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ABSTRACT 

Gene expression consists of multiple interlinked steps. For a gene to be expressed, chromatin needs 

to be in an “active” conformation, allowing the binding of the transcriptional machinery. Once a gene 

is transcribed, the resulting mRNA is processed and exported to the cytoplasm, where it is bound by 

ribosomes and translated. Every one of these steps is subject to stochastic fluctuations, and thus, cells 

will exhibit gene expression variability even under the most homogeneous conditions. This cell-to-cell 

variability has been termed “noise” and exists at the core of processes such as embryonic 

development, cancer emergence, and antibiotic resistance. 

In this project, I addressed noise from an environmental adaptation perspective and asked how 

chromatin-related factors can alter the noise of a gene during induction. I used Saccharomyces 

cerevisiae undergoing a switch in carbohydrate source as a model system and adopted the endogenous 

gene Gal1 fused to GFP to quantify noise during gene induction. 

The project started by analyzing data from a high-throughput screening of Gal1-GFP induction 

performed in strains lacking a single chromatin-related gene. The screening identified several 

chromatin factors that affected population heterogeneity of Gal1 while maintaining the same average 

protein expression level. Subsequent experiments validated that the absence of these factors created 

higher or lower noise levels during induction, but not when steady-state Gal1 expression was reached. 

I further addressed gene expression noise at the transcript level. The conclusions were similar when 

observing Gal1-GFP mRNA, suggesting that transcriptional regulation contributes to the higher or 

lower noise observed on the Gal1-GFP protein. Mathematical models of the transcript and protein 

data suggested that some of the identified chromatin factors affected the DNA activation/inactivation 

of Gal1 but not its transcription or translation, suggesting a potential mechanism for noise emergence. 

Finally, our findings point towards the anchor domain of Ies2 as indispensable for noise control. 

My results explore how chromatin regulation, individual cell behavior, and population responses to 

environmental cues relate to each other. In addition, I highlighted the importance of examining non-

steady-states when describing the noise of gene expression.  
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ZUSAMMENFASSUNG 

Die Genexpression besteht aus mehreren miteinander verknüpften Schritten. Damit ein Gen 

exprimiert werden kann, muss sich das Chromatin in einer "aktiven" Konformation befinden, die die 

Bindung der Transkriptionsmaschinerie ermöglicht. Nach der Transkription eines Gens wird die 

resultierende mRNA verarbeitet und in das Zytoplasma exportiert, wo sie von Ribosomen gebunden 

und übersetzt wird. Jeder dieser Schritte ist stochastischen Fluktuationen unterworfen, so dass Zellen 

selbst unter den homogensten Bedingungen eine Variabilität der Genexpression aufweisen. Diese 

Variabilität von Zelle zu Zelle wird als "Rauschen" bezeichnet und steht im Mittelpunkt von Prozessen 

wie der Embryonalentwicklung, der Krebsentstehung und der Antibiotikaresistenz. 

In diesem Projekt untersuchte ich das Rauschen aus der Perspektive der Umweltanpassung und fragte, 

wie chromatinbezogene Faktoren das Rauschen eines Gens während der Induktion verändern können. 

Als Modellsystem verwendete ich Saccharomyces cerevisiae, das eine Umstellung der 

Kohlenhydratquelle durchläuft, und nahm das endogene Gen Gal1, das mit GFP fusioniert ist, zur 

Quantifizierung des Rauschens während der Geninduktion. 

Das Projekt begann mit der Analyse von Daten aus einem Hochdurchsatz-Screening der Gal1-GFP-

Induktion in Stämmen, denen ein einzelnes chromatinbezogenes Gen fehlt. Bei diesem Screening 

wurden mehrere Chromatinfaktoren identifiziert, die die Heterogenität der Gal1-Population bei 

gleichbleibender durchschnittlicher Proteinexpression beeinflussten. Anschließende Experimente 

bestätigten, dass das Fehlen dieser Faktoren zu einem höheren oder niedrigeren Rauschen während 

der Induktion führte, jedoch nicht, wenn der Steady-State der Gal1-Expression erreicht war. 

Ich untersuchte das Rauschen der Genexpression auch auf der Transkriptionsebene. Die 

Schlussfolgerungen waren ähnlich, wenn man die Gal1-GFP-mRNA betrachtete, was darauf hindeutet, 

dass die Transkriptionsregulierung zu dem höheren oder niedrigeren Rauschen beiträgt, das beim 

Gal1-GFP-Protein beobachtet wird. Mathematische Modelle der Transkript- und Proteindaten legten 

nahe, dass einige der identifizierten Chromatinfaktoren die DNA-Aktivierung/Inaktivierung von Gal1, 

nicht aber seine Transkription oder Translation beeinflussen, was auf einen möglichen Mechanismus 
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für die Entstehung von Rauschen hindeutet. Schließlich deuten unsere Ergebnisse darauf hin, dass die 

Ankerdomäne von Ies2 für die Rauschkontrolle unerlässlich ist. 

Meine Ergebnisse zeigen, wie die Chromatinregulation, das Verhalten einzelner Zellen und die 

Reaktionen von Populationen auf Umweltreize miteinander zusammenhängen. Außerdem habe ich 

deutlich gemacht, wie wichtig es ist, bei der Beschreibung des Rauschens der Genexpression nicht-

stationäre Zustände zu untersuchen. 
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1. INTRODUCTION 

1.1. DNA, nucleosomes, and chromatin organization 

DNA contains the genetic information necessary for a cell to function. In eukaryotes, DNA is bound by 

proteins forming a complex known as chromatin. The first level of chromatin organization is 

orchestrated by nucleosomes (Fig. 1.1). Nucleosomes are protein octamers composed of two copies 

each of core histones H2A, H2B, H3, and H4 (Fig. 1.1a,b). DNA is wrapped around nucleosomes [1, 2], 

and the DNA found in between nucleosomes is often bound by the linker histone H1 [3]. 

  

Figure 1.1: Nucleosome composition and chromatin organization. a) Four types of histones form the 

core nucleosome. Each histone has an N-terminal domain, also referred to as “tail”, and a histone fold 

domain that serves for histones to interact with DNA and with each other. b) Front and side view of a 

nucleosome bound by DNA (orange and green ribbons). A nucleosome core particle is composed of 

one H3-H4 tetramer and two H2A-H2B dimers. Histone color is shared with panel a. c) Different levels 

of chromatin organization. DNA is wrapped around nucleosomes to form a first level of compaction 

nicknamed “beads on a string.” A second level of condensation is accomplished by the 30 nm 

chromatin fiber. Ultimately, entire chromosomes achieve different levels of compaction to fit inside 

the cell’s nucleus. Panel a adapted from [4]. Panel b extracted from [1]. Panel c adapted from [5] with 

information from [6]. 

Histones are small, positively charged proteins that are highly conserved across eukaryotes. Core 

histones are composed of a “histone fold domain” that mediates interactions among the histones and 

contacts the DNA, as well as an N-terminal tail that is subject to extensive post-translational 
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modifications (Fig. 1.1a). This nucleosomal array forms a 10 nm fiber (Fig. 1.1c), also known as “beads 

on a string” [4]. Chromatin can compact further to form a 30 nm fiber [7, 8], although the exact 

molecular mechanism remains still elusive [9]. Further chromatin organization levels include 

chromatin loops, Topologically Associating Domains, chromatin domains and, finally, chromosome 

territories [10]. 

Chromatin can be separated into two classes, heterochromatin and euchromatin, originally discovered 

as areas of the chromosome with different compaction and sensitivity to cytological stains [11, 12]. 

Heterochromatin is highly compact and transcriptionally silent, whereas euchromatin’s conformation 

is more open and is associated with transcriptionally-active regions [13]. 

1.2. Gene expression 

In eukaryotes, transcription is carried out by three different RNA polymerases (RNA Pol I, II, and III), 

with RNA Pol II being responsible for transcribing most protein-coding genes [4]. In this section I will 

focus on RNA Pol II, although the molecular mechanism of the other polymerases is similar. 

Transcription is divided into three phases: initiation, elongation, and termination. Initiation starts with 

the recruitment and binding of RNA Pol II to the gene promoter, a DNA region upstream of the 

transcription start site. RNA PoI II binds the promoter together with general transcription factors, 

forming an assembly known as the preinitiation complex (PIC) [4]. PIC is enough to transcribe genes in 

vitro, while efficient transcription in vivo requires the cooperation of the Mediator complex and gene-

specific transcription factors (TFs) [4]. Additional steps during the initiation process, such as chromatin 

remodeling, are explained below. 

In order to enter elongation phase, the carboxy-terminal domain of RNA Pol II must be phosphorylated 

at Serine 2. This allows for elongation factors and RNA-processing enzymes to be recruited, after which 

RNA Pol II escapes the promoter and continues the synthesis of messenger RNA (mRNA). The emerging 

mRNA is capped and, in most cases, spliced [14]. 

Once RNA Pol II transcribes the poly-A signals located at the end of the gene, the mRNA is cleaved and 

polyadenylated at its 3’ end during the transcription termination phase [15]. At some genes, RNA Pol 
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II is not dissociated from the DNA template and is “recycled” for transcribing a second RNA molecule. 

Once the mRNA has been fully synthesized and processed, it gets exported out of the nucleus, bound 

by ribosomes, and translated into protein [16]. The process of translation is out of the scope of this 

introduction. 

1.2.1 Transcriptional bursting 

A specific feature of eukaryotic gene expression is transcriptional bursting. Bursting refers to the 

phenomenon in which a gene switches between active and inactive conformations. When in the active 

or “on” state, the gene is transcribed in a fast and intense fashion, resulting in several molecules of 

RNA. What follows is a longer period of transcriptional inactivity, also called an “off” state [17, 18]. 

Two metrics help describe transcriptional bursts: size and frequency. Burst size refers to the number 

of transcripts synthesized during an active period. Burst frequency quantifies how many active periods 

occurred in a given amount of time [19]. 

Bursting patterns are highly gene-specific, and multiple factors are known to contribute to their 

dynamics. They include cis-regulatory regions and promoter composition, enhancer regions, 

nucleosome occupancy, and chromatin modifications. Each of these elements may affect burst size, 

burst frequency, or both [18]. 

The number and affinity of DNA regulatory elements were shown to correlate positively with burst size 

[20, 21]. A separate study observed that the presences of TATA boxes at the promoter was also 

indicative of genes with increased burst size [22, 23]. On the other hand, enhancers act by increasing 

the bursting frequency of their target genes [24, 25]. The same effect was observed by the absence 

of nucleosomes at the promoter region [21]. Histone acetylation contributes to increased burst 

frequency [26, 27], although increased burst size has also been reported [20, 28]. 

1.3. Chromatin regulation of gene expression 

As mentioned above, the eukaryotic genome is wrapped around nucleosomes, which can act as 

physical barriers to transcription. In this way chromatin imposes a new layer of regulation onto gene 

expression. Two major strategies exist for chromatin-based regulation: remodeling and covalent 

modifications. 
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1.3.1 Chromatin remodeling 

 

 

Figure 1.2: Chromatin remodeling and its effectors. a) Using ATP hydrolysis, chromatin remodelers 

can slide nucleosomes, exchange histones for histone variants, and/or evict nucleosomes. Adapted 

from [29]. b) Four families of chromatin remodelers. Each complex contains several subunits, one of 

which is an ATPase. Subunits might be shared among different complexes (symbolized by the same 

color). Adapted from [30]. 

Chromatin remodelers are large multi-subunit complexes that can move or displace nucleosomes. In 

doing so, they expose or hide specific DNA regions that act as binding platforms for TFs and/or the 

transcriptional machinery [31]. 

There are three mechanisms of chromatin remodeling: nucleosome sliding, nucleosome ejection, and 

histone variant exchange (Fig. 1.2a). Nucleosome sliding shifts the DNA along the surface of the 

octamer by hydrolyzing ATP. Nucleosome ejection takes place when an entire nucleosome is fully 

removed or “kicked out” of the DNA template. Variant exchange occurs when a histone dimer is 

removed from the nucleosome and replaced with a variant-containing dimer [31, 32]. 
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Chromatin remodeling is extensive at the promoter of eukaryotic genes. For instance, yeast promoters 

are characterized by a Nucleosome Depleted Region (NDR) followed by precise positioning of 

nucleosomes upstream and downstream of the promoter [33]. In addition, promoter nucleosomes are 

enriched in histone variant H2A.Z [32]. 

Four families of chromatin remodelers can be distinguished based on specific protein domains [31]: 

SWI/SNF [34], ISWI [35], CHD [36], and INO80 [37]. Each family is divided into multi-subunit complexes 

of variable composition (Fig. 1.2b). While some complex subunits are indispensable for the remodeler 

function, other subunits are accessory and instead confer specificity for particular genes or genomic 

regions [30]. 

1.3.2 Chromatin modifications 

Histones can be post-translationally modified by the addition of (generally small) chemical groups. The 

most studied modifications are acetylation, methylation, phosphorylation, and ubiquitination [38] (Fig. 

1.3). However, recent studies have uncovered dozens of new modifications [39, 40]. 

Specific histone marks are linked to active transcription. The association of acetylation with increased 

RNA synthesis was first reported sixty years ago [41]. Since then, the molecular mechanisms of how 

acetylation exerts its function have been described in more detail. Acetylated chromatin acts mainly 

as a binding platform for proteins involved with active transcription [42], such as those containing 

bromo-domains [43]. Acetylation has a minor second role due to its negative charge. When added to 

histone tails, the acetyl groups neutralize the positive charge of lysine residues, hence reducing the 

nucleosome interactions with the negatively-charged DNA [44]. Acetyl groups are added by histone 

acetyltransferases (HATs) and removed by histone deacetylases (HDACs) [42]. 

The case of methylation is more complex, as methylation has been linked with both active and inactive 

chromatin [45, 46]. The effect of methylation depends on which amino acid residue is methylated and 

its position within the histone. For example, methylation of lysine 9 (K9) of histone H3 is linked with 

heterochromatin [46], whereas H3K4 methylation is associated with active promoters [47]. 

Methylations are added onto histones by histone methyltransferases (HMTs) and removed by histone 

demethylases (HDMs) [48]. 
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Figure 1.3: Histones and histone modifications. A diagram of selected histone modifications. Histones 

are mostly modified at the N-terminus tail; however, a few modifications in the histone-fold domain 

have been characterized. P: phosphorylation; me: methylation; ac: acetylation; ub: ubiquitination. 

Adapted from [4]. 

Chromatin modifications and chromatin remodelers may act in concert, as some histone modifications 

can increase or decrease the remodeling activity of the complexes as well as provide a binding platform 

for chromatin remodelers themselves [49]. 

1.4. Transcriptional noise 

1.4.1. A brief overview of noise research 

As described above, gene expression is regulated by multiple steps, forming a complex and intricated 

process [50]. It was noted early on that gene expression exhibited variation between cells in 

homogeneous populations [51, 52]. Ko and colleagues [53] used a system of mouse cells expressing 

the bacterial β-galactosidase (lacZ) under the control of glucocorticoid-response elements. They 

detected expression of lacZ by addition of X-gal [54] and noted that individual cells showed different 

levels of gene induction (Fig. 1.4a). 

A similar observation was made by the Herzenberg lab [57]. They used T-cells expressing lacZ under 

the control of IL2 and NF-AT, two transcription factors indicative of T-cell activation. They measured 

the expression of lacZ by fluorescein-di-β-D-galactopyranoside (FDG) [58] and noted a bimodal 

response in the population, which did not coalesce even after prolonged hours of induction. 
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Figure 1.4: Gene expression variation in homogeneous populations. a) Mouse Ltk- cells expressing 

the bacterial β-galactosidase (lacZ) were stained by enzyme histochemistry. Heterogeneous 

expression of lacZ can be seen in blue coloration. Extracted from [53]. b) E. coli cells expressing CFP 

(shown in green) and YFP (shown in red) under identical regulatory sequences. Extracted from [55]. c) 

Diploid S. cerevisiae cells expressing YFP (shown in red) and CFP (shown in green). Both reporters were 

inserted in identical loci in homologous chromosomes and expressed by an ectopic PHO5 promoter. 

Inset shows diagram of the constructs. Extracted from [56]. Figure in (b) from Elowitz, Levine, Siggia, 

& Swain, 2002. Reprinted with permission from AAAS. Figure in (c) from Raser & O’Shea, 2004. 

Reprinted with permission from AAAS. 

The variability of cells among a population, also referred as “noise”, is the consequence of gene 

expression being governed by molecules present in low concentrations, which makes them subject to 

stochastic fluctuations [59, 60]. Although the term “noise” has been applied in many fields and 

different contexts, I will limit its use to populations expressing heterogeneous behaviors under 

identical conditions. 

Investigations on the source and effect of gene expression noise came initially from the fields of 

network and synthetic biology [60]. Becskei and Serrano [61] studied the ability of negative feedback 

loops to stabilize genetic circuits. They compared three circuits under different regulation dynamics, 

all of which had the repressor TetR fused to GFP as a readout. The autoregulated TetR-GFP was 

expressed under the control of the tetracyclin repressor, while the unregulated circuits had TetR 

mutated in the DNA binding domain, preventing the binding to its own promoter, or wild-type TetR-

GFP expressed under an unrelated promoter (lac operon). Using various biological parameters, the 

authors concluded that the autoregulated circuit exhibited the least variation, pointing towards 

negative feedback as a major contributor for noise suppression. 
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This agrees with conclusions obtained by Elowitz and Leibler in their repressilator [62]. The authors 

created a synthetic gene circuit by combining three transcriptional repressors (lacI, tetR, and cI) that 

regulated the expression of each other, creating a cycle of negative feedback. As a reporter, they used 

GFP under a tet-repressible promoter. The system exhibited regular oscillatory GFP fluorescence, 

showing that although there is a stochastic component in gene expression, a predictable pattern can 

be achieved using negative feedback loops. 

