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Abstract

Skill of mid-latitude weather predictions largely decays within the first two forecast weeks.
Nonetheless, remote coupling with slower-evolving Earth system components can provide
predictability beyond the local initial condition memory, at the so-called subseasonal-to-
seasonal (S2S) timescale, which spans approximately from two weeks to two months. This
thesis delves into a key source of S2S predictability for mid-latitude weather: stratosphere-
troposphere coupling, specifically through the strong circumpolar winds in the Arctic
stratosphere known as the polar vortex.

Studies of stratosphere-troposphere coupling are often constrained by the scarcity of ex-
treme events in observational records, especially for sudden stratospheric warmings (SSWs),
which occur approximately once every second winter. Leveraging a large set of state-of-the-
art S2S ensemble forecasts, this thesis improves the statistical characterization of SSWs by
employing a sample size roughly 150 times larger than what is available from observations.
This approach allows to quantify aspects of stratosphere-troposphere coupling that would
be unfeasible to derive from pure observations. Here, this set of SSWs is used to compute
the fraction of attributable risk, which demands particularly large statistics. First, it is
found that approximately every second split-type SSW and every third displacement-type
SSW may be attributable to corresponding wave activity events of tropospheric origin,
underscoring that SSW formation relies on suitable conditions in both troposphere and
stratosphere. Second, the impact of weak and strong stratospheric polar vortex events
on the frequency of large-scale circulation extremes in the troposphere — characterized by
the Arctic Oscillation (AO) index — is investigated. The results show that SSWs increase
the likelihood of negative AO extremes (exceeding 3 standard deviations) by about 60%,
which is expected to also translate into regional weather extremes with potentially high
socio-economic impacts. In turn, approximately one fourth of negative AO extremes in
winter may be attributable to preceding SSWs.

Furthermore, this thesis reveals that both weak and strong stratospheric polar vortex
events affect forecast uncertainty at S2S timescales, as measured by anomalous ensem-
ble spread. Facilitated by the large S2S ensemble dataset, this highlights an important
additional aspect of predictability arising from stratosphere-troposphere coupling, which
extends beyond the previously recognized shifts in mean weather conditions. Specifically,
weak polar vortex events (such as SSWs) are followed by reduced 1000 hPa geopotential
height (Z1000) ensemble spread at 3-5 weeks lead time over northern Europe and increased
spread over southern Europe, with anomalies reaching up to about 25% relative to clima-
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tological ensemble spread. It is shown that these spread anomalies arise from the known
southward shift of the North Atlantic storm track following SSWs, which is associated
with variations in synoptic-scale variability and extratropical cyclone frequency. Notably,
an analysis of ensemble spread of near-surface temperature (T2m) reveals different anomaly
patterns compared to those of Z1000: weak polar vortex events are followed by increased
ensemble spread over most parts of Europe, indicating an increase of forecast uncertainty.

Finally, this thesis generalizes the analysis of ensemble spread at S2S timescales to the
context of North Atlantic-European weather regimes. While each of these regimes is as-
sociated with robust patterns of Z1000 and T2m spread anomalies, it is shown that weak
polar vortex events also reduce the uncertainty of weather regime forecasts by about 10%,
as measured by a novel metric based on information entropy.

Overall, this thesis illustrates how S2S ensemble forecasts can advance the analysis and at-
tribution of extreme events. The applicability of this approach extends beyond stratosphere-
troposphere coupling and may offer insight into other high-impact weather phenomena.
Additionally, this thesis identified flow-dependent variations in forecast uncertainty at S2S
lead times, contributing to advancements of the broader field of S2S predictability.



Zusammenfassung

Die Giite von Wettervorhersagen in den mittleren Breiten nimmt innerhalb der ersten bei-
den Vorhersagewochen stark ab. Dennoch kann eine gewisse Vorhersagbarkeit auch auf
langeren Zeitskalen bestehen, wenn das Wettergeschehen mit sich langsamer verdndernden
Komponenten des Erdsystems gekoppelt ist. Diese Arbeit untersucht, wie solche Kopplun-
gen zur Vorhersagbarkeit auf der subsaisonalen-bis-saisonalen (S2S) Zeitskala beitragen,
was Vorhersagezeiten von etwa zwei Wochen bis zwei Monaten einschliefit. Dabei liegt der
Fokus auf einer der wichtigsten Quellen fiir S2S-Vorhersagbarkeit in den mittleren Breiten:
der Kopplung zwischen Stratosphére und Troposphére, im Zusammenhang mit den starken
zirkumpolaren Winden in der arktischen Stratosphére, dem sogenannten Polarwirbel.

Studien zur Stratosphare-Troposphéare-Kopplung sind haufig dadurch limitiert, dass Ex-
tremereignisse in Beobachtungsdatensatzen nur selten auftreten. Dies trifft insbesondere
auf plotzliche Stratosphirenerwidrmungen (im Englischen “sudden stratospheric warm-
ings”, SSWs) zu, welche in etwa einmal alle zwei Winter vorkommen. Diese Arbeit
verbessert die statistische Charakterisierung von SSWs, indem ein umfangreicher Daten-
satz moderner S2S-Ensemblevorhersagen genutzt wird, wodurch etwa 150-mal mehr SSW-
Ereignisse analysiert werden kénnen als in Beobachtungsdaten zur Verfiigung stehen. Dieser
Ansatz ermoglicht es, Aspekte der Stratosphéare-Troposphéare-Kopplung zu quantifizieren,
die sich nicht aus reinen Beobachtungsdaten ableiten lassen. Hier wird dieser SSW-
Datensatz verwendet, um den Anteil des attributalen Risikos (im Englischen “fraction of
attributable risk”) zu berechnen, was besonders grofie Statistiken erfordert. Die Ergebnisse
zeigen, dass sich in etwa jedes zweite Teilungs-SSW und jedes dritte Verschiebungs-SSW
auf ein entsprechendes Wellenaktivitatsereignis tropospharischen Ursprungs zuriickfiithren
lasst. Dieses Resultat unterstreicht, dass das Auftreten von SSWs sowohl in der Tro-
posphére als auch in der Stratosphére geeignete Bedingungen erfordert. Des Weiteren
wird der Einfluss schwacher und starker stratosphérischer Polarwirbelereignisse auf die
Héaufigkeit groffraumiger Zirkulationsextreme in der Troposphére untersucht, hier definiert
mittels der Arktischen Oszillation (AO). Die Ergebnisse zeigen, dass SSWs die Wahrschein-
lichkeit negativer AO-Extrema (mehr als 3 Standardabweichungen) um etwa 60% erhohen.
Es ist zu erwarten, dass solche Ereignisse auch mit regionalen Wetterextremen einhergehen,
welche mit groflen soziotkonomischen Auswirkungen verbunden sein kénnen. Dariiber hin-
aus lassen sich etwa ein Viertel aller negativen AO-Extrema im Winter auf vorangehende

SSWs zuritickfiihren.
Ferner zeigt diese Arbeit, dass schwache und starke stratosphéarische Polarwirbelereignisse



Zusammenfassung vii

die Unsicherheit von S2S-Vorhersagen beeinflussen, gemessen an der Ensemblestreuung.
Dieses Resultat, ermoglicht durch die Verwendung des umfangreichen Vorhersage-Daten-
satzes, hebt einen wichtigen zuséatzlichen Aspekt der Vorhersagbarkeit hervor, der tiber
die bisher bekannte Veranderung mittlerer Wetterbedingungen hinausgeht. So nimmt
die Z1000-Ensemblestreuung in 3-5-Wochen-Vorhersagen im Anschluss an schwache Polar-
wirbelereignisse tiber Nordeuropa ab, wiahrend sie iiber Stideuropa zunimmt. Die Anoma-
lien erreichen dabei eine Starke von bis zu 25% relativ zur klimatischen Ensemblestreuung.
Erkldren lassen sich die Ensemblestreuungs-Anomalien durch die siidwérts-Verschiebung
der Zugbahn nordatlantischer Stiirme, was mit Anomalien in synoptischer Variabilitiat und
Héufigkeit extratropischer Zyklone einhergeht. Bemerkenswerterweise zeigt die Ensem-
blestreuung in Vorhersagen bodennaher Temperatur (T2m) andere Anomalie-Muster im
Vergleich zu Z1000-Vorhersagen: Im Anschluss an schwache Polarwirbelereignisse erhéht
sich die T2m-Ensemblestreuung iiber weiten Teilen Europas, was eine erhohte Vorhersage-
unsicherheit impliziert.

Abschlieflend werden diese Analysen verallgemeinert, indem Variationen in der Ensem-
blestreuung auf S2S-Zeitskalen im Zusammenhang mit nordatlantisch-européischen Wet-
terregimen untersucht werden. Jedes dieser Regime weist robuste Ensemblestreuungs-
Anomalien in Z1000- und T2m-Vorhersagen auf. Auflerdem nimmt die Unsicherheit von
Wetterregime-Vorhersagen im Anschluss an schwache Polarwirbelereignisse um circa 10%
ab, gemessen an einer aus der Informationstheorie ibernommenen Metrik.

Diese Dissertation zeigt, wie S2S-Ensemblevorhersagen die Analyse und Attribution ex-
tremer Wetterereignisse voranbringen konnen. Dieser Ansatz ist prinzipiell nicht nur auf
die Stratosphére-Troposphére-Kopplung anwendbar, sondern kénnte dariiber hinaus Ein-
blicke in andere, bedeutende Wetterphdnomene bieten. Des Weiteren zeigt diese Arbeit,
wie die Unsicherheit in S25-Vorhersagen von der grofiskaligen Zirkulation abhéngt und
leistet dadurch einen Beitrag zu Fortschritten im Bereich der S2S-Vorhersagbarkeit.
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Chapter 1

Introduction

1.1 Numerical weather prediction

History of weather prediction

Without weather prediction, thousands of flights would be delayed, millions of farmers
would struggle to plan their harvests, and countless people would be caught unprepared
in the face of extreme weather events. Importantly, successful weather prediction relies on
collaborative efforts across diverse scientific disciplines. This collaboration encompasses
the development of new measuring instruments, the advancement of mathematical and
statistical methods, the continuous improvement of the physical understanding of the Earth
system, the implementation of computer algorithms and the communication of forecasts
to users. The common objective is to transform knowledge about the Earth system into
accurate forecasts of future weather. Based on weather forecasts, it is increasingly possible
today to predict extreme weather events, warn against them, and prepare accordingly. In
agriculture, weather forecasts assist in determining optimal times for sowing, irrigation,
and harvesting. In the energy sector, they are used to estimate upcoming energy supply
and demand, thereby playing a crucial role in the transition towards renewable energy.

The endeavour to understand and predict weather is deeply rooted in human history. Early
civilizations like the Babylonians (around 650 B.C.) and ancient Greeks' (around 350 B.C.),
as well as religious texts? (cf. Matthew 16:2b-3), used observations and basic principles to
make weather predictions, representing early prototypes for what would now be recognized
as empirical forecasting. Later, in the course of the 19th century, scientific measurements
of the atmosphere were employed, for example, to infer future low or high pressure weather
conditions from air pressure tendencies.

In the 20th century, the birth of numerical weather prediction then heralded the era of

IFor example, Aristotle developed theories about “Winds, their causes and effects” (cf. Chapter 4 in
the 2nd book of his treatise “Meteorologica”).

2“When it is evening, you say, ‘It will be fair weather; for the sky is red’ And in the morning, ‘It will
be stormy today, for the sky is red and threatening.”’
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modern weather forecasting. Empirical models were replaced by the attempt to solve
the physical equations that describe the temporal evolution of air masses in the Earth’s
atmosphere (Bjerknes, 1904). These equations are based on momentum, mass, and energy
conservation in a fluid, with assumptions and approximations appropriate for the properties
of the Earth. An approach to solve these equations numerically was first suggested by Lewis
Fry Richardson in his article “Weather Prediction By Numerical Process” (Richardson,
1922). Nearly thirty years later, in 1950, a breakthrough was achieved when a team
of meteorologists, mathematicians, and programmers — including Jule Charney, Philip
Duncan Thompson, Larry Gates, Ragnar Fjgrtoft, John von Neumann, and Klara Dan
von Neumann — successfully created the first computer-based numerical weather forecast
(Charney et al., 1950).

Principles and limits of numerical weather prediction

Numerical weather prediction employs a representation of the state of the Earth’s atmo-
sphere on a discrete spatial grid. By numerically solving the governing flow equations, this
state is propagated forward in time, time step by time step. Skillful weather forecasts rely
on two key elements: an accurate initial state of the Earth system (the initial conditions)
and a suitable numerical model. The initial conditions are determined by assimilating
observations into a prior forecast, aiming for the best estimate of the current atmospheric
state. Using this state and the governing equations, the numerical model then predicts the
future evolution of the atmosphere. While processes involving scales smaller than the grid
size, such as cloud microphysics, turbulence, or radiation, are not explicitly resolved, they
are represented using empirical formulas, known as parameterizations, to capture their in-
teraction with the resolved flow. Fig. 1.1 provides an overview of these basic components
involved in numerical weather prediction, from observations and the numerical model to
the final forecast.

Despite continuous improvements of weather forecasts over recent decades (Bauer et al.,
2015), predictability of the atmosphere remains limited. These limitations stem from the
fundamental complexity of the underlying physical equations, characterized by the presence
of coupled non-linear terms that make forecasts highly sensitive to initial conditions — a
property known as chaos. This sensitivity implies that minor differences in initial conditions
at the start of the forecast can lead to major differences across forecasts several days later.
In meteorology, this concept is metaphorically referred to as the butterfly effect (Lorenz,
1972), picking up the idea that even the flap of a butterfly’s wings can in principle funda-
mentally change the atmospheric state in the more distant future. However, uncertainties
in today’s weather forecasts are much larger than butterfly-scale effects: initial condition
uncertainty arises from measurement errors and the sparsity of observations, while model
uncertainty is primarily related to unresolved processes (cloud microphysics, turbulence,
radiation, etc.) and numerical approximations. Today, the skill horizon of weather fore-
casts extends to about one week, known as the practical limit of predictability, with some
differences across regions, seasons, variables and specific cases (Zhang et al., 2019). In
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Figure 1.1: Overview of the key components of numerical weather prediction. Initial con-
ditions are determined through data assimilation, combining a prior forecast with latest
observations. This state feeds into a numerical model, comprising the governing flow equa-
tions (combining fluid dynamics, thermodynamics and continuity) and empirical formulae
for subgrid-scale processes (parameterizations), which are then advanced in time to gener-
ate the next forecast.

addition to this practical limit, there is also a theoretical limit, known as the intrinsic limit
of predictability. While the practical limit could be extended by reducing initial condition
and model uncertainties in the future, the intrinsic limit is an inherent property of the
atmosphere. The chaotic nature of the atmosphere thereby imposes a fundamental limit
on the predictability of weather: even if model uncertainty could be completely eliminated
and initial condition uncertainty could be reduced by 99% compared to current levels, the

skill horizon of weather forecasts may not extend beyond about two weeks (Lorenz, 1969;
Selz, 2019; Selz et al., 2022).

Forecasts across different time horizons

Operational weather forecast systems are usually optimized towards predictions at specific
lead time ranges, because the relative importance of different processes can change over
lead time. For example, short-term forecasts often only target a specific region, allowing
for increased spatial resolution. On the other hand, long-term forecasts may benefit from
simulating not only the atmosphere, but also other, more slowly evolving, components
of the Earth system. Furthermore, frequent initialization of new forecasts may be more
valuable for short-term forecasts, whereas physical constraints such as mass and energy
conservation matter more at longer lead times.

Medium-range forecasts, covering lead times of up to approximately 1-2 weeks, may be
considered the core of global weather forecasting. Medium-range forecasts generally exhibit
a gradual decline in skill over lead time until the practical predictability limit is reached.
However, reaching this limit (typically at around one week) does not imply that forecast
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skill becomes virtually zero. Instead, skill typically saturates at a fairly low level, which is
insufficient for many practical applications.

Nonetheless, recent years and decades have seen an increasing interest in forecasts beyond
medium-range lead times, despite the low level of skill. The first attempts for seasonal
forecasts date back to the 1970s (Davis, 1976; Davis, 1978). Seasonal forecasts, also re-
ferred to as long-range forecasts, target predictions of about one to several months ahead.
Seasonal forecasting primarily relies on the idea that the ocean, and importantly sea sur-
face temperatures, may be predictable for much longer lead times than the atmosphere.
Additionally, seasonal forecasts are often communicated as temporally or spatially aggre-
gated quantities (e.g., monthly averages instead of daily averages), which helps to smooth
out unpredictable low-frequency fluctuations and thus results in higher skill.

This thesis mainly focuses on forecasts at lead times of approximately 3-6 weeks, known as
subseasonal-to-seasonal (S2S) forecasts (or extended-range forecasts). S2S forecasts bridge
the gap between medium-range and long-range forecasts, targeting lead times beyond two
weeks but less than a full season. Forecasting at these lead times poses significant chal-
lenges, as the memory of initial conditions has largely vanished, yet the time frame is too
short for the full effects of ocean-atmosphere coupling to unfold.

Fig. 1.2 presents forecast skill of 500 hPa geopotential height (Z500) in the Northern
extratropics across different lead times, from the medium-, over the extended-, to the long-
range. 7500 serves as a metric to evaluate predictions of the large-scale tropospheric flow.
Skill is quantified in terms of the root mean squared error skill score (RMSE-SS) (Wilks,
2005, chapter 7.3.3), where RMSE-SS=1 for perfect forecasts (high skill) and RMSE-SS=0
for forecasts that are only as accurate as a multi-year, seasonally evolving, climatological
average (low skill). At the medium-range, forecast skill quickly decays from about 0.9
at day 1 to about 0.2 at day 8. Beyond three weeks, daily RMSE-SS approaches zero
and even turns slightly negative, implying that a climatological average outperforms the
numerical forecast. Forecasts of weekly and monthly means show slightly better skill
than daily forecasts. Specifically, RMSE-SS remains above zero for weekly averages up
to weeks 3-4 and monthly averages throughout all three months. While these skill scores
represent average values and individual cases may exhibit higher skill, the consistently low
skill beyond the medium-range highlights the significant scientific and technical challenges
associated with S2S and long-range predictions. Given these limitations, it becomes crucial
to delve deeper into the complexities of S2S forecasting to understand its potential and
limitations. This sets the context for introducing S2S prediction in the following section.

1.2 Subseasonal-to-seasonal prediction

Fig. 1.2 has demonstrated that average skill of subseasonal-to-seasonal (S2S) forecasts
for mid-latitude weather in the troposphere is fairly limited. Nevertheless, there has been
increasing interest in these forecasts, in particular across sectors that rely on long-term
planning, including agriculture, energy supply and medical preparedness. For instance,
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Figure 1.2: Lead time evolution of 500 hPa geopotential height forecast skill in terms
of root mean squared error skill score (RMSE-SS) in the Northern extratropics (30° to
90°N latitude). Data is based on 44 seasonal forecasts from 1981 to 2023 initialized on
1 December, respectively, provided by the Furopean Centre for Medium-Range Weather
Forecasts (ECMWF) (model cycle 43rl). Note the non-uniform lead time scaling. Scores
are computed based on 1) daily instantaneous forecasts for single gridpoints, 2) 7-day
averages with 25° longitude and 12.5° latitude rolling mean windows applied, denoted as
weekly and 3) 30-day averages with 50° longitude and 25° latitude rolling mean windows
applied, denoted as monthly.

farmers use these forecasts to help determine sowing and harvesting times, energy providers
use them to anticipate fluctuations in renewable energy production, and public health
officials use them to prepare for outbreaks of diseases such as Malaria or Dengue Fever,
which are correlated with specific weather conditions.

While this thesis primarily concentrates on S2S time scales, many of these insights equally
apply to long-range forecasting.

Predictability across different scales and processes

At early lead times forecast error growth tends to be related to processes that take place at
spatial scales too small to be explicitly resolved on the model grid. Over lead time, these
errors can spread, amplify and interact with increasingly larger spatial scales (cf. Zhang
et al., 2007; Selz and Craig, 2015; Baumgart et al., 2019). Therefore, larger-scale features
in the atmosphere tend to be predictable for longer lead times than smaller-scale features
(see Fig. 1.3; taken from Buizza et al., 2015). This has important implications for how
S2S forecasts should be interpreted: While medium-range forecasts can usually provide
skillful predictions for weather at a specific location and at a specific time, skill of S2S
forecasts is thus generally limited to temporal and/or spatial averages (recall Fig. 1.2).
In this way, unpredictable high-frequency fluctuations average out over time, allowing the
more predictable signals associated with larger scales to stand out.
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Figure 1.3: Predictability horizons for processes of different spatial scales. In general,
larger spatial scales (see right-hand side of the diagram) tend to be predictable for longer
lead times (see upper side of the diagram). Processes smaller than the grid spacing of the
numerical model are unresolved (gray shading). Taken from Buizza et al. (2015).

Fig. 1.3 links the predictability of different spatial scales to specific processes in the at-
mosphere. Smaller-scale features, about 100km in size (e.g., individual troughs, fronts
with rain bands and wind gusts), are predictable for about one week, whereas larger-scale
features, about 1000 km to 10000 km in size, can be predictable for a few weeks or even
months, such as planetary-scale variations in the jet stream or large-scale spatial averages
of some atmospheric variables.

The scale-dependence of predictability implies that different atmospheric vertical layers
are associated with different predictability time scales: While skillful predictions of tro-
pospheric weather are limited to about one week, the stratospheric circulation (at about
10km to 50 km altitude) is characterized by significantly larger spatial and temporal scales
(Baldwin et al., 2003, also see chapter 2 of this thesis). Therefore, the stratospheric circu-
lation tends to be predictable for longer lead times than the troposphere, which is central
to the themes explored in this thesis.

In addition to the scale-dependence of predictability, other components of the Earth system,
such as ocean dynamics, sea ice, or land surface properties can be predictable for longer lead
times compared to atmospheric processes. While these phenomena are usually not crucial
for medium-range weather forecasts, they can play an important role for S2S forecasts.
Accurate representation of the coupling between atmosphere and such additional processes
requires increased computational effort. However, it can significantly enhance predictability
for the atmosphere at lead times where predictability would otherwise be virtually zero.
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From traceable to climatic predictability

One fundamental conceptual distinction between medium-range and S2S forecasts is an
altered understanding of predictability. Specifically, one may distinguish “traceable pre-
dictability” and “climatic predictability” (Toth and Buizza, 2019). Medium-range forecasts
primarily focus on traceable predictability, targeting the prediction of specific, individual
weather events at daily or even hourly resolution. For example, consider forecasting the tra-
jectory of a specific cyclone. At early lead times, the cyclone’s position and intensity may
be known almost perfectly. With proceeding lead time, discrepancies between predicted
and actual cyclone track emerge and these errors grow over lead time. In this example,
traceable predictability refers to the ability to track the cyclone’s evolution from the initial
conditions to some later lead time, typically up to about one week, before errors become
large and saturated. The intrinsic predictability limit implies that traceable predictability
is not infinite even if initial condition and model errors would be extremely small.

In contrast, climatic predictability refers to the ability to make statements about the
statistical occurrence of weather events. Rather than predicting the trajectory of a single
cyclone, the emphasis shifts to predicting the frequency of such events, often considered
as spatial or temporal averages. This form of predictability is also central to climate
simulations, where the objective is not to predict exact weather conditions at a specific time
but to determine the statistical occurrence of certain weather events, such as heatwaves,
extreme storms, or droughts.

S2S forecasts predominantly leverage the principle of climatic predictability, although some
large-scale phenomena may still exhibit traceable predictability. As a result, S2S forecasts
should not be interpreted deterministically: while medium-range forecasts can often offer
insights into specific weather events — like predicting that a particular cyclone over the
West Atlantic will bring high wind speeds to Northern Germany next week — S2S forecasts
should be interpreted statistically. For instance, they might indicate that the likelihood of
storms in Northern Europe during week x is y% higher than usual for this time of year.

The distinction between traceable and climatic predictability is particularly relevant at S2S
timescales, as traceable predictability has mostly vanished for many processes. However,
the concept also applies to other timescales. For instance, in medium-range forecasts,
the synoptic-scale flow may retain traceable predictability, whereas individual clouds and
thunderstorms typically exhibit only climatic predictability:.

Importance of initial versus boundary conditions

In S2S forecasts, the shift from traceable to climatic predictability is closely tied to a change
in the relative significance of initial and boundary conditions. Medium-range forecasts aim
for as accurate initial conditions as possible, exploiting the traceable predictability of the
atmosphere during the first 1-2 forecast weeks. Even minor imprecisions can cause forecasts
to quickly deviate from the actual atmospheric evolution due to the inherent chaos.

On the other hand, (quasi-)external constraints can act as an effective boundary condition.
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The definition of “external” can vary depending on the context, and there are few examples
of strictly external processes. For example, greenhouse gas concentrations (or their effect
on radiation) may be prescribed in climate simulations and in that case represent a strict
boundary condition for the atmospheric circulation. On weather time scales, the distinc-
tion between initial and boundary conditions can be less clear, and is often motivated by
different timescales associated with specific processes.

In forecasts aimed at predicting tropospheric weather, boundary conditions encompass
additional processes coupled to tropospheric weather that evolve over much longer time
scales and are thus predictable for longer lead times. For example, ocean and land surface
conditions can be considered quasi-external influences in S2S forecasts. Although their
evolution is usually part of a prognostic model (and therefore, this represents an initial
condition problem on its own), variations in land and ocean conditions tend to be small
during the timescale of typical mid-latitude weather events (e.g., low and high pressure
systems).

In medium-range forecasts, accurate representation of the evolution of boundary condi-
tions is often less critical, as their influence on the atmosphere tends to evolve over longer
timescales. However, in S2S forecasts, the relative importance of (effective) boundary con-
ditions increases compared to that of initial conditions. At such longer lead times, traceable
predictability and memory to the initial conditions has mostly vanished, meaning that the
initial conditions become increasingly unspecific for a particular forecasted atmospheric
state. Moreover, sufficient time has progressed for couplings between the atmosphere and
boundary conditions to unfold, which can have major effects on the large-scale atmospheric
flow. Boundary conditions can thus be regarded as a (quasi-)external forcing for tropo-
spheric weather, changing the statistics of weather events and hence providing climatic
predictability.

Although S2S forecasts are usually targeted at predicting tropospheric weather, they there-
fore aim to additionally represent many other processes. Importantly, these processes may
couple to tropospheric weather, acting as effective boundary condition control and provid-
ing climatic predictability (see Fig. 1.4). This may include ocean dynamics (including sea
surface temperatures and sea ice), land processes (including moisture exchange with the
atmosphere, snow cover and surface stress induced by vegetation) and upper atmospheric
dynamics (including the stratospheric circulation or ozone anomalies). More detailed in-
formation about such sources of S2S predictability is provided in chapter 2.

1.3 Ensemble forecasting

One key insight of the previous section was that weather forecasts are imperfect in practice,
as both initial conditions and the numerical model are associated with uncertainties. For
a given forecast, one fixed set of initial conditions and model parameters has to be chosen
within these uncertainty bounds. This forecast is deterministic in a sense that based
on these choices, a single evolution of the atmosphere is predicted. If the forecast was
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repeated with the exact same initial conditions and model parameters, it would be exactly
reproducible, provided that the computing infrastructure does not introduce random errors.
However, it follows from the chaotic nature of the atmosphere that another set of initial
conditions or model parameters, still within the given uncertainty bounds, could result in
a completely different forecast, especially at longer lead times. As a result, deterministic
forecasts are sometimes more and sometimes less skillful compared to the real atmosphere
evolution, simply by chance. These considerations motivate the use of ensemble forecasts,
an approach developed during the late 20th century (Epstein, 1969; Palmer et al., 1992;
Molteni et al., 1996) and by now one of the key concepts of operational weather forecasting
(Palmer, 2019). Ensembles are used across all forecasting time ranges, and in particular,
they play a key role in S2S forecasting.

Instead of a single, deterministic forecast, ensemble forecasting employs a Monte Carlo
technique, where different plausible sets of initial conditions and model parameters are
randomly sampled within the estimated uncertainty bounds. For each of these sets, a
deterministic forecast is produced. Therefore, while each individual ensemble member
provides a deterministic forecast, all ensemble members together provide a probabilistic
forecast, i.e., a full range of possible forecast scenarios. This is illustrated in Fig. 1.5, which
shows a 51-member ensemble forecast for temperature in Munich initialized on January
1st 2018. Up to a few days lead time, all ensemble members predict a quite similar
temperature evolution, with differences less than about 2°C. By day seven, substantial
differences between ensemble members have emerged, spanning a range from —7°C to 4°C.
By day 28, the ensemble distribution is close to the climatological distribution for that time
of year, with the most likely temperature being around —1 °C and the average temperature
being around —3°C.

Ensemble forecasts are computationally more expensive compared to a single deterministic
forecast and trade-offs have to be made between ensemble size, resolution, initialization
frequency, domain size, etc. However, ensembles bring a number of valuable advantages
compared to deterministic forecasts, some of which are discussed below.

First, the ensemble mean forecast equals the expected value of the forecast and thus mini-
mizes various skill metrics, including the mean squared error (MSE; even though individual
members can be more skillful than the ensemble mean in single cases). Using the ensemble
mean is therefore a common way to condense the information contained in a full ensemble
back to a single prediction. In many cases, such as for underlying Gaussian distributions,
the ensemble mean also represents the most likely forecast scenario.

Furthermore, compared to deterministic forecasts, ensembles provide a forecast distribution
and thereby allow for consideration of different forecast scenarios, including an assessment
of their likelihood. Importantly, this increases the economic value of ensemble forecasts
compared to that of deterministic forecasts (Zhu et al., 2002). As an example, suppose a
farmer needs to decide whether to irrigate their crops based on weather forecasts. They
have two types of forecasts available: deterministic and ensemble. Based on a deterministic
forecast, such as “There will be rain tomorrow.”, the farmer might decide not to irrigate the
crops, assuming they will be watered by rain. If the forecast is wrong and it does not rain,
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the farmer’s crops might suffer from lack of water, leading to decreased yield and potential
financial loss due to crop damage. In contrast, an ensemble forecast could provide a range
of possible outcomes, such as “There is a 60% chance of no rain, 30% chance of light rain,
and 10% chance of heavy rain tomorrow.” With the ensemble forecast, the farmer can
make a more informed decision. They might decide to irrigate the crops if the majority of
the forecast scenarios predict no rain, even if there’s a chance of light rain. This illustrates
how ensembles can help prevent potential damage and financial loss.

Moreover, forecast distributions provided by ensemble forecasts allow assessing risks for
extreme weather events. This is particularly important because weather extremes generally
have largest impact on society. “Extreme” here refers to the high-impact nature of a
weather event, but these events typically also represent statistical extremes in a sense that
they happen very rarely and thus correspond to the tails of the climatological distribution.
Therefore, large ensembles are required to properly sample forecast probabilities of weather
extremes.

An additional important benefit of ensemble forecasts is that they allow assessing forecast
uncertainty. A typical way to quantify uncertainty is via the variance across ensemble
members. Notably, the ensemble variance is related to the expected value of the squared
error of the forecast. Hence, ensembles facilitate estimating their own predictive skill.
Figure 1.5d shows that ensemble variance for the Munich temperature forecast is initially
small, indicating little uncertainty. Up to about 2 weeks lead time ensemble variance grows
until it saturates at a climatological level. While this is a very common qualitative behavior,
uncertainty can be anomalously small or large in individual cases. This forms the basis
for chapter 5 of this thesis, which identifies atmospheric states under which uncertainty at
S2S lead times is systematically smaller or larger compared to the climatological level.

In conclusion, the described advantages make ensembles valuable for forecasts across all
lead times, from short- and medium-range to S2S and seasonal prediction. Importantly,
S2S forecasts heavily rely on large ensembles: first of all, they aim to exploit climatic
predictability, which only allows for conclusions with probabilistic statements. Ensembles
are thus key to quantify these probabilities. Second, skill at S2S lead times is generally
quite low and only the use of large ensembles allows for predictions that are more skillful
than a multi-year climatological average. Finally, uncertainty at such long lead times
is generally large, but ensembles make it possible to quantify flow-dependent changes in
uncertainty, which can benefit decision-making.

1.4 Scope of the thesis
1.4.1 The stratospheric polar vortex and stratosphere-troposphere
coupling

This thesis focuses on S2S prediction of mid-latitude weather in the troposphere dur-
ing winter. The previous sections have outlined that the intrinsic predictability of mid-
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latitude weather is limited to the medium-range, which extends to approximately two
weeks. Nonetheless, couplings to more slowly evolving Earth system components can pro-
vide climatic predictability also at longer lead times. Such components therefore represent
sources of S2S predictability.

For S2S prediction of mid-latitude weather in winter, one of the most important sources
of predictability is the circulation in the polar stratosphere. The circulation in the polar
stratosphere during winter is characterized by strong circumpolar westerly winds at about
10km to 50km altitude, known as the (stratospheric) polar vortex. The polar vortex
represents a key source for tropospheric predictability at S2S time scales and this is because
of two important factors.

First, polar vortex strength can modulate the tropospheric circulation (Kidston et al.,
2015). Although the complete understanding of the underlying mechanisms is still under
debate (e.g., see Baldwin et al., 2021), it is generally acknowledged that anomalies in polar
vortex strength are linked to temperature anomalies in the polar middle and lower strato-
sphere that are consistent with changes in tropopause height and associated shrinking or
stretching of the tropospheric air mass column in the Arctic. Specifically, a deceleration
of the polar vortex is associated with adiabatic warming in the polar lower stratosphere,
which is consistent with a tropopause descend. In the troposphere, weak polar vortex
events are followed by increased surface pressure over the polar cap, northward of about
60°N. These pressure anomalies project onto the leading mode of planetary-scale variability
in the extratropical troposphere, which is known as the Arctic Oscillation (AO) (Thomp-
son and Wallace, 1998). The signal tends to be strongest over the North Atlantic sector
(e.g., Charlton-Perez et al., 2018), manifesting in a negative phase of the North Atlantic
Oscillation (NAO). A negative NAO phase is linked to a southward shift of the North At-
lantic storm track, resulting in modulated frequencies of, e.g., cyclones, cold-air outbreaks
and unusual precipitation events (Thompson and Wallace, 1998). Likewise, strong polar
vortex episodes are associated with polar lower stratospheric cooling, a lifted tropopause
over the Arctic and positive AO and NAO phases in the troposphere.

Second, the polar vortex tends to be predictable for longer lead times than tropospheric
weather. Importantly, an exceptionally weak or strong polar vortex can lead to correspond-
ing weakening or strengthening of the circulation in the lowermost stratosphere, where these
anomalies can persist throughout several weeks (Baldwin and Dunkerton, 1999). Therefore,
skillful prediction of the polar vortex can provide climatic predictability for tropospheric
mid-latitude weather (recall Fig. 1.4).

The most prominent phenomena of polar vortex extremes are rapid polar vortex break-
downs, known as sudden stratospheric warmings (SSWs) (Baldwin et al., 2021). In the
stratosphere, these events are associated with a strong deceleration of the polar vortex
westerlies, which is followed by a reversal of the zonal-mean wind (from westerly to east-
erly). This deceleration is accompanied by an intense warming of the mid and lower polar
stratosphere by several tens of degrees within only few days. In the lowermost strato-
sphere, SSWs are often followed by long-lived easterly zonal-mean zonal wind anomalies
for up to about 2 months. In the troposphere, SSWs are on average followed by a nega-
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tive phase of the AO (Baldwin and Dunkerton, 2001). The associated equatorward shift
of the tropospheric jet streams has been linked to wet and high-wind anomalies at lower
latitudes (e.g., over southern Europe; Ayarzagiiena et al., 2018) and to cold anomalies at
high latitudes (e.g. over Scandinavia and Siberia; Kolstad et al., 2010; Tomassini et al.,
2012; Butler et al., 2017). In conclusion, SSWs are followed by persistent anomalies in
the stratospheric circulation, which can couple to the troposphere. Therefore, SSWs are
of particular interest for S2S predictions of mid-latitude weather in winter.

