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A B S T R A C T

The determination of the ground state phase diagram of strongly
interacting many-body system is an inherently hard problem. With
exception of few models, analytical as well as numerical solutions are
very challenging. Instead of searching for a brute-force solution, the
focus may be shifted to the investigation of key physical properties.
Avoiding a full description of the many-body system, the machine
learning model of tensorial kernel support vector machine (TKSVM)
allows to detect phase transitions and to describe each phase in terms
of local observables. In this thesis, TKSVM, which was initially devel-
oped for studying classical systems, is generalized to the analysis
of quantum systems. The generalization is based on informationally
complete measurements, shadow tomography, and modifications of
the tensorial kernel. Crucially, the unsupervised and interpretable traits
of the learning model are preserved.

The abilities of TKSVM are demonstrated in three applications. In the
first application, training data is obtained from trapped-ion quantum
computers without error correction. Two families of quantum states,
which both admit state preparation through shallow circuits, are inves-
tigated. In both cases, the phase transition from a symmetry-protected
topological phase to a trivial phase is successfully learned and the
respective string and trivial order parameters are determined. This ap-
plication emphasizes the utility of TKSVM in the context of the current
noisy intermediate-scale quantum (NISQ) era. The second and third ap-
plications rely on synthetic quantum data, which allows to benchmark
the learning model in the absence of experimental limitations such as
system size and quantum noise effects. For a one-dimensional cluster
model with two free parameters, the phase diagram is successfully
constructed and the respective order parameters are detected. More-
over, the toric code model subject to external fields is investigated and
the explicit stabilizer operators of the topological phase are identified.

Subsequent to the three quantum applications, a classical spin model
defined on the pyrochlore lattice is finally investigated. In the low tem-
perature phase of the model, thermalization issues inhibit Monte Carlo
simulations and lead to training data of poor quality. Nonetheless,
by combined iterations of machine learning and human interpreta-
tion, a subsystem symmetry as well as an intricate hybrid dipolar-
quadrupolar order are discovered.
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Z U S A M M E N FA S S U N G

Die Bestimmung des Grundzustandsphasendiagramms eines stark
wechselwirkenden Vielteilchensystems ist ein von Natur aus schwieri-
ges Problem. Mit Ausnahme einiger Modelle sind analytische sowie
numerische Lösungen sehr anspruchsvoll. Anstatt nach einer explizi-
ten Lösung zu suchen, ist es daher oft sinnvoll die charakteristischen
physikalischen Eigenschaften des Systems zu untersuchen. Das ma-
schinelle Lernmodell TKSVM vermeidet eine vollständige Beschreibung
des Vielteilchensystems und ermöglicht es Phasenübergänge zu erken-
nen sowie jede Phase anhand lokaler Observablen zu beschreiben. In
dieser Arbeit wird TKSVM, welches ursprünglich zur Untersuchung
klassischer Systeme entwickelt wurde, zur Analyse von Quantensys-
temen erweitert. Die Verallgemeinerung basiert auf informationell
vollständigen Messungen, Schattentomographie, und Modifikationen
des Tensor-Kernels. Entscheidend ist, dass die unbeaufsichtigten und
interpretierbaren Merkmale des Lernmodells erhalten bleiben.

Das Lernmodell wird in mehreren Anwendungen demonstriert. In
der ersten Anwendung werden die Trainingsdaten von Quantencom-
putern basierend auf gefangenen Ionen ohne Fehlerkorrektur generiert.
Es werden zwei Familien von Quantenzuständen untersucht, welche
beide eine Zustandspräparation mit kurzen Schaltkreisen erlauben.
In beiden Fällen wird der Phasenübergang von einer symmetriege-
schützten topologischen Phase zu einer trivialen Phase erfolgreich
erlernt und die jeweiligen String- und trivialen Ordnungsparameter
bestimmt. Diese Anwendung hebt den Nutzen von TKSVM in der
aktuellen NISQ Ära hervor. Die zweite sowie die dritte Anwendung
basiert auf synthetischen Quantendaten, die es ermöglichen, das Lern-
modell ohne experimentelle Einschränkungen wie Systemgröße und
Quantenrauscheffekte zu benchmarken. Das Phasendiagramm eines
eindimensionalen Clustermodells mit zwei freien Parametern wird
erfolgreich konstruiert und die jeweiligen Ordnungsparameter ermit-
telt. Darüber hinaus wird das toric code Modell unter Einwirkung
externer Felder untersucht und die expliziten Stabilisatoroperatoren
der topologischen Phase identifiziert.

Abschließend wird ein klassisches Spinmodell auf dem Pyrochlor-
gitter untersucht. In der Niedertemperaturphase des Modells führen
Thermalisierungsprobleme während der Monte-Carlo-Simulation zu
Trainingsdaten von minderer Qualität. Durch kombinierte Iteratio-
nen von maschinellem Lernen und Interpretation durch den Nutzer
werden dennoch eine Subsystemsymmetrie sowie eine komplizierte
hybride Dipol-Quadrupol-Ordnung festgestellt.
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1
I N T R O D U C T I O N

At present quantum computing is without a doubt one of the most
active research areas of physics and computer science. Its inception
dates back to 1980, when the idea of a quantum computer was first
formulated by several key scientist. One of them was Manin, who men-
tioned the core idea of quantum computing in his book Computable
and Non-Computable [140]. Therein he broadly described a comput-
ing device exploiting superposition and entanglement of quantum
states. Another well known pioneer of quantum computing was Be-
nioff. Viewing computers as a physical systems, he derived the first
quantum mechanical description of a computer and the computation
process. The specific goal was to find the Hamiltonian, which guides
the time evolution of a Turing machine, i. e. the universal represen-
tative of all classical computation, in some initial state [7]. The most
famous originator of quantum computing is however Feynman, whose
idea it was to map physical laws onto a computer [36]. In the classical
limit, this idea implies the simulation of local differential equations,
but not all processes in nature have a useful classical approximation.
Therefore, the computer is supposed to mimic quantum mechanical
processes exactly as they would happen in nature or a quantum me-
chanical model of nature. An important restriction is that the number
of computation resources required to simulate the quantum mechan-
ical system do not scale exponentially with the size of the physical
system. Feynman showed that the Turing machine is not up to the
task.

Thus for simulating quantum physics, a new kind of computation
model was required, the quantum Turing machine. Analogous to
its classical counterpart, this machine was sought to be the univer-
sal representative of all quantum computation. The Church-Turing-
hypothesis states that any function is computable in a deterministic
way in finite number of steps if and only if it can be produced by a
Turing machine. In a publication in 1985 [31], Deutsch argued that
this hypothesis implies a physical principle. Namely, that the Turing
machine suffices to simulate any finitely realizible physical system.
He further reasoned that because classical physics is continuous and
the Turing machine discrete, the principle is violated. To restore the
validity of this principle, Deutsch formalized the quantum generaliza-
tion of the Turing machine, and showed that the theory of quantum
mechanics and the quantum Turing machine are again compatible
with the physical principle implied by the Church-Turing-hypothesis.
Specifically, the generalization of the Turing machine consisted in

1



2 introduction

extending the state-space by allowing superpositions of classical states.
During a computation step, the quantum Turing machine transitions
from one superposition to another in a unitary way [81].

The quantum Turing machine, even though conceptually achieving
the goal of simulating quantum physics, is not the default computa-
tion model used today, but instead it is the computation model called
quantum circuits. Today’s quantum circuits originate from yet another
contribution of Deutsch in 1989. Namely, from the quantum compu-
tational networks [30], that he designed to generalize the theory of
boolean circuits used in classical computing. Introducing quantum
wires and quantum gates as the analogue of the classical logical gate
resulted in the first version of the quantum circuit. The proof that
quantum circuits are equivalent to the quantum Turing machine in
terms of computational power and complexity followed by Yao a few
years later [25]. Because of practical limitations regarding the efficient
implementation of quantum algorithms on a quantum Turing ma-
chine, the computation model of quantum circuits soon replaced the
quantum Turing machine entirely and became the standard [81].

Besides the simulation of quantum physical processes, this new
platform of computation called for the development and exploration
of an entire field of research known as quantum algorithms. Naturally,
the existing theory of computational complexity expanded by a whole
array of quantum complexity classes [133]. The objective of quantum
algorithms research is solving specific tasks with significant advantage
over the best achievable solution on a classical computer. Quantum
advantage may be with respect to memory requirements or runtime,
and in the in the best case the task at hand would even have practical
relevance for modern day technology. In 1994, Shor indeed developed
a prime factorization algorithm [120] that not only exhibits exponential
speedup compared to the best known classical algorithm, but also
lends itself to practical application. Unsurprisingly, the combinations
of these two properties sparked a lot of interest in quantum computa-
tion. As a practical example, some public-key cryptography methods
are based on the hardness of factorization. With Shor’s algorithm
factorization becomes efficient, rendering these cryptography methods
useless. However, reliable quantum computers at the scale required
to really break these kind of cryptography methods are not yet avail-
able. In anticipation of their availability, quantum-secure cryptography
methods became an active field of research. The theoretical success
of Shor’s algorithm spawned hope that similarly efficient algorithms
could be developed for other and more general tasks than factorization.
But as it turned out, quantum algorithms solving practical tasks with
an exponential speedup are very rare. One famous early quantum
algorithm exemplifying this is Grovers algorithm [48], solving a task
with a much wider range of applications. The task is the identification
of one specific target state (e. g. represented by a bit-string) out of
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a set of N possible states, by querying an oracle the least possible
amount of times. It is equivalent to the task of searching for an entry
in a completely unstructured database. Due to the lack of structure,
there is classically no better way than a linear search with a runtime
O(N) (big O notation). Employing a technique now known as ampli-
tude amplification, Grover’s algorithm achieves a runtime of O(

√
N). It

thus hints that exponential advantage might only be possible for very
specific tasks. Although the advantage is not exponential but only
quadratic, it is nonetheless impressive and motivates further research
into similar general purpose tasks.

In regards to the task of physical simulation, there is of course one
very obvious exponential advantage. This exponential advantage is in
computation memory, and is in principle what defines a quantum com-
puter. While N classical bits have a discrete state space of size 2N, N
qubits have a continuous state space consisting of linear combinations
of the classical states with 2N independent complex coefficients (minus
1 if the quantum states are normalized). Representing a general quan-
tum state thus requires exponentially more classical than quantum bits.
Efficiently preparing a general quantum state on a quantum computer
is however a whole topic of its own, which will not be covered in
this thesis. Instead, assuming an efficient way for state preparation
is known, the considered task will be to gain as much information
as possible about the state. The assumption does not imply any kind
of knowledge about the prepared state itself. Although the quantum
computer has the capacity to store large amounts of information, the
amount of information that can be accessed efficiently is limited. This
limitation is commonly referred to as accessibility problem. Of course
all information can eventually be extracted, but it might require a
number of identical copies of the state scaling exponentially with the
number of qubits storing the state. Common methods for extracting all
information, known as full quantum state tomography typically require
O(22N) copies of a N-qubit quantum state [49, 90]. The accessibility
problem is also manifest in the quantum Fourier transform, which is
the key ingredient of Shor’s algorithm, and the source of its expo-
nential advantage. Computing the discrete Fourier transform of 2N

complex amplitudes requires O(N2N) computation steps classically
but only O(N2) steps on a quantum computer. However, in case of
the quantum Fourier transform, the transformed amplitudes are not
easy to read out after they have been computed. This is not an issue
in Shor’s algorithm, because the transformed amplitudes are merely
an intermediate result used for further computation and are never
explicitly read out. The final output, i. e. two prime factors, contains
no information about Fourier transformed amplitudes at all.

Fortunately, it is usually sufficient and satisfactory to understand
the characteristic physical properties of an unknown state, thereby
circumventing the accessibility problem of a full description of the
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state. This endeavour can be extended to a parametrized set of un-
known states, rather than a single state. Analyzing which subsets of
states share the same physical properties is then synonym to learning
the phase diagram with respect to the set’s parameters. The major
task considered in this thesis is the determination of the ground state
phase diagram of a parametrized quantum many-body Hamiltonian
and the characterization of each phase. This is achieved with a hybrid
quantum-classical scheme, rather than pure quantum computation.
In this hybrid approach, the quantum computer is used to realize
a quantum ground state for fixed Hamiltonian parameters, and to
produce data by sampling the prepared state. Crucial to this approach
is that the number of required identical copies of the state is indepen-
dent of system size. Repeating the state preparation and sampling
procedure for different values of Hamiltonian parameters produces
one dataset per parameter choice, results in large amounts of data.
And this is where the classical part of the hybrid approach comes into
play. Processing and extracting useful information from large amounts
of data is a task perfectly suitable for machine learning models.

Machine learning is nowadays a valuable tool for data analysis in
most areas of technology and research, all the while itself being subject
of active research. Specifically in the context of quantum many-body
physics, machine learning models are frequently used for the rep-
resentation of a wavefunction or density matrix, improving existing
computational methods such as Monte Carlo, quantum state tomog-
raphy, phase classification and inferring phase transitions like in this
thesis, and more [17, 78]. When speaking of machine learning, the
neural network is the first type of model that comes to mind. Inspired
by the mammalian brain, neural networks consist of connected neu-
rons as basic computation units. Similar to its biological counterpart,
neural networks learn by establishing connections between the neu-
rons. Connections between neurons are modelled by numbers and
constitute (among others) the internal parameters of the neural net-
work. During the learning stage, these internal parameters are tuned
to achieve a desired result. Overall, a neural network can be seen as
a directed weighted graph whose architecture plays a crucial role for
what kind of task it is suited for. Arguably the most popular architec-
tures within and outside of physics applications include the restricted
Boltzmann machine [79], the convolutional neural network [71, 73], the gen-
erative adversarial network [4] and the variational auto-encoder [61]. What
most neural network applications have in common is their extensive
amount of internal parameters. Regarding physics applications, this
is in principle unproblematic as long as their number does not scale
exponentially with the physical system size. However, there can be
an issue concerning the learning model’s interpretability. Admittedly,
the generative and predictive power of neural networks are more
than impressive, but it is of little worth if no new theoretical insight
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is gained. While for industrial applications understanding the deci-
sion making of the learning model is often of no relevance at all, e. g.
self-driving cars, the situation is entirely different for physics appli-
cations, where the purpose of the learning model is ultimately better
understanding of the underlying problem or data. This circumstance
was the motivation of Ponte and Melko, when they first employed
a support vector machine (SVM) as machine learning tool to analyze
condensed matter models in 2017 [97]. They demonstrated the strong
interpretability of SVM by considering several prototypical Ising-type
models and exhibiting that the internal parameters directly reflect the
order parameter of the respective symmetry broken phases.

Building on the work of Ponte and Melko, Greitemann et al. ex-
tended the range of applicability of the SVM to general classical O(3)-
breaking multipolar orders [44, 45]. This was achieved by introducing
a tensorial kernel with the ability to capture even the most intricate
multipolar orders [87]. Shortly after, Liu et al. discovered a special
significance of one of the intrinsic parameters of the SVM [75]. Namely
the bias parameter, acting as an indicator for the existence of phase tran-
sitions. The SVM is technically a supervised machine learning model,
meaning that the training data must be labelled according to a priori
knowledge on the physics of the underlying model or states. Exploit-
ing the criterion imposed by the bias parameter, however, supervision
of the learning task can be delegated entirely to the machine, dismiss-
ing the need for any physical information about the input. TKSVM

thus represents an unsupervised and interpretable learning model,
capable of classifying and characterizing physical phases of classi-
cal many-body systems. The main contribution of this thesis lies in
the generalization and adaptation of the TKSVM learning model to
quantum many-body problems, see Figure 1.1 for an overview of the
workflow.

Classical data is comparably simple to produce. Any classical O(3)-
spin model may in principle be simulated by means of Monte Carlo
simulation. Surely even for classical models difficulties such as ther-
malization issues due to a complex energy landscape may arise. But
quantum data is at present undoubtedly much more difficult to obtain
given that only few quantum many-body models can even be simu-
lated in a somewhat reliable way. It could be argued that this is mainly
due to the maturity of classical computers contrasted with quantum
computers that are still a theoretical and especially practical work in
progress.

On the theoretical side, efficient ground state preparation of an arbi-
trary Hamiltonian is still an open question [72]. Existing theoretical
techniques to prepare ground states on a quantum device usually rely
on a specific structure of the Hamiltonian, specialized circuit layouts,
the use of ancilla qubits or heuristics and often only approximate
the true ground state [33, 41, 74, 95]. The experimental realization
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Figure 1.1: Workflow of TKSVM. Input data is produced by sampling quantum
states. After training, the phase diagram topology as well as local
order parameters are extracted from the internal parameters of
the learning model.

of quantum computing seems even more challenging, due to the ne-
cessity to shield the quantum system from external disturbances to
avoid decoherence, while at the same time manipulating it in order
to carry out calculations. Since the inception of quantum computing
many different, physical implementations have been proposed and
implemented. The technologies fundamentally differ in what kind
of physical two-level system is used to represent a qubit. Naturally,
the choice of the qubit realization governs the way in which intializa-
tion, gate operations and readout are effected. There are several key
quantities such as gate fidelity, coherence time, gate execution times,
qubit control and connectivity, and scalability, that are indicative of
the quality of a quantum computer. However, their sheer numbers
can be misleading and therefore different methods such as volumetric
benchmarking [8] have been proposed to compare different platforms.
Another possible metric used in the past is how well a quantum com-
puter outperforms a classical one for a given generic task. This is
again sub-optimal since classical computer are also constantly scaled
up in capacity and are thus not a fixed point of reference. Besides,
such a metric might also strongly depend on the chosen task. Given
the current rate of experimental progress and innovation, efforts to
establish a ranking among the most promising quantum computing
platforms would be in vain anyway. At present, the platforms with the
most impressive achievements or with the most promising potential
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include trapped ions [55, 98], super-conducting qubits [2, 60], silicon
qubits [83], and neutral atoms [9, 21].

The scale of computations that are reliably performed on any of
these platforms is limited by quantum noise, originating from imper-
fect initialization or quantum gates, faulty measurements or general
decoherence due to interaction with the environment. To overcome
the current NISQ era [100] continuous effort is being made to reduce
noise, e. g. by improving hardware, but fundamentally some degree
of imperfections will always remain. Therefore, in addition to noise
reduction, methods to detect and correct computation errors caused by
the noise during runtime are being developed and demonstrated [13,
98, 121]. These methods, called error correction codes, prescribe the way
in which several physical qubits represent a single protected logical
qubit. Moreover, they describe how gate operations are effected on
a multicomponent logical qubits and how errors are detected and
corrected in the redundant qubit representation. Each code has an
intrinsic error threshold that must not be crossed in order for the
code to be effective, thus even with error correction the noise must be
minimized by improving gate fidelities etc. Since protected qubits are
comprised of several physical ones, scaling up their number becomes
even more challenging, and the time it will take to achieve fully fault-
tolerant quantum computation is hard to estimate. Nonetheless, past
and current progress admit some optimism.

The premise of this thesis is that reliable ground state preparation
will become possible for many interesting if not arbitrary quantum
many-body Hamiltonians in the future. Because of the current limi-
tation due to quantum noise, the focus lies on the methodology and
benchmarking of TKSVM by application to well understood many-body
models, rather than on the investigation of models whose characteris-
tic physics are unknown. The capabilities of TKSVM to gain physical
insight are demonstrated, and the problem of investigating poorly
understood models is accordingly inhibited only by state preparation.

The thesis is structured as follows: Chapter 2 is dedicated to the
properties of the special type of measurements that are required for
quantum applications of TKSVM. Several sampling techniques to gen-
erate training data are covered. Next, the notion of shadow tomography
and classical shadows is reviewed in Section 3.1. The concept is em-
ployed to compute estimators of local observables from snapshot data,
which is relevant for the definition of the tensorial kernel. In Chap-
ter 4, the basics of the SVM are reviewed and the tensorial kernel is
introduced. Both the classical and the quantum variant of the TKSVM

are discussed and their key differences highlighted.
Finally, in Part ii, four different applications of TKSVM are show-

cased. The first and most important application is centered around two
parametrized families of states, both admitting state preparation with
shallow quantum circuits. Quantum data is obtained from state-of-the-
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art trapped-ion devices without error correction in collaboration with
the University of Innsbruck. For both families, the phase transition
from a symmetry-protected topological phase to a trivial phase is
successfully learned and the respective string and trivial order param-
eters are determined. It is worth mentioning that some of the datasets
were produced on the world’s first compact (two 19-inch server racks)
quantum computer [96] meeting DiVincenzo’s criteria for quantum
computation [32].
In the second application, a one-dimensional cluster model is con-
sidered. Relying on synthetic data, the phase diagram of the model
is successfully constructed and the order parameters of its phases,
especially the string order parameters, are detected. The model is
closely related to one of the families of states considered in the first
application, but goes beyond experimental limitations in terms of
system size.
As third application, the toric code model subject to external magnetic
fields is investigated. Input data is obtained from exact diagonalization
of the Hamiltonian. Since the topological phase of the model has global
character, it can’t be fully characterized by TKSVM, which is based on
local quantities. Nevertheless, the explicit stabilizer operators of the
topological phase are obtained, which may be seen as local traits of
global order.
In contrast to the first three applications, the fourth and last appli-
cation treats a classical model, meaning that spin degrees of free-
dom are approximated as three-component real vectors. The model
is defined by Heisenberg interactions on the pyrochlore lattice, i. e. a
three-dimensional network of corner-sharing tetrahedra, with addi-
tional Dzyaloshinskii–Moriya interaction on a subset of tetrahedra.
Rather than determining the already known phase diagram of the
model, the focus lies on characterizing one of its phases. By employing
TKSVM, a subsystem symmetry as well as an intricate hybrid dipolar-
quadrupolar order are discovered.



Part I

T H E O RY





2
Q UA N T U M D ATA A C Q U I S I T I O N

The input for TKSVM is always a set of snapshots, i. e. local measure-
ments repeatedly taken at every site of the quantum many-body
system under investigation. While many machine learning algorithms
rely on projective measurements (also called von Neumann measure-
ments) to produce snapshots, this is not sufficient for the purpose of
TKSVM. When taking projective measurements, e. g. in the computa-
tional basis, some amount of information about the original quantum
state is unavoidably lost. This loss of information can be remedied
by resorting to generalized measurements, historically called positive
operator-valued measure (POVM), with special properties. In the sub-
sequent section, a summary about quantum measurements and their
required properties will be given, illustrated by the specific examples
used in Part ii. The remainder of this chapter treats several meth-
ods for efficiently sampling these quantum measurements from the
many-body system to produce input data.

