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Summary

Ever since the advent of modern day compute architectures, problems that seemed
intractable in the past now have become routine operations on consumer grade hardware.
To minimize the time to solution, these hardware improvements should be accompanied
by algorithmic advancements. In this regard, the numerical solution of the Schrödinger
equation underlying the quantum mechanical description of matter is crucial for the
understanding of chemical processes, albeit being computationally expensive.

In this context, wave function methods have proven to provide high accuracy for chemi-
cally relevant systems, with one of the central limitations being the necessity to store
and contract the fourth-order electron repulsion integral (ERI) tensor. To overcome this
impediment, this thesis is concerned with the development of efficient algorithms to obtain
lower-order approximations to the ERI tensor through least-squares tensor hypercontrac-
tion (LS-THC). LS-THC provides the unique opportunity of expressing the ERI tensor
entirely in second-order tensors, thereby significantly reducing the storage requirements,
while also lowering the computational cost of integral contractions, ubiquitously occurring
in electron correlation methods. Due to the aforementioned advantages, LS-THC is used
as a versatile tool for significantly improving the performance of a variety of correlation
methods. This is demonstrated for ground state energies of perturbative methods, such
as second-order Møller–Plesset perturbation theory (MP2) as well as second-order approx-
imate coupled cluster theory (CC2). Furthermore, the resulting LS-THC-CC2 method
is extended to excitation energies using the linear-response coupled cluster formalism.
Besides for the calculation of energies, LS-THC is particularly attractive for adaptation
to methods aiming at calculating molecular properties. From the underlying energy
functional of a given method, properties can be obtained by differentiation, which in
general results in a multiplication of occurring ERI types. Through the example of
hyperfine coupling constants, it is demonstrated how to efficiently perform the resulting
integral contractions in the THC format, when applied to MP2. Overall, the developed
LS-THC approach enables the calculation of energies and first-order properties of large
chemically relevant systems beyond 500 atoms.

In addition to the development of LS-THC based low-scaling correlation methods, the
range of methods suitable for the accurate calculation of nuclear magnetic resonance
(NMR) chemical shifts is extended. Based on encouraging results for NMR shifts at the
random phase approximation (RPA) level of theory obtained by numerical differentiation,
the corresponding analytic second-order derivative is derived and implemented. This
represents the first formulation of an analytical second-order property for RPA as a post-
Kohn–Sham method based on the adiabatic-connection fluctuation-dissipation theorem.





List of Publications

The present work is a cumulative dissertation comprising four articles (labeled I-IV)
published in peer-reviewed journals. All articles and the author’s contribution to each of
them are stated below:

I F. H. Bangerter, M. Glasbrenner, C. Ochsenfeld
“Low-Scaling Tensor Hypercontraction in the Cholesky Molecular Orbital Basis
Applied to Second-Order Møller–Plesset Perturbation Theory”
J. Chem. Theory Comput. 17, 211–221 (2021).
Contribution by the author: All of the theory, most of the implementation, all of
the test calculations and all of the writing.

II F. H. Bangerter, M. Glasbrenner, C. Ochsenfeld
“Tensor-Hypercontracted MP2 First Derivatives: Runtime and Memory Efficient
Computation of Hyperfine Coupling Constants”
J. Chem. Theory Comput. 18, 5233–5245 (2022).
Contribution by the author: All of the theory, all of the implementation, all of the
test calculations and all of the writing.

III V. Drontschenko, F. H. Bangerter, C. Ochsenfeld
“Analytical Second-Order Properties for the Random Phase Approximation: Nuclear
Magnetic Resonance Shieldings”
J. Chem. Theory Comput. 19, 7542–7554 (2023).
Contribution by the author: Shared first authorship. Parts of the theory, most of
the implementation, parts of the test calculations and parts of the writing.

IV F. Sacchetta, F. H. Bangerter, H. Laqua, C. Ochsenfeld
“Efficient Low-scaling Calculation of THC-SOS-LR-CC2 and THC-SOS-ADC(2)
Excitation Energies Through Density-based Integral-direct Tensor Hypercontraction”
J. Chem. Theory Comput., in preparation.
Contribution by the author: Shared first authorship. Parts of the theory, parts of
the implementation, parts of the test calculations and parts of the writing.





Contents

1. Introduction 1

2. Theoretical Background 5
2.1. Molecular Time-independent Schrödinger Equation . . . . . . . . . . . . . 5
2.2. Electron Correlation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1. Hartree–Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2. Møller–Plesset Perturbation Theory . . . . . . . . . . . . . . . . . 9
2.2.3. Coupled Cluster Theory . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3.1. Coupled Cluster Perturbation Theory . . . . . . . . . . . 11
2.2.3.2. Linear Response Coupled Cluster Theory . . . . . . . . . 11

2.2.4. Algebraic Diagrammatic Construction Theory . . . . . . . . . . . . 13
2.2.5. Random Phase Approximation . . . . . . . . . . . . . . . . . . . . 14

2.3. Molecular Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2. Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3. Hyperfine Coupling Constants . . . . . . . . . . . . . . . . . . . . 19
2.3.4. Nuclear Magnetic Resonance Shieldings . . . . . . . . . . . . . . . 20

2.4. Tensor Hypercontraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2. Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3. Least-squares Tensor Hypercontraction . . . . . . . . . . . . . . . . 29

2.4.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3.2. Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5. Reduced-scaling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.1. Sparse Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2. Local Molecular Orbitals . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.3. Integral Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3. Publications 37
3.1. Publication I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2. Publication II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3. Publication III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4. Publication IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4. Conclusion 259



xiv Contents

A. Appendix 261
A.1. Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

A.1.1. Creation and Annihilation Operators . . . . . . . . . . . . . . . . . 261
A.1.2. Field Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
A.1.3. Normal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
A.1.4. Particle-hole Formalism . . . . . . . . . . . . . . . . . . . . . . . . 263
A.1.5. Electron-Electron Interaction Potential in Second Quantization . . 264

A.2. Many-body Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . 265
A.2.1. Mathematical Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 265
A.2.2. Many-body Green’s Functions in Quantum Chemistry . . . . . . . 266

A.3. Connection Between LT-AO-MP2 and AO-RI-dRPA . . . . . . . . . . . . 268
A.3.1. Correlation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
A.3.2. Molecular Gradient of LT-AO-MP2 . . . . . . . . . . . . . . . . . . 270
A.3.3. Nuclear Magnetic Moment Derivative of LT-AO-MP2 . . . . . . . 274
A.3.4. Comparison of the LT-AO-MP2 and AO-RI-dRPA Nuclear Mag-

netic Moment Derivatives . . . . . . . . . . . . . . . . . . . . . . . 274
A.3.5. Comparison of the LT-AO-MP2 and AO-RI-dRPA NMR Second

Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276



1. Introduction

The ever-increasing demand for faster and more accurate theoretical predictions for
experimental observables is driven by the need to tackle problems of increasing size
and chemical complexity. Since the introduction of the concept of the general-purpose
computer by Alan Turing, the ability of theoretically describing chemical systems beyond
analytically solvable model systems was established. The description of systems with
more than one electron formally requires the solution of an n-body problem, for which
an analytical formulation is not possible, unless certain boundary conditions are fulfilled.
Therefore the mean-field approximation to the description of the electron-electron in-
teraction was introduced in the seminal work of Douglas Hartree and Vladimir Fock [1,
2]. In Hartree–Fock (HF) theory the underlying wave function, describing the quantum
state of the system, is approximated by a single Slater determinant [3]. However, due to
the mean-field description of the electron-electron interactions, HF theory lacks so-called
correlation effects, originating from the classical electrostatic repulsion between equally
signed charged particles. To account for electron correlation a variety of methods have
been developed, which describe correlation starting from the HF reference wave function.
The arguably conceptually most simple approach is to describe the correlation effects
using perturbation theory, which is well-established in classical physics. Partitioning the
interacting Hamiltonian into the mean-field Fock operator and the fluctuation operator
describing correlation effects results in what is known as Møller–Plesset perturbation
theory (MPn) [4]. While the most frequently used second-order MPn (MP2) provides a
relatively affordable O(N5) scaling description of correlation, it only accounts for ≈ 90%
of the correlation energy. To improve upon the MPn description, the coupled cluster
(CC) ansatz for the wave function can be used [5]. In CC theory the wave function is
given by an expansion of arbitrarily excited HF reference determinants, which leads to
a systematically improvable description of electron correlation by taking into account
increasingly excited determinants. The so-called gold standard of quantum chemistry,
CC with singles, doubles (CCSD) [6] and additional perturbative triples excitations
(CCSD(T)) [7] improves the accuracy to ≈ 98% of the correlation energy, which is
however accompanied by an increased O(N7) scaling cost. To lower the computational
cost, while retaining the favorable accuracy, perturbation theory can be adapted for CC
theory (CCPT) [8, 9]. If linear response (LR) theory is applied to the second-order CCPT
(CC2), the resulting LR-CC2 method generalizes the CCPT formalism to excited states
[10]. Thereby, not only ground state energies are accessible but also excitation energies.
Conceptually related is the perturbative algebraic diagrammatic construction (ADC)
approach [11], which yields similar expressions to LR-CC for the excitation energies and
can therefore be treated on an equal footing.
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Instead of calculating correlation on top of the HF mean-field description, correlation
energies can also be obtained from a preceding Kohn–Sham (KS) density function theory
(DFT) calculation [12]. In DFT the energy functional is formulated in terms of the
electron density, instead of the wave function, for which the foundation is given by the
Hohenberg–Kohn theorems [13]. Like HF theory, KS-DFT is an effective mean-field
method, in which the interaction is described by fictitious non-interacting particles
through a self-consistent effective potential. The analytically exact connection between
the real interacting and fictitious non-interacting systems is thereby given by the adia-
batic connection approach (AC). In combination with the fluctuation-dissipation theorem
(FDT), which relates density fluctuations to external perturbations in the system, the
random phase approximation (RPA) can be derived [14–16]. RPA therefore system-
atically describes correlation in a post-KS fashion and therefore provides systematical
improvement of common (empirical) density function approximations (DFAs) at an
O(N6) scaling cost if no further approximations are applied [17–20].

The aforementioned correlation methods enable the physically sensible calculation of
energies for n-electron systems. Their applicability is however limited by their steep
polynomially scaling cost, only permitting the computation of systems with a handful
of correlated electrons. In general, the bottleneck for these methods is the necessity to
compute, contract and store the repulsion integral (ERI) tensor. Formally, the ERI tensor
is a fourth-order tensor, for which the elements are given as four-center-two-electron
integrals over Gaussian-type atomic orbitals (AOs). The electron integrals can be in-
terpreted as the Coulombic interaction between charge densities formed by the AOs,
which – according to the Gaussian product theorem – are Gaussians as well. Therefore,
the orbital pair products can be approximated by a single Gaussian function yielding
the resolution-of-the-identity (RI) approximation [21–25]. As a consequence of the RI
approximation, the formally fourth-order ERI tensor can be represented by at most
third-order tensors, thereby lowering computational demand. When applied to RPA, RI
lowers the scaling behavior to O(N4) [26], while for MP2 only the prefactor is reduced
due to the necessity to rebuild the canonical ERI tensor. Reiterating the unpinning of
indices in the ERI tensor, also within the orbital pair products, results in the tensor
hypercontraction (THC) format, which allows to represent the ERI tensor entirely in
second-order tensors [27–30]. While the THC factorization provides means to reduce the
scaling of methods it is applied to, obtaining factorization entails a significant O(N5)
scaling overhead. In the least-squares (LS) flavor of THC (LS-THC) [28], this overhead is
due the necessity to compute the canonical ERI tensor once in advance and to then project
it onto a DFT-like quadrature grid. To overcome this limitation, this issue was addressed
in Publication I. By application of the RI approximation with an attenuated Coulomb
metric (ω-RI) [31, 32] in conjunction with screening out non-contributing integrals using
the integral partition bounds (IPBs) [33] the cost of the initial formation of the integrals
is significantly reduced. Furthermore, sparse linear algebra is used to efficiently perform
the subsequent grid projection. Overall, a sub-quadratically scaling algorithm with a
low prefactor is developed, to obtain the THC factorization with marginal overhead.
Furthermore, the developed LS-THC implementation is applied to scaled opposite-spin
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(SOS-) MP2 [34] to yield the (sub-)quadratically scaling THC-ω-RI-CDD-SOS-MP2
method. To address the absent exchange-like term in SOS-MP2, in Publication II
recipes for the efficient formation of Coulomb- and exchange-like contractions in the THC
format are presented.

The developed approaches for efficient contractions of THC-decomposed integrals is
continued for the CC family of methods in Publication IV. On top of the development
of a THC-CC2 method for the calculation of ground state energies, the low-scaling THC
algorithm from Publication I is extended to excited states within the linear response
formulation of CC2 as well as to ADC(2). Furthermore, to circumvent the prohibitive
necessity to store the three-center RI integral tensor on disk for the LS-THC fitting
procedure, a new integral-direct formulation of LS-THC is developed. The proposed
algorithm allows to efficiently obtain the THC tensors in arbitrary orbital bases be-
yond the integral tensor in the occupied-virtual subspace required for MP2. Applied
to LR-CC2 and ADC(2), low-scaling implementations for excitation energies are presented.

The accurate calculation of molecular energies is important for the prediction of thermo-
chemistry, interaction energies, and atomization energies. However, to further bridge the
gap between theory and experiment, the ability to theoretically calculate experimental
observables, like hyperfine coupling constants (HFCCs) or nuclear magnetic resonance
(NMR) shifts, is pivotal. In general, this can be achieved by formulating the derivative
of the underlying energy functional of a method with respect to the corresponding
perturbation. In case of HFCCs, the energy functional is differentiated with respect to
the nuclear magnetic moment. Leveraging the methodology from Publication I, in
Publication II it is demonstrated that the calculation of HFCCs at the MP2 level of
theory can be significantly accelerated using LS-THC. Depending on the investigated
system, the obtained speedups are on the order of ≈ 500× compared to the already
efficient RI-CDD-MP2 method by Vogler et al. [35, 36]. Furthermore, LS-THC allows to
significantly reduce the storage requirements, which enables the calculation of HFCCs of
substantially larger systems up to 500 atoms.

In general, the derivation of analytic expressions for the access of molecular properties is
challenging due to the necessity to differentiate the underlying energy equations. This
is especially important when seeking not only first derivatives, such as for HFCCs,
but also second derivatives. An essential property that is accessible through second
differentiation are NMR chemical shifts, which are common observables in experimental
chemistry. Quantum chemical computations of NMR shifts therefore allow to aid structure
elucidation of chemical compounds. In Publication III, the analytic second derivative
of RPA is derived for the first time. RPA is a particularly suitable method for the
calculation of NMR shifts due to the low formal O(N4) scaling in the RI formulation
and the favorable accuracy, which is competitive with the vastly more expensive CCSD
method [37]. Since analytic expression for the derivatives of key intermediates in the
RPA method are presented, this represents a suitable starting point for the development
of further properties based on second derivatives.





2. Theoretical Background

2.1. Molecular Time-independent Schrödinger Equation
The time-dependent Schrödinger equation (TDSE) [38] is at the heart of quantum chem-
istry and describes the evolution of a wave function over time. The TDSE therefore allows
to describe dynamic processes such as transitions between quantum states, which in turn
can be obtained by solving the time-independent Schrödinger equation (TISE). Since all
methods developed in Chapter 3 are based on the TISE, the following introduction is
limited to the time-independent case.

In the Born–Oppenheimer approximation [39] the molecular electronic Hamilton operator
in atomic units Ĥel in the familiar first quantization picture is given by

Ĥel = −1
2

Nel∑
i

∇̂2
i︸ ︷︷ ︸

T̂e

−
Nnuc∑

A

Nel∑
i

ZA

|RA − ri|︸ ︷︷ ︸
V̂eN

+
Nel∑

i

Nel∑
j>i

1
|rj − ri|︸ ︷︷ ︸

V̂ee

, (2.1)

where indices A,B and i, j denote nuclei and electrons, respectively. Here, ZA is the
nuclear charge of nucleus A, while RA and ri denote the coordinates of the nuclei and
electrons, respectively. In the context of the Born–Oppenheimer approximation the
kinetic energy contribution of the nuclei T̂N is neglected and the nuclear-nuclear potential
V̂NN is added as a constant to the energy eigenvalues obtained by the solution of the
associated electronic TISE. Consequently, only the kinetic energy operator T̂e of the
electrons, as well as the electron-nuclear potential V̂eN and the electron-electron potential
V̂ee are taken into account. The electronic TISE then reads

Ĥel(r; R)Ψel(r; R) = EelΨel(r; R) (2.2)

and yields the stationary states of the quantum system with the energy Eel in addition to
allowing to calculate other properties such as probability densities or physical observables
from the wave function Ψel(r; R).

2.2. Electron Correlation Methods
Electron correlation[40, 41] is a fundamental concept in quantum chemistry and describes
the complex interactions between electrons as a direct consequence of their repulsion,
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exchange, and quantum mechanical indistinguishability. Based on its physical origin
electron correlation can be separated into Fermi and Coulomb correlation [42]. Fermi
correlation is a result of the Pauli exclusion principle[43], according to which two identical
fermions (electrons) cannot occupy the same quantum state. The latter then leads to
increased electron-electron repulsion and the formation of an exchange hole, i.e., a region
with reduced probability of finding a second electron at the location of the first electron.
Coulomb correlation on the other hand is a classical phenomenon and arises from the
classical electrostatic repulsion between equally charged particles. Due to the repulsive
nature of this interaction a second type of hole is formed, the Coulomb hole. Based on its
chemical origin, i.e., the types of systems correlation occurs in, electron correlation can
further be separated into dynamic and static correlation [42]. Dynamic correlation arises
as a response of the electrons to rearrangements of the electron density or fluctuations
therein and is inherently short-ranged. In contrast, static correlation is long-ranged as
well as persistent throughout the whole system and arises whenever multiple electronic
configurations contribute significantly to the total electronic wave function. The accurate
description of electron correlation beyond the mean-field treatment in Hartree–Fock
theory is a central topic of active research and several so-called electron correlation
methods, which were used in the publications in Chapter 3, will be explained in the
following.

2.2.1. Hartree–Fock Theory
In second quantization [44], for which an introduction is given in Appendix A.1, the
electronic Hamilton operator from eq. (2.1) is given as

Ĥ =
∑
pq

hpqâ
†
pâq + 1

2
∑
pqrs

gpqrsâ
†
pâ

†
qâsâr , (2.3)

where the subscript ‘el’ is dropped since all following sections are only concerned with
solutions to the electronic TISE. In eq. (2.3), hpq and gpqrs are used as short-hand
notations for the commonly encountered one- and two-electron integrals given by

hpq := ⟨p|ĥ|q⟩ =
∫
dτφ∗

p(τ )ĥ(τ )φq(τ ) , (2.4)

gpqrs := ⟨pq|rs⟩ =
∫∫

dτ 1dτ 2φ
∗
p(τ 1)φ∗

q(τ 2)ĝ(τ 1, τ 2)φr(τ 1)φs(τ 2) . (2.5)

Here, τ denotes the electronic coordinate including spin σ and {φp} denotes the one-
particle functional basis. ĥ contains the kinetic energy operator of the electrons as well
as the electron-nuclei interactions, whereas ĝ is the Coulomb operator. Commonly, the
Hamilton operator is split into these one- and two-electron contributions, to which Wick’s
theorem [45], see Appendix A.1.3, can be applied to achieve normal ordering, denoted by
N (...), with respect to a reference state. Applying Wick’s theorem to the one-electron
part of the Hamiltonian Ô1 yields
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Ô1 :=
∑
pq

hpqâ
†
pâq (2.6)

Wick=
∑
pq

hpq N (â†
pâq) +

∑
i

hii , (2.7)

with the second sum being restricted to the occupied-occupied contribution hii, since
non-zero contractions only appear when an annihilation operator appears to the left
of a creation operator. According to Wick’s theorem, the normal ordered two-electron
operator will – in addition to un- and singly contracted terms – also contain double
contractions giving rise to the following contributions

Ô2 := 1
2
∑
pqrs

gpqrsâ
†
pâ

†
qâsâr (2.8)

Wick= 1
2
∑
pqrs

gpqrsN (â†
pâ

†
qâsâr) +

∑
pqi

(gpiqi − gpiiq)N (â†
pâq) + 1

2
∑
ij

(gijij − gijji) . (2.9)

Summarizing the results from eq. (2.7) and (2.9), the electronic Hamiltonian Ĥ can be
expressed as

Ĥ = EHF + ĤN , (2.10)

where the Hartree–Fock (HF) [1, 2, 46] energy EHF is the expectation value of the
Hamilton operator Ĥ for the vacuum state |0⟩, given by

EHF := ⟨0|Ĥ|0⟩ =
∑

i

hii + 1
2
∑
ij

(gijij − gijji) . (2.11)

The remaining parts are cumulated in the normal ordered electronic Hamiltonian ĤN

defined as

ĤN := Ĥ − ⟨0|Ĥ|0⟩ =
∑
pq

fpq N (â†
pâq) + 1

2
∑
pqrs

gpqrs N (â†
pâ

†
qâsâr) = f̂N + V̂N , (2.12)

in which f̂N is the normal ordered Fock operator given by

f̂N =
∑
pq

hpq N (â†
pâq) +

∑
pqi

(gpiqi − gpiiq) N (â†
pâq) = ĥ+ V̂HF , (2.13)

which can be separated into the core Hamilton operator ĥ and the Hartree–Fock mean
field potential V̂HF. The entries fpq of the Fock matrix are therefore given as
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fpq := ⟨p|f̂N |q⟩ = hpq +
∑

i

(gpiqi − gpiiq) (2.14)

= hpq + 1
2 (Jpq −Kpq) , (2.15)

with Jpq and Kpq being elements of the Coulomb J and exchange matrix K, respectively.

According to eq. (2.11), calculating the HF energy of a system requires the minimization
of the HF energy functional with respect to the one-particle functions {φi} (molecular
orbitals, MOs), due to their unknownness a priori. Ensuring orthonormality of the MOs,
a set of eigenvalue problems, with the eigenvalues εi being the MO energies, is obtained
as

f̂ |φi⟩ = εi|φi⟩ , (2.16)

which are known as the canonical HF equations. These equations have to be solved in
a self-consistent fashion, since the Fock operator f̂ in eq. (2.13) depends on the MOs,
obtained by the solution of the eigenvalue problem. In practice, the MOs are expanded
in a fixed and finite set of atom-centered one-particle functions {χµ} (atomic orbitals,
AOs) according to the linear combination of atomic orbitals (LCAO) ansatz defined as

|φi(τ )⟩ =
∑

µ

Cµi |χµ(τ )⟩ , (2.17)

which leads to the Roothaan-Hall (RH) equation [47], which is a non-orthogonal matrix
eigenvalue problem given by

FC = SCε , (2.18)

where S is the overlap matrix in the AO basis, C is the matrix representation of the
LCAO expansion coefficients (MO coefficients) from eq. (2.17), ε is the diagonal matrix
of the MO energies and F is the Fock matrix defined as

F = h + J[P] + K[P] . (2.19)

Here, Pµν :=
∑Nocc

i C∗
µiCνi is the one-particle density matrix, which provides information

about the electron density distribution in the system. Like the canonical HF equations,
the RH equation has to be solved iteratively, due to the dependence of the Fock matrix
in eq. (2.19) on the density matrix.



2.2 Electron Correlation Methods 9

2.2.2. Møller–Plesset Perturbation Theory
Including electron correlation effects as a correction to the mean-field Hartree–Fock or
Kohn–Sham (KS) solution can be done in various ways, one of which is perturbation
theory. Apart from Brillouin–Wigner perturbation theory [48–50], which is particularly
useful for the description of degenerate states, Rayleigh–Schrödinger perturbation theory
[51] is most used in quantum chemistry. By ansatz, the Hamiltonian is partitioned into an
unperturbed part Ĥ0 and a perturbation Ĥ′, also called fluctuation operator, according
to

Ĥ = Ĥ0 + Ĥ′ . (2.20)

If seeking a description of electron correlation effects the zeroth-order Hamiltonian Ĥ0
can be chosen as the sum of the Fock operators, which leads to the following expression
of the perturbation

Ĥ′ = Ĥ − Ĥ0 = Ĥ − f̂N = 1
2
∑
pqrs

gpqrsâ
†
pâ

†
qâsâr − V̂HF , (2.21)

and is known as Møller–Plesset perturbation theory (MPn) [4]. According to eq. (2.21),
inserting the perturbation operator Ĥ′ into the general expression for the first-order
energy expression reveals that – in the context of MPn – the sum of the zeroth- and
first-order energy correction is simply the HF energy:

E(1) = ⟨0|Ĥ′|0⟩ = ⟨0|Ĥ − f̂N |0⟩ = EHF − E(0) =⇒ E(0) + E(1) = EHF (2.22)

Consequently, to account for electron interaction beyond the mean-field solution, at
least the second-order energy correction (MP2) has to be evaluated. By expanding the
first-order correction of the wave function in terms of the unperturbed wave functions
of varying excitation orders in a configuration interaction (CI)-like fashion [52] and
by applying Brillouin’s theorem [53] together with the Slater–Condon rules [3, 54], an
expression for the second-order energy correction is obtained as

E(2) = 1
4
∑
ij

∑
ab

|⟨ij||ab⟩|2

εi + εj − εa − εb
(2.23)

= 1
4
∑
ij

∑
ab

⟨ij||ab⟩ tab (1)
ij . (2.24)

Here, intermediate t(1) is the MP2 amplitude, a concept which will reoccur in Section 2.2.3
on coupled cluster (CC) methods. Among the family of electron correlation methods, MP2
provides a good trade-off with accounting for ≈ 80 − 90% of the total correlation energy,
while having – without applying further approximations – O(N5) scaling, compared



10 2. Theoretical Background

to the more expensive CC methods. Without additional extensions, higher-order MPn
methods are only scarcely used due to the divergence behavior of the MPn series [55]. In
this context, a low-scaling O(N2) formulation of the MP2 energy evaluation is presented
by means of tensor hypercontraction (cf. Section 2.4) in Publication I.

2.2.3. Coupled Cluster Theory
Comparable to the CI ansatz of the correlated wave function, which is expressed as an
expansion of arbitrarily excited reference determinants, the CC ansatz [5] for the wave
function ΨCC can be expressed as

|ΨCC⟩ = eT̂ |0⟩ =
∞∑

n=0

T̂n

n! |0⟩ . (2.25)

Here, the cluster operator T̂ is given by

T̂ = T̂1 + T̂2 + T̂3 + . . . , (2.26)

T̂n =
( 1
n!

)2 ∑
ij···ab···

tab···
ij··· â

†
aâ

†
bâj âi , (2.27)

as an infinite sum of n-fold cluster operators T̂n, which create determinants with an
excitation level of n. By inserting the wave function ansatz from eq. (2.25) into the TISE
and by projection onto the reference wave function, an expression for the CC correlation
energy Ec

CC is obtained as

Ĥ|ΨCC⟩ = E|ΨCC⟩ (2.28)

⇐⇒
(
Ĥ − EHF

)
eT̂ |0⟩ = (E − EHF) eT̂ |0⟩

⇐⇒ ⟨0|e−T̂ ĤNe
T̂ |0⟩ = Ec

CC , (2.29)

where H̄ := e−T̂ ĤNe
T̂ is the so-called similarity transformed Hamiltonian. Projecting

instead on the excitation manifold µ := Ψab···
ij··· and solving the resulting non-linear system

of equations given by

⟨µ|e−T̂ ĤNe
T̂ |0⟩ = 0 , (2.30)

yields the CC amplitudes of eq. (2.26).

Approximating the cluster operator by truncating after the double excitations, i.e., T̂2,
results in the CC with singles and doubles (CCSD) [6] method. The energy and amplitude
expressions for CCSD are therefore given by
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Ec
CCSD = ⟨0|e−(T̂1+T̂2)ĤNe

(T̂1+T̂2)|0⟩ , (2.31)

0 = ⟨Ψa
i |e−(T̂1+T̂2)ĤNe

(T̂1+T̂2)|0⟩ , (2.32)

0 = ⟨Ψab
ij |e−(T̂1+T̂2)ĤNe

(T̂1+T̂2)|0⟩ . (2.33)

To obtain programmable equations, the similarity transformed normal ordered Hamilto-
nian is expanded in a Baker–Campbell–Hausdorff (BCH) expansion and the resulting
terms are evaluated using Wick’s theorem [45] (see Appendix A.1).

2.2.3.1. Coupled Cluster Perturbation Theory

Combining the ideas for the treatment of correlation on a perturbational level, see
Section 2.2.2, and the exponential parametrization of the wave function, see Section 2.2.3,
results in CC perturbation theory (CCPT) [8, 9]. Here, like in MPn, the Hamiltonian
is again partitioned into the zeroth-order Fock operator and the first-order fluctuation
potential, which describes the difference between the electron-electron repulsion and the
mean-field potential from HF. In CCPT the CC energy and amplitudes are expanded in
orders of the fluctuation potential, which results in a hierarchy of nth-order approximate
CC (CCn) methods. Starting from the CCSD method of Section 2.2.3 and applying
CCPT leads to the following simplification: The singles equations are retained but the
doubles equations are approximated to be correct at first order of the fluctuation potential
only. Therefore the doubles equations become

0 = ⟨Ψab
ij |e−T̂1ĤNe

T̂1 + e−T̂2 f̂ eT̂2 |0⟩ , (2.34)

which together with eqs. (2.31) and (2.32) defines the CC2 model [8]. The simplification in
CC2 is therefore that the T̂2 cluster operator only acts on the Fock operator f̂ when doubly
excited determinants occur in the bra. Consequently, CC2 provides the means to obtain
an analytic expression for the doubles amplitudes that is only dependent on the singles
amplitudes and the Fock operator. In turn this means that – unlike in CCSD – the only
unknown quantities are singles amplitudes, which have to be solved for iteratively. Overall,
this results in a reduction of the formal scaling behavior from O(N6) for CCSD to O(N5)
for CC2 [8]. Nonetheless, since the amplitude equations have to be solved iteratively,
CC2 is significantly more expensive than MP2, which motivated the development of an
efficient implementation of the CC2 ground state energy expression in Publication IV.
This implementation leverages the tensor hypercontraction (cf. Section 2.4) to reduce
the computational effort to perform the expensive integral transformations, which results
in quadratic scaling CC2 method applicable to larger system with up to 1000 atoms.

2.2.3.2. Linear Response Coupled Cluster Theory

Apart from its attractiveness for accurate ground state energies, CC theory also allows
to calculate excitation energies or properties like transition dipole moments, based on
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response theory [56]. In response theory [57–61] molecular properties are obtained from
the system’s response to a time-dependent external perturbation V̂ (t), given by

V̂ (t) =
∫
R
dω V̂ (ω)e(iω+η)t (2.35)

where V̂ (ω) is the external perturbation operator in the frequency domain ω and the
infinitesimal η ∼ 0 is switching on the perturbation. Inserting an expansion of the
time-dependent wave function in terms of the perturbation V̂ (t) into the definition of
the expectation value of a general operator Ô yields

⟨Ψ(t)|Ô|Ψ(t)⟩ = ⟨Ψ0|Ô|Ψ0⟩

+
∫
R
dω1 ⟨⟨Ô; V̂ (ω1)⟩⟩ω1︸ ︷︷ ︸

linear response

e(−iω1+η)t

+ 1
2

∫∫
R2
dω1dω2 ⟨⟨Ô; V̂ (ω1), V̂ (ω2)⟩⟩ω1ω2︸ ︷︷ ︸

quadratic response

e(−i(ω1+ω2)+2η)t

+ . . . . (2.36)

Intermediates ⟨⟨Ô; ·⟩⟩ω are the so-called response functions, which contain the information
of the systems response to an external perturbation. Taking into account only terms
that are linear in V̂ (ω) results in linear response (LR) theory, for which an analytical
expression for the response function in the frequency domain is known as

⟨⟨Ô; V̂ (ω)⟩⟩ω =
∑
n̸=0

⟨Ψ0|Ô|Ψn⟩⟨Ψn|V̂ (ω)|Ψ0⟩
ω − (En − E0) −

∑
n ̸=0

⟨Ψ0|V̂ (ω)|Ψn⟩⟨Ψn|Ô|Ψ0⟩
ω − (En − E0) . (2.37)

Analyzing the poles of the response function at ωn = En−E0 gives access to the excitation
energy for the nth excited state [8], see also Appendix A.2. It can be shown that finding
the poles of the response function is equivalent to solving an eigenvalue problem of the
form

Avn = ωnvn , (2.38)

where vn is the eigenvector and ωn the eigenvalue of the nth excited state. In the context
of LR-CC theory [10], matrix A is the Jacobian matrix, obtained by taking the derivative
of the CC equations with respect to the cluster amplitudes. In the case of LR-CC2 this
is equivalent to differentiating eqs. (2.32) and (2.34), resulting in

ACC2 =
(

⟨Ψa
i |[H̄, τ̂ c

k ] + [[H̄, τ̂ c
k ], T̂2]|0⟩ ⟨Ψa

i |[H̄, τ̂ cd
kl ]|0⟩

⟨Ψab
ij |[H̄, τ̂ c

k ]|0⟩ ⟨Ψab
ij |[f̂ , τ̂ cd

kl ]|0⟩

)
, (2.39)
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where τ̂ab···
ij··· are replacement operators defined as τ̂ab···

ij··· = â†
aâiâ

†
bâj · · · and [Â, B̂] is the

commutator of two operators Â and B̂. As evident from eq. (2.39), the CC2 Jacobian
is non-symmetric resulting in a left and right eigenvalue problem, which increases the
computational cost if both solutions are required. The latter is not the case for excitation
energies, for which only one eigenvalue problem has to be solved, but for excited state
properties both left and right eigenvectors are required.

2.2.4. Algebraic Diagrammatic Construction Theory
As outlined for LR-CC theory [10] in Section 2.2.3.2 and in Appendix A.2 on Green’s
function theory, excitation energies can be obtained from an analysis of the poles of the
response function. Eqs. (2.37) and (A.35) formally are expressions for exact excitation
energies and need to be approximated for practical applications. In LR-CC theory the CC
wave function is used, whereas in the closely related algebraic diagrammatic construction
(ADC) theory [11] the polarization propagator is expanded in a perturbative series using
the Møller–Plesset partitioning of the Hamiltonian.1 Since the polarization propagator Π
in eq. (A.35) is expressed in its eigenstates, it can be rewritten in its diagonalized form as

Π(ω) = x†(ω − Ω)−1x , (2.40)

where x is the transition amplitude matrix and Ω is the diagonal matrix of excitation
energies. Starting point for ADC theory is then the diagrammatic perturbative expansion
of the polarization propagator illustrated in Fig. 2.1, which is used to approximate
eq. (2.40) as follows: x and Ω are approximated by effective transition moments f and an
effective Hamiltonian M, respectively [64]. Both quantities are expanded with respect to
their perturbation-theoretical order in the fluctuation potential and a like-wise analysis
of the expansion of the polarization propagator revealing analytic expressions for the
nth-order contributions f (n) and M(n).

Figure 2.1.: Diagrammatic representation of the perturbative expansion of the polariza-
tion propagator in terms of Feynman diagrams in the Abrikosov notation up
to second order [11].

As the effective Hamiltonian M is constructed – hence the name algebraic diagrammatic
construction theory – to reproduce the exact polarization propagator, the excitation
energies can be obtained by diagonalization of M. The perturbative expansion of f and
M therefore give rise to a hierarchy of ADC(n) methods for excited states, similar to

1An alternative and nowadays more popular derivation is available in terms of the intermediate state
representation [62, 63], which will not be discussed here.
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MPn theory for ground states. Contrary to LR-CC, the resulting equations in ADC
theory only involve Hermitian eigenvalue problems, circumventing the need to solve a
left and right eigenvalue equation for excited state properties. While in (LR-)CC theory
ground and excited states are described on an equal footing, in ADC theory the electronic
ground state is described at the MPn level of theory with n matching the expansion
order in ADC(n), i.e., MP2 in the case of ADC(2). Due to the close relation between
LR-CC2 and ADC(2), which differ only slightly in the definition of the corresponding
secular matrices, their implementation can be treated equally. Like MP2 and (LR-)CC2,
ADC(2) exhibits O(N5) scaling, which was addressed in Publication IV, where an
efficient formulation of the excitation energies is presented. Due to the fact that for the
excited state calculations, even more electron integral contractions are required compared
to ground state calculations, the favorable application of tensor hypercontraction (cf.
Section 2.4) is accentuated.

2.2.5. Random Phase Approximation

The random phase approximation (RPA)2 is intricately linked with all correlation meth-
ods presented thus far [20, 66, 67]. For instance, it can be shown that the leading term
in the series expansion of the RPA correlation energy in eq. (2.48) is the direct MP2
correlation energy [67] and that RPA is equivalent to CC doubles (CCD) when only
including ring diagrams (rCCD) [68]. Here, however, the discussion is restricted to the
derivation based on the adiabatic-connection fluctuation-dissipation theorem (ACFDT)
[14–16].

In the adiabatic-connection (AC) [14–16] picture, the so-called coupling-strength Hamil-
tonian Ĥλ is given by

Ĥλ = T̂e + λV̂ee + V̂ λ with 0 ≤ λ ≤ 1 , (2.41)

where V̂ee is the exact electron-electron interaction. Here, V̂ λ is a local, multiplicative
potential, chosen such that the Hamiltonian Ĥλ of the fictitious system at a given
coupling strength λ reproduces the exact density n. Applying the Hamiltonian in
eq. (2.41) to the TISE with a coupling-strength dependent ground state Ψλ

0 yields the
exact energy for λ = 1 and the non-interacting KS energy at λ = 0. Based on this
ansatz, a formally exact expression for the correlation energy Ec can be derived form the
coupling-strength integration over the difference of the fictitious interacting system Ψλ

0
and the non-interacting KS system ΨKS

0 as

2The term random phase approximation is ambiguous in quantum chemistry, as RPA is also synonymously
used with time-dependent HF [65]. In this regard RPA is also linked to ADC(n) methods in the sense
that RPA – like ADC(n), see Fig. 2.1 – can be viewed as an infinite partial summation of terms in
the perturbative expansion of the polarization propagator, which is exact up to first order for the
particle-hole excitation energies [11]. Throughout this work, RPA refers to the ACFDT-based post-KS
RPA.
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Ec =
∫ 1

0
dλ⟨Ψλ

0 |V̂ee|Ψλ
0⟩ − ⟨ΨKS

0 |V̂ee|ΨKS
0 ⟩ . (2.42)

Inserting the definition of the electron-electron Coulomb operator V̂ee from Appendix A.23
and using the fact that ⟨Ψλ

0 |n̂(r)|Ψλ
0⟩ = n(r) by construction, yields

Ec = 1
2

∫ 1

0
dλ

∫∫
R6
dr1dr2

1
r12

[
⟨Ψλ

0 |ñ(r1)ñ(r2)|Ψλ
0⟩ − ⟨ΨKS

0 |ñ(r1)ñ(r2)|ΨKS
0 ⟩

]
, (2.43)

with ñ(r) = n̂(r) − n(r) being the density-fluctuation operator. The expectation values
of the density-fluctuation operators are simply the density-density response function
from eq. (A.34). Consequently, the correlation energy can be written in terms of the
density-density response function χ(r1, r2, ω) in the Lehmann representation [69] as

Ec = 1
2

∫ 1

0
dλ

∫ ∞

−∞

dω

2π

∫∫
R6
dr1dr2fH(r1, r2) [iχλ(r1, r2, ω) − iχ0(r1, r2, ω)] , (2.44)

where fH denotes the Hartree kernel given as fH(r1, r2) = 1/|r1 − r2|. To avoid the fact
that the density-density response function given by eq. (A.34) has poles along the real ω
axis, contour integration together with the residue theorem is applied to change from a
frequency integration over ω to an integration over iω. Furthermore, eq. (A.34) reveals
that the response function is symmetric with respect to ω, simplifying eq. (2.44) to

Ec = −
∫ 1

0
dλ

∫ ∞

0

dω

2π

∫∫
R6
dr1dr2fH(r1, r2) [χλ(r1, r2, iω) − χ0(r1, r2, iω)] . (2.45)

For the non-interacting KS response function χ0 an exact expression in terms of single-
particle functions and energies is known as

χ0(r1, r2, iω) =
∑

i

∑
a

∑
σ1σ2

[
φ∗

i (τ 1)φa(τ 1)φi(τ 2)φ∗
a(τ 2)

iω − (εa − εi)

− φ∗
i (τ 2)φa(τ 2)φi(τ 1)φ∗

a(τ 1)
iω + (εa − εi)

]
. (2.46)

A formally exact expression for the interacting case along the AC path is given by a
Dyson-type expression [70] as

χλ(r1, r2, iω) = χ0(r1, r2, iω) +
∫∫

R6
dr3dr4χ0(r1, r3, iω)

[
λfH(r3, r4)

+ fλ
xc(r3, r4, iω)

]
χλ(r4, r2, iω) , (2.47)
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where the exchange-correlation kernel fλ
xc is the functional derivative of the exchange-

correlation potential with respect to the density. Since the exact exchange-correlation
kernel fλ

xc is unknown, it has to be approximated to solve the above equation. Arguably
the simplest approximation is to neglect it entirely, which yields the direct random phase
approximation (dRPA) [17–20]. Inserting the RPA response function into eq. (2.45),
carrying out the λ-integration analytically and switching from the real space basis to the
real MO basis yields the final expression for the dRPA correlation energy as

Ec
dRPA =

∫ ∞

0

dω

2πTr [ln (1 − Π0(iω)V) + Π0(iω)V] , (2.48)

where the matrix representation of the Hartree kernel V and the non-interacting polar-
ization propagator Π0(iω)3 are given by

Viajb =
∫∫

R6
dr1dr2φi(r1)φa(r1) 1

r12
φj(r2)φb(r2) , (2.49)

Π0iajb
(iω) = δijδab

−2(εa − εi)
ω2 + (εa − εi)2 , (2.50)

whereby δ is the Kronecker delta.

To extend the applicability of dRPA beyond the calculation of correlation energies, in
Publication III an analytic expression for the second derivative is developed. The
dRPA correlation energy is differentiated with respect to the nuclear magnetic moment
and an external magnetic field to compute nuclear magnetic resonance shieldings.

3As stated in Appendix A.2.2 the distinction between the density-density response function and the
polarization propagator is ambiguous. In the context of RPA the polarization propagator is commonly
used when working in the MO representation.
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2.3. Molecular Properties
2.3.1. Introduction
Bridging the gap between theory and experiment is essential for the validation of the-
oretical models against real world data. In this regard, methods for the calculation of
absolute energies, as presented in Section 2.2, cannot be used directly for the validation
as absolute energies are not directly measurable and not the observables relevant to
chemistry. Instead, relative energies can be calculated to obtain an experimentally
verifiable measure of accuracy. Going beyond energies, molecular properties often offer
an experimentally accessible measure through various kinds of spectroscopic methods,
like electron paramagnetic resonance (EPR) or nuclear magnetic resonance (NMR) spec-
troscopy. An array of mathematical methods has been developed to obtain molecular
properties from the energy expressions introduced in Section 2.2. Most importantly
response (or propagator) theory (cf. Section 2.2.3.2 and Appendix A.2), mainly used
for describing properties assigned to the transition between electronic states such as
ionization or excitation energies, as well as Lagrangian and derivative techniques used
for properties specific for a given state [71]. In Publications II and III the derivative
method, for which the energy in the presence of a perturbation ξ is expressed in a Taylor
series [72] as

E(ξ) = E(0) + ∂E

∂ξ

∣∣∣∣
ξ=0

ξ + 1
2
∂2E

∂ξ2

∣∣∣∣
ξ=0

ξ2 + · · · , (2.51)

is employed to calculate magnetic properties. Here, the terms ∂nE/∂ξn containing nth

derivative of the energy are referred to as nth-order molecular properties.