Chapters 4 and 5 will investigate the formation of SSWs in greater detail, as well as their
surface response and impacts on tropospheric predictability. To provide a brief overview
of SSWs, Fig. 1.6 illustrates the dynamics and the surface response of SSWs, based on a
specific example and a composite-mean of multiple events. Fig. 1.6a-c show snapshots of
the polar vortex using potential vorticity® on the 850 K isentropic surface during a SSW
that occurred on 12 February 2018. While the polar vortex seems intact and roughly
centered over the pole 8 days prior to the SSW date (Fig. 1.6a), the vortex has split into
two distinct sub-vortices by the event central date (Fig. 1.6b) and it has been eroded
further 8 days later (Fig. 1.6¢). The SSW is associated with an intense deceleration of
the climatological westerly winds, which are replaced by easterly winds following the event
(Fig. 1.6d). Fig. 1.6e shows that SSW events are on average followed by a negative AO
phase, indicated by high pressure anomalies over the polar cap and low pressure anomalies
in mid-latitudes. Consistent with the negative AO phase, SSWs are on average followed
by cold anomalies over northern FEurasia and warm anomalies over the Arctic Sea and
southern Asia.

This thesis examines SSWs and strong polar vortex events, with a focus on understanding
their influence on subsequent tropospheric extreme events and their contribution to S2S
predictability in the troposphere. A key aspect of this work is the use of a large, rela-
tively new set of S2S ensemble forecasts from a state-of-the-art weather forecast model.
This extensive dataset enables the application of advanced statistical techniques, allowing
for a more robust analysis of stratosphere-troposphere coupling. Moreover, by leveraging
this dataset, previously unrecognized aspects of S2S predictability linked to polar vortex
extreme events are uncovered. The following section outlines the specific research ques-
tions addressed. More background about polar vortex dynamics and also other sources of
subseasonal predictability is provided in chapter 2.

3Potential vorticity combines absolute vorticity of a fluid parcel with its vorticity due to the rotation
of the planet, while taking into account the vertical density profile. Importantly, potential vorticity is
conserved on isentropic surfaces for adiabatic frictionless motion. Potential vorticity data was provided by
Philip Rupp.
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Figure 1.6: Overview of sudden stratospheric warmings. a-c. Evolution of the polar vortex
during the SSW of 12 February 2018, displayed as stereographic maps of potential vorticity
(PV) on the 850 K isentropic surface from 30 °N to 90 °N. PV is plotted using a linear color
scale with values ranging from 0 PVU to 1000 PVU with an additional white contour line
at 500PVU. d. Climatology of the zonal-mean zonal wind at 60°N and 10hPa (UL ),
a common metric to measure the polar vortex strength. Black lines and shading denote
the multi-year ERA5 climatology (thick line: mean, shading: 10-90 percentiles, thin lines:
min/ max). Magenta line shows the polar vortex evolution during the winter 2017/18. The
SSW of 12 February 2018 is characterized by an intense deceleration of the zonal-mean
zonal wind. e. Composite-mean of 2-meter temperature (T2m; shading) anomalies and
mean-sea-level pressure (MSLP; contours every 1hPa, negative values dashed) anomalies
during lag days 10 to 60 following SSWs (41 events, based on ERA5 data).
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1.4.2 Research questions
(1) How variable is the role of tropospheric wave activity in the formation of SSWs?

SSWs are primarily forced by interactions between the zonal-mean flow and planetary
waves (see section 2.2.2). In particular, strong pulses of tropospheric wave activity can
trigger SSWs (Matsuno, 1971). In the troposphere, such pulses of wave activity can be
associated with persistent anticyclones, known as blockings, in particular over the Eurasian
continent (e.g., Garfinkel et al., 2010). However, anomalous wave activity is not always
required for SSWs formation, because tropospheric wave activity would already be sufficient
under average climatological conditions, i.e., wave activity does not have to be extreme
(Plumb, 1981; Birner and Albers, 2017; de la Camara et al., 2019). Quantifying how
important anomalous upward wave activity really is in triggering SSWs is challenging,
because SSWs occur only about every other winter and hence, the total number of observed
SSWs is relatively small. In the first results part of this thesis, large statistics of SSWs
are analyzed, which were predicted in operational S2S ensemble forecasts. The majority
of these SSWs were only predicted in the forecasts and never actually occurred in the real
atmosphere. Nevertheless, these predicted SSWs are consistent with the model physics and
given that SSWs are large-scale phenomena, the assumption may be justified that their
representation in the model is reasonably realistic. This approach has in other contexts
been referred to as an UNprecedented Simulated Extremes using ENsembles (UNSEEN)
approach (Kelder et al., 2020). The UNSEEN approach allows for investigating several
thousand SSW events, which would require more than ten thousand years to observe in
the real atmosphere. Thereby, the role of tropospheric wave forcing in the formation
of SSWs will be revisited with high statistical confidence. Specifically, the focus lies on
the following questions: How often may SSWs be attributable to preceding anomalies in

upward wave activity? How does the occurrence of tropospheric blockings over Eurasia
increase SSW likelihood?

(2) How, and to what extent, can tropospheric circulation extremes be attributed to
SSWs?

SSWs tend to be followed by anomalies in the Northern Annular Mode (NAM; Baldwin
and Dunkerton, 2001) reaching from the stratosphere to the troposphere. The near-surface
NAM is also referred to as Arctic Oscillation (AO) and it condenses information about jet
latitude and strength, with implications for pressure, wind, temperature and precipitation.
SSWs are on average followed by a negative phase of the AO with a magnitude of about
—0.3 standard deviations (e.g., see Fig. 4.8, or Oehrlein et al., 2021). While this mean-
response can be derived from observed SSWs, analyzing the full post-SSW AO distribution
is challenging due to the scarcity of SSW events. In particular, this holds for quantify-
ing the frequency of AO extremes. However, such changes in extreme event frequency
are particularly relevant for the society and economy, because of associated high-impact
weather. Based on the UNSEEN approach, several thousand SSW events are employed to
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analyze AO extreme occurrence following SSWs, focussing on the following questions: How
do SSWs affect AO extreme probability? How often may AO extremes be attributable to
preceding SSWs? What is the corresponding impact of strong polar vortex episodes on
AO extremes?

(3) How do stratospheric circulation extremes affect tropospheric predictability?

Strong and weak polar vortex events are known to affect mid-latitude weather over the
course of several weeks and thereby provide climatic predictability at S2S time scales
(Butler et al., 2019). Previous studies have demonstrated that this modulation of mean
weather conditions following polar vortex events indeed translates into enhanced skill of
S2S forecasts (Sigmond et al., 2013; Tripathi et al., 2015). For example, SSWs are on
average followed by lower temperatures over Scandinavia and by a negative NAO phase.
However, predictability measures that are not related to such changes in the mean, but
to changes in variance have been studied much less. Understanding changes in variance
is important, because it measures the uncertainty of a prediction. Here, changes in S2S
forecast uncertainty induced by polar vortex extreme events are analyzed. Specifically, the
following questions are posed: How do SSWs affect the subsequent forecast uncertainty of
the polar vortex? How do polar vortex extremes (including SSWs) affect the subsequent
forecast uncertainty of the troposphere? How are tropospheric circulation regimes related
to subseasonal forecast uncertainty in general?

1.4.3 Thesis outline

This thesis is structured as follows.

Chapter 2 provides a more detailed background on the sources of S2S predictability for mid-
latitude weather in the troposphere. This includes a brief overview about the atmospheric
general circulation and, specifically, a theoretical background about polar vortex extreme
events and stratosphere-troposphere coupling.

Chapter 3 introduces the datasets used in this study. Different methods for computing S2S
forecast anomalies are discussed and a new open-source python library for handling these
forecasts is introduced.

Chapters 4 and 5 present the results. In chapter 4, ensemble forecasts are leveraged to boost
the statistics of SSWs using the UNSEEN approach. This allows for robust quantification
of the tropospheric role in the formation of SSWs via anomalous upward wave propagation.
Furthermore, an attribution analysis is presented for weak and strong polar vortex events
and subsequent AO extremes. Chapter 5 focuses on how extreme polar vortex states affect
the uncertainty in S2S forecasts in the stratosphere and in the troposphere. In addition,
a generalized analysis is presented about how different tropospheric large-scale weather
regimes are inherently linked to distinct spatial patterns of uncertainty:.

Section 6 discusses the main findings, limitations and possible future work.
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Chapter 2

Sources of subseasonal-to-seasonal
predictability

This thesis primarily investigates the predictability of mid-latitude tropospheric weather
during winter at lead times of 2-6 weeks, i.e., at subseasonal-to-seasonal (S2S) time scales.
Predictability at these lead times is facilitated by remote couplings across the atmosphere
and interactions between the atmosphere and the Earth’s surface.

This chapter provides a background on the atmospheric circulation and delves into some of
most relevant phenomena to S2S prediction. Special emphasis is placed on the stratospheric
polar vortex and its implications for tropospheric weather and forecasting. In addition,
teleconnections from the tropics are briefly introduced.

For a comprehensive overview of further sources of S2S predictability, including ocean-
atmosphere coupling (e.g., via SST anomalies or sea ice) and land-atmosphere coupling
(e.g., via soil moisture or snow cover), the reader is referred to Robertson and Vitart
(2019).

2.1 Overview of atmospheric structure and general circu-
lation

In the Earth’s atmosphere, density and pressure generally decrease with height. Temper-
ature, on the other hand, follows a more complex vertical profile, which motivates the
classification of the atmosphere into five layers: the troposphere (the lowest layer), the
stratosphere, the mesosphere, the thermosphere, and the exosphere. Each of these lay-
ers has distinct thermodynamic properties and circulation patterns. Most of the dynamics
relevant to surface weather occur in the troposphere, but to some extent, also in the strato-
sphere. These two layers are the main foci of this thesis and will be presented more in
detail below.

The troposphere extends up to about 20 km near the equator and about 10 km near the
pole. In general, temperature in the troposphere decreases with height, at an average lapse
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rate of about 6.5 Kkm™"', primarily because air is warmed by the surface. A local tem-
perature minimum is reached at the top of the troposphere, which can be used to define
the tropopause — the boundary between troposphere and stratosphere. In addition to the
characteristic vertical temperature profile, the troposphere exhibits a strong meridional
temperature gradient resulting from differential solar heating. This meridional gradient,
together with the Coriolis effect, forms the basis for two strong westerly jets per hemi-
sphere (see Fig. 2.1). The first jet, called the subtropical jet (STJ), is located near the
tropopause at around 30°N/S and results from poleward motion of upper tropospheric air
that is deflected eastward by the Coriolis force. The second jet, called the eddy driven jet
(EDJ), is located at around 50°N/S and extends from the surface up to the tropopause.
It owes its existence to Rossby waves, which are large-scale longitudinal wave patterns of
temperature, pressure and wind anomalies (e.g., see review by Wirth et al., 2018). Rossby
waves result from angular momentum conservation on a rotating sphere. They are pre-
dominantly generated by orography or by baroclinic instability, which is a fluid instability
that allows small-amplitude Rossby waves to mutually amplify. In addition to their fun-
damental impact on the two zonal jets, Rossby waves are crucial for mid-latitude surface
weather, manifesting in low- and high-pressure systems and are directly influencing wind,
temperature, and precipitation. Additionally, Rossby waves play an important role in
redistributing heat and momentum within the atmosphere.

Above the troposphere lies the stratosphere, extending from the tropopause up to about
50 km. Unlike the troposphere, the lapse rate in the stratosphere is negative, meaning that
temperature increases with height, which results from UV absorption in the ozone layer.
Ozone production, based on photodissociation of oxygen, is dominant from around 10 km
to b0 km altitude. At higher altitudes, the atmosphere is too thin and at lower altitudes,
much of the UV radiation has already been absorbed. Importantly, the resulting negative
lapse rate in the stratosphere creates strongly stable stratification (i.e., strong restoring
buoyancy force acting on vertically displaced air parcels). Consequently, convection is
suppressed, the flow is baroclinically stable in general, and vertical mixing is much less
significant than in the troposphere.

The stratosphere features several large-scale circulation patterns, including the Quasi-
Biennial Oscillation (QBO), the Brewer-Dobson-Circulation (BDC) and the polar vortex
(also named polar night jet, PNJ). These patterns are illustrated in Figures 2.1 and 2.2,
which present vertical cross-sections of zonal-mean zonal wind and temperate during North-
ern Hemisphere winter.

The QBO dominates the zonal circulation in the tropical stratosphere (see Fig. 2.1) and
describes a recurrent downward propagation of westerly and easterly winds at a remarkably
regular periodicity of approximately 28 months (Baldwin et al., 2001). The QBO is pri-
marily driven by upward propagating atmospheric waves of a wide range of spatial scales
and their interaction with the zonal-mean flow (Lindzen and Holton, 1968; Holton and
Lindzen, 1972). Due to its influences on other regions of the atmosphere, the QBO may
provide predictability for S2S and seasonal forecasts. However, numerical models often
struggle to accurately simulate the QBO, its 28-month periodicity or its teleconnections
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(Anstey et al., 2022). These issues are presumably related to the significant contributions
of small-scale waves, which are largely unresolved in models.

Furthermore, the stratospheric vertical and meridional circulation is characterized by the
BDC (Butchart, 2014). In the tropical stratosphere, the BDC is shaped by wave-induced
upwelling near the tropical tropopause, which thereby represents the major entry point of
water vapour into the stratosphere. In the extratropical stratosphere, the BDC involves
poleward motion and downwelling which is an important process in redistributing water
vapour and ozone within the stratosphere.

Finally, the stratospheric circulation in polar regions is characterized by relatively weak and
regular easterly winds during summer, and by strong and highly-variable westerly winds
during winter. These strong winter westerly winds form the polar vortex, centered around
60°N, 10hPa (see Fig. 2.1). Due to its predictability over longer lead times compared to
the troposphere and its influence on extratropical tropospheric weather, the polar vortex
represents an important source of S2S predictability. As such, it is the main focus of this
thesis and will therefore be described in more detail in the following section.

2.2 The circulation in the polar stratosphere

2.2.1 The polar vortex

Absence of sunlight and radiative cooling of ozone cool the polar stratosphere to very low
temperatures during winter. The resulting meridional temperature gradient is accompanied
by strong westerly winds throughout the polar stratosphere, known as the (stratospheric)
polar vortex. Following the seasonal evolution of the meridional temperature gradient,
the vortex builds up in autumn, becomes strongest in mid-winter and disappears in spring.
Despite the regular seasonality of radiative forcing, the polar vortex strength is highly vari-
able, especially in the Northern Hemisphere, from day-to-day to inter-annual timescales,
due to Rossby waves and their interaction with the zonal-mean flow. Appendix A provides
a brief introduction to the relevant theory of the dynamics of these waves and their impact
on polar vortex strength and variability. Here, the focus is more on a phenomenological
description of polar vortex extreme events and their coupling to the troposphere.

Polar vortex dynamics are characterized by the continuous interplay of strengthening driven
by radiative cooling and weakening driven by the dissipation of upward propagation of
Rossby waves. The radiative forcing acts on relatively long time scales of a few weeks
(e.g., Andrews et al., 1987), whereas Rossby wave activity exhibits significant day-to-day
variability. Rossby waves are primarily generated in the troposphere through orographic
forcing and baroclinic instability. According to equation A.7, these waves may propagate
vertically into the stratosphere when the background zonal flow is westerly, but weaker
than the wavenumber-dependent critical wind speed, U, (Charney and Drazin, 1961).

These conditions also influence the polar stratospheric circulation during summer: the
positive meridional temperature gradient (warmer over the pole than in mid-latitudes)
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Figure 2.1: Zonal-mean zonal wind (u) during Boreal winter based on 1979-2018 ERA5
reanalysis data. a. Temporal average of v and b. temporal standard deviation of
(primarily quantifying inter-seasonal and inter-annual variability), based on monthly data.
Text boxes denote approximate locations of the subtropical jet (STJ), eddy-driven jet
(EDJ), polar vortex/ polar night jet (PNJ) and Quasi-Biennial Oscillation (QBO).
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Figure 2.2: As Fig. 2.1, for temperature.
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leads to easterly winds, which prevent vertical wave propagation from the troposphere into
the stratosphere, resulting in very little variability of the stratospheric summer easterlies
(recall Fig. 1.6d).

During winter, as the stratospheric meridional temperature gradient becomes negative, the
strong westerly winds of the polar vortex build up. In the Northern Hemisphere, orography
leads to substantial planetary wave activity, resulting in a generally weaker polar vortex
compared to the Southern Hemisphere. With typical westerly winds of around 20ms™!
to 40m s~ !, the vortex becomes susceptible to upward propagation of waves with zonal
wavenumber 1 (i.e., one trough and one ridge along one latitude circle; U, ~ 32ms~! for
stationary waves) and sometimes zonal wavenumber 2 (i.e., two troughs and two ridges
along one latitude circle; U, ~ 18 ms™! for stationary waves). The interaction between
waves and the mean-flow in the Northern Hemispheric stratosphere not only leads to a
weakened but also a much more variable polar vortex. In extreme cases, disruptions can
cause complete break downs of the polar vortex. These events are called sudden strato-
spheric warmings (SSWs), which will be described in more detail in the following section.

2.2.2 Sudden stratospheric warmings

When sunlight returns to the polar stratosphere during spring, the meridional temperature
gradient erodes and the polar vortex weakens, until a final breakdown typically occurs
around April (in the Northern Hemisphere). However, wave dynamics can induce major
disruptions of the polar vortex also during mid-winter, which can affect the circulation in
stratosphere and troposphere over the course of several weeks. These rapid deceleration
events, first discovered by Richard Scherhag in 1951 (Scherhag, 1952), are called sudden
stratospheric warmings (SSWs) (Baldwin et al., 2021), named for the drastic temperature
increase of up to about 50 K within only a few days. In the Northern Hemisphere, 33 of
the winters between 1960/61 and 2022/23 experienced a SSW (=~ 52% or once every 1.91
winters), with 7 of those winters experiencing two SSWs (=~ 7% or once every 9 winters),
resulting in a total of 40 SSWs (0.63 per year).

SSWs are fundamentally driven by the interaction of planetary waves and the mean-flow
(Matsuno, 1971; Geisler, 1974; Holton and Mass, 1976; Plumb, 1981). Planetary Rossby
waves, predominantly generated in the troposphere, can propagate up into the stratosphere,
as described in the previous section. Upward propagating Rossby waves generally trans-
port heat poleward. Under conservative propagation, this is compensated by adiabatic
cooling due to the induced upwelling, resulting in no net change of temperature. However,
non-conservative effects, including those due to non-linear wave breaking and dissipation,
transfer the Rossby wave’s intrinsic eastward momentum to the zonal-mean flow. This
deceleration of westerlies is associated with a poleward Coriolis torque, resulting in conver-
gence over the pole. This induces upwelling anomalies above and downwelling anomalies
below, leading to a relative adiabatic cooling of the upper stratosphere and warming of the
lower- to mid-stratosphere.

In the aftermath of SSWs, the climatological westerlies in the polar stratosphere are re-
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placed by easterly zonal winds. These anomalies can persist for several weeks, particularly
in the lower stratosphere where radiative time scales are longest (Baldwin et al., 2003).
This change prevents further upward propagation of waves, thereby suppressing wave ac-
tivity in the mid-stratosphere.

2.2.3 Stratosphere-troposphere coupling

Extreme states of the polar vortex, including SSWs and strong polar vortex episodes, can
be followed by persistent anomalies of tropospheric weather over the course of several weeks
(Kidston et al., 2015).

Specifically, SSWs are followed by increased near-surface pressure over the polar cap, pole-
ward of approximately 65°N. A comprehensive theory for this downward response is still
lacking (Baldwin et al., 2021). Qualitatively, the increase in near-surface pressure can
be explained by the convergence of air over the polar cap at stratospheric levels during
SSWs. However, the accumulated air mass in the polar stratosphere can not explain the
full magnitude of the signal near the surface.

From a potential vorticity perspective, SSWs are associated with negative potential vor-
ticity anomalies in the polar stratosphere, which have remote effects on the troposphere.
However, this perspective also falls short in explaining the complete downward response to
SSWs, as the tropospheric response would be expected to decrease monotonically from the
tropopause to the surface (Ambaum and Hoskins, 2002). In contrast, both observations
and model studies indicate that the post-SSW signal is stronger near the surface than in
the mid-troposphere.

It is generally acknowledged that important missing links in these perspectives are tro-
pospheric feedbacks between the longitudinally uniform response and atmospheric waves,
including tropospheric eddies and planetary waves. These feedbacks likely play a critical
role in the downward response to polar vortex extremes.

Specifically, the lower stratosphere acts as an upper boundary condition for the troposphere
and stratospheric anomalies can thereby modulate the characteristics of tropospheric wave
dynamics, including their interaction with the zonal-mean flow, resulting in an amplifica-
tion of the tropospheric signal (Domeisen et al., 2013; Hitchcock and Simpson, 2016; Smith
and Scott, 2016; Rupp and Birner, 2021).

To trace impacts of SSWs and strong polar vortex events on the large-scale circulation
from the stratosphere to the troposphere, one suitable diagnostic are Northern Annular
Mode (NAM) indices (Baldwin and Dunkerton, 1999). The NAM represents the dominant
mode of variability of daily geopotential height anomalies in the Northern Hemisphere ex-
tratropics. The NAM indices are constructed based on an Empirical Orthogonal Function
(EOF) and at each vertical level the NAM index corresponds to the first principal compo-
nent time series. The sign convention is such that a positive NAM index corresponds to a
strengthened and poleward-shifted zonal circulation, while a negative NAM index indicates
a weakened and equatorward-shifted zonal circulation.
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Figure 2.3: Northern Annular Mode (NAM) composite-mean of (A) weak and (B) strong
polar vortex events. Events are defined according to —3 and +1.5 standard deviations of
the 10-hPa NAM index. Red: negative NAM values Blue: positive NAM values. Colored
contour intervals correspond to 0.25 standard deviations, with additional white contour
lines every 0.5 standard deviations. Thin horizontal line denotes the approximate height
of the tropopause. Taken from Baldwin and Dunkerton (2001).
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Fig. 2.3 presents a landmark figure of stratosphere-troposphere coupling by Baldwin and
Dunkerton (2001), showing a NAM composite for weak and strong polar vortex events.
Weak polar vortex events, such as SSWs, represent a weakening of the zonal circulation
and therefore manifest in a negative NAM in the stratosphere. In the aftermath of such
events, the average NAM index remains negative in the lowermost stratosphere and the
troposphere over the course of approximately two months.

Near the surface, the negative NAM indicates the increase in surface pressure over the
polar cap. This increase results in a reduced meridional pressure gradient, leading to a
weakened and southward shifted eddy-driven jet. In addition, these changes are associated
with anomalous near-surface weather, such as an increased risk for persist high-pressure
systems and cold-air outbreaks on the poleward flank of the jet, as well as increased storm
frequency around its new central latitude. Studies have shown that this signal tends to be
strongest over the Atlantic (associated with a negative phase of the NAO) and enhances
the likelihood of cold air outbreaks over Eurasia (Thompson et al., 2002; Lehtonen and
Karpechko, 2016; Afargan-Gerstman et al., 2020; Kautz et al., 2020; Huang et al., 2021).

Likewise, strong polar vortex events manifest in a positive NAM. In the troposphere, these
events tend to be followed by a positive NAO, associated with a poleward jet shift and
greater likelihood for storm series (Domeisen et al., 2020c; Rupp et al., 2022).

From this perspective stratospheric conditions may provide predictability on S2S time
scales. Indeed, past literature has demonstrated improved forecast skill for ensemble fore-
casts initialized around SSWs (Sigmond et al., 2013) or strong polar vortex episodes (Tri-
pathi et al., 2015). However, the employed skill measures such as the correlation skill score
(CSS) primarily rely on the ensemble mean signal (e.g., the above mentioned negative NAO
state following SSWs). Section 5.2 will demonstrate that polar vortex extreme states are
additionally followed by anomalies in ensemble spread, which manifests in skill scores such
as the mean squared error.

2.3 Teleconnections from the tropics

In addition to the stratosphere, atmospheric teleconnections between the extra-tropical
troposphere and the tropics can provide predictability at S2S and seasonal lead times. The
following subsections introduce the most relevant of these teleconnections.

El-Nifio-Southern-Oscillation (ENSO)

The El Nino-Southern Oscillation (ENSO) (Timmermann et al., 2018) is a coupled atmosphere-
ocean phenomenon occurring in the tropical Pacific. Climatologically, trade winds push
warm water at the ocean surface from the eastern towards the western equatorial Pacific,
creating a longitudinal sea surface temperature (SST) gradient. This results in higher SSTs
in the western Pacific, which lead to enhanced convection and precipitation in this region,
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while the eastern Pacific remains substantially cooler and experiences less convection and
precipitation.

Situations of weakened trade winds and a reversal of the climatological SST pattern rep-
resent events that are known as El Nino. During El Nifo, the western Pacific experiences
anomalously low SSTs, while the eastern Pacific exhibits anomalously high SSTs. This re-
versal not only leads to significant precipitation anomalies in the equatorial Pacific region
but also affects the global climate system. El Nifio events occur approximately once every
2 to 7 years and typically last for about 9 to 12 months.

Conversely, events where the climatological patterns of SSTs and precipitation over the
equatorial Pacific intensify are referred to as La Nina. La Nina and El Nino represent
opposite phases of ENSO. Among the various indices used to characterize ENSO, this
thesis employs the ENSO 3.4 index (Trenberth, 1997), which is based on standardized SST
anomalies over the equatorial Pacific and one of the most commonly used metrics.

ENSO represents a significant source of atmospheric predictability at S2S and seasonal
timescales (Horel and Wallace, 1981; Taschetto et al., 2020, November). Specifically,
ENSO-induced anomalies in tropical heating can trigger Rossby wave trains that influ-
ence weather in the extratropics. For instance, during El Nifio events, the Aleutian Low
tends to intensify, which has important implications for weather over North America. Addi-
tionally, ENSO has been linked to anomalies over the North Atlantic and Europe, although
these signal are generally weaker than those over the North Pacific (Bronnimann, 2007;
Scaife et al., 2017).

Beyond its tropospheric teleconnections, ENSO has been linked to anomalous stratospheric
polar vortex states through various mechanisms (Domeisen et al., 2019, and references
therein). Specifically, increased wave activity during El Nino events is associated with
a weaker polar vortex by accelerating the QBO, strengthening the BDC, and enhancing
vertical wave propagation in the extratropics. Consequently, ENSO can affect climate,
particularly over the North Atlantic and Europe, also through a stratospheric pathway.

Madden-Julian-Oscillation (MJO)

The Madden-Julian Oscillation (MJO) (Madden and Julian, 1971; Zhang, 2005) describes
an eastward-propagating precipitation pattern in the tropics with a periodicity of about 30
to 60 days. The state of the MJO is often represented in a 2D phase space, spanned by the
first two principal components of an Empirical-Orthogonal-Function analysis of zonal wind
and precipitation (or a proxy thereof) in the tropics (e.g., Wheeler and Hendon, 2004).
These two principal components are used to compute an MJO amplitude and phase, often
discretized into eight characteristic phases. In the first phase, anomalous precipitation
occurs over the Indian ocean, where convection is triggered by warm SSTs, leading to
lower-level convergence, upper-level divergent outflow, and latent heat release. Although
a complete theory for the MJO mechanism is still lacking, coupling to atmospheric trop-
ical waves, including equatorial Rossby waves and Kelvin waves, appears to be play an
important role in the organization and eastward-propagation of this convection pattern.
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Rainfall anomalies associated with the MJO are usually strongest over the Indian ocean
(phases 1-3) and the Maritime continent (phases 4-5), and become substantially weaker
when propagating over the Pacific (phases 5-7) and Atlantic (phase 7-8).

While its implications on weather and climate are strongest in the tropics, the MJO can
excite Rossby waves that propagate into the extratropics. Specifically, when MJO-induced
convection reaches the eastern Indian Ocean and western Pacific, this favors a negative
phase of the Pacific North Atlantic (PNA), leading to temperature, wind and rainfall
anomalies over North America (Mori and Watanabe, 2008). Over the North Atlantic and
Europe, the response to the MJO projects onto the NAO: enhanced convection over the
Eastern Indian Ocean tends to be followed by a negative NAO phase about two weeks
later, and vice versa (Cassou, 2008).

Due to its intraseasonal timescale and its teleconnections with the extratropics, the MJO
is considered an important source of S2S predictability (Woolnough, 2019). However,
current atmospheric models still have some issues with a representing the MJO, including
its initiation, propagation and extratropical response (e.g., Vitart, 2017). These deficiencies
are presumably related to the involved complex interactions between small-scale processes
related to convection and large-scale processes related to atmospheric waves. Therefore, it
can be assumed that the full potential predictability offered by the MJO has not yet been
fully realized.

Quasi-Biennial-Oscillation (QBO)

The Quasi-Biennial Oscillation (QBO) is an alternating pattern of westerly and easterly
zonal winds in the tropical stratosphere with a periodicity of approximately 28 months.
By influencing the circulation in the tropical troposphere and in the polar stratosphere,
the QBO can contribute to S2S and seasonal predictability, provided that the QBO itself
and its teleconnections are realistically simulated in models (Anstey et al., 2022).

Specifically, QBO-induced easterly winds near the the tropical tropopause tend to en-
hance convection and strengthen the MJO (Yoo and Son, 2016), though the underlying
mechanisms remain debated. In the extratropics, the QBO can modulate Rossby wave
propagation, which affects the strength of the polar vortex. Specifically, QBO-induced
easterly winds in the lower tropical stratosphere tend to suppress wave propagation from
mid-latitudes into the tropical stratosphere, leading to enhanced wave propagation into
the polar stratosphere, which tends to weaken the polar vortex (Holton and Tan, 1980).



Chapter 3

Data and Methodology

3.1 Data

3.1.1 Subseasonal-to-seasonal ensemble forecasts

This thesis primarily uses operational subseasonal-to-seasonal (S2S) ensemble forecasts
provided through the S2S prediction project (Vitart et al., 2017). The project is a joint
initiative of the World Weather Research Programme (WWRP) and the World Climate Re-
search Programme (WCRP). Several leading weather services contribute S2S forecasts to a
database hosted by the European Centre for Medium-Range Weather Forecasts (ECMWEF).
These forecasts slightly vary in terms of their specific configurations, including initialization
frequency, ensemble size, hindcast generation, resolution, and output data.

The majority of the analyses in this thesis are based on ECMWF forecasts, with some anal-
yses also conducted using forecasts by the UK Met Office (UKMO) to test the robustness
of the results. While high forecast skill is not essential for the scientific objectives of this
thesis, the results depend on the model’s sufficiently accurate simulation of the atmosphere,
including the general circulation, teleconnections, wave dynamics, and related phenomena.
For instance, a well-resolved stratosphere is essential for studying stratosphere-troposphere
coupling (Domeisen et al., 2020c). Additionally, several analyses are based on the assump-
tion that the forecasts are reliable, meaning they correctly reflect the likelihoods of possible
real-atmosphere evolutions given the initial conditions and the numerical model (see section

3.3).

Realtime forecasts and hindcasts

All contributing centers produce both realtime forecasts and hindcasts. Realtime forecasts
are the operational forecasts and initialized from the latest available analysis, whereas
hindcasts use the same model configuration but are initialized from past years’ reanalyses.
Hindcasts are essential for model calibration, for example, allowing to adjust raw forecasts
for mean model biases. Additionally, hindcasts are used to compute a model climatology.
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In this thesis, hindcasts are further used to increase the forecast sample size. While realtime
forecasts are available from the start of the S2S prediction project (around 2015), hindcasts
extend back to the late 1990s.

The two weather services whose forecasts are used in this thesis (primarily ECMWEF and
partially UKMO) generate hindcasts using the so-called “on-the-fly” method. With this
approach, hindcasts are co-generated at the same time (or, for UKMO, at similar times) as
the realtime forecasts. In contrast, some other services use the “fixed” hindcast approach,
producing a complete set of hindcasts spanning multiple years and seasons all at once when
a new model cycle is released.

Forecast setup at ECWMF

The following description of ECMWF forecasts refers to the model cycles used in this study
(CY43R3 - CY}TR1). Note that since version CY48 (introduced in June 2023), realtime
forecasts are produced once per day with an ensemble size of 101. From version CY}7R2
onwards (introduced in May 2021), the model is run at a higher vertical resolution of 137
levels.

ECMWF produces realtime forecasts (51 ensemble members each) twice per week, on
Mondays and Thursdays. For each realtime forecast, a corresponding set of 20 hindcasts (11
ensemble members each) is produced. These hindcasts are initialized from the reanalysis of
the same date of the 20 previous years. For example, hindcasts for the 2018-10-18 realtime
forecast use initial conditions from 1998-10-18, 1999-10-18, ..., 2017-10-18.

The model operates on a spectral grid at T639L91 resolution (about 16 km horizontal grid
spacing, 91 vertical levels) for the first 15 days. After day 15, it uses a T319L91 resolution
(about 32km horizontal grid spacing). The atmospheric model is coupled to an ocean
model (0.25 degree resolution, 75 vertical levels, 5 ensemble members), a wave model,
and a sea-ice model. Hindcasts use initial conditions from ERADS reanalysis — except for
those corresponding to realtime initializations before 2019-06-11, which use ERA-Interim —
while the operational analysis is obtained from a high-resolution forecast (T1279L137) and
a 4D-Var data assimilation algorithm. Ensemble members are generated by adding pairs of
positive and negative perturbations to the (re-)analysis, obtained via singular vectors (rep-
resenting the fastest growing perturbations), and ensemble data assimilation techniques.
More details can be found at https://confluence.ecmwf.int /display /S2S /ECMWF+model+
description.

Forecasts used this thesis

The majority of the analyses in this thesis employ S2S forecasts by ECMWEF produced
during winters 2017/18 to 2020/21, spanning from 16 November to 22 February each year.
During these winters, there are 114 realtime forecasts (51 ensemble members each) and
114-20 = 2280 corresponding hindcasts (11 ensemble members each), totaling 11442280 =
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2394 ensemble forecasts, or 30 894 single forecasts. Each forecast covers lead times of 0-
46 days, resulting in approximately 1.5 million simulated winter days, which is roughly
equivalent to 10 thousand winters, although these forecasts are not fully independent.
Note that due to model updates, this set of forecasts originates from four different model
cycles (CY43R3, CY45R1, CY46R1, CY47R1); however, the resulting uncertainties are
assumed to be minor compared to the benefit of a larger sample.

3.1.2 ERADJ reanalysis

In general, reanalyses are produced by assimilating observations into a state-of-the-art
weather forecast model, aiming to represent the best estimate of the atmospheric state on
a full spatial and temporal grid. This study uses ERA5 (Hersbach et al., 2020), the latest
reanalysis dataset provided by ECMWF. For analyses of large-scale dynamics ERA5 may
be considered a representation of the real atmosphere (e.g., ERA-interim — the predecessor
of ERA5 — has been demonstrated to represent a suitable dataset to study stratosphere-
troposphere; Fujiwara et al., 2022, January). Furthermore, ERA5 is here used to evaluate
forecast skill.

3.2 Defining sudden stratospheric warming and strong po-
lar vortex events

Various definitions for SSWs have been employed in the literature (Butler et al., 2015).
This thesis adopts the definition by Charlton and Polvani (2007) due to its relatively low
data requirements and widespread usage.

For technical reasons, slightly different definitions of weak and strong polar vortex events
are used in this thesis. While the SSW definition for ERAb reanalysis data follows Charlton
and Polvani (2007), adjusted definitions are used for the forecast data. Moreover, relaxed
weak and strong polar vortex definitions are employed in chapter 5 to increase the sample
size.

SSWs following Charlton and Polvani (2007)

This definition is based on daily means of zonal-mean zonal wind at 60 °N and 10 hPa (U ).
SSWs are defined during extended winter (November to March) as the first day when Ug)
becomes easterly. The threshold of 0ms™! is dynamically motivated by its implications
on vertical Rossby wave propagation (Charney and Drazin, 1961, see equation A.7). Once
a SSW is detected, a new event may occur 20 days later at the earliest, to avoid multiple
counts of a single dynamical event. Final warmings are excluded, defined as SSWs where
UL does not return to westerly for 20 subsequent days before 30 April.
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Predicted SSWs in S2S forecasts

In the ECMWEF S2S forecasts, not all criteria of the Charlton and Polvani (2007) SSW
definition can be checked due to the finite lead time. Therefore, a slightly relaxed definition
is employed to diagnose predicted SSW in the these forecasts, which forms the basis for
SSW analyses in chapter 4.