2.1 generalized measurements

Any quantum measurement is mathematically defined by a collection
of measurement operators M = {Ml }, fulfilling the identity and non-
negativity conditions [86]∑

l

Ml = I and ⟨ψ|Ml|ψ⟩ ⩾ 0 ∀ |ψ⟩ . (2.1)

Both these conditions are necessary to interpret the expectation values
of the measurement operators as probabilities. Assume a quantum
system is in a state |ψ⟩ prior to measuring, then the probability that
the outcome Ml occurs is given by ⟨ψ|Ml|ψ⟩. Projective measurements
only qualify as such, if furthermore the measurement operators are
mutually orthogonal projectors MkMl = δklMk. By allowing the
measurement operators to be non-orthogonal, one obtains the wider
class of generalized measurements. Thus projective measurements
are merely a special case of generalized measurements. In contrast
to projective measurement, generalized measurements can be infor-
mationally complete. This is the case when the measurement operators
suffice to express any density matrix ρ ∈ Cd×d as a linear combination
ρ =

∑
l clMl with cl ∈ C. This can only be achieved if the measure-

ment has a minimum size of |M| ⩾ d2. A projective measurement can
never be informationally complete, given that a set of more than d
projectors can never be mutually orthogonal.

11
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Subsequently, two important types of generalized measurements,
mutually unbiased bases (MUB) and symmetric informationally com-
plete POVM (SIC-POVM), will be discussed. Moreover, the Haar measure
is used to construct a generalized measurement and a crucial relation
with the other two kinds of POVM is established.

mutually unbiased bases The idea behind MUB is simple: since
measurements in the computational basis are not informationally
complete, add more orthogonal bases to the measurement until it
becomes informationally complete. The term mutually unbiased refers
to the relation between the different orthogonal bases that are part
of the measurement. Two orthogonal bases { | vk⟩ } and { | wl⟩ } are
mutually unbiased, if the inner product of any pair of basis states
always has the same magnitude |⟨vk|wl⟩| = 1/

√
d ∀ k, l. A natural

question is about the existence and the maximal number of MUB in a
given dimension d. The maximal number of MUB is generally at most
d+ 1. But when d is the power of a prime, exactly d+ 1 MUB do exist,
and explicit constructions thereof are known [64, 135].

A set of MUB states can directly be converted into a generalized
measurement by defining projectors |vl⟩ ⟨vl| onto each of the ba-
sis states |vl⟩. The projectors have to be sub-normalized as Ml :=

|vl⟩ ⟨vl| /(d + 1) in order to satisfy the identity condition in Equa-
tion 2.1. Informational completeness can only be achieved if there
are at least (d+ 1) MUB, meaning the set is maximal in case of prime
power dimensions. Since in this work all POVM are necessarily infor-
mationally complete, the term MUB should always be understood as a
maximal set of MUB from here on.

Certainly the best known example of MUB is the set of eigenstates
of the Pauli matrices{(
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In higher dimensions MUB are less commonly known. Applying the
procedure from [135], a maximal set of MUB for d = 3 can be computed
as 
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(2.3)

with q± = e±2πi/3.
Generalized measurements constructed from MUB have an impor-

tant advantage over other types of POVM. Namely, they are a collection
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of multiple projective measurements, where no projective measure-
ment is favored over another. This can be exploited by randomly choos-
ing a basis in which to measure, and then performing a projective
measurement in that basis, as shown later in Section 2.3. Compared to
implementing the POVM directly, this approach requires less resources.

sic-povm The second important class of generalized measurements
used in this work are SIC-POVM, which are derived from a set of d2

states, such that the magnitude of the inner product is perfectly uni-
form through all possible pairs of states. More explicitly, the mag-
nitude of the inner-product equals |⟨vk|vl⟩| = 1/

√
d+ 1 for k ̸= l. In

contrast to MUB, none of states are orthogonal. SIC-POVM are known in
dimensions up to d = 151 either analytically or numerically [40], but it
remains an open question if they exist in all dimensions. Furthermore
SIC-POVM are minimal, in the sense that they saturate the size require-
ment |M| ⩾ d2 necessary for informational completeness. Depending
on the use case, this can yield computational advantages compared to
larger sized POVM. In d = 2 dimensions only two SIC-POVM exist, and

(a) Unbiased Bases (b) Tetrahedral

Figure 2.1: Two common POVM for d = 2 visualized in the Bloch sphere.
(a) MUB vectors spanning a regular octahedron. (b) State vectors
defining a SIC-POVM. They span a regular tetrahedron.

they are related by inversion symmetry. Following the construction
from [108], an explicit example of a SIC-POVM is defined by the states{(

α

β

)
,

(
α

−β

)
,

(
β

iα

)
,

(
β

−iα

)}
(2.4)

with α,β =
√

(3±
√
3)/6. A global rotation does not result in a qual-

itatively different measurement since it merely represents a change
of the coordinate system. Meanwhile in d = 3 dimensions, there exist
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infinitely many qualitatively distinct SIC-POVM. One of them expressed
in terms of its defining state vectors is given by

1√
2

{−1

−1

0

 ,

10
1

 ,

 0

−1

−1

 ,

 1

−ω

0

 ,

ω
2

0

−ω

 ,

 0

ω2

1

 ,

 −1

−ω2

0

 ,

−ω

0

ω2

 ,

 0
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}

(2.5)

where ω = eiπ/3. Explicit examples are given for dimensions d = 2

and d = 3 because these are the local Hilbert space dimensions of the
models that will be discussed in Part ii. For dimension d = 2, quantum
states admit an intuitive visualization and are therefore displayed in
Figure 2.1 to emphasize their symmetry.

haar measure Sets of random projectors or equivalently sets
of random pure states can also be used to construct informationally
complete POVM. Usually the corresponding measurement operators
are not specified explicitly, but instead a probability density function
over them is considered. Measurement operators are then generated
by sampling according to the probability density [80]. In many appli-
cations, a uniform probability density over pure states is desired, and
this density is known as the Haar measure.

Consider the set of pure states in d dimensions, i. e. the sphere
Sd−1 of normalized vectors in the complex vector space Cd. Global
phases are not observable, hence two states |v⟩ and |w⟩ are equivalent
|v⟩ ≡ |w⟩, if they merely differ by a phase |v⟩ = eiθ |w⟩. Taking this
into account, define the quotient space with respect to the equivalence
relation as CSd−1 := Sd−1/ ≡. An informationally complete infinite
size POVM is then immediately defined by the set of projectors onto
the states |v⟩ ∈ CSd−1 distributed according to the Haar measure µ on
this space. In order to satisfy the continuous equivalent of the identity
condition∫

CSd−1

|v⟩ ⟨v|dµ(v) = I (2.6)

(cf. Equation 2.1), the Haar measure must be normalized as µ(CSd−1) =∫
CSd−1 dµ(v) = d. The resulting generalized measurement is rarely

used for practical purposes, because its implementation is less resource
efficient than for other kinds of POVM and the additional overhead
needed for bookkeeping of many parameters make it rather unwieldy,
especially in higher dimensions. There is, however, an important prop-
erty of the Haar measure that is very desirable in the context of shadow
tomography, which is the subject of next chapter. Namely, the quantum
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channel by which the density matrix is transformed when taking the
expectation value over measurement outcomes, has a simple analytical
form. Formally that quantum channel is defined as

Q(ρ) = E
(
|v⟩ ⟨v|

)
=

∫
CSd−1

|v⟩ ⟨v|Tr
[
|v⟩ ⟨v| ρ

]
dµ(v). (2.7)

Evaluating this integral explicitly [47] yields the concise formula

Q(ρ) =
ρ+ Tr(ρ)I
d+ 1

. (2.8)

Technically this formula holds not only for density matrices, but for
general Hermitian matrices. Note that by substituting the identity ma-
trix I for ρ in Equations 2.7 and 2.8, the identity condition Equation 2.6
is recovered.

complex projective designs In principle, the quantum channel
could be computed for any POVM. This might however be tedious for
a general POVM in lack of additional structure or symmetry. To save
effort, one might employ a class of finite-sized and informationally
complete POVM possessing the same quantum channel as the Haar
measure. Specifically, for a finite generalized measurement M = {Ml },
the requirement that the respective quantum channels match is ex-
pressed as

|M|

d

∑
l

MlTr
[
Mlρ

]
=

∫
CSd−1

|v⟩ ⟨v|Tr
[
|v⟩ ⟨v| ρ

]
dµ(v). (2.9)

Rewriting the POVM elements in terms of their defining states Ml = For SIC-POVM
|M| = d2, while for
MUB
|M| = d(d+ 1).

d
|M|

|vl⟩ ⟨vl| and dividing both sides by µ(CSd−1), which equals d,
yields

1

|M|

∑
l

f
(
|vl⟩ ⟨vl|

)
=

1

µ(CSd−1)

∫
CSd−1

f
(
|v⟩ ⟨v|

)
dµ(v) (2.10)

where f(x) = xTr[xρ]. The class of POVM fulfilling this equation for
even more general functions f are called complex projective designs,
because the domain of the right-hand side, CSd−1, is isomorphic to
the complex projective space CPd−1. To be more precise, any finite
POVM M is called a complex projective t-design, if Equation 2.10 holds
for any polynomial f in d variables and of degree t or less.

All SIC-POVM as well as all MUB are at least t = 2-designs [64].
In summary, the usage of SIC-POVM or MUB is advantageous due
to their symmetry properties, implying the same quantum channel
as for the Haar measure while allowing for more resource efficient
implementation (e. g. shallow quantum circuits). Furthermore, in the
context of quantum state reconstruction, which is implicitly used
in TKSVM, they minimize the statistical noise originating from the
finiteness of data sets [115].
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2.2 matrix product state sampling

The generalized measurements discussed so far are defined on a
Hilbert space of dimension d. From here on this shall refer to the
dimension of a single site (local Hilbert space) of an interacting many-
body quantum state. To produce snapshots to feed to the machine
learning model, the generalized measurements are successively taken
on each site of the system. The way this is achieved depends on
the platform that the quantum state to be sampled is represented in.
With the goal of benchmarking the capabilities of TKSVM in mind, an
efficient and reliable classical representation of the quantum states is
very desirable. One such representation is the matrix product state
(MPS) representation, which will be briefly reviewed before describing
an algorithm for sampling POVM.

matrix product states The discussion of MPS in this paragraph
covers the minimal aspects needed in order to understand the sam-
pling procedure. For a profound introduction to the matter, the reader
may refer to [93] or [114].

Consider an arbitrary pure quantum state |ψ⟩ ∈ (Cd)⊗N character-
izing a N-site system, with d-dimensional local state spaces {σi } at
each site i ∈ { 1, . . . ,N }. The state is most generally expressed as

|ψ⟩ =
∑

σ1,...,σN

cσ1...σN
|σ1 . . . σN⟩ (2.11)

with exponentially many coefficients cσ1...σN
. By subsequently re-

shaping and decomposing the object cσ1...σN
, any such state can in

principle be represented as a MPS

|ψ⟩ =
∑

σ1,...,σN

Aσ1Aσ2 · · ·AσN−1AσN |σ1 . . . σN⟩ (2.12)

where the object Aσi is a matrix of a certain bond dimension. In general,
the bond dimension scales exponentially with the number of sites,
rendering the transformation numerically intractable. This is why in
practice, the bond dimension is truncated to a fixed maximal value, re-
sulting in an approximate representation of the original state. Whether
or not this approximation is appropriate, depends on the nature of
the state. In fact, there exists a special class of quantum states whoseTruncation happens

during the
Singular-Value-
Decomposition,

which is heavily used
in the context of
MPS. It refers to

discarding a subset
of singular values.

bond dimension does not grow with the number of sites N. For these
states, a suitable truncation only discards singular values that vanish
anyway, and thus the state remains exact. Often times the term MPS is
used for exact MPS in the literature. Furthermore, the term MPS usually
refers to systems in one spatial dimension, e. g. a chain of sites. Even
though technically MPS can be formulated for systems in higher spatial
dimensions, they are not numerically manageable and hence rarely, if
ever, discussed.
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Note that as written in Equation 2.12, the system has open boundary
conditions, and rather than matrices, the edge-objects Aσ1 and AσN

represent a row- and a column-vector, respectively. The alternative
formulation for periodic boundary conditions requires taking the
trace over all A-objects Tr(Aσ1Aσ2 · · ·AσN−1AσN), where the edges
are proper matrices and not vectors.

right canonical mps The MPS representation of a state, Equa-
tion 2.12, is not unique. For example, by choosing matrices Ci and
Gi fulfilling CiGi = I for i ∈ { 1, . . . ,N }, and inserting them in be-
tween each product of A-matrices, the representation of the state is
transformed to

|ψ⟩ =
∑

σ1,...,σN

Bσ1Bσ2 · · ·BσN−1BσN |σ1 . . . σN⟩ (2.13)

with Bσ1 = Aσ1C1, Bσi = Gi−1A
σiCi for 1 < i < N and BσN =

GN−1A
σN . This circumstance is generally exploited to facilitate MPS

computations and reduce their numerical cost. For instance, transform-
ing the MPS into a special form prior to sampling from it, saves the
computational cost of many matrix multiplications. The right canonical
form of a MPS is defined by the following condition∑

σi

BσiBσi† = I for all i ∈ { 1, . . . ,N } (2.14)

which is represented graphically in Figure 2.2. One may equiva-

B

B∗

σi c

b

b ′

= δb ′b

Figure 2.2: Right normalization condition for the B-matrices. The summation
runs over the physical index σi as well as the right bond index
c. Explicitly, the normalization condition reads

∑
σic

B
σi
bcB

σi∗
cb ′ =

δb ′b. In case of open boundary conditions, BσN is a vector with
a single (left) bond index, and thus the sum only runs over the
physical index σN. If the normalization condition is fulfilled for
all sites i, the MPS is right canonical.

lently transform the MPS into left canonical form, which is defined by
Equation 2.14 with swapped order of B-matrices, BσiBσi† → Bσi†Bσi .
To achieve the aforementioned computational advantage, the site-
sequential sampling algorithm must start from the left-most site if the
MPS is in right canonical form, and from the right-most site if the MPS

is in left canonical form.
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sampling algorithm Given a right canonical MPS with open
boundary conditions, the aim is to sequentially sample a finite POVM

M = {Ml } at each site. Recall that each POVM element is associated
with a normalized local state |vl⟩, Ml = d

|M|
|vl⟩ ⟨vl|. The algorithm

splits into two steps, that are repeated at each site i. Starting from the
left-most site i = 1:

• Step 1: Compute the discrete probability density {pl } to obtain
the measurement outcome Ml on site i. The outcome Ml is
treated as a random variable in this context. Numerically sample
from the probability density, to generate a concrete realization
of Ml, denoted Mli , and save its index li as part of the final
measurement string.

• Step 2: Collapse site i to the measured state |vli⟩, and perform
the appropriate contractions to reduced the size, i. e. the number
of sites, of the MPS. More specifically, apply the state |vli⟩ to the
MPS, prior to summing over the physical index σi and the right
bond index of the B-vectors on site i. This effectively reduces
the B-matrices on site i+ 1 to vectors and prepares them for
sampling in the next iteration.

• Proceed to site i+ 1.

The final output of the algorithm is a measurement string l1l2 · · · lN ∈
{1, . . . , |M|}N, which represents a single snapshot. The algorithm is
summarized graphically in Figure 2.3.

The updated B̃-vectors on site i+ 1, obtained from contracting the
sampled local state |vli⟩ with the B̃-vectors of the previous site i and
the B-matrices of site i+ 1, can be expressed in a recursive formula

B̃
σi+1
c =

∑
σi,b

vσi

li
B̃σi

b B
σi+1

bc (2.15)

with the initial condition B̃σ1 = Bσ1 . At the last site N, the original
B-objects are vectors with only one (left) bond index. Therefore the up-
dated B̃-objects are scalars and the index c drops out of Equation 2.15.
Assuming the bond dimension and the physical dimension d are the
same at all sites, generating a single snapshot scales quadratically with
the bond dimension and the physical dimension, and linearly with
the number of sites and the POVM-size |M|.

2.3 quantum circuit sampling

Unfortunately not all quantum states admit a MPS representation,
but only those with a favorable scaling of the bond dimension as a
function of system size. Quantum computers, on the other hand, are
in theory suitable for efficiently representing any quantum state. Since
the origin of the snapshot-like input data does not matter, TKSVM can
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=Ml Ml → {pl }

⟨l1 · · · li−1;ψ|

|l1 · · · li−1;ψ⟩
i i+ 1 N i

(a) Step 1

vli

=

⟨vli |l1 · · · li−1;ψ⟩ |l1 · · · li;ψ⟩

B̃ B B̃

σi σi+1 σi+1

b c c

(b) Step 2

Figure 2.3: Algorithm for site-sequential sampling of a local POVM from a
MPS. The first i − 1 sites have already been sampled and the
respective outcomes are stored in the partial measurement string
l1 · · · li−1. Further the original N-site state |ψ⟩ has been collapsed
to a (N− i+ 1)-site state denoted as |l1 · · · li−1;ψ⟩ :=

(
⟨vl1 |⊗

· · · ⊗ ⟨vli−1
|
)
|ψ⟩. (a) Computation of the probability density for

POVM outcomes Ml on site i. All contractions to the right of site
i reduce to the identity, due to the right canonical form of |ψ⟩.
(b) Collapse of site i to the state |vli⟩, followed by contraction of
one physical σi and one bond index b, highlighted in purple. The
B-matrices at site i+ 1 become vectors Bσi+1

bc → B̃
σi+1
c , and the

number of sites is reduced by one.

be employed in combination with a universal quantum computer to
investigate arbitrary states. Setting aside the issue of reliable state
preparation, this section treats POVM sampling methods from states
encoded as quantum circuits. Because the measurements are local,
they do not significantly impact the overall circuit depth.

naimark’s dilation theorem For practical reasons, the direct
experimental implementation of generalized measurements is usually
circumvented by converting it to a simple projective measurement
on an extended space. The physical system that is to be measured is
extended by introducing an ancillary system. With unitary evolution
of the composite system, the POVM outcomes acting on the physical
system are mapped to projective outcomes acting on the composite
system. The existence of such a map is guaranteed by Naimark’s dilation
theorem [91]. For simplicity, the following discussion is restricted to
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the measurement of a single site. In case of a multi-site system, the
same technique is applied to each site simultaneously, contrary to the
sequential MPS sampling.

Consider a POVMM and a state |ψ⟩, both defined on a d-dimensional
Hilbert space. Additionally, define projective measurements on the
composite system as P = {P1, · · · ,P|M|}, and associate each POVM ele-
ment with one of the projective elements, Ml ↔ Pl. Further, assume
the ancillary system is in the initial state |A⟩. Due to Naimark’s theo-
rem, it is always possible to find a unitary U acting on the composite
system |A⟩ ⊗ |ψ⟩, such that the probability of measuring Pl on the
composite system matches the probability of measuring outcome Ml

on the physical system

⟨A|⊗ ⟨ψ|U†PlU |A⟩ ⊗ |ψ⟩ = ⟨ψ|Ml|ψ⟩ . (2.16)

The arguably simplest and most generic way to implement Naimark’s
theorem is measuring the ancillary system only, as demonstrated
in [86]. Towards this end, the ancillary system’s dimension must
equal |M| and the orthogonal projectors are given by Pl = |l⟩ ⟨l|⊗ I,
where {|l⟩} forms an orthonormal basis for the ancillary space. Then,
the unitary is specified by its action onto the composite system of
dimension dcomp = d · |M|,

U |A⟩ ⊗ |ψ⟩ =
∑
l

|l⟩ ⊗
√
Ml |ψ⟩ . (2.17)

It is important to note that this equation defines the action ofU only for
physical states coupled to one specific ancillary state |A⟩. Equation 2.17

doesn’t specify how U acts onto any ancillary state other than its
initial state |A⟩. Therefore, as specified above, U is technically an
isometry from a d-dimensional into an dcomp-dimensional space, rather
than a proper unitary. Specifically, writing U =

∑
l |l⟩ ⟨A| ⊗

√
Ml,

trivially fulfilling Equation 2.17, is not unitary. Quantum circuits are
however based on unitary evolution, implying that the isometry must
be extended to a full unitary for application in a circuit. In matrix
language, the isometry can be seen as a set of d columns, that are a
subset of the dcomp columns of a full unitary. Thus the full unitary
is obtained by determining the remaining dcomp − d columns such
that the resulting (dcomp × dcomp)-matrix is unitary. There are several
methods to achieve this, the most common of which is likely the
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Gram-Schmidt process. Equation 2.16 for the action of U as specified
in Equation 2.17 is confirmed by

⟨A|⊗ ⟨ψ|U†PlU |A⟩ ⊗ |ψ⟩

=
∑
l ′,l ′′

⟨l ′|⊗ ⟨ψ|
(
|l⟩ ⟨l|⊗

√
Ml ′

†√
Ml ′′

)
|l ′′⟩ ⊗ |ψ⟩

=
∑
l ′,l ′′

⟨l ′|l⟩ ⟨l|l ′′⟩ ⟨ψ|
√
Ml ′

†√
Ml ′′ |ψ⟩

= ⟨ψ|Ml|ψ⟩ .

(2.18)

While in this instance the composite system has dimension dcomp = d ·
|M|, there exists another method yielding a lower dimension dcomp =

|M| [29, 92]. To achieve a lower dimension, first each POVM element is
associated with a local sub-normalized state |vl⟩, Ml = |vl⟩ ⟨vl|, with
|⟨vl|vl⟩| = d/|M|. These states define the isometry

V̂ =


v†
1

v†
2
...

v†
|M|

 ∈ C|M|×d (2.19)

where vl denotes to the column vector representation of the state |vl⟩;
v†
l is thus the row vector with conjugated elements. By definition, any Notation: the symbol

V denotes an
operator, whereas the
symbol V̂ denotes the
corresponding
matrix in the
standard
computational basis.

isometry V̂ has orthonormal columns, allowing to extend it into a full
unitary without altering the existing columns. Orthonormality of the
existing columns is guaranteed since M satisfies the identity condition∑

l |vl⟩ ⟨vl| = I. Hence any matrix V̂ constructed this way is indeed an
isometry. Next, unitarize V̂ by extending the states, i. e. determine the
remaining columns to obtain

Û =


v†
1 w†

1

v†
2 w†

2
...