Noise research saw an upsurge in studies during the early XXI century. Elowitz and colleagues [55] 

aimed to distinguish between the intrinsic and extrinsic noise of genes. Intrinsic noise refers to that 

originated by the stochastic nature of biochemical reactions, whereas extrinsic noise is caused by 

differences in the metabolic state of cells (e.g. cell-cycle stage, cell size, number of ribosomes) [63, 64]. 

The authors constructed a strain of Escherichia coli that contained two different fluorescent reporters 

(CFP and YFP) under identical regulatory regions. Variation of the reporters inside the cell was a 

reflection of intrinsic noise, whereas variation among cells of the population was a consequence of 

extrinsic noise (Fig. 1.4b). The scientists observed low noise levels when the reporters' expression was 

driven by strong constitutive promoters, and, correspondingly, increased noise when transcription 

rates were reduced. Under all conditions tested, they also noted that most of the noise was extrinsic 

in nature. 

A different system was implemented by Ozbudak et al. [65]. They created different Bacillus subtilis 

strains with an IPTG-inducible GFP reporter. The gene contained point mutations that altered its 

transcription (mutations at promoter) or translation (mutations at the Ribosome Binding Site and start 

codon). The noise of GFP expression was measured in the WT strain under different IPTG 

concentrations, or in mutant strains with altered translation. The authors concluded that most of the 

phenotypic noise was a result of variations in translational efficiency, and that gene expression noise 

was dominated by translational bursts. This was due to the fact that at low transcription levels, noise 

was increased by high translational rates that created large and infrequent protein bursts. In contrast, 

the noise of high transcription was buffered at low translational rates, creating only small bursts with 

minimal fluctuations in protein concentration. The importance of translational bursts became a 

paradigm for noise in bacteria.  
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Further studies expanded the research of noise into eukaryotes. Of note are the studies of Blake [66] 

and Raser [56]. They both used Saccharomyces cerevisiae and a fluorescent reporter under the control 

of an inducible promoter to investigate general properties of noise. The study of Blake [66] used a 

similar methodology to Ozbudak, as they likewise tested the contributions of transcriptional and 

translational efficiencies to noise. The authors achieved different transcriptional levels by using an 

artificial system in which GFP was regulated by a GAL1 promoter (PGAL1) coupled to two tet operons. 

Hence, GFP could be induced by varying amounts of galactose and ATc (anhydrotetracycline; relieves 

TetR-mediated repression). Contrarily to the observations made in B. subtilis [65], the authors found 

the effect of transcriptional efficiency being prominent in eukaryotes. Furthermore, noise did not scale 

linearly with increased transcription, but instead was minimal at low transcription, increased when 

transcription was at 20-40% efficiency, and gradually decreased when the gene was at full induction. 

Translational efficiency played a role in noise as well, although its contribution was via enhancing the 

already-present transcriptional noise. The authors deepened their comprehension of eukaryotic noise 

by performing stochastic simulations that included eukaryote-specific transcriptional features, such as 

intermediate promoter steps representative of slow chromatin remodeling, binding of TBP (TATA-box-

binding protein), promoter reinitiation, among others. Their results indicated that transcriptional 

reinitiation was a fundamental property of noise modulation. 

Raser et al. [56], implemented the dual reporter system developed by Elowitz [55] using the diploid 

form of S. cerevisiae. The scientists integrated CFP and YFP in homologous chromosomes and 

expressed the fluorescent reporters under three different promoters: PPHO5, PPHO84, or PGAL1 (Fig. 

1.4c). Using genes controlled by identical regulatory sequences allowed them to distinguish between 

intrinsic and extrinsic noise. They observed that total noise was dominated by its extrinsic component 

and that the contributions of intrinsic noise were promoter-specific. The authors further investigated 

the sources of transcriptional noise by mutating PPHO5 or by deleting individual components of 

chromatin remodeling complexes. Disrupting the UAS (Upstream Activating Sequences) of PPHO5 

interfered with the removal of positioned nucleosomes [67], generating higher intrinsic noise. In 

contrast, mutating the upstream TATA box resulted in decreased intrinsic noise. Deletion of chromatin 

remodeling factors Snf6 (SWI/SNF), Arp8 (INO80), and Gcn5 (SAGA) each resulted in increased intrinsic 
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noise, although to different extents. Compared to prokaryotes, in which noise seemed to be mostly 

due to translational effects, the studies of Blake [66] and Raser [56] highlighted how transcriptional 

noise seemed to be essential in eukaryotes. 

Some of the studies mentioned above [55, 56] noticed a linear correlation between the levels of gene 

expression and noise. This observation could be, however, linked to the specific promoter and 

experimental setups tested. To investigate that hypothesis, two studies addressed noise on a global 

scale. Bar-Even et al. [68] examined the noise of 43 Saccharomyces cerevisiae proteins under 11 

environmental conditions. They confirmed the relationship between mean abundance of a protein and 

its noise. This was also the case when the genes of interest were measured while undergoing short 

environmental perturbations. Newman et al. [69] obtained similar conclusions, this time measuring 

>2,500 proteins of S. cerevisiae growing in rich or poor media. They observed that intrinsic noise was 

inversely proportional to mean protein abundance, particularly for genes of low and medium levels of 

expression. The relationship between noise and mean gene expression was subsequently confirmed 

by multiple studies [22, 70–74]. 

The functional role of a gene was also indicative of its noise level. Genes with essential functions, those 

involved in protein synthesis and degradation, and those belonging to multi-subunit complexes 

exhibited low noise, while genes involved in stress-response and environmental adaptation displayed 

high levels of variation [68, 69, 75]. 

1.4.2. Tools to measure noise 

Because noise is a metric of how variable gene expression is in a population, bulk techniques are not 

suited for the study of noise. Instead, single-cell methods must be used to dissect cellular 

heterogeneity [76]. 

Noise can be measured at the RNA or at the protein level. Early studies of noise, including those 

mentioned in the previous section, used protein reporters detectable by enzyme histochemistry [53, 

57] or by fluorescence microscopy [55, 65, 66, 56]. Nowadays, the use of fluorescent protein reporters 

is more ubiquitous [77], with detection either by microscopy or by flow cytometry. 
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The study of RNA at the single-cell level proved to be more challenging. However, the application of 

Fluorescence In Situ Hybridization (FISH) [78–80] to visualize single mRNAs revolutionized the study of 

transcript variability. Other techniques to monitor RNA expression include the MS2 and PP7 labeling 

systems, in addition to fluorophore-conjugated aptamers [81]. Finally, single-cell RNA sequencing 

(scRNA-seq) has also been used in noise studies to address genome-wide trends of transcriptional 

noise [82–87]. 

1.4.3. Statistics to measure noise 

Multiple metrics exist to quantify noise [88]. They all rely on characterizing the mean abundance of 

the gene, as well as its standard deviation. The Coefficient of Variation (CV) is defined as the standard 

deviation divided by the mean of a distribution (𝐶𝑉 =  𝜎 𝜇⁄ ) [89], and has been used extensively to 

characterize gene expression noise [60, 61, 55, 69, 90]. 

A widely used alternative metric is CV2, which is equivalent of dividing the variance of a gene (that is, 

standard deviation squared) by the mean squared (𝐶𝑉2 =  𝜎2 𝜇2⁄ ) [56, 65, 66, 68]. 

Although less used, the Fano factor can also be found in noise research [90–92]. The Fano factor is 

defined as the variance of a distribution divided by the mean (𝐹 =  𝜎2 𝜇⁄ ). In that sense, it is equivalent 

to CV2 multiplied by the mean, or CV multiplied by the standard deviation. 

During this thesis, I have used CV as the metric to quantify heterogeneity. 

1.4.4. Noise and transcriptional bursting 

The initial noise studies in eukaryotes of Blake [66] and Raser [56] hinted at transcriptional bursting as 

a key element of gene expression noise. This conclusion was drawn by applying stochastic modeling to 

their protein-level data. Further research confirmed this hypothesis by looking directly at the cell-to-

cell variability of mRNA [79]. The mRNA distributions quantified by Raj et al. [79] did not follow Poisson 

distributions, implying a coordinated transcriptional activity interspersed with silent periods. 

Transcriptional burst dynamics are quantified by burst size and burst frequency [19]. Researchers have 

shown that increasing the burst size of a gene (for example, by using stronger TF binding sites) results 
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in higher noise, whereas increasing the burst frequency (by adding nucleosome-disfavoring sequences) 

reduces the population variability [21]. 

1.4.5. Noise and chromatin 

As discussed above, chromatin regulation is an essential feature for understanding eukaryotic gene 

expression. As such, it is sensible to hypothesize that chromatin has a substantial impact on noise. 

Several groups showed that genes exhibiting high noise have heterogeneous accessibility in the 

chromatin at their cis- regulatory sequences [83–86, 93, 94]. In regard to chromatin modifications and 

noise, simultaneous measuring of gene expression and histone modifications has been more 

challenging. Nevertheless, it was shown that increasing the chromatin accessibility of a locus via Cas9-

targeted histone acetylation decreased the noise levels of a gene without significantly affecting its 

average level of expression [95]. Variability in other histone modifications has been probed as well. 

Heterogeneous patterns of H3K4me3 at gene promoters were found to correlate significantly with 

variability in the expression of their target genes [96]. A separate study identified similar correlations 

for H3K4me1, H3K27ac, and H3K27me3, and, to a lesser extent, H3K4me3 and H3K9me3 [97]. 

1.5. The galactose network 

Galactose is a sugar that is metabolized via genes belonging to the galactose metabolic pathway 

(commonly referred to as GAL genes). Members of this pathway interact in a complex network in order 

to import, sense, and convert the galactose to glucose-6-phosphate [98]. The expression of GAL genes 

is dependent on the carbohydrates available in the environment. The presence of galactose is a pre-

requisite for the genes to be transcribed, while other sugars – such as glucose – inhibit their expression 

[99]. Briefly, the galactose-induced genes include GAL1, GAL2, GAL3, GAL7, GAL10, and GAL80 [99]. A 

description of their roles, as well as their transcriptional regulation, can be found below. 

1.5.1. Enzymatic activity of the galactose metabolic pathway 
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Figure 1.5: Conversion of galactose into glucose by the galactose metabolic pathway. Extracellular β-

D-galactose is imported into cells by the membrane-bound permease Gal2. The conversion of 

intracellular galactose into glucose-1-phosphate is mediated by the enzymes Gal10, Gal1, and Gal7 

(details in text). UDP: Uridine diphosphate. Adapted from [100]. 

First, β-D-galactose is transported by the galactose permease Gal2 [101]. Once in the cytoplasm, the 

mutarotase activity of Gal10 converts β-D-galactose into α-D-galactose [102], which is subsequently 

phosphorylated by Gal1 [103]. The phosphorylated galactose is recognized by the uridylyltransferase 

Gal7, catalyzing its conversion into uridine diphosphate (UDP)-galactose. The final step of the galactose 

pathway is the conversion of UDP-galactose into UDP-glucose by the epimerase activity of Gal10 (Fig. 

1.5) [102]. 

1.5.2. Transcriptional regulation of the galactose metabolic pathway 

The proteins responsible for regulating the expression of GAL genes are the activator Gal4, the inhibitor 

Gal80, and the signal transducer Gal3. 

Gal4 is a transcription factor that binds the promoter of GAL genes at a sequence called UAS (Upstream 

Activating Sequence) [104]. Under repressive sugars such as glucose, Gal4 gets bound by Gal80, which 

blocks the domain of Gal4 that recruits the transcriptional machinery [105], therefore preventing the 

expression of GAL genes (Fig. 1.6a). Besides Gal4 expression being diminished under glucose exposure 

[106], an additional mechanism mediated by Mig1 ensures full repression when glucose is present (Fig. 

1.6a). Mig1 binds the promoter of GAL genes and recruits the corepressor complex Tup1-Cyc8 [107], 
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which in turn interacts with histone deacetylases and promotes a repressive chromatin environment 

[108]. 

 

Figure 1.6: Schematics of the GAL1 locus in repressing and inducing conditions. a) In repressing 

sugars such as glucose, Gal80 blocks the activating domain of Gal4, thereby impeding the recruitment 

of the transcriptional machinery. A second repressive mechanism is carried out by Mig1 (see text for 

details). b) Galactose is transported inside the cells by Gal2. Intracellular galactose triggers the 

hijacking of Gal80 by Gal3, releasing the repression on Gal4. In consequence, Gal4 recruits RNAPII and 

associated transcriptional activators. RNAPII: RNA polymerase II. Adapted from [109]. 

In the presence of galactose, the Gal4-Gal80 complex is disrupted by Gal3, which sequesters Gal80 and 

allows Gal4 to exert its activating role (Fig. 1.6b) [110]. The interaction between Gal3 and Gal80 is 

galactose- and ATP-dependent [110, 111], although the location and nature of their interaction is 

controversial. Potential mechanisms include i) sequestering of cytoplasmic Gal80 [112–114], ii) 

sequestering of nuclear Gal80 [114, 115], iii) sequestering of nuclear Gal80 and subsequent export of 

Gal3-Gal80 to the cytoplasm [116], and iv) Gal3 inhibiting the self-association of Gal80 necessary to 

bind Gal4 [117]. The presence of a short-lived tripartite complex between Gal4, Gal80, and Gal3 has 

likewise been reported [110, 118]. 

While glucose represses the transcription of GAL genes, other carbon sources such as raffinose and 

glycerol maintain the GAL genes in a non-induced state [98, 119]. 
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1.5.3. Positive and negative feedback loops regulate transcription of GAL genes 

 

Figure 1.7: Regulation of the galactose metabolic network. Gal4 is the master activator of the 

network, and it induces the transcription of GAL80, GAL3, GAL2, and GAL1. Gal80 inhibits the activity 

of Gal4, symbolized by blunt arrows. Galactose-associated Gal3 (represented as Gal3*) prevents the 

inhibitory effect of Gal80. See text for details. Adapted from [120]. 

The GAL genes are regulated under multiple positive and negative feedback loops (Fig. 1.7). Positive 

loops are achieved by Gal3, Gal1, and Gal2, whereas Gal80 mediates the negative feedback [120]. 

The gene GAL3 contains a UAS in its promoter, which makes it subject to the transcriptional control of 

Gal4. Higher concentrations of Gal3 counteract the Gal80-mediated repression on Gal4, leading to an 

increased transcription of GAL genes [121]. In this way Gal3 stimulates its own expression. 

The positive loop mediated by Gal1 follows the same rationale. Gal1 and Gal3 are paralogs that arose 

during the whole genome duplication of Saccharomyces cerevisiae [122]. They share 73% amino acid 

identity and 92% similarity [123]. GAL1 is also regulated by Gal4, and it has been shown that once the 

concentration of Gal1 is high enough, it can substitute the activity of Gal3 [121]. In fact, Gal1 

overexpression restores the transcription of GAL genes in yeast that lack Gal3 [124]. 

As shown in Fig. 1.6, Gal2 is a membrane protein that transports galactose inside the cell. Intracellular 

galactose is necessary for the formation of the Gal3-Gal80 complex [110, 111]. This interaction relieves 
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the repression on Gal4, which simulates the transcription of GAL genes, including GAL2. Higher levels 

of Gal2 increase the levels of intracellular galactose, creating a positive feedback [120]. 

The negative loop of the galactose metabolic pathway is orchestrated by Gal80. In inducing conditions, 

Gal4 stimulates the transcription of GAL80. An excess of Gal80 counteracts the sequestering by Gal3 

[120]. This leads to the formation of Gal4-Gal80 complexes, which repress the expression of GAL80. 

1.6. Previous results on which my doctoral project was build 

My doctoral dissertation is a follow-up of the work published in Bheda et al [125]. This work included 

a Gal1 induction screen, in which the authors monitored Gal1-GFP induction kinetics in single 

Saccharomyces cerevisiae cells over time in wild-type (WT) cells and in 535 strains with single-gene 

deletions of non-essential chromatin-related factors (Fig. 1.8a, Table S1). To identify chromatin factors 

that are implicated in transcriptional noise during gene induction, one of the authors (Dr. Johannes 

Becker) re-analyzed the Gal1 induction data for strains with altered gene expression noise. To measure 

gene expression heterogeneity, he calculated the Coefficient of Variation (CV = standard 

deviation⁄mean) of Gal1-GFP fluorescence intensities and selected strains with an outlier CV as 

described below. 