Predicted SSWs (p-SSW) are defined as the first day when Ugj in a forecast becomes
easterly. If multiple candidates for a p-SSW occur within one forecast, only the first event
is considered. Importantly, p-SSWs require Uiy > Oms~! between lead time days 0 to 9.
This ensures that the polar vortex is intact at the beginning of the forecast and avoids the
need to consider the ULy evolution in reanalysis data for the event definition. In addition,
this ensures a degree of statistical independence, as events occurring at earlier lead times
are likely to be similarly simulated across ensemble members. No explicit criterion is
applied to exclude final warmings.

Accordingly, predicted strong polar vortex events (p-SPVs) are defined as the first day when
UL exceeds 47ms~!. This threshold approximately describes the “opposite” quantile
(Q91%) of the U) winter season climatology compared to 0ms™ (Q9%).

Weak and strong polar vortex episodes

Weak and strong polar vortex episodes are used in chapter 5 to categorize S2S forecasts
during the winter season (initializations from 16 November to 22 February) based on the
polar vortex strength at initialization time. To simplify and achieve a larger sample size,
weak polar vortex initializations are defined as forecasts where Ug) in ERA5 at the time
of forecast initialization is easterly. Strong polar vortex initializations are defined accord-
ingly, where Uy exceeds a certain threshold. This threshold is chosen such that strong
polar vortex initializations comprise an equal number of forecasts as weak polar vortex
initializations. For the analysis in section 5.1, this threshold is 51.78 ms™!.

3.3 Reliability of ensemble forecasts

The initial conditions for a weather forecast are never perfectly known, but associated with
an uncertainty. Ensemble forecasts provide a powerful framework to reflect these uncer-
tainties (plus model uncertainties). In particular, the first two moments of the ensemble
distribution, the ensemble mean and the ensemble variance, have important mathematical
properties that will become relevant in the results part of this thesis. These properties
generally assume that the numerical model represents a sufficiently complete and accu-
rate representation of atmospheric physics. This translates into assuming that ensemble
members are statistically indistinguishable from the observations. This implies that in a
sufficiently large ensemble, there would always be an ensemble member that is close to the
observations (but a priori, it is unknown which members are more or less close).
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The ensemble mean corresponds to the expected value of the predicted quantity. More-
over, the ensemble mean forecast has a smaller squared forecast error than any individual
ensemble member when averaged over many cases. Therefore, the ensemble mean is a
common way to condense the full information contained in an ensemble.

The ensemble variance is a measure of forecast uncertainty. Importantly, the ensemble
variance is directly related to the expected value of the squared error of the ensemble mean
forecast. Let Y™ with m = 1,..., M denote a set of M observations and X" with
n = 1,..., N denote corresponding forecasts, with n indicating single ensemble members
and N the ensemble size. X (™) = * SN X(mn) denotes the ensemble mean of the m’th
forecast. The squared error of the ensemble mean of the forecasts, averaged over all cases,

then equals the average ensemble variance, except for a factor % (see Fortin et al., 2014,
for a full derivation):
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The equality may be anticipated by recognizing that the ensemble mean of the forecasts,
X(m) s subtracted 1) from the observation on the left-hand side (yielding the squared
error) and 2) from individual ensemble members on the right-hand side (yielding the en-
semble variance). When observations and individual ensemble members are statistically
indistinguishable, the squares of these differences become equal when averaged over many
cases, i.e., over sufficiently large M. An additional factor arises because the ensemble vari-
ance is computed using N — 1 degrees of freedom (one degree of freedom is dropped for
computing the ensemble mean), whereas the calculation of the squared error is based on
N degrees of freedom.

This spread-error relation is derived under the assumption that the model is reliable (i.e.,
has no errors), which implies that the ensemble spread reflects the actual uncertainty
of the future atmospheric state under presence of initial condition uncertainty. In turn,
spread-error comparisons are often used to test whether equation 3.1 holds, and therefore
to assess whether the model is actually reliable. In so-called reliability diagrams, forecasts
are grouped according to their ensemble spread. For each group, the mean ensemble spread
is then plotted against the mean forecast error, and if the model is reliable, these averages
should fall on the one-to-one line.

Such reliability diagrams are presented for the S25 ECMWTF forecasts later in this section.
However, before that, some synthetically generated random data are considered, highlight-
ing intricacies of the spread-error relation, especially in cases of small ensemble sizes (such
as in the ECMWF hindcasts, where N = 11). The reliability diagrams of these synthetic
data experiments should guide the interpretation of the reliability diagrams of the actual
S2S forecasts later.
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Setup of a toy model to assess the spread-error relation

The toy model uses artificially generated observations and ensemble forecasts by randomly
drawing from a specified normal distribution. By construction, these forecasts are reliable.
Reliability diagrams are considered for 6 experiments, reflecting different methods to bin
forecasts, different underlying distributions, and different ensemble sizes.

For each experiment, M = 5000 observations are randomly drawn from a normal distribu-
tion of variance o2 .. For each observation, an ensemble forecast comprising N ensemble
members is generated, with each ensemble member being drawn from the same normal dis-
tribution of variance o2 .. In the real atmosphere, o2 . would represent the uncertainty of
a prediction produced by a perfect model. This perfect model prediction is not determin-
istic, because of initial condition uncertainty. In this toy model, the forecasts are reliable,
because there is no difference in the generation of observations and ensemble members.
This setup facilitates analyses of how different situations manifest in a reliability diagram
(see Fig. 3.1).

Experiment a: excellent spread-skill relation

Across the 5000 observation-forecast pairs, o7, is chosen to be uniformly distributed

between 0.5 to 2: o2, ~ U (0.5,2). Thereby, different flow situations are mimicked,
in which initial condition uncertainty results in different levels of forecast uncertainty, i.e.,
different 02,,.. The ensemble size is set to N = 1000. Forecasts are grouped based on eight

quantiles of ensemble variance (i.e., each group is equally populated).

Fig. 3.1a shows that the average ensemble spread aligns well with the RMSE. Note that
compared to equation 3.1, the square root of both the squared error and the ensemble
variance is plotted, which is a common way to ensure the same units as the forecast
quantity. Taking the square root does not change the interpretation of the results.

Experiment b: grouping based on forecast error results in bad spread-skill relation

This experiment uses an equal setting of parameters as experiment a, except that forecasts
are grouped based on eight quantiles of forecast error, instead of quantiles of forecast spread.
Fig. 3.1b shows that average spread and error of these eight groups do not align on the
one-to-one line. Why does grouping based on error give qualitatively different results as
grouping based on spread, as in experiment a? The spread-error relation holds if forecasts
and observations are drawn from an underlying distribution with the same variance, o2 ..
Ensemble spread is a good estimator of o2, at least for large ensemble sizes. Conversely,
a single forecast error is not a robust estimate of o2 ., because sampling uncertainty is
exceedingly large. Grouping based on forecast error, as done here, can therefore result in
very different groups compared to grouping based on o2 .. Consequently, average error

and spread are not aligned on the one-to-one line in this experiment.
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Reliability in a toy model
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Figure 3.1: Illustration of the spread-skill relation in a toy model, based on synthetic
data. Each panel presents one experiment, with specifications indicated on top. N is
the ensemble size, o2, . is the variance of the underlying distribution from which ensemble
members and observations are drawn. x-axis: square-root of the average ensemble variance
(units of standard deviations, scaled by a factor of %), y-axis: root-mean-squared-error
(dimensionless). Pale shading displays the 2-dimensional distribution of spread-RMSE
pairs (one pair for each ensemble forecast). Black dots mark average spread and RMSE
of eight equally populated forecasts that are grouped by ensemble spread (panel b: by
RMSE). Pink histograms present the 1D distributions of spread and error. Thin black
dotted horizontal and vertical lines indicate the total mean spread and error.
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Experiment c: o7, = const. results in constant spread and error, given large ensemble
sizes

This experiment uses an ensemble size of N = 1000, but unlike experiments a and b, o2
is fixed at o2, = 1. Forecasts are grouped based on quantiles of ensemble spread.

Fig. 3.1c shows that while the forecast error distribution is still fairly wide, ensemble
spread is always very close to 1. Therefore, mean spread and error of the eight quantile
groups are all very close together, at values of error = 1, spread = 1.

This situation is not very realistic, because in the real atmosphere, different initial con-
ditions can generally result in forecasts associated with different levels of uncertainty.
Nonetheless, this experiment may demonstrate that the one-to-one line in a reliability
diagram results from different values of o2 ..

Experiment d: o2, = const. results in no spread-error relation in case of small

true
ensemble sizes

This experiment uses the same setup as in experiment ¢, but the ensemble size is reduced
to N =11.

Fig. 3.1d shows that mean error and spread of the eight quantile groups do not align along
the one-to-one line, but follow a horizontal line at error = 1. This means that variations of
spread cannot indicate variations of error. This is because o2 is kept constant, and hence,

variations in spread only result from sampling uncertainty and do not reflect variations in

2
Utrue .

Experiments e and f: potential spread-error-relation in S2S forecasts (11 and 51
ensemble members)

Figs. 3.1e and 3.1f present the same setup as in experiment a, where one-to-one alignment of
average spread and error was nearly perfect, but instead of an ensemble size of N = 1000,
the ensemble sizes of the S2S realtime forecasts (N = 51) and hindcasts (N = 11) are
used. These cases illustrate how the reliability diagram would look like if the model was in
principle reliable (ensemble members interchangeable with observations), which is always
the case in this toy model. Note that this experiment still assumes o2, ~ U € (0.5,2),
while the distribution of o2 is unknown in the real atmosphere.

In conclusion, the toy model highlights several key points:

o The ensemble spread in individual forecasts can be prone to substantial sampling
errors, especially when the ensemble size is small.

o When grouping a sufficiently large set of forecasts into bins according to the ensemble
spread, the average spread in each group approximately aligns with the correspond-
ing average RMSE. However, deviations from the one-to-one line remain when the
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ensemble size is small (generally appearing to be less than 25% in 11-member ensem-
bles and less than 5% in 51-member ensembles). This is consistent with (Craig et al.,
2022), who found that approximately 40 to 100 ensemble members are required for
the ensemble standard deviation to follow an asymptotic convergence law.

« The total average spread matches the total average RMSE. While this requires a
sufficiently large set of forecasts, the correspondence is independent of the ensemble
size.

Now that these synthetic experiments explored the spread-error relation in a controlled
setup, the following paragraphs analyze reliability of 1000-hPa-geopotential height (Z1000;
instantaneous daily values at 0 UTC) and 2-meter-temperature (T2m; daily means) in the
S2S ECMWEF forecasts. These results are part of the supplementary material of Spaeth
et al. (2024b).

Fig. 3.2 presents the spatial distribution of Z1000 average ensemble variances and squared
errors at 7-13 days lead time. The squared error is computed as the squared difference
between the ensemble mean forecast anomalies (with respect to forecast model climatology)
and ERAS5 anomalies (with respect to ERA5 climatology). The errors are computed grid-
point wise based on daily fields and then averaged over lead time and over cases. At
7-13 days lead time, the average ensemble variance (scaled by a factor of %) is slightly
smaller than the average mean squared error, indicating under-dispersion/ over-confidence.
Qualitative structures are in good agreement with a maximum in variance around the
storm track from Newfoundland over Iceland to Northern Europe (Figs. 3.2a-c). On
average, at an exemplary grid point within the North Atlantic storm track (60°N, 10°E)
the ensemble is slightly under-dispersive at the short- and medium-range and tends to be
slightly over-dispersive at lead time beyond about five weeks (Fig. 3.2d). Furthermore,
a reliability diagram shows forecasts binned into ten quantiles according to the ensemble
spread averaged over 7-13 days lead time (Fig. 3.2e). There is a high correlation between
mean spread and mean squared error across the quantiles.

In light of the toy model results (specifically, Fig. 3.1e), the deviations from the one-to-one
line likely result from the relatively small ensemble size of the hindcasts (11 members), but
could additionally be due to model errors.

Fig. 3.3 shows the corresponding reliability assessment for T2m. Climatological variance
(scaled by a factor of %) and squared error are larger over land than over the sea and are
larger towards the pole (Figs. 3.3a,b). The ensemble at 7 to 13 days lead time tends to be
under-dispersive at high latitudes (Figs. 3.3c). At an exemplary grid point at 50 °N, 10 °E,
the ensemble tends to be slightly under-dispersive in the first forecast week and somewhat
over-dispersive beyond the second forecast week (Fig. 3.3d). Anomalies of variance and
error at this grid point are fairly well aligned, despite some deviations from the one-to-one
line (Fig. 3.3e), which may result from a small ensemble size and from model errors.
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ECMWEF Z1000 spread-error diagnostics
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Figure 3.2: Reliability assessment of 1000 hPa geopotential height (Z1000) in terms of
ensemble variance and mean squared error, based on 1197 ensemble forecasts (model cy-
cles CY46R1 and CY46R1 with initializations from November 16 to February 22). (a.)
Mean ensemble spread (here equal to the ensemble variance), (b.) mean squared error and
(c.) their difference (spread minus error), each averaged over 7-13 days lead time. (d.)
Climatological evolution of ensemble spread (solid line) and mean squared error (dashed
line) over lead time at 60°N, 10°E (location indicated by magenta cross in panels a.-c.).
(e.) Corresponding anomalies of ensemble spread and mean squared error at 7-13 days
lead time, both binned into ten quantiles according to anomalous spread. Red bars indi-
cate 95% confidence intervals of the respective quantile averages, derived from resampling.
Deviations from the one-to-one line can arise from a small ensemble size and additionally
from model errors. In all panels, ensemble spread is scaled by a factor (N+1)/N, where N
is the ensemble size (see equation 3.1).
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ECMWF T2m spread-error diagnostics
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Figure 3.3: As Fig. 3.2, but for 2-meter-temperature. Panels d, e refer to an exemplary
grid point at 50°N, 10°E.
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3.4 Forecast deseasonalization

Many atmospheric quantities follow a seasonal cycle tied to the evolution of incoming solar
radiation. To analyze variations beyond this seasonal cycle, its climatological mean is
often subtracted from the data to obtain anomalies. Several methods exist to compute the
climatological seasonal cycle.

One method is to compute a daily climatology by averaging the values for each day of the
year across many years. This requires a long-term record, typically spanning at least a few
decades, to ensure that high-frequency weather fluctuations occurring in individual years
are smoothed out. Alternatively, a monthly climatology can be computed by averaging the
values for each month across all years. Daily climatologies can then be interpolated from
this monthly climatology. Another approach is to fit Fourier modes to the data, which
may be suitable for quantities with a relatively harmonic seasonal cycle.

In this thesis, anomalies are also computed for forecast data. However, deriving a multi-
year climatology for forecasts presents additional challenges due to the finite forecast lead
time and the fact that model climatologies can be lead time dependent as a result of model
drifts. To address these issues, weather centers contributing to the S2S database provide
hindcasts in addition to realtime forecasts. For a given realtime forecast, ECMWF provides
a set of 20 hindcast ensembles, which are forecasts initialized from the initial conditions of
the 20 previous years. These hindcasts are used to compute inter-annual averages, forming
a climatology.

The following provides a detailed description of how these climatologies can be computed.

For illustration, the climatology of the polar vortex strength is considered (Fig. 3.4), quan-
tified by the zonal-mean zonal wind at 60°N and 10hPa (UL ), from mid-November to
mid-April. For comparison to the forecast data, the climatology based on ERAS reanalysis
data is also shown, computed as inter-annual averages for a given day of year with an
additional 7-day moving average applied. The polar vortex climatology reaches its maxi-
mum strength around late December to early January and then continuously weakens until
spring.

The climatology for the forecast data is computed for each realtime initialization separately.
The presented period includes 29 initializations from 2020-11-16 to 2021-02-22. For each
of these initializations, a climatology is computed by averaging over the 20 corresponding
hindcasts and over ensemble members.

While there is overall fair agreement between the ERA5 and the S2S forecast climatologies,
some discrepancies exist, partly arising from model drifts over lead time. These discrepan-
cies can be as large as 10ms~!, though all climatologies still fall within the inter-annual
inner-quartiles of ERA5. Insufficient sampling likely also contributes to differences between
climatologies of different initialization dates and between ERAb and forecast climatologies.
The fact that S2S forecast climatologies show differences between different initializations
motivates averaging the climatologies for neighboring initializations. For instance, the
climatology for the 2020-12-07 initialization may become more statistically robust by addi-
tionally including hindcasts from the 2020-12-03 and 2020-12-10 initializations. However,
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Figure 3.4: Illustration of forecast climatologies for the polar vortex strength as measured
by the zonal-mean zonal wind at 10 hPa, 60 °N. Each colored thin line represents an average
of 20 hindcast sets (one for each year) that corresponds to one realtime forecast (realtime
initializations from 2020-11-16 to 2021-02-22). Thick dotted line denotes the climatological
mean from 2000-2019 ERA5 data, with a 7-day-running-mean applied. Shading indicates
the corresponding inter-annual inner-quartiles, i.e., year-to-year variability.

this raises questions about how many neighboring initializations should be included and
whether hindcasts of neighboring initializations should be averaged according to the same
day of the year or the same lead time.

Fig. 3.5 illustrates how resulting anomalies differ between various forecast climatology cal-
culations. The example focuses on the realtime forecast initialized on 2020-12-07, for which
different climatologies are constructed and forecast anomalies are computed accordingly.
Four methods are compared:

a. Seasonal average: All hindcasts of a winter period, here chosen to include initial-
izations from 16 November to 22 February, are combined. Averages are computed for
each lead time day including all hindcasts and all ensemble members.

b. Single initialization: Only hindcasts corresponding to the realtime forecast (ini-
tialized on 7 December 2020) are included. Averages are computed over hindcasts
and over ensemble members for each lead time day.

c. Neighboring initializations average: The climatology is computed as in (b), but
including all hindcasts corresponding to the realtime forecasts initialized within 7
December 2020 4+ 7 days. Hence, instead of 20 hindcast ensembles, the average is
computed over 5 - 20 = 100 hindcast ensembles.
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Figure 3.5: Comparison of climatology calculation methods, exemplary for deseasonalizing
the 2020-12-07 realtime forecast of Ug). a Realtime ensemble mean forecast (thick black
line) and five different climatologies (see legend and text for details). b Forecast anomalies
as obtained by subtracting the climatology from the full field.

d. Day-of-year average: The climatology is based on all hindcasts corresponding to
the realtime forecast initialized in winter 2020/21. The average is computed over all
initialization-leadtime-ensemble member-combinations for a given day-of-year. The
climatology for a given day therefore includes different lead times and model drifts
are not corrected for.

Climatology (a) shows the weakest wind speeds throughout the forecast among the four
methods. The weaker wind speeds arise because forecasts that are initialized more than
two months later were included, during which the polar vortex is already much weaker.
Therefore, method (a) does not appear to be suitable, particularly if the quantity of interest
follows a distinct seasonal cycle.

Climatology (d) differs from climatologies (b) and (c), as well as from the ERA5 climatol-
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ogy, especially at longer forecast lead times. This discrepancy arises because method (d)
mixes different lead times, while the polar vortex strength shows considerable lead time
dependence, particularly in January (see Fig. 3.4). Note that this lead time dependence
could also result from insufficient sampling. Generally, this method does not appear to be
suitable due to substantial lead time-dependent forecast drifts (i.e., biases) in some cases.
However, method (d) includes a large number of data points, which can be beneficial when
analyzing higher moments or extremes of the climatological distribution.

Climatology (b) uses only the 20 hindcast ensembles that correspond to the realtime fore-
cast of interest. This method tends to be computationally cheaper than the other methods.
While it includes fewer data points, it may be suitable when inter-annual variations are
not overly strong and the climatology is expected to converge based on the included 20
hindcasts ensembles with 11 members each. Note that this method cannot be applied to a
realtime/ hindcast setup where realtime forecasts are produced at a higher frequency than
hindcast forecasts, such as at the UK MetOffice (realtime forecasts: daily, hindcasts: 4 per
month).

Climatology (c) follows the calculation of climatology (b), but it also includes forecasts
from “neighboring” initializations. For the 2020-12-07 forecast, additional forecasts are
included from 2020-11-30 to 2020-12-14 (5 in total). A smaller window size ensures that
seasonal variations within the included forecasts are small, whereas a larger window size
includes more data and is thus more statistically robust. This method is used throughout
this thesis, with a window size of £7 days, unless stated otherwise.

The four climatology computation methods can result in quantitative differences in prac-
tical analysis outcomes. To illustrate this, composite-mean 2 meter temperature (T2m)
forecast anomalies are considered four weeks following SSWs. The analysis includes hind-
cast ensemble forecasts that are initialized between 3 days before to 3 days after SSWs,
with SSWs being identified in ERAS5 following the event definition by Charlton and Polvani
(2007). This approach results in 94 ensemble forecasts initialized around 14 SSWs from
winters 1998/99 to 2019/20.

Figure 3.6 presents the T2m anomalies for the four different underlying climatology meth-
ods and for ERA5. The ERA5 climatology is computed by averaging days with the same
day of year, using the period 1998 to 2019. For the analysis of post-SSW T2m, ERA5
anomalies are sampled to match the same days as the S2S forecasts. However, the ERAS
anomalies are likely affected by sampling uncertainty due to only few SSWs and should
therefore not be treated as a ground truth. While sampling in the S2S forecasts is approx-
imately 10 times better, due to the 11 ensemble members (compared to a single “ensemble
member” in ERA5), differences still arise depending on the method. The comparison re-
veals that anomalies computed using the climatology method (a), which is based on a
seasonal average, show the largest deviation from other methods. This is likely because
the seasonal temperature evolution is not captured. In contrast, differences between the
other composites, which are based on climatology methods (b), (¢) and (d), are minor.
This result suggests that when multiple forecasts are combined and averaged, the choice
of the underlying climatology method may not impact the outcome drastically.
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T2m anomalies in forecasts initialized around SSWs (lead time: 21-27 days)
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Figure 3.6: Composite-mean of 2 meter temperature anomalies in forecasts that are initial-
ized between 3 days before to 3 days after SSWs (identified in ERA5 data) at lead times
of 21d to 27d. a. ERAD reanalysis data, with days sampled to match the S2S forecasts.
b.-e. S2S forecast data, with different methods to compute the climatology (see text for

details).
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Figure 3.7: Comparison of 2-meter temperature forecast anomalies for different climatol-
ogy calculation methods. These forecasts comprise 94 ensembles initialized around SSWs
in ERA5 (tolerance: 3 days relative to the SSW, see Fig. 3.6). Mean differences, mean
absolute differences and the 95th percentile of absolute differences (unit: Kelvin) are com-
puted for individual forecasts, lead times and grid points. Differences are computed by
subtracting the anomaly obtained via the method given in each column from the anomaly
obtained via the method given in each row. The climatology methods are as follows: a)
seasonal average, b) single initialization, ¢) neighboring initializations average, d) day-of-
year average (see Fig. 3.5).
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However, substantial differences can arise for individual forecasts, lead times and grid
points, as shown in Figure 3.7. Compared to method (c), 5% of the individual anomaly
data points deviate by more than 1 Kelvin when using methods (b) or (d), and by more
than 4 Kelvin when using method (a).

Finally, standardized anomalies can be computed by dividing anomalies by the inter-annual
standard deviation. It is important to note that the inter-annual standard deviation must
be computed based on individual ensemble members, not the ensemble mean. This is be-
cause the ensemble mean always converges towards climatology at long lead times, resulting
in a too small inter-annual standard deviation.

3.5 s2stools: a new Python library for S2S forecast data
processing

This section describes s2stools, a Python library developed to deal with the following
challenges in processing S2S forecast data.

First, data size is considerable, particularly because of the hindcasts produced alongside
each realtime initialization. For instance, a single variable on one vertical level for the
Northern Hemisphere, with a 2.5° x 2.5° horizontal grid, with daily output (0-46 days lead
time), requires about 130 MB of disk space for one initialization. This includes 51 realtime
ensemble members and 20 - 11 hindcast ensemble members. Analyzing multiple vertical
levels, variables and initialization dates results in data sizes that often exceed the available
RAM capacity.

Second, the forecast data structure is complex, with multiple coordinates linked to the time
dimension. These coordinates include initialization time, lead time, valid time, hindcast
year, and potentially more. This structure makes vectorized operations, which are desired
in Python, challenging.

To streamline the processing of S2S forecasts and facilitate efficient computations, the
Python package s2stools was developed along with this thesis. s2stools provides a
collection of tools for structuring S2S forecast data and performing common calculations.
The package is fully based on xarray (Hoyer and Hamman, 2017), a leading python library
for working with multi-dimensional scientific datasets. This also enables all s2stools
functionalities to be used with dask (Dask Development Team, 2016), a Python library
facilitating parallelized computations that can scale to large clusters in high-performance
computing environments.

Below are some of the main functionalities provided by s2stools. Comprehensive docu-
mentation can be found at https://s2stools.readthedocs.io/en/latest/. The code is avail-
able at https://github.com/jonas-spaeth/s2stools/.
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Opening multiple netcdf files of s2s forecasts

ECMWF S2S forecasts downloaded from the S2S database! usually comprise four netcdf
files per realtime initialization: realtime control forecast (1 member, 47 days of forecast
time), realtime perturbed forecasts (50 members), hindcast control forecasts (1 members)
and hindcast control forecasts (10 members, 20-47 days of forecast time, corresponding to
the 20 different hindcasts years).

s2stools provides a user-friendly way of combining these four file types, optionally for
multiple initialization dates, all at once, using the s2stools.process.s2sparser:

import xarray as xr # Hoyer and Hamman, 2017

import s2stools # developed for this thesis
path = "data/raw/s2s/ecmwf/u_10hpa_60/%2020%.nc"
ds_s2s = xr.open_mfdataset (path, preprocess=s2stools.process.s2sparser)

print (ds_s2s)

<xarray.Dataset >

Dimensions: (leadtime: 47, longitude: 432, latitude: 1,
number: 51, reftime: 29, hc_year: 21)

Coordinates:

* leadtime (leadtime) timedelta64[ns] O days ... 46 days
* longitude (longitude) float32 -180.0 -179.0 ... 179.0

* latitude (latitude) float32 60.0

* number (number) int64 0 1 2 3 4 5 ... 46 47 48 49 50
* reftime (reftime) datetime64[ns] 2020-01-02 ... 20..
* hc_year (hc_year) int64 -20 -19 -18 -17 ... -2 -1 0

validtime (reftime, leadtime, hc_year) datetime64[ns]
Data variables:

u (reftime, latitude, longitude,

leadtime, hc_year, number) float32

where the control member (number=0) has been combined with the other ensemble members
(number=1...51) and the original dimension time has been split into three dimensions:
reftime (the initialization date of the corresponding realtime forecast), hc_year (inte-
ger values indicating the hindcast year relative to the year of the realtime forecast), and
leadtime. Additionally, the new coordinate validtime provides the actual date for which
the forecast is made.

Deseasonalization

s2stools facilitates straight-forward calculation of a leadtime- and initialization-dependent
climatology, following method (c) described in section 3.4:

ds_s2s_clim = s2stools.clim.climatology(ds_s2s, window_size=15, ndays_clim_filter=7)
print (ds_s2s_clim)

<xarray.Dataset >

Dimensions: (reftime: 29, leadtime: 47, longitude: 432,
latitude: 1)

Coordinates:

* reftime (reftime) datetime64[s] 2020-01-02 ... 202...
* leadtime (leadtime) timedelta64[ns] O days ... 46 days

thttps://apps.ecmwf.int /datasets/data/s2s-realtime-instantaneous-accum-ecmf
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* longitude (longitude) float32 -180.0 -179.0 ... 179.0

* latitude (latitude) float32 60.0

Data variables:

u (reftime, latitude, longitude, leadtime) float32

where window_size refers to the total number of days spanning the window in which fore-
casts are included for the climatology and ndays_clim_filter applies a centred running
mean smoothing. Anomalies can then be computed using ds_s2s - ds_s2s_clim.

Combining reanalysis and forecast data

A common task in dealing with forecast data is a comparison against a verification dataset,
in this case ERA5. It can be technically challenging to compare the continuous ERAS
time series with the forecasts, which are irregularly initialized and have finite lead time.
s2stools provides a simple interface for comparing reanalysis with forecast data:

path = "data/raw/era5/u60_10hpa.nc"
ds_erab = xr.open_dataset (path)
print (ds_erab)

<xarray.Dataset >

Dimensions: (time: 5092, longitude: 144)

Coordinates:

* time (time) datetime64[ns] 1979-01-01 ... 2020-...
* longitude (longitude) float32 -180.0 -177.5 ... 177.5
Data variables:

u (time, longitude) float32

ds_combined = s2stools.process.combine_s2s_and_reanalysis(

ds_s2s, ds_erab, ensfc=False
)

print (ds_combined)

Renaming reanalysis variables by adding _verif (for verification)
<xarray.Dataset >

Dimensions: (leadtime: 47, longitude: 432, latitude: 1,
number: 51, reftime: 29, hc_year: 21)

Coordinates:

* leadtime (leadtime) timedelta64[ns] O days ... 46 days
* longitude (longitude) float32 -180.0 -179.0 ... 179.0

* latitude (latitude) float32 60.0

* number (number) int64 0 1 2 3 4 5 ... 46 47 48 49 50
* reftime (reftime) datetime64[ns] 2020-01-02 ... 20..
* hc_year (hc_year) int64 -20 -19 -18 -17 ... -2 -1 0
validtime (reftime, leadtime, hc_year) datetime64[ns]
plev int64

Data variables:

u (reftime, latitude, longitude, leadtime, hc_year, number) float32
u_verif (reftime, leadtime, hc_year, longitude) float32

where the reanalysis field has been been projected onto the s2s forecast grid. Note that u
in the reanalysis dataset has been renamed to u_verif due to duplicate variable names in
the two datasets.

Additional functionalities

s2stools offers a range of additional features, including;:
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« creating event-based composites (see also the Python package xevent? developed
along this thesis)

 proper formatting of plots with a lead time axis (addresses the issue of timedelta
objects having nanosecond precision in xarray)

+ adding the ECMWF model cycle (e.g., “CY47R1”) as a coordinate to a dataset

« an interface for online access to commonly used teleconnection indices including QBO,
MJO and ENSO.

More information is provided in the documentation: https://s2stools.readthedocs.io/en/
latest/.

2Code is available at https://gitlab.lrz.de/ru35hub/xevent, documentation is available at https://
ru35hub.pages.gitlab.lrz.de/xevent /


https://s2stools.readthedocs.io/en/latest/
https://s2stools.readthedocs.io/en/latest/
https://gitlab.lrz.de/ru35hub/xevent
https://ru35hub.pages.gitlab.lrz.de/xevent/
https://ru35hub.pages.gitlab.lrz.de/xevent/

Chapter 4

UNSEEN sudden stratospheric
warmings: using large ensembles to
boost the statistics of extreme events

4.1 Application of the UNprecendented Simulated Ex-
tremes using ENsembles (UNSEEN) approach to S2S
forecasts and sudden stratospheric warmings

Extreme events are captivating to study due to their potential implications for high-impact
weather. However, by definition, they occur rarely, which undermines the statistical ro-
bustness of the analyses. This issue also pertains to extreme polar vortex events, including
SSWs. It is known that SSWs can affect the tropospheric circulation and lead to surface
weather extremes (Butler and Domeisen, 2021), but the observational record comprises
only a few dozen events (ERA5: 42 SSWs from 1958 to 2023). While this sample size may
suffice to robustly determine the mean and, perhaps, the variance of a distribution affected
by SSWs, modulations of higher moments and of extremes remain highly uncertain.

To address this challenge, some studies have used climate simulations (e.g., Charlton-
Perez et al., 2008; Bancald et al., 2012; Hitchcock and Simpson, 2014), which provide on
the order of 100 to 1000 winters’ worth of data for deriving SSW statistics. Other studies
have conducted simulations using idealized models (e.g., Jucker et al., 2014; Lindgren
et al., 2018; Finkel et al., 2023b). While this approach may provide large sample sizes,
the validity of results hinges on the assumption that these models accurately capture the
essential dynamics of the stratosphere and its coupling with the troposphere.

Here, a novel approach to studying rare events is presented, which has in similar con-
texts been referred to as the UNprecedented Simulated Extreme ENsemble (UNSEEN)
approach. This method assumes that individual ensemble members of a state-of-the-art
weather forecast model each represent possible evolutions of the real atmosphere. There-
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Figure 4.1: Illustration of the UNprecedented Simulated Extreme ENsemble (UNSEEN)
approach to SSWs. ERAJ5 evolution of the zonal-mean zonal wind at 60°N and 10 hPa
(U ), for winter 2011/12 (black) and corresponding S2S ECMWF hindcasts (teal, related
to realtime forecasts of 2017-2021) for mid-November to end-February initializations. While
no major SSW occurred in ERA5 during this winter, many ensemble members predicted
SSWs, some of which simulate up to 30 ms~! easterly winds.

fore, events simulated within these ensemble members can be used as surrogates of real
events, even if the majority of these events have not occurred in the real atmosphere. If
the dynamics and physics of ensemble members are indistinguishable from those of the
real atmosphere, then ensemble forecast data can provide substantially more data then
observations or reanalyses. This abundance of data allows for a more robust analysis of
rare events, potentially aiding our understanding of extreme weather phenomena, such as
SSWs (see Fig. 4.1).

The UNSEEN approach was initially proposed by van den Brink et al. (2004) and has
since then been applied to various contexts, such as precipitation extremes using climate
simulations (Thompson et al., 2017) and seasonal forecasts (Kelder et al., 2020). The Mas-
ter’s thesis preceding this PhD thesis was among the first studies to apply the UNSEEN
approach to polar vortex extremes (Spaeth, 2020). This groundwork has been further de-
veloped, and the outcomes are presented in this chapter. Section 4.3 builds upon Bauer
(2022) and Sirbescu (2023), studying the attribution of SSWs to preceding tropospheric
heat flux and blocking events. Section 4.4 analyzes the relation between SSWs and subse-
quent AO extreme events (published in Spaeth and Birner, 2022).

To date, other studies have applied the UNSEEN approach to derive frequency and seasonal
distributions of SSWs (Finkel et al., 2023a), estimate the impact of ENSO on SSWs (Ineson
et al., 2023), and quantify the NAO response to different SSW types (Bett et al., 2023).

Data for identifying UNSEEN SSWs

Here, 2394 ensemble forecasts from ECMWF’s extended-range forecasts are used, compris-
ing 114 realtime forecasts (51 members each) and 2280 hindcasts (11 members each). This
results in a total of 30 894 ensemble members, each of which provides a 47 day time series
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of the atmospheric evolution. Details are described in section 3.1.1.

Identification of UNSEEN SSWs

We define specific events and then scan each forecast for the occurrence of such an event.

SSWs are defined as days when UL transitions from positive to negative, indicating a
breakdown of the polar vortex. If multiple SSWs occur within one forecast, only the first
event is considered. Note that, by definition, all identified events are predicted events that
may or may not actually occur in the real atmosphere. To highlight this aspect, and to
avoid confusion with actual real-atmospheric events, the events identified in the forecasts
are denoted with a “p”-prefix, where “p” stands for “predicted” (alternatively, it could
be interpreted as “potential” for some aspects). Please note that the term “p-events” is
used interchangeably with UNSEEN events in this thesis. However, we continue to use

“p-events” in Section 4.4 to maintain consistency with our published article.

For early lead times, when ensemble spread is small, different ensemble members are not
statistically independent. Therefore, we analyze only those events that occur at or after a
forecast lead time of 10 days. It is assumed that by this point, initial condition-memory
has sufficiently vanished, ensuring that individual forecasts are sufficiently independent.
Furthermore, the use of hindcasts ensures that different phases of low-frequency variabil-
ity are sampled, such as related to the El-Nino-Southern-Oscillation, the Maddan-Julian-
Oscillation or sea ice variations. Finally, to ensure that both negative and positive lags
can be evaluated for each event, only events predicted between 10 and 36 days lead time
are considered. This allows for the examination of the lag period +10 days for all events,
though fewer events contribute to the composite at lags longer than this period.

In order to ensure an intact westerly polar vortex at the start of the forecast, p-SSWs
are only identified in forecasts predicting positive U§) throughout the these first 10 days.
Following this event definition, we identify 6 101 p-SSWs in the ECMWF forecasts.