...

v†
|M|

w†
|M|

 ∈ C|M|×|M|, Û†Û = I (2.20)

thereby implicitly defining orthonormal extended states |ul⟩ = |vl⟩ ⊕
|wl⟩. To confirm that U indeed properly maps the POVM to projective
measurements Pl = |l⟩ ⟨l| on the extended space, Equation 2.16 must
be verified. For simplicity, assume that the initial state of the ancillary
system, |A⟩, can be chosen such that the initial composite state becomes

|A⟩ ⊗ |ψ⟩ = |ψ⟩ ⊕ |0|M|−d⟩ ≡


ψ

0
...

0

 ∈ C|M| (2.21)



22 quantum data acquisition

where ψ is the column vector representation of |ψ⟩. Then, one can
immediately confirm Equation 2.16

⟨A|⊗ ⟨ψ|U†PlU |A⟩ ⊗ |ψ⟩

= ⟨ψ|⊕ ⟨0|M|−d| U† |l⟩ ⟨l|U |ψ⟩ ⊕ |0|M|−d⟩
= ⟨ψ|V† |l⟩ ⟨l|V |ψ⟩
= ⟨ψ|vl⟩ ⟨vl|ψ⟩
= ⟨ψ|Ml|ψ⟩

(2.22)

exploiting the fact that V† maps the computational basis state |l⟩ onto
|vl⟩. The assumption in Equation 2.21 that there exists an ancilla state
|A⟩ such that |A⟩ ⊗ |ψ⟩ = |ψ⟩ ⊕ |0|M|−d⟩, cannot always be made. ItDepending on the

endianness used to
represent states in
the computational

basis, either
|A⟩ ⊗ |ψ⟩ or the

reversed order
|ψ⟩ ⊗ |A⟩ produce

the correct state
vector

(ψ†, 0, . . . , 0)†. Here
the big endian

convention is used to
represent operators

and states.

is only possible, if the dimension of the ancillary system dA can be
chosen so that dcomp = d · dA equals |M|. In that case |A⟩ is simply the
computational basis state (1, 0, . . . , 0)T ∈ CdA . However, in general the
POVM size |M| isn’t necessarily compatible with dcomp, e. g. if d = 2

and |M| = 3, there is no valid dimension of the ancillary system dA
such that d · dA = |M|. To remedy the situation, one must choose
dcomp > |M|. Then there are dcomp projective measurement outcomes
for only |M| POVM outcomes. The unitary U connecting them can,
however, be conveniently chosen such that the probability of the
excess dcomp − |M| projective outcomes vanishes.

explicit examples The approach from Equation 2.17 applied to
the tetrahedral SIC-POVM in d = 2 (Expression 2.4) yields a unitary
with a subset of unspecified columns (marked by a ×-symbol):

Û =
1√
2



α2 αβ × × × × × ×
αβ β2 × × × × × ×
α2 −αβ × × × × × ×
−αβ β2 × × × × × ×
β2 −iαβ × × × × × ×
iαβ α2 × × × × × ×
β2 iαβ × × × × × ×

−iαβ α2 × × × × × ×


(2.23)

with α,β =
√
(3±

√
3)/6. The dimension of the ancillary system is

dA = 4, to accommodate all four outcomes, and the total dimension
of the composite system is dcomp = 8.
Meanwhile, applying the more efficient approach from Equation 2.20

allows the realization of Naimark’s theorem with a smaller dimension
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of the composite system dcomp = 4. One explicit example for the
unitarization of the isometry V̂ is given by [29]

V̂ =
1√
2


α β

α −β

β −iα

β iα

 −→ Û =
1√
2


α β β α

α −β β −α

β −iα −α iβ

β iα −α −iβ

 . (2.24)

The resource-optimal implementation of generalized measurements
based on MUB in dimension d requires an ancillary systems with di-
mensions dA = d+ 1. On the other hand, optimally realizing SIC-POVM

in dimension d, requires an ancillary system merely the same size as
the physical, dA = d.

randomized implementation of mub In the context of quan-
tum computation, implementing a POVM through Naimark’s theorem
requires not only ancillary qudits but also entangling gates acting on
the composite system. Per se, any POVM acting on a low-dimensional
Hilbert space can be implemented with high fidelity, since the result-
ing circuits are shallow. But considering that the measurement portion
of the quantum circuit is preceded by state preparation, any additional
depth diminishing data quality should be prevented. Because the en-
tangling gates are typically more prone to error than the single qudit
gates, the number of entangling gates should be minimized before
minimizing the number of single qudit gates. As an alternative to
Naimark’s theorem, MUB may be implemented in a randomized fashion
to avoid the use of an ancillary system and thus reduce the number of
entangling gates to zero. The idea behind the randomized implementa-
tion is to exploit a structural property of MUB. Specifically, MUB can be
seen as a collectiton of d+ 1 distinct projective measurements. None
of the projective measurements is favored over another, permitting to
choose from them randomly with uniform probability 1/(d+ 1). For
illustration, consider the generalized measurement constructed from
the MUB in dimension d = 2 (cf. Expression 2.2)

M =
1

3

{
|z±⟩ ⟨z±| , |x±⟩ ⟨x±| , |y±⟩ ⟨y±|

}
. (2.25)

Independently of the quantum state ρ, the probability of the measure-
ment outcome being in basis a is uniform

1

3
Tr(|a+⟩ ⟨a+| ρ) +

1

3
Tr(|a−⟩ ⟨a−| ρ) =

1

3
∀a ∈ {x,y, z}. (2.26)

Instead of directly implementing projective measurements in bases
other than the computational, it can be more efficient to rotate the
state followed by a projective measurement in the computational basis.
Figure 2.4 shows a comparison between the implementation of MUB

based on Naimark’s theorem and the randomized implementation.
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(a) Naimark’s theorem

(b) Randomized

Figure 2.4: Implementation of a MUB-POVM for a physical system consisting
of two sites. The unitary Wst prepares the state to be measured.
(a) Deterministic circuit resulting from Naimark’s theorem. For
each physical site, one additional ancillary site is needed. The
unitary U directly links the projective measurement outcomes
of each physical–ancillary site pair to the POVM outcomes acting
on the physical site only. (b) Non-deterministic circuit resulting
from randomized implementation of MUB. No ancillary sites are
needed. Instead, the random unitaries Uk,i rotate from one of
the unbiased bases into the computational basis in each circuit
instance k. The operations I,H,S denote identity, Hadamard, and
phase gate, respectively.

The drawback of randomized implementation is that the single site
unitaries have to be randomly generated after each snapshot. Such
a frequent reconfiguration of the quantum circuit can be unpractical
when the required number of snapshots is large.

It is noteworthy, that randomized implementation of MUB can also
be applied to the MPS sampling algorithm, discussed in the previous
section. Rather than computing expectation values of all |M| = d(d+1)

measurement operators in Step 1, one only needs to compute the
expectation values of the d measurement operators from a single
randomly chosen orthogonal basis. The computational cost is thus
reduced by a factor d+ 1, which can have significant impact in practise,
especially for large bond dimensions.
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E S T I M AT I O N O F L O C A L O B S E RVA B L E S

An integral part of TKSVM is the statistical estimation of sets of local
observables. The method used to compute these estimators from POVM

snapshots will be the subject of the first section of this chapter. In the
second section, the type of observables and the way they affect the
learning model’s expressibility will be covered.

3.1 shadow tomography

The method of shadow tomography introduced by Aaronson [1], de-
cisively differs from other types of tomography methods regarding
its goal. While usually the term tomography refers to methods aimed
at the reconstruction of an unknown quantum state ρ, shadow to-
mography aims at the estimation of target functions Tr(Oµρ) defined
by a set of observables {Oµ }. It is motivated by the argument that
full tomography is excessive for specialized tasks, in the sense that
understanding the physical properties of a model does not necessarily
require precise knowledge of the full density matrix. Moreover, the
curse of dimensionality limits the applicability of full tomography
to systems with few degrees of freedom. For a system of N qubits
for example, the number of measurements (copies) of ρ required for
efficient state tomography schemes scales as O(22N) [49, 90].

Both these issues are circumvented in shadow tomography, for
which the number of measurements required to estimate a set of target
functions up to arbitrary cumulative error scales as O(log4(m) log(D)),
where m is the number of target functions and D the dimension of
the state, e. g. D = 2N for N qubits. Implementing the procedure
as proposed by Aaronson has substantial drawbacks with regard to
hardware demands. It requires collective measurements on multiple
copies to be taken gently, meaning that the measurement only slightly
disturbs the state rather than destroying it. The collective aspect of the
measurements requires simultaneous preparation of O(D) copies of ρ
and the gentle aspect requires exponentially deep quantum circuits.

Introducing the notion of classical shadows, which is a purely classical
description of the quantum state ρ, Huang et al. modified the proce-
dure such that logarithmic scaling in the number of target functions is
retained while the necessity for gentle and collective measurements
is removed, thereby rendering the process feasible for experimental
implementation [53]. Their modifications come at the price of re-
introducing some exponential scaling, but only with respect to the
locality of the observables and not with respect to system size. In the

25
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context of many-body systems, the locality of an observable refers to the
number of sites on which the observable acts non-trivially. The number
of required POVM samples to estimate a set of m different observables
up to cumulative error ϵ scales as O(log(m)maxµ∥Oµ∥2shadow/ϵ

2),
where the norm ∥·∥shadow depends on the POVM. For the measure-
ments described in the previous chapter, this norm is bounded by the
operator norm as ∥Oµ∥2shadow ⩽ cr∥Oµ∥2∞ with c a constant and r the
locality of Oµ. When the POVM snapshots are tensor products of MUB

outcomes with local dimension d = 2, one obtains c = 3 for instance.

The original definition of classical shadows by Huang et al. for qubit
systems is based on unitary ensembles combined with projective mea-
surement. In the following discussion, the immediate generalization
to quantum systems with arbitrary local Hilbert space dimension is
derived instead. As another generalization, the derivation below re-
lies on POVM in lieu of the unitary ensemble. The unitary ensemble
employed by Huang et al., i. e. tensor products of random single qubit
clifford gates, is recovered by the equivalent POVM based on MUB in
d = 2.

Consider a set of Ns independent POVM samples
{
M

(l)
1 ,M(l)

2 , . . . ,
M

(l)
N

}Ns

l=1
of a N-site quantum state ρ with local Hilbert space di-

mension d. Each sample l is a tensor products of single site POVM

outcomes. For notational convenience, the outcomes M(l)
j shall denote

properly normalized rather than sub-normalized projectors in this sec-
tion. The expectation value of the POVM samples represents a N-site
quantum channel

QN(ρ) = E

( N⊗
j=1

Mj

)
= lim

Ns→∞ 1

Ns

Ns∑
l=1

[ N⊗
j=1

M
(l)
j

]
. (3.1)

The goal is to invert the quantum channel to obtain a representation
of ρ in terms of POVM data. This representation is exact in the limit
Ns → ∞, but approximate for a finite number of samples. Intuitively,
the quantum channel is invertible if and only if theN-site POVM (tensor
product) is informationally complete. This is true if the local POVM

are informationally complete on the d dimensional Hilbert space. The
approximate expression for the quantum state reads

ρ ≈ 1

Ns

Ns∑
l=1

ρ̂(l) (3.2)

ρ̂(l) = Q−1
N

( N⊗
j=1

M
(l)
j

)
=

N⊗
j=1

Q−1(M
(l)
j ). (3.3)

The set {ρ̂(l)} is called the classical shadow of ρ, and constitutes the base
for the estimation of target observables. Due to the tensor product
structure of the samples, the N-site quantum channel as well as its
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inverse factorize into a product of single site quantum channels, as
expressed in the last equality. If the local POVM is a complex projective
design (introduced in Section 2.1), the single site quantum channel is
given by Equation 2.8 which is readily invertable as

Q−1(A) = (d+ 1)A− Tr(A)I (3.4)

where A denotes an arbitrary Hermitian matrix. Naively, the target
functions would be estimated as

Tr(Oµρ) ≈
1

Ns

∑
l

Tr(Oµρ̂
(l)). (3.5)

But rather than averaging over the classical shadow directly, Huang et
al. actually employ a median of means estimation of the target functions.
In this method of statistical outlier elimination, the classical shadow is
partitioned into equally sized bins wherein the average is computed
individually, and the median of the set of averages is taken as the final
estimate. Explicitly, for a number K of bins

Tr(Oµρ) ≈ median
{

Tr(Oµρ̂
1), . . . , Tr(Oµρ̂

K)
}

(3.6)

ρ̂k =
1

⌊Ns/K⌋

k⌊Ns/K⌋∑
l=s(k)

ρ̂(l) (3.7)

with s(k) = (k− 1)⌊Ns/K⌋+ 1.
The scaling O(log(m)maxµ∥Oµ∥2shadow/ϵ

2) mentioned above was rig-
orously derived only in conjunction with the median of means method,
and doesn’t apply in case of the direct average of Equation 3.5.

As opposed to shadow tomography, the objective of TKSVM is not
the computation of target functions with high precision. Consider-
ing two quantum states ρ and ρ ′ the goal is rather to determine a
hyperplane separating the two states in the space spanned by the
target functions. For this specific task, it is more suitable not to take
the median to eliminate outliers, but to use the full set of K bin aver-
ages as input data. This is justified because TKSVM itself appropriately
treats outliers in the input data by assigning them a lower weight
compared to non-outliers during the optimization process. The op-
timization problem underlying TKSVM is covered in detail in Chapter 4.

Assume the N-site quantum state under investigation possesses
translational invariance with respect to a cluster of sites. In this con-
text, a cluster shall be defined as a collection of n neighboring sites
with a fixed geometric shape, e. g. six sites forming a hexagon in the
honeycomb lattice. Further assume that all r-local target functions act
on sites within a single cluster, implying r ⩽ n. Then the system may
be partitioned into a set of site clusters respecting the translational
symmetry. And due to the translational invariance, each cluster can be
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Sample Average

Cluster Average

Figure 3.1: Cluster averaging and sample averaging techniques for a cluster
size n = 2 on the chain lattice. Each chain represents one N-site
sample with one POVM outcome at each site. Taking the sample
average implies averaging computed features within a cluster at
a fixed location over different samples, while taking the cluster
average implies averaging over all clusters within a fixed sample.

seen as an independent POVM sample of a reduced n-site state, with
n≪ N in typical applications. Computing target functions over clus-
ters shall be referred to as cluster average technique. It can optionally be
combined with the standard sample average technique described above.
When combined, however, only one technique should be performed
with binning. Usually, the sample average is performed with binning
and the cluster average without binning. The difference between these
averaging techniques is visualized in Figure 3.1. Overall, the purpose
of the cluster average technique is to reduce the number of required
N-site samples for adequate target function estimation by exploiting
the translational symmetry of the state.

Are the sample average and the cluster average techniques equiva-
lent? In case of the sample average all samples are always completely
uncorrelated because each sample is taken independently. The quan-
tum state is destroyed after measurement, requiring to prepare the
state anew to take the next sample. On the other hand, the measure-
ments from different cluster within the same sample are approximately
uncorrelated only if the correlation length of the state is small com-
pared to the system size. In practice it is therefore usually safe to
assume that sample average and cluster average are equivalent if the
system size is large enough.

The required number of samples for the learning model of TKSVM to
be successful depends most notably on the locality of the underlying
target function, the system size, and quality of the data (quantum
noise). Therefore it is investigated not in generality, but numerically
for the specific applications in Chapters 5 and 6.
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3.2 operator basis

Target functions computed as input for TKSVM are always r-local tensor
products constructed from a predetermined operator basis, which is a
set of Hermitian operators acting on a single site. The operator basis
can be seen as the language in which TKSVM expresses what it has
learned. Therefore, its size directly impacts the expressibility, which
in this context signifies the ability to yield analytical expressions of
a physical observable characterizing a specific quantum state. The
choice of the operator basis is completely independent of the POVM

that is used for sampling quantum states, which is possible because
informationally complete measurements allow the reconstruction of
any observables. In practice, different operator bases can hence be
tried out without the need to re-sample the quantum state.

Physical observables are represented by Hermitian operators. There-
fore, the operator basis must span the space of all Hermitian matrices
in order to achieve the highest possible expressibility. This implies
that the size of the operator basis must at least equal d2. A straight-
forward choice of a complete Hermitian operator basis would be to
use one operator for each independent element of a Hermitian matrix.
Specifically, this results in d operators with a single 1 somewhere
on the diagonal and 0’s elsewhere, (d2 − d)/2 symmetric operators
with a single pair of 1’s in the off-diagonal part and 0’s elsewhere,
as well as (d2 − d)/2 Hermitian operators with a single pair of i,−i
entries in the off-diagonal part and again 0’s elsewhere. However, if
the type of the interacting sites is known, a more suitable choice can
be made. E. g. for interacting spin degrees of freedom, the operators
measuring spin along the three spatial axes are a good starting point.
To render the resulting incomplete operator basis complete, it may be
extended by considering products and/or linear combinations of the
spin operators. In case of spin-1/2 systems adding a single operator
proportional to the identity matrix to the Pauli matrices completes
the operator basis, while for spin-1 systems six more operators are
needed. The spin-1 operators are defined as

τx =
1√
2

0 1 0

1 0 1

0 1 0

 , τy =
1√
2

0 −i 0

i 0 −i

0 i 0

 , τz =

1 0 0

0 0 0

0 0 −1


(3.8)

and a complete operator basis is for example given by

B = { τx, τy, τz, (τx)2, (τy)2, (τz)2, [τy, τz]+, [τx, τz]+, [τx, τy]+ } (3.9)

where [·, ·]+ denotes the anti-commutator.
Besides expressibility, also the runtime of TKSVM is affected by the

operator basis. A larger operator basis increases the total number of
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target functions proportional to |B|r (shown in the next chapter), which
in turn implies longer runtime for both target function estimation and
the TKSVM optimization process. Therefore it may be advantageous to
rely on a incomplete operator basis, if it is still sufficiently expressive
for the task at hand. In practise, finding a good balance between
expressibility and runtime is achieved by starting with a small operator
basis and extending it systematically until success.

With an operator basis given by B = {Oa }, a target function of
locality or rank r is estimated as

Tr
(
Oa1

j1
Oa2

j2
· · ·Oar

jr
ρ̂k
)
=

1

⌊Ns/K⌋

k⌊Ns/K⌋∑
l=s(k)

Tr
[
Oa1

j1
Q−1(M

(l)
j1

)
]
×

Tr
[
Oa2

j2
Q−1(M

(l)
j2

)
]
× · · · × Tr

[
Oar

jr
Q−1(M

(l)
jr

)
]

(3.10)

within the k-th bin, cf. Equation 3.7. Outside of the support of the
observable all factors equal unity, because the projectors M(l)

j have
unit trace which is conserved by the inverse quantum channel

Tr
[
Q−1(M

(l)
j )
]
=

(d+ 1)Tr(M(l)
j ) − Tr(M(l)

j )Tr(I) = Tr(M(l)
j ) = 1. (3.11)

Because there is only a fixed amount of possible combinations of the
operator Oa

j and the measurement outcome M(l)
j at each site j, the

factors Tr
[
Oa

j Q
−1(M

(l)
j )
]

can pre-computed and stored in a lookup
table of size |B|× |M| to save computational effort.

Whenever the operator basis is large enough to produce an op-
erator proportional to the identity matrix as a linear combination,
which is necessarily the case for a complete operator basis, then at
a given rank r all lower rank target functions are computed implic-
itly along the way. For illustration, consider the spin-1 operator basis
B = { τx, τy, τz, (τx)2, (τy)2, (τz)2 } which produces the identity like
(τx)2 + (τy)2 + (τz)2 = 2I. Any rank 1 observable τ1 ∈ span(B) is
implicitly computed at rank 2, disguised as a sum of target functions
Tr[τ1(τx2)

2ρ] +Tr[τ1(τ
y
2 )

2ρ] +Tr[τ1(τz2)
2ρ] = 2Tr[τ1ρ]. Such redundan-

cies must be masked in order to facilitate interpretation of TKSVM

results.
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T E N S O R I A L K E R N E L S U P P O RT V E C T O R M A C H I N E

4.1 linear svm

A SVM [12, 128] in its most basic form is a binary classifier approximat-
ing an unknown indicator function. The approximation is constructed
from a training set of labeled data points, which can be regarded as
samples of the indicator function. In essence, the SVM’s objective is
to find a hyperplane which separates the two classes. Since there are
generally infinitely many different hyperplanes separating the classes,
the aim is to find the hyperplane that is optimal with respect to a
specific constraint.

Consider a set of data points xk ∈ Rd, each labelled yk ∈ {−1, 1}.
Data points with the same label represent a class. In the simplest case
where the two classes are linearly separable, there exists a hyperplane
defined by a vector w and a constant b, such that the signed distance
from the plane correctly predicts the class label of each data point,

sgn(w · xk − b) = yk ∀k. (4.1)

The vector w represents the normal to the hyperplane and the constant
b, called the bias parameter, a shift thereof. In Figure 4.1a some possi-
ble hyperplanes are displayed for a linearly separable problem. The
optimization goal of the SVM is to find the hyperplane w · x − b = 0,
called decision boundary, which maximizes the margin between data
points of opposite classes. Upper and lower boundaries of the margin
are formally defined as w · x − b = ±1. This sets the width of the
margin equal 2/∥w∥, as shown in Figure 4.1b. Typically and for mere
convenience, instead of maximizing the margin width, the square of
its inverse is minimized, and the optimization problem reformulated
as

Minimize
1

2
∥w∥2 with respect to w,b

subject to yk(w · xk − b) ⩾ 1 ∀k.
(4.2)

This problem is solved by means of Lagrange multipliers λk enforc-
ing the constraints. The Lagrangian for the constrained optimization
problem reads [12]

L =
1

2
∥w∥2 +

∑
k

λk(1− yk(w · xk − b)). (4.3)

Setting the gradient of L with respect to the optimization parameters
equal zero, one obtains

w =
∑
k

λkykxk and
∑
k

λkyk = 0. (4.4)

31
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(a) Non-optimal (b) Margin Width

(c) Hard Margin (d) Soft Margin

Figure 4.1: Linear classification problems solvable by SVM in dimension
d = 2. (a) Linear separable problem with several possible hy-
perplanes. (b) Computation of the margin width. With O the
origin, the margin width is given by ∥a − c∥ = |∥a∥ − ∥c∥| =
1/∥w∥|−b+ 1+b+ 1| = 2/∥w∥. (c) Data separated by the optimal
hyperplane, maximizing the margin width. Data points are not
allowed to penetrate the hard margin. (d) Non-separable data
with the optimal soft margin at a given penalty parameter C = 1.
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Substituting these expression back into the Lagrangian yields the dual
problem which is expressed in terms of λk only. The Lagrangian for
the dual problem is given by

L =
∑
k

λk −
1

2

∑
j,k

λjλkyjykxj · xk (4.5)

and the corresponding dual optimization problem becomes In optimization
theory, minimizing
the primal problem is
equivalent to
maximizing the dual
problem.

