gait was perceived as most inconsistent. If authentication fails,
the act of returning to the starting position to walk again compared to the repeated scan of
the veins takes a lot more time and effort. It could be helpful to consider alternatives such
as a key, when the gait-based authentication fails to work on the first try, as repeating the
measurement disrupts a seamless experience. We propose to further investigate the effect of
forced fail conditions and error recovery efforts as influencing factors on user perception.
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4.4.3 Imitation Concerns of Gait

Gait-based authentication was perceived as faster and more comfortable to use than the key
but was still ranked last. The reason for this might be the concern of imitators and changes in
walking behavior. Participants were worried, that attackers could mimic their gait to unlock
the door, confirming observations of Yampolskiy and Govindaraju [296]. Also, changes in
behavior, such as being injured, could reduce the chance of success dramatically. We propose
to further investigate the actual risk from such impersonator attacks as well as adequate
fallback options for changes in the user’s walking behavior.

4.4.4 Limitations

Our study comes with some limitations. First, we had a relatively small sample of 15 par-
ticipants. While this amount resulted in statistically significant results on user perception,
repeating the study with more participants should provide more reliable data. Further, it
is possible that different ages and backgrounds may have an impact on the opinion about
authentication systems, demanding further study.

In addition, while we can asses participants’ general attitude towards the tested authentica-
tion systems, this is but an approximation to how they would react to actual implementations.
We carefully crafted our study setup to foster the impression of a real system and increase
believability. More studies are needed to cover the range between research prototypes and,
in the future, novel authentication methods to gain more confidence in how door-unlocking
mechanisms should be designed.

4.5 Implications

Our Wizard-of-Oz study showed that users are willing to consider biometric mechanisms
for seamless authentication at doors for their ease of use. However, they still preferred a
physical key for actual use for the agency it gave them and their knowledge on how to cope
with potential issues. Participants were concerned about changes in physiology or behavior
impacting their biometric systems and the opportunity for attackers to gain access. The use
of a visual indicator for the success or failure of the biometric system was effective.

Overall, this chapter reinforces the concerns about changes impacting biometrics we found
in Chapter 3. It also highlights that ease of use is an important aspect for considering biomet-
rics though, being familiar with the authentication and having agency was more important
to participants for practical use. We found the recovery effort from a failed authentication
attempt an important aspect that should also be considered for biometric interfaces.

In the context of designing biometric interfaces, those findings stress the importance of sup-
porting user agency over biometric methods (see Part IV). This chapter also shows, that the
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choice for an authentication mechanism is complex and takes many factors like security,
ease of use, recovery effort, and familiarity into account. Biometric interfaces thus should
support users in gauging those factors to allow them to make an informed decision for or
against a biometric mechanism.
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5
Design Opportunities for Biometric Interfaces

This chapter is based on the following publication:
Lukas Mecke, Sarah Prange, Daniel Buschek, and Florian Alt. 2018. A Design Space
for Security Indicators for Behavioural Biometrics on Mobile Touchscreen Devices.
In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing
Systems (CHI EA ’18) [184]

In the previous chapters, we assessed user needs and preferences towards biometrics and
their interaction with them. In this chapter, we switch the perspective to explore a design
aspect of creating biometric interfaces. Related work on how to design biometric interfaces
is as of now still largely missing, which motivated us to take inspiration from existing work
on security indicators for passwords (see Fig. 5.1).

Similar to the aim of this thesis such indicators support user literacy and agency by giving
them feedback on the strength of their authentication secrets, giving context on potential
weaknesses, and supporting users in taking agency and improving their security through



(a) Indicator of password strength using visual
and textual feedbacka

a https://passwordmeter.com/,
last accessed October 16, 2024

(b) Indication of connection security proposed
for the Chrome web browser by Felt et al. [92]

Figure 5.1: Examples for classical security indicator approaches. The design of a security
indicator for behavioral biometrics would possibly have to differ from that. In contrast to a
password, the security of behavioral biometrics depends on the individual person.

meaningful additions to their passwords. Designing for biometrics introduces new chal-
lenges: personal and external factors can impact their performance, the features used may
not be alterable by the user and the decision process is not a binary matchmaking but is based
on complex machine-learning and pattern-matching algorithms. Designers of biometric in-
terfaces thus have to consider many factors, making an investigation and formalization of
design considerations a worthwhile endeavor.

To do so, we conducted a focus group with HCI and usable security experts to uncover design
challenges when developing interfaces for biometric systems. To make the topic more gras-
pable we introduced security indicators for passwords as context to explore differences and
necessary extensions. We also prompted participants to specifically think about indicators
for behavioral biometrics to capture the continuous aspect they introduce to authentication.

Based on this focus group we derived a design space for security indicators for behavioral
biometrics with the aim to support the design of indicators that facilitate users’ decision-
making, awareness, and understanding, as well as increase the transparency of biometric
systems. We illustrate with three examples, how our design space can be used to generate
new ideas for biometric interfaces and consider relevant aspects. While the focus of this
work was more narrow (i.e. limited to behavioral biometrics and security indicators), we
later discuss if and how this design space can be extended to biometric interfaces in general.

In this chapter, we contribute 1) a design space for security indicators for behavioral
biometrics on mobile touch devices, which we derived from a focus group with experts
and the literature. Further, we 2) provide a set of examples of how this design space
could be applied in future work for the development of biometric interfaces.
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5.1 Background and Research Approach

Here we give an overview of security indicators used for passwords that we used as inspi-
ration for our work. We then introduce the derived approach for finding a design space for
such indicators for (behavioral) biometrics.

5.1.1 Security Indicators for Passwords

Related work on visual indicators of password strength shows that users have misconcep-
tions about what constitutes a strong password [239, 271]. The same trend was shown for
behavioral biometrics by Ballard et al. [23], using handwriting recognition. Here, forgery
was both more successful and harder to detect than users had expected.

Password meters address this by assessing and displaying a password’s resilience against at-
tacks (Fig. 5.1a). They can convince users to choose stronger passwords [165, 272]. Giving
additional information and detailed, potentially sensitive feedback about the current strength
can help users improve their passwords [270]. Related work also showed that user aware-
ness of password strength can be increased [239]. On the other hand, due to inconsistencies
in current password strength estimations, more transparency might be needed to reestablish
users’ trust in security indicators [69].

Existing work on security indication mainly covers passwords and websites [92] (Fig. 5.1b).
To our knowledge, similar investigations for biometrics are still missing.

5.1.2 Deriving the Design Space

In contrast to passwords, the security of biometrics depends on the individual person; the
same settings may lead to different security levels for different users. Thus, given the po-
tential impact and issues, adapting the design of security indicators to biometrics is both
relevant and challenging.

To identify a design space for (behavioral) biometrics we conducted a focus group with eight
experts from, but not limited to, the fields of password meters, machine learning, user behav-
ior prediction, and context-aware technology. Participants were introduced to the concepts
of security indicators and behavioral biometrics. Subsequently, they were asked to think of
how a security indicator for behavioral biometrics would have to differ from classical ap-
proaches and what possible benefits they could have both for users and providers. Based on
those results participants were asked to come up with concrete ideas and cluster those, filling
missing design dimensions as needed.

Our focus group discussions revealed several design dimensions. We post-hoc clustered
those dimensions, taking into account the related work, resulting in an additional layer of
abstraction with three categories.
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Figure 5.2: Our proposed design space consists of eight main dimensions. We classify dimen-
sions into three categories: purpose-, input- and output-related. Dimensions added based on the
literature review are indicated with dashed borders.

5.2 Design Space

Here, we give an overview of the resulting design space. Categories and dimensions are
depicted in Figure 5.2 and described in detail below:

5.2.1 Purpose

The category that should be considered first is the purpose of the indicator in question. This
includes two dimensions:

Goals: Potential goals designers might try to achieve include, but are not limited to:

1. User Guidance: By providing (personalized) security information, indicators may
guide a user, for example, when choosing (a combination of) biometrics to select a
more secure/unique behavioral feature.

2. User Awareness: By communicating levels of security and the system’s internal rea-
soning, indicators may aim to increase user awareness (e.g., risks and benefits of the
current settings w.r.t. behavioral biometrics).

3. Trust & Transparency: Taking the previous goal a step further, indicators may be
designed to increase transparency and trust in the system [69] (i.e. by explaining how
and why security assessments are made). This might in turn improve acceptance of
the underlying behavioural biometric system.

4. Influence Behaviour: Similar to password meters, a behavioral biometrics indicator
might aim to improve security by altering the user’s behavior in a way that generates
more unique, and hence secure, user behavior.
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Threat Model: When designing a security indicator we need to think about the threat model
to which the indicated security is related. A comprehensive list of possible attacks on biomet-
ric systems can be found in [219]. A related aspect, for example, is the distinction between
user verification and identification – different threats exist for both of them and indicator
designs might differ as well.

5.2.2 Input

Several aspects of the underlying biometric system may be considered as input dimensions
to inform the design of a corresponding indicator.

Features: The first choice is which biometric(s) should actually be used. This can be ei-
ther a single behavior or a combination of multiple behavioral traits (e.g., typing speed and
pressure). In the latter case, further decisions have to be made with respect to how those
traits should be combined (feature fusion). This is relevant as indicators might be designed
to inform the user about the currently considered combination of behaviors.

Metrics: There are several metrics to estimate the security of a biometric approach, such as
system error rates (e.g., false positive rate, equal error rate), “uniqueness” of behavior, and its
entropy (similar to entropy as a measure of password strength). Beyond these metrics from
our focus group, Rudolph and Schwarz [224] provide an extensive list of indicator metrics.

Data Collection Method: Any metric to indicate the security of a behavioral biometric
system requires data on which to operate. This data can be either provided by the respective
user, acquired from the user’s context, or collected from a crowd. The first option is likely
the most common one (e.g., data from enrollment or past use). However, the use of crowd
data can enable instant feedback without a “cold start”, and context information enables
adaptive estimation.

5.2.3 Output

Based on the input and purpose of the indicator there are several ways to design the output.

Feedback: Similar to password strength, visual feedback can be used to represent the as-
sessed security (Fig. 5.1). One possible option is textual feedback given in the form of
scores ("90%"), assessments ("strong"), or metaphors ("One in ten strangers might get ac-
cess to your data using this behavior for authentication"). Other representations might be
diagrams or be abstract. Additionally, feedback might be given in a non-visual way, e.g.,
auditory or haptic.

Activation: There are several points in time when a security indicator might appear. We
distinguish enrollment (i.e. only once at the beginning), continuous (may also be periodical),
and event based (i.e., as a reaction to context changes, e.g. upon launching an app).
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(a) "Bio Chooser": A possible
design for a security indicator
to support users when deciding
which behavioral biometrics to
use, avoiding unnecessary col-
lection of data.

(b) "Body Vis": A design giv-
ing a continuous indication of
the currently used biometrics
and the system’s confidence
(both in the status bar and in de-
tail).

(c) An example for a state-of-
the-art (static) biometric enroll-
ment screen (Android Trusted
Face) that might be improved
by adding dynamic security in-
dication.

Figure 5.3: Examples of designs for biometric interfaces informed through our design space
(5.3a and 5.3b) and state of the art (5.3c).

Mode: We distinguish implicit and explicit modes for two parts of the design space: 1) Data
collection can happen either implicitly (e.g., background logging) or explicitly (e.g., enroll-
ment procedure); 2) the indicator itself can be either implicit (e.g., an informative icon) or
explicit (e.g., demanding a user action). In the case of an icon, further considerations might
be needed to ensure that users notice and understand [92, 291] the information. Different
modes may be chosen for data sources and feedback.

5.3 Using the Design Space

We now illustrate the use of the design space with a set of examples inspired by ideas from
the focus group. They cover different design choices along the identified dimensions.

5.3.1 Example 1: “Bio Chooser” – Decision Support System

This indicator supports setup and enrollment of a multi-biometric system. Given multiple
available biometrics, it indicates how each of them affects security, based on the individual
user’s behavior (e.g., personal data from past usage or an enrollment sample). It could also
include behavior frequencies to “weight” the usefulness of certain biometrics (e.g., keystroke
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biometrics are more useful if the user types a lot), as well as common contexts (e.g., gait
recognition might be less useful if user commutes via train). The indicator could visually
present security implications like expected error rates. In this way, it aims to increase aware-
ness and guide users’ choice. (compare Figure 5.3a).

5.3.2 Example 2: “Crowd Radar” – Local Crowd-based Indicator

This indicator compares (local) crowd data with the user’s own behavior. It indicates the
uniqueness of the user’s behavior in the vicinity and context. Visual feedback is presented as
text: “x people in your vicinity have very similar behaviour”. Beyond awareness, this could
be extended towards guidance, for example, with recommendations on which (combinations
of) biometrics to activate in this (crowd-)context.

5.3.3 Example 3: “Body Vis” – Visualizing Activated Biometrics

This indicator (Fig. 5.3b) continuously displays the parts of the body that are currently
tracked as a personal data source for continuous implicit authentication. This aims to facili-
tate awareness and transparency. The indicator might map confidence to color or brightness
to prepare the user for possible explicit (re-)authentications.

5.4 Discussion

Based on our focus group and literature research, we defined a comprehensive design space.
Here we discuss opportunities for using and extending it.

5.4.1 Extending the Design Space

Indicating only security may not be enough. From our investigation in the previous chapters
we know, that usability also has a strong impact on user preferences regarding the use of
biometrics and thus propose to extend the design space to account for that. For example,
an indicator might display the amount of explicit authentication time saved with certain
biometrics settings, estimate the number of necessary re-authentications, or consider user
preferences (e.g., speech input vs. typing). Overall, such indicators could support users in
finding individually suitable usability/security trade-offs.

Similarly, the focus of the design space could be extended to consider physiological bio-
metrics as well. Note, how this would mainly add more options to the levels of the specific
dimensions (e.g. the addition of other features and metrics) but the established dimensions
remain valid and applicable.

71



In its current form, the design space is focused on indicators, i.e. “passive” information
presentation. For interfaces that require or should support user interaction, the shape of this
interaction has to be considered as an additional factor.

5.4.2 Research Questions for Biometric Indicators

This work lays the foundation for future investigation of indicator designs regarding specific
research questions. These might include, for example, questions from password meters,
such as: How can we nudge users to choose more secure settings? Do indicators support
understanding (i.e. can users better judge the security of behavioral biometrics systems after
using indicators)? Do users understand how attackers could try to gain access to their data?
Does the content of the security indicator facilitate new threat models?

5.4.3 Concrete Example: Integration into Android Smart Lock

Google’s face recognition system for Android devices displays a static text message to in-
form users about its security and related issues (e.g., ”Someone who looks like you could
unlock your phone”, compare Fig. 5.3c). This is an example of a concrete integration op-
portunity: We could replace the static text with a dynamic security indicator designed by
considering our space. For example, this indicator might compare newly registered users
with existing ones in the database to indicate how likely an unintended or malicious unlock
from a stranger actually is or predict the impact of changes in the user’s appearance on the
performance of the system. Note, how this is also an example of extending our design space
beyond its initial focus on behavioral features.

5.5 Implications

In this chapter, we formalized design considerations for security indicators for behavioral
biometrics in the form of a design space. Despite the narrower focus of the expert focus
group, this design space provides dimensions that are also useful to support the design of
biometric interfaces in general. As such it provides a complementary design perspective to
our exploration of user needs in the previous chapters.

We used this design space as inspiration for the design of multiple biometric interfaces
throughout this thesis. Examples include the design of indicators to give insights into the
state of a continuous system and warn users of upcoming re-authentications in Chapter 8
or our approach to present users with context information to allow them to choose an ap-
propriate authentication mechanism in Chapter 7. Our investigation of how to communicate
more meaningful measures of performance of a face recognition model in Chapter 6 was
directly inspired by the example for improving the enrollment for face recognition given in
this chapter.
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PART III: BIOMETRIC INTERFACES TO
SUPPORT USER LITERACY

Based on the previous part and the literature, we found that users had concerns about the
impact of changes on their biometric systems and wished for control. In this part, we ex-
plore solutions to the first challenge and propose designs for biometric interfaces that give
users insights into their biometric models and help them to anticipate their performance,
the impact of contextual factors, and their behavior in general. As such, chapters in this part
contribute to the goal of supporting users in better understanding their biometric systems and
gaining literacy. We follow a breadth-first approach and explore interfaces for both different
biometrics and different interactions.

❖ Chapter 6 introduces a method we developed to assess the performance of decision-
making models by comparing their output to human ratings. We show how this method
can be used to gain insights into the performance of a face recognition model and
propose how it could be used to give users a better understanding of how the system
will perform for them personally.

❖ Chapter 7 reports on a field study in which we assessed users’ perception of a system
leveraging context information to suggest an appropriate authentication method.

❖ Chapter 8 proposes the use of indicators to give users insight into the current state of a
continuous authentication system and help them anticipate upcoming re-authentication
requests.

75



76



6
Exploring (personalized) Performance of Face

Recognition using Generated Samples

This chapter is based on the following publication:
Lukas Mecke, Daniel Buschek, Uwe Gruenefeld, and Florian Alt. 2024. Exploring
the Lands Between: A Method for Finding Differences between AI-Decisions and
Human Ratings through Generated Samples. arXiv preprint arXiv:2409.12801 [180]

Enrollment to a biometric model is the first point when users get in touch with it and also
where they make a decision to use a system or not. As such, this step presents a unique
opportunity to support users in being able to make this decision deliberately and on an in-
formed basis. In the first part of this thesis, we uncovered, that users consider many factors
for such a decision, including the ease of use, being familiar with the type of authentication,
and having agency. Another point brought up multiple times was the concern that changes
in physiology or behavior would impact a biometric system, or more generally the wish to
understand and anticipate the performance of a biometric model.



Figure 6.1: We propose to strategically sample alterations (positive, negative, interpolation, and
optimized) of a base image from the latent space of a generative model (middle: projection of
those samples on two dimensions of this latent space) to gain insights into another model that
makes decisions on this data, here: face recognition. This involves comparing its ratings of those
samples (i.e. recognition scores) to ratings by human raters. We explore this approach for the
use case of examining face recognition models by strategically sampling images from the latent
space of StyleGAN2 [154].

When looking at related work for biometrics, but also Artificial Intelligence (AI) decision-
making models in general, we can see that such concerns may well be justified. Across many
users and decisions, some sensor-based decision systems can enact hidden biases learned
from the training data [48, 264]. For example, some facial recognition systems have been
reported to work worse for people of colour [48, 298]. System performance can vary greatly
depending on the user [294] or specific user groups [48]. Thus, overall performance metrics,
like precision or recall of a system, may not be relevant and applicable to the individual.
Additionally, such methods of testing decision-making models can fall short, as they rely on
real-world data with clear-cut expected decisions (i.e. it is clear if two images were taken
of the same person or belong to different identities). However, the model’s performance and
potential weaknesses may become more apparent when exploring the space between, where
decisions are more difficult. This is also where decisions become more relevant for users, as
they can give insights into error cases and help users and developers to understand what type
of changes caused them.

Following this idea, this chapter presents a method to explore the decision boundaries of
(black-box) decision-making systems using artificially generated inputs. We propose three
main areas of inputs: samples that are expected to lead to a positive decision, samples that are
expected to lead to a negative decision, and samples that explore the space in between where
the decision may be unclear. Generating artificial samples has two main advantages: no
real-world samples are needed (beyond training the generative model), and we can explore
cases that would not be possible in real life to better understand the model (e.g., a voice that
is a mix of two speakers). By presenting these samples both to human raters and decision
models, it is then possible to find areas of agreement and disagreement. With respect to
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biometric interfaces, this method can provide more fine grained insights into a model that
can be presented to users. Later in this chapter, we also illustrate a possible extension to
our method to illustrate the personalized performance of biometrics and discuss what an
interface using this information could look like.

To assess the value of our method to gain insight into biometric models, we evaluate it by
exploring face recognition with color images as input (e.g., face unlock with a phone cam-
era). This is well suited for our approach (humans themselves are excellent at recognizing
faces [79]) and of high societal relevance and impact1 even beyond this thesis. We generate
meaningful alterations (see Figure 6.1) for 40 base images using StyleGAN2 [154] and col-
lected a dataset of perceived similarity and identity of the presented image pairs in an online
comparison task with 100 participants.

We found interesting mismatches between the analyzed face recognition model and human
raters. The model rated images of children more similar and semantic changes (like the
addition of glasses) less similar than humans would. Our optimized samples were successful
in fooling the decision model while mostly being perceived as different by humans. Latent
distance and perceptual distance were good predictors for perceived identity except for those
optimized samples.

We conclude with a discussion of how our approach could be used to explore the perfor-
mance of AI models in different contexts and for different user groups and how it can be
used for biometric interfaces.

In this chapter we 1) propose a method using generated samples to understand
decision-making systems by presenting them with selected samples and comparing
the provided decisions to human ratings; we 2) applied our method to explore the
performance of a face recognition model, 3) provide the generated dataset, and 4)
contribute an initial analysis of this data and a discussion of how the method can be
used as input for biometric interfaces and other applications.

6.1 Background and Research Approach

In this section, we give background on approaches for generating artificial content, previous
uses of such approaches as well as the topic of adversarial samples that follow a similar idea
to our proposed method. We conclude with an overview of our approach.

In the last years, approaches for artificial sample generation have gained public aware-
ness through methods like ChatGPT for text production or Stable Diffusion [222] and
DALL-E [212] for generating images from text prompts. Beyond those, there exists a
plethora of other approaches for generating content, including autoencoders [162, 205, 273],

1 ACM statement on the topic: https://www.acm.org/media-center/2022/february/tpc-t
ech-brief-facial-recognition, last accessed October 16, 2024
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Normalizing Flows [161, 216], and Generative Adversarial Networks [87, 113, 148,
154](GANs), to name just a few. The main principle behind all those models is to learn
a representation of the distribution of their training data (latent space) that can then be used
to generate new and altered samples. In particular for GANs, there exist many approaches
showing how their latent space can be used to generate semantic edits (for example, making
a person older) [137, 246, 283], find meaningful dimensions [123], and mixing samples both
on a style and content level [55, 154]. Beyond artistic purposes, they can also be used to
generate synthetic data for training and evaluating machine learning models [59, 153] and
finding biases [19, 75]. A related approach is generating or finding so-called adversarial
examples [16, 114, 127]. Those are characterized as small changes to the input of a neural
network that are not (or only with difficulty) perceptible by humans but cause the model to
flip its decision or predict a different class.

With our approach, we utilize the power of generative models to generate challenging sam-
ples for a decision-making model. We conceptually follow a similar approach as is used for
adversarial samples: we propose to generate inputs to a decision-making model that lead to
unexpected results. However, we are explicitly interested in cases where changes are percep-
tible, but their impact does not align with human expectations. Thus, we introduce human
raters as a comparison to the model’s decision to better understand where perception aligns
and where the model acts unexpectedly.

In the next section, we first describe our method in detail before exploring its utility by
applying it to a face recognition model. We conclude with a discussion of our insights and
directions for using our methods for biometric interfaces. We also discuss prerequisites for
using the method in other contexts and for different target groups.

6.2 Leveraging generated Samples to Explore
Decision-making Models

We suggest comparing the outputs of a decision-making model on strategically sampled
inputs to answers by human raters to better understand the model. Note, how both the human
and the generated samples are needed. Without human ratings, we don’t gain insights into
mismatches in perception and by using only real-world data we cannot gain access to the
space between clear-cut decisions where we expect those mismatches to be found. Here, we
use a generative model to produce samples inspired by the outputs of a classical classification
task: true and false positives as well as their negative counterparts. In this section, we give
more details on the steps of this process. We illustrate and explore our method for the
concrete case of face recognition as an example of a decision-making model. Any empirical
claims are limited to this use case. However, we discuss extensions and applications of our
method in Section 6.5.
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(a) Genuine (b) Positive (c) Negative (d) Optimized (e) Interpolation

Figure 6.2: Illustration of how our proposed samples are generated (simplified illustration of a
latent space). Positive samples are generated by sampling points close the the genuine sample.
Negatives are random other points in the latent space. Optimized samples are generated starting
at a negative sample and using an optimization function to find samples that are more similar
to the genuine sample. Interpolation samples are found as steps on the latent path between the
genuine sample and negative samples.

6.2.1 Generator

The core component of our approach is a generative model to provide samples that can serve
as input to the model we wish to test. For the case of evaluating face recognition, we propose
the use of Generative Adversarial Networks (GANs) to generate such samples as they have
been shown very capable of generating realistic face images [153, 154] and their continuous
latent space can be leveraged for targeted manipulations [246, 283]. They can thus be used to
produce alterations of a given starting point as well as samples between existing real-world
data points for which no ground-truth "true" labeling exists. Note, that while we suggest the
use of GANs for face images, other generative approaches (see Section 6.1) are possible as
long as they can produce targeted manipulations. In some cases, no model may be required,
for example, if the decision-making model solely relies on numerical inputs.

6.2.2 Samples

We now illustrate the sets of samples we propose to generate and the rationale behind choos-
ing them. Each sample is always generated in relation to a base (i.e. the starting point
in the latent space) that will later be used for the comparison (see Section 6.2.3). For the
example of face recognition, this would be the face image to test the decision model on.
Figure 6.1 illustrates examples for each of the sample types and Figure 6.2 shows in more
detail how they relate to the base image. Note, that the generated samples are independent
of the decision-making model to be tested. As such, our approach is also suited to explore
black-box models, as long as they can be queried.
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Genuine Samples

Genuine samples (Figure 6.2a) are identical to the base image and, thus, what would be
called a true positive in traditional classification tasks, i.e. they preserve the identity of the
base image. Note, that this is the only possible true positive as it is not necessarily clear to
which identity a sample should be attributed. This is the case because, in contrast to the real
world, we can continuously sample images from the latent space between two identities. We
include this sample both as a baseline for participants to calibrate their rating of similarity
against and as a check to make sure participants pay attention while rating the image pairs.

Positive Samples

We propose positive samples (Figure 6.2b) as slight modifications to the base. We find those
by sampling a (random) direction in the latent space and taking a small step away from the
base in that direction. The assumption behind this approach is that, given a locally stable
latent space, this should produce minor alterations to the input and preserve the model’s
decision on the base (for example, identity for our case of face recognition).

Negative Samples

We choose random samples from the latent space as negative samples (Figure 6.2c), i.e.
samples that we expect to be attributed to a different identity as the base. This is based on
the assumption that the latent space is big enough that randomly generating a sample similar
to the base is unlikely. For practical reasons, we propose the use of other base samples as
negative samples. This way bases can serve as both genuine and negative samples, and their
function is only defined relative to their respective base.

Optimized Samples

We propose to use each negative sample as a starting point for a black box optimization
algorithm to find samples that maximize the decision-making model’s target function (for
example, similarity). In contrast to the other samples, this step requires either access to
the decision-making model itself or a similar model. In our results (see Section 6.4.3) we
explore if two different models can be used for this (i.e. one to be explored, one for gen-
eration). Given the different starting points, we assume that the generated samples (Figure
6.2d) should represent local maxima in the latent space (instead of finding the original base
sample) and may thus very well not be similar to a human observer even though they are
similar according to the optimization function. As such optimized samples fulfill the role of
potential false positives.

Interpolation Samples

To better understand where the model’s decision between two (base) samples changes, we
introduce interpolation samples (Figure 6.2e). Those are generated by following the latent
vector between the base and each negative sample. Generating candidates for false negatives
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through optimization would require human ratings as a target function. As those are not
available at generation time, interpolation samples are our best attempt at provoking this
type of misclassification.

6.2.3 (Human) Raters

The final component of our approach is having the generated samples rated by humans as
a baseline to compare against the model’s decisions (remember, that for the samples we
propose, no ground truth is available; so this step is necessary). This is based on the premise,
that the decision-making model is supposed to decide similarly to a human or at least in a
way that aligns with human intuition. To reflect this we propose that human raters both judge
the target function of the model as well as the decision they would expect. For the example
of a face recognition model, this maps to a similarity score for the presented faces and the
decision whether two images show the same person. Depending on the use case it may be
possible to have the samples rated by a different model instead of humans if only differences
between models are explored with no focus on whether they adhere to human perception.

6.3 Experiments

We now illustrate how we implemented the approach described above for the example of
face recognition. We explain how we generated the samples and implemented the compar-
ison task for human raters. Note, that latent spaces allow for a vast amount of potential
comparisons and our choice can only capture a fraction of them. The choices of both sam-
ples and parameters presented here reflect our best attempt at striking a balance between
many potential comparisons, sufficiently many samples to observe trends, and a number of
comparisons that can realistically be made by participants.

6.3.1 Dataset Generation

We generate all samples using StyleGAN2 [154]. Base images (and consequently negative
and genuine images) are sampled as random seeds from the latent space. The number of
samples scales with the number of base images, as e.g. interpolation samples are generated
between all available bases. Thus, we decided on a batched approach with 4 base images per
batch. For each base, we generate one genuine sample (i.e. a copy). We choose two random
directions and generate three positive samples (at distances 0.2, 0.4, and 0.6) for each of them
(6 total). As negative samples, we include the remaining three base images. Furthermore,
we generate interpolation samples at 25%, 50%, and 75% of the distance between the base
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and each negative sample (9 total). Finally, we use the Covariance Matrix Adaptation Evo-
lution Strategy (short CMA-ES)2 as a black box optimizer to find optimized samples. This
approach empirically finds a gradient by sampling points around a given starting location
and optimizing a given score function. We encoded images as a 512-dimensional vector of
their latent representation and used a Python face recognition algorithm3 as the optimization
function. We ran 100 iterations with a truncation factor of 0.3 (i.e. we stopped optimization
when reaching this distance score) using σ = 1. We ran one optimization starting from each
of the negative samples and chose the first results that achieved a recognition distance below
0.3, 0.4, and 0.5 respectively4 as optimized samples (9 in total). In case the optimization
did not reach this score, the best sample was chosen. For reference: the suggested default
recognition distance for deciding on identity in the used Python library is 0.6, so all of those
samples would be accepted. Overall, this approach yielded 112 samples in each batch (28
samples for each base image).

6.3.2 Procedure

To collect human ratings on our samples, we designed an online survey. First, participants
would be informed about the purpose of the study and had to consent to their data being
collected and analyzed. Next, we collected basic demographic data before participants got
to the main task. Here, participants were repeatedly presented with an image pair where one
was always a base image and the other was one of the samples described in Section 6.3.1.
Each participant rated 112 image pairs in randomized order. For each image pair, we asked
participants for their perception of the similarity of the two faces and a binary decision if
they believed they showed the same person (see Figure 6.3 for an example of such a choice).
We concluded by asking participants for their strategy in rating both similarity and identity.

6.3.3 Participants and Recruitment

We recruited 100 participants (50 female, 48 male, 1 non-binary, 1 no answer) with a mean
age of 27.6 (SD=7.8, range: 19-61) using Prolific5. People from all continents contributed
to our dataset. The study took about 20 minutes and was compensated with £2.25. The study
was approved by our institute’s ethics commission under Nr. EK-MIS-2023-204.