Statistics of p-SSWs

Figure 4.2 provides an overview of the distribution of ECMWEF p-SSWs as a function of
the year, forecast lead time and calendar month. p-SSWs are found in all winter seasons
considered, with the absolute numbers indicating how many events each winter season
contributes to the analysis.

The largest absolute number of events is identified in the winter season 2017/18, which
includes the most forecasts (realtime 2017/18 plus hindcasts related to initializations from
2018/19 to 2020/21). Several factors contribute to the varying number of events between
the different years. These factors include internal dynamic variability, climate variability
on interannual timescales, and a slightly varying number of underlying forecasts due to the
realtime/ hindcast prediction setup.

A forecast that is initialized with a strong polar vortex tends to maintain a strong polar
vortex and predict fewer SSWs compared to a forecast with an initially weak polar vor-
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Figure 4.2: Distribution of analyzed p-SSWs in ECMWF forecasts. Absolute event counts
(center left) and seasonal probability proxy (top left), grouped by winter. Asterisks denote
years with real atmosphere SSWs. Grouped by forecast lead time (bottom left) and by
month (bottom right).
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tex. Moreover, forecasts that do not start with ten consecutive days of positive UL) are
discarded by default. Thus, if the polar vortex in the real atmosphere is already easterly
at the initialization time or is predicted to become easterly within the first ten days, such
forecasts will not contribute any events to the analysis. This can be illustrated by the
example of the 2009'th SSW (24 January 2009, see Butler et al., 2017). The event had
low predictability at lead times longer than 8 days (Karpechko, 2018). Before the event,
between end of December 2008 and mid-January 2009, the polar vortex was exceptionally
strong, resulting in marginal SSW probability in the forecasts and suggesting that the event
itself was unlikely given the prevailing dynamics'. As a result, 2008/09 shows the lowest
number of p-SSWs: In the first winter half up to initialization dates around mid-January,
hardly any events were predicted due to the relatively strong polar vortex. Later, forecasts
predicting the real atmosphere SSW only did so at less than +10 day lead time, such that
those events are discarded. Later initializations up to mid-February are excluded, because
these do not predict persistent positive U) within the first 10 days lead time, due to the
preceding SSW. As a result, winter season 2008/ 09 contributes only 64 p-SSWs to the
analysis.

Figure 4.2 also presents a normalized SSW probability, which serves as a proxy for P(SSW).
From observations, the annual probability of SSWs can be derived by normalizing the num-
ber of winters with SSWs with the total number of winters. In the S2S model framework,
it is however less straightforward to compute the frequency of SSWs per winter, as the
maximum leadtime is shorter than a winter period and many forecasts overlap. In this
study, we compute a proxy for the model’s seasonal SSW probability based on the number
of SSWs per forecast day, as described in the following:

For each winter season i, forecasts with initialization dates between mid-November and
mid-February are analyzed, resulting in a total of N = 3, N; forecast runs (counting
ensemble members separately). We search for p-SSWs only in forecasts that have solely
positive US within the first 10 days after initialization, resulting in N = Y_; N; forecasts
(N < N ). We find E; p-SSWs events in the winter seasons, respectively, and group those
by daily leadtime (similar to Fig. 4.2, bottom left panel), yielding FE; ; p-SSWs in winter
¢ at leadtime +d days. As E; 4 is approximately constant over leadtime, we compute the
average number of p-SSWs in winter i per day leadtime: E; = E;4, where the overbar
denotes the mean over lead times. Hence, the probability that a random forecast in winter
¢ at a random leadtime shows a p-SSW is p; daiy = % The probability of no SSW for an
entire winter (= 135 days from mid-November to end of March) is therefore (1 — p; gairy)'*
Finally, the probability of at least one SSW in winter i becomes: p; =1 — (1 = p; gaity)**°,
as presented in Fig. 4.2 (top left panel). The model’s average seasonal SSW probability
yields 63%. This is consistent with the number of observed SSWs in reanalyses that is
roughly 6 per decade (Butler et al., 2015). More details are provided in appendix B of
Spaeth and Birner (2022).

IThis also seems consistent with the interpretation of this event to fall under the category of self-induced
resonance, which requires conditions (vortex geometry etc.) to be “just right” (see discussion in Albers
and Birner, 2014).
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Finally, the p-SSWs frequency shows a maximum in February (bottom right panel in Fig.
4.2). While the overall seasonal distribution of SSWs seems consistent with reanalyses (e.g,
Ayarzagiiena et al., 2019), previous literature has documented minor inconsistencies across
different leadtimes, highlighting that SSW probability in models could be slightly affected
by model drifts (Lawrence et al., 2022).

Northern Annular Mode composite of p-SSWs

Baldwin and Dunkerton (2001) demonstrated that Northern Annular Mode (NAM) indices
effectively trace circulation anomalies associated with both weak and strong polar events
from the stratosphere to the troposphere (see Fig. 2.3), based on reanalysis data. Following
the same approach, Figure 4.3 presents a corresponding NAM composite for 2264 p-SSW
and 2129 predicted strong polar vortex (p-SPV) events, based on S2S forecast data?.

Note that Baldwin and Dunkerton (2001) used an empirical orthogonal function (EOF)
analysis to compute the NAM indices, whereas the analysis shown here uses negative
standardized anomalies of polar cap geopotential height, based on an area-weighted average
of anomalies poleward of 60°N. In addition, Baldwin and Dunkerton (2001) used polar
vortex event definitions based on NAM thresholds at 10 hPa, whereas the analysis shown
here uses the p-SSW and p-SPV definitions described above, based on thresholds for UL .
Given the finite lead time of the S2S forecasts, the maximum lag in this analysis is restricted
to £36 days relative to the events’ central dates.

The NAM composite based on predicted events in the forecasts is qualitatively very similar
to the original version in Baldwin and Dunkerton (2001). However, the evolution of the
anomalies is substantially smoother due to the larger sample sizes. Additionally, tropo-
spheric anomalies appear somewhat weaker (around 0.4 standard deviations) compared to
the version in Baldwin and Dunkerton (2001) (approximately between 0.2 and 1 standard
deviations).

In addition to the established downward impact following the stratospheric events, oppo-
sitely signed anomalies are observed a few weeks prior to the events. Similar precursor
signals are present in the original study by Baldwin and Dunkerton (2001), but the small
sample size left uncertainty about their statistical robustness.

2The NAM composite is based on realtime forecasts and hindcasts from the winters of 2021/22 and
2022/23 (November 16 to February 22, respectively). While other analyses in this thesis use earlier winter
periods, geopotential height data for those analyses were only downloaded at the 1000 hPa level. For recent
analyses, multiple vertical levels were downloaded, but only for the latest winters. The NAM composite
presented here uses this new data, however, the results are assumed to be insensitive to the specific realtime
initialization dates.
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Figure 4.3: Composite-mean of NAM indices for predicted polar vortex events in S2S fore-
casts. a. Weak polar vortex events, based on Uj) reversals (from westerly to easterly).
b. Strong polar vortex events, based on U}) exceeding 50ms~!. The NAM indices are
computed as negative standardized anomalies of polar cap averaged (60 °N to 90 °N) geopo-
tential height. Blue shading denotes positive NAM values, red shading denotes negative
NAM values (contours intervals are -0.45, -0.3, -0.15, 0.15, 0.3, 0.45). White lines indicate
additional contour levels with 0.5 spacing. Horizontal thin line shows the 250 hPa level,
the approximate location of the tropopause. Visualization follows Baldwin and Dunkerton
(2001), however, note that the figures presented here use finer contour intervals.
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4.2 Relative probability increase and fraction of
attributable risk

This section introduces the main statistical diagnostics that will be applied to polar vortex
events and their coupling to the troposphere in the subsequent sections.

Facilitated by the UNSEEN approach, the large sample sizes of SSWs and strong po-
lar vortex events enable a statistical characterization of certain aspects of stratosphere-
troposphere coupling that would be difficult to quantify from observational data alone.
In this chapter, a statistical framework based on conditional probabilities is applied to
analyze UNSEEN events in the stratosphere and troposphere. Specifically, diagnostics
are presented to quantify the modulated likelihood of an event, Y, given the presence or
absence of a preceding event, X.

For example, as will be shown in section 4.4, the probability of negative Arctic Oscillation
extremes increases following SSWs. This scenario is somewhat akin to the situation in
climate attribution science, where one aims to quantify the increased risk of an extreme
event due to anthropogenic climate change (e.g., National Academies of Sciences Engi-
neering and Medicine, 2016, July), or to the situation in epidemiology, where one aims to
quantify the increased risk of contracting a disease given an exposure to a particular factor
(e.g., smoking in the case of lung cancer; Peto, 2000). In such situations, the additional
risk due to exposure can be quantified using the relative risk increase (RRI):

RRI= D) (4.1)

PY]=X)

where P(Y'|X) is the probability of event Y given event X (the so-called “risk among the
exposed”), and P(Y|-X) is the probability of event Y given the absence of event X (the
so-called “risk among the unexposed”).

In climate attribution science “exposure” may be thought of as “under the influence of
anthropogenic climate change”, whereas lack of exposure (denominator in the RRI equa-
tion) may be thought of as “without the influence of climate change” (e.g., based on
pre-industrial control climate). In the case of stratosphere-troposphere coupling, exposure
may be thought of as “given that a stratospheric extreme occurred”, although the assump-
tion that the stratosphere acts as an external influence may be more severe, due to two-way
couplings, compared to the influence of greenhouse gasses in climate simulations.

In general, the lack of exposure has to be evaluated with care. For instance, if “no X7 is
observed on day ty, and an event Y occurs later on day ty, Y cannot simply be categorized
as “unexposed” based on the absence of X at ¢y, because an X event may have occurred
between ¢, and ty.

To properly evaluate P(Y|=X), a time window needs to be defined to check whether X
occurred at any time within this period preceding Y. Therefore, a subscript wt denotes
that events Y are preceded by X within a specific time window: P(Y | X,.).

Computing the denominator of equation 4.1, P(Y|-X), can be challenging in practice
because it requires a composite of =X “events”, which is less straight-forward compared
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to a composite of Y. To avoid this issue, the probability P(Y'|X) in equation 4.1 can
alternatively be normalized by the climatological occurrence of Y, P(Y'), which includes
both exposed and unexposed cases. To avoid confusion, this modified RRI will be referred
to as relative probability increase (RPI):
P(Y| X)

RPI P(Yor) 1. (4.2)
Here, P(Y,:|X) represents the probability to observe Y within time ¢ following X. A
negative RPI indicates that Y becomes less likely following X . Conversely, a larger positive
RPI suggests that Y becomes more likely following X, indicating that X serves as a better
predictor for Y.

While RRI and RPI quantify the increased likelihood of Y based on the occurrence of X,
the fraction of attributable risk (FAR) provides additional insights into their relationship.
FAR quantifies the fraction of events Y that are attributable to preceding events X. It is
bounded by —1 and 1, where negative values indicate that X reduces the probability of Y.

FAR depends on P(Y'|=Xyy), which can be challenging to evaluate directly. To address this
issue, the conditioning can be swapped: instead of P(Y|—Xyt), we evaluate P(=X4|Y),
which can be derived from a composite-analysis of Y (and similar for P(Xy|Y)). Using
Bayes’ theorem, the conditional probabilities P(—X|Y) and P(Xy|Y) can be trans-
formed into P(Y|—Xy) and P(Y|Xy), respectively. These probabilities allow calculation
of FAR.

Importantly, we distinguish two types of FAR. First, the fraction of attributable risk
among the exposed (FAR,) is defined as:
FARe _ P<Y|th) _P<Y‘_' wt) -1 P(th) P<_' wt|Y)’ (43)
P(Y[Xw) P(=Xw) P(Xw]Y)
which quantifies the fraction of events Y preceded by X that are attributable to X. Second,
the fraction of attributable risk among the population (FAR,) is defined as:
PY) = P(Y[~Xw) P(=Xw|Y)

FAR, PO 1 PoXoy) (4.4)
which quantifies the fraction of all events Y (including exposed and unexposed) that are
attributable to preceding X. RRI, FAR. and FAR, provide complementary perspectives
on the statistical relation between X and Y.

Section 4.3 addresses the attribution of SSWs (V') to preceding eddy heat flux events (X).
Section 4.4 addresses the attribution of AO extremes (V') to preceding SSWs (X).

4.3 Attribution of sudden stratospheric warmings to tro-
pospheric planetary wave forcing

SSWs are predominantly driven by dissipating planetary Rossby waves (see section 2.2.2).
Early studies of SSWs emphasized that this wave forcing typically originates in the tropo-
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sphere, where wave activity is generally much larger than in the stratosphere (Matsuno,
1971; Holton and Mass, 1976).

Phenomena linked to increased wave activity may thus serve as predictors for weak polar
vortex states across various timescales, from medium-range, to subseasonal and seasonal
forecasts. Notable examples of these phenomena include high pressure anomalies over
Siberia and the Ural Mountains (Martius et al., 2009; Karpechko et al., 2018), reduced sea
ice over the Barents and Kara Seas (Kim et al., 2014), increased snow cover over Eurasia
(Cohen et al., 2014; Kretschmer et al., 2016), and El Nino events (Domeisen et al., 2019).

However, while it is clear that planetary waves of tropospheric origin play a crucial role
in the formation of SSWs, there is ongoing debate about the importance of anomalously
large tropospheric wave activity. This is because climatological wave activity may already
be sufficiently large to drive SSWs in the Northern Hemisphere. Following this line of
reasoning, it has been suggested that the state of the stratospheric mean flow stratospheric
circulation itself may play an equally important role in determining whether tropospheric
wave pulses can propagate into the stratosphere and disrupt the polar vortex (Plumb,
1981; Palmer, 1981; Mclntyre, 1982; Albers and Birner, 2014; Birner and Albers, 2017;
de la Camara et al., 2017; de la Cdmara et al., 2019).

Quantitatively addressing this question remains challenging because wave activity is highly
variable and SSWs are relatively rare events. Consequently, robust analyses require a
much larger sample size of SSWs than what is available from observations. The UNSEEN
framework presents a promising approach to revisit this question regarding SSW formation
and associated tropospheric wave activity anomalies, using several thousand p-SSWs within
the framework of the ECMWEF S2S model.

Sirbescu (2023) recently showed that on average p-SSWs, identified in the ECMWEF S2S
forecasts, are preceded by near-surface geopotential height anomalies that enhance the
climatological planetary waves, leading to anomalous vertical wave propagation into the
stratosphere. Here, this work is extended by statistically attributing these p-SSWs to
preceding eddy heat flux events at different vertical levels, using the fraction of attributable
risk framework.

Moreover, Bauer (2022) showed that p-SSWs, identified in the ECMWEF S2S forecasts,
are preceded by increased frequency of high pressure systems over Eurasia, called Ural
blockings. Consistent with this precursor signal, Ural blockings increase the likelihood
for subsequent weak polar vortex events. Here, these findings are combined with those
of Sirbescu (2023), by linking Ural blockings to increased planetary wave activity, which
manifests in positive eddy heat flux anomalies reaching from the troposphere into the
stratosphere.

Specifically, this section addresses the following research questions:

1. How can SSWs be statistically attributed to preceding anomalies in tropospheric
wave activity?

2. Ural blockings in the troposphere have been suggested as precursors for SSWs. How
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Z1000 anomalies 5-10 days before SSWs

p-SSWsin S2S  waveno. filtered  waveno. filtered SSWs in ERA5
a. (N=6101) b. k=1 c. k=2 d. (N=48)

Z1000 anomaly [gpm]

Figure 4.4: 1000 hPa geopotential height (Z1000) anomalies averaged over 5-10 days prior
to SSWs. a. UNSEEN SSW (p-SSWs) composite-mean based on 6101 events. b. As panel
a, but truncated to zonal wavenumber 1. Black contour lines denote the wave-1 component
of the anomaly field (contours each 3 gpm; zero line omitted). Shading denotes the wave-1
component of the model winter climatology (values below —12 gpm shaded and hatched,
values above 12 gpm shaded). c. As panel b, but for zonal wavenumber 2. d. As panel
a, but for 48 SSWs in ERA5, with statistically significant anomalies indicated by white
stippling (p < 0.05 based on a two-tailed one-sample Student’s t-test).

are Ural blockings linked to anomalies in planetary wave activity? Additionally, how
is the probability of SSWs modulated by Ural blockings?

Near-surface geopotential height precursors to SSWs

To investigate mean precursor signals of the tropospheric circulation prior to SSWs, Fig.
4.4a presents 1000 hPa geopotential height (Z1000) anomalies for a composite of 6101
p-SSWs, averaged over the period from —10d to —5d relative to the SSW date. Consis-
tent with previous studies (Garfinkel et al., 2010; Kretschmer et al., 2017; Kohler et al.,
2023; Sirbescu, 2023), positive Z1000 anomalies are observed over Furasia, while negative
anomalies are observed over the Pacific and North America. These signatures also agree
with those based on ERAS data (Fig. 4.4d).

The fact that only planetary waves, typically of zonal wavenumbers 1 and 2, can propagate
into the stratosphere (Charney and Drazin, 1961) motivates a spectral decomposition of
the observed Z1000 signal into zonal wavenumbers. The results show that the wave-1 and
wave-2 components of the total anomaly field project onto the climatological wave-1 and
wave-2 patterns, thereby amplifying these waves (Figs. 4.4b,c). In regions where wave-1
and wave-2 anomalies destructively interfere, such as over the Atlantic and East Asia, the
full Z1000 anomaly field is close to zero. The largest positive Z1000 anomalies are observed
over Eurasia, where the wave-1 and wave-2 contributions interfere constructively. Similar
findings were reported by Martius et al. (2009) (based on reanalysis data), Garfinkel et al.
(2010) (based climate model simulations) and Sirbescu (2023) (based on S28S forecasts).
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SSW composites of eddy heatflux at 60°N
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Figure 4.5: Composite-mean of 60°N eddy heat flux standardized anomalies, for a., b.

displacement c.,d. split, e.,f. mixed and g.,h. remaining events, for zonal wavenumber

k =1 (top row) and zonal wavenumber k = 2 (bottom row). White lines provide additional
contour levels every lo.

Composite-mean anomalies of eddy heat flux during SSWs

The strengthened planetary waves 1 and 2 prior to SSWs are expected to coincide with
anomalous vertical wave propagation. As a proxy for vertical wave propagation, the eddy
heat flux (v't’) is used, where v and ¢ are the meridional wind and temperature, (-)" denotes
deviations from the zonal-mean and (-) denotes a zonal average. The eddy heat flux is
proportional to the vertical component of wave activity flux (Vallis, 2017, June, chapter
10: “Waves, Mean-Flows, and their Interaction”). The vertical propagation is assessed
for zonal wave-1 (v't' |x=1) and wave-2 (v't' |;—2) separately by first applying a Fourier
transform to v" and ¢, and then computing the covariance. In the analyses, the eddy heat
flux is displayed as standardized anomalies: the inter-annual mean is subtracted, and the

result is divided by the inter-annual standard deviation.

Before moving on to an attribution of SSWs to preceding heat flux anomalies, Fig. 4.5
presents the time-lag composite-mean of standardized eddy heat flux anomalies at 60°N
during SSWs, similar to Sirbescu (2023). The analysis is shown separately for displacement-
and split-type SSWs, as substantial differences between v't' |,—; and v't' |—2 in the
troposphere are expected. Displacement and split SSWs are here defined similarly to
de la Camara et al. (2019), based on standardized eddy heat flux anomalies at 50 hPa.
Displacement SSWs are defined as SSWs where v't’ |,—; > 1 standard deviation (o) at any
day within +5d relative to the SSW and v't’ |y—2 < 1o throughout this period. Split SSWs
are defined accordingly, where v't' |,—; < lo and v't’ |y—2 > lo. Out of the 6101 SSWs,
2808 classify as (pure) displacement, 933 as (pure) split and 2061 as mixed events (where
both wavenumbers 1 and 2 exceed the thresholds).
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Displacement SSWs are, on average, preceded by positive vt [,—; anomalies for about
three weeks (up to 0.40 near the surface and up to 1.50 in the stratosphere). Similarly,
split SSWs are preceded by positive v't' [;—2 anomalies for about ten days (nearly lo
near the surface and exceeding 20 in the stratosphere). The larger magnitude of wave-2
anomalies compared to wave-1 could result from the fact that the climatological wave-2 is
weaker than wave-1 in the stratosphere. Therefore, wave-2 forcing needs to be larger in an
anomaly sense to induce a similar level of mean-flow deceleration compared to wave-1.

Moreover, wave-2 anomalies appear more instantaneous, in agreement with de la Camara
et al. (2019), whereas wave-1 anomalies seem to build up more continuously over a longer
period. Especially for wave-2, there is only short time-lag between tropospheric and strato-
spheric anomalies, a potential hint for resonance behavior (e.g., Plumb, 1981; Matthewman
and Esler, 2011; Albers and Birner, 2014).

The composite of mixed SSWs, exhibiting anomalous v't’ |x=; and v't' |—y , shares char-
acteristics of both displacement and split events, as expected (Fig. 4.5). Finally, the
remaining SSWs that do not qualify for any of categories show only weak anomalies in
general. However, there are positive v't' |r=; anomalies at all levels more than one week
before the events. This suggests that even though these events did not exhibit anomalous
V't |g=1 between lags of —5 to +5 days relative to the SSW, the polar vortex already
weakened before this periods.

All events are followed by reduced v't' in the stratosphere. This is presumably related
to zonal-mean easterly winds in the stratosphere following SSWs, which suppress upward
wave propagation according to quasi-geostrophic theory (Charney and Drazin, 1961).

Towards attribution of SSWs to preceding tropospheric heat flux events

The composite-mean analysis shows that prior to SSWs, vertical propagation of planetary
waves from the troposphere into the stratosphere is enhanced. However, this average
behavior cannot determine whether anomalous vertical wave propagation is observed ahead
of all SSWs. If we instead considered the total number of SSWs preceded by anomalous
heat flux in the troposphere, this count would include cases where a tropospheric wave
pulse and a subsequent SSW co-occur fortuitously, without any causal link. The fraction
of attributable risk among the population (FAR,) provides a framework to account for
such cases and offers an estimate of how many SSWs are attributable to preceding heat
flux events. Here, SSWs are defined to be preceded by a heat flux event if v't’ |p=; or
V't |g=2 exceed 1o on any day within 0d to 10d before the SSW. Applying equation 4.4
to this example, FAR,, becomes

P(a given SSW is not preceded by a preceding heat flux event)

FAR, = 1— (4.5)

P(no heat flux event)

Fig. 4.6 presents the FAR, of SSWs to preceding anomalous eddy heat flux. To isolate
their distinct characteristics, the focus is here on pure displacement events (and their
attribution to wave-1 heat flux; FAR, |;—1) and pure split events (and their attribution
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Figure 4.6: Fraction of attributable risk analysis. a. Fraction of displacement SSWs
attributable to preceding events of anomalous wave-1 eddy heat flux at 60°N (v't' |x=1),
on different vertical levels. b. As panel a, for split SSWs attributable to preceding wave-2
eddy heat flux (vt |g=2).

to wave-2 heat flux; FAR,, |;,—2). Mixed events are more often attributable to wave-1 heat
flux events than to wave-2 heatflux events (not shown), suggesting that mixed events may
be more similar to displacement events that are then accompanied by higher wavenumbers
during the polar vortex breakdown.

Both FAR, |x=1 and FAR, |,—2 are close to 1 near the 50hPa level, because displace-
ment and split SSWs are here defined based on anomalous heat flux at this level. In the
troposphere, the values decrease to about 1/3 for displacement and about 1/2 for split
SSWs, implying that about every third displacement SSW is attributable to preceding
wave-1 eddy heat flux events in the troposphere, whereas about every second split SSW is
attributable to preceding wave-2 eddy heat flux events in the troposphere.

These numbers are of a similar order of magnitude as those reported by de la Camara
et al. (2019), although their study focuses on the frequency of tropospheric wave events
prior to weak vortex events, without accounting for fortuitously co-occurring events. They
found approximately 40% of displacement-type weak polar vortex events to be preceded by
tropospheric wave 1 events, and approximately 30% of split-type weak polar vortex events
to be preceded by tropospheric wave 2 events. In contrast, this study, based on S2S forecast
data, suggests a stronger link between split-type events and tropospheric wave-2 activity.
This discrepancy may arise from different event definitions (de la Camara et al., 2019, used
deceleration of Ug) to define weak polar vortex event), thresholds (de la Cdmara et al.,
2019, used 20 compared to lo to define wave events), or attribution methods (whether or
not accounting for climatological SSW and wave events occurrence).
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Modulation of SSW probability by Ural blockings

Fig. 4.4 showed that on average, SSWs are preceded by anticyclonic anomalies over cen-
tral Eurasia. On synoptic scales, such anomalies can manifest as Ural blockings. Ural
blockings may thus take an important role in increasing planetary wave activity in the
troposphere, thereby increasing the likelihood for SSWs. In the following, the role of Ural
blockings is analyzed with respect to their influence on planetary wave activity and as-
sociated SSW probability. As before, events are identified in the forecasts, following the
UNSEEN approach.

Ural blockings are identified in the S2S forecasts following Bauer (2022), defined as days
where the Ural-Z1000 index exceeds 20. This index is defined as the standardized anomaly
of the area-weighted spatial average of Z1000 over 45° to 72.5°E and 50° to 70°N. Only
events occurring after a lead time of 9 days are considered to ensure a certain degree
of statistical independence. In Fig. 4.7a, the Z1000 composite-mean anomalies on the
central day of Ural blockings are presented. Ural blockings are accompanied by increased
eddy heat flux, lasting about 3 weeks for wavenumber 1 and approximately 1 week for
wavenumber 2 (Figs. 4.7b,c). The anomalous heat flux corresponds to increased vertical
wave propagation into the stratosphere. Consistently, the daily probability for a reversal of
the zonal-mean zonal wind at 60°N, 10 hPa increases from about 0.8% before Ural blockings
(corresponding to a climatological probability) to about 1.8% following the events (Fig.
4.7d). Ural blockings may thus provide predictability for weak polar vortex events, as
proposed by Karpechko et al. (2017).

Discussion

The composite-mean analyses of SSWs with respect to their tropospheric Z1000 precur-
sor signals are in good agreement with existing literature (e.g., Garfinkel et al., 2010;
Kretschmer et al., 2017; Domeisen et al., 2020a; Kohler et al., 2023). This provides fur-
ther confidence that the S2S model can realistically represent relevant aspects of upward
stratosphere-troposphere coupling. This motivated using the large sample of UNSEEN
SSWs also to compute more sophisticated statistical diagnostics, which cannot be derived
from reanalysis datasets. Specifically, the approach was applied to investigate two research
questions:

1. How can SSWs be statistically attributed to preceding anomalies in tropospheric wave
activity?

The fraction of attributable risk among the population (FAR,) was computed to
quantify how many SSWs may be attributable to preceding anomalous wave activity
in the troposphere. This was done separately for displacement and split SSWs,
following a simple classification based on eddy heat flux anomalies at 50 hPa.

Due to the limited vertical resolution of the S2S model output, vertical wave propaga-
tion was quantified using the eddy heat flux at 60 °N as a proxy, which is proportional
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Figure 4.7: Composite analysis of 6608 UNSEEN Ural blockings in the S2S forecasts. a.
Composite-mean 1000 hPa geopotential height anomalies. White box indicates the region
based on which the events are defined. b. Composite-mean eddy heat flux standardized
anomalies at 60 °N for zonal wavenumber 1. c. As panel b, but for zonal wavenumber 2.
d. Daily probability for U) to transition from westerly to easterly.



4.3 Attribution of sudden stratospheric warmings to tropospheric planetary
wave forcing 65

to the vertical component of the quasi-geostrophic Eliassan-Palm (EP) flux. Given
the substantial data size of the S2S forecasts, the analyses are here restricted to
this single latitude (representing over 100 GB of data). While this single latitude is
expected to reasonably capture the average characteristics of upward coupling dy-
namics, some aspects of the tropospheric response to SSWs may be missed, as the
tropospheric jets tend to shift equatorward following the event.

Consistent with de la Camara et al. (2019), a significant fraction of SSWs was found
to be not statistically attributable to preceding anomalous eddy heat flux (exceed-
ing 1o) in the troposphere, with 2/3 of displacement and 1/2 of split SSWs falling
into this category. These findings underscore the importance of the stratosphere’s
“susceptibility” to upward propagating tropospheric waves.

In particular, potential vorticity gradients are expected to play a critical role in
determining wave propagation conditions. These gradients are not only influenced
by planetary waves but also by smaller-scale gravity waves (Albers and Birner, 2014;
Polichtchouk et al., 2023; Wicker et al., 2023). Consequently, these stratospheric
preconditioning aspects might be more challenging to predict by forecast models
than the prediction of planetary wave activity in the troposphere. If this hypothesis
holds true, then SSW predictability might be more strongly governed by the accurate
prediction of features and gradients in the stratosphere than by the prediction of
tropospheric dynamics.

2. Ural blockings in the troposphere have been suggested as precursors for SSWs. How
are Ural blockings linked to anomalies in planetary waves? And how is the probability
for SSWs modulated in the aftermath of Ural blockings?

A spectral decomposition of the Z1000 anomaly field prior to SSWs, similar to Mar-
tius et al. (2009) and Garfinkel et al. (2010), revealed that there is only one re-
gion where increased wave-1 and wave-2 amplitudes constructively interfere locally
— near the Ural mountains, over Eurasia. Consistently, a composite analysis of 6608
UNSEEN Ural blockings revealed that these events are associated with positive wave-
1 and wave-2 eddy heat flux anomalies extending from the troposphere into the
stratosphere. The increased wave activity leads to a weakening of the polar vor-
tex, approximately doubling the probability for a zonal-mean zonal wind reversal at
10 hPa, 60°N from westerly to easterly (consistent with Bauer, 2022).

If conditioning on wave events in the lower stratosphere rather than tropospheric
events, a previous study by Jucker and Reichler (2018) (based on climate model
simulations) found that the probability of sudden stratospheric warmings (SSWs) in-
creases by a factor of about 5 following such wave events. This highlights that not all
Ural blockings are associated with wave anomalies that extend into the stratosphere.

Finally, one question that arose during the analyses concerns the role of the vertical tilt of
planetary wave-1, during SSWs. Prior to SSWs, the wave-1 anomaly exhibits a maximum
over Eurasia, amplifying the climatological wave-1 (Fig. 4.4b). However, Sirbescu (2023)
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demonstrated that wave-1 anomalies undergo a longitudinal phase shift of approximately
90°, from few days before to few days after the SSW. After SSWs, the phase of the
wave-1 anomaly then aligns with the negative NAO pattern. The relationship between the
tropospheric and stratospheric phases of wave-1 remains unclear: the phase change in the
troposphere could correspond to a phase shift in the stratosphere or, alternatively, arise
from a change in the vertical tilt of the wave. Analyzing the vertical tilt of wave-1 during
SSWs could potentially offer further insights into the downward response to these events.

4.4 Attribution of Arctic Oscillation extremes to polar
vortex variability

In this section, we continue to analyze UNSEEN SSWs (p-SSWs), with the focus shifting
from upward-coupling to downward coupling. Specifically, we investigate the impact of
weak and strong polar vortex states on subsequent large-scale circulation extreme events
in the troposphere — quantified via the Arctic Oscillation index. This work is published in
Spaeth and Birner (2022).

Motivation

Numerous studies show that extreme polar vortex events tend to be followed by tropo-
spheric anomalies that project onto the Arctic Oscillation (AO), the leading mode of day-
to-day variability in the northern extratropics (Thompson and Wallace, 1998; Baldwin
and Dunkerton, 1999; Limpasuvan and Hartmann, 2000). Specifically, strong polar vor-
tex (SPV) episodes are associated with a subsequent positive AO index, whereas weak
polar vortex states, including SSWs, are associated with a subsequent negative AO index
(e.g., Baldwin and Dunkerton, 2001; Lawrence et al., 2020; Rupp et al., 2022). Consistent
with the local implications of a negative AO index, SSWs can for example lead to cold
spells in Northern Europe and increased storminess over Southern Europe (Domeisen and
Butler, 2020, and references herein).

Whether it is generally valid that SSWs and also SPV episodes lead to a subsequently
more likely occurrence of AO extremes (and associated local extremes) is difficult to analyze
because the statistical links are weak in each case, i.e., not each SSW/SPV event is followed
by an AO extreme. Therefore, very large samples of SSW and SPV events are needed to
quantify the subsequent risk increase of AO extremes. However, reanalyses data only cover
about 40-70 years, depending on the data set, and thus about 30-40 SSWs — too few to
robustly determine conditional probabilities (e.g., given a stratospheric extreme event, how
likely is a following tropospheric extreme event).

Hence, the UNSEEN approach offers a powerful framework to address this issue, since it
can provide a large sample of events. In the following analysis, we aim to improve the

characterization of coupled stratospheric and tropospheric circulation extremes based on
UNSEEN SSWs (or p-SSWs), which are predicted in the S2S ensemble forecasts.

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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In addition to ECMWFEF forecasts, the results are presented for UKMO forecasts, which
may guide the interpretation of model uncertainty. Importantly, both these models have
been demonstrated in previous studies to have a realistic representation of stratosphere-
troposphere coupling (Domeisen et al., 2020c¢; Domeisen et al., 2020a).

We will compute statistical measures that combine conditional and base rate probabili-
ties for stratospheric and AO extreme (co-)occurrences, in order to address our following
research questions:

1. By how much is the probability of persistently positive or negative AO phases in-
creased following stratospheric polar vortex extremes?

2. By how much is the probability of subsequent AO extremes increased following strato-
spheric polar vortex extremes?

3. What fraction of AO extremes may be attributable to preceding stratospheric polar
vortex extremes?

To illustrate which AO extremes are classified as “attributable”, consider the following
scenarios where a stratospheric event is followed by an AO extreme: In relation to the AO
extreme the stratospheric extreme may

(a) represent a necessary and sufficient cause

(b) represent one among multiple contributory causes

(¢) be caused by a confounding factor, which also causes the AO extreme

(d) not be causal

In scenario a, the AO extreme is attributable to the preceding stratospheric event, whereas
it is not attributable in scenario d. In scenario b, disentanglement of different contributory
factors is difficult. Each involved process can but does not need to be also a necessary cause.
(Consider for example a situation where an AO extreme would have occurred also without
a preceding stratospheric extreme, but the stratospheric extreme resulted in a stronger or
earlier manifestation.) In this study, we do neither aim to disentangle the multiple involved
pathways a-c nor to provide a rigorous quantification of causality (which is itself ambiguous
in a complex system). Instead, we estimate how many AO extremes may be attributable
to the stratospheric extreme, which refers to the fraction that would have statistically not
occurred without the stratospheric event. Importantly, scenario ¢ shows that “without
the stratospheric event” requires to also remove any confounding factors. The analysis
follows an observational approach (which is based on post-hoc computation of conditional
probabilities) rather than a counterfactual approach (which is based on active interventions
in the system; Pearl, 2009, September, see section 4.4.6 for a more detailed interpretation
of the results with respect to causality). However, even without disentangling scenarios
a, b and ¢, the observational approach provides relevant and practical insights into the
statistical association between and the importance of stratospheric and subsequent AO
extremes.

The study begins with a composite-mean analysis, validating that the mean AO response
to SSWs and SPVs agrees between S2S models and ERAS reanalysis (section 4.4.1). This

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.8: Lagged composite evolution of Ul) (top panel), NAM200 (middle panel)
and NAM1000 (=AO, bottom panel) relative to p-SSWs (ECMWF, UKMO) and SSWs
(ERAD5). It is presented the mean across all ECMWEF events (orange, solid), the 33rd to
66th percentiles across all ECMWF events (orange, shaded), the mean of all UKMO events
(purple, dash-dotted) and the mean across all ERA5 events (green, dashed). In the top
panel further denoted are the average Ui) anomalies (orange, dashed) and the relative
number of contributing events to the composite in the ECMWEF model (gray, dotted).
Square brackets denote the total number of events, for each dataset.

motivates section 4.4.2, where the persistence of negative AO phases is investigated, and
section 4.4.3, where the probability of AO extremes following predicted SSWs is analyzed.
Conversely, section 4.4.4 shows how often predicted AO extremes are preceded by predicted
SSWs and how many AO extremes may be attributable to preceding SSWs. Section 4.4.5
reveals in a similar fashion the statistical relation between predicted strong polar vortex
events and predicted positive AO extremes, before the key findings are discussed and
summarized in section 4.4.6.

