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Zusammenfassung

Neuronale Netze (NN) werden zur Berechnung von Matrixelementgewichten trainiert,
um die verfügbare Information eines gemessenen Endzustands im Rahmen der theo-
retischen Erwartung der Matrix-Element-Methode (MEM) möglichst vollständig zu
erfassen und für die Auswertung der Messdaten zu verwenden. Zugleich wird durch
den Einsatz von NN die CPU-aufwändige Berechnung der Matrixelementgewichte zur
Klassifizierung einzelner Endzustände stark beschleunigt. Dabei werden die Matrixele-
mentvorhersagen des NN als proof-of-principle zunächst zur Klassifizierung und Se-
parierung von HH- und HZ-Ereignissen benutzt. Die HH-Endzuständen beinhalten,
unter anderem, Beiträge von Higgs-Selbstwechselwirkungsdiagrammen (tri-H).

Die Matrixelementgewichte werden anhand von simulierten Daten mit zwei verschie-
dene Matrixelementen berechnet, jeweils für die HH- und die HZ-Endzustände. Die
Trennung zwischen den Gewichten ist schlechter für die HZ- als die HH-Ereignisse.
Zwei NN-Arten werden untersucht: Feed-forward und Convolutional; diese lernen die
HH- und HZ-Matrixelementgewichte vorherzusagen. Eine sehr starke Reduzierung
der Rechenzeit im Vergleich zur MEM wird erreicht. Beide Netzarten sind erfolgreich
bzgl. der Genauigkeit der HH-Matrixelementgewichten, weisen aber Schwierigkeiten
bei den HZ-Matrixelementgewichte auf. Um völlig verstehen zu können, warum die
Trennung der Gewichte bei HZ-Ereignissen schlechter ist, und warum die NN bei den
HZ-Matrixelementgewichten auf Probleme stoßen, wäre eine tiefere Untersuchung der
theoretischen Berechnungen der Matrixelemente notwendig, welches nicht im Rahmen
dieser Forschung liegt.
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Abstract

Neural networks (NN) are trained to calculate matrix element weights, with which infor-
mation of a measured final-state can be gained via the Matrix Element Method (MEM)
theoretical framework. At the same time, the use of NN accelerates the CPU-intensive
computations of the matrix element weights, which are used to classify final-states.
The predictions of the NN are used as a proof-of-principle to separate Higgs-Higgs
(HH) and Higgs-Z (HZ) events. The HH events include final-states coming from
super-positions of Higgs self-coupling (tri-H).

The matrix element weights are calculated for two different matrix elements, one for
HH and one for HZ final states, using simulated data. The separation between these
weights is worse for the HZ data than the HH data. Two types of neural networks,
feed-forward and convolutional, are examined and trained to predict the HH and HZ
matrix elements weights. The computation times are successfully heavily reduced com-
pared to the standard calculations of the MEM. Both network types are successful in
regards to predicting the HH matrix weights, but they struggle with the weights using
theHZ matrix element. To fully understand why the weight separation is worse forHZ
data and why the networks have more difficulties with the HZ matrix element would
require a deeper investigation into the theoretical framework of the matrix elements,
which lies beyond the scope of this research.
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Introduction

The field of particle physics focuses on the study of some of the most fundamental
aspects of our universe: Which particles exist and how do they interact with one
another? Many experiments requiring hundreds and thousands of researchers using
some of the largest and most precise machines in the world have been performed to
try to answer these questions. This has lead to the construction of a theoretical model
known as the Standard Model of Particle Physics (SM). The SM is likely the most
well researched physical theory to date — it describes all known elementary matter
particles and explains the origin of three of the four known forces. Over the second
half of the 20th century, many of the particles predicted by the SM were found, with the
final discovery being that of the Higgs boson in 2012 by the ATLAS [1] and CMS [2]
detectors. This verified the SM as a self-contained theory that could be used as a very
good model for explaining most known phenomena in particle physics.

However, there are still aspects of the SM that have not yet been fully explored. Some
of the predicted decay modes have such low cross-sections, that only upper bounds
for their branching ratios have been set, since successful measurements have not yet
been performed [3]. One such interaction is Higgs self-coupling, where a Higgs boson
decays to two further Higgs bosons. The strength of the self-coupling is proportional
to the self-coupling parameter λ, which also appears in the Higgs potential and in-
fluences its shape [4]. The shape has significant importance, as it describes the past,
current and future stability of the universe [5]. Additionally, questions regarding the
cosmological constant [6], the phase transition of the early universe [7] and the natural-
ness problem [8] are tied to the Higgs potential and, therefore, the Higgs self-coupling
parameter.

Due to the scarcity of decays containing Higgs self-coupling, the Matrix Element
Method (MEM), a calculation-based analysis method, becomes attractive. The MEM
calculates the likelihood that a given decay mode took place in an event based on the
four-momentum of the measured final-state particles. Background events are separated
from signal events via the differences in the resulting assigned probabilities. It is even
possible to base an analysis solely on this method, as was done with precision mass
measurements for the top quark [9].

The MEM does come with a downside, which is the amount of resources required for it
to be performed. A large integration must be done for each event, leading to a very high
amount of computational resources being needed. This makes the MEM inaccessible
for smaller-scale analyses, and a solution to reduce the computation barrier would be
required for this method to become more wide-spread.
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2 CONTENTS

Alongside the discovery of the Higgs Boson, the time around 2012 also had other excit-
ing developments, but this time in the field of artificial intelligence: the revolution of
deep learning [10]. In 2011 and 2012, DanNet [11] and AlexNet [12] greatly increased
the standard of computer vision [13]. Both of these neural networks consisted of convo-
lutional deep neural networks run on Graphics Processing Units (GPUs). Convolutional
networks are commonly used in pattern-searching situations, where it is unclear where
the pattern will appear in the dataset, e.g. looking for a face in a picture or a specific
word in an audio file. However, the break-through wasn’t due to the use of convolu-
tional neural networks, but the implementation of networks on GPUs. This greatly
improved the speed at which they could run [11] and therefore increased the scale of
the problems they could tackle. Greater computational power and efficiency was be-
coming more and more important as datasets started to grow larger and more complex.
These data sets enabled greater research, as they pushed the limits of Machine Learn-
ing (ML). The creation of ImageNet [14] enabled great strides in research of computer
vision, and it was this data set that AlexNet was tested on.

While machine learning (ML) has had an impact on many branches of industry, it has
also found numerous applications in the natural sciences [15, 16]. High energy particle
physics is no exception [17, 18], as experiments in this field have to deal with extremely
high volumes of data. For example, during the last year of the collection period Run 2
(2015-2018) at the Large hadron Collider (LHC) at CERN, the High Level Trigger of
the ATLAS detector, which is the final layer that decides if an event is interesting for
physics analyses, had a readout rate of up to ≈ 1.2 kHz, with each readout containing
an average of 1 MB [19]. This highly complicated process has been supported by the
use of ML, as have many analyses of the resulting data. A categorised summary of the
use of ML in particle physics can be found in “A Living Review of Machine Learning
in Particle Physics” [20].

There is still much to be explored in regards to combining ML with particle physics.
This work focuses on using neural networks to implement the MEM, which by-passes
the need for an integration over each event. Variables describing the final-state of an
event are given to a neural network, which in return produces a weight. The decay
mode that is used for this analysis contains Higgs self-coupling — a mechanism which is
an ideal candidate for the MEM due to its theoretical certainty, yet heavy suppression.

The structure of this work is as follows: In Ch. 1, the underlying theory of the SM
(Sec. 1.1), the MEM (Sec. 1.5) and ML (Sec. 1.6) is discussed. Following that, the
software used in this work is introduced in Ch. 2. The analysis is presented in Ch. 3,
which is split into data generation (Sec. 3.3), the implementation of the MEM (Sec. 3.4),
possible additional parameters to support the neural networks (Sec. 3.5) and the ap-
plication of the neural networks (Sec. 3.6). At the end, a summary of the analysis is
given (Ch. 3.6.4).



Chapter 1

Theory

1.1 The Standard Model of Particle Physics: Par-

ticle Description

In this section, the theoretical background and particle content of the SM will be
discussed. This will contain a mathematical description of the existence of leptons,
quarks and bosons, while focusing on the Higgs boson, as the underlying Higgs physics
are a key motivation for the decay mode studied in this work. Doing so will involve
looking at some of the SM’s shortcomings and how a better understanding of the Higgs
boson, and more precisely the Higgs coupling parameter and Higgs potential, could
shed some light on possible physics beyond the SM.

Sec. 1.1.1 is oriented towards [21].

1.1.1 Leptons, Quarks and Bosons

The SM consists of elementary particles, which can be sorted into three categories:
leptons, quarks and bosons. These particles interact with each other via the four
known forces: the electromagnetic force, the weak force, the strong force and gravity;
the first three of which are mediated by the bosons of the SM. The SM consists of and
produces mathematical descriptions for each particle type — it has even been used to
predict the existence of some particles before they were experimentally observed, e.g.
the top quark [22] and the Higgs boson [23]. After the following general overview of
the particle types and the four forces, their mathematical derivations will be discussed.

Fermions

Leptons and quarks can be combined into the category of “fermions”, which are defined
by their half-integer spin value Sz = ±1

2
and consist of all know matter particles. They

also follow the Pauli-Principle and Fermi-Dirac statistics [24]; the latter of which is
where they get their name from.

3



4 CHAPTER 1. THEORY

Leptons consist of six flavours (see Tab. 1.1), which themselves can be split into two
groups: charged leptons and neutral leptons, also known as neutrinos. They come from
the SU(2) symmetry (via the weak force, see Sec. A) and are introduced in doublets:
each charged lepton is associated with a neutrino. Both particles in a doublet (also
referred to as a generation) have the same weak isospin of I = 1, but their values of the
third component of the weak isospin differ by the sign: I3 = −1

2
for charged leptons

and I3 =
1
2
for neutrinos. Therefore, by interacting weakly — specifically, by emitting

or absorbing a W boson — they can change into one another by changing their electric
charge Q according to the Gell-Mann-Nishijima formula: Y = 2(Q− I3)

1 [24].

Quarks come from the SU(3) gauge symmetry involving the colour charge. The colour
charge, which appears in the form of either red, green or blue (or the associated anti-
colours anti-red, anti-green or anti-blue), allows multiple quarks of the same flavour
to bind together via the strong force. Without the colour charge, the Pauli exclusion
principle would seem to be broken for particles such as ∆++, which consists of three
strange-type quarks. The configuration of quarks has to be colour neutral (also called
colourless or white), meaning there must be a red, green and blue charge for particles
made of three quarks (known as baryons) or the associated anti-colours for antiquarks
(antibaryons). For particles made of a quark and an anti-quark (mesons), there must
be a colour charge plus anti-colour charge of the same colour. As a result, individ-
ual quarks can never be found by themselves (known as colour confinement [25]) and
hadronise2 when separated. The colour charge is not to be taken literally: quarks don’t
have colours in the conventional sense, this is simply nomenclature. The name comes
from red, green and blue light overlapping to white light.
The quarks themselves also come in six flavours, split into three generations of doublets
(see Tab. 1.1). Like with the leptons, the doublets are defined by their weak isospin,
where each doublet has an isospin of I = 1

2
and the upper quarks have a third compo-

nent of weak isospin I3 =
1
2
and the lower quarks I3 = −1

2
. Also like the leptons, their

electric charge differs by a total value of 13; however, the up-type quarks have a value
of Q = +2

3
, whereas the down-type quarks have Q = −1

3
[24, 25].

Bosons and Forces

The strong force is mediated by gluons. It’s strength4 is the greatest of the four
forces while having the shortest range (its range is about the size of a nucleus [24]).
Gluons are coloured, therefore they are confined to colourless particles and don’t freely
propagate [25]. Although there are nine colour combinations, there are only eight gluon
states5, due to there being only eight generators for the SU(3) gauge symmetry. They
couple only to quarks, other gluons and the Higgs boson [25].

The electromagnetic force is mediated by photons. It’s strength is about 10−3

times that of the strong force [25], while having an infinite range [24]. Photons couple
to charged leptons, quarks and the Higgs boson.

1Y is the weak hypercharge.
2New quarks are spontaneously created and bind to the original to create a colourless particle.
3In units of e
4The strength of each force is dependent on the distance and energy scale [25].
5Gluon states: rḡ, gr̄, rb̄, bḡ, bḡ, gb̄, 1√

2
(rr̄ − gḡ) , 1√

6
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rr̄ + gḡ − 2bb̄

)



1.1. THE STANDARD MODEL OF PARTICLE PHYSICS: PARTICLE
DESCRIPTION 5

Generation Flavour Electric Charge [e] Mass [GeV]

L
ep
to
n
s

1
Electron e− −1 0.51× 10−3

Neutrino νe 0 < 0.8× 10−9

2
Muon µ− −1 0.106

Neutrino νµ 0 < 0.19× 10−3

3
Tau τ− −1 1.777

Neutrino ντ 0 < 0.182× 10−3

Q
u
ar
k
s

1
Up u +2/3 2.16× 10−3

Down d −1/3 4.67× 10−3

2
Charm c +2/3 1.27

Strange s −1/3 0.093

3
Top t +2/3 173

Bottom b −1/3 4.18

Table 1.1: Basic properties of SM leptons and quarks, in natural units. Antiparticles
have the same masses, but opposite charges. Masses are taken from [3].

Type Electric Charge [e]
Interaction Type

Mass [GeV]
weak strong electromag.

W± ±1 ✓ ✗ ✗ 80.4

Z 0 ✓ ✗ ✗ 91.2

γ 0 ✗ ✗ ✓ 0

g 0 ✗ ✓ ✗ 0

Table 1.2: Basic properties of SM bosons, in natural units. Masses are taken from [3].

W± and Z bosons are the intermediate vector bosons that propagate the weak
force, which is weaker than the strong force by a factor of about 10−8 [25]. They
couple to leptons, quarks and the Higgs boson. Quarks are able to change from an up-
type quark to a down-type quark and vice-versa via interactions involving a W boson.
These interactions are described by the Cabibbo-Kobayashi-Maskawa matrix [26, 27],
in which mass eigenstates are related to weak eigenstates:d′s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 ≈

0.974 0.225 0.004
0.225 0.973 0.042
0.009 0.041 0.999

ds
b

 (1.1)

Gravity has the weakest strength of the four forces, with a strength of around 10−37

times that of the strong force. Its range is infinite; however, it isn’t clear how gravity
is mediated. Gravity is not described by the SM and the origin of its mechanisms is
unknown. Gravity can be treated as a field theory, which postulates a gauge boson
known as a “graviton”, a massless spin-2 particle [28]. Gravitational waves, which were
postulated by the theory of general relativity [29], were discovered in 2015 [30].
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1.2 The Standard Model of Particle Physics: Brief

Mathematical Description

In this section, a brief overview of the Higgs boson in the SM is presented. A detailed
description of the mathematical derivation of particles in the SM and how this results
in the Higgs boson can be found in App. A. The following mathematical description of
the Higgs mechanism follows [25].

In the SM of particle physics, the origin of particles is derived using fields and gauge
transformations. Under the Glashow-Salam-Weinberg (GSW) model, the Higgs boson
is generated using a SU(2)L × U(1)Y gauge transformation. To do this, a complex
vector field is chosen as the following doublet:

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, (1.2)

where ϕ+ and ϕ0 are complex scalar fields. ϕ represents a weak isospin doublet and
the two components differ by a charge of +1. The Higgs boson itself is described by
its potential,

V (ϕ) = µ2 (ϕ∗ϕ) + λ (ϕ∗ϕ)2 . (1.3)

For this potential to have a finite minimum, λ must be positive, as the (ϕ∗ϕ)2 term
begins to dominate for larger values. µ2 is not restricted to be positive: choosing it to
be negative, µ2 < 0, causes the minima of the Higgs potential to fulfil

ϕ†ϕ =
1

2

(
ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4

)
=
v2

2
= −µ

2

2λ
. (1.4)

This is similar to the minimum of the double-well potential, where ϕ is a scalar field.
There, the minimum of the double-well potential is

ϕmin = ±v = ±

∣∣∣∣∣
√

−µ
2

λ

∣∣∣∣∣, (1.5)

which notably has two possible values. In this instance, where a ϕ is a complex vector
field, the result is similar (compare Eq. 1.4 to Eq. 1.5). However, due to ϕ being
a complex scalar field, there are infinite possible states that describe the minimum.
Therefore, the minimum of the field ϕ can be chosen as

⟨0|ϕ |0⟩ = 1√
2

(
0
v

)
. (1.6)

By expanding the fields around the minimum, the spontaneous symmetry of the field
can be broken, which results in a massive scalar boson and three massless Goldstone
bosons, which will give the longitudinal degrees of freedom to the W± and Z bosons.
The Higgs doublet then becomes
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ϕ(x) =
1√
2

(
0

v + h(x)

)
. (1.7)

The field h(x) is known as the Higgs field. The covariant derivative of the SU(2)L ×
U(1)Y gauge transformation can be chosen such that when it is applied to the field in
Eq. 1.7, it results in new terms which represent theW± and Z bosons, and the photon.
The resulting mass terms are

mW =
1

2
gWv (1.8)

mZ =
1

2
v
√
g2W + g′2 (1.9)

mA = 0. (1.10)

By defining

g′

gW
≡ tan (θW ), (1.11)

the mass term for the Z boson can be rewritten as

mZ =
1

2

gW
cos (θW )

v (1.12)

from which the simple relation between the masses of the W and Z boson is revealed:

mW

mZ

= cos (θW ). (1.13)

Since mW = 1
2
gWv, measuring the mass of the W boson and its coupling parameter

leads to a value for the vacuum expectation value:

v = 246 GeV. (1.14)

Through the measurement of the Higgs boson’s mass (see [1, 2]), using the vacuum
expectation value and mH =

√
2λv2, a value for the self-coupling parameter λ can be

calculated. From this, using v2 = −µ2

λ
, a value for µ can be determined. In the end,

the GSW model can be described by four parameters: g′, gW , µ and λ [25].

With this, the SM Higgs boson and its couplings to the W and Z bosons have been
determined. Its couplings to fermions and their masses can be derived in a similar way
(see [25]).

1.3 The Self-coupling Parameter

There are still many unknown aspects of the Higgs boson, such as origin of electroweak
symmetry breaking, the strength of electroweak phase transition or the shape of the
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Higgs potential. The later can only be properly determined by measuring the self-
coupling parameter, which so-far has only been constrained [31].

The self-coupling parameter λ is important for some theories that look to solve ques-
tions that extend beyond the SM. For this, the relation κλ = λHHH

λSM
is used to describe

whether the current understanding of Higgs theory accurately describes the underlying
physics. If κλ = 1, then the SM would correctly cover Higgs self-coupling. In the
following, a few open topics that involve either the Higgs potential or the self-coupling
parameter are briefly discussed.

1.3.1 The Stability of the Universe

The universe has three possible states that describe its long-lived stability: stable,
metastable and unstable. Stable means that the current vacuum potential V (ϕ) is at a
global minimum V (v). Metastable means that there is a ϕ much larger than the v that
describes the global minimum, which in turn would mean that our universe is currently
only at a local minimum. This implies that it would be possible for a tunnelling effect
from the current local minimum to the global minimum; however, the barrier is large,
hence metastability. The unstable scenario is the same as the metastable one, but
the barrier from our local to the global minimum is small, meaning that there is a
non-insignificant chance that the tunnelling could take place during the lifetime of our
universe [5].
Where our universe lies relies heavily on the masses of the top quark and the Higgs
boson. As can be seen in Fig. 1.1, our universe lies in the metastable region.

Figure 1.1: Stability of the universe depending on the masses of the Higgs boson,
and therefore the self-coupling parameter since mH =

√
2λv2, and the top quark. The

boundary lines correspond to 1-σ variations of α3(MZ) = 0.1184± 0.0007, where α3 is
the strong gauge coupling. The powers of 10 (red dashed lines) indicate the energy in
GeV for which the metastability or instability occur. Plot taken from [32].

According to our understanding of the Higgs boson and mechanism, the 125 GeV that
is measured in a detector is associated with the mass of the Higgs boson. If, however,
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our theory of the Higgs field is incomplete and κλ ̸= 1, then it could be that the
measured 125 GeV does not correspond to the mass of the Higgs boson. This would
have implications on the stability of our universe.