 
Figure 1.8: High-throughput screening reveals chromatin factors with altered gene induction noise. 

a) Schematics of Gal1 induction screening by Bheda et al. [125]. The endogenous Gal1 protein was 

fused to superfolder GFP. This reporter strain was crossed with a yeast strain library of 535 single-gene 

deletions of non-essential chromatin-related factors. Cells were grown in a microfluidics platform and 

Gal1-GFP expression was monitored by live-cell imaging over two rounds of galactose induction and 

repression totaling 11 hours. Cells were segmented, tracked, and their fluorescence was quantified to 

calculate the Coefficient of Variation (CV = standard deviation⁄mean) of Gal1-GFP signal intensities. b) 



 

17 
 

Example of outlier identification for deletion strains with increased or decreased Gal1 noise, quantified 

by the CV of the GFP signal. The data depicted in this plot corresponds to frame #37 of the time course 

performed by  Bheda et al. [125]. Plotted in y-axis is the CV2 at a specific time point during galactose 

induction against the mean GFP fluorescence signal of the population (x-axis). Every data point 

corresponds to one strain. Upper and lower dashed lines represent the outlier thresholds calculated 

based on the interquartile range of a moving window of 11 data points (see Materials and Methods). 

Outlier strains with CV2 higher or lower than the outlier threshold are depicted in red or blue, 

respectively. A strain would be considered outlier if it was classified as such in 4 or more consecutive 

frames. Analysis performed by Dr. Johannes Becker. 

Instead of doing hundreds of mutant-WT comparisons, the outlier detection method relied on the 

assumption that most of the mutant strains would have a modest effect on gene expression noise, if 

at all. He therefore focused on those mutants whose CV fell consistently outside of the behavior 

displayed by the majority of the strains. For every time point of the galactose induction, upper and 

lower thresholds of noise would be established based on the interquartile range of the CV2 distribution 

(Fig. 1.8b; for details see Methods). This revealed 28 strains with an outlier CV2 for at least 4 

consecutive frames (22 higher noise, 6 lower noise) of 10 minutes each. From the identified outliers, I 

selected 9 chromatin deletions (6 higher, 3 lower noise) to investigate in my doctoral dissertation (Table 

S2). 
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2. AIMS OF THE STUDY 

Although gene expression is a highly regulated process, it is subject to cell-to-cell variation due to the 

stochastic nature of biochemical reactions. This variability is referred to as “noise” and, although it has 

been a topic widely studied, research so far has mostly focused on the noise of genes at steady-state. 

There is a lack of understanding of how noise can evolve over time, particularly in genes undergoing 

transcriptional activation. The aim of my dissertation was to study gene expression noise in dynamic 

systems and analyze the impact of chromatin-related factors on noise during gene induction. 

Specifically, the goals were: 

• Quantify the gene expression noise under dynamic environmental conditions, specifically gene 

induction due to changes in carbohydrate source using single-cell techniques. 

• Identify chromatin-related factors whose absence led to altered induction noise. 

• Determine and quantify gene noise at the transcript and protein levels. 

• Characterize the molecular mechanisms by which one of the chromatin-related factors affects 

noise. 
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3. RESULTS 

3.1. Gal1 noise during induction is dependent on carbohydrate source 

Different induction patterns have been characterized for GAL genes, in particular Gal1. Induction is 

unimodal when cells are grown in a non-repressing, non-inducing sugar (such as raffinose or glycerol) 

prior to switching to galactose [126, 127]. In contrast, induction is bimodal when transitioned from 

glucose into galactose [128, 127]. Thus, Gal1 induction depends on pre-growth media, induction 

media, and time of induction [120, 129, 130], exemplifying how finely-tuned the GAL network is to the 

environment [131]. 

To select the most appropriate growth conditions for the experiments and study the potential gene 

expression noise mutants, I first measured Gal1 noise under different combinations of sugars for pre-

growth and induction (Fig. 3.1). For pre-growth I tested glucose, which represses the GAL1 promoter, 

and raffinose, which allows for basal GAL1 expression [99, 132]. For GAL1 induction, I tested galactose 

and a mixture of raffinose plus galactose (Fig. 3.1a). The four conditions gave rise to different induction 

kinetics (mean Gal1 expression vs. time) (Fig. 3.1b) and noise trajectories (CV vs. mean expression) 

(Fig. 3.1c). 

Galactose induction of cells pre-grown in glucose resulted in a bimodal Gal1-GFP intensity distribution, 

in which a subpopulation of cells induced faster than the others, until ultimately the whole population 

reached an induced state (Fig. 3.1a). The bimodality occurred irrespective of the induction sugar 

(galactose or raffinose + galactose) but only after pre-growth in glucose. In contrast, the induction of 

cells pre-grown in raffinose is rather unimodal, giving rise to a population with lower heterogeneity. 

Populations that were induced with raffinose + galactose reached full Gal1 expression levels around 

6h after media switch. In contrast, cells induced only with galactose expressed Gal1 slower and only 

reached steady-state after 8h of induction (Fig. 3.1b). The time required to reach steady-state was 

independent of the pre-growth sugar. 
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Figure 3.1: Analysis of Gal1 induction dynamics under different carbohydrate sources. WT cells 

containing a Gal1-GFP fusion at the endogenous GAL1 locus were grown and induced with multiple 

carbohydrate combinations. Cells were switched from glucose pre-growth to galactose induction 

(blue), from glucose to raffinose + galactose (purple), from raffinose to galactose (yellow), or from 

raffinose to raffinose + galactose (orange) in 12-hours induction with sample acquisition every 30 

minutes. Glu: glucose; Raf: raffinose; Gal: galactose. Statistics were calculated on merged data from 

four biological replicates. The average number of cells per data point was 8,838 ± 347 (mean ± sd). 

Line and ribbon represent the fit and 95% confidence intervals of a curve fitting with loess, 

respectively. a) Left: experimental setup. Right: Histograms of a representative experiment showing 

population distributions of Gal1-GFP at indicated induction time points as measured by flow 

cytometry. b) Mean expression of Gal1-GFP during galactose induction. Plotted is mean log10(GFP) 

signal vs. time for the indicated sugars. c) Noise of Gal1-GFP over different levels of expression, 

quantified by the Coefficient of Variation (CV = standard deviation/mean). Plotted is CV vs. mean 

log10(GFP). 

The noise trajectory (CV vs. mean expression) of Gal1 during induction of glucose pre-grown cells is 

semi-circular, starting from a homogeneous non-expressing population (low noise), passing through a 

bimodal state with a wide range of Gal1-GFP levels (high noise), and ending with a homogeneous, all-

induced population (low noise) (Fig. 3.1a,c). The semi-circular shape of the noise trajectory was 
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irrespective of induction media. In contrast, the raffinose pre-grown cultures exhibit a decreasing noise 

trajectory, in which the CV is highest at low levels of induction, and continuously decreases as the 

induction progresses (Fig. 3.1c).  

Given that Gal1 exhibited the highest noise when cells were pre-grown in glucose (Fig. 3.1c), I decided 

to further characterize high and low noise outliers during galactose induction starting from a glucose-

repressed state. As for Gal1 induction, I chose galactose alone as a simplified version compared to the 

raffinose + galactose mixture. 

3.2. Identification of chromatin factors that affect Gal1 noise during induction  

For the 6 higher and 3 lower noise outliers selected for further analysis (see Table S2), Dr. Poonam 

Bheda generated de-novo knockout strains to avoid possible off-target mutations from the yeast 

deletion library used in the screen. I then pre-grew these cells in glucose, followed by a 12-hour 

galactose induction during which I monitored Gal1-GFP expression by flow cytometry. As shown in Fig. 

3.2, all strains exhibited a semicircular noise trajectory. 

 

Figure 3.2: Noise trajectories of selected mutants during 12 hours of galactose induction. Noise of 

Gal1-GFP over different levels of expression, quantified by the Coefficient of Variation (CV = standard 
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deviation/mean). Plotted is CV vs. mean log10(GFP). Gray: WT strain; blue: indicated knock-out strain. 

Line and ribbon represent the fit and 95% confidence intervals of a curve fitting with loess, 

respectively. Statistics were calculated on merged data from three independent biological replicates. 

WT strain was processed in duplicate within each replicate. The average number of cells per data point 

was 8,171 ± 950 (mean ± sd). The time course spanned 12 hours of induction with sample acquisition 

by flow cytometry every 30 minutes. Negative control is WT strain without the GFP fusion. 

These experiments confirmed the higher Gal1 noise in two strains (ies2Δ and sap30Δ) and lower noise 

in two strains (fus3Δ and msh3Δ) during the 12-hour galactose induction (Fig. 3.3). Interestingly, the 

differences in noise between mutants and WT were only detectable during induction, but disappeared 

once steady-state Gal1 expression was reached. Thus, with the exception of Sap30 (see Discussion), 

these mutants had not been identified as noise outliers before. Similar to WT, the mutant strains 

achieved a minimal level of noise once Gal1 reached maximum expression. 

Comparing populations of cells with similar mean expression levels (dotted line in Fig. 3.3b) showed 

that changes in CV were related to changes in the shape of the bimodal distributions (Fig. 3.3c). 

Mutants with CV lower than WT (fus3Δ and msh3Δ) had simultaneously a smaller fraction of uninduced 

cells and induced cells with lower GFP expression. The contributions of both subpopulations generated 

a mean Gal1 expression similar to WT, although with a smaller distance between uninduced and 

induced peaks. This reduced gap between subpopulations lead to a smaller standard deviation 

compared to WT and, consequently, a lower CV. 

 

Figure 3.3: Gal1 expression noise in fus3Δ, ies2Δ, msh3Δ, and sap30Δ strains. Panels a) and b) 

represent statistics calculated on merged data from three independent biological replicates. WT strain 

was processed in duplicate within each replicate. The average number of cells per data point was 8,145 

± 1,020 (mean ± sd). Line and ribbon represent the fit and 95% confidence intervals of a curve fitting 

with loess, respectively. Strains depicted are WT (gray), fus3Δ (blue), ies2Δ (orange), msh3Δ (green), 

and sap30Δ (red). a) Mean expression of Gal1-GFP over time for WT and selected mutant strains. 

Plotted is mean log10(GFP) signal vs. time. b) Noise trajectories of Gal1-GFP over different levels of 
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induction. Plotted is CV vs. mean log10(GFP). Dotted line indicates samples with similar mean 

expression. c) Overlay of log10(GFP) distributions of populations at similar Gal1-GFP levels 

(corresponding to dotted line in b). Numbers denote the CV of each population.  

The opposite observation was true for high-noise outliers. Both ies2Δ and sap30Δ strains had a higher 

proportion of cells in the uninduced fraction, while the expressing population exhibited higher Gal1-

GFP levels than WT. The depletion of cells with intermediate levels of expression and increase in cells 

with either null or high Gal1 levels created a population of high heterogeneity, resulting in a higher CV 

compared to WT (Fig. 3.3c). 

3.3. Different Gal1 noise trajectories also occur at the mRNA level 

Since so far I focused on Gal1-GFP protein levels, I decided to study the corresponding mRNA next. For 

this, I measured Gal1-GFP mRNA levels of individual cells using a Single Molecule Fluorescence In-Situ 

Hybridization (smFISH) protocol with Quasar 670-tagged probes complementary to the Gal1 mRNA 

sequence (Fig. 3.4). I simultaneously imaged GFP and Quasar 670 signals at different time points to 

directly compare protein and transcript expression during galactose induction (Fig. 3.4a). Consistent 

with results shown in previous sections, Gal1 induction in WT cells was bimodal both at the mRNA (Fig. 

3.4b) and protein (Fig. 3.4c) levels. This was also the case for the mutants I studied (Fig. S1). 

The relationship between Gal1 transcript and protein expression showed not to be linear, but instead 

followed an L-shaped pattern over time (Fig. 3.4d). At early time points, measured Quasar 670 and GFP 

intensities corresponded to background fluorescence. Transcription of Gal1 mRNA initiated as the 

induction progressed, observed by a higher Quasar 670 signal after 30 minutes (Fig. 3.4b,e). GFP 

fluorescence only increased after 1.5 hours, indicating translation of the Gal1-GFP mRNA (Fig. 3.4c,f). 

The coupling of both events can be visualized as a two-step process in which mRNA transcription 

precedes translation (Fig. 3.4d). Initially, Quasar 670 signal increased while GFP levels remained 

constant, represented by a horizontal shift in the early time points of Fig. 3.4d. It is only after Gal1 

translation initiated that cells increased their GFP intensity, reflected by a vertical shift during the last 

few hours of the galactose induction. 
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Figure 3.4: Quantification of Gal1 mRNA by FISH and Gal1 protein by fluorescent reporter. Cells 

undergoing galactose induction were subjected to a Single Molecule Fluorescence In-Situ 

Hybridization (smFISH) protocol and subsequently imaged by epifluorescence microscopy. The 

endogenous GFP-tagged Gal1 transcripts were labeled with Quasar 670-conjugated probes 

complementary to Gal1 mRNA sequence. a) Representative images of WT cells during Gal1 induction. 

Time indicates hours after switching to galactose. Top panel: phase contrast images. Middle panel: 
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maximum projection of z-stacks in Quasar 670 channel. White arrows point to examples of active GAL1 

transcription sites. Bottom panel: images in GFP channel. b,c,d) Single-cell measurements of WT at 

different induction time points. Plotted are (b) normalized Quasar 670 intensities corresponding to 

Gal1-GFP transcripts, (c) normalized GFP intensities corresponding to Gal1-GFP proteins, and (d) 

relationship between both fluorescent signals over time from one representative replicate. In (d), each 

data point represents an individual cell, and the color indicates the number of hours after galactose 

induction. e,f) Mean population fluorescence of (e) Quasar 670 and (f) GFP intensities during Gal1 

induction for indicated strains. g,h) Noise trajectories across different levels of expression for Gal1-

GFP (g) mRNA and (h) protein. i) Average percentage of cells exhibiting an active GAL1 transcription 

site. Normalized fluorescence intensities are quantified as the fold-change vs. WT at 0h of induction 

(see Materials and Methods). Statistics (panels e-i) were calculated on merged data from three 

biological replicates (one replicate 0-12h induction, two replicates 2-12h induction). Line represents 

curve fitting with loess. The average number of cells per data point was 311 ± 154 (mean ± sd). Panels 

e-i share color scheme: WT (gray), fus3Δ (blue), ies2Δ (orange), msh3Δ (green), and sap30Δ (red). 

Similar to the flow cytometry measurements (Fig. 3.3), fluorescent microscopy detected different Gal1-

GFP protein noise trajectories between WT and some of the mutants (Fig. 3.4h). Interestingly, this was 

also observed for Gal1-GFP mRNA (Fig. 3.4g), suggesting that regulation at the transcript level 

contributes to the higher or lower noise observed during gene induction (see Discussion). 

Our smFISH protocol allowed to detect actively transcribed genomic sites. These loci are 

distinguishable from individual mRNAs due to their increased brightness (Fig. 3.4a), a consequence of 

the smFISH probes being bound to several simultaneously transcribed RNA molecules. I identified 

different transcription activation dynamics between WT and mutant strains (Fig. 3.4i). WT, fus3Δ, and 

msh3Δ populations exhibited active GAL1 transcription sites in up to 84.5% of cells. This percentage of 

transcribing cells stabilized after 4 hours of induction. In contrast, ies2Δ and sap30Δ populations 

displayed a slower activation of the GAL1 locus. The dynamics of GAL1 locus transcription resembled 

the increase in signal fluorescence for Gal1-GFP mRNAs during induction (Fig. 3.4e). 

Overall, the chromatin factor mutants display altered mRNA and protein heterogeneity in a dynamic 

gene expression system. I also noted that differences in CV disappeared once the population reached 

steady-state expression of Gal1, pointing toward differences in the contribution of chromatin factors 

to transcriptional noise during gene induction. 
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3.4. Mathematical modelling suggests altered DNA activation and inactivation rates for 

mutants with higher gene expression noise 

Using the data from the smFISH experiments, Dr. Lea Schuh and Dr. Dantong Wang (Institute of AI for 

Health, Helmholtz Munich) developed a mathematical model to identify which steps during gene 

induction might be responsible for the different noise trajectories observed in mutant and WT 

populations (Fig. 3.5). Dr. Schuh and Dr. Wang established, troubleshooted, and refined the model, 

while I performed the final run of results featured in this thesis. 

The model architecture considered DNAoff and DNAon states, in which transcription is repressed and 

permissible, respectively. They included multiple DNA intermediate steps to represent regulatory 

events of chromatin opening up for gene expression [17]. Additionally, the model allows transcriptional 

bursting, in which cells can turn “on” and “off” a gene by alternating between DNAon and DNAoff states. 

The model consists of six different parameters grouped in three pairs: DNA activation/inactivation 

(γon/γoff), mRNA production/degradation (λprod/λdeg), and protein production/degradation (κprod/κdeg) 

(Fig 3.5a). 

 

Figure 3.5: Mathematical modelling identifies deletion-specific gene expression parameters. a) 

Depiction of gene expression model. Cells alternate between DNAoff and DNAon states, symbolized by 

arrows. The model evaluates potential intermediate steps between DNAoff and DNAon. DNAon allows 
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expression of mRNAs, which are subsequently translated into proteins. Dashed arrows represent 

molecule degradation. See text for parameter details. Prot: protein. b) Bayes Information Criterion 

(BIC; y-axis) calculated for models with 0-10 intermediate DNA steps (x-axis). The best model 

corresponds to the lowest BIC. c) Fits for the fraction of cells in the DNAon state (y-axis) as a function 

of time spent in galactose (x-axis). The number in the legend specifies the number of intermediate 

steps used in each fit. Every data point corresponds to the statistic calculated for an individual 

biological replicate. 