2.3.2. Magnetic Properties
In order to obtain an explicit expression for the computation of magnetic properties, the
Hamiltonian needs to be reformulated in the presence of an external magnetic field as
well as the nuclear magnetic moments. In the approximation of the principle of minimal
electromagnetic coupling [73], the canonical momentum operator p̂ is replaced with the
kinetic momentum operator π̂, with

π̂ = p̂ − A (2.52)

in atomic units [73, 74], where Â is the operator of the vector potential A of the
electromagnetic field. The latter is given by

A = 1
2B × (r − R0)︸ ︷︷ ︸

external magentic field

+
∑
A

α2 mA × (r − RA)
|r − RA|3︸ ︷︷ ︸

nuclear magnetic moments

(2.53)

with R0 being the gauge of the magnetic field B, RA being the position of nucleus A,
α being the fine structure constant (in atomic units: α = 1

c ) and mA being the nuclear
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magnetic moment of nucleus A [73–76]. The first term in eq. (2.53) originates from a
static external magnetic field and gives rise to Zeeman interactions, whereas the second
contributions stems from the nuclear magnetic dipole of nucleus A and leads to hyperfine
interactions. Inserting the definition of the kinetic momentum operator π̂ from eq. (2.52)
into the kinetic energy contribution to the electronic core-Hamilton operator ĥ yields
additional terms, which – in the non-relativistic case [77, 78] – include the dependence
on the vector potential A as

ĥ0 =
∑

i

p̂2
i

2 −
∑

i

∑
A

ZA

riA
=⇒ ĥ = ĥ0 +

∑
i

p̂i · A +
∑

i

A · A
2 , (2.54)

where p̂ · A = A · p̂ due to the application of the Coulomb gauge [73]. Since the first
term p̂ · A has linear dependence on the magnetic field, it constitutes the paramagnetic
contribution, whereas the quadratic term A ·A is the diamagnetic contribution. Following
the derivative approach to molecular properties from eq. (2.51), the energy in the presence
of an external magnetic field B and the magnetic moments mA associated with the nuclei
can be expressed in a multivariable Taylor series as

E(B,mA) = E(0,0)

+ ∂E

∂mA

∣∣∣∣
mA=0

mA + ∂E

∂B

∣∣∣∣
B=0

B

+ 1
2

∂2E

∂B∂mA

∣∣∣∣
B=0,mA=0

B mA + · · · . (2.55)

According to eq. (2.55), accounting for magnetic effects requires the analytical (mixed)
derivatives of the energy expression [72, 79–82]. In consequence, this requires the nth

derivatives of the Hamiltonian in eq. (2.54). This leads to an assortment of additional
terms that describe various coupling effects, of which only the ones relevant for Sec-
tions 2.3.3 and 2.3.4 are discussed here. First differentiation with respect to the magnetic
field results in the orbital-Zeeman (OZ) operator ĥOZ given by

ĥOZ = 1
2
∑

i

−iri0 × ∇i = 1
2
∑

i

l̂i0 , (2.56)

which describes the interaction of the external magnetic field with the magnetic moment
caused by the movement of the electrons through the angular momentum operator l̂.
Here and in the following, the abbreviations rij = ri − Rj and rij = |ri − Rj | are used,
where j either belongs to a component of the magnetic field (R0) or the nucleus position
(RA). Furthermore, first differentiation with respect to the nuclear magnetic moment
yields three distinct terms: 1) the paramagnetic spin-orbit (PSO) operator ĥPSO

A given
by eq. (2.57), which couples the nuclear magnetic moments to the orbital motion of the
electrons, 2) the spin-dipole (SD) operator ĥSD

A in eq. (2.58), which describes the classical
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coupling between two magnetic dipoles, and 3) the Fermi contact (FC) operator ĥFC
A in

eq. (2.59) which couples the nuclear magnetic moments to the spin of the electrons:

ĥPSO
A = α2∑

i

−iriA × ∇i

r3
iA

(2.57)

ĥSD
A = α2∑

i

r2
iAmA − 3(mA · riA)riA

r5
iA

(2.58)

ĥFC
A = −8πα2

3
∑

i

δ(riA)mA (2.59)

Finally, taking the mixed second derivative with respect to the external magnetic field
and the nuclear magnetic moments yields the diamagnetic shielding (DS) operator ĥDS

A as

ĥDS
A = α2

2
∑

i

(ri0 · riA)1 − riArT
i0

r3
iA

. (2.60)

The individual terms in eq. (2.55) can then be assigned to physical observables by mapping
them onto a corresponding phenomenological Hamiltonian according to the order of the
perturbation. In the case of EPR, the phenomenological EPR Hamiltonian ĤEPR is given
by [83]

ĤEPR = µBBTgŜ +
∑
A

ŜTAAmA , (2.61)

where µB is the Bohr magneton, Ŝ is the total spin operator, g is the g-tensor and AA is
the hyperfine coupling tensor of nucleus A. In the case of NMR, the phenomenological
NMR Hamiltonian ĤNMR given as [77, 83]

ĤNMR = −
∑
A

mA · (1 − σ)B + 1
2
∑

A ̸=B

mA · (DAB + KAB)mB , (2.62)

where σ is the chemical shielding tensor, KAB is the indirect nuclear spin-spin coupling
tensor, and DAB is the dipolar interaction tensor between nuclei A and B.

2.3.3. Hyperfine Coupling Constants

Based on the expression for the phenomenological EPR Hamiltonian in eq. (2.61), the
hyperfine coupling tensor AA of a nucleus A can be obtained as the term linear in the
nuclear magnetic moment mA. Comparing this to the Taylor series expansion of the
energy in the presence of magnetic fields in eq. (2.55) reveals the spin-dipole and the
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Fermi contact interaction to be the origin of the hyperfine coupling.4 Given by eq. (2.59),
the FC interaction requires a finite probability of the electron to reside at the position
of the nucleus, which is only fulfilled for s electrons, for which the orbital has no node
at the nucleus. Consequently, since the s orbitals are spherically symmetric, the FC
contribution to the hyperfine coupling is entirely isotropic. In contrast, since the SD
interaction between the magnetic moment of the electron and the nuclear spin involves
an averaging over the spatial distribution of the electron’s spin in the respective orbitals,
the SD interaction is anisotropic.

Due to the described difference of physical origin, the total hyperfine coupling tensor AA

can be separated into an isotropic part Aiso,A and the purely anisotropic contribution
TA as [84]

AA = Aiso,A1 + TA . (2.63)

For practical applications, the isotropic hyperfine coupling in a single-particle AO basis
is given by

Aiso,A = µ0
3 gegNA

µBµN ⟨Sz⟩−1∑
µν

Pα−β
µν ⟨χµ(r)|δ(r − RA)|χν(r)⟩ , (2.64)

where µ0 is the vacuum permeability, ge is the electronic and gNA
the nuclear g-factor

of nucleus A, µN is the nuclear magneton, and ⟨Sz⟩ is the mean of the spin angular
momentum Sz. Furthermore, Pα−β is the electron spin density, which multiplies the
so-called Fermi contact integral obtained as the representation of the FC operator from
eq. (2.59) in the AO basis. Therefore, from eq. (2.64) it is easily verifiable that the
FC term will only contribute for a finite electron spin density at the position of the nucleus.

In Publication II the low-scaling formulation of MP2 gradients by Vogler et al. [35, 36]
is used as a starting point for the derivation of the analytic MP2 gradient with respect
to the nuclear magnetic moment for the computation of isotropic hyperfine coupling
constants. For this purpose the spin density in the FC term is evaluated at the MP2 level
of theory using the derivative approach of Section 2.3.1. The efficiency of the method is
significantly increased by the application of the tensor hypercontraction approximation
(cf. Section 2.4) for electron repulsion integrals, resulting in speedups on the order of
500× over existing implementations.

2.3.4. Nuclear Magnetic Resonance Shieldings
Comparing the expression for the phenomenological NMR Hamiltonian in eq. (2.62)
with the Taylor expansion in eq. (2.55), reveals that the chemical shielding tensor

4The paramagnetic spin-orbit coupling operator also arises from the Hamiltonian in eq. (2.54). However,
since it describes the coupling of a particle’s spin with its motion inside a potential, it is considered
a relativistic effect. Therefore it only contributes a lesser correction except for heavy atoms and is
neglected here.
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σ can be obtained as the mixed second derivative of the energy with respect to the
external magnetic field B and the nuclear magnetic moment mA [76, 83, 85]. Based
on the discussion in Section 2.3.2, the shielding arises from the diamagnetic shielding
operator ĥDS

A in eq. (2.60). Furthermore, to ensure gauge-origin independence in practical
applications gauge-including atomic orbitals (GIAOs) [86–88] given by

χµ(r,B) = χµ(r,B = 0) exp
(

− i
2
[
B × (Rµ − R0)

]
r
)

(2.65)

are employed. Here, χµ(r,B = 0) denotes the field-independent AO basis function
centered at Rµ, and R0 is the gauge origin. As a consequence of the field-dependence of
the AOs, additional contributions to the shielding tensor arise [77] in the form of the
paramagnetic spin-orbit operator ĥPSO and the orbital-Zeeman operator ĥOZ.5

Physically, the interaction mechanisms given in eqs. (2.56), (2.57), and (2.60) describe
the system’s response to an applied external magnetic field. Since – according to the
Biot–Savart law [89] – this generates an electronic current, the effective magnetic field
Beff felt by the nuclear magnetic moments is thereby given as the sum of the external B
and the induced field Bind as [76, 83, 90]

Beff = B + Bind . (2.66)

Here, the shielding tensor σ describes the proportionality between the applied and the
induced field as

Bind = −σB . (2.67)

In liquid phase NMR experiments the shielding tensor itself is generally not measurable
due to orientational averaging, only the isotropic chemical shift δiso is accessible. The
isotropic chemical shift δiso is given by

δiso = σiso,ref − σiso , (2.68)

with the isotropic shielding σiso defined as

σiso = 1
3Tr σ . (2.69)

5All operators in eqs. (2.57)–(2.59) arise from the differentiation with respect to the nuclear magnetic
moment mA. However, since only the PSO operator produces a singlet contribution when applied to
a closed-shell wave function, the field dependence – upon further differentiation with respect to the
magnetic field B – of the FC and SD operators vanishes for closed-shell wave functions, since these
operators only produce triplet contributions for closed-shell wave functions [77]. Therefore, only the
PSO operator contributes to the shielding tensor.
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In Publication III an analytic expression for the NMR chemical shielding tensor on
the dRPA level of theory as a post-KS method based on the ACFDT is developed.
Publication III builds on promising results for chemical shieldings based on dRPA from
the work of Glasbrenner et al. [37], which employed numerical second differentiation. In
contrast to numerical differentiation, the analytical second derivative expression presented
in Publication III provides access to theoretical chemical shifts of molecules beyond
those accessible by numerical differentiation and represents an ideal stepping stone
for efficient low-scaling implementations in future work. The derivation highlights the
similarities between the expressions for the second derivative of the AO-MP2 and the
dRPA energy, also discussed in Appendix A.3. Furthermore, Publication III reports
for the first time an analytic expression for a second-order property based on the dRPA
as a post-KS method.
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2.4. Tensor Hypercontraction

2.4.1. Introduction

Higher-order tensors are ubiquitous in quantum chemistry ranging from the fourth-order
electron repulsion integral (ERI) tensor, to the amplitude tensors in CC theory (cf.
Section 2.2.3), and higher-order integral tensors occurring, e.g., in F12 methods [91].
From an implementation point of view, these tensors represent multi-way arrays [92].
Consequently, their contraction with other tensors as well as the necessity to store them
in memory or on disk is often the bottleneck of modern correlation methods. To obtain
a low-dimensional and – ideally – low-rank representation of the ERI tensor, two basic
approaches can be used, either tensor decomposition or tensor construction [92, 93].
In the tensor decomposition approach the tensor is subjected to a reduction, in which
a higher-order tensor is represented as a sum of simpler, lower-dimensional tensors.
In principle, a tensor decomposition method is therefore any scheme for expressing a
tensor as a sequence of elementary operations acting on other, often simpler tensors.
Computational advantage is achieved if 1) the memory requirements in the compressed
format are lower than that of the original tensor and/or 2) if the tensor contractions can
be performed with the lower-dimensional constituting tensors instead. However, tensor
decomposition entails an overhead since the (full) higher-order tensor has to be computed
at least once to construct the approximating lower-order tensors. In contrast, tensor
construction allows to build up a higher-order tensor if an underlying equation for its
elements or potential lower-order approximating tensors exist. This allows to completely
avoid calculating and storing the computationally demanding higher-order tensor and to
instead build the factorization from the bottom up.

In this context, the so-called resolution-of-the-identity (RI) approximation [21–25] is an
example of a tensor construction method for the ERI tensor and is implemented in many
quantum chemistry program packages.6 By ansatz, the RI approximation is achieved by
an insertion of the identity

1̂ =
∑

α

|α)(α| , (2.70)

where the complete set of functions {α} spans the so-called auxiliary space. Inserting
the above identity into eq. (2.5) once yields

6There are many more examples of tensor approximation techniques in the context of quantum chemistry
like the matrix product state (MPS) [94], or tensor train (TT) ansatz in density matrix renormal-
ization group (DMRG) [95], tensor decomposition techniques such as higher-order singular value
decomposition (HOSVD) [96] or canonical polyadic (CP) [97] decomposition as well as hierarchical
tensor representations such as the continuous fast multipole method (CFMM) [98] or the H2-ERI
representation [99], which make use of the block low-rank structure of the ERI tensor. For an
exhaustive discussion of tensor methods in the context of quantum chemistry see Ref. [93]. Here
the discussion is restricted to the historically most commonly used methods for approximating the
conventional ERI tensor.
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(µν|λσ) =
∑

α

(µνα)(α|λσ) , (2.71)

which is known as single RI [23]. Instead inserting the identity from eq. (2.70) twice,
before and after the Coulomb operator, results in

(µν|λσ) =
∑
αβ

(µνα)(α|β)(βλσ) , (2.72)

which is referred to as double RI. Assuming real basis functions, the three-center Coulomb
integrals (µν|α), the three-center overlap integrals (µνα) and the two-center Coulomb
integrals (α|β) are given by

(µν|α) =
∫∫

R6
dr1dr2 χµ(r1)χν(r1) ĝ(r1, r2)χα(r2) , (2.73)

(µνα) =
∫
R3
drχµ(r)χν(r)χα(r) , (2.74)

(α|β) =
∫∫

R6
dr1dr2 χα(r1) ĝ(r1, r2)χβ(r2) . (2.75)

For practical applications eq. (2.70) has to be approximated since the relation only holds
for a complete auxiliary basis, which – for most applications – is unachievable. Since an
ERI can be viewed as the Coulomb interaction between two charge densities, as outlined
in Appendix A.1.5, the pair-products |µν) of the AO basis functions can be fitted with
the coefficients Cµν

α according to

∂

∂Cµν
α

(µν − µ̃ν|ĝ|µν − µ̃ν) != 0 with |µ̃ν) =
∑

α

Cµν
α |χα) , (2.76)

which is known as density fitting (DF) [100]. Related is the Cholesky decomposition
(CD) [101–106] approach, in which the full ERI tensor is Cholesky-decomposed or the
factorized form is built from the ground up by specialized integral kernels. Either way,
the same reduction from the fourth-order ERI tensor to at most third-order RI/CD
tensors for each charge density is achieved. Visually, the RI approximated ERI tensor
can be represented by the tensor network diagrams shown in Fig. 2.2 (a-c).
Conceptual reiteration of the process of approximating the highest-order occurring tensor,
decomposition of the third-order RI tensor representing the bra pair-products (µν| results
in the so-called pseudospectral (PS) [108–110] method, which is shown as a tensor network
diagram in Fig. 2.2 (d).7 The PS factorization is achieved by using the RI ansatz of

7Closely related to RI is also the interpolative separable density fitting (ISDF) [111–119] method, which
allows for further unpinning of the AO indices in the fitted AO pair products. ISDF will be discussed
in Section 2.4.2.
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Figure 2.2.: Tensor network diagrams for (a) the full ERI tensor as well as (b) the single
RI and (c) double RI, (d) for the PS and (e) for the THC representation.
For an introduction of tensor network diagrams see Ref. [107]. Additionally,
here and are used to denote tensors involving analytical integration of
basis functions, whereas is used to denote tensors that involve numerical
quadrature.
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inserting the identity from eq. (2.70) into the ERIs once and taking the auxiliary functions
to be delta functions δ(r − rP ) in physical space. Here and throughout, indices P,Q,R, S
are used for auxiliary functions in physical space (grid space) and α, β for auxiliary
functions in spectral space (basis function space). The PS approximation is then obtained
as

(µν|λσ) RI=
∑
P

(µνP )(P |λσ) with χP (r) = δ(r − rP )

=
∑
P

wPχµ(rP )χν(rP )
∫
R3
drχλ(r)χσ(r)

|r − rP |

=
∑
P

XP
µ X

P
ν A

P
λσ , (2.77)

where the collocation tensor X is given by evaluation of the basis functions at the grid
nodes multiplied by the square root grid weights wP . Furthermore, the third-order
three-center one-electron integral tensor A is the representation of the |λσ) charge density
in physical space. In this regard, the PS approximation is closely related to the chain
of spheres for exchange (COSX) algorithm by Neese and coworkers [120] as well as to
seminumerical linear-scaling exact exchange (sn-LinK) method by Laqua et al. [121, 122],
which both achieve the same tensor decomposition of the ERI tensor.

Since the PS approximation is obtained by insertion of a delta function into single RI
approximated ERIs, the same should be possible for double RI approximated ERIs, as
in eq. (2.72). Consequently not only a decomposition of the three-center two-electron
RI integral tensor representing the bra charge density should be achieved, but also an
identical decomposition for the ket. Following the derivation for the PS representation of
the ERI tensor in eq. (2.77), the same approach can be used based on eq. (2.72) to yield

(µν|λσ) RI=
∑
P Q

(µνP )(P |Q)(Qλσ) with χP (r) = δ(r − rP )

=
∑
P Q

wPwQ χµ(rP )χν(rP ) 1
|rP − rQ|

χλ(rQ)χσ(rQ)

=
∑
P Q

XP
µ X

P
ν

1
rP Q

XQ
λ X

Q
σ . (2.78)

On the one hand, this achieves further reduction of the dimensionality of the highest-order
representing tensor – here only second-order tensors are necessary to approximate the
full ERI tensor. On the other hand, this approach is fundamentally flawed since for
any finite size quadrature grid the 1/rP Q term introduces a singularity when rP = rQ

[28]. To remedy this issue while preserving the underlying tensor structure presented in
Fig. 2.2 (e), the tensor hypercontraction approximation was derived by Martínez and
coworkers [27–30].
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2.4.2. Variants
Conceptually, tensor hypercontraction (THC) aims to factorize the ERI tensor according
to the tensor network diagram shown in Fig. 2.2 (e). Consequently, the goal is to find a
representation of the formally fourth-order ERI tensor entirely in second-order tensors.
Since the introduction of the notion of THC in the seminal work by Hohenstein, Parrish
and Martínez [27] in 2012 a variety of algorithms to obtain the THC-factorized form of
the ERI tensor have been proposed.

In their introductory work Martínez and coworkers used a variant of the double RI-
factorized form of the ERI tensor in eq. (2.72) as a starting point. The central two-center
auxiliary integral tensor is already of second-order and only the three-center overlap
integrals need to be further decomposed. Inspired by successes in other areas of science,
the canonical polyadic/parallel factors decomposition (CANDECOMP/PARAFAC or
CPD) [97] can be applied. Given an N th-order tensor T ∈ Rd1×···×dN , the CPD is defined
as

T =
R∑

r=1

N⊗
n=1

a(n)
r =

N⊗
n=1

A(n) (2.79)

where a(n)
r ∈ Rdn and 1 ≤ n ≤ N . CPD therefore allows to represent any tensor as a

linear combination of R outer products of N first-order tensors, which optionally can be
collected in the second-order tensors A(n). Applied to the three-center overlap integrals,
which are represented by a third-order tensor, the CPD factorization can be visualized
as in Fig. 2.3.

Figure 2.3.: Visualization of the CPD for a third-order tensor T given by eq. (2.79)
following Ref. [92].

In order to obtain the CPD-factorized RI integrals, an alternating least squares (ALS)
approach [123, 124] can be applied to yield

(µνα) CPD=
∑
P

XP
µ X

P
ν Y

P
α , (2.80)

with the additional constraint that A(1) and A(2) need to be identical (X) to preserve
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the permutational symmetry of the AO indices. Overall, this results in a factorization of
the ERI tensor as8

(µν|λσ) =
∑
P Q

XP
µ X

P
ν Z

P QXQ
λ X

Q
σ , (2.81)

ZP Q =
∑

αβγδ

Y P
α [S−1]αβ(β|γ)[S−1]γδY

Q
δ . (2.82)

Evidently, eq. (2.81) fits the tensor network diagram shown in Fig. 2.2 e) for the THC
format, without depending on real space quadrature and thus avoiding the Coulomb
singularity of eq. (2.78). Due to relying on CPD, this way of achieving the THC
factorization was later coined PF-THC or direct THC [28]. Naturally, the CPD also
permits a half-factorized form of the ERI tensor in the spirit of the PS approximation.
Applying the CPD only to one of the three-center integral tensors in eq. (2.72) yields
a PS-like factorization without relying on real space quadrature. This so-called partial
THC (P-THC) can be combined with the fully THC-factorized form of the ERI tensor
according to the tensor network diagram shown in Fig. 2.4.

ν

µ

P 2

σ

λ

−

σ

λ

Q

Figure 2.4.: Tensor network diagram of the robust THC factorization of the ERI tensor.

For this so-called robust THC (R-THC) factorization the leading error term is canceled,
when comparing the elements of the R-THC approximated with the original RI integral
tensor [126, 127]. The increased accuracy of R-THC, however, comes with the cost of
having to store and contract the third-order tensor resulting from the P-THC factorization.

By design, THC aims at unpinning the orbital indices also for the ket codensities.
Revisiting the idea of inserting delta functions in place of the auxiliary functions in the
RI-factorized form of the ERI tensor in eq. (2.78) allows to achieve a separable form of
the third-order RI tensors. The central idea is that the orbital pair products are of low

8In contrast to eq. (2.72), here the fact that the auxiliary functions are taken to be Gaussian-type
functions, which are usually non-orthogonal, is taken into account. This is addressed by means
of Löwdin orthogonalization [125] resulting in (µν|λσ) =

∑
αβγδ

(µνα)[S−1]αβ(β|γ)[S−1]γδ(δλσ),
sometimes also referred to as the RI-SVS factorization.
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rank in real space allowing a separation of the DF coefficient to Cµν
α → χµ(rP )χν(rP ),

which results in

|µ̃ν) = χµ(r)χν(r)
RI=
∑

α

Cµν
α χα(r)

ISDF=
∑
P

ξP (r)χµ(rP )χν(rP ) , (2.83)

which is known as separable RI (RI-RS) [128, 129] or interpolative separable DF (ISDF)
[111–119]. Here, like for the PS approximation, {ri}

Ngrid
i=1 is a set of real space points,

which the basis functions are evaluated on. What remains to be determined are actual
interpolation points (IPs) {rP }NIP

P =1, which form a subset of {ri}
Ngrid
i=1 and the so-called

interpolation vectors (IVs) ξP (r). The former can be obtained by QR factorization with
column pivoting (QRCP) [113] of the discretized orbital pair products or by centroidal
Voronoi tessellation (CVT) using Lloyd’s algorithm [114], while the IVs can be computed
from a least-squares fit of eq. (2.83). Closely related to ISDF is least-squares THC (LS-
THC), in the sense that here also real space quadrature in combination with least-squares
fitting is applied to achieve the characteristic separable form of the ERI tensor.

2.4.3. Least-squares Tensor Hypercontraction

2.4.3.1. Introduction

Due to the Coulomb singularity at rP = rQ in eq. (2.78), two-sided quadrature cannot be
invoked to obtain a THC-factorized form of the ERI tensor. Instead seeking a discretized
version of the 1/r12 Coulomb operator which is optimal in the least-squares sense given
the L2-norm estimator [28]

O = 1
2

∥∥∥∥(µν|λσ) −XP
µ X

P
ν Z

P QXQ
λ X

Q
σ

∥∥∥∥2

2
, (2.84)

results in the renormalized Z representation of the singular 1/r operator. Recasting the
above expression into a general least-squares problem yields

O = 1
2

∥∥∥∥B − AYAT
∥∥∥∥2

2
, (2.85)

where B ∈ RN2
bf×N2

bf , A ∈ RN2
bf×Ngrid and Y ∈ RNgrid×Ngrid , when rearranging the ERI

tensor I into a N2
bf × N2

bf supermatrix. The solution (supplementary information of
Publication II) of the least-squares problem in eq. (2.85) through the associated normal
equations is known to be
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Y = (ATA)−1ATBA(ATA)−1 . (2.86)

Applied to the LS-THC estimator in eq. (2.84), the analytical expression for the central
Z tensor [28] is given by

Z = (RTR)−1RTIR(RTR)−1 ,

= S−1ES−1 ,

with R := X⊗c X. Here, S := RTR is the THC grid metric tensor and E := RTIR is the
real space representation of the ERI tensor. As long as the number of real space points
is at least Nbf(Nbf + 1)/2 the obtained THC factorization is exact [29, 130]. In practice,
however, the aim is to reduce the number of grid points to Ngrid ≪ Nbf(Nbf + 1)/2 to
achieve computational speedup compared to the canonical formulation.

LS-THC has distinct advantages over PF-THC, which is the other currently most
prevalently employed variant of THC. PF-THC offers a relatively simple way of achieving
the THC format in terms of the underlying CPD and without the necessity of resorting
to real space quadrature [27]. However, a feasible implementation of CPD for large
systems is currently not known, partially also due to the known convergence problems [92,
130]. In contrast, in LS-THC the limiting factor is the formation of the grid-projected
ERI tensor E, which requires an expensive (O(N5)) and memory intensive (O(N4))
transformation of the ERI tensor from spectral to real space [28]. To overcome this
limitation a low-scaling implementation is presented in Publication I, which relies on
pre-approximating the ERI tensor using attenuated Coulomb RI [31, 32] and performing
the involved tensor contractions using integral screening [33] and sparse linear algebra,
as explained in Section 2.5. The developed LS-THC algorithm is applied to MP2
energies in Publication I and extended to MP2 hyperfine coupling constants (HFCCs)
in Publication II to achieve significant speedups compared to previously implemented
MP2 methods. Furthermore, an integral-direct and density-based version of LS-THC is
presented in Publication IV, which is applied to ground and excited state calculations
using the (LR-)CC2 (cf. Section 2.2.3.2) and ADC(2) (cf. Section 2.2.4) methods. The
LS-THC algorithm developed in Publication IV only relies on three key ingredients:
1) the ability to evaluate basis functions on a density function theory (DFT)-like grid,
2) the ability to perform Coulomb builds, and 3) BLAS level 3 linear algebra. All of
these requirements are met by any quantum chemistry program, which implements basic
KS-DFT and the newly proposed algorithm therefore simplifies the process of adopting
LS-THC in other program packages.

2.4.3.2. Grids

Key to achieving computational benefits from applying LS-THC, instead of using the
canonical ERI tensor or, e.g., the RI approximation, is that the quadrature grid defining
the real space must be as compact as possible. In the original work, Parrish et al.
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[28] employed Becke-type grids [131], which were superseded by specifically optimized
molecular grids [132]. The optimized grids originate from common DFT in the sense
that for the atom-centered grids Lebedev-Laikov integration [133] is carried out for the
spherical part and the radial integration is performed using optimized Handy grids [134].
The final molecular grid is then constructed by fuzzy Voronoi partitioning [135] to form
the atomic weights. The position of the radial nodes in the Handy scheme are then
optimized on an objective function assessing the accuracy of THC-MP2 compared to
canonical MP2. Overall, this allows to achieve accuracies on the order of 0.1 kcal/mol
using Ngrid ≈ 3Naux grid points for a common double-ζ basis set [28].

Roughly 100 grid points per atom – assuming a double-ζ basis set – is certainly close to
being as compact as possible without compromising significantly on accuracy. However,
the hand-optimized grids are only available for the cc-pVXZ (X ∈ {D,T}) basis sets and
therein only for the first two rows of the periodic table [132]. Leveraging the connection of
LS-THC to ISDF, Lee et al. [118] proposed a variation of the IP selection process through
CVT, which selects a subset {rP }NIP

P =1 of quadrature nodes from a larger molecular parent
grid {ri}

Ngrid
i=1 . This way, a real space grid can be constructed on-the-fly in a systematically

improvable fashion through the choice of the number of IPs. As stated in Section 2.4.2,
IPs can also be selected by applying a QRCP decomposition of the supermatrix formed
by evaluating orbital pair products |µν) on a larger real space grid. It can be shown that
this procedure is related to a pivoted Cholesky decomposition (PCD) of the THC grid
metric tensor S and selection of the interpolation points via the pivoting contained in the
permutation matrix [130]. On a side note, this is also related to the almost error-free RI
method by Schurkus et al. [136], in which contributing auxiliary functions are selected
through singular value decomposition from a larger parent auxiliary basis.

In Publications I and II the hand-optimized grids developed by Martínez and coworkers
are employed as they yield satisfactory accuracy for both energies and HFCCs. In
Publication IV the PCD approach by Matthews [130] is adopted, pruning from the
optimized cc-pVTZ based LS-THC grid. The latter was chosen as a trade-off between
accuracy and feasibility. On the one hand, the developed THC-CC2 and THC-ADC(2)
methods require THC fitting of less compact (vv|vo)-type integrals – compared to the
(ov|ov)-type integrals in MP2 theory – and therefore more quadrature points for the
same kind of accuracy. On the other hand, performing a PCD on the Ngrid ×Ngrid grid
metric tensor S is hardly computationally feasible if larger systems beyond 10000 basis
functions are investigated, when not already using a compact parent grid.
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2.5. Reduced-scaling Techniques
Without application of further mathematical transformations or sensibly designed al-
gorithms the electron correlation methods presented in Section 2.2 exhibit prohibitive
scaling with the system and basis set size. On the one hand, a sufficiently large basis set is
crucial for the accurate description of electron correlation. On the other hand, the strive
to tackle increasingly large systems of thousands of atoms is propelled by experimental
basic research on – and material design of – systems with ever increasing complexity.
The applicability of the quantum chemical methods in Section 2.2 to these problems is
governed by the scaling of the computational cost – in terms of both computation time
and memory requirements – with increasing system size. All canonical formulations of
the correlation methods presented in Section 2.2 exhibit prohibitive polynomial O(N≥5)
scaling. In order to be able to treat systems beyond a handful of atoms, the scaling
exponent has to be reduced, while keeping the prefactor as low as possible. In this regard,
some of the mathematical techniques in the realm of tensor numerical methods, like the
RI or the THC approximation, have already been discussed in Section 2.4. It should
however be noted that these methods, exemplarily applied to MP2 (cf. Section 2.2.2), do
not necessarily decrease the scaling exponent but in some cases only lower the prefactor.
On the one hand, for RI-MP2 this is the case because the orbital indices in the energy
denominator in eq. (2.23) remain pinned, requiring to rebuild the canonical ERI tensor
from the RI integrals. On the other hand, for the fitting procedure in LS-THC-MP2
this is the case because the ERI tensor has to be projected onto the real space grid.
Since as outlined in Section 2.4, the manipulation and storage of the integral tensors
is usually the limiting factor in terms of computation time and memory requirements,
further optimizations have to be performed to make these methods applicable to larger
systems.

2.5.1. Sparse Linear Algebra
It is well known that the density matrix decays exponentially with spatial orbital
separation with the decay rate being the energy gap between the highest occupied
(HOMO) and the lowest unoccupied molecular orbital (LUMO) [137]. Therefore, for any
system with a significant HOMO-LUMO gap, for which the density matrix is expressed
in a localized basis such as the AOs, the density matrix is expected to be sparse, as
exemplarily shown in Fig. 2.5 (a). Likewise, an integral tensor over local orbitals, such as
the AOs, will also exhibit significant sparsity as demonstrated for the three-center RI
integral tensor using the regular 1/r12 operator (B) in Fig 2.5 (b) or the short-ranged
erfc(ωr12)/r12 metric (Bω) in Fig 2.5 (c).
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(a) Pocc (b) B[:, :, Naux/2] (c) Bω[:, :, Naux/2]

Figure 2.5.: Sparsity patterns for the occupied density matrix Pocc (a) and a slice of
the three-center RI integral tensor for a fixed auxiliary function using the
regular Coulomb operator (B, b) as well as an attenuated Coulomb metric
[31, 32] (Bω, c) with an attenuation strength of ω = 0.1. All patterns are
obtained for the linear alkane C100H202 using the cc-pVDZ/cc-pVDZ-RI
basis set combination.

The inherent sparsity of central quantities such as the density matrix or the integral
tensors thus opens up the possibility to leverage said sparsity using sparse linear algebra
[138]. The key idea here is to save only non-zero tensor elements above a predefined
sparsity threshold to achieve a compression in a vectorized storage format [139, 140]. An
example of such a storage scheme frequently used in quantum chemistry packages is the
block compressed sparse row (BCSR) format, which is depicted in Fig. 2.6 on the left.

Figure 2.6.: Visualization of the BCSR and the NB tensor compression schemes. Signifi-
cant elements (blocks) are depicted in red, while zero elements (blocks) are
shown in white.

Converting a tensor to BCSR format requires dividing the tensor into submatrices (blocks)
of predefined, cache-friendly sizes (∼ 48 × 48) and allocating memory for a block if and
only if its norm is above the sparsity threshold. Furthermore, in two additional auxiliary
vectors the offsets of the blocks in the uncompressed tensor are stored. While this entails
an overhead compared to the dense format, savings can be achieved if a certain minimum
sparsity is present in the uncompressed tensor. Not only does this save memory, but
also floating point operations (FLOPS) when performing common linear algebra routines.
On the example of matrix-matrix multiplications, the advantage lies in the fact that the
product of two allocated blocks is computed only if the product of their norms is above a
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given threshold.

Instead of discarding insignificant blocks, natural blocking (NB), shown in Fig. 2.6 on the
right, relies on removing whole rows or columns of tensor slices if none of the elements are
considered significant. Like for the BCSR format this requires bookkeeping of the offsets
of the retained rows and columns in so-called significance lists. This, however, allows to
apply set theoretical considerations to screen out unnecessary operations when performing
tensor contractions in the NB format, as explained in more detail in Publication II.
The benefit of the NB over the BCSR format is that by discarding whole subvectors,
the resulting slices are large and dense allowing to leverage large matrix optimizations
like the Strassen algorithm [141] as implement in the Intel Math Kernel Library (MKL)
[142]. Upon inspection of the sparsity patterns in Fig. 2.5 it is evident, that NB only
recovers the sparsity in tensors with a locally dense substructure, as exemplarily shown
for the ω-RI integral tensor Bω. In case of a predominantly band-diagonal pattern, like
for the occupied density matrix Pocc or the RI integral tensor B, each row/column will
possess non-zero elements, which prevents screening out whole subvectors. In other
words, when applied to the compression of integrals, BCSR is favorable for long-ranged
operators like the 1/r12 operator, while NB can be advantageous for short-ranged ones,
like the erfc(ωr12)/r12 operator. Publications I and II make use of the NB format
to achieve low-scaling implementations of the linear algebra required for MP2 energies
and first derivatives, while the BCSR scheme is applied in Publication IV for efficient
implementations of CC2, LR-CC2, and ADC(2).

2.5.2. Local Molecular Orbitals

As outlined in the previous section, integrals over localized orbitals, like the AOs, exhibit
favorable sparsity which can be used by sparse linear algebra routines. Unfortunately,
this does not hold for delocalized bases, such as for the MOs. To reintroduce sparsity in
these canonically non-sparse integral tensors, a number of orbital localization schemes,
such as the Foster–Boys [143, 144], Edmiston–Ruedenberg [145], or Pipek–Mezey [146]
approach as well as modern renditions such as pair natural orbitals (PNOs) [147] or
orbital specific virtuals (OSVs) [148] have been developed. These localization schemes
are driven by the observation that many molecular properties are local in character, in
turn motivating the assumption that only the atoms in close vicinity to a specific site
contribute to the property under investigation [106]. Orbital localization relies on the
fact that the one-particle density matrix is invariant under orbital rotations causing an
infinite number of representations for the MOs to be possible. To achieve a favorable
local representation all mentioned localization schemes optimize a localization functional
with respect to these rotations in an iterative fashion. In contrast, the localization scheme
by Aquilante et al. [106, 149] provides a fast, numerically stable and non-iterative way
to obtain localized orbitals directly from the one-particle density matrix. Since the
occupied density matrix Pocc is positive semidefinite with rank equal to the number of
occupied orbitals Nocc, it permits a factorization by pivoted Cholesky decomposition
(PCD). Unlike many of the aforementioned localization schemes, this also holds for the
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virtual density matrix Pvirt. The resulting set of therefore named Cholesky MOs is
orthonormal and the individual orbitals are localized, resulting in considerable sparsity
for Cholesky-MO-transformed integrals. In Publications I and II Cholesky MOs are
used to reduce the scaling of transforming the three-center RI integrals to the MO basis
before the grid projection for the THC fitting. Furthermore, PCD is also leveraged for
the final energy/property calculation in a so-called Cholesky pseudo-MO basis obtained
by a PCD of the pseudodensities (cf. Appendix A.3.1, eqs. (A.37) and (A.38)) obtained
by the application of the Laplace transformation to the MP2 energy denominator.

2.5.3. Integral Screening
Examination of the underlying physical structure of the formally O(N4) scaling ERI
tensor reveals that the number of significant elements reduces to O(N2) for large systems
[150]. Since the comprising basis functions are Gaussians, the therefrom derived charge
distributions quickly become negligible with spatial separation of the basis functions as
already outlined in Section 2.4.1. Therefore, only a linear scaling number of orbital pairs
|µν) and |λσ) have to be taken into account. Furthermore, the significance of an element
of the ERI tensor can be estimated from the Cauchy–Schwarz inequality [21]

|(µν|λσ)| ≤ |(µν|µν)|
1
2 |(λσ|λσ)|

1
2 = QµνQλσ , (2.87)

which provides a rigorous upper bound. To further capture the 1/r12 dependence of the
bra-ket separation, the QQR integral estimates [151, 152] given by

|(µν|λσ)| ≈ QµνQλσ

R− extµν − extλσ
, (2.88)

can be used, which are based on the previously developed multipole-based integral
estimates (MBIE) [153]. Here, extµν denotes the spatial extents of the |µν) charge
distribution. In QQR, however, the expressions for the extents are non-rigorous, which
led to the development of the integral partition bounds (IPBs) [33]. The IPBs provide
analytic expressions for the extents through partitioning of the integration space in
eq. (2.5) into balls centered around the |µν) charge distributions and their complements.
Not only do the mentioned integral estimates allow for the calculation of only significant
elements of the ERI tensor, they can further be leveraged to provide the foundation for
the significance lists in NB. Therefore, the rigorous IPBs were employed in Publications
I and II for the integral evaluation in the THC fitting procedure and the subsequent
tensor contractions in conjunction with NB. In total, this yields an asymptotically linear
scaling algorithm for the grid projection in the THC fitting and additionally permits an
O(N) scaling approach for exchange-like contractions in MP2.
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We employ various reduced scaling techniques to accelerate the recently developed least-
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metric. Additionally, rigorous integral screening and the natural blocking matrix format
are applied to reduce the complexity of this step. By recasting the equations to form
the quantized representation of the 1/r operator Z into the form of a system of linear
equations, the bottleneck of inverting the grid metric via pseudoinversion is removed.
This leads to a reduced scaling THC algorithm and application to MP2 yields the (sub-
)quadratically scaling THC-ω-RI-CDD-SOS-MP2 method. The efficiency of this method
is assessed for various systems including DNA fragments with over 8000 basis functions
and the subquadratic scaling is illustrated.
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ABSTRACT: We employ various reduced scaling techniques to accelerate the recently developed least-squares tensor
hypercontraction (LS-THC) approximation [Parrish, R. M., Hohenstein, E. G., Martínez, T. J., Sherrill, C. D. J. Chem. Phys. 137,
224106 (2012)] for electron repulsion integrals (ERIs) and apply it to second-order Møller−Plesset perturbation theory (MP2).
The grid-projected ERI tensors are efficiently constructed using a localized Cholesky molecular orbital basis from density-fitted
integrals with an attenuated Coulomb metric. Additionally, rigorous integral screening and the natural blocking matrix format are
applied to reduce the complexity of this step. By recasting the equations to form the quantized representation of the 1/r operator Z
into the form of a system of linear equations, the bottleneck of inverting the grid metric via pseudoinversion is removed. This leads
to a reduced scaling THC algorithm and application to MP2 yields the (sub-)quadratically scaling THC-ω-RI-CDD-SOS-MP2
method. The efficiency of this method is assessed for various systems including DNA fragments with over 8000 basis functions and
the subquadratic scaling is illustrated.

1. INTRODUCTION

One of the simplest quantum chemical methods to recapture the
electron correlation neglected by Hartree−Fock (HF) theory is
second-order Møller−Plesset perturbation theory (MP2),1

which has been extensively studied in the past decades.2

Today, it remains popular as a post-HF method with affordable
cost and also as part of double-hybrid density functionals
(DHDF).3,4 It has further proven to provide accurate results for
molecular properties such as NMR chemical shifts.5 The
computational cost of conventional MP2 is governed by the
transformation of the electron repulsion integrals (ERI) from
atomic orbital (AO) to molecular orbital (MO) basis, which
scales as N( )5 with the number of basis functions N. The
formal fifth power scaling of the computational cost and the

N( )4 storage requirements severely restrict the size of
computationally accessible molecules. Naturally, considerable
effort has been put into reducing the computational cost of MP2
calculations. Methods aiming at reducing the scaling behavior of
MP2 can be grouped into two different categories: first, methods

aiming at exploiting the sparsity of the MP2 problem, either of
intrinsic nature such as in the AO-MP2 formulation6−8 or
created by ansatz as in local MP2 methods9−18 and, second,
methods based on tensor decompositions of the ERIs
involved.19−27

The pioneering work of Pulay and Sæbø9−11 on the local
treatment of correlation in the 1980s served as a stepping stone
for the development of the family of local correlation (LC)
methods by Werner, Schütz, and others.12−18 In the LC
methods developed by Werner and Schütz,12−15,17 the occupied
space is spanned by localized molecular orbitals (LMOs), which
are obtained from the canonical orbitals by localization
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techniques, such as Foster−Boys28 or Pipek−Mezey,29 while the
virtual space is spanned by nonorthogonal projected AOs
(PAOs), which are obtained from the AO basis by projecting out
the occupied orbitals. Using the locality created by a standard
localization procedure for the occupied MOs and the inherent
locality of the PAOs, low- and linear-scaling algorithms can be
devised. The latter has been demonstrated for MP2,13,17 the
singles and doubles coupled cluster method (CCSD),12,14 and
even for additional perturbative triple excitations (CCSD-
(T)).15,30 In order to overcome the sometimes large PAO
domains needed to converge the correlation energy, Neese et
al.31 proposed a compression of the virtual space by means of
pair natural orbitals (PNOs). In combination with careful
prescreening and a multipole expansion for distant orbital pairs,
Werner et al.32 developed the PNO-LMP2 method that scales as

M( ) with respect to the molecule sizeM and has good parallel
efficiency. Conceptually similar is the domain-based local PNO
(DLPNO) implementation of localMP2 by Pinski et al.,33 which
was extended to a linear scaling implementation of the DLPNO-
CCSD(T) method.34−36 An alternative approach to this is the
divide-expand-consolidate (DEC) group of methods,34−36

which achieve massive parallelization37 and therefore allow the
computation of very large molecules by partitioning of the
orbital space.
In spite of their favorable scaling and efficiency, local

correlation methods suffer from distinct drawbacks. One of
the most severe disadvantages is that the domains may change as
a function of the molecular geometry, which can reduce the
accuracy and may even lead to discontinuities in the potential
energy surface.38,39 Thus, instead of localizing the orbital space,
a second approach to reduce the scaling of the MP2 algorithm is
to recast theMP2 equations into the AObasis. Making use of the
Laplace transformation for the orbital energy denominator
occurring in the canonical MP2 formulation introduced by
Almlöf and Has̈er,6,40,41 in combination with efficient integral
screening, our group developed an asymptotically linear scaling
AO-MP2 method.8 To overcome the large prefactor associated
with the AO-based formulation, the RI-CDD-MP2 method42

was introduced, which uses a pivoted Cholesky decomposition
of the pseudo-density matrices (CDD) to obtain a localized
Cholesky pseudo-MO basis. RI-CDD-MP2 significantly reduces
the prefactor of theMP2 calculation while scaling asymptotically
cubic if no further approximations are applied.42

In contrast to the above, methods aiming at decomposing the
tensors involved in the calculations usually do not lower the
scaling exponent of the method they are applied to, but rather
lower the prefactor of the respective method. The most
established approach in the family of tensor decomposition
methods is the density fitting or resolution-of-the-identity
ansatz,19,43−45 which approximates a generalized charge density
ρμν(r1) = χμ(r1)χν(r1) with an auxiliary basis {χα(r1)}. Closely
related is the Cholesky decomposition (CD) ap-
proach20−22,46−50 of the ERIs, in which the auxiliary basis is
constructed on-the-fly as an orthogonalized subset of the basis
function space {χμ}. Both RI and CD achieve a factorization of
the fourth-order ERI tensor into two third-order tensors. Today,
RI is routinely applied to Møller−Plesset perturbation
theory,51−53 density functional theory (DFT),54,55 the random
phase approximation (RPA),56,57 or coupled cluster (CC)58

theory. Further decomposition of the ERIs into two second-
order and one third-order tensor is possible within the
pseudospectral approach,23−25 in which the integral over one
electronic coordinate is solved analytically and the other by

numerical quadrature. Conceptually related are the chain-of-
spheres approach (COSX)59 and the seminumerical exact-
exchange formalism (sn-LinK)60 that make use of the same kind
of decomposition. Taking this approach one step further and
attempting a two-sided decomposition of the ERI, one arrives at
the recently developed tensor hypercontraction (THC)27,61−63

factorization. Within the THC framework, it is possible to
approximate the fourth-order ERI tensor as a product of just five
factor matrices, reducing the highest order tensor necessary to
represent the full ERI to only two. While different flavors of
THC have been proposed, like parallel factors THC (PF-
THC),26 which achieves the factorization by canonical polyadic
decomposition (CPD) of the three-center overlap integrals
within the overlap metric RI formalism, we focus our discussion
on themore accurate least-squares THC (LS-THC)27 approach.
In passing, we note that the atomic-batched tensor decom-
position by Schmitz et al.64,65 can also be viewed as a THC-like
factorization starting from RI-approximated ERIs with further
decomposition by singular value decomposition of the third-
order subtensors belonging to atom pairs. THC attempts a
quantization of the spatial coordinates via r1 → {rP} and r2 →
{rQ} and replacing the singular grid operator r12

−1 → {rPQ
−1} with a

renormalized operator ZPQ. Together with the RI approxima-
tion, LS-THChas proven to be a flexible and efficient framework
and has been successfully applied to exact exchange,66

MP2,26,27,62,63,66−69 MP3,26,66 CCSD,70 second-order approxi-
mated CC (CC2),71 as well as equation-of-motion CC2 (EOM-
CC2),72 RPA,73 and second-order complete active space
perturbation theory (CASPT2).74

In this work, we aim to combine different linear scaling
techniques to obtain an efficient and low-scaling THC
algorithm. In particular, we extend the RI-LS-THC formalism
developed by Martıńez and co-workers27,61−63 using an
attenuated Coulomb metric75 for the THC fitting procedure.
Together with a localized Cholesky-MO basis, we seek to
efficiently exploit the sparsity in the three-center integrals for the
subsequent contractions. In our integral code, we make use of
efficient integral screening based on the recently developed
integral partition bounds (IPB).76 Furthermore, we employ the
natural blocking scheme originally developed by Jung et al.77 for
the transformation to the Cholesky-MO basis and subsequent
projection onto the quadrature grid. In addition to thereby
lowering the scaling of the formally most expensive step, i.e., the
formation of the grid-projected ERI tensor, we present ways to
circumvent the computational bottleneck of forming the
pseudoinverse of the grid metric necessary for building the
quantized and renormalized grid-projected potential operator.
We do this by decomposition of the grid metric matrix followed
by a forward and a backward substitution step. This is in contrast
to the local-THC approximation by Song et al.63 in which the
molecule is partitioned into fragments to reduce the complexity
of the inversion. After contraction of one-half of the projected
potential operator, obtained by the linear solve step, with its
transpose and the two-center RI integrals, the familiarZ tensor is
obtained. Finally, we apply our efficient THC algorithm toMP2,
for which the energy evaluation is performed in a localized
Cholesky pseudo-MO basis using block-sparse linear algebra to
efficiently exploit sparsity and reduce the scaling of this step.
Together with the scaled opposite-spin (SOS)78 approximation,
we present the (sub-)quadratically scaling THC-ω-RI-CDD-
SOS-MP2 method.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00934
J. Chem. Theory Comput. 2021, 17, 211−221

212



2. THEORY
2.1. Notation. We briefly summarize the relevant indices

below:

• μ, ν, λ, σ: atomic orbital indices belonging to the AO basis
{χμ} of size Nbf.

