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Abstract

For centuries, our view of the night sky was merely a two-dimensional image of
the vast cosmos surrounding us. With new observational data from Gaia and
significant methodological advancements, we have begun to study the structures
closest to us in the Milky Way in three spatial dimensions (3D). The goal of this
thesis is to reconstruct the spatial 3D distribution of clouds of matter between
stars, important for the formation of stars and galactic dynamics, at high reso-
lution in a much larger volume than ever before. To probe these clouds in 3D,
we rely on measurements of interstellar dust as a tracer.

Reconstructing the density of interstellar dust in 3D in ever larger volumes
requires new statistical tools to model spatially correlated densities in large vol-
umes and new computational tools to handle the degrees of freedom encountered
in the modeling. First, we develop a fast algorithm utilizing a multi-resolution
view of the modeled volume. The algorithm achieves a linear time and memory
complexity with the number of modeled volume elements and allows represent-
ing spatially correlated structures in volumes with hundreds of millions of ele-
ments. Next, we create a Bayesian modeling framework designed to efficiently
handle hundreds of millions to billions of degrees of freedom. This framework is a
rewrite of the Numerical Information Field Theory package (NIFTy) in JAX. The
rewrite accelerates the runtime of typical models coded in NIFTy by two orders
of magnitude.

Combining our statistical and computational tools with the most recent data
from Gaia, we create the largest high-resolution 3D interstellar dust map to date.
The map has an angular resolution of 14 ′, a parsec-scale distance resolution, and
extends out to 1.25 kpc from the Sun, more than one tenth of the distance to
the Galactic center. The map represents a significant improvement over previous
maps in terms of dynamic range and volume covered at high resolution.

Using the new 3D interstellar dust map, we study three prominent molecular
clouds in the vicinity of the Sun: Musca, Chameleon, and Coalsack. Our 3D
analysis reveals that these three famous nearby clouds, previously thought to
be distinct, are part of a single coherent cloud structure, only revealed in 3D.
The map and the methodologies developed offer new opportunities and a fresh
perspective for future studies of our neighborhood in the Milky Way and the
medium between stars.

v





Zusammenfassung

Jahrhundertelang war unser Blick in den Nachthimmel lediglich ein zweidimen-
sionales Bild des Kosmos. Neue Beobachtungsdaten von Gaia und bedeutende
methodische Fortschritte haben es uns ermöglicht, die uns am nächsten liegenden
Strukturen in der Milchstraße in drei räumlichen Dimensionen (3D) zu untersu-
chen. Ziel dieser Arbeit ist es, die räumliche 3D-Verteilung von Materiewolken
zwischen Sternen, die für die Sternentstehung und die galaktische Dynamik wich-
tig sind, in einem viel größeren Volumen als je zuvor hochaufgelöst zu rekonstru-
ieren. Um diese Wolken in 3D zu untersuchen, verwenden wir Messungen von
interstellarem Staub.

Die Rekonstruktion der 3D-Dichteverteilung von interstellarem Staub in im-
mer größeren Volumina erfordert neue Methoden zur Auflösung korrelierter Dich-
ten und neue Modellierungsverfahren zur Handhabung der Freiheitsgrade. Zuerst
entwickeln wir einen Algorithmus mit linearer Zeit- und Speicherkomplexität,
der in der Lage ist, räumlich korrelierte Strukturen in Volumina mit Hunderten
von Millionen Volumenelementen darzustellen. Als Nächstes entwickeln wir eine
bayessche Modellierungsbibliothek, die es erlaubt, effizient mit Hunderten von
Millionen bis Milliarden von Freiheitsgraden zu arbeiten. Die Bibliothek ist ei-
ne grundlegende Überarbeitung und Übersetzung des Softwarepakets “Numerical
Information Field Theory” (NIFTy) nach JAX und beschleunigt typische Modelle
um zwei Größenordnungen.

Mit unseren statistischen und rechnerischen Methoden und den neuesten Da-
ten von Gaia erstellen wir die bisher größte hochauflösende 3D-Karte des inter-
stellaren Staubs. Die Karte hat eine Winkelauflösung von 14 ′, eine Entfernungs-
auflösung von Parsecs und reicht bis zu 1,25 kpc in jede Richtung von der Sonne.
Die Karte stellt eine erhebliche Vergrößerung des hochaufgelösten Volumens und
Verbesserung des Dynamikbereichs gegenüber früheren Karten dar.

Wir untersuchen drei bekannte Molekülwolken in der Nähe der Sonne — Mus-
ca, Chameleon und Coalsack — mit der neuen 3D-Karte. Unsere 3D-Analyse
zeigt, dass diese drei berühmten sonnennahen Wolken, die bisher als voneinan-
der unabhängig galten, Teil einer einzigen zusammenhängenden Wolkenstruktur
sind, die nur in 3D sichtbar ist. Unsere 3D-Karte und die entwickelten Methoden
eröffnen neue Perspektiven für zukünftige Studien unserer Nachbarschaft in der
Milchstraße und des Mediums zwischen den Sternen.
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1 Introduction

The main focus of my thesis is the exploration of the Milky Way in three dimen-
sions (3D). I am fascinated by how little we currently know about the true 3D
structure of the universe surrounding us, and it is this curiosity that has driven
me to delve deeply into studying our Galaxy in 3D.

The 3D structure of the Milky Way and especially the 3D structure of the
medium in between stars in the Milky Way — the interstellar medium (ISM) — is
crucial for our understanding of star formation and the dynamics of our Galaxy.
Stars are born from molecular clouds that make up most of the non-stellar, visible
matter in galaxies. Understanding the topology of these clouds in 3D is vital, as
the physical processes within them are inherently three-dimensional.

Traditional methods of observing these structures in two-dimensional plane-
of-sky (POS) projections often present a misleading picture. The analysis of
POS projections can distort our perception of the ISM, making it challenging to
discern the actual spatial relationships and boundaries of molecular clouds.

Our local neighborhood in the Milky Way provides a unique opportunity
to resolve astrophysical structures in 3D. The three-dimensional reconstruction
of our Galactic neighborhood, also known as Galactic tomography, hinges on
measurements of interstellar dust. Despite its mundane name, interstellar dust
plays a critical role as a proxy for the gaseous molecular clouds in the ISM and
is currently the only quantity in the ISM we can precisely measure in 3D.

My research during my doctoral studies has been encapsulated in four works.
The first focuses on the required statistical algorithm for modeling the encoun-
tered degrees of freedom for representing interstellar dust in 3D. The second
discusses the computational challenges of modeling hundreds of millions to bil-
lions of parameters and proposes a new probabilistic programming framework
to work with extremely high dimensional statistical structures efficiently. The
third work presents a new 3D map of interstellar dust using the statistical and
computational methods developed in the previous two works. In the fourth work,
we analyze the 3D topology of three famous molecular clouds in our new 3D map
of interstellar dust and demonstrate the importance of a 3D perspective. Finally,
we discuss research projects to which I contributed that utilized the 3D dust map
or parts of the developed methodology.

The introductory section of my thesis opens with a discussion on why inter-
stellar dust is of interest. Afterwards, we discuss what constitutes interstellar

1



1. Introduction

dust, and then explain the principles behind its measurement in 3D. Finally, we
motivate the need for both a new statistical and a new computational framework
to advance our understanding of the distribution of interstellar dust in 3D.

1.1 The interstellar medium and interstellar dust

The summary provided here is based on Klessen and Glover (2016) and Draine
(2011) which discuss the physical processes in the ISM.

The ISM is a tenuous, gaseous mixture of mostly hydrogen and helium that
fills the space in between stars. It is the medium from which stars form and to
which they expel their outflows. It hosts many vastly different pressure regimes,
encompassing faint gaseous clouds off the disk as well as dense molecular, star
forming clouds.

The ISM is often assumed to be in thermal equilibrium (c.f. Field et al., 1969).
Neglecting complicating factors such as supernova feedback and ionized matter
far from the Milky Way’s midplane, the ISM has two thermally stable states:
a cold, dense phase around 100K known as the Cold Neutral Medium (CNM)
and a warm, diffuse phase around 104K known as the Warm Neutral Medium
(WNM). The CNM is host to collapsing clouds and star formation, while the
WNM plays an important role as a transition medium.

By mass, the ISM is approximately 70% hydrogen (H), 28% helium (He),
and 2% heavier elements — often referred to as “metals” in astrophysics. Ionized
gas occupies the largest volume, however, it comprises only about 25% of the
mass. The majority of the mass in the ISM resides in clouds of molecular and
atomic hydrogen. These dense pockets make up about 1% to 2% of the overall
volume. The total mass of all the gas in the Milky Way is on the order of 1010M⊙
(Kalberla and Kerp, 2009), significantly less than the mass found in the form of
stars. Yet as the seed for star formation and their primary interacting medium,
the ISM is critically important for the Milky Way.

Stars form in dense molecular clouds within the CNM of the ISM. These
clouds are composed of hydrogen and interstellar dust and host virtually all star
formation. Interstellar dust is negligible in mass, contributing only approximately
1% of mass to the total mass of the ISM, however, it is crucial for the ISM. The
formation and dissociation of molecular clouds and the triggers for star formation
are dictated by many physical processes, several of which involve or are traced
by interstellar dust. These processes couple many vastly different scales ranging
from the chemical processes occurring on the surface of interstellar dust grains,
stellar feedback, the propagation of shock waves through molecular clouds, and
the dynamics of these clouds on galactic scales.

Stars form from small overdensities within molecular clouds which become
dense and cold enough to gravitationally collapse. The precise mechanisms driv-
ing the collapse are yet to be fully understood, but turbulence is thought to
play an important role. The timescale of collapse is roughly the same as the

2



1.1 The interstellar medium and interstellar dust

timescale of dissipation, making the process highly unpredictable. Turbulence
is believed to drive both star formation within dense molecular clouds on small
scales while simultaneously counterbalancing gravity on larger scales hindering
the whole cloud from collapsing.

The processes driving the formation and destruction of molecular clouds are
similarly uncertain. Molecular clouds likely form through a combination of large-
scale turbulence, leading to compression, and localized heating and cooling pro-
cesses counterbalancing respectively enhancing further compression. These tur-
bulent instabilities likely trigger the transition from warm, tenuous, predomi-
nantly atomic gas to dense, cold, molecular gas.

The sizes of molecular clouds range widely, from 2 pc to 20 pc (Cernicharo,
1991; Bergin and Tafalla, 2007). Typically, they have mean molecular hydrogen
densities between 102 cm−3 to 103 cm−3, and masses ranging from a few hundred
to millions of solar masses (Cernicharo, 1991; Bergin and Tafalla, 2007). The
exact processes keeping them from collapsing are yet to be fully understood but
pure thermal pressure or stellar feedback are likely insufficient. Strong turbulence
within the clouds, characterized by supersonic gas motions, appears to be the
likely mechanism preventing rapid collapse.

Interstellar dust is a necessary ingredient in the creation of molecular clouds.
It plays a vital role in facilitating the formation of molecular hydrogen H2 from
atomic hydrogen by shielding its surroundings from interstellar ultraviolet (UV)
radiation. Interstellar dust is the tracer of choice for molecular clouds as H2

itself radiates weakly due to the absence of a permanent dipole moment. Other
common tracers of molecular clouds such as 12CO are easily saturated and quickly
become optically thick, tracing only the cloud surfaces.

The shielding of interstellar dust is key to observing it. The absorption of
interstellar dust in the UV makes the light of stars, as observed from Earth,
appear less or more reddish, depending on the amount of dust along the line of
sight (LOS) from us to the star. This process is called reddening. An example
observation through a molecular cloud is shown in Figure 1.1. The change in
color of the stars observed in this image is due to interstellar dust between us
and the stars. Observationally, the reddening due to interstellar dust is closely
linked with the hydrogen density; while hydrogen makes up almost all the mass
of a molecular cloud, dust is crucial for allowing it to become dense and cold
enough to form a cloud in the first place. The strong correlation between the
amount of reddening of starlight with the hydrogen column density led to the
discovery of interstellar dust.

Dust acts as an essential coolant, not only allowing for molecular hydrogen
to form but also facilitating gravitational collapse within molecular clouds. This
cooling occurs through collisions with particles at higher temperatures and sub-
sequent re-emission of the absorbed kinetic energy as thermal radiation. The
exact cooling rate per unit volume remains a topic of active research, but dust is
known to dominate cooling processes at high densities (Hollenbach and McKee,
1989; Goldsmith, 2001).
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1. Introduction

Figure 1.1: Reddening of starlight in the Bernard 68 molecular cloud in a 4.9 ′×
4.9 ′ patch of the sky. The image obtained on March 8th and March 9th 1999
is a false-color, infrared composite photo of observations in three wavelength
bands. It was taken with the SOFI instrument at the ESO 3.5-m New Technology
Telescope (NTT) at La Silla. Figure taken from ESO (1999).
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1.2 Probing the Milky Way in 3D with interstellar dust

The strong absorption of interstellar dust in the UV spectrum indicates that
its size is typically on the order of UV wavelengths, with less absorption in
the optical and even less in the infrared. The absorption suggests a scarcity of
larger grains. The size distribution of dust grains (ranging from about 50 nm to
0.25 µm) is characteristic of the properties of dust within the ISM. Interstellar
dust is believed to be made up of graphite and silicate because of notable features
in the extinction curve associated with these materials. Following Draine (2011),
the total mass of interstellar dust is dominated by large grains while the total
surface area, important for astrochemistry, is dominated by the sum of many
small grains.

Dust primarily emits in the range from 5 µm to 600 µm, with two-thirds of
its total power radiated in the mid and far infrared. Its emissivity roughly corre-
sponds to that of a gray-body with a mean temperature of approximately 20K
(Planck Collaboration, 2014b)

Bν(T )

(
ν

ν0

)β

, (1.1)

with Bν(T ) the spectral energy density of a Planck black-body at temperature
T , β the spectral index, and ν0 some reference frequency.

The simplicity of measuring dust via reddening — a process requiring minimal
physical interpretation and subject to little saturation — makes it an invaluable
tool in ISM studies, readily detectable even at low densities.

1.2 Probing the Milky Way in 3D with interstellar
dust

Reconstructing the 3D distribution of interstellar dust is a complex task that
hinges on utilizing tens of millions of data points, specifically measurements of
the extinctions along lines of sight to stars and measurements of the distances to
those stars. Inverting these measurements to retrieve a 3D map of the distribution
of interstellar dust is a statistically challenging and computationally expensive
tomographic inversion problem. The precise measurement processes and the
uncertainties encountered therein are crucial for the final model. Let us thus
start with a discussion of how extinctions and distances are measured.

1.2.1 Measuring interstellar dust

The study of 3D interstellar dust is intricately linked to the observation of stars.
Whenever we observe a star, the light that we observe first travels through the
dusty medium between us and the star. This changes the observed light of the
star making it become more red than what the star originally sent out. With
precise models of how a star’s spectrum is supposed to look like, we can infer the
amount of dust from us to a star.
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Stellar modeling can be used to propagate intrinsic stellar parameters to a
star’s intrinsic spectrum. Using careful statistical modeling (Speagle et al., 2021;
Paxton et al., 2011, 2013, 2015, 2018, 2019; Choi et al., 2016) we can prob-
abilistically invert the star’s intrinsic spectrum to intrinsic stellar parameters.
Loosely speaking, the absolute brightness in a specific frequency band, and the
difference in brightness between two frequency bands of a star, are a good proxy
for the star’s effective black-body temperature, metallicity, and surface gravity.
These parameters roughly correspond to the star’s temperature, age, and mass,
respectively.

However, what we observe on Earth are not the star’s intrinsic brightness
values, but rather dust-extincted brightness values. The star’s intrinsic brightness
is modulated by extrinsic parameters, namely the distance toward the star and
the amount of dust from us to the star. The distance uniformly reduces the
observed brightness across all frequencies while interstellar dust preferentially
extincts blue light and the amount of total extinction depends on the amount
of dust along the LOS. The precise frequency behavior of interstellar dust is
described by the extinction law of interstellar dust. Typically, during stellar
modeling, a fixed extinction law is assumed.

Putting both stellar models and models of the extrinsic processes modulating
stellar brightness together enables us to construct models for both intrinsic and
extrinsic stellar parameters. However, the extrinsic and intrinsic parameters are
highly degenerate. For example, a star’s distance estimate depends strongly on
the assumed intrinsic brightness while in turn a star’s temperature and brightness
is strongly degenerate with the extinction.

The Gaia space observatory has been revolutionary in the field of stellar mod-
eling by breaking this degeneracy. Gaia provides an independent measurement
of a star’s distance, breaking the degeneracy at the heart of modeling extrinsic
stellar parameters together with intrinsic stellar parameters. The tight constraint
on a star’s distance drastically simplifies the inference of its intrinsic parameters
which in turn allows us to estimate its extinction along the LOS much more
precisely.

There are two primary approaches for inferring the intrinsic and extrinsic
parameters of a star. The first approach utilizes analytical models of stars and
probabilistically solves the inversion problem using rigorous statistical models
and a lot of computing power. The second approach utilizes black-box surro-
gate models for the mapping from intrinsic and extrinsic stellar parameters to
observed brightness values. Analytical stellar models need no training data and
give accurate and well-understood uncertainties, yet they are usually computa-
tionally expensive and can have peculiar failure modes that are obscure to the
average user. Surrogate models require a pristine training set (e.g. derived not
only from photometric measurements but spectroscopic ones), usually provide
only approximate uncertainties at best but are oftentimes computationally in-
expensive and promise to exploit undiscovered or hard-to-exploit details in the
data (Zhang et al., 2023). Both approaches benefit tremendously from Gaia dis-
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tance measurements, significantly simplifying the complex disentangling of pa-
rameters influencing stellar observations. The catalog (Zhang et al., 2023) that
we will use for our 3D interstellar dust map relies on the second approach.

1.2.2 Measuring distances with Gaia

Launched in 2013 by the European Space Agency (ESA), the space observa-
tory Gaia is designed to cartograph our neighborhood in the Milky Way. Gaia
aims to measure the distance to every object brighter than 20mag, covering
approximately 1% of all stars in the Milky Way. By 2020, Gaia had observed
approximately 2 billion stars, extending down to 20.7mag (ESA, 2022). This sub-
stantial observational reach and precision has been revolutionary for the study
of our Milky Way.

Figure 1.2: Basic measurement principle underpinning distance measurements by
Gaia, adapted from Lindegren (2005). The angle C can be computed from the
angles A and B, and the distance to the star directly follows from the distance
from Earth to the Sun.

The main scientific instrument on the Gaia space observatory is the astro-
metric instrument. The astrometric instrument measures the separation of thou-
sands of stars simultaneously. These measurements are repeated over and over
while Earth and hence Gaia travels around the Sun. Over time, the stars will
move relative to each other due to Earth’s changing position in the solar system.
While these differences are minute, they are yet large enough to infer the dis-
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tance to stars using geometric arguments (Lindegren, 2005). The relative shift in
the angle under which we observe a star at opposite sides of the Sun relative to
some fixed reference point is called parallax. A simplified sketch of the geometric
measurement principle used to infer the distance is shown in Figure 1.2.

In addition to the astrometric instrument, Gaia hosts a blue photometer (BP)
with a wavelength coverage from 330 nm to 680 nm and a red photometer (RP)
with a coverage from 640 nm to 1000 nm. Both have a relatively low spectroscopic
resolution (R = λ/∆λ 30−100). The two photometers are used for various science
results including for correcting the astrometric instrument as well as for stellar
modeling pipelines. See de Bruijne (2009) for further details on the photometers.

Gaia has been transformative for the study of our Milky Way, providing a
much larger catalog of stellar positions, three to four orders of magnitude larger
than the largest previous catalog by Hipparcos (Gaia Collaboration, 2023b). In
addition to measuring distances and providing valuable data for stellar modeling
pipelines, Gaia also tracks the motion of stars on the plane of the sky, allowing
the study of the full phase-space information of stars if combined with radial
velocity measurements. For a small subset of approximately 10 million objects,
Gaia also takes high-resolution spectra with its Radial Velocity Spectrometer
(RVS), capable of reaching down to about 16mag. All of this makes Gaia the
premier observatory for studying the Milky Way.

In the early data releases, the Gaia collaboration did not release any RP and
BP spectra. With Gaia EDR3, the RP and BP spectroscopy was released for a
subset of stars. Although this spectroscopy is of low resolution, it has allowed
for very accurate estimations of stellar properties and has significantly enhanced
the quantification of extinction, making Gaia exceptionally effective for mapping
the 3D distribution of interstellar dust. Compared to spectroscopic surveys Gaia
has a much better coverage of the sky while achieving a comparable precision in
extinction. Compared to photometric surveys Gaia is orders of magnitude more
precise.

1.3 Overview of the work presented in this thesis

Reconstructing the three-dimensional distribution of interstellar dust from ex-
tinction and distance measurements to stars requires devising a statistical model
of the measurement process and quantifying our prior knowledge about interstel-
lar dust. Our model is built around two key components: the likelihood and the
prior. The likelihood is defined by the measurement process, the data, and its
uncertainties and the prior is defined by our knowledge about the distribution of
dust before having measured any data.

Representing the likelihood is computationally extremely challenging as it
combines distance and extinction data for many tens of millions of stars and
needs to rigorously account for their respective uncertainties. While the extinc-
tion uncertainties are somewhat straightforward to incorporate, the distance un-
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certainties significantly complicate the model. The distance uncertainties point
toward one recurring challenge in the modeling of interstellar dust, namely that
we have a much better POS resolution than LOS resolution. How the additional
LOS uncertainty is incorporated is a key distinguishing factor between models of
3D interstellar dust.

The prior in the modeling of interstellar dust is deliberately physics agnostic,
merely encoding the assumption that the interstellar dust distribution is gas-like,
specifically that its 3D distribution is spatially smooth. The assumption of spatial
smoothness, while innocuous sounding is essential to reconstruct interstellar dust
in 3D. The importance of the spatial smoothness prior is tightly connected to
the distance uncertainties in the measurements and part of the role of the prior
is to counterbalance this distance uncertainty.

1.3.1 Statistical challenge

One key challenge in the reconstruction of interstellar dust in 3D is the so-called
fingers-of-god effect. The effect denotes the preference of Galactic 3D reconstruc-
tions to align structures with the LOS. This alignment is a direct consequence of
the much superior POS resolution compared to the distance resolution.

A crucial insight for the modeling of interstellar dust is to realize that dust is
a physical field with a smoothly varying density. Information Field Theory (IFT)
offers a rigorous mathematical framework for working with infinite-dimensional
structures encountered by thinking of interstellar dust as a field. IFT enables
the statistical description of smooth fields and the representation of probability
spaces in infinite dimensions. Thus, IFT provides a comprehensive approach
to phenomenologically model interstellar dust. We refer to Enßlin (2019, 2022,
2023) for a detailed introduction to IFT.

Modeling infinite-dimensional fields on a computer is infeasible, necessitat-
ing the discretization of our modeled space. We discretize the space into voxels
and instead of reconstructing an infinite-dimensional field we content with recon-
structing the amount of interstellar dust extinction in each voxel. Specifically,
we model the smooth interstellar dust density field with a Gaussian Process
(GP). By working in the framework of IFT, regardless of the specific choice of
discretization, we can write down a continuous limit for our GP.

Modeling interstellar dust at parsec-scale resolution while covering volumes
spanning kiloparsecs poses significant challenges. Naively modeling GPs on those
scales is infeasible. One key trick from previous 3D interstellar dust maps (Leike
and Enßlin, 2019; Leike et al., 2020) was to employ regularly spaced voxels and a
stationary kernel for added efficiency (c.f. Wiener-Khinchin theorem). However,
a regular grid is highly inefficient to probe volumes much beyond a couple of
hundred parsecs at high resolution as a lot of computing power is wasted at
the edges of the grid which can never be resolved as well as the most close by
interstellar dust voxels.