The mathematical model was fitted using the moments equations (mean and standard deviation) of 

Gal1-GFP mRNA and protein, as well as the percentage of the population in the DNAon state, calculated 

as the fraction of cells with an active transcription site (see Fig 3.4a,i). The best models were 

determined as those with a Bayesian Information Criterion (BIC) [133] 10 units or less away from the 

lowest calculated BIC. A threshold of 10 units was chosen as a commonly-adopted limit for model 

selection [134–137]. 

They first determined the number of intermediate steps between DNAoff and DNAon (Fig. 3.5b,c). They 

considered between 0 and 10 steps and calculated the BIC for each model. The best fits were obtained 

when considering 1-5 intermediate steps for WT, fus3Δ, ies2Δ, and msh3Δ. The optimal number of 

intermediate steps for sap30Δ was inconclusive, as the BIC displayed a non-continuous behavior (see 

Discussion). 

We selected 3 intermediate DNA steps as a denominator common to all strains, determined by 

calculating the average of the best number of steps for WT, fus3Δ, ies2Δ, and msh3Δ (5, 2, 1, and 4 

steps, respectively). Although 3 steps were not the optimal for any individual strain, the BIC of the 

model was less than 10 units away from the lowest BICs, indicating no strong evidence to reject the 

model. Furthermore, the percentage of sap30Δ cells in the DNAon state could be adequately modeled 

with 3 intermediate steps (Fig. 3.5c). 

To identify differences in expression dynamics between strains, we estimated the value of the six 

parameters that form the model (γon, γoff, λprod, λdeg, κprod, κdeg; see Fig. 3.5a) by fitting WT and each 

mutant strain in pairs (Fig. 3.6a and Fig. S2). Because every rate can either be identical or different 

between WT and mutant, 26 = 64 models are to be considered (Fig. S2a). Any model with a BIC equal 
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to or inferior to the lowest BIC plus 10 units was considered a god fit and became part of the set of 

“best models” (Fig. 3.6b and Fig. S2b). 

 

Figure 3.6: Model comparison for WT and ies2Δ populations. a) Model fit for WT and ies2Δ 

populations. From top to bottom, plots show: fraction of cells in the DNAon state; mean Gal1-GFP 

mRNA; standard deviation (SD) of  mRNA; mean Gal1-GFP protein; SD of protein. b) 7 models were 

identified as having the best fit for the WT-ies2Δ pair, which were classified into different categories 

according to whether the strains shared parameter rates or not. In bold is the category with the highest 

value.  

Fig. 3.6 shows a summary of the results for WT-ies2Δ comparison. Out of the 64 models tested, 7 were 

considered as the “best models”. The majority of them supported a scenario in which λprod, λdeg, κprod, 

and κdeg rates were identical between WT and mutant. However, none of them supported shared γon, 

γoff rates between the WT and ies2Δ strain (Fig. 3.6b). This is a strong indication that WT and ies2Δ 

diverge in their DNA activation/inactivation dynamics, an observation already suggested in Fig. 3.4i. A 

similar conclusion was obtained for sap30Δ, in which 13 out of 21 best models suggested strain-specific 

γon and γoff parameters (Fig. S2b). These results point towards potential mechanisms for these high-

noise outliers. 
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The model comparison for fus3Δ and msh3Δ revealed the best model for both strains had all six rates 

identical between WT and mutant (Fig. S2b). These results could in part be attributed to the limitations 

of the FISH data (see Discussion) (Fig. 3.4). Although fus3Δ and msh3Δ were shown to be low-noise 

outliers by flow cytometry, FISH and microscopy imaging were unable to capture our previous 

observations (see Discussion). 

3.5. Gal1 noise during induction is dependent on growth phase and metabolic state 

While the validation of outliers was performed in cultures undergoing a direct switch to galactose after 

glucose pre-growth, later experiments showed reduced Gal1 induction and high inter-experiment 

variability. In order to improve reproducibility, I took a step back and optimized the galactose induction 

protocol.  

Glucose is the preferred carbon source of S. cerevisiae. Yeast metabolizes this sugar by glycolysis and 

produces ethanol during the process. Once glucose becomes depleted, cells undergo a diauxic shift in 

which cell growth is reduced and metabolism changes to aerobic respiration [138]. Instead of 

performing galactose induction in cultures that underwent diauxic shift and reached stationary state, 

I added an extra growth step in fresh glucose (Fig. 3.7). I refer to this step as “intermediate growth”, 

and it comprises diluting cells from the pre-growth culture into fresh glucose prior to galactose 

switching. In this way, cells are allowed to exit stationary phase, transition back to aerobic 

fermentation, and resume division before being subjected to the metabolic reprogramming associated 

with galactose induction. 

To test how long this intermediate growth should be, I grew WT cells in glucose overnight, diluted them 

in fresh glucose for 2, 4, or 6 hours, and proceeded to galactose induction as previously described (Fig. 

3.7a). The OD600 of cultures was kept below 0.5 to ensure stationary phase was not reached. A control 

sample in which cells did not go through the intermediate growth was included. 

Irrespective of the presence or absence of an intermediate growth step, switching from glucose to 

galactose resulted in a bimodal Gal1-GFP induction (Fig. 3.7b). However, there were stark differences 

in induction dynamics. Cells with no or 2h intermediate growth induced the earliest, while cells from 

4h and 6h took longer to have detectable GFP signal. Similarly, different amounts of time were required 
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for cells to reach full Gal1 expression levels. It took 9 hours for cells coming out of 2h intermediate 

growth, 11 hours for cells coming out of 4h, and more than 12 hours for cells coming out of 6h (Fig. 

3.7c). Interestingly, cells with no intermediate growth in fresh glucose displayed a slow Gal1 induction. 

The mean GFP levels of these cells were less than 10-fold of that measured for other conditions after 

12 hours of induction. The noise trajectories of all conditions were semi-circular (Fig. 3.7d). Cells with 

no intermediate growth exhibited the highest CV, followed by 6h and 4h intermediate steps. Cells with 

only 2h growth displayed the lowest population variability. 

 

Figure 3.7: Analysis of Gal1 induction dynamics at different metabolic states. WT cells were grown 

until saturation phase (pre-growth), diluted in fresh glucose media for different times (intermediate 

growth), and induced with galactose. Sample acquisition was every hour for a total of 12 hours. 

Statistics were calculated on merged data from three biological replicates. The average number of cells 

per data point was 9,764 ± 857 (mean ± sd). Line and ribbon represent the fit and 95% confidence 

intervals of a curve fitting with loess, respectively. Cells were switched from glucose pre-growth 

directly into galactose (gray) or underwent an intermediate step of glucose growth for 2 (purple), 4 
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(blue), or 6 hours (green). Int: intermediate; Ind: induction; Glu: glucose; Gal: galactose. a) 

Experimental setup. Top: culture with no intermediate growth step. Bottom: culture with intermediate 

growth in glucose; x corresponds to 2, 4, or 6 hours. b) Histograms showing population distributions 

of Gal1-GFP signal at indicated induction time points as measured by flow cytometry. Each row 

corresponds to a different intermediate growth length. c) Mean Gal1-GFP expression during induction. 

Plotted is mean log10(GFP) signal vs. time. d) Noise of Gal1-GFP over different levels of expression. 

Plotted is CV vs. mean log10(GFP). 

Cells transitioning directly from glucose pre-growth into galactose showed the greatest variability 

between replicates, as can be appreciated in the spread of mean Gal1-GFP signal in Fig. 3.7c. Although 

the samples with no intermediate growth are identical in nature, the variability across replicates 

highlighted the difficulties of obtaining reproducible inductions when cells had to simultaneously exit 

stationary phase and adapt to galactose. I selected an intermediate step of 4h for future experiments, 

as it balanced the hours required to achieve maximum Gal1 expression with the levels of noise 

exhibited by the population. 

3.6. Validation of noise outliers under a different induction protocol 

Once I decided to add an intermediate growth of 4 hours in fresh glucose, I re-validated the noise 

outliers using the new protocol (Fig. 3.8). 

 

Figure 3.8: Validation of chromatin noise outliers after adding 4 hours of intermediate growth. 

Strains shown correspond to WT (gray), fus3Δ (blue), ies2Δ (orange), msh3Δ (green), and sap30Δ (red). 

Statistics were calculated on merged data from eight biological replicates for mutants and 10 biological 

replicates for WT. The average number of cells per data point was 10,012 ± 509 (mean ± sd). Line and 

ribbon represent the fit and 95% confidence intervals of a curve fitting with loess. a) Mean expression 

of Gal1-GFP over time for WT and selected mutant strains. Plotted is mean log10(GFP) signal vs. time. 



 

32 
 

b-e) Noise trajectories of Gal1-GFP over different levels of induction. Plotted is CV vs. mean log10(GFP) 

for WT and mutant strains: (b) fus3Δ, (c) ies2Δ, (d) msh3Δ, (e) sap30Δ. 

Gal1 expression patterns followed a similar trend when comparing no intermediate growth (Fig. 3.3a) 

versus a 4-hour intermediate growth step (Fig. 3.8a). After 4 hours of growth in glucose and upon 

induction with galactose, cells showed an increase in GFP levels, with most strains reaching maximum 

Gal1 expression around 11h. sap30Δ showed a slow-inducer phenotype in both conditions, whereas 

ies2Δ induced slower than WT in the absence of intermediate growth but induced at the same rate as 

WT when the 4-hour extra step was included. 

The noise trajectories in the presence or absence of an intermediate growth step are similar as well, 

although the outlierness of the mutant strains decreased when adding intermediate growth (Fig. 3.8b-

e). In this case, only fus3Δ and sap30Δ exhibited different noise from WT. ies2Δ and msh3Δ showed 

only modest differences, with 95% confidence intervals overlapping. 

Although the differences in noise were partially lost using the new protocol, I decided to continue its 

use as it was the approach that resulted in reproducible Gal1 induction. Furthermore, I reasoned that 

observations obtained from this protocol were a better reflection of intrinsic variability in Gal1 

expression. A direct transition from pre-growth to galactose had the potential of mixing mutant-

specific Gal1 noise with differential strain fitness while exiting stationary phase. 

3.7. Gal1 noise differences are reduced after additional growth step 

Once I decided it was necessary to include the intermediate growth step, I repeated the smFISH 

experiments to see if the differences in noise were conserved or lost at the mRNA level (Fig. 3.9).  

Induction dynamics of Gal1 (Fig. 3.9a,b) showed a similar pattern as the one recorded by flow 

cytometry (Fig. 3.8a), including the observation that ies2Δ Gal1 expression behaves more similar to 

WT after the addition of the intermediate growth step. 
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Figure 3.9: Quantification of Gal1 mRNA by FISH and Gal1 protein by fluorescent reporter after 

adding an intermediate growth step. Cells were pre-grown in glucose until saturation, diluted into 

fresh glucose for 4-5.5h of intermediate growth, transferred into galactose for 12h, and subjected to 

a Single Molecule Fluorescence In-Situ Hybridization (smFISH) protocol with subsequent imaging by 
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epifluorescence microscopy. The Gal1-GFP transcripts were labeled with Quasar 670-conjugated 

probes complementary to Gal1 mRNA sequence. a,b) Mean population fluorescence of (a) Quasar 670 

and (b) GFP intensities during Gal1 induction for indicated strains. c,d) Noise trajectories across 

different levels of expression of Gal1-GFP (c) mRNA and (d) protein, plotted as CV (y-axis) vs. 

normalized fluorescence (x-axis). Each panel corresponds to a mutant plotted against WT. e) Average 

percentage of cells exhibiting an active GAL1 transcription site. Normalized fluorescence intensities 

are quantified as the fold-change vs. WT at 0h of induction (see Materials and Methods). Statistics 

were calculated on merged data from two biological replicates (one with 4h and one with 5.5h 

intermediate growth). Line represents the curve fitting with loess, intended as a visual aid. The average 

number of cells per data point was 517 ± 211 (mean ± sd). WT (gray), fus3Δ (blue), ies2Δ (orange), 

msh3Δ (green), and sap30Δ (red). 

In these experiments, the noise trajectories of Gal1-GFP showed differences in noise only for some of 

the mutants (Fig. 3.9c,d). fus3Δ displayed reduced noise at the mRNA (Fig. 3.9c) and protein (Fig. 3.9d) 

levels. A comparable trend was observed for msh3Δ, although the decreased noise of mRNA was not 

as strong. Regarding the two high-noise outliers, neither of them displayed increased noise at the 

mRNA level (Fig. 3.9c). Surprisingly, ies2Δ noise trajectory formed a curve below WT, an observation 

that is not in line with the results obtained when no intermediate growth was performed (Fig. 3.4g). 

At the protein level (Fig. 3.9d), the noise of WT and ies2Δ behave similarly. sap30Δ displayed higher 

noise at the protein level, resembling flow cytometry results (Fig. 3.8e). Of note, loess fits should be 

interpreted with caution and are plotted as a visual aid for the reader. Loess fits are sensitive to plotting 

parameters and may suggest differences even in the absence of real variation. Instead, conclusions 

should be based on the scatter of the data points. 

Finally, the dynamics of GAL1 activation were also altered by the addition of the intermediate growth 

(Fig. 3.9e). Under these growth conditions, no strain reached steady-state GAL1 transcription by 12 

hours, although the locus induction of WT, ies2Δ, and msh3Δ appeared to be plateauing at 10-12 hours. 

Overall, addition of intermediate glucose growth showed reduced differences in noise between WT 

and chromatin mutants. fus3Δ proved to be an outlier at the mRNA and protein levels after the 

addition of this step, even though it had displayed the same noise as WT when undergoing galactose 

exposure directly from stationary phase (Fig. 3.4g,h). 
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3.8. Ies2 anchor domain is involved in Gal1 noise trajectory 

My project aimed to understand the mechanistic bases of chromatin regulation and its effect on gene 

induction noise. Based on the results I had at the moment (induction directly after glucose pre-

growth), we chose one mutant for further mechanistic studies. We decided to focus on ies2Δ which, 

in the initial experiments, displayed increased noise at the mRNA and protein levels (Fig. 3.4g,h), and 

the mathematical modeling had highlighted altered DNA activation/inactivation rates (Fig. 3.6b). 

Although sap30Δ was the most extreme noise outlier, ies2Δ Gal1 induction levels were more similar to 

WT compared to sap30Δ cells. In addition, sap30Δ had a growth defect in galactose media which could 

potentially affect Gal1 noise in an indirect manner. 

 

Figure 3.10: Lack of anchor domain of Ies2 results in higher Gal1 noise during induction. a) Depiction 

of Ies2 domains (orange) in the context of the nucleosome and DNA-bound INO80 complex (gray). 

Adapted from [139]. b) Ies2 domain deletions used in this study. All strains had the endogenous Ies2 

tagged with two FLAG peptides at the C terminus. Strains had either no further modifications (top; 

WT), throttle domain deleted (middle; throttleΔ), or anchor domain deleted (bottom; anchorΔ). c,d) 

Strains shown in (b) were pre-grown in glucose, diluted into a 4h intermediate growth step, and 

induced with galactose for 12 or 15 hours. c) Mean population expression of Gal1-GFP over time for 

different Ies2 mutants. Plotted is mean log10(GFP) signal vs. time. d) Noise trajectories of Gal1-GFP 

over different levels of induction. Plotted is CV vs. mean log10(GFP). Statistics were calculated on 

merged data from four biological replicates (two 12-hour inductions, two 15-hour inductions). The 

average number of cells per data point was 10,335 ± 408 (mean ± sd). Line and ribbon represent the 
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fit and 95% confidence intervals of a curve fitting with loess, respectively. Strains depicted are WT 

(gray), throttleΔ (maroon), and anchorΔ (purple). 

Ies2 is a member of the INO80 chromatin remodeler complex. Structural studies of the INO80 complex 

have highlighted two important regions of Ies2: the throttle domain and the anchor domain (Fig. 3.10a) 

[139, 140]. The throttle is responsible for holding the nucleosome in place while DNA is being slid 

around it, whereas the anchor attaches Ies2 to the Rvb1/Rvb2 structural module of INO80 [139]. I thus 

generated single deletion strains in which the throttle or anchor domains of the endogenous Ies2 were 

removed (throttleΔ, anchorΔ) (Fig. 3.10b) and measured their mean Gal1 expression and noise 

trajectories during galactose induction after 4 hours pre-growth (Fig. 3.10c,d). 

Tagging the endogenous Ies2 with 2xFLAG did not have an effect on Gal1 induction or noise trajectories 

(Fig. S3). However, deleting the throttle or anchor domains reduced Gal1 expression kinetics slightly 

(Fig. 3.10c). Interestingly, while the deletion of the throttle only modestly affected the noise trajectory 

compared to WT cells, deletion of the anchor domain resulted in higher noise (Fig. 3.10d). This 

observation suggests the anchor domain of Ies2 is involved in the heterogeneous Gal1 induction. 

 

  



 

37 
 

4. DISCUSSION 

Gene expression is stochastic in nature. Noise creates population variability even under the most 

homogeneous of conditions. While noise in gene expression has been subject to multiple studies over 

the last two decades, most efforts have been dedicated to the analysis during steady state gene 

expression. In this project, I focused on different chromatin-related factors and investigated how they 

alter the noise of a model gene during its induction. As an experimental system, I chose Saccharomyces 

cerevisiae undergoing galactose induction. To measure gene expression, I employed the galactose-

responding gene Gal1 fused to GFP in its C-terminus (Gal1-GFP). I then applied different single-cell 

techniques to measure population variability. 