1.3.2 The Phase Transition of the Early Universe

At about 10−10 seconds after the Big Bang, the universe had cooled to a critical tem-
perature, where it underwent a phase transition via spontaneous symmetry breaking.
But, a question remains: was the phase transition of first-order or second-order? A
first-order phase transition would be able to provide an explanation for the matter-
antimatter asymmetry of our universe [33], due to the creation of bubbles in the phase
with V (ϕ) ̸= 0. Particles scatter with the bubble walls, which can generate CP asym-
metries and lead to transitions that generate more baryons that antibaryons [7]. A
first-order phase transition would also lead to gravitational waves, due to the turbulent
expansion of the bubble walls [7], which may be observable by some experiments [34].

Whether the transition is of first- or second-order depends on the mass of the Higgs
boson. The measurement of 125 GeV indicates that the phase transition was of second-
order; however, this is only regarding the SM. Beyond the SM, the nature of the elec-
troweak phase transition is sensitive to any new physics which lie near the electroweak
scale [34]. A better understanding of the self-coupling constant would therefore allow
for the creation of better models for the electroweak phase transition.

1.3.3 The Cosmological Constant

The effective cosmological constant consists of

Λeff = ΛB + κρvac, (1.15)

where ΛB is a bare value. The additional term can be considered as contributions
originating from vacuum fluctuations, where ρvac is the constant energy density of the
vacuum and κ ≡ 8πG

c4
≡ 8π

m2
PI

≡ 1
M2

PI
, wheremPI is the Planck mass andMPI the reduced

Planck mass. While Λeff is the observable that we can measure, it can be shown that
the contributions from fluctuations can be much larger than the value measured for
Λeff . For example, the Higgs potential contributes with ρH,vac ∼ 1

2
λv4 ≈ 1.2×108 GeV4

at the potential’s minimum. The critical energy density of the universe is ρcrit ≈
3.7× 10−47GeV4 6, which is about 1055 times smaller than the Higgs contribution [6].
In a quantum field theory, this very large discrepancy between the contributions as
calculated by theory and the experimentally measured value isn’t a problem, since
the large contributions cancel each other out, meaning only the energy differences
between the contributions are relevant. This is not the case when gravity is taken
into consideration, as the same contributions now need to be renormalised. For more
in-depth overviews of the cosmological constant problem, see [6, 35].

6In geometerised units. In SI units ρcrit ≈ 1.878× 10−29h2 g cm−2, where h = 0.674 is the scaling
factor for the Hubble expansion rate [3].
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If it’s determined that κλ ̸= 1 and that, therefore, the theory of the Higgs potential
needs to be expanded, then the Higg’s contribution to the cosmological constant would
change. This could shed some light on where the discrepancies with the cosmological
constant are coming from.

1.3.4 The Naturalness Problem

The theory describing the Higgs boson runs into a predicament: the quantum correc-
tions to the Higgs mass mH are on a much larger scale than the mass itself. The mass
can be described as follows:

m2
H = m2

bare +
yt

2

16π2
Λ2 + δO

(
m2

weak

)
, (1.16)

where mbare is the Higgs boson mass parameter of the unrenormalised Lagrangian, yt
is the top quark Yukawa coupling, Λ is the cut-off value of momentum in the top quark
loop of the Higgs boson self-energy and δO (m2

weak) are all other quantum corrections at
the weak scale [8]. Since the SM seems to valid up until scales such as the Planck mass
Λ ∼MPl ∼ 1018 GeV, then mbare has to not only be very large, but also extremely fine-
tuned so that it can cancel out the contribution from yt2

16π2Λ
2 to generate a Higgs with

mH = 125 GeV. No other parameter in the SM, apart from the cosmological constant,
has such a seemingly exact fine-tuning, which can be interpreted as a problem referred
to as the hierarchy problem [8].

Whether this extreme fine-tuning is an actual problem or not is a topic of debate.
While it would seem very unlikely that the contributions line-up the way they do, it
is possible, and it can be argued that an issue is being created where none exists.
While models exist that could remedy the situation, such as SuperSymmetry or Grand
Unified Theories, none have found any experimental success [8, 36].
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1.4 The Higgs Boson at the Large Hadron Collider

This section presents an overview of the discovery of the Higgs boson at the LHC and
the current state of Higgs self-coupling measurements.

Discovery

The discovery of the SM Higgs boson by the ATLAS and CMS experiments in 2012 [1, 2]
at the LHC is one of the most important measurements in modern physics and marks
both experiments as successful. Both measurements were performed using data from pp
collisions recorded at centre-of-mass energies of

√
s = 7 TeV in 2011 and

√
s = 8 TeV

in 2012.
For both experiments, the main production mechanisms were gluon-gluon fusion (gg →
H), vector-boson fusion (qq′ → qq′H), Higgs-strahlung (qq′ → WH,ZH) and for the
H → γγ analyses, production via a tt̄ pair (qq̄/gg → H).

The measurement at the ATLAS experiment was done by combing searches in the
decay channels H → ZZ(∗) → 4l, H → WW (∗) → eνeµνµ in the 8 TeV data with
previous results from H → ZZ(∗), WW (∗), bb̄ and τ+τ− in the 7 TeV data, and results
from improved analyses of the H → ZZ(∗) → 4l and H → γγ channels in the 7
TeV data. From this, an observation with a significance of 5.9σ of a neutral boson
with mass 126 ± 0.4(stat.) ± 0.4(sys.) GeV, which is compatible with the production
and decay of the SM Higgs boson, was made [1]. This observation was made in the
H → ZZ(∗) → 4l and H → γγ channels, where an excess of events is observed near 126
GeV (see Fig. 1.3). These are supported by the H → WW (∗) → eνeµνµ channel. Note
that the local p-value discussed in these plots is the probability that the background
can produce a fluctuation greater or equal to the excess observed in data [1]. The
combined results can be seen in Fig. 1.2.

The measurement at the CMS experiment was done by combing searches in the decay
channelsH → ZZ, W+W−, γγ, τ+τ− and bb̄ with both

√
s = 7 TeV and

√
s = 8 TeV.

From this, an observation with a significance of 5.0σ of a neutral boson with mass
125.3±0.4 (stat.)±0.5 (sys.) GeV was made. The excess is most significant in the two
decay modes with the best mass resolution, ZZ and γγ. The combined results and
excess can be seen in Fig 1.4

Current State of Higgs Self-Coupling Parameter Measurements

Higgs pair production via Gluon-Gluon Fusion (ggF) can be achieved via self-coupling
or a box diagram (see Fig. 1.5). The amplitudes of these two production modes interfere
destructively (in the SM), which leads to an overall cross-section of σSM

ggF (pp→ HH) =

31.0+2.1
−7.2 fb at

√
s = 13 TeV. This has been calculated at Next-to-Leading Order (NLO)

in Quantum Chromodynamics (QCD) with the measured value of the top-quark mass
and corrected to Next-to-Next-to-Leading Order (NNLO) including finite top-quark
mass effects [37].
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Figure 1.2: Combined search results:
(a) The observed (solid) 95% Confidence
Level (CL) limits on the signal strength
and the expectation (dashed) under the
background-only hypothesis. (b) The
observed (solid) p0 and the expectation
(dashed) for a SM Higgs boson signal hy-
pothesis at the given mass. (c) The best-
fit signal strength. The band indicates the
approximate 68% CL interval around the
fitted value [1].

Figure 1.3: The observed local p-value
as a function of the hypothesised Higgs
boson mass for (a) H → ZZ(∗) → 4l,
(b) H → γγ and (c) H → ZZ(∗) → lνlν
channels. The dashed curves show the ex-
pected local p0 under the hypothesis of a
SM Higgs boson signal at that mass. The
black line represents the combined

√
s = 7

and
√
s = 8 data [1].

Analyses attempting to measure the Higgs self-coupling parameter have been performed
by both the ATLAS [37] and CMS [38] collaborations. In these cases, not just Higgs self-
coupling events were taken into consideration, but also general Higgs pair production.

In the ATLAS analysis, studies on Higgs boson pair production to bb̄bb̄, bb̄τ+τ− and
bb̄γγ decay channels are combined with single Higgs to γγ, ZZ∗, WW ∗, τ+τ− and bb̄
decay channels. The data were recorded at a centre-of-mass energy of

√
s = 13 TeV

and correspond to an integrated luminosity of 126 – 139 fb−1. Additionally, decay
channels produced via Vector-Boson Fusion (VBF) with predicted SM cross-section of
σSM
V BF = 1.72± 0.4 fb are analysed.

The value of the signal strength µHH can be seen in Fig. 1.6b. It is defined as the
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(a) (b)

Figure 1.4: (a) The CLS (modified frequentist criterion) values for the SM Higgs
boson hypothesis. The background-only expectations are represented by their median
(dashed) and by the 68% and 95% CL bands [2]. (b) The observed local p-value for
decay modes with high mass resolutions (γγ, ZZ). The dashed line shows the expected
local p-values for a SM Higgs boson with mass mH [2].
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Figure 1.5: Higgs pair production via (a) a box diagram and (b) self-coupling.

ratio of the Higgs boson pair production cross-section, including only the ggF HH and
VBF HH processes, to the SM prediction [37]. As can be seen, the combined observed
value is lower than what was expected, apart from the decay to four b quarks. The
observed value for κλ, which is a multiplier for the SM Higgs self-coupling strength,
in relation to the cross-section can be seen in Fig. 1.6a. The observed values, for each
individual decay mode and for the combined case, all lie above the SM prediction.
These results lead to a 95% CL upper limit of 2.4 on the Higgs pair signal strength
and the constraint −0.6 < κλ < 6.6, assuming other Higgs boson interactions are as
predicted by the SM. When the Higgs pair production decay channels are combined
with single Higgs cross-section measurements, the 95% CL limits become tighter, with
−0.4 < κλ < 6.1 [37].

The CMS analysis studies focus on the Higgs boson pair production to γγbb̄ decay chan-
nel with a total integrated luminosity of 137 fb−1 at a centre-of-mass energy of

√
s =

13 TeV. For the production, both ggF and VBF are regarded. The γγbb̄ final state has
a combined branching ratio (BR) of BR(HH → γγbb̄) = 2.63±0.06×10−3 for a Higgs
boson mass of 125 GeV. No significant deviation from the background is observed and
the observed 95% CL upper limit for the cross-section σHH · BR(HH → γγbb̄) is 0.67
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(a) (b)

Figure 1.6: The observed and expected 95% CL upper limits on (a) the signal strength
for Higgs pair production, where the valuemH = 125.09 GeV is assumed when deriving
the predicted SM cross-section [37], and (b) the combined ggF HH and VBF HH
processes as a function of κλ. Both plots are taken from [37].

fb. Additionally, a constraint at 95% CL of −3.3 < κλ < 8.5 is achieved [38]. In
fig. 1.7, in can be seen that the observed values do not overlap with the SM value of
κλ = 1.

Figure 1.7: The observed and expected 95% CL upper limits on the HH production
as a function of κλ. Plot taken from [38].

These analyses show that, currently, the capabilities for measuring Higgs self-coupling
are not yet available. Instead, the cross-section can only be constrained, which also
results in κλ not being measurable. This means that more work will have to be done
until it is possible to get a better understanding of Higgs physics and how (or if) the
Higgs potential plays a role in physics beyond the SM and new analysis methods have
to be devised.
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1.5 The Matrix Element Method

The Matrix Element Method (MEM) is an analysis tool with which the likelihood that
a given event x stems from a specific theoretical model α can be calculated: P (x|α).
In a particle physics, an event usually refers to a single instance of accelerated particles
colliding and thereby decaying into other particles, which are measured by a detector.
Here, an event x will specifically refer to a set of experimentally measurable quantities,
such as the four-momenta, etc. [39]. In this case, the theoretical model α stands for a
specified decay mode. The likelihood P (x|α) will be referred to as a weight.

For the calculation of the weight, the event x is fixed, while all possible momentum
configurations y are integrated over. During the integration, the differential cross
section for the decay mode is convolved with Parton Density Functions (PDFs), which
describe the probability to find initial-state partons of a given flavour and momentum
inside the colliding protons. This is then in-turn convolved with the transfer function
W (x,y), which describes the probability to reconstruct an event x in a detector as
parton final state y [40].

The weight of a final state with nf partons and specific configuration y is proportional
to the differential cross section dσP of the corresponding process:

dσP (a1a2 → y;α) =
(2π)4 |MP (a1a2 → y;α)|2

ξ1ξ2s
dΦnf

. (1.17)

Here, s is the square of the collider energy, ξ1 and ξ2 are the momentum fractions of
the colliding particles a1 and a2, MP is the matrix element for the decay mode and
dΦnf

describes the nf -dimensional phase space over which is integrated [40].

The differential cross section for proton-proton collisions is obtained by convolving the
differential cross section in Eq. 1.17 with PDFs:

σP (p1p2 → y;α) =

∫
ξ1,ξ2

∑
a1,a2

dξ1dξ2 f
a1
PDF (ξ1)f

a2
PDF (ξ2) dσP (a1a2 → y;α) . (1.18)

The PDFs fa1
PDF (ξ1) (fa2

PDF (ξ2)) describes the probability to find a parton of given
flavour a1 (a2) and momentum fraction ξ1 (ξ2).

The definition of the transfer function W (x,y;β) depends on parameters describing
the detector’s response (β), which includes the parton type. For example, a lepton
will have a different transfer function compared to a jet from a quark. As a result,
the transfer function can be written as a product of individual single-parton resolution
functions [39]:

W (x,y;β) =
n∏

i=1

Wi(x
i, yi; βi). (1.19)
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Each individual transfer function Wi(x
i, yi; βi) has to be designed for the particle type

it represents, whereby the four-momentum and the particle identification have to be
taken into consideration [40].
The differential cross section to observe a given event then becomes

dσP (p1p2 → x;α,β) =

∫
y

dσP (a1a2 → y;α)W (x,y;β). (1.20)

By dividing the differential cross section with the total observed cross section, the
likelihood P (x|α) can be obtained [40]:

P (x|α) = dσP (p1p2 → x;α,β)

σobs
P (α,β)

. (1.21)

Here, and in the rest of this work, the β has been omitted from the description of the
likelihood.
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1.6 Machine Learning

The goal of using Machine Learning (ML) in artificial intelligence is to recognise pat-
terns, which can be used for data analysis. There are many different types of ML
structures and the basic principles will be discussed in this section, which will be re-
stricted to supervised ML with neural networks. Supervised means that the data is
labelled, and the network tries to learn the labels.

There are mainly two different kinds of problems that can be tackled with supervised
machine learning: classification and regression. In classification problems, the goal
is to teach the network to recognise which class the input data represents. A classic
example would be teaching a network to be able to differentiate between a picture of
a cat or of a dog. In such cases, there can be any number of classes that the neural
network has to learn; however, each class is discrete. This means that whether the
neural network made a correct assessment or not is definitive.
In regression problems, the goal is to teach the network to estimate a value on a scale.
An example would be teaching a network to estimate the price of a house; the difficulty
here is that there is no correct or incorrect answer. Instead, how “good” the network’s
prediction is depends on the challenge that is being tackled.
The base theory of supervised machine learning with neural networks remains the same
for classification or regression problems.

The discussion on the theory of machine learning (ML) loosely follows [41].

1.6.1 Feed-forward Deep Neural Networks

The basic building block of a neural network is called a neuron. A neuron represents
a calculation, where multiple input variables are turned into a single output variable.
Neurons are modelled after the neurons of the human brain [42]. Each neuron performs
a linear calculation using two types of parameters: a weight ω and a bias b 7:

y = ωx+ b (1.22)

The weight is a vector with dimension d where each component is assigned to a node of
the previous layer: ω = (ω1, ω2, ..., ωd) (see Fig. 1.9b). The value of each ωi influences
how strongly the output of the associated node in the previous layer will affect the
output of the current node. The bias b is a flat term for the entire node.
Once the linear transformation has been performed, an activation function σ(y) is
applied. The goal is to introduce non-linearity to the neuron: without it, the end result
would be a combination of linear functions, which would itself be a linear function.
This can also mimic the human brain: not all neurons fire all of the time, which can
be represented by having an activation function that can result in σ(y) = 0. These
functions can take various forms, with some of the most common being depicted in
Fig. 1.8.

7The reuse of the term weight is not to be confused with its use in the discussion of the matrix
element method (Sec.1.5).
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Figure 1.8: Common activation functions for neural networks. Image taken from [41].

The functions in the top row of Fig. 1.8 have gradients that disappear for large positive
and negative vales of y — they are referred to as being saturated in these areas. This
becomes a problem for backpropagation, which will be discussed later. For this reason,
the functions in the lower row are generally preferred in the hidden layers.

A network can consist of any number of layers, where each layer contains multiple
neurons (see Fig. 1.9a).

(a) (b)

Figure 1.9: Images taken from [41]. (a) Basic structure of a neural network. (b)
Overview of a neuron.

The first layer of neurons is referred to as the input layer, as its input data comes
directly from the data set. The final layer is the output layer; the output of this layer
is what is used as the result of the neural network. When solving a regression problem,
the last layer needs to be able to output a value on a scale. The simplest option is to
have the output layer consist of a single neuron without an activation function.
The layers in-between the input and output layers are called hidden layers : these layers
take the output of neurons of a previous layer as input and their output are used as
input for the next layer. How many layers and neurons in each layer are optimal
depends on the data set and the challenge that is being tackled. Part of the difficulty
of ML is that there are no set rules for choosing an optimal network structure — this
must be figured out individually.
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1.6.2 The Loss Function

In machine learning, the goal is to tune a model g(θ), with parameters θ, so that it
becomes as good as possible at making accurate predictions for a dataset X and then
being able to extrapolate. This is achieved by minimising the so-called loss function
L (X, g(θ)). How a loss function is defined is up to the user — an example would be
the square error

L (ŷ, g(X;θ)) =
∑
i

(ŷi − g(xi,θ))
2 , (1.23)

where ŷ represents the true data and g(X;θ) is the model prediction using a new
data point xi. Iteratively tuning the parameters to minimise the loss function means
providing predictions that are closer to the real value.
In linear regression, the loss function can be written as a sum over all points in a data
set [41]:

L(θ) =
n∑

i=1

li(xi,θ). (1.24)

Finding the global minimum of the loss function is not necessarily trivial, as the model
can have many parameters that influence its shape. Therefore, various techniques and
variables have been developed that affect the model’s ability to learn, by helping it
avoid getting stuck in a local minimum or stranded on a flat region [41].

1.6.3 Gradient Descent

Gradient Descent describes the method of tuning the parameters in the direction for
which the gradient of the loss function has the largest negative value, after the param-
eters have been initialised to some values θ0:

vt = ηt∇θL(θt), (1.25)

θt+1 = θt − vt, (1.26)

where ∇θL(θt) is the gradient of L(θt) with regards to θ at step t. Additionally,
a learning rate ηt has been introduced, which controls how large the steps taken in
direction of the gradient are [41]. If the learning rate is too small, then the loss
function can converge on a local minimum and get stuck. Small learning rates also
mean that the model will take longer to train. If it is too large, then the loss function
can diverge at every minimum which would cause the model to become unstable.

Since each data point leads to a new term in the loss function, the calculation of the
gradient has to take every term into consideration at the same time. Therefore, the
model’s parameters are only updated at once the entire gradient has been calculated
for the whole dataset, which means that the model doesn’t converge very quickly. A
slightly different approach is to split the data set: a data set of size n can be divided
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into batches of size M . The gradient is then calculated for the batch and applied to
the model’s parameters. This means that the gradient is approximated on a subset of
the data set, one batch at a time. As a result, the gradient changes to

∇θL(θ) =
n∑

i=1

∇θli(xi,θ) →
∑
i∈Bk

∇θli(xi,θ). (1.27)

where Bk denotes the batch k, with k = 1, ..., n/M. This method of gradient descend
is called Stochastic Gradient Descent (SGD), since the batches consist of randomly
chosen data points (which introduces a level of stochasticity). While the accuracy of
the gradient does decrease through the introduction of SGD, the model itself converges
on the minimum of the loss function quicker [41]. Training a model usually requires
many epochs, where an epoch refers to a single run through the entire data set. In the
following, ∇θL(θ) will refer to the SGD version.

Momentum

The idea behind momentum is to maintain a downscaled version of the gradient of the
previous step when the current step is determined:

vt = γvt−1 + ηt∇θL(θt), (1.28)

θt+1 = θt − vt. (1.29)

where γ is the momentum parameter with 0 ≤ γ ≤ 1. This allows the gradient to
quickly escape flat landscapes and also avoid getting stuck in local minima. An exten-
sion to adding momentum is the Nesterov Accelerated Gradient, where the gradient at
the current step is calculated using the expected values of the parameters of the next
step [41]:

vt = γvt−1 + ηt∇θL(θt + γvt−1), (1.30)

θt+1 = θt − vt. (1.31)

1.6.4 Overfitting

A general issue with machine learning is the possibility that a model doesn’t learn the
training data in such a way that it will be able to make accurate predictions with new
data — instead, it generates a fit that is finely tuned to the training data, making
its predictions on new data unusable. This issue is referred to as overfitting and it
can occur when a model is too complicated, meaning either the model has too many
parameters θ compared to the size of the data set, or the model puts too much value
on certain data points.