• α, β, γ, δ: auxiliary basis indices belonging to the density
fitting basis {χα} of size Naux (usually Naux ≈ 3 · Nbf).

• P, Q, R, S: grid point indices belonging to the LS-THC
grid of size Ngrid (usually Ngrid ≈ 3 · Naux).

• i, j, k: occupied molecular orbital indices belonging to the
MO basis {ϕi} of size Nocc.

• a, b, c: virtual molecular orbital indices belonging to the
MO basis {ϕa} of size Nvirt (Nvirt ≫ Nocc).

• κ: index of the Laplace quadrature points for the MP2
energy denominator (usually integration with 5−8 points
is sufficiently accurate).

2.2. Review of Tensor Hypercontraction. The LS-THC
estimator27 for approximating the ERIs in the occupied-virtual
(OV) subspace of the MO integrals using a physical-space
quadrature is defined as

arg min
1
2Z ijab

iajb
2∑ Δ

(1)

where the deviation Δiajb of the THC factorization from the
exact ERI tensor is given by

ia jb X X Z X X( )iajb
PQ

i
P

a
P PQ

j
Q

b
Q∑Δ = | −

(2)

Note that we perform the THC fitting not in the AO space,
but instead in the OV subspace of the MO space, since this is the
only block of the MO integrals needed for evaluating the MP2
equation. Additionally, since the fitting space is smaller, grids
with fewer grid points can be used, or, if the same grids are
applied, more accurate results can be expected.27,62,66 In contrast
to the AO-based local-THC approximation by Song et al.,63 we
make use of a global description of the THC factorization, i.e.,
using a single global Z tensor, that is not prone to discontinuities
of the potential energy surface. The latter is demonstrated in the
Supporting Information for the rotation around the 4C−5C
bond in vitamin K2 as a representative example.
As is already evident from eqs 1 and 2, THC provides a more

flexible tensor decomposition than all methods discussed above
as it effectively unpins all fourMO indices. A direct consequence
of this is that fewer indices need to be carried over during tensor
contractions, providing means for the formulation of lower-
scaling algorithms. As shown by Parrish et al.,27 differentiating eq
1 with respect to Z and subsequently solving the stationary
condition for Z gives the analytic solution

Z ES SPQ

P Q

PP P Q QQ1 1∑= [ ] [ ]
′ ′

− ′ ′ ′ − ′
(3)

where the grid metric S is defined as

S X X X XPP

i a
i
P

i
P

a
P

a
P∑=′

′ ′
′ ′

′
′ ′

′
(4)

and the grid-projected ERI tensor E is defined as

E X X ia jb X X( )P Q

ijab
i
P

a
P

j
Q

b
Q∑= |′ ′ ′ ′ ′ ′

(5)

Within the LS-THC framework,27 the X tensors are chosen to
be collocation matrices, i.e., results of evaluating the basis
functions {χμ} at the real-space grid {rP} given by

X w r( )P
P P4 χ′ =μ μ (6)

where wP are the associated grid weights. For reasons of
numerical stability, we found it useful to additionally balance the
collocation matrices X according to

X X
X X

with
1P

P
P

P P P
υ υ= ′ =

∑ ′ ′μ μ
μ μ μ (7)

as proposed by Parrish et al.61 After rebalancing, the collocation
matrices are transformed into Cholesky-MO space79 according
to

X L Xi
P

i
P∑=

μ
μ μ

(8)

X L Xa
P

a
P∑=

ν
ν ν

(9)

where Lμi and Lνa are the local Cholesky factors obtained from
the occupied density matrix P and the virtual density matrix Q,
respectively. We note that here and throughout CDD refers to
the Cholesky decomposition of the ground state densities as well
as the pseudo-densities in the energy evaluation (eq 30). Since P
and Q are both invariant under orbital rotations, an infinite
number of MO coefficient representations of the density matrix
exists.79 The Cholesky factors thus represent one possible set of
MO coefficients with the advantage that the Cholesky-MOs are
local and the coefficients sparse, which can be exploited during
subsequent contractions.

2.3. Construction of the Grid-Projected ERI Tensor E.
Inserting the RI factorization of the ERI tensor into eq 5 allows
one to reduce the formal scaling of the construction of the E
tensor to only quartic or N N N N( )occ virt aux grid to be more
precise.27 Thus, since all other operations in obtaining the THC
factorization scale at most cubic, the formation of E will still be
the rate-determining step in the asymptotic limit. To circumvent
this issue in the THC algorithm, we substitute the ERI tensor by
a double density-fitted RI approximation with a complementary
error function (erfc-) attenuated Coulomb metric75

∂ ∂V J V( ) ( ) ( )1 1∑μν λσ μν α β λσ| = [ ] [ ] [ ]
αβγδ

αγ γδ δβ
− −

(10)

where the two- and three-center integrals with the erfc-
attenuated Coulomb operator are given by

∂
r

r
r r r r r( ) d d ( ) ( )

erfc( )
( )1 2 1 1

12

12
2

3
∬μν α χ χ

ω
χ= μ ν α



(11)

V
r

r
r r r rd d ( )

erfc( )
( )1 2 1

12

12
2

3
∬ χ

ω
χ=αγ α γ

 (12)

and [J]γδ is the usual two-center Coulomb integral of the
auxiliary functions. In the limits of limω → 0 and limω → ∞, the
attenuated Coulomb operator reduces to the Coulomb metric
1/r12 or the overlap metric δ(r12), respectively. Tuning the
attenuation parameter ω thus provides a way to interpolate
between the more accurate Coulomb metric and the overlap
metric, which provides greater sparsity in the corresponding
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integrals. An attenuation strength of ω = 0.1 was shown to yield
acceptable accuracy while providing sparsity comparable to the
overlapmetric.56 Due to the locality of the erfc-attenuated three-
center integrals, their computation can be reduced to linear
scaling by applying screening based on the recently developed
rigorous integral partition bounds (IPB).76 For the THC fitting
in the Cholesky-MO basis, the three-center AO integrals have
first to be transformed to the OV subspace according to

∂ ∂ia L L( ) ( )i a∑α μν α=
μν

μ ν
(13)

where Lμi and Lνa are again the local Cholesky factors obtained
from the occupied density matrix P and the virtual density
matrix Q, respectively. The contraction is carried out stepwise
and to reduce the computational complexity of these two steps
we make use of the natural blocking matrix format initially
proposed by Jung et al.,77 as recently reported in our work on
reduced-scalingω-RI-CDD-MP2.80 In short, third-order tensors
are usually internally stored as arrays of matrices, so-called
tensor slices, which can in turn be stored in any sparse matrix
format. Within the natural blocking approach,77 entire rows and
columns of these slices are removed if all their values fall below a
certain threshold, the so-called natural blocking threshold εNB.
For the natural blocking format to be efficient, only a constant
number of rows and columns of a given slice should be
significant. The latter is given using an attenuated Coulomb
operator causing coupling over only short distances between the
bra and ket and by transformation into the localized Cholesky-
MO basis, which reintroduces coupling between the bra indices.
To keep track of the significant rows and columns, natural
blocking relies on bookkeeping in terms of significance lists.
Adopting the notation introduced in our work on ω-RI-CDD-
MP2,80 an example would be the list {μ}α, which is defined as

∂max ( ) NBμ μ μν α ε{ } ≡ { | | | > }α
ν (14)

and stores all significant AO indices μ for a given auxiliary
function α. A second type of lists, which goes beyond the original
natural blocking approach introduced by Jung et al.,77 is based
on integral screening prior to the AO-to-MO transformation.80

For this, two matrices M and N, defined as

∂M max ( )μν α= | |μν
α (15)

∂N max ( )μν α= | |να
μ (16)

are constructed in the three-center integral kernel. With these
screening matrices, upper bounds for the transformed integrals
can be constructed. A detailed algorithm for the transformation
of the three-center integrals to the Cholesky-MO basis is
provided in the Supporting Information. Here, we rather focus
on the construction of intermediate Y, defined as

∂Y X X ia( )P

ia
i
P

a
P∑ α=α

′ ′ ′
(17)

obtained by inserting the ω-RI ansatz from eq 10 into the
definition of the E tensor from eq 5. One advantage of
performing the THC fitting in the Cholesky-MO space is that
the prefactor of the contraction above will be reduced compared
to a formulation in AOs as one occupied index is present. The
projection of the RI integrals onto the THC grids then follows
the same general procedure as their transformation into
Cholesky-MO space. The significance list [P]i, meaning the

grid points significant for a given occupied orbital can readily be
obtained from the Cholesky-MO-transformed collocation
matrix according to

P P Xi i
P

NBε[ ] ≡ { || | > } (18)

Due to the local nature of the Cholesky-MOs, for systems with
significant bandgaps, the number of significant grid points can be
expected to be small and constant for large enough molecules.
Using the lists {a}i and {α}i, obtained during the integral
transformation analogously to eq 14 and the upper bound list
[P]i, all tensors from eq 17 will have reduced sizes. Due to the
coupling between all integral indices and the locality of the grid-
projected Cholesky-MOs, the algorithm shown below for the
evaluation of Yα

P′ can be expected to be asymptotically linear
scaling.

Here we note, that the grid-projected integral tensor E can be
obtained from Y according to

E Y C YP Q P Q∑= ̃
αβ

α αβ β
′ ′ ′ ′

(19)

where C̃αβ is the contraction of all two-center RI integrals in eq
10. However, retaining this factorization allows for a more
efficient reformulation of obtaining the Z tensor, as will be
discussed below.

2.4. Removing the Pseudoinversion Bottleneck.
Despite the formal quartic scaling computation of the E tensor,
Martıńez and co-workers27,62,63 reported the inversion of the
grid metric S to be the bottleneck of the THC procedure. Since
the metric tensor is generally ill-conditioned and singular,
pseudoinversion with a cutoff εSVD between 10−10 to 10−12 is
applied to remove the near-linear dependencies.27,66 Due to the
large prefactor of the underlying singular value decomposition
(SVD), forming the inverse S−1 is usually the most time-
consuming step. Using a local ansatz of the THC factorization63

based on partitioning of the molecular system was presented as
one way of avoiding this.
Here, we present an alternative for which we make use of our

factorization of the E tensor and rewrite eq 3:

Z Y C YS SPQ

P Q

PP P Q QQ1 1∑ ∑= [ ] ̃ [ ]
αβ

α αβ β
′ ′

− ′ ′ ′ − ′
(20)

Taking only the tensors for the P′ grid index of eq 20, we
define a new intermediate Λ, given by
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Y Y SSP

P

PP P P

P

PP P1∑ ∑Λ ≡ [ ] ⇔ = Λα α α α
′

− ′ ′ ′ ′
(21)

As becomes evident from the right side of eq 21, instead of
solving forΛ by inversion of the metric, the equation can also be
treated as a system of linear equations with multiple right-hand
sides, i.e., B = AX. Standard procedures to solving linear systems
can then be applied, which typically involve a factorization of the
coefficient matrix, here S, followed by forward and backward
substitution. Since the grid metric is generally singular and thus
not symmetric positive definite, Cholesky decomposition
cannot be applied for the factorization. However, other matrix
decompositions like the modified blocked LDL factorization
with diagonal pivoting or LU decomposition with partial
pivoting are applicable. Inserting, for example, the pivoted LU
decomposition S = ΠLU into eq 21 gives the following
triangular systems of linear equations

Y LW Wsolve forTΠ = ▷ (22)

W U solve forΛ Λ= ▷ (23)

which can be solved efficiently by forward and backward
substitution, respectively. We note that this procedure was
recently also suggested by Matthews,69 although in a slightly
different context, i.e., for the automatic grid generation in LS-
THC using a pivoted Cholesky decomposition of the grid metric
constructed from a larger parent grid.
The asymptotic scaling of finding the grid metric inverse

remains N( )3 , albeit with a significantly lower prefactor, which
makes this step irrelevant for the overall scaling for all but the
largest molecules. It should be emphasized that applying linear
solvers instead of pseudoinversion removes the bias of choosing
a cutoff parameter εSVD while also providing numerical stability
comparable to pseudoinversion. For large enough molecules
with a significant HOMO−LUMO gap, the metric S will
become sparse and diagonally dominant with appropriate
reordering, which allows for the use of specialized algorithms
for banded matrices. The latter allows us to reduce the scaling of
this step to quadratic, as will be discussed in Section 3.
Having computed one side of the projected potential operator

Λ, the familiar Z tensor is obtained by contraction with its
transpose and the two-center RI integrals C̃ according to

Z CPQ P Q∑= Λ ̃ Λ
αβ

α αβ β
(24)

After the construction of theX andZ tensors, they can be used
to approximate ERIs in various correlation methods.
2.5. Evaluation of the THC-CDD-MP2 Energy. The

THC-CDD-MP2 equations26 are based on the AO formulation
of the MP2 energy, as originally proposed by Almlöf and
Has̈er,6,40,41 which makes use of the Laplace transformation for
the energy denominator

E P P P P ( )

2( ) ( )

MP2
AO ∑ ∑ ∑ μν λσ

μ ν λ σ μ σ λ ν

= − ̲ ̅ ̲ ̅ | ·

[ ′ ′| ′ ′ − ′ ′| ′ ′ ]
κ μνλσ μ ν λ σ

μμ νν λλ σσ
′ ′ ′ ′

′ ′ ′ ′

(25)

where P̲ and P̅ are the occupied and virtual pseudo-density
matrices, respectively. It should be noted that the Laplace
transformation is especially important for the THC format as it
allows to unpin all four orbital indices and thus to make full use
of the THC factorization. The pseudo-densities, defined as

P C C( ) e
i

i
t

i
( ) 1/4 i

( )∑ω̲ =μμ
κ

μ
ε

μ′ ′
κ

(26)

P C C( ) e
a

a
t

a
( ) 1/4 a

( )∑ω̅ =νν
κ

ν
ε

ν′
−

′
κ

(27)

are contractions of the MO coefficients and the orbital energies
at a given Laplace point κ. Inserting the THC factorization of the
ERIs into eq 25 and Cholesky decomposing the pseudo-
densities, as is done in CDD-MP2,42 i.e.,

P L L
i

i i∑̲ = ̲ ̲μμ μ μ′ ′
(28)

P L L
a

a a∑̅ = ̅ ̅νν ν ν′ ′
(29)

the THC-CDD-MP2 energy equation is obtained

E X X Z X X

X X Z X X X X Z X X2

PQRS ijab
i
P

a
P PQ

j
Q

b
Q

i
R

a
R

j
S

b
S

i
R

b
R RS

j
S

a
S

MP2
THC CDD

RS

∑ ∑ ∑= − ̲ ̅ ̲ ̅ ·

[ ̲ ̅ ̲ ̅ − ̲ ̅ ̲ ̅ ]
κ

‐

(30)

Since the Cholesky pseudo-MOs span the same space as the
canonical and the Cholesky-MOs, the THC fitting can be
performed once in the Cholesky-MO basis and does not have to
be repeated for every Laplace point. X̲ and X̅ are the collocation
matrices transformed into the Cholesky pseudo-MO basis given
by

X L Xi
P

i
P∑̲ = ̲

μ
μ μ

(31)

X L Xa
P

a
P∑̅ = ̅

ν
ν ν

(32)

The benefit of evaluating the THC-MP2 energy in the
Cholesky pseudo-MO basis is that the collocation matrices are
expected to be sparse and contractions involving them can
efficiently be done using sparse linear algebra. Since the Z tensor
is the grid representation of the long-ranged 1/r12 operator, it is
generally not sparse. For this reason, the Coulomb- and
exchange-like parts of the MP2 energy are evaluated by first
contracting all possible collocation matrices, only including the
Z tensors in the last step, to carry the sparsity in X through most
of the computation. By doing this, we obtain an algorithm with
reduced scaling compared to the formal quartic scaling of this
step. Detailed algorithms for the evaluation of the Coulomb- and
exchange-like contributions to the MP2 energy are provided in
the Supporting Information. It should also be noted that the
computation times of the evaluation of the Coulomb-like energy
are nearly independent of the choice of MOs because the time-
determining step involves the contraction of the THC Z matrix
with an intermediate that is invariant under orbital rotation. A
more detailed discussion of this matter is included as a separate
section in the Supporting Information. For our timings in
Section 3, we make use of the SOS approximation78 of the MP2
energy, considering only the Coulomb-like term

E c X X Z X X

X X Z X X
PQRS ijab

i
P

a
P PQ

j
Q

b
Q

i
R

a
R RS

j
S

b
S

SOS MP2
THC CDD

OS ∑ ∑ ∑= − ̲ ̅ ̲ ̅

· ̲ ̅ ̲ ̅
κ

‐
‐

(33)

where cOS is the opposite-spin scaling factor, for which we use 1.3
as reported by Jung et al.78 The SOS approximation reduces the
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formal scaling of the energy evaluation to cubic once theX andZ
tensors are obtained. The actual scaling will, however, have a
reduced scaling exponent due to the aforementioned use of
sparse linear algebra, see Section 3.2. For a formal comparison of
THC-RI-SOS-MP2 against different SOS-MP2 methods, see
the corresponding section in the Supporting Information.

3. RESULTS AND DISCUSSION
We implemented the above-described THC algorithm together
with the THC-RI-CDD-MP2 method within our quantum
chemistry package FermiONs++.81−83 The cc-pVDZ and cc-
pVTZ basis sets84 are used in combination with the
corresponding auxiliary basis sets for all RI calculations and
the corresponding optimized THC grids.67 For the phosphorus
atoms occurring in the calculations on DNA, the fluorine grids
were used. We demonstrate in the Supporting Information that
this does not lead to an additional error by benchmarking against
a small set of selected phosphorus species. DIIS acceleration85 is
used for the preceding SCF calculations, for which the SCF
energy is converged to 10−12 and the commutator FPS− SPF to
5× 10−9 for the S22 test set86 and the L7 test set,87 together with
10 Laplace points for the integration of the orbital energy
denominator. For the assessment of the scaling, the thresholds
10−7 and 10−6 were used, respectively, in combination with
seven Laplace points, which is expected to provide sufficient
accuracy in the submilli-Hartree regime. Fermi shifting is
applied to the formation of the pseudo-density matrices as
proposed by Ayala and Scuseria.7 For the evaluation of the
energy equations, we employ a block-sparse matrix format with a
block threshold of 10−7 for the Frobenius norm of a block. All
timings are done on an Intel Xeon E5-2667 v4 (3.20 GHz) CPU
node with 256 GB RAM and three 960 GB SSD drives.
3.1. Accuracy of the THC-ω-RI-CDD-SOS-MP2 Method.

We begin with the analysis of the accuracy of the linear solver
algorithm for the solution of eq 21 compared to the
pseudoinversion (εSVD = 10−12) suggested by Martıńez and
co-workers.27,61−63 For this, benchmark calculations on the S22
test set were performed with our implementation of the THC-
RI-CDD-SOS-MP2 method using the cc-pVDZ and cc-pVTZ
basis sets. The modified Cholesky decomposition (LDL) was
chosen as the linear solver routine, but we found that the
solution based on LU decomposition provides virtually identical
results. Table 1 summarizes the deviations of the absolute
energies for the S22 monomers and dimers as well as the
deviations of the relative energies for the complexes.

It can be seen that themean absolute deviations (MAD) of the
absolute energies and the maximum error (MAX) are on the
order of 10−6 H. As a consequence, the relative energies are also
accurately reproduced. It should be emphasized that these
deviations are not with respect to a reference method, like, e.g.,
RI-SOS-MP2, but to the pseudoinversion variant of THC,
meaning that the errors are more likely due to cutoff errors based

on the SVD threshold. The latter will be illustrated by comparing
the results against RI-SOS-MP2 in the following.
After having established that implicitly forming the inverse of

the grid metric matrix can be accurately done by the linear
solution of eq 21, we now assess the accuracy of our THC-RI-
CDD-SOS-MP2 method against the reference RI-SOS-MP2
method. For this, we compare two different variants of the THC
algorithm against the reference with the cc-pVDZ and cc-pVTZ
basis sets. The first variant uses the regular Coulomb metric and
a tight natural blocking threshold of 10−10, henceforth termed
THC-RI-CDD-SOS-MP2 and the second variant uses the
attenuated Coulomb metric from eq 10 with an attenuation
strengthω of 0.1 and a looser natural blocking threshold of 10−6,
from here on referred to as THC-ω-RI-CDD-SOS-MP2. In
Table 2, the absolute and relative errors are compared to the
reference RI-SOS-MP2 method for the S22 and the larger L7
test sets.

Table 2 shows that for the S22 test set both THC variants
provide good accuracies for the absolute energies with a MAD
on the order of 10−6 H, which shows that the THC factorization
only introduces an insignificant error compared to the well-
established RI error.27 Furthermore, the use of an attenuated
Coulomb metric does not worsen the mean error significantly.
The maximum errors are larger but still on the order of 10−5 H
and in all cases correspond to aromatic molecules, like the
nucleobases uracil or thymine, in the test set. The latter can be
attributed to the fact that delocalized electronic structures are
more difficult to fit with small grids in the LS-THC procedure,
which has previously been reported by Parrish et al.27 for acenes.
Since the mean errors for the absolute energies are small, the
relative energies are also accurately reproduced. For the L7 test
set, comprised of larger molecules, the errors are worse
compared to the results for the S22 test set and are roughly an
order of magnitude larger. This is somewhat expected since the
L7 test set represents a collection of worst case molecules, in a
sense that all complexes involve large, strongly delocalized
electronic structures. Remarkably, for this case, the errors for the
cc-pVTZ basis set are smaller than for the cc-pVDZ basis set.
This can be rationalized by the fact that for the triple-ζ basis set
larger integration grids are used, which allow for better fitting of
the delocalized orbitals. Furthermore, for the absolute energies,
the errors decrease when using the attenuated Coulomb metric
and integral screening, most likely due to favorable error
cancellation. For the interaction energies, the same trend of

Table 1. Deviation of the Linear Solver Algorithm Compared
to Pseudoinversion for the S22 Test Set

ΔEabs
a ΔErel

b

S22 MAD MAX MAD MAX

cc-pVDZ 0.4 3.8 <0.001 0.002
cc-pVTZ 2.0 7.8 0.003 0.011

aDeviations in μH. bDeviations in kcal/mol.

Table 2. Error of THC-RI-CDD-SOS-MP2 and THC-ω-RI-
CDD-SOS-MP2 Compared to Canonical RI-SOS-MP2 for
the S22 and L7Test Set Using the cc-pVXZ/cc-pVXZ-RI (X∈
{D,T}) Basis Sets

ΔEabsa ΔErelb

test set basis THC variant MAD MAX MAD MAX

S22 cc-pVDZ RI 8.8 38.9 0.003 0.013
ω-RI 13.9 57.9 0.008 0.030

cc-pVTZ RI 2.0 14.0 0.001 0.010
ω-RI 7.8 26.0 0.005 0.015

L7 cc-pVDZ RI 72.8 284.8 0.027 0.067
ω-RI 50.3 183.3 0.045 0.129

cc-pVTZ RI 50.6 187.3 0.010 0.030
ω-RI 45.4 137.0 0.022 0.049

aDeviations in μH. bDeviations in kcal/mol.
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increasing errors as compared to the S22 test set is observed.
Nonetheless, the deviations are significantly lower than 1 kcal/
mol, which can be considered to be chemical accuracy. To
conclude, the THC-ω-RI-CDD-SOS-MP2 method introduces
no significant errors compared to the THC-RI-CDD-SOS-MP2
implementation and provides good accuracy for the variety of
compounds present in the test sets under investigation. We also
note that our THC algorithm is not only able to accurately
reproduce final MP2 energies but also provides good accuracy
for important intermediate quantities such as MP2 amplitudes,
which is demonstrated in the Supporting Information.
3.2. Performance Analysis. In the following, the perform-

ance of the here developedTHC-ω-RI-CDD-SOS-MP2method
is assessed in terms of computational complexity and asymptotic
scaling behavior. First, we focus on the THC routine itself, i.e.,
without the computation of the MP2 energy to investigate the
most expensive steps of forming the THC factorized integrals.
For this, we consider the construction of the RI integrals in the
Cholesky-MO basis, the formation of the grid-projected RI
integralsY (eq 17), which is the formally highest scaling step and
the inversionor rather the linear solution to find the implicit

inverseof the grid metric S (eq 21). In Figure 1, this analysis is
exemplarily carried out for linear alkanes up to C200H402 using
the cc-pVDZ basis set. On the left, the computation times of the
total THC procedure (red) and the individual steps are plotted
against the number of basis functions.
It can be seen that the construction and contraction of the RI

integrals dominate the scaling behavior. Initially, subquadratic
scaling is observed for the RI integrals, which increases with
bigger molecule sizes. This is caused by the fact that, for the
largest chains, the inversion of the two-center integrals in eq 10
becomes computationally significant and starts to dominate the
overall scaling of the construction of the RI integrals. We note
that, for chemically relevant molecules, with a less sparse
structure, this crossover is expected to be for larger molecule
sizes. As the inversion is asymptotically cubic scaling, this
worsens the overall scaling of this step, while the formation of
the three-center integrals becomes close to linear scaling with
the screening outlined in Section 2.3. As the same screening in
combination with the natural blocking approach for the tensor
contractions is applied to the construction of the Y tensor, this
step also becomes close to linear scaling. For the linear solution

Figure 1.Total execution time of the THC algorithm (red) and individual contributions from the most expensive constituting steps, i.e., the formation
of the RI integrals (orange), the construction of intermediate Y (blue), and the inversion of the grid metric S (green) for linear alkanes CnH2n+2 using
the cc-pVDZ basis set (left) and the corresponding double logarithmic plot (right). The colored numbers correspond to the scaling exponent with
respect to the preceding fragment, and the scaling for the largest molecules was determined by linear regression starting from C60H122 (Nbf = 1450) up
to C200H402 (Nbf = 4810).

Figure 2. Plots of the total execution times for the THC-ω-RI-CDD-SOS-MP2 method (black) for linear alkanes CnH2n+2 as well as the individual
contributions from the THC fitting (red) and the computation of the MP2 energy (blue) for the cc-pVDZ (left) and cc-pVTZ basis sets (right). The
scaling exponent for the longest chains, starting from C60H122, was determined by linear regression in the double logarithmic plot, and the colored
numbers correspond to the scaling with respect to the preceding fragment.
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of eq 21, a specialized band matrix version of the LU
decomposition (LAPACK: xgbsv) was used. For this, reverse
Cuthill−McKee88 reordering of the atoms is performed in order
to minimize the bandwidth of the resulting grid-projected
overlap matrix. The bandwidth can then be determined
numerically by the algorithm presented in the Supporting
Information and converted to the LAPACK band storage
format. We found that, after a certain chain length, here C40H82,
the bandwidth is constant and the number of elements in S only
increases linearly, which results in an overall quadratic scaling of
this step. Even if no specialized linear solvers are applied, the
prefactor of this step is small, such that it only makes up a small
fraction of the total computation time. In total, using an
attenuated Coulomb metric in the RI integrals and natural
blocking for the corresponding contractions in combination
with a localized Cholesky basis and specialized algorithms for
the inversion of S, the overall scaling of obtaining the THC
factorization becomes quadratic. It should, however, be noted
that, for even larger molecule sizes, the scaling will eventually be
dominated by asymptotically cubic scaling steps, such as the
inversion of the two-center integrals or the formation of Z (eq
24), which involves only dense matrices.
Next, we focus the discussion on the overall scaling of the

evaluation of the SOS-MP2 energy equation with the THC
algorithm presented above.We first again consider linear alkanes
as a model system to determine the asymptotic scaling behavior.
Figure 2 shows the corresponding plots of the computation
times against the number of basis functions for the cc-pVDZ
(left) and cc-pVTZ basis sets (right). For this, the total wall
times for the evaluation of the THC-ω-RI-CDD-SOS-MP2
equations are shown (black) as well as the contributions from
obtaining the THC factorization (red) and the calculation of the
SOS-MP2 energy (blue).
For both basis sets, roughly quadratic scaling is observed for

the THC-ω-RI-CDD-SOS-MP2 method. Through the use of
sparsematrix algebra, the evaluation of the SOS-MP2 energy can
efficiently be performed since all quantities are sparseexcept
for the Z tensordue to the transformation into the Cholesky
pseudo-MO basis. It can be seen that for the smaller double-ζ
basis set, obtaining the THC factorization is the rate-
determining step and the energy evaluation only makes up 1/
3 of the total computation time. This highlights an advantage of
using a global THC formulation as, for the local-THC
approximation, the evaluation of the SOS-MP2 energy seems
to be dominating.63 The latter is especially problematic when
using more expensive correlation methods than MP2. For the
larger triple-ζ basis set, however, the evaluation of the energy
equations also becomes rate-determining for our global THC
algorithm. Here, larger grids are employed and the basis set
includes more diffuse functions, resulting in less sparse
intermediates in the energy evaluation. Overall, for linear
alkanes, as a sparse model, both the THC factorization and the
energy evaluation are quadratic scaling with a low prefactor for
the considered molecule sizes.
Even though linear alkanes provide a valuable model for

assessing the efficiency of screening algorithms and the scaling of
a method, we now focus on a class of molecules that is more
representative for practical applications in the form of adenine−
thymine base pair stacks (AT)n (n ∈ {1,2,4,8,12}). The same
calculations as in Figure 2 with the cc-pVDZ basis set were
performed for the DNA fragments, and the results are shown in
Figure 3.

Here, all observations discussed before for linear alkanes still
hold. The evaluation of the SOS-MP2 energy equations
approaches quadratic scaling for the largest DNA fragment
while obtaining the THC factorization reaches subquadratic
scaling. The latter is due to the fact that, for the less sparse DNA
systems, as compared to linear alkanes, the cubic scaling steps
cease to be significant and the scaling is dominated by the linear
scaling integral contractions. Thus, the whole THC-ω-RI-CDD-
SOS-MP2 method also becomes subquadratically scaling. The
more globular structure of DNA, however, causes a later onset of
subquadratic scaling (linear alkanes: Nbf ≈ 1000, DNA: Nbf ≈
6000) because only for the largest fragments the sparsity in the
tensors involved becomes sufficiently large to be exploited by
screening and sparse matrix algebra. It can be expected, that for
even larger fragments the scaling behavior of the energy
evaluation will reduce and approach the scaling observed for
linear alkanes. For the largest fragment, i.e., (AT)12, detailed wall
times for the individual steps of the THC-ω-RI-CDD-SOS-MP2
method are presented in Table 3.

As can be seen from Table 3, the operations involving the RI
integrals, i.e., their construction and transformation into theMO
basis as well as the grid projection to obtain intermediate Y,
make up roughly 75% of the total computation time. However,
we were able to show that these steps have been made linear
scaling through the use of an attenuated Coulomb metric and
the local Cholesky-MO basis in combination with integral

Figure 3. Total execution time of the THC-ω-RI-CDD-SOS-MP2
method (black) for (AT)n base pair stacks as well as the individual
contributions from the THC fitting (red) and the computation of the
MP2 energy (blue) for the cc-pVDZ basis set. The colored numbers
correspond to the scaling with respect to the preceding fragment.

Table 3. Detailed Computation Times for the Individual
Steps of the THC-ω-RI-CDD-SOS-MP2 Method for an
(AT)12 DNA Fragment (cc-pVDZ)

step wall time (s) %

integrals (eqs 11−13) 17,768 45.9
X (eqs 6−9) 208 0.5
Y (eq 17) 11,970 30.9
S (eq 4) 410 1.1
S−1 (eq 21) 960 2.5
Z (eq 24) 683 1.8
ESOS-MP2 (eq 33) 6132 15.8

total 38,745
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screening (see Figure 1), with the exception of the inversion of
the two-center integrals. Furthermore, the previously reported
bottleneck of the THC procedure, i.e., the inversion of the grid
metric S, was removed by the use of linear solvers, such that now
this step only contributes 2.5% of the total computation time for
the largest DNA fragment under consideration. Additionally,
here the other cubic scaling steps, i.e., obtaining the Z tensor and
inverting the two-center integrals, only contribute a small
percentage of the total wall time and are not rate-determining.
Finally, the evaluation of the SOS-MP2 energy equation only
requires roughly 15% of the total wall time.

4. CONCLUSIONS
In the present work, we showed that, through a combination of
different reduced-scaling methods, the computational complex-
ity of the LS-THC formalism can significantly be reduced: By
combining the locality of Cholesky orbitals with an erfc-
attenuated Coulomb metric and appropriate integral screening
for the RI integrals, all contractions involving these integrals can
be performed in linear time complexity. This especially allowed
us to perform the formally highest scaling step, i.e., the
projection of the RI integrals onto the THC grids to form
intermediate Y, in a linear scaling fashion. Additionally, the
prefactor of the usually most expensive step, i.e., forming the
inverse of the grid metric S, can be significantly reduced by
reformulation of the underlying equations and application of
linear equation solvers. All of this leads to a subquadratically
scaling formulation of the LS-THC procedure for chemically
relevant molecules. We note that this still involves cubic scaling
steps, like the inversion of the two-center integrals or the final
contraction to form the Z tensor; however, these steps have
small enough prefactors to only show up for very large molecule
sizes. Applying our THC method to SOS-MP2 leads to an
overall subquadratically scaling MP2 method, which we term
THC-ω-RI-CDD-SOS-MP2.
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(44) Vahtras, O.; Almlöf, J.; Feyereisen, M. W. Integral approx-
imations for LCAO-SCF calculations. Chem. Phys. Lett. 1993, 213,
514−518.
(45) Weigend, F.; Has̈er, M.; Patzelt, H.; Ahlrichs, R. RI-MP2:
Optimized auxiliary basis sets and demonstration of efficiency. Chem.
Phys. Lett. 1998, 294, 143−152.
(46) Røeggen, I.; Johansen, T. Cholesky decomposition of the two-
electron integral matrix in electronic structure calculations. J. Chem.
Phys. 2008, 128, 194107.
(47) Boström, J.; Aquilante, F.; Pedersen, T. B.; Lindh, R. Ab initio
density fitting: Accuracy assessment of auxiliary basis sets from cholesky
decompositions. J. Chem. Theory Comput. 2009, 5, 1545−1553.
(48) Aquilante, F.; Gagliardi, L.; Pedersen, T. B.; Lindh, R. Atomic
Cholesky decompositions: A route to unbiased auxiliary basis sets for
density fitting approximation with tunable accuracy and efficiency. J.
Chem. Phys. 2009, 130, 154107.
(49) Aquilante, F.; Delcey,M. G.; Pedersen, T. B.; Galvań, I. F.; Lindh,
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1 Transformation of the Three-center Integrals

Following up on our work on ω-RI-CDD-MP2,S1 we employ the natural blocking matrix

formatS2 in combination with screening based on integral partition bounds (IPB)S3 for the

transformation of the three-center RI integrals into Cholesky-MO basis. In short, in the

three-center AO integral kernel the matrices M and N,

Mµν = max
α
|(µν ...α)|, (1)

Nµα = max
ν
|(µν ...α)|, (2)

are constructed. The screening matrices M and N can then be turned into upper bounds

for the transformation into Cholesky-MO basis by contraction with the absolute Cholesky

factors Lµi and Lµa according to

|(iν ...α)| ≤ Niα =
∑

µ

|Lµi|Nµα, (3)

|(aν ...α)| ≤ Naα =
∑

µ

|Lµa|Nµα. (4)

The elements of Niα and Naα can then be used to construct significance lists

[i]α ≡ {i|Niα > εNB}, (5)

[a]α ≡ {a|Naα > εNB}. (6)

With these significance lists the Cholesky-MO transformation can be carried out in linear-

scaling fashion using the algorithm presented below.
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Algorithm 1 Transform the three-center RI integrals into Cholesky-MO basis.
1: procedure transformRI
2: for all α do
3: for all i ∈ [i]α and ν ∈ {ν}α do

4: (α
... iν) =

∑
µ∈{µ}α Lµi(α

...µν)
5: end for
6: build {i}α list
7: end for
8: for all α do
9: for all i ∈ {i}α and a ∈ [a]α do

10: (α
... ia) =

∑
ν∈{ν}α Lνa(α

... iν)
11: end for
12: build {a}α list
13: end for
14: reorder: (α

... ia)→ (ia
...α)

15: build {a}i list
16: return (ia

...α)
17: end procedure

2 Band Matrix Solver for Y

Here we present the pseudocode for determining the numerical bandwidth of a symmetric ma-

trixA of size n×n and converting it into the band matrix storage format of LAPACK. Follow-

ing the notation of the LAPACK documentation, kl is the number of significant subdiagonals

and ku the number of superdiagonals. Since A is expected to be symmetric kl = ku and the

total bandwidth is given by 2kl + 1. The algorithm determines the bandwidth by iterating

over all subdiagonals and accumulating the elements of a given subdiagonal in the variable

sum. Once the sum is less than the number of elements in this subdiagonals times a given

truncation threshold thresh, the subdiagonal is considered to be insignificant.
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Algorithm 2 Determine the numerical band width of a symmetric matrix A.
1: procedure determine_numerical_bandwidth(A)
2: kl ← 0
3: for sub ← 1 to sub < n do . iterate over all subdiagonals
4: sum ← 0.0
5: for k ← 0 to k < n - sub do . iterate over all elements in a subdiagonal
6: sum ← sum + A(k + sub, k)
7: end for
8: if sum < ((n - sub) × thresh) then
9: break

10: end if
11: kl ← kl + 1
12: end for
13: return kl
14: end procedure

Algorithm 3 Convert matrix A to LAPACK band matrix storage format.
1: procedure convert_to_band_storage(A)
2: kl, ku ← determine_numerical_bandwidth(A)
3: B ← 0(kl+ku+1, n)
4: for j ← 0 to j < n do
5: for i ← max(0, j-ku) to i < min(n, j + kl) do
6: B(ku + i - j, j) ← A(i, j)
7: end for
8: end for
9: return B

10: end procedure

Finally, we note that for the xgbsv routine the resulting matrix B has to be copied to a

zero-padded matrix with dimensions (2kl+ku+1)×n.

3 Evaluation of the MP2 Energy Equations using THC

Here the pseudocode for the algorithms to compute the THC-CDD-MP2 energy is presented.

The algorithms for the Coulomb-like and exchange-like energy contribution are shown sepa-

rately, but both make use of first contracting all possible MO indices after transformation of

the collocation matrices into pseudo-MO basis. Here, we present the algorithm to compute
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the Coulomb-like contribution ETHC-CDD
MP2-J to the MP2 energy with O(N3) scaling. We note,

that not all contractions are considered explicitly as some of the intermediates are equivalent.