Throughout the discussion I mention the terms “induction kinetics” and “noise trajectory.” Induction 

kinetics refers to the mean population expression over time. The term “noise trajectory” describes the 

pattern formed by the Coefficient of Variation (CV; standard deviation/mean) when plotted against 

different levels of gene expression. 

My studies validated four chromatin-related factors as outliers for Gal1 noise during gene induction. 

fus3Δ and msh3Δ exhibited lower noise than WT, whereas higher noise was observed for ies2Δ and 

sap30Δ. Differences in noise were observed at the Gal1 protein level and, although to a lesser extent, 

at the mRNA level. Finally, I focused on Ies2 for dissecting the molecular mechanisms of altered noise. 

My results suggest that the interaction between Ies2 and the INO80 chromatin remodeling complex 

(INO80c) regulates gene induction noise at the Gal1 locus (Fig. 4.1). 

This project commenced by re-analyzing the data produced by Bheda et al. [125]. In this paper, the 

authors used a microfluidic platform to follow the induction kinetics of Gal1-GFP in individual cells 

during two rounds of galactose induction and repression. They tested a library of 535 strains with single 

gene deletions for chromatin-related factors. One of the authors, Dr. Johannes Becker, re-analyzed the 

data to identify strains that consistently displayed altered noise. From the 28 identified strains, I 

selected 9 for further studies, from which only 4 were validated as outliers in subsequent experiments 

(Fig. 3.2 and 3.3). 



 

38 
 

 

Figure 4.1. Proposed mechanism of Gal1 noise regulation through Ies2. Upon galactose exposure, 

cells induce Gal1 in a bimodal fashion. The noise trajectory of Gal1 peaks at intermediate levels of 

expression, and returns to a minimum once cells reach steady-state. At the single cell level, GAL1 

fluctuates between inactive and active conformations in a stepwise manner. The transitions between 

steps are modulated by chromatin factors such as Ies2, which interacts with the INO80 complex 

through its anchor domain (represented by a protruding section). INO80c: INO80 complex; RNAPII: 

RNA polymerase II. 

The discrepancy might be due to differences in experimental set up. The authors in [125] grew cells in 

glucose for 4 hours, performed a first induction of 1.5 hours using raffinose + galactose, repressed the 

cells in glucose by further 4 hours, and performed a second induction of 1.5 hours. The outliers 

identified by Dr. Becker considered all frames from the beginning of the first induction to the end of 

the second induction (7 hours total). 

Factors showing altered noise in two consecutive short inductions separated by a repression could 

have a different effect during an individual long induction. In addition, the choice of sugars has an 

impact on Gal1 expression and noise (Fig. 3.1 and [131, 127, 126, 128]). We were aware of the 

experimental and biological differences between the article published by Bheda and my doctoral 

project, so I used the high-throughput screening data as a starting point to guide the outlier selection 

process, rather than working under the assumption my results had to be identical. The sugar 

combination the authors employed was considered during the protocol establishment but, based on 
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the results from Fig. 3.1, I selected glucose as the sugar in which to pre-grow the cells and galactose 

as the sugar to induce Gal1 expression. 

After analyzing Gal1 noise in the mutants at the protein level, I further focused my attention on mRNA. 

I detected Gal1 transcripts using a Single Molecule Fluorescence In-Situ Hybridization (smFISH) 

protocol (Fig. 3.4). Because the readout of smFISH is microscopy images, I simultaneously acquired 

data on the Gal1-GFP transcript and protein expression level. Noise trajectories of Gal1 transcript and 

protein (Figs. 3.4g,h) were similar to those obtained for protein by flow cytometry (Fig. 3.3b), although 

the differences between WT and some of the mutants were not as stark. There are multiple 

explanations behind this. 

Flow cytometry has the advantage of acquiring thousands of cells in the span of seconds, whereas 

microscopy is limited by the amount of time necessary to acquire images. Indeed, I encompassed x20 

more cells per data point in the flow cytometry experiments than in the smFISH, which allowed to 

distinguish subtle differences in fluorescence—and thus noise—by flow cytometry. Due to the 

technical complexity of the protocols, it was also simpler to obtain better time resolution with flow 

cytometry than acquiring samples for smFISH. In Fig. 3.3, 12 hours of induction are divided into 25 

time points per strain. In the same induction time span, smFISH experiments only had between 6-12 

time points (Figs. 3.4 and 3.9). 

Another aspect that could have an impact is sample preparation. Cells in flow cytometry required 

minimal preparation and were measured immediately or on the following day after induction. In 

contrast, cells subjected to smFISH require at least three days of work before samples can be imaged. 

The fluorescent signal is subject to bleaching between sample preparation and imaging. 

After analyzing Gal1 mRNA, Dr. Lea Schuh and Dr. Dantong Wang developed a mathematical model to 

identify the steps of gene expression with rates differing between WT and mutant strains. First, the 

model evaluated the number of steps between a DNAon and a DNAoff state (Fig. 3.5). Such multistep 

models have been used extensively [17]. For example, the expression of a yeast gene induced under 

osmotic shock (STL1) was shown to require 4 activation steps to explain its mRNA distribution [141]. 



 

40 
 

The Bayesian Information Criterion (BIC) was used to select the model with the best fit, and a threshold 

of 10 units was used to reject less suitable models. 

The BIC is defined as log(𝑛) 𝑘 − 2𝑙𝑜𝑔𝐿, where 𝑛 is the number of data points, 𝑘 is the number of 

parameters and 𝑙𝑜𝑔𝐿 is the log-likelihood value for the maximum likelihood estimate of the model 

parameters. The best model is defined as the one with the lowest BIC and, given that BIC increases 

with the inclusion of additional parameters, BIC is a metric against overfitting. Results showed that any 

number of steps could adequately account for all strains, except for sap30Δ (Fig. 3.5b).  

10 random starts were enough to converge at the optimal parameters for WT, fus3Δ, ies2Δ, and msh3Δ. 

However, even using 100 random starts in sap30Δ only showed convergence when considering 0-3 

DNA steps. Using 4 steps or more, although lowering the BIC, resulted in an inferior number of 

estimations converging and showed poor fits to the data. A likely explanation is that sap30Δ behavior 

diverges considerably from any other strain, as shown by its noise trajectory. It is plausible that our 

model architecture does not properly account for the difference in sap30Δ expression dynamics and 

thus results in poor fitting. 

We selected a common number of DNA steps as a feature of all strains to simplify result comparisons. 

The number of steps chosen was 3, as it corresponded to the mean of best steps for WT, fus3Δ, ies2Δ, 

and msh3Δ. We proceeded to fit the model in pairs of WT-mutant and defined a subset of “best 

models,” chosen as those that whose BIC was less than 10 units away from the lowest BIC.  

The best models for fus3Δ and msh3Δ supported a scenario in which all rates of gene expression (γon, 

γoff, λprod, λdeg, κprod, κdeg; see Fig. 3.5a) were identical to those of WT cells (Fig. S2b). This conclusion 

is not entirely surprising given that the smFISH results used to feed the models showed minimal or no 

differences in Gal1 expression dynamics among the three strains (Fig. 3.4e-i).  

The opposite conclusion was achieved for high noise outliers, as the set of best models required 

mutant-specific DNA activation/inactivation rates (γon/γoff). No additional differences in model 

parameters were necessary to explain the data for ies2Δ and sap30Δ (Fig. 3.6b and Fig. S2b). These 

observations align with the known roles of these factors. Ies2 is part of the INO80 chromatin 
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remodeler, whereas Sap30 belongs to the Rpd3L histone deacetylase complex. Based on their 

biological functions, we would expect Ies2 and Sap30 to act at the step of DNA regulation (γon/γoff) 

and not, for example, at the level of protein production and degradation (κprod, κdeg). 

Subsequent experiments showed difficulties reproducing my original results, particularly in obtaining 

a successful galactose response. Although I was never able to determine the cause of the slow Gal1 

induction, I found an alternative protocol that reestablished Gal1 expression. It consisted in the 

addition of an “intermediate growth” step in which cells were resuspended into fresh glucose and 

resumed cell growth and division before being challenged with galactose (Fig. 3.7). 

My results revealed that not only the intermediate growth step altered Gal1 induction and noise 

kinetics, but also its duration had an effect. 2 hours in fresh glucose was enough to change the 

phenotype displayed by the samples with no intermediate growth. Instead of being slow inducers with 

high noise, samples that underwent 2h of intermediate growth showed the fastest induction and the 

lowest noise of all samples tested (Fig. 3.7c,d). I attributed this drastic difference to the fact that cells 

transitioning directly into galactose must exit stationary phase before adjusting to the new 

carbohydrate source. The presence of a subpopulation of cells showing distinctive Gal1 expression by 

2 hours (Fig. 3.7a) signaled how heterogeneous is a population coming out of stationary phase. 

Another aspect that this experiment highlighted is that the number of hours spent in glucose affects 

how easily cells induce Gal1. Cells reaching saturation in the pre-growth state enter a so-called diauxic 

shift as glucose becomes depleted. I selected 4 hours of intermediate growth, as 2 hours was not 

enough time to ensure the population had undergone a full cell division as monitored by OD600 (data 

not shown). 

Once experimental conditions had been defined, I re-tested the outlier phenotype of the four mutants 

of interest (fus3Δ, ies2Δ, msh3Δ, and sap30Δ). When the intermediate growth was included, only fus3Δ 

and sap30Δ displayed an outlier phenotype (Fig. 3.8). This could be because, as observed in Fig. 3.7c,d 

and described in the Results section, cells with no intermediate growth display more variability within 

the population as well as between replicates. If cell populations become more uniform during the 
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intermediate growth, it is likely that differences between mutants and WT diminish as well, and only 

those mutants with the stronger phenotype (fus3Δ and sap30Δ) remained outliers after the 

“homogenization” of the intermediate growth step. A second possible source of discrepancies is 

technical. Different flow cytometers were used for the two conditions, which is exemplified by the 

range of GFP fluorescence in each experimental setup (compare x-axes of Fig. 3.3a and Fig. 3.8a). 

Once we noted that adding an intermediate growth step reduced the differences in noise between WT 

and mutants, and considering the technical difficulties of smFISH explained above, it was not surprising 

to find only subtle differences between WT and mutant mRNA noise (Fig. 3.9c). The big variability of 

Gal1 expression and noise between replicates, both from the biological point of view and from the 

technical aspects of smFISH sample preparation, made it harder to confirm the significance of these 

subtle noise differences. 

Lastly, as part of this project, I aimed to characterize the molecular mechanisms by which one of the 

chromatin-related factors altered gene induction noise. With the information I had at the time, namely 

results without an intermediate growth step, Ies2 was selected for further testing. I deleted two 

domains of Ies2: the throttle domain, which stabilizes the nucleosome during DNA sliding, and the 

anchor domain, which attaches Ies2 to the rest of INO80c [139].  

Although I had expected the throttle domain to participate—at least to some extent—in Ies2-mediated 

noise, its deletion generated a noise trajectory similar to WT. On the other hand, the anchorΔ mutant 

exhibited higher noise (Fig. 3.10d), resembling the effect observed when deleting Ies2 entirely. 

Although these results cannot address whether Ies2 can bind INO80c in the absence of the anchor 

domain, they suggest the interaction between these two proteins is implicated in regulating 

population variability of Gal1 induction. 

4.1. The shape of noise trajectories 

The inverse linear relationship between the mean abundance of a gene and its noise was observed by 

the early studies of Bar-Even [68] and Newman [69], and has been confirmed by multiple studies since 

then [22, 70–74]. It was surprising then when I found the semi-circular noise trajectory formed by Gal1 

during induction.  
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Such trajectory is logical when we consider the process of gene induction. The population transitioned 

from a state in which all cells are “off” to one in which all cells are “on.” Those two scenarios at the 

edges of the Gal1 expression spectrum are the lowest in noise as all cells share the same expression 

status. The Gal1 induction that happens in between these two extremes is subject to stochastic 

fluctuations. Because the populations induced Gal1 in a bimodal fashion when transitioning from 

glucose to galactose, the heterogeneity is higher in those intermediate states of expression (Fig. 3.1). 

In contrast, cells transitioning from raffinose induced as a single unit (unimodal induction; Fig. 3.1a). 

Their noise trajectories described a horizontal line at the beginning of the induction, after which the 

CV only decreased as cells approached steady state (Fig. 3.1c). The CV of all conditions tested 

resembled the linear relationship mentioned above only when Gal1 reached intermediate-to-high 

levels of expression. This highlights the relevance of studying dynamic systems and not only final 

system states. 

In this project, I only compared the noise of WT and mutants when the populations exhibited similar 

levels of expressions. Comparing CV values matched by induction time could lead to the wrong 

assumption that two samples exhibited different noise due to their genetic background, and not 

because they were in different stages of induction. 

While reviewing literature in noise dynamics, I found that the semi-circular noise shape observed 

during Gal1 induction had been described before [23, 55, 56, 66], although its existence had been 

overshadowed by the multiple studies showing a linear relationship between noise and mean gene 

expression [22, 68–74]. The authors describing semi-circular noise shapes compared noise (quantified 

by the CV, CV2, or Fano factor) at different levels of gene expression, although the methods for 

achieving a range of expression levels were different than considering level of induction over time. 

The ground-breaking paper of Elowitz et al. deciphered the contributions of internal and external noise 

by using a dual-color assay [55]. The reporter used for their study was under the control of a lac-

repressible promoter. Instead of analyzing the noise levels of the reporter genes during induction, they 

achieved different expression levels by using a gradient of IPTG, a molecule that binds and inactivates 

the lac repressor, therefore inducing the expression of their reporter. Their results showed that cells 
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were uniformly repressed or uniformly induced at low and high IPTG concentrations, respectively. 

Consequently, they exhibited low noise. In contrast, fluctuations in LacI at intermediate concentrations 

of IPTG caused variations in the transcription of the reporter gene, increasing the total noise of the 

population [55]. It is important to mention that the measurements of noise were made on steady-state 

conditions and there was no evidence that their population was bimodal. 

Raser and O’Shea employed the dual-color assay developed by Elowitz, this time under the control of 

the GAL1 promoter in S. cerevisiae [56]. They reported a similar pattern to the one observed in my 

experiments, although the authors did not test noise during GAL1 induction. Instead, they monitored 

the noise of GFP under the control of a GAL1 promoter after 8 hours of induction, but achieved 

different levels of expression by changing the concentration of galactose in the media. 

Their observation was similar to the one obtained by Blake an colleagues [66]. The authors also 

considered GFP under the control of a GAL1 promoter, but this time coupled to two tet operons, and 

measured the noise of GFP at different transcriptional efficiencies, achieved by varying amounts of 

galactose and ATc (anhydrotetracycline; relieves TetR-mediated repression). They measured noise after 

more than 30 hours of cell growth. They observed the same pattern when GFP was driven by the 

promoter of ADH1, exemplifying that the semi-circular pattern is not strictly specific for the GAL1 

promoter. 

A follow-up study by the same lab explored the role of TATA boxes in cell-to-cell variability [23]. Their 

induction system was still dependent on galactose and ATc concentrations and they characterized the 

induction dynamics of a GFP containing the endogenous TATA box (TA-WT), or a mutated TATA box with 

severe induction impairment (TA-sev). They noticed a rapid increase in noise as soon as GFP was 

induced, after which the population heterogeneity decreased as cells approached steady state. Similar 

to my results, their induction of GFP was bimodal and the shape of the distribution was correlated 

with the gene’s noise. Not only did the authors compared noise in TA-WT and TA-sev at matched time 

points, but they also tested the noise by matching both populations by mean expression, although this 

expression was at steady state and achieved using different concentrations of ATc. They concluded that 

even at similar mean population expression, the heterogeneity of TA-WT was higher than TA-sev due 
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to a bigger transcriptional bursting in WT cells. This heterogeneity had implications for the survival of 

cells when exposed to an environmental stress. The study of Blake et al. [23] showed the importance 

of the promoter region for cell-to-cell variability. It also showed differences in noise could exist even 

in populations with the same mean expression, and these differences in noise could be functionally 

relevant. 

4.2. The role of chromatin mutants in noise 

From the high-throughput microfluidic screening of Bheda et al. [125] I did a first selection of nine 

chromatin-related factors to test whether they exhibited differences in Gal1 noise during gene 

induction. From those nine candidates I validated four, namely fus3Δ, ies2Δ, msh3Δ, and sap30Δ (Figs. 

3.2 and 3.3). In this section, I will briefly describe the known roles of each factor, as well as their 

reported contributions in cell-to-cell variability. 

4.2.1. Fus3 

Fus3 is a mitogen-activated protein (MAP)-kinase involved in pheromone signal transduction during 

mating [142]. Fus3 was shown to be involved in cell-to-cell variability during pheromone response, 

although its deletion was linked to a higher variability of the reporter gene when cells were exposed 

to high doses of mating pheromone α-factor [143]. In a separate study, although the deletion of Fus3 

alone did not result in increased cell variation, Fus3 was shown to be involved in a signaling cascade 

that created population variability via microtubule perturbations [144]. 

Fus3 has no DNA binding activity. Instead, it stimulates gene transcription indirectly by 

phosphorylation of transcription factors such as Ste12, Far1, Bni1, and Sst2 [145–147]. None of them 

are known regulators of GAL1, so the link between Fus3 and galactose induction is not evident. 