Only with an uneven spacing of voxels can we probe large volumes while
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maintaining high resolution close by. Ideally, we would like to align voxels such
that we have a higher resolution close by, where we have the most data and the
smallest uncertainties, and a lower resolution farther out, where the data gets
sparser and features higher uncertainties. In other words, we want to radially thin
out the density of voxels to achieve a high resolution locally and a lower resolution
farther away. The first step toward developing our new dust map, therefore, is
to develop a new GP model for coupling millions to billions of unequally spaced
voxels.

Chapter 2 discusses a new, highly efficient GP model. This model forms the
basis of our new 3D interstellar dust map. The model leverages the geometric
structure of the modeled space, adding details iteratively to a low-resolution view
of the modeled volume. In each iteration, it adds detail locally. It does so at
multiple resolutions, coupling even far away voxels. This approach is particu-
larly effective for kernels whose strength diminishes at least logarithmically with
distance, providing a robust foundation for accurately modeling the distribution
of interstellar dust in three dimensions.

1.3.2 Computational challenge

Working with millions to billions of parameters such as voxels of dust densities on
a computer and invoking them in statistical models is computationally expensive.
Furthermore, these hundreds of millions of parameters are connected to tens of
millions of data points with a statistical model. Modeling hundreds of millions
of dust voxels and propagating the data constraints to these parameters makes
the reconstruction of interstellar dust in 3D very computationally expensive.

Chapter 3 introduces a new Bayesian modeling and inference framework called
NIFTy.re. This framework is a significant revision of the previous Numerical In-
formation Field Theory package (NIFTy). NIFTy.re puts forward a much simpler
modeling approach, a new concept for optimization, and makes the inference ma-
chinery much more flexible. Most importantly, the rewrite features a new backend
for NIFTy, written in JAX (Bradbury et al., 2018). Through JAX, NIFTy.re can
now utilize arbitrary order automatic differentiation, just-in-time compilation,
automatic vectorization of the model, and seamlessly use accelerator hardware
such as GPUs. The rewrite accelerates the runtime of typical models by a factor
of 100 compared to the previous NIFTy backend.

NIFTy.re represents the second step toward creating a comprehensive 3D dust
map. All components required for modeling 3D interstellar dust are well aligned
with GPU programming paradigms, and we are able to significantly speed up
the reconstruction of the 3D distribution of interstellar dust using NIFTy.re and
JAX. The rewrite of NIFTy, and especially the ability to run the reconstruction
on the GPU, has been critical to probing larger volumes at high resolution.
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1.3.3 Largest high-resolution 3D map of interstellar dust

Equipped with the necessary statistical and computational tooling, we describe
the reconstruction of the largest high-resolution 3D dust map to date in Chap-
ter 4. We employ the statistical methodology outlined in Chapter 2 to model the
interstellar dust efficiently in 3D space, and we use the Bayesian modeling and
inference framework described in Chapter 3 to represent the more than half a
billion degrees of freedom. The reconstruction relies on the most recent distance
and extinction measurements from Gaia.

We model the positive definite density of interstellar dust with a log-normal
GP. We discretize the modeled volume on a grid defined on the outer product
of two subspaces, one spherical HEALPix space (Gorski et al., 1999, 2005) and
one logarithmic distance space. This strategy of placing voxels results in many
volume elements and thus a high resolution close-by and fewer volume elements
and thus a lower resolution at larger distances where the data quality diminishes.
This spacing strategy is highly uneven but can be efficiently modeled with the
methodology discussed in Chapter 2.

Our reconstruction of interstellar dust in 3D is constrained by tens of millions
of measurements of stars. Specifically, we use the processed Gaia BP/RP catalog
described in Zhang et al. (2023). We carefully incorporate the distance uncer-
tainties into the model, necessitating a highly efficient LOS integration strategy.

All computational components are written in NIFTy.re. We extensively use
the new modeling concept put forward by NIFTy.re and code our model with
GPU programming paradigms in mind. Our final model fully embraces JAX and
NIFTy.re and runs highly efficiently on the GPU.

Our new map resolves faint molecular clouds at high resolution, providing a
new, much larger, high-resolution picture of the ISM surrounding us. Thanks
to the new Gaia data, the reconstruction also achieves a higher dynamic range
compared to previous reconstructions in the literature. The larger volume and
the higher dynamic range are instrumental for the study of molecular clouds in
our vicinity.

In Chapter 5, we showcase the new map and analyze three famous molecular
clouds in 3D: Musca, Chameleon, and Coalsack. We find that the three molecular
clouds are part of a large faint cloud. We analyze the mass and geometry of the
large cloud using our 3D dust map. By further integrating additional information
on Young Stellar Object (YSO) clusters into our analysis, we are able to deter-
mine the motion of gas within the cloud. The 3D topology and motion suggest a
single origin story for all three clouds. This analysis hinges on a 3D perspective,
underscoring the vital importance of 3D for understanding the complexities of
structures in the ISM.

Chapter 6 discusses further contributions made during my doctoral studies.
This includes the co-development of JAXbind, a software package for bridging
code written in languages like C, C++, or Julia to JAX and by extension to
NIFTy.re. Furthermore, we discuss research projects to which I contributed
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which use 3D interstellar dust to study molecular clouds, as well as research
projects showcasing the broader application of our modeling methods within and
beyond astrophysics.

Finally, we summarize the discussed work and provide an outlook for future
work in Chapter 7.
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2 Sparse kernel Gaussian processes
through iterative charted refinement
(ICR)

The following chapter is an extended version of an unpublished article led by me
(Edenhofer et al., 2022). The project emerged from a close collaboration between
Reimar Leike and me. Reimar Leike had the initial idea and wrote parts of the
manuscript. I developed the idea, conducted the experiments, and wrote parts
of the manuscript. Philipp Frank and Torsten Enßlin read, commented, and
approved the manuscript. The text was adapted to fit the thesis.

Abstract

Gaussian processes are highly expressive, probabilistic models. A major limi-
tation is their computational complexity. Naively, exact GP inference requires
O(N3) computations with N denoting the number of data-points (modeled
points). Current approaches to overcome this limitation either rely on sparse,
structured, or stochastic representations of data or kernel, respectively, and
usually involve nested optimizations to evaluate a GP. We present a new,
generative method named Iterative Charted Refinement (ICR) to perform
inference with GPs on nearly arbitrarily spaced points in O(N) time without
nested optimizations. ICR represents long- as well as short-range correlations
by combining views of the modeled points at multiple levels of coarsening. In
our experiment with points whose spacing varies over three orders of magnitude,
ICR’s accuracy is comparable to state-of-the-art GP methods. For points span-
ning more than three orders of magnitude in their spacing, ICR is significantly
more accurate than competing GP methods. ICR outperforms existing methods
in terms of computational speed by two orders of magnitude on the CPU and
GPU.

2.1 Introduction

GPs are flexible function approximators. Their capacity to learn rich statistical
representations scales with the amount of data they are provided with. The
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statistical structure in the data is learned via the kernel. It relates any two
points in data-space and can be used to inter- and extrapolate. Through their
kernel, GPs are capable of representing intricate structures in large datasets and
yield reliable uncertainty estimates for their predictions.

The applicability of GPs, however, is limited by their scaling. Naively evalu-
ating a GP requires O(N3) computations where N is the number of data-points
(modeled points). The classical approach to GP inference requires applying the
inverse of the kernel matrix (matrix representation of the kernel) and comput-
ing its log-determinant. These computations are often carried out via nested
optimizations within each evaluation of the GP. Commonly, Krylov subspace
methods are used for this purpose (Gardner et al., 2018; Pleiss et al., 2018, 2020;
Wang et al., 2019). These methods are usually terminated after relatively few
iterations, well before their theoretically guaranteed convergence. In practice,
this reduces the computational complexity of evaluating a GP to O(nsolveN

2),
with nsolve the number of matrix-vector-multiplications (MVMs) of the kernel
matrix, respectively, the number of iterations of the Krylov subspace method.

Several approaches exist to reduce the quadratic computational complexity
for applying the kernel matrix. They require either sparse kernels, structured
kernels, regularly spaced modeled points, a set of inducing points (Liu et al.,
2020), or a mixture of these. Inducing point methods are popular because they
do not require a special structure in the data or kernel. The number of inducing
points defines the method’s ability to resolve structures. Applying a kernel matrix
with M inducing points naively scales withO(M2+NM). It is desirable to choose
M ∝ N which, however, renders their application impractical for large datasets
with many modeled points. Structured Kernel Interpolation (SKI), described
in Wilson and Nickisch (2015), combines the advantages of regular grids and
inducing points. The authors use SKI to achieve O(N logN) computational
complexity for applying a kernel matrix with M = N inducing points.

The application of the inverse as well as computation of the log-determinant
of the kernel matrix remains computationally expensive within all of these ap-
proaches. Furthermore, inducing point methods often yield singular kernel ma-
trices, becoming non-singular only under projections or in combination with a
non-singular matrix. With the goal of resolving the computational constraints
and guaranteeing a positive definite kernel matrix, we reformulate GP inference
as generative process. Without loss of generality, we shift the complexity of ap-
plying the inverse and evaluating the log-determinant of the kernel matrix to
applying the “square-root” of it.

In this paper we devise an efficient algorithm to apply an approximate square-
root of the kernel matrix. We provide: (I) A generative approach to GPs which
avoids inverting and taking the log-determinant of the kernel matrix. (II) Iter-
ative Charted Refinement (ICR), an algorithm with O(N) computational com-
plexity and a guaranteed positive definite kernel matrix that requires no nested
optimization to evaluate a GP on nearly arbitrarily spaced points. Our open-
source implementation (BSD 2-Clause license) of ICR is available as part of
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NIFTy.re, described in Chapter 3. It is written in Python and uses JAX (Brad-
bury et al., 2018) to just-in-time compile code for the CPU and GPU.

2.2 Related work

There are a wide variety of approaches to modeling GPs among which are
full (Wang et al., 2019), sparse, structured sparse (Wilson et al., 2014; Wilson
and Nickisch, 2015; Wilson et al., 2015; Snelson and Ghahramani, 2005; Rossi
et al., 2021; Gardner et al., 2018; Pleiss et al., 2018), and stochastic (Hensman
et al., 2013; Wilson et al., 2016) approaches. We refer to the review in Liu et al.
(2020) for a comprehensive discussion. In the following, we would like to high-
light a few notable developments which focus on the non-stochastic application
of GPs to big data without strong grid or kernel constraints.

Without additional constraints on the kernel or the points, GPs require at
least O(nsolveN

2) computations as they invoke nsolve MVMs of the kernel matrix
to apply its inverse. The required application of the inverse kernel matrix for eval-
uating a GP can be done efficiently with Krylov subspace methods, in particular
preconditioned conjugate gradient and Lanczos methods (Gardner et al., 2018;
Pleiss et al., 2018, 2020). Furthermore, the computation can be distributed with
minimal communication overhead (Wang et al., 2019). However, neither gain in
efficiency resolves the quadratic computational scaling inherent from applying
and representing the kernel matrix.

Inducing point methods bypass the quadratic scaling with the number of
modeled points by approximating the true kernel matrix KXX with the kernel
matrix of the inducing points KUU . Either much fewer inducing points can be
used than modeled points or their spacing can be chosen such that applying
KUU becomes very efficient. With KISS-GP (Wilson and Nickisch, 2015), the
authors propose a method with regularly spaced inducing points and Toeplitz and
Kronecker structures in KUU (Wilson and Nickisch, 2015). The kernel matrix
of the inducing points is mapped to the kernel matrix of the modeled points via
a sparse interpolation matrix. In general, the kernel matrix is singular and is
not a proper covariance matrix. It only becomes non-singular in combination
with projections (e.g. via a preconditioner) or additive corrections (e.g. diagonal
jitter). Applying the KISS-GP kernel matrix requires O(N logN) computations
for points with a single dimension, M = N inducing points as suggested by the
authors and a Toeplitz structure in the kernel matrix of the inducing points.

2.3 Background

2.3.1 Gaussian processes

GPs are stochastic processes for which every finite marginal is a multivariate
normal distribution. A GP is completely determined by its mean function µ(x)
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acting on points x and kernel function k(x, x′) correlating any two points x and
x′. We denote the space of all possible x with Ωx. For a finite set of points X we
denote the kernel matrix by KXX , the mean at X by µ(X) and the corresponding
multivariate normal distribution by N (µ(X),KXX). We denote vectors drawn
from N (µ(X),KXX) by s. Without loss of generality we assume the mean of
our GP to be zero, i.e. µ(x) = 0, respectively, µ(X) = 0.

The kernel is commonly chosen from a set of well known kernel functions.
Popular kernels include the Radial Basis Function (RBF) and the Matérn kernel.
These kernels have various parameters θ that are to be optimized during inference
with a GP. The kernel matrix KXX depends on the parameters of the kernel θ.
For brevity of notation, we do not make the dependence explicit.

2.3.2 Standardization

Inference with a GP is often formulated in terms of a likelihood and a Gaussian
process prior

log p((s, θ)T , y) = log p(y|s)− 1

2

[
log |2πKXX |+ sTK−1XXs

]
+ log p(θ) (2.1)

with the likelihood p(y|s) penalizing the level of agreement between some noisy
data y and s a realization of the GP prior. The quantity of interest is the
posterior p((s, θ)T |y) ∝ p((s, θ)T , y). While closed form solutions exist for the
case with a Gaussian likelihood, none exist for the general inference problem with
a generic likelihood. Thus, to perform an inference, the posterior is approximated.
A popular choice is to use variational inference (VI; Morningstar et al., 2021;
Knollmüller and Enßlin, 2019; Frank et al., 2021).

Naively, to evaluate Equation (2.1), it is necessary to apply the inverse of
the kernel as well as compute its log-determinant. By change of variables, these
computations can be avoided. A generative approach provides one such way. It
allows us to express the random variable s in terms of a random variable ξ which
follows a “simpler” distribution. A common choice for the distribution of ξ is the
standard normal distribution. The act of expressing s in terms of a standard
normally distributed variable ξ is called standardization and is possible under
very mild regularity conditions. We refer to Rezende and Mohamed (2015) for a
more detailed discussion on this subject.

Without loss of generality, we can absorb KXX into the mapping s : ξ, θ 7→
s(ξ, θ) and rewrite Equation (2.1) to

log p((ξ, θ)T , y) = log p(y|s(ξ, θ))− 1

2

[
log |2π1|+ ξT ξ

]
+ log p(θ) . (2.2)

The inference problems from Equations (2.1) and (2.2) are equivalent, but Equa-
tion (2.2) involves neither an inversion nor a log-determinant of the kernel if
s(ξ, θ) involves none. Loosely speaking, the mapping s(ξ, θ) applies the square-
root of the kernel matrix

√
KXX to correlate the standard Gaussian random vari-
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ables ξ via s(ξ, θ) =
√
KXX ·ξ. The term

√
KXX denotes an implicit linear oper-

ator that correlates the values of ξ such that Ep(ξ)

[(√
KXX · ξ

) (√
KXX · ξ

)T ]
=

√
KXXEp(ξ)

[
ξξT
]√

KXX
T
= KXX with p(ξ) a standard normal distribution over

ξ.
The square-root of the kernel is not uniquely defined. Any (potentially non-

square) matrix
√
KXX which fulfills

√
KXX

√
KXX

T
= KXX would suffice. Note,

naively applying some form of square-root of the matrix, e.g. via the Cholesky
decomposition, is computationally as expensive as applying its inverse.

2.4 Iterative Charted Refinement

In the following, we devise an algorithm with O(N) complexity to efficiently
apply an approximate

√
KXX for smoothly varying kernels. We denote our ap-

proximation by
√
KICR. Applied to standard normally distributed variables ξ,

our approximation yields Ep(ξ)

[(√
KICR(ξ)

) (√
KICR(ξ)

)T ] ≈ KXX . By con-
struction, our kernel matrix defined by

KICR =
√
KICR

√
KICR

T
(2.3)

is positive definite and the resulting process is a GP with covariance KICR ≈
KXX , see Section 2.7.1.√

KICR can be used for both kernel learning and sampling. Our algorithm
can be used for the former by optimizing Equation (2.2) for θ and for the latter
by applying it – for a given θ – to standard normally distributed numbers.

The idea at the core of our algorithm is to model the desired GP at various
coarsening levels of the modeled points simultaneously. Our algorithm starts
off at a coarse view of our modeled points and iteratively adds finer structures
until we arrive at the desired modeled points. Each view of the GP at a given
coarsening level is also a view on correlations at a different length scale.

2.4.1 Refinement of a three pixel grid

To derive our method, we constrain ourselves to a 3 pixel sub-grid of a regular
grid. In this example, we would like to refine the central pixel of this sub-grid.
See Figure 2.1 for an illustration. We interpret the pixel values as realizations of a
GP at their respective centers (lower row of Figure 2.1). The central property of
a GP states that the 3+2 coarse and fine pixels are jointly multivariate normally
distributed: (

s(1)

s(0)

)
∼ N

(
0,

(
Kff Kfc
Kcf Kcc

))
, (2.4)

with s(1) the realization of the GP on the two fine grid coordinates x(1) and s(0)

the realization of the GP at the three coarse grid positions x(0). The entries of
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2. Sparse kernel Gaussian processes through iterative charted refinement (ICR)

the covariance are given by

Kff =
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 ,

(2.5)

with Kfc = KT
cf .

Given the realization of the GP at the coarse grid points x(0), the conditional
distribution of the fine grid points x(1) is given by

p(s(1)|s(0)) = N (s(1)|Rs(0), D) , (2.6)

with R = Kfc ·K−1cc (2.7)

and D = Kff −Kfc ·K−1cc ·Kcf . (2.8)

One can reformulate this into a generative process of the fine grid realizations
s(1) given the coarse grid realizations s(0):

s(1) = R · s(0) +
√
D · ξ(1) (2.9)

where
√
D is the Cholesky decomposition of D and ξ(1) is a two-dimensional inde-

pendent standard normally distributed vector. We call R and
√
D the refinement

matrices. The generative formulation for s(1) using the refinement matrices is lin-
ear in (s(0), ξ(1)).

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
0 x

(0)
1 x

(0)
2x

(1)
0 x

(1)
1

Figure 2.1: Refinement of a 3-pixel grid. The upper row shows the grid refinement
in terms of pixels, the lower row shows the grid refinement in terms of pixel
centers. For GPs defined on these coordinates, one can analytically calculate the
conditional distribution of the fine grid (red dots) given the coarse grid (black
dots).
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2.4 Iterative Charted Refinement

2.4.2 Larger grids

For arbitrarily large grids, we take each pixel of the coarse grid together with
its two neighbors and apply the procedure outlined in Section 2.4.1 to refine it.
Thus, for a coarse grid of size N (0) we refine pixels in overlapping subsets of 3
coarse pixels to 2 fine pixels and retrieve a new fine grid of size N (1) = 2(N (0)−2).
The grid shrinks by two coarse pixels because the outermost two pixels of the
coarse grid do not have sufficiently many neighbors.

Our scheme is an approximation because instead of conditioning the fine pix-
els on all coarse pixels we factorize the fine pixels into pairs of 2 pixels and
condition only on the nearest 3 coarse pixels. The approximation can be under-
stood in terms of probability distributions

p((s
(1)
i )i=0...N(1)−1|(s

(0)
i )

i=0...N(1)/2+1
) ≈ papprox(s

(1)|s(0)) with

papprox = p((s
(1)
i )i=0,1|(s(0)i )i=0,1,2)

· . . .

· p((s
(1)
i )i=N(1)−1,N(1) |(s(0)i )

i=N(1)/2−1,N(1)/2,N(1)/2+1
) .

(2.10)

There are two ways in which we loose information. First, factoring

p((s
(1)
i )i=0...N(1) |(s(0)i )

i=0...N(1)/2+1
)

with respect to pairs of points (s(1)i )i=2j,2j+1 neglects correlations between points
on the fine grid. Second, information about the fine grid points’ dependence
on coarse grid points at larger distances is neglected. Both approximations are
expected to be less severe if there are no systematic long range correlations when
conditioning on a local subset of the coarse grid. This is the case for kernels that
correlate closer points more strongly than points that are further away.

Our approximative way to calculate the fine grid points has computational
advantages. It enables calculating all pairs of fine grid points independently in
the same way in parallel. On a regular grid, if the kernel k is stationary, i.e.
k(x, x′) = k(x − x′), then we can interpret the refinement for multiple pixels
following Equation (2.9) as a convolution, with Roj being the convolution kernel
of size 2× 3, such that

r2i+o =
2∑

j=0

Rojs
(0)
i+j (2.11)

s
(1)
2i+o = r2i+o +

1∑
j=0

√
Dojξ

(1)
2i+j (2.12)

with r being the filtered coarse grid, o ∈ {0, 1} and ξ(1) an independent stan-
dard normally distributed vector. Equations (2.11) and (2.12) show similarities
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2. Sparse kernel Gaussian processes through iterative charted refinement (ICR)

to multigrid approaches, which are used for simulations (Heath, 2018; Wessel-
ing, 2004; Bakhvalov, 1966). The values of the fine grid are constructed through
smoothing the values of the coarse grid with R (Equation (2.11)) and then ap-
plying a correction (Equation (2.12)).

The approximate probability distribution papprox(s
(1)|s(0)) allows us to draw

a sample of s(1) given the realization s(0) on the coarse grid. One can iterate this
procedure, using the fine grid as a coarse grid to an even finer grid. This gives
rise to a generative process, depicted in Figure 2.2a.

The overall cost of generating a sample when performing iterative grid re-
finement is O(N), where N is the number of pixels of the final refinement. The
crucial ingredient to achieve a linear scaling is the doubling of pixels within a
refinement. Let nlvl denote the number of levels it takes our algorithm to go from
N (0) points at the coarse-most grid to N points at the final grid, then the total
number of computations in terms of N (0) reads

N (0) + 2(N (0) − 2) + 2(2(N (0) − 2)− 2) + . . .︸︷︷︸
nlvl − 2 additional terms

. (2.13)

For N (0) > 4 this is in O(2nlvl · N (0)) = O(N). One can start this process
from an arbitrarily coarse grid for which the covariance matrix can be factorized
explicitly at negligible computational cost. For a full proof of the linear scaling,
see Section 2.7.2.

2.4.3 Arbitrary points

To generalize the refinement to nearly arbitrarily spaced points, we need to define
what a coarse, respectively, fine point in the space of modeled points is. To
retrieve such a definition, it is convenient to employ the concept of a coordinate
chart from topology. A coordinate chart is a homeomorphism from an open subset
Ωx of a manifold, i.e. the space on which our GP is defined (see Section 2.3.1),
to an open subset of a Euclidean space. Every point in Ωx is associated with a
unique point in Euclidean space via a coordinate chart.

ICR requires a coordinate chart together with the modeled points. For many
data analysis problems, the modeled points are spaced in a very specific way
given by the setup of the experiment and retrieving a chart is straightforward,
e.g. a pixel detector measuring energies might have a regular, spatial pixel axis
and a logarithmic, spectral energy axis. For problems in which the choice of chart
is non-obvious even with expert knowledge, it can be constructed solely from the
modeled points, see Section 2.7.3.

We can split off the modeled points from the actual refinement via the co-
ordinate chart. The modeled points enter the refinement only via R and

√
D,

respectively via Equation (2.5). Conceptually ICR carries out the refinement on
a regular grid with points x̃ but for the purpose of computing R and

√
D, each

regularly spaced point is associated with a point in the space of the modeled
points Ωx, see Figures 2.2a and 2.2b. The mapping to the space of the modeled
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2.4 Iterative Charted Refinement

points is performed right before evaluating Equation (2.5). This amendment to
the refinement algorithm can be interpreted as an update to the kernel. Let ϕ−1

denote a coordinate chart from a Euclidean grid to Ωx, then our new kernel reads
k̃ : (R,R) → R with k̃ : (x̃, x̃′) 7→ k(ϕ−1(x̃), ϕ−1(x̃′)). With this minimally inva-
sive update, our discussion in Sections 2.4.1 and 2.4.2 adapts to nearly arbitrarily
spaced points.
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Figure 2.2: Multiple grid refinements of a large grid. Panel (a): Pixel centers on a
regular grid within two refinement steps. The fine grid realizations are calculated
on the basis of the three nearest, coarse grid realizations. Arrows indicate which
coarse grid values inform which fine grid values. Panel (b): Refinement from
Panel (a) translated with a logarithmic coordinate chart.