Algorithm 4 Compute the Coulomb-like MP2 energy ETHC-CDD
MP2-J

1: procedure ETHC-CDD
MP2-J ← −2

∑
κ

∑
PQRS

∑
ijabX

P
i X

P
a Z

PQXQ
j X

Q
b ·XR

i X
R
a Z

RSXS
jX

S
b

2: EMP2-J ← 0.0
3: for κ← 1 to Nκ do . Laplace quadrature
4: XP

i ←
∑

µ LµiX
P
µ . O(NgridNbfNocc)

5: XP
a ←

∑
ν LνaX

P
ν . O(NgridNbfNvirt)

6: APR(κ) ←
∑

iX
P
i X

R
i . O(N2

gridNocc)

7: BPR
(κ) ←

∑
aX

P
aX

R
a . O(N2

gridNvirt)

8: CPR
(κ) ← APR(κ) ◦BPR

(κ) . O(N2
grid)

9: DPS
(κ) ←

∑
R C

PR
(κ) Z

RS . O(N3
grid)

10: EMP2-J += −2
∑

PS D
PS
(κ)D

SP
(κ) . O(N2

grid)
11: end for
12: end procedure

Next, the algorithm to compute the exchange-like contribution ETHC-CDD
MP2-K to the MP2 energy

with O(N4) scaling is presented. To circumvent memory issues, the accumulation of the final

ETHC-CDD
MP2-K energy contribution is batched over the occupied index i which avoids the necessity

of storing higher than second-order tensors. Again, we note that not all contractions are

considered explicitly as some of the intermediates are equivalent. Here, this is especially

relevant for intermediates APR(κ) and AQS(κ) .
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Algorithm 5 Compute the exchange-like MP2 energy ETHC-CDD
MP2-K

1: procedure ETHC-CDD
MP2-K ←∑

κ

∑
PQRS

∑
ijabX

P
i X

P
a Z

PQXQ
j X

Q
b ·XR

i X
R
b Z

RSXS
jX

S
a

2: EMP2-K ← 0.0
3: for κ← 1 to Nκ do . Laplace quadrature
4: XP

i ←
∑

µ LµiX
P
µ . O(NgridNbfNocc)

5: XP
a ←

∑
ν LνaX

P
ν . O(NgridNbfNvirt)

6: APR(κ) ←
∑

iX
P
i X

R
i . O(N2

gridNocc)

7: BPS
(κ) ←

∑
aX

P
aX

S
a . O(N2

gridNvirt)

8: e
(κ)
MP2-K ← 0.0

9: for i← 1 to i ≤ rk(P) do . Batching over occupied index i
10: CPS

(κ) ← BPS
(κ)X

P
i (i, :) . O(N2

gridNocc)

11: DQS
(κ) ←

∑
P Z

PQCPS
(κ) . O(N3

gridNocc)

12: e
(κ)
MP2-K +=

∑
QS A

QS
(κ)D

QS
(κ)D

SQ
(κ) . O(N2

gridNocc)
13: end for
14: EMP2-K += e

(κ)
MP2-K

15: end for
16: end procedure

4 Comparison of Different SOS-MP2 Methods

To put our THC-RI-SOS-MP2 method into context with different SOS-MP2 methods we

compare it to LT-RI-SOS-MP2 based on work by Jung et al.S4 and to CD-SOS-MP2 based

on work by Aquilante et al.S5 The LT-RI-SOS-MP2 method makes use of the Laplace trans-

formation of the orbital energy denominator of the MP2 energy, which in combination with

density-fitted integrals achieves a decoupling of the bra- and ket-indices. As noted in the

original publication,S4 the most expensive step of the method is the contraction of two third-

order B-tensors to form the final intermediate for the energy evaluation, i.e., Z. Asymp-

totically this step scales as O(NoccNvirtN
2
aux) and has to be performed for every Laplace

point. The CD-SOS-MP2 method on the other hand is based on a Cholesky decomposition

of the MP2 amplitudes while the remaining ERI can either be approximated by RI or also

be Cholesky-decomposed. This – similar to LT-RI-SOS-MP2 – achieves a factorization into

at most third-order tensors. For CD-SOS-MP2, however, the time-determining steps have to
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be performed only once as a preprocessing step before the actual energy calculation. Asymp-

totically both methods are quartic scaling with the relative performance mainly governed

by the ratio of these steps. THC-RI-SOS-MP2 is another quartic scaling SOS-MP2 method

which like LT-RI-SOS-MP2 uses a Laplace transformation of the orbital energy denominator

and a preprocessing step in the form of factorizing the ERIs into THC format. The quartic

scaling step in THC-RI-SOS-MP2 is the contraction of the collocation matrices X with the

third-order RI tensors. The actual energy calculation requires at most O(N3
grid) scaling steps

and therefore offers an advantage over LT-RI-SOS-MP2 and CD-SOS-MP2. The energy

expressions of the three methods together with the scaling behavior of the most expensive

steps are presented below.
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LT-RI-SOS-MP2

EOS-MP2 = −2
∑

κ

∑

ijab

(ia|jb)(ia|jb)

= −2
∑

κ

∑

αβ

∑

ia

Bα
iaB

β
ia

∑

jb

Bα
jb
Bβ

jb

= −2
∑

κ

∑

αβ

ZαβZαβ

Bα
ia O(N2

bfNoccNaux) +O(NbfNoccNvirtNaux)

Bα
ia O(NoccNvirtNaux)

Z O(NoccNvirtN
2
aux)

E O(N2
aux)

memory O(N2
bfNaux)a) or O(NoccNvirtNaux)

CD-SOS-MP2

EOS-MP2 = −2
∑

ijab

tabij (ia|jb)

= −2
∑

K

∑

J

∑

ia

RK
iaL

J
ia

∑

jb

RK
jbL

J
jb

= −2
∑

K

∑

J

ZKJZKJ

tabij O(NoccNvirtNauxNchol) +O(NoccNvirtN
2
chol/2)

Z O(NoccNvirtNauxNchol)

E O(NauxNchol)

memory O(N2
occN

2
virt)

b) or O(NoccNvirtNchol)

THC-RI-SOS-MP2

EOS-MP2 = −2
∑

κ

∑

PQRS

∑

ijab

XP
i X

P
a Z

PQXQ
j X

Q
b ·

XR
i X

R
a Z

RSXS
jX

S
b

= −2
∑

κ

∑

PQRS

APR(κ)B
PR
(κ) Z

PQZRSAQS(κ)B
QS
(κ)

= −2
∑

κ

∑

PQRS

CPR
(κ) Z

PQZRSCQS
(κ)

= −2
∑

κ

∑

PS

DPS
(κ)D

PS
(κ)

Y O(NoccNvirtNauxNgrid) +O(NoccNauxNgrid)

Z O(NauxN
2
grid)

A,B O(NoccN
2
grid), O(NvirtN

2
grid)

D O(N3
grid)

E O(N2
grid)

memory O(N2
bfNaux)a) or O(NoccNvirtNaux)a) or

O(N2
grid)

a) if not implemented with on-the-fly integral calculation/contraction

b) if tabij is not computed on-the-fly and Cholesky decomposition of the tabij supermatrix is

performed

All methods are formally quartic scaling and their relative performance can be assessed

by comparing the time-determining steps of CD-SOS-MP2 and THC-RI-SOS-MP2 against

LT-RI-SOS-MP2. For LT-RI-SOS-MP2 we assume an operation count proportional to

NoccNvirtN
2
aux, for CD-SOS-MP2 an operation count of 2NoccNvirtNauxNchol+NoccNvirtN

2
chol/2

and for THC-RI-SOS-MP2 an operation count of NoccNvirtNauxNgrid. As explained by
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Aquilante et al.S5 the relative performance of CD-SOS-MP2 against LT-RI-SOS-MP2 is

governed by the ratio of σ = 2Nchol/Naux + (Nchol/Naux)2 /2 to the number of Laplace points

Nκ. For reasonable accuracy the ratio Nchol/Naux should be greater or equal to one and

assuming Nchol/Naux = 1 simplifies σ to σ = 2.5. Assuming that Nchol/Naux = 1 results in

µH accuracy of the final energies, for which in LT-RI-SOS-MP2 7–10 Laplace points would

be needed, it can be argued that CD-SOS-MP2 requires roughly 2–4 times less operations.

The quartic scaling step of the THC-RI-SOS-MP2 method has to be carried out only once,

while in LT-RI-SOS-MP2 this step has to be performed for every Laplace point. Assuming

that the number of THC grid points is three times greater than the number of auxiliary

functions, this results in a ratio σ′ of σ′ = 3/Nκ. Assuming that again 7–10 Laplace points

are used, THC-RI-SOS-MP2 offers an operation count advantage of roughly 2–3 times and is

thus comparable to CD-SOS-MP2. Additionally, one of the strengths of THC-RI-SOS-MP2

is that – if all integral operations are performed on-the-fly – the storage requirements are

an order of magnitude smaller than for the other two methods. Furthermore, once the THC

factorization is obtained all subsequent steps of evaluating the SOS-MP2 energy are only

cubic scaling.

5 Canonical MOs vs Cholesky MOs

The effect of using local Cholesky- and Cholesky pseudo-MOs for the formation of the THC

factorized ERIs and the computation of the MP2 energy, respectively, is demonstrated. As

outlined in the main part of the paper, our screening routines for both the transformation

of the RI integrals into Cholesky-MO basis and the subsequent projection onto the THC

grids by contraction with the collocation matrices X rely on the locality of the MOs used.

Furthermore, the evaluation of the MP2 energy relies on sparse linear algebra and therefore

also benefits from the locality of the Cholesky pseudo-MOs. To highlight this, the following

figures compare computation times for our THC-ω-RI-CDD-SOS-MP2 method, split into
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contributions from obtaining the THC factorization and the evaluation of the SOS-MP2

energy, using canonical MOs (red) against using Cholesky (pseudo)-MOs (black).
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Figure S1: Total execution time of the THC algorithm (left) and the evaluation of the
SOS-MP2 energy (right) using Cholesky (pseudo)-MOs (black) and canonical MOs (red) for
linear alkanes CnH2n+2 using the cc-pVDZ basis set. The scaling for the largest molecules
was determined by linear regression starting from C60H122 (Nbf = 1450) up to C200H402
(Nbf = 4810).
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Figure S2: Total execution time of the THC algorithm (left) and the evaluation of the
SOS-MP2 energy (right) using Cholesky (pseudo)-MOs (black) and canonical MOs (red) for
linear alkanes CnH2n+2 using the cc-pVTZ basis set. The scaling for the largest molecules
was determined by linear regression starting from C60H122 (Nbf = 3508) up to C120H242
(Nbf = 6988).

The close to quartic scaling of obtaining the THC factorization when using canonical MOs is

expected since the non-locality of the MOs causes the contraction of the collocation matrices

X with the three-center RI integrals to approach its formal O(N4) scaling. This clearly

highlights the efficiency of our screening algorithms for the construction of the Z matrix.

For the energy evaluation, Cholesky pseudo-MOs only provide a speedup for lines 6 and 7 of
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algorithm 4, i.e., for contractions of the type XXT. The product A = XXT is essentially a

representation of the occupied density matrix in the THC grid basis. Analogously, B = XX
T

is a representation of the virtual density matrix. As such A and B possess a similar sparsity

pattern as the regular density matrices and more importantly should be invariant under

rotation of the MOs. The latter means, thatA constructed asA =
∑

iX
P
i X

R
i using Cholesky

pseudo-MOs and A′ constructed from regular MOs as A′ =
∑

i e
εit

(κ)
XP
i X

R
i are identical.

For this reason, the only step of the evaluation of the MP2 Coulomb-like energy that can

be speeded up is the formation of intermediates A and B, while all subsequent contractions

are identical for both types of MOs. Since the contraction D = CZ from algorithm 4 is the

time-determining step and C will have the same sparsity pattern irrespective of the choice

of MOs, the overall computation times for the Coulomb-like MP2 energy are very similar

(see right sides of figures S1 and S2).
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6 Detailed Results for the S22 and L7 Test Set

6.1 Results for the S22 Test Set

Table S1: Absolute energies for the S22 test set monomers computed with our implementa-
tion of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2
(ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVDZ

basis set. Additionally the deviations (∆E) of the results from the THC methods to the
RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-aminopyridine −302.703 924 −302.703 927 2.6 −302.703 906 18.5
2-pyridoxine −322.546 423 −322.546 425 2.1 −322.546 406 16.9
adenine −465.932 237 −465.932 233 3.1 −465.932 201 35.2
ammonia −56.384 925 −56.384 925 <0.1 −56.384 928 3.0
benzene −231.485 902 −231.485 910 8.1 −231.485 889 12.8
ethene −78.323 148 −78.323 148 <0.1 −78.323 150 1.5
ethyne −77.082 330 −77.082 330 <0.1 −77.082 333 3.3
formamide −169.417 178 −169.417 178 0.1 −169.417 173 4.9
formicacid −189.261 080 −189.261 079 0.4 −189.261 074 5.6
hydrocyanic acid −93.163 064 −93.163 064 <0.1 −93.163 068 4.5
indole −362.658 729 −362.658 743 14.4 −362.658 715 13.2
methane −40.371 390 −40.371 390 <0.1 −40.371 397 6.1
phenol −306.521 903 −306.521 911 7.5 −306.521 889 14.2
pyrazine −263.507 029 −263.507 028 1.1 −263.507 005 24.2
thymine −452.829 481 −452.829 469 12.7 −452.829 455 26.7
uracil −413.641 115 −413.641 108 7.7 −413.641 090 24.8
water −76.224 952 −76.224 952 <0.1 −76.224 952 0.4
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Table S2: Absolute energies for the S22 test set dimers and complexes computed with our
implementation of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-
CDD-SOS-MP2 (ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method

for the cc-pVDZ basis set. Additionally the deviations (∆E) of the results from the THC
methods to the RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-pyridoxine + −625.277 430 −625.277 432 2.1 −625.277 395 35.02-aminopyridine
adenine + −918.781 508 −918.781 497 11.6 −918.781 494 13.7thymine (stack)
adenine + −918.788 467 −918.788 458 8.8 −918.788 415 52.6thymine (W.-C.)
ammonia dimer −112.776 724 −112.776 724 <0.1 −112.776 729 4.5
benzene + −271.858 651 −271.858 660 8.6 −271.858 646 5.0methane
benzene + −287.873 967 −287.873 978 10.9 −287.873 962 4.3ammonia
benzene dimer (‖) −462.974 877 −462.974 902 24.8 −462.974 881 4.0
benzene dimer (⊥) −462.975 643 −462.975 667 24.3 −462.975 635 8.4
benzene + −324.655 118 −324.655 128 9.9 −324.655 112 6.3hydrocyanic acid
benzene + −307.715 837 −307.715 848 12.2 −307.715 830 6.5water
ethene dimer −156.647 632 −156.647 632 0.3 −156.647 630 1.9
ethene + −155.407 786 −155.407 786 <0.1 −155.407 789 3.0ethyne
formamide dimer −338.860 613 −338.860 611 2.1 −338.860 603 9.6
formic acid dimer −378.552 763 −378.552 761 1.6 −378.552 751 12.0
indole + −594.150 675 −594.150 713 38.9 −594.150 696 21.2benzene (‖)
indole + −594.152 908 −594.152 942 34.5 −594.152 902 5.1benzene (⊥)
methane dimer −80.743 019 −80.743 019 <0.1 −80.743 028 8.9
phenol dimer −613.056 581 −613.056 617 36.4 −613.056 584 3.5
pyrazine dimer −527.020 386 −527.020 372 13.8 −527.020 350 35.7
uracil dimer (H-bond) −827.313 142 −827.313 116 25.9 −827.313 084 57.9
uracil dimer (stack) −827.297 960 −827.297 941 18.3 −827.297 934 25.9
water dimer −152.460 696 −152.460 696 <0.1 −152.460 695 1.0
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Table S3: Absolute energies for the S22 test set monomers computed with our implementa-
tion of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2
(ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVTZ

basis set. Additionally the deviations (∆E) of the results from the THC methods to the
RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-aminopyridine −303.110 460 −303.110 460 0.2 −303.110 465 5.2
2-pyridoxine −322.966 088 −322.966 092 3.3 −322.966 094 6.0
adenine −466.526 943 −466.526 939 3.9 −466.526 946 3.0
ammonia −56.471 514 −56.471 515 <0.1 −56.471 516 1.4
benzene −231.807 569 −231.807 569 0.7 −231.807 574 5.8
ethene −78.441 379 −78.441 379 <0.1 −78.441 375 4.5
ethyne −77.191 318 −77.191 318 <0.1 −77.191 326 7.7
formamide −169.634 769 −169.634 768 0.8 −169.634 770 1.0
formicacid −189.491 093 −189.491 093 0.5 −189.491 094 0.3
hydrocyanic acid −93.276 293 −93.276 293 <0.1 −93.276 305 11.5
indole −363.150 385 −363.150 381 4.1 −363.150 383 1.6
methane −40.441 911 −40.441 911 <0.1 −40.441 911 <0.1
phenol −306.931 762 −306.931 763 0.7 −306.931 766 4.0
pyrazine −263.847 780 −263.847 780 0.2 −263.847 787 6.6
thymine −453.403 928 −453.403 930 1.9 −453.403 930 2.8
uracil −414.156 850 −414.156 843 6.7 −414.156 848 2.3
water −76.328 144 −76.328 145 <0.1 −76.328 144 0.7
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Table S4: Absolute energies for the S22 test set dimers and complexes computed with our
implementation of the RI-SOS-MP2 (ERI

SOS-MP2) reference method as well as the THC-RI-
CDD-SOS-MP2 (ETHC-RI-CDD

SOS-MP2 ) and the THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method

for the cc-pVTZ basis set. Additionally the deviations (∆E) of the results from the THC
methods to the RI-SOS-MP2 energies are shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

2-pyridoxine + −626.102 751 −626.102 756 3.6 −626.102 760 7.82-aminopyridine
adenine + −919.953 279 −919.953 283 4.0 −919.953 305 26.0thymine (stack)
adenine + −919.956 369 −919.956 365 4.3 −919.956 365 3.9thymine (W.-C.)
ammonia dimer −112.948 625 −112.948 625 <0.1 −112.948 624 1.1
benzene + −272.251 679 −272.251 680 0.9 −272.251 685 6.5methane
benzene + −288.282 957 −288.282 956 1.0 −288.282 970 12.5ammonia
benzene dimer (‖) −463.620 183 −463.620 177 6.2 −463.620 192 9.4
benzene dimer (⊥) −463.619 930 −463.619 927 3.9 −463.619 935 5.3
benzene + −325.091 880 −325.091 880 <0.1 −325.091 904 23.5hydrocyanic acid
benzene + −308.141 724 −308.141 722 1.8 −308.141 728 3.6water
ethene dimer −156.884 286 −156.884 286 <0.1 −156.884 291 5.8
ethene + −155.634 944 −155.634 945 1.0 −155.634 952 8.3ethyne
formamide dimer −339.294 087 −339.294 085 2.3 −339.294 087 0.1
formic acid dimer −379.010 826 −379.010 824 2.4 −379.010 851 24.6
indole + −594.967 113 −594.967 112 0.9 −594.967 130 16.6benzene (‖)
indole + −594.967 839 −594.967 834 4.7 −594.967 860 20.9benzene (⊥)
methane dimer −80.884 303 −80.884 303 <0.1 −80.884 303 0.1
phenol dimer −613.875 204 −613.875 205 1.2 −613.875 214 9.7
pyrazine dimer −527.703 274 −527.703 273 1.2 −527.703 298 23.5
uracil dimer (H-bond) −828.344 550 −828.344 536 14.0 −828.344 537 13.7
uracil dimer (stack) −828.331 458 −828.331 460 2.1 −828.331 473 15.6
water dimer −152.665 252 −152.665 252 <0.1 −152.665 250 1.7
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6.2 Results for the L7 Test Set

Table S5: Absolute energies for the L7 test set monomers (2nd and 3rd row of each cell)
and complexes (1st row of each cell) computed with our implementation of the RI-SOS-MP2
(ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2 (ETHC-RI-CDD
SOS-MP2 ) and the

THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVDZ basis set. Additionally

the deviations (∆E) of the results from the THC methods to the RI-SOS-MP2 energies are
shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

circumcoronene −2528.319 812 −2528.320 097 284.8 −2528.319 995 183.3
+ −465.934 047 −465.934 057 10.7 −465.934 025 21.3

adenine −2062.358 644 −2062.358 811 167.1 −2062.358 643 1.4
circumcoronene −2997.209 161 −2997.209 377 215.5 −2997.209 315 153.5

+ −934.805 872 −934.805 864 8.7 −934.805 814 58.6
GC −2062.358 156 −2062.358 361 205.3 −2062.358 192 36.1

coronene −1837.897 882 −1837.898 001 118.9 −1837.897 970 87.0
+ −918.932 012 −918.932 097 85.6 −918.932 029 17.4

coronone −918.932 012 −918.932 097 85.6 −918.932 029 17.4
GC −1869.612 341 −1869.612 225 115.2 −1869.612 216 124.0
+ −934.793 898 −934.793 872 25.5 −934.793 824 73.7
GC −934.793 898 −934.793 872 25.5 −934.793 824 73.7

guanine −1622.921 181 −1622.921 159 21.9 −1622.921 131 50.0
+ −540.978 004 −540.978 009 5.0 −540.977 979 24.9

2×guanine −1081.938 478 −1081.938 454 24.5 −1081.938 429 49.4
octadecane −1412.944 380 −1412.944 429 48.8 −1412.944 427 46.8

+ −706.468 122 −706.468 122 0.3 −706.468 123 1.3
octadecane −706.468 122 −706.468 122 0.3 −706.468 123 1.3

phenylalanine −2056.636 559 −2056.636 594 35.5 −2056.636 561 1.7
+ −685.518 803 −685.518 816 13.5 −685.518 802 1.0

2×phenylalanine −1371.076 543 −1371.076 574 30.9 −1371.076 551 7.3
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Table S6: Absolute energies for the L7 test set monomers (2nd and 3rd row of each cell)
and complexes (1st row of each cell) computed with our implementation of the RI-SOS-MP2
(ERI

SOS-MP2) reference method as well as the THC-RI-CDD-SOS-MP2 (ETHC-RI-CDD
SOS-MP2 ) and the

THC-ω-RI-CDD-SOS-MP2 (ETHC-ω-RI-CDD
SOS-MP2 ) method for the cc-pVTZ basis set. Additionally

the deviations (∆E) of the results from the THC methods to the RI-SOS-MP2 energies are
shown.

molecule ERI
SOS-MP2 / H ETHC-RI-CDD

SOS-MP2 / H ∆E / µH ETHC-ω-RI-CDD
SOS-MP2 / H ∆E / µH

circumcoronene −2531.676 601 −2531.676 470 131.4 −2531.676 470 131.4
+ −466.526 351 −466.526 346 5.7 −466.526 356 4.2

adenine −2065.114 437 −2065.114 359 77.2 −2065.114 340 96.2
circumcoronene −3001.162 208 −3001.162 191 17.5 −3001.162 191 17.5

+ −935.987 058 −935.987 033 25.6 −935.987 036 22.1
GC −2065.114 682 −2065.114 673 9.6 −2065.114 659 23.8

coronene −1840.399 230 −1840.399 043 187.3 −1840.399 093 137.0
+ −920.176 000 −920.175 898 101.9 −920.175 897 103.2

coronone −920.176 000 −920.175 898 101.9 −920.175 897 103.2
GC −1872.005 953 −1872.005 838 115.6 −1872.005 875 77.9
+ −935.988 309 −935.988 264 45.3 −935.988 265 43.9
GC −935.988 309 −935.988 264 45.3 −935.988 265 43.9

guanine −1624.970 678 −1624.970 622 55.0 −1624.970 653 24.1
+ −541.658 226 −541.658 214 11.8 −541.658 217 8.2

2×guanine −1083.305 549 −1083.305 514 35.6 −1083.305 533 16.1
octadecane −1415.073 527 −1415.073 509 18.1 −1415.073 463 63.9

+ −707.530 305 −707.530 297 8.3 −707.530 314 8.3
octadecane −707.530 305 −707.530 297 8.3 −707.530 314 8.3

phenylalanine −2059.357 071 −2059.357 044 27.3 −2059.357 062 8.6
+ −686.425 836 −686.425 827 8.6 −686.425 838 2.5

2×phenylalanine −1372.890 709 −1372.890 692 17.3 −1372.890 706 3.5

7 Accuracy of THC-MP2 Amplitudes

As shown in the main part of this paper and section 6 of the SI, our THC-ω-RI-CDD-SOS-

MP2 method is able to accurately reproduce RI-SOS-MP2 energies with average errors on

the order of 10−6 H to 10−5 H for the investigated S22 and L7 test set. To show that our

THC algorithm can also accurately reproduce important intermediate quantities and not

only final energies, we compare RI-MP2 amplitudes, given as

tabij (RI-MP2) =
∑

αβ

(ia|α) [J−1]αβ (β|jb)
εi + εj − εa − εb

, (7)
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against the THC-ω-RI-MP2 amplitudes

tabij (THC-ω-RI-MP2) =
∑

PQ

XP
i X

P
a Z

PQXQ
j X

Q
b

εi + εj − εa − εb
, (8)

as computed with our THC algorithm. The deviation of the THC-ω-RI-MP2 amplitudes

from the RI-MP2 amplitudes is quantified by calculating the mean absolute deviation of the

diagonal elements given by

∆taaii =
1

NoccNvirt

∑

ia

|taaii (RI-MP2)− taaii (THC-ω-RI-MP2)| (9)

for the molecules and complexes in the S22 test set using the cc-pVDZ and cc-pVTZ basis

sets. The same thresholds and settings are used as in the main part of the paper.

Table S7: Deviations of the diagonal elements of the THC-ω-RI-MP2 amplitudes from the
RI-MP2 amplitudes for the S22 test set monomers computed with the cc-pVDZ and cc-pVTZ
basis sets.

molecule ∆taaii (cc-pVDZ) / 10−7 ∆taaii (cc-pVTZ) / 10−7

2-aminopyridine 2.935 0.345
2-pyridoxine 3.053 0.455
adenine 3.139 0.464
ammonia 3.293 0.725
benzene 2.981 0.565
ethene 1.614 0.343
ethyne 2.742 0.691
formamide 1.571 0.614
formicacid 1.436 0.785
hydrocyanic acid 3.393 1.036
indole 3.194 0.669
methane 1.677 0.325
phenol 2.790 0.276
pyrazine 3.604 0.568
thymine 2.977 0.357
uracil 3.699 0.912
water 4.234 1.122

MAD 2.843 0.603
MAX 4.234 1.122
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Table S8: Deviations of the diagonal elements of the THC-ω-RI-MP2 amplitudes from the
RI-MP2 amplitudes for the S22 test set dimers and complexes computed with the cc-pVDZ
and cc-pVTZ basis sets.

molecule ∆taaii (cc-pVDZ) / 10−7 ∆taaii (cc-pVTZ) / 10−7

2-pyridoxine +
1.529 0.1772-aminopyridine

adenine +
1.872 0.180thymine (stack)

adenine +
1.600 0.241thymine (W.-C.)

ammonia dimer 0.984 0.235
benzene +

2.018 0.366methane
benzene +

2.179 0.233ammonia
benzene dimer (‖) 2.327 0.145
benzene dimer (⊥) 1.610 0.343
benzene +

2.027 0.260hydrocyanic acid
benzene +

2.352 0.237water
ethene dimer 0.616 0.121
ethene +

0.761 0.195ethyne
formamide dimer 1.669 0.405
formic acid dimer 2.092 0.575
indole +

2.677 0.133benzene (‖)
indole +

1.898 0.261benzene (⊥)
methane dimer 0.651 0.936
phenol dimer 2.358 0.128
pyrazine dimer 2.235 0.271
uracil dimer (H-bond) 2.003 0.379
uracil dimer (stack) 2.253 0.214
water dimer 1.520 0.320

MAD 1.783 0.219
MAX 2.358 0.936

For the MP2 amplitude deviations similar effects as for the MP2 energies can be observed.

The THC factorization provides a quantitatively good approximation of the RI-MP2 ampli-
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tudes and deviations with the triple-ζ basis set are smaller due to larger THC grids being

employed. Errors of the THC-ω-RI-MP2 amplitudes are on the order of 10−7 for the cc-

pVDZ basis set and on the order of 10−8 for the cc-pVTZ basis set across the whole S22 test

set. This was expected since the THC gridsS6 used were optimized to best fit density-fitted

ERIs.

8 Validation of the Phosphorus Grids

The computation of DNA fragments requires THC grids for the atom types {H, C, N, O,

P}. The grids provided by Martínez and coworkersS6 were however only optimized for 1st-

and 2nd-row elements. To still make computations of DNA fragments possible we chose to

use the largest atom grids, i.e., the grids for fluorine, for the phosphorus atoms as well. To

demonstrate that this does not result in an additional error beyond the regular THC error,

we compare the Coulomb-like energies of the THC-RI-CDD-MP2 method against the RI-

MP2 reference method for a selection of representative phosphorus species. This mini test

set includes P4, the trivalent PH3 and the pentavalent H3PO4. H3PO4 is of special interest

here because the DNA backbone contains structurally comparable phosphate moieties. The

results are shown in the table below.

Table S9: Comparison of the Coulomb-like energies EMP2-J for the THC-RI-CDD-MP2
method against RI-MP2 for the validation of the phosphorus grids. All calculations were
performed with the cc-pVDZ basis set and the cc-pVDZ-RI fitting basis set.

molecule ERI
MP2-J / H ETHC-RI-CDD

MP2-J / H ∆E / µH
P4 -0.357244658 -0.357244828 0.17
PH3 -0.115739227 -0.115739217 0.01
H3PO4 -0.637504139 -0.637504382 0.24

As can be seen from table S9, the errors are well below 1 µH and comparable to the regular

THC error for the other atom types. This justifies the use of the fluorine grids for phosphorus

atoms and shows that this does not lead to a significant error increase.
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9 Demonstrating Continuousness of the Potential Energy

Surface for a C−C Bond Rotation in Vitamin K2

To demonstrate, that the THC-ω-RI-CDD-SOS-MP2 method is not prone to discontinuities

in the potential energy surface, the rotation around a C−C bond in vitamin K2 (menachinon-

4), we computed the THC-ω-RI-CDD-SOS-MP2 energies for the rotation around the C−C

bond between atoms 4 and 5 in steps of 10°. The same settings were used as in the main part

of the paper, i.e., a natural blocking threshold of 10−6 and an attenuation strength ω = 0.1.

The corresponding energy diagram and additionally the structures at a rotation of -180° and

0° are shown in the figure below.

Figure S3: THC-ω-RI-CDD-SOS-MP2 energies relative to the geometry with a rotation angle
of -180° of vitamin K2. All calculations were performed with the cc-pVDZ basis set and the
cc-pVDZ-RI fitting basis set.

The geometries of the Vitamin K2 molecules are provided on our website.
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C. J. Chem. Theory Comput. 2021, 17, 211-221] for the computation of hyperfine
coupling constants (HFCCs). The implementation leverages the tensor structure of the
THC factorized electron repulsion integrals for an efficient formation of the integral-based
intermediates. The computational complexity of the most expensive and formally quintic
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of the intrinsic, exponentially decaying coupling between tensor indices through screening
based on natural blocking. Overall, this yields an effective subquadratic scaling with
a low prefactor for the presented THC-based AO-MP2 method for the computation of
isotropic HFCCs on DNA fragments with up to 500 atoms and 5000 basis functions.
Furthermore, the implementation achieves considerable speedups with up to a factor of
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ABSTRACT: We employ our recently introduced tensor-hyper-
contracted (THC) second-order Møller−Plesset perturbation
theory (MP2) method [Bangerter, F. H., Glasbrenner, M.,
Ochsenfeld, C. J. Chem. Theory Comput. 2021, 17, 211−221] for
the computation of hyperfine coupling constants (HFCCs). The
implementation leverages the tensor structure of the THC
factorized electron repulsion integrals for an efficient formation
of the integral-based intermediates. The computational complexity
of the most expensive and formally quintic scaling exchange-like contribution is reduced to effectively subquadratic, by making use of
the intrinsic, exponentially decaying coupling between tensor indices through screening based on natural blocking. Overall, this
yields an effective subquadratic scaling with a low prefactor for the presented THC-based AO-MP2 method for the computation of
isotropic HFCCs on DNA fragments with up to 500 atoms and 5000 basis functions. Furthermore, the implementation achieves
considerable speedups with up to a factor of roughly 600−1000 compared to previous implementations [Vogler, S., Ludwig, M.,
Maurer, M., Ochsenfeld, C. J. Chem. Phys. 2017, 147, 024101] for medium-sized organic radicals, while also significantly reducing
storage requirements.

1. INTRODUCTION
Ever since the advent of modern computers in the 1990s,
Møller−Plesset perturbation theory (MPn)1 has been a good
compromise in the family of quantum chemical methods, being
sufficiently accurate for many applications while still being
computationally affordable.2 As opposed to coupled cluster
theory (CC), MPn lacks infinite-order corrections present in the
cluster operator expansion of the CC models, which generally
makes MPn less accurate.2 However, when going from energies
to gradients and molecular properties, MPn, especially second-
order MPn (MP2), was shown to yield accurate hyperfine
coupling constants (HFCCs)3−7 and relative nuclear magnetic
resonance (NMR) shifts.8−12 However, MP2 is sensitive to spin-
contamination in the Hartree−Fock wave function, which can
be improved upon when used in its orbital-optimized variant4 or
as part of double-hybrid density functionals.13

Furthermore, when comparing MPn and CC at the same
expansion orders, for example, MP2 and singles and doubles CC
(CCSD), MPn comes with a scaling advantage, both in the
prefactor and the scaling exponent. Nonetheless, canonical
MP2, as well as the associated first and second derivative,6,11 still
scale with the fifth power of the molecule size, thereby severely
restricting the accessible chemical space. To alleviate this
limitation several formulations of the MP2 derivatives have been
proposed.

Early work from Pulay and Sæbø14,15 on local correlation was
applied to the computation of MP2 gradients.16,17 Following up
on this, in recent years the domain-based local pair natural
orbital (DLPNO) formulation of MP2 by Neese and co-

workers18−20 was extended to first and second derivatives.
Conceptually related is the divide-expand-consolidate (DEC)
formulation of MP2 by Jørgensen and co-workers,21,22 which
likewise was extended to the computation of molecular gradients
in a linear-scaling and massively parallel manner.23,24 Instead of
exploiting locality in the correlation space, the equations of the
MP2 first6,25 and second derivative11 can be reformulated
entirely in terms of atomic orbitals (AOs). However, for an
efficient implementation and the reduction of the scaling
prefactor, an orbital localization by pivoted Cholesky decom-
position (PCD) of the associated pseudodensities is essential.6

Besides ensuring low-scaling and efficiency, for derivative
calculations of electron correlation methods in general, it is
pivotal to efficiently manage the available memory and disk
space. Compared to the energy equations, the associated
gradients and higher derivatives often not only include electron
repulsion integrals (ERIs), in either atomic or molecular orbital
basis, but can also include partially transformed ERIs and
derivatives thereof, for example, with respect to the magnetic
field in NMR calculations. Since canonical ERIs are fourth-order
tensors, their memory requirements prohibitively scale with the
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forth power of the number of basis functions and saving multiple
such tensors quickly becomes unfeasible. To reduce the memory
footprint of the ERIs, tensor decomposition methods,
particularly the resolution-of-the-identity (RI) ansatz,26−29

have been broadly applied in the context of MP2 deriva-
tives.5,6,12,30 However, with increasing molecule size, even the
third-order RI tensors eventually exceed the available disk space
of conventional high performance computing nodes. To
overcome this storage limitation, further reduction of the
dimensionality of the ERIs is desirable. This can be achieved by
the recently introduced tensor hypercontraction (THC)
factorization of Martıńez and co-workers,31−34 which in general
terms approximates a fourth-order integral tensor (μν|ô|λσ),
where ô is a singular two electron interaction kernel, by five
second-order tensors.35 In the least-squares formulation of THC
(LS-THC),31 four of these tensors are simply obtained by
evaluation of the basis functions at real-space grid nodes and the
singular ô operator is replaced by the LS-fitted Z matrix. If ô is
the Coulombic 1/r operator, a factorization of the regular ERIs is
achieved, which has been employed in reduced scaling
formulations of exact exchange,36 different orders of
MPn,31,33−41 the random phase approximation (RPA),42

complete active space perturbation theory (CASPT2),43 and
various flavors of CC theory,44−46 as well as equation-of-motion
CC (EOM-CC) theory.47 Recently Matthews35 thoroughly
investigated amplitude factorizations within MP3, as a stepping
stone toward CCSD, and noted that the LS-THC factorization
of nonlocal integrals, such as the exchange integrals, incurs an
additional error.

The applicability of THC for the computation of molecular
gradients is largely unexplored. Song et al.39 derived equations
for the analytical gradient of THC-AO-MP2 with application to
geometry optimizations and ab initio molecular dynamics
(AIMD) simulations. As commonly the derivation of gradient
equations of electron correlation methods is rather involved,
Song et al.48 also proposed an automatic differentiation scheme
for the automated generation of working equations for gradients
of THC-based correlation methods.

When it comes to applying tensor factorizations, be it RI or
THC, two possible routes to molecular gradients can be taken:
The first approach is to differentiate the RI- or THC-
approximated energy equation, then the associated gradient
describes the slope of an approximated potential energy surface
(PES). The second approach is to take the gradient of the
canonical energy and insert the approximation into the exact
gradient; this way an approximate gradient is used to move along
the exact PES.

The latter can lead to an unwanted buildup of errors during
the course of a simulation, when used in molecular dynamics
simulations. However, when used in conjunction with thermo-
stats constant energy is traded for constant temperature, and
depending on the extent of the gradient error, this approach can
still be applicable but must be tested for the chosen gradient.
The first approach was taken by Song et al.39 for their THC-
based MP2 molecular gradient, whereas in the present work, the
gradient equations with respect to a perturbation, that the basis
functions are independent of, are derived by inserting the THC
factorization into the equations of the exact gradient. As will be
discussed in section 2.4, the resulting equations are identical to
the ones obtained by differentiating the THC-AO-MP2 energy
equation. As a representative case of these kinds of
perturbations, we apply our recently developed low-scaling
LS-THC algorithm41 to the AO-MP2 energy derivative with

respect to the nuclear magnetic moment, for the computation of
HFCCs on the MP2 level of theory.

We present ways to efficiently treat the Coulomb- and the
exchange-like part of the most expensive intermediate of the
derivative within the LS-THC approximation. We demonstrate
the low-scaling behavior of our THC-ω-RI-CDD-MP2 deriva-
tive method for various chemically relevant systems. We also
show that THC-ω-RI-CDD-MP2 significantly outperforms our
previous implementation of ω-RI-CDD-MP26,30 for the
computation of isotropic HFCCs.

2. THEORY
2.1. Notation. Throughout this publication we make use of

the following indices:
• μ, ν, λ, σ: atomic orbital indices belonging to the AO basis

{χμ} of size Nbf.• α, β, γ, δ: auxiliary basis indices belonging to the density
fitting basis {χα} of size Naux (usually Naux ≈ 3·Nbf).

• P, Q, R, S: grid point indices belonging to the LS-THC
grid of size Ngrid (usually Ngrid ≈ 3·Naux).

• i, j: occupied molecular orbital indices belonging to the
MO basis {ϕi} of size Nocc.• a, b: virtual molecular orbital indices belonging to the MO
basis {ϕa} of size Nvirt (Nvirt ≫ Nocc).

• η, η′: spin indices, for either α- or β-electrons, with η′ ≠ η.
• κ: index of the Laplace quadrature points for the MP2

energy denominator with weights ωκ (usually integration
with 5−8 points is sufficiently accurate).

• k: index of the nucleus under consideration.
2.2. Review of the AO-MP2 Gradient. The unrestricted

AO-MP2 energy with a Laplace transformation49−51 for the
energy denominator is given as

E
1
2

( )AO MP2
,

=
{ } (1)

with

( ) ( ) ( ) ( ) ( )= | + | |

(2)

for which the transformed ERIs are given by

P P P P( ) ( )| = |
(3)

and P̲ and P̅ are the usual pseudodensities, given by

P C e C

P C e C

i
i

t
i

a
a

t
a

i

a

( )

( )

=

=
(4)

To obtain the AO-MP2 gradient, eq 1 has to be differentiated
with respect to a perturbation ξ. Since the focus of this work is on
HFCCs, as an example for a property for which the basis
functions are independent of the perturbation�here ξ′�the
following derivation is restricted to this special case. An in-depth
derivation of the AO-MP2 gradient equations, as well as a
comparison to the MO-MP2 gradient, is available in refs 6 and
25.

In order to obtain the gradient of the AO-MP2 energy, eq 1 is
differentiated with respect to ξ′
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E 1
2

( )AO MP2

,

=
{ } (5)

with

R
P

R
P( )

2 ( ) 2 ( )= +
(6)

and intermediates R̲ and R̅ given by

R

R

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

= | + | |

= | + | |

(7)

The above R intermediates can be thought of as the contraction
of all perturbation-independent parts of the gradient. Note that
eq 5 only involves the derivative of the pseudodensities and no
integral derivatives, as the basis functions are taken to be
independent of ξ′. In order to avoid the evaluation of the
derivatives of the perturbed occupied and virtual pseudoden-
sities, these intermediates are expanded in terms of the regular
occupied and virtual densities Pocc and Pvirt as

P e

P e

P

P

( )

( )

P F

P F
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virt

occ

virt

=

= (8)

Thus, the derivatives of eq 8 are given by

e
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e
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By further making use of the identity

P S P S 1occ virt+ = (10)

the perturbed virtual density can be related to the perturbed
occupied density as

P Pvirt occ=
(11)

Note again that eq 11 does not contain the derivative of the
overlap matrix S, due to S being independent of ξ′. By making
use of the above relations for the densities, eq 6 becomes
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Cyclic permutation under the trace was applied above to obtain
terms of the general form
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with
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!= = (14)

which can be solved for Y by recursion, as detailed in refs 25 and
12. Let Y̅η be the solution of eq 13 with A ≡ τκ Pocc

η Fη and B ≡
Pocc

η R̅η, and let Y̲η be the solution with A ≡ − τκ Pvirt
η Fη and B ≡

Pvirt
η R̲η. Then, by making use of the other transformations

outlined above, the derivative from eq 6 can be rewritten as
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where intermediate G ( )[ ] resembles the Fock matrix with
( ) substituting for the density matrix; that is,

G ( ) ( ) 2( ) ( )[ ] = [ | | ]
(17)

Note that the first term in eq 15 only includes the derivative of
the core Hamiltonian matrix as the integrals in the Fock matrix,
from which this term originates from, are independent of ξ′.

Equation 15 permits an elegant solution for the perturbed
density, avoiding the need to solve coupled-perturbed self-
consistent field (CPSCF) equations for all perturbations ξ′, by
means of applying a AO-based Z-vector-like method25 originally
proposed by Handy and Schaefer.52 The implicit first derivative
of the occupied density can therefore be efficiently obtained by
applying the density matrix-based Laplace-transform unre-
stricted CPSCF (DL-UCPSCF) method by Beer and
Ochsenfeld.53 The intricacies of this method are detailed in
refs 53, 25, and 6.

To conclude, eqs 5 and 15 yield the first derivative of the AO-
MP2 energy with respect to a perturbation ξ′. More specifically,
if ξ′ was an external electric field then eq 5 would yield
permanent dipole moments, and if ξ′ was equal to the nuclear
magnetic moment Mk of a given nucleus k then the isotropic
contribution to the HFCC of nucleus k in the absence of spin−
orbit coupling would be obtained. The latter property will be
used as a sample property for the newly developed THC-ω-RI-
CDD-MP2 derivative method presented in section 2.4.
2.3. RI-CDD-MP2 HFCCs. The computational bottleneck of

obtaining the AO-MP2 gradient in eqs 5 and 15 are the integral
contractions in the formation of the R matrix intermediates
given by eq 7. Because forming the R-matrices involves the same
contraction with the pseudodensities as the AO-MP2 energy,
the computation of the gradient will a priori also have quintic
scaling. As is common practice when dealing with these kinds of
integral contractions, the RI approximation can be inserted into
eq 7 to lower the computational cost as well as the memory
requirements by avoiding the fourth-order ERI tensors. To
further lower the prefactor of the integral transformations a PCD
of the pseudodensities can be used, which is known as the
Cholesky-decomposed pseudodensity (CDD) approach. The
CDD method produces a set of so-called Cholesky pseudo-MO
coefficient matrices L̲ and L̅ according to
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which are used analogously to the regular MO coefficients. The
combined RI-CDD approach leads to a reformulation of the
integrals incorporated in the R intermediates as

i a j b B B( ) i a j b, ,| =
(19)

with

B L L ( )( )i a i a,
1/2= | |

(20)

In combination with QQR-type integral screening the RI-
CDD-MP2 gradient method was shown to yield cubic scaling for
the computation of molecular gradients and HFCCs.6 To
further reduce the scaling, Vogler et al.30 employed the
attenuated Coulomb metric54,55 in the RI approximation as
well as the scaled-opposite spin (SOS)56 approximation, which
removes the same spin contribution entirely. Still, the expensive
formation of the R intermediates has to be done for every
Laplace point and thus constitutes the predominant part of the
wall time for the evaluation of the MP2 gradient with respect to a
perturbation ξ′, even with the ω-RI-CDD-SOS-MP2 meth-
od.6,30

2.4. THC-CDD-MP2HFCCs. ERIs are ubiquitous in electron
correlation methods and their transformation and contraction
usually represents the bottleneck of the calculation. This is
especially the case when many different ERIs, that is, fully and
partially transformed into the MO space or contracted with a
perturbed density matrix, are needed, and their formation has to
be carried out repeatedly, such as inside a Laplace expansion or
during the iterative solution of amplitude equations. Since the
scaling behavior of these operations is dependent on the
dimensionality of the representation of the ERI tensor, a most
compact representation is desirable. Of particular interest is thus
the THC factorization, which in its AO formulation
approximates an ERI as

X X Z X X( )
PQ

P P PQ Q Q|
(21)

and�in LS-THC�the X-matrices are simply obtained by
evaluation of basis functions at the THC grid.31 The analytical
expression of theZ-matrix can be shown to be the solution to the
normal equations associated with the least-squares equation of
finding the THC factorization (see the Supporting Informa-
tion). As has been shown previously,33,34,36,39,41−43 the THC
factorization can achieve major savings in computation time for
intermediates involving ERI contractions, by reducing the
representation of the ERIs to only second-order tensors. In this
work, we make use of our recently reported low-scaling THC
method41 based on the ω-RI approximation for the ERIs
contained in Z and natural blocking (NB).57,58 However, in
contrast to our work on THC-MP2 energies,41 in the present
work the AO ERIs are fitted, since the gradient for calculating
the MP2 HFCCs is based on our RI-CDD approach to the
computation of AO-MP2 energy gradients.6 It is important to
note here, that while the equations for the THC-based gradient

method are derived by inserting the THC factorization into the
equations of the RI-CDD-MP2 gradient with respect to ξ′, there
is no difference to directly differentiating the THC-AO-MP2
energy equations. This is the case, because neither X nor Z
depend on the perturbation ξ′ in the AO-THC formulation.
This independence would not be given if either the MO-THC
approach was used or for the more general derivative with
respect to ξ, which would necessitate the derivatives of the THC
tensors. In other words, by simply inserting the THC
factorization into eq 7 the derivative of the THC-ω-RI-CDD-
MP2 energy with respect to ξ′ is obtained.