It is possible that Fus3 has an uncharacterized target that mediates signal transduction between Fus3 

and the GAL1 promoter. Another scenario is that, in the absence of Fus3, there is crosstalk between 

other MAPK pathways, as has been shown for osmostress. Hog1 is a MAPK involved in osmoregulation 

[148]. In hog1Δ cells, the osmostress signal is diverted and gets transmitted through Fus3 instead [149]. 
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4.2.2. Ies2 

Ies2 is member of the INO80 chromatin remodeler complex (INO80c). Its role is to maintain the 

nucleosome in place while DNA is being slid around it [139]. Despite being a subunit of an essential 

chromatin regulator, the role of Ies2 has not been described until recently. 

Ies2 has been investigated in quiescence in Schizosaccharomyces pombe [150]. Cells bearing different 

deletions of INO80c subunits, including Ies2, had higher mortality rates and failed to induce quiescence 

genes. It is difficult to compare the conclusions of the study to my experimental setup; the earliest 

time point the authors tested was 24 hours, whereas the pre-growth I employed lasted no more than 

16 hours. Nevertheless, it is possible that a quiescence-associated behavior is involved in the noise 

differences of ies2Δ cells with and without intermediate growth. 

There are reports of the Arp5-Ies6 module being unable to bind INO80c in the absence of Ies2 [151]. 

Arp5 couples ATP hydrolysis to nucleosome sliding by functioning as a counter grip to the Ino80 ATPase 

domain [139]. It is possible that Ies2 is not directly responsible for the Gal1 noise trajectories we 

observed, and the phenotype is mediated by Arp5 instead. Neither Arp5 nor Ies6 deletions were 

considered in the initial high-throughput screening published by Bheda et al. [125]. 

Other subunits of INO80c might be involved in noise regulation as well. Arp8 can work as a “ruler” to 

position nucleosomes [33]. The deletion of Arp8 resulted in a slightly diminished expression and higher 

noise of a constitutively-expressed YFP reporter driven by the promoter of GAL1 [152]. The authors 

only tested noise at steady state, and it is unclear whether the increase in noise was due to the Arp8 

deletion or due to the expected noise of YFP when its expression is reduced. Removal of Arp8 has also 

been shown to decrease gene expression and increase intrinsic noise of a reporter expressed from a 

maximally-induced PHO5 promoter [56]. Deletion of Arp8 was not assessed by Bheda et al. [125]. 

Deletions of other INO80c components were tested in the high-throughput screening of Bheda et al. 

[125], namely Ies4, Nhp10, Ies1, and Ies5. Only nhp10Δ and ies1Δ were detected as outliers, resulting 

in higher noise in 1 and 3 frames respectively. For comparison, ies2Δ was outlier for 10 frames of the 

time lapse. 
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4.2.3. Msh3 

Msh3 is a mismatch repair protein that, together with Msh2, mediates the repair of small DNA 

insertions and deletions during DNA replication [153]. The Msh2-Msh3 heterodimer also participates 

in heteroduplex formation during mitotic and meiotic recombination [154] and in the removal of non-

homologous DNA ends during Double Strand Break Repair [155].  

The only reported link between Msh3 and the GAL1-GAL10 locus was in the context of transcription-

stimulated mitotic recombination [156]. The authors analyzed the recombination rates at the GAL1-

GAL10 promoter, whose activity was regulated by the presence or absence of Gal80. When the donor 

or the recipient allele were highly transcribed, msh3Δ showed an increase in recombination compared 

to WT, whereas the recombination rate was similar to WT under low-transcription conditions. No 

assessment of cell heterogeneity was carried out in this paper. 

The yeast employed in my experiments is haploid, but mitotic recombination could occur once cell 

division has resumed and cells are in S or G2 phase, roughly 7-9 hours after glucose-galactose switching 

(data not shown). If that was the case, msh3Δ would only be an outlier for noise during the latest hours 

of the induction, which is indeed the observed phenotype (Fig. 3.3b), although these two events might 

not be linked. 

It is important to mention that Rad51, a protein involved in homology recombination and known 

interactor of Msh2 [157], was one of the nine outliers selected from the microfluidics screen. Although 

the phenotype of rad51Δ was not further investigated, it showed a slight reduction in Gal1 noise 

compared to WT (Fig. 3.2). 

4.2.4. Sap30 

Sap30 is a component of the Rpd3L histone deacetylase complex (HDAC) [158], which has been linked 

to gene expression noise previously. In the paper of Weinberger et al. [159], the authors searched for 

regulators of transcriptional bursting. An initial screen of 137 non-essential chromatin factors deletions 

suggested the Rpd3L complex was involved in transcriptional burst repression. Follow-up 

quantification of 200 GFP-fusion reporters in steady state revealed that sap30Δ had an overall increase 



 

48 
 

in burst frequency compared to WT. Because the authors defined burst frequency as the inverse of CV, 

it meant sap30Δ displayed a lower CV than WT in their study. 

This observation is opposite to my results, as deleting Sap30 resulted in higher CV during Gal1 

induction. A possible explanation is that the authors in [159] averaged the burst frequency of multiple 

genes, whereas the higher noise of Gal1 might be gene-specific. A second consideration is that the 

authors only measured burst frequency in steady state. As described in Results, the noise outliers I 

characterized had a different noise than WT during gene induction, but the same noise once Gal1 had 

reached maximum expression. I did not report on steady-state of Gal1 for sap30Δ as the time it took 

to fully induce was longer than the maximum time tested (15 hours). However, given the noise 

trajectory displayed by all mutants, it is likely that sap30Δ and WT populations exhibit the same noise 

at Gal1 steady-state. 

The Rpd3L complex has been further linked to noise, albeit in the context of aging cells [160]. The 

authors expressed YFP from a GAL1 promoter and analyzed YFP expression and noise over multiple 

generations. The absence of the catalytic subunit of Rpd3L caused a reduction in noise. Similar to [159], 

the authors only measured noise at steady state. 

All other components of the Rpd3L complex, with the exception of Ash1, were tested in the high 

throughput screening of Bheda et al. [125]. Only sin3Δ, sap30Δ, and sds3Δ were proved to be outliers, 

each for 5, 16, and 24 frames respectively. sin3Δ was discarded as junction PCR demonstrated the 

strain employed in the screen contained both WT and mutant cells. Although sds3Δ was outlier for 

more frames than sap30Δ, it was not considered for further analysis because it had a deficient 

induction during validation experiments (data not shown). 

4.3. Other chromatin factors that regulate Gal1 expression and noise 

Moreno and Acar [152] investigated chromatin-related factors that impact expression and noise. YFP 

fluorescence expressed from a GAL1 promoter was measured in six mutant strains, each one bearing 

a deletion of a protein belonging to a chromatin complex known to participate in GAL1 expression. 
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The authors tested set1Δ and set2Δ (histone methyl-transferases), jhd2Δ (histone demethylase), snf6Δ 

(SWI/SNF remodeling complex), arp8Δ (INO80 remodeling complex), and gcn5Δ (SAGA histone acetyl-

transferase complex). YFP was induced not by addition of galactose, but by growing the cells in 

mannose and deleting the negative regulator GAL80. All the mutants investigated exhibited lower 

expression and higher noise of GAL1 promoter-driven YFP. In the following paragraphs, I’ll discuss each 

of the deletions, the complexes they belong to, and I will make a parallel with the outlier detection 

analysis performed by Dr. Johannes Becker in the original screen (see Fig. 1.8). 

Set1 belongs to the histone methyl-transferase complex COMPASS [161]. Although set1Δ was not 

included in the microfluidics screening [125], six other members of COMPASS were tested, two of 

which were identified as outliers. sdc1Δ and swd1Δ were detected as low-noise outliers for 6 and 5 

frames, respectively. Although we cannot draw direct comparisons given the experimental differences 

of both studies, it is interesting that Moreno and Acar found set1Δ to be linked to higher noise, whereas 

our results point towards COMPASS having the opposite effect. 

Set2 was included in the deletions tested in [125]. The outlier detection algorithm identified it as 

outlier in only 2 frames, potentially indicating that while set2Δ might be linked to higher noise in GAL1 

steady state [152], its role in GAL1 induction is not as prominent. The histone demethylase Jhd2 was 

also part of the high-throughput screening, although it was not identified as a noise outlier in any 

condition. 

Snf6 is a component of the chromatin-remodeling complex SWI/SNF [162]. Snf6 was not part of the 

high-throughput screening. However, three other members of SWI/SNF were included, one of which 

(snf11Δ) was a high-noise outlier for 3 frames. 

Lastly, while Gcn5 was not one of the proteins tested in [125], five other members of the SAGA histone 

acetyl-transferase complex were identified as noise outliers. Individual deletions of Chd1, Sgf11, Spt3, 

and Ubp8 caused higher noise. Ubp8 showed the strongest phenotype, as its deletion resulted in 

higher noise for 28 frames (4h 40m). Ubp8 is the ubiquitin protease catalytic subunit of SAGA [163]. It 

is part of the DUB (deubiquitinase) module, whose role is to cleave monoubiquitination from H2B and 
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stimulate transcriptional elongation [164]. The detection of five members of the complex as noise 

outliers strongly suggests SAGA is linked to GAL1 induction variability. 

4.4. Conclusion 

In this project, I have addressed the role of chromatin regulation in the noise of a gene undergoing 

induction. I focused on four genes whose deletion was associated with differential Gal1-GFP noise. 

fus3Δ and msh3Δ exhibited lower noise than WT, whereas ies2Δ and sap30Δ displayed higher noise. 

Differences in Gal1 noise were detected at the protein level and, for some of these factors, also at the 

mRNA level. These observations were specific for gene induction, as mutant and WT strains showed 

equal levels of variation once Gal1 had reached maximum expression. Overall, the results of my 

dissertation highlight the importance of studying noise in dynamic, non-steady-state systems. 

Part of my work was dedicated to identifying the molecular mechanisms that regulate gene induction 

variability. I showed that the anchor domain of Ies2 is implicated in Gal1 induction noise. However, 

additional molecular characterization will be necessary to understand how the INO80 complex acts at 

the GAL1 locus and which factors regulate its stochastic activation. 

The improvement of single-cell techniques will facilitate our understanding of noise in dynamic 

systems. In particular, it will be interesting to elucidate how the nucleosome landscape, histone 

modifications, and histone variants change during Gal1 induction in individual cells over time. 
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5. MATERIALS 

5.1. Buffers and media 

Name Composition 

Synthetic complete (SC) media 

2.75 g/L Drop-out medium 

8.375 g/L Yeast Nitrogen Base w/o Amino Acids 

1.5-2% sugar 

Phosphate Buffer 
0.1 M potassium phosphate 

pH 7.5 

FACS Buffer 

1x PBS 

1% Fetal Bovine Serum 

 2mM EDTA 

25 mM HEPES 

pH 7.5 

Buffer B 

1.2 M sorbitol 

0.1 M potassium phosphate 

pH 7.5 

Spheroplast Buffer 

Buffer B 

20 mM VRC 

20 mM β-mercaptoethanol 

Resuspension Buffer 
Buffer B 

20 mM VRC 

Hybridization Buffer 

100 mg/ml dextran sulphate 

1 mg/ml E. coli tRNA 

2 mM VRC 

20 ug/ml Bovine Serum Albumin 

2x SSC 

100 uL/mL Formamide 

Saline-sodium citrate (SSC) 
17.53 mg/mL sodium chloride (NaCl) 

8.82 mg/mL sodium citrate 

Wash Buffer 
10% formamide 

2x SSC 

5.2. Chemicals and reagents 

Name Supplier Catalog ID 

Bovine Serum Albumin (BSA) New England Biolabs B9000S 

Coverslips VWR ECN 631-1567 

D-(+)-galactose Sigma-Aldrich G6404 

D-(+)-glucose Sigma-Aldrich G8270 

D-(+)-raffinose Sigma-Aldrich 83400 

DAPI Sigma-Aldrich D9564 

Dextran sulphate Sigma-Aldrich D8906 
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Di-potassium hydrogen phosphate (K2HPO4) Roth 7758-11-4 

Drop-out Mix Complete w/o Yeast Nitrogen Base US Biological D9515 

Dulbecco’s Phosphate Buffered Saline (DPBS) Thermo Fisher Scientific 14190094 

E. coli tRNA Roche 10109541001 

Ethanol Merck Millipore 64-17-5 

Ethylenediaminetetraacetic acid (EDTA) Roth 6381-92-6 

Fetal Bovine Serum (FBS) Thermo Fisher Scientific 12103c 

Formaldehyde Sigma-Aldrich F8775 

Formamide Sigma-Aldrich F9037 

HEPES Roth 7365-45-9 

Lyticase Sigma-Aldrich L2524 

Potassium di-hydrogen phosphate (KH2PO4) Roth 7778-77-0 

ProLong Gold Life Technologies P36934 

Sodium chloride (NaCl) Roth 7647-14-5 

Sorbitol Sigma-Aldrich S7547 

Superfrost microscope slides Thermo Fisher Scientific 12372098 

SYTOX Blue Life Technologies S34857 

Tri-sodium citrate dihydrate Roth 4088.1 

Vanadyl Ribonucleoside Complex (VRC) New England Biolabs S1402S 

Yeast Nitrogen Base without Amino Acids Becton Dickinson 291940 

β-mercaptoethanol Sigma-Aldrich M3148 

5.3. Equipment 

Type Name Supplier 

Flow Cytometer LSRFortessa  BD Biosciences 

Flow Cytometer CytoFlex S Flow Cytometer Beckman Coulter 

Microscope Eclipse Ti-E with SPECTRA X light engine illumination Nikon 

Camera iXon Ultra 888  Andor 

5.4. Software 

Name Version 

R v4.3.1 

FlowJo v10.8.1 

Cell-ACDC v1.4.8 

spotMAX NA 

MATLAB R2017a 

gcc 4.8.5 

g++ 4.8.5 
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6. METHODS 

6.1. Yeast growth and culture 

Yeast cells were grown in SC media supplemented with 2% (weight/volume) of a single sugar, or 1.5% 

of each sugar in case of raffinose + galactose mixtures. Cell pre-growth was performed overnight. In 

cases when cultures had no intermediate growth, cells were washed twice with miliQ water and 

diluted at 0.4 OD in inducing media. Cultures subjected to intermediate growth were diluted in fresh 

media at an OD600 of 0.2 and let grow for the corresponding amount of time before being washed 

twice with miliQ water and transferred to inducing media. During intermediate growth and induction, 

all cultures were diluted frequently to ensure cells were in exponential phase. 

6.2. Yeast reporters and constructs 

The wild type (WT) strain used in this study is the same employed in [125]. It is a derivative of parent 

strain Y7092 (SGA WT query strain, MATα can1Δ::STE2prSp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 

met15Δ0) with GFP fused to the C-terminus of Gal1 by transformation of a PCR product. 

The gene deletions selected from the high-throughput screening were confirmed by junction PCR. 

Subsequently, deletions were re-done in the WT strain to ensure the phenotype observed was not 

caused by secondary mutations occurred during SGA. Gene deletions were performed by PCR-

mediated homologous recombination. 

Ies2 mutant constructs were generated in a plasmid and amplified by PCR. WT yeast was transformed 

with the purified PCR product and clones with a successful integration were selected by a LEU2 

metabolic marker. The marker was later removed by recombination of flanking pLox sites. Constructs 

were validated by Sanger sequencing. 

The anchor and throttle domains of S. cerevisiae Ies2 were determined based on (i) the INO80 

structure of Chaetomium thermophilum [139], (ii) AlphaFold [165, 166] predictions of S. cerevisiae 

Ies2, and (iii) peptide sequence similarity among both organisms. 

Structural analysis of C. thermophilum Ies2 showed the throttle domain as a single α helix, while the 

anchor domain is composed of two short β sheets followed by two short α helices. The analogous 
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structures were identified in the AlphaFold prediction of S. cerevisiae Ies2 (a long α helix for the 

predicted throttle, and two short β sheets for the predicted anchor). Lastly, the Ies2 peptide sequences 

of both organisms were aligned with Protein BLAST (https://blast.ncbi.nlm.nih.gov/). Results showed 

amino acid similarities between the characterized C. thermophilum throttle domain and the predicted 

S. cerevisiae throttle domain. 

The amino acid sequences of the predicted S. cerevisiae domains are the following: 

Ies2 throttle (a.a. 235-273): 

DEEIQLRRAENARKRKNLSEKRLEEEKQDTINKLLKKRA 

Ies2 anchor (a.a. 306-319): 

TRILRRYEEDLFCT 

Both constructs, as well as the endogenous Ies2, were tagged with two FLAG peptides at the C-

terminus. 

6.3. High-throughput screening of mutants 

Extended details of the method can be found in Bheda et al. [125]. The collection of mutants was 

generated by crossing the Gal1-GFP reporter strain with the Synthetic Genetic Array (SGA) single-

deletion collection of non-essential genes [167]. The library tested contained 567 yeast strains, out of 

which 535 deletions corresponded to chromatin-related factors, 31 to randomly-selected non-

chromatin associated factors, and 1 control strain for the antibiotic marker. 