The refinement matrices R and
√
D need to be computed separately for every

point on the irregularly spaced grid. Furthermore, if the parameters of the kernel
change, the refinement matrices must be recomputed. The computational cost
associated with constructing the refinement matrices for all pixels scales with
O(N).

2.4.4 Larger refinement matrices and arbitrary dimensions

How much information we neglect at a refinement level depends on how many
adjacent pixels we use to construct the refinement matrices. In Sections 2.4.1
and 2.4.2 we refined 3 coarse pixels to 2 fine pixels. The number of coarse pixels,
the number of fine pixels as well as the position of the fine pixels on our Euclidean
grid can be tuned. The optimal setting for these parameters depends on the
kernel and the coordinate chart. In our open-source implementation which is
available as part of NIFTy.re, described in Chapter 3, we provide helper utilities
to retrieve the information theoretical optimal settings for a given kernel and
chart, see Section 2.7.4.

With more coarse and fine grid points in a refinement, the construction of the
refinement matrices gets more expensive. It requires O

(
max {ncsz, nfsz}3 ·N

)
computations where ncsz denotes the number of coarse pixels (first axis of R
from Equation (2.7)) which are refined to nfsz fine pixels (second axis of R from
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2. Sparse kernel Gaussian processes through iterative charted refinement (ICR)

Equation (2.7)). The power of 3 stems from the explicit inversion and Cholesky
decomposition in Equations (2.7) to (2.9).

In d dimensions ICR uses nd
csz neighbors and refines the center-most pixel

to nd
fsz pixels. It requires O

(
max {ncsz, nfsz}3d ·N

)
computations. Section 2.7.6

summarizes the most general algorithm with arbitrary ncsz and nfsz in d dimen-
sions.

If the kernel factorizes along certain dimensions, the computational com-
plexity can be significantly reduced. Likewise, for rotationally or translationally
invariant axes within Ωx and stationary kernels, the refinement matrices need
only be computed once and can be broadcasted along these axes akin to Equa-
tions (2.11) and (2.12). For commonly used coordinate systems like polar or
spherical coordinates, significant performance improvements can be obtained by
utilizing these symmetries.

2.4.5 Sources of error

ICR’s approximation of the desired covariance incurs errors in two ways. The
first source of error lies within the refinement step itself. Within a step, we dis-
regard correlations by interpolating the coarse pixels with the refinement matrix
R, which uses only nd

csz neighboring coarse pixels instead of all coarse pixels.
Furthermore, we add small corrections to the previous level but only correlate
these with the refinement matrix

√
D in blocks of nd

fsz fine pixels instead of cor-
relating all fine pixels jointly. Both approximations strictly decrease the strength
of correlations between pixels.

The second source of error lies in the iterative nature of our algorithm. In
each refinement step we assume the previous refinement level to have modeled
our desired GP without error. As outlined above, this assumption does not hold
after the first iteration. The interpolation matrix R in our refinement mixes
values of which the variance may be overestimated and the correlation underes-
timated. Already after the second refinement level, the incurred errors due to
our approximations within the scheme are smeared out and potentially amplified
(c.f. Section 2.7.5).

2.5 Experiments

We evaluate the accuracy and speed of our algorithm. In particular, we compare
our implicit representation of the covariance against the true one for a low number
of modeled points for which explicitly instantiating the kernel matrix is possible.
Furthermore, we compare against KISS-GP. We choose KISS-GP because it has
a similar computational complexity and promises to be applicable to millions or
even billions of modeled points, outperformed previous popular inducing point
methods in terms of speed and accuracy (Wilson and Nickisch, 2015; Wilson et al.,
2015), and it highlights the conceptual differences in modeling GPs compared to
our approach.
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2.5 Experiments

2.5.1 Accuracy

In contrast to our method, KISS-GP must not necessarily produce a proper GP
prior because their approximate representation of KXX is not always full rank1

This makes it impossible to quantify the loss of information from an information
theoretical perspective (Leike and Ensslin, 2017). Instead, we quantify the error
in terms of the absolute difference to the true covariance.

We test the accuracy of ICR’s representation of the covariance against the
true one in terms of the mean absolute error (MAE) for N = 10.000 points while
varying the spacing between points. Analogously, we evaluate KISS-GP’s error
in representing the covariance. For KISS-GP we use M = N = 10.000 inducing
points. As kernel, we use the homogeneous and isotropic Matérn covariance with
degree-of-freedom parameter 3/2:

k(x, x′) =

(
1 +

√
3|x− x′|

ρ

)
· exp

(
−
√
3|x− x′|

ρ

)∣∣∣∣∣
ρ=ρ0

, (2.14)

where ρ denotes the characteristic length scale. For the experiment we space
points logarithmically to probe orders of magnitude in spanned spacing. We set
the minimal distance between points to be 10−3ρ0 and successively increase the
maximal distance between points from 10−2ρ0 to 102ρ0.

Figure 2.3 depicts the accuracy of ICR and KISS-GP for one to five orders
of magnitude spanned in the distance between points. The parametrizations of
ICR are denoted by different colors. They all share nlvl = 5. The fine pixels
within each parametrization of ICR are located around the coarse center pixel
and spaced such that they take up half the volume on the Euclidean grid of a
coarse pixel, see Section 2.7.6.

Irrespective of the parametrization, ICR’s MAE changes minimally with the
order of magnitude spanned in distance between points. ICR’s accuracy in terms
of MAE improves with larger ncsz. The MAE of KISS-GP increases strongly
with the spanned spacing. For every order of magnitude increase in distances
spanned, the MAE increases by about 1.5 orders of magnitude. At three orders of
magnitude in distances spanned, ICR and KISS-GP are comparable in accuracy.
Below this threshold, KISS-GP is significantly more accurate and above this
threshold ICR is significantly more accurate.

2.5.2 Covariance matrix representation

We compare the covariance matrix of ICR to the true one and the one of KISS-
GP at the tipping point found in Section 2.5.1. Our modeled points are spaced

1KISS-GP yields a singular kernel matrix for M < N but also for M ≥ N and points with
vastly different spacing between modeled points such that the interpolation does not use at least
M −N + 1 of the regularly spaced inducing points. To apply the inverse of the kernel matrix,
it is necessary to add some small diagonal correction or use an appropriate preconditioner
respectively projection operator.
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Figure 2.3: MAE between the true covariance and the approximate one by ICR
(pluses) respectively KISS-GP (triangles). Each parametrization of ICR is de-
noted by its own color. The leftmost number in the legend for entries on ICR
denotes ncsz and the rightmost number nfsz.

such that the distances to nearest neighbors range from 10−3ρ0 up to ρ0. We
again choose nlvl = 5 and within (ncsz, nfsz) ∈ {(3, 2), (3, 4), (5, 2), (5, 4), (5, 6)}
we choose ncsz = 5 and nfsz = 4.

The right column of Figure 2.4 compares the implicit covariance matrix of
ICR to the true one. Both covariance matrices are overall in agreement. The
diagonal is approximated comparatively well with errors up to 6.6 · 10−2. On
the off diagonal at intermediate spacing between points, there are significant
differences in the strength of correlations with absolute errors up to 0.13 (13%
of the variance). The mean absolute error (MAE) is 1.2 · 10−4.

The left column of Figure 2.4 compares the covariance of KISS-GP to the
true one. The maximum absolute error is 1.9 · 10−2 (14% of ICR’s) and occurs
on the diagonal (28% of ICR’s maximum error on the diagonal). The MAE with
respect to the true covariance is 1.5 · 10−4, which is 1.3 times the MAE of ICR.
ICR is more accurate in terms of the MAE but yields higher absolute errors at
few diagonal and off-diagonal locations.

2.5.3 Computational speed

Let us now compare the computational speed of ICR versus KISS-GP. For each
method we time the execution of a single forward pass of the model. In the case
of our algorithm, we time the application of

√
KICR. For KISS-GP a forward

pass involves applying the inverse as well as computing the log-determinant of
the kernel matrix. We compare their respective performance on both the CPU
and GPU. All experiments are carried out with double precision using 8 cores of
an Intel Xeon IceLake-SP 8360Y CPU with 62 GB of RAM and a single NVIDIA
A100 GPU with 40 GB of HBM2.
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Figure 2.4: The true covariance, the implicit covariance of ICR and KISS-GP
as well as their respective absolute difference to the true one. Abscissas and
ordinates are logarithmic. Their labels are given in multiples of ρ0. The colorbar
is linear for the upper three plots of the covariances. For the difference plots, the
colorbar is linear up to 0.02 and logarithmic from there on.

For the experiment, we use relatively few Krylov subspace iterations to create
a favorable setting for KISS-GP. We use 40 CG iterations to apply the inverse
of the kernel matrix, and 10 samples each optimized for 15 Lanczos iterations to
stochastically estimate the log-determinant. KISS-GP’s speed crucially depends
on the configuration of the Krylov subspace methods. Larger inference problems
would likely require more CG and Lanczos iterations. For all probed numbers of
modeled points, we set the number of inducing points to the number of modeled
points M = N .

Figure 2.5 depicts the execution time of KISS-GP versus ICR for a varying
number of modeled points for the CPU and GPU on double logarithmic scales.
Our algorithm is consistently about two orders of magnitude faster than KISS-GP
on both the CPU and GPU for more than 105 modeled points. Its computational
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Figure 2.5: Performance benchmark on the CPU (top) and GPU (bottom) of
KISS-GP versus ICR on double logarithmic axes. KISS-GP measurements are
shown as triangles and ICR measurements as plus signs. The markers are placed
at the median time it took the model to perform a forward pass. Minimum and
maximum timings are shown as vertical bars but are fully absorbed by the marker
size. Each parametrization of ICR is denoted by its own color.

advantage changes minimally with the choice of parameters for ICR.

2.6 Conclusion

We introduce a new algorithm called Iterative Charted Refinement (ICR) for
evaluating GPs on nearly arbitrarily spaced points. We reformulate the problem
of applying the inverse and computing the log-determinant of the kernel matrix
to applying the “square-root” of it. To efficiently approximate the square-root,
our algorithm transforms the modeled points with a coordinate chart which must
either be provided by the user or generated from the modeled points. ICR has a
computational complexity of O(N).
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Its major advantages are its guaranteed positive definite kernel matrix, its
computational speed and its accuracy in representing covariance matrices for
highly unevenly spaced points. ICR is consistently faster than KISS-GP by about
two orders of magnitude on both the CPU and GPU for more than 105 modeled
points. Our algorithm gets more accurate relative to KISS-GP the more orders
of magnitude are spanned in the spacing of points. For points whose spacing
varies over several order of magnitudes, ICR can be more than 100 times more
accurate than KISS-GP in terms of MAE in representing the covariance matrix
while being 100 times faster.
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2.7 Supplementary material

2.7.1 Proof of positive definiteness of KICR

We want to show that ICR models a proper GP. A process is called Gaus-
sian iff every discrete realization of it is a multivariate normal distribution.
A multivariate normal distribution is a distribution that is fully determined
by its mean and its positive definite covariance matrix. ICR models a GP iff
KICR =

√
KICR

√
KICR

T is a positive definite matrix.
By virtue of our algorithm applying

√
KICR in a generative model, the co-

variance matrix is KICR =
√
KICR

√
KICR

T , see Section 2.4. Due to the existence
of the decomposition of KICR into

√
KICR, we know that the covariance must be

at least positive semidefinite. To prove positive definiteness, let us look at the
positions of the non-zero entries of the matrix representation of

√
KICR. To re-

trieve a unique matrix representation, assume the standard normally distributed
variable ξ to be a one-dimensional vector starting with the flattened entries at
the coarsest grid going to the flattened entries at the finest grid. ICR adds part
of ξ correlated in blocks of nfsz to the previous level, see Equation (2.12), thus√
KICR can be split as follows

√
KICR =


√
D
′

B
. . .
√
D
′...′

 (2.15)

with the first block B denoting the refinement combining all of ξ up to the final
level as well as the mapping to the final level and

√
D
′
, . . . ,

√
D
′...′

the Cholesky
decomposition of Equation (2.8) for each block of nfsz at the final level.
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Thus, KICR splits into2

KICR =
√
KICR

√
KICR

T

= BBT +


√
D
′

. . .
√
D
′...′



√
D
′T

. . .
√
D
′...′T

 .

(2.16)
The first summand is at least positive semidefinite by the existence of B. This
holds irrespective of the concrete value of B. The latter summand is positive
definite by virtue of being a block-diagonal matrix of Cholesky decompositions.
As the sum of a matrix which is at least positive semidefinite and a matrix which
is positive definite, KICR is itself positive definite.

2.7.2 Proof of linear scaling

We want to show that ICR’s computational complexity scales linearly with the
number of modeled points. For simplicity, we assume a 1D space, ncsz = 3,
nfsz = 2 and N (0) > 4 number of initial, coarse-most points. The proof holds
analogously for any nfsz and ncsz in arbitrary dimensions for which the refinement
produces more points in the next level than in the previous one.

Let us start by first relating the number of modeled points N to the number
of initial points N (0). In terms of the number of pixels at the previous level,
N can be expressed as N = N (nlvl) = 2

(
N (nlvl−1) − 2

)
. We can recurse this

expression to connect N to N (0):

N = 2(N (nlvl−1) − 2) (2.17)

= 2(2(N (nlvl−2) − 2)− 2) (2.18)
... (2.19)

= 2(2(2(. . . (N (0) − 2) . . . )− 2)− 2) (2.20)

= 2nlvlN (0) − 22 − 23 − · · · − 2nlvl+1 (2.21)

= 2nlvlN (0) − 2nlvl+1 ·
(
1 +

1

2−1
+ · · ·+ 1

2−(nlvl−1)

)
(2.22)

geometric series
> 2nlvlN (0) − 2nlvl+1 · 2 (2.23)

= 2nlvl
(
N (0) − 4

)
. (2.24)

2One can think of this step as implicitly rewriting the matrix product as a sum of column-
by-row outer products. For the product of two matrices A and B it holds that AB =

∑k
i=1 aib

T
i

with ai the ith column of A, bTi the ith row of B and k the length of the second axis of A,
respectively, the first axis of B.
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The complexity of ICR is linear in the total number of points N tot from all
coarsening levels that appear in ICR as it only touches a point at most ncsz+nfsz
times. To show that ICR’s computational complexity is also linear in N , we
need to show that the total number of points N tot is a multiple of the number of
modeled points. Analogously to Equation (2.20), we get for the total number of
points

N tot = N (0) + 2(N (0) − 2) + · · ·+ 2(2(2(. . . (N (0) − 2) . . . )− 2)− 2) (2.25)

< N (0) + 2(N (0) − 2) + · · ·+ 2nlvl(N (0) − 2) (2.26)

= N (0) + 2nlvl(N (0) − 2) ·
(
1 +

1

2−1
+ · · ·+ 1

2−(nlvl−1)

)
(2.27)

geometric series
< N (0) + 2nlvl(N (0) − 2) · 2 (2.28)

= N (0) + 2nlvl(N (0) − 4) · 2 + 2nlvl · 4 (2.29)

= N (0) + 2nlvl(N (0) − 4) ·
(
2 +

4

N (0) − 4

)
(2.30)

Equation (2.24)
< N (0) +

(
2 +

4

N (0) − 4

)
N . (2.31)

Since N (0) > 4, the total number of points is bound by 6N and the computational
complexity is linear in N .

2.7.3 Automatic charting

In the absence of a user-provided coordinate chart, one can be constructed from
the positions of the modeled points. Any invertible map from the modeled points
to a Euclidean grid is sufficient and there are infinitely many such maps. One
possible choice of an invertible map is given in Algorithm 1 which linearly inter-
polates within the sorted set of all modeled points to construct a mapping to a
one-dimensional regularly spaced Euclidean grid position.

Data: modeled points X, to-be-charted point x′ in Ωx

Result: x̃′: charted point in Euclidean space
M ← sorted(X);
for i from 1 to len(X)− 1 do

if Mi ≤ x′ ≤Mi+1 then
x̃′ ← i+ Mi−x′

Mi+1−Mi
;

break;
end

Algorithm 1: Coordinate chart ϕ constructed from the modeled points using
a (inefficient) linear search algorithm to find the suitable Euclidean grid posi-
tion. For multidimensional data ≤ denotes a comparison along all dimensions
and is true iff all components of the vector are less or equal.
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2.7.4 Optimal sizes for the refinement matrices

ICR has two tunable parameters ncsz and nfsz which determine the sizes of the
refinement matrices R and

√
D. Neglecting computational constraints, the op-

timal sizes for R and
√
D are such that they encompass the full grid. In this

limit ICR is exact (cf. Section 2.4.1). For reasons of computational efficiency
(see Section 2.4.4), the size of the refinement matrices must be chosen within a
set of small integer values.

Assume we have a set Ωcsz of allowed ncsz respectively Ωfsz for nfsz. The opti-
mal choice in terms of the least amount of information lost (Knuth and Skilling,
2012; Leike and Ensslin, 2017) by representing the GP using KICR instead of
KXX is the tuple of ncsz and nfsz whose Kullback-Leibler divergence of the GP
with the desired covariance KXX to the GP with covariance KICR is the lowest

min
ncsz∈Ωcsz,nfsz∈Ωfsz

DKL(N (0,KXX) ∥ N (0,KICR))) (2.32)

= min
ncsz∈Ωcsz,nfsz∈Ωfsz

1

2

[
tr
(
K−1ICRKXX

)
− d+ ln

(
detKICR

detKXX

)]
. (2.33)

In the implementation available as part of NIFTy.re, described in Chapter 3,
we compare the true GP to our approximate one on a small subset of the modeled
points. We only use a small subset because for a large set of modeled points, it
is intractable to explicitly compute the matrices KICR and KXX . We return the
optimal ncsz and nfsz by computing Equation (2.33) explicitly for two predefined
sets Ωcsz and Ωcsz.

2.7.5 Accounting for accumulating errors

In theory, it is possible to account for the accumulating errors by not using the
desired kernel but the actual one for the coarse pixels. The actual kernel is
implicitly available which would be sufficient. However, to evaluate the implicit
kernel we would need to pass through all previous layers for every fine pixel thus
yielding a quadratic scaling.

2.7.6 Multivariate ICR with non-stationary kernel on irregular
grids

Algorithm 2 summarizes the most general form of ICR introduced in Section 2.4.
It extends Section 2.4.2 to d-dimensional irregular grids with non-stationary ker-
nels using the methodology described in Sections 2.4.3 and 2.4.4. The algorithm
takes standard normally distributed ξ, kernel k, chart ϕ−1 and inverse chart ϕ, as
well as the modeled points X as input and produces a realization of a multivariate
normally distributed s with KICR as covariance.

The full algorithm needs to adjust the size of the Euclidean grid to which
the modeled points are mapped to with the refinement depth. The extent
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of the grid shrinks with each refinement level due to the loss of the outer-
most ncsz − 1 coarse pixels along each dimension. Thus, the boundaries of
the grid shrink by 1

2(ncsz − 1) − 1
4(nfsz − 1). After l refinement steps, the grid

is smaller by 2
(
1− 2−l

) (
1
2(ncsz − 1)− 1

4(nfsz − 1)
)

zero-level pixels respectively
2nlvl

(
1− 2−l

) (
1
2(ncsz − 1)− 1

4(nfsz − 1)
)

pixels at refinement level nlvl. From
the refinement level nlvl to the lth refinement level, the edges of the grid move
out by [(

1− 2−nlvl
)
−
(
1− 2−l

)]
2nlvl

(
1

2
(ncsz − 1)− 1

4
(nfsz − 1)

)
(2.34)

=
[
−2−nlvl + 2−l

]
2nlvl

(
1

2
(ncsz − 1)− 1

4
(nfsz − 1)

)
(2.35)

=
[
2nlvl−l − 1

](1

2
(ncsz − 1)− 1

4
(nfsz − 1)

)
(2.36)

in terms of pixels at the refinement level nlvl.
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Data: ξ(0), . . . , ξ(nlvl), kernel k, chart ϕ−1 and inverse chart ϕ, set of modeled points X
Result: snlvl : A sample with approximate covariance KXX

X̃(nlvl) ← ϕ(X);
for m from 1 to d do

N
(nlvl)
m ← size(x11,...,:m,...,1d );

pm ← X̃
(nlvl)
11,...,2m,...,1d

− X̃
(nlvl)
11,...,1m,...,1d

;
end
for l from nlvl − 1 to 1 do

for m from 1 to d do
N

(l)
m ← N

(l+1)
m /2 + (ncsz − 1);

// Treat non-integer results for N
(l)
m in a slightly more elaborate way

...
end
// Grid gets slightly smaller with every refinement
o←

(
2−(nlvl−l) − 1

) (
1
2
(ncsz − 1)− 1

4
(nfsz − 1)

)
;

for i1, . . . , id from 1, . . . , 1 to N
(l)
1 , . . . , N(l)

d do
X̃

(l)
i1,...,id

← (p1o+ i1p12nlvl−l, . . . , pdo+ idpd2
nlvl−l)

T ;
end

end
D ← k(ϕ−1(X̃

(0)

1:N
(0)
1 ,...,1:N

(0)
d

), ϕ−1(X̃
(0)

1:N
(0)
1 ,...,1:N

(0)
d

)));
√
D ← cholesky(D);
√
D ← reshape(

√
D, (N

(0)
1 , . . . , N

(0)
d , N

(0)
1 , . . . , N

(0)
d ));

s
(0)
i1,...,id

←
∑

j1,...,jd

√
D

(0)
i1,...,id,j1,...,jd

(ξ(0))j1,...,jd ;
for l from 1 to nlvl do

for i1, . . . , id from 1, . . . , 1 to N
(l−1)
1 − ncsz, . . . , N(l−1)

d − ncsz by nfsz/2,. . . ,nfsz/2

do
for m from 1 to d do

inext
m ← 2im − 1;

end
for j1, . . . , jd from 1, . . . , 1 to nfsz, . . . , nfsz do

Kcc ← k(ϕ−1(X̃
(l−1)
i1:i1+ncsz,...,id:id+ncsz

), ϕ−1(X̃
(l−1)
i1:i1+ncsz,...,id:id+ncsz

));
Kff ←
k(ϕ−1(X̃

(l)

inext
1 :inext

1 +nfsz,...,i
next
d

:inext
d

+nfsz
), ϕ−1(X̃

(l)

inext
1 :inext

1 +nfsz,...,i
next
d

:inext
d

+nfsz
));

Kcf ←
k(ϕ−1(X̃

(l−1)
i1:i1+ncsz,...,id:id+ncsz

), ϕ−1(X̃
(l)

inext
1 :inext

1 +nfsz,...,i
next
d

:inext
d

+nfsz
));

R← KT
cf ·K

−1
cc ;

D ← Kff −KT
cf ·K

−1
cc ·Kcf ;√

D ← cholesky(D);
R← reshape(R, (nfsz, . . . , nfsz, ncsz, . . . , ncsz));√
D ← reshape(

√
D, (nfsz, . . . , nfsz, nfsz, . . . , nfsz));

r ←
∑ncsz,...,ncsz

k1,...,kd
Rj1,...,jd,k1,...,kd

s
(l−1)
i1+k1,...,id+kd

;

s
(l)

inext
1 +j1,...,i

next
d

+jd
← r+

∑nfsz,...,nfsz
k1,...,kd

√
Dj1,...,jd,k1,...,kd

ξ
(l)

inext
1 +k1,...,i

next
d

+kd
;

end
end

end
Algorithm 2: Iterative Charted Refinement of a d-dimensional irregularly
charted grid with non-stationary kernel. The algorithm uses NumPy’s index-
ing notation (Harris et al., 2020a) and the centered dot symbol · denotes a
matrix-matrix product.
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3 Re-envisioning numerical informa-
tion field theory (NIFTy.re): A li-
brary for Gaussian processes and
variational inference

The following chapter is an article currently under review at the Journal of Open
Source Software (Edenhofer et al., 2024b). This article emerged from a collabo-
ration in the group of Torsten Enßlin with me leading the development effort and
the writing of the paper. Philipp Frank and Jakob Roth contributed toward a high-
level interface for the implemented variational inference algorithms. Reimar Leike
and Massin Guerdi contributed code toward the early prototype of the framework
while Lukas Scheel-Platz, Matteo Guardiani, Vincent Eberle, and Margret West-
erkamp contributed code and tests toward the final version of the framework.
Torsten Enßlin contributed to discussions about the direction for the framework
and the design of user-friendly interfaces. All authors read, commented, and
approved the manuscript. The text was adapted to fit the thesis.