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
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4.4.1 Evaluation of stratosphere-troposphere coupling based on pre-
dicted SSWs

To provide a baseline for our more detailed statistical analyses in the following sections, we
first evaluate the general behavior of stratosphere-troposphere coupling based on p-SSW
events in the S2S data. To do so we focus on the lag-composite evolution of the AO
index relative to p-SSWs compared to real-atmospheric SSWs from ERA5. In addition,
we show the NAM index at 200hPa (short: NAM200) because the lower stratosphere has
been found to play an important role in stratosphere-troposphere coupling (e.g, Karpechko
et al., 2017; White et al., 2020).

Figure 4.8 shows the evolution of U) (top), NAM200 (center) and AO (bottom, equal to
the NAM1000) during SSWs, averaged over all events, separately for ECMWF and UKMO.
In addition to the composite mean, the 33rd to 66th percentiles across all ECMWEF events
on the respective lag day are shown. By construction, 100% of all events (ECMWF: 6101,
UKMO: 2716) contribute to lags within £10 days relative to the SSW. For larger positive
or negative lags, some forecasts have reached their maximum forecast lead time or have not
yet been initialized. Therefore, the number of events drops off, which makes the statistics
less robust: For the ECMWE model, the number of contributing events falls below 20%
for lags smaller than —31 and larger than +31 days (UKMO: smaller than —44 and larger
than +39 days).

By construction, U}) transitions from westerly to easterly at lag 0. Anomalies of U
are slightly positive ahead of —14 days lag, which we interpret as an indication for vortex
preconditioning (McIntyre, 1982; Albers and Birner, 2014; Jucker and Reichler, 2018). The
anomalies become negative within the second week prior to the event central date. The
largest average negative anomalies occur only few days after the event central day (lag +2
days: —6ms™!). Afterwards, the vortex reestablishes and the average anomalies reach zero
again after approximately 35 days. Consistent with, e.g., Baldwin and Dunkerton (2001),
both NAM200 and AO are negative following the event. The shift of the NAM200 happens
earlier (at lag day —11) and the timing aligns well with the weakening of the polar vortex
at 10hPa. The NAM200 anomaly is also more pronounced (=~ —0.5) compared to the AO
(~ —0.3). Interestingly, the AO distribution is slightly shifted toward positive values in
the week prior to the central date, which is also robust for other diagnostics like the 10th,
30th, 70th and 90th percentiles (not shown). At long positive lag times, the NAM indices
at 200 and 1000hPa are still negative (ECMWEF: lag +36 days, UKMO: lag +51 days),
but the trend goes to weaker negative values again.

Overall, the results are in agreement with ERA5 and previous literature and especially
the evolution of U§) is remarkably similar. The negative NAM response at 200 hPa and
1000 hPa seems to be slightly stronger in the reanalysis, however, it is also noisier due to
the smaller sample size.

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.9: Histogram of the duration of negative AO periods, quantified by the number
of consecutive days of AO < 0 and binned by 7-day chunks. Periods following ECMWF
p-SSWs (orange bars, right half) are compared to the ECMWEF model’s climatology (green
bars, left half) and a random first order auto-regressive model of the same 1-day-lag-
autocorrelation as the AO in ERA5 (black, horizontal lines). ERA5 climatology is not
shown, but agrees very well with the ECMWF forecast climatology.

4.4.2 Persistence of negative AO phases

Before focussing on the impact of p-SSWs on extreme magnitudes of the AO index, we
investigate anomalies in the persistence of negative AO phases.

Figure 4.9 presents a histogram of the duration of predicted negative AO phases in the
ECMWF model, binned into 7 day chunks. The duration is defined as the number of
consecutive days with negative AO. The climatology serves as a reference including all
30 894 ECMWF forecasts used for this study. With approximately 62%, most phases of
negative AO are shorter than 8 days. As another reference, a first order autoregressive
model was set up with zero mean and standard deviation of 1, which may serve as a
baseline. Its 1-day-autocorrelation is chosen to match the ERA5 AO time series and for
robustness, it is estimated by averaging the lag-1-autocorrelation and the square-root of
the lag-2-autocorrelation, yielding 0.91. ECWMF (S2S) and ERA5 agree very well in terms
of climatology and lag-1-autocorrelation (not shown). However, the AO climatology shows
short negative phases (< 7 days) less often and long negatives phases (> 8 days) more often
compared to the AR1 process, indicating an AR1 process cannot reproduce AO variability.

In addition, the diagnostic is presented for periods following p-SSWs. Here, the AO index
is analyzed between lag day +1 relative to the event date and the maximum available lag
time, which ranges between +10 and +36 days, depending on the forecast lead time when
the event happens. Similar to the reference climatology, this diagnostic also underestimates
the occurrence of long negative AO periods as the forecasts have finite maximum lead time.
Nevertheless, periods following SSWs show a reduced frequency of shorter and an increased
frequency of longer negative AO periods, compared to the climatology (and thus also to

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.10: Daily probabilities of AO<0 (top panel), AO< —3 (middle panel) and AO>+3
(bottom panel) relative to p-SSWs, quantified by the fraction of events fulfilling the respec-
tive condition, separately for ECMWEF (orange, solid) and UKMO (purple, dash-dotted).
Day 0 corresponds to the p-SSW central date. In addition, probabilities are compared to
the corresponding daily ECMWF climatology (dashed horizontal lines).

the AR1 process): For instance, 38% of negative AO periods are longer than 7 days in the
climatology, whereas this probability rises to 44% following p-SSWs, which corresponds to
a relative increase of 16%.

Sampling uncertainties turn out to be negligible within 95% confidence intervals. A similar
analysis based on UKMO data shows very good quantitative agreement (not shown), which
further confirms the robustness of the results.

4.4.3 Modulated probability of AO extremes

It is known that SSWs shift the subsequent AO distribution (see Fig. 4.8). This also
implies an increased daily probability of negative and a reduced probability of positive AO
extremes compared to their respective climatological probabilities. Fig. 4.10 shows the
probabilities of negative (< 0), extremely negative (< —3) and extremely positive (> +3)
AQO values on a particular lag day t relative to the SSW central date. Mathematically,

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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these probabilities can be written as P(AO | SSW). Per construction, lag day 0 describes
the SSW central day. At each lag day, the probabilities are computed by normalizing
the number of events fulfilling the respective condition with the total number of available
events at the respective lag day (which decreases for large positive and negative lags).

In addition, the overall daily probabilities of AO< 0, AO< —3 and AO> +3 are presented,
providing climatological baselines P(AQ), which are independent of lag time. In any
forecast, AO events occur at each day with probabilities of about 49.0% for AO < 0, about
0.3% for AO < —3 and about 0.1% for AO > +3. Asymmetry between positive and
negative values arises from the AO distribution that is not perfectly Gaussian (skewness:
—0.13).

The fraction of events in the p-SSW composite that have negative AO values fluctuates
around P(AO™° | SSW) = 50% at negative lags with only small deviations from the
climatology. Within the first week following the event, this fraction increases and appears
to saturate around 60%. Consequently, in the period following a p-SSW, a negative AO
is, at each day, approximately 50% more likely compared to a positive AO (60% vs. 40%).
The results are consistent between ECMWEF and UKMO during the +4 week period where
the composites for both models consist of more than 30% of all events.

Extremely negative AO values in the dataset appear with a climatological probability
that is similar to what would be expected for a (one-sided) 3-sigma-event of a standard
normal distribution (0.27%). At negative lags, they occur overall less frequent compared to
climatology. In contrast, around lag 0, the probability increases and persists at P(AO3 |
SSW) =~ 0.40% for more than four weeks. The increase appears to be larger in the
UKMO model, however due to fewer events the diagnostic is also noisier. The fraction of
events with extremely positive AO values is smaller compared to climatology throughout
the entire lag period. This is largely consistent between the models from ECMWEF and
UKMO. ERA5 (not shown) overall reveals higher probabilities of negative AO values
following SSWs, P(AO~° | SSW). However, large uncertainties (95%-CI ~ [45%; 85%])
in ERA5 make it difficult to distinguish whether observed differences arise from sampling
errors in the reanalysis or from imperfect models. The ERA5 baseline probabilities of
AO extremes are modestly lower compared to the S2S models® (PFEA>(AO0~3) = 0.06%;
PERAS(AO*3) = 0.02%) and not a single AO*? extreme event occurred within a four week
period following a real atmosphere SSW, resulting in PER4>(AO*3 | SSW) = 0, likely due
to the very limited sample size.

An altered probability of extreme AO events may be of higher socio-economic relevance
than a small shift of the mean. However, the absolute daily probabilities of extremely
negative AO events are still small even though the relative increase given the p-SSWs
is indeed considerable. In practice, the relevant question might not be how much the
probability increases on only one specific day following a p-SSW. It may be more relevant

3Note that we have standardized the AO in ERA5 such that the inter-annual standard deviation is 1,
similar to the deseasonalization that is applied to the S2S forecasts. The lower baseline probabilities are
consistent with a non-zero kurtosis of the AO distribution in ERA5 of ~ —0.3 (ECMWF: ~ 0.0, UKMO:
~0.1).

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.11: Probabilities of at least one AO™3 event within a window of time ¢ follow-
ing p-SSWs (dashed, mean incl. 95%-confidence-interval) are compared to climatology
(solid), separately for ECMWEF (orange) and UKMO (purple). In addition, the clima-
tologies for ERA5 (green) and a random first-order auto-regressive model of the same
1-day-autocorrelation (yellow) are presented.

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
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to quantify the increased risk for an extreme AO within a given time period following a
p-SSW.

Figure 4.11 therefore shows the probability of at least one AO~ extreme between day 1
and day t as a function of t. We compare the period following p-SSWs, P(AO,; | SSW) to
the respective model climatologies, P(AO™3), the ERA5 climatology and an AR1 process
of the same autocorrelation as the AO index in ERA5. Confidence intervals were obtained
for P(AO,} | SSW) by bootstrap sampling all SSW events. For ECMWF and UKMO
climatology, probabilities were sampled from lead time +10 days?* to lead time +10+4t days
within all forecasts. Similarly, baseline probabilities of ERA5 and the AR1-process are
obtained by sampling from all days ¢y of the time series to day to + t, respectively.

Clearly, all probabilities increase with ¢, as the time window for finding at least one AO~3
extreme gets wider. However, with increasing t, also fewer events contribute to the com-
posite due to the finite forecast lead time, leading to larger sampling errors. The results
show that p-SSWs are consistently leading to an increased time-integrated risk of AO~3
events. For example, the probability in the ECMWF forecasts of at least one AO extreme
within 30 days following the event is 3.8%, compared to 2.9% for its climatology. Over-
all, p-SSWs seem to affect the probability more in the UKMO model, as the probability
following p-SSWs is higher and the climatological baseline is also lower compared to the
ECMWF model. The baseline in ERAS5 is slightly lower than in the ECMWEF model, but
agrees well with the UKMO climatology. All probabilities range considerably higher than
the probability of a one-sided 3-sigma event for the AR1-process and as before, this is a
result of the negative skewness of the AO distribution.

Generally, all probabilities appear approximately linear in ¢, but it should be noted that
the linear regime only holds for small enough t as the probability will approach 1 and
saturate in the limit of very large ¢. Furthermore, it is expected that for much larger
t (which cannot be evaluated here, due to the finite maximum forecast lead time), the
effect of a p-SSW increasing the subsequent extreme AO™ probability diminishes and the
climatology will approach the one for p-SSWs.

Based on the presented probabilities, the probability increase of at least one AO event
within time ¢ following SSWs can be estimated relative to the climatological baseline.
Following equation 4.2 in section 4.2, the relative probability increase (RPI) is computed

as
AOy | SSW)

P(AOy)

An RPI larger than 0 corresponds to an increase of AO probability following SSWs, while
negative values describe a probability decrease. This ratio is a function of the length of
the time window ¢ (see supplement Fig. S2 of Spaeth and Birner, 2022). In the limit of
large ¢, where the SSW influence becomes negligible, it is expected to approach 1, such
that the relative probability increase approaches 0. However, for medium time windows
t that correspond to a typical timescale of stratosphere-troposphere coupling, the relative

RPI = il

~ 1. (4.6)

4We choose 10 days as we also start to search for p-SSWs at lead time day 10, however, this choice is
arbitrary and the resulting climatology is not very sensitive to this choice.

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.12: Probability increase (in percent) for at least one negative (positive) p-AO
extreme below (above) threshold following p-SSWs within a certain period t, relative to
climatology, averaged over 25d< t < 40d, separately for ECMWEF (orange, solid) and
UKMO (purple, dash-dotted).
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probability shows a wide plateau. This motivates the calculation of the relative probability
increase averaged over the plateau, which is estimated to correspond to 25 days <t < 40
days. The resulting relative probability increase (Fig. 4.12) provides an estimate for the
extent to which p-SSWs increase the probability of p-AO extreme events — not limited to
a specific lag day, but time-integrated and thus independent of ¢. Note that the measure
is relative to the climatology, which also includes AO extremes that occur following SSWs.
The diagnostic can therefore be interpreted as the relative probability modulation of at
least one AO* event within a certain time period following the occurrence of a SSW,
relative to the baseline probability where the stratospheric state is unknown.

The relative probability increase of AO events around 0 (e.g., at least one day below/
above 0) is very small, as these events are already almost certain, even in the climatologi-
cal reference. Both models show a gradual increase of relative probability of more negative
AO thresholds (e.g., ~ +35% for AO< —2) and a gradual decrease for more positive AO
thresholds (~ —40% for AO> +2), which is consistent with a shift of the distribution
toward more negative values. Quantitative differences in the results between the models
are observed for AO thresholds of £+3. Indeed, sampling uncertainties become considerable
for thresholds greater than 2 standard deviations as well, as indicated by 95% confidence
intervals that are obtained via bootstrap sampling among all SSW events. However, model
discrepancies reach beyond the indicated confidence intervals, which will be briefly dis-
cussed in section 4.4.6.

4.4.4 Toward attribution of predicted AO extremes to preceding SSWs

The last section focused on given p-SSWs and subsequent statistical signatures in AO
extremes within a period t: P(AQO,; | SSW). It was shown that AO~ extremes are
significantly more likely following a SSW.

In this section, we aim to evaluate the alternative question: How many AO~ events may
statistically be attributable to preceding SSWs? Similar to section 4.3, we address this
question using the fraction of attributable risk (FAR). Note that we neglect potential
common drivers of both AO and stratospheric extremes, such as due to tropical telecon-
nections. Consequently our analyses of FAR may overestimate the part that is solely due
to the stratosphere. Nevertheless, they serve to quantify the statistical association be-
tween stratospheric extremes and the AO, as well as quantify the predictive skill due to
the stratosphere.

Fraction of attributable risk among the exposed

First, we focus on the FAR among the exposed (FAR,), which quantifies how many AO
extremes that are preceded by a SSW are attributable to that SSW. FAR,. quantifies how
many AQO extremes that are preceded by a SSW (“exposed” category) are attributable
to that SSW. An FAR. of 0 means that the probability of finding an AO™ extreme is

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.13: Probabilities of at least one day UL) < 0 within day ¢ and day -1 relative
to day 0, where day 0 is either a randomly sampled day (solid) , an AO™3 extreme event
(dashed), or an AO™ extreme event (dotted). S2S ECMWTF (orange), S2S UKMO (purple)
and ERA5 (green).

independent of exposure to a preceding SSW. Likewise, an FAR, of 1 means that AO~
extremes do not happen without exposure to a preceding SSW.

Using the second re-write of equation 4.3 (section 4.2), we compute FAR, based on prob-
abilities that condition on AO extremes:

P(SSWyt) P(=SSWy | AO™)
P(=SSWyt) P(SSWy | AO™)

FAR, =1 — (4.7)
Note that whether a particular AO~ extreme occurs with or without preceding SSWs
requires choosing a time window (t) for the potential exposure (e.g., was a given AO
extreme preceded by a SSW within the preceding 30 days or not).

In total, the ECMWTF analysis is based on 752 AO~ and 486 AO™3 events, where asym-
metry arises from non-zero skewness of the AO distribution (UKMO: 299 and 186 events).

Fig. 4.13 shows the probability that AO*3 events are preceded by at least one day of
negative U within time ¢, corresponding to P(SSW,; | AO*?). For example, the prob-
ability of p-SSW occurrence within 30 days preceding AO~3 extremes is close to 0.5 in
both models, whereas it is around 0.1 preceding AO™? extremes. 95% confidence intervals,
which were derived by bootstrap resampling all AO events, confirm that the diagnostics
get less robust for larger time windows, due to fewer available events contributing to the
AO composite. The probabilities of the extremes to be not preceded by at least one day
of negative UL) are given by P(=SSW,; | AO*?) =1 — P(SSW, | AO®3).

We can use the estimated probabilities P(SSW,; | AO*?), together with the baseline

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
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climatology for SSWs within a time period (P(SSW,:)) to evaluate FAR,. Our estimates
of FAR, are shown in Fig. 4.14a as a function of time window ¢, for two AO event thresholds
(-2 and —3). We find that these estimates are not a strong function of the chosen time
window. Fig. 4.14b summarizes the FAR, averaged over time windows of 25 to 40 days:
For example, based on the ECMWF forecasts we estimate that on average about 50%
of all AO=3 events that are preceded by a SSW may statistically be attributable to that
SSW. For the UKMO forecasts this value is slightly higher (~60%). For AO™2 events these
percentages are somewhat smaller but overall similar between the models. Boxplots reveal
that associated sampling uncertainties are generally small, but larger for AO~3 events.

Fraction of attributable risk among the population

Second, we additionally compute the FAR among the population (FAR, ), which quantifies
how many AO extremes (from the entire population) are attributable to SSWs. In this
case one is interested in quantifying the fraction of AO~ extremes that occur in addition
to those that are “unexposed” (were not preceded by a SSW). The corresponding FAR
among the population is computed following equation 4.4 of section 4.2, as

P(~SSW,, | AO)
P(_'SSth)

FAR, = 1 — (4.8)
FAR, quantifies the fraction of AO extremes that may statistically be attributable to
a preceding SSW. For example, an FAR, of 0 means that SSWs do not increase the
probability of AO extremes, whereas an FAR,, of 1 means that all AO extremes may be

attributable to a preceding SSW within time ¢. The same caveats about common drivers
as for FAR, should be kept in mind.

Figure 4.14c shows our estimates of FAR, as a function of time window ¢, similar as for
FAR.. As expected, estimates of FAR,, are generally lower than for FAR.: the likelihood of
any AO extreme to be attributable to a SSW that may or may not have happened before the
AO extreme should be much smaller than that of an AO extreme that was indeed preceded
by a SSW. FAR,, increases somewhat with ¢ for small ¢, but tends to saturate for windows
longer than about 2 weeks. For AO~2 events both models saturate near 0.2, whereas for
AO™3 events they show slightly larger FAR,, of around 0.25-0.3. Overall our estimates
therefore suggest that between 20-30% of AO~ extremes may statistically be attributable
to a preceding SSW (within 2-6 weeks). Fig. 4.14d summarizes the FAR,, averaged over
time windows of 25 to 40 days. Despite the lower number of contributing events for larger
time windows, associated sampling uncertainties are small (e.g., 95% confidence intervals

for FAR, in ECMWF for AO~3: [21%; 28%).
4.4.5 Strong polar vortex events and associated AO extremes

The previous sections revealed that SSWs increase the probability of subsequent AO~
extremes and that a significant fraction of AO™ extremes may be attributable to preceding

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.14: Left: Fraction of AO™2 (dotted) and AO™ (solid) extremes that are preceded
by a SSW within time ¢ that may be attributable to the SSW (fraction of attributable
risk among the exposed/ FAR., panel a). Boxplots (quartiles 1 to 3 and 95% confidence
intervals, obtained via bootstrap resampling) show FAR, averaged over time windows 25 to
40 days (gray shaded), as function of AO threshold (panel b). Right: Fraction of all AO~2
and AO~3 extremes that may be attributable to a preceding SSW within time ¢ (fraction
of attributable risk among the population/ FAR,, panel c¢). Boxplots (as in panel b) show
FAR, averaged over time windows 25 to 40 days (panel d). Note that for larger ¢, fewer
events contribute to the diagnostics, hence, observed fluctuations for long time windows ¢
are likely related to sampling uncertainty. UKMO (purple) and ECMWEF (orange).

SSWs. In the following, we summarize an analogous analysis for the statistical relationship
between strong polar vortex events (SPVs) and AO™ extremes.

The composite-mean evolution of p-SPVs (Fig. 4.15) reveals that UlS anomalies are
of opposite sign, somewhat weaker in magnitude, but otherwise qualitatively similar to
p-SSWs (lag 0: ~ 420 ms™! for p-SPVs; ~ —30 ms™! for p-SSWs, cf. Fig. 4.8). Both
S2S models agree very well in this respect. Moreover, for negative lags, there is little
difference compared to a corresponding composite based on ERA5 data, but for positive
lags, Ug) is slightly stronger in ERA5. The NAM response at 200hPa and 1000hPa (=AO)
is qualitatively similar for p-SPVs and p-SSWs (with opposite sign), but the anomalies are
again slightly weaker for p-SPVs, which is consistent with the weaker UL) anomalies (lag
21: +0.35 at 200hPa, +0.25 at 1000hPa). It is interesting that the NAM200 seems to react
later to p-SPVs than to p-SSWs: While the index for p-SSWs starts to shift significantly to
negative values already at lag —10 on average, a shift to positive NAM200 values for p-SPVs
is observed only from lag —5 on. As with p-SSWs, the evolution of the NAM at 200hPa and
1000hPa relative to p-SPVs is less robust in ERA5 due to the smaller sample size, however,
the anomalies tend to be slightly more pronounced than in the two S2S models. Overall,
the composite-mean evolution of p-SPVs in the ECMWF and UKMO models appear to
be consistent with real-atmosphere SPVs (as revealed by reanalysis data), as well as with
previous studies (e.g., Baldwin and Dunkerton, 2001).

Following the same methodology as for p-SSWs, we use the large event sample sizes to

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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Figure 4.15: As in Fig. 4.8, for p-SPVs.
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quantify the statistical relation between p-SPVs and subsequent AO™ extremes. First, we
quantify the relative probability increase for at least one AO extreme after a given p-SPV
within a certain time. Second, we analyze how many AO™ extremes may be attributable
to preceding p-SPVs.

Figure 4.16 shows the relative probability increase of AO extremes following SPVs relative
to climatology as a function of the AO threshold, for both S2S models and averaged over
time windows 25 days <t < 40 days:
P(AOy, | SPV)

RPI = P(AOw) 1 (4.9)
Consistent with the positive shift of the AO distribution following SPVs, the risk grad-
ually increases for positive AO extremes, whereas it gradually decreases for negative AO
extremes. For extreme thresholds of up to 2 standard deviations, the relative probability
change appears to be of similar magnitude compared to periods following SSWs (~30-
40%, see Fig. 4.12). Larger thresholds reveal a reduced probability change compared to
SSWs, however, 95% confidence intervals mark increasing sampling uncertainty, especially
for AO;? events.

Figure 4.17 shows our estimates of the fraction of positive AO extremes that may be
attributable to a preceding p-SPV within a time period ¢:

P(S5PV,y) P(=SPV,, | AO™)
P(~SPVy) P(SPV,, | AO)
P(~SPV,, | AO)

P(~SPVy)

FAR.=1— (4.10)

FAR, =1 — (4.11)

where FAR,, and FAR,, denote the fraction of attributable risk among exposed and popu-
lation, as in section 4.4.4 for SSWs and AO~ events. Among all AO*? events that are pre-
ceded by at least one SPV event within four weeks, about 55% (UKMO) to 65% (ECMWF)
may be attributable to the SPV (Figs. 4.17a, 4.17b). However, significant sensitivities to
the exact time window are observed, as well as differences between the models. One prob-
lem is the strong seasonal dependence of SPV events, as most events occur in December
when the polar vortex is generally strongest. AO extremes that happen later in the winter
have therefore a smaller probability to be preceded by a SPV event within a short time
window than AO extremes that occur in December or January. AO™? events reveal a
fraction of attributable risk among the exposed to preceding SPVs of around 40% to 55%,
similar to SSWs and AO~2 events.

Finally, the fraction of all AO" extremes that may be attributable to preceding SPVs is
slightly larger but similar to that for AO™ extremes and SSWs, with a population at-
tributable risk of around one quarter for AO™ and around one third for AO™ extremes
for preceding time windows of 25 to 40 days (Figs. 4.17c, 4.17d).

More detailed analyses that apply the diagnostics presented in Fig. 4.9, Fig. 4.10 and Fig.

4.11 to positive AO extremes and p-SPVs can be found in the supplement of Spaeth and
Birner (2022).

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
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Figure 4.16: As in Fig. 4.12, for p-SPVs and subsequent AO extremes within time ¢.
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Figure 4.17: As in Fig. 4.14, for positive AO extremes that may be attributable to pre-
ceding SPV events within time ¢.
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extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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4.4.6 Conclusions

Our results, based on a large number of extended-range ensemble forecasts, provide fur-
ther evidence for stratospheric modulation of large-scale weather patterns near the sur-
face, broadly consistent with previous results (Domeisen and Butler, 2020, and references
therein). Previous studies generally suffer from relatively small available sample sizes,
which hampers estimation of robust statistical relationships between stratospheric and
tropospheric extremes (= rare events). In this study, by analyzing extended-range forecast
periods around predicted extreme events (e.g., p-SSWs), we effectively boost the available
sample size by more than a factor of 100 and are therefore in the position to obtain robust
estimates in response to our research questions:

1. By how much is the probability of persistently positive or negative AO phases increased
following stratospheric polar vortex extremes?

Climatologically, 38% of negative AO phases (days with consecutive AO< 0) are
longer than 7 days. Following p-SSWs, this is increased to 44%, which corresponds
to a relative increase of 16%.

Following p-SPVs, the probability of positive AO phases that last longer than 7 days
is increased from 40% to 44%.

2. By how much is the probability of subsequent AQO extremes increased following strato-
spheric polar vortex extremes?

Following p-SSWs, the probability of subsequent negative AO extremes increases
whereas it decreases for positive AO extremes. For instance, AO~3 events are about
40% (ECMWEF forecasts) to about 80% (UKMO forecasts) more likely following
p-SSWs. However, the absolute probabilities are still low, i.e., only 3.5% of SSWs
are followed by AO™ within four weeks, based on ECMWF forecasts (UKMO: 4%).

Following p-SPVs, the probability of AO*? is increased by about 25% relative to
climatology, whereas AO™% occur about 40% (ECMWF) to 60% (UKMO) less often.

3. What fraction of AO extremes may be attributable to preceding stratospheric polar
vortex extremes?

About 50% (ECMWF) to 60% (UKMO) of AO™3 extremes that occur following
a SSW may be attributable to that SSW (fraction of attributable risk among the
exposed). 20-30% of all AO™2 events may be attributable to preceding SSWs (fraction
of attributable risk among the population). “Attributable” does not necessarily imply
strict causality (see discussion below), but here refers to the fraction of SSW-AO~
co-occurrences in addition to fortuitously aligned events.

While our stratospheric event definitions are based on absolute thresholds of the zonal-
mean zonal wind, the tropospheric response is quantified via standardized anomalies of
averaged geopotential. The construction of an appropriate corresponding climatology is

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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crucial, in particular for the analysis of extreme events. However, it is also not unambigu-
ous. Standardized anomalies are computed by normalizing differences from a population
mean with the population standard deviation (taking into account seasonal variations). As
the population is usually finite, any additional data point may change the population mean
and will change the population standard deviation, resulting in a small adjustment of all
previous (standardized) data points. On the one hand, the effect is negligible in the limit of
a large population. On the other hand, it is generally larger when the additional data point
is an outlier with respect to the previous distribution. For this study, S2S forecasts were
deseasonalized using the available hindcasts. The assumption is that these hindcasts suf-
ficiently sample different kinds of variability, such that a) extreme events that occurred in
individual years do not significantly distort the population distribution and thereby also the
population mean and standard deviation and that b) the constructed population is robust
across different initialization dates (e.g., a given event that is equally predicted at two dif-
ferent leadtimes corresponds to a the same standardized event in both model integrations).

Do the analyses of modulated probabilities allow conclusions about causal links between
stratospheric and tropospheric circulation extremes?

A definition of (probabilistic) causality is provided by Pearl (2009, September):
P(effect | do(cause)) > P(effect | do(—cause)), (4.12)

where the do operator denotes an intervention that forces the occurrence or not-occurrence
of the cause®. In the atmosphere, such controlled situations can usually only be simulated
using numerical model experiments. In this study, a post-hoc analysis of an existing dataset
is presented. No interventions are performed and therefore, no strict causal relations can be
inferred following the provided definition. Instead, conditional probabilities are computed,
which Pearl (2009, September) calls a predictive or observational approach, e.g.:

P(AO™ | SSW) > P(AO™ | —~SSW). (4.13)

Our knowledge of coupled stratosphere-troposphere dynamics suggests that a causal con-
nection does in principle exist®. This connection manifests in observed conditional proba-
bilities, which may, however, be modulated also by further possibly involved pathways.

First, conditional probabilities may in practice overestimate the (direct) causal link between
stratospheric and AO extreme due to the existence of confounding factors (see scenario ¢
listed in the introduction). For example, MJO may lead to modified risk of AO extremes
(Barnes et al., 2019) while at the same time modifying the likelihood of SSWs (Garfinkel et
al., 2012). On the other hand, the dynamical coupling between the MJO and the AO may
involve a stratospheric pathway (Garfinkel et al., 2014) and in such cases the stratosphere

5This definition relies on counterfactual dependence, i.e., if there had not been the cause, then there
would not have been the effect (and if there had been the cause, then there would have been the effect).

6Tt is important to keep in mind that the coupling is, in general, mutual and causality works in both
directions (even though, as always, any cause has to precede the effect).

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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does represent a causal driver of AO modulations. Similar arguments hold for impacts due
to climate variability, such as Arctic sea ice concentrations (Kretschmer et al., 2016) and the
ENSO (Domeisen et al., 2019). Causal pathways may in such cases be disentangled using
a causal inference-based network (Adams et al., 2021). We have carried out preliminary
analyses using such a framework to distinguish causal pathways during different ENSO
phases, which suggest that the direct pathway polar vorter — AQO extremes is significantly
stronger than those via ENSO. A detailed analysis of these pathways is left for future
work.

However, even if common drivers can be neglected the statistical nature of inferred fraction
of attributable risk can only quantify an effective causality in the following sense. Assume,
for the moment, that all SSWs cause an AO~ extreme, but AO~ extremes additionally
occur due to internal tropospheric variability. In this case some of the observed AO™
extremes may have happened due to internal tropospheric variability alone while addition-
ally be forced/enhanced by a preceding SSW (see scenario b listed in the introduction).
A probability analysis (e.g., estimating the FAR among the population) will then always
underestimate the actual causal link and can only reveal an effective causality. This also
represents a limitation of the binary classification (AO extreme / no AO extreme).

Despite these caveats, conditional probabilities may provide useful insights. The conver-
sion into statistical metrics such as RPI and FAR may thereby facilitate the practically
relevant interpretation. For example, RPI of AO extremes due to the prior occurrence of
a stratospheric extreme does serve to quantify the state of the stratosphere as a predictor
of subsequent AO extremes, which may be of practical value regardless of its underlying
causal nature. Furthermore, FAR provides an estimate of how many AO extremes would
statistically be expected less without preceding stratospheric events, when keeping in mind
that “without a preceding stratospheric event” would require to remove also confounding
factors.

How should the observed differences between ECMWEF and UKMO model be interpreted?
Overall, our analyses show that the probability modulation of AO extremes up to about
two standard deviations given preceding stratospheric extremes are similar between the
ECMWF and the UKMO model. AO extremes of three standard deviations, i.e., AO < —3
and AO > +3 reveal discrepancies between the models. Our bootstrapping approach, e.g.,
for the relative probability increase (Fig. 4.12), shows that especially analyses based on
UKMO forecasts become less robust. However, the observed discrepancies cannot be solely
attributed to sampling uncertainty, given that they exist also beyond the respective 95%
confidence intervals. Which model better represents the dynamics of the real atmosphere
is difficult to assess, as the observational record is too short to allow for robust, similar
analyses. Potential causes of the observed differences are numerous, involving differences
in wave-mean flow feedbacks or external forcings, e.g., from the tropics. Augier and Lind-
borg (2013) show that the eddy kinetic energy spectrum in the ECMWF model is still in
parts unrealistic and that the model may be too dissipative even at large scales, clearly
indicating that models are unable to reproduce real-atmosphere dynamics perfectly ac-

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.
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curate. Lawrence et al. (2022) investigate biases in different S2S models and find, inter
alia, a modest cold bias in the ECMWEF and a modest warm bias in the UKMO model in
the extra-tropical lower stratosphere. As the lower stratosphere has been shown to play
an important role in stratosphere-troposphere coupling, we speculate that occurrences of
tropospheric extremes following stratospheric circulation anomalies are sensitive to tem-
perature biases in this region. However, a detailed analysis would be beyond the scope of
this study.

In general, we note that any two different imperfect models, will likely always reveal quanti-
tative differences in the analysis of extreme events for a sufficiently strict extreme threshold.
In the present study, we find such differences, e.g., for the relative risk, at a threshold of
around three standard deviations. It is possible that more data are needed to conclusively
attribute the differences to particular dynamical processes. Nevertheless, we argue that our
analyses, even at a threshold of 3 standard deviations and given the associated uncertain-
ties, are able to provide insightful quantitative estimates; especially as no obvious a priori
estimate exists even for the order of magnitude of the investigated probability metrics.

In addition to the particular points already mentioned, future work should address the ques-
tion, how much of the predicted surface impact following predicted stratospheric extremes,
i.e., following p-SSWs and p-SPVs, can be explained by the AO. Lastly, we conclude that
the analysis of predicted events offers potential for improved statistical characterization of
other atmospheric extreme events, provided that the forecast model is capable of truthfully
representing the event of interest.

The results of this section are published in Spaeth, J., & Birner, T. (2022). Stratospheric modulation of Arctic Oscillation
extremes as represented by extended-range ensemble forecasts. Weather and Climate Dynamics, 3(3), 883-903.



Chapter 5

Forecast uncertainty in
subseasonal-to-seasonal forecasts

Uncertainty is the only certainty there is, and knowing how to live with insecurity is the only security.
John Allen Paulos, * 4th July 1945, Professor of Mathematics and Author

This chapter explores flow-dependent modulations of uncertainty in subseasonal-to-seasonal
forecasts, with a main focus on stratosphere-troposphere coupling.

Section 5.1 analyzes forecast uncertainty of the polar vortex strength and shows that this
uncertainty reduces following SSWs, implying enhanced predictability. This motivates
the question of whether SSWs also reduce uncertainty in tropospheric forecasts, which is
addressed in Section 5.2. Indeed, the results reveal robust modulations of uncertainty in
1000 hPa geopotential height forecasts. Motivated by the hypothesis that these signatures
are driven by anomalies in storm frequency, Section 5.3 assesses the relation between
individual storms and ensemble spread more systematically.

In general, forecast uncertainty depends on the large-scale flow, with stratosphere-troposphere
coupling being one example. However, the influence of the large-scale flow on forecast un-
certainty can be generalized, as shown in Section 5.4: eight North Atlantic-European
weather regimes are associated with distinct signatures in forecast uncertainty of 1000 hPa
geopotential height and 2-meter temperature, respectively. Importantly, the uncertainty of
these weather regimes themselves can be influenced by teleconnections, such as the polar
vortex, which rounds off this chapter.
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5.1 Reduced polar vortex forecast uncertainty following
sudden stratospheric warmings

This section is based on Rupp et al. (2023). Philip Rupp had lead the analyses. I had con-
tributed to the design and interpretation of the results and I had produced the corresponding
figures, which are re-printed here. All figure captions are copied from the published article
and were written by Philip Rupp. Compared to the published article I adapted the text below
at many places to better fit this thesis.