2 CMA-ES: https://pypi.org/project/cma/, last accessed October 16, 2024
3 Face Recognition: https://pypi.org/project/face-recognition/, last accessed October

16, 2024
4 Due to an error in the implementation the images chosen for distances 0.4 and 0.5 included samples with

worse ratings
5 Prolific: https://prolific.com, last accessed October 16, 2024
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Figure 6.3: Screenshot of the main task in our online study. Participants were presented with
two images (a base image on the left and a sample generated with our approach on the right) and
were asked to rate their similarity and if the images showed the same person.

6.4 Results

In this section we describe the collected dataset, verify the effectiveness of our sampling
methods, and demonstrate how our approach can be used to gain insights into the decision-
making model.

6.4.1 Dataset Overview

Our dataset consists of 1,120 image pairs (10 batches of 112 image pairs each) that were
rated by 10 participants each, resulting in a total of 11,200 ratings of similarity and identity.
In addition, we post-hoc calculated distance scores for four common state-of-the-art face
recognition algorithms using the DeepFace library by Serengil and Ozpinar [243], as well
as latent distance (based on the distance of embeddings in the StyleGAN2 latent space) and
perceptual distance (lpips) [306]. For the sake of brevity, we only compare against Dlib face
distance when making comparisons to a face recognition model (unless otherwise stated).
An overview of our dataset grouped by type of sample is given in Table 6.1.
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perceived face recognition models distance metrics
Sample type sim ↑ id ↑ Dlib ↓ VGG ↓ FN ↓ OF ↓ lpips ↓ latent ↓

Genuine 97.75 0.98 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 0.00 0.00
Interpolation 39.97 0.25 0.61 (0.43) 0.92 (0.40) 1.12 (0.32) 0.85 (0.17) 0.52 67.87

– dist 25% 73.30 0.59 0.42 (0.88) 0.76 (0.66) 0.90 (0.64) 0.74 (0.33) 0.37 33.94
– dist 50% 31.35 0.13 0.67 (0.35) 0.96 (0.33) 1.18 (0.23) 0.86 (0.10) 0.56 67.87
– dist 75% 15.26 0.02 0.76 (0.07) 1.05 (0.22) 1.29 (0.07) 0.94 (0.07) 0.64 101.81

Negative 11.34 0.02 0.80 (0.02) 1.08 (0.18) 1.33 (0.02) 0.93 (0.07) 0.67 135.75
Optimized 35.36 0.16 0.50 (0.68) 0.89 (0.48) 1.08 (0.41) 0.86 (0.12) 0.60 227.16

– dist 0.3 51.67 0.31 0.31 (0.99) 0.76 (0.68) 0.92 (0.70) 0.80 (0.22) 0.55 279.99
– dist 0.4 32.49 0.11 0.53 (0.80) 0.88 (0.53) 1.07 (0.46) 0.85 (0.11) 0.61 217.45
– dist 0.5 21.91 0.05 0.66 (0.25) 1.01 (0.22) 1.26 (0.07) 0.95 (0.03) 0.64 184.05

Positive 72.32 0.57 0.41 (0.86) 0.70 (0.67) 0.87 (0.65) 0.68 (0.40) 0.34 38.11
– dist 0.2 88.46 0.84 0.29 (0.99) 0.55 (0.79) 0.68 (0.81) 0.57 (0.61) 0.24 19.06
– dist 0.4 70.97 0.53 0.43 (0.88) 0.72 (0.69) 0.89 (0.65) 0.69 (0.36) 0.36 38.11
– dist 0.5 57.52 0.34 0.52 (0.72) 0.84 (0.54) 1.03 (0.50) 0.78 (0.24) 0.43 57.17

all 44.42 0.29 0.53 (0.58) 0.85 (0.48) 1.04 (0.41) 0.80 (0.22) 0.51 117.54

Table 6.1: Descriptive overview of our dataset. Arrows indicate the direction of images being
perceived as more similar. In brackets, we indicate the acceptance rates (0: all samples were
rated as different identities, 1: all samples were rated as the same identity) of human raters
and face recognition models (sim: rated similarity, VGG: VGG-Face, FN: FaceNet512, OF:
OpenFace) based on their default recognition thresholds (Dlib: 0.6, VGG: 0.86, FN: 1.04, OF:
0.55).

6.4.2 Human Ratings with respect to Sample Types

As a first step, we validate the success of our approach. An overview of the distribution of
similarity ratings by sample type is given in Figure 6.4a. As expected, genuine samples were
rated as both similar (97.75) and the same person (0.98). The rating of interpolation samples
strongly depended on the interpolation distance. Samples at 25% of the distance away from
the genuine samples were rated highly similar and often still as the same person. Similarity
decreased with more distance as did the identity rating, until at 75% they were similar to the
ratings for negative samples (similarity: 11.34, id: 0.02). As designed, optimized samples
were often rated as fairly similar (35.36) but not as having the same identity (0.16). Finally,
positive samples were rated as similar (88.46) and the same person (0.84) for close distances
as intended. However, this effect strongly decreased for larger distances.
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(b) Perceived similarity compared to the rating of
a face recognition model (Dlib, line: default de-
cision threshold) by type.

Figure 6.4: Distribution of perceived similarity based on the type of sample (left) and in com-
parison to the ratings of a face recognition model (right). Marker size indicates latent distance.

6.4.3 Comparing (Human Ratings to) Face Recognition Models
and Distance Metrics

Figure 6.4b shows how the perceived similarity of our human raters was related to the rating
by a face recognition algorithm, showing that both ratings are generally correlated. Points
farther away in the latent space were generally rated less similar, which is in line with related
work [249]. However, our optimized samples break both trends, being rated less similar by
humans but more similar by the algorithm while also farther away in latent space. We gen-
erated the optimized samples with Dlib distance as the target function. Identification results

perceived face recognition models distance metrics
Sample type sim Dlib VGG FN OF lpips latent

Interpolation 0.901** -0.796** -0.528** -0.668** -0.345** -0.738** -0.719**
Negative 0.637** -0.334** -0.21*
Optimized 0.846** -0.589** -0.313** -0.38** -0.204** -0.494** 0.347**
Positive 0.838** -0.787** -0.556** -0.614** -0.389** -0.71** -0.634**

all 0.907** -0.765** -0.632** -0.712** -0.512** -0.814** -0.453**

*: p < .05, **: p < .001, empty cells: not significant

Table 6.2: Correlation of different distance metrics with human-rated identity (sim: rated sim-
ilarity, VGG: VGG-Face, FN: FaceNet512, OF: OpenFace). We omit genuine samples as dis-
tance scores for them were mostly constant (see Table 6.1) and correlations thus are invalid.
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Figure 6.5: Rated identity with respect to the different types of samples and the associated face
recognition score (left). Influence of the interpolation on rated identity (right). The blue line
indicates the default distance for the face recognition model to accept a face.

(see Table 6.1) show, that they were also most effective at being recognized by this very
approach. However, the acceptance rate of Dlib was overall higher than the other models so
we can draw no conclusions if generating optimized samples with a different model than the
one to be tested is an effective approach in general.

We conducted a correlation analysis of perceived human identity (see Table 6.2) to bet-
ter understand those effects. We find all measures to correlate most with rated identity
for interpolation and positive samples. Correlation for optimized samples was overall way
weaker, showing that they fulfilled their purpose to resemble samples whose identification by
a face recognition algorithm is not well aligned with human perception. OpenFace showed a
weaker correlation than the others and also identified fewer samples as the same person (see
Table 6.1), hinting at a stricter model overall. Latent and perceptual distance (lpips) [306]
were surprisingly well aligned with identity ratings by our participants.

Figure 6.5 gives more detailed insights into the distribution of samples rated as either the
same or a different person. In an ideal case, we would expect to only see identical samples
(orange) above the model’s threshold and samples rated as different persons (blue) below.
Both genuine and negative samples follow this trend while optimized and positive samples
have large areas where their ratings show a mismatch between model and humans. For
interpolation samples, the mismatches are mainly concentrated on the first interpolation step.

6.4.4 Finding Disagreement

One of the goals of our approach was to find samples that lead to a mismatch between human
raters and a decision-making model or are generally challenging to decide. To find such cases
we calculated a disagreement score between human-rated identity and the (inverted) Dlib
distance score. We do not use an absolute value, as both directions are interesting and map
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(a) Samples with the largest disagreement be-
tween human raters and Dlib recognition score
("False positive" samples).

(b) Samples with the largest disagreement be-
tween human raters and Dlib recognition score
("False negative" samples).

(c) Samples with the largest disagreement be-
tween participants about perceived similarity

(d) Samples with the largest disagreement be-
tween participants about perceived identity

Figure 6.6: Samples from our dataset with the biggest disagreement between model and partic-
ipants (6.6a, 6.6b) and between participants themselves (6.6c, 6.6d). The top row in each figure
contains base images, bottom row contains generated alterations.

to likely candidates for false positives (face recognition rating similarity higher) and false
negatives (humans rating similarity higher). To find disagreements between participants
we calculate the standard deviation of their ratings of similarity and identity. Figure 6.6
shows the samples with the largest disagreement with respect to the described measures. We
observe, that the candidates for false positives (Figure 6.6a) are mainly children and were
generated by optimized samples, hinting at a weakness in the assessed decision-making
model to correctly judge the similarity of children. Potential false negatives (Figure 6.6b)
were mainly generated through negative and interpolation samples. They have in common,
that they differ in meaningful ways like age, pose, or accessories.

6.4.5 Determining Similarity

We asked participants for strategies to determine the similarity and identity of the given
image pairs. Most participants stated that they compared facial features and decided based
on faces looking similar or following their intuition. The main features participants looked
at were eyes and eye color, hair (color), the nose, and the mouth area. When judging identity,
participants also particularly focused on identifying details, for example, P3: “I was looking
for particular facial features (for example, dimples, teeth, wrinkles, nose shape etc.)”. They
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also tried to ignore parts of the image that did not contribute to identity: “If the majority
of faci[a]l features were identical and only the hair or clothe[s] changed I assumed that the
images showed the same person.”(P5).

In addition to the feedback from our participants, we also investigated influencing factors
on perceived similarity computationally. We used a facial feature prediction model on all
generated samples to generate a vector of 37 features. We calculated the distance of those
vectors between each sample and its respective base and trained a random forest regressor
to predict the collected perceived similarity from those vectors achieving a R2 score of 0.45.
We calculated permutation importance for this model to find the features with the greatest
impact on the decision. The most impactful features were related to age (bags under eyes),
face shape (oval face, high cheekbones), and styles (hair and makeup).

6.5 Discussion

In this chapter, we proposed a method to explore decision-making models and applied it to
gain insights into a face recognition model. Here, we reflect on our insights from this test,
the limitations of our approach, and further target groups and applications to explore. We
also illustrate, how our method can be used for biometric interfaces to allow users to make a
more informed decision when using a face recognition model.

6.5.1 Experimental Findings and Insights

We found that human perception overall aligned with the outputs of the tested face recog-
nition model. We found a strong correlation between human identity ratings and perceptual
distance (lpips) [306], indicating it may be well suited as an approximation for face recog-
nition. However, our generated samples were also successful in uncovering misalignments.
Optimized samples were very successful at generating potential cases of false positives and
similarly positive and interpolation samples led to cases where the decision-making model
indicated less similarity compared to human raters. Visual inspection of the samples with
the largest disagreement suggests that the tested model struggled with distinguishing chil-
dren and was affected by changes like age, pose, or accessories that had no effect on the
identity ratings by human raters. This has different implications for different groups. As
users of the model, one has to be aware, that small everyday changes can largely impact
recognition performance. As a developer of such a system, this gives starting points for
what to improve. For our method, the strong disagreement for samples with meaningful
but minor edits implies that specifically sampling for such differences may be a good way
of finding potential false negative samples and should be considered as an addition to our
proposed samples.
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6.5.2 Considerations

Using a generative model to explore a decision-making model can introduce new biases or
hide existing shortcomings of the tested models if biases align. While this cannot completely
be avoided, we believe that introducing human raters can uncover some of those effects. At
the same time, the inclusion of human raters also limits our approach to tasks that actually
can be reliably rated by humans. This includes in particular decisions that people already
make in their daily lives, like recognizing others by their face, voice, or the way they walk.
However, comparing something like fingerprints or making a diagnosis on medical data
is uncommon or requires experts, making it less suited for our method. Finally, we used
StyleGAN2 [153] in this work. However, our approach should be compatible with other
GAN variants and potentially also other generative methods, as long as their latent space is
locally stable and can be navigated.

6.5.3 Further Application Areas

We used our proposed method for face recognition in this chapter. However, we expect it
to be applicable to other models as well. The key prerequisites we see are: 1) humans can
rate the model’s decisions, and 2) generative models exist for the type of input (e.g. voice
recognition [215] or gait and gesture recognition [305]).

While our method was designed for exploration, it can also directly support the improvement
of models. Our approach inherently generates a dataset of human-labeled synthetic samples.
This can be used in training to improve the model performance for those challenging inputs.

6.5.4 Leveraging generated Samples for Biometric Interfaces

Our analysis has shown that our proposed sample sets reliably produce potential mismatches
between human perception and model decisions. Thus, our approach could be used to il-
lustrate model performance for individual users. In that case, an embedding of the user’s
face (or other biometric features for other biometrics) in the latent space [1] can be used to
generate relevant samples. No other human ratings will be needed, as the user can make
the comparison of their own perception to the given system response by themselves to then
decide to e.g. adjust decision thresholds, avoid failure cases, or – more generally – make an
informed decision if, and how to use the model. Note, how the different sample types can
provide different types of insights. Positive and negative samples allow the user to verify,
that their perception of similarity generally aligns with the model, while interpolated and op-
timized samples can give them an impression of the robustness of the model against changes
and its performance when confronted with other similar-looking people. This provides a
graspable improvement over the abstract textual warning that is currently used (see Fig. 5.3c
in Chapter 5) and gives users insights into the actual performance they can expect.
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In addition, the visual analysis we performed could be adapted to be used in a user interface
to illustrate areas of disagreement for the model as a whole in a more graspable manner than
using e.g. False Positive Rates or Equal Error Rates.

For a more active user involvement, our idea could also be extended to an interactive appli-
cation, generating more variations on demand. We found that meaningful but minor edits
like changing the pose or adding accessories can have meaningful impacts on the recognition
performance. A biometric interface could allow users to actively explore such changes, e.g.
in the form of a slider interface that offers to edit such dimensions as pose, age, or lighting
conditions. Related work has both demonstrated that such edits are possible [123, 137] and
what interfaces for them could look like [67].

6.6 Implications

In this chapter, we proposed to leverage generative models to strategically produce alter-
ations (positive, negative, interpolation, and optimized) to the input of a decision-making
model and compare its ratings to answers by human raters. We collected a dataset of 11,200
ratings of similarity and identity for pairs of face images and compared them to the output
of a face recognition model, providing insights into how the perception of humans and the
algorithm differs.

We highlighted, how our method can be leveraged to gain deeper insights into the perfor-
mance of a biometric model. We proposed how it can enable improvements to the model by
using the generated labeled dataset and discussed how generated samples can be utilized to
support end-users in gauging the performance they can expect from a biometric model.

As such, this chapter provides a valuable tool for both model developers to introspect and im-
prove their work and designers of biometric interfaces to support users in making deliberate
and informed decisions.
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7
Leveraging Context Cues to Inform

Authentication Choice

This chapter is based on the following publication:
Sarah Prange, Lukas Mecke, Alice Nguyen, Mohamed Khamis, and Florian Alt.
2020. Don’t Use Fingerprint, it’s Raining! How People Use and Perceive Context-
Aware Selection of Mobile Authentication. In Proceedings of the International Con-
ference on Advanced Visual Interfaces (AVI ’20) [208]

In the previous chapter, we explored how the enrollment process for a biometric system can
be improved by giving users more insights into the model’s performance. After a user enrolls
in a biometric system, the main point where they further come in contact with the biometric
model is whenever they want to authenticate. From related work we know, that context fac-
tors like light conditions or moisture can have an impact on biometric authentication [29].
In this chapter, we explore if and how informing users of the impact of such context factors
can help them in choosing an appropriate authentication mechanism in different situations.



Figure 7.1: We investigate how people use and perceive context-aware suggestions to switch
mobile authentication mechanisms. This is useful when the primary mechanism is likely to fail
(e.g., wet fingers when using a fingerprint).

While related work suggests that it is technically possible to choose appropriate authentica-
tion based on context [290], we look into how context-aware selection of authentication is
used and perceived by mobile users in the wild.

To gain a better understanding of the context factors impacting users in their actual interac-
tion with authentication mechanisms we conducted an online survey and focus group col-
lecting problems and coping strategies. This highlighted both a wish for explanations and
an easy way to switch to a context-appropriate mechanism. Informed by this investigation
we designed a prototype suggesting users of fingerprint authentication to switch to their
knowledge-based fallback based on context information.

In a two-week field study (N=29), we tested how users used and perceived this biometric
interface and if giving explanations for suggested switches was helpful for them to gain a
better understanding of the model.

Our results show that users were willing to switch their authentication scheme when
prompted and found our app helpful and beneficial in daily use. Participants preferred re-
ceiving an explanation. However, sometimes the app behavior and given explanations did not
match participants’ perceptions highlighting the need for good explanations and activation
strategies. We discuss context factors, authentication switches, and use cases.

In this chapter we contribute 1) an investigation of context factors impacting user
authentication. We derive 2) a prototype for suggesting adequate authentication based
on context information. A two-week field study provides 3) empirical insights into its
perception and use, in particular with respect to the presence of explanations.
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7.1 Background and Research Approach

Here we give an overview of some background on the utility and previous use of context
factors for authentication. We extend this knowledge by conducting both an online survey
and a focus group to gain a better understanding of the actual factors impacting users when
using biometrics to authenticate in Section 7.2. Based on those results we derive the design
of a prototype and study to investigate context-based authentication switches in the wild.

Users protect access to a plethora of personal data on their smartphones, using authentication
methods such as knowledge-based or biometric schemes. However, authentication on mobile
devices is error-prone [120, 171] and perceived as time-consuming – in particular because
interactions on smartphones are usually short [120].

Beyond improving the security of existing mechanisms [155, 279], concepts have, hence,
been suggested to reduce authentication overhead (e.g., [44, 146]). One such option is to use
context, which refers to any (explicit or implicit) information that characterizes the user’s
current situation [235]. Factors include environmental properties (e.g., location), but also
human factors [236]. Context can be leveraged to a) skip authentication in certain situations
(e.g., Google Smart Lock1) or b) choose adequate (e.g., biometric) authentication [290].

Adapting mobile authentication based on context is very useful as we authenticate around 40
times a day [120] in varying contexts in daily life [126]. Related work shows, that context can
be considered for authentication (e.g., location, proximity, or other sensor values [125, 147,
169, 253, 290]). Wójtowicz and Joachimiak [290] presented a generic model that allows
choosing the “optimal biometrics” for mobile authentication based on contextual factors
(e.g., no voice biometrics in silent mode). However, no such thing has been proposed or
tested in practice.

7.2 Understanding Context-Aware Authentication

In this section, we report on results from an online survey (N=35) and a focus group (N=5)
we conducted to inform our design of a prototype to suggest switches to a fallback based on
context factors (e.g. moisture, see Figure 7.1).

7.2.1 Online Survey

Related work found that fingerprint authentication is sometimes problematic, e.g., while
walking, in dark environments, or after using moisturiser [21, 29]. Only artificial environ-
ments were tested. To understand the contexts in which users encounter difficulties when

1 https://support.google.com/android/answer/9075927, last accessed October 16, 2024
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authenticating on arbitrary devices, we conducted an online survey (N=35, 20 female, mean
age=28). We did not limit this to biometrics to get a broad spectrum of experiences.

Respondents were asked to describe any problems they encountered in as much detail as
possible, followed by open-ended questions about the context of the incident and the per-
ceived reason behind the problem. We asked for the time of day, weather, and location as
those might have an impact. Participants were recruited via university mailing lists and took
part in a raffle for three 20AC vouchers.

We discarded one response since it did not contain a problem situation. In the remaining
34 responses, smartphone-related issues were predominant (22 out of 34). The majority
of those were about issues with lockscreens (14) and fingerprint authentication (12). From
those, we identified wet or dry fingers as the main source of failed authentication attempts,
e.g., P30: “When [my] hands are sweaty the smartphone can’t be unlocked using fingerprint.
This mostly happens in crowded [public] transport.”. Reported contextual causes for wet or
dry fingers were temperature (rain or muggy weather), location (kitchen, bathroom, or public
transport), and activities (walking, applying moisturizer, washing hands, or exercising).

7.2.2 Focus Group

We conducted a follow-up focus group (N=4, 2 female, mean age=26.3) to further investi-
gate problems with fingerprints and coping strategies. Participants were compensated with
10AC. We asked about issues encountered when authenticating using fingerprint authentica-
tion on mobile devices and their coping strategies to overcome said issues. We concluded
by collecting feedback on the idea of leveraging context to suggest switches to fallback.

Named problems were dirty/wet fingers, similar to the online survey. The reasons were cook-
ing, the winter season (dry fingers), and neurodermatitis. The predominant coping strategy
encompassed repeated scanning of the finger. Other options were registering multiple fin-
gers, addressing the problematic state (e.g., drying or moisturizing fingers), or using different
methods (e.g., a fallback mechanism). Participants were very positive about the suggested
switches to fallback based on context information. Their design priorities were saving time
(e.g., by omitting the manual swipe gesture to get to the fallback), having a visual indication
of the currently used method, and receiving (brief) explanations for system decisions.

In addition to confirming the online survey’s results, we found that switching to fallback
mechanisms is not among the common coping strategies due to the required effort. However,
participants thought positively about alleviating the need to actively switch the authentication
method. Overall, participants favored concepts that are transparent and save time, which
aligns with previous work [120, 197].
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7.2.3 Lessons Learnt

From related work, we learn that fingerprint authentication is error-prone (e.g., for wet or
moisty fingers [29]). This was also reported by our survey and focus group participants.
While related work showed that choosing an appropriate authentication scheme based on
context is possible [290], it is not known whether users will follow derived suggestions in the
wild. Participants of our focus group also wished for an explanation, which was highlighted
by prior work to be important for intelligent systems in general (e.g., [209]). Indeed, one of
the usability heuristics is to maintain the “visibility of the system status” [198]. This is also
in line with our findings in previous chapters. Our online survey and focus group further
show that there is a need for transparent and straightforward ways to switch to fallback
mechanisms when authentication is not possible due to contextual factors.

Thus, we also investigated in our field study if explaining suggested switches to fallback
mechanisms impact users’ decision to follow this suggestion. We made concrete suggestions
for a switch to make this step easy and straight forward for users.

7.3 Leveraging ContextLock to explore authentica-
tion switches

As outlined in section 7.1, we see great potential in leveraging context to (proactively) sug-
gest switches of authentication methods. As a prerequisite for this, the aim of our work is to
evaluate user perception towards authentication switches in the wild.

7.3.1 Prototype: ContextLock

Informed by our survey and focus group we developed an Android application, ContextLock,
to provide suggestions to switch to fallback based on context. Due to Android’s security
limitations and ethical concerns, we did not replace the lock screen but simulated a failed
authentication attempt by showing a fallback screen after successful user authentication.

We built an Android fallback authentication screen allowing for PIN2, pattern, and finger-
print3 authentication. The presented fallback was determined by a question in the initial
questionnaire to match participants’ routines. Fingerprint was always provided, as we did
not want to force a switch but allow users to retry using fingerprint (which we found to be a
common coping strategy) if they wished.

2 PINLockView: https://github.com/aritraroy/PinLockView, last accessed October 16, 2024
3 Lock-Screen: https://github.com/amirarcane/lock-screen, last accessed October 16, 2024
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Figure 7.2: Procedure of our two-week field study, including all data sources (marked in violet).

To acquire the user’s context, we integrated OpenWeatherMap4 and Google’s activity recog-
nition API5. If no fitting context data was available, we randomly chose either “Humidity
detected” or “Movement detected” as mock context reason (see Figure 7.1).

7.3.2 Study Design and Procedure

We designed our study as a two-week within-subject field study with the presence of
EXPLANATIONS for a suggested switch to fallback as an independent variable with two lev-
els: generic or explained (see Figure 7.2). Dependent variables were participants’ subjective
ratings from questionnaires and experience sampling probes as well as decisions on whether
to switch to the fallback.

The study duration was initiated and concluded with a questionnaire, asking for demograph-
ics and a final comparison of the study conditions. During the study period, participants were
presented with a proposed switch to their fallback four times (average authentication failures
as reported in the initial questionnaire) in random intervals between 8 a.m. and 9 p.m. every
day. Explanations were given depending on the current study condition (see Figure 7.1),
which would automatically switch midway through the study. After a successful unlock (by
either using the suggested fallback or fingerprint) a dismissable experience sampling (ES)
questionnaire was shown with 50% probability. Conditions were counterbalanced.

7.3.3 Participants

We recruited participants via university mailing lists and social media. From a total of 42
installations, 29 participants (12 female) between 18 to 45 years (Mn=23.6) completed the
field study. Participants were located in the UK, Central America, Russia, and Italy when
using the app. The majority came from Germany. Participants used PIN fallback (16) and
pattern fallback (13).

4 Open Weather: https://openweathermap.org/api, last accessed October 16, 2024
5 Activity Recognition: https://developers.google.com/android/reference/com/goog
le/android/gms/location/ActivityRecognitionClient, last accessed October 16, 2024
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7.3.4 Limitations

Due to strict battery handling on Huawei phones, our application was sometimes terminated
by the operating system. To counteract this, we showed an icon in the taskbar to indicate that
the app was active and kindly asked participants to manually restart it if the symbol disap-
peared. We analyzed all records with at least four (of seven) days of data for each condition.
For the context of our study, we decided to trigger our app in certain intervals rather than
triggering based on actual context factors. We made this decision to ensure consistent data
collection, though a real application would do it the other way around. Furthermore, our
sample was self-selected and biased towards younger European students.

7.4 Results

Here we present our results from the initial and final questionnaire as well as experience
sampling probes (compare Figure 7.2). Significance was determined using Wilcoxon and
McNemar’s tests and is reported at a significance level of p = .05.

7.4.1 Prior Authentication Behaviour

We found the most common coping strategy (stated by 24 of the 29 participants) with finger-
print failure to be switching to the fallback after multiple failed attempts. Fewer participants
would switch immediately (2), try again later (2), or ignore it (1). Some participants reported
lockouts (complete loss of access to their device) at least once a day (5) or more than once
a week (4). Nine participants experienced lockouts once a month at most and eleven never
encountered this problem. The responses about perceived fingerprint error frequency were
also mixed, from once (8) or more than once (7) a day, once (7) or more than once (6) a
week, to less than once a month (1).

Overall, this shows that fingerprint errors and, in some cases, resulting lockouts are indeed a
problem and there is room for improving the current coping strategies.

7.4.2 Experience Sampling

After data clean-up, we had a total of 253 complete sets of experience sampling data for
the generic version and 261 for the explained version. On a 5-point likert scale (0=strongly
disagree; 5=strongly agree) the situational annoyance level was rated as neutral for both
versions (generic: Mn = 2.02, SD = 0.976; explained: Mn = 2.03, SD =1.126). We found no
significant difference between the versions.
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Figure 7.3: Responses for each Likert item in the final questionnaire for the generic (upper)/
explained (lower) version.

Though both were rated about neutral, a significant difference can be observed for the per-
ceived appropriateness (Z = -3.031, p = .002). The generic design was perceived signifi-
cantly more adequate (Mn = 2.13, SD = 1.073; explained: Mn = 1.85, SD = 1.143).

Participants were asked for possible reasons for fingerprint failure while using the generic
version of ContextLock. Overall, wet (74) and dirty (62) fingers constituted the majority of
perceived reasons. Weather and ambient influences such as rain (5), snow (2), humidity (14),
and heat (14) were indicated as influential factors which are in line with prior work [290].
Other reasons were “movement” and “damaged fingers from climbing”. This confirms our
survey’s results.

7.4.3 Switching Behaviour

We recorded if participants followed our suggestion to switch to their fallback mechanism.
We collected 645 datasets for the generic (no explanation) and 611 for the explained design.
Users showed no significant differences (p > .05) in following our suggestion with 67.13%
(SD= 0.470) and 67.76% (SD = 0.468) of the cases, respectively.
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7.4.4 Overall Rating

Figure 7.3 shows participants’ overall rating of the two conditions with regards to under-
standability, appropriateness, increased success, fewer failures, annoyance, and if they used
the fallback. We found no significant impact of the conditions.

Besides conditional questions, we also asked for overall opinions. In summary, users found
ContextLock somewhat helpful (Mdn=4), thought that the automatic recommendation was
beneficial compared to their current lock screen (Mdn=4), and would use a similar system in
the future (Mdn=4). The majority preferred the explained version (22) over the generic one
(6); another six participants remained undecided.

15 participants made comments about situations in which they would have wanted Context-
Lock to activate (but it did not). Reasons were “humid” environments, “wet fingers while
walking in the rain” or “misplacement” of the finger on the sensor. Participants also men-
tioned increased battery usage and a wish to customize ContextLock to more closely resem-
ble their real lockscreen. Three participants liked the usability of the app and two commented
to have enjoyed the design. We saw no feedback indicating participants noticed some of the
given reasons being random.

7.5 Discussion

For current biometric authentication mechanisms, users need to switch to a knowledge-based
fallback in case the primary mechanism does not work (as expected). This takes time and is
annoying to users, as reported in our focus group. We suggest considering context to switch
authentication mechanisms, not only in case fallback authentication is necessary, but on a
per use case basis. We now discuss further aspects of our concept as well as opportunities
for future work.

7.5.1 Appropriateness of Suggestions

Participants perceived suggested switches as significantly less appropriate when they were
given an explanation. We believe the reason for this to be the use of fake context information
(when no real data was available), hampering trust in the system [163]. However, we saw
this effect only for the experience sampling and not the final rating. While we did not
find significant differences, participants rated the explained version more understandable
and perceived fewer failures. It was also rated as the preferred choice. This shows that
participants generally appreciate explanations, though the use of real context data would be
necessary to make the system transparent (as, e.g., suggested by Nielsen [198]). Specific use
cases and related context factors are subject to future work.
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7.5.2 Extending the Concept

From related work, we learn that environmental as well as technical factors [125, 235, 236,
290] may influence the choice of authentication.

It’s Raining vs. I’m Tired

We propose to consider not only technical but also further human factors. This may, on
one hand, refer to users’ concrete characteristics, as, e.g., hand size has an influence on
the accuracy of touch interaction [40, 207]. On the other hand, more abstract factors like
users’ current cognitive and physiological state may be worth considering when choosing
authentication. As an example, using face recognition may be more usable than entering a
PIN for switching a song while doing sport. Users who are at home and tired may as well
not want to enter a knowledge-based secret but rather rely on their trusted environment.

Socially-Aware Authentication

Frankel and Maheswaran [97] showed that human social interaction is a feasible authenti-
cation factor, thus also social context could be leveraged for authentication switches. This
may, on one hand, lead to a switch to an easier, potentially less secure mechanism, if only
trusted entities are present. On the other hand, users may want to hand over their device to
someone else. While it is easy to share a knowledge-based secret, a biometric secret cannot
be shared. Context-aware authentication could thus switch to knowledge-based models if
the device is in the hands of a trusted, but foreign entity.