Abstract

Imaging is the process of transforming noisy, incomplete data into a space that
humans can interpret. NIFTy is a Bayesian framework for imaging and has al-
ready successfully been applied to many fields in astrophysics. Previous design
decisions held the performance and the development of methods in NIFTy back.
We present a rewrite of NIFTy, coined NIFTy.re, which reworks the modeling
principle, extends the inference strategies, and outsources much of the heavy lift-
ing to JAX. The rewrite dramatically accelerates models written in NIFTy, lays
the foundation for new types of inference machineries, improves maintainabil-
ity, and enables interoperability between NIFTy and the JAX machine learning
ecosystem.
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3. Re-envisioning numerical information field theory (NIFTy.re): A library for
Gaussian processes and variational inference

3.1 Statement of need

Imaging commonly involves millions to billions of pixels. Each pixel usually
corresponds to one or more correlated degrees of freedom in the model space.
Modeling this many degrees of freedom is computationally demanding. However,
imaging is not only computationally demanding but also statistically challenging.
The noise in the data requires a statistical treatment and needs to be accurately
propagated from the data to the uncertainties in the final image. To do this, we
require an inference machinery that not only handles extremely high-dimensional
spaces, but one that does so in a statistically rigorous way.

NIFTy is a Bayesian imaging library (Arras et al., 2019; Selig et al., 2013;
Steininger et al., 2019). It is designed to infer the million- to billion-dimensional
posterior distribution in the image space from noisy input data. At the core of
NIFTy lies a set of powerful GP models and accurate VI algorithms.

NIFTy.re is a rewrite of NIFTy in JAX (Bradbury et al., 2018) with all relevant
previous GP models, new, more flexible GP models, and a more flexible machin-
ery for approximating posterior distributions. Being written in JAX, NIFTy.re
effortlessly runs on accelerator hardware such as the GPU and TPU, vectorizes
models whenever possible, and just-in-time compiles code for additional perfor-
mance. NIFTy.re switches from a home-grown automatic differentiation engine
that was used in NIFTy to JAX’s automatic differentiation engine. This lays the
foundation for new types of inference machineries that make use of the higher
order derivatives provided by JAX. Through these changes, we envision to har-
ness significant gains in maintainability of NIFTy.re compared to NIFTy and a
faster development cycle for new features.

We expect NIFTy.re to be highly useful for many imaging applications and
envision many applications within and outside of astrophysics (Arras et al., 2019,
2022; Eberle et al., 2023; Eberle et al., 2022; Frank et al., 2021; Frank, 2022;
Hutschenreuter et al., 2022, 2023; Leike and Enßlin, 2019; Leike et al., 2020;
Mertsch and Phan, 2023; Roth et al., 2023b,a; Scheel-Platz et al., 2023; Tsouros
et al., 2024b; Welling et al., 2021; Westerkamp et al., 2023). NIFTy.re under-
pins the reconstruction described in Chapter 4. We use NIFTy.re to infer a
500-million-dimensional posterior distribution using VI (Knollmüller and Enßlin,
2019). We make extensive use of NIFTy.re’s GPU support to reduce the run-
time by two orders of magnitude compared to the CPU. With NIFTy.re bridging
ideas from NIFTy to JAX, we envision many new possibilities for inferring clas-
sical machine learning models with NIFTy’s inference methods and a plethora of
opportunities to use NIFTy-components such as the GP models in classical neural
network frameworks.

NIFTy.re competes with other GP libraries as well as with probabilistic pro-
gramming languages and frameworks. Compared to GPyTorch (Hensman et al.,
2015), GPflow (De G. Matthews et al., 2017), george (Ambikasaran et al., 2015),
or TinyGP (Foreman-Mackey et al., 2024), NIFTy.re focuses on GP models for
structured spaces and does not assume the posterior to be analytically accessi-
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ble. Instead, NIFTy.re tries to approximate the true posterior using VI. Com-
pared to classical probabilistic programming languages such as Stan (Carpenter
et al., 2017) and frameworks such Pyro (Bingham et al., 2019), NumPyro (Phan
et al., 2019), pyMC3 (Salvatier et al., 2016), emcee (Foreman-Mackey et al.,
2013), dynesty (Koposov et al., 2023; Speagle, 2020), or BlackJAX (Cabezas
et al., 2024), NIFTy.re focuses on inference in extremely high-dimensional spaces.
NIFTy.re exploits the structure of probabilistic models in its VI techniques
(Frank et al., 2021). With NIFTy.re, the GP models and the VI machinery
are now fully accessible in the JAX ecosystem and NIFTy.re components inter-
act seamlessly with other JAX packages such as BlackJAX and JAXopt/Optax
(Blondel et al., 2022; DeepMind et al., 2020).

3.2 Core components

NIFTy.re brings tried and tested structured GP models and VI algorithms to
JAX. GP models are highly useful for imaging problems, and VI algorithms are
essential to probing high-dimensional posteriors, which are often encountered in
imaging problems. NIFTy.re infers the parameters of interest from noisy data via
a stochastic mapping that goes in the opposite direction: from the parameters of
interest to the data.

NIFTy and NIFTy.re build up hierarchical models for the posterior. The log-
posterior function reads ln p(θ|d) := ℓ(d, f(θ))+ln p(θ)+const with log-likelihood
ℓ, forward model f mapping the parameters of interest θ to the data space, and
log-prior ln p(θ). The goal of the inference is to draw samples from the posterior
p(θ|d).

What is considered part of the likelihood versus part of the prior is ill-defined.
Without loss of generality, NIFTy and NIFTy.re re-formulate models such that
the prior is always standard Gaussian. They implicitly define a mapping from a
new latent space with a priori standard Gaussian parameters ξ to the parameters
of interest θ. The mapping θ(ξ) is incorporated into the forward model f(θ(ξ))
in such a way that all relevant details of the prior model are encoded in the for-
ward model. This choice of re-parameterization (Rezende and Mohamed, 2015)
is called standardization. It is often carried out implicitly in the background
without user input.

3.2.1 Gaussian processes

One standard tool from the NIFTy.re toolbox is the so-called correlated field GP
model from NIFTy. This model relies on the harmonic domain being easily ac-
cessible. For example, for pixels spaced on a regular Cartesian grid, the natural
choice to represent a stationary kernel is the Fourier domain. In the generative
picture, a realization s drawn from a GP then reads s = FT ◦

√
P ◦ ξ with FT

the (fast) Fourier transform,
√
P the square-root of the power-spectrum in har-

monic space, and ξ standard Gaussian random variables. In the implementation
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in NIFTy.re and NIFTy, the user can choose between two adaptive kernel mod-
els, a non-parametric kernel

√
P and a Matérn kernel

√
P (for details on their

implementation see Arras et al., 2022; Guardiani et al., 2022). A code example
that initializes a non-parametric GP prior for a 128×128 space with unit volume
is shown in the following.

from nifty8 import re as jft

dims = (128, 128)
cfm = jft.CorrelatedFieldMaker("cf")
cfm.set_amplitude_total_offset(

offset_mean =2,
offset_std =(1e-1, 3e-2)

)
# Parameters for the kernel and the regular 2D Cartesian grid for
# which it is defined
cfm.add_fluctuations(

dims ,
distances=tuple (1.0 / d for d in dims),
fluctuations =(1.0, 5e-1),
loglogavgslope =(-3.0, 2e-1),
flexibility =(1e0, 2e-1),
asperity =(5e-1, 5e-2),
prefix="ax1",
non_parametric_kind="power",

)
# Get the forward model for the GP prior
correlated_field = cfm.finalize ()

Not all problems are well described by regularly spaced pixels. For more
complicated pixel spacings, NIFTy.re features Iterative Charted Refinement (see
Chapter 2), a GP model for arbitrarily deformed spaces. This model exploits
nearest neighbor relations on various coarsenings of the discretized modeled space
and runs very efficiently on GPUs. For one-dimensional problems with arbitrar-
ily spaced pixels, NIFTy.re also implements multiple flavors of Gauss-Markov
processes.

3.2.2 Building up complex models

Models are rarely just a GP prior. Commonly, a model contains at least a few
non-linearities that transform the GP prior or combine it with other random
variables. For building more complex models, NIFTy.re provides a Model class
that offers a somewhat familiar object-oriented design yet is fully JAX compatible
and functional under the hood. The following code shows how to build a slightly
more complex model using the objects from the previous example.

from jax import numpy as jnp

class Forward(jft.Model):
def __init__(self , correlated_field):
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self._cf = correlated_field
# Tracks a callable with which the model can be
# initialized. This is not strictly required , but comes in
# handy when building deep models. Note , the init method
# (short for "initialization" method) is not to be confused
# with the prior , which is always standard Gaussian.
super().__init__(init=correlated_field.init)

def __call__(self , x):
# NOTE , any kind of masking of the output , non -linear and
# linear transformation could be carried out here. Models
# can also be combined and nested in any way and form.
return jnp.exp(self._cf(x))

forward = Forward(correlated_field)

data = jnp.load("data.npy")
lh = jft.Poissonian(data).amend(forward)

All GP models in NIFTy.re as well as all likelihoods behave like instances
of jft.Model, meaning that JAX understands what it means if a computa-
tion involves self, other jft.Model instances, or their attributes. In other
words, correlated_field, forward, and lh from the code snippets shown
here are all so-called pytrees in JAX, and, for example, the following is
valid code jax.jit(lambda l, x: l(x))(lh, x0) with x0 some arbitrarily
chosen valid input to lh. Inspired by equinox (Kidger and Garcia, 2021),
individual attributes of the class can be marked as non-static or static via
dataclass.field(metadata=dict(static=...)) for the purpose of compiling.
Depending on the value, JAX will either treat the attribute as an unknown
placeholder or as a known concrete attribute and potentially inline it during
compilation. This mechanism is extensively used in likelihoods to avoid inlining
large constants such as the data and to avoid expensive re-compilations whenever
possible.

3.2.3 Variational inference

NIFTy.re is built for models with millions to billions of degrees of freedom. To
probe the posterior efficiently and accurately, NIFTy.re relies on VI. Specifically,
NIFTy.re implements Metric Gaussian Variational Inference (MGVI; Knollmüller
and Enßlin, 2019) and its successor geometric Variational Inference (geoVI; Frank
et al., 2021; Frank, 2022). At the core of both MGVI and geoVI lies an alter-
nating procedure in which one switches between optimizing the Kullback–Leibler
divergence for a specific shape of the variational posterior and updating the shape
of the variational posterior. MGVI and geoVI define the variational posterior via
samples, specifically, via samples drawn around an expansion point. The samples
in MGVI and geoVI exploit model-intrinsic knowledge of the posterior’s approx-
imate shape, encoded in the Fisher information metric and the prior curvature
(Frank et al., 2021).
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NIFTy.re implements both MGVI and geoVI and allows for much finer control
over the way samples are drawn and updated compared to NIFTy. Furthermore,
NIFTy.re exposes stand-alone functions for drawing MGVI and geoVI samples
from any arbitrary model with a likelihood from NIFTy.re and a forward model
that is differentiable by JAX. In addition to stand-alone sampling functions,
NIFTy.re also provides tools to configure and execute the alternating Kullback–
Leibler divergence optimization and sample adaption at a lower abstraction level.
These tools are provided in a JAXopt/Optax-style optimizer class (Blondel et al.,
2022; DeepMind et al., 2020).

A typical minimization with NIFTy.re is shown in the following. It retrieves
six independent, antithetically mirrored samples from the approximate poste-
rior via 25 iterations of alternating between optimization and sample adaption.
The final result is stored in the samples variable. A convenient one-shot wrap-
per for the code below is jft.optimize_kl. By virtue of all modeling tools in
NIFTy.re being written in JAX, it is also possible to combine NIFTy.re tools
with BlackJAX (Cabezas et al., 2024) or any other posterior sampler in the JAX
ecosystem.

from jax import random

key = random.PRNGKey (42)
key , sk = random.split(key , 2)
# NIFTy is agnostic w.r.t. the type of inputs it gets as long as
# they support core arithmetic properties. Tell NIFTy to treat our
# parameter dictionary as a vector.
samples = jft.Samples(pos=jft.Vector(lh.init(sk)), samples=None)
delta = 1e-4
absdelta = delta * jft.size(samples.pos)
opt_vi = jft.OptimizeVI(lh, n_total_iterations =25)
opt_vi_st = opt_vi.init_state(

key ,
# Implicit definition for the accuracy of the KL -divergence
# approximation; typically on the order of 2-12
n_samples=lambda i: 1 if i < 2 else (2 if i < 4 else 6),
# Parametrize the conjugate gradient method at the heart of the
# sample -drawing
draw_linear_kwargs=dict(

cg_name="SL", cg_kwargs=dict(
absdelta=absdelta / 10.0, maxiter =100

)
),
# Parametrize the minimizer in the nonlinear update of the
# samples
nonlinearly_update_kwargs=dict(

minimize_kwargs=dict(
name="SN",
xtol=delta ,
cg_kwargs=dict(name=None),
maxiter=5,

)
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Figure 3.1: Data (left), posterior mean (middle), and posterior uncertainty (right)
for a simple toy example.

),
# Parametrize the minimization of the KL-divergence cost
# potential
kl_kwargs=dict(minimize_kwargs=dict(

name="M", xtol=delta , maxiter =35
)

),
sample_mode="nonlinear_resample",

)
for i in range(opt_vi.n_total_iterations):

print(f"Iteration {i+1:04d}")
# Continuously update the samples of the approximate posterior
# distribution
samples , opt_vi_st = opt_vi.update(samples , opt_vi_st)
print(opt_vi.get_status_message(samples , opt_vi_st))

Figure 3.1 shows an exemplary posterior reconstruction employing the above
model. The posterior mean agrees with the data but removes noisy structures.
The posterior standard deviation is approximately equal to typical differences
between the posterior mean and the data.

3.2.4 Performance of NIFTy.re compared to NIFTy

We test the performance of NIFTy.re against NIFTy for the simple yet representa-
tive model from above. To assess the performance, we compare the time required
to apply Mp := Fp+1 to random input with Fp denoting the Fisher metric of the
overall likelihood at position p and 1 the identity matrix. Within NIFTy.re, the
Fisher metric of the overall likelihood is decomposed into J†f,pN

−1Jf,p with Jf,p
the implicit Jacobian of the forward model f at p and N−1 the Fisher-metric of
the Poisson likelihood. We choose to benchmark Mp as a typical VI minimization
in NIFTy.re and NIFTy is dominated by calls to this function.

Figure 3.2 shows the median evaluation time in NIFTy of applying Mp to
a new, random tangent position and the evaluation time in NIFTy.re of build-
ing Mp and applying it to a new, random tangent position for exponentially
larger models. The 16%-quantiles and the 84%-quantiles of the timings are ob-
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Figure 3.2: Median evaluation time of applying the Fisher metric plus the identity
metric to random input for NIFTy.re and NIFTy on the CPU (one and eight
core(s) of an Intel Xeon Platinum 8358 CPU clocked at 2.60G Hz) and the GPU
(A100 SXM4 80 GB HBM2). The quantile range from the 16%- to the 84%-
quantile is obscured by the marker symbols.

scured by the marker symbols. We choose to exclude the build time of Mp

in NIFTy from the comparison, putting NIFTy at an advantage, as its auto-
matic differentiation is built around calls to Mp with p rarely varying. We
ran the benchmark on one CPU core, eight CPU cores, and on a GPU on a
compute-node with an Intel Xeon Platinum 8358 CPU clocked at 2.60G Hz and
an NVIDIA A100 SXM4 80 GB HBM2 GPU. The benchmark used jax==0.4.23
and jaxlib==0.4.23+cuda12.cudnn89. We vary the size of the model by in-
creasing the size of the two-dimensional square image grid.

For small image sizes, NIFTy.re on the CPU is about one order of magnitude
faster than NIFTy. Both reach about the same performance at an image size
of roughly 15,000 pixels and continue to perform roughly the same for larger
image sizes. The performance increases by a factor of three to four with eight
cores for NIFTy.re and NIFTy, although NIFTy.re is slightly better at using the
additional cores. On the GPU, NIFTy.re is consistently about one to two orders
of magnitude faster than NIFTy for images larger than 100,000 pixels.

We believe the performance benefits of NIFTy.re on the CPU for small models
stem from the reduced Python overhead by just-in-time compiling computations.
At image sizes larger than roughly 15,000 pixels, both evaluation times are dom-
inated by the fast Fourier transform and are hence roughly the same as both
use the same underlying implementation (Reinecke, 2024). Models in NIFTy.re
and NIFTy are often well aligned with GPU programming models and thus con-
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sistently perform well on the GPU. Modeling components such as the new GP
models implemented in NIFTy.re are even better aligned with GPU programming
paradigms and yield even higher performance gains (c.f. Chapter 2).

3.3 Conclusion

We implemented the core GP and VI machinery of the Bayesian imaging package
NIFTy in JAX. The rewrite moves much of the heavy-lifting from home-grown
solutions to JAX, and we envision significant gains in maintainability of NIFTy.re
and a faster development cycle moving forward. The rewrite accelerates typical
models written in NIFTy by one to two orders of magnitude, lays the foundation
for new types of inference machineries by enabling higher order derivatives via
JAX, and enables the interoperability of NIFTy’s VI and GP methods with the
JAX machine learning ecosystem.
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4 A parsec-scale Galactic 3D dust map
out to 1.25 kpc from the Sun

The following chapter is an article in Astronomy & Astrophysics led by me (Eden-
hofer et al., 2023b). This work would not have been possible without the early
guidance of Torsten Enßlin, whose rigorous training in statistical methods and
discussions throughout my doctoral research contributed in uncountable ways to
making this work possible. The final reconstruction profited immensely from reg-
ular interactions and discussions with Douglas Finkbeiner and Catherine Zucker.
Additionally, Catherine Zucker contributed text toward the introduction. This
work also benefited from extensive conversations and feedback from Andrew Say-
djari and Philipp Frank. All authors, Catherine Zucker, Philipp Frank, An-
drew K. Saydjari, Joshua S. Speagle, Douglas Finkbeiner, and Torsten A. Enßlin,
read, commented, and approved the manuscript. The text was adapted to fit the
thesis.

Abstract

High-resolution 3D maps of interstellar dust are critical for probing the underly-
ing physics shaping the structure of the interstellar medium, and for foreground
correction of astrophysical observations affected by dust. We aim to construct
a new 3D map of the spatial distribution of interstellar dust extinction out to
a distance of 1.25 kpc from the Sun. We leveraged distance and extinction esti-
mates to 54 million nearby stars derived from the Gaia BP/RP spectra. Using
the stellar distance and extinction information, we inferred the spatial distri-
bution of dust extinction. We modeled the logarithmic dust extinction with a
Gaussian process in a spherical coordinate system via iterative charted refine-
ment and a correlation kernel inferred in previous work. In total, our posterior
has over 661 million degrees of freedom. We probed the posterior distribution
using the VI method MGVI. Our 3D dust map has an angular resolution of up to
14′ (Nside = 256), and we achieve parsec-scale distance resolution, sampling the
dust in 516 logarithmically spaced distance bins spanning 69 pc to 1250 pc. We
generated 12 samples from the variational posterior of the 3D dust distribution
and release the samples alongside the mean 3D dust map and its corresponding
uncertainty. Our map resolves the internal structure of hundreds of molecular
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4. A parsec-scale Galactic 3D dust map out to 1.25 kpc from the Sun

clouds in the solar neighborhood and will be broadly useful for studies of star
formation, Galactic structure, and young stellar populations. It is available for
download in a variety of coordinate systems online and can also be queried via
the publicly available dustmaps Python package.

4.1 Introduction

Interstellar dust comprises only 1% of the ISM by mass but absorbs and re-
radiates > 30% of starlight at infrared wavelengths (Popescu and Tuffs, 2002).
As such, dust plays an outsized role in the evolution of galaxies, catalyzing the
formation of molecular hydrogen, shielding complex molecules from the UV ra-
diation field, coupling the magnetic field to interstellar gas, and regulating the
overall heating and cooling of the ISM, see Section 1.1.

Dust’s ability to scatter and absorb starlight is precisely the reason why we
can probe it in three spatial dimensions. It preferentially absorbs shorter wave-
lengths of a stellar spectrum, thus leading to stars behind dense dust clouds ap-
pearing reddened relative to their intrinsic colors. The amount by which stars be-
hind dust clouds appear reddened allows us to infer the amount of dust extinction
between us and the reddened star. In combination with distance measurements
to reddened stars, we can de-project the integrated extinction measurements into
a 3D map of differential dust extinction.

Gaia has been transformative for the field by providing accurate distance in-
formation to more than 2 billion stars, primarily within a few kiloparsecs of the
Sun. Precise distances not only improve our knowledge about a star’s position,
they also break degeneracies inherent in the modeling of extinction and signifi-
cantly reduce the extinction uncertainties (Zucker et al., 2019). Thanks to the
large quantity of extinction and distance measurements available in the era of
large photometric, astrometric, and spectroscopic surveys, we can now probe the
3D distribution of dust in the Milky Way on parsec scales, see Section 1.2.

A number of 3D dust maps that combine Gaia and vast photometric and
spectroscopic surveys already exist. These maps primarily differ in the way they
account for the so-called fingers-of-god effect, or the tendency of dust structures
to be smeared out along the LOS. The effect stems from superior constraints on
stars’ POS positions relative to their LOS distance uncertainties.

Three-dimensional dust maps predominantly fall into two categories, each
representing a trade-off between angular resolution and distance resolution: re-
constructions on a Cartesian grid and reconstructions on a spherical grid. Carte-
sian reconstructions commonly feature less pronounced fingers-of-god but scale
poorly with the size of the reconstructed volume. They either encompass a lim-
ited volume of the Galaxy (Leike et al., 2020; Leike and Enßlin, 2019) at high
resolution or cover a larger volume of the Galaxy at low resolution (Vergely et al.,
2022; Lallement et al., 2022, 2019, 2018; Capitanio et al., 2017). Spherical recon-
structions often have a much higher resolution and probe larger volumes of the
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Galaxy but come with more strongly pronounced fingers-of-god artifacts (Green
et al., 2019, 2018; Chen et al., 2019). Alternative approaches using many small
reconstructions (Leike et al., 2022), an analytical approach (Rezaei Kh. and
Kainulainen, 2022; Rezaei Kh. et al., 2020, 2018, 2017), or inducing point meth-
ods (Dharmawardena et al., 2022) have so far been unsuccessful in reconstructing
dust at high resolution over large volumes without artifacts.

Physical smoothness priors counterbalance the fingers-of-god effect as finger-
like structures are a priori unlikely. In a Cartesian coordinate system it is compar-
atively easy to incorporate physical priors into the model, such as the distribution
of dust being spatially smooth. Smoothness priors are often incorporated using
GP priors. Sparsities and symmetries in the prior can be exploited to efficiently
apply a GP to a regular Cartesian coordinate system.

Spherical coordinate systems break these sparsities and symmetries in the
prior but are much better aligned with the desired spacing of voxels along the
LOS. Nearby, voxels can be spaced densely, while at greater distances voxels can
be spaced further apart. Naively using a GP prior is infeasible, and approxima-
tions either trade fingers-of-god artifacts for other artifacts (Leike et al., 2022)
or are too weak to regularize the reconstructions (Green et al., 2019).