One way of combating overfitting is by introducing an L2 error :
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ω̂Ridge(λ) = arg min
ω∈Rd

(
||ŷ − g(X, ω)||22 + λ ||ω||22

)
, (1.32)

For the least squares loss function, this is referred to as Ridge Regression [41]. The
loss function receives a punishment if individual weights become large in magnitude,
i.e. if the model is relying too heavily on a data point, then it will be punished. This
will lead to self-correction when weights become too large. The weight decay λ is a
hyperparameter of the model, meaning it is not optimised by gradient descent.
It is also possible to actively monitor the model as it is learning, and to stop it early
as soon as signs of overfitting become visible.
Another way to keep track of overfitting is to compare the loss of the model after it ran
on training data compared to when it ran on the validation data. If no overfitting is
taking place, then the values will converge on one another; if there is overfitting, then
the loss for the training data will be (significantly) lower than for the validation data.

1.6.5 Standardising the Input Data

A neural network can only be as good as its input data allows it to be. Therefore, it’s
possible to support the network by restructuring the data in such a way that it eases
the network’s ability to learn. To do this, a data point is standardised by subtracting
the mean of each input variable from the value of the respective variable, and then
dividing each variable by its standard deviation:

xstand
i =

xi − x̄i

σxi

, (1.33)

where x̄i and σxi
are the mean value and standard deviation of the input variable xi.

This reshapes each variable to have a standard deviation of 1 around the value 0. By
restricting the input values to a similar range, the neural network will have an easier
time learning the distribution of the input variables, since the weights aren’t initialised
to reflect different ranges and scales in the input data.
For regression problems, restructuring the training values of the output variable can be
particularly helpful if the values are spread across a large scale. It’s easier to learn the
boundaries of the possible output values when they are more tightly restricted. To eval-
uate the network, the predicted values will then have to be appropriately transformed
back to their original structure.

1.6.6 Backpropagation

Backpropagation describes the process of updating the parameters θ of the model,
which in this case are the weights ω and biases b. It relies on using the chain rule,
since all layers are connected to one another:

amj = σ

(∑
k

ωm
jka

m−1
k + bmj

)
= σ(ymj ). (1.34)
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This describes the case where the network has M layers with m = 1, ...,M . ωm
jk

describes the weight that couples the k-th neuron on layer m − 1 to the j-th neuron
on layer m. The bias of the j-th neuron on layer m is bmj .
The loss function L depends on the output of the network, which means the output
of layer M . This, in turn, is dependent on outputs aM−1

j of the previous layer, which
recursively works its way up to the input layer. To understand how the weights and
bias should be adjusted at each node, a few definitions are required. First, the error
of the j-th neuron on the m-th layer is defined as the change of the loss function in
regards to the weighted input ymj :

∆m
j =

∂L

∂ymj
=

∂L

∂amj
σ′(ymj ). (1.35)

Here, σ′(ymj ) is the derivative of the activation function σ(·) evaluated at the value for
ymj . For the output layer m =M , the derivatives of the loss function and the activation
function σ(y) need to be known. Second, the error ∆m

j can also be interpreted as the
change of the function with regards to the bias bmj :

∆m
j =

∂L

∂ymj
=

∂L

∂bmj

∂bmj
∂ymj

=
∂L

∂bmj
, (1.36)

using
∂bmj
∂ymj

= 1. Third, the chain rule is used to connect the error of layer m with that

of m+ 1:

∆m
j =

∂L

∂ymj
=
∑
k

∂L

∂ym+1
k

∂ym+1
k

∂ymj
=
∑
k

∆m+1
j

∂ym+1
k

∂ymj
=

(∑
k

∆m+1
j ωm+1

kj

)
σ′(ymj ).

(1.37)

Last, the derivative of the loss function in regards to the weight ωm
jk is

∂L

∂ωm
kj

=
∂L

∂ymj

ymj
∂ωm

kj

= ∆m
j a

m−1
k . (1.38)

Together, these equations can be used to calculate the gradient for all parameters on
every node. The steps are as follows:
Once the network has run through a batch, where-by the activations amj are calculated
for each neuron, the loss function for that batch is calculated. Then, using Eq. 1.35,
the error of the output layer is calculated. Following this, by using Eq. 1.37, the errors
∆m

j are calculated for each layer and neuron8. Finally, using Eq. 1.36 and Eq. 1.38,
the errors for each ωm

kj and bmj are calculated and the weights and biases are adjusted
accordingly [41] (see Sec. 1.6.3).

It’s at this point that problems can occur: if the gradients are too large, then the
changes to the parameters will explode, since the parameters will receive large changes
with every update, which will cause the network to become unstable. On the other

8This step is referred to as backpropagation.
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side, if the gradients are (vanishingly) small, then the backpropagation will get “stuck”
halfway through and the parameters of the beginning layers won’t be updated. This
will lead to the network not learning. There are, however, methods for combating these
problems, e.g. using an activation function that doesn’t have a vanishing gradient (e.g.
bottom row of Fig. 1.8).

Dropout

Another method to help prevent overfitting is known as dropout [43] . The idea is
to randomly, temporarily remove neurons from a network, along with their ingoing
and outgoing connections (see Fig. 1.10). The dropout is applied to each neuron of a
chosen layer individually, with probability p. Neurons that are dropped pass an output
value of 0. This results in a collection of thinned-out networks (one for each batch),
where each one is slightly different. Doing this on its own would then lead to an issue
when running the network on test data, as it would require running all the networks
and then averaging their predictions. Instead, an approximate averaging method is
used, where the weights are scaled with 1

1−p
(PyTorch implementation [44]). For

the averaging, any training case which does not use a parameter (because it has been
dropped) contributes a gradient of zero.

(a) (b)

Figure 1.10: Images taken from [43]. (a) Fast-forward neural network with two
hidden layers. (b) Same network, but with dropout applied to each layer (crossed
units have been dropped).

Residuals

The idea behind residuals [45] is to pass the output variables of a layer to another
future layer other than the one directly following it (see Fig. 1.11). This method
was developed to combat an issue where the accuracy of deep neural networks would
suddenly start to diminish. It could be shown that this was not a result of overfitting
and adding more layers would lead to a higher training error [45]. In the simplest
case, the residuals are passed via an identity mapping, meaning the values are passed
unchanged. This method can increase accuracy without having to introduce additional
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hyperparameters or increase computational complexity and can also be used to combat
vanishing gradients.

Figure 1.11: Residuals being passed forward to a future hidden layer. Plot taken
from [45].

1.6.7 Convolutional Neural Networks

Convolutional Neural Network (CNNs) were designed to take advantage of locality
and translational invariance [41]; in other words, recognising a local pattern (locality)
anywhere in a data set (translational invariance). This makes CNNs particularly good
at image and audio recognition, where smaller structures, such as a face or a word,
need to be identified within a larger structure, such as a photo or an audio file.

Convolutional Layer

CNNs mostly consist of two types of layers: convolutional layers and pooling layers. In
a convolutional layer, the input data, which has the form of a matrix with width W ,
height H and depth D, is convolved9 with a filter; the output of which is also a matrix
(see Fig. 1.12). The number of variables in a data point is represented by its depth
and each variable requires its own channel. For example, an N ×M image with pixels
containing RGB data would require three channels, one for each colour, and the input
matrix would therefore be of size N ×M × 3.
Each channel is convolved with singular matrix, called a kernel. Usually, the kernel is
of size K × K, where K is the kernel size. The result of these convolutions is then
summed and the biases associated with the channels are added at the end. This results
in an output matrix. A convolutional layer can have multiple kernels, where each kernel
results in its own output matrix — this means that the number of output channels that
a convolutional layer has is defined by the number of kernels in that layer.
For example, in Fig. 1.12, one step of the convolution between an input matrix with
D = 1 and a filter with one kernel is depicted. The result of this step is y11 =
x11ω22 + x12ω23 + x21ω32 + x22ω33 + b. If D = 3, then y11 would consist of the sum of
the convolutions of all three channels with the kernel and their biases. If the filter had
more than one kernel, then there would be more than one output matrix.

9This is referring to the mathematical operation.
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There are a couple of aspects with which the output of the convolution can be con-
figured. First, the filters don’t have to have the same height and width as the matrix
that they are being convolved with. If a filter is larger than 1 × 1 × D, then the
resulting matrix will have a smaller height and width than the input matrix; however,
by introducing padding (additional rows and columns of 0s, see Fig. 1.12), the output
matrix (feature map) can be the same size as the input matrix. Also, the size if the
filter influences the number of weights in that convolution layer. In Fig. 1.12, a filter
of size 3× 3× 1 is depicted.

Another variable of the convolution is the stride s: this defines how many cells over the
filter moves during each step of the convolution. In Fig. 1.12, the stride in both width
and height is sW , sH = 1, leading to a feature map of the same size as the input (due
to one row/column of padding). If sW = 2 and sH = 1, then the feature map would
have the size 6× 3× 1.
The feature map can then have an activation function applied to it, which will affect
the matrix elements individually.

Filter
w11 w12 w13

w21 w22 w23

0 0 0 0 0 0 0 0 w31 w32 w33

0 x11 x12 x13 x14 x15 x16 0

0 x21 x22 x23 x24 x25 x26 0 y11 y12 y13 y14 y15 y16

0 x31 x32 x33 x34 x35 x36 0 y21 y22 y23 y24 y25 y26

0 x41 x42 x43 x44 x45 x46 0 y31 y32 y33 y34 y35 y36

0 x51 x52 x53 x54 x55 x56 0 y41 y42 y43 y44 y45 y46

0 x61 x62 x63 x64 x65 x66 0 y51 y52 y53 y54 y55 y56

0 0 0 0 0 0 0 0 y61 y62 y63 y64 y65 y66

Output

Input

Figure 1.12: Diagram for a convolutional layer of a Convolutional Neural Network
(CNN) withW, H = 6 andD = 1. Input layer (green) with padding (blue) is convolved
with a filter (red), resulting in an output matrix of the same size (yellow).

Pooling Layer

The pooling layer reduces the resolution of the feature map. This is commonly achieved
by applying a max-pooling function [46], which simply returns the largest entry from
the inputs, e.g.:

max

((
1 3
7 5

))
= 7 (1.39)

This results in the first layers learning low-level features such as edges and curves, while
later layers learn more abstract features [46] (see Fig. 1.13).
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Figure 1.13: CNN with depiction of the feature maps of the first and second convo-
lutional layer, which have a pooling layer in-between them. Image taken from [46].

Fully Connected Layer

Generally, the final layer (or final few layers) of a CNN is a fully connected layer,
which outputs the prediction of the neural network. It functions in the same way as
the final layer of a feed-forward neural network, where all the inputs of the second-
to-last layer are fed to a single neuron without an activation function10, which then
gives the network’s predicted value. For this, the output of the layer before the fully
connected layer has to be flattened, as it can contain multiple dimensions.

1.6.8 Evaluating a Neural Network

Once a trained neural network has been tested on validation data, its output values
have to be evaluated. So far, the loss function has been used as a tool for training the
neural network to be as optimal as possible; however, the absolute value of the loss
function is difficult to interpret. This means that the loss function can’t easily be used
to judge whether the accuracy of the network is good enough to solve the challenge it
has been tasked with.
This can be addressed by introducing the R2-parameter11 [47]:

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
, (1.40)

where yi and ŷi are the predicted value and the true value for data point i, respectively,
and ȳ is the mean output value of the true data. This sets R2 ≤ 1.
The best-case scenario is R2 = 1, since this means that the predicted values perfectly
match the true values. If R2 = 0, then this can be interpreted as the neural network not
having learnt very much; it is as good as always predicting the mean value of the data
set. A neural network that effectively hasn’t learnt12 will have R2 < 0. Realistically, a
neural network that has learned something will have 0 < R2 < 1.
An important thing to note about the R2-parameter is whether a given value is con-
sidered good or not is arbitrary. Whether the state of the trained neural network can
be considered good or not depends on the problem that is trying to be solved and the
data set being used. Therefore, there are no standardised values for the R2-parameter
that should be aimed for. However, it can be used to compare different neural networks

10In the case of a regression problem.
11The definition for the R2-parameter can differ depending on the source.
12This could be due to multiple factors, e.g. bad weight initialisation, having a structure that is too

simple, vanishing gradients, etc.
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that are being tested on the same problem, using the same data set, which is useful
when there are many different model configurations that are being examined.





Chapter 2

Software and Hardware

In this chapter, the main pieces of software used in this work are presented. They have
been grouped by their usage in the analysis: either for generating the simulated event
data, for applying the MEM to the data, or for ML. At the end, a brief description of
the hardware that was used is given.

2.1 Software

2.1.1 Event Generation

All data that is used in this analysis has been simulated. The first step uses Mad-
Graph 5 [48, 49] to simulate the hard scattering of the initial protons1. The showering
is then handled by Pythia62. The jets are reconstructed using the package FastJet
3.3.0 [51, 52]. The plotting variables are stored in a ROOT [53] file and are later
read-in via Uproot [54] and plotted using Seaborn [55].

2.1.2 Matrix Element Method

MoMEMta [56, 39] is a C++ software package that has been developed to compute
the convolution integrations at the core of the MEM. It’s built on the same principles as
MadWeight [57] in regards to the parametrisation of the phase space, but allows for
more freedom for the user in terms of modularity [56]. This is achieved by having every
term in the weight calculation (see. Eq. 1.21) be represented by its own configurable
module [56].

1The following configurations are used:

• Ebeam = 2 TeV

• bw,cutoff = 33 to allow off-shell W production and decay in H →WW

• PDF set 90400 from LHAPDF6 [50]

• min(pT , jet) = 20 GeV, min(pT , lep) = 10 GeV

2Pythia tune 340 AMBT1 [? ] was used

29
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The transfer functions are assumed to factorise into direction- and momentum-dependent
terms for each measured final-state particle. For most applications, the angular vari-
ables are assumed to be perfectly reconstructed, and the transfer function is described
by a Dirac delta function in such cases. These assumptions may not be valid when
final-state objects are close to each other [56].
Unresolved degrees of freedom can appear in the form of invisible particles or objects
that are unreconstructed objects. They can be removed by enforcing four-momentum
conservation in the initial and final states; additionally, mass constraints on narrow res-
onances or the measured total transverse momentum can reduce the degrees of freedom
further [56].

In most cases, the computation of the weights requires the evaluation of multidimen-
sional integrals via adaptive Monte Carlo (MC) techniques. A finite number of ana-
lytical transformations, called Blocks, are used to map the structures in the integrand
in an efficient way. The transformations are non-linear, which leads to multiple solu-
tions, for each of which the matrix element, the transfer function and PDFs need to
be evaluated [56].
There are two types of Blocks: Main Blocks and Secondary Blocks. Main Blocks de-
scribe changes of variables that enforce conservation of momentum between the initial
and final states. Secondary Blocks also do this, but they describe changes that do not
remove any degrees of freedom [56]. These Blocks are implemented as modules that
can be chained together to describe the chosen physical model. They also compute the
jacobian factor associated with the variable changes, which are then multiplied with
the integrand [56]. The Blocks that are already implemented in MoMEMta can be
seen in Tab. 2.1a and Tab. 2.1b.

MoMEMta handles the assignment of reconstructed final-state objects to partons in
the matrix element by computing an average weight over all possible permutations.
This is done by introducing a new dimension for the integrand phase space, which
decides which assignment should be used for computing the integral. The weight
calculation is performed with a set number of evaluations. Therefore, by using an
adaptive integration algorithm, which concentrates on the permutations that yield the
largest contribution, the accuracy of the calculation is increased [56].
The PDFs are obtained from LHAPDF6 [50] and the integration is done using the
CUBA library [58], which contains the Vegas algorithm [59] for multidimensional
integration, amongst others. The matrix element is constructed in MadWeight and
can be fed to MoMEMta via a plug-in [56].

The computation of the weight requires the evaluation of multidimensional integrals
via adaptive MC techniques [56]. Points in the phase space, which define variables
such as the masses of the W and Higgs bosons, are probed and the weight is iteratively
calculated. This process continues until either the weight converges or until a limit on
the number of iterations has been reached.
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2.1.3 Machine Learning

Pytorch [44] is a ML library built for Python. It focuses on implementing an easy-
to-use interface without sacrificing much in terms of speed and efficiency. Most of its
core is written in C++ and can be executed on either Central Processing Unit (CPUs)
or GPUs. Operations on GPUs are implemented using CUDA [60], which allows for
Python code to be executed onCPUs while tensor operators are run on GPUs.
The weights and biases of the neural networks are visualised using TensorBoard [61].
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2.2 Hardware

Due to the large number of events that need to be processed, the calculation of the
event weights with MoMEMta is split into smaller jobs and run in parallel on a local
Slurm [62] cluster. The cluster consists of 49 PC nodes with various CPUs and GPUs,
meaning that the time needed for the calculation of the weights varies, depending on
the node.





Chapter 3

Analysis

In this chapter, the analysis of this work will be presented. It is based on the theory
that has been discussed in Ch. 1 and uses the software presented in Ch. 2.

3.1 Overview

The main objective of this work is to reduce the amount of computing resources required
for an analysis using the MEM by training a neural network to be able to predict event
weights accurately. This requires generating simulated training data, where it is known
which events are signal events and which are background. The event weights are then
computed for the training data, with which the neural network is then trained. The
result is a trained network that can take input data from an event and provide an
accurate weight, which can be used for analysis purposes.

In this work, as a proof-of-concept, the first steps for a search for di-Higgs events
using the MEM is assisted with neural networks. This consists of separating di-Higgs
events containing either Higgs self-coupling or lowest level Higgs pair-production from
background events containing Z bosons.

3.2 Decay Models

The signal decay mode that has been chosen for Higgs self-coupling can be seen in
Fig. 3.1a. This decay mode contains an off-shell Higgs boson that decays into two
on-shell Higgs bosons H∗ → HH. One of the on-shell Higgs bosons then decays into
two b quarks, where the other decays into an off-shell W ∗ and an on-shell W boson.
Both the case where W ∗ → qq̄ and W → lν, and vice versa, are allowed.
This was chosen as the main signal model as it contains a clean detector signal while
also maximising the branching ratio for events with Higgs self-coupling. The Higgs
boson has a strong coupling to b quarks, with the branching ratio of BR(H → bb̄) =
(53 ± 8)% [3]. However, having both Higgs bosons decay to b quarks would have a
low detection efficiency, since due to b-tagging, b quarks have a detection efficiency of
≈ 70 – 75% [63]. This makes the likelihood of correctly identifying all b quarks drops

35



36 CHAPTER 3. ANALYSIS

considerably with every additional b quark.
Having a lepton in the final state helps distinguish signal events from a large amount
of background events, as hadron colliders produce a high number of purely hadronic
events. Leptons also have a high detection efficiency (see [64], [65]), meaning there is a
low chance a lepton will be misidentified. However, the reason both W bosons haven’t
been chosen to decay leptonically is that the di-lepton case has a small branching ratio:
BR(W → lν̄l) = (10.86 ± 0.09)% [3]. Additionally, the two neutrinos can’t be sepa-
rated from each other since they both appear as missing energy and missing transverse
momentum in the detector. This can make distinguishing the neutrinos difficult. For
these multiple reasons, it was chosen to have one W boson decay hadronically.

In events with two Higgs bosons, with BR(H → bb̄) = (53±8)%, BR(H → W+W−) =
(25.7 ± 2.5)%, BR(W → qq̄) = (67.41 ± 0.27)% and BR(W → e(µ)ν̄e(ν̄µ) = (10.86 ±
0.09)% [3], the resulting branching ratio for the chosen final-state is ≈ 0.36% – 0.79%.
In events with a Z boson and a Higgs boson, with BR(Z → bb̄) = (15.12± 0.05)% [3],
the resulting branching ratio for the chosen final-state is ≈ 0.117%–0.125%.