7.5.3 System vs User-Initiated Switches

Our prototype suggested the switch to knowledge-based fallback, but did not force users to
do so. However, our participants did follow the recommendation in the majority of the cases
(67%). Other approaches may provide users with the possibility to choose context factors
to be considered themselves (compare to, e.g., Google Smart Lock or aCapella [78]). At
the same time, context-aware authentication could also force the switch of authentication
mechanisms based on appropriate factors. This would introduce a trade-off where users
loose agency and insight into their used authentication but may gain convenience.
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7 Leveraging Context Cues to Inform Authentication Choice

7.6 Implications

In this chapter, we explored context-induced problems users have with authentication and
their coping strategies. We derived a concept for an app –ContextLock – which helped us to
understand users’ willingness to follow context-aware suggestions (both mocked and real)
for authentication switches in the wild. We tested ContextLock in a 14-day field study with
29 participants.

We found no significant differences between giving explanations or not, but explanations
were overall preferred. Participants liked the concept and found it useful and worth using in
the future. This was also reflected in about 67% of the cases in which participants followed
our suggestion and switched to their fallback. While we saw no feedback indicating partici-
pants noticed some of the given reasons being random, we believe this had an impact on the
perceived appropriateness of suggestions to switch.

This chapter highlights, that users both wish to understand context factors for their authenti-
cation and have an easy and straightforward way to cope with them. We found, that finger-
print errors and lockouts are indeed a problem and there is room for current coping strategies
(e.g. just retrying multiple times) to be improved. Our proposed biometric interface was ac-
tively used and preferred to having no explanations. However, this chapter also highlights,
that it is important for explanations to match users’ actual experience to be useful in building
a mental model and support user literacy.
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8
Communicating the State of Continuous

Authentication Systems

This chapter is based on the following publication:
Lukas Mecke, Sarah Delgado Rodriguez, Daniel Buschek, Sarah Prange, and Flo-
rian Alt. 2019. Communicating Device Confidence Level and Upcoming Re-
Authentications in Continuous Authentication Systems on Mobile Devices. In Fif-
teenth Symposium on Usable Privacy and Security (SOUPS ’19) [182]

In addition to being used as an explicit authentication mechanism, biometrics (in particular
behavioral) can also be used to provide security implicitly [39, 71, 76, 192, 226, 247]. Im-
plicit authentication has two major use cases: a) as an effortless, independent main authenti-
cation mechanism [156]; or b) as a second line of defense against unauthorized access [168].
The first use case is particularly suitable for smartphone users who currently do not use any
kind of authentication on their devices due to the required effort of explicit mechanisms.



Figure 8.1: We propose to use indicators to communicate both the current device confidence
level (DCL) and the need for re-authentication for continuous implicit authentication systems on
mobile devices: 1) a long term indicator illustrates the current DCL and its development over
time via a taskbar icon, and 2) a short term indicator announces an upcoming re-authentication
via darkening the screen. Our system also allows for 3) voluntary re-authentication to avoid
system-side locking of the device.

Those users would need to authenticate less frequently than with traditional explicit authen-
tication approaches [121, 156]. The second use case provides an additional security barrier
for devices that were already unlocked using an explicit mechanism [168].

One caveat of such implicit authentication systems is that they can trigger explicit re-au-
thentication; that is: asking users to confirm their identity via a second factor, in case the
mechanism is unable to confirm the current user’s identity [93, 156, 168]. Such re-authen-
tication events are likely to interrupt other tasks and annoy users [157]. Reasons for this
annoyance include the unpredictability of interruptions and the sensation of not being cor-
rectly informed about the current state of the implicit authentication system [5, 62, 157].
Moreover, users wish to influence the timing of the interruption in some way [5, 178]. The
addition of a biometric interface could help to address these user needs.

We thus propose 1) a long term indicator (LT), informing users about the current device
confidence level (DCL) and thus enabling anticipation of upcoming re-authentications, and
2) a short term indicator (ST), enabling users to finish their task. To avoid system-side
locking of the device we 3) provide voluntary re-authentication (see Figure 8.1).

We investigated these indicators in a field study (N=32) where participants used them in
everyday life. We found that participants preferred our indicators to a system that interrupts
them in an unpredictable way. Their perception strongly depended on the importance of the
interrupted task. Voluntary re-authentication was perceived as less annoying. Our research
is complemented by deriving implications for future implicit authentication systems.

In this chapter we contribute 1) a biometric interface to announce upcoming re-au-
thentications and allow for voluntary re-authentication; 2) findings from a 4-week field
study, testing the two indicators and their combinations; and 3) a set of implications
for future implicit authentication mechanisms based on our findings.
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8 Communicating the State of Continuous Authentication Systems

8.1 Background and Related Work

In this section, we give an overview of related work on the perception of implicit authentica-
tion, re-authentications, and interruptions. We conclude with an overview of the implications
we derive from this related work and the research questions guiding our work.

8.1.1 Perception of Implicit Authentication

There are several works pointing out the positive effects of implicit authentication. Hayashi
et al. [125] found that implicit authentication could reduce explicit authentication by 68%.
Riva et al. [218] report a decrease of 42%. Several studies report on implicit authentication
being perceived as convenient and easier to use than traditional methods [58, 110, 157]. In a
study by Crawford and Renaud [62] 90% of the participants indicated they would consider
using implicit authentication and 73% felt it was more secure than authenticating explicitly.

8.1.2 Research on Re-Authentication

While implicit authentication is generally perceived as positive and can indeed reduce au-
thentication overhead, previous work found that the need for re-authentications can strongly
disrupt those positive effects. Khan et al. [157] found that re-authentications, due to false
rejects (FR) (i.e., cases in which the system rejected the legitimate user), were perceived
annoying by 35% of their participants. This was due to both the unpredictable nature of
the interruption and the need to switch the context for re-authentication. Another finding,
also supported by the study of Crawford and Renaud [62], was that security barriers – like
re-authentication – helped users to build a mental model of the system’s security and thus
led to a stronger perception of security.

8.1.3 Research on Interruptions

Work by Bailey et al. [18] found that interrupting users is perceived as rude and decreases
task performance. The timing of an interruption was highly important, as interrupted tasks
were perceived as more difficult. Thus, they suggest using attention manager systems to
detect phases of low memory load and schedule interruptions during these.

Adamczyk and Bailey [3] further investigated the impact of triggering interruptions at op-
portune moments. They were able to show that better timed interruptions are perceived
as less annoying, less frustrating and more respectful. They also require less mental ef-
fort. Fischer et al. [96] aimed at identifying such opportune moments for interruptions with
smartphones with the goal of identifying the best timing for delivering notifications. Al-
though their participants did not clearly prefer the suggested interruptions after finishing a
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task compared to random interruptions, they found people attending faster to notifications in
the task-dependent condition.

McFarlane [178] studied interruptions in general and found that making interruptions more
predictable made them less annoying and had a positive effect on user performance in the
interrupted task. He also found that letting users determine the moment of interruption made
interruptions less annoying. Agarwal et al. [5] found similar results in their study. They
tested different mechanisms to delay the re-authentication interrupt, using gradual dimming
of the screen and transparent overlays to reduce context switch overhead and unpredictability
of the interrupt. They found indications that participants were less annoyed when they could
predict the interruption. Participants liked the introduced grace period (i.e., the delay of the
re-authentication) and performance was increased as users tried to finish their tasks before
the device was locked.

8.1.4 Implications of Related Work

Based on the previous work we derived three main user needs, that biometric interfaces for
continuous authentication should address.

Show current state: Crawford and Renauds [62] found that users disliked the idea of a to-
tally invisible authentication mechanism. Khan et al. [157] suggested indicating the current
system status to address similar concerns voiced by participants of their study. This suggests
that users’ general desire for system feedback is particularly true for authentication as well.

Announce interrupts: Agarwal et al. [5] and McFarlanes et al. [178] found that predictable
interruptions make users feel less annoyed.

Delay interrupts: Instantly locking the device when re-authentication is required can heavily
disrupt the interaction flow [18]. Prior work showed that users liked having a grace period
to finish their tasks in these situations [5].

8.2 Concept Development

In this section we report on the development process for our re-authentication concepts: We
introduce design considerations revolving around presentation strategy and integration with
the smartphone. These considerations provide the framing for a subsequent focus group in
which participants brainstormed about specific designs. In the next section, we describe our
final concept for indicating upcoming re-authentications based on related work, our design
considerations, and our findings from the focus group.
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8 Communicating the State of Continuous Authentication Systems

8.2.1 Design Considerations

Based on the requirements derived from related work we considered different aspects of
our design. In particular, we considered how indicators should be presented and how this
presentation could be integrated into a smartphone interface.

Presentation Strategy

Here we derive two approaches for presenting a re-authentication indicator: long-term and
short-term. We consider and investigate both.

To show the current state of the system we propose a Long Term Indicator as a permanent
indicator displaying the device confidence level (DCL) to show that the system is active.
This also serves as a means to anticipate upcoming re-authentication. To inform users about
the imminent need for a re-authentication, we propose a Short Term Indicator, granting a
grace period similar to the gradual dimming used by Agarwal et al. [5].

Integration with the Smartphone

The biometric interfaces can be integrated with the smartphone in different ways: by means
of static elements with the main purpose of permanently showing the current system sta-
tus; by using dynamic elements, announcing an upcoming re-authentication request; or a
combination of both approaches (hybrids).

A well-suited static element on mobile devices is the taskbar, as it is (with few exceptions)
always shown. Possible elements are icons, percentages, progress bars, or changes to the
bar itself (e.g., changing color) to indicate the current DCL. Possible On-screen dynamic
elements include distortions of the screen content (e.g., darkening, desaturation, pixelation,
etc. [5, 9]) or a notification. Off-screen elements include vibration, sound, the use of the
flashlight, or the notification light. Finally, hybrid elements could be used. An element that
can be used both statically and dynamically is a floating action button, overlaying screen
content. Such buttons can show both DCL and upcoming re-authentication requests, either
color-coded or in the form of e.g., a counter. In particular, a floating action button could also
remain invisible and only (gradually) appear to announce a re-authentication.

Freedom of Authentication

To address annoyance due to having to wait for the grace period to finish [5], we propose
allowing explicit re-authentication at any time and in particular during the grace period.

8.2.2 Focus Group

We conducted a focus group to gain further insights towards the design of our biometric
interfaces. The focus group served two purposes: 1) To collect novel design ideas for re-
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authentication concepts, focus group participants engaged in an open brainstorming ses-
sion. 2) To understand users’ preferences regarding the design opportunities, participants
discussed several designs, covering different aspects of our considerations. We recruited five
HCI students from our university (4 female, 1 male) for their expertise in interface design.

Procedure

We first introduced participants to the concept of continuous implicit authentication and ex-
plained the terms ‘device confidence level’ (DCL) and ‘re-authentication’. Afterward, we
asked them to sketch ideas of how the current DCL and the need for re-authentication could
be communicated to users. We provided print-outs of smartphone home screens. Further-
more, we nudged them to think beyond visual cues. Following the sketching phase we asked
them to present their ideas and discuss them. We then presented a set of our own indicator
designs and asked participants to discuss those. Finally, we asked participants to rank all
designs (their own and our presented ones) and comment on why they chose a ranking.

Focus Group Results

The results of our focus group covered integration with the smartphone, visual design,
modalities, and re-authentication mechanism.

Participants favored approaches that subtly integrate the indicator with the smartphone. In
particular, they felt that the indicator would optimally be placed in the taskbar. Floating ac-
tion buttons were perceived as too intrusive. Notifications received mixed opinions: While
some participants argued that they were intrusive, others described them as the natural way
the device would communicate announcements. Regarding the visual design, participants
suggested indicators gradually changing appearance (such as color) to make users aware
of diminishing DCL. Abrupt color changes were considered too intrusive. A positively per-
ceived idea was dimming the screen (similar to the method used in [5]). Regarding modality,
participants mentioned notifications and vibration to announce upcoming re-authentication.
As re-authentication mechanism, most participants mentioned biometric methods (finger-
print or face recognition) to make the process as smooth as possible. This is in line with
feedback from participants in the study by Khan et al. [157].

8.3 Authenticator Prototype

Based on the recommendations and suggestions both from related work and the focus group
we built an Android app, called Authenticator. The app simulates an implicit authentication
system. It provides two different types of indicators that can be combined but also work
independently.
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8 Communicating the State of Continuous Authentication Systems

Figure 8.2: Different elements of the Authenticator app. Left: the main application with the
device confidence level (DCL) visualized as a graph. Right: The notification and icon shown in
the long term conditions (top), in the conditions without a long term indicator (middle), and the
instances of the indicator symbol showing the current DCL in the task bar.

8.3.1 Indicator Designs

Our prototype supports two indicators, namely a short term and a long term indicator.

Long Term Indicator (LT)

To realise the long term indicator, our application places a permanent (non dismissable)
notification in the task bar (see Figure 8.2 right top). As an icon, we used a shield that
gradually darkens in five steps, according to the DCL (see Figure 8.2 right bottom). In the
notification, we displayed the current DCL value together with a button to open the control
application and re-authenticate voluntarily. While we decided to permanently display the
indicator in our study, it could also be implemented as an on-demand information source
(comparable to e.g., battery level) to free up space in the taskbar.
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Figure 8.3: Schematic presentation of our simulated implicit authentication mechanism: Upon
unlock of the device we determined (based on the desired false acceptance rate of 10%) whether
a re-authentication should be triggered in this session (re-authentication session). The proba-
bilities of user touches influencing the device confidence level (DCL) are altered accordingly;
leading to decreases being more likely in re-authentication sessions. In normal sessions the
DCL is more likely to remain stable.

Short Term Indicator (ST)

The short term indicator gradually darkens the screen once the DCL falls below 20% (Fig-
ure 8.1 center). It is therefore only visible when a re-authentication is imminent. To avoid
annoyance by waiting for the grace period to end (see [5]), we display a notification as the
dimming period begins. It shows a button to allow the user to voluntarily re-authenticate at
any point within the grace period (Figure 8.2 right top).

In the study by Agarwal et al. [5] a duration of 4 seconds was chosen as shorter amounts
did not allow for anticipation of the re-authentication and for longer duration testers had
to wait too long for the re-authentication to appear. Due to the introduction of voluntary
re-authentications the latter finding does not hold in our setting so we also explored longer
grace periods. Through testing with five participants, we determined a grace period duration
of 8 seconds to be suitable. To address the remaining uncertainty we included a question
about the desired length of the grace period in the final questionnaire.

8.3.2 Simulated Implicit Authentication

We followed related work and used a simulated system: Khan et al. [157] interrupted ses-
sions after a random time period of between 5 and 30 seconds. Using a simulated system

112



8 Communicating the State of Continuous Authentication Systems

provides more control for our evaluation of the indicator concepts and helps to avoid differ-
ing false reject rates (e.g., due to hand posture) that might have an influence on the results
[44, 62, 157]. We thus favored a simulated system based on the number of touch interac-
tions over a real implicit authentication system to keep conditions comparable. Following
the medium-level false reject rate of 10% used in related work [157], our system triggers
re-authentication in approximately one out of ten sessions1. To achieve this, we simulated
DCL fluctuations as follows (see Figure 8.3):

Selection of Re-authentication Sessions

We flagged a session as a re-authentication session with a probability of 0.1 (to achieve 10%
false rejects) upon unlocking the device. This flag influenced the random DCL fluctuations
(see Figure 8.3) such that a re-authentication would likely appear in this session. For cases
where sessions were too short for a re-authentication request to appear (i.e., the DCL did
not fall below the threshold before the session ended), the flag would persist until a re-
authentication was triggered. Depending on the flag being set or not, changes to the DCL
were simulated differently, as explained next.

Alterations to the DCL

Depending on the chosen type of session (re-authentication or normal) the goal was to either
decrease DCL or keep it stable while adding some fluctuation to make the results more
believable. Each touch by the user had a chance to either trigger a change to the DCL
(0.67 if it was a re-authentication session, 0.33 in a normal session) or leave it unchanged
(with inverse probability accordingly). For re-authentication sessions, a decrease of the DCL
was more likely (0.5) in comparison to increases (0.17). In normal sessions the probability
for decreases and increases was equal at 0.17 (compare Figure 8.3 for an overview of the
whole process). Both decreases and increases to the DCL could trigger a random change
between 1% and 10%. Decreases resulting in a DCL below 20% were only executed in
re-authentication sessions.

All probabilities were determined through a pre-study with five testers so as to create fluc-
tuation of the DCL that seemed natural. A re-authentication was triggered as the DCL fell
below 20% and completing a re-authentication reset the DCL to 100%. Re-authentication
was suspended during calls.

Usage

Using this method we achieved an actual false reject rate of 7.65% in our 4-week field study.
The deviation from the goal (10%) is a result of sessions that were too short to trigger a
re-authentication. While we forced the next session to be a re-authentication session in those
cases as described above, we did not adjust probabilities afterward to mitigate effects on the
overall false reject rate.

1 A session refers to the time between two unlocks.
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8.3.3 Re-Authentication

Voluntary re-authentication was possible using the control application (Figure 8.2 left) or one
of the notifications tied to the indicators (Figure 8.2 right), i.e., the permanent notification or
the notification displayed during the grace period. Information about the current DCL was
provided by the permanent notification icon (discretized), the permanent notification, and
the control application. The latter additionally featured a graph, displaying the history of the
DCL over time (Figure 8.2 left).

The re-authentication process itself was implemented by locking the device and, hence,
forcing the user to authenticate by using their default unlock mechanism. Due to technical
restrictions, it was not possible to offer biometric methods for re-authentication as Android
requires using the backup authentication scheme in cases where the device is locked by
an app. Using those methods was still possible for normal locks, i.e., locks that were not
triggered by our app.

8.4 Evaluation

Here we describe the research questions guiding our work and the study design we derived
to answer them as well as the procedure and participants of our study.

8.4.1 Research Questions

Our evaluation was guided by these research questions:

RQ1 Can indicators reduce annoyance caused by unpredictable re-authentication re-
quests? We hypothesize this to hold true due to results from related work [5, 178].

RQ2 Are there other factors influencing annoyance caused by re-authentication re-
quests? We propose the location, task, importance, and sensitivity of the interrupted
task as possible factors.

RQ3 Do indicators nudge users to voluntarily re-authenticate? We expected an in-
creasing number of voluntary re-authentications for short term (due to the option to
re-authenticate during the grace period) and long term indications (due to the added
feedback from the taskbar symbol and the graph visualization of the DCL).

RQ4 How do users perceive and respond to the introduction of voluntary re-authenti-
cation? We expected users to like this feature, as prior work showed that letting users
determine the interruption time reduced annoyance [178].
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8.4.2 Study Design

To answer our research questions we conducted a field study (N=32) with a within-subject
design. This is (to the best of our knowledge) the largest and, next to the study by Khan et al.
[157], the only field study on this topic. As an independent variable, participants tested a set
of four INDICATOR CONFIGURATIONS for one week each, resulting in a total study length
of four weeks. The order of conditions was counterbalanced. Details are given below.

NO No Indication: Our (simulated) implicit authentication scheme runs transparently in
the background. Re-authentication is requested without prior indication, which resem-
bles the current practical standard. Voluntary re-authentication is only possible from
the control app, but not from notifications.

ST Short Term: Only the short term indicator is shown. Voluntary re-authentication is
possible from the control app and the notification triggered with the grace period.

LT Long Term: Only the long term indicator is shown. Voluntary re-authentication is
possible from the control app and the permanent notification.

SLT Short & Long Term: Both indicators are present. All options for voluntary re-authen-
tication are possible.

Note how both NO and ST can serve as baselines here. The NO condition, i.e., locking
the device without giving an indication, is the current practical state of the art and thus a
natural baseline. Furthermore, our ST condition is based on the best-performing method
from the study by Agarwal et al. [5] (including their recommended change of allowing for
re-authentication during the grace period). As such, ST serves as a baseline for the best
currently known scheme for indicating re-authentications.

8.4.3 Procedure

We recruited participants through a University mailing list and via social media. They were
asked to sign a consent form and install our app from the Google Play Store, using an in-
stallation guide we provided on a dedicated website. This website also provided additional
information about all study conditions and answers to frequently asked questions.

Participants had to use the application for four weeks with conditions automatically switch-
ing each week. They used their phones as usual with occasional interruptions by our system
and a maximum of three (dismissible) experience sampling questionnaires per day after suc-
cessful re-authentication. After each condition switch, we asked participants to fill a weekly
questionnaire about their experience. In the end, we concluded with a final questionnaire.

After four weeks, participants could uninstall the app and we invited them to participate in
a final semi-structured interview to collect qualitative feedback (in person or via telephone).
Participants received 20AC, plus 5AC if they participated in the interview.
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8.4.4 Collected Data

We collected usage data on participants’ devices, including executed apps, and aggregated
touch interactions, unlocks, and re-authentications. Collected data was stored on the device
and transferred to our server once per day.

The experience sampling questionnaires asked for the current location and interrupted task.
We also asked if the interrupted task was perceived as sensitive and important and if the
interruption was perceived as annoying.

In our weekly questionnaires, participants rated on a 5-point Likert scale if they felt rewarded
by an increasing DCL, if they felt motivated to re-authenticate voluntarily, and if they per-
ceived the system as obstructive, annoying, and easy to use. We also asked for free feedback
on what they liked and disliked about the current indicator and the system in general.

In the final questionnaire we asked participants to rank the four conditions and explain their
decision. In particular, we asked which features of the first and last choices contributed to
their decision. For the specific indicators, we asked participants whether they would modify
the duration of the grace period, if they were stressed due to the grace period, and if the long
term indicator helped predict re-authentications.

Furthermore, participants rated several statements on a 5-point Likert scale: Did they like the
system, were they annoyed by the vibration or notification (ST), did they feel that the system
influenced their behavior, and did any bugs influence the system performance? Similarly,
we asked participants if the experience sampling was annoying, and if it influenced their
behavior or their perception of the system.

Moreover, we asked if participants had read the introduction on the website and watched the
introductory video we provided, if they had previous knowledge about implicit authentica-
tion, and if they had looked up app functionality or how implicit authentication worked in
general on our website or other sources. Finally, we asked if they always locked their phone
after use, if they thought re-authentication interrupts were more annoying than traditional
authentication, and if they would consider using implicit authentication.

In the final interview, we asked participants to share their experiences with the systems
guided by a few questions.

8.4.5 Participants

We recruited 36 participants. Four were excluded since their data was not properly trans-
ferred to our server. The remaining 32 people had a mean age of 28 years (18 male and 14
female; Table 8.1). Three participants did not submit a final questionnaire, resulting in a
reduced set of 29 answers for these questions. For practical reasons, we conducted the study
in two runs (i.e., not all participated in parallel).
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Gender 14 (44%) Female
18 (56%) Male

Mean Age 28.3

Occupation 2 (6%) Homemaker or retiree
8 (25%) Working

22 (69%) Student

Primary Unlock 1 (3%) Password
Mechanism 2 (6%) PIN

2 (6%) Face Recognition
6 (19%) Pattern

21 (66%) Fingerprint
Secondary 3 (9%) Password
Unlock 8 (25%) PIN
Mechanism 10 (31%) Pattern

11 (34%) None

smart phone 52.7 Estimated daily unlocks
usage (mean) 3.6 Estimated daily usage (h)

Table 8.1: Demographics of the participants of our four week field study (N=32).

All but two participants partially agreed (n=7) or agreed (n=23) that the restriction of access
to their smartphone (authentication) was important (5-point Likert scale). Participants self-
reported their technical knowledge as high (median=4).

8.4.6 Study Limitations

As participants were self-selected, our sample may not represent the general population. Our
simulation might differ from the dynamics when using real implicit authentication systems.
Moreover, our prototype added re-authentication on top, whereas a real system could in
turn remove the initial device unlock authentication. This might have negatively affected
participants’ perception of our system. However, the goal was not to evaluate the general
concept of implicit authentication itself but indicators for re-authentication.

8.5 Results

In the following report, quantitative results were tested for significance using repeated mea-
sures ANOVA with Greenhouse-Geisser correction and Bonferoni post-hoc tests. Ordinal
results were tested using a Friedman test with Conover’s post-hoc tests. We report signifi-
cance at the level of p < 0.05. No effects of ordering were observed.
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Figure 8.4: Average daily re-authentications by condition. Re-authentications are divided into
voluntary and forced re-authentications and voluntary re-authentications are again subdivided
into re-authentications during and excluding the grace period (where applicable).

8.5.1 Usage Data

Over the course of the four-week field study, we observed a total of about 3.6 million touches
and about 74.200 unlocks (average 84.7 unlocks per day and user) of which 5679 (7.65%)
were re-authentications (1910 were voluntary including 646 outside of the grace period).

The average number of daily re-authentications per condition is shown in Figure 8.4. We
found no effect of the indicators on the average number of daily re-authentications. How-
ever, we found a significant difference for the average number of daily voluntary re-authen-
tications (F(1.95, 60.44)=14.75, p<.001, η2 =0.322). Post-hoc tests revealed significantly
more voluntary re-authentications for all indicators (p<.04) compared to none (NO); and
also significantly more for ST (p=.001) and SLT (p=.003) compared to LT.

We also analyzed re-authentications excluding those in the grace period, since these are ar-
guably not strictly voluntary: We found a significant difference for relative daily voluntary
use, that is, the ratio of voluntary to all re-authentications (F(2.82, 84.53)=59.09, p<.001,
η2 =0.165). Post-hoc tests revealed significantly higher relative voluntary re-authentica-
tion for both LT (p=.014, Mn=14.56%) and SLT (p=.008, Mn=17.63%), compared to NO
(Mn=5.67%). Relative voluntary re-authentications during the grace period were signifi-
cantly higher (F(1.0, 30.0)=5.01, p=.032, η2 =0.144) for ST (Mn=47.49%) than for SLT
(Mn=38.93%).

In 49.6% of cases, participants re-authenticated before the grace period was over, that is,
they did not wait for system-triggered re-authentication (Mn=3.29s, SD=1.46). Outside
of the grace period, there was no particular DCL at which people preferred to voluntarily
re-authenticate (Figure 8.5), but we saw a slight increase below 40%.
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8 Communicating the State of Continuous Authentication Systems

Figure 8.5: Distribution of DCL at voluntary re-authentication. There are no re-authentications
below 20% for NO and LT as they had no grace period but instantly locked the device.

In summary, we did not observe an effect of the indicators on the total average daily re-
authentications. However, voluntary re-authentications were more common when using in-
dicators. This can be mainly attributed to re-authentications outside the grace period for
conditions including the long term indicator and re-authentications during the grace period
for conditions using the short term indicator.

8.5.2 Experience Sampling

General Results

We collected 1557 answers for the experience sampling questionnaires. On a 5-point Likert
scale, annoyance was rated neutral over all conditions (Mdn=3). The statements that the
interrupted task was sensitive and that the interrupted task was important were also rated
neutral (both Mdn=3). We could not find a significant impact of indicators on any rating.

Regarding the authentication context, participants most frequently reported “at home” for
the place where they were interrupted, followed by transit and work. The most frequent
tasks that were interrupted were chatting, reading, searching for information, “nothing”2

and writing. This aligns with our logged data about the interrupted apps.

Annoyance

We found significant positive (Spearman) correlations between perceived annoyance and
importance of the interrupted task (rs=0.569, p<.001) and between perceived annoyance

2 This includes both cases where participants actually did nothing in particular or were not interrupted, as the
re-authentication was voluntary.
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Figure 8.6: Frequencies of reported annoyance by the importance of the interrupted task (left)
and by the sensitivity of the interrupted task (right). Color encodes the shown counts.

and sensitivity of the interrupted task (rs=0.489, p<.001), see Figure 8.6. We could not find
effects of the day of the week or the day since the specific condition started.

The annoyance of voluntary re-authentication was perceived as neutral (n=273, Mdn=3),
similar to forced re-authentication (n=1277, Mdn=3). The degree to which people were
annoyed by voluntary re-authentication did not significantly differ based on whether it hap-
pened during (n=76, Mdn=3.5) or outside of the grace period (n=136, Mdn=3). Voluntary
re-authentication was labelled as such in the experience sampling in only 18.3% of the cases.

When comparing annoyance for the most frequently reported tasks in the experience sam-
pling, a Friedman test revealed a significant effect of task on annoyance through re-authenti-
cation (χ2(5)=36.16, p<.001, W=0.604). Conover’s post-hoc tests found that the interrup-
tion of the task “voluntary/nothing” was perceived as less annoying (Mdn=1) when com-
pared to chatting (p<.001, Mdn=4), reading (p=.002, Mdn=3), searching for information
(p<.001, Mdn=4), writing (p<.001, Mdn=4) and all other tasks (p<.001, Mdn=4).

In summary, we found that the annoyance caused by an interruption was influenced by a)
the sensitivity of the data accessed during the interrupted task, b) the importance of the
interrupted task, and c) the task itself, as the reported task “voluntary/nothing” was perceived
as less annoying.
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8.5.3 Weekly Questionnaires

Voluntary Re-authentications

For the weekly questionnaires we found significant differences for the motivation to vol-
untarily re-authenticate (χ2(3)=10.05, p=.018, W=0.498) and the feeling of reward by an
increased DCL after re-authentication (χ2(3)=21.74, p<.001, W=0.618) with regards to the
different indicators. Post-hoc analysis revealed that for SLT (Mdn=3) participants felt sig-
nificantly more motivated to voluntarily re-authenticate than for NO (Mdn=1, p=.009). For
all conditions using an indicator participants felt significantly more rewarded (MdnST =2,
Mdn-LT=2, MdnSLT =3) than in the NO condition (Mdn=1, p<.02). We found no signifi-
cant differences on perceived annoyance of the system.

Thus, while we cannot provide evidence for a general effect of our indicators on the annoy-
ance, we did find a positive influence of the long term indicator on the motivation to volun-
tarily re-authenticate. The feeling of being rewarded for re-authentication by the increased
DCL was also significantly higher for the conditions including the long term indicator.

Perception of Indicators

Participants liked about the indicators that interruptions were less sudden compared to no
indication (mentioned by 22 people) and that the DCL was visible at any time for the condi-
tions with a long term indicator. In the NO condition, participants liked that re-authentication
was fast (9 mentions). The gradual darkening was positively mentioned by ten participants
for ST and by eight for SLT.

Interrupts were perceived as sudden by fifteen participants in the NO condition and by ten,
four, and three participants in the LT, ST, and SLT conditions, respectively. Seven partici-
pants reported they overlooked the DCL visualization in the LT condition. Interrupts were
in general perceived as annoying in all conditions (mentioned by 10, 9, 7, and 8 participants
for the NO, ST, LT and SLT conditions, respectively).