In this work, we present a 3D dust map that achieves high distance and
angular resolution and probes a large volume of the Galaxy, all at a feasible
computational cost. The map uses a new GP prior methodology to incorporate
smoothness in a spherical coordinate system, mitigating fingers-of-god artifacts.
With a spherical coordinate system we were able to probe dust beyond 1 kpc
while still resolving nearby dust clouds at parsec-scale resolution. In Section 4.2
we present the stellar distance and extinction estimates upon which our map
is based. In Section 4.3 we present our GP prior methodology for incorporat-
ing smoothness in a spherical coordinate system. Section 4.4 describes how we
combine the data with our prior model and how we incorporate the distance un-
certainties of stars. In Section 4.5 we describe our inference before recapitulating
all approximations of the model and their implications in Section 4.6. Finally, in
Section 4.7 we present the final map and compare it to existing 3D dust maps
and 2D observations.

4.2 Stellar distance and extinction data

To construct a 3D dust map, we used the stellar distance and extinction estimates
from Zhang et al. (2023), which are primarily based on the Gaia BP/RP spectra
(spectral resolution R ∼ 30 − 100). Zhang et al. (2023) adopted a data-driven
approach to forward-model the extinction, distance, and intrinsic parameters of
each star given the combination of the Gaia BP/RP spectra and infrared pho-
tometry from the two micron all sky survey (2MASS) and unWISE, a processed
catalog based on the wide-field infrared survey explorer (WISE; Carrasco et al.,
2021; De Angeli et al., 2023; Gaia Collaboration, 2023a; Montegriffo et al., 2022;
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Schlafly et al., 2019; Wright et al., 2010; Skrutskie et al., 2006). The model is
trained using a subset of stars with higher-resolution spectra (R ∼ 1800) avail-
able from the large sky area multi-object fibre spectroscopic telescope (LAMOST;
Wang et al., 2022; Xiang et al., 2022). The resulting catalog contains distance,
extinction, and stellar type (Teff, [Fe/H], log g) information for 220 million stars.
Throughout this work, we denote the Zhang et al. (2023) catalog by ZGR23.

Compared to other stellar distance and extinction catalogs, the ZGR23 cata-
log features smaller uncertainties on the extinction estimates while still targeting
a significant number of stars. Approximately 87 million ZGR23 stars have an
AV uncertainty below 60mmag. Thus, ZGR23 achieves similar extinction uncer-
tainties compared to the subset of 39,538 stars in the StarHorse catalog (Queiroz
et al., 2023) that have both higher-resolution spectra from the Apache point
observatory galactic evolution experiment (APOGEE) and grizy photometry
from the panoramic survey telescope and rapid response system (Pan-STARRS),
specifically Pan-STARRS1 (PS1; Chambers et al., 2019) (typical AV extinction
uncertainty of 60mmag). While the ZGR23 catalog is limited to stars with Gaia
BP/RP measurements, the quality of the data makes the inference from the
ZGR23 catalog competitive with models based on catalogs with larger numbers
of stars — 799 million stars in Bayestar19 (Green et al., 2019), 265 million in
StarHorse DR2 (Anders et al., 2019), and 362 million in StarHorse EDR3 (An-
ders et al., 2022). We further find the ZGR23 catalog to have fewer systematic
shifts in the extinction and reliable extinction uncertainties based on an analysis
in dust-free regions; further details are given in Section 4.9.1.

For our reconstruction, we restricted our analysis to ZGR23 stars that have
quality_flags < 8, as recommended by the authors. We further sub-selected
the stars based on their distance. We required 1/(ω−σω) < 1.8 kpc and 1/(ω+σω) >
40 pc with ω the parallax of a star and σω the parallax uncertainty to enforce
that all stars are likely within our reconstructed volume. In total, we selected
53,880,655 stars.

The reliability of our reconstruction is predominantly limited by the quality
and quantity of the data. Both strongly depend on the POS position and dis-
tance. Figure 4.1 shows 2D histograms of stellar density in heliocentric Galactic
Cartesian (X, Y, Z) projections, as well as the number of stars as a function of
distance. The densities of stars per distance bin first increases approximately
quadratically with distance before falling off to a linear increase. At approx-
imately 1.5 kpc the number of stars per distance bin levels off due to our re-
quirement that stars have a >1 sigma chance of being within 1.8 kpc in distance.
Figure 4.2 shows a POS histogram of the stars. A clear imprint of the Gaia
BP/RP selection function is visible (cf. Cantat-Gaudin et al. 2023). A sys-
tematic under-sampling of stars behind dense dust clouds is also apparent. We
expect our reconstruction to be more trustworthy in regions of higher stellar den-
sity. Due to the obscuring effect of dust, regions within and behind dense dust
clouds should be treated with more caution.
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(a)

(b)

Figure 4.1: 2D his-
tograms of the den-
sity of stars in helio-
centric Galactic Carte-
sian (X, Y, Z) projec-
tions, as well as the
density of stars as a
function of distance,
for the subset of the
ZGR23 catalog used
in the reconstruction
of our 3D dust map.
Panel (a): Heliocen-
tric Galactic Cartesian-
projected histograms.
Panel (b): Number of
stars as a function of
distance. This panel
also shows a linear
growth and a quadratic
growth with distance
for comparison.
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Figure 4.2: POS distribution of the subset of ZGR23 stars used in the recon-
struction of our 3D dust map.

4.3 Priors

Our quantity of interest is the 3D distribution of differential ZGR23 extinction
ρ.1 By definition, the differential extinction is positive. Furthermore, we assume
it to be spatially smooth. A priori we assume the level of smoothness to be
spatially stationary and isotropic.

To reconstruct the 3D volume efficiently, we discretize it in spherical coordi-
nates. Specifically, we discretize our reconstructed volume into HEALPix spheres
at logarithmically spaced distances. We adopt an Nside of 256, which corresponds
to 786, 432 POS bins. This Nside corresponds to an angular size of our voxels of
14′. For the LOS direction, we adopt 772 logarithmically spaced distance bins,
of which 256 are used for padding. Our highest distance discretization is 0.4 pc
and our lowest distance discretization is 7 pc. In contrast to reconstructions with
linearly spaced voxels in distance, we are able to probe much larger volumes while
maintaining a high sampling at nearby distances. The discretization provides a
lower bound on the minimum separation between dust structures that we are
able to resolve. In practice the resolvable separation depends on the quantity
and quality of the data and varies with the POS and LOS position.

We encode both positivity and smoothness in our model by assuming the
differential extinction to be log-normally distributed:

ρ = exp s, (4.1)

1The ZGR23 extinction is in arbitrary units but can be translated to an extinction at
any given wavelength by using the extinction curve published at https://doi.org/10.5281/
zenodo.7692680. Furthermore, dust extinction can be translated to a rough hydrogen volume
density by assuming a constant extinction to hydrogen column density ratio (see, e.g., Zucker
et al., 2021).

48

https://doi.org/10.5281/zenodo.7692680
https://doi.org/10.5281/zenodo.7692680


4.4 Likelihood

with normally distributed s, where s is drawn from a GP with a homogeneous and
isotropic correlation kernel, k. From previous reconstructions of the differential
extinction for the Gaia DR2 G-band AG (Leike et al., 2020), we have constraints
on the correlation kernel of the logarithm of the differential extinction in a volume
around the Sun (|X| < 370 pc, |Y | < 370 pc, |Z| < 270 pc). As part of our prior
model, we use the inferred AG extinction kernel from Leike et al. (2020). To
account for the conversion between the ZGR23 extinction and AG extinction, we
add a global multiplicative factor to s in our model.2 Furthermore, we add an
additive offset in the differential extinction. We place a log-normal prior on the
multiplicative parameter and a normal prior on the additive one.

We enforce the correlation kernel k using ICR (see Chapter 2). ICR enables
us to enforce a kernel on arbitrarily spaced voxels by representing the modeled
volume at multiple discretizations. It starts from a very coarse view of our mod-
eled volume. On this coarsest scale, ICR models the GP with learned voxel
excitations ξ(0)e and an explicit full kernel covariance matrix. A priori the param-
eters ξ(0)e are standard normally distributed and coupled according to k via ICR.
It then iteratively refines nlvl times its coarse view of the space with local, fine,
a priori standard normally distributed corrections ξ

(1)
e , . . . , ξ

(nlvl)
e until reaching

the desired discretization. In each refinement, it uses ncsz neighbors from the
previous refinement to refine one coarse pixel into nfsz fine pixels.

Iterative charted refinement uses local corrections at varying discretizations
and within a refinement assumes the previous iteration to have modeled the
GP without error. Both lead to slight errors in representing the kernel. For
our use case, we encountered errors in representing the kernel of a few percent.
We accepted these errors as a trade-off that enables the reconstruction to probe
larger volumes. We refer to Chapter 2 for a detailed discussion of the kernel
approximation errors.

Overall, our model for the prior reads

ρ = exp
[
scl(ξscl) · s

(
ξ(0)e , . . . , ξ(nlvl)

e

)
+ off(ξoff)

]
, (4.2)

where we denote the learned multiplicative scaling of s by scl, the learned additive
offset by off, and re-expressed both in terms of a priori standard normally dis-
tributed parameters ξscl and ξoff , respectively. The act of expressing scl, off and
s via parameters with an a priori simpler distribution, here a standard normal
distribution, is called re-parameterization. A detailed discussion on this subject
is given in Rezende and Mohamed (2015).

4.4 Likelihood

To construct the likelihood we first need to define how the differential extinction
ρ — our quantity of interest — connects to the measured data D. Our data

2By doing so (and by using ZGR23) we implicitly assume a spatially stationary reddening
law for dust.
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comprise POS position, extinction DA, and parallax Dω data. The POS position
is in essence without error. The extinction data DA = {A, σA} are in the form
of integrated LOS extinctions to stars A and associated uncertainties σA. The
parallax data Dω = {ω, σω} similarly are in the form of parallax estimates ω and
uncertainties σω.

Our model focuses on the measured extinction, A, and does not predict par-
allaxes to stars. Instead, we conditioned our model on the parallax data, Dω, and
split the likelihood into the probability of the measured extinction given the true
extinction, a, and the probability of the true extinction given uncertain parallax
information:

P (A | ρ,Dω) =

∫
da P (A, a | ρ,Dω) (4.3)

=

∫
da P (A | a) · P (a | ρ,Dω) . (4.4)

The first term of the integrand is constrained by the quality of the extinction
measurements and the second by the quality of the parallax measurements.

4.4.1 Response

The second term in Equation (4.4), P (a | ρ,Dω), can be expressed as the joint
probability of extinction and true distance, d, marginalized over the true distance:

P (a | ρ,Dω) =

∫
dd P (a, d | ρ,Dω) (4.5)

=

∫
dd P (a | ρ,Dω, d) · P (d | ρ,Dω) . (4.6)

We neglect data selection effects (i.e., a’s dependence on Dω given d and d’s
dependence on ρ given Dω) and use the fact that the true extinction, a, at
known distance d is simply the LOS integral of ρ along the LOS to the star from
zero to d:

P (a|ρ,Dω) =

∫
dd P (a|ρ, d) · P (d|Dω) (4.7)

=

∫
dd δ

a−
∫ d

0
dd̃ ρ[POS](d̃)︸ ︷︷ ︸
:=Rd(ρ)

 · P (d|Dω), (4.8)

with ρ[POS] the slice of ρ at the POS positions of the stars, δ the Dirac delta dis-
tribution defined by

∫∞
−∞ dx f(x)δ(x) = f(0) for any continuous f with compact

support, and R the response that maps from ρ to the domain of the measured
extinction.
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We approximated P (a|ρ,Dω) with a normal distribution,

P (a|ρ,Dω) ≈ G
(
a|ā, σ2

a

)
, (4.9)

with mean ā and standard deviation σa to obtain a tractable expression for
Equation (4.4). The mean extinction, ā, is

ā := ⟨a⟩P (a|ρ,Dω)
(4.10)

=

∫
da a

∫
dd δ

(
a−Rd(ρ)

)
· P (d|Dω) (4.11)

=

∫ ∫
da dd a · δ

(
a−Rd(ρ)

)
· P (d|Dω) (4.12)

=

∫
dd Rd(ρ) · P (d|Dω) (4.13)

=
〈
Rd(ρ)

〉
P (d|Dω)

. (4.14)

Assuming the parallax 1/d is normally distributed (i.e., P (d|Dω) = G
(
1/d|ω, σ2

ω

)
with mean ω and standard deviation σω), then

⟨a⟩P (a|ρ,Dω)
=
〈
Rd(ρ)

〉
G(1/d|ω,σ2

ω)

=

∫ ∞
0

dd̃ ρ[POS](d̃) · sfG
(
1/d̃|ω, σ2

ω

)
,

(4.15)

with sfG
(
1/d|ω, σ2

ω

)
:= 1−

∫ 1/d
−∞ dω′ G

(
ω′|ω, σ2

ω

)
the survival function of the nor-

mal distributed parallax.
The standard deviation σa can be understood as an additional error contri-

bution for marginalizing over the distance. The error depends on the distance
uncertainty and the dust along the full LOS:

σ2
a :=

〈(
Rd(ρ)

)2〉
G(1/d|ω,σ2

ω)

− ⟨Rd(ρ)⟩2G(1/d|ω,σ2
ω)

. (4.16)

Evaluating both ā and σ2
a is comparatively cheap in a spherical coordinate system

since for a discretized sphere Rd(ρ) is simply the cumulative sum of ρ along the
distance axis weighted by the radial extent of each voxel.

4.4.2 Likelihood and joint probability density

We assume the measured extinction to be normally distributed around the true
extinction a. We take the inferred extinction, A, from the catalog to be the mean
of the normal distribution. The accompanying uncertainty σA in the catalog is
assumed to be the standard deviation of P (A | a).

Some stars will have underestimated uncertainties due to either mismodeled
intrinsic stellar properties in the inference or bad photometric measurements that
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were not flagged. We want our model to be able to detect and deselect stars that
are in strong disagreement with the rest of the reconstruction. We achieve this
by inferring an additional multiplicative factor per star, nσ, which scales σA. A
priori, we assume nσ to be drawn from a heavy-tailed distribution. Specially, we
assume nσ to follow an inverse gamma distributed. We again express nσ in terms
of standard normally distributed parameters nσ(ξσ) in the inference.

To summarize, our approximate likelihood first introduced in Equation (4.4),
reads

P (A | ρ, nσ,Dω)

≈
∫

da G
(
A
∣∣∣ a, (nσ · σA)2

)
· G
(
a
∣∣ ā(ρ), σ2

a(ρ)
) (4.17)

= G
(
A
∣∣∣ ā(ρ), [nσ · σA]2 + σ2

a(ρ)
)
. (4.18)

The uncertainty in the extinction σA is scaled by nσ to deselect outliers and
increased by σ2

a due to marginalizing over the distance uncertainty.
The joint probability density function of data and parameters reads

P (A, ρ(ξ), nσ(ξ)|Dω)

= G
(
A
∣∣∣ ā(ρ(ξ)), [nσ(ξ) · σA]2 + σ2

a(ρ(ξ))
)
· G (ξ | 0, 1) ,

(4.19)

with ξ the vector of all parameters of the model
{
ξ
(0)
e , . . . , ξ

(nlvl)
e , ξscl, ξoff , ξσ

}
.

The complexity of the prior distributions has been fully absorbed into the trans-
formations s(ξ), scl(ξ), off(ξ), and nσ(ξ) from the a priori standard normally
distributed parameters ξ.

Table 4.1: Parameters of the prior distributions. The parameters s, scl, and off
fully determine ρ. They are jointly chosen to a priori yield the kernel recon-
structed in Leike et al. (2020).

Name Distribution Mean Standard Deviation Degrees of Freedom

s Normal 0.0
Kernel from

Leike et al. (2020) 786,432× 772

scl Log-Normal 1.0 0.5 1

off Normal
−6.91

(
≈ ln 10−3

)
prior median extinction
from Leike et al. (2020)

1.0 1

Shape Parameter Scale Parameter
nσ Inverse Gamma 3.0 4.0 # Stars = 53,880,655

Our priors in terms of nonstandard-normal parameters are summarized in
Table 4.1. The priors for s, scl, and off are chosen to a priori yield the kernel
reconstructed in Leike et al. (2020). In contrast to Leike et al. (2020), we do not
learn a full non-parametric kernel. However, we do infer scl and off, the scale,
and zero-mode of the kernel. The prior for nσ was chosen such that the inverse
gamma distribution has mode 1 and standard deviation 2.
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4.5 Posterior inference

In the previous section we took special care to express our model not only in
terms of physical parameters, like the differential extinction density ρ, but also
in terms of simpler parameters ξ. The act of expressing the parameters of the
model scl, off, s, and nσ in terms of a priori standard normal distributed variables
ξ is called standardization, a special from of re-parameterization (see Rezende
and Mohamed, 2015). Effectively, we are shifting complexity from the prior to
the likelihood. However, both the nonstandardized and the standardized formu-
lation of the joint model are equivalent. Standardizing models can lead to better
conditioned inference problems as the parameters all vary on the same scales —
if the prior is not in conflict with the likelihood. We use an inference scheme that
relies on the standardized formulation.

We want to infer the posterior for our standardized model from Equa-
tion (4.19). Directly probing the posterior via sampling methods such as
Hamiltonian Monte Carlo Hoffman and Gelman (2014) is computationally
infeasible. Instead, we used VI to approximate the true posterior. Specifically,
we used MGVI (Knollmüller and Enßlin, 2019). We summarize the main idea
behind MGVI in Section 4.9.2. We did not approximate the posterior of the
noise inference parameter nσ(ξσ) via VI and instead used only the maximum of
the posterior for ξσ.

To speed up the inference, we started the reconstruction at a lower resolution
(196, 608 POS bins at Nside = 128 and 388 LOS distance bins) and restricted
the inference to a subset of stars with a ≥ 2 sigma chance of being within 600 pc
and a ≥ 2 sigma chance of being farther than 40 pc. We successively increased
the distance range of the map up to which stars are incorporated in steps of
300 pc from 600 pc to 1.8 kpc. Every time we increase the distance range, we
reset the parameters for nσ. Then, after all data was incorporated, we increased
the angular and distance resolution of the reconstruction to the final resolution.

Our data selection deselects stars close to the maximum distance probed (c.f.
Figure 4.1). This effect leads to the outer regions of the map being informed by
relatively few stars compared to the inner regions. We observe that these regions
are prone to producing spurious features. For our final data products, we removed
the outermost 550 pc from the data-constrained volume as we observed artifacts
aligned with our data incrementation strategy within these regions. We believe
550 pc to be a conservative cut but we advise caution when finding structures
perfectly aligned with a sphere around the Sun at 600 pc, 900 pc, or 1200 pc.

ZGR23 assumes all extinctions to be strictly positive. We neglected this con-
straint by assuming Gaussian errors, which led to an artificial spike in extinction
in the first few voxels in each direction. As we know those regions to be effectively
free of dust from previous reconstructions c.f. Leike et al. (2020), we removed the
innermost 69 pc (see Section 4.9.3). We release an additional HEALPix map of
integrated extinction out to 69 pc from the Sun and suggest using it to correct
integrated LOS predictions for the removed extinction.
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Our inference heavily utilizes derivatives of various components of our model.
Derivatives are used for the minimization as well as for the variational approx-
imation of the posterior. Previous models such as those described in Leike and
Enßlin (2019) and Leike et al. (2020) relied on the Numerical Information Field
Theory (NIFTy) package (Selig et al., 2013; Steininger et al., 2019; Arras et al.,
2019) and were limited to running on CPUs.

We employed a new framework called NIFTy.re (see Chapter 3) for deploying
NIFTy models to GPUs. NIFTy.re is part of the NIFTy Python package and
internally uses JAX (Bradbury et al., 2018) to run models on the GPU. We were
able to speed up the evaluation of the value and gradient of Equation (4.19) by
two orders of magnitude by transitioning from CPUs to GPUs. Our reconstruc-
tion ran on a single NVIDIA A100 GPU with 80 GB of memory for about four
weeks.

4.6 Caveats

We believe statistical uncertainties are the dominant source of uncertainty for our
reconstruction. However, it is important to also consider sources of systematic
uncertainties. Depending on the application, the systematic uncertainties may
be more important than the statistical uncertainties. The data that informed the
reconstruction, the model with which we inferred it, and the inference procedure
all contribute to the model’ systematic uncertainties.

Naturally, the data themselves are a source of systematic uncertainties (spa-
tially stationary reddening law, mismodeling of binaries, etc.; see Zhang et al.,
2023) and additionally is known to be incomplete, c.f. Figure 4.2. A lower stellar
density, for example in heavily obscured regions, limits the map’s resolution and
results in volumes of the map behind dense dust clouds being poorly constrained.
Thus, we believe our dust reconstruction to be an underestimation of the true
extinction toward dense dust clouds. Zucker et al. (2021) also note this effect
when comparing the Leike et al. (2020) map with 2D integrated extinction maps
based on infrared photometry, finding that the Leike et al. (2020) is not sensitive
to regions with AV ≳ 2 mag.

We advise visualizing the stellar density in the region of interest to assess
the magnitude of the systematic uncertainties due to data incompleteness. We
release all stars used in the reconstruction as an additional data product. This
data product can be used to visualize the stellar density. In regions with a sig-
nificant underdensity of stars, we expect the systematic lack of stars to dominate
the statistical uncertainties in the reconstruction. The reconstruction produced
plausible infills in those regions based on adjacent stars. However, the result-
ing uncertainties do not capture the cause for the systematic lack of stars as
the model implicitly assumes that underdensities of stars are not systematic but
purely random.

Our model includes a number of approximations. First, we assumed a GP
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prior on the logarithmic dust extinction using the kernel from Leike et al. (2020)
and additionally only applied it approximately via ICR. Second, we assumed Dω

to be independent of DA. Third, we assumed the parallax error to be Gaussian,
and fourth, we assumed the extinction error to be Gaussian.

For extremely low extinctions, the assumption of A being Gaussian is poor
due to the positivity prior in the ZGR23 catalog. We corrected for this bias
toward higher estimated extinction in regions with assumed extremely low true
extinctions post-hoc by cutting away the innermost 69 pc as described in Sec-
tion 4.5. We publish an auxiliary map of integrated extinction out to 69 pc from
the Sun to correct integrated LOS predictions for the removed extinction. We
suggest adding the removed local extinction back to the map when comparing
integrated extinctions. By default, the removed local extinction is added back to
the map when querying integrated extinctions via dustmaps.

We further release a catalog of the predicted extinctions of our model to
all stars that we used for the reconstruction. In Section 4.9.4, we perform a
non-exhaustive consistency test comparing our predictions to the ZGR23 ones.
We find that both predictions for the extinction to stars disagree below 50mmag
and above 4mag; 34% more stars than expected have larger (respectively smaller)
extinction predictions compared to ZGR23. We expect the range from 50mmag
to 4mag to correspond to the range within which our map is reliable. More
details are provided in Section 4.9.4.

Furthermore, our posterior inference is an approximation. We assume our
approximation of the true posterior accurately captures the intrinsic model un-
certainties (c.f. Galan et al., 2024; Arras et al., 2022; Leike and Enßlin, 2019;
Leike et al., 2020; Mertsch and Phan, 2023; Roth et al., 2023a; Hutschenreuter
et al., 2023; Tsouros et al., 2024b; Roth et al., 2023b; Hutschenreuter et al., 2022).
However, we worried about structures getting burned in when we increase the
maximum distance probed during the inference from 600 pc to 1800 pc in steps
of 300 pc as described in Section 4.5. We checked the final reconstruction for this
effect by comparing it against a larger reconstruction that does not sub-select the
stars based on their distance during the inference but uses only a small subsam-
ple of ZGR23 stars with more stringent quality flags. The larger reconstruction,
which extends out to 2 kpc in distance, is released as an additional data prod-
uct. We find no significant differences between both runs. Details on the larger
reconstruction are provided in Section 4.9.5.