The combination of the decay modes for Higgs pair-production and for Higgs self-
coupling constitute the signal data and can be seen in Fig. 3.1. The hard-scattering
processes have been automatically selected by MadGraph [48], whereby the lowest-
order Feynman diagrams possible for the processes are chosen. MadGraph always
generates the mode in Fig. 3.1b together with the mode in Fig. 3.1a using an effec-
tive coupling between Higgs and gluons (indicated by the black point). The box-
diagram via t/b quark loops isn’t selected, since it’s of higher order and involves an
explicit calculation of the loop. Moreover, the depicted Feynman diagrams represent
the HH production cross section, eventually taking higher-order effects into account
by k-factors, while destructive interference with the box-diagram becomes prominent
only at energies close to the HH production threshold. However, this analysis focuses
on separating HH final-states from HZ final-states, whereby interferences between
various HH Feynman diagrams close to the HH production threshold can be ignored.
A separate analysis is being done to study how the interference between self-coupling
and the box-diagram via t/b quark loops impacts the data [66].
While the hard scattering process that generates the on-shell Higgs bosons is different
in each decay mode, the showering of the Higgs bosons is the same. Signal events will
also be referred to as HH events.
The only background decay mode considered in this analysis is depicted in Fig. 3.2,
where an off-shell Z boson (Z∗) emits an on-shell Higgs boson. Unlike the signal decay
modes, this decay mode is produced via quark-antiquark annihilation as opposed to
ggF. This is because MadGraph chooses the lowest order Feynman diagrams possible
for the processes and for the Z boson events this results in a tree-level diagram.
The showering of the background decay mode is the same as for the signal modes.
Background events will also be referred to as HZ events. A common background that
would need to be considered in a full analysis for detecting Higgs pair-production, or
specifically Higgs self-coupling, are events containing tt̄. Top quarks can decay via
t→ bW , meaning events with top-quark pairs can create the same final-state as Higgs
pair-production. However, due to the limited scope of this analysis, such background
events are not taken into consideration in this work.
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Figure 3.1: Lowest order signal decay modes with (a) Higgs self-coupling (hard scat-
tering and shower) and (b) Higgs pair-production (hard scattering), in which the Higgs
bosons decay in the same way as in the case of self-coupling. The black points represent
effective couplings between Higgs and gluons. A ∗ denotes an off-shell particle.
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Figure 3.2: Lowest-order background event in which a off-shell Z boson (Z∗) emits a
Higgs boson. The Z∗ boson is produced via quark-antiquark annihilation.

3.3 Event Generation and Reconstruction

The following section describes how the simulated events are generated and the final-
state particle are reconstructed into jets1. Additionally, selection criteria that are used
to filter events after reconstruction are presented.

Two sets of hard scattering events are generated using MadGraph 5 [48], one for
the di-Higgs modes and one for Z∗ → ZH, where each set consists of 107 events. In
these events, both the Higgs and Z bosons are limited to decay to either b quarks or
W bosons. This means that not every generated event contains scattering according
to either the signal or background modes and need to be filtered out.

1A jet is a collection of final-state particles, described by a cone, that is treated as a single particle.
This is necessary for describing quarks and gluons, since they hadronise. The cone is described by a
radius parameter R. “Reconstruction” describes the process of creating the jets.
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Particle Recognition

For real data measured in a detector, highly complicated algorithms are used to assign
particles to jets. It’s therefore beneficial to use these algorithms when working on an
analysis with simulated data to get a better understanding of how the analysis would
work with real data. However, the analysis in this work does not have access to such
algorithms. For this reason, the full information that the simulation provides is used to
assist the assignment of jets to particles. Full information, in this sense, means knowing
the four-momentum of all intermediate and final-state particles, and all present decay
chains.

The Pythia 6 function TPythia6::Pylist(2) can be used to visualise all information
in an event (see Tab. 3.1). This returns a list that contains hundreds of lines, where
each line corresponds to a particle in the event. The columns are to be understood as
follows [67]:

• I gives each line an index number.

• particle/jet describes the particle type for that index. A particle surrounded
by exclamation marks indicates that that particle has been created by another
generator and has been read into Pythia. A particle with parenthesis around
it, e.g. (W+), is a particle that has fragmented.

• In some cases, the particle/jet can also have an A, I or V. This indicates the
beginning, A, or end, V, of a string/cluster parton system.

• K(I,1) and K(I,2) describe the state of the particle and the Particle Identifica-
tion Number (Particle ID) respectively. The state that is relevant for assigning
the partons to jets is 1, as this describes final-state particles. The Particle ID
describes a particle via its MC numbering scheme [3], or, if a particle is made of
quarks, its constituents.

• K(I,3), K(I,4), K(I,5) refer to the indices of the mother particle and the two
daughter particles, respectively. This makes it possible to follow decay chains.

• P(I,1)–P(I,3), P(I,4), P(I,5) describe the three-momentum, the energy and the
mass of that index’s particle.

Pythia provides the function GetK(I,X), with X ∈ [1, 5], which retrieves the appro-
priate information for the particle at index I. Using this, a script has been written
that finds the final-state particles in the event and is able to associate them with the
lepton or quark that they come from. This approach is done top-down, e.g. first a
Higgs boson is found, then the b quarks that the Higgs boson decayed into, then the
final-state particles that come from the hadronisation of the b quark. Once jets have
been reconstructed (see Sec: 3.3), it will be possible to know which jet contains par-
tons from which original particle. This removes the possibility of assigning a jet to an
original particle incorrectly.
In cases where colour reconnection occurs during the hadronisation process, particles
are described as a string system, which is indicated by a line having (string) in the
particle/jet column. In such cases, the angular differences of the three-momentum of
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I particle/jet K(I,1) K(I,2) K(I,3) K(I,4) K(I,5) P(I,1) P(I,2) P(I,3) P(I,4) P(I,5)
1 !p+! 21 2212 0 0 0 0.00000 0.00000 6999.99994 7000.00000 0.93827
2 !p+! 21 2212 0 0 0 0.00000 0.00000 -6999.99994 7000.00000 0.93827
3 !g! 21 21 1 0 0 0.24358 2.69425 193.71676 193.73565 0.00000
4 !dbar! 21 -1 2 0 0 -0.92442 0.76562 -497.54493 497.54638 0.00000
5 !g! 21 21 3 0 0 8.91980 -9.54714 91.32358 92.25349 0.00000
6 !g! 21 21 4 0 0 -6.53213 -3.81120 -201.36118 201.50315 0.00000
7 !h0! 21 25 5 0 0 -13.65932 2.67597 -0.12636 125.76747 124.99481
8 !h0! 21 25 5 0 0 16.04699 -16.03432 -109.91125 167.98918 125.00110
9 !b! 21 5 7 0 0 -1.49180 -59.19027 13.90868 61.00209 4.70000
10 !bbar! 21 -5 7 0 0 -12.16751 61.86625 -14.03504 64.76537 4.70000
11 !W+! 21 24 8 0 0 5.20279 -18.76637 -1.35530 33.62548 27.37865
12 !W-! 21 -24 8 0 0 10.84419 2.73205 -108.55595 134.36369 78.38461
13 !u! 21 2 11 0 0 15.03870 -6.91318 -5.89127 17.56877 0.00000
14 !dbar! 21 -1 11 0 0 -9.83590 -11.85319 4.53597 16.05672 0.00000
15 !mu-! 21 13 12 0 0 -33.42602 8.33897 -43.90010 55.80373 0.00000
16 !nu mubar! 21 -14 12 0 0 44.27021 -5.60692 -64.65585 78.55996 0.00000
17 (h0) 11 25 7 56 65 -13.65932 2.67597 -0.12636 125.76747 124.99481
18 (h0) 11 25 8 19 20 16.04699 -16.03432 -109.91125 167.98918 125.00110
19 (W+) 11 24 11 66 69 5.20279 -18.76637 -1.35530 33.62548 27.37865
20 (W-) 11 -24 12 21 22 10.84419 2.73205 -108.55595 134.36369 78.38461
21 mu- 1 13 15 0 0 -33.42602 8.33897 -43.90010 55.80373 0.00000
22 nu mubar 1 -14 16 0 0 44.27021 -5.60692 -64.65585 78.55996 0.00000
23 (u) A 12 2 1 74 74 0.05385 -1.55950 2194.43591 2194.43647 0.00000
24 (g) I 12 21 3 74 74 -0.06334 0.96097 2.67277 2.84098 0.00000
25 (g) I 12 21 3 74 74 -0.65036 0.16382 1.97245 2.08335 0.00000

Table 3.1: First lines of a TPythia6::Pylist(2) output for an example event, for-
matted as a table.

the mother particle of the string and the three-momentum of the particles in the string
are determined. The particle in the string for which the angular difference is the small-
est is chosen as the particle with which the chain continues. This avoids problems in
situations where, for example, during the hadronisation of a b quark a second b quark
is created.

Jet Reconstruction

The jets are reconstructed using FastJet 3.3.0. For this, the kT algorithm [68, 69] is
used, along with the recombination scheme “E-scheme”, in which the four-momentum
of the particles are summed during their merger. The clustering strategy “Best” has
been chosen, which automatically chooses the quickest strategy based on the parameters
of FastJet and on the information of the given event. With this configuration, inclu-
sive jets with radius R = 0.4 and a minimum transverse momentum pmin

T = 5.0 GeV
are reconstructed.
Since this analysis doesn’t have access to particle tagging algorithms, the correct jets
have to be selected by hand. This is done by first combing through the jets of an
event and evaluating which jets contain partons that come from the original particle
or its hadronisation process. For example, to find the jets belonging to a b quark, the
Pythia indices of the particles in every jet are checked and compared to the indices
of the final-state particles that have been associated with that b quark. This results in
a list of jets that are considered for assignment to that particle.
The final assignment is done by comparing the ∆R between each jet and the original
particle, which is defined as
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∆R =
√

(∆ϕ)2 + (∆η)2, (3.1)

where ∆ϕ is the difference between the azimuthal angle2 ϕ of the jet and the original
particle before hadronisation, and ∆η is the difference between the pseudorapidities3 η.
The jet with the smallest ∆R is then assigned to the original particle, as its direction
is most in-line with that of the original particle.

In Fig. 3.3a, the number of jets that contain partons from the same b quark is depicted.
As can be seen, in most events each b quark from a Higgs or Z boson generally only has
one jet that contains its partons, meaning that the jet assignment is straight-forward.
In cases where a single jet is the optimal jet for more than one particle (e.g. the b
quarks are close to one another and are formed into a single jet), one of the particles
will be assigned the second-most optimal jet. If there is no second-most optimal jet,
then that particle doesn’t have any jet assigned to it.

If a b quark from an H/Z boson does not have a unique jet associated with it, then
the event is filtered out. The same is done for quarks and leptons coming from the
W bosons. If an event is kept, then the assigned jets are pruned with zcut = 0.10 and
Rfactor = 1. Pruning is defined as follows [70]:

1. Form a list of all partons in a jet.

2. Calculate the distance ρi,j between all pairs of partons i and j. Additional,
determine the beam distance ρi for each parton i.

3. If either ρi,j >
2Rfactormjet

pT,jet
or

min(pT,i,pT,j)

zcut
< pT,i+j, remove the parton with smaller

pT .

The goal of pruning is to improve the mass resolution of jets reconstructing heavy
particles and to reduce QCD background [70] (i.e. background created through hadro-
nisation). Then, all events that contain b quark jets that are too close to the beam axis
(ηb > 2.5) are also filtered, as they would be difficult to detect in a general purpose
detector such as ATLAS or CMS, since the detectors can’t be built too close to the
beam pipe. Finally, the energy values of the reconstructed jets Ejet are compared to
those of the original particle Eorig: if for any jet |Ejet − Eorig| > 10.0 GeV, then the
event is discarded. After applying these filters, 499,300 HH and 439,857 HZ events
remain. The distributions of ∆R for the data before and after the cuts can be seen in
Fig. 3.3b.

The resulting data, which is as input for the software that performs the MEM weight
calculation, is entirely at generator level. Detector simulation or smearing of the four-
momenta is not applied at this stage.

2The angle in the plane that is transverse to the beam axis.
3The pseudorapidity is calculated from the polar angle θ using η = −ln

(
tan( θ2 )

)
.
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(a) (b)

Figure 3.3: (a) Number of jets that contain a parton from one specific b quark. (b)
∆R of reconstructed b quark jets, for both signal and background. The “cuts” refer to
removing all events where a b quark has ηb > 2.5, or a reconstructed particle or jet has
|Ejet − Eorig| > 10.0 GeV.
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3.4 Weight Calculation

3.4.1 Overview

The weight of each event in calculated using MoMEMta (see Sec. 2.1.2). This is done
using a modified version of Block D, since no combination of the preconfigured main
and secondary blocks can be used to describe the complete decay topology.

A depiction of the original Block D can be seen in Fig. 3.4a. It’s defined by having
four visible and two invisible4 particles.

(a) (b)

Figure 3.4: Visual depiction of Block D and Block HH. q1 and q2 are the Bjorken
fractions of the ingoing particles and si...j refers to (pi+...+pj)

2. (a) Block D: p1 and p2
denote the four-momenta of invisible particles, where p3...6 are visible particles. Image
taken from [39]. (b) Block HH: p1...6 denote the four-momenta of visible particles.

The HH events contain only a single invisible particle, the neutrino (antineutrino)
νl (ν̄l), due to only one W boson decaying leptonically. This means that the four-
momenta p1 and p2 can both be given explicitly — p1, because it’s a visible particle,
and p2, because it’s described by the missing four-momentum in an event. Additionally,
the block is restructured. The new block, named Block HH (see Fig. 3.4b), can simply
take the four-momentum as input vectors and it needs to perform only two variable
transformations for the Higgs bosons: s46 and s1325.

Since Higgs self-coupling can only be described as a superposition with Higgs pair
production, the matrix elements for either process can’t be created separately. Instead,
there is only one matrix element that contains both processes. This leads to both self-
coupling and pair production being signal events when this matrix element is used
to calculate the weight. To be able to conduct an analysis where a search for just
Higgs self-coupling is performed, a better understanding for how self-coupling can be
separated from pair production is necessary. Since the matrix element contains both
modes, it isn’t clear if the MEM will be able to separate self-coupling from other pair-
production modes. This is because the destructive overlap of the wave functions will
be affected by any tweaking of the matrix element (e.g. changing the strength of the
self-coupling parameter), which would change the phase space of the decay.

4In this sense, “invisible” means that the particle can’t be directly measured in a detector.
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Figure 3.5: Distribution of the W boson masses, for both HH and HZ events.

3.4.2 Configuration

The computation of the weights requires configuring. The masses of the on-shell Higgs
bosons are described by a Breit-Wigner distribution, with a peak at mH = 125.00 GeV
and a width of Γ = 0.0032 GeV. Normally, the masses of the W bosons would also
be described by a Breit-Wigner distribution; however, this causes issues during the
calculation of the weight. Since the Higgs boson’s rest mass is much lower than the
combined rest mass of twoW bosons, one of theW bosons is required to be off-shell —
its mass is expected to be around 45 GeV. This can be seen in Fig. 3.5, where the dark
regions indicate that, in most cases, one W boson is around mW = 80 GeV and the
other is around mW = 35 – 45 GeV. Due to the W boson’s Breit-Wigner distribution
having a small width, it’s extremely unlikely that a MC generator would quickly find
the area of the phase space that would produce such an off-shellW boson. When using
a Breit-Wigner distribution for the W boson, MoMEMta is unable to converge on a
value for the weight and fails due to reaching its iteration limit.

To circumnavigate this issue, the weight of theW bosons is chosen to be described by a
flat distribution, meaning that it’s just as likely to generate aW boson at 80 GeV than
one at 20 GeV. This results in MoMEMta becoming able to converge on a weight
within its iteration limits. This does, however, have a side effect that needs to be taken
into consideration: as discussed in Sec. 1.5, the calculation of a weight is a result of a
calculation of cross-sections. The quicker MoMEMta is able to converge on a weight
for a given matrix element, the larger the phase space for that matrix element must
be. In other words, there must be more acceptable configurations of particle masses
and four-momenta for the intermediate and final-state particles for the given matrix
element. Having a larger phase space must mean that the decay can happen more
often, which is represented by a larger cross-section. Since the weight is proportional
to the cross-section, then making changes that affect the cross-section also affects the
weight.
To counter this side effect, an analysis that wants to measure Higgs self-coupling with
off-shell W bosons would require a scaling factor for the weight to compensate for the
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fact that theW bosons are artificially being described with a flat distribution. This has
not been investigated in this analysis, since the goal of this work is to implement the
MEM on neural networks to reduce computation time, not accurately calculate weights
as they would be expected to be when measuring real data. Whether the weights that
the neural network trains with are off by a scaling factor will not have an effect on
the network’s ability to learn and therefore does not conflict with the objective of this
analysis.

The PDFs used are CT10NLO [71], which is a general purpose next-to-leading-order
set and is set to the energy scale of the SM Higgs boson mass of 125.0 GeV. The
matrix element is generated with MadWeight, which is a functionality of Mad-
Graph aMC@NLO. For this, the model Higgs Effective Couplings UFO is im-
ported and the matrix element is produced with [57]:
./bin/mg5 aMC

import model Higgs Effective Couplings UFO/

generate p p > h > hh, (h > bb∼ ), (h > w+w-, w+ > jj, w- > l-vl∼)

A plug-in of MoMEMta allows for the matrix element to easily be imported.

A Gaussian transfer function is used to smear the final-state particles, except for the
neutrino. For b quarks, a standard deviation of σ = 0.10 is used, whereas for the quarks
that come from aW boson and for the charged lepton a standard deviation of σ = 0.05
has been implemented.
The integration by CUBA uses the Vegas routine. It’s implemented with a batch size
of 50,000 and a relative accuracy of 0.01, and ran on four cores. Due to the reduction of
the phase space dimensions by MoMEMta, only six integration variables are required.
The iteration limit is set to 500,000; an error is returned if the weight hasn’t converged
within this limit. The jacobian has been deactivated for the computation of the weights.
Including the jacobian drastically increases the computation time and it results in
weights that are smaller by multiple orders of magnitude. It’s unclear what is causing
this: the calculation of the determinant of the jacobian is, for the most part, a linear
equation, so its inclusion essentially scales the weight of the event by a constant.
MoMEMta needs to be studied more closely to understand where such unexpected
effects are coming from. Since the end goal of this analysis is to train a neural network
to produce accurate weights, it’s justifiable to exclude the jacobian, since whether
a linear scaling factor is included, or not, will not have a noticeable impact on the
network’s performance.

3.4.3 Results from MoMEMta

In total, the weight calculation is performed twice: once where the weight is calculated
with the self-coupling matrix element (MHH) and once where matrix element for the
background decay mode with Z bosons is used (MHZ). The HH data set is referred
to as xHH and the HZ data set as xHZ . In Fig. 3.6b, the time for each integration
can be seen, where the colours represent the combinations of data and matrix elements
that are used. The integration is significantly quicker when the data aligns with the
matrix element (blue and magenta) compared to when they don’t (orange and green)
— this is the expected result. It’s noticeable that in both cases where the data and
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matrix element align (blue and magenta), the distributions of the integration times
are very similar; the combination xHH and MHH seems to be slightly quicker, but not
by much. Additionally, the cases where data and matrix element do not align (orange
and green) have slower integration times. The distributions are very similar, but the
case with xHH data (green) tends to be slightly quicker. These slight differences could
indicate that the phase space of the xHH events fits into the acceptable phase space
of the matrix element MHZ better than the other way around; however the differences
aren’t significant enough to confidently be able to make any definitive statements and
further studies will be required in the future.
The mean integration time for MHH is ≈ 20.4 sec and for MHZ it’s ≈ 20.9 sec. With
499,300HH and 439,857HZ events, this leads to a total computation time of 3.66×107

sec, or ≈ 1.02×104 hours. The calculations were performed by running individual jobs
of 1000 events, distributed onto 30 nodes of a local Slurm cluster, which resulted in
each node needing around 340 hours of computation time.

(a) (b)

Figure 3.6: The legends indicates the combinations of input data and matrix elements
that are used in the calculations. (a) Weights for xHH and xHZ events in negative log
scale (smaller values represent larger weights). (b) Calculation time for a single weight.

The distributions for the weights for both xHH and xHZ can be seen in Fig. 3.6a, com-
puted with both MHH and MHZ . Note that the weights are depicted using a negative
log scale, meaning that smaller values represent larger weights. While the peaks of the
distributions for the xHH data with MHH (blue) and MHZ (green) are separated by
almost two orders of magnitude, the distributions as a whole have considerable overlap.
The distributions for the xHZ events, however, are much closer together. While the
peaks for MHH (orange) and MHZ (magenta) themselves are very close to overlapping,
but don’t, most of the bodies do. This means that when given a xHZ event, Mo-
MEMta struggles more to determine whether or not this event is a Higgs pair event
or an event with a Z boson, compared to identifying a xHH event correctly.
Additionally, it can be seen that the combination of xHH with MHH results in larger
weights than the combination xHZ with MHZ . This means that the phase space of an
HH event is more distinct to the matrix element MHH compared to the equivalent
case for HZ events.