To reduce the computation time needed for forming the
expensive R-matrices of the UMP2 gradient, the AO-THC
factorization is inserted into eq 7 in its RI-CDD formulation to
yield
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where X̲ and X̅ are the collocation matrices X transformed into
the occupied and virtual Cholesky pseudo-MO basis,
respectively. In MP2 it is often advisable to treat Coulomb-
and exchange-like contributions separately,58 thus the R-
matrices are partitioned intoRC, the Coulomb-like contribution,
and RX, the exchange-like contribution.

2.4.1. THC R-Matrices: Coulomb-like Contribution. The
Coulomb-like parts R̲C and R̅C are given by
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and can�in analogy to the THC-MP2 energy�be efficiently
computed using sparse linear algebra.41 In doing so, R̲C and R̅C

are especially efficient to compute, as their formation only
involves BLAS level 3 operations. For an efficient implementa-
tion it is important to realize, that for large enough molecules
and appropriate ordering of the THC grid points, the collocation
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matrices X become sparse, while the Z-matrix, being the
representation of the long-ranged 1/r operator, will always
remain dense. By closer inspection of eq 23, it can be noticed,
that the X-matrices corresponding to the MOs of the ket of the
decomposed ERI and the Z-matrix are identical for all terms.
Therefore, these matrices can be collected in an intermediate Dη

given by Algorithm 1, where intermediates A and B are given by

A X X

B X X

,

,

j
j
Q

j
S

b
b
Q

b
S

QS, , ,

QS, , ,

=

=
(24)

and represent the occupied and virtual pseudodensity in the grid
basis, respectively. Additionally, the Λ-factorization of the Z-
matrix, i.e., Z ≡ ΛΛT, is used to lower the prefactor of this
step.34,41

As forming intermediate D requires a series of dense matrix−
matrix-multiplications, this step will require the majority of the
computation time for R̲C and R̅C. However, Algorithm 1 has to
be performed only once per Laplace point and electron spin.
The final contribution to the R-matrices can then simply be
obtained by a Schur product and two matrix−matrix-multi-
plications given by Algorithm 2.

The effects of Algorithms 1 and 2 can be best understood by
visualizing the underlying tensor contractions in a tensor
network diagram, as given in Figure 1. For an introduction of
tensor network diagrams, also in the context of THC, refer to the
work by Schutski et al.46 Algorithms 1 and 2 are then pieced

together with the algorithm for the exchange-like part, detailed
in the next section, for the final Algorithm 4 in section 2.4.3.

2.4.2. THC R-Matrices: Exchange-like Contribution. Usually
when higher than second-order tensors arise, the associated
tensor contractions are either carried out with the tensors
reshaped into matrices or batched over the dimensions
exceeding matrix dimensionality in so-called tensor slices. For
an efficient contraction when iterating over tensor slices it is
advisable to make use of an underlying structure to reduce the
dimensions of the slices, either by matrix decomposition of the
slice or by neglecting noncontributing elements. If whole rows
and columns are excluded based on some significance criterion,
one arrives at the natural blocking (NB) formalism57,58 for
tensor contractions. NB relies on significance lists, which in
general terms describe which pairs, of a general index pair i and j,
contribute to a tensor contraction involving these indices.
Mathematically speaking these lists are sets and thus can, in set-
builder notation, be represented as

j j j Ai i ij NB{ } = { | | | > } (25)

where A is a screening matrix involving indices i and j, and εNB is
the NB screening threshold. To avoid confusion, we use ji as a
shorthand notation for the set of all significant j for a particular
index i and {ji} for the set of all ji. If two elements in a set {ji} are
identical, it technically becomes a multiset, as elements in sets
are only allowed to have a multiplicity of 1. In set terminology,
the set {i}j is the transpose of {j}i and can analogously
determined from AT as

i i i Aj j ji NB{ } = { | | | > } (26)

or directly from {ji}. Another important quantity is the number
of significant pairs Nij, which is defined as

N iij
i i

j
j j

= | |
{ } (27)

NB and THC work particularly well together for exchange-like
contractions of ERIs, as within the THC formalism the
necessary screening matrices can easily be constructed as
outlined in the following. The following prototypical exchange-
like ERI contraction from the THC-CDD-MP2 energy
expression will serve as an example:
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Two types of indices are present in the above equation, the
orbital indices i and j (occupied space) as well as a and b (virtual
space) and the THC auxiliary indices P, Q, R, and S. In the
following discussion we use the LS formulation of THC, but the
statements also hold for other THC variants. Thus, there are

Figure 1. Tensor network representation of the contractions performed by Algorithms 1 and 2 for the formation of a Coulomb-like contribution R̅C,η.
By symmetry, R̲C,η can be formed analogously, but with intermediates A and B interchanged. Tensors contracted in ensuing steps are highlighted.
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three general types of index pairs: orbital−orbital, orbital−grid,
and grid−grid index pairs. The set of significance lists for orbital-
grid type pairs is especially easy to construct, since it can be
directly derived from the collocation matrices X. For example,
the set of all significant grid points P for a given occupied orbital i
can be constructed as

P P P Xi i i
P

NB{ } = { | | | > } (29)

Significant orbital−orbital pairs are also easily obtained from the
collocation matrices; for example, the set of significant virtual
orbitals a for a given occupied orbital i can be built as

a a a X Xi i
P

i
P

a
P

NB{ } = { | | || | > }
(30)

The screening criterion from eq 30 can also be interpreted to
yield only ia pairs, for which the orbitals have significant overlap
and which produce non-negligible charge densities. For the
development of low-scaling exchange-type contractions it is
important to make use of the exponential coupling between all
orbital indices. Orbital i couples to orbital a in an exponentially
decaying fashion in the bra of the first ERI in eq 28. Likewise,
orbital j also couples to orbital a in an exponentially decaying
fashion in the ket of the second ERI. Thus, there is indirect
exponential coupling between orbitals i and j via orbital a and the
set of significant orbitals i for a given orbital j can be derived from
the sets {aj}, which is identical to {ai}, and {ai}:

i i i a aj j i j{ } = { | } (31)

With the significance lists given by eqs 29, 30, and 31, an
asymptotically linear scaling algorithm for the exchange-like
energy contribution to MP2 can be devised. The algorithm is
detailed in the Supporting Information and close to linear
scaling is demonstrated. Here, however, the focus lies on the
exchange-like parts of the R-matrices, which are conceptually
similar, but different in that two AO indices remain
uncontracted. The tensor contractions necessary for forming
the RX parts can again best be understood from the tensor
network diagram in Figure 2.

While Figure 2 only shows the R̅X part, the R̲X contribution
can be constructed analogously. First, intermediates A or B are
formed from the collocation matrices X̲ or X̅, respectively.
Second, the remaining collocation matrices, the Z-matrices and
intermediates A or B are contracted to the third-order tensor
intermediate D, where the symmetry of the tensors is used to
reduce the operation count. The idea for an efficient
implementation is then as follows: to avoid storing third-order
tensors, the contraction is batched over the occupied orbital
index common to both R̲ and R̅, and to reduce the cost of the
dgemm operations within the loop NB is applied. In this way
separate algorithms for R̲X and R̅X can be formulated, which are

presented in the Supporting Information. By closer inspection,
however, it can be seen, that both RX-matrices share the most
expensive to compute intermediate, which incorporates the Z-
matrix. Therefore, a joint computation as given by Algorithm 3 is
preferred.

First, according to eqs 29, 30, and 31 all necessary significance
lists are computed and then the precursor intermediates to R̲X

and R̅X, that is, the matrices E and F, are accumulated in a loop
over the common occupied orbital index j. Lines 12 and 21

Figure 2. Tensor network representation of the contractions performed by Algorithm 3 for the formation of an exchange-like contribution R̅X,η. By
symmetry, R̲X,η can be formed analogously, however, in Algorithm 3 a different approach is used to reduce the prefactor. Tensors contracted in ensuing
steps are highlighted.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00118
J. Chem. Theory Comput. 2022, 18, 5233−5245

5238



represent the bottleneck of the algorithm as their evaluation
formally scales as N N( )grid

3
occ . However, since all involved grid

indices P, Q, and R are connected to j through the significance
lists {Sj} (identical to {Qj}) and {Rj} (identical to {Pj}), the size
of the involved matrices in NB format is asymptotically constant.
Therefore, as Nocc grows linearly with the molecule size, the
formation of the RX-parts can be done in linear scaling time. For
this, appropriate thresholds have to be chosen for the formation
of the significance lists. Instead of using the same threshold for
all pairs, we identify three different types of lists: (1) grid-
occupied orbital index pairs, e.g., {Sj}, (2) grid-virtual orbital
index pairs, e.g., {bR}, where, in both cases, the orbital index is
coupled to the grid index directly by a collocation matrix, and
(3) virtual-occupied orbital index pairs, e.g., {bj}, which are
coupled in real-space over grid points. While the final algorithm
only requires the {Sj} and {Rj}/{Pj} lists, the selection of index
pairs included in {bR} and {bj} is still important, as the {Rj}/{Pj}
lists are built from these lists analogously to eq 31.

2.4.3. THC R-Matrices: Final Algorithm. Piecing together
Algorithms 1 and 2 for the Coulomb-like part and Algorithm 3
for the exchange-like part, the final algorithm for the formation
of the R-matrices is given by Algorithm 4.

Overall, Algorithm 4 has to be executed once per Laplace
point and is separated into a precontraction phase and the phase
for the actual formation of the contributions to R̲ and R̅. In the
precontraction phase intermediates Dη are formed, which
represent the most expensive part for the Coulomb-like terms,
as the subsequent calls to Algorithm 2 only contribute a Schur
product and two dgemm operations. These dgemm calls
contribute a negligible overhead compared with line 3 of
Algorithm 1, as the dimensions of the matrices involved are
reduced. In total, however, Algorithm 3 will dominate the
runtime for forming the R-matrices due to its formal N( )4

scaling.

3. COMPUTATIONAL DETAILS
The above-described THC-ω-RI-CDD-MP2 HFCC code is
implemented within our quantum chemistry package
FERMIONS++.59−61 For the THC-based HFCC calculations
the hand-optimized grids by Martıńez and co-workers38 were
used together with the Dunning cc-pVXZ (X ∈ {D, T}) basis
sets62 and the corresponding auxiliary basis sets. For the
phosphorus atoms in the DNA backbone, the fluorine grids were
used without loss of accuracy as reported in our work on THC-
MP2 energies.41 All calculations were carried out without the
frozen-core approximation. All preceding SCF calculations were
converged to an energy difference of 10−8 H and a FPS−SPF
commutator difference of 10−7 using DIIS acceleration.63 For
the gradient calculations seven Laplace points were used in the
expansion and the DL-UCPSCF algorithm was converged to an
error of 10−4 for all molecules of the benchmark set in section 4.
For all subsequent calculations on larger molecules, a threshold
of 10−3 was used. These settings were shown to yield errors
below 1 MHz.6,30 For the assessment of the accuracy of the
THC-ω-RI-CDD-MP2 HFCCs against other methods, the
standard orientation was used. For the THC factorization of the
ERIs an attenuation strength of 0.1 in the attenuated Coulomb
metric was used54,55 and the same general protocol for screening
based on integral partition bounds (IPBs)64 and NB, as in our
work on THC-MP2 energies, was followed, although adjusted to
fit ERIs in the AO basis.41 All timings are done on an AMD
EPYC 7302 (3.30 GHz) CPU node with 256 GB RAM and 1.7
TB of SSD disk space.

4. RESULTS AND DISCUSSION
First, the accuracy of the newly developed THC-ω-RI-CDD-
MP2 method for the calculation of isotropic HFCCs is assessed
against our reference ω-RI-CDD-MP2 implementation.6,30

Next, the thresholds necessary for the screening in the expensive
exchange-like contribution RX are optimized on a set of
medium-sized organic radicals. Finally, the scaling of the
THC-ω-RI-CDD-MP2 method is analyzed and timings are
compared to the ω-RI-CDD-MP2 reference for a set of
representative radicals.
4.1. Accuracy of THC-ω-RI-CDD-MP2 HFCCs. Through-

out this publication, our ω-RI-CDD-MP2 implementation for
the computation of HFCCs by Vogler et al.,6,30 which was
verified against the RI-MP2 implementation in the ORCA
program package,65 will serve as reference. The original
implementation, however, made use of the SOS approximation
and excluded the exchange-like terms. To enable a fair
comparison, the exchange-like terms were added analogously
to the earlier implemented RI-CDD-based AO-MP2 gradient,6

albeit with the attenuated Coulomb metric for the RI integrals.
For the comparison, first the accuracy of the presented THC-ω-
RI-CDD-MP2 method for HFCCs is assessed. The THC-ω-RI-
CDD-MP2 method is benchmarked using a set of 12 organic
radicals from a recent study7 on the effects of electron
correlation, molecular dynamic contributions, and solvation
effects on HFCCs. Mean absolute deviations (MAD), root-
mean-square deviations (RMSD), and absolute maximum
deviations (MAX) are given in Table 1. We note that we used
all 12 radicals for the comparison, even though, as Vogler et al.7

pointed out, some molecules are spin contaminated. While the
latter certainly has an effect on the reliability of the results, when
comparing to experiment, it should not influence the
comparison of different methods.
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Table 1 shows that the mean errors for the THC-ω-RI-CDD-
MP2 method are below 1 MHz for both basis sets, while the
MAX error corresponds to atoms with high spin density, that is,
19F in the CF3 radical for the double-ζ basis set and 11B in the
BH3 radical for the triple-ζ basis set. While for these nuclei the
absolute error is larger, the relative error is still below 1%, as due
to their high spin density the HFCCs are large in magnitude.
The origin of these errors is mainly based on the following two
shortcomings: (1) Using the hand-optimized THC grids by
Martıńez and co-workers38 for AO-THC incurs additional
errors over MO-THC as these grids were optimized for fitting
MO-based ERIs, for which the orbital space is much more
compact compared to ERIs in the AO basis. This phenomenon
was observed similarly in our recent work on THC-ω-RI-CDD-
MP2 energies.41 (2) Since grid-based THC uses DFT-like
integration grids, THC-based properties are likewise prone to
not being rotationally invariant. In DFT the problem is alleviated
through larger grids, which THC cannot make use of without
forfeiting the reduction in computational cost compared to the
respective canonical method. However, we found that these
rotational errors are on the order of 0.01−0.05 MHz, depending
on the magnitude of the spin density on the respective nucleus.
Overall, we consider a mean deviation of less than 1 MHz to be
less than the method error of RI-MP2 and certainly accurate
enough, when compared against experimental results, where, as
shown by Vogler et al.,7 other effects like dynamic contributions
or solvation effects contribute significantly.
4.2. Threshold Optimization.After having established that

the presented THC-ω-RI-CDD-MP2 method provides reliable
HFCCs, the focus is now on optimizing the time complexity of
the underlying algorithm while preserving the accuracy. An
obvious point for optimization is the formation of the exchange-
like parts RX, for which Algorithm 3 has quartic scaling if no
screening is applied. However, as discussed in section 2.4.2, by
applying NB with carefully chosen thresholds, the formation of
RX should be possible with linear time complexity. As outlined in
section 2.4.2, different thresholds will be used in the screening
process for the different types of significance lists. We associate
the thresholds εSj, εbR, and εbj with the significance lists {Sj},
{bR}, and {bj}, respectively. Since εSj directly determines the
pairs included in {Sj}, and εbR/εbj only indirectly determine the
pairs in {Rj}, the optimization of these thresholds is simplified by
separately optimizing εSj and εbR/εbj. The thresholds are first
optimized for the smaller double-ζ basis set and later transferred
to the triple-ζ basis. For this, we chose a set of six medium-sized
radical molecules and supramolecular assemblies, which are
large enough for the screening to have effect. For further
information on this benchmark set see the Supporting
Information. Table 2 summarizes the errors and the resulting
average number of significant pairs N̅Sj in {Sj} for the
optimization of εSj.

While for threshold values of 10−6 through 10−4 the error
remains negligible, the screening shows an effect in that N̅Sj
indicates that only roughly a third of the pairs in {Sj} are
necessary for this accuracy. The mean errors grow roughly
linearly with loosening thresholds and remain sufficiently small
for a range of threshold values. For εSj ≥ 10−3 especially the
MAX error deteriorates above 1 MHz, while the MAD remains
below 0.1 MHz. For the optimization of εbR and εbj,
combinations of thresholds have to be considered, since they
determine, through eq 31, the significant pairs in {Rj}. The
results of this optimization are shown in Figure 3 as a heatmap.

From Figure 3 it can be seen, that the MAD is stable through a
wide range of threshold values, only significantly worsening
when choosing εbR > 10−2, irrespective of the value chosen for
εbj. The observation that even for looser thresholds, for example,
εbR = εbj = 10−2, still roughly 80% of the pairs in {Rj} are
significant stems from the fact that indices R and j are coupled
indirectly over a virtual orbital b. According to eq 31 a pair of
indices R and j is only considered insignificant, if they do not
share significant overlap with any virtual orbital b. Therefore, N̅Rj
will always be greater than N̅Sj for any sensibly chosen
combination of thresholds.

With the separate optimization of εSj and εbR/εbj as a starting
point, different combinations of these three thresholds were
tested. The best trade-off between accuracy and the number of
significant pairs appeared to be for the thresholds εSj = 10−3, εbR
= 10−2, and εbj = 10−2, for which the errors are summarized in
Table 3.

The chosen combination of thresholds provides good
accuracy for both basis sets, with the errors for the triple-ζ

Table 1. Errors of the HFCCs Obtained with the THC-ω-RI-
CDD-MP2 Method Compared to the ω-RI-CDD-MP2
Reference Implementation for the HFCC Benchmark Set
from Vogler et al.7 and the cc-pVXZ/cc-pVXZ-RI (X ∈{D,
T}) Basis Sets

basis set MADa RMSDa MAXa

cc-pVDZ 0.304 0.478 1.822
cc-pVTZ 0.092 0.167 0.675

aDeviations in MHz.

Table 2. Threshold Optimization of εSj: Errors of the HFCCs
and Average Numbers of Significant Pairs (N̅Sj) from the
Screening Benchmark Set, Obtained with the Chosen
Threshold for εSj (εbR = 0, εbj = 0, cc-pVDZ)

εSj N̅Sj
a MADb RMSDb MAXb

10−6 77.6 2.8 × 10−7 8.7 × 10−7 1.1 × 10−5

10−5 57.9 8.2 × 10−6 2.0 × 10−5 1.8 × 10−4

10−4 36.7 1.5 × 10−4 3.5 × 10−4 3.4 × 10−3

10−3 12.8 3.5 × 10−3 1.1 × 10−2 1.9 × 10−1

10−2 5.8 9.2 × 10−2 3.6 × 10−1 6.2 × 100

aRatio in %. bDeviations in MHz.

Figure 3. Threshold optimization of εbR and εbj: In each cell the MADs
(in MHz) of the HFCCs (top value) and the average numbers of
significant pairs (N̅Rj in %, bottom value) are given as an average from
the screening benchmark set (εSj = 0, cc-pVDZ).
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basis being somewhat larger. The latter could be improved
through a separate optimization of the thresholds for the triple-ζ
basis. However, in view of the fact that the mean errors are still
below 0.1 MHz, the thresholds optimized for the double-ζ basis
set seem to be suitable for the larger basis set as well.
4.3. Timings and Scaling. With the optimized screening

thresholds at hand, the scaling behavior of the THC-ω-RI-
CDD-MP2 method for the computation of HFCCs is analyzed
and compared to the previous ω-RI-CDD-MP2 implementa-
tion.6,30 For the assessment of the asymptotic scaling behavior,
HFCCs for a series of linear alkyl radicals CnH2n+1 are computed.
In Figure 4 the timings are shown together with the underlying
contributions from the most significant steps for both basis sets.

As is evident from Figure 4, the overall scaling behavior is
governed by the contribution from the exchange-like parts of R
(Algorithm 3), while the Coulomb-like terms (Algorithms 1 and
2) and the overhead from obtaining the THC factorization only
contribute marginally. For both basis sets, the THC-ω-RI-CDD-
MP2 method reaches subquadratic scaling, while the scaling is
also partly influenced by the Fock matrix builds in the Z-vector
step. The increased cost of the Z-vector step for larger fragment
sizes in the case of the double-ζ basis set is also the reason for the
overall scaling exponent slightly deteriorating beyond C140H281
to 1.62. To prevent this unfavorable scaling for the larger triple-ζ
basis set, the recommendations by Laqua et al.,66 which are
default settings in FERMIONS++, are followed, and the recently
presented seminumerical exchange method (sn-LinK) is used
for the exchange part of the Fock matrices. The latter makes the
overall scaling for the cc-pVTZ basis set almost entirely be
governed by Algorithm 3 (blue bars). Therefore, the scaling
reduces to close to linear for the largest fragment size
considered. The same is true for the cc-pVDZ basis set, for
which Algorithm 3 reaches an apparent asymptotic scaling of 1.3.

To go toward more chemically relevant systems and beyond
what was possible with our previous ω-RI-CDD-MP2
implementation, the scaling behavior for spin-labeled ad-
enine−thymine base pair stacks (AT)n is assessed.

Figure 5 (left) shows the scaling behavior for spin-labeled
DNA fragments up to seven repetition units or 5101 basis
functions. As expected, the onset for subquadratic scaling is for
greater fragment sizes compared to the alkyl radicals. Nonethe-
less, the scaling exponent decreases to 1.87 for (AT)6 → (AT)7.
Further reduction with increasing fragment size can be expected
based on the growth rate of the number of significant pairs in
{Sj} and {Rj}. In Figure 5 (right) the logarithm of the total
number of significant pairs is shown for all index pairs relevant
for Algorithm 3. The runtime of Algorithm 3 is mainly governed
by NSj and NRj and relies on only a constant number of grid
points being significant for a given occupied orbital, see section
2.4.2. If only a constant number of grid points is significant for a
given occupied orbital, then NSj and NRj will grow linearly with
increasing molecule size. The latter is demonstrated for NSj, that
is, the grid point-occupied orbital pair directly coupled by a
collocation matrix. NRj is inherently greater than NSj, since {Rj} is
formed from eq 31 with coupling of R and j over a virtual orbital
b. The latter is also the reason for the scaling exponent not quite
reducing to 1.0 and there being an onset for the close to linear
scaling. This also explains why Algorithm 3 reaches subquadratic
scaling for the DNA system, but not quite linear scaling.
Nonetheless, the THC-ω-RI-CDD-MP2 method also reaches
subquadratic scaling for the spin-labeled DNA fragments under
consideration and allows for the computation of HFCCs for
almost 500 atoms and more than 5000 basis functions.

While the asymptotic scaling exponent of a quantum chemical
method is certainly important for the treatment of large
(bio)chemical systems, the prefactor oftentimes determines
the applicability of a method for a certain problem. In other
words, a method can be linear scaling, but have a prefactor so
large, that calculations still remain unfeasible. Another aspect
which determines feasibility are memory/storage requirements,
oftentimes governed by the necessity to store ERIs or amplitude
tensors present in electron correlation methods. These aspects
are considered in the following for a comparison of the ω-RI-
CDD-MP2 method in its all-nuclei variant6,30 and the presented
THC-ω-RI-CDD-MP2 method for a collection of organic
radicals. An additional comparison against the selected-nuclei

Table 3. Errors of the HFCCs from the Screening Benchmark
Set, Obtained with the Chosen Thresholds (εSj = 10−3, εbR =
10−2, εbj = 10−2) for the THC-ω-RI-CDD-MP2 method
referenced against the same method with disabled screening

basis set MADa RMSDa MAXa

cc-pVDZ 0.004 0.011 0.189
cc-pVTZ 0.023 0.077 0.941

aDeviations in MHz.

Figure 4. Detailed timings for the computation of HFCCs with the THC-ω-RI-CDD-MP2 method (black) for linear alkyl radicals CnH2n+1 as well as
significant contributions from underlying steps (colored bars) for the cc-pVDZ (left) and cc-pVTZ (right) basis sets. The numbers between fragments
correspond to the scaling with respect to the preceding fragment.
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variant of ω-RI-CDD-MP2,30 which was proposed to alleviate
some of the shortcomings of the ω-RI-CDD-MP2 method, is
given in the Supporting Information. Here, the focus is on
typical applications on medium-sized organic radicals. Table 4

summarizes the estimated storage requirements Mest and the
wall times t for the radicals, as well as the speedups S relative to
the ω-RI-CDD-MP2 implementation. More information on
how the storage requirements are estimated is given in the
Supporting Information.

THC has a natural advantage over RI-based methods when it
comes to storage requirements. In THC-based methods the
largest tensors necessary to keep in memory or store on disk are
second-order tensors of dimension Ngrid × Ngrid. For RI-based
methods the dimensionality of the factorized representation of
the fourth-order ERI tensor increases to three with dimensions
Nocc × Nvirt × Naux in the MO basis. Therefore, THC-ω-RI-
CDD-MP2 is superior with an order of magnitude less storage
requirements, as can be seen from Table 4. Furthermore, the
THC-based method considerably outperforms ω-RI-CDD-

MP2 in terms of computation time with speedups up to roughly
600 for the double-ζ basis set and 800−1200 for the triple-ζ
basis set. The relative speedups are somewhat reduced when
comparing the methods for predominantly linear and very sparse
systems like linear alkyl radicals, signifying that the ω-RI-CDD-
MP2 uses the sparsity well in these model cases. For larger and
more globular structures, the computational savings with the
THC-ω-RI-CDD-MP2 method are significantly greater, in-
dicating that Algorithm 4 utilizes the sparsity well, even in
nonlinear systems. The latter, and the reduced memory
requirements make the THC-ω-RI-CDD-MP2 method attrac-
tive for the computation of HFCCs of large, globular systems, as
they are commonly encountered in proteins and enzymes.
Furthermore, due to the greatly reduced computational cost, the
method is applicable in double-hybrid functionals, where usually
the MP2 part is the computational bottleneck, while also
allowing for sampling of multiple points on the PES.

5. CONCLUSIONS AND OUTLOOK
In this work, we presented the THC-ω-RI-CDD-MP2 method
for the efficient and accurate computation of isotropic HFCCs
for large organic radicals. As usual for MP2 methods, the
exchange-like terms, here RX, govern the scaling and runtime of
the method. This issue was addressed through screening based
on the THC collocation matrices X in combination with natural
blocking for the tensor contractions. An asymptotically linear
scaling recipe for the contraction of exchange-like terms in THC
format is provided. This recipe is applied to the RX terms,
reducing the formal quartic scaling to effectively subquadratic, as
shown for linear alkyl radicals and spin-labeled DNA strands.
The THC-ω-RI-CDD-MP2 method furthermore highlights the
attractiveness of THC-based methods for derivatives of electron
correlation methods. Derivative calculations usually involve
more types of ERIs, for example, half-transformed integrals,
integrals with mixed spin in openshell calculations, or integrals
contracted with perturbed densities. This generally increases
storage requirements compared to single point calculations.
Furthermore, the computational cost of the method is strongly
increased due to additional ERI contractions. Both challenges
are overcome by using THC-factorized ERIs, for which only
second-order tensors have to be stored and integral trans-
formations and contractions can be easily reduced to simple

Figure 5. Detailed timings for the computation of HFCCs with the THC-ω-RI-CDD-MP2 method (black) for spin-labeled (AT)n radicals as well as
significant contributions from underlying steps (colored bars) for the cc-pVDZ basis set. Scaling behavior of the number of significant index pairs {Sj}
(red) and {Rj} (dark blue) for increasing fragment sizes (right). The numbers between fragments correspond to the scaling with respect to the
preceding fragment.

Table 4. Comparison of the Memory Requirements Mest,
Timings t, and Relative Speedups S of the THC-ω-RI-CDD-
MP2 Method with the Previously Implemented ω-RI-CDD-
MP2 Method

ω-RI-CDD-MP2 THC-ω-RI-CDD-MP2

system Nbf Mest/GB t/h Mest/GB t/h S

cc-pVDZ
C60H121 1445 201.0 101.8 11.7 0.7 145
TEMPOHd2O 1444 208.5 345.9 11.7 1.5 230

(glu)4 1074 90.0 380.2 5.9 0.7 540
PTMA3 1102 93.8 620.9 6.5 1.2 517
(AT)2 1566 286.0 1111.0 23.1 1.9 585

cc-pVTZ
C20H41 1174 66.1 363.3 8.7 0.6 606
TEMPO 582 8.2 160.1 2.1 0.2 891
Tyr 530 6.6 99.4 1.4 0.1 780
Thy 1260 86.6 1346.2a 8.7 1.1 1224
(AT)1 1982 340.4 2727.8a 20.7 3.1 880

aTimings are estimated conservatively based on the time taken for the
first Laplace point.
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dgemm operations. The advantages of THC-based gradient
methods are demonstrated for HFCC calculations on a range of
medium-sized organic radicals and spin-labeled DNA strands
with more than 5000 basis functions.

For future applications, the availability of THC grids has to be
improved, as ideally EPR-specific basis sets,67 and correspond-
ing THC grids, should be used for the calculations presented.
The grids used throughout this publications were hand
optimized38 and are only viable for the cc-pVXZ (X ∈{D,T})
basis sets. Furthermore, these grids were optimized based on
MO-THC-MP2 and not for AO-THC, as used throughout this
work. This incurs additional errors due to the larger fitting space.
Different techniques for the on-the-fly generation of THC grids
have been proposed, either based on PCD of the THC metric in
a larger parent grid basis,40 or based on centroidal Voronoi
tesselation (CVT),36 and could be applied for the calculation of
THC-MP2 HFCCs in future work.

Finally, the developed THC-ω-RI-CDD-MP2 method can
easily be used for the MP2 part of double-hybrid functionals and,
once appropriate grids are available, enable accurate HFCC
predictions for large molecules. Furthermore, due to the reduced
computational complexity and memory requirements, THC-ω-
RI-CDD-MP2, in conjunction with an appropriate double-
hybrid functional, is an attractive candidate for QM/MM HFCC
calculations.
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1 Alternative Derivation of the Analytical Expression for

the THC Z-Matrix

The AO-THC least-squares objective functionS1 is given by

O =
1

2

∥∥∥(µν|λσ)−
∑

PQ

XP
µX

P
ν Z

PQXQ
λ X

Q
σ

∥∥∥
2

2
, (1)

which is quartic in the collocation matrix X and linear in the grid representation of the 1/r

operator, i.e., Z. The LS problem can be generalized to

O =
1

2

∥∥B−AYAT
∥∥2
2
, (2)

where B ∈ Rn×n, A ∈ Rn×m and Y ∈ Rm×m, with n = N2
bf and m = Ngrid in the case of

LS-THC. The analytic expression for the THC Z matrix given by Martínez and coworkersS1

is then simply the solution of the normal equations associated with eq 1. In general notation,

the normal equations associated with the LS problem of eq 2 are simply given as

ATAYATA = ATBA. (3)

To solve for Y, the moment matrix ATA has to be inverted and the solution is given by

Y = (ATA)−1ATBA(ATA)−1. (4)

If the substitutions A = R, where RP
µν ≡ XP

µX
P
ν , B = I and Y = Z are made, the familiar

analytic expression for the THC Z-tensor is obtained

Z = (RTR)−1RTIR(RTR)−1

= S−1ES−1,
(5)

where S ≡ RTR is the THC grid metric, I is the matrix representation of the ERI tensor
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and E ≡ RTIR is the grid-projected ERI tensor.

2 THC-MP2 Exchange-like Contractions

The proposed algorithm for the computation of the exchange-like energy contribution for

the THC-ω-RI-CDD-MP2 method follows the same ideas as the algorithm for the exchange-

like contribution RX from the main part of this publication. Note, that this algorithm is

applicable to all types of methods derived from THC-CDD-MP2, as the RI approximation

is only used during the formation of the THC factorization.

Algorithm 1 Compute the exchange-like MP2 energy ETHC-CDD
MP2-K

1: procedure Compute_THC_MP2_X(X,Z)
2: EMP2-K = 0.0
3: for κ = 1 to Nκ do . Laplace quadrature
4: Lµi, Lνa = get_Cholesky_factors(κ)
5: XP

i =
∑

µ LµiX
P
µ

6: XP
a =

∑
ν LνaX

P
ν

7: APR =
∑

iX
P
i X

R
i

8: BPS =
∑

aX
P
aX

S
a

9: build {Sj} from |XS
j |

10: build {aP} from |XP
a |

11: build {aj} from
∑

S |XS
j ||XS

a |
12: build {Pj} from {aP} and {aj} . identical to {Rj}
13: eMP2-K = 0.0
14: for j = 1 to j ≤ rk(P) do . batching over occupied index j
15: for all P ∈ {P}j and S ∈ {S}j do
16: CPS = BPSXS

j

17: end for
18: for all P ∈ {P}j and R ∈ {R}j do
19: DPR =

∑
S∈{S}j Z

RSCPS

20: end for
21: eMP2-K +=

∑
P∈{P}j

∑
R∈{R}j A

PRDPRDRP

22: end for
23: EMP2-K += eMP2-K

24: end for
25: return EMP2-K

26: end procedure

Asymptotic linear scaling of Algorithm 1 is exemplarily demonstrated for linear alkane chains
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up to C120H242 in Figure S1.

750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Nbf

200

400

600

800

1000

1200

1400

1600

1800

wa
ll 

tim
e 

/ s

1.70

1.31

1.29

1.07

Figure S1: Wall times of Algorithm 1 for linear alkanes CnH2n+2 (n ∈ {40, 60, 80, 100, 120})
and the cc-pVDZ basis set. Black numbers between fragments correspond to the scaling
with respect to the preceding fragment.

3 Exchange Contribution to Rµ′µ

The exchange-like contribution to R for a single Laplace point is given by

R
X,η
µ′µ =

∑

j

∑

ab

(µ′a|jb)ηη(µb|ja)ηη

≈
∑

j

∑

ab

∑

PQRS

XP
µ′X

P,η
a ZPQXQ,η

j XQ,η
b ·XR

µX
R,η
b ZRSXS,η

j XS,η
a ,

(6)

and can be efficiently obtained by the following algorithm:
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Algorithm 2 Compute the exchange-like contribution to Rµ′µ

1: procedure Build_RmumuX(X,Z,X,X)
2: build {Sj} from |XS,η

j |
3: build {aP} from |XP,η

a |
4: build {aj} from

∑
S |XS,η

j ||XS,η
a |

5: build {Pj} from {aP} and {aj} . identical to {Rj}
6: BPS,η =

∑
aX

P,η
a XS,η

a

7: EPR,η = 0Ngrid,Ngrid

8: for j = 1 to j ≤ rk(Pη) do . batching over occupied index j
9: for all R ∈ {R}j and S ∈ {S}j do

10: CRS,η = ZRSXS,η
j

11: end for
12: for all P ∈ {P}j and R ∈ {R}j do
13: DPR,η =

∑
S∈{S}j C

RS,ηBPS,η

14: end for
15: for all P ∈ {P}j and R ∈ {R}j do
16: EPR,η += DPR,ηDRP,η

17: end for
18: end for
19: R

X,η

µ′µ =
∑

PRX
P
µ′E

PR,ηXR
µ

20: return R
X,η

µ′µ
21: end procedure

4 Exchange Contribution to Rν′ν

The exchange-like contribution to R for a single Laplace point is given by

RX,η
ν′ν =

∑

ij

∑

b

(iν ′|jb)ηη(ib|jν)ηη

≈
∑

ij

∑

b

∑

PQRS

XP,η
i XP

ν′Z
PQXQ,η

j XQ,η
b ·XR,η

i XR,η
b ZRSXS,η

j XS
ν .

(7)

By symmetry, the exchange contribution RX,η
ν′ν , given by equation 7, can be computed anal-

ogously to the exchange contribution RX,η

µ′µ, where the batching loop iterates over all virtual

MOs b instead of all occupied MOs j. This, however, will increase the prefactor significantly

as Nvirt ≈ Nbf � Nocc. If instead the batching loop is kept over all occupied orbitals j,

an additional Schur product and an additional matrix multiplication have to be performed,
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compared to the algorithm for RX,η

µ′µ. The number of floating point operations (FLOPs) for

the batching over b is roughly 2NvirtN
2
grid +NvirtN

3
grid (the scaling of Z, a matrix multiplica-

tion and the accumulation in E for every b), whereas for the batching over j the FLOP count

is 2NoccN
2
grid + 2NoccN

3
grid (see Algorithm 3). It can easily be shown that the FLOP ratio is

roughly 2Nocc

Nvirt
in favor of the batching over j. Therefore, the exchange-like contribution to R

for a single Laplace point can efficiently be computed with the following algorithm:

Algorithm 3 Compute the exchange-like contribution to Rν′ν

1: procedure Build_RnunuX(X,Z,X,X)
2: build {Sj} from |XS,η

j |
3: build {bR} from |XR,η

b |
4: build {bj} from

∑
Q |XQ,η

j ||XQ,η
b |

5: build {Rj} from {bR} and {bj} . identical to {Pj}
6: APR,η =

∑
iX

P,η
i XR,η

i

7: BQR,η =
∑

bX
Q,η
b XR,η

b

8: EPS,η = 0Ngrid,Ngrid

9: for j = 1 to j ≤ rk(Pη) do . batching over occupied index j
10: for all R ∈ {R}j and S ∈ {S}j do
11: CRS,η = ZRSXS,η

j . identical to CPQ

12: end for
13: for all P ∈ {P}j and R ∈ {R}j do
14: DPR,η =

∑
Q∈{Q}j C

PQ,ηBQR,η

15: end for
16: for all P ∈ {P}j and R ∈ {R}j do
17: DPR,η ×= APR,η

18: end for
19: for all P ∈ {P}j and S ∈ {S}j do
20: EPS,η +=

∑
R∈{R}j D

PR,ηCRS,η

21: end for
22: end for
23: RX,η

ν′ν =
∑

PS X
P
ν′E

PS,ηXS
ν

24: return RX,η
ν′ν

25: end procedure

Finally, by closer inspection of algorithms 2 and 3 it can be seen that they share common

intermediates, which makes a joined computation of RX,η

µ′µ and RX,η
ν′ν attractive, as explained

in the main part of this publication.
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5 Detailed Results for the Accuracy Benchmark

Table S1: Detailed comparison of THC-ω-RI-CDD-MP2 HFCCs against ω-RI-CDD-MP2 for
the benchmark set by Vogler et al.S2 and the cc-pVDZ/cc-pVDZ-RI basis set combination.

ω-RI-CDD-MP2 THC-ω-RI-CDD-MP2
radical nucleus Aiso / MHz Aiso / MHz ∆Aiso / MHz ∆Aiso / %

1 14N 67.454 67.422 0.032 0.05
13C -36.580 -36.601 0.021 0.06
1Ha 94.085 94.150 0.065 0.07
1Hb -3.286 -3.316 0.030 0.91

2 14N 66.966 67.269 0.303 0.45
13C (CH) -28.521 -28.999 0.478 1.68
13Ca (CH3) 59.983 60.232 0.249 0.42
13Cb (CH3) 10.989 11.186 0.197 1.79
1H(CH) 25.150 25.414 0.264 1.05
1Ha (CH3) -0.186 -0.206 0.020 10.75
1Hb (CH3) 3.194 3.127 0.067 2.10

3 13C -17.038 -17.152 0.114 0.67
1Ha 346.221 346.092 0.129 0.04
1Hb -19.814 -19.807 0.007 0.04

4 13C (CH3) -11.972 -11.991 0.019 0.16
13C (CH2) 43.314 43.340 0.026 0.06
1H(CH2) -2.180 -2.141 0.039 1.79
1Ha (CH3) 12.536 12.557 0.021 0.17
1Hb (CH3) 150.898 151.181 0.283 0.19

5 14N -5.277 -4.714 0.563 10.67
o-13C 59.599 59.003 0.596 1.00
m-13C 2.734 2.951 0.217 7.94
p-13C 27.022 26.429 0.593 2.19
o-1H -34.018 -33.485 0.533 1.57
m-1H -5.813 -6.188 0.375 6.45
p-1H -26.106 -25.747 0.359 1.38

6 14N 145.403 146.474 1.071 0.74
17O -78.435 -78.963 0.528 0.67
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7 13C 160.828 160.825 0.003 0.00
1H -72.879 -72.873 0.006 0.01

8 17O -121.219 -120.697 0.522 0.43
13C (HCO) -92.061 -92.184 0.123 0.13
13C (CH3) 55.048 55.202 0.154 0.28
1H(HCO) 296.678 297.826 1.148 0.39
1H(CH3) -7.866 -7.870 0.004 0.05

9 13C 665.612 666.734 1.122 0.17
19F 432.589 434.411 1.822 0.42

10 13C (CH) 300.933 300.431 0.502 0.17
13C (CH2) 25.532 26.189 0.657 2.57
1H(CH) 57.738 57.880 0.142 0.25
1H(Z -CH2) 109.551 109.340 0.211 0.19
1H(E -CH2) 57.501 57.349 0.152 0.26

11 13C -11.389 -11.089 0.300 2.63
14N 35.343 35.348 0.005 0.01
1H 158.759 158.818 0.059 0.04

12 11B 352.047 352.144 0.097 0.03
1H 21.757 21.694 0.063 0.29
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Table S2: Detailed comparison of THC-ω-RI-CDD-MP2 HFCCs against ω-RI-CDD-MP2 for
the benchmark set by Vogler et al.S2 and the cc-pVTZ/cc-pVTZ-RI basis set combination.

ω-RI-CDD-MP2 THC-ω-RI-CDD-MP2
radical nucleus Aiso / MHz Aiso / MHz ∆Aiso / MHz ∆Aiso / %

1 14N 19.036 18.984 0.052 0.27
13C -32.174 -32.145 0.029 0.09
1Ha 98.541 98.156 0.385 0.39
1Hb -3.236 -3.227 0.009 0.28

2 14N 19.046 19.028 0.018 0.09
13C (CH) -24.324 -24.196 0.128 0.53
13Ca (CH3) 64.018 64.008 0.010 0.02
13Cb (CH3) 10.865 10.871 0.006 0.06
1H(CH) 25.437 25.432 0.005 0.02
1Ha (CH3) 0.085 0.085 0.000 0.00
1Hb (CH3) 3.632 3.633 0.001 0.03

3 13C -44.461 -44.477 0.016 0.04
1Ha 374.836 374.851 0.015 0.00
1Hb -19.968 -19.966 0.002 0.01

4 13C (CH3) -14.272 -14.278 0.006 0.04
13C (CH2) -15.463 -15.498 0.035 0.23
1H(CH2) 0.306 0.323 0.017 5.56
1Ha (CH3) 14.002 14.001 0.001 0.01
1Hb (CH3) 162.255 162.255 0.000 0.00

5 14N 4.593 4.485 0.108 2.35
o-13C 1.599 1.857 0.258 16.14
m-13C -28.914 -29.369 0.545 1.88
p-13C 19.337 19.614 0.277 1.43
o-1H -30.602 -30.675 0.073 0.24
m-1H -3.842 -3.720 0.122 3.18
p-1H -27.272 -27.391 0.119 0.44

6 14N 129.520 129.454 0.066 0.05
17O -53.697 -53.767 0.070 0.13

7 13C 22.741 22.705 0.036 0.16
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1H -68.648 -68.651 0.003 0.00

8 17O -7.694 -8.519 0.175 2.27
13C (HCO) -86.133 -86.369 0.236 0.27
13C (CH3) 48.003 48.027 0.024 0.05
1H(HCO) 311.223 311.200 0.023 0.01
1H(CH3) -7.700 -7.746 0.046 0.60

9 13C 666.302 666.191 0.111 0.02
19F 373.470 374.320 0.150 0.04

10 13C (CH) 211.780 211.585 0.195 0.09
13C (CH2) 49.607 49.648 0.041 0.08
1H(CH) 57.362 57.365 0.003 0.01
1H(Z -CH2) 115.421 115.412 0.009 0.01
1H(E -CH2) 71.645 71.667 0.022 0.03

11 13C -8.745 -8.760 0.015 0.17
14N -10.393 -10.522 0.129 1.24
1H 158.701 158.740 0.039 0.02

12 11B 326.791 327.116 0.675 0.21
1H 23.902 23.886 0.016 0.07

Notes:

• the enumeration of radicals is identical to the enumeration used by Vogler et al.S2

• radicals 2 and 8: the HFCCs for the 1H nuclei belonging to the same methyl-group

were averaged

• radicals 3 and 4: due to symmetry there are a set of 4 and a set of 2 (close to) identical
1H nuclei across both methyl-groups

For further notes on symmetry breaking due to Jahn-Teller effects in these molecules refer

to the work by Vogler et al.S2
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6 Estimation of Memory Requirements

When estimating the memory requirements for the ω-RI-CDD-MP2 method and its selected-

nuclei variant by Vogler et al.,S3 and the THC-ω-RI-CDD-MP2 method from the main part of

this publication, only the highest-order tensors are considered. Without taking the integral

screening into account, the memory footprint of the ω-RI-CDD-MP2 is governed by the

B-intermediates, exemplarily given by

Bη
ia,β =

∑

α

(ia|α)η(α|β)−1/2, (8)

for fully MO-transformed three-center RI integrals. Besides the fully transformed Bia,β-

intermediate and its permutation Bai,β (needed for exchange-type contributions), also the

half-transformed intermediates Bµa,β and Biν,β are needed. All four B-type intermediates are

needed for the α and β electrons, amounting to a total of eight third-order tensors. Therefore,

the memory requirements in GB, assuming double precision floating point arithmetic, can

be estimated as

Mest,1 = 2︸︷︷︸
α/β

×


2×Nocc ×Nvirt ×Naux︸ ︷︷ ︸

Bia,β/Bai,β

+Nbf ×Nvirt ×Naux︸ ︷︷ ︸
Bµa,β

+Nocc ×Nbf ×Naux︸ ︷︷ ︸
Biν,β


× 8B

10243 B
GB︸ ︷︷ ︸

→GB

= 2Naux (2NoccNvirt +NbfNvirt +NoccNbf)
8B

10243 B
GB

= 2Naux
(
2NoccNvirt +N2

bf

) 8B
10243 B

GB

.