4.7 Results

We reconstructed 12 samples (6 antithetically drawn samples) of the 3D dust ex-
tinction distribution, each of which encompasses 607,125,504 differential extinc-
tion voxels. The voxels are arranged on 772 HEALPix spheres with Nside = 256
spaced at logarithmically increasing distances. After removing the innermost
<69 pc and outermost >1250 pc HEALPix spheres, we are left with 516 HEALPix
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spheres. The samples, the posterior mean, and the posterior standard deviation
for the reconstruction are publicly available online3. We strongly advise us-
ing the samples for any quantitative analysis. For convenience, we also provide
the posterior mean and standard deviation of the reconstruction interpolated to
heliocentric Galactic Cartesian Coordinates (X, Y, Z) and Galactic spherical Co-
ordinates (l, b, d) as well as the scripts for the interpolation. Furthermore, the
map can be queried via the dustmaps Python package (Green, 2018). Further
details on using the reconstruction are given in Section 4.9.6.

The distance discretization in our reconstruction is highest for close-by voxels
and decreases further out. Our highest distance discretization is 0.4 pc and our
lowest distance discretization is 7 pc while our angular discretization is 14′ and is
independent of the distance. The stated discretizations specify the lower bound
on our resolution. The minimum separation that we are able to resolve depends
on the position and is encoded in the posterior samples. For small regions, we
suggest additionally analyzing the stellar density (see Section 4.6) to assess the
strength of the systematic uncertainties due to the density of stars.

The reconstruction is in terms of the unitless ZGR23 extinction as defined
in Zhang et al. (2023). For visualization purposes, we translated the ZGR23
extinction to Johnson’s V-band λ = 540.0 nm, that is to say, AV := A(V =
540.0 nm). To perform the conversion, we adopt the extinction curve published in
ZGR23 and multiplied the unitless ZGR23 extinction by a factor of 2.8. We refer
readers to the full extinction curve4 from Zhang et al. (2023) for the coefficients
needed to translate the extinction to other bands.

Figure 4.3 depicts the POS projection of the posterior mean reconstruction
integrated out to 250 pc, 500 pc, 750 pc, and up to the end of our sphere. The
AV values are in units of magnitudes. We see that higher-latitude features like
the Aquila Rift are comparatively close-by while structures in the Galactic plane
appear only gradually. Figure 4.4 shows the difference between the integrated
POS projections. We recover well-known features of integrated dust but are now
able to de-project them.

Figure 4.5 show a bird’s eye (X, Y), side-on (X, Z), and (Y, Z) projection
of the posterior mean of our reconstruction in heliocentric Galactic Cartesian
coordinates. The image depicts the innermost 2.5 kpc× 2.5 kpc× 0.8 kpc around
the Sun in AV extinction integrated over z from −400 pc to 400 pc, y in −1.25 kpc
to 1.25 kpc, and x in −1.25 kpc to 1.25 kpc, respectively. In Figure 4.6 we overlay
a catalog of clusters of young stellar objects (YSOs; Kuhn, 2023) based on Kuhn
et al. (2021), Winston et al. (2020), and Marton et al. (2023), which are shown
as blue dots. The positions of the YSO clusters visually agree with the positions
of dust clouds within the YSO clusters’ reported distance uncertainties.

The posterior standard deviation divided by the posterior mean of the recon-
struction is shown in Figure 4.7. The map features a faint speckle pattern. This
is likely due to the low number of samples relative to the number of degrees of

3https://doi.org/10.5281/zenodo.8187942
4https://doi.org/10.5281/zenodo.7692680
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4.7 Results

Figure 4.3: Mollweide projection of the POS integrated AV extinction out to
250 pc, 500 pc, 750 pc, and up to the maximum distance of our map. The colorbar
saturates at the 99.9% quantile.

Figure 4.4: Same as Figure 4.3 but showing the difference between the integrated
extinctions in between distance slices projected on the POS. The colorbar satu-
rates at the 99.9% quantile.
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Figure 4.5: X-, Y-, Z-projections of the posterior mean of our 3D dust map in
a box of 2.5 kpc × 2.5 kpc × 0.8 kpc centered on the Sun. The colorbar is linear
and saturates at the 99.9% quantile. A GIF of the posterior samples is shown
at https://faun.rc.fas.harvard.edu/gedenhofer/perm/E+23/21b9_final.
gif. A low-resolution 3D interactive figure is available at https://faun.rc.
fas.harvard.edu/czucker/Paper_Figures/3D_Dust_Edenhofer2023.html.
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Figure 4.6: Same as Figure 4.5 but with a catalog of clusters of YSOs (Kuhn,
2023) based on Kuhn et al. (2021), Winston et al. (2020), and Marton et al. (2023)
shown as blue dots on top of the reconstruction; their distance uncertainties are
shown as extended lines.

59



4. A parsec-scale Galactic 3D dust map out to 1.25 kpc from the Sun

Figure 4.7: Heliocentric Galactic Cartesian (X, Y, Z) projections of the rela-
tive uncertainty of the reconstructed dust extinction integrated within a box of
2.5 kpc× 2.5 kpc× 0.8 kpc centered on the Sun. The colorbar is linear and satu-
rates at the 99.9% quantile.
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freedom. The standard deviation is on the order of 10% of the posterior mean
and slightly increases with distance. Toward the galactic center behind the dust
in the immediate vicinity of roughly 300 pc, the relative uncertainty is noticeably
higher.

The reconstruction has a high dynamic range and reveals faint dust lanes
in the reconstructed volume. Small approximately spherical cavities are evident
throughout the map. The dust clouds in the reconstruction are compact and only
weakly elongated radially. Prominent large-scale features, such as the Radcliffe
Wave (Alves et al., 2020) and the Split (Lallement et al., 2019), have been resolved
at an unprecedented level of detail, previously only accessible for the most nearby
dust clouds.

4.7.1 Comparison to existing 3D dust maps

In this section, we compare our map to other 3D dust maps in the literature. We
denote the dust map described in Leike et al. (2020) by LGE20, Vergely et al.
(2022) by VLC22, Green et al. (2019) by Bayestar19, and Leike et al. (2022) by
L+22 in this section. For the purposes of comparison, we show the posterior
mean. We release the statistical uncertainties as additional data products, and
we strongly advise taking into account the released statistical uncertainties for
any quantitative analysis. However, the differences between the various 3D dust
reconstructions discussed here are systematic differences and are not captured by
the reconstructed statistical uncertainties.

In Figure 4.8, we show 3D (X, Y, Z) projections of the maps, comparing
Bayestar19, VLC22, L+22, and this work side by side. All four maps agree on
the general structure of the distribution of dust.

This work, L+22, and VLC22 have comparable distance resolutions, while
Bayestar19 features comparatively few distance bins and more strongly pro-
nounced fingers-of-god. Compared to L+22, we feature more homogeneously
extended dust clouds and significantly fewer wiggles in the distances to dust
clouds. Compared to VLC22, we feature more compact dust clouds, less grainy
structures, and a higher dynamic range. Both this work and VLC22 feature
dust clouds in a comparable volume around the Sun despite the VLC22 map
technically extending out farther in Galactic heliocentric X and Y.

Figure 4.9 shows the same projections for the volume reconstructed in the
LGE20 map and includes the LGE20 map for comparison. The zoom-in high-
lights the close similarity between this work and the LGE20 map. All larger
structures have direct correspondences in the other map, yet the distances to the
structures are slightly different. Furthermore, the LGE20 map appears slightly
sharper. The model in LGE20 is very similar to ours but uses fewer approxima-
tions. LGE20 also uses compiled data (StarHorse DR2; see Anders et al., 2019).
More work is needed to assess the validity of the sharper features in LGE20 not
present in this work. The VLC22 map is in good agreement as well but lower
resolution. Bayestar19 poorly resolves distances at the scale of the LGE20 map.
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Figure 4.8: Side by side views of the 3D dust maps from Bayestar19, VLC22,
L+22, and this work, shown in heliocentric Galactic Cartesian (X, Y, Z) pro-
jections. The colorbars are saturated at the 99.9% quantile of the respective
reconstruction.
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Figure 4.9: Zoomed-in version of Figure 4.8 for the volume reconstructed in Leike
et al. (2020), now also showing the LGE20 reconstruction for comparison. We
omit L+22 from the comparison because the authors explicitly focus on larger
volumes and trade strongly pronounced artifacts in the inner couple hundred
parsecs for a larger probed volume. The colorbars are again saturated at the
99.9% quantile of the respective reconstruction.
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Figure 4.10: Histogram of the mean posterior extinction of our map versus
LGE20, VLC22, and Bayestar19 for 58 million test points. For each pixel cen-
ter of a HEALPix sphere with Nside = 64, 1182 test points are placed at 1 pc
intervals in distance starting at 69 pc. The orange lines show the 16th, 50th, and
84th quantiles of the predicted extinction by LGE20, VLC22, and Bayestar19,
respectively, for each bin of our mean extinction. The respective quantiles of
our predictions in bins of the other reconstruction are shown as blue lines. The
bisectors are shown in red. The colorbars are logarithmic and truncated at the
lower end at 1mmag.
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Figure 4.10 quantitatively compares our map with LGE20, VLC22, and
Bayestar19. We compare the integrated extinction for each pixel center of a
HEALPix sphere with Nside = 64 at 1182 test points that are placed at 1 pc
intervals in distance starting at 69 pc. We compared integrated extinctions
because slight shifts in the distances to extincted regions can be better distin-
guished from discrepant predictions with integrated extinctions than by directly
comparing differential extinctions. Above 15mmag, VLC22 and LGE20 are in
good agreement with our map. Below an AV of 40mmag and above an AV of
approximately 3.5mag, Bayestar19 significantly deviates from our predictions.

In Figure 4.11 we compare the POS view of Bayestar19, L+22, VLC22,
LGE20, and this work. The respective POS views are integrated out to the
maximum distance probed by each map — < 63 kpc in distance for Bayestar19
(maximum reliable distance 10 kpc), < 4 kpc in distance for L+22 (authors trust
structures up to 4 kpc though the map extends to 16 kpc), a heliocentric box of
size 3 kpc×3 kpc×800 pc with 103 pc3 voxels for VLC22 with at most 2.16 kpc in
distance, and a heliocentric box of size |X|, |Y| < 370 pc, |Z| < 270 pc and up to
590 pc in distance for LGE20. In addition, we show the Planck 2013 extragalactic
dust map (Planck Collaboration, 2014a) and the Gaia total Galactic extinction
(TGE) 2022 map (Delchambre et al., 2023).

All maps agree on fine structures at high Galactic latitudes but differ in
the Galactic plane due to the difference in distance up to which the respec-
tive reconstruction extends. 3D dust reconstructions do not probe deep enough
into the Galactic plane to fully recover the Planck 2013 extragalactic dust map.
Bayestar19 and L+22 probe much deeper than VLC22, LGE20, and this work,
yet they do not probe the full column of dust seen in Planck 2013 and Gaia
TGE 2022. Both VLC22 and our map probe up to a similar depth while LGE20
only probes dust at much closer distances.

Figure 4.12 shows a zoomed-in comparison of the Perseus, Orion A, Taurus,
Corona Australis (CrA), and Chameleon molecular clouds, integrated out to the
maximum distance of each map (4 kpc for L+22). Among the 3D dust recon-
structions, Bayestar19 and L+22 have arguably the highest angular resolution
(angular discretization of Nside = 1024 or 3.4’ and 1.9’, respectively). They re-
solve the high latitude dust clouds with great detail although L+22 suffers from
localized artifacts in patches of the sky. Both LGE20 (1 pc3 boxes) and this
work (Nside = 256) achieve a comparable angular resolution. The VLC22 recon-
struction (103 pc3 voxels) is noticeably lower in resolution and does not resolve
the cloud substructure on the POS. A comparison between the same molecular
clouds in different distance slices in VLC22, LGE20, and our map is provided in
Section 4.9.7.
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Figure 4.11: Mollweide projections of total integrated extinction and 3D ex-
tinction maps integrated out the maximum distance of the respective map.
Bayestar19 reconstructs up to a maximum distance of 63 kpc (maximum reli-
able distance 10 kpc) and is integrated out to that volume. L+22 reconstructs
up to a maximum distance of 16 kpc but the authors trust their map only out to
4 kpc and we integrate their map only to 4 kpc. VLC22 reconstructs a heliocen-
tric box of size 3 kpc×3 kpc×800 pc with 103 pc3 voxels with at most < 2.16 kpc
in distance and is integrated out to the end of the box. Likewise, LGE20 recon-
structs a heliocentric box of size |X| < 370 pc, |Y| < 370 pc, |Z| < 270 pc covering
at most < 590 pc in distance and is integrated out to the end of the box. The
colorbars saturate at the respective 99% quantile of the map except for the col-
orbar of Planck 2013, which saturates at 5mag for better comparability.
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Figure 4.12: Zoomed-in views toward the individual molecular clouds (Perseus,
Orion, Taurus, Corona Australis, and Chameleon) seen in Figure 4.11. The
colorbars are logarithmic and span the full dynamic range of the selected POS
slice in every image. Each row is a separate region and each column a separate
reconstruction.
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4.8 Conclusions

We present a 3D dust map with a POS and LOS resolution comparable to Leike
et al. (2020) that extends out to 1.25 kpc. We used the distance and extinction
estimates of Zhang et al. (2023), which have much lower extinction uncertain-
ties than competing catalogs while probing a similar number of stars. Our re-
construction has a resolution comparable to the 2 pc resolution of Leike et al.
(2020). Specifically, it has an angular resolution of up to 14′ and parsec-scale
distance resolution. Our map is in good agreement with existing 3D dust maps
and improves upon them in terms of volume covered at a high spatial resolu-
tion. The map is publicly available online5 and can be queried via the dustmaps
Python package. We anticipate that the map will be useful for a wide range of
applications in studying the distribution of dust and the ISM more broadly.
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4.9 Supplementary material

4.9.1 ZGR23 in dust-free regions

To gauge the reliability of the ZGR23 catalog, we analyzed the extinction to stars
in dust-free regions (cf. Leike and Enßlin 2019; Leike et al. 2020). In dust-free
regions, we would expect the extinction to be zero within the uncertainties of
the catalog. To classify a region as dust-free, we use the Planck dust emission
map (Planck Collaboration, 2014a). A region is said to be dust-free if the Planck
E(B−V ) map is below or equal to 9.5mmag or approximately 29mmag in terms
of AV .

The first panel of Figure 4.13 shows the histogram of ZGR23 extinction to
stars with quality_flags < 8 in dust-free regions translated to AV . We see
that the histogram of the extinction peaks at the cutoff value and coincides with
the mean total extinction as measured by Planck in those regions translated
to AV . The density of extinction values falls of exponentially after the cutoff
value. Overall, the ZGR23 extinction seems to be in good agreement with Planck
Collaboration (2014a) for dust-free regions.

The second panel of Figure 4.13 shows the extinction divided by their uncer-
tainties for the stars from Figure 4.13. The standardized extinctions are centered
around unity, indicating that the ZGR23 extinction indeed are offset from zero
by about one standard deviation in dust-free regions. This is in agreement with
the previous finding that the extinctions are centered around the cutoff value
instead of clustering around zero. The width around the center is comparable
to a truncated standard normal distribution or a normal distribution. In total,
about 1% of the probability mass lies outside the possible range of all ZGR23
extinction with quality_flags < 8 if we assume a normal distribution for the
extinctions.

Except for outliers far from the center, which can be captured by an outlier
model, the ZGR23 catalog seems to be in agreement with POS measurements in
dust-free regions and the spread around the cutoff value approximately follows a
(truncated) normal distribution. We deem the ZGR23 catalog to be reliable for
our purposes and approximate the uncertainties using a normal distribution. We
accepted the mismodeling of a small fraction of probability mass for a simpler
model (see Sections 4.5 and 4.6).

69

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium


4. A parsec-scale Galactic 3D dust map out to 1.25 kpc from the Sun

0.0 0.1 0.2 0.3 0.4 0.5
dust-free A(V)

102

103

104

105

nu
m

be
r o

f s
ta

rs
 [[

A(
V)

]
1 ]

data
Planck mean A(V)
cutoff

(a)

0 5 10 15 20 25
dust-free A(V) / A(V)

101

102

103

104

nu
m

be
rd

en
sit

y 
of

 st
ar

s

data
standard normal
truncated standard normal

(b)

Figure 4.13: Absolute and relative ZGR23 extinction in dust-free regions.
Panel (a): Histogram of the ZGR23 extinctions in dust-free regions translated
to AV . The mean extinction in dust-free regions based on Planck is shown as
a vertical green line, and the cutoff value translated to AV for our definition of
dust-free is shown in red. Panel (b): Same as Panel (a) but the extinctions are
scaled by their accompanying uncertainties. A truncated standard normal dis-
tribution and a standard normal distribution are plotted on top. Both ordinates
are logarithmic.
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4.9.2 Metric Gaussian variational inference

The VI method MGVI approximates the true posterior P (ξ | d) with a standard
normal distribution in a linearly transformed space in which the posterior more
closely resembles a standard normal. Let Qξ̄(y | d) = G(y(ξ) | y(ξ̄), 1)

∣∣∣dydξ ∣∣∣ be the
approximate posterior and y(ξ) : ξ 7→ y(ξ) the coordinate transformation. In this
space the transformed posterior reads P (ξ(y) | d)

∣∣∣ dξdy ∣∣∣. We denote the metric of

the space in which P (ξ(y) | d)
∣∣∣ dξdy ∣∣∣ is “more” standard normal by M := dy

dξ

(
dy
dξ

)†
.

Assuming y(ξ) : ξ 7→ y(ξ) is known, the difficulty lies solely in finding the optimal
ξ̄ for Qξ̄.

Based on the Fisher information metric and Frequentist statistics,
Knollmüller and Enßlin derive a coordinate transformation yξ̄(ξ) centered
on ξ̄ that is linear in ξ. In Frank et al. (2021), the authors find that a set of
Riemannian normal coordinates yξ̄(ξ) centered on ξ̄ are an improved, nonlinear
estimate of the coordinate transform y(ξ) ≈ yξ̄(ξ). The improvements, though,
come at slightly higher computational costs. We refer the reader to Frank et al.
(2021) and Frank (2022) for further details on geoVI and its relation to MGVI,
the choice of metric, and an analysis of its failure modes. For computational
reasons, we used MGVI for our inference.

MGVI and geoVI start at a random initial position for ξ̄ and draw nsamples
standard normal samples in the space of y. Next, they transform the samples
to the space of ξ via yξ̄, the local, linear (respectively, nonlinear for geoVI)
approximation to y(ξ) at ξ̄. We denote the samples in parameter space by
{ξ1, . . . , ξnsampels}. Relative to the expansion point ξ̄ the samples read {∆ξ1 :=
ξ1 − ξ̄, . . . ,∆ξnsamples := ξnsampels − ξ̄}. The samples {∆ξ1, . . . ,∆ξnsamples} around
ξ̄ provide an empirical, sampled approximation to Qξ̄, which we denote by Q̃ξ̄.
MGVI and geoVI then optimize ξ̄ of the sampled distribution, Q̃ξ̄, by minimiz-
ing the variational Kullback-Leibler (KL) divergence between Q̃ξ̄ and the true
distribution P

ξ̄′ =argmin
ξ̄

KL
(
Q̃ξ̄, P (ξ | d)

)
(4.20)

= argmin
ξ̄

〈
ln

Q̃ξ̄

P (ξ | d)

〉
Q̃ξ̄

(4.21)

= argmin
ξ̄

⟨− lnP (ξ | d)⟩Q̃ξ̄
(4.22)

= argmin
ξ̄

−1
nsamples

nsamples∑
i=1

lnP (∆ξi − ξ̄ | d) . (4.23)

They keep the relative samples {∆ξ1 := ξ1−ξ̄, . . . ,∆ξnsamples := ξnsampels−ξ̄} fixed
during the optimization and only vary ξ̄. Finally, they update the expansion point
ξ̄ to the new found optimum ξ̄′.
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After the minimization, MGVI and geoVI draw a new set of samples, trans-
form them via a local (linear) expansion of y, and then minimize again. The
drawing of samples and minimization is repeated until a fixed point for ξ̄ is
reached. Algorithm 3 summarizes the algorithmic steps of the variational ap-
proximation to the true posterior.

def sample(ξ, nsamples):
. . .
return {ξ1, . . . , ξnsampels}

ξ̄ ← . . . // random init

while ξ̄ not converged do
{ξ1, . . . , ξnsampels} ← sample(ξ̄, nsamples)
{∆ξ1, . . . ,∆ξnsamples} ← {ξ1 − ξ̄, . . . , ξnsampels − ξ̄}
ξ̄ ← argminξ̄

−1
nsamples

∑nsamples
i=1 lnP (∆ξi + ξ̄ | d)

end
Algorithm 3: Pseudocode for the MGVI and geoVI expansion point VI
scheme.

4.9.3 Extinction within the innermost 69 pc

By construction of our likelihood, we know that our model is biased high for low
extinction values because we neglected the positivity prior of the ZGR23 catalog.
This imprints on to the map in the form of a thin layer of dust extinction right
at the beginning of the modeled volume. As voxels in our reconstruction are
correlated, the extincted first layer of voxels pulls the next layer of voxels to
slightly higher extinctions too. At 69 pc the differential extinction as a function
of distance reaches a local minimum, and we expect little to now influence of the
innermost layers of voxels. Thus, we determined 69 pc to be our cutoff.

Figure 4.14 shows the integrated extinction that is cut out from the final
reconstruction. Most of the extinction is likely spurious. Overall, no structure
contributes a significant amount of extinction. However, to be consistent with
ZGR23, we suggest adding the removed extinction back to the map when com-
paring integrated extinction.
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Figure 4.14: Mollweide projection of the integrated AV extinction in the inner-
most 69 pc, which is likely dominated by spurious effects and is therefore excluded
from the reconstruction. The colorbar is linear and covers the full range of the
extinction that is cut out of the reconstruction.

4.9.4 Extinction catalog

We release a catalog of expected extinction for all stars within the subset of the
ZGR23 catalog that we used for our reconstruction (see Section 4.2). We predict
the expected extinction conditional on the known parallax including parallax
uncertainties. Our prediction is the best guess of our model for the extinction
toward a star but is not necessarily the best guess for the extinction at the mean
parallax of the star.

Our extinction predictions (see Sections 4.3 and 4.4.1) differ from the ex-
tinctions in the ZGR23 catalog by coupling the individual stars via the 3D dust
extinction density. By virtue of every star depending on all nearby stars via
the prior, our extinction predictions come in the form of joint predictions for all
stars. In regions where the 3D dust extinction density is well constrained, the
joint predictions to first order factorize into predictions for individual stars, and
we can compute expected extinctions for individual stars and their uncertainties.

Our catalog of extinction includes the innermost 69 pc from the beginning of
our grid and the outer 550 pc beyond 1.25 kpc that we cut away in the 3D map.
We advise caution when analyzing the stars of our catalog within those regions
as they might carry additional biases. Details on why these regions were removed
from the final map are given in Sections 4.5 and 4.6.

The top panel of Figure 4.15 compares the ZGR23 extinctions to our mean
extinction predictions for Gaia BP/RP stars. Overall, our mean extinctions are
in very good agreement with the extinctions in the ZGR23 catalog for the vast
majority of stars. However, below 50mmag and above 4mag, our extinction
predictions deviate from the predictions in ZGR23. In any given extinction bin
from ZGR23 respectively our work, we would expect half of the respective other
extinctions to be below the bisector and the other half to be above. At 50mmag,
34% more stars than expected have higher extinctions than the corresponding
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(a)

(b)

Figure 4.15: ZGR23’s extinction versus our predicted extinction for Gaia BP/RP
stars. Panel (a): Our mean posterior extinctions versus the ZGR23 extinctions
to stars as 2D histogram. The 16th, 50th, and 84th quantiles of the ZGR23
extinctions for each bin of our mean extinction are shown as blue lines. The re-
spective quantiles of our predictions in bins of the ZGR23 extinctions are shown
as orange lines. Panel (b): Same comparison but for our posterior mean predic-

tions for the ZGR23 measurement uncertainties,
√

[nσ(ξ) · σA]2 + σ2
a, versus the

ZGR23 uncertainties. Note that the predictions for the ZGR23 measurement
uncertainties are not the uncertainties of our extinction predictions. See
Section 4.4 and in particular Equation (4.18) for further details on the quantities
shown here. The bisectors are shown in red. The colorbars are logarithmic.
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extinctions in ZGR23. The difference further widens for lower ZGR23 extinc-
tions. At 4mag, 34% more stars than expected have lower extinctions than the
corresponding extinctions in ZGR23.