Maximize
∑
k

λk −
1

2

∑
j,k

λjλkyjykxj · xk with respect to {λk}

subject to λk ⩾ 0,
∑
k

λkyk = 0 ∀k.
(4.6)

Whenever the problem is not perfectly separable by a hyperplane,
i. e. Equation 4.1 cannot be satisfied, the optimization problem needs
to be relaxed. This is achieved by allowing data points to penetrate
the margin at a cost C > 0. The optimization problem with softened
constraint is expressed as

Minimize
1

2
∥w∥2 +C

∑
k

ξk with respect to w,b, {ξk}

subject to yk(w · xk − b) ⩾ 1− ξk, ξk ⩾ 0 ∀k
(4.7)

where ξk denote so-called slack variables. Misclassified datapoints
lying on the wrong side of the decision boundary have slack variables
ξk > 1 whereas correctly classified points within and outside of
the margin have ξk < 1 and ξk = 0, respectively. The dual relaxed
problem can be obtained from the primal relaxed problem in the
same fashion as the dual strict problem is obtained from the primal
strict problem. It merely differs from the dual strict problem by the
additional constraint that the Lagrange multipliers are bounded from
above by the penetration cost C ⩾ λk ⩾ 0. Importantly, all slack
variables ξk are eliminated in the dual problem.

The motivation behind considering the dual problem is that in
contrast to the primal problem, it is solvable by quadratic programming
methods [20, 88]. These numerical methods guarantee convergence
to the global maximum and polynomial runtime with respect to the
number of datapoints. Once the optimization is completed, the class
label of a test sample x is predicted by the sign of the decision function,
defined as

D(x) = w · x − b =
∑
k

λkykxk · x − b. (4.8)

All training samples with non-zero coefficients λk, intuitively all those
lying within or at the boundary of the margin, are called support vectors.
Note that in case of a soft margin, the penetration cost C is not subject
to optimization but rather an input parameter set by the user. Finite
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positive values of C represent a soft and therefore broader margin,
while the original hard and therefore narrow margin is recovered in the
limit C→ ∞, see Figures 4.1c and 4.1d. Thus, the number of support
vectors is indirectly controlled by C. In practice, the choice of C is
difficult since it is not bounded. Without any knowledge of the data,
one is left to benchmark the trained model against independent test
sets for different orders of magnitude of C. Fortunately, there exists an
alternative formulation eliminating the parameter C in favor of a new
bounded regularization parameter ν ∈ [0, 1) [19, 113]. This parameter
directly controls the number of support vectors and is easier to choose
appropriately, at the cost of a more involved theoretical derivation,
which is omitted here.

4.2 the kernel trick

In many cases the two classes are not at all separable by a hyperplane
in the original space X = Rd of the training samples. Fortunately, it is
in principle always possible to find a map into a higher dimensional
space g : X → G, where the data becomes separable again. Once all
training samples are mapped into the higher-dimensional space, linear
SVM can be applied to solve the optimization problem in the new space
G. Specifically, in all equations and definitions above, simply substitute
x 7→ g(x). This approach is however not always applicable, because
performing calculations in G might not be numerically feasible. In the
worst case, the dimension of G might even be infinite.

The kernel trick solves this problem by avoiding explicit computa-
tions of g as well as all subsequent computations in G. To appreciate
the kernel trick, note that the Lagrangian and the decision function in
the space G

L =
∑
k

λk −
1

2

∑
j,k

λjλkyjykg(xj) · g(xk) (4.9)

D(x) =
∑
k

λkykg(xk) · g(x) − b (4.10)

still only rely on the evaluation of inner products, cf. Equations 4.5
and 4.8. This circumstance allows for the definition of a kernel function
K : X×X → R, which mimics the inner product of two elements of G
without ever directly mapping into G, see Figure 4.2a. In fact, if the
kernel K is positive-definite, known as Mercer’s condition, it is always
guaranteed to mimic an inner product in some auxiliary space G. This
space does not even need to be known, much less the map from X

into it. To illustrate the idea, consider the quadratic kernel

K(x, y) = (x · y)2 = x21y
2
1 + 2x1x2y1y2 + x

2
2y

2
2 (4.11)
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(a) Kernel Shortcut

(b) Original Space X (c) Auxiliary Space G

Figure 4.2: Illustration of the kernel trick. (a) Shortcut to the result of the
inner product taken in G, avoiding explicit computations into
and from the auxiliary space. (b) Original two-dimensional data
x = (x1, x2, 0)T , which is not separable by linear SVM. (c) Explicitly
mapped samples g(x) = (x21,

√
2x1x2, x22)

T . In the auxiliary space
G, the data becomes separable by linear SVM.
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where for simplicity two-dimensional input data (dim(X) = 2) is
considered. It is easily verified, that this kernel mimics the inner
product g(x) · g(y) for

g :

(
x1

x2

)
7−→

 x21√
2x1x2

x22

 . (4.12)

Figures 4.2b and 4.2c visualize the action of this kernel. In case of
arbitrary dimension of the input data dim(X) = d, the quadratic
kernel mimics the inner product in an auxiliary space of dimension
dim(G) = d(d + 1)/2. Taking the inner product in G thus implies
O(d2) floating point operations, whereas evaluating the quadratic
kernel directly implies only O(d). This advantage becomes substantial
when input data is high-dimensional, as it is the case in the context of
TKSVM where d ranges from hundreds to thousands. More complicated
kernels can imply even higher dimensions of G, e. g. simply adding a
constant to the quadratic kernel K(x, y) = (x · y + c)2 already implies
an auxiliary space of dimension dim(G) = d(d+ 1)/2+ d+ 1.

In addition to saving computation cost, finding an appropriate
kernel to solve a specific problem is usually easier than finding an
appropriate map g. Consider for example, the commonly used radial
basis function kernel, K(x, y) = exp(−ϵ∥x − y∥2). Although Mercer’s
condition guarantees the existence of g, finding an expression for it
is not as simple as for the quadratic kernel. Obviously there is no
single choice of a kernel suitable for every classification task, and
some kind of intuition or knowledge about the distribution of the data
is therefore needed in order to choose a suitable kernel.

4.3 binary phase classification

Distinguishing two physical phases of a many-body model can be
viewed as a binary classification problem. For this purpose, samples
are collected and labelled according to their phase. The decision func-
tion assigns any test sample to one of the phases based on physical
quantities manifest in the training data. Unsurprisingly, the success of
this approach relies on the choice of a suitable kernel. In the earliest
application of SVM for phase classification [97], a quadratic kernel is
used to classify the ordered against the disordered phase of several
Ising-type models. Since the decision boundary represents the phase
transition, it contains the same information as the order parameter.
Indeed, the analytical expression for the order parameter is directly
encoded in the decision function. Beyond linear orders such as the
magnetization of Ising-type models, a quadratic kernel is however
no longer appropriate and classification fails due to inseparability.
This motivated the introduction of a tensorial kernel, suitable to cap-
ture any orientational order breaking the rotational symmetries of
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isotropic space, O(3), to one of its many subgroups [87]. Besides order
parameters, the tensorial kernel also enables the SVM to learn ground
state constraints, characteristic of more exotic phases such as classical
spin liquids. The resulting TKSVM framework for classical spin models
has been developed and demonstrated in [45, 75] and successfully
applied to various models in [43, 76, 103, 104]. Generalizing TKSVM to
quantum models, which is the main contribution of this thesis, implies
modifications to the tensorial kernel compared to the classical case.
The key properties, definition, and modifications of TKSVM are the
subject of this section.

interpretability One key feature of TKSVM is its high degree
of interpretability. In the context of machine learning, interpretability
is the degree to which a human can consistently predict the model’s
result [59]. In other words, if the decision of the trained model on
the class of a test sample can be easily understood by a human, then
the interpretability of the model is high. In contrast to many other
learning models with sometimes thousands of internal parameters
lacking any physical meaning, the decision function of TKSVM always
encapsulates physical quantities that can be measured in experiment
or simulation.

tensorial kernel The tensorial kernel is generally defined in
terms of a local operator basis (cf. Section 3.2), which directly impacts
the expressibility of TKSVM. In the classical limit of a spin model,
S → ∞, the spin operator is usually replaced by a normalized real
three-component vector and the site-local operator basis is given by the
three classical spin components {Sx,Sy,Sz}. Meanwhile, for a quantum
model of spin-1/2 degrees of freedom, a sensible choice would be the
Pauli operators {X, Y,Z}. After choosing a site-local operator basis
B = {Oa} of size |B|, a map ϕϕϕ is introduced to construct feature vectors
whose components comprise estimators of all possible monomials of
a rank r within a given cluster of size n

ϕϕϕ =
{〈
Oa1

j1
Oa2

j2
· · ·Oar

jr

〉}
(4.13)

where j1, . . . , jr ∈ { 1, . . . ,n } and a1, . . . ,ar ∈ { 1, . . . , |B| }. Recall from
Chapter 3 that the cluster is a subset of neighboring sites in the lattice.
Its size and shape, as well as the rank of the monomials are hyper-
parameters. Since besides the lattice geometry, no knowledge about
the physical model under investigation is assumed, it is generally
not clear how to choose the rank and cluster to successfully classify
the underlying data. While for the cluster, a guiding principle can be
the unit cell of the lattice, or multiples thereof, the optimal rank is
typically determined on trial and error basis, starting at rank 1 and
increasing systematically.
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Figure 4.3: Different computational routes to achieve the same result during
SVM optimization. With an appropriate choice of rank and cluster,
ϕϕϕ maps the physical samples into a space where the problem
becomes separable using a quadratic kernel. The function g maps
the quadratically separable into a linearly separable problem. A
possible kernel shortcut from the original space X to the result,
mimicking the inner product in the codomain of ϕϕϕ, would yield
a decision function that is not or just weakly interpretable. The
route highlighted in purple represents the tensorial kernel and is
a good tradeoff between interpretability and computational cost.

The brackets ⟨·⟩ in Equation 4.13 represent two very different esti-
mation methods for classical and quantum data. In the classical case,
the raw input samples are system configurations obtained from clas-
sical Monte Carlo simulations and have the format x = {Si} = {Sai }

with a = x,y, z and i = 1, . . . ,N for a N-site system. A single feature
vectorϕϕϕ is computed from a single snapshot x by the cluster averaging
technique (cf. Figure 3.1) without binning. As an example, one specific
component ⟨Sz1⟩ of a classical rank 1 feature vector is computed as

⟨Sz1⟩ =
1

⌊N/n⌋
∑

clusters

Sz1. (4.14)

In case of a quantum model, the raw input is in the form of POVM

samples and a single feature vector is computed by means of shadow
tomography, as explained in detail in the previous chapter. For in-The symbols x and y

may refer to either a
single raw sample or
a set of raw samples,
depending on which
averaging technique

is used.

stance, the expression ⟨X1⟩ represents an estimator of Tr(X1ρ).
In general, the tensorial kernel is defined as

K
(
ϕϕϕ(x),ϕϕϕ(y)

)
=
[
ϕϕϕ(x) ·ϕϕϕ(y)

]2 (4.15)

which is technically a quadratic kernel with respect to the feature
vectors ϕϕϕ(x) and ϕϕϕ(y). The explicit computation of ϕϕϕ is necessary to
ensure interpretability, see Figure 4.3.
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Denote the training data as {xk} and introduce the component-
wise notation ϕϕϕ(x) = {ϕµ(x)} for the feature vector. To retrieve the In a quantum setting

the training element
xk usually refers to
the set of POVM
samples within the
k-th bin, cf.
Equation 3.7.

order parameter, the decision function is reshaped such that terms
concerning the training data {xk} are separated from terms concerning
the test data x to be classified,

D(x) =
∑
k

λkyk
[
ϕϕϕ(xk) ·ϕϕϕ(x)

]2
− b

=
∑
k

λkyk
[∑

µ

ϕµ(xk)ϕµ(x)
]2

− b

=
∑
µν

Cµνϕµ(x)ϕν(x) − b

(4.16)

Cµν =
∑
k

λkykϕµ(xk)ϕν(xk). (4.17)

The resulting coefficient matrix Cµν depends only on the training data
weighted by the SVM optimization parameters. Its non-vanishing com-
ponents correspond to the physical features manifest in the training
data, based on which the machine predicts the class of the test data x.
Therefore, the interpretation of the coefficient matrix directly yields
the analytical expression of the underlying order parameter.

dimensional reduction The total number of components of
the feature vector from Equation 4.13 equals (n|B|)r. However, some
components are redundant and can be eliminated, thereby reducing
the dimension of the input data and consequently the runtime of
TKSVM. Not only are there less target functions to be computed, but
the evaluation of inner products during SVM optimization also benefits
from the lower dimension. Since reordering of a given monomial leaves
its expectation value unchanged, e. g. ⟨O3

1O
2
2⟩x = ⟨O2

2O
3
1⟩x, imposing

an ordering on the composite indices (a1, j1) ⩽ (a2, j2) ⩽ · · · ⩽ (ar, jr)
during feature vector construction eliminates all redundancies. The
resulting feature vector dimension is given by

dim(ϕϕϕ(x)) =
(
n|B|+ r− 1

r

)
=

(n|B|+ r− 1)!
r!(n|B|− 1)!

. (4.18)

For classical systems the ordering is not strict, meaning that two index
tuples are allowed to be equal. Contractions of spin components on the
same site j, such as ⟨Sxj S

y
j ⟩, are meaningful in a classical setting. For

quantum systems, on the other hand, multiplication of multiple site
operators acting on the same site always reduce to another Hermitian
operator, Oa

j O
b
j = O ′

j. Therefore a strict ordering j1 < j2 < · · · < jr
must be imposed on the site indices. The feature vector dimension
then becomes

dim(ϕϕϕ(x)) =
(
n

r

)
· |B|r =

n!|B|r

r!(n− r)!
(4.19)
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rank 1 2 3 4 5 6

(3n)r 18 324 5 832 104 976 ∼ 106 ∼ 107

classical 18 171 1 140 5 985 26 334 100 947

quantum 18 135 540 1 215 1 458 729

Table 4.1: Comparison of feature vector dimensions before and after remov-
ing redundancies, using a n = 6-site cluster and assuming an
operator basis of size |B| = 3. Due to the binomial coefficient,
the dimension decreases in the quantum case when the rank ap-
proaches n.

implying that the rank r cannot be chosen larger than the number
of sites in the cluster n. Table 4.1 shows a comparison of the feature
vector dimension for different ranks.

classical example Consider the classification problem of a clas-
sical anti-ferromagnetic phase against a trivial featureless phase for a
one dimensional system of N Heisenberg spins. System configurations
x = {Si} = {Sai } with i = 1, . . . ,N and a = x,y, z are obtained from
classical Monte Carlo simulations and serve as training data. The order
parameter of the anti-ferromagnetic phase is given by the staggered
magnetization Ost = ⟨S2i−1−S2i⟩. A n = 2-site cluster of neighboring
spins and rank r = 1 are an appropriate choice of hyperparameters
to captured this order parameter. With this choice, the feature vectors
are computed as

ϕϕϕ(x) =
{〈
Saj
〉}

=

{
1

⌊N/n⌋
∑

clusters

Saj

}
(4.20)

in the first step of TKSVM. Here the index j ∈ { 1, 2 } labels the two
sites within the chosen cluster. As mentioned earlier, the expectation
value in the classical case is computed by taking the average over all
non-overlapping 2-site clusters within a single sample of the N-site
system. The final output of TKSVM is the coefficient matrix displayed
in Figure 4.4, which must be interpreted by a human. To this end, the
non-vanishing components of the coefficient matrix are substituted
into the decision function (Equation 4.16)

D(x) =

∑
j,a

⟨Saj ⟩2 − 2
∑
a

⟨Sa1 ⟩⟨Sa2 ⟩

− b

=
∑
a

[
⟨Sa1 ⟩− ⟨Sa2 ⟩

]2
− b

= ⟨∥S1 − S2∥⟩2 − b

=
〈
∥Ost∥

〉2
− b

(4.21)
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Figure 4.4: Rank 1 coefficient matrix Cµν of the classical antiferromagnetic
phase classified against the trivial phase. The axes are labelled
by the composite indices µ = (a, j) and ν = (a ′, j ′) and each
pixel represents a contraction ⟨Saj ⟩⟨Sa

′
j ′ ⟩ weighted by the SVM. The

matrix is normalized such that the maximum modulus of its
elements equals one.

revealing that the decision function encodes the squared magnitude
of the staggered magnetization.

In this example, the importance of the quadratic kernel becomes ap-
parent. Instead of attempting to learn the order parameter Ost directly,
the quadratic kernel permits TKSVM to learn the squared magnitude
∥Ost∥2. This seems sensible since the staggered magnetization is not
invariant under O(3) rotations, leading to a quadratically but not
linearly separable distribution of samples with different orientations.
Meanwhile, the squared magnitude is invariant, thus avoiding can-
cellation. In the absence of such symmetries, however, a linear kernel
would also work, and lead to a coefficient vector instead of a matrix.

quantum example Consider the problem of classifying a spin-
1/2 valence bond solid against a trivial featureless phase. On a chain
lattice with an even number of sitesN, the wave function of the valence
bond solid is given by the tensor product of singlets

|VBS⟩ =
N/2⊗
i=1

[
|↑⟩2i−1 |↓⟩2i − |↓⟩2i−1 |↑⟩2i

]
. (4.22)

At rank 1, classification is impossible due to inseparability of the
two phases. In this case the coefficient matrix has random entries
and cannot be interpreted. The minimal choice of hyperparameters is
therefore r = 2 and a cluster of size n = 2, resulting in the coefficient
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Figure 4.5: Rank 2 coefficient matrix Cµν of a valence bond solid phase
classified against a trivial phase, using the Pauli matrices as
operator basis. Each pixel represents rank 2 contractions, such as
⟨X1X2⟩⟨Y1Y2⟩, weighted by the SVM.

matrix displayed in Figure 4.5. Analogous to the classical example, the
non-vanishing coefficients are substituted into the expression for the
decision function (Equation 4.16)

D(x) =
∑
σ,σ ′

⟨σ1σ2⟩⟨σ ′
1σ

′
2⟩− b

= ⟨∥σσσ1 ·σσσ2∥⟩2 − b

=
〈
∥OVBS∥

〉2
− b

(4.23)

where σ,σ ′ ∈ {X, Y,Z} and σσσ = (X, Y,Z)T , to retrieve the underlying
correlations.

4.4 multiple phase classification

All the classification problems discussed so far are solved in a su-
pervised manner. Two datasets are respectively collected from two
different physical phases, labelled accordingly, and used to train the
learning model. The trained learning model is then interpreted to re-
trieve physical quantities discriminating the two phases. Supervision
of the learning task is equivalent to knowledge of a phase transition
before training. TKSVM however, is an unsupervised learning model. Dur-
ing the training stage, the two datasets are assigned distinct labels
without knowing whether they belong to different physical phases
or not. Rather than the user informing the learning model about the
relation between the two training sets, the machine informs the user
via the bias parameter b.
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the bias criterion In order to illustrate the importance of the
bias parameter b of the decision function, the example of the classical
anti-ferromagnetic phase classified against a disordered featureless
phase shall be revisited. In the resulting decision function, Equa-
tion 4.21, the bias parameter was left undetermined. The fact that the
samples from the disordered phase lack any kind of features, i. e. all
monomials have a vanishing expectation, implicitly fixes the value
of b. Specifically, any sample xdis from the disordered phase has a
vanishing staggered magnetization ⟨∥Ost∥⟩ = 0, and thus the decision
function consists of the bias term only, D(xdis) = −b. Assuming that
the class label of the disordered phase is −1, the ideal support vectors
of the disordered phase define the lower margin boundary D(x) = −1,
implying b = 1. In fact, the sign of the bias relative to the sign of the
class label indicates the orientation of the phase transition. Assuming
that samples from two phases A and B are labelled +1 and −1, respec-
tively, the bias b equals +1, if A is ordered and B disordered, and vice
versa when b = −1. As a consequence, the bias serves as a criterion
for the presence of a phase transition. In the presence of a transition
it will take a value close to unity, while in the absence of a transition
significant violations b ̸= 1 are expected, see Figure 4.6.

While the discussion here is based on a specific example, there
exists a more general argument to support the heuristic bias criterion
in [42]. Although the argument still only applies for the scenario of
a single symmetry breaking phase transition taking place between
A and B, several extensions of the bias criterion to more complex
situations were observed and verified empirically. Those extensions
are, according to Greitemann [42]:

First, if one phase possesses two or more orders, while
a subset of them vanishes when entering the disordered
phase and the remaining ones only diminish in magnitude,
|b| will typically be slightly larger than unity, owing to a
contribution from the difference in magnitude of the perse-
vering orders. Such behavior can occur when dealing with
vestigial orders and partial symmetry breaking.
Second, if the two sets of samples originate from the same
ordered phase and, hence, are characterized in the same
way, b can dramatically exceed unity, |b| ≫ 1. Nevertheless,
in those cases, the sign of b retains its physical meaning:
A positive bA,B indicates that A is relatively deeper in the
ordered phase.
Third, b can also differ significantly from ±1 but fall into
the interval (−1, 1). This may happen when both sample
sets originate from nontrivial phases featuring different
characteristics. In that case, even though Cµν can capture
the characteristics of both phases, the sign of b will lose its
above interpretation. Namely, the TK-SVM can still iden-
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(a) Separable

(b) Inseparable

Figure 4.6: Two datasets of POVM samples labeled A and B are mapped to
two sets of feature vectors with class labels y = −1 and y = +1,
respectively. (a) If A and B are in different phases, the SVM
successfully determines the hyperplane separating the classes in
feature space, indicated by the absolute bias being close to unity.
The decision function encodes the underlying order parameter.
(b) If on the other hand, A and B are part of the same phase,
the sets of feature vectors become inseparable and the absolute
bias drastically exceeds unity. Because of this inseparability, the
hyperplane has no physical meaning.
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tify them as distinct phases, but one cannot interpret their
relation in terms of a simple order-disorder transition.
Lastly, this bias criterion is also applicable for crossovers
between phases of different cooperative behavior. Rather
than learning the order parameter associated with the bro-
ken symmetry of a particular phase transition, the decision
function will encode the constraint that governs the co-
operative behavior of the spins. Note that in this case the
“ordered phase” in the above argument is the one which
is more constrained, even though the spins are still disor-
dered in the sense that no symmetry is broken. Again, a
bias in (−1, 1) is indicative of a situation where no state-
ment on the relative level of disorder can be made, i. e.
both phases exhibit constraints which are mutually incom-
patible.