8.5.4 Final Questionnaire

Ranking

In the final questionnaire, participants were asked to rate their experience with the system
in general. The overall ranking of the different conditions (Figure 8.7) reveals that the
combination of both long term and short term was preferred. No indication (NO) was ranked
last. Long term (LT) and short term (ST) ranked second and third. Based on the open
questions, the following reasons contributed to their choice: Sixteen participants stated to
not like the sudden interruptions without indication. The combination of both short and
long term (SLT) was particularly liked for the best overall overview and control and the
continuous visualization of the DCL (10 and 9 mentions).
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Figure 8.7: Participants’ ranking of the different indicators. The combination of long- and short
term indicators was the most preferred method while no indication was least preferred.

General Perception

As a response to our Likert scale questions, participants did not find vibration and noti-
fications particularly annoying (Mdn=2). They felt neutral towards being stressed by the
dimming during the grace period (Mdn=3). The long term taskbar symbol was considered
to be helpful (Mdn=4) to predict re-authentications.

Participants remained neutral (Mdn=3) towards a possible influence of the system on their
behavior. They partly liked the design (Mdn=4) and partly disagreed with being negatively
influenced by bugs (Mdn=2). They felt neutral (Mdn=3) about the experience sampling
being annoying or influencing their behavior or perception.

No one had profound knowledge about implicit authentication before the study nor did they
review implicit authentication from other sources than the material provided by us (Mdn=1).
There was general agreement on having read the introduction on the website and having
watched the whole introductory video (Mdn=5).

In general, participants agreed to always locking their device (Mdn=5) and to authentication
interrupts being more annoying than traditional authentication up front (Mdn=5). Regard-
ing whether they would use the concept of implicit authentication in general, participants
remained neutral (Mdn=3; 10 agreed or partly agreed, 5 neutral, and 14 disagreed or partly
disagreed).

Finally, people would have liked a slightly longer grace period. On average they suggested
10.14 s (range 2 s–60 s).
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8.6 Discussion

Here we give an overview over our findings and discuss their implications.

8.6.1 Importance & Sensitivity

While we did not find a significant effect of indicators on perceived annoyance via expe-
rience sampling, we gained related evidence and insights: We found a significant impact
of sensitivity and importance of an interrupted task on the perceived annoyance. This was
also pointed out in the final interviews where five of the eight participants found the system
interrupting an important or stressful task to be a particularly negative event: “I remember
when I had to make a really important call and my screen was locked before I could do it.
I had to answer the feedback, too, before I could finally call. Then, it was really annoying,
but usually the interrupts were no problem.”

As a key insight, the situations in which participants perceived interruptions as annoying
were also those that they rated as sensitive, hence, those that would require increased pro-
tection when relying on a real implicit authentication system. It might be possible that users
were biased as they knew their phone was protected by their primary locking mechanism
anyway in this study. Nevertheless, we believe that this topic should be investigated further.

8.6.2 Voluntary Re-Authentication

In contrast to related work on general interruptions [178], we could not find a positive effect
of deciding when to re-authenticate on reducing annoyance. For the grace period, one expla-
nation is that participants might not have perceived the option to re-authenticate as voluntary
(as re-authentication was inevitable). More generally, our results on importance, sensitivity,
and interrupted tasks all indicate that for our participants annoyance was mostly determined
by the interrupted activity and not by whether re-authentication was voluntary or not.

Nevertheless, voluntary re-authentications were mentioned as positive in open comments
and the interviews, and indeed accounted for a considerable proportion of 33.6% of re-
authentications (11.4% excluding grace period). Moreover, users felt significantly more
motivated to re-authenticate for the combined short and long term indicator. All indicators
also resulted in significantly more common use of voluntary re-authentications.

Hence, a promising approach to reduce user annoyance might be to investigate concepts that
provide options for users to voluntarily re-authenticate with awareness of current activities.
For instance, one person suggested allowing for voluntary re-authentication when opening
an app, which often coincides with the beginning of a new activity.
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8.6.3 Grace Period

We received mixed feedback on the grace period. Many participants liked it, in particular the
more predictable nature of the interruption. For example, one participant said: “The more
sudden the interruption happened, the more annoyed I felt about it. Surprisingly, it did not
depend so much on the frequency of the interrupts. It only depended on the announcement.”

However, some participants complained that they could not use the grace period to its full
extent due to light conditions and wished for a longer duration. Others used our introduced
option to voluntarily re-authenticate before the device was locked. In general, the desired
length was very different amongst the participants which implies that an option to customize
this (as also suggested by Agarwal et al. [5]) might indeed be promising for future work. We
also believe that there is an impact of the personal usability-security trade-off, as having a
(longer) grace period also implies a security risk in cases where an attacker would get hold of
the device. Steps to address this might be, e.g., adapting the length of the grace period to the
derivative of the DCL (i.e., the strength of change in system confidence) or the importance
of the interrupted app.

In general, we see the approach of gradually dimming the screen only as a first step. More-
over, as proposed by participants of our focus group, future systems could, for example, use
biometrics for re-authentication. In this case, dimming the screen could be an indicator for
the user to present their face to the camera or quickly put their finger on a fingerprint scanner
and thus avoid a full context switch.

8.6.4 Interruptions

Based on the previously discussed results, we present three recommended aspects to consider
with regard to scheduling re-authentication interrupts.

1. Sensitivity of the task: If the user is accessing non-sensitive data (e.g., while reading
a book), an upcoming re-authentication could be delayed or triggered when the task is
finished, as suggested by related work [3, 18] and done in practice3. However, while
accessing sensitive data (e.g., banking app), re-authentication should be triggered in-
stantly to restrict further access.

2. Importance of the task: As users found interruptions of important tasks particu-
larly annoying, selectively delaying such interruptions could improve users’ experi-
ence with the system. This assumption is further supported by Adamczyk and Bailey
[3, 18].

3 e.g., Smart Lock: https://support.google.com/android/answer/9075927?hl=en, last
accessed October 16, 2024
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3. Recent changes in confidence: Changes in device confidence level (DCL) over time
may be used as an indication of the necessity of an immediate interruption. While a
sudden decrease in confidence most likely corresponds to an intruder taking hold of
the device, a slow decrease is more likely to be caused by natural variations in the
legitimate user’s behavior. However, those assumptions are, as of now, speculative,
and further research with a functioning implicit authentication system is necessary to
verify this hypothesis.

The focus of our work was on interruptions caused by a continuous authentication system.
Some lessons learned may generalize to other interruptions, such as notifications. A further
factor to consider in that case is the importance of the interruption itself – which we assumed
to be high for implicit authentication due to the security risk.

8.6.5 System Design

For our study, we introduced a novel method to more realistically simulate an implicit au-
thentication system. Our approach extended previous approaches (e.g., Khan et al. [157])
and made some of our evaluations, like the long term indicator, possible in the first place. We
believe this to be a valuable step to enable future evaluations but also acknowledge that us-
ing our system has limitations. In particular, as the system was touch-based we introduced a
bias towards interrupting tasks that used many touches, such as writing, whereas very short
interactions were interrupted less. One way to address this would be to track the current
app and schedule interrupts to distribute re-authentication requests equally over the different
tasks. Due to our use of a simulated system, we were also not able to remove the primary
unlocking mechanism, as this would have left participants unprotected.

However, our results from the final questionnaire suggest that neither the system itself nor the
introduced experience sampling had a major effect on participants’ perceptions or behavior.
Furthermore, vibration feedback and notifications were not perceived as annoying, and the
overall design was rated as very positive.

8.6.6 Adoption of Implicit Authentication

Our participants remained neutral towards using implicit authentication and only 10 of 29
agreed or partially agreed to wanting to use it. This contrasts with results of previous stud-
ies: Crawford and Renaud [62] report 90% of their participants to be interested in adopting
implicit authentication. Participants also generally agreed that re-authentication was more
annoying than unlocking up front.

Possible reasons could be that users underestimate the actual number of authentications they
perform (on average by 38% in our study) and the accompanying benefit of implicit au-
thentication. Other explanations include authentication overhead of a simulated system or
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habituation to users’ traditional unlocking methods. On the other hand, studies from related
work were a lot shorter (several lab studies [5, 62, 218] and shorter field studies[157]) and
thus user perception in our study developed over a longer period of time (e.g., we potentially
observed a lower novelty effect). Moreover, effortless fingerprint authentication in particular
has become an established method in the years between some of the earlier related work and
our study, potentially shifting users’ views.

As a next step, we suggest evaluations with a functional implicit authentication system for
a more realistic scenario. In cases where such a system cannot robustly provide sufficient
security, conducting the study with users who do not lock their phones anyway might be an
option. Targeting this user group has also been suggested as a major application area for
implicit authentication in related work [156, 292].

8.6.7 Research Questions

Regarding our initial research questions, we found all our indicators to be preferred to no
authentication. We found no effect of indicators on annoyance. Annoyance was rather de-
termined by the interrupted activity (RQ1). We found sensibility, importance, and the spe-
cific interrupted task to be further factors influencing the perceived annoyance of interrupts
(RQ2). We also found all indicators to have a positive effect on the use of voluntary re-au-
thentications (RQ3). Finally, we found that users felt particularly motivated to voluntarily
re-authenticate by combined short and long term indicators. They overall perceived volun-
tary re-authentication as positive and used it to a considerable extent (RQ4).

8.7 Implications

In this chapter, we introduced a biometric interface by providing a Long Term Indicator
of the current system state, a Short Term Indicator preparing users for an upcoming re-
authentication, and the option to voluntarily re-authenticate to avoid interruption.

From the results of our four-week field study (N=32), we found that both indicators were
preferred to having no indication. The importance and sensitivity of the interrupted task had
a strong influence on annoyance while we did not find significant effects of the indicators.
Voluntary re-authentications were perceived as less annoying and were more prominent in all
indicator conditions. While they were mostly used to bypass the grace period we also found
increased voluntary re-authentications when only showing users the system state. Our work
thus both highlights the value of providing insights into the state of continuous models and
the importance of considering user needs when designing interventions. Future work may
consider delaying re-authentications depending on the task or explore other nudges for users
to confirm their identity already at higher confidence levels. Participants felt rewarded for
re-authenticating when they could see the score increase, implying that gamification could
be a viable approach for this.
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PART IV: BIOMETRIC INTERFACES TO
SUPPORT USER AGENCY

Literacy alone is only of limited value to users of biometric systems if they cannot use it
to take agency over their authentication and data. However, this can be a challenging task,
in particular for biometrics, where no natural (user) interfaces exist so far. In this part, we
take a depth-first approach to creating biometric interfaces for such a case, namely biometric
authentication using keystroke dynamics. In this part, we show, that users are able to actively
control their typing behavior and present a game to support them in doing so. We conclude
with a prototype that allows for externally influencing behavior and thus reducing user effort.
This opens up possibilities for users taking agency over if and when to be recognized.

❖ Chapter 9 proposes a visualization of typing behavior that we leveraged in a lab study
to show that participants could alter their typing behavior towards a given target.

❖ Chapter 10 extends this lab study by developing a game around the task of modifying
typing features and showing differences between a lab and a remote setting when
playing our game.

❖ Chapter 11 explores the use of electromagnets to influence user typing and to free
users from having to actively control typing features themselves.
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9
Exploring Intentional Keystroke Control

This chapter is based on the following publication:
Lukas Mecke, Daniel Buschek, Mathias Kiermeier, Sarah Prange, and Florian Alt.
2019. Exploring intentional behaviour modifications for password typing on mo-
bile touchscreen devices. In Fifteenth Symposium on Usable Privacy and Security
(SOUPS ’19) [181]

In the previous part of this thesis, we explored how biometric interfaces can be leveraged
to communicate information about the model, its state, and influencing factors to a user to
support their literacy in using their biometric authentication. In this part, our focus is on
additionally giving users agency over their authentication.

As a concrete example, we here explore how users can gain control over authentication
using keystroke dynamics, i.e. user identification based on features of their typing like
rhythm [262], finger placement [42], and other related features [38, 263, 292]. Even if
attackers gain knowledge of a password, they also have to enter it with the same behavior as



the legitimate user to gain access. The underlying assumption of such behavioral biometric
authentication systems is that humans differ implicitly in how they type.

In this chapter we present the first systematic exploration of a fundamentally different view:
We study users’ ability to explicitly modify commonly utilized biometric features of their
typing behavior. Our goal in this chapter is not to design a new authentication system but to
better understand users’ fundamental ability to control their typing behavior. As keystroke
dynamic systems are naturally designed to run transparently in the background, this ability
lays the foundation for users to be able to take agency over this type of recognition.

Better understanding the ability to intentionally modify interaction behavior is vital consid-
ering the growing number of biometric systems, as illustrated by the following use cases:

1. Extending the password space: Instead of only using different characters to compose
a password, each character could be entered in a different manner. For instance, al-
though both use the same eight characters, “password” is different from “pass[hold
long]word”, where the user keeps the second “s” pressed for longer than usual.

2. Recovering from a leak of behavioral data: A leak of behavioral information usually
implies that this biometric can no longer be used if we assume that behavior is un-
changeable. However, this is worth challenging. As an analog example, some people
decide to intentionally change the way they write their signature. Similarly, it might
be possible to intentionally change, for example, password typing behavior features to
recover from a leak to be able to continue using this biometric.

3. Hiding identity and private information: Keystroke dynamics can not only be used
to identify people but also give insights into other features like their gender [91, 109]
or emotional state [90] they may want to keep private. Modifying typing in untrusted
environments like on the web or when using an unknown device can thus help users
protect their privacy and identity.

In all these examples, users have reasons to intentionally modify aspects of their behavior
that they do not need to control for the underlying input method (e.g., typing rhythm does
not matter for entering an email). Prior work on intentional changes of typing behavior
has exclusively studied this ability for attackers with technical support [23, 158, 159] or
for limited features in desktop settings without changes and learning over time [54, 133,
134]. Thus, it still remains unclear to what extent users can control and modify fundamental
biometric features of their mobile touch typing behavior.

Following the approach of this thesis, the first step in that direction is supporting users in
gaining literacy about their own typing. To facilitate this we designed different visual text
annotations to communicate typing behavior and conducted a prestudy (N=144) to find the
one that was most clear. To explore users ability to intentionally modify their typing we
then conducted a lab study (N=24) where participants entered given passwords with such
modification instructions on a smartphone in two sessions a week apart.
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Our results show that users can successfully control and modify typing features (flight time,
hold time, touch area, touch-to-key offset) given our visualization. Modifying multiple fea-
tures was significantly more difficult, in particular, if they were distributed over the input
instead of being co-located on a single key and if temporal features were involved. We
discuss influencing factors on users’ success in changing their behavior, implications for
the usability and security of mobile passwords, such as informing behavioral biometrics for
password entry, and extending the password space through explicit modifications.

In this chapter we contribute 1) visual text annotations to communicate typing behav-
ior modifications, developed in a prestudy (N=114). 2) A lab study (N=24) using this
scheme to investigate intentional modifications for different features and their com-
binations, for password typing on smartphones in two sessions a week apart. 3) A
discussion of implications for mimicry attacks, research on behavioral biometrics, and
usable passwords with intentional modifications.

9.1 Related Work

In this section, we relate our work to research on keystroke biometrics and mimicry attacks.
These areas motivate our investigation of intentional modification of typing features and our
choice of the specific features we studied.

9.1.1 Keystroke Biometrics

Our work is related to keystroke biometrics (or “keystroke dynamics”), which describe users’
individual behavioral characteristics when entering text on a keyboard. This information can
be used by the system to identify users, for example, to protect accounts, devices, and data. A
rich body of related work examined this idea first for typing on physical desktop keyboards
(for example, [195, 196]; survey [262]), then on early mobile phones with physical keys
(for example, [35, 49, 57, 133, 149, 173, 303]). More recent work investigated keystroke
biometrics for on-screen typing on smartphones (for example, [41, 42, 81, 292]; recent sur-
vey [263]), including keyboards operated via gestures instead of tapping [38].

For entering passwords in particular, recognizing users based on how they enter the secret
word provides an extra (implicit) layer of security [42], for example, to protect against cases
in which the attacker got to know the password via shoulder surfing [234], smudge [17, 281]
or thermal attacks[2].

Due to the origin of keystroke biometrics on physical desktop keyboards, the most com-
monly used typing behavior features are temporal [262]: Users’ typing is characterized by
their typical hold times (i.e., time between key down and up event), and flight times (i.e.,
time between key up and down on the next key). Mobile touch devices offer further spatial
features, such as touch area and offsets between touch locations and key centers. Offsets, in
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particular, showed higher biometric value, that is, they facilitated more accurate distinction
of users [41, 42]. Related work motivates our choice of features: hold time, flight time,
offsets, and touch area.

In summary, related work on typing behavioral biometrics used features as they occur “nat-
urally” as an implicit part of typing. Our work is fundamentally different: We examine these
typing features as explicit and actively controlled by users, for example, to increase the pass-
word space. In particular, we study how well users can indeed control these features when
entering passwords on a smartphone.

9.1.2 Mimicry Attacks

Attacks on keystroke biometric systems can be performed either automated or manually.
Automated attacks use generative models to synthesize forgeries from observed data and
were shown to be effective against handwritten signatures [23] and keystroke dynamics on
a PC [193, 211, 244]. Some work also tested such attacks when proposing a new keystroke
biometric system. For example, Stefan et al. found their system resistant to inputs generated
from a first-level Markov model [256].

The most commonly considered attack on behavioral biometric systems is the so-called
mimicry attack: Here, an impostor tries to manually reproduce (mimic) the (known) be-
havior of a legitimate user to gain access.

As a simple case, a zero-effort attacker model evaluates a biometric system against natural
behavior collected by other users who did not intend to actually bypass the system. While
this model has been commonly used to evaluate the vulnerability of behavioral biometric
systems, related work found that it underestimates attack success [23, 211]. This calls for
evaluations with means for more skilled and targeted attacks.

To support attackers in launching successful mimicry attacks they need to know the behavior
to imitate. In the case of handwritten text, for example, this could be a sample signature. Re-
searchers mounted successful mimicry attacks against touch input behavior [158], keystroke
dynamics on a PC [265], and keystroke dynamics on mobile phones [159]. Key to those
attacks were systems that both visualize the target behavior and provide the attacker with
feedback on their attempts. For example, Khan et al. [159] used augmented reality using a
phone’s camera to show visual cues on top of its view on another phone’s keyboard. This
guided correct timing and touch behavior. In another approach, they used audio stimuli to
guide the timings.

In summary, prior work used representations and active modifications of typing behavior
to support mimicry attacks. In contrast, we aim to better understand the human ability to
control mobile typing behavior per se.
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9 Exploring Intentional Keystroke Control

(a) ‘Bold Letter’ using a bold font to indicate large
touch area and circle size for hold time. Circle lo-
cation shows offset, gaps indicate flight time.

(b) ‘Long Key’ using circle size for touch area
and key width for hold time. Circle location
shows offset, key gaps indicate flight time.

Figure 9.1: Main design candidates for visualizing target feature values for studying intentional
behavior modifications. Both were evaluated in our prestudy. Based on the results we decided
to use the ‘Long Key’ concept for our main study.

9.2 Visualizing Typing Behavior Modifications

For users to be able to produce targeted changes in their typing we need a common language
to communicate such behavior modifications. This also serves as a tool for users to explore
and understand how changes in their typing translate to feature changes in the input to a
biometric model. Here we describe our approach to finding such a visual representation.

9.2.1 Selection of Features

There are a multitude of possible features that can be used for biometric authentication in
the context of mobile touch interaction. An extensive list was compiled by related work [42]
and covers 24 spatial, temporal, and contact features. Khan et al. [159] found this extensive
feature set hard to simultaneously control for their mimicry attack. They thus removed highly
correlated features, resulting in a set of six: key hold time, flight time, down pressure, down
area, down x, and down y.

We combine x and y together as touch offset. Furthermore, pressure and area were highly
correlated on our test devices, since most Android phones1 estimate pressure from the area.
We thus decided to omit pressure and use the area directly.

To sum up, we decided to study a set of four features, namely touch area, flight time, hold
time, and touch-to-key-offset with the latter being two-dimensional (x, y).

9.2.2 Visualization Design

We developed several designs that communicate modifications of the four features to instruct
participants, for example, to perform a long key press for the second character in a password.
We first tried simple markup (e.g., p. – . ȧs . . sw. –ȯr . d—) but found this representation to
become cluttered quickly and to offer very limited expressiveness.

1 We used LG G6 phones in our study.
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We thus chose a pictorial approach: We showed letters with a key metaphor to visualize
behavioral changes (Figure 9.1). We explored a range of possible visual features, including
offsetting the key or its label, writing bold or italics, and using underscores and colored dots.

We narrowed the options down to two final designs (see Figure 9.1). Both used whitespace
gaps between keys to indicate flight time and a red dot to indicate touch offset. One variant
(‘Bold Letter’) visualized a larger touch area by rendering the key in bold and using the size
of the offset dot to represent hold time. The other (‘Long Key’) used the size of the dot to
visualize the touch area, and key width to show hold time. While ‘Bold Letter’ resulted in
a more compact format, ‘Long Key’ unified both temporal features on a shared axis (time
flows from left to right).

9.2.3 Online Survey

We conducted an online survey to determine our final design.

Survey Design and Procedure
To assess the intuitiveness and readability of our designs, we created an online survey that
showed example passwords with visualized modifications. Participants had to indicate which
parts of the visualization were used to encode which behavioral cues, without prior explana-
tions. People did this for both designs in counterbalanced order. Afterward, they were asked
to rate on a 5-point Likert scale how intuitive and readable they found the two visualizations.

The survey was distributed over a university mailing list. It took 5 minutes to complete.
Participants had a chance to win a 10AC gift voucher.

Results
A total of 114 participants answered our survey (56 % female; mean age 27 years, range 18
to 63 years). Both offset and flight time were correctly interpreted by 90 % of the partic-
ipants for both designs. Area and hold time were correctly interpreted by 81 % and 82 %
in the ’Long Key’ condition, respectively. However, these two features were only correctly
interpreted by 50 % and 51 % in the ‘Bold Letter’ condition. ‘Long Key’ was rated as more
intuitive (Mdn = agree, Mdnbold = neutral) but ‘Bold Letter’ was rated to be more readable
(Mdn = strongly agree, Mdnlong = agree). When asked for their preferred method, 59 %
of the participants reported the ‘Long Key’ notation while 39 % voted for the ’Bold Letter’
visualization. The rest had no preference.

9.2.4 Final Visual Representation

We decided to use the ‘Long Key’ visualization: It has the advantage of encoding temporal
features on a shared axis and all features allow for continuous representation of values (in
contrast to the binary bold letter).
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In conclusion, we used the following visual encoding shown in Figure 9.1b: Touch-to-key-
offset is marked by a red dot at the position where the key should be touched. Flight time is
represented by a gap between two key shapes that scales with duration. Analogously, hold
time is represented by scaling the width of the key rectangle with duration. Finally touch
area is visualized by the size of the red dot used for offset (larger size indicates larger area).

9.3 Study

9.3.1 Study Design

As our study design is quite complex, the following subsections each explain one main
component. The most complex one is task, which is given both as an overview and in detail.

Passwords

In general, participants had to repeatedly enter given passwords (“football”, “princess”,
“password”). While these three are obviously not great passwords in terms of security, we
selected them since they have comparable properties and are common passwords2. More-
over, they do not require switching keyboard mode (e.g., between characters and symbols),
which we wanted to avoid as a simplification for this first investigation. Similarly, we fa-
vored simple passwords to ensure that task difficulty was mainly determined by behavior
variations and not affected by memorability or search time for rare symbols.

Features

We studied the intentional modification of four features: touch-to-key-offset (on five levels:
center/left/right/top/bottom), flight time and hold time (both on two levels: default/long), as
well as touch area (on two levels: default/large).

Tasks

Participants solved 37 tasks, each using one of the three passwords. The tasks differed in
various aspects described below. While the design is complex, the overall goal was to cover
six aspects, namely (1) different passwords with (2) different feature modifications at (3)
different locations within each word. We also include (4) different combinations of features
that are modified in the same password, either (5) at the same character/keypress (we call
this co-located) or (6) distributed across several characters/keypresses within the word.

We iterated the task design several times by means of prestudy runs with two to three people
in each version. We gradually narrowed the tasks down to an acceptable study duration of

2 https://teampassword.com/blog/worst-passwords-2024-password-security-t
ips, last accessed October 16, 2024
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Figure 9.2: Overview of the tasks in each session. In the beginning (tasks 1–3), participants
were asked to enter the passwords naturally, afterwards (tasks 4–15) a single feature had to be
modified with an increasing number of occurrences (color of the cell). Thereafter, two (tasks 16–
27), three (tasks 28–35), or four (tasks 36, 37) features had to be modified at once. All possible
feature combinations were tested and features were either distributed (~) over the password or
co-located (*) on a single key.

one hour. In full detail, the tasks used in the main study were structured and designed as
follows (Figure 9.2):

Natural tasks (1–3): The first three tasks simply asked people to enter each password six
times without presenting any intentional behavior modifications.

Modifying a single feature (tasks 4–15): In each of these tasks participants had to modify
one feature (e.g., hold time). There were three such tasks per feature, namely one per pass-
word (i.e., 4 features × 3 passwords = 12 tasks). Across the three tasks per feature, all
feature levels occurred at least once, while covering different locations: The first task per
feature modified the 2nd character of the password, the second task modified the 2nd and
7th characters, and the last task modified 2nd, 4th, and 7th characters. The assignment of
passwords across these tasks was counter-balanced, such that modifications overall occurred
in all passwords at all locations.

Modifying two features (tasks 16–27): In each of these 12 tasks people modified two features
(for example, hold time and flight time). There were two tasks per combination of two
features: The first had one modification on the 2nd character and the other on the 3rd (i.e.,
distributed). The second task had both modifications on the 7th character (i.e., co-located).

Modifying three features (tasks 28–35): In these eight tasks, participants had to modify three
features, with two tasks per combination of three features: The first had modifications on the
2nd, 4th, and 7th character (distributed). The second one had all three modifications on the
5th character (co-located).

Modifying four features (tasks 36 and 37): Finally, participants had to modify four features:
The first one had modifications on the 2nd, 4th, 6th, and 8th character (distributed), the last
had all modifications on the 5th character (co-located).

The task order was not randomized, in favor of gradually increasing the number of modified
features per password, which we suspected to have an influence on task difficulty.
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9 Exploring Intentional Keystroke Control

Sessions

The whole procedure was repeated two times, in two sessions about a week apart. In this
way, we observed the typing behavior of each participant at two points in time.

Summary

For the following report of our data analyses and results, it is useful to think of our study
design as follows:

Tasks 1–3 are used to analyze natural (i.e., unmodified) behavior, while the other tasks are
used to analyze user behavior when modifying the four behavior features.

Note that from task 16 onward (i.e., all tasks with feature combinations), our study is a typi-
cal repeated measures design with number of modifications (2, 3, 4) × distributed multiple
modifications (distributed, co-located) × session (1st, 2nd). We use this for typical ANOVAs
to study in particular the impact of modification of multiple features.

9.3.2 Apparatus

We developed an Android app that controlled the study process (e.g., counterbalancing, task
progression, explanations).

The values used for scaling our visualizations (e.g., default flight time for default key gap)
were informed by prestudy experiments and related work [41] (flight time 260 ms normal,
1000 ms long; hold time 80 ms normal, 300 ms long; area 0.2 normal, 0.4 large, unitless
as reported by the Android API; offset x ±40 px, offset y ±70 px). To avoid visual clut-
ter, we limited the scaling to minimum and maximum threshold values, beyond which the
visualization did not change.

We integrated a modified version of the Android open source project LatinIME3 keyboard.
This enabled us to log all typing events and touch features. To reduce distraction, we disabled
the context menu for special characters shown on the long press. In addition, our study app
logged the expected key and behavior modifications, as well as the current user and task for
each keystroke.

9.3.3 Procedure

Upon arrival, participants were introduced to the goal of the study and asked to sign a consent
form. After an initial demographics questionnaire, they performed the tasks (see Figure 9.2)
as described in section 9.3.1 on our test device. We asked participants to enter passwords
with their right thumb to keep results comparable.

3 LatinIME: https://android.googlesource.com/platform/packages/inputmethods/
LatinIME/, last accessed October 16, 2024
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When first confronted with a new type of modification, participants got a short explanation
of what to do and prior to every task, they had the option to train entering the password.
Except for the tasks without modifications (natural tasks), they were provided with real-time
feedback, using our visualization, to show their behavior next to the expected one. Every task
had to be completed successfully six times and without feedback. The number of attempts
was not limited.

Each task was followed by a short Likert questionnaire containing the statements: 1) “I was
able to adjust to the specified behavior.”, 2) “I was successful in completing the task.”, and
3) “The task was difficult for me.”.

After completing all tasks, participants were asked to come up with a modified password on
their own and could take notes to remember it. The same process was repeated in the second
session, excluding the initial demographics questionnaire. Creating a custom password was
replaced with recalling and performing the password from the previous session. After the
second session, we conducted a short interview. Sessions were scheduled one week apart.

9.3.4 Participants

Study invitations were distributed over a mailing list of our local university. Requirements
were right-handedness and familiarity with typing on mobile phones. We recruited a total of
24 participants (14 female; mean age 27 years, range 14 to 54 years). Half of the participants
were in their twenties. 58 % were students, 30 % were employed, and the remaining ones
were in school. Participants were compensated with AC20 for completing the whole study.

9.4 Results

Significance tests were conducted using ANOVA with Greenhouse-Geisser correction and
Bonferoni-corrected post-hoc tests (significance at alpha level p < 0.05). If not reported
otherwise, data for analyses is aggregated for both sessions.

As a first overview, we report key descriptive measures: The grand mean task completion
time across all tasks (i.e., completing all six successful password entries of a task) and par-
ticipants was 38.3 seconds. For typing speed, the grand mean was 28.7 words per minute
(WPM [288]). The grand mean of the number of incorrect entries per task was 1.74.

We report on participants’ natural typing behavior (Section 9.4.1), their ability to modify
it (Section 9.4.2), and their accuracy in doing so (Section 9.4.3). We analyze the effect of
multiple simultaneous modifications (Section 9.4.4) and the impact of modifications on the
individuality of behavior (Section 9.4.5). We conclude with details on technically detecting
modifications (9.4.6) and participant feedback (Section 9.4.7).
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Figure 9.3: Overview of participants’ natural typing behavior (i.e., typing without being pre-
sented with any modifications), as measured in the first three tasks of each session.

9.4.1 Natural Behavior

We first report on “natural” behavior – typing without any modification instructions (tasks
1–3). Figure 9.3 presents the results. They match our expectations based on related work:

Touch offsets are slightly shifted to the lower right, as typical for input with the right
thumb [40]. Moreover, median flight time (290 ms) and hold time (72 ms) are in line with
related work [41] and close to the ones we chose as defaults for scaling key width and gaps
in our visualization (flight time 260 ms, hold time 80 ms). Thus, our chosen values indeed
matched people’s natural behavior.

Touch area significantly correlated with the x location of the target key (r=-0.252, p<.001):
Due to thumb stretching, typing keys on the left of the keyboard resulted in a flatter thumb
posture and thus a larger touch area. Flight time showed a main and secondary peak (Figure
9.3). The latter was caused by zero finger travel distance for “double letters” (e.g., password).