The bottom panel of Figure 4.15 shows our and the ZGR23 extinction un-
certainties. We note that our extinction uncertainties are predictions for the
measured uncertainties of the ZGR23 catalog [nσ(ξ) · σA]2 + σ2

a(ρ(ξ)) and not
the uncertainties of our extinction predictions std(ā) (see Section 4.4). Overall,
both uncertainties agree well for the vast majority of stars. At low extinctions
uncertainties our uncertainties only marginally inflate the ZGR23 uncertainties.
However, at high extinction uncertainties, our predictions cover a larger range,
and we find that the ZGR23 significantly underpredicts our extinction uncertain-
ties of stars.

Figure 4.16: Mean standardized extinctions: (A− ā)/
√
(nσ · σA)2 + σ2

a (see Sec-
tion 4.4 and in particular Equation (4.18)) within the range −5 to 5.

Figure 4.16 summarizes the extinctions and the extinction uncertainties of
both ZGR23 and our predictions into a single histogram of the mean standardized
extinction. A standard Gaussian is shown as reference. The mean standardized
residuals have two slight overdensities at each tail compared to the Gaussian.

Figure 4.17 shows the posterior standard deviation of our extinction predic-
tions versus the ZGR23 uncertainties. Our model yields approximately one order
in magnitude lower extinction uncertainties than the ZGR23 uncertainties for the
vast majority of stars. The effect is less pronounced for low ZGR23 extinction
uncertainties.

Our predictions for the extinction to stars theoretically contain more infor-
mation since we allow for the cross-talk of nearby stars via the 3D distribution of
dust and thus might be more accurate. However, the ZGR23 catalog might yield
better results in practice because it does not discretize the 3D volume within
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Figure 4.17: Similar to Figure 4.15 but for the posterior standard deviation of our
extinctions versus the ZGR23 uncertainties. The 16th, 50th, and 84th quantiles of
the ZGR23 uncertainties for each bin of our standard deviation are shown as blue
lines. The respective quantiles of our standard deviation in bins of the ZGR23
uncertainties are shown as orange lines. The bisectors are shown in red. The
colorbars is logarithmic.

which the stars reside. By discretizing the modeled volume we can produce
contradicting data that in a continuous space is non-contradicting, for example
by putting highly extincted stars that lie in a dust cloud into the same voxel as
less extincted stars that are adjacent to the dust cloud. Overall, both predictions
agree very well for stars below between 50mmag and 4mag. More work is needed
to validate the discrepant predictions at very low and very high extinctions.

4.9.5 2 kpc reconstruction

In Section 4.5 we describe how we iteratively increase the distance out to our
maximum reconstructed distance. We did so to improve the convergence of the
reconstruction. We also tried naively reconstructing the full volume at once.
Using all the available data is computationally prohibitive, so we limited the
reconstruction to high quality data using quality_flags == 0, σA ≤ 0.04, and
σω/ω < 0.33.

We used 1/(ω−σω) < 3 kpc and 1/(ω+σω) > 40 pc to select the stars within a
3 kpc sphere. To further speed up the inference, we started the inference using
at first only a sample of 10%, then 20%, 45%, 67%, and finally 100% of the
stars. In total, we selected 59,334,214 stars. After the inference, we cut away the
outermost 1 kpc of the sphere of the data-constrained region to avoid degradation
effects due to the thinning out of stars at the edge. The overall reconstructed
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volume after removing the outermost HEALPix spheres extends out to 2 kpc in
distance.

The reconstruction is shown in Figure 4.18 and again in Figure 4.19 with a
catalog of YSO clusters (Kuhn, 2023) overlaid on top. It shows the same large-
scale features as the smaller reconstruction discussed in the main text. The dis-
tribution of dense dust clouds is in agreement with the positions of YSO clusters
within the distance uncertainties of the YSO clusters. Compared to Figure 4.5
the reconstruction is less detailed and features more pronounced artifacts.

We used the larger reconstruction to validate the inference of the smaller one.
Specifically, we used the larger reconstruction to ensure that structures aligned
with or close to the radial boundaries at which we increased the distance of the
main reconstruction are independent of the locations at which we increased the
distance covered.

We release the larger reconstruction as an additional data product together
with the main reconstruction. We advise using the main reconstruction for all
regions that fall within its volume. Care should be taken when interpreting
small-scale features or structures at high distances in the larger reconstruction.
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Figure 4.18: Axis parallel projections of the reconstructed dust extinction in a
box of dimensions 4 kpc × 4 kpc × 0.8 kpc centered on the Sun. The colorbar is
linear and saturates at the 99.9% quantile.
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Figure 4.19: Same as Figure 4.18 but with a catalog of clusters of YSOs (Kuhn,
2023) based on Kuhn et al. (2021), Winston et al. (2020), and Marton et al. (2023)
shown a blue dots on top of the reconstruction; their distance uncertainties are
shown as extended lines.
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4.9.6 Using the reconstruction

All data products are made publicly available online6. The data products are
stored in the FITS file format. The main data products are the posterior samples
of the spatial 3D distribution of dust extinction discretized to HEALPix spheres
at logarithmically spaced distances. For convenience, we also provide the pos-
terior mean and standard deviation of the samples of the HEALPix spheres at
logarithmically spaced distances.

We additionally interpolated the posterior mean and standard deviation to
a Cartesian grid. The interpolation was carried out at a lower discretization
using 23 pc3 voxels to keep the file size reasonably small. We recommend re-
interpolating the map at a higher discretization for the study of individual regions
within the map.

We release the interpolation script as part of the data release. Its signature
reads interp2box.py [-h] [-o OUTPUT_DIRECTORY] [-b BOX] healpix_path
. A box is a string of two tuples separated by two colons. The first tuple
specifies the number of voxels along each axis of the box and the second tuple
specifies the corners of the box in parsecs in heliocentric coordinates. To inter-
polate the map to a box with 1051× 1051× 351 voxels of size |X|, |Y| ≤ 2100 pc
and |Z| ≤ 700 pc, use interp2box.py -b ’(1051,1051,351)::((-2100,2100)
,(-2100,2100),(-700,700))’-- mean_and_std_healpix.fits.

In addition, we interpolated the posterior mean and standard devia-
tion to Galactic longitude, latitude, and distance. The signature of the
interpolation script reads interp2lbd.py [-h] [-o OUTPUT_DIRECTORY] [-b
BOX] healpix_path. Its behavior is similar to interp2box.py but the box

is specified in terms of Galactic longitude, latitude, and distance in units of
degrees, degrees, and parsecs, respectively.

Both scripts require the Python packages numpy (Harris et al., 2020b), as-
tropy (Astropy Collaboration et al., 2013; Astropy Collaboration and Astropy
Contributors, 2018; Astropy Collaboration and Astropy Project Contributors,
2022), and healpy (Gorski et al., 2005; Zonca et al., 2019). Depending on the
number of output voxels, the interpolation can be very memory intensive and
computationally expensive.

4.9.7 Molecular clouds by distance

Figures 4.20 to 4.24 depict zoomed-in views of Figure 4.11 at different distant
slices, alongside histograms comparing the extinction of VLC22, LGE20, and our
mean map toward Perseus, Orion A, Taurus, Corona Australis, and Chameleon.
The top panels depict the same POS views for the clouds as in Figure 4.12,
but now showing the dust extinction in finite distance bins, rather than inte-
grated over the full distance range. A low-resolution 3D interactive figure of the

6https://doi.org/10.5281/zenodo.8187942
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reconstruction including all the above molecular clouds is available online7.
The bottom panels of the figures are akin to Figure 4.10 but compare the

extinction within the selected distance and POS area of the respective molecular
cloud only. The probing points to which we integrated are spaced in the distance
range of the top panel. We started the integration at the lowermost distance
of the top panel and successively integrated out in steps of 0.5 pc. The probing
points are spaced 15′ apart along the POS.

LGE20 and our map agree well for Perseus, Orion A, Taurus, and Chameleon.
Some structures appear at slightly larger distances in our map as indicated by
the arches above the diagonal in the second panels. LGE20 saturates sooner than
our map as it flattens off at high extinctions below the diagonal. The flattening
off is less pronounced for Chameleon.

Corona Australis is an outlier among the generally good level of agreement.
In the lower panel, there is noticeably more density off the diagonal. We see
arches both above and below the diagonal indicating that some structures are
closer while others are farther in our map compared with LGE20. While LGE20
puts the head of Corona Australis in the distance slice ranging from 140 pc to
160 pc, our map puts the head of Corona Australis dozens of parsecs farther in
distance. Possible reasons for this shift include an insufficient number of stars to
constrain the distance to the head of Corona Australis or a failure mode in our
posterior approximation.

VLC22 is much lower in resolution and does not resolve degree-scale high
extinction regions. The extinction in VLC22 within the selected distance slice is
much lower than in our map and by extension in LGE20. The missing extinction
partially lies outside the selected box as it is strongly smeared out radially.

7https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/3D_Dust_Edenhofer2023.
html
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(a)

(b)

Figure 4.20: Com-
parison of different
dust maps for Perseus.
Panel (a): Zoomed-in
view of Figure 4.11
toward Perseus akin
to Figure 4.12, in
different distant slices.
Columns depict dust
reconstructions, while
rows depict distance
slices. The logarithmic
colorbars are separate
for the reconstructions
but shared for dif-
ferent distance slices.
Panel (b): Comparison
of the mean posterior
extinction integrated
from the lowest dis-
tance of Panel (a) to
regularly spaced points
in the distance range
of Panel (a). The
extinction predictions
for our map versus
LGE20 and VLC22 are
shown as histograms.
The binning is linear
and the colorbar loga-
rithmic. The bisectors
are shown in red.
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(a)

(b)

Figure 4.21: Same as
Figure 4.20 but for
Orion A.
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(a)

(b)

Figure 4.22: Same as
Figure 4.20 but for
Taurus.
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(a)

(b)

Figure 4.23: Same
as Figure 4.20 but
for Corona Australis
(CrA).
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(a)

(b)

Figure 4.24: Same as
Figure 4.20 but for
Chameleon.
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5 The “C”: The large Chameleon-
Musca-Coalsack cloud

The following chapter is an article currently under review at Astronomy & Astro-
physics (Edenhofer et al., 2024a). This article emerged from a close collaboration
with João Alves who contributed to this work via countless discussions. Fur-
thermore, João Alves contributed significant portions of the text for the abstract
and introduction. Catherine Zucker contributed text and very valuable feedback
throughout the article. Torsten Enßlin contributed comments on later versions
of the manuscript. All authors read, commented, and approved the manuscript.
The text was adapted to fit the thesis.

Abstract

Recent advancements in 3D dust mapping have transformed our understanding
of the Milky Way’s local interstellar medium, enabling us to explore its structure
in three spatial dimensions for the first time. In this letter, we use the Edenhofer
et al. (2023) 3D dust map to study the well-known Chameleon, Musca, and
Coalsack cloud complexes, located about 200 pc from the Sun. We find that
these three complexes are not isolated but rather connect to form a surprisingly
well-defined half-ring, constituting a single “C”-shaped cloud with a radius of
about 50 pc, a thickness of about 45 pc, and a total mass of about 5 × 104M⊙
respectively 9× 104M⊙ for everything within its vicinity. Despite the absence of
an evident feedback source at its center, the dynamics of young stellar clusters
associated with the “C” structure suggest that a single supernova explosion about
4Myr to 10Myr ago likely shaped this structure. Our findings support a single
origin story for these cloud complexes, suggesting that they were formed by
feedback-driven gas compression, offering new insights into the processes that
govern the birth of star-forming clouds in feedback-dominated regions, such as
Sco-Cen.

5.1 Introduction

For over a hundred years, our understanding of the ISM has been limited to 2D
projections. Analysis of two-dimensional projections, while a mainstay in tradi-
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tional studies of the ISM, can create a deceptive picture of the true and complex
three-dimensional structures of the ISM. For example, atomic and molecular
clouds can appear as distinct or overlapping entities, obscuring their true spatial
relationships. This illusion is especially problematic when clouds exhibit similar
radial velocities, making it nearly impossible to distinguish their boundaries and
depths using traditional observational methods.

The nearby molecular clouds of Chameleon, Musca, and Coalsack are a po-
tential example of this type of confusion, having long been suspected to be phys-
ically associated (Corradi et al., 1997, 2004). However, their seemingly distinct
appearances in the 2D plane of the sky has complicated any possible physical
association. This projected view is potentially hiding diffuse connections that
could shed new light on their origin and evolution.

In recent years, the proliferation of 3D dust maps has begun a revolution in
the field (e.g., Chapter 4; Leike and Enßlin, 2019; Vergely et al., 2022; Lallement
et al., 2022, 2019, 2018; Capitanio et al., 2017; Babusiaux et al., 2020; Hottier
et al., 2020; Green et al., 2019, 2018; Leike et al., 2022; Chen et al., 2019; Rezaei
Kh. and Kainulainen, 2022; Rezaei Kh. et al., 2020, 2018, 2017; Dharmawardena
et al., 2022). These new maps capitalize on the astrometric data from the Gaia
satellite (Gaia Collaboration, 2023a) and emerge as powerful tools to unravel the
complex volume density distribution of gas within the local Milky Way, providing
unprecedented insights into the structure and dynamics of molecular clouds from
kiloparsec down to parsec scales (Zucker et al., 2023; Zucker et al., 2018; Zucker
et al., 2019; Zucker et al., 2020; Alves et al., 2020; Zucker et al., 2021; Kuhn
et al., 2022; Posch et al., 2023).

Chameleon, Musca, and Coalsack are among the closest molecular clouds to
Earth at a distance of about 200 pc (see e.g. Zucker et al., 2021; Corradi et al.,
2004). Chameleon has been extensively studied for its active star formation
(e.g., Luhman, 2008) and Musca for its simple filamentary structure and subsonic
nature (e.g., Mizuno et al., 1998; Hacar et al., 2016; Kainulainen et al., 2016).
The Coalsack, despite being one of the few dark clouds visible to the naked eye, is
one of the least studied nearby clouds, probably because it is not star-forming and
is seen against the complicated background of the Galactic plane (e.g., Nyman,
2008; Beuther et al., 2011). So far, all three clouds have been treated as separate
entities with conflicting origin stories. For example, Musca, is hypothesized to
have been shaped by magnetic fields, by dissipation of supersonic turbulence,
by a cloud-cloud collision, or a combination of these processes (Cox et al., 2016;
Tritsis and Tassis, 2018; Tritsis et al., 2022; Bonne et al., 2020a,b; Yahia et al.,
2021; Kaminsky et al., 2023).

In this letter, we study the region of Chameleon, Musca, and Coalsack from a
new perspective, namely in full spatial 3D. Using the 3D dust map by Edenhofer
et al., we characterize the topology and mass of this region and analyze the
relationship between the three molecular clouds. In addition, we analyze the
dynamics of young stellar clusters (YSO clusters) embedded in Chameleon and
Coalsack as a proxy for the large-scale dynamics of the gas.
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5.2 Methods and results

We use the 3D reconstruction of the interstellar dust distribution presented in
Chapter 4 throughout our analysis. The reconstruction is based on the catalog
described in Zhang et al. (2023) which in turn is based on the Gaia DR3 BP/RP
spectra (Gaia Collaboration, 2023a). Using the stellar extinction and distances
in the catalog, we reconstruct the 3D distribution of interstellar dust. The map
extends to 1.25 kpc in distance from the Sun and achieves 14 ′ angular resolution
and parsec-scale distance resolution.

The map presented in Chapter 4 is one of the highest resolution 3D dust
maps of the local Milky Way. In comparison to other 3D dust maps in the
literature, it focuses on a relatively small volume (c.f. Green et al., 2019), but
resolves the structures within this volume at high resolution (parsec-scale) com-
parable to Leike et al. (2020). Compared to Leike et al. (2020), it reconstructs a
much larger volume and yields a higher dynamic range thanks to the new Gaia
data. The methodology extends the one from Leike et al. (2020) and employs its
non-parametrically inferred correlation kernel. Furthermore, the model strictly
enforces physical constraints such as positive definiteness of differential interstel-
lar dust densities and rigorously incorporates distance uncertainties to stars.

5.2.1 Topology

Using the 3D map of the distribution of interstellar dust described in Chapter 4,
we analyze the region around Chameleon, Musca, and Coalsack. For convenience
we interpolate the 3D map with irregularly spaced voxels to a regular Cartesian
and a regular spherical grid using the scripts provided by the authors online1

and distributed as part of the Python package dustmaps (Green, 2018). We find
that all three molecular clouds are embedded in a large 3D structure forming a
“C”-shaped half-ring. The structure lies at the edge of the Local Bubble (Zucker
et al., 2022; O’Neill et al., 2024; Pelgrims et al., 2020), close to the Scorpius-
Centaurus association. Due to obscuration and projection effects, the peculiar
“C”-shape is only revealed using 3D reconstructions of interstellar dust. In an
ordinary 2D plane-of-sky projection, the diffuse bridges connecting the molecular
clouds become indistinguishable from faint dust extinction at larger distances.

Figure 5.1 shows the extinction within the region over the range 335◦ to
275◦ in Galactic longitude and −40◦ to 15◦ in Galactic latitude. The first panel
shows the Planck 2013 extragalactic E(B−V) extinction of interstellar dust
(Planck Collaboration, 2014a) converted to AV via AV = 3.1 · E(B−V). The
“C”-shaped structure is almost completely obscured. The second panel shows
the 3D interstellar dust map integrated over a 55 pc distance range from 165 pc
to 220 pc. Here, the “C”-shaped structure appears as a single coherent structure
hosting Chameleon, Musca, and Coalsack. The individual dense molecular clouds
are connected through faint lanes of interstellar dust extinction. Thanks to the

1https://zenodo.org/doi/10.5281/zenodo.8187942
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3D distance selection, the figure shows this region free of confusion stemming
from extinction at farther distances.

With 3D interstellar dust maps, we are not restricted to plane-of-sky projec-
tions and can instead explore the distribution of interstellar dust in full spatial
3D. In Figure 5.2 we show the isosdensity surface in full spatial 3D at a total
hydrogen nuclei density of approximately nH = 4.5 cm−3 (0.98-quantile in the
selected volume; see O’Neill et al. (2024) for converting the units of the 3D dust
map to nH). The outline traces the “C”-shaped spine observed in Figure 5.1. The
isodensity surface fully envelops the half-ring including the Chameleons, Musca,
and Coalsack molecular clouds. We term the “C”-shaped structure the “C”.

Based on its suggestive half-ring structure, we defined a center for the “C”.
We defined its center to lie below the Coalsack in Galactic X and Y and slightly
above the Galactic Z of the two Chameleons. Specifically, we set the center to
be at Galactic X=138 pc, Y=−140 pc, and Z=−33 pc, respectively, at Galactic
l = 314.6◦, b = −9.5◦, and d = 199.3 pc (see interactive Figure 5.2). We tested
random shifts of ±10 pc in Galactic X, Y, and Z for the center and validated that
the qualitative results presented in the following are insensitive with respect to
the precise choice of center.

Relative to the center location, we defined a radius using the volume filling
fraction of interstellar dust. We find that the volume filling fraction reaches a
maximum at a distance of 48 pc and we assume this to be the radius of the “C”.
This estimate is robust with respect to different posterior samples of the dust
distribution described in Chapter 4. The full-width-half-maximum (FWHM) of
the peak is (47± 2) pc and most of the dust lies within a distance of 80 pc from
the center (ceiling of the more distant edge of the FWHM).

We find that the “C” is almost perfectly parallel to the Galactic Z axis. Given
its proximity to the Galactic disk, this makes it perpendicular to the line of sight.
To quantify the inclination, we selected the 10,000 highest density points of a
1 pc interpolation of the 3D dust map within 20 ≤ X ≤ 230 pc, −240 ≤ Y ≤
−90 pc, and −185 ≤ Z ≤ 50 pc and decomposed them with a singular value
decomposition into a plane. We find that the Galactic Z axis and the plane’s
normal vector form a 86◦ angle (2/3 of samples within ±1◦) and the inclination
between the LOS toward the center and the fitted plane to be 72◦ (2/3 of samples
within ±1◦). Table 5.1 summarizes key properties of the “C”.

5.2.2 Mass

To estimate the mass, we again utilize the 3D interstellar dust density. We adopt
the conversion ratio nH = 1653 cm−3ρ as derived in O’Neill et al. (2024) using
Draine (2003, 2009) to convert our interstellar dust density ρ to a total hydrogen
nuclei density nH. Analogously to O’Neill et al. (2024) we then convert the
hydrogen nuclei density to a mass via M = 1.37 · mp ·

∑
i nH,i · dvi, adopting

a mean molecular weight of hydrogen (µ) of 1.37, mp the proton mass, and dvi
the volume of the ith voxel nH,i. We integrate the mass from the center out
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Figure 5.1: Plane-of-sky region toward the “C” of the posterior mean of the map
described in Chapter 4. Panel (a): Planck 2013 extragalactic E(B-V) extinction
toward the “C” converted to AV via AV = 3.1 · E(B−V). Panel (b): Visual
extinction AV between 165 pc to 220 pc toward the “C”-shaped structure in the 3D
interstellar dust map. Both figures display the extinction in units of magnitude
and the colorbars are linear but clipped at an extinction of AV = 2mag.
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Figure 5.2: 3D view of the isodensity surface of the posterior mean of the
3D dust map of Edenhofer et al. within the Cartesian selection given in Ta-
ble 5.1 showing the “C”. High density structures (nH ≥ 23.3 cm−3; 10, 000 highest
density points of a 1 pc Cartesian interpolation of the “C”) toward Chameleon
(290◦ ≤ l ≤ 306◦ and −21◦ ≤ b ≤ −12◦) are color-coded in green, toward Musca
(300◦ ≤ l ≤ 302.5◦ and −13◦ ≤ b ≤ −7.25◦) in violet, and toward Coalsack
(300◦ ≤ l ≤ 318◦ and 0.5◦ ≤ b ≤ 7.5◦) in blue. An interactive version of this
figure is available at https://faun.rc.fas.harvard.edu/gedenhofer/perm/C/
C_Chameleon_Musca_Coalsack_cloud.html.

Table 5.1: Key properties of the “C”. The specified uncertainties encompass at
least 2/3 of the 3D dust map posterior samples. The specified positions capture the
core features of the “C” while including as little as possible from other molecular
clouds. The spherical and Cartesian cuts are not equivalent as for each of them
we tried to minimize projection and obscuration effects from molecular clouds
not affiliated with the “C” (c.f. Figures 5.1 and 5.3).

Cartesian
Position

Spherical
Position Radius FWHM Inclination Mass

“C”
20 ≤ X/pc ≤ 230
−240 ≤ Y/pc ≤ −90
−185 ≤ Z/pc ≤ 50

275 ≤ l/◦ ≤ 335
−40 ≤ b/◦ ≤ 15
165 ≤ d/pc ≤ 220

48 pc
(all samples)

(29.5± 1.0) pc
–

(76.0± 0.5) pc
(72± 1)◦

(50.5± 0.3)× 103M⊙
in isodensity surface

Center
X=137 pc

Y=−140 pc
Z=−33 pc

l=314.6◦

b=−9.5◦
d=199.3 pc

(93.4± 0.3)× 103M⊙
in vicinity
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5.2 Methods and results

to a distance of 80 pc or the edge of the Cartesian selection given in Table 5.1,
whichever is lower, and find the mass of everything within the vicinity of the
“C” to be (9.34 ± 0.03) × 104M⊙ (statistical uncertainty covering the 0.16- to
0.84-quantile of the interstellar 3D dust map). This mass estimate is roughly in
between the total mass of everything above a density of nH = 1 cm−3 and nH =
2 cm−3 within the Cartesian selection given in Table 5.1 ((1.12± 0.01)× 105M⊙
and (8.00 ± 0.08) × 104M⊙, respectively). The mass of everything within the
isosurface shown in Figure 5.2 (i.e. above approximately nH = 4.5 cm−3) is
(5.05± 0.03)× 104M⊙ .