The error for each weight calculation can be seen in Fig. 3.7. While the errors for each
configuration of data and matrix element are smaller than the weights themselves, the
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(a) xHH , MHH (b) xHH , MHZ

(c) xHZ , MHH (d) xHZ , MHZ

Figure 3.7: The values of the weights and their associated errors (absolute value).
The full magenta line indicates where an error has the same order of magnitude as the
weight, the dashed lines indicate where there is a difference of one order of magnitude.

weights are slightly smaller when the data and the matrix element align. This can
be seen by the distance of the distributions from the line through origin being a bit
larger in Fig. 3.7a and Fig. 3.7d compared to Fig. 3.7b and Fig. 3.7b. The mean values
for the difference between the weights and their errors are δ(xHH ,MHH) ≈ −0.812,
δ(xHH ,MHZ) ≈ −0.737, δ(xHZ ,MHH) ≈ −0.796 and δ(xHH ,MHH) ≈ −0.905. This
means that the error is smaller5 when data and matrix element are aligned compared
to when they are not aligned. This result is not surprising.
MoMEMta also provides a χ2 test for each weight, the results of which are depicted
in Fig. 3.8. The distributions for each case are very similar, although there is a slight
tendency for weights calculated withMHZ to have marginally larger values. The errors
and χ2 tests show that while there is a slight difference in MoMEMta’s accuracy
to be seen when comparing calculations performed with either MHH or MHZ , it isn’t
significant.

To get a better understanding of the time required to perform the weight integration,
the integration times are compared to the weights produced by the integration (see

5If the error is smaller than the weight, then applying −log10 to the errors and the weights will
return a larger value for the error than the weight.
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Figure 3.8: χ2 test as provided by MoMEMta for each weight calculation.

Fig. 3.9). For all four configurations, there are specific integration times that are
preferred. The patterns in the cases of xHH (Fig. 3.9a, 3.9b) have a similar structure
with four preferred times, but the spacing is different: forMHH the preferred times are
much closer to one another, for MHZ they are spaced out. The same can be said for
xHZ , only here there are three preferred integration times. While this behaviour could
already be seen in Fig. 3.6b, it’s easier to distinguish here.
The better the final-state momenta fit the matrix element, the quicker the integration
time and the larger the weight is intuitively expected to be. However, this isn’t the
case: the values of the weights don’t have a strong correlation to the integration time.
This can be seen by the “height” of each bar: e.g. in Fig. 3.9a, the weights for small
integration times are spread relatively evenly between 16 and 19. This shows that the
integration time is influenced by an internal structure of MoMEMta. What causes
some of the preferred integration times to be longer than the rest is unknown. This
could be influenced by MoMEMta struggling to decide which W boson is on-shell
and which off-shell, but this is speculation.

For each event, a discriminant introduced by [56],

D±(x) =
P (x|MHH)− P (x|MHZ)

P (x|MHH) + P (x|MHZ)
, (3.2)

is defined, which can be used to separate xHH from xHZ . As can be seen in Fig. 3.10a,
for xHH , most events lie between 0.95 < D±(xHH) < 1, — this indicates that for xHH ,
on a per event basis, the weight calculated with MHH is generally significantly larger
than the weight calculated with MHZ .

xHZ has its peak at −1 < D±(xHZ) < −0.95, which allows for a good separation
between the xHH and xHZ . The distribution for xHZ is not as heavily focused at the
peak, but instead the tail is larger. Also, the secondary peak at 0.95 < D±(xHZ) < 1.0
is larger than the secondary peak of xHH at −1 < D±(xHH) < −0.95. This indicates
that the computation of the weights for xHZ is less likely to return a large difference
between the MHH and MHZ weights. The split between xHH and xHZ is only possible
because simulated data are being used. When using measured data from an experi-
ment, where it isn’t know if an event contains an HH or HZ decay, the discriminant
will (ideally) result in a distribution that looks like a combination of the two seen in
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(a) xHH , MHH (b) xHH , MHZ

(c) xHZ , MHH (d) xHZ , MHZ

Figure 3.9: Relation between the integration times and the values of the weights.
Each plotx contains the same number of events.

Fig. 3.10a (green). If the neural networks are able to successfully predict the weights,
then the resulting discriminant of the predicted weights will resemble the combined
distribution.
When splitting the data into xHH and xHZ , it can be seen in Fig. 3.10c and Fig. 3.10d
that the events have larger weights when the data align with the matrix element
(P (xHH |MHH), P (xHZ |MHZ)) compared to when they don’t (P (xHH |MHZ), P (xHZ |MHH)).
However, the shapes are not as well defined as was hoped for: in an ideal case, every
event that has a low value for one weight would have a high value for the other. This
would result in a shape resembling a line from the top left to the bottom right. Addi-
tionally, there would be a large distance between the distributions and the line through
origin (magenta line), as the line though origin indicates that the weights calculated
with MHH and MHZ are of equal value. Instead of the ideal case, the distributions in
both plots form blob-like shapes, which means that MoMEMta sometimes struggles
to appropriately calculate a high weight when matrix element aligns with the data, and
a low weight when they don’t. For both xHH and xHZ , the distributions cross over the
line through origin, meaning that there are some cases where MoMEMta incorrectly
assigns a higher weight to the wrong matrix element. This is noticeably worse for xHZ ,
meaning that MoMEMta is more likely to consider a background event as a signal
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(a) (b) HH and HZ data.

(c) HH data (d) HZ data

Figure 3.10: (a) Discriminant for HH and HZ data. Comparison of the weight
values calculated with MHH (x-axes) and MHZ (y-axes) for (b) combined xHH and
xHZ , (c) just xHH and (d) just xHZ . The full magenta line indicates where an error
has the same order of magnitude as the weight, the dashes lines indicate where the
values of the weights are separated by one order of magnitude.

event than vice versa. This explains why the discriminant for xHH has a larger peak
and smaller tail compared to xHZ in Fig. 3.10a.
The separation into xHH and xHZ is only possible due to the use of simulated data.
The combined case results in the distribution seen in Fig. 3.10b.

When regarding how the integrations times, weight errors and χ2 tests don’t show
much difference between xHH and xHZ , it’s surprising to see that xHZ results in less of
a distinction betweenMHH andMHZ compared to xHH . The reason for this must come
from another source, and since the value of the weight is defined by the four-momentum
of the final-state particles in an event, it makes sense to analyse the connection between
the four-momentum and the weights.
The four-momenta of the six final-state particles result in 24 input parameters for the
MEM. Due to the difficulty of visually depicting the influence of all of these parameters
in a coherent way, just the b quarks that come from a Higgs or a Z boson are regarded,
since this is where any strong differences between xHH and xHZ are most likely to be
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visible. Specifically, the differences in the individual four-momentum parameters are
studied: Eb1 − Eb2 , pb1i − pb2i where i = x, y, z. The indices of b1 and b2 refer to the b
quark from the Higgs or Z boson that was either first or second assigned a jet. The
idea is to understand how strongly the orientation of the b quarks with respect to one
another affects the weights. Not all events are used to study these parameters; instead,
two subsections of xHH and xHZ are regarded. For this, a parameter is introduced:

∆P = −log10(P (x|Msig))− (−log10(P (x|Mback))) . (3.3)

Here, Msig refers to the matrix element that aligns with the data and Mback to the
matrix element that doesn’t6. In cases where MoMEMta is able to correctly assign
the weights according to the data (i.e. the top-left corner of Fig. 3.10c and the bottom-
right corner of Fig. 3.10d), ∆P will have a negative number due to applying −log107.
Therefore, the larger the negative value, the better. If MoMEMta is unsuccessful in
correctly assigning weights, then ∆P will be positive.

In Fig. 3.11, the data has been split into ∆P < −1 (Fig. 3.11a–3.11c, 3.11g–3.11i),
which indicate events where there is a good separation, and ∆P > 1 (Fig. 3.11d–
3.11f, 3.11j–3.11l), which indicate events where there is a bad separation. It should be
noted that the four individual cases have a different number of entries. While this does
make some structures more clearly visible than others, each case has enough entries
that observations can be made. The energy difference Eb1 − Eb2 doesn’t result in any
visible influences on the weight and is therefore excluded from further analysis.

When regarding xHH , ∆P < −1, it can be seen that there are distinct shapes for the
distributions of pb1x −pb2x , pb1y −pb2y and pb1z −pb2z (Fig. 3.11a). pb1x −pb2x and pb1y −pb2y adopt
a flat peak with a slight dip in the middle, where as pb1z − pb2z takes on a more peak-like
distribution, but with a wider base. While this already indicates a ring-like structure,
it can clearly be seen that there is a ring-like preference when comparing pb1x − pb2x with
pb1y −pb2y (Fig. 3.11b). This means that there is a condition of (pb1x −pb2x )2+(pb1y −pb2y )2 ≈
1102 – 1202 GeV2 that greatly increases the likelihood that MoMEMta will assign a
large weight to xHH for MHH and a small weight for MHZ . A similar type of ring-like
structure can be seen when comparing pb1x − pb2x with pb1z − pb2z (Fig. 3.11c); however,
it is not as well defined. This indicates that the relative orientation of the b quarks
in the x-y-plain, i.e. the azimuth angle between the quarks, has a bigger impact on
the weights than their orientation along the z-axis8. For MoMEMta to be able to
correctly assign weights, it’s important that the b quarks have a strong separation in
the x-y-plain.
This ring-like structure is not seen for xHH , ∆P > 1, where the separation of the
MHH and MHZ weights is bad. Here, pb1x − pb2x and pb1y − pb2y result in a relatively
even distribution in a circle-like shape, with a slightly higher density in the middle
(Fig. 3.11e). This circle has a radius of about 90 GeV and resembles the missing
inside-area of the ring in Fig. 3.11b. These relations can also be seen for pb1x − pb2x and
pb1z − pb2z : the shape in Fig: 3.11f looks like the inside-area of the ring in Fig. 3.11c.

6E.g., Msig =MHH for xHH .
7E.g., if P (xHH |MHH) = 10−19 and P (xHH |MHZ) = 10−21, then ∆P = −2
8The z-axis is the beam/collision axis.
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For xHZ , ∆P < −1 similar structures can be seen compared to the xHH case, but they
are less well defined. For Fig. 3.11h and Fig. 3.11i, the rings aren’t as hollow. This
is reflected in the histograms, as pb1x − pb2x and pb1y − pb2y don’t have flat distributions.
However, pb1z − pb2z has a flatter peak with a slightly more box-like distribution as
compared to xHH . Additionally, the condition for the x-y-plain is slightly different:
the preference is for (pb1x − pb2x )

2 + (pb1y − pb2y )
2 ≈ 702 – 802 GeV2. This difference is

most-likely due to the Z boson having a smaller mass (91 GeV) than the Higgs boson
(125 GeV), since both conditions correlate strongly to the bosons’ masses.
For xHZ , ∆P > 1, the circle-like distribution is more clearly visible than in the xHH

case; however, this is partially due to the difference in the number of entries. What is
unique to xHZ , ∆P > 1, is the strong dip in the peak of the histogram of pb1z − pb2z .
This means that for xHH , events where the b quarks have a small separation in their
momentum along the z-axis are less likely to result in MoMEMta doing a bad job of
calculating the weights compared to when the b quarks are separated by up to around
80 GeV on the z-axis.

Therefore, a very good way to greatly increase the likelihood of an event to correctly
be assigned a high weight for Msig and a low weight for Mback, there needs to be a
large separation between the two b quarks that come from the Higgs or Z boson in the
x-y-plain. This requirement isn’t quite as strong for xHZ , which can at least partially
explain why the distribution in Fig. 3.10d crosses over the line through origin more
than Fig. 3.10c.
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(a) (b) xHH , ∆P < −1 (c)

(d) (e) xHH , ∆P > 1 (f)

(g) (h) xHZ , ∆P < −1 (i)

(j) (k) xHZ , ∆P > 1 (l)

Figure 3.11: Comparing parameters to identify differences between events with large
and events with small ∆P . (a)(b)(c) xHH , ∆P < −1, contains 328,841 events;
(d)(e)(f) xHH , ∆P > 1, contains 27,714 events; (g)(h)(i) xHZ , ∆P < −1, con-
tains 183,642 events; (j)(k)(l) xHZ , ∆P > 1, contains 57,191 events.
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3.5 Additional Parameters to Support the Neural

Network

The job of a neural network is to take training input and output parameters and to
learn to recognise a pattern between them. The network itself has no concept for what
the parameters represent — it just looks for correlations between numbers. This means
that the input parameters of a neural network can be anything that is associated with
the data points. Concretely, this means that for this analysis, the input parameters of
a neural network don’t have to be the four-momenta of each final-state particle, as it
is with the MEM. The only condition is that the chosen input parameters come from
the same event for which the weights have been computed. However, for this analysis,
the only parameters that are used to train the networks are the four-momenta for the
final-state particles, without additional parameters. This was chosen to understand
how well the MEM can be replicated by a neural network at a base level: since the
MEM only uses the four-momenta, a neural network should, in theory, be able to
predict accurate weights without needing additional support. Nevertheless, possible
additional parameters are discussed in the following that can potentially be used in to
increase the capabilities of the neural networks.

Each input parameter should ideally not have any overlap with other parameters, as
this maximises the information that each parameter delivers individually. However, it
can be helpful to provide parameters that do have overlap with others if that overlap
is greatly obfuscated, as this can speed-up the network’s learning process. A good
understanding of the subject is required to be able to choose parameters for which any
differences between the data points become the most visible.

Spin Differences

The main difference between the HH and HZ events is that, for HH events, a Higgs
boson decays to two b quarks, whereas forHZ events the b quarks come from a Z boson.
There are two obvious differences between Higgs and Z bosons that can be exploited:
the differences in mass and spin. Regarding the latter, the Higgs and Z bosons being
a scalar and a vector particle, respectively, has an impact on the angles with which
their decay products are emitted. This difference should be especially visible in the
rest frame of the mother particle. For a scalar particle, it would be expected that the
decay products won’t have a preferred angle; instead, a flat distribution for the decay
angle is expected. For a vector particle, a preference is expected.

The difference in the angles between the Higgs/Z boson and a b quark Lorentz-boosted
into the rest frame of the Higgs/Z boson can be seen in Fig. 3.12. There are multiple
version for the implementation of the lorentz boost: using either Fortran77, C++ with
ROOT, C++ by hand and Python 3. The reason for this is that C++ and Python 3

returned unexpected results: first, xHH and xHZ have very similar distributions which
should not be the case, and second, neither of the distributions resemble theoretical
predictions. xHH should have a flat distribution and xHZ is expected to have a peak at
0, 2π. Neither is the case: the absolute value of the angle has a peak at π

2
for both cases.
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Since this is using both reconstructed jets and truth data9, it can be concluded that the
issue doesn’t lay in the jet reconstruction. As an additional check, the Higgs bosons
have been boosted back into their own rest-frame, to see if there is a problem with
the boosting function. In all cases, this return three momenta of 0 and masses around
the particles’ masses, which show that the boosts have been correctly implemented.
Therefore, there is no obvious issue that causes these results. However, the Fortran77
implementation, which also uses truth data, shows the expected results. This means
that the problem doesn’t lay in the generated data10.
Since the Fortran77 implementation shows that the data has been generated correctly
and studying the four-momenta of the final-state particles reveals that they contain
values that make sense (which are then used for MEM weight calculations), it’s assumed
that the data is safe to use for this analysis and that issue must bafflingly lay somewhere
along the plotting process.

Further studies have been done to understand how the difference in spin can be used
to separate HH and HZ events. One such parameter is a modified version of the Ellis-
Karliner angle [72], where the angle description has been expanded to include particle
masses. This results in a significant difference between HH and HZ events.

Rotationally Symmetric Input Parameters

A second set of input parameters can be constructed from the four-momenta: rotation-
ally symmetric parameters. These consist of the energy E, the transverse momentum
pT , the pseudorapidity η = −ln(tan( θ

2
))11 and the azimuth angle ϕ. These parameters

describe the four-momenta in such a way that the rotational orientation in a detector
is not present in pT or η, and is solely described by ϕ. The idea is that rotationally
symmetric parameters will make it easier for a neural network to learn that the rota-
tional orientation of the entire topology is not important. Instead, what is important
is the topology of the jets in relation to one-another.

Other Parameters

Additionally, parameters that have been studied in Sec. 3.4.3 can be used as input:
(pb1x − pb2x )

2 + (pb1y − pb2y )
2 and (pb1x − pb2x )

2 + (pb1z − pb2z )
2 have been shown to have

preferred values in cases where the weights had a separation of at least one order of
magnitude. These parameter would therefore help teach the neural network under
which circumstances one weight should be larger than the other. This information is
already included in the four-momentum and three parameters are therefore introducing
nothing but overlap, but it’s possible that this information is too obscured and that
the network’s performance would therefore be boosted by their inclusion.

9The four-momenta of the Higgs boson and the b quarks are directly read-out from Pythia.
10It was briefly considered that the spin information might not be passed from MadGraph to

Pythia, leading to the same results for the Higgs and Z boson, but this turned out not to be the
case.

11Where θ is the polar angle.
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(a) Fortran77, truth data (b) Fortran77, truth data

(c) Python 3, reconstructed data

(d) C++, ROOT, truth and reconstructed

data (e) C++, by hand, reconstructed data

Figure 3.12: Comparison of the angle between one b quark and Higgs/Z in
the Higgs/Z rest-frame, determined in different programming languages: (a),(b)
Fortran77, boost implemented by hand; (c) Python3, boost implemented by hand;
(d),(e) C++, boost implemented with ROOT/by hand.



56 CHAPTER 3. ANALYSIS

3.6 Machine Learning Analysis

The main goal of this analysis is to train a neural network to be able to accurately
predict the weight of an event for a given matrix element to reduce the computing time
needed for the MEM. Ideally, the distribution of the discriminant in Fig. 3.10a will be
replicated using the results of the neural networks.
This analysis focuses on two different types of neural networks: feed-forward and con-
volutional. Feed-forward neural networks are a very common type of network that
aren’t specialised on solving any specific type of problem. Convolutional neural net-
works have been designed to excel at recognising isolated structures anywhere within
a set of data; for example, finding a face in a picture. While there are other types of
neural networks, such as graph neural networks, that would be interesting to examine,
due to time constraints, only these two types are taken into consideration.

3.6.1 Data Preparation

The networks use just the four-momenta of the final-state particles as input parameters,
to understand how well the MEM can be replicated by a neural network at a base level.
The data sets are normalised in three steps: first, each input parameter a is divided by
a factor f that aims to scale the values closer to 0. For the four momentum, this factor
is f = 1000 for each parameter. Then, the mean āf of each parameter is determined
and subsequently subtracted from each parameter, respectively. Lastly, the standard
deviation σaf for each parameter is determined and each parameter is divided by its
standard deviation:

af =
a

f
(3.4)

anorm =
af − āf
σaf

. (3.5)

This leads to distributions that have a mean value of 0 with a standard deviation of 1.
The normalised four-momentum data can be seen in Fig. 3.13. The upper and lower
bounds of the distributions are close to 0. The largest visible differences are between
the quarks b1 (dark blue) and b2 (orange). This likely comes from the jet assignment
(see Sec. 3.3): b1 and b2 are always assigned different jets, where b1 describes the b
quark that gets a jet assigned to it first. If both b1 and b2 have the same optimal
jet, then this will lead to b2 being assigned to its secondary jet12. The secondary jet
will generally have a lower energy, which explains the considerably lower peak for the
energy of the b2 quark.

In total, the data consist of 439,857 HH and 439,857 HZ events. The number of
HH events has been reduced to have an even split between the number of signal
and background events. Of this data, each network is trained using an individually
randomised sub-sample consisting of 791,742 events (90% of the total data) and the
networks are tested on 87,972 validation events (the remaining 10% of the total data)

12Cases in which b1 and b2 both have the same optimal jet and b2 doesn’t have a second jet have
been filtered out.
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(a) (b)

(c) (d)

Figure 3.13: Normalised distributions of for both xHH and xHZ using the four-
momentum: (a) Energy, (b) px, (c) py, (d) pz.

every epoch. Due to the random sampling, both the training and validation data are
most likely to not have an exactly even 50–50 split between signal and background;
however, testing the same network multiple times results in the same performance each
time, so the potentially uneven split doesn’t cause issues.
In the following analysis of various neural network structures, the value of the R2-
parameter is only shown for the validation data, not the training data. The networks
are tuned so that the difference between the values of the R2-parameter for the training
data and validation data is no larger than 1. This means that none of the networks
have considerable issues with overfitting, unless stated otherwise.