In conclusion, the bias parameter is a useful indicator for the relation-
ship between two phase points A and B with class labels +1 and −1,
respectively:

bA,B



≈ 1, A in the ordered phase

≈ −1, B in the ordered phase

≫ 1 or ≪ −1, A,B in the same phase

∈ (−1, 1) not directly comparable.

(4.24)

The bias criterion as discussed here applies to classical models, and has
never been benchmarked on quantum models. Considering that the
working principle of TKSVM, aside from data acquisition and feature
construction methods, is identical for classical and quantum models,
the bias criterion can be expected to remain valid. In Chapters 5 and 6

the validity of the bias criterion will be confirmed for some specific
quantum models. Although this is not a proof, it is an important step
towards the empirical verification similar to the classical case.

phase diagram topology Consider a physical model with free
parameters such as interaction strength, external field strength, or
temperature. Furthermore assume training data has been sampled
over a fixed grid of points in the space of model parameters, i. e. over
a grid of phase points. A naive application of TKSVM would entail
binary classification between randomly selected pairs of phase points,
thereby learning whether or not the pair of points belong to the same
physical phase and if they don’t, what physical quantity discriminates
between them. This would lead to a multitude of redundant results,
because usually the number of distinct phases is much lower than the
number of sampled phase points. Fortunately, due to the bias criterion,
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it is possible to avoid these redundancies by systematically locating
approximate phase boundaries through the grid of phase points. With
the rough phase boundaries determined, a single representative phase
point may be selected in each phase, and subsequently used for inter-
pretation of the coefficient matrix by the human user, thereby saving
the effort of interpreting similar coefficient matrices many times over.
As an alternative to the selection of a single representative phase point
per phase, the whole set of phase points identified as a single phase
may be merged and treated as one single dataset.

The determination of approximate phase boundaries is achieved
by analyzing a weighted undirected graph constructed using the bias
criterion. Vertices of the graph correspond to phase points whereas
the weighted edges are given by the normalized biases resulting from
binary classification between each pair of phase points. Since there is
no necessity for the edges to be directed, it is sufficient to consider the
absolute of the bias, and the criterion from Equation 4.24 simplifies to

|bA,B|

{
≫ 1 if A, B in the same phase,

≈ 1 if A, B in different phases.
(4.25)

This immediately implies that regions of the graph that are highly
connected, meaning the edges have a large weight, represent the same
physical phase. Meanwhile, at the boundary of two phases, the vertices
are weakly connected. Therefore, partitioning the graph yields the
approximate layout of the phase diagram, see Figure 4.7a.

For technical reasons, when assigning the graph’s edge weights, the
absolute biases are normalized using a Lorentzian function

w(b) = 1−
b2c

(|b|− 1)2 + b2c
∈ [0, 1) (4.26)

where the parameter bc sets a characteristic scale quantifying the con-
dition “≫ 1” in Equation 4.25. Typically the choice of bc is uncritical,
and the partition of the graph is robust against varying bc over several
orders of magnitude [43].

spectral graph partitioning To conclude this chapter, the
method used to partition the graph shall be discussed. There are
many standard methods to partition a graph, but TKSVM has the strict
restriction that the the final number of phases, i. e. parts of the graph,
is not known beforehand. The method employed is the spectral graph
partitioning technique introduced by Fiedler [37, 38].

A weighted graph G = (V ,E,w) is defined as the tuple of a set of
vertices V , a set of edges E and a set of normalized weights w on
the edges. All graphs produced by TKSVM are of a restricted class of
undirected graphs with no edges that connect a vertex to itself and no
multiple edges connecting the same two vertices. The goal is to find a
two-way partition V = V1 ∪ V2 such that V1 ∩ V2 = ∅ and |V1| ≈ |V2|.
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(a) Graph Construction

(b) Graph Partition

Figure 4.7: Exemplary graph construction and partition for phase classifica-
tion of a classical spin model with two parameters. Figure and
caption are adapted from [42]. (a) Graph representation of the
relation between points on a 10× 10 grid as inferred from the
bias b of the corresponding SVM classifiers. The phase boundaries
are intersected by only few graph edges and this happens mostly
where grid points are very close to the phase transition. (b) Upper
panel: Elements of the Fiedler vector corresponding to the graph
obtained for a 23× 23 grid. Each element is rendered as a pixel at
the location of its corresponding grid point in parameter space
and color-coded according to its value. Lower panel: A histogram
of the elements’ values is shown next to the color scale used to
encode them in the upper panel.
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Additionally, the summed weight of all edges connecting V1 and V2,
i. e. the connectivity, shall be minimal. Fiedler’s theory makes use of
the Laplace matrix defined as

Λi ̸=j = −wij, Λii =
∑
j

wij (4.27)

where wij = 0 if (i, j) /∈ E. Further, define a partition vector as x =

{xi = ±1} where a positive (negative) sign indicates that the vertex i
belongs to V1 (V2). For simplicity, assume that the graph is connected,
since the treatment of multi-component graphs can always be reduced
to separate treatment of the individual disconnected components.

Given an arbitrary partition vector x, the quadratic form xTΛx equals
four times the connectivity

xTΛx =
∑

(i,j)∈E

wij(xi − xj)
2 = 4

∑
(i,j)∈Econ

wij (4.28)

where Econ ⊂ E is the set of edges that connect V1 and V2. The
ojective is to find a partition vector that minimizes the quadratic form
while maintaining approximately equally sized parts. By changing
from discrete xi ∈ {−1, 1} to continuous variables zi ∈ [−1, 1] and
diagonalizing Λ, it can be shown that

min(zΛz) = |V | λ2 (4.29)

with λ2 the second smallest eigenvalue of Λ. Thus the argument mini-Any Laplace matrix
has non-negative

eigenvalues.
mizing the quadratic form is simply the corresponding eigenvector
z(2) of Λ. To recover a discrete solution from the optimal continuous
partition vector z(2), the sign function is applied to each component

xmin = sgn(z(2)). (4.30)

For a general multi- rather than two-way partition of the graph, in
place of the sign function applied to the Fiedler vector, clustered ap-
pearances of similar entries can indicate more than two parts. Because
in applications of TKSVM the final number of parts of the graph is un-
known, a multi-way partition and hence a continuous representation
of the Fiedler vector is required, see Figure 4.7b.



Part II

A P P L I C AT I O N S





5
L E A R N I N G F R O M T R A P P E D - I O N E X P E R I M E N T S

Present-day NISQ computers [100] have shown tremendous progress
in the coherent control of several qubits via high-fidelity quantum
operations and efficient readout. Nonetheless, there are still substantial
limitations on the achievable size of the quantum system as well as
on the quality of the quantum operations that can be performed.
Individual quantum computation platforms exhibit different trade-
offs between benchmark metrics such as gate fidelity, coherence time,
gate execution times, qubit control and connectivity, and scalability.
For computations with few high-quality qubits, trapped-ion quantum
computers are well-suited as they exhibit high gate fidelities [51]
and universal connectivity [26, 125]. With the fault-tolerant era still
years ahead, it is of fundamental interest to identify use-cases of NISQ

devices which lead to practical applications in non-tailored problems.
A non-trivial question in the context of phase classification is posed

by the discrimination between symmetry-protected topological (SPT)
phases with string orders and topologically trivial phases. Addressing
this problem on a trapped-ion quantum computer requires preparing
such states and performing measurements within current state-of-
the-art limits. In this application of TKSVM, quantum data for two
distinct families of states is obtained from trapped-ion devices based
on qubits [96] and on qutrits [109]. The main purpose is to show that
the task is achievable in the NISQ era. In the conducted experiments,
the primary limiting factor is the number of gates that can be applied,
because the fidelity rapidly degrades when it is increased. Owing
to these limitations, this application is centered around MPS models
with low bond dimension, because these states can be prepared with
a number of gates scaling linearly with system size. This allows to
reliably prepare states on the qubit and qutrit platforms with up to
eight qubits and five qutrits, respectively.

5.1 investigated quantum states

Each of the investigated families of quantum states corresponds to a
parametrized closed set of states that have a MPS representation with
bond dimension 2. One family comprises a subset of ground states of
a spin-1/2 cluster model, whereas the other family consists of spin-1
states that are derived from the first family.

51
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family of spin-1/2 states Consider a set of translation invari-
ant MPS of the form

|ψ(g)⟩ ∝
∑

s1...sL

Tr
[
Bs1(g) . . . BsL(g)

]
|s1 . . . sL⟩ (5.1)

where L is the number of lattice sites, and g is a real parameter to be
defined below. For a spin-1/2 system, sj = 0, 1 labels the spin-1/2 or
qubit computational basis states. Explicitly, the MPS tensors for this
model [134] are given by

B0 =

(
0 0

1 1

)
, B1 =

(
1 g

0 0

)
. (5.2)

The MPS interpolates between the cluster state at g = 1 and a trivial
product state at g = −1, without breaking the Z2 × Z2 symmetry
of the cluster model generated by X1X3X5 . . . and X2X4X6 . . . . ALike before X, Y,Z

denote the Pauli
matrices.

phase transition occurs at g = 0, separating a SPT phase from a trivial
phase [134]. The SPT phase can be characterized by the following string
order parameter [94]

lim
ℓ→∞

〈
Z1Y2

ℓ−2∏
j=3

Xj

 Yℓ−1Zℓ

〉
=


−4g

(1−g)2
if g < 0

0 if g ⩾ 0.
(5.3)

The string order parameter therefore has a non-zero expectation value
in the SPT phase (g < 0). The MPS state defined by the tensor in
Equation 5.2 is the ground state of the Hamiltonian

H =
∑
j

gzxzZjXj+1Zj+2 − gzzZjZj+1 − gxXj (5.4)

where the sum runs over lattice sites, and the relation between the
MPS parameter g ∈ [−1, 1] and the Hamiltonian coupling constants
is gzxz = (g− 1)2,gzz = 2(1− g2),gx = (1+ g)2. This Hamiltonian
exhibits three phases: A topological phase protected by a Z2 × Z2

symmetry, a trivial paramagnetic phase, and a symmetry-broken anti-
ferromagnetic phase. The MPS line traverses the former two phases,
and its phase transition point corresponds to the tri-critical point
where all three phases meet, see Figure 5.1. The simplicity of the MPS

parent Hamiltonian is not instrumental to the analysis that follows. In
fact, the only reason why states along the MPS line will be considered
exclusively, is that they can be prepared via shallow circuits.

family of spin-1 states In order to define a family of spin-1
quantum states with the same properties as the spin-1/2 model in
Equation 5.1, consider an isometry P, which maps two consecutive
spin-1/2 degrees of freedom to a single spin-1 degree of freedom

|X+X−⟩ ± i |X−X+⟩√
2

→ |±⟩

|X+X+⟩ → |◦⟩
(5.5)
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Figure 5.1: Phase diagram of the three-parameter one dimensional cluster
model with a path from the SPT into the trivial para-magnetic
phase and through the tri-critical point. Along this path the
ground state is an exact MPS in the thermodynamic limit. Re-
produced from Smith et al. [122].

where +, ◦,− label the spin-1 or qutrit computational basis states,
and |X±⟩ are the eigenstates of X. When applied to the cluster state
(g = −1), this transformation yields the Affleck-Kennedy-Lieb-Tasaki
(AKLT) state [3, 130], which is the prototypical example of the same
SPT order encoded in the cluster state but realized on a qutrit system.
Because of the invariance under SO(3) transformations, its parent
Hamiltonian has the simple form

H =
∑
j

Sj · Sj+1 +
1

3
(Sj · Sj+1)

2 (5.6)

where Sj denotes the spin-1 vector acting on site j. The map P in Equa-
tion 5.5 relates the symmetries of the cluster state to the symmetries
of the AKLT state

P(X⊗ I) = −eiπτ
x

P

P(I⊗X) = −eiπτ
y

P
(5.7)

with the spin-1 matrices defined as

τx =
1√
2

0 1 0

1 0 1

0 1 0

 , τy =
1√
2

0 −i 0

i 0 −i

0 i 0

 , τz =

1 0 0

0 0 0

0 0 −1

 .

(5.8)
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This mapping can be extended to the whole MPS line parametrized
by Equation 5.2 to obtain a family of spin-1 states with the following
explicit MPS tensor

B+ =
1√
2

(
1−g
2 + i1+g

2 ig

−i g−1
2 − i1+g

2

)

B◦ =

(
1+g
2 g

1 1+g
2

)
B− = B∗

+.

(5.9)

For g = −1, the standard MPS representation of the AKLT state [114] is
recovered via the gauge transformation

1√
2

(
i −1

i 1

)
. (5.10)

For g = 1, the MPS represents the product state
⊗

|◦⟩. For all values of
g, the transfer matrix can be diagonalized analytically, and all local
quantities can be expressed in closed form. For instance, the string
order parameter characterizing the SPT phase reads

lim
ℓ→∞

〈
τz1

ℓ−1∏
j=2

eiπτ
z
j τzℓ

〉
=

−16
9

g
(1−g)2

if g < 0

0 if g ⩾ 0.
(5.11)

Analogous to the spin-1/2 MPS in Equation 5.2, the string order pa-
rameter is non-zero for g < 0 and vanishes at g = 0, where a phase
transition to a trivial phase occurs. For g ̸= −1 the MPS in Equation 5.9
is not SO(3)-invariant in contrast to the AKLT state. For this reason,
its parent Hamiltonian is more intricate than Equation 5.6 and its
derivation omitted.

5.2 state preparation

The MPS representation allows for easy and resource efficient imple-
mentation on gate based quantum computing platforms. Any infinite
size translational invariant MPS can be directly transformed into a fi-
nite size quantum circuit. This is achieved through a straight-forward
procedure pointed out by Barratt et al. [6], and schematically depicted
in Figure 5.2. The first step consists of transforming the MPS into
right-canonical form and interpreting the right-normalized tensor as
an isometry from the left virtual space (green leg in Figure 5.2) to the
product of physical and right virtual spaces (black and orange legs in
Figure 5.2). Subsequently, the isometry is extended to a unitary matrix
by addition of an extra leg with the same dimension as the physical
space. This leg is equivalent to a dummy index for the MPS tensor
when applied to the state |0⟩ in the spin-1/2 case and |00⟩ or |◦⟩ in the
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Figure 5.2: The MPS tensor is converted to a 2-qubit unitary in case of the
spin-1/2 states. Meanwhile the MPS tensor of the spin-1 states
can be translated into either a 3-qubit unitary, or into a 2-qutrit
unitary. In the first case, the physical Hilbert space (labelled σ)
is too large, while in the second case, the virtual Hilbert space
(green and orange legs) is too large.

spin-1 case. But its action on the remaining physical states is unde-
termined and adjustable to make the gate unitary. The unitarization
of the isometry is not unique, and can therefore be optimized with
respect to the number of native gates necessary to implement the re-
sulting unitary matrix on the quantum computer. Several approaches
to solve this task sometimes referred to as multi-state preparation exist
[56, 126] and have been implemented in publicly available software
tools such as UniversalQCompiler [57] and BQSKit [139]. Both are used
in this work to unitarize MPS tensors. To mimic an infinite system, the
uppermost unitary U1 in Figure 5.3 is constructed by unitarization of
the non-trivial left eigenvector of the MPS transfer matrix.

For the spin-1/2 family of states, a quantum circuit realization based
on qubits is optimal, since the physical dimension of the MPS tensor
equals its virtual dimension. For the spin-1 states in Equation 5.9,
however, there is a mismatch between physical and virtual dimensions.
As a consequence, there are two possible choices to implement the
spin-1 states on a quantum computer. Namely, utilizing either qubits
or qutrits as computation units, neither of which is optimal. On a qubit
platform, the physical Hilbert space of a single spin-1 is emulated by
a pair of qubits. The basis states |00⟩ , |01⟩ , |10⟩ are associated with the
spin-1 basis states |◦⟩ , |+⟩ , |−⟩, respectively, while the extra basis state
|11⟩ is neglected. On a qutrit platform, on the other hand, the physical
dimension of the MPS tensor matches the dimension of a qutrit, but the
virtual Hilbert space dimension does not. Therefore the virtual Hilbert
space is embedded into the subspace spanned by the qutrit basis states
|+⟩ , |−⟩. The dimensions of these different implementations are listed
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Dimension physical virtual

Spin 1/2 MPS tensor 2 2

Spin 1/2 Qubit unitary 2 2

Spin 1 MPS tensor 3 2

Spin 1 qubit unitary 4 2

Spin 1 qutrit unitary 3 3

Table 5.1: Hilbert space dimensions for the MPS tensor and corresponding
implementations as unitaries.

in Table 5.1.

To illustrate the unitarization procedure, consider the phase point
g = −1 in the spin-1 family of states, i. e. the AKLT state. After right-
normalization, the transformed MPS tensors read

B̃+ =
1√
6

(
1 i

i −1

)
, B̃◦ =

1√
3

(
0 1

−1 0

)
, B̃− = B̃∗

+ (5.12)

and the corresponding three-qubit and two-qutrit isometries acting on
quantum states are given by

1√
6



0
√
2

1 i

1 −i

0 0

−
√
2 0

i −1

−i −1

0 0


and

1√
6



0 0

0 0

0 0

0
√
2

1 i

1 −i

−
√
2 0

i −1

−i −1



(5.13)

respectively. Note that different permutations of rows are possible,
depending on the bit/trit ordering convention used. In the convention
chosen here, the first and second row of B̃◦ become the first and
fifth row of the qubit unitary, and the fourth and seventh row of
the qutrit unitary. Vanishing rows indicate the excess dimension of
the physical space in case of the qubit isometry, where the state |11⟩
has no physical meaning. On the other hand, the vanishing rows
of the qutrit isometry arise because of the excess dimension of the
virtual space. Decomposing the three-qubit unitary in terms of the
standard universal gate set consisting of general three parameter
single qubit rotations and the cnot gate by means of the column-
by-column decomposition scheme [56] yields the circuit depicted in
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(a) Spin-1/2 family

(b) Spin-1 family (Qubits)

(c) Spin-1 family (Qutrits)

Figure 5.3: Quantum circuits with randomized measurements for trapped-
ion experiments. Infinite size MPS are represented as finite size
quantum circuits at the cost of two ancilla qubits/qutrits that are
not measured. The unitaries Vi are chosen randomly and rotate
the physical degree of freedom into one of the MUB, hence each
configuration of the V-unitaries represents a distinct quantum
circuit.
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(a) Three Qubits

(b) Two Qutrits

Figure 5.4: Circuit layout resulting from the conversion of an isometry to
a full unitary with near-optimal gate count. The gates R and T
represent general single qubit and single qutrit rotations, respec-
tively. The entangling two-qutrit cinc gate is represented by a
black square on one qutrit and control on another.

Figure 5.4a. Decomposing the three-qutrit unitary naturally requires
a different gate set acting on qutrits. Consider the universal gate set
consisting of general single qutrit rotations with eight parameters and
the entangling cinc gate, which can be seen as a generalization of
the cnot gate to higher dimensions. In dimension d = 3 and using
the notation +, ◦,− ≡ 0, 1, 2, its action is defined as

cinc :

{
|j,k⟩ 7→ |j,k⟩ , if j < 2

|j,k⟩ 7→ |j, (k+ 1) mod 3⟩ , if j = 2

(5.14)

incrementing the state of the target qutrit, if and only if the control
qutrit is in the state |2⟩. For this gate set, the two-qutrit isometry
decomposition is obtained by a numerical optimization technique
based on instantiation of parametrized circuit templates [126]. The
resulting optimized circuit is displayed in Figure 5.4b.

measurement In the measurement portion of the circuits suc-
ceeding state preparation, informationally complete generalized mea-
surements based on MUB are implemented in a randomized manner
as discussed in Section 2.3. Recall that generalized measurements
constructed from MUB have an important advantage over other types
of generalized measurements. Namely, they are a collection of mul-
tiple projective measurements, where no projective measurement is
favored over another. This is exploited by randomly choosing a basis
in which to measure, and then perform a projective measurement in
that basis, resulting in a randomized quantum circuit, see Figure 5.3
and compare to Figure 2.4b.
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gate count Besides the isometries preparing the quantum states,
the measurement unitaries Vi also contribute to the total gate count
of the circuits. They consist of merely a single general qudit rotation
in case of the spin-1/2 states and also in case of the qutrit implemen-
tation of the spin-1 states, but require three entangling cnot gates
and several single qubit rotations in case of the qubit implementation
of the spin-1 states. Of course Vi can also be the identity, when the
measurement is performed in the computational basis, not requiring
any gates. For different values of g the gate count can vary. For in-
stance, the environment unitary U1 for the spin-1/2 family requires
a single cnot gate for g ⩽ 0 but two cnot gates otherwise. The
bulk isometry U has two cnot gates for all values of g. For a sys-
tem size of 5 physical and 2 ancillary qubits, this amounts to a total
of 11− 12 cnot gates. Meanwhile, the qubit implementation of the
spin-1 states has a single cnot for the environment unitary, 9 cnot

gates for the bulk unitary, and 3 for any measurement unitary that is
not the identity, yielding a total of 37 entangling gates for the circuits
of Figure 5.3b, if Vi ̸= I ∀i. Only at the exact AKLT point g = −1, the
bulk unitary can be converted with 8 instead of 9 cnot gates. Finally,
the qutrit realization of the spin-1 family of states yields circuits with
a single cinc gate for the environment unitary and 2− 3 cinc gates
for the bulk unitary, resulting in a total of either 7 or 10 entangling
gates, depending on the value of g. In the experiment, rather than
cnot and cinc gates, the Møller-Sørensen entangling gates [124] are
used. This implies another compilation step which is achieved by the
algorithm described by Maslov [77].