5.2.3 Dynamics

To investigate the dynamics of the peculiar “C”-shaped structure, we study
YSO clusters embedded in the “C”. We use the catalogs of Ratzenböck et al.
(2023) and Hunt and Reffert (2023), applying the following cuts to the catalog
by Hunt and Reffert: logAge ≤ log10(30Myr), Astrometric SNR ≥ 5, and
50th percentile of Color Magnitude Diagram (CMD) class ≥ 0.5 (c.f. Hunt and
Reffert, 2023). Nested inside the “C”, we find three YSOs clusters: Centaurus-
Far (HSC 2630 in Hunt and Reffert, 2023), Chameleon I (Hunt and Reffert,
2023; Ratzenböck et al., 2023), and Chameleon II (Ratzenböck et al., 2023). In
the following, we use the velocities given in (Ratzenböck et al., 2023).

Relative to the local standard of rest (Schönrich et al., 2010), we find
that the two Chameleon clusters are moving toward negative Galactic Z
more strongly than Centaurus-Far. This implies that the “C” is expand-
ing in Galactic Z. If we assign our center point a hypothetical velocity of
1/2 · (vCenFar + 1/2 · (vChamI + vChamII)) with v□ the velocities of Centaurus-Far
and the two Chameleons respectively, we find that Centaurus-Far moves up and
the two Chameleons move down relative to the center. Their velocity relative
to the center is 3 km/s for Centaurus-Far and 4 km/s and 2 km/s for the two
Chameleons.

As the YSOs are embedded in the “C”, we propose that not only the cluster
move away at an average velocity of 3 km/s but the whole “C” expands at an
average velocity of 3 km/s. Moving the mass in the “C” at this speed requires a
significant amount of energy. Specifically, moving 9× 104M⊙ at 3 km/s requires
an energy input of 8×1048 erg. This energy input is approximately 1% of the total
energy release of a supernova feedback event and on the order of the expected
kinetic energy input of a supernova (Kim and Ostriker, 2015).

The observation is robust with respect to the assumed center velocity and
cluster velocities. To test the dependence on the center velocity, we assumed
that the center velocity is the average velocity of all YSO clusters in the vicinity
(clusters with 0.84-age-quantile ≤ 30Myr) in the catalog of Hunt and Reffert
(2023) within −20 ≤ X ≤ 260 pc, −300 ≤ Y ≤ −10 pc, and −240 ≤ Z ≤ 80 pc
and find a qualitatively equivalent result. We tested the sensitivity to the cluster
velocities by studying the systematic and statistical uncertainties in the clusters.
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The uncertainty in the bulk motion is dominated by the spread in the individual
YSO velocities (order of magnitude of the cluster velocity itself). The true cluster
velocity uncertainty is likely in between both uncertainties and leads to errors
on the order of the relative velocity that we found above. As a proxy for the
systematic uncertainties in the clustering in the catalog used here, we validated
that the qualitative result holds equivalently for the cluster velocities from Hunt
and Reffert (2023) for Centaurus-Far and Chameleon I. Note, other traces for
the velocity such as HI or CO are unavailable as in addition to obscuration and
confusion, the inclination of the “C” results in its expansion being perpendicular
to the line of sight.

5.2.4 Age

We analyzed the relative position of the clusters in the past by propagating their
current position and velocity back in time using the software package galpy and
the MWPotential2014 Galactic potential (Bovy, 2015). In doing so, we neglect
other gravitational forces such as the cluster’s own gravitational potential, gravi-
tational forces due to nearby molecular clouds, respectively any other acceleration
not due to the Milk Way’s potential. We find that they have been approaching
each other in the past 4Myr to 10Myr relative to the center with the center ve-
locity described above. Centaurus-Far gets closest to the center with a minimum
separation of 25 pc while the two Chameleons get as close as 46 pc respectively
40 pc to the center in the last 10Myr. The observation is robust with respect
to the precise choice of center velocity and the minimum separations vary by
10 pc or less if we assume the velocity of the center to be the average velocity of
all YSO clusters in the vicinity (see Section 5.2.3). Given the large uncertainty
in the velocities and ages and the simplistic model, these discrepancies appear
modest, and the velocities and ages seem in good agreement with the hypothesis
of an expanding half-ring.

Figure 5.3 shows the “C” in Cartesian X-Z-projections. The three clusters
and their tracebacks relative to the center are indicated by colored lines.

5.2.5 Caveats

We have determined the shape and mass of the “C” with considerable accuracy
using 3D interstellar dust maps. However, the dynamics and energy calculations
remain uncertain. The “C”’s overall shape and the velocities of YSO clusters
suggest it may be an expanding half-ring, but our analysis is constrained by
the limited number of YSO clusters observed. Additionally, the uncertainties in
the velocity measurements are comparable to the relative uncertainties, further
complicating the analysis. Finally, although the “C” surrounds a largely empty
space, there is evidence of faint interstellar dust density at its center, as shown
in Figure 5.3.
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Figure 5.3: Cartesian X-Z-projections of the “C”. The colorbar is linear and
clipped at AV = 1.5mag. The traced back clusters relative to the center are
shown as colored lines on top. The solid lines show the traces of the cluster up
to their 0.84-age-quantile while the dash-lines show the traces back to −10Myr
whenever their 0.84-age-quantile is lower. See the interactive version of Figure 5.2
and toggle on the clusters to see them in full spatial 3D.
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5.3 Discussion and conclusion

3D maps of interstellar dust have unlocked new ways to explore the intricate
structures within the ISM in comprehensive 3D detail. Using these maps, we
have established that the Chameleon, Musca, and Coalsack molecular clouds are
spatially connected, forming a “C”-shaped structure that encompasses a striking,
well-defined cavity. This structure, which we refer to as the “C”, is a half-ring
structure with a radius of approximately 50 pc and a mass of about 5× 104M⊙
respectively 9×104M⊙ for everything within its vicinity. The “C” extends across
roughly 50◦ in both longitude and latitude, and has a depth of about 55 pc. The
structure is discernible only through 3D reconstructions of interstellar dust, as
obscuration and projection effects obscure it in conventional 2D views.

We propose a single origin for all three molecular clouds comprising the “C”.
The orbits of clusters in the “C” are indicative of an expansion that when com-
bined with the mass of the “C” requires the energy released by a single supernova
explosion. We suggest that a singular supernova explosion shaped an existing
dense cloud into the “C” between 4Myr to 10Myr ago.

The realization that the Chameleon, Musca, and Coalsack molecular clouds
are interconnected in 3D space introduces a novel perspective for their study.
These previously distinct clouds are now understood to be parts of a single large
cloud, the “C”. This broader context is especially significant for understanding
Musca, where a large body of observational work has been acquired over the
last decade to explain its formation. Viewing Musca within the scope of the
“C” suggests a relatively simple formation mechanism: cloud formation on an
expanding ring, likely driven by stellar feedback. This insight suggests that
feedback driven expansion is the primary cause for the shape of Musca (c.f.
Inutsuka et al., 2015, for role of magnetic fields), and calls for a new analysis
of the existing data on this cloud. This new perspective on Musca’s formation
and shape is a reminder that the environment in which a molecular cloud resides
can significantly influence its formation mechanism and morphology. This work
highlights the importance of considering the broader context offered by the new
3D dust maps when interpreting molecular cloud formation and evolution.
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6 Additional contributions

This chapter outlines work to which I contributed but where I was not the lead
author. These projects demonstrate the versatility and usefulness of the devel-
oped methods and the importance of 3D dust in studying the ISM.

6.1 JAXbind: Bind any function to JAX

JAX has proven to be an incredibly powerful tool for handling large statistical
models. Of particular interest when working with JAX is its transformation sys-
tem for taking arbitrary high derivatives of functions, batching computations,
and just-in-time compiling code for additional performance. JAX has become
widely adopted in the scientific community and underpins NIFTy.re. However,
JAX’s transformation system requires that all parts of the computation be writ-
ten in JAX. To make NIFTy.re a truly generic modeling toolkit, we need to inter-
act with functions (and their derivatives) that cannot be efficiently expressed in
JAX due to JAX’s control flow constraints, its focus on regular-shaped tensors,
or simply due to time constraints. One such function that we would like to use
in NIFTy.re is the highly optimized radio-interferometric gridder implemented
in C++ and described in Arras et al. (2021). Implementing the gridder natively
in JAX is infeasible due to JAX’s focus on regular-shaped tensors.

Motivated by our desire to do radio-interferometric imaging with NIFTy.re,
Jakob Roth, Martin Reinecke, and I developed a generic software package called
JAXbind, which bridges foreign functions and their derivative to JAX. The pack-
age complements the focus of NIFTy.re on JAX. To the best of our knowledge,
no other code currently exists for connecting generic functions with full deriva-
tive support to JAX. We describe the software in an equal-author article (Roth
et al., 2024) which is currently under review at the Journal of Open Source Soft-
ware. Jakob Roth and I wrote most of the Python code and extended the C++
code of which Martin Reinecke wrote the initial version and helped in its later
development.

Internally, JAXbind registers a so-called primitive with JAX. To JAX, this
primitive appears like a generic JAX code that supports all its transformation
rules. Users are required to hand-code their derivatives and transposition rules,
but they only need to expose these functions through a standard Python in-
terface. Whenever JAX calls any transformation of our primitive, we call back
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to the appropriate code where the user implemented these transformations in
plain Python. JAXbind calls these functions at the right time such that codes
connected to JAX via JAXbind can be utilized as if they were JAX-native.

JAXbind has proven highly useful in situations where new code is written in
JAX but where it is still desirable to use previous codes not written in JAX.
It enabled Jakob Roth to connect the radio-interferometric gridder described in
Arras et al. (2021) to NIFTy.re and allowed for a much larger reconstruction
by combining the previous gridder with JAX (Roth et al., 2024). JAXbind also
enabled Andres Ramirez to connect a cosmic ray propagation code (PICARD;
Kissmann, 2014) to JAX for inferring the cosmic ray density distribution in an
ongoing research project.

6.2 Galactic 3D large-scale distribution of interstellar
dust

In an unpublished article led by Reimar Leike (Leike et al., 2022), a prede-
cessor of the GP methodology described in Chapter 2 is applied to data from
PANSTARRS, 2MASS, Gaia DR2, and ALLWISE to reconstruct the 3D distri-
bution of interstellar dust out to 4 kpc. To accommodate the large number of
degrees of freedom, the reconstruction is split into small cones that were recon-
structed separately. Only in a final post-processing step are the cones aligned
with one another. Compared to the methodology described in Chapter 4, the
work uses a simpler voxelization scheme that does not allow for reconstructing
the full sky all at once and approximates the posterior much more crudely. The
reconstruction successfully demonstrated the idea behind Chapter 2, but the vox-
elization scheme, the splitting scheme, and the posterior approximation approach
led to strong artifacts throughout the map. See Chapter 4 for a comparison of
this map with our new map.

Reimar Leike wrote most of the paper, led the development, and managed the
reconstruction. My contribution entailed an extensive validation of the statistical
methodology for the spatial correlation prior. I demonstrated that, for the specific
kernel used, the model incurs errors on the order of 10% in representing the
variance between voxels at small distances.

6.3 Studies of the local ISM

I have contributed to several works that have utilized 3D dust maps for the study
of the ISM. Here, I would like to highlight a few notable articles and summarize
my contributions.

In an article led by Bouzelou Tritsis, the shape of the Musca molecular cloud
(Tritsis et al., 2022) is studied. Tritsis et al. present evidence suggesting that
Musca is radially elongated. The evidence is primarily based on theoretical con-
siderations and POS-projected polarization measurements tracing the magnetic
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field. My contribution to the article involved an extensive analysis of the 3D
dust map described in Leike et al. (2020) and the data informing it in the region
around Musca. The key data constraints for Musca’s POS and radial extent are
shown in Figure 6.1. My findings indicate that the data in the 3D dust map is
insufficient to determine whether Musca is radially elongated on scales relevant
to the study.

Figure 6.1: POS and radial data constraints for Musca. Left-hand panel: Voronoi
tessellation of AG extinction from 2187 stars within 500 pc from the Sun. Musca
is visible as a more extinct thin strip. Middle panel: Stars within the POS and
radial vicinity of Musca (distance range 165 pc to 180 pc), color coded by their
distance. The contour shows the region with AG ≥ 1.5mag from the first panel
and roughly traces Musca. Right-hand panel: Median distances of stars and their
uncertainties over the Galactic longitude of the stars. In the POS and radial
vicinity of Musca, only 37 stars directly constrain the cloud’s 3D morphology.
Figure created by me and taken from Tritsis et al. (2022).

In an article led by Kristina Monsch, the discovery and initial observations
of a giant edge-on protoplanetary disk (Monsch et al., 2024) is presented. The
protoplanetary disk is particularly noteworthy because it does not appear to be
connected to any notable star-forming region. My contribution to this research
involved analyzing the 3D distribution of interstellar dust in the vicinity of the
disk. I identified dense molecular clouds along the LOS, which might be poten-
tial birthplaces of the star. This analysis provided valuable constraints on the
distance to the protoplanetary disk and helped constrain its size.

In O’Neill et al. (2024), an article led by Theo O’Neill, the precise shape of
the Local Bubble is studied. The newly inferred shape of the Local Bubble is
shown in Figure 6.2. The analysis suggests that the Local Bubble more closely
resembles a Local Chimney with an open top. The new analysis is enabled by
the 3D dust map described in Chapter 4, which extends to much larger distances,
including at high Galactic latitudes. I contributed to the study with early access
to the 3D dust map and an extensive analysis of peculiarities in 3D dust maps
for the study of faint structures at low distances.
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Figure 6.2: A 3D view of the Local Bubble respectively the Local Chimney in-
ferred by O’Neill et al. from the map described in Chapter 4. The inner, peak,
and outer edges of the Local Chimney’s shell are shown in light blue, medium
blue, and dark blue, respectively (see O’Neill et al., 2024, for further details).
The structure is overlaid on top of our 3D map of interstellar dust. An in-
teractive figure is available at https://theo-oneill.github.io/localbubble/
neighborhood/. Figure created by Theo O’Neill and adapted from O’Neill et al.
(2024).
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6.4 Applications outside of astrophysics

Beyond the analysis of interstellar dust, I contributed to exploring the mag-
netic field in the ISM. In two articles led by Alexandros Tsouros (Tsouros et al.,
2024b,a), a method for probing the 3D distribution of the magnetic field as a
means to trace back ultra-high-energy cosmic rays is developed. The method is
validated on synthetic data. See Figure 6.3 for a reconstruction of the magnetic
field in 3D from synthetic data. I contributed to the articles through extensive
discussions and pair-programming sessions focused on developing a divergence-
free model for the magnetic field.

(a) (b)

Figure 6.3: A 3D view of a magnetic field reconstruction from synthetic data.
Panel (a): Local and sparse POS synthetic magnetic field measurements. The
observer location is highlighted in blue. Panel (b): Posterior mean of the mag-
netic field reconstruction from the local and sparse POS synthetic magnetic field
measurements. Figures created by Alexandros Tsouros and adapted from Tsouros
et al. (2024a).

6.4 Applications outside of astrophysics

In addition to exploring the physics of the ISM, I contributed to a project ap-
plying similar statistical and computational methods outside of astrophysics. In
a publication led by Matteo Guardiani (Guardiani et al., 2022), an IFT-based
method is developed to quantify the causal relationship between the age and
virus load in patients diagnosed with COVID-19. My role in this project in-
volved writing code for the causal inference model. Specifically, I helped write
the final algorithm that models probability density functions as smooth normal-
ized functions. This model is a key component for the quantification of the causal
relationship. The algorithm for inferring smooth probability densities from noisy
count data which was developed as part of this article, was published as a sepa-
rate software publication (Edenhofer et al., 2023a).
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7 Conclusion

7.1 Summary

The thesis discusses the creation of the largest high-resolution 3D map of inter-
stellar dust to date. We begin by examining the required statistical GP method-
ology for arbitrarily spaced volume elements, an essential ingredient for modeling
interstellar dust in 3D. Our new method represents the modeled volume at mul-
tiple resolutions, coupling voxels only locally but across resolutions. Thus, all
voxels are correlated, though correlations become coarser with increasing distance
between voxels. The multi-resolution view results in an algorithm that is both
accurate in representing the desired GP and highly efficient. Compared to the
current state-of-the-art, the algorithm is about two orders of magnitude faster.
The developed approach scales linearly with the number of volume elements,
enabling the modeling of larger volumes at high resolutions.

Next, we discuss NIFTy.re, a novel Bayesian probabilistic modeling frame-
work for handling the hundreds of millions to billions of degrees of freedom en-
countered in reconstructions of the 3D interstellar dust distribution. The frame-
work, a rewrite of NIFTy in JAX, introduces a new modeling approach and a new
optimization concept, and offers much more flexible posterior inference strategies
compared to the original NIFTy. On average, it speeds up models by two orders
of magnitude.

The main result of the thesis is our new 3D dust map. Utilizing processed
Gaia data (Zhang et al., 2023) and the methods described in Chapters 2 and 3,
we reconstruct the largest high-resolution 3D dust map to date. This map models
the density of dust via a log-normal GP and carefully accounts for the distance
uncertainties. The reconstruction extends out to 1.25 kpc in distance, features
an angular resolution of 14 ′ and a parsec-scale distance resolution.

The map encompasses more than half a billion voxels. As the reconstruction
of the map is not an algebraic inversion problem but a statistical one with uncer-
tainties in the result, we provide not just one true reconstruction but 12 posterior
samples drawn via the MGVI algorithm (Knollmüller and Enßlin, 2019). For
better accessibility of the map, we interpolate the map to spherical and regular
Cartesian coordinates and provide a set of interpolation scripts to create custom
zoom-ins in either coordinate frame. Additionally, we integrated the map into
the software package dustmaps (Green, 2018) for easy access.
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Our new map offers a fresh perspective for studying the ISM. It provides a
detailed parsec-scale 3D view of molecular clouds and their internal structure.
The map improves upon previous maps in terms of dynamic range and volume
covered at high resolution.

Using our new 3D map of interstellar dust, we study three famous molecular
clouds in the vicinity of the Sun — Musca, Chameleon, and Coalsack. We find
these clouds to be connected in 3D. We characterize the region and find the
molecular cloud which encompasses Musca, Chameleon, and Coalsack to form
a “C”-shaped structure. We term the molecular cloud the “C”. It has a radius
of about 50 pc and encompasses about 5 × 104M⊙ respectively 9 × 104M⊙ for
everything within its vicinity.

We extend our spatial 3D perspective with 3D velocity data from YSO cluster
data. Using the velocity information from these clusters, we propose a feedback-
driven origin story for the entire region. Although we only have limited veloc-
ity information from clusters, the observed shape and velocity patterns suggest
that a supernova feedback event shaped the “C”, providing a simple explanation
for the topology of the whole region. The true shape of the structure is com-
pletely obscured in POS projections, underscoring the limitations of traditional
two-dimensional observations. Our study emphasizes the critical importance of
examining the ISM in 3D.

Lastly, we discuss miscellaneous projects inside and outside of astrophysics
to which I contributed. I contributed to the development of a library for bridg-
ing scientific software to JAX. This library has already been utilized for radio-
interferometry applications with NIFTy.re (Roth et al., 2024). Furthermore,
I contributed to several articles that utilized the 3D dust map and helped in
applying the developed methods within and beyond astrophysics.

7.2 Outlook

This thesis sets the stage for studying a significant fraction of the Milky Way’s
ISM in 3D. Our 3D map of interstellar dust provides the backbone for probing
more components of the ISM in 3D and for probing much larger volumes in the
future.

We envision that our reconstruction of the 3D distribution of interstellar
dust to be used to help constrain the distribution of HI and CO in 3D. By
combining interstellar dust with HI and CO measurements, we can leverage dust
to disentangle POS observations of HI and CO while at the same time assigning
radial velocities to interstellar dust. Reconstructing HI and CO using interstellar
dust will enable us to quantify the spatial variation in the dust-to-gas ratio, a
vital ingredient for understanding star formation.

We not only envision radial velocities to be added to interstellar dust maps
but full 3D velocity information from Gaia’s proper motion measurements. YSO
clusters provide an excellent data source to constrain the 3D velocity vector
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space. With a 3D velocity vector field reconstruction, we will be able to study
the impact of feedback-driven expansion as well as galactic shear on molecular
clouds.

Looking further ahead, many more components could be combined with 3D
interstellar dust maps. With rigorous physical models, we envision all-sky maps
of the 3D distribution of the temperature of dust by combining 3D maps of dust
extinction with POS emission measurements at multiple frequencies. Further-
more, we envision 3D maps of the cosmic ray density from gamma-ray data as
well as 3D magnetic field reconstructions based on stellar polarization measure-
ments (e.g. with PASIPHAE data in the near future).

At the same time that we are probing more components of the ISM, we
should also reach out further in distance. We need to increase our sample size of
molecular clouds to quantify potential local biases and to study the dependence of
molecular clouds on their galactic environment. Furthermore, we have yet to see
galactic-scale structures like spiral arms in the ISM. Studying their formation
and interaction with medium-scale structures would teach us a lot about the
dynamics of our Milky Way. Future research will be able to answer what drives
molecular cloud formation on scales of hundreds of parsecs, how medium- to
large-scale structures such as the Split (Lallement et al., 2019) or the Radcliffe
wave (Alves et al., 2020) form, and what impact the galactic environment has on
molecular cloud properties.

Interstellar dust will continue to be the quantity of choice for probing the
Milky Way in 3D at high resolution and Gaia will continue to be the backbone
of 3D interstellar dust maps. The upcoming fourth data release (DR4) from Gaia
will need to be included in all future 3D dust maps. It is expected to be another
major step forward in quantity and quality, releasing a much larger volume of
low resolution spectra. Gaia DR4 will provide pristine extinction measurements
for up to ten times more stars compared to the current third data release. The
data will provide an almost complete sample of stars in the solar neighborhood.

To push out to larger distances, we need to turn to ground-based measure-
ments. While no ground-based catalog achieves a similar coverage and fidelity
as Gaia, they can make up for that with quality or quantity. Spectroscopic mea-
surements can provide precise anchor points at large distances to constrain the
next generation of 3D dust maps while photometric measurements can provide
the necessary data quantity for a high angular resolution. For reconstructions
focusing on the Galactic disk, data from the Dark Energy Camera Plane Sur-
vey (DECaPS; Saydjari et al., 2023) and the VISTA Variables in the Via Lactea
(VVV; Minniti et al., 2010) survey is already readily available and will enable
probing much higher extinctions. Off the Galactic plane, the SDSS-V Milky
Way Mapper mission, a spectroscopic survey of the Milky Way, is set to probe
regions much beyond Gaia, and will be a perfect complement for larger distances,
promising to expand our observational horizon substantially.

To incorporate these new datasets and significantly increase the reconstructed
volume further, new and better algorithms will remain a high priority. For prob-
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ing larger volumes, we will need to incorporate more distant stars. This will
require handling complex distance uncertainties, in particular coupled distance
and extinction uncertainties. A completely new approach to represent and sam-
ple from likelihoods that incorporate these complex, coupled uncertainties is re-
quired. Furthermore, the GP methodology needs to be extended with a highly
distributed computing infrastructure in mind to probe ever larger volumes with
soon-to-be tens of billions of voxels.
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