3.6.2 Feed-forward Neural Network

Optimising a neural network requires a large amount of testing of the various hy-
perparameters that influence its ability to learn. The feed-forward networks that are
presented in this section use the following hyperparameters:

• batch size = 32
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• learning rate = 10−4

• momentum=0.99

• weight decay = 10−8

• Nesterov = True

• activation function: LeakyReLU

• negative slope: 0.1

• optimisation: SGD

These values have been reached by testing a range of values on multiple network struc-
tures. They consistently lead to a network either being the best-performing or one of
the best-performing networks among those that were tested for a given structure. Due
to this consistency, the decision has been made to keep these values set and to focus
on getting a better understanding of how the structures of the networks influence their
abilities to learn.
The first question to be asked is how many layers and nodes are necessary: is a shallow,
but wide13 network better, or a deep, but narrow14 network? To answer this, three
networks are looked at, each with the aforementioned hyperparameters apart from the
number of layers and nodes. The first is labelled shallow+wide. This has one hidden
layer and the input and hidden layers each have 600 nodes. The second is the mixed
network, which has 320 nodes on the input layer, but the three hidden layers each have
consecutively less nodes. The third network, labelled deep+narrow 15, has six hidden
layers, where every layer, including the input layer, each has 32 nodes. To help reduce
overfitting, dropout of 0.1 is applied to the last hidden layer in each network. Their
structures are depicted in Tab. 3.2.

The activation function LeakyReLU is chosen, because it’s less likely to lead to van-
ishing gradients, where the gradients of the first layers tend to 0. This is due to
LeakyReLU returning a non-zero value for a negative input, while also not converging
on an output value for very large negative or positive input values (see Fig. 1.8). The
SGD optimisation has been shown to have improved results for generalisation com-
pared to adaptive optimisation methods [73], so even though it’s slower, it has been
chosen for its better performance. While the shallow+wide and mixed network are
able to achieve similar results, as can be seen in Fig. 3.14, the deep neural network
performs significantly worse (see Fig. 3.14).

It’s possible that the networks suffer from vanishing gradients. To check if this is the
case, the gradients of the input layer and last hidden layer of the mixed and of the
deep+narrow network are examined. The gradients of the weights and biases of the
input layer are generally larger than those of the final hidden layer, which fortunately
means that the network doesn’t suffer from the issue of vanishing gradients. The weight

13Small number of layers with a high number of nodes on each layer.
14High number of layers with a small number of nodes on each layer.
15Generally speaking, six hidden layers isn’t very deep for a neural network. The use of “deep” here

is simply to be able to distinguish this network from the other two.
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Layer Network 1 Network 2 Network 3
Input 600 320 32

1. Hidden 600 160 32
2. Hidden - 80 32
3. Hidden - 40 32
4. Hidden - - 32
5. Hidden - - 32
6. Hidden - - 32
Dropout 0.1 0.1 0.1
Output 1 1 1

Table 3.2: Structures of three networks that were tested to find out whether a
shallow+wide (Network 1) or deep+narrow (Network 3) network is better. Network 2
is a mixture of both, where it starts out wide, but then the number of nodes is reduced
with each layer. Dropout of 0.1 is applied to the last hidden layer in each network.

Figure 3.14: R2 parameter for the deep+narrow, shallow+wide, and mixed networks.

distribution broadens significantly over numerous epochs for both networks, but more-
so for the deep+narrow network. In addition, for both networks, the distributions
for the values of the weights remains stable in the later epochs, indicating that the
network is able to learn steadily. This correlates with the values of the R2-parameter
maintaining steady values for each network. The weights of the input layer and the
gradients of the input layer and last hidden layer can be seen in App. B.1) for the
mixed network and App. B.2) for the deep+narrow network.

Residuals

Although there isn’t an issue with vanishing gradients, methods that can improve the
backpropagation are introduced. The first is implementing residuals (see Sec. 1.6.6).
Residuals require that the layer that is receiving the residuals has the same number
of neurons as the layer from which the residuals come. This isn’t an issue with the
deep+narrow network, as each layer has 32 neurons. Here, residuals have been intro-
duced to the second, fourth and sixth hidden layers (see Fig. 3.15b). Adding residuals
isn’t possible for the mixed neural network as is, since none of the layers contain the
same number of neurons as any other layer. To be able to include residuals, an addi-
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tional layer has to be introduced (see Fig. 3.15a). Since the shallow network has only
one hidden layer, adding residuals isn’t worthwhile.

(a) (b)

Figure 3.15: Structure of (a) mixed and (a) deep+narrow neural networks after
residuals have been introduced. Each layer, apart from the output layers, is using the
activation function LeakyReLU.

Introducing the residuals doesn’t have much of an impact on either network regarding
the R2 parameter (Fig. 3.16). This isn’t unexpected, as the networks already had non-
zero gradients through-out the network across all epochs. The weights of the input
layer spread out less with the residuals than they do without. This implies that the
network puts less value on certain input variables and instead learns from all of them
equally. While this isn’t reflected in the R2-parameter values of the deep+narrow or
mixed networks, it’s nevertheless a better outcome. The same can be said for the
mixed network, but in this case, the weights aren’t as spread out before residuals are
introduced. The weights and gradients of the input layer for the deep+narrow residual
network and the mixed residual network can be seen in App. B.3.

Fig. B.3d shows the weights for the input layer of the deep+narrow residual network.
The weights of the input layer spread out less with the residuals than they do without
(compare with Fig: B.2c). This implies that the network puts less value on certain
input variables and instead learns from all of them equally. While this isn’t reflected
in the R2-parameter values of the deep+narrow or mixed networks, it’s nevertheless
a better outcome. The same can be said for the mixed network, but in this case, the
weights aren’t as spread out before residuals are introduced (compare Fig. B.3b with
Fig. B.1c).
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Figure 3.16: Comparison for the R2-parameter for the deep+narrow and the mixed
network once residuals have been introduced.

Weight Regularisation

The second method used for improving gradients is weight regularisation. By changing
the values that the weights are first set to, the network’s capability to learn can be
greatly altered. For this, two weighting schemes are compared. The first is using a
Xavier uniform distribution16 [74], where the weights are initialised from a uniform
distribution with

Wj ∼ U

[
−

√
6

nj + nj+1

,

√
6

nj + nj+1

]
, (3.6)

with nj being the number of input paths and nj+1 being the number of output paths
of that layer. Biases are initialised to 0. The PyTorch implementation of Xavier
initialisation has an additional parameter: gain. Gain is used to scale the initialised
weights based on the activation function that is used. For LeakyReLU, the optimal

gain is
√

2
1+ns2

, where ns is the negative slope.

The second is using a Kaiming distribution17 [75], where the weights are initialised
from a uniform distribution with18

Wj ∼ U

[
−
√

3

nx

,

√
3

nx

]
, (3.7)

where nx can either be the number of input paths (nj, for forward propagation) or the
number of output paths (nj+1, for backward propagation) and the biases are initialised
to 0. In this comparison, the backward propagation is used. In Fig. 3.17b, the R2

values for the deep+shallow residual neural network with both the Xavier and Kaiming
distributions can be seen. While there are more differences between the networks with
weight initialisation and those without compared to the mixed network, they aren’t
noteworthy. The residual deep+narrow neural network doesn’t have an entry for the

16Also known as Glorot initialisation
17Also known as He initialisation
18This is the PyTorch implementation. Originally, it used

√
2
nx
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Kaiming weight initialisation with backward pass, as this leads to the network failing
during the first epoch.

(a) (b)

Figure 3.17: R2-parameter for (a) the residual mixture neural networks and (b) the
residual deep+narrow neural networks with weight initialisation.

Introducing both residuals and weight initialisation doesn’t lead to a significant im-
provement for the mixed network, which so far has been the best performing network.
Fortunately, the network is already performing rather successfully, which means that
it isn’t reliant on further improvement methods to be able to achieve an acceptable
result. However, to understand why the weight initialisations aren’t having any signif-
icant effects, the weights for the different initialisations are depicted in Fig. 3.18. Only
the weight initialisation of the deep-narrow network is shown, since this network has
the same number of weights for each layer and is therefore easier to depict. For the
sake of visual clarity, only the input layer and the first three hidden layers are depicted.

All four cases have essentially the same initialised weights. This doesn’t make sense:
since the network has 32 nodes at each layer and therefore 32 input/output channels,

the limits for the Xavier initialisation should be [−
√
6
8
,
√
6
8
] ≈ [−0.3, 0.3] without gain

and [−0.42, 0.42]19 with gain. However, both instances of Xavier initialisation result
in distributions with limits of around [−0.42, 0.42]. For the Kaiming initialisation,
the forward and backward passes should both20 have limits of ≈ [−0.31, 0.31], but
they, too, have distributions with limits of around [−0.42, 0.42]. Yet, for the backward
pass, and only the backward pass, the network always fails during the first epoch,
which indicates that there is some difference in the weight initialisation that causes
this different behaviour. The technical implementation of the initialisation has been
thoroughly checked and no errors have been found. This is an issue that can’t be
investigated within the scope of this analysis and will have to be studied in future work.
Due to these behaviours not being understood, weight initialisation is not implemented
in further networks.

19Using a negative slope of 0.1, the gain is ≈ 1.41.
20Since each layer has the same number of input/output channels.
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(a) (b)

(c) (d)

Figure 3.18: Weight initialisation for the first four layers of the residual deep+narrow
neural networks with (a) Xavier, without gain; (b) Xavier, gain; (c) Kaiming, forward
pass; (d) Kaiming, backward pass.

Understanding the R2-parameter

While the R2 parameter itself allows for comparisons between networks, it doesn’t
actually say anything about whether the network’s results are good enough to overcome
the challenge being tackled. To understand the results, it’s easiest to look at what the
predicted values are and compare them to the training data. Fig. 3.19 shows the results
for both the best performing deep+narrow network (Fig. 3.19b) and one of the best
performing mixed networks (Fig. 3.19a). The mixed network achieves R2 ≈ 0.91 and
it can be seen that its distribution closely resembles a line through origin. This is
particularly important as the weights are being represented in a log scale, so being
off of the line through origin can quickly mean that the predicted weight is off by an
order of magnitude. For large weights (small values in the plot), the network tends to
predict slightly larger weights than MoMEMta calculated. For smaller weights, the
network is more accurate. The best deep+narrow network achieves R2 ≈ 0.76 — quite
a bit less than the mixed network. This difference can also be seen in the distribution
of the weights: while it does still resemble a line though origin, it’s much broader. The
densest part has a width of about an order of magnitude, and the same effect where
large weights are predicted to be larger than what MoMEMta provided, but it’s much
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stronger. The network isn’t accurate enough for performing further studies.
This means that for this work, neural networks need to achieve R2 > 0.90 for them
to be considered successful and usable. Anything below that won’t have the necessary
accuracy to reliably predict the weights of the events.

(a) (b)

Figure 3.19: Comparison of the MEM weights, on a negative log scale, as calculated
by MoMEMta (x-axis) with those as predicted by (a) the residual mixture neural
network and (b) the residual deep+narrow neural network, both without weight ini-
tialisation.

Expanding the Network to two Outputs

In Sec. 3.4.3, a discriminant is defined that allows for a separation between signal
and background data. To be able to calculate such a discriminant with the neural
network’s predictions, the neural network needs to be extended to also provide a pre-
diction for a negative log scale of the MEM weight calculated with the HZ matrix
element.This means that it now outputs predictions for both −log10 (P (x|MHH)) and
−log10 (P (x|MHZ)). To do this, a simple change is applied to the structure of the
network: the output layer is given a second node. The input data is the exact same,
as the MEM weights for both MHH and MHZ are calculated for the same events. For
each event, the network is now given both the weight calculated with MHH and with
MHZ , whereas before it was just training with the weight from MHH .

Since the input data hasn’t changed and the values of −log10 (P (x|MHH)) have a
similar distribution to that of −log10 (P (x|MHZ)) (Fig. 3.6a), it can be expected that
the network should be able to achieve similarly successful performances for both matrix
elements. For this combined network, two R2-parameters are calculated, one for each
output. The goal is to achieve as high a value as possible for both outputs; however, the
values of the R2-parameters should ideally be as close together as possible. Should the
values be far part, then the prediction for either HH or HZ will be significantly more
accurate than the other — this would lead to the discriminant losing meaningfulness,
even if one of the values has a high accuracy.
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The results can be seen in Fig. 3.20a and the network clearly does not meet the expec-
tations: while it achieves R2 ≈ 0.90 for MHH weights, it performs significantly worse
on MHZ weights, with R2 ≈ 0.70. The network is able to show near identical success
with MHH compared to the previous network that only predicted the weight for MHH .
In Fig. 3.21a the discriminant21 for the neural network with two outputs can be seen.
There is significantly less separation between positive and negative values compared to
the combined graph in Fig. 3.10a: using the network’s predictions, ≈ 35% of the events
have a value larger than 0.95, whereas for MoMEMta it is ≈ 30%. Additionally, there
are hardly any events with a value smaller than −0.95, which is significantly worse than
for MoMEMta. By comparing the values that the MHH and MHZ weights of indi-
vidual events have to one another (Fig. 3.21b), it can be seen that the network almost
always predicts the MHH weight to be larger, regardless of the data. This is a stark
contrast to the output of MoMEMta (Fig. 3.10b). This could partially be explained
by once again looking at the MoMEMta data: for xHH , the weight calculated with
MHH is significantly larger than that for MHZ (≈ 84%). For xHZ , while it’s usually
the case that MHZ results in a larger weight than MHH (≈ 68%); for almost a third
of the events it’s the other way around. This means that in most events (≈ 60% of
total) the weight for MHH is larger than for MHZ , creating a bias. This could lead the
neural network to lean towards predicting a higher weight to MHH than MHZ , even
when that isn’t correct. However, a neural network should be able to recognise such a
bias and predict accordingly, so this doesn’t satisfyingly explain the results.

(a) (b)

Figure 3.20: (a) R2 parameter values for the combinedMHH andMHZ network, split
into the individual outputs. (b) R2 parameter value for single-output network with
MHZ .

This raises a few questions: first, does the low R2 value have to do with having one
network predicting both weights, or is there an issue with predicting the weights for
MHZ itself? To test this, the exact same (single output) network, as was used in
Fig. 3.19a, is run, except now it’s being trained with −log10 (P (x|MHZ)). The result
of this can be seen in Fig, 3.20b. The network with one output achieves the same low
R2 values for MHZ as the network that predicts both weights.
This leads to the next question: do these low values simply come from the neural
network structure not being optimal for the MHZ weights? This question will be

21Defined in Eq. 3.2.
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(a) (b)

Figure 3.21: (a) Discriminant for the weights predicted by the feed-forward network
with dual output (same as in Fig. 3.20a). (b) Comparison of the weights predicted for
each event. The x-axis describes the prediction trained withMHH , the y-axis that with
MHZ . The magenta line indicates the line through origin, where the network predicts
both weights to be of equal value.

answered later, when a convolutional neural network is used to predict the weights.
Lastly, there is one more possibility that could explain these results: does the weight
calculated withMHZ have more variance in its relation to the input variables compared
to the MHH weight? In other words, do events with very similar values for the MHZ

weights have more fluctuations in the phase space compared to events with very similar
values for theMHH weights? If so, then it would be harder for a neural network to find
patterns between the input data and the MHZ weight compared to the MHH weight,
which would lead to the predictions for the MHZ weight being worse.

Answering this last question is not that easy. The phase space consists of 24 parame-
ters, so it can be assumed that understanding how fluctuations affect the MHZ weight
requires not just looking at the parameters individually, but also their relations to one
another. Finding relations between 24 parameters is difficult, so to simplify the task,
only the four-momentum of a single b quark is regarded22. The idea is to compare
events that have very similar weights, specifically P (x|M) = WM ±0.2, where WM is a
value for a weight that can be chosen arbitrarily. For these events, the four-momentum
parameters of the single b quark are compared pair-wise. This will give an idea of what
the phase space of one b quark looks like around WM . This is not just done for MHZ

(WMHZ
), but also for MHH (WMHH

), so that their fluctuations can be compared.
An issue becomes clear when looking at distributions for different values of WMHZ

: the
shape of the distributions of the four-momentum parameters for the selected events
are dependent on the value of WMHZ

. Events with WM = 16.0 (large weight) will
show different behaviours compared to events with WM = 22.0 (small weight). This
by itself makes it difficult to understand the fluctuations for MHZ , since the choice of
WMHZ

influences how much fluctuation is present (events with smaller weights have
more fluctuations).

22This is once again based on the assumption that any larger differences between MHH and MHZ

will be found in the b quarks.
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Additionally, it isn’t easy to compare the behaviours of MHH and MHZ , since their
weight distributions are different (Fig. 3.6a). As a result, WMHH

and WMHZ
require

different values to find regions in the respective phase spaces that represent comparable
behaviours. But, this also isn’t so simple: does it make more sense to compare events
that represent the peaks of the MHH and MHZ weights distributions, or is it better to
compare events that have the largest weights for either MHH or MHZ? What will give
more useful information, and how should this information be interpreted?
Ultimately, trying to effectively understand how fluctuations in the phase space affect
the MEM weights requires a more in-depth analysis, which, unfortunately, cannot be
done within the scope of this work due to time constraints.

Time Comparison

The reason for using neural networks to perform an analysis using the matrix element
method is to reduce computing resources. As was previously discussed in Sec. 3.4.3, the
total calculation time for MoMEMta is ≈ 1.02× 104 hours. Together, the training
and verification process, which ran on a single node of the Slurm cluster, required
≈ 803 min 32 sec, which is ≈ 13.4 hours. This means that calculation of the MEM
weights with MoMEMta took about 761 times longer than the neural network needed
for training and validation. This shows how much time and computing resources can
be saved by using a neural network on a large dataset. It isn’t possible to escape
requiring an MEM calculation with software such as MoMEMta, since the training
data for the neural network still needs to be generated. That being said, the measured
data of an experiment consists of vastly more events than the training data, which
means that the MEM will have to be performed on much fewer events when using a
neural network. So, while it has been shown that training a neural network to predict
MEM weights can successfully be used to greatly reduce computational resources and
time, the issue still remains that the neural networks currently struggle to predict the
weights calculated with MHZ .

Additional Input and Rotationally Symmetric Parameters

A part of this analysis is to only use the four-momentum of the final-state particles as
input parameters to study how well the MEM can be replicated by a neural network
when given the same input. However, as was discussed in Sec. 3.5, a neural network
isn’t limited to the four-momenta as input parameters. In Sec. 3.4.3 two parameters
are presented that distinguish between events where the values of the MHH and MHZ

weights align with expectations23 and events where they do not. These parameters
are (pb1x − pb1x )

2 + (pb1y − pb1y )
2 and (pb1x − pb1x )

2 + (pb1z − pb1z )
2. Although they contain

information that can already be found in the four-momenta, it isn’t clear if this in-
formation is obfuscated from the neural network. Therefore, to test whether they can
be used for improvement, the best performing feed-forward network, that was used in
Fig. 3.21, has been run again with the additional parameters in the input (leading to
a total number of 26 input parameters). The result can be seen in Fig. 3.22.
The performance of the network is virtually the same as without the additional pa-
rameters. This means that the network must already be able to get all the information

23Large weights for when data and matrix element align, small weights when they do not.
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that can come from these additional parameters through the basic four-momenta. This
isn’t that surprising, since the MEM calculates the weights with just the four-momenta,
so, in theory, everything a network should need is already provided. Since neither the
rotationally symmetric input parameters nor these additional parameters are able to
give the network an edge, it can be concluded that parameters that would be able to
increase the network’s performance will have to share very little information with the
four-momenta.

(a) (b)

Figure 3.22: Results of the feed-forward network with 26 input parameters: (a)
value of the R2-parameter and (b) the discriminant.

A network is tested using the rotationally symmetric input parameters, the normalised
versions of which can be seen in Fig. 3.23. The scaling factors for the normalisation are
as follows: for the energy fE = 1000, for the transverse momentum and pseudorapidity
parameter fpT ,η = 100, and for the polar angle fθ = 10. Again, the distributions of b1
and b2 stand-out the most. Apart from the energy, which is the same as for the four-
momentum data, differences between the particles can mostly be seen in the azimuth
angle ϕ: while all other particles have a flat distribution, the two b quarks have uneven
distributions which favour negative values.