9.4.2 Ability to Modify Behavior

Figure 9.4 visualize the distribution of the behavioral features for different target values,
i.e., expected feature values shown by our visualization. Next, we report on statistical tests
comparing these distributions per feature (see Table 9.1). Here we report on the post-hoc
tests and further details:

For all features, post-hoc tests showed that directions of differences were as expected (e.g.,
offset significantly further to the left for left, flight time significantly longer for long).

For vertical offset and flight time, the interactions of session and target were significant (see
Table 9.1), yet the small effect sizes and visual inspection of descriptive plots indicated that
this was too tiny to warrant meaningful interpretation.

In summary, the significant results of these statistical tests confirm the “big picture” visible
in Figure 9.4: For all features, people significantly modified their behavior in the direction
indicated by our visualization.
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Figure 9.4: Overview of participants’ modified typing behavior across both sessions. Overall,
this figure shows that presenting modifications via our visualization provoked clear differences
in the typing features. For offset, the rectangle indicates key borders. Vertical lines/dots indicate
the target values.

Feature Measure target session target * session

Offset absolute x .777a

absolute y .890a .015c

relative (error) .082b

Flight time absolute .785a .010c

relative (error) .332a .038b

Hold time absolute .848a

relative (error) .624a

Touch area absolute .737a

relative (error) .930a

a: p < .001, b: p < .005, c: p < .05, empty cells not significant

Table 9.1: ANOVA results for ability (1) to modify behavior (absolute, Section 9.4.2) and (2) to
replicate target feature values (relative i.e., error, Section 9.4.3). The last three columns show the
effect sizes (ω2) for target value (i.e., the feature value communicated via our text annotation),
session, and their interaction. See the text post-hoc test results.

9.4.3 Ability to Replicate Target Feature Values

The previous section investigated differences in absolute feature values. It is also interesting
to analyze how accurately people were able to replicate modifications. To this end, Fig-
ure 9.5 visualizes the distribution of participants’ errors when reproducing the target values
indicated by our visualization for each feature. Table 9.1 summarizes the ANOVA results.

For offset, post-hoc tests revealed errors to be significantly smaller for the target right com-
pared to left (p=.010, d=-.773), top (p=.008, d=-.783), bottom (p=.011, d=-.765) and default
offset (p=.027, d=-.685).
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Figure 9.5: Observed derivation of participants’ behavior from the target values of the given
modifications for both sessions. Participants were generally better at reaching the target value
for the default level. For offsets, the lowest error occurred for touches to the right, since this
coincides with natural thumb offset [40]. In contrast to the other features, flight time accuracy
increased from the first to the second session, indicating a learning effect.

Measure number
of mod.

session distributed number *
distributed

session *
distributed

Offset error
Flight time error .93a .017b .109a .023c

Hold time error .166a .178a

Touch area error .039a .018a

Task compl. time .032c .015c .224a .039c

Typing speed .172a .232a .079a .002c

Incorrect entries .114b

a: p < .001, b: p < .005, c: p < .05, Empty cells not significant.

Table 9.2: Overview of ANOVA results for the impact of modifying multiple features on per-
formance measures (Section 9.4.4) and ability to replicate target feature values (i.e., error, Sec-
tion 9.4.4). Columns show effect sizes (ω2) for number of modifications, session, and distributed
multiple feature modifications, plus interactions. See text for details.

For flight time, we found errors to be significantly smaller for the default time than the long
one (p<.001, d=-1.488), as well as for observations from the second session compared to the
first (p=.004, d=-.645). The latter matches the observation that people typed slightly faster
in the second session.

Regarding hold time, post-hoc tests showed errors to be significantly smaller for the default
time compared to the long one (p<.001, d=-1.844). For touch area, we found errors to be
significantly smaller for the default area size compared to the large one (p<.001, d=-4.470).

In summary, these results confirm that participants significantly modified their behavior,
namely toward the values indicated by our visualization. In addition, people are more ac-
curate in producing the default feature values compared to the more extreme ones, likely
because the latter are further away from “natural” typing behavior.
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Figure 9.6: Participants’ ability to replicate given behavior depending on the number of features
that had to be modified in one password and whether those features were co-located on a single
key or distributed over the password.

9.4.4 Impact of Modifying Multiple Features

Here we report on users’ ability to modify multiple features in one password. Table 9.2
summarises the ANOVA results. Post-hoc tests and further details follow below.

Impact on Time, Speed, and Incorrect Entries

For task completion time, post-hoc tests revealed that three modifications resulted in sig-
nificantly longer times compared to two (mean 40.70 s vs 36.36 s; p<.005, d=0.543); de-
scriptively, this was also true for four modifications compared to two, yet not significantly
so (p=.064). Moreover, distributed multiple modifications took significantly longer than
co-located ones (mean 42.33 s vs 34.33 s; p<.01, d=1.397). People were also significantly
slower in the first session than in the second one (mean 39.76 s vs 36.90 s; p<.05, d=0.444).

For typing speed, all pairwise comparisons of the number of modifications were significant
(all p<.001), with slower typing for higher numbers (mean 2: 30.18 WPM, 3: 27.33 WPM,
4: 25.15 WPM). Moreover, distributed multiple modifications were typed significantly
slower compared to co-located ones (mean 26.91 WPM vs 30.46 WPM; p<.001, d=-2.445).

Finally, significantly more incorrect password entries occurred for distributed compared to
co-located multiple feature modifications (mean 2.44 vs 1.45; p<.005, d=0.677).

These results show that users take significantly longer to enter passwords as the number of
modified features increases, in particular, if the behavior is modified for multiple features
across different characters (i.e., distributed). In that case, people also produce significantly
more incorrect password entries.

Impact on Replicating Target Feature Values

Figure 9.6 shows participants’ behavior deviation from the given target behavior (i.e., error),
based on the number of features that had to be controlled within a single password and
whether those features were co-located or distributed.

For offset, we found no significant effects (see stable distribution of errors in Figure 9.6).
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For flight time, errors were significantly lower for co-located modifications compared to
distributed ones (p<.001, d=-.965), and for the second session compared to the first one
(p=0.02, d=-.699). Regarding the number of modified features, we observed significantly
lower errors for two compared to three (p<.001, d=-1.149) and four (p<.001, d=-1.522), as
well as for three compared to four modifications (p<.001, d=-.867).

Post-hoc tests for hold time revealed significantly lower errors for co-located features
(p<.001, d=-1.004) and for two modified features compared to both three (p<.001, -1.479)
and four (p<.001, d=-1.073) modifications.

Finally, for touch area, post-hoc tests showed significantly lower errors for two modified
features compared to both three (p<.001, -1.565) and four (p<.001, d=-0.868) modifications.

The results are in line with the findings from the previous section. Participants generally
performed better when features were co-located (i.e., not distributed over the password,
Figure 9.6) and performance decreased for increasing number of modifications. Offset error
was stable regarding all factors.

Impact on Subjective Rating

Participants answered three Likert items after each task: 1) “I was able to adjust to the spec-
ified behavior.”, 2) “I was successful in completing the task.”, and 3) “The task was difficult
for me.” We compared users’ ratings on these questions between tasks with co-located and
distributed modifications: Wilcoxon signed-rank tests revealed significant differences for all
three questions (Q1: Z=3.828, Q2: Z=4.074, Q3: Z= -3.765, all p<.001). Thus, participants
subjectively perceived tasks with multiple feature modifications at the same character as sig-
nificantly easier (i.e., better able to adjust behavior, higher success, less difficult), compared
to tasks with feature modifications distributed over several characters.

9.4.5 Impact of Modifications on Individuality

The previous analyses have shown behavior differences within users, caused by modification
instructions. Complementary, we now investigate how natural behavior differences between
users are influenced by modifications. This is interesting, for example, to inform behavioral
biometric security layers. We will return to this in our discussion.

We thus compared the individuality (or “biometric value” [41]) of typing behavior between
natural and modified behavior. To do so, we employed a user identification model [41, 43].
Note, that we do not intend to present this model as a practical biometric identification
system. We rather use it as an analysis tool to quantify the impact of explicit behavior mod-
ifications on individuality. Thus, we are not interested in optimizing identification accuracy,
but in measuring the differences obtained between natural and modified behavior.
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Evaluation Scheme

We used the established Gaussian model for mobile touch typing, with a Gaussian distribu-
tion per feature per key [22, 115, 119, 300]. For touch location, for example, it defines the
user’s spread of touch points when aiming for that key. Thus, each user u is represented by a
set of Gaussians (the model mu), fitted to the touches from the training set for that user. We
used the data from the first session to fit these models.

For each user u ∈ U, we then fed the data from u’s second session to this user’s model mu,
which yields likelihoods for u (for an ideal model, these should be high). In particular, we
computed the joint likelihood for all touches for each task t, that is, the likelihood that u
is the one who typed the password in task t. Note that the features are per touch, not per
password. Complementary, we fed the data from all other users v ∈ U\{u} to the model
mu as well (for an ideal model, these likelihoods should be lower). We repeated this for all
pairs of users u,v ∈ U, such that we obtain 24 (user models) × 24 (user data) likelihoods
per task. We repeated the whole analysis twice, once for natural and modified typing data.

On these likelihoods, we computed the standard measures for typing biometrics (e.g.,
see [41, 262]): receiver-operating-characteric (ROC) curve, area-under-curve (AUC), and
equal error rate (EER).

ROC Analysis Results

Figure 9.7 shows ROC, AUC, and EER. Compared to random guessing (dotted line, 0.5
AUC), both natural and modified typing clearly yield biometric information. The values are
in line with related work using this model for password typing on smartphones with the right
thumb in the lab [42]. The results also show that people retain aspects of their individual
behavior when asked to perform the same modifications.

The key observation is the gap between the curves in Figure 9.7. It quantifies the loss in
individuality: To summarize, when measured using an established typing model, the indi-
viduality of participants’ typing behavior was reduced by intentional behavior modifications
such that AUC dropped by .07 (relative -8.9 %) and EER increased by .06 (relative +20.7 %).

9.4.6 Detecting Modifications

Finally, we analyzed how well behavior modifications can be technically detected. This is
important, for example, to build an authentication system that allows these modifications to
be used as part of a password. For instance, to check a password like “pass[hold long]word”,
the system needs to be able to distinguish between normal and long hold times.
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.

We employed Random Forest classifiers with 100 trees and default parameters4. We used all
typing features as input (hold time, flight time, area, offset x, y) and trained one model per
modification (e.g., to classify normal vs. long hold times).

We used leave-one-user-out evaluation across sessions: For each user u, we trained the
classifier on the first session’s data of all users except for u. We tested this model on u’s data
from session two. Thus, the model could be shipped pre-trained and would not require data
collection during enrollment.

We report mean (std) classification accuracy over all users: hold time 97.9 % (1.36 %), flight
time 96.14 % (1.84 %), area 94.71 % (1.16 %), and offset 94.29 % (0.96 %). Note, that the
remaining error includes user errors (e.g., the user accidentally performed normal instead of
long hold time). For these user errors, the model has to give an incorrect classification.

These results demonstrate that modifications can be reliably detected. It is thus technically
feasible to implement an authentication system that allows users to use these modifications
as part of their password. We provide the model code and trained model5 to facilitate imple-
mentations and further research on such password systems.

4 Random Forest: https://scikit-learn.org/stable/modules/ensemble.html#forest,
last accessed October 16, 2024

5 Dataset: https://www.unibw.de/usable-security-and-privacy/research/datase
ts/intentional-behaviour-modifications, last accessed October 16, 2024
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9.4.7 User Feedback

After the study we conducted short interviews: Half of the participants (12) stated to be
interested in using passwords with behavioral modifications and four were strictly against
it. The other eight had concerns (e.g., security, being able to reproduce their behavior under
different circumstances, or the technical feasibility of such a system), but stated they would
be interested in using a system utilizing intentional modifications if those concerns could be
addressed.

Many participants said they struggled with offset modifications as they would often hit the
wrong key. Some also had difficulties distinguishing large areas and long hold times.

When creating passwords, users often first observe their natural behavior to then emphasize
it. For example, P20 stated: “When I created the password I first typed it and observed
what I automatically did. For example, I typed a ‘g’ rather to the left, entered a ‘b’ rather
[long]; That’s what I adjusted [the password] to.”. Another common strategy was putting
modifications at salient positions, such as at the beginning of words or syllables.

9.5 Discussion

9.5.1 Controlling Password Typing Behavior

As a key insight, we revealed that people are able to significantly modify temporal and
spatial features of their mobile typing behavior in given directions. It is also possible to train
a model that distinguishes between these feature levels (e.g., default vs. long press) with
high accuracy (Section 9.4.6).

People were more accurate (i.e., deviated less from target feature values) in reproducing
default values rather than extreme ones. We thus conclude that people are better at replicating
behavior that is close to their natural behavior.

For flight time, accuracy was higher in the second week. We attribute this to people getting
accustomed to our devices, modifications, and tasks, indicating a learning effect.

In some cases, participants performed default behavior when expected to show a modifica-
tion (see secondary peaks in distributions in Figure 9.4), likely due to the cognitive load of
actively controlling their actions, especially when modifying multiple features. Controlling
touch area is partly affected by the usage of the right thumb, which naturally leads to larger
areas towards the left of the screen, due to stretching.

9.5.2 Modifying Multiple Behavior Features

Overall, modifying an increasing number of behavior features in a password becomes signif-
icantly more difficult to control. A possible explanation is the likely higher cognitive demand
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for intentionally modifying several aspects of typing behavior, as supported by participants’
comments and a higher number of incorrect inputs.

Specifically, modifying multiple features at different characters within one password (“dis-
tributed modification”) is significantly more difficult than modifying multiple features at the
same character (“co-located modification”). This conclusion is supported by all quantitative
measures (task completion time, typing speed, incorrect entries, error measures), as well as
participants’ subjective Likert ratings and comments.

Control of temporal features particularly suffers when other modifications are present, likely
since focusing on those others distracts users from keeping the timing for the temporal mod-
ifications. Controlling spatial features is more robust.

In summary, our findings show that multiple features are harder to control when spread over
multiple different characters; in particular, if temporal modifications are involved.

9.5.3 Methodology

We developed a visual text annotation scheme (Figure 9.1) to communicate target behavior
modifications. We chose this approach to be able to use text entry research’s most common
and established transcription task (i.e., enter given text) with our new concept of intentional
behavior modifications.

An alternative would have been to visualize desired feature values directly on the keyboard
(e.g., show a cross-hair on the key for offset modifications). However, this would have turned
the task into a reaction exercise (i.e., hitting such cross-hairs), which likely leads to different
behavior. This approach also borrows heavily from the technical support work on mimicry
attacks. Yet we were interested in users’ ability to modify behavior without such scaffolding.
With our task, we thus gave clear instructions while participants were left to implement those
modifications as they saw fit.

Future work could compare the two approaches. For example, work on systems for mimicry
attacks could use our results here as a baseline for unsupported modification ability.

9.5.4 Deployment

As shown in Section 9.4.6, it is possible to reliably detect behavior modifications, which en-
ables building authentication systems that utilize them as part of a password. With backends
that store passwords as hashes of strings, this could be easily integrated by inserting a special
symbol depending on the preceding character’s modification (e.g., “pass$holdlong$word”
where $ stands for any character not allowed to be used directly for passwords in the sys-
tem). Therefore, this technique can potentially be used in any context in which passwords
are currently used – given that client software and hardware are capable of detecting modi-
fications. For non-touch keyboards, only temporal features would be available.
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Moreover, our visualization (Section 9.2) could give users feedback on their typing, analo-
gous to revealing entered characters in a password field on demand.

Finally, it is not clear how different devices and keyboard layouts influence behavior and
control, which could be investigated in future work.

9.5.5 Implications for Usable Passwords with Intentional Behav-
ior Modifications

Intentional behavior modifications increase the space of possible passwords. We focused
on the fundamental ability of users to control behavior features. Our results offer plenty
of opportunities for future work, e.g., investigating observability and memorability. We
summarize practical recommendations for usable passwords with behavior modifications:

Flight time, hold time, and touch-to-key offset present suitable behavior features for inten-
tional modification for password typing on smartphones. Modifications of the touch area for
thumb input should be avoided. The area is harder to control since it is partly determined by
stretching the thumb.

Flight time and hold time can be controlled on two levels (normal vs. long). Offsets can be
controlled on five levels though they were the most difficult modification for participants.
We see several options to improve this for future work. This includes tolerance for miss-
typing (i.e., accepting input that hits a neighboring key in the direction of the executed
modification) and using offset modifications only with larger keys (e.g., on tablets or for
PINs). Modifying offsets may also be easier when typing with a different finger which
allows for more precision (e.g., index). Modifying behavior for one character in multiple
ways should be favored over distributing feature modifications across several characters.
Combinations of feature modifications across multiple characters in particular for temporal
modifications should be avoided.

Based on user feedback after creating own passwords, a promising creation strategy is to
observe one’s own natural behavior and add emphasizing modifications.

9.5.6 Implications for Mimicry Attacks

Related work [41, 42] found that spatial features (particularly offsets) have higher biometric
value, that is, they lead to more accurate user identification, compared to temporal features.
Our results show that it is difficult to intentionally modify multiple temporal features, or
temporal features combined with others. In contrast, for modifying offsets, users are not
inherently under time pressure when controlling them.

We thus revealed a novel trade-off: Spatial features have higher biometric value than tempo-
ral ones in the literature, yet they might be easier for informed attackers to modify. Future
work can investigate such mimicry attacks: In particular, our results suggest 1) to compare
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mimicry attacks on biometric systems that use either spatial or temporal features; and 2) to
compare such attacks for “victims” that do or do not intentionally control these features as
part of their passwords.

In contrast to most previous work on mimicry attacks, these new study ideas do not fo-
cus on technical support for attackers or specific protection methods, but rather on better
understanding the fundamental human capabilities for copying and controlling otherwise
uncontrolled input behavior details.

9.5.7 Implications for Biometrics Research

We showed for the first time that when multiple people follow the same modification in-
structions, their mobile typing behavior becomes less distinguishable (here relative +20.7 %
equal error rate for user identification across sessions).

Earlier work on typing on desktop keyboards [54, 134] and phones with physical key
pads [133] discussed “artificial rhythms” (e.g., inserting a pause), which increased biometric
value, contradicting our results. This difference may be due to typing on touchscreens in our
work and the fact that related work studied behavior in one session only, ignoring changes
over time. Moreover, users received “open” instructions to modify the rhythm as they liked
and thus likely responded in more individual ways [134]. Typing biometrics for desktops can
only utilize temporal features. In contrast, mobile touchscreens enable rich spatial features
and it can be difficult to coordinate modifications of multiple features in one password entry.
This might have caused less consistent behavior across sessions, reducing the accuracy of
user identification.

On one hand, this suggests that authentication systems need to be careful with applying both
behavioral biometrics (e.g., as an extra security layer) and intentional modifications (e.g., for
extended password space). On the other hand, suggesting different modifications to different
users could improve biometric value, as we find users able to follow modifications of the
most important features in typing biometrics.

Other work examined related ideas that might be investigated in our context as well: (1)
nudging users towards creating more diverse lock patterns via subtle visual cues [280]; and
(2) facilitating user exploration of “original” behavior [287].

Our results guide future work on the idea of provoking more diverse behavior: For example,
a future study could ask users to set up a password not only with composition instructions
(e.g., minimum length) but also suggest (random) behavior modifications for how to enter it.
Based on our results, we expect to achieve higher biometric value in this way, compared to
1) suggesting no behavior modifications, or 2) suggesting the same modification to all users.

151



password length 8 7 6 5

no modifications 49.36 43.19 37.02 30.85
1 modification 55.14 48.77 42.38 35.94
2 modifications 59.84 53.27 46.63 39.90
3 modifications 63.90 57.10 50.20 43.16

Table 9.3: Entropy (bits) of random passwords with and without (random) modifications on an
alphabet of 72 characters (upper and lower case letters, numbers and 10 special characters).

9.5.8 Security Considerations

Using intentional behavior modifications impacts password capture and guessing at-
tacks [31]. Capture attacks like smudge attacks[17] may be deflected, as temporal features
leave no marks. Video-based attacks like shoulder surfing[234] or thermal attacks [2] may
still be possible, though potentially harder, as extracting exact timings may prove difficult
and fingers occlude the concrete touch points as long as no feedback is given (compare 9.5.4).
Phishing may only be successful if the interface can capture and transmit modifications.

Assuming random passwords and modifications, adding modifications makes both online
and offline guessing attacks harder (Table 9.3). Including one modification adds up to about
5 bits of entropy (calculations in Appendix B). Thus, modifications may enable shorter pass-
words with similar entropy. For instance, under the given assumptions, an eight-character
password can be reduced to six characters when using exactly 3 modifications. This is
promising as passwords on mobile devices tend to be weaker and harder to enter [187].

Notice that these are upper bounds; there may be common patterns of choosing modifi-
cations, which reduce theoretical entropy in practice (e.g., participants reported choosing
beginnings of words or syllables for modifications, see Section 9.4.7). Moreover, focusing
modifications on a single key instead of spreading them out makes guessing easier. How-
ever, our calculations assume that the attacker knows the exact number of modifications, thus
(slightly) underestimating entropy. While suggesting concrete modifications might solve
some of those drawbacks it may introduce usability issues. We suggest practical security as
an area for future work.

9.5.9 Limitations

We examined a limited set of typing features with a commonly used keyboard app (modified
Google open-source keyboard). We did not measure pressure or shape features from the full
capacitive image (see [176]). Nevertheless, we covered the most commonly used temporal
and spatial typing biometrics features (see [262, 263]), found to be the most important ones
among a larger set for mobile password typing [42].

To avoid an impact of password complexity we chose a limited set of easy passwords for our
study. Our findings may not generalize to more complex passwords.
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To keep an acceptable study duration, we only observed one-handed use with the right
thumb. This is one of the most considered postures in research [28, 111, 112, 300] and
one of the most frequently used ones in daily life [41]. All participants were right-handed
and used to this posture. Future studies could compare our results to using the index finger.

During the analysis of the results, we noticed that the target behavior in task 34 contained an
additional hold time modification instead of the intended flight time modification. Thus the
combination of area, hold, and flight time was not tested.

Our sample is biased towards younger people and might not represent the overall population.
Finger precision and timing might change with age (see [274]). Future work could compare
our results to samples with children and older adults.

9.6 Implcations

Typing behavior can be analyzed to identify users based on features such as typing
rhythm [262] and finger placement [42]. So far, research has studied these features as they
occur “naturally” as an implicit, uncontrolled part of typing, or in the context of supporting
mimicry attacks with technical means.

This chapter addressed the gap in the literature with the first study on users’ ability to in-
tentionally modify their behavior when typing passwords on smartphones: We developed a
novel visual text annotation in a prestudy (N=114), before using it to study intentional mod-
ifications in the lab (N=24). Overall, our results reveal that users can successfully modify
the features most commonly used in typing biometrics systems for smartphones. This fun-
damental insight has several implications for users, threat models, and biometrics research.
We conclude by outlining some of them here:

It is worth further investigating the idea of using intentional modifications as a part of pass-
words. This could extend the password space (e.g., “password” vs “pass[hold long]word”)
and possibly also reduce observability, as attackers would have to guess the modification,
not just the entered word.

Our results also motivate novel research directions for touch and typing biometrics systems:
These might suffer from “standardizing” typing behavior across users with given modifica-
tions, as revealed in our study. However, nudging different users to use different modifica-
tions in turn promises to increase user identification accuracy (see [280]). Related, threat
models for evaluating such biometric systems need to take into account that some target be-
haviors are inherently more difficult to attack: In particular, our results strongly motivate
comparing attacks that require modifying temporal vs. spatial features to mimic behavior.

Overall, we show the rich capabilities of users to intentionally control typical input behavior
features previously considered as an implicit “information byproduct” of interaction. As
such, this chapter lays the foundation for our further explorations of ways to support users in
modifying their typing to gain agency over their authentication in the remainder of this part.
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10
Extending Intentional Keystroke Control to the

Wild with Imitation Game

This chapter is based on yet unpublished work:
Lukas Mecke, Rupert Oxenius, Sarah Delgado Rodriguez, Daniel Busckek, and Flo-
rian Alt. 2024. Imitation Game: A Mobile Game to Support Players in Learning to
Control Features of their Typing Behavior. In preparation for publication.

In the previous chapter, we presented our investigation of users’ ability to intentionally mod-
ify their typing. We developed a visualization for typing-related features and could show
in a lab study, that participants could successfully modify features of their typing towards a
given target behavior.

The ability to control typing features can open up several options for new applications. In-
tentional modifications can be included as additional features of a password and thus either
shorten the password while keeping entropy high or increase entropy at no additional length.
They can be utilized to make text messages more expressive by applying markup based on
typing features [45].



Figure 10.1: We present Imitation Game, a mobile game where players embody a panda (1),
taking missions from a badger (2) to break into vaults protected by typing patterns. Players can
train for their missions (3), create and take challenges from other players (4), and contribute to
our research by filling out questionnaires (5).

Most relevant in the context of this thesis, intentional control can help end-users to (re)gain
agency over their authentication: typing can constantly be tracked in the background and
there is no clear point for a user to express their intent to be authenticated. Compare this
to a user entering a password if, and only if, they want to access an account. Thus, the
ability to control typing features could be largely beneficial for end-users to help them keep
their identity and other personal aspects private when interacting with non-trusted devices or
websites and decide if and when to be recognized.

Those examples show that it can be largely beneficial for users to be able to control their
typing behavior. While our previous study (Chapter 9) showed, that this is fundamentally
possible, it was limited to a constrained lab setting and did not explore how this skill can be
supported in the real world. Related work mainly focused on attack scenarios (i.e. someone
trying to mimic a victim’s typing patterns to gain access to their data protected by a typing
biometric system) [159, 265] which use humans rather as a proxy to enter the text. However,
lab studies are not necessarily representative of real-world settings and our goal is to create
additional value for the user rather than facilitating attacks. In this chapter, we thus extend
our previous work by exploring if those effects can also be achieved outside the lab and under
less constrained conditions where they could be of actual value to the users themselves.

To this end, we developed Imitation Game as a mobile game built on the typing behavior
visualization we proposed in Chapter 9. We used the player types proposed by Bartle [25] as
a guideline in designing our game to support players with different preferences in learning
how to modify their typing behavior on their own and in a playful manner.
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We evaluate players’ ability to modify their typing behavior both in a lab study (to validate
if the results of our lab study translate to a game approach) as well as in the wild with 24
participants each. We further evaluate the success of our introduced game elements and the
effect of player types on their perception. We find that our design was effective in addressing
different player types. Participants were able to control the temporal features of their typing
but struggled with controlling touch area and horizontal offset. Based on the results, we
reflect on our approach of transforming a security lab study into a game to motivate users to
learn a difficult skill. We discuss the differences between playing our game in the lab and in
the wild and outline future extensions to our work.

In this chapter, we contribute 1) a mobile game (Imitation Game) to support and mo-
tivate users in the process of learning to control their typing and 2) two studies (N=24
each) using the game in the lab and in the wild to investigate participants’ ability to
control their typing.

10.1 Background and Related Work

Here, we provide some background on games and game design with player types in mind as
well as previous uses for games in typing research. We omit an introduction to the use of
typing behavior and previous work on controlling it in the context of mimicry attacks and
instead refer to Chapter 9 for details on those.

10.1.1 Gamification and Serious Games

As described by Deterding et al. “Gamification is commonly known as the use of game
design elements in non-game contexts” [77]. Other definitions see gamification as “the pro-
cess of game-thinking and game mechanics to engage users and solve problems” [309] and
“A simple concept of making non-gaming systems more engaging through applying gaming
principles to them” [32]. In extension, applications are serious games if they go beyond the
goal of entertainment and offer features with learning and educational purposes [100].

More generally, gamification and serious games can be used to improve activities otherwise
unrelated to games like behavior training [77] or learning and acquiring skills [11, 100].
According to Stapleton [255], good gamification offers the same or equal challenges as
before, but gives users a different framing and motivation and can thus be more engaging
and motivating than standard approaches to training and education. Freitas and Liarokapis
therefore see immersion as a central design goal [100]. According to McGonical [94, 179],
games offer happiness often not found in reality. Problem recognition and problem-solving
are only a few of their various benefits. In a learning environment studies showed more
voluntary participation in activities [11].
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10.1.2 Game Design and Player Types

Game elements can bring motivational benefits to the gamified application [77, 100, 255].
Basic elements used in the context of gamification are points, badges and levels [167]. Based
on Charles et al. [52], the static game design might not account for all players’ needs. They
proposed an adaptive approach to accommodate individual players’ preferences, e.g. by
adjusting the difficulty level or feature prominence to a player’s style and talent.

Bartle [25] introduced the concept of player types, describing groups of players that are
motivated by similar elements of a game. Arkün Kocadere and Çağlar Özhan [11] discuss
the need to take those player types into consideration when choosing game elements. They
conducted a survey and collected what elements and features different player types enjoyed.
Here we give an overview of those player types together with the proposed game elements.
The Killer is a type of player strongly engaged with other players. As such they seek status
and competition which can be achieved through levels, a leader-board, and a competitive
point system. Achievers are after rewards and achievements and want to beat the mechanics
of the game. Potential motivators include achievable elements and progression in the form
of points or levels. Explorers are mostly about experiencing the game world. They also look
for progression but enjoy rewards and a narrative. Elements for them are levels, badges,
achievable elements, and a story. Finally, Socialisers enjoy interacting with other players.
Transaction, cooperation, and narrative are the mechanics addressing them. This can be
implemented through a story, badges, and achievable elements. Cooperation can mainly
be achieved by a team element. While the player base can be sorted by identifying major
character traits, many players usually do not completely fall into one player type [25]. Other
approaches (e.g. [95, 102]) exist but we focus on Bartles classification in this work.

10.1.3 Using Games for Typing Research

Previous research has used games both to teach typing skills and assess typing. Costagliola
et al. [60] proposed a game to help players learn the “KeyScratch” text entry method. Other
games were designed to assess typing errors and utilized the game context to be able to
generate a database of expected and actual player spelling [220, 260]. Chen et al. [53] used
a typing game to understand user typing timings and Henze et al. [128] observed user typing
behavior to implement a touch correction and improve error rates for mobile text entry.

10.2 Research Approach

Our goal for this chapter is to develop a mobile game to support players in learning to
control their typing behavior based on our findings from Chapter 9. As such, the game
should motivate players to keep playing, be challenging, and last but not least: be successful
in supporting players to modify their typing.
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From related work we learn, that gamification is an effective tool to increase player mo-
tivation and support learning new skills [11, 60, 100]. In Chapter 9 we developed both a
visualization of (expected) typing behavior and a set of tasks containing increasing amounts
of modifications. However, we used this approach only in a lab setting and with a focus
on analysis rather than as a tool to help users actually control their typing. Here we extend
this scope by converting our work into a game while still using it as a baseline to compare
participants’ success in learning to modify their behavior in our game approach.

The work by Bartle [25] and Arkün Kocadere and Çağlar Özhan [11] offered great insights
into designing game elements around the types of players. We use this as a guide for our
work but mainly focus on elements for Explorers and Achievers, as the other types require a
strong social component. However, we design our game with all types in mind and will also
evaluate the success of this approach.