The circulation in the stratosphere is generally more predictable than in the troposphere
(e.g., Ambaum and Hoskins, 2002; Baldwin et al., 2003; Domeisen et al., 2020c). Nonethe-
less, stratospheric forecasts still exhibit substantial forecast uncertainty, as indicated by
ensemble variance. The primary source of variability (and consequently, ensemble spread)
in the winter polar stratosphere are planetary waves and their interaction with the mean
flow (Baldwin and Holton, 1988). Certain conditions, however, are linked to persistent
anomalies in variability. From a forecasting perspective, reduced variability can enhance
forecast skill. This section demonstrates that such conditions can be established by SSWs.

Specifically, it will be shown that forecasts initialized around SSWs exhibit long-lasting
anomalies in the lowermost stratosphere, affecting planetary wave activity and thereby
variability, and predictability. Note that the same S28S forecast data is used as in Chapter 4.
However, the following analyses do not follow the UNSEEN approach (that is, composites
are not based on events predicted in the forecasts), but forecasts are instead clustered
according to the state of the polar vortex in the real atmosphere at the time of initialization.

Fig. 5.1a shows that U}) ensemble spread at S2S timescales reduces by more than one
third in forecasts initialized around SSWs (central date + 3 days) compared to climatol-
ogy. Even forecasts initialized 10 days before a SSW exhibit reduced spread, although
anomalies are weaker. From Fig. 5.1b, it is evident that the reduced spread in these SSW-
initializations is not simply attributable to seasonal variations in both spread and SSW
frequency: anomalies of ensemble variance reach up to minus one standard deviation at
lead times of about five to six weeks. The negative spread anomalies of the zonal-mean
zonal wind at 60°N (Ug) are largest at 10 hPa, but also propagate downward to the lower
stratosphere around 200 hPa.

Reduced spread reflects a narrower range of possible evolutions of the real-atmosphere.
Consequently, the ensemble mean forecast in such situations tends to be closer to the
real-atmosphere evolution, resulting in reduced error (recall the discussion of reliability in
Section 3.3). Figure 5.2 confirms that the decreased Ugy ensemble spread in SSW initial-
izations is associated with reduced absolute error. This improvement in skill is expected to
be more pronounced for strong SSWs compared to weak SSWs. Therefore, we show error
anomalies separately for these two subsets.

Strong (weak) SSWs are defined based on the lower (upper) tercile of Ui) among all
SSWs, averaged over lags of +7 to +13 days relative to the SSW central date. Errors are
computed as the absolute difference between the ensemble mean forecast and ERA5. SSW

The results of this section are published in Rupp, P., Spaeth, J., Garny, H., & Birner, T. (2023). Enhanced Polar Vortex
Predictability Following Sudden Stratospheric Warming Events. Geophysical Research Letters, 50(17).
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Figure 5.1: a. Evolution of U}j ensemble spread in terms of square root of the average
ensemble variance over all forecast initializations (climatology) and over SSW initializa-
tions. Dotted lines show the spread evolution of forecasts initialized 10 or 20 days ahead
of a SSW. Numbers in square brackets indicate the number of ensemble forecasts within
the respective group. b. Standardized (w.r.t. the leadtime, season and model-version
dependent, climatological distribution of ensemble spread) anomaly of the Ugy ensemble
spread within SSW forecast initializations compared to climatological initializations. All
shown anomalies are significant (p < 0.05).

The results of this section are published in Rupp, P., Spaeth, J., Garny, H., & Birner, T. (2023). Enhanced Polar Vortex
Predictability Following Sudden Stratospheric Warming Events. Geophysical Research Letters, 50(17).
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Figure 5.2: a. Absolute error of the ensemble mean of U60 anomalies w.r.t. reanalysis
evolution averaged over all forecasts (climatology). b. and c. The average anomaly
of the absolute error for SSW initializations corresponding to strong/medium and weak
SSWs (see Section 2.3), respectively. Contour lines show composite mean Ugy anomalies
(in ms™1).

initializations are associated with reduced error from about forecast week two onward,
consistent with the reduced spread shown in Figure 5.1. The error anomaly signal is most
pronounced at 10 hPa (up to —9ms™! for strong, up to —4ms~! for weak SSWs), although
climatological errors are generally larger in the middle compared to the lower stratosphere
(Fig. 5.2a). The alignment of reduced spread with reduced error indicates reliability of the
model, suggesting that the reduced range of possible scenarios reflects actual atmospheric
conditions rather than model limitations.

What is the reason for the reduced spread and error in forecasts initialized around SSWs?
SSWs tend to be followed by persistent zonal-mean easterly winds in the middle and lower
stratosphere. Importantly, such easterly winds suppress upward propagation of Rossby
waves (Charney and Drazin, 1961). Consequently, heat flux, a proxy for vertical Rossby

wave propagation, for zonal wave number 1 is anomalously small following most SSWs
(Fig. 5.3a).

Compared to the climatological distributions of U}) and heat flux, SSWs form a distinct
cluster characterized by negative Uy) and negative heat flux anomalies. Within that
cluster, there appears to be a somewhat linear relation between the two variables. However,
this linear relationship does not necessarily extend beyond SSWs, as strong positive U) is

The results of this section are published in Rupp, P., Spaeth, J., Garny, H., & Birner, T. (2023). Enhanced Polar Vortex
Predictability Following Sudden Stratospheric Warming Events. Geophysical Research Letters, 50(17).
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Figure 5.3: Scatter plots of different metrics calculated from all forecast initializations
(climatology) and SSW ensemble initializations. Metrics are polar vortex strength (Ug)
anomaly averaged over days +7 to +13), heat flux anomaly (wave number 1 eddy heat
flux at 100 hPa averaged over days +14 to +34) and final spread (square root of the
mean ensemble variance of Uy) averaged over days +35 to +41). SSW initializations are
divided into strong/medium and weak cases (see Section 2.3). The shading denotes the
bivariate distributions derived from all available forecasts. Histograms show univariate and
normalized distributions for the climatological and strong/medium SSW initializations.

associated with slightly negative heat flux anomalies, as well. In such cases, the causality
might be reversed, with negative negative heat flux anomalies potentially leading to a
decrease in the deceleration of Ug) .

Figure 5.3a has confirmed that SSWs, especially strong ones, are followed by reduced heat
flux. Figure 5.3b relates these heat flux anomalies to the ensemble spread at lead times of
six weeks. SSWs initializations that are followed by negative heat flux anomalies exhibit
smaller final Ug) ensemble spread. Furthermore, there is a general relationship between
heat flux anomalies and ensemble spread, not limited to SSWs. We interpret this relation
as follows. Upward propagating planetary waves, quantified by the eddy heat flux, repre-
sent the primary source of variability in the stratosphere. The precise strength and timing
of strong planetary wave pulses, as well as their impact on the mean-flow are challenging
to predict. At longer lead times, these events are simulated differently across ensemble
members, resulting in larger ensemble spread. SSW initializations are particularly inter-
esting because the easterly winds in the lower stratosphere suppress upward propagation
of planetary waves. This suppression manifests in negative heat flux anomalies and leads
to smaller ensemble spread (see Fig. 5.3c).

The reduced heat flux following SSWs decreases U) ensemble spread and thereby improves
polar vortex predictability. We now explore an additional implication of these persistent
negative heat flux anomalies. As a result of reduced mid-stratospheric wave activity, the
polar vortex becomes stronger, driven by radiative cooling, and less disturbed following
SSWs. This leads to a robust delay of the final warming compared to years that did not
experience a mid-winter SSW (Fig. 5.4).

The results of this section are published in Rupp, P., Spaeth, J., Garny, H., & Birner, T. (2023). Enhanced Polar Vortex
Predictability Following Sudden Stratospheric Warming Events. Geophysical Research Letters, 50(17).
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Figure 5.4: Climatological evolution of U}) in reanalysis data, separated for winter with
(39 winters) and without (32 winters) a major SSW. Solid lines denote the mean, shading
denotes inner-quartiles of the distributions. Box plots show the distributions of final warm-
ing dates (black lines: median; box-edges: inner-quartiles; whiskers: minima and maxima).

In ERA5, 32 out of 71 winters did not experience a mid-winter SSW, with a median final
warming occurring on the 2nd of April. In contrast, the 39 winters with a mid-winter
SSW saw the median final warming delayed by more than 3 weeks, to the 26th of April.
With reduced wave activity in the mid-stratosphere, there is also less wave absorption
and dissipation, resulting in reduced westward forcing acting on the zonal mean flow.
Consequently, winters with a major SSW consistently exhibit a delayed final warming.

5.2 Stratospheric impact on extended-range forecast un-
certainty in the Northern extratropics

The previous section revealed that ensemble spread of the polar vortex strength reduces
following SSW. However, it remains unclear whether this reduced spread in the strato-
sphere also translates into reduced ensemble spread in the troposphere. This section will
address this question. The results are published in Spaeth et al. (2024a).

The effects of extreme polar vortex states on subsequent mean surface weather are widely
recognized. For instance, abrupt breakdowns of the polar vortex, such as associated with
SSW (Baldwin et al., 2021), tend to be followed by a persistent equatorward jet shift in the
troposphere for up to two months (Baldwin and Dunkerton, 2001). This signal tends to be
strongest over the Atlantic (associated with a negative phase of the NAO) and enhances
the likelihood of cold air outbreaks over Eurasia (Thompson et al., 2002; Lehtonen and
Karpechko, 2016; Afargan-Gerstman et al., 2020; Kautz et al., 2020; Huang et al., 2021).
Likewise, events of extremely strong polar vortex tend to be followed by a poleward jet
shift with greater likelihood for storm series (Domeisen et al., 2020c; Rupp et al., 2022).

From this perspective stratospheric conditions may provide a source of tropospheric pre-

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024)

subseasonal forecast uncertainty in the Northern extratropics. Communications Earth € Environment, 5(1), 126.
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dictability on S2S time scales. Indeed, past literature has demonstrated improved forecast
skill for ensemble forecasts initialized around SSW (Sigmond et al., 2013) or strong po-
lar vortex episodes (Tripathi et al., 2015). However, the employed skill measures, such
as the correlation skill score (CSS), primarily rely on the ensemble mean signal (e.g., the
aforementioned negative NAO state following SSW).

Another, perhaps equally important, aspect of predictability is the ensemble spread signal,
as demonstrated in the previous section. The ensemble spread may be thought of as
measuring the degree of confidence in the ensemble mean signal, thus indicating whether
the flow becomes more predictable. Notably, the response of tropospheric ensemble spread
to stratospheric extreme events has not been studied and this is the main focus of the
analyses below.

We cluster the ECWMEF S2S ensemble forecasts (see section 3.1.1) into categories of weak,
moderate and strong initial polar vortex states. Regions are diagnosed that experience
anomalously low or high spread in the troposphere following polar vortex extremes. In
particular, we identify regions of near-zero ensemble mean signal that nevertheless exhibit
enhanced or reduced intrinsic predictability due to spread anomalies.

Before presenting the results, the methodological approach is described more in detail,
including the clustering of the ensembles and the use of eddy activity as a proxy for
synoptic-scale wave activity.

Clustering of ensembles based on the polar vortex

Each ensemble forecast is labeled as weak, moderate or strong vortex, depending on Ug)
in ERA5 reanalysis at initial time. Thereby, the effect of initial conditions on forecast
evolution is isolated (though few cases exist where the polar vortex becomes strong or
weak only during the forecast period). For weak vortex forecasts, U§) is required to be
negative. Following a standard SSW definition (Charlton and Polvani, 2007), the forecasts
in this group are thus likely to have experienced a SSW shortly before initialization. Out
of all 2394 ensemble forecasts, 169 qualify as weak vortex initializations. Similarly, the 169
forecasts with the strongest initial polar vortex are labelled as strong vortex initializations.
The remaining forecasts form the moderate vortex category.

Overall, forecasts sample winters from 1997 to 2021. The distribution of weak and strong
vortex initializations over different years is provided in the supplementary Fig. Sla of
Spaeth et al. (2024a).

Eddy Activity

Daily atmospheric variability in the extratropics is characterized by synoptic-scale weather
systems (decorrelation timescales on the order of few days, Williams et al., 2017). These
eddies can be quantified via quasi-geostrophic wave activity, which is proportional to po-
tential vorticity variance around some basic state, which separates eddies from the mean

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024).

Stratospheric impact on
subseasonal forecast uncertainty in the Northern extratropics. Communications Earth € Environment, 5(1), 126.
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flow. Upon integration over the full domain, wave activity fulfills a conservation law for
adiabatic, inviscid dynamics (Vallis, 2017, June).

As a proxy for wave activity, we define the time- and space-dependent eddy activity, A,
a simplified measure for synoptic-scale waves, which corresponds to potential vorticity
variance:

A = (PV320K — PV320K) | (5.1)

where PV320K is the potential vorticity at the 320 K isentrope. Mean-flow and synoptic-
scale eddies are separated using simple time-filtering, based on a 7-day centered running
mean at each grid point, denoted by PV320K. Planetary-scale perturbations typically
have longer time scales than seven days and are therefore filtered out. Variability that is
associated with periods shorter than one day do not contribute as well, because data is used
only at daily resolution. Therefore, the eddy activity essentially corresponds to a temporal
bandpass filtered potential vorticity variance. We have tested that the results are not very
sensitive to choices of basic state timescales between 5 and 14 days (not shown) and Gibbs
phenomena have near-zero impact on results as tested by multiple iterative application of
the 7-day moving average (not shown). Large values of eddy activity can for example be
associated with Rossby wave breaking.

5.2.1 Forecast uncertainty following polar vortex events

We use 1000 hPa geopotential height (Z1000) as a metric to quantify the anomalous surface
circulation in weak or strong vortex initializations. The results are based on daily diagnos-
tics that are averaged over lead time days 14 to 34. Figure 5.5 illustrates that weak vortex
initializations are on average followed by a negative NAO pattern in the ensemble mean,
consistent with many previous studies. Positive anomalies (=high pressure) are observed
over the polar cap northward of about 60°N, negative anomalies are observed over the
Euroatlantic sector. The positive anomalies over the Pacific seem in conflict with the ex-
pected negative Arctic Oscillation (AO) signature. They likely represent ENSO signatures
that do not fully average out due to the limited hindcast period and associated sampling
bias. This is supported by the average ENSO index at initial time, which yields —0.36 for
weak and +0.23 for strong vortex initializations.

How is the negative NAO signal linked to anomalies in forecast spread? Fig. 5.5 reveals
a pronounced reduction of ensemble spread, and therefore enhanced forecast confidence
over the North Atlantic jet exit region, centered around Iceland to Scandinavia. The
observed negative anomalies of ensemble variance of up to ~3000 gpm? correspond to
about —0.50 (standard deviations, relative to the climatological spread distribution) or
to a reduction by roughly 20%. In the extra-tropics this is the largest signal in terms of
standardized anomalies. Interestingly, the regions of anomalous Z1000 spread differ from
those of anomalous Z1000 ensemble mean. For example, the region around Denmark shows
essentially zero ensemble mean response, but is nevertheless characterized by enhanced
forecast confidence due to reduced ensemble spread.

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024).

Stratospheric impact on
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Figure 5.5: Ensemble statistics of 1000 hPa geopotential height (Z1000) in S2S ECMWF
forecasts with a weak (panel a, average over 169 cases) and strong (panel b, average over 169
cases) initial polar vortex. Contours denote the Z1000 ensemble mean (15 gpm intervals).
Shading shows lead-time- and season-aware Z1000 anomalies of ensemble variance.

Furthermore, weak vortex initializations reveal positive spread anomalies over the Atlantic
around 40°N and over the North-West Pacific. While enhanced spread translates into
reduced forecast confidence, the magnitude of the signals is weaker in comparison to the
negative spread anomalies over North Eurasia.

Forecasts initialized with a strong polar vortex qualitatively show similar patterns of mean
and spread anomalies compared to weak vortex initializations, with opposite sign. Most
pronounced is an increase in forecast spread over Northern Eurasia, where anomalies cor-
respond to about +0.3 standard deviations or to an increase by roughly 15%.

Most forecasts neither fall into the weak or strong vortex category by construction. The
associated composite-mean anomalies of mean and spread are close to zero (not shown).
An equivalent analysis based on UKMO forecast data (1568 ensemble forecasts with lead
times up to +60 days) reveals overall very similar results (see supplementary Fig. S3 of
Spaeth et al., 2024a).

5.2.2 Dynamical link between ensemble mean and spread

What causes the observed spatial patterns of ensemble mean and spread? To help answer
this question we focus on the Atlantic sector, as signals over the Pacific are weaker and
more strongly affected by ENSO variability.

Our guiding hypothesis is as follows. We generally expect largest ensemble spread to oc-
cur in regions of strongest synoptic-scale storm development, primarily due to the unpre-
dictable nature of exact storm location and strength at subseasonal lead times. Following
stratospheric extreme events, the Atlantic jet undergoes latitudinal shifts that are associ-
ated with similar shifts in storm tracks (Baldwin and Dunkerton, 2001) and these should
manifest in associated anomalies in ensemble spread.

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024).

Stratospheric impact on
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To illustrate effects of polar vortex variability on the North Atlantic eddy-driven jet, Figures
5.6a and 5.6¢ present mean and variance anomalies of horizontal winds at 850 hPa (zonal
wind: U850, meridional wind: V850). In alignment with the negative (positive) NAO
phase, the composite-mean westerly zonal winds at latitudes northward of about 50°N
weaken (strengthen) over the Atlantic, corresponding to the latitudinal jet shift. Weak
polar vortex forecasts reveal anomalously low ensemble variance (i.e., high confidence) of
zonal wind over Iceland to Scandinavia. Positive ensemble variance anomalies of up to
0.40 are observed over Canada’s East coast and the Canary basin. Overall, the ensemble
spread anomalies of U850 spatially align well with the spread anomalies of Z1000.

Over the North Atlantic, the strong meridional potential vorticity (PV) gradient in the
upper troposphere acts as a waveguide for Rossby waves (Wirth et al., 2018). Climato-
logically, the largest meridional gradient of PV at 320K (PV320K) over the Atlantic is
located near 50 °N (see Figs. 5.6b, d). As Rossby waves propagate eastward and encounter
regions of smaller PV gradient, e.g., from the Atlantic to Europe, they typically undergo a
nonlinear decay stage. This Rossby wave breaking can be associated with the occurrence of
extreme weather such as strong cyclones (Chang, 2005; Wirth and Eichhorn, 2014; Gémara
et al., 2014; Tamarin-Brodsky and Harnik, 2023).

During the negative NAO phase the region of largest Rossby wave activity and breaking is
shifted southward along with the strong meridional gradient of PV320K. Northern Europe
then experiences less synoptic variability, whereas the opposite holds for corresponding
regions southward of ~45°N.

To illustrate regions of anomalous Rossby wave activity, we define the time and space de-
pendent eddy activity A. Eddies are separated from the mean flow using time-filtering,
based on a 7-day running mean, which is applied gridpoint-wise to PV320K. Eddy activ-
ity then corresponds to the time variance of PV320K relative to that 7-day background
state and thereby serves as a proxy for synoptic-scale wave activity. Figure 5.6b presents
deseasonalized anomalies of eddy activity averaged over weak polar vortex initializations.
Negative anomalies are observed over Iceland to Scandinavia, corresponding to reduced
synoptic variability. Positive anomalies appear over Canada to Greenland and southward
of 50°N over the entire Atlantic sector from the US to Europe. This is in agreement with
the known equatorward jet shift that is indicated by the 200 hPa zonal wind weakening
(strengthening) at the poleward (equatorward) flanks of maximum climatological merid-
ional PV320K gradient. Overall, the anomaly patterns of eddy activity align well with
ensemble variance anomalies in Z1000 (Fig. 5.5a) and U,V850 (Fig. 5.6a). The agreement
supports the hypothesis that ensemble spread at subseasonal lead times is associated with
synoptic variability. In order to test model sensitivity, we have computed eddy activity
anomalies following weak vortex events based on ERA5 data and found good qualitative
agreement (not shown).

Strong polar vortex initializations show overall similar spatial patterns of opposite sign for
U,V850 ensemble mean, U850 ensemble variance anomalies, U200 ensemble mean anomalies
and eddy activity anomalies (Figs. 5.6¢,d). The positive NAO phase relates to a northward
jet shift. For example, over Northern Europe this results in increased storminess (see

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024).
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Figure 5.6: Weeks 3-5 composite-mean of weak (panels a, b; 169 cases) and strong (panels
¢, d; 169 cases) polar vortex forecasts. 850 hPa horizontal wind diagnostics (panels a, c)
for Mid-November to End-March climatology (purple streamlines; larger values marked
darker), anomalies of ensemble mean (black arrows) and anomalies of ensemble variance
(shading). Upper troposphere diagnostics (panels b, d) in terms of 200 hPa horizontal wind
anomalies (black arrows), anomalies of eddy activity at 320 Kelvin isentrope as a measure
for synoptic-scale Rossby waves (shading; see text for details) and Mid-November to End-
March climatological latitude of the maximum meridional potential vorticity gradient at
320 Kelvin isentrope.

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024). Stratospheric impact on
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larger U850) and increased synoptic variability (see positive eddy activity anomalies) that
translates into anomalously high forecast uncertainty (see positive U850 and also Z1000
spread anomalies).

In addition to a latitudinal dipole of synoptic variability (e.g., decreased spread over North-
ern Europe and increased spread over the Mid-Atlantic following a weak polar vortex), a
variance anomaly signal is observed over Newfoundland. Weak vortex initializations show
increased spread of U850 and, to some extent, of Z1000. This signal is associated with
smaller magnitudes of standardized anomalies compared to that over Northern Europe
(40.20 versus —0.40). It is spatially consistent with anomalies in eddy activity, though it
cannot be explained by a shift in the jet exit region. It is correlated with the NAO (not
shown) and seems to be associated with increased storm activity over the West Atlantic
during the negative NAO phase (see Fig. 5.9 in Sec. 5.3, consistent with Afargan-Gerstman
et al., 2024). Associated with a negative NAO, blocking episodes around Greenland and
Northern Europe potentially hinder the eastward progression of storms originating from
around Newfoundland (Pinto et al., 2009; Hauser et al., 2023a). Tamarin-Brodsky and
Harnik (2023) argued that the increased cyclone occurrence over the West Atlantic and
the increased blocking occurrence to the East are dynamically linked to cyclonic Rossby
wave breaking events.

5.2.3 Discussion

Extreme stratospheric polar vortex events tend to be followed by persistent tropospheric
circulation anomalies over the course of several weeks, with associated modulations of
tropospheric predictability at subseasonal timescales. Previous work has focused on the
ensemble mean response as a measure of such a window of forecast opportunity. Our
results highlight an additional aspect of stratospheric impacts on subseasonal predictability:
modifications to regional eddy activity cause robust changes in ensemble spread (forecast
uncertainty) that directly translate into modified predictability. Notably, such spread-
related changes in predictability are not simply co-aligned with ensemble mean-related
changes in predictability and reveal modified predictability even if the ensemble mean
signal is zero (such as over Denmark in Fig. 5.5).

It should be noted that in general both mean and spread modulations affect predictabil-
ity, but conclusions about forecast skill depend on the evaluation metric and, ultimately,
the underlying question. For example, shifts in the mean of the NAM distribution are
observed following weak or strong polar vortex events. Such modulations of the ensemble
mean are reflected in certain forecast skill metrics, such as the correlation skill score (CSS)
or the anomaly correlation coefficient (ACC, Sigmond et al., 2013; Tripathi et al., 2015).
In practice, such forecast skill metrics will be strongly sensitive to a given model’s ability
to truthfully represent stratosphere-troposphere coupling (Domeisen et al., 2020a). How-
ever, even in a hypothetical model that includes a perfect representation of stratosphere-
troposphere coupling, and therefore a perfect representation of the ensemble mean response
to stratospheric extreme events, predictability will be intrinsically limited by chaos due to

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024).
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unpredictable weather fluctuations. It is the ensemble spread that measures the amount of
unpredictable fluctuations. In this sense the flow may be described as being intrinsically
more or less predictable in situations where the ensemble spread is smaller or larger, re-
spectively. Our results have demonstrated that stratospheric extreme events lead to robust
modulations of such intrinsic predictability.

While the CSS or ACC are strongly sensitive to the ensemble mean signal, the ensemble
spread strongly affects another frequently used forecast skill metric: the mean squared
error (MSE, i.e., the mean of the squared difference between the ensemble mean forecast
and the observations). Notably, in a perfect model the MSE is independent of the ensemble
mean, but only depends on spread. For imperfect models, MSE is additionally affected by
model biases. Nevertheless, provided that the model bias contribution is small compared
to the ensemble spread contribution (perhaps a reasonable assumption for the ECMWF
system used here), ensemble spread anomalies are still expected to align with anomalies in
MSE. Our results would then suggest weak polar vortex initializations to be associated with
reduced MSE over Northern Europe and increased MSE over the Mid Atlantic. Indeed,
composite-mean anomalies of Z1000 MSE for weak polar vortex initializations align closely
with those of spread anomalies, although the fields are more patchy (see supplementary
Fig. S2 of Spaeth et al., 2024a). Given the relatively small number of weak/ strong
vortex events in the real atmosphere, more events would be needed to robustly determine
changes in the forecast error. Under the assumption mentioned above, ensemble spread
anomaly diagnostics facilitate statistically robust estimates of where forecast errors increase
or decrease. Large ensembles can hereby, to some extent, make up for the scarcity of
verification dates in the real atmosphere.

Given the substantial stratospheric impact on intrinsic subseasonal predictability as mea-
sured by the ensemble spread, other known teleconnection patterns may show similar mod-
ulations of forecast uncertainty at subseasonal time scales. Indeed, different initial states of
well-known teleconnections of tropical origin, including ENSO*!, MJO?, and QBO?3, all show
robust anomalies in Z1000 ensemble spread averaged over weeks 3-5 (Fig. 5.7). Of these,
ENSO shows spread anomalies of similar strength compared to those following extreme
stratospheric polar vortex states, whereas MJO and QBO show much smaller anomalies.
Note that some of these signatures of tropical teleconnections may be facilitated through
the stratosphere (Garfinkel and Hartmann, 2007; Garfinkel et al., 2012; Lee et al., 2019a),
which limits interpretations of their relative importance for tropospheric predictability. In
an attempt to circumvent this issue, we have tested clustering the results in Fig. 5.7 by
conditioning on moderate states of the polar vortex (see supplementary Fig. S5 of Spaeth

!The ENSO 3.4 index is used to characterize the ENSO state. Data was downloaded from the National
Oceanic and Atmospheric Administration: https://psl.noaa.gov/geos_wgsp/Timeseries/Nino34/.

2The MJO is characterized based on the real-time multivariate MJO index (RMM, Wheeler and Hendon,
2004) and the data is downloaded from the Columbia University of New York: https://iridl.ldeo.columbia.
edu/SOURCES/.BoM/.MJO/.RMM/.

3The QBO phase is here defined based on the observational data of the zonal wind over Singapore,
provided by the Freie Universitaet Berlin: https://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/qbo.
dat. A positive (negative) zonal wind at 50 hPa here defines the westerly (easterly) phase of the QBO.

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024).
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Figure 5.7: Difference of anomalies of Z1000 ensemble mean (black contours every 15 gpm,
negative values dashed) and ensemble variance (shading) between forecasts initialized in
(a) strong versus weak vortex conditions, (b) El Nino (ENSO 3.4 index above 1; 334 cases)
versus La Nina (ENSO 3.4 index below —1; 412 cases) conditions, (¢) MJO phases 7,8
(497 cases) versus phases 2,3 (434 cases), where the MJO amplitude exceeds 0.75 and (d)
westerly (822 cases) versus easterly (1572 cases) QBO phase (defined by the zonal wind
at 50 hPa). MJO and QBO are displayed with an additional Z1000 mean contour at +10
gpm (in gray) due to smaller signals.

et al., 2024a). While QBO-related tropospheric signals seem to be mediated through
stratospheric anomalies, the impact of ENSO appears to be relatively unaffected by the
conditioning, indicating that its tropospheric pathway might be dominant.

Figure 5.7 suggests that over the Pacific, 21000 mean and spread anomalies are dominated
by ENSO variability that projects strongly onto a Pacific-North American (PNA) pattern at
subseasonal time scales. Forecasts initialized during El Nifo are followed by a strengthened
Aleutian low, which is associated with negative spread anomalies on its western and positive
spread anomalies on its eastern flank. In general, the signals over the Pacific appear to be
more sensitive to ENSO than polar vortex variability. Therefore, the available S2S data do
not allow fully comprehensive analyses of whether near-surface signatures of polar vortex
variability is more NAO or more AO (Ambaum et al., 2001). The limited time period from
1997 to 2021 is presumably not long enough to properly sample, e.g., sudden warmings
under all different ENSO influences and a longer reforecast period would be desirable.
Over the Atlantic, signals associated with ENSO variability are generally weaker. During
El Nino, Z1000 exhibits negative mean and positive spread anomalies over Great Britain
and also upstream, at the West coast of North America, a potential hint for increased
cyclogenesis there.

In comparison to polar vortex and ENSO variability, there are only small signals observed
following different MJO phases. Consistent with previous literature (L’Heureux and Hig-
gins, 2008), we find that MJO phases 7 and 8 are followed by a negative NAO. Conditioning
on a moderate polar vortex leads to slight weakening of the signals (see supplementary Fig.
S5b of Spaeth et al., 2024a).

Similarly, the influence of different QBO phases on Z1000 mean and spread is relatively

The results of this section are published in Spaeth, J., Rupp, P., Garny, H., & Birner, T. (2024).
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weak. Forecasts initialized during an easterly QBO phase result in slight negative Z1000
spread anomalies over Northern Europe and positive spread anomalies over the Mid-
Atlantic. The signals reduce further when conditioning on a moderate polar vortex (sup-
plementary Fig. S5c of Spaeth et al., 2024a), suggesting that the observed anomalies are
mediated via more weak polar vortex states in the easterly QBO phase, in alignment with
previous work (Holton and Tan, 1980).

5.2.4 Conclusion

Based on large sets of extended-range ensemble forecasts our results demonstrate that fore-
cast uncertainty as measured by the ensemble spread offers added value over the ensemble
mean for characterizing subseasonal predictability. Importantly, reductions in ensemble
spread may indicate enhanced predictability associated with reduced forecast uncertainty
in regions where the ensemble mean response is weak, i.e., in regions where the ensem-
ble mean itself does not represent a source of predictability. Strong surface signatures of
ensemble spread anomalies are found following weak or strong stratospheric polar vortex
events. Consistent with NAO-related modulations of jet latitude and strength and the
associated variations in synoptic storm activity, spread anomalies are not in phase with
the mean anomalies, but appear where the storm track is altered, which occurs especially
in the jet exit region.

In general, spread anomalies facilitate a statistically robust estimate of forecast error pat-
terns as they can be computed without a verification dataset. Applying the developed
diagnostics to remote tropical forcings revealed that extended-range forecast errors over
the Atlantic are at first order affected by the long-lasting NAO signals, such as introduced
by polar vortex extreme events. In contrast, forecast errors over the Pacific are dominated
by PNA-variability that is strongly influenced by ENSO variability.

5.3 Impact of extratropical cyclones on geopotential height
forecast uncertainty

The previous section revealed that weak and strong polar vortex states modulate the ensem-
ble spread in subseasonal forecasts of Z1000. These signals are consistent with latitudinal
shifts in the North Atlantic storm track and corresponding variations in synoptic-scale
wave activity.

One prominent manifestation of synoptic-scale wave activity are extra-tropical cyclones
(here referred to as “storms”; not to be confused with meso-scale wind extremes). There-
fore, we anticipate that forecasts, regions, and lead times with increased storm frequency
will be associated with larger ensemble spread. Moreover, ensembles in which one or sev-
eral members simulate a strong storm are expected to show larger spread at the storm’s
location and time.

The results of this section are under review at Weather and Climate Dynamics: Rupp, P., Spaeth, J., Afargan-Gerstman,

H., Biieler, D., Sprenger, M., & Birner, T. (2024)

The impact of synoptic storm likelihood on European subseasonal
forecast uncertainty and their modulation by the stratosphere. EG Usphere [preprint], 1-19.
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The following analyses delve deeper into relationship between storm occurrence and in-
creased ensemble spread at S2S lead times. It is crucial to note that this study does not
evaluate predictions of individual storms that occur in the real atmosphere, as these are
generally unpredictable beyond medium-range lead times. Instead, the focus is on under-
standing how processes acting as effective boundary conditions, such as the stratosphere,
affect the overall frequency of storms and thereby lead to variations in ensemble spread.

The results presented in this section are part of a study led by Philip Rupp (preprint:
Rupp et al., 2024). The following analyses highlight my main contributions to this study.

Storm tracks

To investigate ensemble spread in the neighborhood of storms, storm tracks in the S2S
forecasts are analyzed. We use the same storm tracks as Biieler et al. (2024), with data
provided by Michael Sprenger, Dominik Biieler and Hilla Afargan-Gerstman. Storms are
identified based on a feature-track algorithm, detecting closed contours in mean sea level
pressure (MSLP), enclosing one or several local MSLP minima (Wernli and Schwierz, 2006;
Sprenger et al., 2017). A time-dependent spatial storm mask is then defined via the area
enclosed by the outermost closed contour of a storm. Furthermore, the corresponding
storm centre is defined as the location of minimum MSLP within this closed contour and
the storm strength as the value of this MSLP minimum (Pmin). Storm tracks (paths of the
corresponding storm centres) are computed based on 6-hourly data, however, only daily
values are used to match the available Z1000 data in the S2S forecasts. To neglect weak
and short-lived storms, only storms are considered with a total lifetime of at least 36 h
and peak storm strength of Pmin < 985 hPa. In addition, only storms with a storm centre
over the North Atlantic-European sector are considered (—80°E to 40°E, 30°N to 80°N).

The following analyses are based on S2S ECMWF ensemble forecasts comprising 25 re-
altime forecasts with 51 members each, initialized from 1st December to 28th February
2021 and, additionally, 25x20 corresponding 10-member hindcasts (the unperturbed con-
trol member is omitted). Note that this dataset represents a subset of the forecasts used
in other sections of this thesis, as the storm track data was only available for these initial-
izations.

Storm-centred composite of ensemble spread anomalies

Fig. 5.8a presents a storm-centred composite of Z1000 anomalies. Note that section 5.2
investigated ensemble mean anomalies, whereas the anomalies here only include ensem-
ble members with storms. In addition, the figure displays ensemble spread anomalies,
computed as relative deviations from a ensemble spread climatology (based on method a.
presented in Sec. 3.4). For each specific storm identified in a single ensemble member, the
71000 anomalies of that member are included in the composite, while the corresponding
ensemble spread is determined from the entire ensemble at the time and location of the
storm in that single member.

The results of this section are under review at Weather and Climate Dynamics: Rupp, P., Spaeth, J., Afargan-Gerstman,
H., Biieler, D., Sprenger, M., & Birner, T. (2024).
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Figure 5.8: a. Storm-centred composite mean of 1000 hPa geopotential height (Z1000)
mean anomalies (black contour lines) and ensemble spread anomalies (shading). The mean
anomalies show average Z1000 anomalies of members that predict a storm, on the central
lead day of the storm. The ensemble spread anomalies are computed among all members of
an ensemble, where one member predicts a storm, on the storm central day. Only storms
with a minimum mean sea level pressure (MSLP) below 985hPa are included (71000
storms). b. Scatter plot of Z1000 ensemble spread anomalies (y-axis) versus minimum
MSLP of the storm (x-axis). Black dots represent individual storms (pearson correlation
coefficient 7 = —0.46) and shading shows the 2D-histogram. Blue crosses indicate the
mean values of MSLP and Z1000 spread for 10 storm groups, given by 10 MSLP quantiles,
i.e., these groups are equally populated.

The results of this section are under review at Weather and Climate Dynamics: Rupp, P., Spaeth, J., Afargan-Gerstman,
H., Biieler, D., Sprenger, M., & Birner, T. (2024). The impact of synoptic storm likelihood on European subseasonal
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The storms are characterized by negative Z1000 anomalies, with values peaking around
—250 gpm in the storm centre. Z1000 ensemble spread in the storm centre increases by up
to 50% relative to climatological ensemble spread, supporting the initial hypothesis that
storms in individual ensemble members can substantially increase the ensemble spread
computed across all members.

Fig. 5.8b shows that particularly strong storms, characterized by low MSLP values, are
associated with increased ensemble spread. For instance, the strongest 10% of the storms
in terms of Pmin are linked to an increase in ensemble spread by approximately 100%. In
contrast, weak storms, with Pmin>1000 hPa, are not associated with anomalous spread.