5.3 experiment details

The experiment is performed on two trapped-ion devices. Both devices
operate with 40Ca+ ions confined in macroscopic, linear Paul (blade)
traps. Information is encoded in Zeeman sub-levels 4S1/2 and 3D5/2

of the ions, which are connected via an optical quadrupole transi-
tion at 729nm. The optical systems of the respective traps provide
single-ion addressing capabilities allowing for arbitrary single-qubit
and arbitrary-pair two-qubit gate operations. The native gate set of
the setup consists of single-qubit rotations around an axis in the equa-
torial plane of the Bloch sphere R(θ,ϕ), implemented via laser pulses
resonant with the optical transition, single-qubit Z-rotations virtually
implemented in software, and maximally-entangling two-qubit gates
XX(±π/2) = exp(∓iπ4X⊗ X) implemented via the Mølmer-Sørensen
interaction [124]. The XX(±π/2) operation is equivalent to the cnot

gate up to local rotations [77].
Qubit setup: For the qubit experiment, the quantum states are en-

coded in the magnetic Zeeman sub-levels as |0⟩ = |4S1/2,mJ = −1/2⟩
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and |1⟩ = |3D5/2,mJ = −1/2⟩. A detailed setup description can be
found in [96, 98]. Measurements are submitted as Qiskit [58] circuits
that undergo a custom transpilation procedure. Compared to the qutrit
setup, the qubit setup has the benefit of hardware upgrades enabling
overall higher-performing operations.

Qutrit setup: For the qutrit experiment, the quantum states are en-
coded in the magnetic Zeeman sub-levels as |+⟩ = |4S1/2,mJ = −3/2⟩,
|◦⟩ = |4S1/2,mJ = −1/2⟩, and |−⟩ = |3D5/2,mJ = −1/2⟩. The experi-
mental setup used for the qutrit measurements has lower overall gate
fidelities and shorter coherence times when compared to the system
used for the qubit experiments [96]. Due to geometric constraints, the
optical single-ion addressing also results in larger crosstalk between
ions and lower coupling strengths to the resonant transitions. Typical
gate fidelities can be found in [109]. The qutrit circuits were created
using the compiler infrastructure in the python package BQSKit [139].

5.4 phase classification and characterization

Before running TKSVM, an operator basis used to express the learned
local quantities must be fixed. Throughout this application, the Pauli
matrices are used in the spin-1/2 case and the set {τx, τy, τz, (τx)2,
(τy)2, (τz)2} in the spin-1 case. Neither is complete, but both are
sufficient for successful phase classification and characterization of
the underlying orders. In this application, TKSVM is used with a linear
rather than quadratic kernel, implying that a coefficient vector rather
than a matrix is extracted from the decision function.

For each family of states, we consider 21 values of g picked equidis-
tantly in the interval g ∈ [−1, 1]. The path through the cluster model is
realized on five physical and two ancillary sites, resulting in 35 = 243

possible measurement configurations, i. e. choices of the V-unitaries in
Figure 5.3. In each measurement configuration, 500 projective samples
are collected. This results in a total of 121 500 samples per value of
g. Meanwhile, the spin-1 family of states is realized for three physi-
cal and two ancillary spin-1 sites with a physical local Hilbert space
dimension d = 3, impliying 43 = 64 possible measurement configu-
rations. In case of the qubit implementation, where each spin-1 site
is emulated by a qubit pair, 2 000 projective samples per measure-
ment configuration are collected. The total number of samples is
then 128 000 per value of g. Due to the imperfect realization of this
state in the experiment, however, a fraction of the samples contain
the projective qubit pair outcome |11⟩. These samples have no valid
spin-1 basis state correspondence and are discarded. The fraction of
discarded samples ranges from 14% to 22% depending on g, resulting
in an average of about 106 000 usable samples per value of g. In case
of the the qutrit implementation, on the other hand, 3 000 samples
per measurement configuration are collected, none of which must be
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(a) Spin-1/2 family
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(b) Spin-1 family (qubit platform)

Figure 5.5: Phase classification for MPS paths realized in trapped ions with
qubit circuits. Graphs consisting of phase points as vertices and
bias parameters as weighted undirected edges are partitioned,
resulting in a bi-partition in all cases. The normalized weight
of the edges is represented by their intensity. Each vertex has
a Fiedler value, whose sign indicates which component of the
graph, i. e. which phase, it belongs to. Error bars are obtained
by Jackknife resampling [34]. The phase classification result of
the spin-1 family realized on the qutrit platform is displayed in
Section 5.5
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(a) g > 0 rank 1

(b) g < 0 rank 3

(c) g < 0 rank 4

(d) g < 0 rank 5

Figure 5.6: Coefficient vector Cµ for different merged datasets at different
ranks. The cluster size is always fixed at n = 5matching the whole
system size. Entries with the largest magnitude are highlighted
and labeled with the corresponding analytical expression.
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discarded. This amounts to 192 000 MUB samples per value of g. The
resulting machine-learned phase diagrams are displayed in Figure 5.5.
As will be shown in the subsequent section, the qubit platform yields
slightly more consistent results regarding phase classification of the
spin-1 family of states.

The phase classification algorithm, relying on the bias of the de-
cision functions and graph partitioning theory, correctly identifies
two different phases, with a transition at g = 0. For each model, all
datasets which have been identified as part of the same phase are
merged, thereby obtaining one dataset for g < 0 and one dataset for
g > 0. This is done to ensure that the features of the phases as a
whole are learned, rather than the features of a single point within
the phase. Finally, TKSVM is run several times more, classifying the
merged datasets against a sets of random samples. The random samples
consist of uniformly generated projectors onto the MUB states, there-
fore lacking any kind of order at any rank. Extracting and interpreting
the coefficient vector Cµ then yields analytical expressions of local
observables, able to discriminate the two phases.

The resulting order parameters discriminating the phases of the
spin-1/2 family of states are discussed first. In Figure 5.6a, the cor-
responding rank 1 coefficient vector for the g > 0 merged dataset
(trivial paramagnetic phase) is displayed. Within the cluster of size
n = 5 the same prominent local observable ⟨X⟩ is found at each site.
Hence, the minimal unit-cell capturing the order is just a single site
and choosing the hyper-parameter n = 1 would have been sufficient.
At higher ranks, the manifest features are just redundant products
of the features already observed at rank 1, e. g. ⟨X1X2⟩ or ⟨X3X4X5⟩,
and therefore not shown. Up to rank 5, no significant features appear
that can’t be reduced to products of rank 1 features. Therefore the
underlying local order characterizing the phase is given by

Og>0 = Xj. (5.15)

Meanwhile, the r = 1 decision function for the merged dataset g < 0
(SPT phase) has an absolute bias drastically exceeding unity, implying
that TKSVM detects no difference to the random samples and classi-
fies the datasets as the same phase. The resulting coefficient vector
has no meaning and is therefore not displayed. The same is true at
r = 2. Increasing the rank further, the bias parameter approaches
unity and distinct features become apparent in the coefficient vec-
tor, see Figures 5.6b, 5.6c, and 5.6d. The higher rank features can all
be understood as non-trivial overlapping products of the rank 3 fea-
tures Gj := ZjXj+1Zj+2. For example, the r = 5 feature ⟨Z1Y2X3Y4Z5⟩
equals the overlapping product ⟨G1G2G3⟩. The overlap can either
span over two sites as in the previous example or a single site as in
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(a) g > 0 rank 1

(b) g < 0 rank 2

(c) g < 0 rank 3

Figure 5.7: Coefficient vector for the spin-1 family of states. For (a) and (c) a
cluster size n = 3 is used while for (b) the cluster size is n = 2.
In all cases the qubit and qutrit experiment agree on the most
dominant features. Only at rank 3 there is a discrepancy regarding
the sub-leading features. An important difference to the spin-1/2
case is that the operator basis for spin-1 is able to produce the
identity as (τx)2 + (τy)2 + (τz)2 = 2I. The rank 2 features ⟨τz1τz2⟩
would therefore appear in the rank 3 result disguised as a sum∑

a=x,y,z⟨τz1τz2(τa3 )2⟩ = 2⟨τz1τz2I3⟩. These redundant features are
masked automatically to simplify interpretation.
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⟨G1G3⟩ ∝ ⟨Z1X2X4Z5⟩. Extrapolating these observations to higher
ranks, the form of the underlying order can be inferred as

O2
g<0 =

L−2∏
i=j

Gj ∝ Z1Y2

[ L−2∏
j=3

Xj

]
YL−1ZL, (5.16)

for uniform two-site overlap, reproducing Equation 5.3, and as

O1
g<0 =

(L−1)/2∏
j=1

G2j−1 ∝ Z1

[ (L−1)/2∏
j=2

X2j

]
ZL, (5.17)

for uniform single-site overlap, assuming L is odd. Besides these two
cases, any mix between one-site and two-site overlaps are also learned
by TKSVM.

Analyzing the spin-1 family of states at r = 1, again only the phase
g > 0 (trivial phase) is distinguishable from the random samples, in
which case the coefficient vector displayed in Figure 5.7a is obtained.
Analogous to the spin-1/2 states, periodicity is observed with respect
to all the sites of the cluster, which implies that the underlying order
extends merely over a single site. Hence, the order parameter of the
trivial phase can be inferred to be

Og>0 =
[
(τxj )

2 + (τyj )
2
]
. (5.18)

As expected for the trivial phase, the predominant features at higher
ranks are always reducible to products of the rank 1 features. This
indicates the proximity to a product state throughout the phase, and
the product state saturating the order parameter is precisely the state⊗

|◦⟩ of the g = 1 limit.
In the phase g < 0, the dominant features ⟨τz1τz2⟩ are observed at

r = 2 and ⟨τz1(τz2)2τz3⟩ at r = 3, see Figures 5.7b and 5.7c, respectively.
Extrapolating these observations, the string order parameter for the
SPT phase

Og<0 = τz1

[ (L−1)∏
j=2

(τzj )
2

]
τzL (5.19)

can be inferred. In contrast to the spin-1/2 case, not all the elements
of the spin-1 operator basis are unitary. Therefore, it is crucial to
normalize the string operator to obtain a non-vanishing string order in
the limit L→ ∞. Specifically, the operator (τz)2 must be normalized
as

N

∫
dψ ⟨ψ|(τz)2|ψ⟩ = 1 (5.20)

where the states |ψ⟩ are Haar-distributed. After rescaling with the
resulting normalization factor N = 3/2, the expectation value of the
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Figure 5.8: Rank 1 phase classification based on qutrit data. The sign of the
Fiedler value indicates to which part of the graph each vertex
belongs. Compared to the strongly connected part corresponding
to the trivial para-magnetic phase, the part corresponding to the
SPT phase is less connected.

string operator matches the expectation value of the well known AKLT

string order parameter

⟨ψ(g)|τz1
[ (L−1)∏

j=2

3

2
(τzj )

2

]
τzL|ψ(g)⟩ =

(−1)L ⟨ψ(g)|τz1
[ (L−1)∏

j=2

eiπτ
z
j

]
τzL|ψ(g)⟩ (5.21)

up to a sign (−1)L, cf. the left-hand side of Equation 5.11. This equation
holds because eiπτ

z
= −3

2(τ
z)2 + 1

2(τ
x)2 + 1

2(τ
y)2 and the expectation

value of all observables containing (τx)2 or (τy)2 vanishes, when
expanding the exponential in the right-hand side.

5.5 comparison of qubit and qutrit implementations

In this section, the two different experimental realizations of the spin-1
family of states are compared. Inspecting the respective phase classi-
fication results, Figure 5.5b and Figure 5.8, it becomes clear that the
qubit implementation yields more consistent results. In case of the
qutrit implementation, the trivial phase g > 0 is represented by one
strongly connected part of the graph, as expected, but the part rep-
resenting the SPT phase g < 0 is less strongly connected than for the
qubit implementation. Nonetheless, only a single phase point g = −0.5
is misclassified and another one at g = −0.1 has an ambiguous Fiedler
value close to zero. Hence, the phase classification can still be con-
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Figure 5.9: Prediction accuracy for the binary classification task between the
AKLT state and a product-state. For each classification task, exper-
imental data is used to train the learning model, but simulated
data is used to test it. The qubit implementation is slightly more
efficient than the qutrit implementation at rank 1.

sidered successful and one can proceed with merging the datasets to
extract the characteristic features of each phase. At ranks higher than
r = 1, however, the phase classification algorithm fails to identify two
distinct parts of the graph for the qutrit data (therefore not shown),
while it still works for the qubit data.

Although the qutrit implementation yields slightly less consistent
results regarding the phase classification, once the datasets are merged
according to their identified phases, it performs equally well in regard
to identifying the correct local observables characterizing each phase,
see Figure 5.7. One possible explanation besides the lower benchmark
values of coherence and gate fidelities, could be that the fraction of
samples containing the invalid outcome |11⟩ is discarded, effectively
reducing the relative amount of noise in the qubit data.
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5.6 accuracy scaling

In this final section, the prediction accuracy in dependence of the
number of training samples is investigated. Consider the binary classi-
fication task for the two datasets that are deepest in each phase of the
spin-1 family of states, namely g = −1 and g = +1. Once the training
stage is completed, the TKSVM decision function is used to predict
the class of a set of test samples. The fraction of correctly classified
test samples is called accuracy. These test samples are generated in
a simulation, therefore free of any noise that might be manifest in
the experimental training set. This approach not only quantifies the
minimum number of samples required for successful classification,
but also demonstrates the ability of TKSVM to learn the correct decision
boundary from noisy data, see Figure 5.9.

Finally, it is important to note that the number of required sam-
ples can be drastically reduced if the size of the system is increased.
When computing the feature vector components, the average is taken
over several independent samples (sample average). Assuming transla-
tional invariance, this average can also be taken over different clusters
within the same sample, thereby improving the precision to which
the features are estimated (cluster average). Considering the spin-1/2
family of states, the experimentally realized system consists of L = 5

sites and admits merely a single n = 5-site cluster, whereas for the
simulation of a system with L = 72 sites, there are L− n+ 1 = 68

overlapping clusters or ⌊L/n⌋ = 14 non-overlapping clusters.For details on the
sample and cluster

averaging
techniques, refer to

Section 3.1.

As before, consider a binary classification task, but this time classi-
fying the whole SPT phase against the whole trivial phase by merging
datasets with g < 0 and g > 0, respectively. The test set always consists
of simulated data, whereas for training both simulated and experiment
data are used. The results are displayed in Figure 5.10. As expected,
the overlapping cluster average reduces the number of required sam-
ples by roughly a factor of 68. Moreover, the learning model classifies
simulated test samples with comparable accuracy when trained with
simulated and experimental data.

5.7 conclusion

This application demonstrates the ability of TKSVM to analyze quantum
data generated using state-of-the-art trapped ion quantum computers.
In particular, two families of MPS featuring a transition between a
symmetry-protected topological phase and a trivial phase were imple-
mented. The first family of states represents a well-studied spin-1/2
system that interpolates between the cluster state and a trivial product
state, while the second family of states is a less-explored spin-1 system
containing the AKLT state as a paradigmatic instance of SPT order. The
learning model correctly distinguishes between the two phases in
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Figure 5.10: TKSVM prediction accuracy for the spin-1/2 family of states. The
learning model is trained at rank 5 with cluster size n = 5 in
all cases. For physical system size L = 5, the learning model is
trained using simulated as well as experiment data, while for
system size L = 72 only simulated data is available. The test-sets
used to determine the prediction accuracy consists of simulated
data in all cases.

both setups in an interpretable way. As a result, the string order pa-
rameters characterizing the SPT phase could be successfully extracted.
The results highlight the practical utility of TKSVM for the efficient
investigation of quantum phase diagrams using NISQ devices, as well
as its robustness against the unavoidable experimental imperfections.

Natural extensions include analysis of quantum data generated from
adiabatically prepared quantum states in analog quantum simulators.
Especially in the context of Rydberg atoms, significant progress with
regard to ensuring informationally completeness of measurements
was recently reported [11]. In this setting, TKSVM would enlarge the
toolbox of available techniques to analyze large-size quantum systems
in an unbiased fashion, with potential implications for the solution
of long-standing problems not amenable to classical algorithms for
many-body systems.





6
L E A R N I N G F R O M S Y N T H E T I C D ATA

A shared central theme of quantum computation and quantum many-
body physics is the estimation of a quantum state from a large number
of measurements. Standard quantum state tomography quickly be-
comes infeasible for this task due to the exponential scaling of the
many-body Hilbert space [5, 49, 123]. Various strategies, such as matrix
product state tomography [28, 70], neural network tomography [18,
127] and randomized measurements [15, 35, 129] have been proposed
to improve the efficiency by restricting the target functions to particu-
lar information or specific types of quantum states. A noticeable recent
advance in efficiency is the development of shadow tomography [1]
and the classical shadow scheme [53], which promise to estimate a
range of observables accurately from considerably less measurements.
Nevertheless, the resources required to achieve a certain accuracy still
strongly depend on the entanglement properties of the target state
and the complexity of the observable [53, 119]. Therefore, an algorithm
like TKSVM, wherein the defining features of an unknown complex
quantum state can be detected and returned as an interpretable output,
is highly desirable. Those features can then be used to make predic-
tions for new measurements and serve as input for more sophisticated
tomography processes. In this chapter, TKSVM is benchmarked by ana-
lyzing exclusively synthetic data, thereby lifting limitations imposed
by experimental imperfections.

6.1 cluster model with two parameters

Consider the spin-1/2 cluster model subject to an external field and
two-site Ising interaction

H = −

N−1∑
i=2

Zi−1XiZi+1 − h1

N∑
i=1

Xi − h2

N−1∑
i=1

XiXi+1 (6.1)

where the sums run over the lattice sites of a chain with open boundary
conditions, and the external field parameter is non-negative. This
Hamiltonian exhibits a trivial paramagnetic, a symmetry-broken, and
a SPT phase. The distinct phases of the Hamiltonian can be understood
by considering the following limits. For h1 → ∞, the ground state is a
trivial paramagnet with all spins in the eigenstate of X with positive
eigenvalue, while for h2 → −∞ it is an Ising anti-ferromagnet. The
ground state at h1 = h2 = 0 is known as the cluster state protected by
a Z2 ×Z2 symmetry and constitutes the basis for measurement-based

71
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Non-overlapping

Overlapping

Figure 6.1: Cluster averaging technique with clusters of size n = 2 for the
chain lattice. If the translational symmetry of the quantum state
permits, overlapping clusters can be used to achieve higher preci-
sion of the cluster average estimate.

quantum computers also known as one-way quantum computers [14, 84,
85, 107, 131].

In order to determine the phase diagram of the model, a grid of
17× 15 equidistant points in parameter space are considered. At each
phase point, the ground state for a system of sizeN = 72 is represented
as MPS, obtained using density matrix renormalization group [39, 114].
Sampling the MPS according to Section 2.2, Ns = 5 000 snapshots of
the tetrahedral POVM are generated per phase point.

Since the system size is large enough, the cluster averaging tech-
nique is used to accurately estimate features at low ranks. At ranks
greater than 4, the number of local observables, i. e. the feature vector
dimension, becomes too large such that the cluster averaging must
be combined with sample averaging to ensure good estimates. For
example, the rank 1 estimators for non-overlapping n-site clusters can
be computed as (cf. Equation 3.10)

tr(Oa
j ρ) ≈

1

⌊N/n⌋

⌊N/n⌋∑
k=1

tr
[
Oa

j Q
−1(M

(k)
j )

]
(6.2)

with Oa an element of the operator basis B = {X, Y,Z }, and where k
labels the different clusters while j labels the site within one cluster.
The total number of cluster within a single sample is ⌊N/n⌋, if the
clusters are non-overlapping, and N− n+ 1 if the clusters overlap.
These scenarios are compared in Figure 6.1.