Based on those considerations, our research is guided by the following questions:

RQ1 Game Design: How to design a game based on a complex study setup to yield results
that can be compared to previous work and that is motivating and engaging for players?

RQ2 Comparison between Settings and Sessions: How does players’ abilities to modify
their behavior differ between a (constrained) lab setting and playing in the wild?

RQ3 Impact of Player Types: Is our design successful in addressing different player types
and does their ability to modify their own typing behavior differ?

10.3 Imitation Game

We conceptualize Imitation Game as a story-driven skill game. We describe the constraints
arising from our goal to compare results to our previous lab study and the setting chosen for
the game. We illustrate the core game loop, how it relates to the replicated study setting,
and explain which game elements we chose to account for player types [25]. Figure 10.1
gives an overview of the game and Figure 10.4 an overview of the game elements used in
Imitation Game.

10.3.1 Adaptations from Our Previous Work

To be able to compare our results to the work introduced in Chapter 9, we had to put some
constraints on our game design and study execution. Here we give a short overview of the
tasks and changes, for details we refer to Chapter 9.
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Figure 10.2: Illustration of the feature modifications across tasks used in our previous study
(Chapter 9). A darker color indicates more modifications. Features are either distributed (∼)
over keys or co-located (*). Below we indicate the mapping of tasks to missions for our game.

Tasks

In our previous study, we used 37 tasks. Each task consisted of an eight-character-long
password and a pattern of expected typing features. We used the features flight time (time
between releasing a key and pressing the next), hold time (time between pressing a key
and releasing it), touch offset from the center of the key, and touch area. The tasks had an
increasing number of features to modify in each password (starting from natural typing in
the first tasks and ending in having to modify all four features in a single password in the
end). For each combination, we explored different locations within the password to place
the modification.

For our game, we preserve both the tasks and their order but group them into 16 missions
with each mission having a fixed combination of features to control (e.g. hold time and touch
offset). See Figure 10.2 for an overview of the tasks and how they were mapped to missions.
We checked for area/pressure1 sensitivity in the beginning and removed area modifications
when they were not supported by the participant’s phone. This means, that those participants
experienced the same amount of missions but never had to modify the area and did only up
to three features.

Keyboard

In our lab study, we used a custom keyboard app to track typing features. This was a viable
approach for a lab study but installing a separate keyboard to play a game can not be expected
by players in the wild. We thus re-implemented the keyboard as an in-game element and
removed all unused keys (e.g., control keys and numbers).

1 On the device used in our lab study (LG G6) pressure was calculated from area, making the two features
interchangeable
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Figure 10.3: Example of how a mission in Imitation Game looked like. Players talked to the
badger in the pub and received an objective. They would then be taken to a mission location
with a vault and had to enter 2 to 3 passwords with behavior modifications. After each attempt,
they got a score and the option to make another attempt. After the mission, they got a report
including their total score, the bamboo they earned, and the artifact they had to bring back as
their mission objective.

10.3.2 Game World and Characters

We chose to situate our game in a steampunk-inspired world populated by talking human-like
animals. We made this choice both to create a captivating setting for the story and to have
more freedom on how the world works: things that would not be possible in our world do not
have to be a problem in this world. The main character embodied by the player is a panda
burglar who takes contracts from a badger in a shady pub to break into vaults protected
with typing patterns to earn their living. Together with a mouse, the badger serves as the
main story driver by sending the panda on missions and explaining the world. The mouse
is a researcher and serves as a proxy for our study setting: it explains the game mechanics
and typing features and wants to better understand the panda’s ability to modify their typing
behavior. It thus has some further questions from time to time, which take the players to
the three questionnaires that were part of our study. Whenever the mouse had no questions,
players could tap it to give feedback about the game. Overall, the story was designed to
appeal to Explorers.

10.3.3 Missions and Scores

The main mechanic of the game is to mimic given typing patterns that the panda gets as
missions from the badger to access safes and steal artifacts. We avoid the question as to
how the badger gets into possession of those typing patterns. Figure 10.3 shows an example
of how such a mission would look like. We reused the target typing patterns from our
previous study described in Chapter 9 and regrouped them as missions (see Section 10.3.1).
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Modifications were applied to three easy passwords (password, football, princess) to not
distract from the task. In the game, we explain this by the adoption of typing patterns as a
de-facto security mechanism, making the passwords themselves irrelevant.

When on a mission, the player only sees the target typing pattern but gets no feedback on
their own input. After each attempt they get a score between 0 and 100 for their success as
well as a golden bamboo stick in case they reached more than 50 points (see Figure 10.4e).
If they achieved less, we nudged them with a text message to try again to be able to gain
the bamboo. We included this element to appeal to Achievers. As an alteration to our lab
study, players did not have to enter each password six times. In a game context, this would
be too repetitive and we instead utilized the score and bamboo rating to encourage players
to attempt to improve their own performance. However, players were free to continue once
they had correctly (i.e. without spelling mistakes) entered the password if they so chose.

We calculate a score for each feature on each keystroke and then combine them to the score
the participants get to see in the game. We implemented a linear mapping of the distance
from the target (e.g., the time difference between an expected long press and the player’s
actual hold time) to the score. We started with no difference mapping to 100 points and a
distance of twice the mean error we found in our lab study mapping to 0 points. We refined
those values through several rounds of testing. Our aim here was to roughly reflect the
participants’ performance while allowing them to achieve scores that would be motivating.
To give a stronger weight to modified features (i.e. features that did not have their default
value), we separated all scores within a password accordingly and calculated the final score
as equal weights of the mean of both groups.

10.3.4 Further Activities

We used the steampunk pub as the hub area of the game. This is where players start each
mission and where they return once they finished. From here, players also had access to the
other features of the game (see Figure 10.1).

Training Room

In our lab study (see Chapter 9) we had participants train their input before each task. We
decided to detach training from the missions for our game approach, but in turn, give more
feedback when players chose to use it. In addition to seeing their own typing visualized
in the same format as the typing pattern they were to emulate (see Figure 10.4c), we also
showed them a breakdown of how close they were to the target pattern with each feature
of their typing (see Figure 10.4d). We included this element to appeal to Achievers but
also to encourage players, in general, to explore further how their behavior would affect the
different features. The training room progressed together with the rest of the story so that
players could always train for their current mission.

162



10 Extending Intentional Keystroke Control to the Wild with Imitation Game

(a) Character attributes (b) Dialogues/Story (c) Typing Feedback (d) Colored (training)
feedback

(e) Mission scores (f) Highscore (g) Creating challenges (h) Taking challenges

Figure 10.4: Overview of the game elements we used in Imitation Game and that we asked
participants about in the questionnaires.

Highscore and Challenges

We included a highscore board (see Figure 10.4f) tracking the best scores achieved together
with the player who managed that. In addition, players could also create their own challenges
that other players would then be able to compete in (see Figures 10.4g,10.4h). Challenges
work similarly to missions, only that the players are free to choose a password and related
typing pattern they want to define as a challenge. To make sure players would not just
randomly type a sequence nobody else would be able to mimic, we had them first complete
their challenge themselves. This is the only social feature in our game and is aimed at
appealing to Killers.

Character and Attributes

When tapping on the panda, players could access a character sheet (see Figure 10.1). Here
(and in the top bar during other activities), players could see their character’s attributes (see
Figure 10.4a). They describe how good the players are at modifying certain features and
thus are a representation of the player’s skill in the game. This is again aimed at Achievers.
In addition, the players had access to the data privacy policy and could accept or decline the
upload of their typing data from this screen. We showed an excerpt of the data we captured
from their last input to make it more graspable what kind of data they would agree to share.
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10.3.5 Implementation

We implemented Imitation Game as an Android application and created an in-game keyboard
so that no further downloads were necessary. One researcher created the story, lore, and
dialogue for the game. Based on their descriptions another researcher created all visual
elements. Most visual content was hand-drawn, but we used images created with Stable
Diffusion [222] as a base for the mission locations and artifact icons. This allowed us to
include a greater variety of visual content. We distributed the game through the Play Store
to make it easy to access for remote participants.

10.4 Evaluation

We now illustrate our study design to support players in learning to modify their typing
behavior in the wild. Each study session encompassed the participants playing through the
game once and filling out three questionnaires.

10.4.1 Study Design

Our study design follows a mixed methods approach with both within- and between subject
components and two independent variables: We conducted the study both in a lab and a
remote SETTING. In the lab condition, participants were limited to using their right thumb
for typing and were provided with a device. Those constraints reflect the lab setup of our
previous study (including the exact device used). In the remote setting, participants would
play the game on their own devices without constraints. For the lab condition, we also
added a second SESSION at least one week after the first to see potential learning effects.
We omitted this in the remote condition to more closely mimic a real playing scenario.
Replaying a story-driven game just one week later seemed like an unrealistic scenario in this
case.

10.4.2 Measurements

Throughout the study, we captured both participants’ typing behavior when completing the
tasks and their answers to a total of three questionnaires. Here we give an overview of the
data collected.

Keystrokes
For each password entered in our study, we capture the touch offset from the key center and
key hold time as well as flight time between key presses. If supported by the device we also
capture touch area. In the lab condition, this was always the case as we provided a device
capable of recording touch areas.
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Participant Descriptors

We collect participant demographics (age, gender, and country of origin), the hand posture
they use for playing the game and their player type [25] based on the questions of an online
questionnaire2.

Interaction with Game Elements

We collected participants’ ratings on various game elements (see Figure 10.4). We asked
if they liked and were motivated by them with the goal of correlating those ratings with the
previously collected player types to asses if our game design (see Section 10.3) was effective
in appealing to the respective groups.

Perception of Security and Behavior Modifications

We asked participants how difficult they perceived it to modify the four features. In addition,
we presented them with a row of Likert statements assessing their perceived success and
improvement in modifying their typing behavior. We asked if they would use our game
outside of a study context and how they perceived passwords and behavior modifications for
security purposes.

User Experience and general Feedback

We asked participants to fill out the short version of the user experience questionnaire
UEQ-S [238] to assess their experience with the game interface. As a last block in the ques-
tionnaire, we asked open-ended questions with regard to what participants liked and disliked
about the game and gave them space to describe potential problems they had encountered
and further remarks they had.

10.4.3 Procedure

We sent remote participants an email with instructions on how to install the game on their
devices. From there, their only task was to play through the game once. Lab participants
received a prepared device from us and were instructed to use only their right thumb. Oth-
erwise, their task was identical. After one week we invited lab participants to the second
session, reset the game, and repeated the process. Consent to the data collection was given
inside the game and the mouse prompted participants whenever they were supposed to take
a questionnaire.

2 Bartle Test: https://matthewbarr.co.uk/bartle/, last accessed October 16, 2024
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10.4.4 Recruitment and Participants

We recruited a total of 48 participants (24 for each setting) through advertisements on univer-
sity mailing lists and personal contact. Lab participants (12 male, 11 female, 1 preferred not
to say) were between 22 and 59 years old (Mn=29.0, SD=7.2) and came from Germany. Re-
mote participants (9 male, 15 female) were between 18 and 55 years old (Mn=27.3, SD=8.0)
and came mostly from Germany with one participant from India and one from Austria.

Participants in the lab predominantly followed our constraint of typing with the right thumb
(21) but three participants used both thumbs. Remote participants mainly typed with both
thumbs (15) followed by the right index finger (5).

Each session took about one hour (depending on whether participants read the whole story,
made multiple attempts to increase their score, or took challenges) and participants were
compensated with 10AC for each session. The study was approved by our institute’s ethics
commission under Nr. EK-MIS-2023-202.

10.4.5 Limitations

Our sample is biased towards younger people from Germany and might not represent the
overall population. While the remote setting would have allowed for sampling worldwide,
we decided against it to keep the samples for the remote and lab study comparable. Future
work could investigate cultural differences.

We used simple passwords in our study, that do not reflect the complexity of real-world
typing. However, we allowed players to create their own challenges by choosing both a
password and modification, allowing them to extend our concept to more complex tasks.

Participants in our remote condition played the game on their own devices which were
mostly not capable of sensing touch area. While this prohibited us from comparing this
feature for lab and remote participants, it reflects the actual devices those participants used.

Finally, we designed Imitation Game as a game to be played by participants on their own
accord. However, in our study participants were externally incentivized to play the game so
we have no insights for self-motivated play. We published the game on the Play Store but no
other players downloaded it (yet).
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Figure 10.5: Overview of participants’ modified typing behavior across settings. Offset (10.5a)
is illustrated in relation to a key shape and divided into two plots for better visibility. Participants
were overall successful in following the modifications, except for offset to the left and right for
remote participants and modifications towards a larger touch area.

10.5 Results

We collected a total of 52,753 keystrokes within missions and 72 answers to each of our
questionnaires. Here we report on the results of our study. Our analysis is guided by our
research questions (see Section 10.2) and in particular the comparison between settings and
the impact of player types. We also compare our results to previous work and explore how
participants used and perceived our game.

To account for different screen resolutions of remote participants we corrected absolute off-
set values to be relative to the key width. Touch area detection was unavailable on almost all
devices in the remote setting, so we omitted it in the analysis for remote participants.

To find significant differences, we distinguished between typing data and Likert scales.
For Likert scales, we used non-parametric tests (Wilcoxon for paired samples and Mann-
Whitney for independent samples). We tested typing data for normality with a Shapiro-Wilk
test and used paired/independent t-tests when they were normally distributed and Wilcoxon
or Mann-Whitney tests otherwise. Correlations were tested using Pearson correlation. For
the sake of brevity, we focus on reporting statistically significant (alpha level p<.05) results.
We include further results in Appendix C.

10.5.1 Modifications to Typing Behavior

Here, we explore if participants were successful in modifying their behavior and how their
success was impacted by playing the game a second time or in the wild.
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Figure 10.6: Observed deviation of participants’ behavior from the target values of the given
modifications (i.e. error) for both sessions and settings. Results of our previous study (Chapter 9)
are added for reference.

Ability to Modify Behavior
We explored if participants were successful in modifying features of their typing by testing
if their typing significantly adjusted when presented with an expected modification. Figure
10.5 gives a visual overview.

We found significant differences in the expected direction (e.g. significantly longer flight
time when it was expected) for all feature modifications except for touch area (p=.178) in the
lab setting. In the remote setting, participants were able to significantly modify all features
in the expected direction except for offsets in the horizontal direction (left: p=.900, right:
p=.466). We did not test touch area, as only a few remote participants had this feature.

Impact of Setting and Session
We had participants play the game with fixed hand positions in the lab and without con-
straints on their own phones remotely. Here, we explore the difference between the two
settings. Figure 10.6 illustrates the deviation of participants’ behavior from the expected
value for all four features and is divided by setting and session.

We found all deviations in offset (except for the center) to be significantly lower in the lab
setting (.002<p<.001). Remote participants showed a lower flight time for default modifica-
tions (U=117, p<.001) as well as a lower flight time error (U=200, p=.036) for this condition.
A visual comparison to the results of our lab study described in Chapter 9 (see Figure 10.6)
shows a similar distribution with a tendency towards slightly higher deviations in our study,
in particular for the remote condition.

Lab participants were asked to replay the game one week later so that we could see potential
learning effects. We found a significant decrease in the flight time deviation (and flight time
(Z=37.0, p<.001)) for short key presses (Z=58.0, p=.007) and an increase in the deviation
for both top (Z=80.0, p=.007) and bottom (Z=-3.0, p=.045) offset.

10.5.2 Participant Ratings of Difficulty, Success and Future Use

In our questionnaire, we added several Likert statements referring to the perceived difficulty
of the different modifications, success in completing the tasks, and attitude towards using
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the game or authentication involving typing modifications in the future. All statements were
rated on a 7-point Likert scale (1=strongly disagree, 7=strongly agree).

Perceived Difficulty of Modifications

We asked participants about their perceived difficulty with different feature modifications.
They rated controlling flight time as somewhat easy (Mdn=3) and controlling hold time
offset and touch area as somewhat hard (Mdn=5). Participants in the remote setting rated
offset to be significantly harder to control (U=172.5, p<.001, Mnremote=5.33, Mnlab=4.21)
than participants in the lab. This aligns with our collected keystroke data showing the same
effect. Participants in the lab setting rated the touch area significantly harder to control
(Z=24.5, p=.035, MnS1=5.09, MnS2=4.42) in the second session.

Perceived Success and Future Use of the Game

We asked participants to rate statements with regard to their perceived success in the game.
Participants slightly agreed (Mdn=5) to be able – and to have improved their ability –
to adjust to the specified behavior as well as be able to influence their typing. They
found the tasks slightly difficult (Mdn=5) but felt they were successful in completing them
(Mdn=6). Participants slightly disagreed with wanting to play the game outside a study con-
text (Mdn=3). Our tests showed, that participants rated their success in completing the tasks
(Z=7, p=.018, MnS1=5.17, MnS2=5.80) and their ability to adjust their behavior (Z=16.5,
p=.033, MnS1=4.71, MnS2=5.25) significantly higher in the second session. We did not find
a difference in perception between settings.

Attitude towards Using Typing Behavior Modifications for Authentication

We asked participants to rate statements with regard to their attitude towards using typing
behavior for authentication. Participants found both using passwords and using passwords
with behavior modifications to be secure (Mdn=6). They were neutral towards using (only)
behavior modifications for authentication being secure and wanting to use such a system
(Mdn=4). We observed an increase in participants’ perceptions of passwords being secure
in the second session (Z=28, p=.049, MnS1=5.21, MnS2=5.67).

10.5.3 Game Design

We asked participants to rate their agreement on how much they liked and were motivated
by a range of game elements on a 7-point Likert scale (see Figure 10.4). As some partici-
pants may not have experienced all game elements (e.g. taking challenges) answering these
ratings was optional. Results are shown in Figure 10.7. Participants slightly liked (Mdn=5)
the character attributes, story, typing visualization, training feedback, and mission scores.
They were between slightly agreeing and neutral (Mdn=4.5) for creating challenges and the
dialogues and rated the highscore and taking challenges neutral (Mdn=4). With regards to
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Figure 10.7: A boxplot of participants’ responses to whether they liked or felt motivated by
different game elements.

motivation, participants were neutral (Mdn=4) about almost all game elements. They were
slightly motivated by the typing visualization and the training feedback (Mdn=5) and rated
the mission scores as still slightly more motivating (Mdn=5.5). Participants indicated that
they skipped game dialogues (Mdn=4.5). We used the UEQ-S scale to investigate partic-
ipants’ user experience. Overall, participants rated the user experience of Imitation Game
below average [129] (hedonic quality=0.60, pragmatic quality=1.04, overall score=0.82).

Impact of Setting and Session

Lab participants indicated liking the story (U=146.5, p=.002, Mnlab=5.33, Mnremote=3.71)
and dialogues (U=160.5, p=.004, Mnlab=5.08, Mnremote=3.71) significantly more than re-
mote participants. We observed the same effect on their motivation. Lab participants in-
dicated feeling significantly more motivated by the story (U=196.5, p=.029, Mnlab=4.58,
Mnremote=3.50) as well as by creating (U=166, p=.034, Mnlab=4.50, Mnremote=3.82) and
taking (U=174.5, p=.035, Mnlab=4.54, Mnremote=3.70) challenges. Similarly, lab partici-
pants also rated the hedonic and overall user experience of Imitation Game significantly
higher compared to remote participants (hedonic quality: U=148, p=.002, Mnlab=1.13,
Mnremote=0.07; overall score: U=149.2, p=.002, Mnlab=1.177, Mnremote=0.458). Partici-
pants liked the typing visualization slightly more (Z=30, p=.044, MnS1=5.00, MnS2=5.63)
and skipped dialogues more frequently in the second session (Z=11.5, p=.002, MnS1=3.83,
MnS2=5.75).

Impact of Player Types

Participants mostly aligned with the Explorer player type (lab: 0.69, remote: 0.70) followed
by Achiever (lab: 0.50, remote: 0.56), Socializer (lab: 0.48, remote: 0.47) and Killer (lab:
0.34, remote: 0.30). Here, we correlate player types with the game elements they liked
and were motivated by. Results are shown in Figure 10.8. We found a significant positive
correlation between Explorer types and liking the story (r=0.34, p=.017) and the typing
visualization (r=0.29, p=.046). Affiliation with the Achiever type correlated positively with
being motivated by the mission scores (r=0.31, p=.032) and Killers were more motivated
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Figure 10.8: Heatmaps illustrating results of the correlational analysis (Pearson’s r). (*) denotes
significant correlations (p < 0.05). We used only data gathered during the first session for the
correlational analysis.

by taking challenges (r=0.33, p=.027). Even though no other correlations were significant
we observed a tendency of positive correlations with our game elements for Achievers and
Explorers and negative correlations for Socializers or Killers.

To see if the player type impacted the actual performance in the game we also conducted
a correlation of different player types with participants’ achieved score (i.e. the measure
combining their deviations from expected behavior that was shown in the game), but we
found no significant correlations.

10.5.4 Open Feedback

At the end of the study, we asked participants what aspects they liked and disliked about
Imitation Game. Participants mostly mentioned the story and dialogues, the characters, and
the visual style. Participants liked “[t]he funny dialog[ue]s [and] emotional investment in
the story” as well as “the inside jokes about pop culture, literature [and] security”. They
appreciated the “wacky characters” and found the panda to be cute. Finally, several partici-
pants mentioned to like the idea of a game about showing and modifying typing features: “I
like how it can actually sense and track my speed and other attributes of typing. It’s actually
something unique ”.

At the same time, the dialogues were also the most disliked feature followed by the tasks
being repetitive and limited to only a few passwords. One participant summarized it like this:
“The dialogues were sometimes too long and it got a bit boring to do the same kind of task
over and over”. Some participants wished for voice acting in the game and more guidance
(e.g. a metronome) for modifying their typing. They mentioned the score calculation to be
unclear or good scores too hard to achieve (“Pressure is not recognized as much as I want”).
Some participants encountered crashes with our app and found the navigation unclear: “I
reali[z]ed too late that I had an option for training, it was not clear for me in the pub
scenario were to click for tha[t] purpose”.
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10.6 Discussion

We designed Imitation Game to explore how approaches from gamification research can be
used to transform a complex security lab study into a game. We had the goal of supporting
players in learning to modify their typing behavior on their own and under less constrained
conditions. Here, we reflect on the success of this approach, the limitations of our work, and
lessons learned, both for future work and for other researchers attempting such an approach.

10.6.1 Learning to Control Typing Behavior with Imitation Game

Both participants in the lab and the remote part of our study were able to significantly control
the temporal features of their typing. This in itself is already useful, as those features are
the most widely used and available on all devices. However, we did not see significant
adaptations of touch area in the lab (the feature was largely unavailable on participants’
phones in the remote condition) and we found no evidence of remote participants being able
to control their horizontal offset. This is surprising to us, given that we used the same tasks,
visualization, and – at least in the lab setting – device and hand posture as in our previous
lab study (Chapter 9) where we found participants able to modify those features. There are
some small differences, that could have had an impact. We called touch area pressure in the
game to give participants a clearer impression of how to modify it (pressure is calculated
from the touch area on our test device, so both terms are technically interchangeable). This
may have led participants to a wrong mental model on how to modify this feature. We
decided against having participants train before each input but made this an optional game
element. As a consequence, participants did not get direct visual feedback before each task
and may not have noticed if they did not correctly modify a feature as long as the other
features compensated for the loss in score. Finally, the scoring function could have been too
generous, allowing for high scores with little adaptation of behavior. Factors that changed
for the remote setting and could have influenced participants’ ability to modify horizontal
offset include the use of different hand positions, the uncontrolled in-the-wild setting, or
an overall smaller screen resolution on participants’ own devices. We conclude, that rather
small changes (like wording, adding a score, or smaller screen resolution) may have a large
impact on participants’ success in modifying typing behavior. Future work will be needed
to better understand such effects.

10.6.2 Designing for Player Types

We designed Imitation Game as a story- and skill-driven game with Achievers and Explor-
ers [25] as potential players in mind. We observed a (non-significant) tendency in the ratings
for our game elements to be positively correlated with affiliation to those player types. In
addition, we also found significant effects that supported our design decisions: Alignment
with the Explorer type correlated with enjoying the story, Killers were motivated by taking
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challenges, and affiliation with the Achiever type correlated with being motivated by the
mission scores. This shows that designing game elements targeting specific player types is
indeed effective in appealing to them.

We also observed that most of our participants aligned with the Explorer- and Achiever
types. This raises the question if our game was well received because participants naturally
aligned with the types we designed for or if our study explicitly attracted such participants.
While we did not find differences in the performance of different player types, this can also
be relevant for other types of studies that focus on aspects that are valued by certain player
types (e.g. a task involving competition might attract more Killers and Achievers).

10.6.3 Reflections on building a Game as a Research Tool

Using a game as a research tool comes with both advantages and drawbacks. First and
foremost, development takes a lot of time. A game needs a good game mechanic, should
have aesthetic visuals and (if applicable) a story or other motivating elements. The story
in our game was both one of the most liked and disliked game elements, showing that it is
difficult to cater a game to a general audience and that further refinement would be needed.
All this takes time and effort, even though advances in generative models may make this
process more approachable (e.g., by generating visuals). In addition, the implementation
needs to account for more variables and gets more complex and error-prone: when deploying
in the wild, a lot of unforeseen things can go wrong.

In turn, participants may be more motivated to be part of a study including games and put
more effort into completing them. Games can also allow for a more realistic view of the
actual usage of a system. In our study, we asked participants to use our game both in the lab
and remotely on their own devices. We observed that deviations from the expected behavior
were larger in the remote condition and lab participants reported to be significantly more
motivated by our game elements. This may be an effect of social desirability bias or them
putting in just more time to explore the game in the lab, but it may also well be that our lab
settings drew an overly optimistic picture. We believe, that lab studies have their place in
fundamentally showing that effects (can) exist, but taking the step into the wild, e.g. through
implementing a game, results in a more realistic view of actual use. In this study, we found
designing a game guided by player types to be an effective way of taking this step.

10.6.4 Extending Imitation Game

We implemented Imitation Game as a research tool for our study but also as an extendable
game that is – in the long run – intended to be actually played in the wild. From participants’
feedback, we gathered some directions for improving the game, including technical improve-
ments, voice acting for the dialogues, or improvements to explanations and navigation. We
observed participants typing faster, deviating stronger from the expected offset targets, and
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skipping more dialogues in the second session. This hints at them putting in less effort, most
likely as a consequence of the game being repetitive. A future iteration could improve on
this and design for more long-term playability or incentivize replay through e.g. a diverging
storyline. Beyond improvements to the game, we also see the potential to adapt Imitation
Game to explore different aspects of typing. Potential extensions could be the inclusion of
more complex passwords or writing full text. The scoring system could be adapted to dif-
ferent functions to understand its effect on player performance. Some players suggested the
inclusion of a metronome or other aids to support them in modifying their typing. While we
avoided this to both remain consistent with our previous lab study and assess actual learning
instead of reacting to presented indicators, this could be a worthwhile comparison for future
work to make.

10.7 Implications

In this chapter, we introduced Imitation Game, a mobile game to support players in learn-
ing to control features of their typing behavior. We designed our game as an extension of
previous work on controlling typing behavior and guided by Bartle’s player-type model [25].

Our results show that our design was effective in addressing different player types and par-
ticipants were able to control temporal features of their typing. However, they struggled with
controlling touch area and horizontal offset.

This chapter highlights, that using a game can be an effective approach for taking usable
security research to the wild. We showed, that modifications to typing behavior can be
learned and applied by users on their own using our game, opening up the space for future
applications using this ability. At the same time, our work showed, that the lab results
we found in Chapter 9 may have been in parts overly optimistic and do not fully translate
to a more realistic learning scenario in the wild. This highlights the need and value of
investigating security mechanisms in the lab and in the wild to gain insights into both their
potential and their actual use under more realistic conditions.
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11
Supporting Key Targeting using

Electromagnets

This chapter is based on the following publication:
Lukas Mecke, Ismael Prieto Romero, Sarah Delgado Rodriguez, and Florian Alt.
2023. Exploring the Use of Electromagnets to Influence Key Targeting on Physical
Keyboards. In Extended Abstracts of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI EA ’23) [185]

In the previous chapters of this part, we showed, that users are able to learn to intentionally
change their typing behavior and can also do so in the wild, enabling new security applica-
tions and user agency over their authentication. However, they found this task challenging.
In this chapter, we explore an option, for actively supporting users in executing such modifi-
cations and alleviating the effort required for active typing behavior control.

Previous work already investigated, how interaction with keyboards can be extended and
enhanced. Examples include modifications to the resistance [26, 131, 233] and sensation



Figure 11.1: We present a prototype to explore if and how users’ key targeting on keyboards can
be influenced. This is achieved using a magnetic strip on the user’s finger (left) that is actuated
with electromagnets below the keyboard (right).

when touching a key [51, 191, 194], or lights and vibration to provide feedback [70]. With
our work, we aim to extend interaction by not only augmenting touch or providing passive
feedback but actively exerting force before, while, and after a key is touched. To the best of
our knowledge, there are no other systems in the related literature that are capable of doing
this. Our system could be used to provide feedback, feed-forward (e.g., warnings), or subtle
guidance during keyboard interactions. Note, how this approach keeps agency in the users
hands, as force is applied but it is up to the user to follow it. Compare this to approaches like
programmatic changing key timings that are both transparent (and their function thus hard
to understand and verify for a user) and take away user agency.

To achieve this, we propose an array of electromagnets below a keyboard to exert forces on
a permanent magnet placed on the user’s finger and consequently on the finger itself. In this
chapter, we prototypically implement this approach and provide an initial technical evalua-
tion and preliminary study with 4 users to understand how the exerted force is perceived and
if it can be used to modify key targeting.

We show that we can exert noticeable forces of 3.56 N at a distance of 10 mm. We observe an
impact on key press times and errors made as well as a trade-off with the pinkie being easiest
to actuate but also liked least. Actuating the index finger allowed for modifying key press
times while also being perceived as comfortable. Our work is complemented by a discussion
of application opportunities and implications of the introduced approach.

In this chapter we contribute 1) a prototypical implementation of a keyboard to in-
fluence key targeting using electromagnets and 2) an initial technical evaluation and
preliminary study to understand the potential and user perception of our approach.
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11.1 Related Work

There are different approaches to augment or influence typing. One option is the use of visual
and auditory cues [70] or haptic feedback like vibration [170]. Tactile cues [117, 124, 194]
can be used to alter touch sensation, e.g., through ultrasonic waves. Other approaches had
great success by changing the structure of a touched surface, e.g., through modifying the
stiffness of a hydrogel [191] or using stretched fabric [124]. Another approach is to change
the resistance when pressing a key through servos [26] or solenoids [131]. Savioz et al. [232,
233] used electromagnets and permanent magnets under the keys (instead of being attached
to the users’ finger as in our approach) to control key press resistance. While influencing
users was not always the goal in the named approaches some demonstrated such abilities.
Hoffmann et al. [131] could reduce typing errors with their approach and participants in the
experiment by Bell et al. [26] took more breaks. That said, most approaches are limited in
that they require touching a surface (e.g., to feel the resistance or vibration) or are passive
(e.g., lights [70]). Our aim is to also be able to actively influence users’ movements before
and after touch. The best option we see for this are magnetic fields which have also been
shown effective in the context of physical keyboards [131, 232, 233].