(9)

The memory requirements for the selected-nuclei variant are similar, except that here ad-

ditional B-intermediates half-transformed with the perturbed density matrix are required,

which results in

S-12



Mest,2 = 2︸︷︷︸
α/β

×


2×Nocc ×Nvirt ×Naux︸ ︷︷ ︸

Bia,β/Bai,β

+2×Nbf ×Nvirt ×Naux︸ ︷︷ ︸
Bµa,β/Bµxa,β

+2×Nocc ×Nbf ×Naux︸ ︷︷ ︸
Biν,β/Biνx,β




× 8B
10243 B

GB︸ ︷︷ ︸
→GB

= 4Naux (NoccNvirt +NbfNvirt +NoccNbf)
8B

10243 B
GB

= 4Naux
(
NoccNvirt +N2

bf

) 8B
10243 B

GB

.

(10)

For the THC-ω-RI-CDD-MP2 method, assuming the three-center integrals are not kept in

memory after obtaining the THC factorized ERIs, the most memory demanding intermedi-

ates are second-order tensors of dimension Ngrid×Ngrid. Since the algorithm for the exchange-

like contribution to the R-matrices requires more such intermediates and since the memory

occupied by the algorithm for the Coulomb-like contribution can be reclaimed, the memory

requirements are estimated based on the algorithm for the exchange-like contribution. The

latter requires 9 Ngrid × Ngrid intermediates, namely the THC Z-tensor, intermediates A

and B from the precontraction step for both spin cases, as well as four matrices for the

accumulation of results. This results in a rough memory requirement estimate of

Mest,3 = N2
grid︸︷︷︸
Z

+ 2︸︷︷︸
α/β

× 2×N2
grid︸ ︷︷ ︸

A/B

+ 4×N2
grid︸ ︷︷ ︸

helper intermediates

× 8B
10243 B

GB︸ ︷︷ ︸
→GB

= 9N2
grid

8B
10243 B

GB

.

(11)

We note, that the various transformed, half-transformed, and untransformed collocation

matrices are neglected in this estimate. For a reasonably sized basis set the relations Ngrid ≈

10Nbf and Nbf ≈ Nvirt � Nocc hold, and therefore even the most memory demanding

collocation matrix, i.e., XP
µ of size Ngrid × Nbf ≈ 1

10
N2

grid is only a tenth of the size of the

intermediates discussed above.
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7 Comparison of (Selected-nuclei) ω-RI-CDD-MP2 and

THC-ω-RI-CDD-MP2

7.1 Asymptotic Scaling Comparison

In the main part of this publication we demonstrated the superiority of THC-ω-RI-CDD-

MP2 compared to ω-RI-CDD-MP2 in terms of runtime for a selection of application inspired

organic radicals. Vogler et al.S3 proposed a selected-nuclei variant of ω-RI-CDD-MP2 to

reduce the long computation times of the ω-RI-CDD-MP2 by making use of the locality of

the perturbation. Since both, the selected-nuclei variant of ω-RI-CDD-MP2 and THC-ω-RI-

CDD-MP2, were proposed to overcome the shortcomings of ω-RI-CDD-MP2, here, the three

methods are compared in terms of their asymptotic scaling behavior for linear alkyl radicals

up to 4000 basis functions with the cc-pVDZ basis set.

Figure S2: Comparison of the wall times and scaling of the ω-RI-CDD-MP2 (orange), the
selected-nuclei ω-RI-CDD-MP2 (red), and the THC-ω-RI-CDD-MP2 method (blue) for lin-
ear alkyl radicals CnH2n+1 (n ∈ {10, 20, 40, 60, 80, 100, 120, 140, 160}) using the cc-pVDZ
basis set. Points marked with black asterisks were extrapolated conservatively.

As described in the literature,S4 the RI-CDD-MP2 method is expected to scale quadratically

S-14



due to the dominant runtime contribution of the formation of the R-matrices. Here, even

subquadratic scaling is observed, which is because here – unlike in the original publication

– an attenuated Coulomb metric in the RI integrals was used. The selected-nuclei variant

of ω-RI-CDD-MP2 improves the runtimes considerably with similar subquadratic scaling.

More drastic improvements are however obtained with the THC-ω-RI-CDD-MP2 method,

which, as demonstrated in the main part of the publication, also has effective asymptotic

subquadratic scaling. For the largest alkyl chain computed with the ω-RI-CDD-MP2 method,

the selected-nuclei version provides a speedup of a factor of 15, while the THC method

achieves a speedup of close to 200. It is apparent, that while all methods share an asymptotic

subquadratic scaling, the drastically smaller prefactor – in addition to the reduced memory

requirements – of the THC-ω-RI-CDD-MP2 make it vastly superior in terms of runtime.

Furthermore, in contrast to the selected-nuclei ω-RI-CDD-MP2 method, the THC method

is not limited to selected nuclei only but provides HFCCs for all nuclei simultaneously at

reduced cost. In principle, THC-factorized ERIs can also be applied in the selected-nuclei

approach, potentially leading to further speedups.

7.2 Timing Comparison With Selected-nuclei ω-RI-CDD-MP2

To compare the THC-ω-RI-CDD-MP2 method against the selected-nuclei variant of ω-RI-

CDD-MP2 for more chemically relevant molecules, Table 4 of the main part of this publi-

cation is extended with timings obtained with the selected-nuclei ω-RI-CDD-MP2 method

(see Table S3).

While the selected-nuclei method significantly improves upon the ω-RI-CDD-MP2 implemen-

tation in terms of computation time, with speedups up to 30–70, the THC-based method

considerably outperforms both with speedups up to roughly 600–1000. The computational

savings for the selected-nuclei method are greatest if the molecule under investigation is

predominantly one-dimensional, like (glu)4, whereas for globular systems, like the solvated

TEMPO radical, speedups are reduced. The effect is also observed for the THC-ω-RI-CDD-
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Table S3: Comparison of the memory requirementsMest, timings t, and relative speedups S of
the THC-ω-RI-CDD-MP2 method with the ω-RI-CDD-MP2 method and its selected-nuclei
variant. Speedups are determined relative to the timings obtained with the ω-RI-CDD-MP2
method.

ω-RI-CDD-MP2 sel.-nuc. ω-RI-CDD-MP2 THC-ω-RI-CDD-MP2
molecule Nbf Mest / GB t / h Mest / GB t / h S Mest / GB t / h S

cc
-p
V
D
Z

C60H121 1445 201.0 101.8 358.2 8.7 12 11.7 0.7 145

TEMPOH2O 1444 208.5 345.9 366.0 51.1 7 11.7 1.5 230

(glu)4 1074 90.0 380.2 157.8 12.0 32 5.9 0.7 540

PTMA3 1102 93.8 620.9 165.8 18.1 34 6.5 1.2 517

(AT)2 1566 286.0 1111.0 500.3 53.1 21 23.1 1.9 585

cc
-p
V
T
Z

C20H41 1174 66.1 363.3 124.6 11.1 33 8.7 0.6 606

TEMPO 582 8.2 160.1 15.5 3.4 47 2.1 0.2 891

Tyr 530 6.6 99.4 12.3 2.2 45 1.4 0.1 780

Thy 1260 86.6 1346.2a) 161.5 18.4 73 8.7 1.1 1224

(AT)1 1982 340.4 2727.8a) 634.0 38.1 72 20.7 3.1 880

a) timings are estimated conservatively based on the time taken for the first Laplace point

MP2 method, since the efficiency of both methods relies on the sparsity of the pseudo-density

matrices. It is however less pronounced, indicating that the algorithm for the exchange-like

part in the THC-ω-RI-CDD-MP2 utilizes the sparsity well even in nonlinear systems.
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8 Structures

8.1 Benchmark Set of Small Organic Radicals

All structures were taken from the original publication by Vogler et al.S2 and are available

for download in a zip archive in the Supporting Information.

8.2 Benchmark Set of Medium-sized Organic Radicals

All structures used for optimizing the screening thresholds in the Coulomb- and exchange-like

part of theR-matrices were optimized with the DL-FINDS5 subprogram of FermiONs++S6–S8

using the ωB97X functional and the def2-TZVP basis set. All structures are available for

download in a zip archive in the Supporting Information. The benchmark set includes the

following molecules and supramolecular assemblies:

• a linear alkyl radical: C60H121

• a spin-labeled adenine-thymine DNA fragment: (AT)2

• a spin-labeled amylose chain: (glu)4

• the poly(2,2,6,6-tetramethyl-piperidenyloxyl-4-yl methacrylate) (PTMA) trimer: PTMA3

• a H2O solvated (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) radical with 50 wa-

ter molecules: TEMPOH2O

• a supramolecular assembly of the tert-butyl radical in a cucurbit[6]uril (CB[6]) host:

t-butyl@CB[6]

8.3 Test Set for the Comparison Against ω-RI-CDD-MP2

All structures used for the comparison against ω-RI-CDD-MP2 were optimized with the

DL-FINDS5 subprogram of FermiONs++S6–S8 using the ωB97X functional and the def2-

TZVP basis set. All structures are available for download in a zip archive in the Supporting
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Information.

The benchmark set includes the following molecules and supramolecular assemblies ...

• ... for the cc-pVDZ basis set:

– a linear alkyl radical: C60H121

– a H2O solvated TEMPO radical with 50 water molecules: TEMPOH2O

– a spin-labeled amylose chain: (glu)4

– the PTMA trimer: PTMA3

– a spin-labeled adenine-thymine DNA fragment: (AT)2

• ... for the cc-pVTZ basis set:

– a linear alkyl radical: C20H41

– the TEMPO radical: TEMPO

– the tyrosine radical: Tyr

– a spin-labeled thymine molecule: Thy

– a spin-labeled adenine-thymine DNA fragment: (AT)1
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we use the RPA ground-state energy expression within the resolution-of-the-identity
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study using numerical second derivatives [Glasbrenner, M. et al. J. Chem. Theory
Comput. 2021, 18, 192], RPA based on a Hartree–Fock reference shows accuracies
comparable to coupled cluster singles doubles (CCSD) for NMR chemical shieldings.
Together with the much lower computational cost of RPA, it has emerged as an accurate
method for the computation of NMR shieldings. Therefore, we aim to extend the
applicability of RPA NMR to larger systems by introducing analytical second-order
derivatives, making it a viable method for the accurate and efficient computation of NMR
chemical shieldings.
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ABSTRACT: A method for the analytical computation of nuclear magnetic resonance (NMR)
shieldings within the direct random phase approximation (RPA) is presented. As a starting point,
we use the RPA ground-state energy expression within the resolution-of-the-identity
approximation in the atomic-orbital formalism. As has been shown in a recent benchmark study
using numerical second derivatives [Glasbrenner, M. et al. J. Chem. Theory Comput. 2022, 18, 192],
RPA based on a Hartree−Fock reference shows accuracies comparable to coupled cluster singles
and doubles (CCSD) for NMR chemical shieldings. Together with the much lower computational
cost of RPA, it has emerged as an accurate method for the computation of NMR shieldings.
Therefore, we aim to extend the applicability of RPA NMR to larger systems by introducing
analytical second-order derivatives, making it a viable method for the accurate and efficient
computation of NMR chemical shieldings.

1. INTRODUCTION
Nuclear magnetic resonance (NMR) spectroscopy has
emerged as an important tool for the structure determination
of organic, inorganic, and macromolecular compounds in the
field of chemistry and biochemistry.1−4 However, the precise
determination of molecular or solid state structures from
experimental NMR spectra can be tedious due to the difficulty
of assigning the signals.2,5 In these cases, employing quantum
chemical methods for the computation of NMR shielding
tensors can aid in the interpretation of experimental spectra
and, thus, help in the elucidation of structures.2,6 Hence, a lot
of effort has been put into the development of such methods,
e.g., refs 2,7−10.
Methods for the computation of molecular NMR shifts

range from Hartree−Fock (HF)11−15 and density functional
theory (DFT)16−18 to wave function-based post-HF methods
such as Møller−Plesset perturbation theory (MP2),19,20

coupled cluster (CC) variants,21−23 and multiconfigurational
self-consistent field (MCSCF).24 Among these methods, HF
and DFT have the lowest computational cost, with comparably
moderate accuracy. Nonetheless, the development of low-
scaling implementations has made the computation of systems
with over 1000 atoms possible.25,26 MP2 has been shown to
yield more accurate results than HF and DFT20,27,28 while also
being computationally more demanding. However, significant
advancements have been made in the development of efficient
methods for the computation of MP2 NMR shifts to alleviate
this issue.29−39 The most accurate methods for the
computation of NMR shifts are coupled cluster singles and
doubles (CCSD) as well as with additional perturbative triples
(CCSD(T)).40 However, the CC methods are accompanied by
the highest computational cost among the above-mentioned

methods and are, if no further approximations are applied, only
feasible for very small systems.

A method that has proven to combine both high accuracy
and low computational cost is the random phase approx-
imation (RPA).41 In a recent benchmark study,41 it was shown
that RPA provides comparable accuracy for NMR chemical
shieldings as CCSD, albeit with reduced computational effort,
also when compared to MP2.

RPA, originally introduced by Bohm and Pines in 1953,42 is
usually implemented as a post-Kohn−Sham (KS)43 method. It
stands on the fifth and highest rung of Jacob’s ladder44 and
does not contain any empirical parameters. The expression for
the RPA ground-state energy can be derived in the context of
DFT43,45 using the adiabatic-connection fluctuation−dissipa-
tion theorem (ACFDT).46−48 However, the original formula-
tion46,48 has an M( )6 scaling with the system size M, making
it only feasible for small systems. By introducing the
resolution-of-the-identity (RI)49−53 approximation, Furche
and co-workers54 lowered the formal scaling to M( )4 ,
rendering RPA as one of the formally lowest scaling correlation
methods. Further improvements for the computational
efficiency of the RPA ground-state energies followed,54−63

paving the way for the investigation of systems with more than
1000 atoms.58−63
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For the investigation of many molecular properties,
derivatives of the ground-state energy are necessary. In this
regard, there are two routes to obtain higher-order derivatives,
either numerically or analytically. Generally, analytical
derivatives are superior to numerical schemes since they are
significantly more efficient and avoid errors stemming from a
finite step size.8,64 It is worth noting here that mixed schemes,
e.g., calculating the first derivative analytically and the second
derivative numerically, are also conceivable and in fact often
applied, e.g., for vibrational frequency calculations, as a trade-
off between computational efficiency and development effort.
While various methods have been developed for the analytical
evaluation of first-order properties at the RPA level of
theory,65−71 to the best of our knowledge, no analytical
second-order properties such as NMR shieldings with post-KS
methods based on the ACFDT exist. A first step in this
direction was taken by Glasbrenner et al.41 by introducing a
numerical implementation of RPA shielding tensors for
benchmarking the performance of RPA and the closely related
σ-functionals.72 It has been found that RPA calculations based
on a HF reference provide NMR shieldings comparable to the
CCSD accuracy. Based on these promising results, we aim to
extend the applicability of RPA NMR by deriving the
expression for the RPA NMR shielding tensor as an analytical
second derivative of the RPA energy. This enables the accurate
prediction of NMR shieldings of large molecules with a low
formal scaling behavior.
We want to note that refs 8,73−78, which describe RPA

NMR, use RPA synonymously with coupled-perturbed HF as
well as time-dependent HF. However, in our work, RPA stands
for an ACFDT-based post-KS method and gives different
results than coupled-perturbed HF and time-dependent HF.
Therefore, the methods described in these references differ
from the method introduced in this work.
This work is structured as follows: after establishing the

notation used throughout this work in Section 2, we will derive
the analytical mixed second derivative of the total RPA energy
with respect to the nuclear magnetic moment and an external
magnetic field to obtain the NMR shielding tensor in
Section 3. To accomplish this, we will start by reviewing the
expression for the RPA correlation energy within the atomic-
orbital basis in Section 3.1 and subsequently derive its first
derivative with respect to the nuclear magnetic moment in
Section 3.2. In the main part of the theory in Section 3.3, we
will derive the second derivative with respect to the magnetic
field. Due to the close relation of RPA and MP2, we will make
use of several methods used for the Laplace transformed
atomic-orbital MP2 NMR method, as introduced by us earlier.
Finally, after providing the computational details in Section 4,
we will present the validation of our theory and implementa-
tion.

2. NOTATION
Throughout this work, we adopt the following notation:

• μ, ν, λ, σ: atomic-orbital indices; N: total number of AO-
basis functions

• P, Q: auxiliary function indices; Naux: total number of
auxiliary functions

We use the Mulliken notation for two- and three-center
integrals. Furthermore, Einstein’s sum convention is em-
ployed.79 For general intermediates containing both integrals
and densities, the derivative with respect to a general

perturbation ξ is denoted as Oξ, while intermediate derivatives
containing only the differentiated integrals are denoted as O(ξ).
In all other cases, Oξ is used as a short-hand notation for O.

3. THEORY
The elements of the NMR shielding tensor σrs

A of a nucleus A
can be expressed as the mixed second derivative of the
electronic energy E with respect to a coordinate of the nuclear
magnetic moment ms

A and the magnetic field Br evaluated at
zero according to

= { }
= =

B m
E r s x y z, , ,rs

A

r s
A

m 0 B 0

2

,A (1)

In this work, the focus is on NMR shieldings based on RPA,
which are derived as the analytical second derivatives of the
total RPA energy with respect to B and m. To ensure gauge
origin independence, we employ gauge-including atomic
orbitals (GIAOs)12,13,80−83 defined as

i
k
jjj y

{
zzz= = [ × ]r B r B 0 B R R r( , ) ( , ) exp

i
2

( )0

(2)

where i is the imaginary unit, χμ(r, B = 0) denotes the field-
independent atomic-orbital basis function centered at Rμ, and
R0 is the gauge origin. Through the utilization of GIAOs, we,
therefore, formally introduce complex quantities.

The remainder of this section is structured as follows: we
will first give a brief review of the RPA total energy in the
atomic-orbital basis formulation and subsequently continue
with the first derivative with respect to the nuclear magnetic
moment m. We derive both in terms of complex-valued
orbitals without any assumptions on the symmetry of functions
in the time and frequency domain. This general formulation of
the RPA energy and first-order properties differs from the
derivation presented by Beuerle and Ochsenfeld68 for
molecular gradients since it was carried out for real-valued
orbitals only. Subsequently, the second derivative of the RPA
energy with respect to the magnetic field B is derived and
evaluated at m = 0 and B = 0. This leads to a simplification of
the expressions, such that no complex-valued matrices enter
the final equations. All matrices are either purely real and
symmetric or purely imaginary and skew-symmetric. Further,
all time- and frequency-dependent quantities are either odd or
even functions in the time or frequency domain.

Please note that in the following sections, we will provide
only a brief summary for RPA energies and gradients, which
serve as a starting point for the second derivative. For a more
detailed account, we refer the reader to previous publications
on RPA energies54−56,59−61 and gradients.68,84

3.1. AO-RPA Total Energies. Within the adiabatic-
connection formalism,47 the total energy of the electronic
ground state can be expressed as46,48

[ ] = [ ] + [ ]E E EP P Ptotal HF
c (3)

where the total electronic energy Etotal, the Hartree−Fock
energy EHF, and the correlation energy Ec are evaluated with
the density P obtained from a prior DFT or HF calculation.
Please note that the following derivations will be carried out
for the more general case of a KS-DFT reference calculation.
However, we will note necessary changes for an HF reference
calculation where needed. The correlation energy can be
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expressed within the zero-temperature fluctuation−dissipation
theorem and the RPA85 as well as the RI approximation54−56

after analytical coupling-strength integration as

= [ + ]
+

E 1 X X
1

4
d Tr ln( (i ) ) (i )c

RPA
0 0

(4)

Here, the electron−electron interaction operator in the
auxiliary basis is given as

= | |P r Q( )PQ 12
1 1

(5)

within the RI approximation with the r12−1 Coulomb metric,
where r12 is the interelectronic distance. For efficiency reasons,
the noninteracting response function is computed in the
imaginary time domain and transformed into the imaginary
frequency domain using the Fourier transform

=
+

X X(i ) d exp(i ) (i )0 0 (6)

The Fourier transform simplifies to a cosine transform57,61 or,
equivalently, to a double Laplace transform59,60 if X0(iτ) is an
even function in the imaginary time domain. The response
function in the imaginary time domain is given by86

= + +X X X(i ) ( ) (i ) ( ) (i )0 0 0 (7)

=X G G(i ) ( i ) (i )P Q
0,PQ 0, 0, (8)

=+X G G(i ) ( i ) (i )P Q
0,PQ 0, 0, (9)

where the three-center RI integrals are defined as

= | |r P( )P
12

1
(10)

and the noninteracting Green’s functions are defined as

= +G G G(i ) ( ) (i ) ( ) (i )0 0 0 (11)

=G P H S P(i ) exp( ( ) )0 F (12)

=G P H S P(i ) exp( ( ) )0 virt F virt (13)

with the Fermi level ϵF,
60,87 the Heaviside step function Θ(τ),

the occupied density P, and the virtual density Pvirt. Further,
the Hamiltonian H is defined according to

= + [ ]H h G P (14)

where h denotes the matrix representation of the one-electron
Hamiltonian, and G[P] is defined as

[ ] = [ ] + [ ]G P J P V Pxc (15)

with the matrix representation of the Coulomb potential J and
the exchange-correlation potential Vxc. Please note that for a
RPA calculation based on a Hartree−Fock reference, Vxc is
replaced by the Hartree−Fock exchange K.
3.2. First Derivative with Respect to the Nuclear

Magnetic Moment. The first derivative of the RPA total
energy in eq 3 with respect to the nuclear magnetic moment m
reads

[ ] = [ ] + [ ]E E EP
m

P
m

P
m

total HF
c
RPA

(16)

In the following sections, we will first review the expression for
[ ]E P

m

HF
and subsequently derive an expression for the derivative

of the RPA correlation energy Ec
RPA with respect to m.

3.2.1. First Derivative of the HF Functional with Respect
to the Nuclear Magnetic Moment. The derivative of the HF
energy with respect to the nuclear magnetic moment m, given
by the first term in eq 16, can be written as

[ ] = +E P
m

Ph H PTr( ) Tr( )m m
HF

HF (17)

with

= + [ ] + [ ]H P P h P J P P K PTr( ) Tr( )m m m m
HF (18)

It is important to note that the HF energy is not stationary
with respect to the KS density. Therefore, the density response,
i.e., the last term in eq 17, has to be evaluated explicitly and
cannot be avoided as in regular HF gradient calculations.88 A
most efficient alternative is to use the Z-vector method, as
outlined later in this work.84,89

3.2.2. First Derivative of the RPA Correlation Energy with
Respect to the Nuclear Magnetic Moment. The first
derivative of the RPA correlation energy (eq 4) with respect
to a general perturbation ξ is given by68

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

= +

+

E E E

E
G

G

Tr Tr

Tr

c
RPA

c
RPA

c
RPA

c
RPA

0

0

(19)

When considering the derivative with respect to the nuclear
magnetic moment m, the above equation reduces to

i
k
jjjjj

y
{
zzzzz=

+E E
m X

X
G

G
m

Tr d
(i )

(i )
(i )
(i )

(i )c
RPA

c
RPA

0

0

0

0

(20)

since both the electron−electron interaction operator in the
auxiliary basis and the three-center integral tensor are
independent of m, and thus their derivative is zero.

For a given imaginary frequency, the first term in eq 20
evaluates to

=E
X

W
(i )

(i )
1

4
(i )c

RPA

0
c

(21)

where the correlated screened Coulomb interaction, which is
also one of the central quantities in the GW-approxima-
tion,67,90,91 is defined as

= [ ]W 1 X 1(i ) ( (i ) )c 0
1

(22)

To evaluate the derivative of the RPA correlation energy with
respect to m entirely in the imaginary time domain, eq 6 can
be inserted into eq 20 to yield

i
k
jjjjj

y
{
zzzzz

=
+ +E

m
W

X
G

G
m

Tr
1

4
d d (i )

exp(i )
(i )
(i )

(i )

c
RPA

c

0

0

0

(23)
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Next, Ŵc(iω) has to be transformed into the imaginary time
domain. Therefore, we consider the expression for its inverse
Fourier transform

=
+

W W(i )
1

2
d (i ) exp( i )c c (24)

When comparing the right-hand side of eq 24 with eq 23, it
becomes apparent that eq 23 cannot be rewritten directly in
terms of Wc(iτ). However, Wc(iτ) can be expressed in terms of
its even and odd part as Wc(iτ) = Wc

even(iτ) + Wc
odd(iτ), which

allows us to rewrite the first two terms in eq 23 as

=

+
W W

W W

(i )
1

2
d (i ) exp(i )

(i ) (i )

c c

c
even

c
odd (25)

with

=
+

W W(i )
1

d cos( ) (i )c
even

0
c (26)

=
+
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Inserting eq 25 into eq 23 finally yields
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After the evaluation of X
G

(i )
(i )

0

0
, the following expression is

obtained
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RPA

0
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(30)

where the correlated self-energy Σ is introduced, which is
another central quantity in the GW-approximation.67 For
positive and negative imaginary times, Σ(iτ) is defined as

= W G(i ) ( i ) (i )P Q
c,PQ 0, (31)

The last term that remains to be evaluated in eq 30 is the
derivative of the Green’s functions with respect to m. A
detailed derivation can be found in ref 68. In the following,
only the most important steps of the derivation are shown.
Differentiating the Green’s functions given in eqs 12 and 13
yields

=

+

G
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The occupied and virtual densities are related through the
completeness relation

= +1 PS P Svirt (34)

By differentiating the above identity with respect to the nuclear
magnetic moment,84 the following relation is obtained:
Pvirt
m = −Pm, which only requires the evaluation of the occupied

density. The derivative of the matrix exponentials can be
evaluated by differentiating the corresponding series expan-
sion.84,87,92

The final expression reads
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where the following intermediates are introduced
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and the matrices
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with ( ) defined as

= +( ) ( ) ( ) ( ) ( ) (45)

= H S P( ) ( )F (46)

= H S P( ) ( )F virt (47)

and (i ) as

= +(i ) ( ) (i ) ( ) (i ) (48)

= P(i ) ( i ) (49)
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= P(i ) ( i ) virt (50)

The Y matrices are most efficiently evaluated using a recursion
scheme according to34,84
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=
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3.3. Second Derivative with Respect to the Magnetic
Field. The mixed second derivative of the total RPA energy
with respect to m and B reads

= [ ]

= [ ] + [ ]
= =

= = = =
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2
c
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In the following sections, the mixed second derivative of the
HF energy, given by the first term in eq 54, is reviewed.
Subsequently the second derivative of the RPA correlation
energy, given by the second term in eq 54, is derived, and
finally both components are combined to form the total
shielding tensor.
3.3.1. Second Derivative of the HF Energy with Respect to

the Magnetic Field. The second derivative of the HF energy
with respect to m and B can be obtained by differentiating
eq 17 with respect to B yielding
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+
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For simplicity in the following, the first two contributions from
the HF functional are summarized in the intermediate σ̃HF. We
note here that the contributions from Tr(HHF

B Pm) and
Tr(HHFPBm) do not arise in the case of a HF reference, as
explained in detail in Appendix A. The magnetic field
derivative of the HF Hamiltonian HHF

B is given by

= + [ ] + [ ] + [ ]H h J P K P K PB B B B B
HF (57)

where the term J[PB] is zero, due to the skew symmetry of the
purely imaginary B-field derivative of the density matrix.
3.3.2. Second Derivative of the RPA Correlation Energy

with Respect to the Magnetic Field. The second derivative of
the RPA correlation energy with respect to the magnetic field
B can be obtained by differentiating eq 36

= +

+ +

[ ]

= =
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P h P h

Tr( ) Tr( )

Tr( ) Tr( )

E P
B m

m 0 B 0

B m Bm

B m Bm
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2
c
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(58)

The derivative of the density with respect to the nuclear
magnetic moment in the first term of eq 58 can, in principle, be
evaluated by solving the coupled-perturbed KS (CPKS)
equations for all perturbations of the nuclear magnetic
moment. However, the response of the density can be
obtained more efficiently using the Z-vector technique,84,89

which requires the evaluation of only one CPKS equation.
Within the AO-based formulation, the density matrix-based
Laplace transformed CPKS method93 developed by our group
is employed.

In the next sections, the derivation of the B-field derivatives
of the PRPA and the VRPA intermediates is explained in detail.
Figure 1 provides a schematic overview of the necessary steps

to derive an expression for the central intermediates PRPA
B and

VRPA
B . The next section starts with the evaluation of PRPA

B , which
will lead to an expression for the magnetic field derivative of
the correlated self-energy ΣB. As can be seen in Figure 1, this
requires the B-field differentiated correlated screened Cou-
lomb interaction Wc

B, which in turn contains the derivative of
the noninteracting response function X0

B. Subsequently, the
evaluation of VRPA

B will be detailed, and finally, the
contributions from the HF functional and the RPA correlation
energy are combined to formulate the final equation for the
computation of the total RPA NMR shieldings.

Figure 1. Schematic representation of the derivation of VRPA
B and

PRPA
B . ST denotes a sine transform and IST denotes an inverse sine

transform. All arrows are labeled with the corresponding equations
from the text.
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3.3.3. Derivative of PRPA with Respect to the Magnetic
Field. Differentiation of eq 38 with respect to the magnetic
field yields

= +
+

P P Y PY P Y

P Y

1
2

d ( ( i ) ( i ) (i )

(i ))

B B B B

B

RPA
0

virt

virt (59)

The direct evaluation of Pvirt
B can again be avoided by

differentiation of the completeness relation given in eq 34
with respect to the B-field

=P P S S SB B B
virt

1 1 (60)

Here, we note that at this stage the density response PB is
evaluated directly by solving the CPKS equations for all B-field
perturbations without utilizing the Z-vector technique. Since
there are only three perturbations in total, this does not
constitute a considerable overhead.
Apart from PB, the evaluation of eq 59 requires the B-field

derivative of the Y intermediates. Since the derivative of the Y
matrices also arises in the evaluation of Laplace transformed
atomic-orbital MP2 NMR shieldings,33,34,38 the approach
recently introduced by Glasbrenner et al.34 is adopted for
the evaluation of YB(iτ). Differentiating the recursion formula
for Y(iτ) given in eq 51 with respect to the B-field yields

=
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At this point the derivatives of ( ) and (i ) are required.
Differentiation of the respective expressions given in
eqs 46−50 results in

= H S P H S P( ) ( ) ( )B B B B
F F (63)

= H S P H S P( ) ( ) ( )B B B B
F virt F virt (64)

=i P P( ) ( i ) ( i )B B B (65)

= P P(i ) ( i ) ( i )B B B
virt virt (66)

where the B-field derivative of the Hamiltonian (eq 14) is
given by

= + [ ] + [ ]H h G P G PB B B B (67)

Up to this point, the only unknown quantity is the B-field
derivative of the correlated self-energy, which is the focus of
the next section.
3.3.4. Derivative of the Correlated Self-Energy with

Respect to the Magnetic Field. The derivative of the self-
energy, i.e.,

=
= =

W G
B B
(i )

( ( i ) (i ) )P Q

B 0 B 0
c,PQ 0,

(68)

can be obtained by differentiating eq 31 using the product rule.
Further simplifications can be made by considering the
symmetries of all quantities when evaluating at B = 0. Since

the vector potential that describes the magnetic field is purely
imaginary, any associated B-field differentiated Hermitian
matrix will necessarily be purely imaginary and therefore
skew-symmetric in the time domain. Furthermore, both the
magnetic field derivative of the noninteracting response
function X0

B(iτ) and the derivative of the correlated screened
Coulomb interaction Wc

B(iτ) are odd functions in the
imaginary time domain. All remaining, nondifferentiated
quantities are purely real, symmetric, and even functions in
the imaginary time domain. A detailed derivation is shown in
Appendix B, while here only the resulting working equations
are presented
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If done stepwise, the computation of the self-energy and its B-
field derivative formally scale as N N( )aux

2 2 and thus constitute
the steepest scaling steps in the computation of RPA NMR
shieldings.

In the following sections, first the B-field derivative of the
correlated screened Coulomb interaction Wc(iτ) is evaluated
and subsequently the derivative of the Green’s functions is
evaluated.

Since no simple closed expression for the correlated
screened Coulomb interaction in the imaginary time domain
exists, the B-field derivative is evaluated in the imaginary
frequency domain Ŵc

B(iω) and subsequently transformed back
into the imaginary time domain using an inverse sine transform

=
+

W W(i ) 2i d sin( ) (i )B B
c

0
c (71)

Ŵc
B(iω) can be obtained by differentiating eq 22 with respect

to the B-field yielding

= [ ]
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where the following identity for the derivative of matrix
inverses of a general matrix is used

=( )1
1 1

(74)
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As can be seen from eq 73, for the computation of Ŵc
B(iω), the

B-field derivative of the response function in the imaginary
frequency domain X̂0

B(iω) is needed. For efficiency reasons, the
B-field derivative of the response function is computed in the
imaginary time domain and transformed back into the
imaginary frequency domain using the sine transform

=
+

X X(i ) 2i d sin( ) (i )B B
0

0
0 (75)

By differentiating eq 9 using the product rule, an expression for
X0
B(iτ) is obtained according to
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Finally, to complete the evaluation of Σ(iτ), the B-field
derivative of the Green’s function is needed. Differentiating
eqs 12 and 13 yields
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The B-field derivative of the matrix exponentials in the above
equations can be obtained, as explained in Section 3.2.68

3.3.5. Derivative of VRPA with Respect to the Magnetic
Field. Differentiating eq 37 yields

= + [ ] + [ ]V M G P G P
1
2

( )B B B B
RPA RPA RPA (79)

The evaluation of PRPA
B was described in detail in the last

section. An expression for MB = M̅B + MB can be obtained by
differentiating eqs 40 and 41 using the product rule yielding
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The evaluation of all B-field derivatives in the above expression
has been described in the previous section.
3.3.6. Second Derivative of the Total RPA Energy. By

combining eqs 56 and 58, an expression for the total RPA
energy can be obtained according to

[ ] = [ + ]

+ [ + ]
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,
RPA HF

RPA HF

RPA RPA
HF

(82)

For simplicity, the contribution σ̃HF is treated separately with
the usual techniques used for the computation of HF and DFT
shifts. The contribution of the remaining terms will be
described in detail in the next section.
3.3.7. Final Equation for RPA NMR Shieldings: Nested Z-

Vector Approach for Avoiding PBm. The nested Z-vector
approach provides an efficient way to evaluate PBm with a
reduced number of CPKS equations. It was first introduced by
Maurer and Ochsenfeld33 for AO-MP2 NMR shieldings and
recently improved by Glasbrenner et al.34 Here, we want to
stress that Gauss had already introduced the respective MO-
based Z-vector equations in the framework of MO-MP2 in
1992.19

In the following, the basic idea for the nested Z-vector
method is reviewed, and subsequently the final equations are
presented. A detailed derivation can be found in ref 34.

The objective is to evaluate Tr([VRPA + HHF]PBm), i.e., the
second term in eq 82. For this, we first consider the CPKS
equation for the B-field derivative of the density

=AP bB B (83)

where A is the KS Hessian matrix and bB is the right-hand side
of the CPKS equation. Next, eq 83 is differentiated with
respect to m and rearranged to obtain an expression for PBm

according to

= [ ]P A b A P( )Bm Bm m B1 (84)

Using eq 84 together with the Z-vector ansatz allows to rewrite
Tr([VRPA + HHF]PBm) as

[ + ] = [ ]V H P Z b A PTr( ) Tr( ( ))Bm Bm m B
RPA HF (85)

where Z is computed by solving one CPKS equation AZ =
VRPA + HHF. Next, all terms in Tr(Z(bBm − Am[PB])) need to
be reordered, such that only terms of the form Tr[···Pm] result,
which renders the expression amenable to another Z-vector
step. The reordering is performed analogously to eqs D12−
D28 in ref 34. It was shown that this, in combination with the
terms Tr[VRPA

B Pm] from eq 58 and Tr[HHF
B Pm] from eq 56,

leads to

[ ] + [ + ]
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Y
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Applying eqs 85 and 86 to eq 82 and rearranging terms, yields
the final expression for the RPA NMR shieldings as

= [ + ] + [ + ]
+ +

P O h P O h

Z b

Tr( ) Tr( )

Tr( )
Y

Bm B
F

m

O
m

RPA RPA
HF

m m

(87)

The introduced quantities OYm, OFm, O, and ZO are defined in
ref 34. Here, we note that following the notation of ref 34 in
the context of the AO-MP2 NMR shieldings, the intermediates
PRPA and (VRPA + HHF) correspond to the intermediates
and , respectively, and likewise for the differentiated
intermediates. In essence, for an efficient treatment of the
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contributions from the HF Hamiltonian, i.e., Tr(HHF PBm) and
Tr(HHF

B Pm) from eq 56, HHF needs to be added to the VRPA
intermediate, and likewise for the B-field differentiated
quantities, to avoid the solution of two nested Z-vector
equations. Finally, an overview of all necessary steps to
compute NMR chemical shieldings at the RPA level of theory
is provided in the Supporting Information.

4. COMPUTATIONAL DETAILS
Analytical NMR shifts at the RPA level of theory were
implemented within our quantum chemistry package
FERMIONS++.94−96 As a starting point for the RPA
calculations, DFT with the generalized gradient approximation
of Perdew−Burke−Ernzerhof (PBE),97 as provided by the
Libxc library version 5.1.1,98 as well as the Hartree−Fock
method, are employed. For all PBE reference calculations, an
uncoupled DFT scheme is used.99,100 The frozen core
approximation is not utilized. Further, dense matrix algebra
routines from the Intel Math Kernel Library (version 2022.0.0)
are employed. Dunning’s correlation-consistent basis sets with
core weighted functions (cc-pwCVDZ, cc-pwCVTZ)101 are
used in combination with the corresponding RI basis sets.102

For the time and frequency integration57,61 as well as the
cosine57,61 and sine transformation90 to switch between two
domains, optimized minimax grids57 are employed. For this,
we use 15 grid points, which is proven to be sufficiently
accurate, as shown in Section 5.2. The derivatives of numerical
integration roots and weights used for the numerical imaginary
time and frequency quadratures are neglected. This is justified
by earlier work on RPA gradients,67,68 which employ the same
integration grids and for which it was found that this
approximation yields sufficiently accurate results. Further, the
validity of the gauge origin independence was confirmed by
carrying out calculations after shifting each coordinate of the
gauge origin by 5 Å. The isotropic shieldings showed
deviations that did not exceed 0.05 ppm. Detailed results are
provided in the Supporting Information. As commonly done in
implementations of NMR shieldings, the explicit use of
complex-valued matrices is avoided by treating purely
imaginary matrices using skew-symmetric, real-valued matrices.
To validate our implementation, we further computed

numerical RPA NMR shifts that were recently presented by
our group.41 In this context, the RPA correlation energy is
computed within the RI approximation using the method of
Furche and co-workers.54 For the numerical frequency
integration, we employ the Clenshaw−Curtis scheme54,103

with 120 grid points, which was confirmed to provide accurate
results in ref 41.

5. RESULTS AND DISCUSSION
5.1. Validation of the Implementation. For the

validation of our implementation of analytical RPA NMR
shifts, the shifts are compared against the results obtained with
the numerical RPA NMR reference implementation.41 There-
fore, analytical and numerical RPA NMR shifts based on a
preceding PBE reference calculation (RPA@PBE) and based
on a HF reference (RPA@HF) were computed for the
molecules in the test set assembled by Gauss and co-
workers104 as well as the test set of Flaig et al.27 For the
Gauss benchmark set, the molecules SO2 and O3 are excluded,
as in ref 104, as well as PN, which is a difficult case for
theoretical computations in general.105

The results for the Gauss benchmark set are shown in
Figure 2 and in more detail in Table 1, where the mean

absolute deviations (MADs) of the analytical istropic NMR
shifts with respect to the numerical results are shown for the
most common nuclei in the test set, i.e., 1H, 13C, 15N, 17O, and
19F, at the RPA@HF and RPA@PBE levels of theory using the
cc-pwCVTZ basis set with the corresponding RI basis set. As
can be seen, the MADs for the different nuclei at the RPA@HF
and RPA@PBE levels of theory are all on the order of
10−2 ppm, which is well within the error of numerical
differentiation.

The corresponding results for the Flaig benchmark set are
provided in Figure 3 and in more detail in Table 1 for the
nuclei 1H, 13C, 15N, 17O, and 19F. All calculations were carried
out using the cc-pwCVDZ basis set with the corresponding RI
basis set. Evidently, for this benchmark set, all MADs are also
on the order of 10−2 ppm and comparable with the results
obtained for the Gauss benchmark set. Since the errors are well
within the error of numerical differentiation, it is safe to
conclude that the presented theory and the implementation
thereof are correct.
5.2. Accuracy: Convergence of the Minimax Grid. To

motivate the choice for the number of numerical integration
points for the minimax grids in the previous section, NMR
shift calculations on the benchmark set by Gauss and co-
workers104 are performed at the RPA@HF level of theory

Figure 2. MADs in 10−2 ppm of analytical to numerical isotropic
NMR shifts for the 1H, 13C, 15N, 17O, and 19F nuclei at the RPA@HF
and RPA@PBE levels of theory for the molecules in the Gauss104

benchmark set. All calculations were carried out using the cc-
pwCVTZ basis set with the corresponding RI basis set.

Table 1. Comparison of MADs in 10−2 ppm of Analytical to
Numerical Isotropic NMR Shifts for the 1H, 13C, 15N, 17O,
and 19F Nuclei at the RPA@HF and RPA@PBE Levels of
Theorya

benchmark reference 1H 13C 15N 17O 19F

Gauss HF 0.05 0.41 0.53 5.91 4.97
PBE 0.01 0.32 0.31 21.19 6.44

Flaig HF 0.84 2.08 6.01 6.94 1.52
PBE 0.04 3.05 7.73 7.73 2.52

aAll Calculations were carried out with the cc-pwCVTZ basis set for
the Gauss benchmark set and with the cc-pwCVDZ basis set for the
Flaig benchmark set.
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using the cc-pwCVTZ basis set for a varying number of
integration points. The MADs with respect to the results
obtained with the largest available integration grid are
presented in Table 2 for the most represented nuclei in this
benchmark set, i.e., 1H, 13C, 15N, 17O, and 19F.

The results in Table 2 show that the numerical integration
grids allow to smoothly converge the obtained chemical shifts.
For lighter elements, such as 1H, the errors are almost
independent of the grid size and smaller than 10−3 ppm. For
heavier elements, such as 17O, a grid size of 15 integration
points allows one to obtain an accuracy on the order of
10−2 ppm, compared to the converged result obtained with 20
integration points. In conclusion, based on the obtained
results, the choice of 15 integration points provides a good
compromise between accuracy and computational cost, which
is why this number of grid points was employed in all
presented calculations.