Spatial distribution of storms under weak vortex conditions

To link the storm-induced increase in ensemble spread to the anomalous ensemble spread
patterns following weak polar vortex states (see Sec. 5.2), we analyze the spatial distribu-
tion of storms under these conditions. Weak vortex initializations are classified as the 20%
of forecasts with the lowest initial Ugj .

Figure 5.9 shows 2D-histograms of the spatial distribution of storms. Storm frequency
is computed by dividing the North Atlantic-European domain (—80°E to 40°E, 30°N to
82.5°N) into 7.5° x 7.5° horizontal bins and counting the number of storm centres within
each bin. The frequency is then normalized by the total number of storms. Normalized
frequencies are computed for the locations of full tracks (single storms count multiple times,
once per day, following their track), genesis locations (based on the first day of the storm
track), and cyclolysis locations (based on the last day of the storm track).

Climatologically, North Atlantic-European storm tracks are primarily distributed from
eastern North America, through Southern Greenland and Iceland, to the Norwegian Sea
(Fig. 5.9a). The main regions of cyclogenesis are observed over eastern North America and
the southern tip of Greenland, whereas cyclolysis occurs predominantly over the southern
tip of Greenland and the Norwegian Sea.

Forecasts initialized during weak polar vortex states show a southward shift of the North
Atlantic storm track, as evidenced by a latitudinal shift of track, cyclogenesis and cyclolysis
locations (Figs. 5.9b,d,f). Consistent with these changes, the median storm track latitude
shifts southward (Fig. 5.9b), although this shift is only a few degrees. Following weak
polar vortex states, fewer storms reach the Norwegian Sea, while more storms reach the
mainland of southern and central Europe.

Discussion

We identified two critical aspects of the relationship between weak polar vortex states,
ensemble spread, and storms. The previous section showed that weak polar vortex states
lead to reduced Z1000 ensemble spread over northern Europe and increased Z1000 ensemble
spread over southern Europe. This section demonstrated that these changes are consistent
with a southward shift of the North Atlantic storm track. Importantly, the occurrence of

The results of this section are under review at Weather and Climate Dynamics: Rupp, P., Spaeth, J., Afargan-Gerstman,
H., Biieler, D., Sprenger, M., & Birner, T. (2024)
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Figure 5.9: 2D-histograms of the climatological spatial distribution of a. storm tracks,
c. storm genesis, c¢. and cyclolysis (final location of storm track). The frequencies are
normalized such that the sum over all bins equals one (see text for details). b., d.,
f.: Corresponding 2D-histograms of anomalies in the spatial distribution in weak vortex
forecasts.
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forecast uncertainty and their modulation by the stratosphere. EGUsphere [preprint], 1-19.



106 5. Forecast uncertainty in subseasonal-to-seasonal forecasts

storms in individual ensemble members is linked to increased spread in the ensemble. Note
that this ensemble spread is computed across all 10 members, including the member with
the storm and the 9 other members. As a sanity check, we tested computing the spread only
across the 9 members that do not predict the storm and found near-zero Z1000 mean and
spread anomalies (not shown), which provides further confidence that the spread increase
is attributable to the “storm-member”.

The relative ensemble spread increase caused by a single storm depends on the ensemble
size. For instance, a single storm leads to a larger relative increase in an 1l-member
ensemble compared to a 51-member ensemble. However, in larger ensembles, it is likely
that multiple members simulate storms simultaneously, making the overall contribution of
storms to the full ensemble spread insensitive to the ensemble size (see Rupp et al., 2024,
for a more detailed discussion).

Finally, it is important to note that the anomalies in spatial storm distributions are not
perfectly aligned with the ensemble spread anomalies following weak polar vortex states.
This suggests that storms are just one factor contributing to the reduced spread. Addition-
ally, anomalies in Rossby wave activity — unrelated to well-defined storms but associated
with the general occurrence of troughs and ridges — likely contribute to reduced synoptic-
scale wave activity. Together, these factors may account for the observed ensemble spread
anomalies following weak polar vortex states.

5.4 Flow-dependence of ensemble spread of subseasonal
forecasts explored via North Atlantic-European weather
regimes

Based on the Z1000 ensemble spread anomalies identified in section 5.2 and their link to the
occurrence of storms discussed in section 5.3, this section explores three additional aspects
of subseasonal forecast uncertainty. This work is published in Spaeth et al. (2024b).

1. Generalization of ensemble spread anomalies to large-scale flow patterns

Section 5.2 demonstrated that weak polar vortex states are followed by anomalies in Z1000
ensemble spread. Given that these anomalies were linked to variations in synoptic-scale
wave activity, including anomalies in storm frequency (see section 5.3), we anticipate that
these spread anomalies are not exclusively linked to polar vortex extreme events. Specif-
ically, any teleconnection projecting onto the North Atlantic Oscillation is expected to
be followed by similar spread anomalies at S2S timescales. Moreover, teleconnections that
project onto a different large-scale flow pattern may be linked to different spread anomalies,
depending on the associated variations of synoptic-scale wave activity.

To investigate the relation between the large-scale flow and ensemble spread anomalies more
systematically, we employ North Atlantic-European weather regimes. Weather regimes
have successfully been employed by previous studies to analyze flow-dependence of forecast
skill (Ferranti et al., 2015; Matsueda and Palmer, 2018; Biieler et al., 2021) as well as the

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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tropospheric response to stratospheric circulation anomalies (Charlton-Perez et al., 2018;
Beerli and Grams, 2019; Lee et al., 2019b; Domeisen et al., 2020b; Roberts et al., 2023).

Here, we use the weather regimes introduced by Grams et al. (2017) and condition on
each of these regimes to analyze the associated ensemble spread anomalies. These results
may guide future analyses of teleconnections and their impact on ensemble spread, by
decomposing the single pathway teleconnection — spread into two pathways: teleconnection
— weather regime and weather regime — spread.

2. Diagnosing ensemble spread anomalies of near-surface temperature

The previous two sections focused on forecast uncertainty in Z1000 forecasts. To investigate
whether other atmospheric variables follow similar patterns of ensemble spread anomalies,
this section also includes analyses of 2 meter temperature (T2m). Interestingly, the results
will show that T2m ensemble spread in subseasonal forecasts is governed by a different
process compared to Z1000 ensemble spread, which results in different spatial patterns of
spread anomalies.

3. Uncertainty of the large-scale flow regime

Separate consideration of teleconnection — weather regime and weather regime — spread
motivates the question whether polar vortex extremes also modulate the uncertainty of
weather regimes. However, the weather regime is characterized by a categorical variable,
i.e., each day is assigned one out of eight weather regimes. Therefore, it is not possi-
ble to compute ensemble variance as a metric for forecast uncertainty, as for T2m and
71000. Instead, we propose information entropy as a measure for weather regime uncer-
tainty. Specifically, we compute a climatological regime entropy and show that polar vortex
extremes are followed by changes in entropy relative to this climatology.

Before presenting the results, the employed S2S forecasts, the weather regimes and the
regime entropy are introduced in more detail.

S2S forecast data

We analyze 1197 S2S ensemble forecasts provided by ECMWF, comprising 57 51-member
realtime forecasts from winters 2019/20 and 2020/21 and 1140 11-member hindcasts from
winters 1999/2000 to 2019/20. Note that this dataset represents a subset of the forecasts
used in different sections of this thesis, as weather regime data was only available for these
forecasts.

Definition of weather regimes

The year-round weather regimes defined by Grams et al. (2017) for the Atlantic-European
region (80°W—40°E, 30°N—90°N) adapted to ERA5 (Hauser et al., 2023b) are used in
this study (data provided by Christian M. Grams).

The weather regime definition isolates the following distinct flow patterns: four blocked
regimes (Atlantic ridge AR, European blocking EuBL, Scandinavian blocking ScBL, Green-
land blocking GL) and three cyclonic regimes (Atlantic trough AT, Zonal regime ZO,

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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Scandinavian trough ScTr). Days where the projection onto any of the above blocked or
cyclonic regimes is weaker than a predefined threshold are classified as “no regime” (e.g.,
flow situations close to climatology, short-lived blocks or cyclones, regime transitions).
The weather regime definition is based on 6-hourly 500-hPa geopotential height anomalies
(Z500") from ERAD reanalyses (Hersbach et al., 2020) at 0.5° horizontal resolution. Z500’
are normalized with the spatially averaged 30-day running standard deviation at a given
calendar time, to remove seasonal variability in Z500" amplitude (see Osman et al., 2023).
Then, a k-means clustering in the phase space spanned by the leading seven EOFs of 10-day
low-pass filtered, normalized Z500’ is performed. Following Michel and Riviere (2011), we
compute the normalized projection of each 6-hourly Z500” onto the cluster mean, obtaining
an index for weather regimes (IWR). We define weather regime life cycles as periods when
the maximum IWR exceeds 1.0 for at least 5 days. Dates when none of the IWR values
meet this definition are categorized as “no regime”. Weather regimes in ECMWEF S2S fore-
casts (model cycles CY46R1 and CY47R1) are used as in Osman et al. (2023), with data
provided by Marisol Osman. Forecasts are mapped onto weather regimes identified using
ERAS5 reanalysis data. The computation of weather regimes for bias-corrected forecasts
follows the same procedure as for the reanalysis.

Definition of regime entropy to quantify forecast uncertainty of weather regimes

To describe the distribution of weather regime likelihood and quantify the uncertainty in
the occurrence of weather regimes for given boundary conditions, we use the concept of
normalized information entropy H (hereafter also referred to as regime entropy). There are
eight distinct weather regimes, including “no regime”. The probability, p,.., of a particular
weather regime (denoted by subscript wr) is estimated as the ratio of the number of
ensemble members, n,,, classified with that regime to the total ensemble size, N, i.e.,
Pur = "=, The regime entropy (based on information theory, see Shannon, 1948; Cover
and Thomas, 2005, September) is then expressed as the negative sum over all weather
regimes of the product of their probability with the natural logarithm of that probability.
Furthermore, the entropy is normalized by the maximum possible entropy, In(8), which is

reached when all 8 regimes are equally likely:

- Zwr Puwr - hl(pwr)

= In(8)

(5.2)

This formulation allows for a quantitative assessment of the uncertainty associated with the
occurrence of different weather regimes within the ensemble. The applied normalization of
entropy is often performed to make the entropy values comparable across different scenarios.
A value of H = 1 corresponds to a uniform probability distribution for all weather regimes,
while values 0 < H < 1 describe situations where some weather regimes have increased
likelihood over others. In an 11-member ensemble, the maximum possible entropy is 0.97
(3 regimes with 2 members each, 5 regimes with 1 members each). In practice, entropy
is somewhat smaller on average, because neither the 11 members (hindcasts) nor the 51

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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members (realtime) can split exactly equally among the 8 regimes, e.g., H ~ 0.82 given
11 members and a uniform background distribution (empirically derived using synthetic
data).

5.4.1 Uncertainty of near-surface weather related to different weather
regimes

To investigate flow-dependent spatial patterns of ensemble variance, all ensemble forecasts
are clustered by the weather regime at initial time according to ERA5. For each of the
eight initial regimes the composite-mean daily anomalies of Z1000 ensemble variance are
computed and averaged over 7 to 10 days lead time. By these lead times, ensemble spread
has grown to a substantial level, yet the original regime is still the most likely one on
average, as weather regimes typically persist for about 10 days (Biieler et al., 2021).

Figure 5.10 shows that Z1000 ensemble variance anomalies are largest for the two regimes
that are closely linked to NAO variability (cf. Ferranti et al., 2015; Grams et al., 2017;
Beerli and Grams, 2019): During the Greenland Blocking regime (associated with NAO—
conditions) Z1000 ensemble spread is reduced by up to 1800 gpm? near the characteristic
anticyclone (about 25% relative to climatological spread; statistically significant at a 95%
confidence level, derived via bootstrapping). During the Zonal regime (associated with
NAO+) spread is increased near the North Atlantic jet by up to 1000 gpm? (about 15%;
statistically significant at a 95% confidence level). In general, regions of negative Z1000
anomalies (i.e., cyclonic patterns) tend to be associated with higher forecast uncertainty
than regions of positive Z1000 anomalies (i.e., anticyclonic patterns). This is consistent
with Sections 5.2 and 5.3, showing that occurrence of individual storms contributes to
reduced predictability of cyclonic patterns. Compared to high pressure systems, synoptic-
scale storms tend to be smaller in size, are associated with a more rapid intensification
and decay, propagate faster and have larger Z1000 gradients. Given the high degree of
spatial and temporal de-correlation between individual ensemble members at these lead
times, this can result in large ensemble variance.

While Z1000 ensemble mean and ensemble variance patterns are spatially aligned to a
relatively high degree, their relation can be more complex in detail. For instance, anoma-
lous ensemble variance can also appear in regions of near-zero ensemble mean signals (e.g.,
reduced variance around the North Sea during Greenland Blocking). Likewise, ensemble
mean anomalies can be associated with near-zero ensemble variance anomalies (e.g., north-
ern Europe during European Blocking). Furthermore, the relation between ensemble mean
and ensemble variance can be non-linear: for example, Atlantic Trough and Atlantic Ridge
are characterized by approximately opposite mean anomalies around the eastern Atlantic
(up to about —180 gpm and +160 gpm, respectively), but they are both associated with
reduced variance over the Greenland sea (about —800 gpm? and —300 gpm?), suggesting
that the synoptic-scale dynamics of the two regimes are not simply anti-symmetric.

Figure 5.11 reveals that T2m ensemble variance anomaly patterns are qualitatively different
compared to Z1000, suggesting that they involve different mechanisms. In general, T2m

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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Figure 5.10: Composite mean of Z1000 ensemble variance anomalies (color-shaded),
grouped by the weather regime at initialization time, averaged over lead times 7-10 days.
71000 ensemble mean anomalies at initialization time denoted by black contours (50 gpm
spacing, negative values dashed). White stippling indicates regions where color-shaded
71000 ensemble variance anomalies are not statistically robust (based on the 95% confi-
dence level using bootstrapping with 2000 samples). The number of ensemble forecasts per
regime are 154 (AT), 139 (ZO), 142 (ScTr), 141 (AR), 93 (EuBL), 114 (ScBL), 118 (GL)
and 296 (no).

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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Figure 5.11: Same as Fig. 5.10, but with color-shading indicating anomalies of 2 meter
temperature (T2m) variance. White stippling indicates regions where color-shaded T2m
ensemble variance anomalies are not statistically robust (based on the 95% confidence level
using bootstrapping with 2000 samples). Anomalies of T2m ensemble mean are hatched
(cold anomalies in blue, warm anomalies in red). Z1000 ensemble mean anomalies at time
of initialization are marked by contours as in Fig. 5.10.

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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variance is smaller over the ocean than over land (see supplementary Fig. S2 of Spaeth
et al., 2024b, for the spread climatology). Over land, cold anomalies tend to be associated
with increased T2m variance and vice versa. For instance, Greenland blocking is followed
by cold anomalies (up to —3 K) and increased T2m variance (up to 7K?, or +40% relative
to climatological spread) over North-East Europe. However, there are many other regions
where T2m ensemble mean and variance are not well-correlated. For example, North-East
Canada experiences warm anomalies during Greenland Blocking and during European
Blocking, but variance is decreased during the former and increased during the latter.

Our results are consistent with the hypothesis that T2m ensemble variance anomalies
are predominantly driven by advection, i.e., sensitive to horizontal temperature gradients.
Over the ocean, temperature gradients are generally smaller in magnitude. When marine
air is advected to the continent, such as from the ocean to central Europe during the Zonal
regime and Atlantic Trough, this leads to smaller variance in predicted T2m among ensem-
ble members. In contrast, advection of continental air leads to larger ensemble variance.
For instance, during Greenland Blocking, European weather is typically characterized by
easterly winds and increased risk for cold-air outbreaks. Such cold spells are associated
with strong temperature anomalies, but especially at extended-range forecast lead times,
their exact location, strength and timing is differently simulated by ensemble members,
leading to large ensemble spread. In addition, Greenland blocking often transitions to ei-
ther Atlantic Ridge (about 1/6 of the time) or Atlantic Trough (about 1/8 of the time, see
supplementary Fig. S3 of Osman et al., 2023). Over Europe, Atlantic Ridge and Atlantic
Trough are associated with opposite flow directions (easterly versus westerly) and hence
opposite temperature anomalies (cold versus mild), which can additionally contribute to
large T2m ensemble spread following Greenland blocking (see supplementary text S3 for a
comparison of Greenland blocking transitions to Atlantic Ridge versus to Atlantic Trough).

This illustrates that the limited life time of each weather regime and a subsequent transition
of ensemble members to different regimes can also contribute to large ensemble spread. In
principle, such “inter-regime variance” could be the reason for the Z1000 and T2m ensemble
variance anomalies at 7 to 10 days lead time that were presented in figures 5.10 and 5.11.
However, as we will show below, a substantial part is resulting from the inherent “intra-
regime variance”, i.e., the variance across a single given weather regime.

Figure 5.12 presents the evolution of intra- and inter-regime ensemble variance over lead
time for Z1000 over northern Europe and for T2m over central Europe. For each ensem-
ble forecast and lead time, members are categorized based on their regime. Inter-regime
variance is computed as the variance across these regime-group means, while intra-regime
variance corresponds to the variance within members of a single regime-group. Note that
the categorization differs from the analyses of Figures 5.10 and 5.11, because forecasts are
not only grouped based on the regime at forecast initial time, but each group can include
a different set of members at different lead times. Consistent with Figure 5.10, the Zonal
and Scandinavian Trough regimes show largest intra-regime Z1000 ensemble variance over
northern Europe beyond about 7 days lead time. Greenland Blocking is associated with
the smallest amount of Z1000 ensemble variance. As before, this is somewhat opposite to

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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Figure 5.12: Evolution of intra-regime ensemble variance of a. 1000 hPa geopotential
height over northern Europe and b. 2-meter temperature over central Europe (55-75°N/
—20-20°E and 35-60°N/ —10-20°E, respectively, indicated in map insets). For each lead
time and ensemble forecast, the intra-regime variance is computed only across ensemble
members sharing the same weather regime at that day. Ensemble variances are first com-
puted for each grid-point and then averaged over the respective region. Gray shading
denotes the ensemble variance computed across all ensemble members, i.e., the full ensem-
ble variance. Dotted black lines denote the average inter-regime spread (realtime forecasts
only), i.e., the variance between the regime-grouped averages within an ensemble.

T2m ensemble variance over Europe, which on average is twice as large during Greenland
blocking than during Zonal. In fact, T2m intra-regime variance during Greenland Blocking
is even larger (saturating at 10 K?) than the average total ensemble spread (saturating at
SK?).

This regime-dependence of forecast uncertainty is in good agreement with Figures 5.10 and
5.11, where forecasts were categorized based on the regime at initial time. Therefore, we
conclude that intra-regime variance can represent a major contribution to the full ensemble
variance anomaly patterns. Inter-regime variance is of similar magnitude as intra-regime
spread. In general, large inter-regime variance indicates that weather regimes form distinct
groups of ensemble members in terms of the chosen metric of interest. It is therefore not
surprising to see Z1000 inter-regime variance being relatively larger than T2m inter-regime
variance, as the regimes were constructed based on geopotential height in the first place
and regimes are therefore well-separated somewhat by construction.

5.4.2 Uncertainty of weather regimes under different stratospheric
initial conditions

In section 5.4.1 we have shown that different weather regimes are associated with distinctly
different signatures in ensemble variance in Z1000 and T2m. The occurrence of weather
regimes is known to be influenced by certain teleconnection patterns, such as the downward
impact following weak or strong stratospheric polar vortex states. In this section, we
therefore consider the additional effect of the remote impact of the state of the stratosphere
on forecast uncertainty of weather regimes.

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
Geophysical Research Letters, 51(14).
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Figure 5.13: a. Climatological frequency of weather regimes in ECMWEF S2S forecasts
averaged over lead times 14-27 days. a/b. Percentage point changes in predicted regime
frequencies following b. weak and c. strong stratospheric polar vortex conditions. Error
bars indicate 95% confidence intervals, obtained via bootstrapping. d. Regime uncertainty,
as quantified by the normalized entropy, for forecasts initialized under weak, moderate
and strong polar vortex conditions (see text for definition). Thicker lines indicate where
differences to “moderate” are statistically significant at a 95% confidence level, obtained
via bootstrapping.

Figure 5.13 shows climatological weather regime frequencies in forecasts and, in addition,
changes in frequency at lead times of 3-4 weeks when forecasts are initialized with specific
stratospheric polar vortex conditions*. Here, weak, moderate and strong polar vortex
conditions are classified based on U§) in ERA5 (weak: U < Oms™!, resulting in 86
forecasts; strong: ULy > 51.82, ms™!, ensuring the same number of forecasts as for weak;
moderate vortex: 1025 forecasts). We generally find the same signals as Beerli and Grams
(2019), in the sense that a strong polar vortex is followed by increased occurrence of the
Zonal regime, whereas a weak polar vortex is followed by increased occurrence of Greenland
blocking. It is perhaps surprising that there is a relatively large impact on the frequency
of “no regime” (more often under weak vortex), though this impact seems to be larger in
forecasts than ERA5 (compare to Fig. 6 in Beerli and Grams, 2019) and its relative change
compared to climatology is smaller (+30%) compared to Greenland blocking (+103%) and
Zonal (—=74%). The increased occurrence of no regime corresponds to generally weaker
geopotential anomalies with associated weaker projections onto the regimes during periods
of a weakened stratospheric polar vortex.

Moreover, there are about 7% more regime transitions observed under weak stratospheric
polar vortex conditions compared to moderate vortex conditions (not shown), which further
manifests in more days being classified as “no regime”.

4The final computation of the regime frequencies and the regime entropy was carried out by Marisol
Osman.

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
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In addition to the mean frequency of regimes, we quantify the uncertainty of predicted
regimes, in particular under different polar vortex conditions. To quantify the uncertainty
associated with the classification into distinct weather regimes we use the information
entropy measure. Figure 5.13d shows that after about 10 days weak polar vortex states
are on average associated with reduced uncertainty in the predicted regime, as indicated
by smaller entropy. This is consistent with the fact that forecasts initialized during weak
polar vortex states are associated with increased occurrence of Greenland blocking and
“no regime”. However, entropy is not reduced under strong vortex conditions despite
increased occurrence of the Zonal regime. This seems to be due to reduced occurrence of
“no regime” (from 29% to 22%), which climatologically occurs most often. As a result,
ensemble members are more evenly distributed among the eight regimes, which increases
entropy.

5.4.3 Discussion

Our results have highlighted the added value of decomposing subseasonal forecast uncer-
tainty over the North Atlantic-European sector during Boreal winter into uncertainty of the
large-scale flow and uncertainty of near-surface weather given a particular large-scale flow
pattern. Here, the large-scale flow was categorized by the eight North Atlantic-European
weather regimes introduced by Grams et al. (2017). We now return to the questions for-
mulated at the beginning of this section.

How does forecast uncertainty of near-surface weather at lead times of 2-6 weeks
depend on weather regimes?

First, our analysis revealed distinct patterns of Z1000 and T2m forecast uncertainty in-
herently related to different weather regimes. These patterns of forecast uncertainty are
found independent of whether forecasts categorized based on the initial regime (see Figs.
5.10, 5.11) or based on the regime at each day, separately (see Fig. 5.12). The fact that
the uncertainty patterns of Z1000 and T2m are quite distinct suggests that these uncer-
tainties are driven by different underlying mechanisms. Z1000 ensemble variance seems to
be mostly related to the occurrence of storms, while T2m ensemble variance seems to be
predominantly driven by advection.

How does forecast uncertainty of weather regimes depend on the circulation in the
polar stratosphere?

Second, we introduced weather regime entropy as a quantitative measure for forecast un-
certainty of weather regimes. The results showed that weak polar vortex states on aver-
age reduce weather regime entropy at extended-range lead times, implying a reduction of
forecast uncertainty (see Fig. 5.13). From this perspective, weak polar vortex episodes,

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
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including sudden stratospheric warmings (SSWs), form windows-of-opportunity for sub-
seasonal prediction. However, these results require careful interpretation, as the reduction
in entropy is partly due to a more frequent occurrence of “no regime”, which likely is a re-
sult of weaker geopotential anomalies and more frequent regime transitions. Moreover, the
reduced uncertainty only corresponds to an actual increase in predictability if the model is
reliable, i.e., if predicted regime likelihoods following weak polar vortex states match cor-
responding regime frequencies in reanalysis data. A corresponding reliability diagram did,
unfortunately, not allow robust conclusions whether the model is reliable, over-confident
or under-confident (not shown) due to the small hindcast ensemble size and the scarcity
of weak vortex events in reanalysis data. Nevertheless, the average increase in Greenland
blocking frequency following weak polar vortex states is consistent between forecasts (from
10% climatology to 18%) and ERA5 (from 8% climatology to 18%).

While both weak and strong vortex states project onto the NAO, their impact on fore-
cast uncertainty of near-surface weather is more nuanced. Specifically, weak vortex states
such as SSWs are followed by increased Greenland Blocking frequency over the course of
several weeks, which can enhance regime predictability (Biieler et al., 2021). However,
Greenland Blocking is inherently associated with higher forecast uncertainty of T2m over
Europe. This may create situations where the weather regime following a SSW has in-
creased predictability at extended-range lead times, but T2m forecast skill (e.g., in terms
of root-mean-squared-error) does in fact decrease. This has indeed been shown to be the
case: Biieler et al. (2020) and Domeisen et al. (2020a) found decreased T2m extended-
range forecast skill over Central Europe following weak polar vortex states, although there
are differences between models. While the authors have discussed flow-dependent model
deficiencies as a possible reason, our results suggest an additional interpretation: T2m skill
is expected to decrease following SSWs even in a perfect model, due to the inherently in-
creased T2m variance that is associated with the tropospheric weak vortex signatures. This
increase in T2m variance could be driven, first, by the westward advection of continental
air and, second, by co-projections of Greenland blocking onto either Atlantic Trough or
Atlantic Ridge, which are related to opposite temperature anomalies over central Europe
(see supplementary text S2 of Spaeth et al., 2024b). Finally, we note that the difference
between large-scale (related to regimes) and small-scale (related to Z1000 and T2m) pre-
dictability can manifest even in individual SSW cases: supplementary text S3 of Spaeth
et al. (2024b) briefly discusses how the February 2018 SSW (e.g., Karpechko et al., 2018;
Kautz et al., 2020; Gonzalez-Alemén et al., 2022) was associated with reduced regime
uncertainty, reduced Z1000 uncertainty and increased T2m uncertainty in forecasts.

The results of this section are published in Spaeth, J., Rupp, P., Osman, M., Grams, C. M., & Birner, T. (2024).
Flow-dependence of ensemble spread of subseasonal forecasts explored via North Atlantic-European weather regimes.
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Chapter 6

Conclusions, Discussion, Outlook

6.1 Answers to research questions

(1) How variable is the role of tropospheric wave activity in the formation of SSWs?

Approximately one third of displacement-type SSWs and one half of split-type SSWs are
attributable to preceding wave events of tropospheric origin. That is, approximately one
half to two thirds of SSWs are not attributable to anomalously strong preceding tropo-
spheric wave activity.

Planetary waves and their non-linear interaction with the zonal-mean flow play a critical
role in the formation of SSWs. However, quantifying the influence of anomalous tropo-
spheric planetary wave activity on SSWs using reanalysis data is challenging due to the
scarcity of SSW events and the highly variable nature of wave activity. While climate
and idealized models allow for a larger sample size of events, their inherent simplifica-
tions — such as limited spatial resolution — introduce uncertainties regarding the fidelity of
simulated atmospheric processes.

In this study, 6101 SWs were identified in ECMWEF subseasonal-to-seasonal ensemble fore-
casts, leveraging a state-of-the-art weather forecast model with a large sample size of
extreme events. This is referred to as an UNSEEN (UNprecedented Simulated Extremes
using ENsembles) approach. In addition to SSWs, wave events were defined for zonal
wavenumbers 1 and 2, based on standardized anomalies of eddy heat flux. Conditional
probabilities were computed to quantify the joint occurrence of SSWs and preceding wave
events.

The results revealed that out of 2808 displacement SSWs, approximately one-third can be
attributed to preceding anomalous wavenumber 1 wave activity near the surface. Likewise,
out of 933 split SSWs, about half are attributable to preceding anomalous wavenumber 2
wave activity near the surface.

Increased planetary wave activity near the surface often manifests in the formation of high
pressure systems over the Ural mountains, here referred to as Ural blockings. 6608 Ural
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blockings were identified in the forecasts, which showed that the associated increase in
vertical wave propagation approximately doubles the subsequent SSW probability. Hence,
skillful prediction of Ural blockings may enhance stratospheric predictability.

(2) How, and to what extent, can tropospheric circulation extremes be attributed to
SSWs?

To attribute tropospheric circulation extremes to preceding SSWs, the fraction of at-
tributable risk framework was employed, which is suitable for such analysis but requires
large statistics. Leveraging a large dataset of state-of-the-art S2S ensemble forecasts, it
was found that approximately every fourth large-scale tropospheric circulation extreme in
winter may be attributable to preceding SSWs.

While it is well-established that SSWs are followed by tropospheric mean anomalies that
project onto a negative phase of the Arctic Oscillation (AO), quantifying the modulation
of AO extremes remains challenging due to the limited observational record.

Using an UNSEEN approach, 6101 SSWs were identified in ECMWEF and 2716 in UKMO
S2S ensemble forecasts. Conditional probabilities were computed to quantify the joint
occurrence of SSWs and subsequent AO extreme events.

The results showed that SSWs increase the subsequent risk for negative AO extremes (de-
fined as deviations beyond 3 standard deviations) by approximately 40% — 80%. Likewise,
the risk for positive AO extremes reduces. Furthermore, AO extremes that follow a SSW
can be attributed to that SSW in about 50% — 60% of cases. Moreover, approximately %
of all AO extremes during the extended winter season are attributable to preceding SSWs.

(3) How do stratospheric circulation extremes affect tropospheric predictability?

This thesis revealed that polar vortex extremes affect forecast uncertainty at S2S timescales,
highlighting an important aspect of predictability associated with stratosphere-troposphere
coupling, which extends beyond the previously recognized shifts in mean weather condi-
tions.

Previous research has established that weak and strong polar vortex events enhance pre-
dictability by inducing mean shifts in distributions, such as related to the North Atlantic
Oscillation. This thesis extends this understanding by demonstrating that polar vortex
events also influence the variance of multiple distributions, quantified through ensemble
variance (or “ensemble spread”). Ensemble spread is an important aspect of predictability
as it quantifies forecast uncertainty and corresponds to the expected value of the mean
squared error of the ensemble mean forecast.

In the stratosphere, SSWs lead to a decrease in ensemble spread of the polar vortex
strength, measured by the zonal-mean zonal wind at 60°N, 10 hPa. The decrease is ex-
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plained by suppressed upward wave activity as a result of easterly zonal-mean winds in the
lower stratosphere following SSWs.

Furthermore, the results show that weak and strong polar vortex events lead to modu-
lated ensemble spread in the troposphere as well, in terms of 1000 hPa geopotential height
forecasts. Anomalous ensemble spread arises from latitudinal shifts of the North Atlantic
storm track and associated changes in synoptic-scale wave activity. Specifically, weak polar
vortex events are followed by reduced spread over northern Europe by up to 25% relative
to climatological spread, whereas spread slightly increases over southern Europe.

To assess the relation between synoptic-scale variability and ensemble spread more in
detail, a storm-centered composite is computed, based on nearly one hundred thousand
North Atlantic cyclones in the S2S forecasts at lead times of 20-46 days. The results show
that at the location where a single ensemble member predicts a storm, spread across the
entire ensemble is increased by more than 40% relative to climatological spread.

Therefore, anomalies in ensemble spread are not only expected following polar vortex
events, but more generally, in response to the large-scale flow, and associated variations in
synoptic variability. To highlight this aspect, the large-scale flow was characterized using
a set of eight established North Atlantic-European weather regimes, and their relation to
ensemble mean and spread anomalies at 2-6 weeks lead time was studied. In particular,
the tropospheric response to weak and strong polar vortex events can be explained by their
impact on Greenland blocking (NAO—) and Zonal (NAO+) frequency, respectively.

Moreover, regime entropy was introduced to quantify whether not only uncertainty of
near-surface local weather, but also of the large-scale weather regime is modulated by
polar vortex events. Consistent with the long-lasting increase in Greenland blocking fre-
quency, weak polar vortex events are followed by reduced entropy compared to climatology,
indicating reduced uncertainty/ enhanced predictability. In contrast, entropy increases fol-
lowing strong polar vortex events, which primarily results from a decrease in “no regime”
frequency. No regime climatologically occurs most often, hence, a decrease in frequency
tends to equalize the frequencies among the eight weather regimes, which increases entropy.

6.2 Limitations

This section discusses the major limitations of the results presented in this thesis. Specifi-
cally, two key areas are addressed: First, Section 6.2.1 examines various factors that may
support or challenge the applicability of conclusions drawn from forecast model outputs to
the real atmosphere. Second, Section 6.2.2 discusses different sources of sampling uncer-
tainty that may be inherent to the analyses.

6.2.1 Perfect model assumption

This thesis is largely based on subseasonal-to-seasonal forecasts provided by the ECMWF.
These forecasts not only serve to evaluate forecast skill, but also allow for deeper insights
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into atmospheric dynamics and the intrinsic limits of predictability. However, the insights
gained from these analyses are valid for the real atmosphere only if the model sufficiently
represents the complexity of the relevant aspects of atmospheric physics. Therefore, the
interpretation of the results is based on a perfect model assumption. The following para-
graphs discuss where and why a perfect model is implicitly assumed, and highlight aspects
that may support or challenge this assumption.

Model representation of teleconnections

The analyses of UNSEEN SSWs, SPVs, Ural blockings, planetary wave events and AO
extremes in the S2S forecasts (chapter 4) implicitly rely on a perfect model assumption.
The assumption posits that individual ensemble members simulate events that could have
also occurred in the real atmosphere. This approach facilitates far larger sample sizes
of extreme events compared to observations, which substantially reduces sampling uncer-
tainty. For instance, ERA5 covers 33 SSW events between 1960 and 2023, while the S2S
ECMWEF forecasts used in this study provide 6101 SSWs, with the potential for even more
by including more initialization dates or models.

However, this advantage comes at the cost of increased model uncertainty. Specifically,
verifying whether the model accurately simulates extreme events is challenging, as these
events are rare in observations and therefore subject to sampling errors (Oehrlein et al.,
2021).

In general, stratosphere-troposphere coupling in the ECMWEF model seems to be consistent
with reanalyses (Fig. 4.8; Schwartz and Garfinkel, 2020; Domeisen et al., 2020a), although
various S2S models underestimate the downward coupling, in particular after strong po-
lar vortex events (Garfinkel et al., 2024). Notably, high-top models (such as ECMWF)
generally exhibit fewer biases in the stratosphere (Lawrence et al., 2022) and are therefore
better suited for studying UNSEEN polar vortex extreme events.

Some other teleconnections tend to be less accurately represented in models. Lawrence
et al. (2022) showed that the QBO amplitude unrealistically decays over lead time in S2S
models, and their teleconnection to the polar vortex (Holton and Tan, 1980) is underes-
timated. Furthermore, Garfinkel et al. (2022) found that the extratropical response to
ENSO is generally too weak in S2S models, primarily due to underestimation of Rossby
wave amplitudes, and errors in the North Pacific jet stream, which affects the propaga-
tion of Rossby waves into the extratropics. Similarly, while models have made progress in
predicting the MJO (Stan et al., 2022), the extratropical response to MJO events is still
underestimated (Garfinkel et al., 2022).