The use of magnetism to influence users has been researched in the past with both electro-
magnets (EMs) and permanent magnets. Yamaoka and Kakehi [295] moved a permanent
magnet under a table through motorized actuators to control the motion path of a pen and
guide users (e.g., to replicate or scale drawings). Zarate et al. [304] developed a sphere with
three orthogonally oriented EMs, which exerted forces on a ring-shaped neodymium magnet
attached to a pen. Mignonneau and Sommerer [189] created an artifact that simulates atomic
forces. It contains arrays of large electromagnets that actuated permanent magnets attached
to the user’s hand at distances of up to 15cm. Similarly, Weiss et al. [286] used an array
of EMs and a permanent magnet attached to a finger to guide users’ fingers on tabletops.
They created an attraction force right below two touch buttons visualized on the screen and
repulsing forces around them. This resulted in reduced cumulative drifting in comparison
with their baseline without a force field. In our work, we follow a similar technical approach
in a different context (keyboards) and with a stronger focus on the impact of design choices
(e.g., the placement of the magnet).

11.2 Prototype to Influence Key Targeting

Related work has shown that electromagnets can be used to exert noticeable forces and in-
duce changes in user behavior. With our work, we extend this research to the context of
keyboards. The particular challenge is to exert sufficiently strong forces also in mid-air
while using a minimally invasive setup (magnetic strip). At the same time, the electromag-
nets (EMs) need to be as small as possible to fit below the keyboard and have to be placed
densely to allow for precise exertion of force. In this section, we describe the design and
implementation of a first prototype for achieving those goals.
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(a) The matrix of electromagnets
is on the left and the power sup-
ply units are on the right side.
The microcontroller is situated
behind the power supply units.

(b) Top view of our finished proto-
type. The keyboard is fixed with 3D-
printed clamps and an emergency
button is placed in the right corner.

(c) Dimensions and place-
ment of the electromagnets
under the keyboard.

Figure 11.2: Overview of our final prototype consisting of a wooden box a) housing the EMs
and the electronics, b) the keyboard mounted on top. Figure c) shows how the magnets are
placed under the keyboard

11.2.1 Electromagnets

While smaller EMs provide a higher density of points that can create attraction or repulsion
they also produce a weaker magnetic field.

As a trade-off, we chose a diameter of 40 mm and a height of 25 mm. For our prototype,
we created a matrix of six such EMs to cover the left half (as we only actuate one hand) of
the keyboard (see Figure 11.2c). All EMs were built with a self-made winding machine1.
We used self-bonding magnet wire (diameter: 0.58mm, resistance: 0.0871 Ω ·m−1) to create
stable coils. Such coils also have better cooling capabilities as no additional casing is needed
to prevent unwinding. We inserted an iron core into the coils to finish the EMs.

Due to minor imperfections in the process, diameters ranged from 35.8 mm to 40 mm and
resistance from 7.3Ω to 7.7Ω (measured at 23.7°C). When applying 40 V, we measured
currents between 4.2 A and 5.3 A. To achieve a similar force for all EMs we set the maximum
current to 4.2 A. We used pulse width modulation (PWM) to dynamically control the force
created by the EMs. We used a frequency of 17.5 kHz for the PWM as it is slightly below
the maximal audible frequency (20 kHz) and thus hardly noticeable.

1 Coil Winder: https://github.com/bonafid3/CoilWinder, last accessed October 16, 2024
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11 Supporting Key Targeting using Electromagnets

11.2.2 Electronics

Each EM consumes a maximum of 168 W (4.2A · 40V). We design for a maximum of three
simultaneously powered EMs (504 W) and thus use two 360 W power supply units (PSU)
that we adjusted to provide 40 V each (9 A); leaving a 216 W margin for current peaks. Each
EM has one current sensor with a measurement resolution of 0.2V/A. This allowed us to
monitor the consumed current, which is crucial as it is directly related to the created force
and can be affected by variations in the coil resistance due to temperature changes. We
further included an envelope detector to smooth the current sensor’s output signal and filter
possible peaks. Next, we sample the data using an analog to digital converter (ADC)2. We
specifically chose an ADC with a high sampling rate to measure the current signal, since it
is influenced by the 17.5 kHz PWM signals. To control our setup we used an ESP32 micro
controller (µC), which generates 12 independent PWM signals (i.e., two 17.5 kHz signals
per driver with a 10-bit resolution). We isolated the µC to protect it from high currents and
to allow for a modular circuit design. We used two drivers3 suited for a current of 3.6 A in
parallel for each EM. Both drivers in parallel can handle a current of a maximum 7.2 A –
enough for the required 4.2 A and potential current peaks. Please refer to Appendix D for
detailed schematics of the circuit.

11.2.3 Assembly

We built a portable wood box that contained the EMs and attached the keyboard on top (see
Figures 11.2a and 11.2b). A cut-out on the top panel of the box exposes the EMs. We used
a generic wireless keyboard4 with a QWERTZ layout. The keyboard contained a steel sheet,
that we cut to accommodate the EM matrix, remove all magnetic elements between keys
and EMs, as well as to minimize the distance to the top to 5.84 mm, leading to more exerted
force. We used an aluminum cooling block and thermal pads to cool the EMs. To exert forces
on the users’ fingers we built a magnetic strip that is attached to a finger and actuated by the
magnetic field. We sewed a cylindrical N52 neodymium magnet (10×8.5 mm) to a velcro
strap (see Figure 11.3). It is reusable, adjustable to different finger sizes, and sufficiently
rigid to avoid the rotation of the magnet.

2 MCP3008, ADC with 8-Channel, SPI capable with a max. sample rate of 200 kilo samples per second and
10-bit resolution

3 DRV8871 motor driver breakout boards: https://www.adafruit.com/product/3190, last
accessed October 16, 2024

4 Keyboard: https://www.amazon.de/gp/product/B089FF153B/, last accessed October 16,
2024
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(a) Position 1:
distal (top)

(b) Position 2:
intermediate (top)

(c) Position 3:
intermediate (below)

(d) Position 4:
proximal (below)

Figure 11.3: Positions of the magnetic strip in our study.
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(b) Side and top view of the force field of two EMs
at a current of 2A.

Figure 11.4: Results of force measurements in a regular 5mm grid: a) We measure a maximum
force of 3.56N for 4A and a distance of 10 mm that decreases exponentially with distance. When
combining two EMs their magnetic fields merge (b, c).

11.3 Evaluation

In this section, we evaluate if our prototype can generate sufficient forces to influence a
user’s finger movement and could thus in the next step be used to influence typing. To this
end, we 1) measure the forces exerted on the magnetic strip and 2) conduct a preliminary
user test to determine the best electromagnet configurations (strength and direction of the
force) and positioning of the magnetic strip to induce noticeable changes.
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11.3.1 Force Measurements

We measured the force exerted to a cylindrical N52 10×8.5 mm neodymium magnet (as the
one we used in the magnetic strip) with a force gauge (Sauter FK10) while applying constant
currents to the electromagnets.

Maximum Force

To determine the maximum force we measured repulsion exerted by the EM to a perma-
nent magnet centered above the core while changing currents and distances. Figure 11.4a
illustrates the exponential decrease of force with respect to distance (e.g., 0.90 N for 4 A at
25 mm vs 3.56 N at 10mm). We measured a maximum force of 3.56 N for a distance of
10 mm at 4A. For 3 A, 2 A and 1 A we measured 2.91 N, 2.01 N and 1.04 N respectively.

Force Distribution

To understand the interaction between EMs we also performed measurements at 2 A in 5 mm
steps in the orthogonal and parallel planes with two EMs side by side. Figure 11.4b shows,
that the measured force in points between the two EMs is greater than the force in points that
are situated on the outer sides. For example, we measured a force of 0.48 N (between) in
comparison to 0.3 N (outside). This implies that we can exert more consistent forces within
the EM matrix, while the field rapidly decays when reaching the outer border.

11.3.2 User Study

To find the best configuration for influencing finger movement we conducted a pilot study,
exploring both the choice of finger and positioning of the strip thereon under varying forces.

Conditions & Measurements

We used a within-subject design with 3 independent variables: We vary magnetic CONFIG-
URATIONS between 50% and 75% of the maximum current (2.1 A and 3.15 A respectively)
for both, attraction and repulsion as well as an additional off -condition. We decided against
stronger currents to avoid potential overheating. We explored placing the magnetic strip on
all FINGERs but the thumb as it is not commonly used for typing letters. We further placed
the strip at the top and bottom POSITION of each phalanx of the fingers5 (see Figure 11.3).
We excluded the bottom of the distal phalanx because of the resulting inability to press a key
and the top of the proximal phalanx due to the large distance to the EM. To assess the best
position we captured typing-related measures like key press duration, flight time, and error
rate as well as subjective feedback on the comfort and noticeability of the force.

5 Phalanges are the bones forming the fingers. From fingertip to palm they are called distal phalanx, interme-
diate phalanx, and proximal phalanx.
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Figure 11.5: Flight time and key press time depending on finger used, magnetic configuration
applied (negative values denote repulsion) and the position of the magnetic strip. Errors mainly
occurred for the pinkie in the third position under attraction.

Procedure

Participants answered a demographic questionnaire before the magnetic strip was placed
in the first position. Subsequently, they entered a specific two-key-sequence five times.
Each repetition included pressing

�� ��Ctrl and then one of the keys y, s, or w. The target
key varied depending on the position of the magnetic strip and was chosen so that the strip
was always situated over the bottom left EM (see Figure 11.2c) when typing the key. Note,
that for this preliminary test, only this EM was active and we did not evaluate the interaction
effects of multiple EMs. All participants first repeated the task for all EM configurations
at the first position (top of distal phalanx) of the first finger (index finger). This procedure
was repeated for all positions on the first finger before changing to the next finger. The
force configurations followed the order: 1) both attraction configurations, 2) off, and 3)
both repulsion configurations. After each configuration participants filled in a questionnaire.
Placing the off-level between the attraction and repulsion allowed the EMs to cool down
before being turned on again. The order of force magnitudes (50% and 75%) was balanced
between tasks. At the end of the study, participants filled out a final questionnaire with
questions on the study experience. Overall participants completed 80 tasks (5 configurations,
4 fingers, 4 positions) and filled out 50 questionnaires (48 task questionnaires, demographics,
and final questionnaire). The study took about 105 minutes per participant.

Participants

We recruited 4 participants (ages 26–64, two male, two female). They all type for more than
two hours per day. Note: this evaluation is intended as an initial test of possible prototype
configurations so we chose a small sample. We intend to investigate actual typing in a larger
study with more participants in the future.
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Finger Position Configuration
Statement Index Middle Ring Pinkie 1 2 3 4 Rep. Off Att.

Force was noticeable 2 2 2 2 2 2 2 2 2 1 3
Typing was comfortable 4 4 3 2 3.5 3.5 3 3 3 3 3
Typing was influenced 1 2 2 3 2.5 2 2.5 2 2 1.5 2.5

Table 11.1: Median participant response to the Likert items presented after the tasks (1: totally
disagree, 5: totally agree, Rep.: Repulsion, Att.: Attraction).

11.3.3 Influence on Key Targeting

To account for learning effects we discarded the first repetition of each task. Given the small
sample size, we do not conduct statistical tests but report general tendencies. We found that
the overall mean key press duration was 0.111s (σ = 0.037s) and the mean flight time was
0.398s (σ = 0.107s). Participants made a total of 34 errors (i.e. hit a wrong key) but 306 of
the 320 conducted tasks (80 tasks per participant) did not include errors. Results are shown
in Figure 11.5.

We observed mostly comparable results across fingers. However, both flight time and key
press duration were longer when using the pinkie. Similarly, 30 of the 34 errors were made
when using this finger. Regarding the position of the magnetic strip we saw no clear impact
on the flight time but longer hold times in the first and third positions. This effect particularly
shows for the pinkie and index finger (only for the first position). Most errors (30) occurred
in the third position. The configuration had no clear impact on flight time but impacted key
press times with time increasing for attraction compared to repulsion. This is most prominent
in the first position. Most errors (30) were made in the attraction conditions. In summary,
errors mainly occurred for the combination of pinkie, third position, and attraction. Effects
were generally more pronounced for the pinkie. While flight time was mostly unaffected we
observed longer key press times in the first and partially also third positions that increased
with stronger attraction.

11.3.4 User Perception

Participants were asked to rate Likert statements from 1 (totally disagree) to 5 (totally agree)
after each task block. The results are shown in Table 11.1. Participants generally rather dis-
agreed with noticing the force except for the attraction configuration which was rated neutral.
Comfort was rated best for the index and middle finger (Mdn=4) and decreased towards the
pinkie (Mdn=2). Both position and configuration were rated as neutral (3<Mdn<3.5). Con-
versely to the comfort, the participants’ feeling of being influenced increased from the index
(Mdn=1) to the pinkie (Mdn=3). Participants felt slightly more influenced in the first and
third positions (Mdn=2.5) as well as under the attraction configuration (Mdn=2.5) compared
to repulsion and the other positions (Mdn=2).
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In the final questionnaire, participants rated the force for positions three (under the mid-
dle phalanx) and four (under the proximal phalanx) as the most noticeable. They felt the
strongest force for the ring finger and pinkie. Participants liked the off-condition best, fol-
lowed by attraction at 50% and repulsion at 50%. The least preferred options were both
75% configurations. For a direct comparison, 3 of our 4 participants generally perceived
the attraction as stronger than the repulsion. Two participants rated attraction to be more
comfortable, while the others found both conditions to be equal.

11.3.5 Limitations

Reflecting the preliminary nature of our study our sample was quite small so results may
not generalize to the general public. We also simplified the interaction for the study and
used only a single EM at a time. Hence, we have no insights into the interaction effects of
multiple EMs (as can be seen in Figure 11.4). Furthermore, we limited the supply current
to avoid potential overheating. A more effective cooling mechanism could reduce this for
future applications.

11.4 Discussion

Here we discuss the results of our evaluation as well as applications for our approach and
next steps to improve it.

11.4.1 How to Influence Users’ Key Targeting?

We found, that exerting forces on the pinkie was most effective in influencing users’ key
targeting. It led to more errors, longer key presses, and flight times. It was also perceived by
participants as the most influential. Furthermore, our results show that the exertion of forces
on the various fingers affects the key-targeting less the closer the finger is to the thumb.
Hence, participants rated the index and middle finger as comfortable but participants felt
less influenced. We assume that this is connected to the strength of the fingers and their
frequency of use in daily life. However, it also implies, that there is a trade-off: Placing
the strip on one of the weaker fingers opens more opportunities for manipulation but was
rated less desirable. With regard to the positioning, we observed that placing the strip at the
fingertip (first position) led to a longer key press duration that increased when moving from
repulsive to attracting configurations. This makes sense, as placing the strip at the fingertip
means the force is applied right at the touch-point (and with a longer lever). Overall, placing
the strip on top of the fingertip of the index finger may be the best option, as it combines
the perceived comfort of the index finger and the observed (but not perceived) possibility for
targeted key press time manipulations through different electromagnet configurations.
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11.4.2 Applications

To use our prototype in a running system, further tests, adaptations, and extensions will be
needed. Nonetheless, we would like to outline some application examples and describe how
our approach could either enable or improve them.

The addition of feedback is beneficial in most areas of Human-Computer Interaction (HCI).
However, feedback (e.g., vibration to confirm a button press) can only be given after an
action. By inducing repulsion or attraction we can instead provide mid-air feed-forward
information. A user can thus anticipate the consequences of an action before it is executed
(e.g., induced resistance on the enter key could indicate missing information in a form).

Mag(net)ic Teacher

Our approach also has potential for learning applications. Pangaro et al. [201] showed,
that with additional tracking an array of electromagnets could be used to precisely guide
a permanent magnet in a 2D plane. This could be transferred to guiding a user’s fingers,
e.g., for learning to type with 10 fingers. For learning timing tasks (e.g., playing music or
gaming) no tracking is required: users could be guided by attraction and repulsion alone.

Preemptive Auto-Correction

The use of auto-correction is common for most typing applications. However, in those ap-
plications, the typed text is changed post-hoc and potentially unbeknownst to the user. Our
prototype could improve this by making the correction step explicit. Evaluating the already
typed letters in a word it is possible to determine all continuations that will result in a dictio-
nary word and add attraction to valid continuations or repulsion to keys that would generate
an invalid word. Also notice how this gives the user agency over following the suggestions
on the fly, whereas classical auto-correction will need post-hoc revision if undesired.

Behavior Veiling

Keystroke dynamics allow for seamless and continuous authentication but can also happen
unwanted or unnoticed (e.g., a website recognizing users without cookies). In Chapters 9 and
10 we showed that this can be mitigated through intentional behavior change. Our approach
enables a low-effort alternative. Through random attraction and repulsion a user’s unique
typing patterns could be veiled, making identification harder or potentially even impossible.

11.4.3 Next Steps

In our work, we only influenced a single finger. While this may be enough for many applica-
tions (e.g., mid-air feedback or teaching one finger at a time), other approaches may require
being able to influence multiple fingers. One way could be the use of multiple magnetic
strips per hand (e.g., to influence the pinkie and thumb which are commonly responsible for
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using the space bar and enter key), though the magnets could interact and lead to unwanted
effects. The question of how to address this remains up for exploration, but one solution
may be using gloves with small, embedded electromagnets that can be activated on demand.
An additional requirement for many applications is tracking. Park et al. [202] made use of a
magnetic ring and the smartwatch magnetometer to identify the finger used for interaction.
Our prototype could achieve this by measuring the induced current of the magnetic strip on
the electromagnet matrix to determine the finger used. Alternatively, Dai et al. [66] have
shown, that using magnetic sensors (below the keyboard in our case) it is possible to track
the position and orientation of a permanent magnet.

For our prototype, we made specific decisions with regard to the size and placement of the
electromagnets as well as the magnetic strip to generate sufficient force to exert noticeable
effects on a user’s finger. As a next step, we plan to build smaller magnets to be able to
more precisely target keys. This may be achieved by choosing thinner wire to enable more
windings or experimenting with stronger permanent magnets. Note, that requirements also
strongly depend on the application (see Section 11.4.2) (e.g., guiding a user’s finger may
require a better resolution but could be subtle and thus use less force). Moreover, while we
used a regular keyboard, alternatives such as ergonomic keyboards could also be interesting
for future research.

11.5 Implications

In this chapter, we presented the design and implementation of a prototype to exert forces
on a user’s finger with the goal of influencing key targeting. To achieve this, we generate a
magnetic field using a matrix of electromagnets under the keyboard. A permanent magnet
on the user’s finger serves to transmit the force.

We found our prototype to be able to exert noticeable forces and revealed a trade-off between
comfort and the noticeability of force when placing the permanent magnet.

This chapter highlights the potential of our approach, not only to be used as a biometric
interface to support users in taking agency over their recognition with less active effort but
also as a teaching and feedback tool with potential applications in many areas of HCI.
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PART V: DISCUSSION & CONCLUSION

In this part, we take a step back from the research we did and discuss implications and
extensions of our work.

❖ Chapter 12 discusses our insights towards designing user-centered biometric inter-
faces, and use cases beyond design and biometrics. We also take the opportunity to
reflect on the methods used in this thesis.

❖ Chapter 13 concludes this thesis by reflecting on the contributions and giving direc-
tions for future work.
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12
Discussion & Reflection

In this thesis, we took a user-centered approach to both create and enhance biometric inter-
faces that can support user literacy and agency. To this end, we took steps to assess user
needs and perceptions with regard to their current use of biometrics and suggested improve-
ments to the interfaces they use to interact with biometric systems.

Literacy and agency are two interwoven goals and achieving them also depends on user in-
terest and motivation to take action. Given, that biometric models are often not publicly
available and behavioral biometric approaches are not yet widely used, assessing users’ per-
ceptions and testing our solutions was challenging. In this chapter, we discuss what we
learned about designing biometric interfaces and reflect on the methods we used within this
thesis. Finally, we outline how our findings can benefit different target groups and be used
beyond the design of biometric interfaces.



12.1 Design Considerations for Biometric Interfaces

Here we give a summary and discussion of our findings regarding the design of biometric
interfaces, highlighting when and how to communicate information and support user agency.
We conclude this section with a short summary of how to practically approach designing
interfaces for biometrics.

12.1.1 User-centered Approach

We strongly focused on user perception and interaction with biometric systems rather than
technical aspects like their training or performance of underlying models to improve bio-
metrics in this thesis. This naturally raises the question, of whether user interaction with
biometric systems is generally needed or if we should rather try to automate processes where
possible and focus on improving the models instead. Based on Cranor [61], security systems
should keep humans out of the loop where possible. However, it is important to design for
the user whenever this is not the case. For biometrics, we are faced with such a case, as they
are inherently about the human (i.e. measuring features of human physiology and behavior)
and thus humans also are a huge influencing factor in their performance.

In our work, we tried to follow this approach and make processes more transparent to the
user, even though options for automation would have existed. Instead of illustrating potential
error cases of a face recognition model to the user (see Chapter 6), we could have tried to
automatically find the globally best settings for this user instead. Instead of nudging users
to type differently by inducing force on their fingers (see Chapter 11), we could have tried
to solve the problem programmatically [252] and thus kept the step invisible to the user.
However, this also means, that users would have to rely on a solution not graspable to them
and without an option to control it. More generally, keeping the user in the loop gives them
both the option to make active choices (e.g. choosing their settings or following or ignoring
a nudge) and build a mental model of the underlying model that can help them in their future
interactions. That said, such active involvement should be optional and design should strive
for a default behavior that is as secure as possible to account for users’ willingness to engage
with biometric interfaces (compare Section 12.1.5).

Biometrics inherently require a human in the loop and biometric interfaces should be
designed accordingly to allow users to take control and build mental models.

12.1.2 Terminology

When investigating the use and perception of biometric methods we also asked participants
to explain, what biometrics are (see Chapter 3). Many participants struggled with this ques-
tion and made connections to other concepts like biology. However, after seeing the defini-
tion, most participants named many correct examples of biometric methods. We believe that
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terminology may be a problem here, as the term biometrics is often only used in connection
with passports while biometric mechanisms in practice are referred to by the specific feature
they use (e.g. fingerprint). We thus believe, that communicating on the level of concrete
examples may be most effective.

Jain et al. [144] describe features suited as biometrics, including the requirement for them
to be (sufficiently) distinctive and permanent. However, in our work, we showed that partic-
ipants could actively control their typing behavior (Chapters 9 and 10), contradicting those
requirements. Related work found similar effects for attack scenarios [159, 265], implying,
that the term biometrics may be misleading in this case.

Terminology is a complex construct that grows and evolves over time. However, when com-
municating functionality to users those terms should be used cautiously to avoid associations
that are not related to security or imply more security than the system can offer.

When communicating the functionality of biometric systems to users, concrete exam-
ples should be used. The term biometrics should be used cautiously as it can lead to
misconceptions about the function and security of a system.

12.1.3 Leveraging Information to Support User Literacy

In this thesis, we argue for user literacy as a basic building block for an informed and secure
use of biometrics. This includes basic knowledge about the functioning of biometric systems
and their weaknesses [48, 82, 298]. However, generic information is often not useful, when
performance for different users and user groups can strongly differ [294] and also depend
on external factors [29]. As such it is important for users to be able to form a correct mental
model of how their biometric systems work to securely use them [284]. Based on our work
we suggest user-centered sources of information to support this.

Personalized Performance Metrics

In Chapter 6 we introduced a method to generate challenging samples for a decision-making
model. We used this approach to explore the weaknesses of a face recognition model, but it
can also be applied to single users by embedding their faces in the latent space. While global
performance measures like model accuracy may be hard to grasp (what does it practically
mean that a model is wrong in 1% of the cases?), our approach allows users to draw their
own conclusions by comparing the model ratings on the generated samples to their own
expectations. As such the user can actively gain insights into the model and may even be
intrigued to explore further.

Predictive Information

In addition to understanding how a biometric system generally performs for a single user,
it is also important for them to be able to predict its reaction to changes. As an example,
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our generative method (Chapter 6) could be extended to produce meaningful alterations to
their appearance (e.g. changing their age or pose) [137, 246, 283] to allow them to predict
how the biometric model would cope with those changes in reality. The indicators proposed
in Chapter 8 allowed a user to gain insights into the current device confidence level and
anticipate an upcoming re-authentication. Matching the development of device confidence
to events in their life or actively changing their behavior to see the impact can help users
build a mental model of how the system will react to changes in the future.

Context Information

Finally, we observed, that not only the users themselves but also their context and surround-
ings can play a significant role in the performance of a biometric system. In Chapter 7 we
explored how an interface could look like, that leverages contextual information to suggest
the use of an appropriate authentication mechanism. The advantage of displaying the ratio-
nale behind this suggestion (instead of e.g. automatically switching when possible) is again
the opportunity for the user to understand which factors impact the biometric system and
anticipate them in the future.

Where possible, biometric interfaces should leverage user-centered information like
personalized performance metrics, predictive information, or context information in-
stead of global performance metrics.

12.1.4 When to Present Information

We introduced biometric interfaces as any point where users come in touch with a biometric
system. However, not all of those interactions are equally suited for presenting information.
In Chapter 5 we found three opportunities for presenting information: one-time (e.g. at
enrollment), continuous, or event-based. Here we summarize our findings from exploring
those options and our insights as to which information is suitable in those cases.

In Chapter 6 we explored a method to provide information at enrollment time. The main
goal at this point is to provide users with the necessary information to make an informed
decision for or against using a biometric system or which parameters to choose if they are
available. Our approach can enable such comparisons by showing results for different recog-
nition thresholds or training samples. A continuous indicator can be useful to get insights
into the current system status (see Chapter 5), in particular as continuous biometric systems
are designed to work in the background and a user may need reassurance that it is still run-
ning. Potential reasons for event-based interventions can be (upcoming) re-authentications
or contextual information relevant to the authentication process. Our work (see Chapter 7)
showed, that such contextual information was well received and users followed the sugges-
tions. However, it is also important that perceived reasons match the system explanation
to not hamper trust in the system. We also found that users should not be interrupted in
their interaction without need, in particular for important tasks (see Chapter 8). Short-term
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indicators can offer a compromise for necessary interruptions to allow users to finish their
current tasks.

One point to consider in all of those cases is to make certain, that only legitimate users get
access to this information. Similar to the legitimate user, an attacker could leverage feedback
to gain insights into the model or expected inputs and use them to facilitate an attack. As
such, information should only be presented after successful authentication.

Information can be displayed one-time, continuous, or event-based. Displaying event-
based information should consider the trade-off between importance and interrupting
the user. Information should only be displayed in a secure environment (i.e. after
authentication) so that it does not facilitate attacks.

12.1.5 Degrees of Involvement

In this thesis, we often assumed, that users would want to better understand a system and
gain more agency over it. However, this is not necessarily the case and many users may be
contempt as long as their biometric system works. Designers of biometric interfaces should
thus consider how much users should be involved and how much they want to be involved.
They should offer solutions for both cases. Using generated samples to illustrate system
performance is a good example of this (see Chapter 6). Presenting just sample cases and
their respective ratings by the biometric model does not cause any additional effort from
the user. In case they are interested, the same approach can be used to build an interactive
application that allows for active exploration. We also explored embedding an interface into
a game to increase motivation to engage with it and – in the best case – achieve a learning
effect the user may not even have looked for in the first place (see Chapter 10). We found
our design effective in appealing to the groups of players it was designed for. Finally, an
approach like context-based authentication method switches as proposed in Chapter 7 could
be automated for users that only want their system to work but still display information about
the switch to give explanations to users who are interested. Depending on the used methods
this can also preserve the original interaction, for example triggering authentication through
touching the fingerprint sensor but using face recognition. Reflecting on those options, it
becomes clear, that gaining information or agency should be easy and offer the option to
explore more if users are interested. This is particularly true as authentication in itself is
already considered a secondary task (in the way of the main interaction goal of the user).

Biometric interfaces should allow for and encourage involvement to support user lit-
eracy and agency but should always expect that users may not want to engage.
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12.1.6 Interplay of Literacy and Agency

Throughout this thesis, we often put a stronger focus on either supporting user literacy or
user agency. However, the two aspects are often not clearly distinguishable and should not
be seen as separate aspects in practice. Biometrics are based on complex machine learning
models, so giving users control over aspects like model parameters only makes sense if they
understand what they do. Similarly, literacy by itself can be valuable, but options to act on
this knowledge are limited as long as users have no agency to take control.

This is also reflected in our work. In Chapter 7 we built an interface to inform users about
the impact of contextual factors like moisture on using fingerprint recognition. However, we
combined this with a nudge to take control and switch to a different authentication method.
In Chapter 11 we proposed the idea to use electromagnets as a way for users to modify their
keystrokes without having to actively control their typing. However, the exerted force on
the user’s finger is still just a nudge, leaving users with full control if they want to follow
it. When they decide against it, this nudge still serves as a reminder that typing could be
modified and how it would be done. As a final example, we designed Imitation Game as a
game to support users in gaining control over their typing behavior and subsequently over
keystroke dynamic biometric systems (see Chapter 10). However, to learn this skill users
need to first understand which aspects of their typing are relevant and how small changes in
their typing influence the sensor readings.

Biometric literacy and agency are interlinked and biometric interfaces should be de-
signed to facilitate both.

12.1.7 Summary: How to Approach Designing Biometric Inter-
faces

Here, we summarize our insights into the design of user-centered biometric interfaces in
the form of a set of questions and considerations for designers to follow. They are based
on the user-centered approach we took in this work and thus emphasize user needs as the
main driver for design. Our recommendations are based on and extend the design space we
established in Chapter 5.

Why is a biometric interface needed? The first consideration should be about the (user)
problem or need that should be addressed. This also includes the question of whether it is a
purely technical problem or if user insights into the solution are beneficial to them (e.g. to
build a mental model or anticipate similar situations).

Who is the target audience? This question is aimed at better understanding how a solution
needs to be presented. For end-users, complex terminology should be avoided in favor of
examples. For developers, precise terminology may be helpful. This question is also aimed
at finding out, how users can be motivated to interact with a biometric interface, e.g. in the
form of a game or an incentive structure.
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What information can be leveraged? Where possible, personalized information should be
preferred over global performance metrics (e.g. how does the system work for my personal
situation rather than how good is it in general).

When should the interface be presented? We found enrollment, authentication, and event-
based interventions to be possible opportunities to show biometric interfaces. The exact
choice depends on the concrete use case. If event-based interfaces are needed, their timing
should be well considered to avoid (unnecessary) user interruptions.

How should the interaction look like? Biometric interfaces can be purely informative but
should in general contain an option for users to take action. However, this step should
also consider, that authentication is a secondary task and users may not be interested in an
interaction.

Which method is suited for evaluation? Following a user-centered design approach also
means, that interface designs should be evaluated with users. If possible, users should inter-
act with a real interface in the field. Mocking functionality can be a viable way of making
this possible.