6. CONCLUSIONS
An analytical expression for NMR chemical shieldings at the
direct RPA level of theory as a post-KS method based on
ACFDT is presented for the first time. By taking the mixed
second derivative of the RPA ground-state energy expression
with respect to the nuclear magnetic moment and an external
magnetic field, the NMR shielding tensor is obtained. For this,
a rigorous derivation for the analytical expression is presented,
with which the evaluation of the shielding tensor is possible
with formal O(N4) time complexity, in contrast to the higher-
scaling of other correlation methods such as MP2 or CC. The
derived expressions and the implementation are sensibly
verified by comparing the obtained chemical shifts against
the numerical implementation by Glasbrenner et al.41 For this,
calculations on established NMR benchmark sets were carried
out with both HF and a commonly used representative for
DFT functionals, i.e., PBE, as reference. While the employed
implementation is only preliminarily optimized in terms of
computational efficiency and not yet optimized in terms of
memory requirements, the presented equations represent an
ideal stepping stone toward a low-scaling and efficient
implementation of NMR shieldings at the RPA level of theory
in future work. Similar to the AO-RPA gradients, the
evaluation of the noninteracting response function and the
correlated self-energy in the imaginary time domain represent
the formally highest scaling steps, and the necessity to compute
their magnetic field derivatives adds additional O(N4) scaling
steps. However, efficient techniques, such as the attenuated
Coulomb RI approximation60 and Cholesky molecular orbitals,
to treat the involved integral contractions can be leveraged for
a low-scaling implementation at reduced cost in future work.
The application of these low-scaling techniques therefore
provides a valuable route toward NMR shift calculations on
large molecules with good accuracy and affordable cost.

Furthermore, the derived expression for the analytical
second derivative of the RPA energy can easily be extended
to the related σ-functionals72 to profit from the reduced errors
not only for atomization, reaction, and noncovalent interaction
energies but possibly also for NMR shifts.

■ APPENDICES

A. Derivation of the Hartree−Fock Energy Functional
Shielding Contribution
The Hartree−Fock energy functional is given as

i
k
jjj y

{
zzz[ ] = + [ ]E P Ph PG PTr

1
2

HF

(88)

To compute the HF contribution to the total NMR shielding
tensor, this expression is first differentiated with respect to the
nuclear magnetic moment m given by

[ ] = + + [ ]E P
m

P h Ph P G PTr( )m m m
HF

(89)

As the basis functions are independent of m, the contribution
from the differentiated integrals, i.e., Gm[P] is zero. The terms
contracted with the response of the density matrix Pm can be
collected in the HF Hamiltonian HHF to yield

[ ] = +E P
m

Ph P HTr( )m m
HF

HF (90)

Figure 3. MADs in 10−2 ppm of analytical to numerical isotropic
NMR shifts for the 1H, 13C, 15N, 17O, and 19F nuclei at the RPA@HF
and RPA@PBE levels of theory for the molecules in the Flaig27

benchmark set. All calculations were carried out using the cc-
pwCVDZ basis set with the corresponding RI basis set.

Table 2. Analysis of the RPA NMR Shift Convergence for
the 1H, 13C, 15N, 17O, and 19F Nuclei with the Number of
Minimax Grid Points Ng

a

Ng
1H 13C 15N 17O 19F

10 0.01 0.62 1.75 3.20 0.97
11 0.01 0.50 1.40 2.57 0.77
12 0.01 0.41 1.14 2.07 0.61
13 0.01 0.36 0.91 1.73 0.49
14 0.00 0.26 0.70 1.31 0.42
15 0.00 0.24 0.54 1.07 0.31
16 0.00 0.15 0.39 0.75 0.23
17 0.00 0.13 0.26 0.53 0.39
18 0.00 0.09 0.14 0.32 0.34
19 0.00 0.04 0.07 0.15 0.08
20 - - - - -

aAll values are given as MADs in 10−2 ppm with respect to the results
obtained for Ng = 20 at the RPA@HF level of theory. All calculations
were carried out using the cc-pwCVTZ basis set with the
corresponding RI basis set.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00542
J. Chem. Theory Comput. 2023, 19, 7542−7554

7550



Since the occupied−occupied part of Pm is given by Poo
m =

−PSmP = 0 and the virtual−virtual part is necessarily zero, the
density response is given by the nonzero occupied−virtual and
virtual−occupied blocks as

= +

= +

P PSP 1 SP 1 PS P SP

P P

( ) ( ) (91)

(92)

m m m

m m
ov vo

At the same time the occupied−virtual and virtual−occupied
parts of the HF Hamiltonian, given by the following subspace
projections,

= =SPH 1 PS 1 SP H PS 0( ) ( )HF HF (93)

= =H H 0HF,ov HF,vo (94)

vanish for a matching converged HF density. Therefore, the
trace of PmHHF is zero and the HF contribution to the total
shielding tensor, after second differentiation with respect to B,
is given by

[ ] = +E P
B m

P h PhTr( ) Tr( )B m Bm
2 HF

(95)

However, in the case of a KS reference density, the HF energy
functional is nonstationary with respect to the density and thus
the occupied−virtual and virtual−occupied parts of the HF
Hamiltonian are nonzero. Therefore, in this case, the HF
contribution to the total shielding tensor is given by

[ ] = + +

+

E P
B m

P h Ph H P

H P

Tr( ) Tr( ) Tr( )

Tr( )

B m Bm B m

Bm

2 HF

HF

HF (96)

B. Derivative of the Self-Energy with Respect to the
Magnetic Field
Carrying out the differentiation in eq 68 for the self-energy
Σ(−iτ) in the negative imaginary time domain yields
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(97)

When evaluating the above expression at B = 0, all quantities
that are not B-field derivatives evaluate to real-valued matrices
(symmetric) and even functions in the imaginary time domain.
All B-field derivatives are purely imaginary quantities (skew-
symmetric) and odd functions in the imaginary time domain.

With this in mind, +W

B

( i )c,PQ can further be simplified by using
the definition in eq 25 and the fact that it is an odd function in
the imaginary time domain:
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Inserting the above expression into eq 97 yields the final
expression given in eq 70.

By analogy, the self-energy in the positive time domain can
be written according to
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Again, rewriting W

B

( i )c,PQ using eq 25 and considering that it
is an odd function in the imaginary time domain yields
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Finally, inserting the above equation into eq 100 yields eq 69.
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1 Implementation

The following algorithm summarizes the necessary steps for computing NMR chemical shield-

ings at the RPA level of theory.

Algorithm 1 Compute RPA NMR chemical shieldings.
compute H, S, P, Pvirt, V, and B ▷ SCF intermediates
compute hm, hBm, SB, H(B), and BB

solve CPSCF for PB

compute PB
virt

compute HB

if not Hartree–Fock reference then
compute HHF and HB

HF
end if
compute G0(iτ) ▷ first derivative intermediates
compute X0(iτ)
cosine transform of X0(iτ) to X̂0(iω)
compute Ŵc(iω)
inverse cosine transform of Ŵc(iω) to Wc(iτ)
compute Σ(iτ)
compute Y(iτ) by recursion with A(τ) and B(iτ)
integrate Y(iτ) to form PRPA

integrate Y(iτ) and Σ(iτ) to form M
compute VRPA

for every B-field component do ▷ second derivative intermediates
compute GB

0 (iτ)
compute XB

0 (iτ)
sine transform of XB

0 (iτ) to X̂B
0 (iω)

compute ŴB
c (iω)

inverse sine transform of ŴB
c (iω) to WB

c (iτ)
compute ΣB(iτ)
compute YB(iτ) by recursion with AB(τ) and BB(iτ)
integrate Y(iτ) and YB(iτ) to form PB

RPA
integrate Y(iτ), YB(iτ), Σ(iτ), and ΣB(iτ) to form MB

compute VB
RPA

end for
solve Z-vector equation ZVRPA = A−1(VRPA +HHF) ▷ nested Z-vector/final shieldings
compute O, OFm , and OYm

solve Z-vector equation ZO = A−1O
compute σ = Tr([PRPA +OYm ]hBm) + Tr([PB

RPA +OFm ]hm) + Tr(ZOb
m) + σ̃HF

The algorithm can roughly be grouped into four stages. First, the computation of all
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intermediates also present in HF NMR shieldings, i.e., the densities, the Hamiltonian, the

integrals, etc., as well as their derivatives. Second, the formation of all intermediates also

occurring in the first derivative of the RPA equations, which are independent of the magnetic

field. Third, B-field derivatives of the intermediates of the first derivative, and lastly the

nested Z-vector step to obtain the final intermediates for the NMR shieldings.

The most involved steps in terms of computational effort are the computation of the

response function X0(iτ) and the self-energy Σ(iτ) in the imaginary time domain, as well

as their B-field derivatives. Here, X0(iτ) is most efficiently computed according to, e.g.,

Ref. S1 by premultiplying the Green’s functions with the three-center integrals and then

using a matrix multiplication to multiply both third-order tensors. The same approach can

be used for the B-field derivative of the response function. The self-energy is computed as

explained in Ref. S2 and its SI. For the B-field derivative of the self-energy we use the same

approach. Here, we want to note that for the matrix multiplications we use the high parallel

performance of the MKL library for dense matrix algebra routines.
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2 Gauge Invariance

Table S1: Testing the gauge origin independence at the RPA@HF level of theory using the
def2-SVP and cc-pwCVTZ basis sets with the corresponding RI basis sets for the molecules
in the Gauss benchmark set. For each basis set the NMR shifts are given in ppm for the
initial geometry (reference) and after each atom has been translated by 5 Å(transl.) as well
as the resulting absolute deviation (abs. err.).

def2-SVP [ppm] cc-pwCVTZ [ppm]

molecule element transl. reference abs. err. transl. reference abs. err.
AlF

Al -4.1606 -4.1605 0.0001 -4.8933 -4.8936 0.0002
F 3.7843 3.7823 0.0020 -2.5863 -2.5871 0.0008

C2H4
C 13.5843 13.5850 0.0007 8.0167 8.0169 0.0003
C 13.5843 13.5850 0.0007 8.0172 8.0169 0.0003
H 0.3400 0.3400 0.0000 0.1530 0.1499 0.0031
H 0.3400 0.3400 0.0000 0.1466 0.1499 0.0033
H 0.3400 0.3400 0.0000 0.1531 0.1499 0.0032
H 0.3400 0.3400 0.0000 0.1468 0.1499 0.0031

C3H4
C -0.8958 -0.8959 0.0001 -2.3976 -2.3762 0.0213
C 16.5324 16.5323 0.0001 10.5089 10.5229 0.0140
C 16.5324 16.5323 0.0001 10.5468 10.5229 0.0239
H 0.7695 0.7695 0.0000 0.5412 0.5476 0.0064
H 0.7695 0.7695 0.0000 0.5391 0.5476 0.0085
H 0.1390 0.1390 0.0000 0.0055 0.0054 0.0000
H 0.1390 0.1390 0.0000 0.0001 0.0054 0.0053

CH2O
O 120.5025 120.5017 0.0008 82.7901 82.7902 0.0000
C 21.1176 21.1176 0.0000 12.2381 12.2387 0.0006
H 0.3273 0.3273 0.0000 0.1245 0.1186 0.0058
H 0.3273 0.3273 0.0000 0.1126 0.1186 0.0060

CH3F
C 0.6198 0.6197 0.0001 -1.3122 -1.3128 0.0007
F -9.1903 -9.1894 0.0009 -7.9269 -7.9254 0.0016
H 0.0139 0.0139 0.0000 -0.1095 -0.1076 0.0019
H 0.0139 0.0139 0.0000 -0.1051 -0.1076 0.0025
H 0.0139 0.0139 0.0000 -0.1083 -0.1076 0.0007

CH4
C 1.1768 1.1747 0.0021 1.3187 1.3182 0.0005
H 0.0179 0.0180 0.0001 -0.0461 -0.0460 0.0001
H 0.0180 0.0180 0.0000 -0.0460 -0.0460 0.0000
H 0.0180 0.0180 0.0000 -0.0460 -0.0460 0.0000
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H 0.0180 0.0180 0.0001 -0.0459 -0.0460 0.0001

CO
C 34.8474 34.8478 0.0004 24.6474 24.6476 0.0002
O 49.7149 49.7178 0.0028 33.9522 33.9530 0.0008

FCCH
C 4.5935 4.5934 0.0001 2.0948 2.0918 0.0030
C 2.7262 2.7263 0.0001 -0.2682 -0.2672 0.0010
H 0.3649 0.3649 0.0000 0.2173 0.2173 0.0000
F -0.1199 -0.1190 0.0009 -3.9647 -3.9823 0.0176

FCN
F 7.1241 7.1225 0.0016 -0.2682 -0.2703 0.0021
C 8.2799 8.2794 0.0005 5.3903 5.3900 0.0003
N 30.1391 30.1381 0.0010 20.9845 20.9848 0.0003

H2C2O
C 4.3011 4.3010 0.0001 2.2121 2.2113 0.0009
C 15.1969 15.1970 0.0001 8.7411 8.7352 0.0059
O 42.7184 42.7181 0.0003 26.3746 26.3681 0.0064
H 0.4432 0.4432 0.0000 0.1693 0.1673 0.0021
H 0.4432 0.4432 0.0000 0.1646 0.1673 0.0026

H2O
O 6.1048 6.1066 0.0018 5.8646 5.8657 0.0011
H 0.5146 0.5146 0.0000 0.4335 0.4339 0.0004
H 0.5146 0.5146 0.0000 0.4333 0.4339 0.0006

H2S
S 8.2477 8.2485 0.0009 8.7821 8.7865 0.0044
H 0.5157 0.5157 0.0000 0.2848 0.2857 0.0009
H 0.5157 0.5157 0.0000 0.2845 0.2857 0.0012

H4C2O
O -11.4164 -11.4150 0.0014 -14.9307 -14.8794 0.0513
C 0.2379 0.2380 0.0001 -1.7721 -1.7721 0.0000
C 0.2381 0.2380 0.0000 -1.7677 -1.7721 0.0045
H -0.0084 -0.0084 0.0000 -0.1355 -0.1444 0.0088
H -0.0084 -0.0084 0.0000 -0.1488 -0.1444 0.0044
H -0.0084 -0.0084 0.0000 -0.1346 -0.1444 0.0098
H -0.0084 -0.0084 0.0000 -0.1479 -0.1444 0.0035

HCN
H 0.1919 0.1919 0.0000 0.0776 0.0776 0.0000
C 15.7958 15.7957 0.0001 11.5072 11.5071 0.0000
N 43.4703 43.4703 0.0000 32.1927 32.1927 0.0000

HCP
H -0.0709 -0.0709 0.0000 -0.1727 -0.1727 0.0000
C 26.8904 26.8920 0.0015 18.0367 18.0369 0.0002
P 48.7256 48.7297 0.0041 32.5252 32.5260 0.0008
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HF
H 0.8963 0.8964 0.0001 0.8973 0.8972 0.0001
F 3.4654 3.4627 0.0027 3.0933 3.0962 0.0029

HFCO
O 59.6156 59.6138 0.0017 37.5707 37.5889 0.0182
C 11.8853 11.8851 0.0002 6.0880 6.0736 0.0144
F 2.8728 2.8736 0.0008 -7.2110 -7.2375 0.0266
H 0.0653 0.0653 0.0000 -0.1022 -0.0882 0.0140

HOF
O 94.8495 94.8534 0.0039 73.5406 73.5422 0.0017
H 1.9550 1.9549 0.0001 1.5882 1.5875 0.0007
F -66.9284 -66.9253 0.0031 -76.2030 -76.2082 0.0052

LiF
Li -0.8679 -0.8679 0.0000 -0.8239 -0.8239 0.0000
F -12.5098 -12.5098 0.0001 -1.8842 -1.8845 0.0004

LiH
H 0.4265 0.4265 0.0000 0.3036 0.3036 0.0000
Li 0.3786 0.3786 0.0000 -0.1106 -0.1107 0.0001

N2
N 60.9736 60.9742 0.0005 46.4441 46.4434 0.0007
N 60.9736 60.9742 0.0005 46.4441 46.4434 0.0007

N2O
N 47.6472 47.6460 0.0011 37.0936 37.0939 0.0003
N 47.6002 47.5990 0.0011 37.8976 37.8977 0.0001
O 34.7642 34.7621 0.0021 22.7467 22.7465 0.0003

NH3
N 3.8785 3.8787 0.0002 4.0256 4.0258 0.0002
H 0.2181 0.2181 0.0000 0.1343 0.1341 0.0002
H 0.2181 0.2181 0.0000 0.1344 0.1341 0.0003
H 0.2180 0.2181 0.0000 0.1345 0.1341 0.0004

OCS
O 32.8266 32.8281 0.0015 19.9120 19.9142 0.0022
C 25.1191 25.1194 0.0002 17.9478 17.9482 0.0004
S 24.1941 24.1940 0.0001 9.8036 9.8036 0.0000

OF2
O 68.5144 68.5128 0.0016 34.5995 34.6088 0.0093
F 3.3360 3.3362 0.0002 -18.4908 -18.4840 0.0068
F 3.3412 3.3362 0.0049 -18.5005 -18.4840 0.0165

S-7



3 Detailed Validation Results

In the following section detailed results for the GaussS3 and the FlaigS4 benchmark set are

presented. The order of the nuclei corresponds to the order given in the geometry files of

the respective molecules obtained from the SI in the case of the GaussS3 benchmark set

and from the download section of the Ochsenfeld group websiteS5 in the case of the FlaigS4

benchmark set. Shifts of nuclei which are not chemically equivalent are labeled appropriately

for an unambiguous assignment. For smaller molecules the respective functional group, and

if necessary the orientation, is given and for aromatics numbering according to the IUPAC

nomenclature is chosen.

3.1 Detailed Validation Results: Gauss Benchmark Set

Table S2: Detailed results of the RPA NMR shifts for all molecules in the Gauss benchmark
setS3 at the RPA@HF/cc-pwCVTZ level of theory for the numerical reference implementation
(reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.
AlF

Al -4.8936 -4.8950 0.0015
F -2.5871 -2.4875 0.0995

C2H4
C 8.0169 8.0204 0.0035
C 8.0169 8.0204 0.0035
H 0.1499 0.1503 0.0004
H 0.1499 0.1503 0.0004
H 0.1499 0.1503 0.0004
H 0.1499 0.1503 0.0004

C3H4
C -2.3762 -2.3758 0.0005
C 10.5229 10.5281 0.0051
C 10.5229 10.5281 0.0051
H 0.5476 0.5463 0.0013
H 0.5476 0.5463 0.0012
H 0.0054 0.0058 0.0004
H 0.0054 0.0058 0.0004

CH2O
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O 82.7902 82.6459 0.1443
C 12.2387 12.2425 0.0038
H 0.1186 0.1195 0.0009
H 0.1186 0.1195 0.0008

CH3F
C -1.3128 -1.3089 0.0039
F -7.9254 -7.9222 0.0032
H -0.1076 -0.1071 0.0005
H -0.1076 -0.1071 0.0005
H -0.1076 -0.1071 0.0005

CH4
C 1.3182 1.3200 0.0019
H -0.0460 -0.0460 0.0000
H -0.0460 -0.0460 0.0000
H -0.0460 -0.0460 0.0000
H -0.0460 -0.0460 0.0000

CO
C 24.6476 24.6488 0.0011
O 33.9530 33.9399 0.0131

FCCH
C 2.0918 2.0954 0.0036
C -0.2672 -0.2641 0.0031
H 0.2173 0.2161 0.0012
F -3.9823 -3.9386 0.0437

FCN
F -0.2703 -0.2593 0.0110
C 5.3900 5.3935 0.0034
N 20.9848 20.9702 0.0146

H2C2O
C 2.2113 2.2086 0.0026
C 8.7352 8.7477 0.0125
O 26.3681 26.3467 0.0215
H 0.1673 0.1676 0.0003
H 0.1673 0.1675 0.0002

H2O
O 5.8657 5.8665 0.0008
H 0.4339 0.4339 0.0000
H 0.4339 0.4339 0.0000

H2S
S 8.7865 8.7782 0.0083
H 0.2857 0.2858 0.0001
H 0.2857 0.2858 0.0001

H4C2O
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O -14.8794 -14.8979 0.0185
C -1.7721 -1.7677 0.0044
C -1.7721 -1.7677 0.0044
H -0.1444 -0.1437 0.0006
H -0.1444 -0.1437 0.0006
H -0.1444 -0.1437 0.0006
H -0.1444 -0.1437 0.0006

HCN
H 0.0776 0.0761 0.0015
C 11.5071 11.5120 0.0048
N 32.1927 32.1900 0.0027

HCP
H -0.1727 -0.1741 0.0014
C 18.0369 18.0328 0.0041
P 32.5260 32.4875 0.0385

HF
H 0.8972 0.8971 0.0001
F 3.0962 3.0949 0.0013

HFCO
O 37.5889 37.5400 0.0489
C 6.0736 6.0813 0.0077
F -7.2375 -7.2411 0.0036
H -0.0882 -0.0875 0.0007

HOF
O 73.5422 73.4006 0.1416
H 1.5875 1.5873 0.0002
F -76.2082 -76.0488 0.1594

LiF
Li -0.8239 -0.8231 0.0008
F -1.8845 -1.8240 0.0605

LiH
H 0.3036 0.3036 0.0000
Li -0.1107 -0.1096 0.0011

N2
N 46.4434 46.4436 0.0002
N 46.4434 46.4437 0.0003

N2O
N 37.0939 37.0826 0.0113
N 37.8977 37.8925 0.0052
O 22.7465 22.7367 0.0097

NH3
N 4.0258 4.0283 0.0025
H 0.1341 0.1341 0.0000
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H 0.1341 0.1341 0.0000
H 0.1341 0.1341 0.0000

OCS
O 19.9142 19.9108 0.0034
C 17.9482 17.9512 0.0031
S 9.8036 9.7461 0.0575

OF2
O 34.6088 34.4193 0.1895
F -18.4840 -18.4269 0.0571
F -18.4840 -18.4266 0.0574

S-11



Table S3: Detailed results of the RPA NMR shifts for all molecules in the Gauss benchmark
setS3 at the RPA@PBE/cc-pwCVTZ level of theory for the numerical reference implementa-
tion (reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.
AlF

Al -12.5395 -12.5407 0.0012
F -25.8208 -25.8211 0.0003

C2H4
C 20.7298 20.7377 0.0079
C 20.7298 20.7377 0.0079
H 0.3384 0.3386 0.0002
H 0.3384 0.3386 0.0002
H 0.3384 0.3386 0.0002
H 0.3384 0.3386 0.0002

C3H4
C -2.9284 -2.9238 0.0046
C 21.3029 21.3117 0.0088
C 21.3029 21.3117 0.0088
H 0.9359 0.9361 0.0002
H 0.9359 0.9361 0.0002
H -0.1389 -0.1389 0.0000
H -0.1389 -0.1389 0.0000

CH2O
O 220.4304 219.8347 0.5958
C 31.8927 31.8966 0.0039
H 0.0714 0.0715 0.0001
H 0.0714 0.0715 0.0001

CH3F
C -1.9967 -1.9966 0.0001
F -20.7658 -20.7645 0.0013
H -0.4794 -0.4794 0.0000
H -0.4794 -0.4794 0.0000
H -0.4794 -0.4794 0.0000

CH4
C 1.8436 1.8456 0.0020
H -0.0590 -0.0590 0.0000
H -0.0590 -0.0590 0.0000
H -0.0590 -0.0590 0.0000
H -0.0590 -0.0590 0.0000

CO
C 52.3831 52.3850 0.0019
O 71.6005 71.5951 0.0055
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FCCH
C 8.9862 8.9872 0.0010
C 5.0325 5.0352 0.0027
H 0.4341 0.4343 0.0002
F -5.5674 -5.5578 0.0096

FCN
F -9.4155 -9.4147 0.0008
C 18.3118 18.3125 0.0006
N 50.2996 50.2937 0.0058

H2C2O
C 3.7803 3.7816 0.0013
C 26.7004 26.7042 0.0038
O 61.5271 61.4990 0.0281
H 0.2732 0.2732 0.0001
H 0.2732 0.2732 0.0001

H2O
O 4.0511 4.0525 0.0014
H 0.8537 0.8537 0.0000
H 0.8537 0.8537 0.0000

H2S
S 10.5790 10.5488 0.0301
H 0.4957 0.4957 0.0000
H 0.4957 0.4957 0.0000

H4C2O
O -19.6393 -19.6391 0.0002
C -2.9245 -2.9235 0.0009
C -2.9245 -2.9236 0.0009
H -0.5762 -0.5762 0.0000
H -0.5762 -0.5762 0.0000
H -0.5762 -0.5762 0.0000
H -0.5762 -0.5762 0.0000

HCN
H -0.1525 -0.1526 0.0000
C 27.2219 27.2264 0.0045
N 65.8816 65.8822 0.0006

HCP
H -0.4788 -0.4788 0.0000
C 43.6045 43.6065 0.0019
P 100.7949 100.7578 0.0372

HF
H 1.7421 1.7421 0.0000
F 0.5872 0.5846 0.0026

HFCO
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O 100.6239 100.5588 0.0651
C 19.8154 19.8164 0.0010
F -29.0573 -29.0556 0.0017
H -0.3361 -0.3361 0.0000

HOF
O 121.8165 121.2863 0.5303
H 2.2540 2.2541 0.0001
F -71.9220 -72.1018 0.1798

LiF
Li -2.0030 -2.0031 0.0000
F -15.1874 -15.1811 0.0063

LiH
H -0.0427 -0.0428 0.0000
Li 1.3533 1.3550 0.0018

N2
N 80.3644 80.3690 0.0046
N 80.3644 80.3690 0.0046

N2O
N 59.5667 59.5670 0.0003
N 66.8380 66.8419 0.0038
O 38.3326 38.3284 0.0042

NH3
N 3.6714 3.6733 0.0019
H 0.2822 0.2822 0.0000
H 0.2822 0.2822 0.0000
H 0.2822 0.2822 0.0000

OCS
O 38.5240 38.5158 0.0082
C 41.5165 41.5165 0.0000
S 13.8466 13.8308 0.0158

OF2
O 55.7934 54.9134 0.8800
F -28.0742 -28.2949 0.2206
F -28.0742 -28.2949 0.2206
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3.2 Detailed Validation Results: Flaig Benchmark Set

Table S4: Detailed results of the RPA NMR shifts for all molecules in the Flaig benchmark
setS4 at the RPA@HF/cc-pwCVDZ level of theory for the numerical reference implementation
(reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.
Acetylene (C2H2)

H 0.0861 0.0859 0.0002
C 8.4582 8.4780 0.0198
C 8.4582 8.4781 0.0198
H 0.0861 0.0859 0.0002

Ethylene (C2H4)
H 0.3076 0.3084 0.0009
H 0.3076 0.3084 0.0009
C 13.4627 13.4998 0.0371
H 0.3076 0.3084 0.0009
C 13.4626 13.4998 0.0372
H 0.3076 0.3084 0.0009

Ethane (C2H6)
H -0.0524 -0.0522 0.0001
H -0.0524 -0.0522 0.0001
H -0.0524 -0.0522 0.0001
C 1.4695 1.4784 0.0089
H -0.0524 -0.0522 0.0001
H -0.0524 -0.0523 0.0001
C 1.4694 1.4784 0.0090
H -0.0524 -0.0523 0.0001

Benzene (C6H6)
H 0.2580 0.2591 0.0011
H 0.2580 0.2591 0.0011
C 11.9683 12.0091 0.0409
H 0.2580 0.2591 0.0011
C 11.9683 12.0092 0.0410
H 0.2580 0.2591 0.0011
C 11.9683 12.0092 0.0410
H 0.2580 0.2591 0.0011
C 11.9683 12.0092 0.0410
C 11.9683 12.0092 0.0410
C 11.9683 12.0091 0.0409
H 0.2580 0.2591 0.0011

Tetrachloromethane (CCl4)
C -0.9163 -0.9147 0.0016
Cl -10.1405 -10.1198 0.0207
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Cl -10.1405 -10.1198 0.0207
Cl -10.1405 -10.1198 0.0207
Cl -10.1405 -10.1198 0.0207

Tetrafluoromethane (CF4)
F 1.3975 1.4164 0.0188
F 1.3975 1.4166 0.0191
F 1.3975 1.4166 0.0191
C -5.6193 -5.6128 0.0064
F 1.3975 1.4165 0.0189

Propadiene (CH2CCH2)
H 0.1796 0.1802 0.0006
H 0.1796 0.1802 0.0006
CH2 6.2350 6.2590 0.0239
C−−C−−C 20.6112 20.6644 0.0532
H 0.1796 0.1802 0.0006
CH2 6.2351 6.2589 0.0239
H 0.1796 0.1802 0.0006

Acetaldehyde (CH3CHO)
O 77.9944 78.1373 0.1429
CHO 0.1444 0.1452 0.0008
CHO 20.9302 20.9626 0.0324
CH3, out of CCO plane 0.0217 0.0219 0.0002
CH3, out of CCO plane 0.0217 0.0219 0.0002
CH3 2.4229 2.4315 0.0086
CH3, in CCO plane 0.2397 0.2399 0.0002

Chloroform (CH3Cl)
C 2.9458 2.9462 0.0003
Cl -21.6412 -21.6328 0.0084
H 0.1091 0.1091 0.0000
H 0.1091 0.1091 0.0000
H 0.1091 0.1091 0.0000

Acetonitrile (CH3CN)
N 42.4969 42.5614 0.0645
CN 14.4076 14.4328 0.0252
H 0.0640 0.0641 0.0001
H 0.0655 0.0655 0.0001
CH3 0.9050 0.9119 0.0069
H 0.0653 0.0654 0.0001

Acetone (CH3COCH3)
H, in CCC plane 0.2100 0.2101 0.0002
H, out of CCC plane -0.0359 -0.0357 0.0002
H, out of CCC plane -0.0359 -0.0354 0.0005
CH3 2.2390 2.2466 0.0075
O 59.2885 59.4418 0.1533
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CO 21.0772 21.1097 0.0325
H, out of CCC plane -0.0359 0.2102 0.2461
H, out of CCC plane -0.0359 -0.0357 0.0002
CH3 2.2390 2.2468 0.0078
H, in CCC plane 0.2100 -0.0360 0.2460

Fluoromethane (CH3F)
F -9.8763 -9.8764 0.0001
H -0.0009 -0.0009 0.0001
H -0.0009 -0.0009 0.0001
C 1.0363 1.0428 0.0065
H -0.0009 -0.0008 0.0001

Methylamine (CH3NH2)
NH2 0.0521 0.0521 0.0001
NH2 0.0521 0.0521 0.0001
N 2.1892 2.2004 0.0112
CH3, antiperiplanar to lone pair -0.1745 -0.0625 0.1120
CH3, gauche to lone pair -0.0626 -0.0625 0.0001
C 0.7933 0.8019 0.0086
CH3, gauche to lone pair -0.0626 -0.1744 0.1118

Dimethyl ether (CH3OCH3)
H, in COC plane -0.0900 -0.0898 0.0001
H, out of COC plane -0.1058 -0.1057 0.0001
H, out of COC plane -0.1058 -0.1057 0.0001
C 0.2035 0.2118 0.0083
O -6.7843 -6.7804 0.0039
H, out of COC plane -0.1058 -0.1057 0.0001
H, out of COC plane -0.1058 -0.1057 0.0001
C 0.2035 0.2118 0.0082
H, in COC plane -0.0900 -0.0898 0.0001

Methanol (CH3OH)
OH 0.3536 0.3535 0.0001
O -0.8619 -0.8536 0.0082
CH3, gauche to OH -0.1264 -0.0263 0.1001
CH3, gauche to OH -0.1264 -0.1263 0.0001
C 0.4881 0.4958 0.0077
CH3, antiperiplanar to OH -0.0264 -0.1263 0.0999

Methylphosphine (CH3PH2)
C 1.6790 1.6800 0.0011
P 6.7592 6.7706 0.0114
PH2 0.1609 0.1609 0.0001
PH2 0.1609 0.1609 0.0001
CH3, gauche to lone pair -0.0006 -0.0006 0.0000
CH3, gauche to lone pair -0.0006 -0.0006 0.0000
CH3, antiperiplanar to lone pair -0.0018 -0.0017 0.0000
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Methanethiol (CH3SH)
C 1.3876 1.3884 0.0008
S 4.3638 4.3698 0.0060
SH 0.3022 0.3022 0.0000
CH3, antiperiplanar to SH 0.0278 0.0278 0.0000
CH3, gauche to SH 0.0002 0.0003 0.0000
CH3, gauche to SH 0.0002 0.0003 0.0000

Methane (CH4)
H 0.0182 0.0184 0.0002
H 0.0182 0.0184 0.0002
H 0.0182 0.0184 0.0002
C 1.9054 1.9133 0.0079
H 0.0182 0.0184 0.0002

Carbon dioxide (CO2)
O 19.3097 19.3454 0.0357
C 13.4738 13.4891 0.0152
O 19.3097 19.3453 0.0356

Carbon monoxide (CO)
O 47.7924 47.8807 0.0883
C 35.0061 35.0445 0.0384

Furan (C4H4O)
3-H 0.2051 0.2057 0.0005
2-H 0.2082 0.2087 0.0005
3C 9.5302 9.5488 0.0185
4-H 0.2051 0.2057 0.0005
2C 12.4641 12.4850 0.0209
4C 9.5302 9.5488 0.0186
1O 10.3533 10.4096 0.0562
5C 12.4642 12.4851 0.0209
5-H 0.2082 0.2087 0.0005

Glycine (NH2CH2COOH)
NH2 0.0221 0.0222 0.0001
NH2 0.0592 0.0593 0.0001
N 1.5762 1.5853 0.0091
CH2 0.0746 0.0747 0.0001
CH2 0.0224 0.0224 0.0000
CH2 1.2177 1.2256 0.0079
C−−O 37.2847 37.3778 0.0931
COOH 14.9177 14.9401 0.0224
OH 9.7918 9.8330 0.0412
OH 0.3915 0.3921 0.0006

Formaldehyde (H2CO)
O 111.0888 111.1752 0.0864
H 0.2826 0.2836 0.0009
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C 21.1961 21.2295 0.0333
H 0.2826 0.2836 0.0010

Hydrogen cyanide (HCN)
H 0.0601 0.0598 0.0003
C 16.3948 16.4221 0.0273
N 42.1806 42.2535 0.0729

Formamide (HCONH2)
NH2 0.3538 0.3543 0.0005
NH2 0.3662 0.3667 0.0005
N 7.2581 7.2796 0.0215
CHO 0.0740 0.0743 0.0003
C 16.7315 16.7528 0.0213
O 34.4261 34.5238 0.0976

Formic acid (HCOOH)
OH 0.5611 0.5616 0.0005
OH 9.1381 9.1754 0.0373
CH 0.1191 0.1194 0.0003
C 14.8579 14.8790 0.0211
C−−O 41.7052 41.7970 0.0918

Imidazole (C3H4N2)
3-H 0.1194 0.1202 0.0008
2-H 0.4273 0.4280 0.0007
3N 10.7744 10.8151 0.0406
4-H 0.3158 0.3165 0.0007
2C 17.1388 17.1675 0.0287
4C 10.9611 10.9867 0.0256
1N 35.5496 35.6308 0.0813
5C 12.2712 12.2994 0.0282
5-H 0.3522 0.3530 0.0008

Pyridine (C5H5N)
2-H 0.3683 0.3695 0.0012
1N 42.2988 42.4102 0.1114
6-H 0.3683 0.3695 0.0012
2C 15.5825 15.6170 0.0345
3-H 0.1291 0.1297 0.0006
6C 15.5825 15.6170 0.0345
5-H 0.1291 0.1297 0.0006
3C 7.3790 7.4037 0.0248
5C 7.3790 7.4037 0.0248
4C 15.7400 15.7658 0.0259
4-H 0.3905 0.3912 0.0007

Pyrimidine (C4H4N2)
6-H 0.3878 0.3888 0.0010
1N 24.1426 24.2371 0.0944
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2-H 0.2580 0.2592 0.0012
6C 18.0969 18.1322 0.0353
5-H 0.0596 0.0604 0.0008
1C 16.0559 16.0916 0.0357
5C 4.4116 4.4397 0.0281
3N 24.1424 24.2367 0.0943
4C 18.0960 18.1311 0.0351
4-H 0.3875 0.3885 0.0010

Tetramethylsilane (Si(CH3)4)
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
C 2.0029 2.0043 0.0014
C 2.0029 2.0043 0.0014
C 2.0029 2.0043 0.0014
Si -11.3421 -11.3278 0.0144
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
C 2.0029 2.0043 0.0014
H -0.0658 -0.0658 0.0000
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Table S5: Detailed results of the RPA NMR shifts for all molecules in the Flaig benchmark
setS4 at the RPA@PBE/cc-pwCVDZ level of theory for the numerical reference implementa-
tion (reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.

Acetylene (C2H2)
H 0.0787 0.0784 0.0003
C 19.1544 19.1837 0.0292
C 19.1544 19.1837 0.0292
H 0.0787 0.0784 0.0003

Ethylene (C2H4)
H 0.5381 0.5391 0.0010
H 0.5381 0.5391 0.0010
C 27.1906 27.2432 0.0526
H 0.5451 0.5461 0.0010
C 27.2817 27.3347 0.0530
H 0.5451 0.5461 0.0010

Ethane (C2H6)
H -0.1615 -0.1614 0.0001
H -0.1615 -0.1614 0.0001
H -0.1615 -0.1614 0.0001
C 1.6414 1.6559 0.0145
H -0.1618 -0.1616 0.0001
H -0.1618 -0.1616 0.0001
C 1.6159 1.6304 0.0146
H -0.1618 -0.1616 0.0001

Benzene (C6H6)
H 0.4910 0.4922 0.0012
H 0.4910 0.4922 0.0013
C 24.1266 24.1809 0.0542
H 0.4910 0.4922 0.0013
C 24.1267 24.1809 0.0543
H 0.4910 0.4922 0.0013
C 24.1267 24.1809 0.0543
H 0.4910 0.4922 0.0013
C 24.1267 24.1809 0.0543
C 24.1267 24.1809 0.0543
C 24.1266 24.1809 0.0542
H 0.4910 0.4922 0.0013

Tetrachloromethane (CCl4)
C 7.7902 7.7945 0.0043
Cl -36.5447 -36.5615 0.0168
Cl -36.5447 -36.5615 0.0168
Cl -36.5447 -36.5615 0.0168
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Cl -36.5447 -36.5615 0.0168

Tetrafluoromethane (CF4)
F -6.0114 -5.9824 0.0290
F -6.0116 -5.9817 0.0299
F -6.0116 -5.9817 0.0299
C -4.0609 -4.0475 0.0134
F -6.0117 -5.9821 0.0296

Propadiene (CH2CCH2)
H 0.2550 0.2557 0.0007
H 0.2765 0.2772 0.0007
CH2 14.4060 14.4407 0.0347
C−−C−−C 41.5436 41.6158 0.0722
H 0.2658 0.2664 0.0007
CH2 14.4060 14.4399 0.0339
H 0.2658 0.2664 0.0007

Acetaldehyde (CH3CHO)
O 205.4081 205.4133 0.0052
CHO 0.0321 0.0334 0.0013
CHO 41.5548 41.6041 0.0494
CH3, out of CCO plane -0.0362 -0.0359 0.0003
CH3, out of CCO plane -0.0362 -0.0359 0.0003
CH3 4.5204 4.5366 0.0162
CH3, in CCO plane 0.4048 0.4052 0.0003

Chloroform (CH3Cl)
C 4.2965 4.2981 0.0016
Cl -41.3884 -41.3727 0.0157
H -0.0046 -0.0045 0.0000
H -0.0046 -0.0045 0.0000
H -0.0046 -0.0045 0.0000

Acetonitrile (CH3CN)
N 71.8026 71.8871 0.0845
CN 30.2404 30.2746 0.0342
H -0.0142 -0.0141 0.0001
H -0.0118 -0.0117 0.0001
CH3 0.5402 0.5514 0.0112
H -0.0120 -0.0119 0.0001

Acetone (CH3COCH3)
H, in CCC plane 0.3530 0.3532 0.0002
H, out of CCC plane -0.2379 -0.2377 0.0003
H, out of CCC plane -0.2379 -0.2377 0.0003
CH3 4.5256 4.5392 0.0136
O 174.4594 174.5093 0.0499
CO 41.1737 41.2223 0.0486
H, out of CCC plane -0.2479 -0.2476 0.0004
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H, out of CCC plane -0.2479 -0.2476 0.0004
CH3 4.4580 4.4728 0.0148
H, in CCC plane 0.3383 0.3386 0.0003

Fluoromethane (CH3F)
F -26.8766 -26.8692 0.0074
H -0.3595 -0.3594 0.0001
H -0.3595 -0.3594 0.0001
C 0.9788 0.9902 0.0114
H -0.3595 -0.3594 0.0001

Methylamine (CH3NH2)
NH2 -0.0521 -0.0521 0.0000
NH2 -0.0521 -0.0521 0.0000
N 0.4456 0.4641 0.0186
CH3, antiperiplanar to lone pair -0.7037 -0.7036 0.0001
CH3, gauche to lone pair -0.2410 -0.2408 0.0001
C 0.6955 0.7109 0.0154
CH3, gauche to lone pair -0.2410 -0.2408 0.0001

Dimethyl ether (CH3OCH3)
H, in COC plane -0.3361 -0.3360 0.0002
H, out of COC plane -0.4440 -0.4439 0.0001
H, out of COC plane -0.4440 -0.4439 0.0001
C 0.6376 0.6523 0.0147
O -14.9422 -14.9251 0.0171
H, out of COC plane -0.4440 -0.4439 0.0001
H, out of COC plane -0.4440 -0.4439 0.0001
C 0.6373 0.6523 0.0149
H, in COC plane -0.3361 -0.3360 0.0002

Methanol (CH3OH)
OH 0.3781 0.3777 0.0003
O -7.8372 -7.8206 0.0165
CH3, gauche to OH -0.6123 -0.6121 0.0001
CH3, gauche to OH -0.6123 -0.6121 0.0001
C 0.1934 0.2073 0.0139
CH3, antiperiplanar to OH -0.2089 -0.2088 0.0001

Methylphosphine (CH3PH2)
C 1.0495 1.0519 0.0024
P 14.2332 14.2472 0.0140
PH2 0.0468 0.0468 0.0001
PH2 0.0468 0.0468 0.0001
CH3, gauche to lone pair -0.1364 -0.1363 0.0000
CH3, gauche to lone pair -0.1364 -0.1363 0.0000
CH3, antiperiplanar to lone pair -0.1528 -0.1528 0.0001

Methanethiol (CH3SH)
C 0.9706 0.9728 0.0022
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S 4.3320 4.3284 0.0036
SH 0.3438 0.3439 0.0001
CH3, antiperiplanar to SH -0.0761 -0.0761 0.0000
CH3, gauche to SH -0.1995 -0.1995 0.0000
CH3, gauche to SH -0.1995 -0.1995 0.0000

Methane (CH4)
H 0.0014 0.0016 0.0002
H 0.0014 0.0016 0.0002
H 0.0014 0.0016 0.0002
C 2.2800 2.2920 0.0120
H 0.0014 0.0016 0.0002

Carbon dioxide (CO2)
O 29.8121 29.8546 0.0425
C 27.1710 27.1911 0.0201
O 29.8121 29.8546 0.0425

Carbon monoxide (CO)
O 87.4544 87.5640 0.1096
C 63.0853 63.1363 0.0509

Furan (C4H4O)
3-H 0.4369 0.4375 0.0006
2-H 0.4133 0.4139 0.0006
3C 20.4635 20.4898 0.0263
4-H 0.4369 0.4375 0.0006
2C 25.2926 25.3221 0.0296
4C 20.4633 20.4898 0.0265
1O 41.2453 41.3227 0.0774
5C 25.2923 25.3221 0.0299
5-H 0.4133 0.4139 0.0006

Glycine (NH2CH2COOH)
NH2 -0.3357 -0.3356 0.0001
NH2 -0.1692 -0.1691 0.0001
N -2.9521 -2.9364 0.0158
CH2 -0.1440 -0.1439 0.0001
CH2 -0.1341 -0.1341 0.0000
CH2 3.1432 3.1575 0.0143
C−−O 107.4834 107.5693 0.0859
COOH 32.4836 32.5163 0.0328
OH 13.1910 13.2577 0.0666
OH 0.3283 0.3291 0.0008

Formaldehyde (H2CO)
O 270.1876 269.8305 0.3571
H 0.4016 0.4033 0.0017
C 43.2373 43.2921 0.0548
H 0.4018 0.4035 0.0017
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Hydrogen cyanide (HCN)
H -0.1398 -0.1402 0.0004
C 32.4556 32.4908 0.0352
N 77.7749 77.8627 0.0878

Formamide (HCONH2)
NH2 0.5833 0.5839 0.0006
NH2 0.4932 0.4939 0.0006
N 13.5060 13.5393 0.0334
CHO 0.0313 0.0317 0.0005
C 37.0433 37.0737 0.0304
O 106.7358 106.8051 0.0692

Formic acid (HCOOH)
OH 0.7453 0.7460 0.0007
OH 8.1066 8.1726 0.0660
CH 0.1891 0.1895 0.0004
C 34.6067 34.6384 0.0317
C−−O 112.0754 112.1526 0.0772

Imidazole (C3H4N2)
3-H 0.4304 0.4314 0.0010
2-H 0.6165 0.6173 0.0008
3N 29.9086 29.9642 0.0556
4-H 0.4904 0.4912 0.0008
2C 28.2279 28.2661 0.0382
4C 23.6096 23.6444 0.0349
1N 73.2228 73.3188 0.0960
5C 24.7178 24.7582 0.0404
5-H 0.6076 0.6085 0.0010

Pyridine (C5H5N)
2-H 0.4742 0.4757 0.0015
1N 85.5818 85.7092 0.1273
6-H 0.4742 0.4757 0.0015
2C 27.1182 27.1686 0.0504
3-H 0.4988 0.4998 0.0010
6C 27.1182 27.1687 0.0505
5-H 0.4988 0.4998 0.0010
3C 20.3647 20.4059 0.0412
5C 20.3647 20.4059 0.0412
4C 26.3408 26.3839 0.0431
4-H 0.5778 0.5787 0.0010

Pyrimidine (C4H4N2)
6-H 0.5046 0.5060 0.0014
1N 70.4828 70.6091 0.1263
2-H 0.2864 0.2881 0.0017
6C 29.3256 29.3789 0.0533
5-H 0.5507 0.5516 0.0009
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1C 27.3475 27.4033 0.0558
5C 17.7443 17.7867 0.0424
3N 70.4820 70.6095 0.1275
4C 29.3232 29.3762 0.0530
4-H 0.5041 0.5055 0.0013

Tetramethylsilane (Si(CH3)4)
H -0.2583 -0.2582 0.0001
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0001
H -0.2583 -0.2582 0.0000
H -0.2582 -0.2582 0.0000
H -0.2582 -0.2582 0.0000
H -0.2582 -0.2582 0.0000
C 1.6427 1.6451 0.0024
C 1.6426 1.6452 0.0026
C 1.6420 1.6452 0.0032
Si -13.0176 -12.9900 0.0275
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0001
C 1.6426 1.6452 0.0026
H -0.2583 -0.2582 0.0001
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3.3 Detailed Validation Results: Summary For All Nuclei

Table S6: Comparison of MADs in ppm of the analytical to the numerical isotropic
NMR shifts for all nuclei in the Gauss benchmark setS3 at the RPA@HF/cc-pwCVTZ and
RPA@PBE/cc-pwCVTZ level of theory. Additionally, the number of occurrences N test

nuc of a
given element within the benchmark set is given.

reference 1H 7Li 13C 15N 17O 19F 27Al 31P 33S

N test
nuc 37 2 20 8 15 10 1 2 3

HF 0.0005 0.0009 0.0041 0.0053 0.0591 0.0497 0.0015 0.0385 0.0329

PBE 0.0001 0.0009 0.0032 0.0031 0.2119 0.0644 0.0012 0.0372 0.0230

Table S7: Comparison of MADs in ppm of the analytical to the numerical isotropic
NMR shifts for all nuclei in the Flaig benchmark setS4 at the RPA@HF/cc-pwCVDZ and
RPA@PBE/cc-pwCVDZ level of theory. Additionally, the number of occurrences N test

nuc of a
given element within the benchmark set is given.

reference 1H 13C 15N 17O 19F 29Si 31P 33S 35Cl

N test
nuc 111 61 10 14 5 1 1 1 5

HF 0.0084 0.0208 0.0601 0.0694 0.0152 0.0144 0.0114 0.0060 0.0183

PBE 0.0004 0.0305 0.0773 0.0773 0.0252 0.0275 0.0140 0.0036 0.0166
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4 Detailed Results for the Convergence of the Minimax

Grid

Table S8: Detailed results of the RPA NMR shift convergence for all nuclei in the Gauss
benchmark setS3 with the number of minimax integration points Ng. All values are given as
MADs in ppm in comparison to the results obtained with Ng = 20 at the RPA@HF level of
theory using the cc-pwCVTZ/cc-pwCVTZ-RI basis sets.