Assuming no knowledge of the model, it is sensible to begin the
phase classification task using the lowest values for the hyperparame-
ters (rank and cluster), capturing simple orders such as magnetization.
In general, there is no single choice of hyperparameters, such that
all phases of a model can be distinguished simultaneously. Therefore,
the phase classification task must be repeated several times until a
converged phase diagram is obtained, in the sense that increasing
the hyperparameters does not yield an even finer partition of the
graph. For the cluster model, the phase diagram is converged at rank
r = 3 and cluster size n = 3, see Figure 6.2. After obtaining the
phase diagram, the underlying orders characterizing each phase must
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Figure 6.2: Upper panel: Partitioned graph corresponding to the cluster
model phase diagram, learned at rank r = 3 and cluster size
n = 3. Partitioning the graph leads to three components, which
are identified as the paramagnetic (pm), SPT ordered, and anti-
ferromagnetic (afm) phases. Every phase point is colored accord-
ing to the appropriate Fiedler vector entry, which indicates its
phase correspondence. The background displays the expectation
value of the string order parameter Sodd

n defined in Equation 6.6
with length n = 15, which is finite in the SPT phase but vanishes
elsewhere. Lower panel: A histogram of the Fiedler vector entries,
whose values are color-coded. The three separated regions corre-
spond to the three phases.
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r,n dim(ϕϕϕ) Nϕ̸=0 Example

3, 3 27 1 B2 = Z1X2Z3

3, 6 540 4 B4 = Z3X4Z5

4, 5 405 3 B3B4 = Z2Y3Y4Z5

5, 5 243 1 B2B3B4 = −Z1Y2X3Y4Z5

5, 7 5103 8 B2B4B6 = Z1X2X4X6Z7

6, 9 61236 30 B2B4B5B7 = Z1X2Y4Y5X7Z8

7, 9 78732 35 B2B3B5B6B8 = Z1Y2Y3Y5Y6X8Z9

8, 9 59049 22 B2B3B4B6B7B8 = Z1Y2X3Y4Y6X7Y8Z9

9, 9 19683 6
∏8

j=2 Bj = −Z1Y2X3X4X5X6X7Y8Z9

Table 6.1: Excerpt of non-trivial features learned at different ranks r and
cluster sizes n. The dimension of the feature space is dim(ϕϕϕ) =(
n
r

)
× 3r. Nϕ̸=0 denotes the number of non-vanishing features at

fixed r and n.

be extracted. The discussion shall be centered around the SPT phase,
because the paramagnetic and anti-ferromagnetic phases only lead
to simple rank 1 orders ⟨∑N

i=1 Xi⟩ and ⟨∑N/2
i=1 X2i−1 −X2i⟩, captured

with a minimal cluster size of n = 1 and n = 2, respectively. The pure
cluster model in the limit h1 = h2 = 0 shall be analyzed in isolation
first. Systematically increasing ranks and clusters up to r,n = 9, the
first non-vanishing features emerges at n = r = 3 and take the form

Bj := Zj−1XjZj+1 (6.3)

where j = 2, . . . ,n− 1 labels sites within the cluster. Increasing the
rank to r = 4 and cluster size to n ⩾ 5, two additional structures

BjBj+1 = Zj−1YjYj+1Zj+2 j ∈ {2, ...,n− 2}

BjBj+2 = Zj−1XjXj+2Zj+3 j ∈ {2, ...,n− 3}.
(6.4)

are detected. In Table 6.1 the features learned for ranks and cluster
sizes r,n ∈ {3, ..., 9} are summarized. It appears that all features learned
at any rank and cluster size can be expressed as products of the 3-
site building blocks learned at rank 3. Extrapolating n, r→ ∞, theyThe odd string order

parameter requires
the number of sites

to be odd.

reproduce, among many other kinds of string orders, the commonly
used dense and odd string order parameters [122, 131]

Sdense
n→∞ = ⟨

n−1∏
j=2

Bj⟩ = (−1)n⟨Z1Y2
(n−2∏

j=3

Xj

)
Yn−1Zn⟩ (6.5)

Sodd
n→∞ = ⟨

n−1
2∏

j=1

B2j⟩ = ⟨Z1

( n−1
2∏

j=2

X2j

)
Zn⟩. (6.6)
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It is remarkable, that even though string order is defined in the limit
of n → ∞, thus technically a non-local feature, it is still possible to
infer it by extrapolation. This is achieved by combining the structure
of the learned local variants of the string order, with the observation
that at every rank new features appear, which can’t be expressed as a
trivial combination of lower rank features.

So far, only one specific point in the SPT phase has been considered.
In principle some of the observed features might decay as soon as
one moves away from the pure cluster state by making h1 or h2
finite. To find the order parameter for the whole phase, the standard
procedure is to merge all data sets belonging to the SPT according
to the machine-learned phase diagram. Note that at this stage, the
phase is not yet characterized. The phase can only be identified as
SPT ordered, once the string orders are confirmed to be the correct
order parameter of the entire phase. The resulting pooled data set
contains 96× 5 000 samples. Classifying the pooled data set against
random samples reveals that the same operators as in Table 6.1 remain
dominant throughout the phase. Secondary features caused by finite
h1,h2 are significantly weaker, see Figure 6.3.

After the phase diagram is determined and the phases are charac-
terized, the learning efficiency of the algorithm can be investigated.
For classification tasks, the learning success is typically quantified by
the accuracy, representing the fraction of correctly classified samples
from an independent and sufficiently large test-set. In the following
discussion, only one specific classification task shall be considered,
namely the classification of the pure cluster state (h1 = h2 = 0) against
random samples. The results transfer to other classification tasks, as
long as the underlying datasets are truly separable by means of lo-
cal observables. In case of non-separable datasets, the accuracy will
always be close to 1/2, independent of all parameters.

Figure 6.4a displays the accuracy scaling with respect to the number
of clusters used during the training state, for different system sizes.
The rank and cluster size, thus the feature vector dimension, remain An accuracy ∼ 0.8 is

usually enough for a
human to interpret
the underlying order
from the coefficient
matrix.

fixed. Clearly, the accuracy only depends on the total number of
clusters and not on the number of samples. A larger system requires
less samples than a small one to reach the same total number of
clusters and hence to reach the same accuracy.

Next, one could investigate the scaling for different feature vector
dimensions, i. e. the number of observables, but it is more sensible to
consider the rank instead. This is reasonable, because for feature vector
computation using classical shadows, the number of observables enters
logarithmically, but there is an additional exponential scaling factor 3r

only depending on the rank. Therefore, the rank rather than the feature
vector dimension is investigated, always choosing the minimal cluster
size (matching the rank). As shown in Figure 6.4b, the required number
of samples to reach good accuracy scales exponentially, confirming
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(a) Cluster State h1 = h2 = 0

(b) Pooled SPT phase

Figure 6.3: Non-trivial features in the SPT phase learned at r = 4,n = 5. The
figures show a prominent column ν̄ of the associated Cµν matrix.
(a) The pure cluster state in the limit h1 = h2 = 0. Characteristic
features are labeled by their analytical expression and correspond
to the patterns B2B4,B2B3, and B3B4, cf. Equation 6.4. (b) All
phase points belonging to the SPT phase according to the graph
partition are pooled and treated as one dataset. The features
from the pure limit remain dominant, as they reflect the local
correlation structure of the whole phase.
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Figure 6.4: (a) Dependence of the binary prediction accuracy on the total
number of clusters NsN/n for different system sizes. The hy-
perparameters used here are r = n = 5 and the clusters are
overlapping. (b) Accuracy dependence on the number of training
samples for different ranks. The system size is held constant at
N = 72, using overlapping clusters with the size always matching
the rank, n = r.
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the expectation. This has a clear physical implication: in general,
the efficiency of an unbiased machine learning algorithm strongly
depends on the nature of the phase and the complexity of the target
functions. Few samples are typically enough for learning the simplest
orders, but complicated orders and entanglement patterns require
more. It also reflects an intrinsic limitation for unbiased algorithms
to learn arbitrary high-rank quantities and long-range entanglement
structures.

6.2 toric code model with external fields

In this section, TKSVM is applied to a toric code model subject to a
magnetic field [62] showing that it can distinguish the topologically
ordered phase from a trivially disordered phase and identify the
stabilizer operators even far away from the zero field limit.

Characterizing long-range entangled topological phases by identify-
ing their anyonic statistics [62, 63] or topological classes [68, 69] in a
purely data-driven manner, arguably remains beyond the capabilities
of existing machine learning algorithms. Even though it is possible to
discriminate topological and trivial phases, in the sense that a learning
model can accurately make predictions [54], typically no physical
information can be gained due to non-interpretability of the model.
Nevertheless, in case of TKSVM, information about local correlation
patterns can bring valuable insight into the state and guide further
tomography processes specialized for topological features. The Hamil-
tonian of the toric code model subject to magnetic fields hx,hz > 0 is
given by [62]

H = −
∑
v

∏
i∈v

Zi −
∑
p

∏
i∈p

Xi − hx
∑
i

Xi − hz
∑
i

Zi. (6.7)

Qubits are located on the links of a square lattice, and v and p denote
vertices and plaquettes of the lattice, see Figure 6.5.

This model is topologically ordered for hx,hz ≲ 0.33 and possesses
two trivial phases at related by symmetry [136], see the phase diagram
in Figure 6.6. The training data is produced by exactly diagonalizing
the Hamiltonian Equation 6.7 on a system consisting of 18 qubits with
periodic boundary conditions. Since the phase transitions from the
topological into any of the trivial phases are not fully characterized
by a local observable, the phase diagram can’t be reliably determined
by TKSVM. Therefore specific points are selected and investigated
separately. First the pure toric code limit hx = hz → 0 is considered.
Using Ns = 1 000 snapshots of the POVM based on MUB, the learning
model is trained against the same number of random snapshots. A
cluster of 2 × 2 unit cells yields a conclusive coefficient matrix at
r = 4, and the machine captures two features to be interpreted as
the toric code stabilizers Av =

∏
i∈v Zi and Bp =

∏
i∈p Xi, as shown
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Vertex Plaquette 8-site (4 unit-cells)

Figure 6.5: Different possible clusters of the square lattice. For an unknown
quantum state, natural choices for a cluster include multiple lat-
tice cells and the nearest neighbors of a site. Like for the chain
lattice, the clusters may or may not be overlapping by choice.
Vertex and plaquette clusters are sufficient to learn the stabilizer
constraints ⟨Av⟩ = 1 and ⟨Bp⟩ = 1, respectively. The most unbi-
ased cluster choice when no information about the Hamiltonian
is available, however, is a multiple of unit-cells of the lattice such
as the 8-site cluster, which is large enough to capture both local
constraints simultaneously.

Figure 6.6: Phase diagram of the toric code model subject to magnetic fields,
determined by Monte Carlo methods. Reproduced from Wu et
al. [136].
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(a) hx = 0,hz = 0.02

(b) hx = 0.3,hz = 0.3

(c) hx = 0,hz = 1.5

Figure 6.7: Features detected by TK-SVM for the toric code model using a
2× 2 unit cell cluster at rank 4. The prominent coefficient matrix
column ν̄ is given by ϕν̄ = Av with v the only vertex contained
in an 8-site cluster. (a) In the zero field limit hx,hz → 0, two
features representing the vertex and plaquette operators Av and
Bp are captured. (b) The same features remain prominent even
at sizeable magnetic fields hx = hz = 0.3 close to the phase
boundary. (c) In the non-topological phase at (hx,hz) = (0, 1.5),
multiple trivial features appear due to the strong polarization.
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in Figure 6.7. The same procedure is carried out at sizeable fields
(hx,hz) = (0.3, 0.3), where the same primal features are identified.
Thus, the learning model can successfully detect the correct stabilizers
from local measurements sampled far away from the pure toric code
limit. Meanwhile for a third phase point (hx,hz) = (0, 1.5) outside the
topological phase, one of the stabilizers ⟨Bp⟩ vanishes, while the other
one remains finite. Additionally many less meaningful features arise
due to the strong polarization. The stabilizers cannot be viewed as
order parameters, since one of them always remains finite depending
on the phase transition. Crossing into phase A, implying large hz field,
⟨Bp⟩ vanishes as one would expect from a order parameter, but ⟨Av⟩
remains finite. Crossing into phase B, however, the situation is entirely
reversed.

Although the stabilizers do not directly characterize the topological
phase, their explicit forms indicate the underlying gauge structure
and can inspire specialized feature mapping and kernel designs. For
instance, one may generate training sets by sampling closed loops [116,
142] or define the kernel of a gauge symmetry [110, 112], which are
strategies employed in previous studies of machine learning intrinsic
topological orders.

The simulated system considered here is fairly small consisting of
3× 3 unit cells yielding a total of 18 sites. Hence the entire system
may be used as a cluster with size n = 18 in conjunction with sample
averaging for feature estimation. For further discussion, let γ represent
non-contractible closed loops on the square lattice and let ζ represent
non-contractible closed cuts on the dual lattice, see Figure 6.8. In the
topological phase the loop and cut operators

Szγ =
∏
j∈γ

Zj and Sxζ =
∏
j∈ζ

Xj (6.8)

are detected at rank 3, see Figures 6.9 and 6.10. At first it seems
surprising, that changing the shape of the cluster reveals features
at lower rank than before. But this is simply attributed to the small
system size and the fact that the shortest closed loops and cuts that
are non-contractible act non-trivially on less sites than the stabilizers.

At higher ranks, products of stabilizers become apparent. For exam-
ple, the product ⟨AvBp⟩ is detected at rank 6 if the vertex v and the
plaquette p overlap on two sites and at rank 8 if they don’t overlap.
Since any contractible closed path can be expressed as product of
vertex or plaquette operators (depending if they are located on the
lattice or its dual), they will all be detected when the rank matches the
number of sites that the path acts on. Non-contractible closed paths,
on the other hand, can not be expressed as products of stabilizers,
and directly probe the topological numbers of the state. Thus in this
instance, if the system is small enough to use a cluster containing
non-contractible loops, TKSVM is able to detect topological properties.
However, the rank required to capture these features must be ⩾ L for
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γ1
γ2

(a) Loops

ζ1

ζ2

(b) Cuts

Figure 6.8: Loops and cuts defined on the square lattice and the dual square
lattice, respectively. The system has periodic boundary conditions
along both spatial dimensions, hence a closed path on the lattice
or its dual can wind around the torus either horizontally or
vertically.

a system containing L× L unit cells, implying exponential scaling with
respect to L.

6.3 conclusion

Machine learning techniques exhibit growing abilities of analyzing
complex classical and quantum data. This application demonstrated
the potential of TKSVM as a first-principle method to detect entan-
glement structures in many-body qubit systems. The phase diagram
of the cluster model was constructed from experimentally accessi-
ble POVM snapshots without supervision. Furthermore the respective
order parameters of the phases were extracted systematically. In par-
ticular, the local entanglement patterns and string order parameters
of its SPT phase were discussed. Finally, an intrinsic topological phase
subject to magnetic fields was examined, and the ability of the learning
model to detect the explicit stabilizers relying on data sampled far
from the zero field limit was shown.

The results pave the way to investigate membrane-like order pa-
rameters in higher dimensional SPT phases [22] and to analyze local
measurements of general topological models such as lattice gauge
theories [65] and fracton models [132]. In summary, the characteristic
local entanglement structures in a quantum phase were identified,
without relying on particular known limits or any other information
about the Hamiltonian. This marks a crucial difference compared to
popular approaches in neural-network based algorithms [10, 27, 67],
which make use of special known limits during the training stage.
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(a) hx = 0.02,hz = 0

(b) hx = 0,hz = 0.02

Figure 6.9: Coefficient matrix at rank 3 with a cluster consisting of 3× 3
unit cells, i. e. the whole system. Away from the self dual line
where hx = hz, either the operators ⟨Sxζ⟩ or ⟨Szγ⟩ are detected,
depending on whether hx > hz or hx < hz.



84 learning from synthetic data

(a) hx = 0.02,hz = 0.02

(b) hx = 0.3,hz = 0.3

Figure 6.10: On the self dual line where hx = hz, the operators ⟨Szγ⟩ or ⟨Sxζ⟩
are detected simultaneously. For strong fields sub-dominant
features become apparent.



7
C L A S S I C A L S P I N M O D E L O N T H E B R E AT H I N G
P Y R O C H L O R E L AT T I C E

Classical spin models hosting exotic higher rank gauge fields [99, 101,
105] often lead to emergent topological excitations known as frac-
tons [46, 82, 102]. Any model giving rise to emergent gauge fields
or fractons necessarily features competing interactions. This type of
interactions causes frustration, impeding the formation of long-range
order. Numerical simulations of frustrated models are notoriously
difficult, because of their strong tendency to fall out of equilibrium at
low temperatures. And even when simulations converge, interpreta-
tion of the results can still be challenging. In this chapter, the learning
model of TKSVM is used to characterize the low temperature phase of
a frustrated spin model defined on the breathing pyrochlore lattice,
thereby discovering an intricate and previously unknown form of
order.

The spin model in question is the Heisenberg anti-ferromagnet on
the breathing pyrochlore lattice with Dzyaloshinskii-Moriya interac-
tions on alternating tetrahedra, which is known to support a rank
2 gauge field theory [137, 141]. Descending from this higher-rank
gauge field, Monte Carlo simulations show the onset of an undefined
magnetic order at very low temperature Tc ∼ 10−3J where J is the
antiferromagnetic exchange coupling, see Figure 7.1. The model is
essentially a worst-case scenario for Monte Carlo simulations, where
a joint heat bath, parallel tempering and over-relaxation algorithm is
insufficient to satisfactorily thermalize the ordered phase. This diffi-
culty to thermalize reveals the naturally complex magnetic texture of
a higher-rank gauge field. In this situation, TKSVM allows to extract
the relevant information out of noisy and incomplete numerical data
and, in combination with analytical support, refine the Monte Carlo
simulations.

The model is the classical Heisenberg anti-ferromagnet with addi-
tional Dzyaloshinskii-Moriya interactions, defined on the breathing
pyrochlore lattice visualized in Figure 7.2. Its Hamiltonian reads

H = J
∑
⟨ij⟩

Si · Sj +D
∑

⟨ij⟩∈A

dij · (Si × Sj) (7.1)

where the sites of an A-tetrahedron are located at

r0 =
a

8
(1, 1, 1) r1 =

a

8
(1,−1,−1)

r2 =
a

8
(−1, 1,−1) r3 =

a

8
(−1,−1, 1)

(7.2)

85



86 classical spin model on the breathing pyrochlore lattice

 0

 0.5

 1

 1.5

 0.001  0.01  0.1  1  10
 0

 0.05

 0.1

 0.15

T
c

C
h χ T

T / J

Paramagnetrank-1
spin liquid

rank-2
spin liquid

u
n
k
n
o
w

n
o
rd

er

Figure 7.1: The phase diagram of the model presents three distinct regimes
before ordering upon cooling [137]: A paramagnet, a rank 1 spin
liquid (the Heisenberg anti-ferromagnet) and a rank 2 spin liq-
uid, as illustrated from the evolution of the specific heat Ch

and reduced susceptibility χT , computed for a system size of
N = 8 192 sites with a fixed the Dzyaloshinskii-Moriya coupling
of D = −0.0141J. The ordered phase is separated from paramag-
netic fluctuations by three orders of magnitude in temperature.
The vertical dashed and solid lines are respectively crossovers
and a phase transition. With the aid of TKSVM, the nature of the
unknown order below the transition at Tc is determined.

(a) Ground state (b) Unit cell

Figure 7.2: (a) Example of a ground-state spin configuration. The breathing
pyrochlore lattice is made of two inequivalent types of corner-
sharing tetrahedra. The ground state is coplanar and nematic in
the sense that it breaks lattice-rotation symmetry, and the ordering
mechanism comes from a thermal order-by-disorder selection
within the emergent rank 2 U(1) gauge field. (b) The unit cell
comprises 16 sites forming four A- and one B-tetrahedron. It
forms the minimal unit cell of the face-centred-cubic lattice with
respect to the centers of the four A−tetrahedra.
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relative to its center, and where a is the length of the face-centered
cubic unit cell [111]. Meanwhile, the sites of a B-tetrahedron are
located at −r0,−r1,−r2,−r3 relative to its center. The bond dependent
Dzyaloshinskii-Moriya interaction vectors are defined as [16, 66]

d01 =
(0,−1, 1)√

2
d02 =

(1, 0,−1)√
2

d03 =
(−1, 1, 0)√

2

d12 =
(−1,−1, 0)√

2
d13 =

(1, 0, 1)√
2

d23 =
(0,−1,−1)√

2
.

(7.3)

This model is of interest because of the possibility of realizing an
exotic rank 2 U(1) spin liquid for negative D < 0 [137]. Furthermore,
materials such as Ba3Yb2Zn5O11 have parameters in this regime for
the A-tetrahedra, although the antiferromagnetic interactions on the
B-tetrahedra might be too small [24, 50, 106]. For D = 0 the model
reduces to the standard Heisenberg antiferromagnet on the pyrochlore
lattice, exhibiting the well understood rank 1 classical spin liquid
phase which crosses over to a standard paramagnet with increasing
temperature. For D > 0, the ground state is a simple all-in all-out
ordered phase at low temperature [137]. However, at D < 0 below
the rank 2 U(1) spin liquid, the system orders in some manner that is
not well understood because of thermalisation issues. The presence of
Bragg peaks in the structure factor at finite q =W wave vector is the
only indication of some kind of ordering, possibly co-existing with
other phases.

7.1 thermalization issues

The initial Monte Carlo simulations are performed following the pro-
cedure of Reference [137] for system size up to 27 648 classical spins
normalized as ∥S∥ = 1/2. Starting from a random spin configuration,
the system is annealed to low temperature during 106 Monte Carlo
steps, then thermalised for another 106 Monte Carlo steps, and finally
data is collected for statistical averaging during 107 Monte Carlo steps.
Each step comprises N spin-flip updates via the rejection-free heat
bath algorithm and five over-relaxation updates sweeping through
the entire lattice. Every 100 Monte Carlo steps, parallel tempering is Over-relaxation is a

micro-canonical
update with spin
rotation around the
local molecular field
for each spin.

employed between neighbouring temperatures, with a total of 126
distinct temperatures equally spaced between 0 and 0.0025J. Based
on previous experience with classical Monte Carlo simulations, in
addition to the generic and powerful over-relaxation and parallel-
tempering algorithms, these simulation parameters are an order of
magnitude longer in time and bigger in system size than what is
usually necessary to completely characterise a typical phase transition
in a frustrated magnet. Nonetheless, Figure 7.3 shows that while it
is possible to spot the presence of long-range order, the magnetic
order cannot be properly thermalised at very low temperatures. As
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a consequence it is unclear whether the order with Bragg peaks at
q =W is really (part of) the ground state and whether it co-exists with
other phases. The reasons for this issue are multiple. On a fundamen-
tal level, the problem is the ordering mechanism descending from a
higher-rank gauge field. As shown in Reference [137], the rank 2 gauge
field itself descends from a rank 1 gauge field with a broader phase
space manifold, namely the Coulomb spin liquid of the Heisenberg
anti-ferromagnet on pyrochlore lattice. It is the Dzyaloshinskii-Moriya
term on the A−tetrahedra of the Hamiltonian that selects the rank 2
gauge field. This means that the unknown ordered phase is separated
from paramagnetic fluctuations by two successive crossovers into more
constrained configurational manifolds. Monte Carlo simulations are
thus particularly constrained in phase space around Tc and easily
become trapped in local free-energy minima. Usually this is where
parallel tempering would help, by shuffling spin configurations across
temperatures. But here the issue is not only that the transition tem-
perature is far from paramagnetic fluctuations. The visible jumps in
energy and order parameter in Figure 7.3 suggest a first-order transi-
tion. This strongly hinders the efficiency of parallel tempering, because
the discontinuity in energy essentially prevents spin configurations
from crossing the transition temperature. Hence one cannot rely on
parallel tempering to help thermalise the ordered phase. In addition,
the energy jump in Figure 7.3a is of the order of 10−4J. Such a small
energy selection is consistent with the double crossover mentioned
above but, keeping in mind the proximity of a highly degenerate spin
liquid, it also suggests a competition between multiple phases that are
quasi-degenerate in free energy.

Even if not necessarily systematic, thermalization issues arise as
relatively natural consequences of higher-rank gauge fields. Being
governed by tensorial constraints and a multiplicity of conserved
quantities, these exotic phases are inherently complex, and their or-
dering mechanisms are expected to be unconventional. With these
caveats in mind, the goal is to demonstrate how TKSVM facilitates the
analysis, taking advantage of its ability to extract useful information
out of noisy and incomplete data.