Given these shortcomings, the UNSEEN approach may be less justified when applied to
QBO, ENSO and MJO teleconnections compared to stratosphere-troposphere coupling.
Nevertheless, future advancements in our physical understanding and computational capa-
bilities are expected to improve models. Such improvements will allow the UNSEEN ap-
proach to produce results with reduced model uncertainty compared to the models available
today.
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The underestimation of various teleconnections indicates that today’s models may not
fully exploit the potential predictability associated with these phenomena. Furthermore,
this underestimation can contribute to the so-called signal-to-noise paradox, a phenomenon
primarily observed in seasonal forecasts (Scaife and Smith, 2018). The paradox arises when
the ensemble mean exhibits a higher correlation with observations than with individual
ensemble members. This appears counterintuitive because, in a perfect model where an
ensemble member is statistically indistinguishable from observations, these correlations
should be equal. Given that models are imperfect, one might expect higher correlations of
the ensemble mean with individual ensemble members (i.e., within the model world) than
with the real world. Surprisingly, in several applications, the opposite is observed, and
the reasons for this are still debated (Weisheimer et al., 2024). Appendix B demonstrates,
using a simple toy model, that underestimation of the strength of teleconnections can
lead to the signal-to-noise paradox. Therefore, the underestimation of ENSO, QBO and
MJO teleconnections in S2S models might contribute to a signal-to-noise paradox in S2S
forecasts. The complexity of this issue is exacerbated by the findings in Chapter 5, which
reveal correlations between the ensemble mean (signal) and ensemble spread (noise). Future
work may address how this correlation affects the signal-to-noise ratio and how it manifests
in the signal-to-noise paradox.

Model representation of uncertainty

The analyses of forecast uncertainty, primarily quantified through ensemble variance (chap-
ter 5), also rely on a perfect model assumption. In addition to the assumption that ensemble
members each represent possible real atmospheric evolutions, it is assumed that variations
in forecast uncertainty reflect actual variations in the predictability of the atmosphere.

In general, forecast uncertainty arises from initial condition and model uncertainty. An
accurate representation of initial condition uncertainty is arguably most critical at shorter
lead times, i.e., at short- and medium-range time scales. Nonetheless, the following briefly
discusses some key aspects of initial condition uncertainty to highlight how reliability at
such shorter timescales may differ from reliability at subseasonal-to-seasonal timescales.

Conceptually, uncertain initial conditions can be thought of as a high-dimensional probabil-
ity density function (PDF) in the atmospheric phase space. ECMWF estimates this PDF
using ensemble data assimilation (EDA), which generates an ensemble of initial conditions
based on a prior forecasts and new observations (Leutbecher and Palmer, 2008; Rodwell et
al., 2018). For each ensemble member, a deterministic forecast is produced, incorporating
model uncertainty through stochastic paramaterizations. The resulting ensemble forecast
represents a finite sample of the PDF of the future atmospheric state, considering both
initial condition and model uncertainties.

In practice, EDA (representing initial condition uncertainty) and stochastic parameteri-
zations (representing model uncertainty) still tend to generate too little ensemble spread
(Palmer et al., 2006; Leutbecher and Palmer, 2008), indicated by the average spread being
smaller than the average error (see section 3.3). To address this, ECMWF adds additional
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perturbations to the initial conditions that ensure maximum divergence of ensemble mem-
bers within the first few days (Leutbecher and Palmer, 2008). This approach helps account
for missing uncertainties but also highlights the imperfections of the forecasts.

At short- and medium-range timescales, it is critical that the uncertainty reflects the
characteristic rapid growth of forecast errors, which is associated with the decay of traceable
predictability. In contrast, errors tend to be roughly saturated at subseasonal-to-seasonal
time scales. Importantly, the amplitude at which spread and errors saturate depends more
on an accurate atmospheric energy spectrum (i.e., realistic variability at different spatial
scales) rather than on initial condition and model uncertainty.

At subseasonal-to-seasonal timescales, deviations from climatological spread can arise for
two reasons. First, anomalous ensemble spread can result from sampling errors, especially
when the ensemble size is small. However, these sampling errors tend to compensate over
many cases (except for situations where spread is very large or small, especially with a
small ensemble size; see Fig. 3.1f). Second, anomalous ensemble spread can result from
quasi-external forcings, related to teleconnections, that provide climatic predictability at
these timescales.

Importantly, Figures 3.2 and 3.3 showed that such anomalies in ensemble spread at subseasonal-
to-seasonal align well with anomalies in error, suggesting that forecasts can reflect flow-
dependent variations in intrinsic atmospheric predictability. For practical applications,
the most significant of these situations are likely those with reduced ensemble spread, indi-
cating enhanced predictability and a “window of opportunity” for subseasonal-to-seasonal
prediction (Mariotti et al., 2020).

While the relatively good spread-error relation provides some evidence that many relevant
sources of subseasonal predictability are accurately represented in the model, future anal-
yses will need to verify whether this relationship holds when forecasts are subset according
to specific teleconnections. Given the aforementioned underestimation of the strength of
some teleconnections (such as ENSO, QBO, MJO) it is plausible that their influence on
intrinsic atmospheric predictability is underestimated as well.

6.2.2 Sampling errors
Finite ensemble size

The ensemble sizes of the employed forecasts are 11 for the hindcasts and 51 for the realtime
forecasts'. While analyzing extreme events, such as SSW, requires a large overall sample
size, this sample may comprise either few forecasts with a large ensemble size or many
forecasts with a small ensemble size. Therefore, the analysis of UNSEEN events is not
restricted to a minimum ensemble size.

Similarly, sample variance provides an unbiased estimate for ensemble variance. Conse-
quently, in the limit of many cases, the average ensemble spread does not depend on the

'Note that the latest cycle of the ECMWF model now uses 101 members for realtime forecasts.
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underlying ensemble size. However, as discussed in section 3.3, the amplitude of both large
negative and large positive spread anomalies is overestimated when the ensemble size is
small. In conclusion, while the relatively small ensemble size in the hindcasts (N = 11) may
introduce minor quantitative mismatches between spread and error, it does not generally
limit the analysis of qualitative structures of ensemble spread anomalies.

Low-frequency climate variability

The hindcast period of ECMWF forecasts spans 20 years. While this extensive dataset
provides excellent sampling of high-frequency atmospheric variability, it offers limited sam-
pling of low-frequency climate variability, such as those related to ENSO and QBO. No-
tably, when characteristics of high-frequency variability are modulated by underlying low-
frequency variability, this poses additional challenges. For illustration, the ENSO influence
on SSWs is considered. Depending on their mutual statistical and physical links, SSW com-
posites might be compromised by insufficient sampling of ENSO, such as linked to one of
the following considerations.

1. Assume that SSWs were unrelated to ENSO. When computing SSW composites,
residuals of ENSO variability may still remain due to insufficient sampling of different
ENSO phases. In regions where the atmospheric response to ENSO is much larger than
to SSWs, the ENSO-induced signal might outweigh the SSW signal, potentially leading to
the false attribution of the signal to SSWs instead of ENSO.

2. Assume that the frequency of SSWs depends on the ENSO phase, although the dynamics
of a specific SSW does not depend on whether it is induced by ENSO or not. Due to
the limited hindcast period, the number of SSWs under El Nifio conditions relative to
all SSW is likely different in forecasts (approximately from 1997 to 2021) and reanalyses
(approximately from 1950 on, depending on the dataset). As a result, the response to
SSWs is influenced by ENSO in both S2S forecasts and ERAS, but the magnitude of the
relative influence is likely not the same, which makes a comparison between S2S and ERA5
SSWs challenging.

3. This issue becomes even more severe if the dynamics of SSWs were inherently different
when forced by an El Nino event compared to SSWs occurring during neutral ENSO.
Given a different relative number of El Nino-induced SSWs in S2S forecasts and ERAS,
the SSW composites in the two datasets would then suggest differences in SSW dynamics
between S2S and ERAS5. It would be difficult to attribute these differences to either model
deficiencies or ENSO influence.

4. Finally, even if ENSO is sampled sufficiently well, resulting in a similar distribution
of ENSO phases during SSWs in forecasts and ERA5, non-additive influences of other
teleconnections, such as the QBO, could complicate SSW analyses. If SSWs during El
Nino appeared differently under easterly versus westerly QBO conditions, it would not
be enough to sample different ENSO and QBO phases independently over the 20-year-
period. All ENSO-QBO phase combinations would need to be sampled, necessitating an
even longer hindcast period.
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The results presented in this thesis do not conclusively assess the severity of insufficient
sampling of low-frequency climate variability. One region likely affected by ENSO-related
sampling errors is the North Pacific, where ENSO is the dominant mode of climate vari-
ability and residuals (see case 1) can overwhelm the generic SSW response (Polvani et al.,
2017).

Insufficient sampling of low-frequency climate variability affects both mean (related to
chapter 4) and variance (related to chapter 5) analyses. Addressing these sampling is-
sues, such as through appropriate sub-sampling and statistical testing (see Deser et al.,
2018; Oehrlein et al., 2021), would be valuable for future research. Additionally, extended
hindcast periods would be beneficial.

6.3 Categorizing sources of variance anomalies

Understanding anomalies in variance requires identifying and understanding the sources of
climatological variance. These sources, when altered in their strength, location, or general
behavior, can lead to variance anomalies. However, the ways in which sources of variance
may actually change are diverse. Table 6.1 broadly categorizes the modulation of variance
sources due to spatial shifts, shielding, intensification, presence of strong gradients and
bifurcation events.

6.4 Scale-dependence of ensemble spread

Temporal scales

Chapter 5 examined uncertainty in subseasonal-to-seasonal forecasts through ensemble
variance (and regime entropy) based on daily values. However, S2S forecasts are of-
ten evaluated using temporal averages to even out unpredictable daily fluctuations and
thereby enhance predictable signals. This raises the question whether the ensemble spread
anomalies following weak and strong polar vortex events (see Sec. 5.2) are sensitive to the
underlying temporal resolution.

To check this point, Z1000 ensemble spread was additionally computed based on tem-
poral averages. That is, a running mean over lead time was applied to the raw Z1000
forecasts (window sizes from 2 days to 30 days were tested). Based on these temporally
smoothed forecasts, the ensemble spread was computed. Ensemble spread anomalies were
then obtained by subtracting the corresponding ensemble spread climatology, where the
climatology was re-computed for each window size, respectively.

The results revealed that the modulations of Z1000 ensemble spread following weak po-
lar vortex events are robust across the tested underlying temporal resolutions, from daily
values (as employed in chapter 5) to weekly and monthly averages (not shown). How-
ever, absolute anomalies are smaller in magnitude when spread anomalies of time-averaged
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quantities are considered as expected, because climatological spread is generally larger for
daily values compared to weekly or monthly averages. Notably, relative spread anomalies
(evaluated as the relative deviation from climatology) appear to be fairly insensitive to the
underlying temporal resolution. For example, section 5.2 showed that ensemble spread of
daily Z1000 forecasts decreases by about 20% over northern Europe following weak polar
vortex events. Similarly, ensemble spread of weekly averaged or monthly averaged 71000
forecasts decreases by about 25%-30% in these locations.

The fact that these spread anomalies are roughly insensitive to the underlying temporal
resolution suggests that polar vortex events modulate variability across different temporal
scales. On the one hand, this includes highly transient phenomena, such as individual cy-
clones (see Sec. 5.3), on the other hand, relatively persistent phenomena, such as variations
of the North Atlantic jet exit region, likely also contribute.

Spatial scales

To link spread anomaly signals, such as those observed following weak polar vortex events,
to particular physical processes, one can consider a decomposition of ensemble variance
into contributions from different spatial scales. However, this approach encounters chal-
lenges due to covariances between variability at different scales, as will be discussed in the
following.

Figure 6.1b presents ensemble variance of Z1000 as a function of longitude, decomposed
into contributions from different zonal wavenumbers. This is achieved by applying a Fourier
transform along the zonal dimension, filtering the Fourier coefficients for specific wavenum-
bers, applying an inverse Fourier transform to the filtered result to return to physical space,
and then calculating the variance across the ensemble dimension.

The results show that the sum of ensemble variances for individual zonal wavenumbers does
not equal the ensemble variance of the full field. This discrepancy arises due to covariances
between different wavenumbers, which can be positive (increasing the total spread), such
as over the Atlantic and Pacific, or negative (reducing the total spread).

For instance, as discussed in section 5.2, extreme polar vortex events are followed by a
mean tropospheric response primarily associated with planetary scales (wavenumber 1 and
2). However, this planetary-scale mean response also induces changes in synoptic-scale
variability. Consequently, the mean and variance response to polar vortex events reflect
anomalies in variability across different, yet correlated, spatial scales.

When a zonal average is applied, covariances average out to zero since zonal wavenumbers
form an orthogonal basis. As a result, the time-mean zonal-mean ensemble variance can
indeed be expressed as the sum of variances related to individual zonal wavenumbers (Fig.
6.1a), unlike ensemble variance at a specific longitude. At a lead time of 28 days, variability
associated with zonal wavenumber 1 shows the largest contribution to the total ensemble
spread, followed by zonal wavenumber 2, and higher wavenumbers.

In contrast, within the first forecast week, the relative contributions of zonal wavenum-
bers 1 and 2 are smaller than that of waves 4-7 and 8-20 (Fig. 6.2b). This is due to
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Figure 6.1: 1000 hPa geopotential height ensemble variance at 60 °N at 28d lead time de-
composed by zonal wavenumber (see text for details). a. Ensemble variance averaged over
longitude and forecasts. b. Zonally resolved Ensemble variance, averaged over forecasts.
The sum over ensemble variance contributions from different zonal wavenumbers only adds
up to the ensemble variance of the full field (black dashed line) if a zonal average is applied.

planetary waves exhibiting longer predictability, and their phase and amplitude are not
yet de-correlated between ensemble members. Consequently, the spread related to larger
scales saturates at later lead times: zonal wavenumbers 0 and 1 reach 80% of their saturated
ensemble variance level after 16 days on average, wavenumber 2 after 15 days, wavenum-
ber 3 after 13 days, wavenumbers 4-7 after 11 days, wavenumbers 8-20 after 8 days and
wavenumbers higher than 20 after 7 days (Fig. 6.2c). Note that the saturation level is
here computed by averaging lead times of 30-46 days. In principle, it is expected that
variance continues to slightly increase further at longer lead times due to low-frequency
climate variability. However, an analysis of inter-annual variance reveals that this increase
is small (wavenumber 0: 42.9%, wavenumber 1: +1.8%, wavenumber 2: +1.7%, higher
wavenumbers: less than +1%; not shown).

Note that theoretical estimates for predictability time scales can also be derived from tur-
bulence theory (Lorenz, 1969; Lilly, 1972). These estimates are based on scaling arguments
where it is assumed that initial errors at small scales are gradually transferred to larger
scales at a rate determined by the eddy turnover time (Vallis, 2017, June, Ch. 11.4.2).
Some of these estimates (e.g., 16.8 days by Lorenz, 1969, for wavenumber k=1) are re-
markably close to the results shown here, though the experimental setups substantially
differ.

Scale-dependent error growth and resulting predictability limits have predominantly been
studied to understand the intrinsic limits of mid-latitude weather prediction at medium-
range timescales (e.g. Lorenz, 1969; Rotunno and Snyder, 2008; Zhang et al., 2019; Selz,
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Figure 6.2: Leadtime evolution of 1000 hPa geopotential height (Z1000) ensemble variance
decomposed by zonal wavenumber, averaged over longitude and over different forecasts.
a. Absolute ensemble variance contributions by zonal wavenumber. b. Relative ensemble
variance contributions to the total spread at a given lead time day by zonal wavenumber.
c. Ensemble variance normalized by the saturation level of variance by zonal wavenumber.
The saturation level is computed as an average over 30 to 46 days lead time, for each
wavenumber separately. The horizontal dashed line indicates the 80% level, whereas labels
and triangular markers denote the lead time at which this level is reached.
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2019; Selz et al., 2022). However, a systematic assessment of variances and covariances
across different spatial scales, including their modulation by teleconnections, could also
shed light on S2S prediction.

Future research could explore whether “windows-of-opportunity” for S2S prediction arise
from slower upscale error growth, lower error saturation levels, or both. Additionally,
different teleconnections may provide predictability at different spatial scales, although
this thesis highlighted that different spatial scales are inherently coupled (e.g., planetary-
scale variability associated with the NAO is coupled to synoptic-scale variability associated
with baroclinic eddies).

6.5 Prospects and pathways for further study

This thesis examined forecast uncertainty at S2S timescales, focusing on stratosphere-
troposphere coupling during winter in the extratropics of the Northern Hemisphere. The
following paragraphs discuss potential applications of these findings to related topics, high-
lighting opportunities for future research.

Forecast uncertainty associated with the summer circulation

While chapter 5 investigated forecast uncertainty during Northern Hemisphere winter, it is
anticipated that similar flow-dependent variations in uncertainty exist during the summer
season as well.

Given their year-round definition, the North Atlantic-European weather regimes employed
in section 5.4 may serve as a suitable starting point.

Forecast uncertainty of near-surface geopotential height is expected to correlate with cy-
clone frequency also during summer, although differences may arise due to the northward-
shift of the storm track and the general decreases in storm frequency and intensity.

Furthermore, summer weather in the extratropics is partly characterized by convection and
associated precipitation or thunderstorms. While convection is usually only predictable on
short lead times (hours to a few days), large-scale weather regimes may influence prob-
abilities for convection in specific regions. Situations where the large-scale flow is more
predictable than usual could therefore also provide some climatic predictability for fore-
casts of convection at subseasonal lead times.

Forecast uncertainty in a warming climate

Previous literature has discussed that climate change may not only manifests in distribu-
tion shifts but can also affect the variance and higher moments (e.g., Allan and Soden,
2008; Boehm and Thompson, 2023; Shaw and Miyawaki, 2024). For example, alongside
general warming (i.e., a shift in the temperature distribution), changes in near-surface
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temperature variance have been suggested. During Boreal winter, temperature variabil-
ity may decrease, particularly at high latitudes (Schneider et al., 2015; Tamarin-Brodsky
et al., 2019). This phenomenon is attributed to stronger warming in polar regions, known
as Arctic amplification, which leads to weaker horizontal temperature gradients and con-
sequently reduced variance. Likewise, temperature variance could increase during summer
in certain regions, such as Europe, partly due to a drier climate and reduced soil moisture
(Schér et al., 2004; Fischer and Schér, 2009).

Such changes in variance are crucial because they imply changes in the frequency of extreme
events. Additionally, changes in variance could influence the intrinsic predictability of the
atmosphere, leading to changes in ensemble spread.

The list below presents a few climate change aspects and hypothesizes their potential
impacts on subseasonal-to-seasonal forecast uncertainty. Future research could test these
hypotheses through controlled experiments of subseasonal-to-seasonal ensemble forecasts
under current versus future climate conditions.

o While future changes in the strength of the polar vortex strength remain uncertain
(Karpechko et al., 2022), any changes are likely to influence the mean tropospheric
circulation. Based on the same principles as discussed for subseasonal-to-seasonal
timescales (section 5.2), such changes would presumably be accompanied by changes
in tropospheric variability and ensemble spread.

e Under global warming, land generally warms faster than the sea, leading to changes
in horizontal temperature gradients. Specifically, the zonal land-sea temperature
contrast may decrease during winter, reducing temperature variability, and increase
during summer, increasing temperature variability.

« Melting sea ice may intensify ocean-atmosphere coupling, which could reduce near-
surface temperature variability.

o The increase in absolute humidity in a warmer climate, consistent with the Clausius-
Clapeyron relation, increases the frequency of extreme precipitation events, which
may also increase precipitation variance.

Uncertainty in data-driven forecast models

Recent advancements in data-driven weather models utilizing machine learning methods
have shown that these models can generate forecasts with skill levels comparable to or even
surpassing those of traditional physics-based general circulation models (Price et al., 2023;
Chen et al., 2023; Lang et al., 2024a). Initially, these models focused on deterministic
forecasts at medium-range lead times. However, efforts are now underway to extend their
capabilities to probabilistic forecasts (Li et al., 2024b; Zhong et al., 2024; Lang et al.,
2024b) and to forecasts with longer lead times (Li et al., 2024a).
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With respect to probabilistic forecasting, it will be crucial to assess whether data-driven
models can provide reliable estimates of uncertainty. In general though, they offer the
potential for generating large ensemble sizes at low costs, which may be useful for both
applications and research.

In the realm of subseasonal-to-seasonal and seasonal forecasting, a key question is whether
data-driven models can learn processes relevant for these timescales based on reanalysis
data only. So far, data-driven models have been successful primarily in medium-range
forecasting, where relevant processes — such as fronts, Rossby waves, baroclinic instability,
etc. — are presumably sampled well by reanalysis datasets. In contrast, subseasonal-
to-seasonal and seasonal forecasts rely on lower-frequency processes whose sampling is
only limited in reanalyses. Therefore, representing those processes accurately, including
coupling between different low-frequency phenomena (e.g., QBO + ENSO), as well as their
coupling to the extratropics, may pose additional challenges for data-driven approaches.
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Appendix A

Vertically propagating Rossby waves

Rossby waves are atmospheric modes that get excited primarily by baroclinic instability
and flow over (planetary-scale) orography, and arise from angular momentum conservation
in a fluid on a rotating sphere. Rossby waves play a critical role in shaping the large-scale
circulation of the Earth and contribute to the redistribution of momentum and energy
across the atmosphere.

In the context of this thesis, a key aspect of Rossby waves is their vertical propagation,
which represents a major source of variability for the polar stratospheric circulation. Specif-
ically, Rossby waves are associated with intrinsic westward momentum, resulting from
their intrinsic westward phase speed. Upon breaking and dissipation, Rossby waves trans-
fer westward momentum to the mean flow, acting to decelerate the eastward zonal-mean
zonal wind. This mechanism plays a key role in the formation of sudden stratospheric
warmings (SSWs).

To motivate some of these aspects the following briefly sketches the theoretical background
of vertically propagating Rossby waves. This overview follows the course “Advanced Atmo-
spheric Dynamics” (winter semester 2021/22 at Ludwig-Maximilians-University of Munich)
by Prof. Thomas Birner.

Angular momentum conservation in a rotating fluid can be formulated in terms of potential
vorticity, P, which combines the relative vorticity of an air parcel, (y, with the planetary
vorticity, f, and the vertical density structure, o = —%2. @ denotes potential temperature,
p denotes pressure, and g denotes the gravitational constant. Under adiabatic motion, in
an inviscid fluid, potential vorticity is materially conserved:

D D R
D—tP:(), where D—t:8t+v-v and P = ({y+ f)/o, (A.1)

with ¢ being the 3-dimensional wind vector. Note that () and ¢ are evaluated in isentropic
coordinates, i.e., horizontal derivatives are evaluated along surfaces of constant potential
temperature and the vertical velocity equals diabatic heating (which is zero for adiabatic
motion).
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In general, equation A.1 is non-linear, because, for example, both P and D% depend on o
and general solutions can only be computed numerically. However, under certain assump-
tions, analytical solutions can be derived, which can provide additional insights into the
underlying dynamics.

In quasi-geostrophic (QG) theory, the flow is assumed to be almost in geostrophic balance
(i.e., the pressure gradient force is almost balanced by the Coriolis force). Specifically,
the Rossby number (a non-dimensional number measuring the effect of % relative to the
Coriolis effect) is assumed to be small, and deviations from geostrophic balance are on the
order of the Rossby number. This implies that ageostrophic wind components are small
compared to geostrophic components: 7, < vg. Moreover, this manifests in ageostrophic
flow components getting advected only by geostrophic winds. In addition, latitudinal
variations (denoted as y) in the Coriolis parameter are linearized (a so-called [-plane
approximation) and assumed to be small: f ~ fy + Sy, where |Sy| < fo and fo = const.

Linearization of equation A.1 under these approximations yields a conservation law for QG
potential vorticity, ¢ (here evaluated in log-p coordinates):

(0 +Ud) ¢ +'9,Q =0, (A.2)

where ¢, u (the eastward wind) and v (the northward wind) have been decomposed into a
zonally uniform basic state @, U, V' (of zero’th order) and perturbations, ¢, v/, v" (of order
Rossby number), respectively. To obtain an equation for only one prognostic variable (so

far: ¢" and v'), a geostrophic streamfunction, v, can be introduced that fulfills u, = —0,v
and vy, = 0,9. QG potential vorticity can then be expressed in terms of this geostrophic
streamfunction:

¢ = V' + pr'0z(pry0z)), (A.3)

where 1 has been decomposed into a basic state and a perturbation term, ¢» = VU 4+ ¢/, pr
is a height-dependent reference density profile and v is a constant factor that measures the
effect of rotation (i.e., horizontal motion) relative to the effect of stratification (i.e., vertical
motion). Under suitable boundary conditions, equation A.3 can be inverted to compute
the streamfunction (and the associated balanced dynamical fields; i.e., winds, temperature
and pressure) from a given potential vorticity field — a principle known as invertibility.

Moreover, the meridional gradient of the basic state QG potential vorticity, 9,Q, in equa-
tion A.2 can be expressed as a function of the latitudinal variations of planetary vorticity,
B, and the basic state zonal wind, U:

9yQ = = 0y U — pr 0z(pr07U). (A.4)

Plugging ¢’ and 9,Q) into equation A.2 yields a wave equation for ¢’. Assuming a channel
geometry in y (i.e., ¢’ = 0 at the latitudinal boundaries) leads to solutions of the following
form:

' = R{VU(Z) explik(z — ct)] sinly}, (A.5)

with zonal and meridional wavenumbers, k£ and [, zonal phase speed, ¢ and a vertical
structure function, ¥(Z). Using pg ~ exp(—Z/H), v = const. and 0,Q) = [ = const., the



135

vertical structure takes wave solutions:
Z .
U(Z) ~R{— exp(imZ)}, (A.6)
2H
where m corresponds to the vertical wavenumber. From plugging ¥(Z) into equations A.5
and A.2, it follows that these waves are only vertically propagating (i.e., m? > 0), if:

-
4H? + k2
else :  vertical evanescence,

O0<U—-c<U,=p ( ) : vertical propagation (A.7)

where [ = 0 was assumed and U, is the critical zonal flow. Importantly, stationary waves
(¢ = 0) can propagate vertically only in a background flow that satisfies U > 0 (i.e.,
westerlies) and U < U.(k) (Charney and Drazin, 1961).

When conditions for vertical propagation are satisfied, the wave amplitude is expected to
increase exponentially with height (i.e., ¥ ~ e%/H)) as energy conservation holds and
density decreases exponentially with height. In the real atmosphere, vertical amplitude
growth is typically less than exponential though, because linear theory and the implied as-
sumption that perturbations from the basic state are small, breaks down. Therefore, waves
of large amplitudes tend to break and dissipate, thereby transferring westward momentum
to the zonal-mean flow, acting to decelerate the zonal mean westerly winds.

The properties of the derived solutions for upward propagating Rossby waves have funda-
mental implications for polar vortex dynamics. Some of them are listed here:

« Vertical Rossby wave propagation into the polar stratosphere is only possible dur-
ing winter, as U < Oms~! during summer. As a result, variability of the summer
easterlies in the polar stratosphere is much smaller than the variability of the winter
westerlies.

o The critical zonal flow, U,, increases with the wavelength of the waves. Specifically,
for waves with zonal wavenumbers s > 2 (i.e., for waves with more than two minima
or maxima along one latitude circle), U, is typically smaller than the zonal flow U.
Consequently, it is predominantly planetary-scale waves (s = 1 and s = 2) that can
freely propagate into the stratosphere.

» Rossby wave breaking can decelerate the zonal mean flow in the polar stratosphere,
which can in extreme cases lead to SSWs.

e SSWs occur almost solely in the Northern Hemisphere, as tropospheric wave activity
induced by planetary-scale orography and the associated deceleration of the strato-
spheric zonal-mean westerly flow are much larger in the Northern Hemisphere than
in the Southern Hemisphere.
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Appendix B

The signal-to-noise paradox in a toy
model

Atmospheric phenomena are associated with different predictability time scales. For ex-
ample, the NAO is modulated via the stratosphere polar vortex on monthly time scales.
However, the NAO is also modulated by individual cyclones and anti-cyclones over the
North Atlantic and these may be predictable only for about a week.

At a given lead time, a prediction, say, of the NAO, can thus conceptually be decom-
posed into a predictable component (“signal”; e.g., arising from stratosphere-troposphere
coupling) and a non-predictable component (“noise”, e.g., arising from individual cyclones
and anticyclones). The variability of the signal relative to the variability of the noise is
measured by the signal-to-noise ratio, and can vary across lead times, seasons, cases, etc.
In ensemble forecasts the signal can be estimated via the ensemble mean. This assumes
that all ensemble members share the same signal, whereas the noise is uncorrelated be-
tween the members. Averaging over the ensemble dimension isolates the signal, since the
noise has a mean of zero. Moreover, the noise can be measured by the ensemble spread,
i.e., the variance across the ensemble members.

A conceptual decomposition into signal and noise can also be applied to observations.
However, an observational time series inherently contains both signal and noise, making
it challenging to separate these components based solely on observations. In a perfect
model, where individual ensemble members are statistically indistinguishable from the
observations, the signal would be the same in the model and the observations. Furthermore,
even though the noise is uncorrelated, its variability would be the same in the model and
the observations as well. As a result, in a perfect model, the correlation between the
ensemble mean and the observations (7ensmean, obs) Would equal the correlation between
the ensemble mean and individual ensemble members (7ens mean, members)- LThe ratio of the
square of these two correlations is called the ratio of predictable components (RPC):

Tgns.mean, obs B.1
2 (B.1)

ens.mean, members

RCP =

r
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Consequently, in a perfect model, the RPC equals 1.

In practice, models are not perfect, and characteristics of signal and noise may differ
between model and observations. Therefore, one might expect the ensemble mean to
exhibit a higher correlation with individual members (i.e., with the model world) than with
observations (i.e., with the real world), resulting in RPC<1. Surprisingly, the opposite has
been observed in seasonal forecasts in some cases, leading to counter-intuitive situations in
which 720 ean. obs = Tens.mean, members: TeSulting in RPC>1. Such situations are described
by the so-called signal-to-noise paradox (Scaife and Smith, 2018).

A recent article has summarized this puzzle, discussed various possible reasons and high-
lighted that it is not a “simple-to-understand nor a simple-to-fix problem” (Weisheimer
et al., 2024). Although the signal-to-noise paradox is not the primary focus of this thesis,
the presented results may still be influenced by its effects. For instance, underestimation
of teleconnection strengths is a common issue in S2S forecast models (see discussion in
section 6.2.1). Previous studies have identified this underestimation in seasonal forecasts,
linking it to the signal-to-noise paradox (Siegert et al., 2016; Falkena et al., 2022; Williams
et al., 2023). However, interpreting these results can be complex, as underestimation may
be phase-dependent (e.g., affecting only the negative NAO phase; Falkena et al., 2022), or
results may be compromised by sampling uncertainty, especially when the signal is weak
or the hindcast period is short (Weisheimer et al., 2024). Therefore, to illustrate how
underestimation of teleconnection strengths can manifest in the signal-to-noise paradox,
a toy model is presented here that isolates the necessary mathematical ingredients in a
straightforward and controlled framework.

The following hypothesis is tested: if the tropospheric response to stratospheric extreme
events was larger in observations than in the model, then the signal-to-noise paradox
becomes apparent. For this purpose, a synthetic observational time series with 20 000
time steps is generated. These observations consist of a pre-specified signal drawn from
a Gaussian distribution with a temporal variance of 0.4 (dimensions are not important).
Uncorrelated noise with a temporal variance of 0.6 is added to the signal. Note that the
amplitude of the signal relative to the amplitude of the noise could be somewhat weaker at
S2S timescales, which does, however, not affect the qualitative conclusions drawn from this
analysis. In addition to the observational time series, ensemble data are generated, where
each ensemble member consists of the same signal as the observations plus an uncorrelated
noise, also with a temporal variance of 0.6.

Fig. B.1 presents three cases, each with different parameters chosen for the signal and
noise in observations and ensembles. For each case, the general setup, the RPC and the
two correlations, 72 can. obs A0 Tog mean. members: ar€ shown as function of the ensemble

size. Cases where RCP > 1 exhibit the signal-to-noise paradox (SNP).

Case 1: No SNP

The first synthetic case uses parameters as described, i.e., with a signal that has variance
of 0.4 and a noise that has variance of 0.6, in both observations and ensemble members.
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Figure B.1: Toy model setup to investigate the signal-to-noise paradox. FEach column
presents one synthetic case. a-c. Magnitude of signal and noise in the (synthetical)
observational time series and the (synthetical) model ensemble forecasts, quantified by
their temporal variance. By construction, the signal is identical in observations and in all
ensemble members (up to a factor, which is 1 in the first case and is 0.75 in the second
and third case). By construction, the noise is uncorrelated. d-f. Ratio of predictable
components (RPC; see text for details). RCP > 1 indicates presence of the signal-to-noise
paradox. g-f. r? for ensemble mean vs. observations and for ensemble mean vs. individual
ensemble members, as a function of the ensemble size.

Ensemble members are generated identically to the observations, hence a perfect-model
assumption is implicit. The results show that RPC is very close to 1, except for sampling
uncertainty. The correlations of the ensemble mean with observations and with individual
ensemble members increase with ensemble size and approach 0.4 (which is equal to the
temporal variance of the signal) in the limit of large ensemble sizes.

Case 2: SNP

In a second synthetic case, the observational time series remains the same as in the first
case. However, the signal in the ensemble members is weaker than the signal in obser-
vations, scaled by a factor of 0.75. The temporal variance of the ensemble mean thus
equals 0.3. To ensure that ensemble members have the same overall temporal variance
as observations (equal to 1), the temporal variance of the noise in the ensemble members



140 B. The signal-to-noise paradox in a toy model

is increased from 0.6 to 0.7. The results show that the RCP in this case is substantially
larger than 1, with RCP = 1/0.75 = 3. Consistently, T2 s mean, members APProaches 0.3,
whereas rgnsimean, obs approaches 0.4 in the limit of large ensemble sizes. This difference is
due to the different signal-to-noise ratios in observations and ensemble members. On the
one hand, the correlation 72, can. obs Femains the same as in case 1, because observations
are unchanged and the ensemble mean is only scaled by a constant factor, to which the
correlation coefficient is insensitive. On the other hand, 72 can. members d€Creases as the
ensemble mean explains less variance of the temporal evolution of the individual ensemble
members due to the increased noise. As pointed out in Weisheimer et al., 2024, using the
regression coefficient instead of the correlation coefficient would reveal that the signal is

smaller in the model than observations.

Case 3: No SNP

In a third synthetic case, it is shown that RPC = 1 can be achieved even when the signal
in the model is underestimated. The same observational time series is used as in the first
and second cases. As in the second case, the signal in the model is scaled by a factor of
0.75 compared to the signal in observations. In this case, also the model noise is scaled by
a factor of 0.75. The overall temporal variance in the ensemble members is thus smaller
as in observations (0.75 versus 1). This results in model and observations exhibiting the
same signal-to-noise ratio, because both signal and noise are scaled by the same factor.
Consequently, this case does not exhibit the SNP.

In conclusion, these toy model experiments demonstrate a simple possible explanation for
the presence of the SNP. Underestimation of the signal in models can lead to RPC > 1,
as discussed by previous studies (Siegert et al., 2016; Falkena et al., 2022; Williams et al.,
2023). In the context of this thesis, an important underestimated teleconnection might
be the QBO-NAO relationship via the polar vortex, which might therefore contribute to a
SNP in S2S forecasts. Compared to other studies, the approach presented here is not based
on parameters derived from actual forecasts but rather illustrates, in a highly simplified
framework, the key element of the signal-to-noise paradox: different signal-to-noise ratios
in ensemble members and in observations.

Moreover, chapter 5.2 reveals that ensemble mean anomalies can be associated with changes
in ensemble spread. This correlation between the signal and the amplitude of the noise
was not incorporated into the above toy model. Future work could explore how this
correlation impacts the signal-to-noise ratio and its relation to the signal-to-noise paradox.
The presented toy model setup could serve as a useful test bed for such analyses.
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Software

The analyses presented in this thesis were conducted using Python versions 3.8, 3.9, 3.10,
3.11 and 3.12. Some of the most important external libraries used include:

 xarray (https://docs.xarray.dev/en/stable/)

 pandas (https://pandas.pydata.org/docs/)

o dask (https://docs.dask.org/en/stable/)

« matplotlib (https://matplotlib.org/stable/index.html)
o numpy (https://numpy.org/doc/stable/)

« ProPlot (https://proplot.readthedocs.io/en/stable/)

Some of my own software is publicly available, including s2stools and xevent (see section
3.5). In addition, software used for the analyses of section 5.2 is available at https://gitlab.
physik.uni-muenchen.de/Jonas.Spaeth /stratospheric-impact-on-forecast-uncertainty.
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