Strains were grown in individual chambers of a microfluidic platform that allowed for automated media 

changes [168]. Cells were initially grown for 4 hours in glucose, followed by a first raffinose + galactose 

induction for 1.5 hours (1.5% of each sugar), a repression with glucose for 4 hours, and a second 

raffinose + galactose induction for another 1.5 hours. 

Images of the yeast were captured at 60x magnification with time points every 10 minutes. Cells were 

segmented in PhyloCell (available on GitHub https://github.com/gcharvin) and analyzed with custom 

MATLAB scripts. The screening was performed in three biological replicates, each with two technical 

replicates per strain within the same chip. 
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6.3.1. Outlier detection of high-throughput screening 

Outlier detection was based on the assumption that most of the gene deletions would have minimal 

or no effect on the noise of Gal1-GFP. I was therefore interested in deletions that repeatedly behaved 

outside the norm. 

For every frame of the time lapse, strains were plotted based on their mean GFP abundance (x-axis) 

and their CV2 (coefficient of variation; CV = sd/mean) (Fig. 3.1b). A moving window of 11 data points 

was used to calculate upper and lower thresholds of “outlierness”. The thresholds were based on the 

interquartile range (IQR) of the 11 data points. IQR is a measure of dispersion and is calculated by 

subtracting the 25% quartile (Q1) from the 75% quartile (Q3). The upper threshold was Q3 + IQR; the 

lower threshold was Q1 – IQR. Once the threshold values were calculated for all moving windows, 

cubic smoothing splines were applied to get smooth curves for the threshold values (red and blue 

dashed lines in Fig. 3.1b). 

This process was repeated for every frame, for a total of 43 frames (7 hours of time lapse). Outliers 

were explored in the individual datasets (unnormalized data), as well as in the condensed dataset 

formed by merging the three replicates by loess (normalized data). Strains were ranked based on the 

number of frames in which they were outliers. The final candidates corresponded to those that were 

outliers for at least 4 frames in the normalized data. 

6.4. Flow Cytometry 

6.4.1 Sample acquisition 

For experiments depicted in Figs. 3.2-3.4, cells were collected at different time points during the 

induction, washed once with Phosphate Buffer to remove residual galactose, resuspended in 500 uL 

of FACS Buffer and stored overnight at 4 °C. The following morning, cells were incubated for 

approximately 10 minutes with SYTOX Blue to identify dead cells, and samples were analyzed using a 

BD LSRFortessa flow cytometer with a high-throughput sampler of 96-well plates. 

For experiments depicted in Figs. 3.8, 3.9, 3.10, and S3, cells were collected at different time points 

during the induction, centrifuged, and resuspended directly in SYTOX Blue for 10 minutes. Immediately 

after, samples were recorded in a CytoFlex S Flow Cytometer. 
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6.4.2. Sample gating 

Events were gated by forward and side scatter (FSC-A and SSC-A) to remove debris. Further gating of 

FSC-A and FSC-W removed doublets and budding yeast. The SYTOX Blue-positive population (dead 

cells) was excluded from the analysis. Gating was performed with FlowJo v10.8.1. Resulting cell 

measurements were exported as a .csv and analyzed with custom R scripts. 

6.4.3. Analysis of flow cytometry data 

Cells with GFP intensities below 1 A.U. were removed before calculating statistics. This accounted for 

an average of 0.36% of cells discarded per sample (0.96 quantile = 2% of removed cells). GFP 

fluorescence intensities were subsequently log10-transformed and the mean, standard deviation (SD), 

and coefficient of variation (CV = sd/mean) of each population were calculated.  

Curve fitting of data points was performed using the ‘loess’ function in ggplot: 

stat_smooth(method = 'loess', span = 0.75, level = 0.95) 

6.5. Fluorescence in Situ Hybridization 

6.5.1 Sample processing and acquisition 

I adapted the Stellaris RNA FISH protocol for S. cerevisiae. Cells at OD600 0.4 were fixed with 

formaldehyde to a final concentration of 3.7% and incubated at room temperature for 45 min. Cells 

were washed twice with cold Buffer B and resuspended in Spheroplast Buffer pre-warmed at 30 °C. 

Cells were lysed for 30 min at 30 °C by adding lyticase at a final concentration of 375 U/mL. Cells were 

washed twice with cold Resuspension Buffer and permeabilized in 70% ethanol at 4 °C overnight. 

The following day, cells were resuspended in Hybridization Buffer containing 125 nM of Gal1-targeted 

fluorescent probes. The probes were designed by Stellaris Probe Designer, were conjugated to Quasar 

670 fluorophore, and targeted the gene body of the endogenous Gal1 sequence. After resuspension 

in Hybridization Buffer, cells were incubated in the dark at 30 °C overnight. The following day, excess 

probe was washed away with Wash Buffer. Cells were incubated in DAPI (10 ng/mL in PBS) for 1 hour 

at 30 °C in the dark, washed once with PBS, and mounted in microscope slides using ProLong Gold. 

Slides were left to polymerize overnight and imaged on the following day. Depending on the number 

of samples per experiment, it took between 1-7 days for samples to be imaged, during which the slides 

were stored at -20 °C in the dark. 
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A Nikon Eclipse Ti-E with SPECTRA X light engine illumination and an Andor iXon Ultra 888 camera were 

used for epifluorescence microscopy. A plan-apo λ 100x/1.45 NA Ph3 oil immersion objective was used 

to take phase contrast and fluorescence images. 21 z-planes (0.25 um each) were acquired for each 

position. Images were captured at 150x magnification, and enough positions were imaged to 

encompass at least 100 cells per sample. Mean number of cells per sample was 409 cells; 80% of the 

samples had 233 cells or more). 

6.5.2. Analysis of FISH images 

6.5.2.1 Cell segmentation 

Images were processed with Cell-ACDC v1.4.8 [169] for cell segmentation. The automatic, 2D 

segmentation was performed on the phase contrast images by YeaZ using parameters: 

Threshold value 0 

Min distance  10 pixels 

Minimum area  100 pixels 

Minimum solidity 0.90 

Max elongation 3 

Predicted cells were filtered based on (i) maximum size to discard multiple cells detected as a single 

object (1-2%), and (ii) based on phase contrast intensity to discard dead cells (1-3%). 

6.5.2.2 Fluorescence quantification and statistics 

Cell-ACDC was used for quantification of Quasar 670 and GFP fluorescent signals of the focal plane of 

the z-stack. A square of ~128 x 128 pixels containing no cells (Background ROI) was used for calculating 

the background fluorescence of each image. Quasar 670 and GFP fluorescent signal was background-

corrected by subtracting the median fluorescence of the Background ROI to the cell fluorescence. Total 

fluorescence of the cell was divided by the cell area (sum of fluor. of all pixels / number of pixels). 

Results were exported from Cell-ACDC and analyzed with custom R scripts. 

Fluorescence was normalized in each replicate as the fold enrichment compared to mean WT signal at 

0h. For the two replicates that did not include a 0h timepoint, a “pseudo 0h” fluorescence was 

calculated to estimate the autofluorescence of uninduced cells. “Pseudo 0h” was determined by 

pulling together all cells at the earliest time point acquired (2 hours after galactose switch). Since some 

strains were slow inducers, pulling all samples together ensured that a negative population was 

identifiable, compared to using WT cells at 2h, which were mostly induced. The “pseudo 0h” value 
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corresponded to the negative peak of the linear fluorescence distribution of all cells at 2h post-

induction. 

Mean, standard deviation (sd), and Coefficient of Variation (CV = sd/mean) were calculated on the 

normalized fluorescence for Quasar 670 and GFP signals. Curve fitting of data points was performed 

using the ‘loess’ function in ggplot: 

stat_smooth(method = 'loess', span = 0.85, level = 0.95) 

6.5.2.3 Transcription Site and mRNA detection 

For detecting Transcription Sites (TS), I applied spotMAX (Padovani et al., in preparation) paired to the 

segmentation mask obtained from Cell-ACDC/YeaZ. SpotMAX was run on the Quasar 670 channel using 

the following parameters:  

Calculate ref. channel network length? FALSE 

Compute spots size? TRUE 

Cy5 emission wavelength (nm): 675 

Detection method: peak_local_max 

Effect size limit: 0.5 

Effect size used: effsize_glass_s 

Filter by segmenting ref. channel? FALSE 

Filter good peaks method: effect size 

Filter spots by reference channel? FALSE 

Filter spots too close to z-boundaries? FALSE 

Fit 3D Gaussians? FALSE 

Gaussian filter sigma: 0.75 

Invert the filtering of good peaks? FALSE 

Is ref. channel a single object per cell? FALSE 

Load a reference channel? FALSE 

Local or global threshold for spot detection? Global 

Numerical aperture: 1.45 

Peak finder threshold function: threshold_li 

Reference channel threshold function: threshold_li 

Segmentation info (ignore if not present): 2D 

Sharpen image prior spot detection? TRUE 

Spots channel name: Cy5 

Spots file name: Cy5 

Spotsize limits (pxl) 1.0, 9.6 

YX resolution multiplier: 1 

Z resolution limit (um): 1 

ZYX voxel size (um): [0.25, 0.0862, 0.0862] 
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The biggest challenge was to find a set of parameters that worked across biological replicates and 

across different levels of Gal1 induction. A lenient threshold of ‘Effect Size [Glass] ≥ 0.5’ was 

used for a first round of detection, after which false positives were removed. 

The identified spots were divided into four clusters based on their values for ‘Effect Size [Glass]’ 

and ‘voxspot’ (highest voxel fluorescence of the spot). Both metrics showed bimodal distributions, 

and the thresholds were chosen as the valley that separated the peaks of the distributions. 

Manual inspection of the detected spots showed that the active TS corresponded to the cluster of 

spots that had higher ‘Effect Size [Glass]’ and ‘voxspot’ than the thresholds. Spots with lower 

values in both thresholds were considered false positives and were removed prior to any statistical 

calculation. Any other spot was determined to be an mRNA, and the estimated mRNA counts were 

used to fit the mathematical model of Figs. 3.6, 3.7, and S2 (see details below). 

The combined outputs of Cell-ACDC and spotMAX were exported as a single dataset and the results 

were analyzed with custom R scripts. 

6.6. Mathematical Modelling 

The mathematical models were written and run in MATLAB R2017a. The pipeline utilized AMICI [170] 

for simulation of the ordinary differential equations. AMCI was run with the following parameters: 

options.ami.sensi_meth 'forward' 

options.ami.atol  1e-15 

options.ami.rtol  1e-8 

options.ami.sensi  0 

The compilation of .mex simulation files by AMICI was done using gcc v4.8.5 and g++ v4.8.5 in Linux. 

Model parameters were estimated with PESTO [171] by performing multi-start local optimization of 

the negative loglikelihood. PESTO was run with default options and only the number of random starts 

was modified. To determine the appropriate number of DNA steps, 10 random starts were used for all 

strains except sap30Δ, in which the number had to be increased to 100 starts to improve convergence. 

For model comparisons between WT and mutants, the number of starts was set to 20. 
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The mathematical model consisted of six rates (γon, γoff, λprod, λdeg, κprod, κdeg) explained in the main 

text, plus five additional parameters (mRNA01, v01, P01, vP01, vmRNAP01) representing the mean and 

variance of the mRNA, the mean and variance of the protein, and the covariance between mRNA and 

protein, respectively. This created a set of 11 parameters to be estimated for each strain. The five last 

parameters were assumed to be different between WT and mutant. Parameters were calculated in the 

log10 space to improve the convexity of the optimization problem [172]. The parameter space had 

lower and upper boundaries set at -4 and +4, respectively, except for λdeg, mRNA01, vP01, and 

vmRNAP01, in which the lower boundaries were shifted to -10. 

The model was fitted to data from the smFISH experiments (Fig. 3.5). The proportion of cells in the 

DNAon state was calculated as the fraction of cells exhibiting an active transcription site, identifiable 

as a single bright spot in the Quasar 670 channel (see Fig. 3.5a). The mean and standard deviation (sd) 

of mRNA were fitted using the estimated mRNA counts from spotMAX. The mean and sd of protein 

were fitted using the GFP fluorescence normalized by cell area and scaled down by 103 to match the 

range of the rest of the parameters. 

Model selection was performed using the Bayes Information Criterion (BIC). BIC is defined as:  

BIC =  log(𝑛) 𝑘 − 2𝑙𝑜𝑔𝐿 

where 𝑛 is the number of data points, 𝑘 is the number of parameters and 𝑙𝑜𝑔𝐿 is the log-likelihood 

value for the maximum likelihood estimate of the model parameters. A threshold of 10 units above 

the lowest BIC was chosen to define the set of best models. 

To estimate the number of intermediate DNA steps, 11 models were compared for each strain (0-10 

steps). The best number of steps for each strain was selected as the model with the lowest BIC. The 

average of the resulting numbers was selected as the common number of DNA steps for all strains. 

sap30Δ was not considered in the average as the best number of steps could not be reliably 

determined (Fig. 3.6b). 

To identify the differences in expression dynamics between WT and mutant strains, the model was 

fitted in pairs of WT-mutant. Out of the 11 parameters estimated for each strain (see above), 5 were 
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strain-specific and 6 could be shared between WT and mutant. This generated 26 = 64 models (Fig. 

S2a) for each WT-mutant pair. The total number of different parameters to be estimated ranged from 

22 (model #1: all 11 parameters different between strains) to 16 (model #64: the 6 rates are shared 

among strains, but each strain has its own mean, sd, and covariance for mRNA and protein). Because 

BIC penalizes against the use of additional parameters, it guarantees that the rates of WT and mutant 

are identical unless strain-specific rates significantly improve the maximum likelihood of the model. 

After determining the set of best models for each WT-mutant pair, we categorized the best models 

depending on whether, for a given pair of rates (xi, xj), the model had: 

i) Same xi, same xj 

ii) Different xi, same xj 

iii) Same xi, different xj 

iv) Different xi, different xj 

The (xi, xj) pairs corresponded to DNA activation/inactivation (γon, γoff), mRNA production/degradation 

(λprod, λdeg), and protein production/degradation (κprod, κdeg) (Fig. 3.7b and S2b). Depending on the 

number of models in each category, we determined for each mutant whether the differences to WT 

occurred at the DNA, mRNA, and/or protein level. 
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7. SUPPLEMENTARY MATERIAL 
Table S1: Deletion mutants used in the high-throughput screening. 

Gene 

name 

Systematic 

name 

Gene 

name 

Systematic 

name 

Gene 

name 

Systematic 

name 

Gene 

name 

Systematic 

name 

Gene 

name 

Systematic 

name 

ABP140 YOR239W ELP6 YMR312W MBP1 YDL056W RCR1 YBR005W SPT3 YDR392W 

ACH1 YBL015W ERG10 YPL028W MCK1 YNL307C RDH54 YBR073W SPT8 YLR055C 

ACS1 YAL054C ERG13 YML126C MCM16 YPR046W REC104 YHR157W SQS1 YNL224C 

ADE1 YAR015W ERG3 YLR056W MCM21 YDR318W REC107 YJR021C SRB2 YHR041C 

AHA1 YDR214W ERS1 YCR075C MCM22 YJR135C REC114 YMR133W SRB8 YCR081W 

AHC1 YOR023C ESC1 YMR219W MED1 YPR070W REC8 YPR007C SRC1 YML034W 

AHC2 YCR082W ESC2 YDR363W MEK1 YOR351C RED1 YLR263W SRO9 YCL037C 

AIM2 YAL049C ESC8 YOL017W MEP1 YGR121C REV1 YOR346W SRS2 YJL092W 

AIM4 YBR194W EST1 YLR233C MET1 YKR069W REV3 YPL167C SSE2 YBR169C 

AIR1 YIL079C EXO1 YOR033C MET18 YIL128W RFA3 YJL173C STB5 YHR178W 

AIR2 YDL175C FBP1 YLR377C MFT1 YML062C RFM1 YOR279C STE20 YHL007C 

APC9 YLR102C FKH1 YIL131C MGS1 YNL218W RIC1 YLR039C STE50 YCL032W 

APL3 YBL037W FKH2 YNL068C MHF1 YOL086W-A RIF1 YBR275C SUB1 YMR039C 

APQ12 YIL040W FLO1 YAR050W MHF2 YDL160C-A RIF2 YLR453C SUC2 YIL162W 

ARP1 YHR129C FPR1 YNL135C MHT1 YLL062C RIM1 YCR028C-A SUM1 YDR310C 

ARP6 YLR085C FPR2 YDR519W MIG1 YGL035C RKM1 YPL208W SWC3 YAL011W 

ASF1 YJL115W FPR3 YML074C MIH1 YMR036C RKM2 YDR198C SWC5 YBR231C 

ASK10 YGR097W FPR4 YLR449W MLH1 YMR167W RKM3 YBR030W SWC7 YLR385C 

ASR1 YPR093C FUB1 YCR076C MMS1 YPR164W RKM4 YDR257C SWD1 YAR003W 

AVT5 YBL089W FUN30 YAL019W MMS2 YGL087C RKM5 YLR137W SWD3 YBR175W 

BCK2 YER167W FUS3 YBL016W MMS22 YLR320W RKR1 YMR247C SWE1 YJL187C 

BDF2 YDL070W FYV10 YIL097W MMS4 YBR098W RLF2 YPR018W SWI3 YJL176C 

BLM10 YFL007W GAL2 YLR081W MND2 YIR025W RMD5 YDR255C SWI4 YER111C 

BMH1 YER177W GAL3 YDR009W MPH1 YIR002C RMI1 YPL024W SWI5 YDR146C 

BMT2 YBR141C GAL4 YPL248C MPP6 YNR024W RMT2 YDR465C SWI6 YLR182W 

BMT5 YIL096C GAL80 YML051W MPT5 YGL178W RNR3 YIL066C SWM1 YDR260C 

BMT6 YLR063W GAL83 YER027C MRC1 YCL061C RPA14 YDR156W SWP82 YFL049W 

BRE1 YDL074C GBP2 YCL011C MRE11 YMR224C RPA34 YJL148W SWR1 YDR334W 

BRE2 YLR015W GCR2 YNL199C MRM2 YGL136C RPD3 YNL330C TAE1 YBR261C 

BRE5 YNR051C GID8 YMR135C MRN1 YPL184C RPL4A YBR031W TAH1 YCR060W 

BUB1 YGR188C GIM3 YNL153C MSA2 YKR077W RPN10 YHR200W TEC1 YBR083W 

BUD13 YGL174W GIM4 YEL003W MSH2 YOL090W RPN13 YLR421C TEL1 YBL088C 

BUD27 YFL023W GIM5 YML094W MSH3 YCR092C RPN14 YGL004C TEX1 YNL253W 

BUL1 YMR275C GIS1 YDR096W MSH6 YDR097C RPN4 YDL020C THO1 YER063W 

BUL2 YML111W GRR1 YJR090C MSI1 YBR195C RRD1 YIL153W THP2 YHR167W 

CAC2 YML102W GRX7 YBR014C MSL1 YIR009W RRD2 YPL152W TOD6 YBL054W 
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CAD1 YDR423C GTR1 YML121W MSN2 YMR037C RRM3 YHR031C TOF1 YNL273W 