7.2 tetrahedral order

Without prior knowledge of the phase, it is natural to start at rank
1 to probe potential magnetic orders. Since the dimension of the
feature vector grows only linearly with respect to the cluster size n
at rank 1 [45], very large clusters consisting of multiple lattice unit
cells can be used. Provided a phase is purely magnetic and has a
perfect translational symmetry, the rank 1 coefficient matrices learned
with different cluster sizes should converge to a regular structure.
The magnetic order parameter could then be inferred and justified a
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Figure 7.3: Monte Carlo simulations for different system sizes N = 16L3

before the machine learning stage show a phase transition at
Tc ≈ 8. 10−4J in (a) the energy, (b) the specific heat, and (c)
the order parameter for wave vector q = W order (corners of
the Brillouin zone). There are noticeable finite-size effects and
thermalisation issues below T ∼ 10−3J. The energy in panel (a)
has been shifted by J ∥S∥2 = 1/4 for convenience.
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Figure 7.4: Rank 1 coefficient matrix. Each pixel represents the weight of
a contraction ⟨Sai ⟩⟨Sa

′
i ′ ⟩ of features learned by the machine. The

indices i and i ′ range from 0 to 127 labelling the spins within
the 8-unit-cell cluster and a,a ′ label the spin components x,y, z.
Magnification of three different spin-contraction blocks reveals
their similar structure and different overall weight.

posteriori by measuring it in new Monte Carlo simulations. However,
in the unknown phase below Tc, there is no evidence of a stable rank
1 pattern even when using very large clusters of up to 128 sites in
Figure 7.4. Instead, the learned patterns display sample-dependent
irregular weights that are inconsistent with long-range dipolar order.
This suggests that magnetic orders do not reflect the correlations in
the system completely, and the data must be analyzed further at rank
2.

The choice of the cluster at rank 2 is also guided by the lattice struc-
ture. Natural choices include the A-tetrahedron, the B-tetrahedron,
and the face-centered cubic unit cell of the breathing pyrochlore lattice
consisting of 16 spins, see Figure 7.2b. As it turns out, analyzing the A-
tetrahedron and B-tetrahedron separately reveals all the information
about the phase. After obtaining results for these clusters separately,
they need to be combined to understand the structure of the ground
states.

Using the A-tetrahedron as cluster, the decision function becomes

dsA ∼ (cs1)
2 + (cs2)

2 (7.4)

where s ∈ {xy,yz, zx} labels a global spin plane which spontaneously
breaks the spin permutation symmetry of the Hamiltonian. The two
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Figure 7.5: Rank 2 coefficient matrix corresponding to the decision func-
tion d

xy
A . Each pixel represents the weight of a contraction

⟨Sai Sbj ⟩⟨Sa
′

i ′ S
b ′
j ′ ⟩ learned by the machine.

order parameters c1 and c2 are quadratic functions of spin components
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(7.6)

Since TKSVM is conceived to learn the optimal order parameters, the
maximally ordered spin configurations can be inferred by maximizing
dsA. The resulting fully ordered states represent potential ground
states. With no loss of generality, consider a state where the ordering
develops in the spin xy plane, whose corresponding TKSVM coefficient
matrix is displayed in Figure 7.5.

The interpretation step of TKSVM consists of constructing the analyt-
ical expression of the underlying order from the internal parameters
of the learning model. This is achieved by reading off and interpreting
the graphical representation of the coefficient matrix. Since the under-
lying order in this case is fairly complex, the procedure is discussed
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for a subset of the full pattern of the A-tetrahedra only. Specifically, the
block with spin indices (2 3, 3 0) is considered, see the upper zoomed-
in panel of Figure 7.5. Reading off the terms from the block pattern
with coefficients approximated as ±1 yields the expression

[dA](23,30) ∼

+ (Sy2S
x
3)(S

x
3S

x
0) + (Sy2S

x
3)(S

y
3S

y
0 ) − (Sx2S

y
3 )(S

x
3S

x
0)

− (Sx2S
y
3 )(S

y
3S

y
0 ) + (Sy2S

y
3 )(S

x
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y
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y
3 )(S
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x
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− (Sx2S
x
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x
3S

y
0 ) − (Sx2S

x
3)(S

y
3S

x
0).

(7.7)

In order to reshape the expression into a sum over square magnitudes
of rank 2 order parameters, one must factorize the feature components
and assign the coefficients (signs) in consistency with other block
patterns (2 3, 2 3), (3 0, 3 0) and (3 0, 2 3)

[dA](23,30) + [dA](30,23) + [dA](23,23) + [dA](30,30) ∼

(−Sy2S
x
3 + Sx2S

y
3 − Sx3S

x
0 − Sy3S

y
0 )

2

+ (+Sx2S
x
3 − Sy2S

y
3 − Sx3S

y
0 − Sy3S

x
0)

2.

(7.8)

Factorizing even further requires taking some more block patterns
into account∑

ij,i ′j ′∈{0,2,3}

[dA](i j,i ′ j ′) ∼

−
(
(Sx0 − Sy2 − Sx3)

2 + (Sy0 + Sx2 − Sy3 )
2
)2

−
(
2(Sx0 − Sy2 − Sx3) · (Sy0 + Sx2 − Sy3 )

)2.

(7.9)

This expression already contains a substantial part of the full decision
function. Comparing to the definition of cxy1 and cxy2 in Equations 7.5
and 7.6, respectively, reveals that only the terms including S1 are
missing.

Extending the interpretation to the full pattern yields the expression

dA =
∑
ij,i ′j ′

∈{0,1,2,3}

[dA](i j,i ′ j ′) ∝ −(cxy1 )2 − (cxy2 )2. (7.10)

Note that the overall minus sign is of technical origin and is arbitrary
in each TKSVM run, hence it can be dropped. The sign convention
in Equation 7.4 is chosen to match with the signs in the existing
definition of mT1−

(used later), see its third component in Table 7.2 for
comparison. Furthermore, a factor of 1/16 is introduced to normalize
the order parameters to 1 when saturated (deep in phase).

The form of Equation 7.4 suggests cs1 and cs2 are independent order
parameters. Therefore, they can be maximized separately and the
respective result can be checked for consistency. Maximizing (cxy1 )2
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(a) A-tetrahedron

(b) Parametrization

Figure 7.6: Order-by-disorder on A-tetrahedra. (a) Example of a state max-
imising both (cxy1 )2 and (cxy2 )2 with θ = 7π/4. The bonds lying
within the spin-plane (0− 3 and 1− 2) have anti-parallel spins.
(b) The spin-plane specific quantities cxy1 and cxy2 as well as the
energy per bond Equation 7.13 with J = 1 and D = −2 as func-
tions of the parametrization angle θ. Note that in the decision
function Equation 7.4 the term c

xy
2 appears squared, meaning that

configurations with cxy2 = −1 are also maxima of the decision
function.
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(a)

(b)

Figure 7.7: Rank 2 coefficient matrix extracted from the decision function
for the B-tetrahedron. (a) All blocks have the same structure but
different weights. In this example, the z-component vanishes
because of the global spin-plane selection. (b) Absolute block-
weight products of the left pattern.
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Spatial layer yz xz xy

Maximal weight w1 = 1 w2 = 1 w3 = 1

(S0 · S1) −1 ±1 ±1
(S0 · S2) ±1 −1 ∓1
(S0 · S3) ∓1 ∓1 −1

(S1 · S2) ∓1 ∓1 −1

(S1 · S3) ±1 −1 ∓1
(S2 · S3) −1 ±1 ±1

Missing conf. P(Λ⋆1
E ) = 0 P(Λ⋆2

E ) = 0 P(Λ⋆3
E ) = 0

Table 7.1: Collinear ground states configurations on B-tetrahedra. In each
case there are two possible solutions, reflecting the Z2 symmetry.
The uppermost row describes which spatial layer possesses the
Z2 symmetry, while the lowertmost row indicates which of the
three possible configurations of the B-tetrahedra, defined in Equa-
tion 7.24, is not allowed.

Figure 7.8: Ground-state configuration with ordering in the xy plane. The
value of cxy2 is uniform within an A-tetrahedron layer, but alter-
nates over different layers. Compare the upper two blue tetrahe-
dra to the lower two. In this example, the spin ordering plane
coincides with the spatial plane.
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leads to a manifold of spin configurations parametrized by an angle
θ ∈ [0, 2π]

S0 =

cos θ

sin θ

0

 S1 =

cos θ+ π
2

sin θ+ π
2

0



S2 =

cos θ− π
2

sin θ− π
2

0

 S3 =

cos θ+ π

sin θ+ π

0


(7.11)

as illustrated in Figure 7.6a. Maximizing (cxy2 )2 yields the same struc-
ture as Equation 7.11. Its evolution as a function of θ is plotted in
Figure 7.6b and shows that (cxy2 )2 is maximised for four discrete
values

θ ∈
{
π

4
,
3π

4
,
5π

4
,
7π

4

}
(7.12)

only. The U(1) manifold of Equation 7.11 belongs to the ground
state of the traditional pyrochlore antiferromagnet with negative
Dzyaloshinskii-Moriya interactions on all tetrahedra [16, 23, 89] with-
out “breathing” anisotropy. Indeed, applying the spin configuration of
Equation 7.11 to the Hamiltonian Equation 7.1, its ground state energy
per bond is recovered

Ebond
A =

1

6
(−2J+ 2

√
2D). (7.13)

Since the energy per bond is independent of θ, any selection of specific
θ values is necessarily due to thermal order-by-disorder, meaning the
selection is entropic rather than energetic. In the pyrochlore model
without breathing anisotropy, the order-by-disorder mechanism selects
the q = 0 long-range order, which corresponds to either θ = 3π

4 or
θ = 7π

4 for all tetrahedra, as illustrated in Figure 7.6a. However, in
the present model where the Dzyaloshinskii-Moriya terms vanish on
B-tetrahedra, the ground state manifold is enlarged and the two addi-
tional solutions θ ∈

{
π
4 , 5π

4

}
on the A−tetrahedra exist. The ordering

mechanism is thus a two-step process: First, the selection of the U(1)
manifold Equation 7.11, and second, the coalescence on special points
of the manifold via thermal order-by-disorder.

Using the B-tetrahedron as cluster, the decision function is identified
as

dB ∼
[
w1 (S0 · S1 + S2 · S3) +w2 (S0 · S2 + S1 · S3)

+w3 (S0 · S3 + S1 · S2)
]2.

(7.14)
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The values of the weights w1,w2,w3 can be read off from the TKSVM
patterns, satisfying

w1 +w2 +w3 = 1, maxwi = 1 (7.15)

where the maximal wi determines which spatial layer possesses a
planar spin-flip symmetry. Under this constraint, dB can be intuitively
maximized if the four spins in a B-tetrahedron are collinear. The
solutions are listed in Table 7.1, and Figure 7.7 shows an example of
the coefficient matrix when the ordering is in the spin xy plane and
w3 = 1.

7.3 quenched simulations

Instead of slowly annealing from high temperature, the system is
now quenched into the configuration of Figure 7.2a, followed by 106

Monte Carlo steps of thermalisation, and 107 Monte Carlo steps for
measurements. Paving the lattice with the ground state found by the
machine requires alternating the sign of the spin configurations of
xy-layers along the z direction, see Figure 7.8. This naturally forms
a 32-site magnetic unit cell. The simulations are run again with 126
temperatures equally spaced between 0 and 0.0025J. The results are
shown in Figure 7.9, computed with the same physical parameters as
for the Monte Carlo simulations without quenching.

These new Monte Carlo simulations converge nicely and confirm
the stability of the ground state found by the machine. The transition
is now violently first order, and its hysteresis explains the shift of
the transition temperature Tc from 0.8 10−3J in Figure 7.1 to 1.5 10−3J

in Figure 7.9. Quenched simulations provide an upper bound of Tc,
while slow annealing has more difficulty in finding the ordered phase
and provides a lower bound to Tc. The c1 and c2 order parameters
correctly describe the ground state, with a noticeably stronger finite-
size dependence for the latter, which is a common consequence of
order-by-disorder [138]. Finally, the order parameter mq=W saturates
at T = 0, which means there is a priori no co-existence with other
phases.

7.4 emergent planar symmetry

Investigating the origin of the irregular weights in the decision func-
tion of the B-tetrahedron, cf. Figure 7.7, reveals an emergent planar-flip
symmetry. For simplicity, continue to consider the ground state as Fig-
ure 7.2a as an example, where the order is developed in the xy plane
and the planar symmetry acts on the spatial xy planes. In general the
plane in which the spins are confined and the spatial plane possessing
the planar-flip symmetry do not need to coincide, but this does not
affect the discussion. The spin-order plane is manifest from the c1 and
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Figure 7.9: The quenched Monte Carlo simulations exhibit a phase transition
at Tc ≈ 1.5 10−3J for all three order parameters: (a) c1 in the xy
plane, (b) |c2| in the xy plane, and (c) the order parameter for
q = W order. In case of c2 the absolute is computed to avoid
cancellation between A-tetrahedron layers, cf. Figure 7.8.
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Figure 7.10: Planar Z2 symmetry. All A-tetrahedra within one layer are
flipped (indicated in green), thereby changing the value of ΛE

in the two neighbouring B-layers. On B-tetrahedra, only intra-
layer bonds connecting two A-tetrahedra from the same layer
are affected by the transformation.

c2 parameters, while the direction of the spatial planar-flip symmetry
can be inferred from the largest weight in dB. Given the collinearity
on the B-tetrahedron, the decision function Equation 7.14 reduces to

dB ∼ (−w1 −w2 +w3)
2 = (w3)

2 (7.16)

where the values from the corresponding configuration in Table 7.1
and the weight relation in Equation 7.15 were used. As in this example
maxwi = w3 = 1, the relation Equation 7.15 reduces to w1 +w2 = 0.
Equation 7.16 manifests a property of dB that it is invariant under flip-
ping a specific pair of spins, which can be either (S0, S3) or (S1, S2) in
the current example. Nevertheless, as spins in a B-tetrahedron belong
to different A-tetrahedra, in order to preserve the value of the order
parameters c1 and c2, one has to flip all spins in the two neighbouring
A-tetrahedra. This procedure is then repeated to further A-tetrahedra
neighbours, and closes only after flipping all A-tetrahedra in an entire
layer, as illustrated in Figure 7.10.

As a consequence, the system hybridizes rank 1 and rank 2 orders.
This is a rather unconventional emergent property for an ordered
phase. Such sub-extensive zero modes usually require to be artificially
enforced via either a global or local symmetry of the system [46, 82,
102]. Since this planar spin flip is sub-extensive (it scales with L2), it
is expected to be dynamically robust. Assume that while cooling the
system, a planar spin flip takes place. This is possible since it costs zero
energy and the transition is violently first order. Once the cubic sym-
metry is broken in favour of a given plane, say the xy plane, two layers
of A−tetrahedra far from each other may likely order independently.
As a result, the long-range dipolar order with Bragg peaks at q =W

found in Figure 7.9 will be perturbed by multiple planar spin flips at
random positions in the system. And since there is a vanishingly small
probability to move L2 spins coherently in the thermodynamic limit,
such energetically degenerate spin configuration should remain stable
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over very long time scales. This mechanism explains the origin of the
irregular weights in Figure 7.4, and likely plays an important role in
the difficulty to interpret previous Monte Carlo simulations, since it
conceals the magnetic dipolar order. As a result, the magnetic order
will be long-range only in the spatial plane, but not in the orthogonal
direction. Such states break lattice rotation symmetry and may be
dubbed hybridized nematic order, with the direction of the nematicity
orthogonal to the spatial layer possessing the spin-flip symmetry.

It should be mentioned that among all of the energetically degener-
ate states connected by the Z2 symmetry, three of them have the 16-site
cubic unit cell of Figure 7.8 paving the entire lattice. They possess
two planar symmetries rather than only one, e. g. planar xy- and yz-
symmetries with the corresponding weights w1 = w3 = 1,w2 = −1, cf.
Table 7.1. But any planar spin flip as in Figure 7.10 would immediately
break the fragile cubic symmetry.

7.5 relation to Td irreps

To gain more insight, it is sensible to re-express the machine-learned
quantities in terms of order parameters transforming according to the
irreducible representations of the point group Td, defined in Table 7.2.
In terms of these expressions, the two order parameters found in the
decision function in dsA can be rewritten as

cs1 =
1

4
(∥mT1−

∥2 + ∥mE∥2) (7.17)

cs2 =
1

4
(∥mT1−

∥2 − ∥mE∥2). (7.18)

The meaning of the ground-state condition cs2 = ±1 becomes more
intuitive in the irrep basis. Order-by-disorder ensures that an A-
tetrahedron is either fully on mT1−

or on mE. The alteration of cs2 = ±1
further means that the system can be viewed as staggered layers of
mT1−

and mE A-tetrahedra.
For the B-tetrahedron, it is more convenient to use bond order

parameters
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S1 · S3

S2 · S3


(7.19)
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Op. Definition in terms of spin components

mA2
1

2
√
3
(Sx0 + Sy0 + Sz0 + S

x
1 − Sy1 − Sz1 − S

x
2 + Sy2 − Sz2 − S

x
3 − Sy3 + Sz3)

mE
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2
√
6
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x
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2
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y
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y
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x
2 − Sz2 + S
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2
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2
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1

2
√
2
(−Sy0 + Sz0 + S

y
1 − Sz1 + S

y
2 + Sz2 − S

y
3 − Sz3)

1

2
√
2
(Sx0 − Sz0 − S

x
1 − Sz1 − S

x
2 + Sz2 + S

x
3 + Sz3)

1

2
√
2
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Table 7.2: Order parameters for breaking the point-group symmetry of a

single tetrahedron, used to describe learned TKSVM order param-
eters on an A-tetrahedron. The fields mX transform according to
irreducible representation X of the tetrahedral point group Td. Re-
produced from [137, 138].
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transforming according to the irreps A1, E and T2 of the tetrahedral
point-group [117]. The decision function dB expressed in terms of
bond order parameters reads

dB ∼
[
aA1

ΛA1
+ aE,1ΛE,1 + aE,2ΛE,2

]2 (7.20)

with

aA1
=

√
2

3
(w1 +w2 +w3) (7.21)

aE,1 =

√
1

3
(2w1 −w2 −w3) (7.22)

aE,2 = w2 −w3. (7.23)

Maximizing dB then requires ΛA1
≡ −

√
2
3 and that ΛE can only be

in one of the following three configurations

Λ⋆1
E =

 4√
3

0

 Λ⋆2
E =

−2√
3

2

 Λ⋆3
E =

−2√
3

−2

 (7.24)

which are the three maxima of ∥ΛE∥2 under the condition of minimal
ΛA1

. These three configurations are transformed by the Z2 planar
symmetry as depicted in Figure 7.11. The distribution {P(Λ⋆1

E ), P(Λ⋆2
E ),

P(Λ⋆3
E )} of ΛE over all the B-tetrahedra may be inferred from the

weights of dB in Equation 7.14. In the extreme cases where all B-
tetrahedra are in the same ΛE configuration, the coefficients take the
special values (denoted by a star)

a⋆1E =

−4√
3

0

 , a⋆2E =

 2√
3

−2

 , or a⋆3E =

 2√
3

2

 . (7.25)

In addition, aA1
=
√
2/3 reflects the ground state condition ΛA1

=

−
√
2/3 which is independent of ΛE. The coefficients aA1

,aE,1,aE,2

for the general case are then obtained by solving a linear equation
systemaA1

aA1
aA1

a⋆1E,1 a⋆2E,1 a⋆3E,1

a⋆1E,2 a⋆2E,2 a⋆3E,2


P(Λ

⋆1
E )

P(Λ⋆2
E )

P(Λ⋆3
E )

 =

aA1

aE,1

aE,2

 . (7.26)

Here the first equation reduces to the normalisation of the distribution∑
i P(Λ

⋆i
E ) = 1, equivalent to

∑
iwi = 1. In the example of Figure 7.7,

the weights are given byw1 = −w2 = 0.4 andw3 = 1, which translates
to aA1

=
√
2/3, aE,1 =

√
1/3 · 0.2 and aE,2 = −1.4. Solving the linear

system for these values yields

P(Λ⋆1
E ) = 0.3, P(Λ⋆2

E ) = 0.7, P(Λ⋆3
E ) = 0. (7.27)
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(a)

(b)

Figure 7.11: (a) Triangle formed by the maxima of ∥ΛE∥2 together with the
Z2 bond flip relations. (b) Z2 symmetry operation acting on a
bond, thereby mapping one maximum to another.

In general there is always one vanishing P(Λ⋆i
E ), which is equivalent

to the statement that the weight maxwi = 1 is maximal, and can be
associated with the spatial orientation of the planar Z2 symmetry, as
listed in Table 7.1.

7.6 conclusion

In conclusion, the nature of the long-range ordered phase was suc-
cessfully determined, and the learning model identified two distinct
order parameters that bring a two-step ordering mechanism to light.
The first step is a traditional energetic selection into a continuously
degenerate ground state manifold, followed by an entropic selection
via thermal order-by-disorder [52, 118] as the second step.

Quenching the Monte Carlo simulations into the learned spin con-
figurations led to well converged data. Subsequent analytical consid-
erations finally unveiled zero-energy sub-extensive dynamics, which
represent neither a global nor a local symmetry of the system, but
rather an emergent Z2 subsystem symmetry, which leads to hybridiza-
tion of linear (dipolar) and quadratic (quadrupolar) magnetic orders.
The emergence of a sub-extensive symmetry is markedly unusual for a
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realistic two-body Hamiltonian, since it typically requires an artificial
and complex set of interactions, like in models of fractonic matter [46,
82, 102] for instance.

Poorly thermalized Monte Carlo data served as input to the learning
model, which discerned certain patterns from which the unconven-
tional and complex magnetic structure of the phase could be laid bare.
The study illustrates how numerical simulations can be enhanced from
repeated combined iterations of machine learning and analysis by a
human. The strong interpretability of TKSVM played a crucial role, but
also analytical and group-theoretical arguments were indispensable.
In summary, this collaborative approach offers one possible paradigm
for research driven by machine learning in an age in which humans
and machine learning models have complementary strengths.
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