The same network as in Fig. 3.21 is run with the rotationally symmetric input param-
eters; the results can be seen in Fig. 3.24. With R2 = 0.74 for MHH and R2 = 0.58
for MHZ , this network performs significantly worse than for the four-momenta. It’s
a bit surprising that the difference in performance is so drastic, as rotationally sym-
metric parameters remove unnecessary information, while still precisely describing the
particles’ positions in relation to each other. There is no current explanation for these
results.

3.6.3 Convolutional Neural Network

CNNs excel at recognising isolated structures within a larger set of data points. Since
the four-momenta of the jets are related to each other, there could be structural pat-
terns that a CNN might be able to pick-up. For this, the input variables are structured
to resemble an image: each row contains the four-momentum of a single final-state
particle and each column contains the same four-momentum parameter (see Tab. 3.3).
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(a) (b)

(c) (d)

Figure 3.23: Normalised distributions for both xHH and xHZ which construct the
rotationally symmetric data set. (a) Energy, (b) Transverse momentum, (c) Pseudo-
rapidity, (d) Azimuth angle.

(a) (b)

Figure 3.24: Results of the feed-forward network with rotationally symmetric input
parameters: (a) value of the R2-parameter and (b) the discriminant.
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Since the placement of the jets in the matrix is the same for every event, this means
that identifiable structures will always appear in the same places. Therefore, the full
advantage that a CNN can have over other types won’t be given an opportunity to
shine, but that doesn’t mean that a convolutional network can’t have improved capa-
bility over a feed-forward network.

Eb1 pb1x pb1y pb1z
Eb2 pb2x pb2y pb2z
Eq1 pq1x pq1y pq1z
Eq2 pq2x pq2y pq2z
Elep plepx plepy plepz

Eν pνx pνy pνz

Table 3.3: Structure of the input data for the CNN. All variables are saved as a
matrix, where each row is designated to a final-state particle. The indices on the
quarks indicate that the order of the matrix relates to the event reconstruction: the
particle that had a jet assigned to it first is placed before the other in the matrix (see
Sec. 3.3).

Like for the feed-forward network, the number of layers for a CNN needs to be tuned.
Unlike a feed-forward network, which just uses linear layers, there are three types of
layers: convolutional layers, pool layers and linear layers. To understand how strongly
the convolutional and pool layers affect the network’s performance, multiple set-ups are
tested (see Tab. 3.4). All convolutional layers have 10 in-channels and 10 out-channels.
Due to the shape of the input matrix being 6 × 4, there can only be up to two pool
layers, as the pool layer has a stride of 2, which reduces each dimension by half. In
the cases where there is only one pooling layer, the output has to be flattened for the
linear layer, as it requires the dimensions X × 1 × 124. The final linear layer exists
without an activation function so that the output can achieve any value, allowing for
the prediction of the MEM weight.

Network A Network B Network C Network D
Conv. (input) Conv. (input) Conv. (input) Conv. (input)

Conv. Conv. Pool Conv.
Pool Conv. Conv. Pool
- Conv. Pool Conv.
- Pool - Conv.
- - - Pool

Linear Linear Linear Linear
Linear (output) Linear (output) Linear (output) Linear (output)

Table 3.4: Structures of CNNs that are used to get a better understanding of the
impact on convolutional and pool layers.

The results of each network can be seen in Fig. 3.25a, where each network has the
following configuration:

24X can be any integer, within reason.
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• batch size: 32

• convolution in-channels: 10

• convolution out-channels: 10

• convolution kernel size: 3

• convolution stride: 1

• convolution padding: “same”

• pool kernel size: 2

• pool stride: 2

• nodes on linear layer: 40

• learning rate: 10−5

• momentum: 0.995

• weight decay: 10−8

• dampening: 0

• Nesterov: True

• activation function: LeakyReLU

• negative slope = 0.1

• optimisation: SGD

There are significant differences in the performances of the networks: first, having
two pooling layers reduces the network’s capability. This can been seen by comparing
Network A (shallow, single pool, blue) to Network C (shallow, double pool, green) and
by comparing Network B (deep, single pool, orange) to Network D (deep, double pool,
red). Second, having more convolutional layers (i.e. having a deeper network) increases
the performance.

To get a better understanding out how the number of channels at each layer affects the
network’s success, multiple versions of Network B with different numbers of channels
are compared (see Fig. 3.25b). For Network B1, the number of channels is increased
to 40 in the first layer and decreases in steps of 10, leading to the last layer having 10
channels again. This is comparable to the best performing feed-forward network, which
has a high number of nodes in the first layer, which then decreases. For Network B2,
the number of channels is increased to 40 in each layer and for Network B3, they are
decreased to 5 in each layer. Network B4 and B5 are different: since Fig. 3.25a shows
that increasing the number of convolutional layers improves the network’s capability,
for Network B4 and B5 the number of convolutional layers has been increase to 6,
where each layer has 10 channels for B4 and 40 channels for B5.
The three best performing networks are: B1, with a decreasing number of channels per
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layer (blue), B2, with 40 channels at all four layers (green) and B6, with 40 channels
at all six layers (brown). All three have around the same performance, which is signif-
icantly better than the rest. This indicates that the most important factor is having
a large number of channels at the input layer, which resembles the same findings as
for the fast-forward network (see Fig. 3.14). In the rest of the analysis, B2, with 40
channels and four layers, is used, as it has a slightly better performance than B1 and
a quicker training time than B6.

(a) (b)

Figure 3.25: (a) R2 values for the CNNs described in Tab. 3.4. (b) Different config-
urations for Network B.

The next hyperparameters that are compared are the kernel sizes of both the convolu-
tional layers and the pool layer, and the stride of the pool layer. Changing the stride of
the convolutional layer to a value other than 1 requires a padding other than ”same”,
which would then affect the rest of the network’s structure. Therefore, the stride of
the convolutional layer is left untouched. For the kernel size of the convolution, two
approaches are taken: adjusting the kernel size of just the input layer and adjusting it
for all layers. This is to study how much of an effect just the input layer has, since,
as has previously been shown, the input layer seems to have by far the most impact
on the network’s performance. Up until now, the kernel size of all convolutional layers
has been 3. First, networks are run where just the input layers have kernel sizes of 1,
2 or 4, whereas all the other layers keep their kernel size of 3. Then, networks where
convolutional layers have a kernel size of 1, 2 or 4, are tested. The results can be seen
in Fig. 3.26a.
The best performing networks have R2 ≈ 0.90, but it isn’t clear how the configurations
impact the networks: the network where each convolutional layer has a kernel size of
4 performs just as well as the network where the first layer has a kernel size of 1 and
the other convolutional layers have a kernel size of 3. Even though there structure are
quite different, they have the same performance. There doesn’t seem to be a “correct”
choice that causes a network to perform better than all others. However, the the wrong
choice of kernel size can have a very negative impact on the network (e.g. all layers
having a kernel size of 1).

After comparing kernels sizes, a couple of networks are tested in which the stride of the
pool layer is set to 1 (up until here it has been 2). For this, the network with a kernel
size of 2 in the input layer and 3 in the other convolutional layers is used as a base.
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(a) (b)

Figure 3.26: R2 parameter values for networks with adjusted (a) convolution kernel
size (b) strides for both the convolutional layers as the pool layer.

This network, like the others so far, has a convolutional stride of 1 and a pool stride of
2. Changing the pool stride to 1 impacts the number of output parameters: when the
output of the pool layer is flattened, a stride of 1 results in 600 output channels (each
with only a single value), which is passed to the first linear layer. In comparison, when
the pool stride is 2, the flattened output contains 240 output channels. One of the two
networks that are tested has a pool kernel size of 2, the other has a pool kernel size
of 3. The results can be seen in Fig. 3.26b. The best performing networks are those
with a pool stride of 1, with R2 ≈ 0.93. The likely reason that this performs better is
that a small stride maintains more information. The idea behind having a stride of 2
is specifically to reduce information, keeping that which is deemed most relevant and
making the job of the linear layer easier. However, it seems having more information
is better, as even the information that is less relevant still contains something that is
useful to the network.

Expanding the Network to two Outputs

In the following, the network that is used has a kernel size of 2 in the input layer
and 3 for the other convolutional layers, with the pool layer having a kernel size of 3
and a stride of 1. The network is trained with both MHH and MHZ weights and is
therefore expanded to two output variables, such as was done with the feed-forward
network. The results can be seen in Fig. 3.27. For the MHZ weights, the network
achieves R2 ≈ 0.71. For the MHH weights, it achieves R2 ≈ 0.90 for the validation
data; however, for the training data it achieves R2 ≈ 0.92. As previously stated, in this
analysis, networks that have a difference between the R2

train and R2
val that is smaller

than 1 are considered to not overfit. This means that the network overfits slightly on
the MHH weights when it trains with both MHH and MHZ weights, which it didn’t do
when it just trained with the MHH weights.
The shape of the discriminant’s distribution (Fig. 3.27a) is heavily skewed compared
to the discriminant from the MoMEMta weights. Around 42% of events have a value
above 0.95 and a peak for values less than -0.95 is barley visible. In Fig. 3.27b, it can
be seen that for most events, the predicted value for MHH is larger than that of MHZ ;
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in many cases even close to two orders of magnitude. This shows that the network still
has a lot of room for improvement, since while it is picking-up that the MHH weight is
generally larger, it’s over-valuing this fact and it isn’t learning when the MHZ weight
should be larger.

(a)

(b) (c)

Figure 3.27: (a) Value of the R2 parameter for MHH and MHZ weights predicted
by the convolutional network with dual output. (b) Discriminant for the weights.
(c) Comparison of the weights predicted for each event. The x-axis describes the
prediction trained with MHH , the y-axis that with MHZ . The magenta line indicates
the line through origin, where the network predicts an event to be equally likely for
either matrix element.

Time Comparison

The time required to train and validate the CNN depicted in Fig. 3.27 is ≈ 23.1 hours.
This is about 442 times quicker than MoMEMta needed to calculate the weights and
about 1.72 times slower than the best-performing feed-forward neural network. While
it’s noticeably slower than the feed-forward network, it’s still much, much quicker than
running MoMEMta and therefore a success in reducing the computation time.
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Rotationally Symmetric Parameters

Due to the convolutional neural network having a 6 × 4 × 1 input matrix, it isn’t
possible to add the two additional parameters (Sec. 3.4.3) to the four-momenta as input
parameters. However, the convolutional network can take the rotationally symmetric
parameters; their scaling is the same as described in Sec. 3.6.2. The results can be
seen in Fig. 3.28 and with R2 = 0.75 for MHH and R2 = 0.59 for MHZ , the results are
significantly worse than for the four-momenta.

(a) (b)

Figure 3.28: Results of the CNN with rotationally symmetric input parameters: (a)
value of the R2-parameter and (b) the discriminant.

3.6.4 Discussion and Outlook

The fact that both the feed-forward and the convolutional networks perform signifi-
cantly worse when predicting the MHZ weights indicates that the reason for this big
discrepancy most likely comes from the HZ data that is depicted in Fig. 3.10. Since
both network types struggled with the same issue in the same way, it can be assumed
that the issue likely doesn’t lie in the network types or their structures. While there
may be network types that can achieve better results, they are likely to have the same
issue with predictions for MHZ weights performing significantly worse than for MHH

weights.
That being said, the neural networks are able to achieve a satisfying accuracy when
it comes to predicting the MHH weights. Therefore, the set-up of these networks can
be used to correctly assign HH events a high weight. While this means that applying
a cut on the MHH weight could be used to reduce background data without remov-
ing (much) signal data, it can’t currently be used to separate background events from
signal entirely. For this, a strong separation in the discriminant (Fig. 3.21a, 3.27b) is
required, which is not what was achieved.

The neural networks have all been run using just the four-momenta as input data. As
was discussed in Sec 3.5, this doesn’t need to be the case: the networks can take any
variables as input data, as long as they are coupled to the events. Both the feed-forward
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and convolutional network could not be improved by using rotationally symmetric input
variables, that are based off of the four-momenta. Instead, they performed significantly
worse.
The feed-forward network was also tested with two additional parameters, (pb1x −pb1x )2+
(pb1y − pb1y )

2 and (pb1x − pb1x )
2+(pb1z − pb1z )

2, that indicate differences between events with
a good separation between MHH and MHZ weights and events with a bad separation.
However, adding these parameters to the input parameters of the feed-forward network
doesn’t change its performance, meaning that the network is already able to extract
the information they provide from the four-momenta.

The best performing CNN achieves R2 ≈ 0.90 for MHH weights and R2 ≈ 0.71 for
MHZ weights. It uses four convolutional layers followed by a pool layer and two lin-
ear layers, the second of which is the output layer. The best performing feed-forward
network achieves R2 ≈ 0.90 for MHH weights and R2 ≈ 0.70 for MHZ . After the input
layer, it has three hidden layers, with a decreasing number of nodes on each layer.
Overall, it isn’t clear which of the two network types, feed-forward or convolutional,
is a better choice for implementing the MEM. The convolutional network achieved a
slightly better performance, with the highest R2 value when training on just MHH ,
and very similar values to the feed-forward network when training on both MHH and
MHZ weights. Since the convolutional network slightly overfits when training on both
weights, it can be assumed that there is still a little bit more potential in its capa-
bilities. However, while the discriminant of the convolutional network has a similar
shape to that of the feed-forward network, where the peak at D± < −0.95 has almost
vanished, the peak at D± > 0.95 is larger, at almost 42% of the events. This means
that the convolutional network is even more likely to predict the MHH weights to be
larger than they should be compared to the feed-forward network. This difference can
also be seen when comparing the distribution of the weights for the convolutional net-
work (Fig. 3.27c) to the feed-forward network (Fig. 3.21b): the densest region of the
distribution is shifted further to the left for the convolutional network.
From this, it can be seen that both neural networks types need more work before they
can be used in an analysis. That being said, both have shown results that head in the
right direction. More testing, possibly with other network types, needs to be done to be
able to reach the full potential of combining the MEM for Higgs pair production with
neural networks. This testing will need to include developing a better understanding
of the relation between the final-state four-momenta and the resulting weights.

Both network types had significantly quicker run times for training and validation
compared to what MoMEMta requires for calculating the MHH and MHZ weights.
This shows that if it’s possible to increase the accuracy of the networks’ predictions
for MHZ , then implementing the MEM with neural networks to reduce computing
resources will be a viable practice.



Conclusion

In this thesis, the matrix element method has been implemented with neural networks
to search for Higgs pair production using simulated data.
The two signal decay modes consist of Higgs self-coupling and general Higgs pair pro-
duction via a box diagram. Significant for this analysis is that one Higgs boson decays
into b quarks while the other decay into W bosons. The background decay mode con-
tains a Higgs boson and a Z boson, where the Z boson decays into b quarks and the
Higgs to W bosons. The generation of the simulated data and the jet reconstruction
are done by hand. The weights for the Matrix Element Method (MEM) are calculated
with the dedicated program MoMEMta using two different matrix elements: one for
the Higgs pair production, MHH , and one for the background, MHZ . The resulting
weights for the HH data mostly have the expected values, where weights calculated
with MHH are larger than those with MHZ . For the HZ data, there is not as clear
of a distinction of MHZ weights being larger than MHH weights. The data have been
studied at depth to understand why true HZ events occasionally yield larger matrix
element weights for MHH than for MHZ . It has been found that the separation power
strongly relates to the four-momenta of the two b quarks. A deeper investigation of the
theoretical calculations yielding the matrix element formulae in order to resolve their
relation to the b quark four-momenta was beyond the scope of this research.

Two types of neural networks have been studied for this analysis: feed-forward and
convolutional networks. For each, various structures with different hyperparameters
have been tested. The best-performing feed-forward network achieved R2 ≈ 0.90 on
MHH weights and R2 ≈ 0.70 on MHZ weights; the best-performing convolutional net-
work achieved R2 ≈ 0.90 on MHH weights and R2 ≈ 0.71 on MHZ weights. While this
is a success with regards to the MHH weights, the networks are still open for improve-
ments for HZ event weights. The reason for the somewhat lower performance of the
prediction of the MHZ weights lies in the less distinguished training data calculated
with MoMEMta.

In an attempt to improve the networks, in particular with regards to MHZ , two cases,
one with rotationally symmetric input parameters and one where two additional input
parameters derived from the four-momenta, are tested. The feed-forward network’s
performance remains the same for the additional parameters, indicating that they al-
ready learned all the information that can be gained from the additional four-momenta,
and both networks perform significantly worse with the rotationally symmetric input
parameters.
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Appendix A

Detailed Mathematical Description
of the Standard Model of Particle
Physics

Sec. A.1 and A.2 are oriented towards [21].

A.1 Quantum Field Theory

To derive the SM, one must first move from describing points in space, as is done in
classical mechanics, to regions of space. This means that instead of calculating positions
as a function of time x (t), systems are calculated using functions of position and time
ψ (t,x). These are known as fields — an example would be describing the movement
of a body of water, instead of an individual water particle. In quantum field theory, a
Lagrangian density L (ϕi, ∂µ) (in the following simply referred to as a Lagrangian) is a
function of fields ψi, and its derivatives in time and space are ∂µϕi ≡ ∂ϕi

∂xµ [24].

Hamilton’s Principle (also known as the Principle of Least Action) states that the
evolution of a system from time t1 to t2 is such that the action

S =

∫ t2

t1

L (ϕi, ∂µϕi) d
4x (A.1)

has a stationary value for the actual “path” [76, 77]. In less formal terms, this means
that the path is chosen for which infinitesimal increments along the path cause minimal
change to the value to S, i.e. δS = 0. From this, the Euler-Lagrange equations of
motion

∂µ

(
∂L

∂ (∂µϕi)

)
=
∂L
∂ϕi

(A.2)

can be derived [76]. Once the Lagrangian for a particle type has been established,
the Euler-Lagrange equation will result in the equations of motion for that particle
type [24].
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APPENDIX A. DETAILED MATHEMATICAL DESCRIPTION OF THE

STANDARD MODEL OF PARTICLE PHYSICS

Gauge invariance is the concept that a Lagrangian should maintain its form when
a phase is applied to the Lagrangian’s field(s). A phase transformation represents
a change to the field, and there are two types: global and local. A global phase
transformation is applied to all points in a system equally. A local phase transformation
is also applied to all points; however, each point is influenced differently by the new
phase, depending on its coordinates. Mathematically, a global gauge transformation is
described as the following:

ψ → eiαψ, (A.3)

where α is independent of spacetime, which means that it is unaffected by the derivative
of the field:

∂µψ → eiα∂µψ. (A.4)

Since the derivative of a field isn’t affected by global gauge transformation, accordingly,
the Lagrangian remains unaffected. The result of this is that the equations of motion,
that are generated by the Euler-Lagrange equation ( A.2), are also unchanged. In other
words, a global gauge transformation is gauge invariant: it doesn’t affect the laws of
physics.

This is not so simple when it comes to local gauge transformations, as the phase α (x)
is now dependent on spacetime:

ψ → eiα(x)ψ ≡ ψ̃. (A.5)

When the derivative is applied to the transformed field ψ̃, an additional term appears:

∂µψ̃ = ∂µ
(
eiα(x)

)
ψ + eiα(x)∂µψ = i (∂µα (x)) eiα(x)ψ + eiα(x)∂µψ. (A.6)

This leads to a constraint: when constructing a Lagrangian to describe a physical the-
ory, it must be expanded by an additional field that transforms such that it causes the
additional term in Eq. A.6 to be cancelled. This can, for example, be done by adding
an addition term that contains the local phase [24].

A.2 Gauge Fields and the Introduction of Particles

Now that the groundwork has been laid, it can be applied to the Dirac Lagrangian1,
which describes spin-1

2
particles2:

L = iψ̄γµ∂µψ −mψ̄ψ, (A.7)

1While the Dirac, Proca and Klein-Gordon equations [24, 25] can be derived mathematically, their
Lagrangians are derived axiomatically [24].