CAF130 YGR134W GTR2 YGR163W MSN4 YKL062W RRP6 YOR001W TOF2 YKR010C 

CAF40 YNL288W HAT1 YPL001W MTQ1 YNL063W RRP8 YDR083W TOP1 YOL006C 

CAT2 YML042W HAT2 YEL056W MUB1 YMR100W RSM22 YKL155C TOP3 YLR234W 

CDA1 YLR307W HCM1 YCR065W MUD1 YBR119W RTF1 YGL244W TOS4 YLR183C 

CDA2 YLR308W HDA1 YNL021W MUM2 YBR057C RTG1 YOL067C TOS8 YGL096W 

CDC73 YLR418C HDA3 YPR179C MUS81 YDR386W RTG2 YGL252C TRF5 YNL299W 

CHD1 YER164W HEL1 YKR017C MYO4 YAL029C RTG3 YBL103C TRM12 YML005W 

CHK1 YBR274W HEL2 YDR266C NAM7 YMR080C RTS1 YOR014W TRM2 YKR056W 

CHL1 YPL008W HFA1 YMR207C NAP1 YKR048C RTS2 YOR077W TRM3 YDL112W 

CHL4 YDR254W HHF1 YBR009C NDJ1 YOL104C RTT101 YJL047C TRM7 YBR061C 

CHZ1 YER030W HHF2 YNL030W NEW1 YPL226W RTT102 YGR275W TSA1 YML028W 

CIN1 YOR349W HHO1 YPL127C NFI1 YOR156C RTT103 YDR289C TTI1 YKL033W 

CIN4 YMR138W HHT1 YBR010W NHP10 YDL002C RTT106 YNL206C UBA3 YPR066W 

CIT1 YNR001C HHT2 YNL031C NHP6A YPR052C RTT107 YHR154W UBC11 YOR339C 

CIT2 YCR005C HIR1 YBL008W NNT1 YLR285W RTT109 YLL002W UBC12 YLR306W 

CIT3 YPR001W HIR2 YOR038C NOP6 YDL213C RUB1 YDR139C UBC13 YDR092W 

CKA1 YIL035C HIR3 YJR140C NTO1 YPR031W RXT2 YBR095C UBC4 YBR082C 

CKA2 YOR061W HIS3 YOR202W NUP133 YKR082W RXT3 YDL076C UBC5 YDR059C 

CKB1 YGL019W HMO1 YDR174W NUP2 YLR335W SAC3 YDR159W UBC7 YMR022W 

CKB2 YOR039W HMT1 YBR034C NUP60 YAR002W SAE2 YGL175C UBC8 YEL012W 

CLA4 YNL298W HO YDL227C NUT1 YGL151W SAM1 YLR180W UBI4 YLL039C 

CLB2 YPR119W HOS1 YPR068C NVJ1 YHR195W SAM4 YPL273W UBP1 YDL122W 

CPR1 YDR155C HOS2 YGL194C OAF1 YAL051W SAN1 YDR143C UBP11 YKR098C 

CPR6 YLR216C HOS3 YPL116W OGG1 YML060W SAP190 YKR028W UBP12 YJL197W 

CPR7 YJR032W HOS4 YIL112W OMS1 YDR316W SAP30 YMR263W UBP13 YBL067C 

CRC1 YOR100C HPA2 YPR193C PAC10 YGR078C SAS2 YMR127C UBP14 YBR058C 

CRG1 YHR209W HPA3 YEL066W PAC2 YER007W SAS3 YBL052C UBP15 YMR304W 

CSE2 YNR010W HPC2 YBR215W PAT1 YCR077C SAS4 YDR181C UBP2 YOR124C 

CSM1 YCR086W HPM1 YIL110W PAU7 YAR020C SAS5 YOR213C UBP3 YER151C 

CSM3 YMR048W HRB1 YNL004W PBY1 YBR094W SBA1 YKL117W UBP5 YER144C 

CST6 YIL036W HSL1 YKL101W PDA1 YER178W SCS22 YBL091C-A UBP6 YFR010W 

CST9 YLR394W HSP26 YBR072W PDC1 YLR044C SCS7 YMR272C UBP7 YIL156W 

CTF18 YMR078C HST1 YOL068C PHO23 YNL097C SDC1 YDR469W UBP8 YMR223W 

CTF19 YPL018W HST2 YPL015C PHO4 YFR034C SDS3 YIL084C UBP9 YER098W 

CTF3 YLR381W HST3 YOR025W PHO80 YOL001W SEM1 YDR363W-A UBR1 YGR184C 

CTF4 YPR135W HST4 YDR191W PIH1 YHR034C SER2 YGR208W UBR2 YLR024C 

CTF8 YHR191C HTA1 YDR225W PIL1 YGR086C SET2 YJL168C UFD2 YDL190C 

CTI6 YPL181W HTA2 YBL003C PIP2 YOR363C SET3 YKR029C UFD4 YKL010C 

CTM1 YHR109W HTZ1 YOL012C PLM2 YDR501W SET4 YJL105W UGA2 YBR006W 
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CWC21 YDR482C HUL4 YJR036C POG1 YIL122W SET5 YHR207C UGA3 YDL170W 

DAL81 YIR023W HUR1 YGL168W POL3 YDL102W SET6 YPL165C ULS1 YOR191W 

DBR1 YKL149C HXT17 YNR072W POL32 YJR043C SFM1 YOR021C UME1 YPL139C 

DCC1 YCL016C IES1 YFL013C POT1 YIL160C SGF11 YPL047W UME6 YDR207C 

DEG1 YFL001W IES2 YNL215W PPH21 YDL134C SGF29 YCL010C VID28 YIL017C 

DEP1 YAL013W IES4 YOR189W PPH22 YDL188C SGF73 YGL066W VID30 YGL227W 

DLS1 YJL065C IES5 YER092W PPH3 YDR075W SGN1 YIR001C VMA1 YDL185W 

DMA1 YHR115C IKI3 YLR384C PPM1 YDR435C SGS1 YMR190C VPS71 YML041C 

DMC1 YER179W IML3 YBR107C PRE9 YGR135W SHE1 YBL031W VPS72 YDR485C 

DNL4 YOR005C INO4 YOL108C PSH1 YOL054W SHG1 YBR258C VPS75 YNL246W 

DOA1 YKL213C IOC2 YLR095C PSK1 YAL017W SIF2 YBR103W WHI4 YDL224C 

DOT1 YDR440W IOC3 YFR013W PSY2 YNL201C SIN3 YOL004W XRN1 YGL173C 

DOT5 YIL010W IOC4 YMR044W PSY4 YBL046W SIR1 YKR101W XRS2 YDR369C 

DOT6 YER088C IRC20 YLR247C RAD1 YPL022W SIS2 YKR072C YAF9 YNL107W 

DPB3 YBR278W IRC5 YFR038W RAD10 YML095C SIZ1 YDR409W YBP2 YGL060W 

DPB4 YDR121W IST3 YIR005W RAD16 YBR114W SKA1 YKL023W YCK3 YER123W 

DPH5 YLR172C ISW1 YBR245C RAD23 YEL037C SKI8 YGL213C YHP1 YDR451C 

DSF2 YBR007C ISW2 YOR304W RAD26 YJR035W SKY1 YMR216C YKE2 YLR200W 

DST1 YGL043W ITC1 YGL133W RAD27 YKL113C SLI1 YGR212W YKU70 YMR284W 

DUR12 YBR208C IWR1 YDL115C RAD30 YDR419W SLK19 YOR195W YKU80 YMR106C 

EAF1 YDR359C JHD1 YER051W RAD4 YER162C SLX1 YBR228W YLR278C YLR278C 

EAF3 YPR023C JHD2 YJR119C RAD5 YLR032W SLX4 YLR135W YMR209C YMR209C 

EAF6 YJR082C KTI12 YKL110C RAD51 YER095W SLX5 YDL013W YNG1 YOR064C 

EAF7 YNL136W LAT1 YNL071W RAD52 YML032C SLX8 YER116C YNL092W YNL092W 

ECM15 YBL001C LEO1 YOR123C RAD54 YGL163C SNF1 YDR477W YOR338W YOR338W 

ECM5 YMR176W LGE1 YPL055C RAD55 YDR076W SNF11 YDR073W YRM1 YOR172W 

EDC1 YGL222C LHP1 YDL051W RAD57 YDR004W SNF3 YDL194W YRR1 YOR162C 

EDC2 YER035W LIF1 YGL090W RAD59 YDL059C SNF4 YGL115W YSA1 YBR111C 

EFM1 YHL039W LRP1 YHR081W RAD6 YGL058W SNT1 YCR033W YSY6 YBR162W-A 

EFM2 YBR271W LSM1 YJL124C RAD61 YDR014W SNT2 YGL131C YTA7 YGR270W 

EFM4 YIL064W LSM6 YDR378C RAD7 YJR052W SNU66 YOR308C YUH1 YJR099W 

ELC1 YPL046C LSM7 YNL147W RAD9 YDR217C SOH1 YGL127C ZDS1 YMR273C 

ELF1 YKL160W LYS20 YDL182W RAM1 YDL090C SPO11 YHL022C ZDS2 YML109W 

ELG1 YOR144C LYS21 YDL131W RAS2 YNL098C SPP1 YPL138C ZIP2 YGL249W 

ELP2 YGR200C MAC1 YMR021C RBG1 YAL036C SPT2 YER161C ZTA1 YBR046C 

ELP3 YPL086C MAD2 YJL030W RCM1 YNL022C SPT21 YMR179W   

ELP4 YPL101W MAG1 YER142C RCO1 YMR075W SPT23 YKL020C   
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Table S2: Deletion strains identified as high- or low-noise outliers in high-throughput screening. 

Marked in bold are strains considered for further testing. *Consecutive frames or with 1 frame in 

between consecutives. 

High 

noise 

outliers 

Total frames 

in which it is 

outlier 

Max. 

consecutive 

frames* 

Low 

noise 

outliers 

Total frames 

in which it is 

outlier 

Max. 

consecutive 

frames* 

BRE5 34 34 LGE1 12 12 

SDS3 24 18 UBC12 11 8 

STB5 18 18 RAD51 10 5 

SAP30 16 14 UBA3 5 5 

UGA3 15 13 FUS3 10 4 

FYV10 22 10 SWD1 5 4 

RPN10 11 10 
   

HHF1 9 9 
   

CPR6 14 8 
   

MSH3 9 8 
   

RRD1 8 8 
   

HIR1 11 7 
   

RRP8 9 5 
   

SIN3 5 5 
   

IES2 10 4 
   

ISW2 8 4 
   

UBP14 7 4 
   

ERG3 6 4 
   

PPH3 6 4 
   

PSY2 5 4 
   

NUP60 4 4 
   

TOD6 4 4 
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Figure S1: Bimodal expression of Gal1 under galactose induction. Plotted are normalized Quasar 670 

intensities corresponding to Gal1-GFP transcripts (left) and normalized GFP intensities corresponding 

to Gal1-GFP proteins (right) at different induction time points (y-axis). Related to Fig. 5.  
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Figure S2: Mathematical modeling for mutant strains using FISH data. a) Depiction of the 64 models 

compared between WT and mutants. The six rates had the possibility of being equal or different among 
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tested strains, giving rise to 26 = 64 possible models. Filled circles represent the models in which WT 

and mutant parameters had different values; empty circles represent a shared value between WT and 

mutant. b) Categorization of the best models for each mutant when compared against WT. In bold is 

the category with the highest value. c) Fits for the best model of each strain. From top to bottom, plots 

show: fraction of cells in the DNAon state; mean Gal1-GFP mRNA; standard deviation (SD) of mRNA; 

mean Gal1-GFP protein; SD of protein. Every data point corresponds to the statistic calculated for an 

individual biological replicate. Related to Figs. 6 and 7. 
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Figure S3: Addition of 2xFLAG tags to endogenous Ies2 does not alter Gal1 induction dynamics or 

noise trajectory. Strains were pre-grown in glucose, diluted into a 4h intermediate growth step, and 

induced with galactose for 12 or 15 hours. a) Mean population expression of Gal1-GFP over time. 

Plotted is mean log10(GFP) signal vs. time. b) Noise trajectories of Gal1-GFP over different levels of 

induction. Plotted is CV vs. mean log10(GFP). Statistics were calculated on merged data from four 

biological replicates (two 12-hour inductions, two 15-hour inductions). The average number of cells 

per data point was 10,224 ± 272 (mean ± sd). Line and ribbon represent the fit and 95% confidence 

intervals of a curve fitting with loess, respectively. Strains depicted are FLAG-tagged WT (gray) and 

untagged WT (blue). Related to Fig. 11. 
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9. APPENDIX 

9.1. Abbreviations 

ac Acetyl 

ADP Adenosine diphosphate 

ATc Anhydrotetracycline 

ATP Adenosine triphosphate 

A.U. Arbitrary units 

B. subtilis Bacillus subtilis 

BIC Bayesian Information Criterion 

°C Degree Celsius 

C. thermophilum Chaetomium thermophilum 

CV Coefficient of Variation 

DAPI 4′,6-diamidino-2-phenylindole 

DNA Deoxyribonucleic acid 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic acid 

FACS Fluorescence-activated cell sorting 

FDG fluorescein-di-β-D-galactopyranoside 

Fig. Figure 

FISH Fluorescence in situ hybridization 

fluor fluorescence 

FSC-A, -W Forward scatter – area, - width 

h Hour 

HAT Histone acetyltransferase 

HDAC Histone deacetylase 

HDM Histone demethylase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HMT Histone methyltransferase 

INO80c INO80 complex 

IPTG Isopropyl β- d-1-thiogalactopyranoside 

IQR Interquartile range 

K Lysine 

loess Locally estimated scatterplot smoothing 

MAP Mitogen-activated protein 

MAPK MAP kinase 

me Methyl 

min Minute 

mL Milliliters 

mRNA Messenger RNA 

NA Numerical aperture 

NDR Nucleosome depleted region 

nm Nanometer 

nM Nanomolar 
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OD Optical density 

PBS Phosphate Buffered Saline 

PCR Polymerase chain reaction 

PIC Pre-initiation complex 

R Arginine 

RNA Ribonucleic acid 

RNA Pol RNA polymerase 

RNAPII RNA polymerase II 

ROI Region of interest 

S Serine 

S. cerevisiae Saccharomyces cerevisiae 

scRNA-seq single-cell RNA sequencing 

sd Standard deviation 

SGA Synthetic genetic array 

smFISH Single molecule fluorescence in situ hybridization 

SSC Saline-sodium citrate 

SSC-A Side scatter - area 

T Threonine 

TA-sev TATA box severely impaired 

TA-WT Wild type TATA box 

TF Transcription factor 

tRNA Transfer RNA 

TS Transcription site 

U Units 

UAS Upstream activating sequence 

UDP Uridine diphosphate 

um micrometer 

VRC Ribonucleoside Vanadyl Complex 

X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

WT Wild type 

μ Mean 

σ Standard deviation 

 

9.2. Figure licenses 

Fig. 1.1b: “Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal 

structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389(6648), 251-260.” Shared 

under Springer Nature license #5715541296974 

Fig. 1.4a: “Ko, M. S., Nakauchi, H., & Takahashi, N. (1990). The dose dependence of glucocorticoid-

inducible gene expression results from changes in the number of transcriptionally active templates. 
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Fig. 1.4b: “Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression 

in a single cell. Science, 297(5584), 1183-1186.” Reprinted with permission from AAAS. 
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Fig. 1.4c: “Raser, J. M., & O'Shea, E. K. (2004). Control of stochasticity in eukaryotic gene 

expression. science, 304(5678), 1811-1814.”. Reprinted with permission from AAAS.  
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