12.2 Reflection on Methods Used

The representation of risk and external validity of security studies are a general challenge of
usable security research [80](see Section 2.5.3). Here we reflect on our choice of research
methods made throughout this thesis.

12.2.1 Reflection on Mocking Interactions

Testing biometric interfaces is a difficult task. On one hand, many models currently used are
proprietary and thus cannot be modified or used in studies. Other approaches are still in the
research phase and thus not widely available. On the other hand, having study participants
use self-developed or open-source solutions can put them at risk as they may actually rely on
the security of those solutions. The first responsibility always has to be to keep participants
and their data secure. We thus often relied on adding an interface on top of existing authen-
tication mechanisms (e.g. a PIN) and mocking (parts of) the functionality of the biometrics
systems [65]. Here we reflect on our choices and their implications for our results.

Fully Mocked Interactions

For our investigation of user perception of different biometric mechanisms (Chapter 4), no
actual biometric system was used but all decisions were triggered by a human experimenter.
However, we designed the environment in a way to give the impression of a real setup,
e.g. by showing the pose estimation of a Kinect camera and adding electronics to the door
handle. This approach was very effective in convincing users they had interacted with a real
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system. However, while we simulated error cases, they could not reflect the behavior of a real
system and thus limit our findings in that direction. Similarly, the device confidence level
of our Authenticator app (Chapter 8) was completely mocked as well. However, here we
could not rely on the human judgment of an experimenter to trigger re-authentications as the
study was conducted in the wild. While the approach was successful in testing our indicator
designs, participants also noticed mismatches with their intuition which was reflected in their
ratings. Overall, we find mocked interactions an effective tool for exploring interactions.
However, results cannot directly be generalized, as a mocked system can only approximate
real behavior.

Supporting Mocked Interactions with Real Data

When nudging users to adapt their authentication method to context factors (Chapter 7) we
used a semi-mocked approach, i.e. we used real context data like the local weather when
it was available but chose a random explanation when this was not the case. We believe
this to be an improvement over fully mocked approaches and received no feedback indi-
cating participants noticed some of the given reasons being random. However, participants
perceived suggested switches as significantly less appropriate when they were given an ex-
planation which we believe to be caused by a mismatch between the given information and
the users’ perceived actual context. Overall, the use of semi-mocked interactions can be a
good compromise between exploring an unavailable system and simulating real behavior.

Exploring Real Interactions detached from the Biometric System

Finally, we also explored interactions detached from their respective biometric model. An
example of this approach is our implementation to explore modifications to typing behavior
without involving a real recognition model described in Part IV. As such we did not need
to account for participants’ security but in turn, gained insights about modifications of typ-
ing only on a more fundamental level instead of observing it when interacting with a real
biometric system. This approach can be useful to fully explore an interaction but may be
limited in its generalizability to use in a different context.

(Partially) mocking interactions and systems can be an effective tool to explore bio-
metric interfaces. When explanations are given, great care should be taken to avoid
mismatches between the presented information and users’ perceived reality.

12.2.2 Reflection on taking Studies to the Wild

In this thesis, we conducted both studies in the lab and in the wild but always gave priority
to testing under realistic conditions when possible. In Chapters 9 and 10 we explored an
approach to extend a study originally designed for the lab to be viable in a remote setting
using gamification. Here we reflect on the differences observed from this direct comparison
but also our general observations with regards to the different study types.
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The probably most prominent difference is an increase in effort when conducting studies in
the wild. The design has to account for different user setups and the lack of a researcher
present who can spot potential errors or answer questions that may arise. Prototypes thus re-
quire extensive testing and iteration. However, even with all precautions, it is hard to foresee
all possible cases, making in the wild studies also more prone to errors. That said, the benefit
of conducting studies in the wild is gaining better insights into the way users would actually
use a system. As an example, we observed that lab participants of our Imitation Game study
(Chapter 10) were better at modifying their behavior and reported higher motivation. There
are different possible explanations for this, but we believe one main point to be observa-
tion bias, leading to remote participants interacting with the system more like they actually
would while lab participants had a bias to “perform” better. While this is a weakness we
also see this as the strength of lab studies: they can reveal the best-case outcome of using
an intervention and thus serve as a goal to strive for and to compare against. While it is less
ecologically valid, their results have more internal validity as researchers have more control
over the environment and can thus exclude many factors that can impact the outcome of an
in-the-wild study.

Lab studies can reveal the potential of a biometric interface but should be comple-
mented with in-the-wild studies to understand real usage and shortcomings.

12.3 Insights and Use Cases Beyond Biometric
Interfaces

This work was mainly concerned with the design, implementation, and evaluation of con-
cepts for biometric interfaces for end-users. Here we discuss, how our results and approaches
can be useful beyond this specific use case and target group.

The main focus of this thesis was on end-users and thus our work was aimed at designers
of biometric interfaces for end-users. To this end, we uncovered design considerations and
user preferences, and suggested new and extended interfaces to convey this information and
enable control for users of biometric systems. However, we see value in our results beyond
this group. Our insights on user perception and misconceptions with regard to biometrics
can be useful for educators to give a more nuanced picture of biometrics and their use.
Developers of new biometric methods can consider the user preferences uncovered in our
work and use our method for finding challenging samples for decision-making models (see
Chapter 6) as a user-centered approach to inspect their models and to generate new training
data to improve them. We believe this approach to also extend to other domains, though
small adjustments may be needed to reflect relevant samples for the specific use case. We
further introduced and showed the viability of adding explicit behavior modifications as an
additional security layer for password systems. For providers of biometric systems, we hope
this work illustrates the value of giving users control over the model (parameters) as well as
the need for clear communication during enrollment to enable informed use of their systems.
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Finally, other researchers can follow our approach for converting a security study to a game
guided by a player-type model [25] to take their work to the wild. Our magnetic keyboard
can be leveraged beyond security to convey both feedback and feed-forward information,
which can be useful in many areas like text correction or learning to type.

Thinking more broadly, physiological and behavioral measurements become increasingly
available through different devices. Some examples include the wide range of physiologi-
cal and behavioral measurements modern smartwatches provide, tracking of user behavior
online or in games, or gaze and motion tracking in VR environments. Possible applications
include but are not limited to general health monitoring, adaptive interfaces, or personalized
suggestions (e.g. in the form of a running coach). While the context is different, similar
questions to the ones found in this thesis may arise: Why was a decision made, how do
external factors impact the system, or what options exist to take control over the collected
data and its use? We thus believe, that both our design approach and discussed consider-
ations (see Section 12.1) can be a valuable starting point for exploring interfaces for such
applications.
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13
Conclusion and Future Research Directions

We conclude this thesis with a summary of the contributions made. We further outline
directions for future research building on our work before closing with some final remarks.

13.1 Summary of Contributions

With this thesis, we contribute to answering three overarching research questions: what are
user needs with regard to biometrics, how can they be supported to acquire literacy about
biometric systems and how can interfaces be designed to enable and extend user agency over
their biometric systems? Here we summarize our contributions to those questions.



13.1.1 What are user needs and how can they be addressed
through the design of biometric interfaces?

We conducted three studies to understand user needs and preferences as well as to uncover
design opportunities for biometric interfaces. In Chapter 3 we assessed the use and per-
ception of biometrics in two surveys four years apart. We found that participants struggled
with explaining what biometrics were but could name examples. They were worried about
changes in their physiology and behavior affecting biometric systems. Despite the increased
adoption of biometric methods – in particular face recognition –, we observed no clear dif-
ference in biometric literacy between the two surveys. In Chapter 4 we compared user per-
ception of a key, gait recognition, and a palm vein scanner to unlock doors in a Wizard-of-Oz
lab study. We found that participants liked the convenience of the biometric methods, but
were still concerned about them and valued the agency that the key gave them. In Chapter 5
we contribute a design space on communicating the security of biometric systems derived
from a focus group. We establish the dimensions of input, output, and purpose as guiding
elements in the design of security indicators.

Together those chapters lay the foundation on which we built our investigation of how to
increase user literacy and agency through the design of biometric interfaces.

13.1.2 How can users be supported to acquire biometric literacy
through biometric interfaces?

To answer this question we explored points where users come in contact with biometric sys-
tems, namely enrollment, authentication, and re-authentication. In Chapter 6 we contribute
a method to generate challenging samples that can be used to explore the weaknesses of
a biometric model (here face recognition). We propose to generate such samples for single
users to give them an impression of the individual performance of the model on their data. In
Chapter 7 we propose and evaluate the use of context information to nudge users to choose
the appropriate authentication mechanism. At the same time, this approach can contribute
to users’ knowledge of context factors influencing their biometric system. In Chapter 8
we contribute the design and evaluation of indicators to communicate the system state of a
biometric model as well as upcoming re-authentications.

Together, those contributions can help users gain personalized insights into the performance
of a biometric system, understand and react to contextual factors influencing it, and antici-
pate model decisions through introspection into its state.
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13.1.3 How can biometric interfaces be leveraged to extend user
agency?

Instead of a broad approach, we decided to answer this question with a single biometric sys-
tem and explore more opportunities in the process. In Chapter 9 we show in a lab study, that
users are able to take active control over their typing behavior. This gives users agency over
when to be identified and can be used as an additional layer to increase the security of pass-
word authentication. In Chapter 10 we show, how this complex lab study can be transformed
into a game to make training for this skill available and motivating to users in the wild. With
Chapter 11 we explore the use of electromagnets to free users from having to actively control
their behavior to achieve typing modifications in the first place. However, this approach still
retains user control, as users are only nudged towards the desired modifications.

Together, those chapters show that it is possible to gain agency over a biometric method that
does not inherently offer interfaces. We further contribute two methods to make this task
more engaging and less effortful for the user.

13.2 Future Research Directions

In the previous sections, we reflected on the work done in this thesis. Looking ahead, we
now outline some suggestions for future research directions building on and extending the
work done in this thesis.

13.2.1 Extending Proposed Solutions

In this thesis we took a very broad approach, picking many different biometric approaches
to illustrate how interfaces can be built for them. However, this also means that it remains
an open question if they can be transferred to other biometrics, e.g. if our method for finding
challenging samples (Chapter 6) can also be used to generate input for a voice recognition
model or if it is limited to face generation. We investigated users’ ability to modify their
typing (Part IV), but it remains an open question if our findings and solutions transfer to
e.g. modifying gait patterns. Future research can use our solutions and findings as a starting
point to explore effects across biometric methods.

Similarly, our approaches can also be extended to give deeper insights or additional utility
for the biometrics we designed them for. We did not explore how generated samples can
be leveraged in real user interfaces to inform users. They also have further potential to be
used for training purposes. We proposed to leverage context information to nudge users to
switch their authentication mechanism but did not explore the option to automatically make
such switches. We explored electromagnets to influence typing behavior but there may be
other options that do not require active user involvement, e.g. the use of music. Section 12.3
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highlights more potential applications beyond biometrics and end-users as a target group and
we illustrate more potential extensions in the respective chapters throughout this thesis.

13.2.2 Real World Deployment

As previously mentioned, real-world deployments for biometric interfaces are challenging
as many solutions are proprietary and users’ security has to be the first priority. Also, the
focus in this thesis was less on the design of actual interfaces but mostly on which elements
they should include and when and how to present them. A natural next step would be to try
and involve providers of biometric systems to integrate elements of our research into their
products. This step would thus also open up the opportunity to design and compare concrete
(user) interfaces and test their impact in the wild. This thesis could only provide theoretical
insights on whether users would use the proposed solutions but such an approach would
enable real insights into their use and perception. Involving providers would also be the
only way to enable actual choice. Many current approaches do not allow users to configure
them or pick from different models, leaving them only with the choice of either using or
not using a biometric method. Collaboration with providers can open up the opportunity
to find options that are suitable to be customized by end-users (e.g. adapting a threshold
to adjust biometrics to users’ personal preference between security and convenience) and
which settings should be globally optimized instead.

13.2.3 Coping with Changes

A major challenge for biometric systems are changes over time which can appear both in
physiology (e.g. quickly through changing hair styles or slowly through aging processes)
but more prominently also in behavioral patterns. Throughout our work, we saw participants
being concerned about the impact of such changes, but mainly focused on designs for coping
with their consequences by improving the interaction with upcoming re-authentications and
helping users predict how and when changes may impact their biometric system. Technical
approaches for improving biometric models over time already exist, but it remains unclear
how to include users in this continuous learning process. Future research could also further
investigate the influence of temporal factors on biometric systems and similar to our work
leverage this to educate users and give them agency over when and where data should be
used for retraining.

13.2.4 Multi-Biometric Systems

In this work, we focused on a single biometric at a time. However, in practice using multiple
different biometric features is possible [143] and can enable better performance [132] or reli-
ability, as strengths and weaknesses of different approaches may cover each other. However,

204



13 Conclusion and Future Research Directions

it is unclear, how findings for single-biometric interfaces can transfer to multiple biometrics,
opening up new questions for future work. How to communicate the contribution and utility
of different biometrics in the ensemble? How can users get a choice in which features to
use and when? How can multiple biometrics be used to reduce active re-training and re-
authentications? As such, we see the exploration of multiple biometrics (or combinations
with other authentication approaches at that) as a natural extension of our work.

13.2.5 Addressing Privacy Concerns of Biometrics

In our studies, we found many users to be concerned about biometric data being recorded
or misused (Chapter 3). This points to a more general problem where behavioral biometrics
require constant data collection and it is often not clear how this data is stored and used. In
Part IV we made contributions to this field by showing how user behavior can be changed
to gain control over if and when to be recognized by a biometric system. However, there
are many more opportunities for future work to explore how to communicate privacy im-
plications for biometrics and facilitate user choice. What data is used and how can this be
made transparent to the user? How to show when data is collected and what options exist to
give users control over this process? One related goal could be to find new or adapt existing
approaches to use fewer data or only capture data on demand, i.e., when it is needed for
authentication.

13.3 Closing Remarks

Biometrics are nowadays the most used authentication mechanisms for mobile devices and it
stands to be expected that their relevance will further increase with improving algorithms and
sensors in the future. Previous research on the topic was mainly concerned with technical
aspects. With our work we lay the foundation for a more user-centered approach proposing
to educate users about the shortcomings and consequences of using biometrics and enabling
more nuanced user control over their authentication. With the increasing amount of data
protected through biometrics we invite other researchers to take our work as a starting point
for further continuous research in this direction with a focus on users of biometric systems
to shape the secure and informed use of this technology in the future.
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A
Appendix for Chapter 3: Understanding Use

and Perception of Biometrics

Questionnaire

In this section, we list the full set of questions asked in our survey. Wherever an _ appears
it was replaced by the type of biometric (physiological/behavioral) in the corresponding part
of the survey.

Questions in Part B (Demographics)

Please answer the following short questions about yourself.

1. How old are you?

2. What is your gender?

3. What is your profession?

4. How would you rate your technical knowledge? ( 1 (no knowledge) to 5 (very profi-
cient))

Questions in Part C (Biometric Methods)

In the following, you will see several questions about biometric methods.

Are you familiar with the concept of (physiological) biometric methods?

Yes Please give a short definition/explanation. Please give a short explanation of how it
works

No Please think about what it could be and answer with your thoughts

Questions in Part D (Briefing)

With this definition [see Section 3.2.2] in mind, please answer the following questions:

1. Please name all physiological biometric methods that you know/have heard of.



2. Please name all behavioral biometric methods that you know/have heard of.

3. Do you use biometric methods in your everyday life?

Yes Please indicate all of them; why do you use them.

No why not?

4. Beyond the methods that you know about, which physiological characteristics could
you imagine to be used for biometrics? Also, give an application in case you have one
in mind.

5. Beyond the methods that you know about, which behavioral characteristics could you
imagine to be used for biometrics? Also, give an application in case you have one in
mind.

Questions in Part E (Interlude)

Please answer the following questions about your authentication behavior:

1. Do you own and regularly use a smartphone?

2. What operating system does your smartphone use (e.g. Android, IOS, Windows).

3. What (primary) authentication scheme do you use (i.e. how do you usually unlock
your device)? Please select only one option to indicate your primary authentication
scheme.

4. In case you use a biometric method, what is your fallback authentication scheme?
Fallback refers to the method that you have to enter in case your primary authentication
method fails or in some cases on a regular bases (commonly 3 days)

Likert Statements in Part F (Biometric Perception)

Please rate the following statements about physiological biometric methods. There are no
right or wrong answers. This is only about your perception.

1. Compared to a pin/password, using _ biometrics makes authentication faster.

2. _ biometrics methods are reliable.

3. _ biometric methods are easy to use.

4. Performance of _ biometric methods (security, errors,...) is equal for all users.
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5. Compared to a pin/password, using _ biometrics makes authentication more secure.

6. _ biometrics are well suited to protect my personal data.

7. _ biometrics can be faked.

8. I have concerns about my privacy when using _ biometrics.

9. I am concerned that someone might hack my device/account when using _ biometrics.

10. I am concerned that I might have no access to my device/account when using _ bio-
metrics.

Questions in Part G (Performance & Security)

Please answer the following questions about your perception of _ biometrics.

1. Do you think someone else could access your device/account if you protect it with
_ biometrics?

2. Do you think changes in your _ have an impact on _ biometric systems?

3. What do/would you do, in case your _ biometric system does not work (i.e. you are
unable to authenticate with it)?

4. What do you think would happen if someone hacked your _ biometric system (i.e.
what would be the practical consequences)? What would you do?

5. If you were to attack a _ biometric system, how would you do it?

6. What do you think can be done to make _ biometric systems more secure?

A.0.1 Questions in Part H (Conclusion)

Thank you for your participation. Please answer these final questions and enter your email
address below in case you want to participate in the raffle.

1. Are there any questions that you would have liked to answer differently after complet-
ing the questionnaire (but were not able to do so because going back was not allowed)?
If so: which ones and what changed?

2. Are there any other remarks that you would like to make?

3. Please indicate your email address in case you want to participate in the raffle. Your
address will not be associated with your answers and will be deleted after the winners
were determined.
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Codebook

Themes and groups as they resulted from our thematic analysis. We give counts of unique
participants mentioning groups divided by the iteration of the survey (1: 2019, 2:2023).

Theme Group 1 2 All

Definition Features Mentioned 45 19 64
Correct or Related Action Mentioned 32 15 47
Definition by Example 24 12 36
Missing Knowledge 48 34 82
No Answer 53 42 95

Usage of Biometrics Examples of Usage of Biometric Methods 29 27 56
Devices/Usecases for which Biometric Methods 19 23 42
Reasons for using Biometric Methods 4 7 11
Examples of Avoidance of Biometric Methods 1 3 4
Reasons for not using Biometric Methods 14 5 19

Attacks & Challenges Non-Malicious: Generic 18 23 41
Non-Malicious: Physical 20 24 44
Non-Malicious: Behavioural 2 7 9
Attack: Software based 13 10 23
Attack: Force 7 9 16
Attack: Immitation/Replay 36 36 72
Attack: Other 11 5 16
Perceived Weakness 29 20 49
No Impact 9 4 13

Consequences Action: Fall back to other Method 50 43 93
Action: Damage Control 24 21 45
Action: Seek Support 24 10 34
Action: Other 5 3 8
Damage: Access and Missuse 17 18 35
Damage: Loss 17 11 28
Damage: None 5 6 11
Other Consequence 12 3 15

Future Suggestions Novel Biometrics 37 34 71
& Improvements Future Applications 7 5 12

Improvements 27 30 57
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Keystroke Control

Calculating Entropy of Modified Passwords

For a random password with no modifications of length n on the alphabet Σ we calculate
entropy E as:

E0 = log2(|Σ|n)

For one modification we choose a password first and then add a single modification at a
random location. There are 7 possible modifications (assuming that one manifestation of
each feature would be the default (e.g., pressing keys in the centre). Finally we exclude the
single case where a flight time would be applied to the first character (as it does not have a
preceding character to measure flight time from). This yields:

E1 = log2(|Σ|n · (7n − 1))

Analogous, we calculate the entropy for two modifications by choosing a password first and
then either applying two modifications on one character (15 options) or two single modifi-
cations; again excluding cases where a flight time modification would be applied to the first
character.

E2 = log2(|Σ|n · ((15n − 6)︸ ︷︷ ︸
2 on one

+(
7n · 7(n − 1)

2
− 7(n − 1))︸ ︷︷ ︸

2 single

))

We calculate entropy for three modifications analogously, taking into account the possibility
of three modifications on one character (line 1), two modifications on one character com-
bined with a single modification (line 2) and three single modifications (line 3):

E3 = log2(|Σ|n · ((13n − 9)
+ (15n · 7(n − 1)− 57(n − 1))

+ (
7n · 7(n − 1) · 7(n − 2)

6
− 7(n − 1) · 7(n − 2)

2
))
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Questionnaire Results

Here we show the full results of our statistical analysis of Likert statements. All statements
were rated on a 7-point Likert scale (1=strongly disagree, 7=strongly agree). However, for
calculating the UEQ-S scores we subtracted 4, as indicated [238].

This Table shows the differences between settings, i.e. the results of Mann-Whitney tests
comparing questionnaire answers of remote and lab participants (only from the first session).
Subscripts indicate the setting (L: lab, R: remote).

question nL nR p UL UR meanL meanL

authentication: Using passwords for authenti-
cation is secure

24 24 0.236 255 321 5.208 4.833

authentication: Using typing behavior for au-
thentication is secure

24 24 0.248 255 321 4.083 4.417

authentication: Using passwords together with
typing behavior is secure

24 24 0.374 272.5 303.5 5.375 5.292

authentication: I would use a system that uses
my typing behavior for authentication

24 24 0.187 245 331 3.417 3.917

attributes: Controling flight time was 23 24 0.213 239 313 3.609 4.000
attributes: Controling hold time was 24 23 0.368 260 292 4.250 4.391
attributes: Controling touch offset/position was 24 24 0.008 172.5 403.5 4.208 5.333
attributes: Controling pressure was 23 17 0.395 185.5 205.5 5.087 5.059
tasks: I was able to adjust to the specified be-
havior

24 24 0.166 242 334 4.708 5.083

tasks: I was successful in completing the tasks 24 24 0.364 271.5 304.5 5.167 5.458
tasks: The tasks were difficult for me 24 24 0.071 218.5 357.5 4.833 4.167
tasks: I can influence my own typing behavior 24 24 0.027 198.5 377.5 4.583 5.417
tasks: I would also play this game outside a
study setting

24 24 0.215 250 326 3.250 2.917

tasks: I improved at producing the specified be-
havior

24 24 0.323 266 310 4.542 4.875

liked: the character attributes 23 24 0.261 246 306 4.783 4.708
liked: the story 24 24 0.002 146.5 429.5 5.333 3.708
liked: the dialogues 24 24 0.004 160.5 415.5 5.083 3.708
liked: the typing visualisation 24 24 0.182 245 331 5.000 4.833
liked: the colored feedback (training) 23 23 0.254 234.5 294.5 4.957 4.739
liked: the mission scores 24 24 0.156 239.5 336.5 5.167 4.750
liked: the high score 22 23 0.225 220 286 4.636 4.348
liked: creating challenges 20 22 0.281 197 243 4.600 4.409
liked: taking challenges 22 23 0.125 203 303 4.773 4.304
motivated: the character attributes 24 24 0.300 262.5 313.5 4.083 3.792
motivated: the story 24 24 0.029 196.5 379.5 4.583 3.500
motivated: the dialogues 24 24 0.054 210.5 365.5 4.458 3.583



motivated: the typing visualisation 24 24 0.321 265.5 310.5 4.708 4.542
motivated: the colored feedback (training) 23 24 0.365 259.5 292.5 4.522 4.458
motivated: the mission scores 24 24 0.190 246 330 5.125 4.875
motivated: the high score 23 23 0.113 210 319 4.696 4.130
motivated: creating challenges 22 22 0.034 166 318 4.500 3.818
motivated: taking challenges 22 23 0.035 174.5 331.5 4.545 3.696
skipped: I skipped dialogues 24 24 0.055 211 365 3.833 4.792
UEQ: UEQ pragmatic 24 24 0.072 217 359 1.229 0.844
UEQ: UEQ hedonic 24 24 0.002 148 428 1.125 0.073
UEQ: UEQ overall 24 24 0.002 149.5 426.5 1.177 0.458

This Table shows the difference between sessions in our study, i.e. the results of Wilcoxon
tests comparing questionnaire answers of lab participants in the first and second session
(indicated in subscript)

question n p Z mean1 mean1

authentication: Using passwords for authentication is secure 24 0.049 28 5.208 5.667
authentication: Using typing behavior for authentication is se-
cure

24 0.662 52.5 4.083 3.917

authentication: Using passwords together with typing behavior
is secure

24 0.830 42.5 5.375 5.333

authentication: I would use a system that uses my typing behav-
ior for authentication

24 0.693 68.5 3.417 3.542

attributes: Controling flight time was 23 0.228 45 3.609 4.000
attributes: Controling hold time was 23 0.163 54 4.250 3.696
attributes: Controling touch offset/position was 24 0.252 34.5 4.208 3.833
attributes: Controling pressure was 23 0.035 24.5 5.087 4.417
tasks: I was able to adjust to the specified behavior 24 0.033 16.5 4.708 5.250
tasks: I was successful in completing the tasks 24 0.018 7 5.167 5.792
tasks: The tasks were difficult for me 24 0.051 48 4.833 4.208
tasks: I can influence my own typing behavior 24 0.234 20 4.583 5.000
tasks: I would also play this game outside a study setting 24 0.368 51 3.250 3.042
tasks: I improved at producing the specified behavior 24 0.102 32 4.542 5.000
liked: the character attributes 22 0.299 48.5 4.783 5.130
liked: the story 22 0.600 44.5 5.333 5.591
liked: the dialogues 23 0.357 38 5.083 5.478
liked: the typing visualisation 24 0.044 30 5.000 5.625
liked: the colored feedback (training) 23 0.272 41 4.957 5.348
liked: the mission scores 24 0.172 42 5.167 5.583
liked: the high score 21 0.271 30 4.636 5.000
liked: creating challenges 19 0.586 27 4.600 4.857
liked: taking challenges 21 0.604 32.5 4.773 4.591
motivated: the character attributes 23 0.149 35 4.083 4.565
motivated: the story 23 1.000 52.5 4.583 4.565
motivated: the dialogues 23 0.751 47.5 4.458 4.565
motivated: the typing visualisation 24 0.275 54 4.708 5.000
motivated: the colored feedback (training) 22 0.748 41 4.522 4.636
motivated: the mission scores 24 0.938 66.5 5.125 5.125
motivated: the high score 22 0.849 49.5 4.696 4.727
motivated: creating challenges 21 0.307 36.5 4.500 4.048
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motivated: taking challenges 21 0.392 39 4.545 4.182
skipped: I skipped dialogues 24 0.002 11.5 3.833 5.750
UEQ: UEQ pragmatic 24 0.267 93 1.229 1.427
UEQ: UEQ hedonic 24 0.442 93.5 1.125 1.042
UEQ: UEQ overall 24 0.958 114 1.177 1.234

Typing Data Results

This table shows our statistical tests on participants ability to modify their behavior (e.g.
pressing significantly longer when presented with a flight time modification). We used paired
sample t-tests for normally distributed data as indicated by Shapiro-Wilk tests. If the nor-
mality assumption was violated (p<0.05), we used the Wilcoxon signed rank tests instead.
Meand describes the mean for default (i.e. unmodified) behavior and meanm for modified.

measure setting n test p Z or t meand meanm

flighttime lab 24 Wilcoxon 0.000 0.000 404.250 926.845
holdtime lab 24 Wilcoxon 0.000 1.000 90.069 371.655
pressure lab 24 Wilcoxon 0.178 102.000 0.182 0.185
X offset from bottom target lab 24 t-test 0.242 1.201 0.008 −0.005
X offset from left target lab 24 t-test 0.000 5.061 0.008 −0.109
X offset from right target lab 24 t-test 0.016 −2.593 0.008 0.082
X offset from top target lab 24 t-test 0.707 −0.380 0.008 0.013
Y offset from bottom target lab 24 t-test 0.000 −8.818 0.165 0.420
Y offset from left target lab 24 t-test 0.069 1.906 0.165 0.142
Y offset from right target lab 24 Wilcoxon 0.546 128.000 0.165 0.179
Y offset from top target lab 24 t-test 0.000 9.875 0.165 −0.232
flighttime remote 24 Wilcoxon 0.000 0.000 259.607 910.313
holdtime remote 24 t-test 0.000 −12.239 91.060 451.301
X offset from bottom target remote 24 t-test 0.769 0.297 −0.028 −0.031
X offset from left target remote 24 Wilcoxon 0.900 145.000 −0.028 −0.043
X offset from right target remote 24 t-test 0.466 0.741 −0.028 −0.047
X offset from top target remote 24 t-test 0.036 −2.233 −0.028 −0.002
Y offset from bottom target remote 24 t-test 0.000 −8.285 0.118 0.385
Y offset from left target remote 24 t-test 0.714 0.372 0.118 0.113
Y offset from right target remote 24 t-test 0.466 −0.741 0.118 0.131
Y offset from top target remote 24 t-test 0.000 7.205 0.118 −0.159
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This table shows our statistical tests on participants’ deviations from the expected modifi-
cation value (e.g. how closely did a participant produce an expected hold time). We used
paired sample t-tests for normally distributed data as indicated by Shapiro-Wilk tests. If
the normality assumption was violated (p<0.05), we used the Wilcoxon signed rank tests
instead. Meand describes the mean for default (i.e. unmodified) behavior and meanm for
modified.

deviation setting n test p Z or t meand meanm

flighttime lab 24 Wilcoxon 0.000 22.000 197.887 342.726
holdtime lab 24 Wilcoxon 0.000 0.000 27.293 200.225
pressure lab 24 Wilcoxon 0.000 0.000 0.025 0.216
offset from bottom target lab 24 t-test 0.337 0.980 0.270 0.251
offset from left target lab 24 t-test 0.092 −1.758 0.270 0.298
offset from right target lab 24 t-test 0.001 −3.832 0.270 0.341
offset from top target lab 24 Wilcoxon 0.197 104.000 0.270 0.339
flighttime remote 24 Wilcoxon 0.000 0.000 134.724 339.692
holdtime remote 24 Wilcoxon 0.000 0.000 25.305 242.687
offset from bottom target remote 24 t-test 0.002 −3.439 0.256 0.391
offset from left target remote 24 t-test 0.000 −9.163 0.256 0.444
offset from right target remote 24 t-test 0.000 −10.860 0.256 0.519
offset from top target remote 24 t-test 0.000 −6.867 0.256 0.594
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Targeting using Electromagnets

Schematics of the electronics

Figure D.1: Overview of the components of our prototype and their interactions. Red lines
indicate a high current. The power provided by the power supply unit (PSU) is monitored by
the current sensor. Hence, the current sensor measures the current that drivers and electromag-
net (EM) are consuming and sends the measured signal to the envelope detector. The signal’s
envelope continues to the analog-to-digital converter (ADC). The digital data is then processed
by the microcontroller (µC), which communicates with the motor drivers to control the EM.

Figure D.2: Schematic of our circuit except for the microcontroller. The current sensor is
marked blue, and the envelope detector yellow. The ADC is shared between EMs.
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