2Using natural units: ℏ = 1, c = 1.
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where ψ̄ is the adjoint spinor of ψ3. If the field in Eq. A.7 were to transform like
Eq. A.5, then the derivative of the field in the first term of the Lagrangian would
transform like Eq. A.6, resulting in

L → L− (∂µα (x)) ψ̄γµψ (A.8)

which clearly is not invariant under local phase transformation. To ease the choice
of how the new field (with which the Lagrangian will be expanded) should transform
locally, the phase α (x) can be defined as

α (x) = −qλ (x) (A.9)

which redefines the local phase transformation to

ψ → e−iqλ(x)ψ (A.10)

and results in Eq. A.8 being rewritten as

L → L+ qψ̄γµψ∂µλ (x) . (A.11)

This Lagrangian is also not invariant under a local gauge transformation. To reconcile
this problem, a vector fieldAµ (referred to as a gauge field) is introduced that transforms
locally with

Aµ → Aµ + ∂µλ. (A.12)

Implementing Eq. A.9 into Eq. A.6 results in

∂µψ = e−iqλ(x) (∂µ − iq (∂µλ))ψ. (A.13)

Since the transformation of the gauge field was chosen so that it contains ∂µλ, a substi-
tution for the partial derivative can be introduced, known as the covariant derivative

Dµ = ∂µ + iqAµ, (A.14)

which transforms with

Dµ → ∂µ + iq (Aµ + ∂µλ) (A.15)

and has the property

Dµψ → e−iqλ(x)Dµψ. (A.16)

In other words, with a specific choice of gauge field (Eq. A.12) and with the help of the
redefined phase (Eq. A.10), a new derivative can be constructed (Eq. A.14) that makes

3ψ̄ ≡ ψ†γ0, where γ0 is the time-like gamma-matrix.
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the Dirac Lagrangian invariant under local phase transformation (note the similarity
between Eq. A.16 and Eq. A.4). Using these tools, a local gauge invariant version of
the Dirac Lagrangian can be constructed:

L = iψ̄γµ∂µψ −mψ̄ψ +
(
qψ̄γµψ

)
Aµ. (A.17)

It’s important to realise that the redefinition of the phase and the introduction of the
gauge field do not just serve mathematical purposes. As with all terms in a Lagrangian,
the new term seen in Eq. A.17 has a physical interpretation: it introduces both the
electromagnetic field Aµ and the electromagnetic charge q. The free term for the gauge
field, however, isn’t included in the Dirac Lagrangian. Since the gauge field is a vector
field, the free term can be described by the Proca Lagrangian:

L = − 1

16π
F µνFµν +

1

8π
m2

AA
νAν . (A.18)

The Proca Lagrangian describes massive (mA) spin-1 particles. The first term includes
the electromagnetic tensor, which is defined as F µν = ∂µAν − ∂νAµ and is local phase
invariant under the aforementioned transformation of Aµ in Eq. A.12. The second term,
specifically AνAν , is not local phase invariant and the only way to solve this problem
is by setting the mass parameter mA to 0, eliminating the second term entirely. This
means that the gauge field Aµ must have a massless mediating particle — this massless
gauge boson is interpreted as the photon. This results in a U(1) gauge symmetry, and
is the basis of quantum electrodynamics (QED). The reason this is referred to as a
U(1) gauge symmetry is that the phase in the transformation is described by a scalar4

eiα(x) [24].

It should be noted that in the example with the Dirac Lagrangian it looks like local
gauge invariance was demanded first and then the origin of the electromagnetic force
conveniently followed; however, it is the other way around: to be able to construct a La-
grangian describing the electromagnetic force, it’s required that local gauge invariance
is introduced.

A.3 The Higgs Boson

A.3.1 Spontaneous Symmetry-breaking

Spontaneous symmetry breaking describes the notion that a system can be in a state
of equilibrium that is unstable, so a small change or perturbation in said system can
lead it to fall into a lower-energy state of equilibrium. In some cases, there can be
multiple (or even infinite) lower-energy states of equilibrium, all of which are equally
likely — this means that the system can enter any of these states. A simple example
for this behaviour can be found in ferromagnetism: when the temperature of a magnet
is above the Curie temperature, the spins of the ferromagnets don’t have a particular

4Technically, a 1× 1 unitary matrix, hence U(1)
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orientation — the magnet is paramagnetic. This means that the magnet doesn’t have
a polarisation; it is in a state of rotational symmetry. Once the magnet falls below
the Curie temperature, the ferromagnets will align their spins, create a polarisation,
and the magnet becomes magnetic. Which direction they align in is arbitrary (and
equally likely); however, there is no longer a rotational symmetry and the symmetry
is therefore broken [25]. The reason this is referred to as spontaneous is because no
external agency is responsible for the breaking [24].

The following mathematical description of spontaneous symmetry-breaking and the
Higgs mechanism follows [25].

The symmetries of a Lagrangian can be spontaneously broken by introducing pertur-
bations around a ground state. Take the following potential of a scalar field:

V (ϕ) =
1

2
µ2ϕ2 +

1

4
λϕ4. (A.19)

The corresponding Lagrangian is

L =
1

2
(∂µϕ) (∂

µϕ)− V (ϕ) (A.20)

=
1

2
(∂µϕ) (∂

µϕ)− 1

2
µ2ϕ2 − 1

4
λϕ4, (A.21)

where the (∂µϕ) (∂
µϕ) term can be associated with the kinetic energy of the particle,

the 1
2
µ2ϕ2 term with the mass and the λϕ4 with the self-interaction of the field. For the

potential to have a finite minimum, λ must be positive, as the ϕ4 begins to dominate
for larger values. µ2 is not restricted to being positive (where it results in an upward-
facing parabolic potential) — choosing it to be negative leads to potential known as a
double-well potential (Fig. A.1a), with minima at

ϕmin = ±v = ±

∣∣∣∣∣
√

−µ
2

λ

∣∣∣∣∣. (A.22)

In this case, the µ2 term can no longer be associated with a mass. The vacuum
expectation value v describes the minima of the potential; which minima the field
enters can be chosen freely. This leads to spontaneous symmetry-breaking, as the
choice breaks the symmetry of the Lagrangian.

To find the mass term of the Lagrangian, perturbations around the minimum must be
considered. These are introduced as ϕ (x) = v+η (x). Since v is a constant, it vanishes
under the derivative of the field, and the Lagrangian becomes

L =
1

2
(∂µη) (∂

µη)− V (η) (A.23)

=
1

2
(∂µη) (∂

µη)− 1

2
µ2 (v + η)2 − 1

4
λ (v + η)4 . (A.24)
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+v−v

ϕ

V (ϕ)

(a)

+v−v

ϕ2

ϕ1

V (ϕ)

(b)

Figure A.1: (a) The double-well potential with minima described as the vacuum
expectancy value ±v. (b) The “Mexican hat” potential of a complex scalar field.

By using µ2 = −λv2, the Lagrangian can be rewritten as

L =
1

2
(∂µη) (∂

µη)− λv2η2 − λvη3 − 1

4
λη4 +

1

4
λv4, (A.25)

which reveals a previously hidden term proportional to η2 that can be interpreted as a
mass:

mη =
√
2λv2. (A.26)

The remaining η3 and η4 terms describe self-interactions. The final Lagrangian is as
follows:

L (η) =
1

2
(∂µη) (∂

µη)− 1

2
m2

ηη
2 − V (η), with V (η) = λvη3 +

1

4
λη4. (A.27)

This Lagrangian is the same as the Lagrangian in Eq. A.23, only now it’s being de-
scribed by perturbations around the minimum. Up until here, the field ϕ has been a
real scalar field. For a complex scalar field,

ϕ =
1√
2
(ϕ1 + iϕ2) (A.28)

with potential

V (ϕ) = µ2 (ϕ∗ϕ) + λ (ϕ∗ϕ)2 , (A.29)

a similar procedure can be followed, only now the Lagrangian is described by two real
fields,

L =
1

2
(∂µϕ1) (∂

µϕ1) +
1

2
(∂µϕ2) (∂

µϕ2)−
1

2
µ2
(
ϕ2
1 + ϕ2

2

)
− 1

4
λ
(
ϕ2
1 + ϕ2

2

)2
, (A.30)
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and the double-well potential has received an additional dimension (Fig. A.1b). The
minima are zero (ϕ2

1 + ϕ2
2 = 0) for µ2 > 0 and for µ2 < 0 the minima are defined by

ϕ2
1 + ϕ2

2 = −µ
2

λ
= v2. (A.31)

As before, a vacuum state can be chosen — here, there are infinite possibilities, so the
state (ϕ1, ϕ2) = (v, 0) is selected. In this case, perturbations around the minimum of
both scalar fields are considered: ϕ1(x) = v + η(x) and ϕ2(x) = ϵ(x), so the complete
field becomes ϕ = v + η + iϵ. The potential becomes

V (η, ϵ) = µ2ϕ2 + λϕ4, with ϕ2 = ϕϕ∗ =
1

2

[
(v + η)2 + ϵ2

]
, (A.32)

which, using µ2 = λv2, can be written-out as

V (η, ϵ) = −1

4
λv4 + λv2η2 + λvη3 +

1

4
λη4 +

1

4
λϵ4 + λvηϵ2 +

1

2
λη2ϵ2. (A.33)

Noticeably, there is only one term that is quadratic in a field: λvη2. This represents
a mass of mη =

√
2λv2, which is that same as the case of the real scalar field (see

Eq. A.26), and the terms that are of higher orders in the fields η and ϵ represent inter-
actions. Therefore, the scalar field ϵ doesn’t have a mass term. The final Lagrangian
is

L =
1

2
(∂µη) (∂

µη)− 1

2
m2

ηη
2 +

1

2
(∂µϵ) (∂

µϵ)− Vint (η, ϵ) , (A.34)

with

Vint (η, ϵ) = λvη3 +
1

4
λη4 +

1

4
λϵ4 + λvηϵ2 +

1

2
λη2ϵ2, (A.35)

where the perturbations of the field η are in the direction of a change in the potential
and the perturbations of the field ϵ are in the direction of equal potential (they go
“around” the valley of Fig. A.1b). As a result, while the field η describes a massive
gauge boson, the field ϵ describes a massless gauge boson, known as a Goldstone boson.

A.3.2 The Higgs Mechanism

The Higgs Mechanism is built on combing spontaneous symmetry breaking with local
gauge invariance. A complex scalar field ϕ is not invariant under a local U(1) gauge
transformation:

ϕ(x) → ϕ′(x) = eigχ(x)ϕ(x). (A.36)

As with the case in Eq. A.14, a covariant derivative must be introduced

∂µ → Dµ ≡ ∂µ + igBµ (A.37)
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with a new gauge field Bµ, which transforms with

Bµ → Bµ
′ ≡ Bµ − ∂µχ(x). (A.38)

This results in the Lagrangian

L = −1

4
FmuνFµν + (Dµϕ)

∗ (Dµϕ)− µ2ϕ2 − λϕ4, (A.39)

where the new gauge field appears in the kinematic term Fµν = ∂µBν − ∂νBµ. As was
the case previously, the gauge field B results in an additional term, breaking the gauge
invariance, and therefore requires the gauge field to be massless. Using the covariant
derivative, the Lagrangian becomes

L =− 1

4
F µνFµν + (∂µϕ)

∗ (∂µϕ)− µ2ϕ2 − λϕ4 (A.40)

− igBµϕ
∗ (∂µϕ) + ig (∂µϕ

∗)Bµϕ+ g2BµB
µϕ∗ϕ. (A.41)

As before, for µ2 < 0 the minimum of ϕ1 + iϕ2 = v is chosen and the potential
is expanded around it: ϕ(x) = 1√

2
(v + η(x) + iϵ(x)). By substituting this into the

Lagrangian that was received via the covariant derivative (Eq. A.40), the resulting
Lagrangian is

L =
1

2
(∂µη) (∂µη)− λv2η2 +

1

2
(∂µϵ) (∂µϵ) (A.42)

− 1

4
FmuνFµν +

1

2
g2v2BµB

µ − Vint + gvBµ (∂
µϵ) , (A.43)

with Vint (ν, η, B) containing three and four-point interaction terms. Similarly to
Eq. A.35, the scalar field ν has a mass term and the field ϵ describes a massless
Goldstone boson. There is, however, a new term: 1

2
g2v2BµB

µ, which is a mass term
for the gauge field B. This means that the introduction of local gauge invariance lead
to a gauge boson with a mass.

An issue arises with the last term: gvBµ (∂
µϵ). This describes a coupling between

the spin-0 scalar field ϵ and the spin-1 gauge field B. Additionally, it seems as if a
new degree of freedom has appeared: before the breaking, there were four degrees of
freedom — one for each scalar field ϕ1 and ϕ2, and two transverse polarisation states
for B. After the breaking, the new gauge field has a mass and, with that, a longitu-
dinal polarisation state which didn’t exist before the breaking. This discrepancy can
be resolved by applying another gauge transformation that eliminates the Goldstone
boson: by recognising

1

2
(∂µϵ) (∂

µϵ) + gvBµ (∂µϵ)
1

2
g2v2BµB

µ =
1

2
g2v2

(
Bµ +

1

gv
(∂µϵ)

)2

(A.44)

and by choosing χ(x) = ϵ
gv

(see Eq. A.38), the field B transforms with
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Bµ (x) → Bµ
′ (x) = Bµ (x) +

1

gv
(∂µϵ) , (A.45)

and the Lagrangian of Eq. A.42 becomes

L =
1

2
(∂µη) (∂

µη)− λv2η2 − 1

4
F µνFµν +

1

2
g2v2Bµ

′Bµ′ − Vint. (A.46)

The choice of χ that appears in Eq. A.45 also affects the original transformation of ϕ
(see Eq. A.36). This means that the complete gauge transformation of ϕ is

ϕ(x) → ϕ′(x) = eig
ϵ(x)
gv

(x)ϕ(x) = ei
ϵ(x)
v ϕ(x). (A.47)

The expansion of the gauge field around the minima, which was chosen to be
ϕ = 1√

2
(v + η(x) + iϵ(x)), can be approximated in first order to

ϕ(x) ≈ 1√
2
(v + η(x)) ei

ϵ(x)
v . (A.48)

As a result, the transformed field ϕ′ is no longer dependent on the field ϵ:

ϕ(x) → ϕ′(x) =
1√
2
e−i

ϵ(x)
v (v + η(x)) ei

ϵ(x)
v =

1√
2
(v + η(x)) . (A.49)

This means that the issue of the presence of the Goldstone boson can be resolved by
choosing the complex scalar field ϕ to be real,

ϕ(x) =
1√
2
(v + η(x)) =

1√
2
(v + h(x)) , (A.50)

and the additional degree of freedom becomes associated with longitudinal polarisation
of the gauge field B.

The field h(x) is known as the Higgs field — through it, the gauge boson B, that
was introduced for the local gauge transformation, has gained a mass term. The final
Lagrangian, described by µ2 = −λv2 and ϕ = 1√

2
(v + h(x)) is as follows:

L =
1

2
(∂µh) (∂

µh)− λv2h2 − 1

4
F µνFµν +

1

2
g2v2BµB

µ (A.51)

+ g2vBµB
µh+

1

2
g2BµB

µv2 − λvh3 − 1

4
λh4. (A.52)

The first two terms describe the Higgs field and its mass, the third and fourth terms
the massive gauge boson, the fifth and sixth terms the interactions between the Higgs
boson and the gauge boson, and the last two terms describe the self-interaction terms
of the Higgs field. It should be noted that the Higgs field is a scalar field. From this,
the masses of the Higgs field and the gauge boson are visible:
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mB = gv, mH =
√
2λv2. (A.53)

The masses of both fields are dependent on the vacuum expectation value, where mB

is directly proportional to the strength of the gauge coupling [25].

In summary, a Lagrangian of a complex scalar field ϕ was constructed using a local
gauge transformation, whereby a gauge field B was introduced. Then, the potential un-
derwent spontaneous symmetry-breaking and perturbations around a chosen minimum
of the potential were regarded. This lead to the problematic existence of a Goldstone
boson; however, this could be resolved by applying a gauge transformation to the field
B. By regarding the field ϕ in first order, which resulted in ϕ becoming a real scalar
field, a Lagrangian could be constructed. Here, the field B and the gauge field η, which
originated from the perturbations around the minimum, both gained mass terms. The
gauge field η was then interpreted as the Higgs field h.

A.3.3 The Standard Model Higgs Boson

In the previous section, a Higgs boson was generated in the case of a U(1) gauge
transformation. In the SM, the Higgs boson is generated via an SU(2)L × U(1)Y
gauge transformation under the Glashow-Salam-Weinberg (GSW) model. To do this,
a complex vector field ϕ is chosen as follows:

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, (A.54)

where ϕ+ and ϕ0 are complex scalar fields. ϕ represents a weak isospin doublet and
the two components differ by a charge of +1.

The minima of the Higgs potential for µ2 < 0 fulfil

ϕ†ϕ =
1

2

(
ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4

)
=
v2

2
= −µ

2

2λ
. (A.55)

By expanding the fields around the minimum

⟨0|ϕ |0⟩ = 1√
2

(
0
v

)
, (A.56)

ϕ becomes

ϕ(x) =
1√
2

(
ϕ1(x) + iϕ2(x)
v + η(x) + iϕ4(x)

)
. (A.57)

When the symmetry is broken, the result is a massive scalar boson and three massless
Goldstone bosons, which will give the longitudinal degrees of freedom to the W± and
the Z bosons [25]. The Higgs doublet then becomes
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ϕ(x) =
1√
2

(
0

v + h(x)

)
. (A.58)

The covariant derivatives of the SU(2)L × U(1)Y gauge transformation are chosen as
follows:

Dµ = ∂µ + igWT ·Wµ + ig′
Y

2
Bµ. (A.59)

Here, T = 1
2
σ are the three generators of the SU(2) symmetry and Y = 15, therefore

the covariant derivative applied to the field is

Dµϕ =
1√
2
(2∂µ + (igWσ ·Wµ + ig′Bµ))ϕ. (A.60)

Using the gauge transformation and deriving the Lagrangian with the covariant deriva-
tive will result in the fields

W+ =
1√
2

(
W (1)

µ − iW (2)
µ

)
(A.61)

W− =
1√
2

(
W (1)

µ + iW (2)
µ

)
(A.62)

Zµ =
g′W

(3)
µ + gWBµ√
g2Wg

′2
(A.63)

Aµ =
gWW

(3)
µ − g′Bµ√
g2Wg

′2
(A.64)

and the mass terms

mW =
1

2
gWv (A.65)

mZ =
1

2
v
√
g2W + g′2 (A.66)

mA = 0. (A.67)

By defining

g′

gW
≡ tan (θW ) (A.68)

the following relations can be written [25]:

Zµ = cos (θW ) ·W (3)
µ − sin (θW ) ·Bµ (A.69)

Aµ = sin (θW ) ·W (3)
µ + cos (θW ) ·Bµ. (A.70)

5Y = 2(Q− I3), where Q = 0 and I
(3)
W = − 1

2
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The angle θW is known as the weak-mixing angle, which can be determined experi-
mentally (see [78, 3]). Using Eq. 1.11, the mass term for the Z boson can be rewritten
as

mZ =
1

2

gW
cos (θW )

v (A.71)

from which a simple relation between the masses of the W boson and the Z boson is
revealed:

mW

mZ

= cos (θW ). (A.72)

Since mW = 1
2
gWv, measuring the mass of the W boson and its coupling parameter

lead to a value for the vacuum expectation value:

v = 246 GeV. (A.73)

Through the measurement of the Higgs boson’s mass (see [1, 2]), using the vacuum
expectation value and mH =

√
2λv2, a value for the self-coupling parameter λ can be

calculated. From this, using v2 = −µ2

λ
, a value for µ can be determined. In the end,

the GSW model can be described by four parameters: g′, gW , µ and λ [25].

With this, the SM Higgs boson and its couplings to the W and Z bosons have been
determined. Its couplings to fermions and their masses can be derived in a similar way
(see [25]).
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(a) Gradients of weights, input layer (b) Gradients of biases, input layer

(c) Weights, input layer

(d) Gradients of weights, final hidden layer (e) Gradients of biases, final hidden layer

Figure B.1: Mixed network: Gradients of the weights and biases of the input and the
last hidden layer, for a selected epochs.
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(a) Gradients of weights, input layer (b) Gradients of biases, input layer

(c) Weights, input layer

(d) Gradients of weights, final hidden layer (e) Gradients of biases, final hidden layer

Figure B.2: Deep+narrow network: Gradients of the weights and biases of the input
and the last hidden layer, for a selected epochs.
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(a) (b)

(c) (d)

Figure B.3: Mixed residual network: (a) Gradient of the weight and (b) weights;
Deep+narrow residual network: (c) Gradient of the weight and (d) weights;



Abbreviations

BR Branching Ratio

CL Confidence Level

CNN Convolutional Neural Network

GSW Glashow-Salam-Weinberg

ggF Gluon-Gluon Fusion

HH Higgs-Higgs-boson

HZ Higgs-Z-boson

LHC Large hadron Collider

MEM Matrix Element Method

MC Monte Carlo

ML Machine Learning

NLO Next-to-Leading Order

NNLO Next-to-Next-to-Leading Order

Particle ID Particle Identification Number

pp Proton-Proton

QCD Quantum Chromodynamics

SGD Stochastic Gradient Descent

SM Standard Model of Particle Physics

VBF Vector-Boson Fusion
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