Ng
1H 7Li 13C 15N 17O 19F 27Al 31P 33S

10 0.0001 0.0003 0.0062 0.0175 0.0320 0.0097 0.0108 0.0366 0.0166

11 0.0001 0.0002 0.0050 0.0140 0.0257 0.0077 0.0075 0.0297 0.0130

12 0.0001 0.0002 0.0041 0.0114 0.0207 0.0061 0.0059 0.0244 0.0103

13 0.0001 0.0001 0.0036 0.0091 0.0173 0.0049 0.0049 0.0190 0.0084

14 0.0000 0.0001 0.0026 0.0070 0.0131 0.0042 0.0040 0.0156 0.0066

15 0.0000 0.0000 0.0024 0.0054 0.0107 0.0031 0.0029 0.0114 0.0053

16 0.0000 0.0000 0.0015 0.0039 0.0075 0.0023 0.0021 0.0088 0.0039

17 0.0000 0.0000 0.0013 0.0026 0.0053 0.0039 0.0015 0.0058 0.0027

18 0.0000 0.0000 0.0009 0.0014 0.0032 0.0034 0.0010 0.0039 0.0015

19 0.0000 0.0000 0.0004 0.0007 0.0015 0.0008 0.0005 0.0022 0.0006

20 – – – – – – – – –
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Abstract

In recent years, rapid improvements in computer hardware, as well as theoretical

and algorithmic advances have enabled the calculation of ever larger systems in com-

putational chemistry. In this avenue, we present efficient implementations of the scaled

opposite-spin (SOS) second-order approximate coupled cluster (CC2) method and the

closely related second-order algebraic diagrammatic construction (ADC(2)) method.

The implementations leverage the least-squares tensor hypercontraction (THC) ap-

proximation, for which a new density-based integral-direct reformulation of the grid-

projection of the electron integral tensor is presented. Together with screening based

1



on local Cholesky orbitals stemming from the decomposition of the one-particle den-

sities (CDD) in the Laplace integration and optimized block-sparse linear algebra, ef-

fectively O(N2) scaling variants of linear-response (LR) SOS-CC2 and SOS-ADC(2)

are obtained. The derived CDD-THC-SOS-LR-CC2/ADC(2) methods are shown to

be capable of targeting excitation energies of systems up to ∼1000 atoms and ∼10000

basis functions on a single compute node.

1 Introduction

An accurate description of electronic excited states of chemical systems is crucial for the use-

ful interplay of theory and experiment,1 where spectroscopy measures transitions between

different quantum states, covering electronic, vibrational, or rotational excitations. Amongst

the spectroscopic methods probing transitions between the ground and electronically excited

states, UV-vis spectroscopy, which involves the absorption and emission of photons in the

ultraviolet (UV) and visible (vis) regions, and X-ray absorption spectroscopy (XAS), which

involves the excitation of core electrons, are two of the most widely used methods.2–4 Thus,

in order to relate the experimentally observed absorption/emission bands to electronic tran-

sitions, accurate methods to compute vertical excitation energies are required.

While exact excitation energies can – in the limit of the Born–Oppenheimer approximation

and a finite basis set – be obtained through the full configuration interaction (FCI) method,5,6

its exponentially scaling cost renders it inapplicable for all but the smallest systems. There-

fore, considerable effort has been put into the formulation of approximate methods, also in

combination with reduced scaling techniques to reach ever larger system sizes, preferably

without sacrificing accuracy. Here, considerable theoretical as well as algorithmic advances

have been made in the past decades.6–8 The former include reformulations of many of the

commonly encountered methods in quantum chemistry under the paradigm of response the-

ory, i.e., the quasidegenerate second-order perturbation corrected configuration interaction

singles (CIS(D∞)),9 time-dependent density functional theory (TDDFT),10–12 the family of
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complete active space self-consistent field (CASSCF)13–15 methods, algebraic diagrammatic

construction (ADC)7,16–19 methods, as well as linear-response coupled cluster (LR-CC)20–24

theory. Here also approximate CC models were introduced, such as the commonly used ap-

proximate CC singles and doubles (CC2).25 Without further approximations, CC2 and the

closely related second-order ADC (ADC(2)) method exhibit quintic scaling, which necessi-

tates additional algorithmic improvements in order for the methods to be applicable to larger

systems. While conceptually simple, the scaled opposite-spin (SOS)26–28 approximation by

Jung et al. achieves a significant reduction of the scaling prefactor by complete neglect of

the expensive same-spin terms, while at the same time largely retaining the accuracy.29,30

Due to the required transformation of the electron repulsion integral (ERI) tensor into the

molecular orbital (MO) basis, the scaling remains as O(N5). However, a reduction of the

scaling exponent can be achieved by using a factorized form of the ERI tensor, such as

the resolution-of-the-identity (RI)29,31–34 approximation or the Cholesky decomposition35 in

conjunction with the Laplace transformation29,36,37 to obtain a separable form of the orbital

energy denominator. Recently, Ochsenfeld, Dreuw, and coworkers38,39 put forth atomic or-

bital (AO) based formulations of SOS-CC2 and SOS-ADC(2), which achieve sub-quadratic

to linear scaling through a combination of the RI approximation with an attenuated Coulomb

metric (ω-RI)40 and Cholesky decomposed densities (CDD).40–42,42–45 To achieve even fur-

ther reduction of both the memory requirements and the number of required floating point

operations (FLOP), tensor hypercontraction (THC) by Martínez and coworkers46–49 can be

applied, which entirely circumvents the necessity to store and contract third- (or higher-

) order tensors. THC variants of CC methods have previously been reported for CC2,50

CCSD,51–53 and CCSD(T)54 ground state energies as well as for excitation energies based

on equation-of-motion (EOM) CC2.55

In this work, we propose a density-matrix-based and integral-direct approach for obtaining

the THC-factorized ERI tensor, which adds only a small overhead when applied to an electron

correlation method. In this regard, SOS-LR-CC2 and SOS-ADC(2) are ideal methods for the
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application of THC, since they 1) require the AO-ERI tensor to be repeatedly transformed

into different MO subspaces, which can efficiently be done by matrix-matrix multiplications,

and 2) only include opposite-spin (OS) contributions, for which THC allows to reformulate

the expressions to only use matrix linear algebra without the occurrence of any tensors

higher than second order. By combining THC with local Cholesky pseudo-MOs from the

CDD approach in the Laplace integration and block-sparse linear algebra, effectively O(N2)

scaling formulations of SOS-LR-CC2 and SOS-ADC(2) are obtained. The proposed excited

state methods are benchmarked using a set of medium- to large-size systems to assess the

scaling of the error with respect to the system size. The accuracy of the ground state energies

is analyzed by considering an additional set previously used by DiStasio et al.56 for relative

energies. Finally, the efficiency of the proposed methods is demonstrated for nucleic acid

double helices up to ∼1000 atoms and ∼12000 basis functions, which reveals overall O(N2)

scaling.

2 Theory

2.1 Notation

Throughout this work, we employ the following notation:

• µ, ν, λ, σ: atomic orbital indices belonging to the AO basis {χµ} of size Nbf.

• α, β, γ, δ: auxiliary function basis indices belonging to the density fitting basis {χα} of

size Naux (usually Naux ≈ 3 ·Nbf).

• P,Q,R, S: auxiliary function basis indices belonging to the THC basis; in LS-THC

these are equivalent to grid points belonging to the LS-THC grid of size Ngrid (usually

Ngrid ≈ 3 ·Naux).

• i, j, k: occupied molecular orbital indices belonging to the MO basis {ϕi} of size Nocc.
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• a, b, c: virtual molecular orbital indices belonging to the MO basis {ϕa} of size Nvirt

(Nvirt ≫ Nocc).

• i, k, j: occupied local Cholesky orbitals basis {ϕi} of size Nocc; obtained via pivoted

Cholesky decomposition of the occupied one-electron density.

• p, q, r, s: general orbital indices.

• τ : root of the Laplace quadrature with Nτ integration points (usually 5 ≤ Nτ ≤ 10 is

sufficiently accurate).

2.2 Integral-direct Tensor Hypercontraction

2.2.1 Basics of Tensor Hypercontraction

In its most general form, tensor hypercontraction (THC) is a low-dimensional representation

of a multi-dimensional tensor, which – in the context of quantum mechanics – represents

the interactions between particles in a system. For a two-body potential V̂ = 1/r12, said

representation of the electron-electron interactions in a real one-particle basis is the integral

tensor, the elements of which are given by

(pq|rs) =
∫∫

dr1dr2 φp(r1)φq(r1)
1

r12
φr(r2)φs(r2) (1)

However, in practical quantum chemistry calculations, the manipulation and storage of such

a high-dimensional tensor quickly becomes computationally intractable as the system or the

basis set size grows. To alleviate this issue, THC provides the means to formally compress

the fourth-order integral tensor into five second-order tensors as
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(pq|rs) =
∑

PQ

XP
p X

P
q Z

PQXQ
r X

Q
s (2)

The factorization is exact if the number of THC auxiliary functions is at least Nbf(Nbf +

1)/2,57 but only reduces computational demands and storage requirements if it is significantly

smaller. If sufficient accuracy is reached with significantly less than N2
bf THC auxiliary

functions, the THC factorization enables efficient storage and manipulation of the ERI tensor,

making complex calculations feasible for larger systems.

In the least-squares variant of THC (LS-THC),47 the THC auxiliary indices are taken to be

grid points of a molecular grid similar to the ones commonly used in density function theory.

For LS-THC the time-determining step of factorizing the ERI tensor into the THC format

is the quintic scaling grid-projection of the ERI tensor, which in the AO basis is given by

EPQ =
∑

µνλσ

XP
µ X

P
ν (µν|λσ)XQ

λ X
Q
σ (3)

where the so-called collocation matrices X are simply the AO basis functions χµ evaluated

at the THC grid nodes scaled by the node’s weight wP , given as

XP
µ = 4

√
wP χµ(rP ) (4)

In the general MO formulation, the above equation becomes

EPQ =
∑

pqrs

XP
p X

P
q (pq|rs)XQ

r X
Q
s (5)

which requires a transformation of the AO ERI tensor into the MO basis. From E, the final
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Z tensor in eq. 2 is obtained as

ZPQ =
∑

P ′Q′

[S−1]PP ′
EP ′Q′

[S−1]QQ′
(6)

where S−1 is the inverse of the THC grid metric, i.e., the inverse of

SPP ′
=
∑

pq

XP
p X

P ′
p XP

q X
P ′
q (7)

Note, that eq. 6 can be solved either by direct inversion of the grid metric,47 which generally

requires pseudoinversion due to its rank-deficiency, or by solving the associated system of

linear equations.58,59

2.2.2 Density-based Integral-direct Tensor Hypercontraction

By undoing the AO-to-MO transformations in eq. 5, i.e.,

EPQ =
∑

pqrs

∑

µνλσ

∑

µ′ν′λ′σ′

XP
µ Cµp ·XP

ν Cνq · Cµ′pCν′q(µ
′ν ′|λ′σ′)Cλ′rCσ′s ·XQ

λ Cλr ·XQ
σ Cσs (8)

and by summing up the MO indices first, the expression can be reformulated in terms of

one-particle density matrices P as

EPQ =
∑

µνλσ

∑

µ′ν′λ′σ′

XP
µ X

P
ν Pµµ′Pνν′(µ

′ν ′|λ′σ′)Pλλ′Pσσ′XQ
λ X

Q
σ (9)

which – when contracting the densities with the THC X matrices – becomes

EPQ =
∑

µ′ν′λ′σ′

XP
µ′XP

ν′(µ
′ν ′|λ′σ′)XQ

λ′X
Q
σ′ (10)

7



To highlight the universality of this approach, we will use the intermediate XP
µ′ with the

primed basis function index as a proxy for both the collocation matrix in the AO basis and

when transformed with a general density matrix, i.e.,

XP
µ′ =

∑

µ

XP
µ Pµµ′ (11)

Therefore, the expressions for the AO-THC and the MO-THC variant only differ in an

additional contraction of the THC X matrices with a density matrix. Consequently, the

same routines can be used for the construction of intermediate E in both the AO and an

arbitrary MO basis. The latter is particularly convenient since for many correlation methods

different kinds of integrals, e.g., (oo|vo), (vo|vo), and (vv|vo) are required. Furthermore, the

above expression permits an integral-direct formulation, as outlined in the following, which

avoids the prohibitive storage requirements of the full ERI tensor before the transformation

into the grid basis. The key idea is that the contraction of the ket side of the ERI tensor

can be viewed as Ngrid Coulomb matrix builds with slices of the joint collocation tensor R,

defined as RQ
λσ = XQ

λ X
Q
σ , acting as the density matrix. Intermediate E in the AO basis from

eq. 3 can then exemplarily be formed according to algorithm 1.

Algorithm 1 Coulomb Matrix Build-based Integral-direct Formation of E in the AO Basis
1: RP

µν ← XP
µ X

P
ν

2: RQ
λσ ← XQ

λ X
Q
σ

3: for all Q do
4: J← MakeJ(R(Q)) ▷ R

(Q)
λσ replaces Pλσ in the J build ▷ O(N5)

5: for all P do
6: EPQ ←∑

µν R
(P )
µν Jµν ▷ O(N4)

7: end for
8: end for

We note here, that for a memory efficient implementation the joint collocation tensor R

should not be constructed explicitly. Instead, the required tensor slices R(Q) can be con-

structed on-the-fly as a vector outer product of all elements of the X tensor belonging to the

given grid point Q, i.e., R(Q) = XQ
:

⊗
(XQ

: )
T.
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Together with the idea to reformulate the MO-THC equations in a density-based manner,

the Coulomb matrix-based approach permits an efficient and simultaneous formation of

all intermediates required for the integrals occurring in CC2/ADC(2) (see Section 2.3.1)

according to algorithm 2.

Algorithm 2 Coulomb Matrix Build-based Integral-direct Formation of E(oovo), E(vovo), and
E(vvvo)

1: X(o) ← XP ▷ P =̂ occupied one-particle density matrix
2: X(v) ← XQ ▷ Q =̂ virtual one-particle density matrix
3: R(oo) ← X(o) ⊗c X

(o) ▷ ⊗c denotes the column-wise Kronecker product
4: R(vo) ← X(v) ⊗c X

(o)

5: R(vv) ← X(v) ⊗c X
(v)

6: for all Q do
7: P(vo) ← R(Q),(vo) + (R(Q),(vo))T

8: J(vo) ← 1
2
× MakeJ(P(vo)) ▷ O(N5)

9: for all P do
10: EPQ,(oovo) ←∑

µν R
(P ),(oo)
µν J

(vo)
µν ▷ O(N4)

11: EPQ,(vovo) ←∑
µν R

(P ),(vo)
µν J

(vo)
µν ▷ O(N4)

12: EPQ,(vvvo) ←∑
µν R

(P ),(vv)
µν J

(vo)
µν ▷ O(N4)

13: end for
14: end for

The key ingredient for an efficient implementation is to perform the expensive formation of

the J intermediate once in the ov space, since all integral types, i.e., (oo|vo), (vo|vo), and

(vv|vo), share this as a common ket. We note here, that most routines for the construction

of Coulomb-type matrices assume the density to be symmetric. This is not the case for slices

of the joint collocation tensor R(vo), which is why the transpose is added in line 7 and the

resulting matrix is scaled by a factor of 1/2. Based on the resulting J intermediate, the final

intermediates E for all integral types can be formed simultaneously without further integral

evaluations. We also note, that the frozen-core approximation can easily be included in this

formulation by simply using the frozen-core density matrix for the occupied space.

To lower the formal scaling behavior, the resolution-of-the-identity approximation (RI)31–34

can be inserted into eq. 10, which allows to perform the grid-projection of the bra and the
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ket side of the ERI tensor separately at reduced scaling. Inserting the RI approximation into

eq. 10 leads to

EPQ =
∑

αβγ

Y P
β [V− 1

2 ]βα[V
− 1

2 ]αγ Y
Q
γ

=
∑

µ′ν′λ′σ′

∑

αβγ

XP
µ′XP

ν′(µ
′ν ′|β)[V− 1

2 ]βα[V
− 1

2 ]αγ(γ|λ′σ′)XQ
λ′X

Q
σ′ (12)

where V is the two-center RI integral tensor. Intermediate Y is given by

Y P
β =

∑

µ′ν′

XP
µ′XP

ν′(µ
′ν ′|β) (13)

and represents one side of the grid-projected ERI tensor. Like for the E intermediate, the

formally quartic scaling formation of the Y intermediate can be done in an integral-direct

fashion. The final factorization then becomes

(pq|rs) =
∑

PQ

∑

α

XP
p X

P
q Γ

P
αΓ

Q
αX

Q
r X

Q
s (14)

with Γ, representing one half of the Z tensor, defined as

ΓP
α =

∑

P ′

∑

β

[S−1]PP ′
Y P ′
β [V− 1

2 ]βα (15)

Instead of employing routines for the construction of Coulomb matrices, for the Y intermedi-

ate existing routines for the contraction of density matrices with three-center RI integrals can

be used. Amongst these routines, variants optimized for the contraction of multiple densities,

such as the J-engine approach to SOS-RI-MP2 by Maurer et al.60 or the RI-J implementation

by Kussmann et al.61 are employed since Ngrid Coulomb matrix builds need to be performed

for each Y intermediate. While these algorithms provide performance improvements over a

naïve implementation, in which the Coulomb matrix kernel is simply invoked Ngrid times, an
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optimized integral kernel for this kind of contraction is certainly favorable.

2.2.3 Efficient Integral-direct Algorithm for the Y Intermediate

Instead of relying on repetitive J-engine or RI-J based evaluations of the Coulomb poten-

tial for many density-like matrices, a more efficient algorithm is proposed inspired by our

previous optimal-batching scheme62 for evaluating correlation energies on the random phase

approximation (RPA) level of theory. In the integral-direct variant shown in algorithm 3, the

necessary 3-center-2-electron (3c2e) integrals (µ′ν ′|α) and the vector outer products R are

computed on-the-fly during the formation of the Y intermediate removing the unfavorable

O(N3) memory complexity associated with storing the full third-order tensors. The follow-

ing discussion is exemplariliy carried out for the virtual-occupied subspace but is applicable

to all required Γ intermediates.

The naïve application of the optimization scheme of Ref. 62 would predict minimal batch-

sizes for the function-pair index µ′ν ′ and the auxiliary basis function index α but maximal

batch-sizes for the quadrature point index P , since the more points P are included per batch,

the more often any computed given 3c2e integral (µ′ν ′|α) can be reused for the computation

of Y. In practice, however, there are diminishing returns beyond 1000 P points per batch,

so the batch size is rounded to the nearest power of 2, i.e., 1024 P points per batch. The

batch sizes for α and µ′ν ′ are chosen as 96, which is as small as possible, while still allowing

for an efficient execution of the matrix-matrix multiplications within the formation of Y in

line 17. In practice, the precise batch sizes of each batch slightly deviate from 96 to match

a multiple of the number of functions/function-pairs for the respective l-quantum numbers

of the shells/shell-pairs within a batch, because the 3c2e integral evaluation is most efficient

if operating on full shell-triplets. This approach leads to batches with ∼10000 elements

for (µ′ν ′|α) and ∼100000 elements for R
P,(ov)
µ′ν′ , making the algorithm cache-friendly, i.e.,

all necessary quantities can be stored in temporary static random access memory (SRAM)

storage (cache) close to the processing units, even for large systems. Moreover, we always
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Algorithm 3 Integral-direct Formation of Y

1: Pre-process X(o), X(v) (Pure → Cartesian) ▷ O(N2)
2: for all P -batches do ▷ OpenMP parallel
3: for all µ′ν ′-batches do ▷ only sign. function-pairs; OpenMP parallel
4: for all µ′ν ′ in batch do
5: for all P in batch do
6: R

P,(vo)
µ′ν′ ← X

P,(v)
µ′ X

P,(o)
ν′ + transpose ▷ O(N3)

7: end for
8: end for
9: for all α-batches do

10: for all µ′ν ′-shell-pairs in batch do
11: for all α-shells in batch do
12: Compute 3c2e integrals (µ′ν ′|α) ▷ shell-triplet wise; O(N3)
13: end for
14: end for
15: for all α in batch do
16: for all P in batch do
17: Y P

α +=
∑

µ′ν′ R
P,(vo)
µ′ν′ (µ′ν ′|α) ▷ BLAS-3; O(N4)

18: end for
19: end for
20: end for
21: end for
22: end for
23: Post-process Y (Cartesian → Pure, reordering, scale by 1

2
) ▷ O(N2)
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aim for multiples of 16 for the innermost loops and order each participating tensor such that

the leading index matches the innermost loop. Both design decisions improve the efficiency

of memory accesses (cache-lines) and are very favorable for single instruction multiple data

(SIMD) vector execution.

In particular, the 3c2e integrals are stored with the auxiliary-shell index as the leading

index, so that the 3c2e integral evaluation can make optimal use of SIMD vector routines

parallelizing over shell-triplets, i.e., each SIMD-thread handles a separate shell-triplet. For

the most efficient use of SIMD vector routines, the auxiliary basis set is considered fully

uncontracted, since varying numbers of primitive Gaussian basis functions per shell would

otherwise interfere with vectorization, which requires an identical workload for each thread

to be efficient. In practice, this is of little concern, since the auxiliary basis sets used for

RI-fitting of electron correlation energies (e.g., the Dunning RI basis sets63–65 employed in

Section 4) are usually completely – or at least mostly – uncontracted already. In addition, the

transformation from Cartesian to pure (spherical harmonics) basis functions is not performed

at the 3-center integral level, instead the whole Y-build is carried out in the Cartesian basis

so that only input and output need to be transformed, avoiding any transformations of

third-order tensors.

The 3c2e integrals are evaluated using symbolically optimized Obara-Saika66,67 recursion re-

lations, similar to the integral kernels used for the 3-center-1-electron (3c1e) integrals within

our seminumerical exchange method (sn-LinK),68–70 but adjusted for 2-electron integrals,

i.e., by including recurrence relations for both the AO shell-pair and the auxiliary shell.

That is, for any given l-quantum number combination the recursion relations are fully ex-

panded symbolically for each final primitive Cartesian integral within the shell-triplet until

each integral is solely expressed in terms of primitive Boys integrals. Subsequently the entire

set of equations is symbolically optimized by removing redundant sub-expressions within the

shell-triplet using common-sub-expression-elimination (CSE) as provided by the SymPy71

package.
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Overall, algorithm 3 formally scales as O(N4) and the matrix-matrix multiplication for the

formation of Y in line 17 is by far the slowest step. This formal scaling is easily reduced to

asymptotically O(N3) by exploiting the sparsity of the function-pairs µ′ν ′, i.e., only function-

pairs belonging to significantly overlapping shell-pairs according to the Schwarz integral

are considered. In addition, the batch-wise nature of the algorithm is also straightforward

to OpenMP parallelize over multiple CPU cores using both the P -batch as well as the

µ′ν ′ batch index for parallelization. While P -batch execution is already embarrassingly

parallel, parallelization over µ′ν ′ requires special treatment of the race-condition associated

with accumulation over that index. In practice, the workload is organized such that each

thread accumulates as many µ′ν ′-batches as possible in a thread-private buffer, so the serial

(OpenMP critical section; mutually exclusive between threads) accumulation to the global

Y needs to be performed as rarely as possible.

2.3 THC-CC2 and THC-ADC(2) for Ground and Excited States

2.3.1 Basics of CC2 and ADC(2)

The SOS-CC2 ground state energy in the THC approximation is defined as

ESOS-CC2 = ⟨HF|Ĥ + cos[Ĥ, T os
2 ]|HF⟩

= EHF + cos
∑

aibj

taitbj

[∑

β

∑

RS

XR,(vo)
a X

R,(vo)
i Γ

R,(vo)
β Γ

S,(vo)
β X

S,(vo)
b X

S,(vo)
j

]

− cos
∑

aibj

t̂os
aibj

[∑

β

∑

RS

XR,(vo)
a X

R,(vo)
i Γ

R,(vo)
β Γ

S,(vo)
β X

S,(vo)
b X

S,(vo)
j

]
(16)

where Ĥ is the similarity-transformed Hamiltonian and T os
2 is the two-electron excitation

operator acting on two electrons with different spins.27,29 The cluster amplitudes are deter-

mined by solving the CC equations, defined by

14



0 = Ωµ1 = ⟨µ1|Ĥ + cos[Ĥ, T os
2 ]|HF⟩ = (ϵa − ϵi)tai + ΩG

ai + ΩH
ai + ΩI

ai + ΩJ
ai

= (ϵa − ϵi)tai + cos
∑

cbj

t̂oscibj

[∑

β

∑

RS

X
R,(vo)
j X

R,(vo)
b Γ

R,(vo)
β Γ

S,(vv)
β X̂S,(vv)

a XS,(vv)
c

]

− cos
∑

kbj

t̂osakbj

[∑

β

∑

RS

X
R,(vo)
j X

R,(vo)
b Γ

R,(vo)
β Γ

S,(oo)
β X

S,(oo)
k X̂

S,(oo)
i

]
+ cos

∑

bj

t̂osaibjF̂jb + F̂ai

(17)

0 = Ωµ2 = ⟨µos
2 |Ĥ + [F, T os

2 ]|HF⟩ = ΩE
aibj + ΩF

aibj

= (ϵa − ϵi + ϵb − ϵj)t̂
os
aibj +

[∑

α

∑

PQ

X̂P,(vo)
a X̂

P,(vo)
i ΓP,(vo)

α ΓQ,(vo)
α X̂

Q,(vo)
b X̂

Q,(vo)
j

]
(18)

The Fock matrices F̂ are computed using the integral-direct RI-J72 and sn-LinK68–70 kernels

to form the Coulomb and exchange terms with high efficiency. The explicit expressions

are provided in the literature.29,73 The OS scaling factor is set to cos = 1.3, as for SOS-

MP2.27,29 The solution of equations 16-18 scales as O(N3) for the MO-based THC-SOS-CC2

formulation.55 However, the MO energies in the denominator of the double amplitudes can

be decoupled using Laplace integration

1

ϵaibj
=

∫ ∞

0

e−ϵaibjdt =
n∑

τ

wτe
−ϵaibjtτ (19)

to rewrite eq. 18 as

t̂osaibj = −
∑

τ

wτ

∑

α

∑

PQ

X̂P,(vo)
a X̂

P,(vo)
i ΓP,(vo)

α ΓQ,(vo)
α X̂

Q,(vo)
b X̂

Q,(vo)
j e−ϵaitτ e−ϵbjtτ

= −
∑

τ

∑

α

∑

PQ

X̂P,(vo)
a,τ X̂

P,(vo)
i,τ ΓP,(vo)

α ΓQ,(vo)
α X̂

Q,(vo)
b,τ X̂

Q,(vo)
j,τ (20)
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The THC X matrices in eq. 16-20 are transformed using the transformation matrices

Λp
µa = Cµa −

∑

i

Cµitai Λh
µi = Cµi +

∑

a

Cµatai (21)

according to

X̂P
a,τ = w

1
4
τ X̂

P
a e

−ϵatτ X̂P
a =

∑

µ

Λp
µaX

P
µ (22)

X̂P
i,τ = w

1
4
τ X̂

P
i e

ϵitτ X̂P
i =

∑

ν

Λh
νiX

P
ν (23)

The single amplitudes are obtained by inserting eq. 20 into eq. 17

−(ϵa − ϵi)tai = ΩG
ai + ΩH

ai + ΩI
ai + ΩJ

ai (24)

ΩG
ai = −cos

∑

τ

∑

PS

X̂
P,(vo)
i,τ M̂PS,(ovvv)

τ X̂S,(vv)
a (25)

ΩH
ai = cos

∑

τ

∑

PS

X̂P,(vo)
a,τ N̂PS,(vooo)

τ X̂
S,(oo)
i (26)

ΩI
ai = −cos

∑

τ

∑

P

X̂P,(vo)
a,τ X̂

P,(vo)
i,τ n̂P,(vo)

τ (27)

ΩJ
ai = F̂ai (28)

The working equations of the intermediates in eq. 25-27 are provided in the SI. The evalua-

tion of the MO-THC-SOS-CC2 correction to the ground state energy is then achieved with

negligible computational cost as

ESOS-CC2 = cos
∑

aibj

∑

β

∑

RS

taitbjX
R,(vo)
a X

R,(vo)
i Γ

R,(vo)
β Γ

S,(vo)
β X

S,(vo)
b X

S,(vo)
j − cos

∑

αβ

D̂αβ
τ D̂αβ

τ

(29)

which can also be used to get the related MO-THC-SOS-MP2 energy correction by simply

16



setting tµ1 to zero.

The SOS-LR-CC2 excitation energies are obtained as eigenvalues of the Jacobian matrix,

which is defined as the derivative of the vector functions (eq. 17 and 18) with respect to the

cluster amplitudes25 and is given by

ASOS-CC2 =



Aµ1ν1 Aµ1ν2

Aµ2ν1 Aµ2ν2


 =



⟨µ1|[(Ĥ + cos[Ĥ, T os

2 ]), τν1 ]|HF ⟩ ⟨µ1|cos[Ĥ, τ osν2 ]|HF ⟩

⟨µos
2 |[Ĥ, τν1 ]|HF ⟩ δµ2ν2ϵµ2


(30)

where the diagonal double-double block (Aµ2ν2) is equal to ϵaibj = ϵa−ϵi+ϵb−ϵj. From eq. 30,

secular matrices of simpler excited states methods are derived. The SOS-CIS(D∞) approach

introduced by Head-Gordon et al.9 can be derived from SOS-LR-CC2 theory by setting the

singles part of the ground state cluster amplitudes t1 to zero, resulting in a vanishing con-

tribution of the similarity transformated Hamiltonian. The SOS-CIS(D∞) Jacobian matrix

is given by

ASOS-CIS(D∞) =



⟨µ1|[(H + cos[H,T os

2 ]), τν1 ]|HF ⟩ ⟨µ1|cos[H, τ osν2 ]|HF ⟩

⟨µos
2 |[H, τν1 ]|HF ⟩ δµ2ν2ϵµ2


 (31)

where T os
2 denotes the MP2 double amplitudes. In addition, the secular matrix for the

SOS-ADC(2) method is related to eq. 31 by the symmetrization29,30,74

ASOS-ADC(2) =
1

2

[
ASOS-CIS(D∞) + (ASOS-CIS(D∞))T

]
(32)

As discussed by Krauter et al.,30 it is important to derive the SOS-ADC(2) secular matrix

from the SOS-CC2 Jabobian in order to reduce the dimension of the Aµ2ν2 block. In this

work, the full CISD(D∞) matrix is not symmetrized but only the Aµ1ν1 block, i.e., the non-

Hermiticity of the coupling blocks is retained and only the Aµ1ν2 block is scaled by the factor

cos.29 Using the diagonal form of the double-double block, the doubles part of the excitation
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vector is obtained as

Rm
µ2

= −
∑

ν1

Aµ2ν1Rν1

ϵγ2 − ω̄m
(33)

and the eigenvalue problem of SOS-LR-CC2 and SOS-ADC(2) is solved in the single excita-

tions manifold29,73 given by

∑

ν1

[
Aµ1ν1 −

∑

γ2

Aµ1γ2Aγ2ν1

ϵγ2 − ω̄

]
Rν1 =

∑

ν1

Aeff
µ1ν1

(ω̄)Rν1 = σµ1(ω̄, Rν1) = ω̄Rµ1 (34)

where the effective A matrix is Hermitian for ADC(2) and σ denotes the matrix-vector

product.

In order to solve the nonlinear equation part of eq. 34, the excitation energies ω̄ and eigen-

vectors Rµ1 have to be found iteratively until self-consistency is reached. If the initial guess

of the eigenvector and eigenvalue is close enough to the final results, a common choice for

the solution of the nonlinear problem is an algorithm based on the direct inversion in the

iterative subspace (DIIS) technique,35,73,75 which was shown to be stable and rapidly conver-

gent.29,35 In addition, it has the advantage of being a single root algorithm, thus allowing to

aim for high-lying excited states without converging all lower-lying states. On the contrary,

if the initial guess is far from the converged CC2 or ADC(2) result, the eigenvalue and the

eigenvector must be pre-optimized using an alternative algorithm. For this purpose, we use

a modification of the Davidson algorithm,73,76 leveraging the fact that a set of converged

eigenvalues and -vectors will fulfill the linear generalized eigenproblem

∑

µ1ν1

Rµ1A
eff
µ1ν1

(ω̄)Rν1 =
∑

µ1

Rµ1σµ1(ω̄, Rν1) =
∑

µ1

ω̄Rµ1Rµ1 (35)

Both the DIIS and the Davidson procedure for CC2 and ADC(2) are described in liter-

ature29,35,73,76 and will not be discussed here further. The time-determining step for the
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solution of the eigenvalue problem is the formation of the matrix-vector product:

σSOS-CC2
ai =

∑

b

F̂abRbi −
∑

j

RajF̂ji + F̄ai − cos

∑

b

EabRbi − cos

∑

j

RajEji

+ σ
G,(1)
ai (Rµ2) + σ

H,(1)
ai (Rµ2) + σ

I,(1)
ai (Rµ2) (36)

σ
SOS-ADC(2)
ai = (ϵa − ϵi)Rai + F̄ai − cos

∑

b

E ′
abRbi − cos

∑

j

RajE
′
ji

+ σ
G,(2)
ai (Rµ2) + σ

H,(2)
ai (Rµ2) + σ

I,(2)
ai (37)

Making use of the Laplace transformation of the energy denominator, the double part of the

singlet excitation vector can be rewritten as

Rab
ij (ω̄) = −

∑

τ

eω̄tτ
∑

PQ

∑

α

{[
X̄P,(vo)

a,τ X̂
P,(vo)
i,τ + X̂P,(vo)

a,τ X̄
P,(vo)
i,τ

]
ΓP,(vo)
α ΓQ,(vo)

α X̂
Q,(vo)
b,τ X̂

Q,(vo)
j,τ

+
[
X̄

P,(vo)
b,τ X̂

P,(vo)
j,τ + X̂

P,(vo)
b,τ X̄

P,(vo)
j,τ

]
ΓP,(vo)
α ΓQ,(vo)

α X̂Q,(vo)
a,τ X̂

Q,(vo)
i,τ

}
(38)

for which the state-specific THC X̄ matrices using the transformation matrices Λ̄

Λ̄p
µa =

∑

i

CµiRai Λ̄h
µi =

∑

a

CµaRai (39)

are given according to

X̄P
a,τ = w

1
4
τ X̄

P
a e

−ϵatτ X̄P
a =

∑

µ

XP
µ Λ̄

p
µa (40)

X̄P
i,τ = w

1
4
τ X̄

P
i e

ϵitτ X̄P
i =

∑

µ

XP
µ Λ̄

h
µi (41)

Inserting eq. 38 into 36, reduced scaling expressions for the most time-consuming contribu-
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tions can be formulated as

σ
G,(1)
ai = +cos

∑

jbc

Rcb
ij (ω̄)

[∑

β

∑

RS

X
R,(vo)
j X

R,(vo)
b Γ

R,(vo)
β Γ

S,(vv)
β X̂S,(vv)

a XS,(vv)
c

]

= −cos

∑

τ

eω̄tτ
∑

PS

[
X̂

P,(vo)
i,τ M̄PS,(ovvv)

τ + X̄
P,(vo)
i,τ M̂PS,(ovvv)

τ

]
X̂S,(vv)

a

=
∑

S

Ȳ
S,(vv)
i X̂S,(vv)

a (42)

σ
H,(1)
ai = −cos

∑

jbk

Rab
kj(ω̄)

[∑

β

∑

RS

X
R,(vo)
j X

R,(vo)
b Γ

R,(vo)
β Γ

S,(oo)
β X

S,(oo)
k X

S,(oo)
i

]

= +cos

∑

τ

eω̄tτ
∑

PS

[
X̄P,(vo)

a,τ N̂PS,(vooo)
τ + X̂P,(vo)

a,τ N̄PS,(vooo)
τ

]
X̂

S,(oo)
i

=
∑

S

Ȳ S,(oo)
a X̂

S,(oo)
i (43)

where the contained intermediates are given by

M̄PS,(ovvv)
τ = M̄

PS,(ovvv)
τ,(1) + M̄

PS,(ovvv)
τ,(2)

= B̂PS,(ovvv)
τ D̄PS,(ovvv)

τ + B̄PS,(ovvv)
τ D̂PS,(ovvv)

τ (44)

N̄PS,(vooo)
τ = N̄

PS,(vooo)
τ,(1) + N̄

PS,(vooo)
τ,(2)

= ÂPS,(vooo)
τ D̄PS,(vooo)

τ + ĀPS,(vooo)
τ D̂PS,(vooo)

τ (45)

Ȳ
S,(vv)
i = −cos

∑

τ

eω̄tτ
∑

P

[
X̂

P,(vo)
i,τ M̄PS,(ovvv)

τ + X̄
P,(vo)
i,τ M̂PS,(ovvv)

τ

]
(46)

Ȳ S,(oo)
a = +cos

∑

τ

eω̄tτ
∑

P

[
X̄P,(vo)

a,τ N̂PS,(vooo)
τ + X̂P,(vo)

a,τ N̄PS,(vooo)
τ

]
(47)
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The contribution σI,(1) is computed as:

σ
I,(1)
ai = +cos

∑

bj

tos
aibjF̄jb +

∑

bj

cosR
ab
ij (ω̄)F̂jb

= −cos

∑

τ

eω̄tτ
∑

P

[
X̄P,(vo)

a,τ X̂
P,(vo)
i,τ + X̂P,(vo)

a,τ X̄
P,(vo)
i,τ

]
ÎP,(vo)
τ − cos

∑

τ

∑

P

X̂P,(vo)
a,τ X̂

P,(vo)
i,τ Ī

P,(vo)
τ,(1)

(48)

with

Ī
P,(vo)
τ,(1) =

∑

bj

X̂
P,(vo)
b,τ X̂

P,(vo)
j,τ F̄jb (49)

As for the ground state, the Fock-like terms

F̄ai =
∑

ck

[2(aî|kc)− (aĉ|ki)]Rck F̄ld =
∑

ck

[2(ld̂|kc)− (lĉ|kd)]Rck (50)

are not reformulated using the THC factorization. Here it is noted that by applying the

THC decomposition to eq. 37, a similar expression for the SOS-ADC(2) term is obtained.

In fact, the contributions σG,(2) and σH,(2) are obtained from eq. 42 and 43, respectively, by

simply setting tµ1 amplitudes to zero. The contribution σI,(2) is computed according to

σ
I,(2)
ai = +

cos

2

∑

bj

tos
aibjF̄jb +

cos

2

∑

bj

[2(iâ|jb)− (ib̂|ja)]
[∑

ck

tos
ckbjRck

]

= −cos

2

∑

τ

∑

P

XP,(vo)
a,τ X

P,(vo)
i,τ Ī

P,(vo)
τ,(1) −

cos

2

∑

bj

[2(ia|jb)− (ib|ja)]Ībj (51)

where

Ībj =
∑

P

∑

τ

X
P,(vo)
b,τ X

P,(vo)
j,τ Ī

P,(vo)
τ,(2) (52)

Ī
P,(vo)
τ,(2) =

∑

bj

XP,(vo)
c,τ X

P,(vo)
k,τ Rck (53)
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and Ī
P,(vo)
τ,(1) is computed as in eq. 49 by setting X̂P

a = XP
a and X̂P

i = XP
i . The explicit

expressions for E and E′ = 1
2
(E+E†) in eq. 36 and 37, as well as the working equations for

the MO-based matrix-vector product are provided in the SI.

2.3.2 Reformulation of the Ground State Equations

As demonstrated in our previous work on RI-SOS-CC2,38 the equations for the ground state

energy can be reformulated in a local basis and hence the intermediates can be expressed in

terms of the occupied and virtual one-electron densities

Pµν =
∑

i

CµiCνi Qµν =
∑

a

CµaCνa (54)

in order to benefit from the locality of the electronic structure. Despite decreasing the scaling

with respect to the system size for the evaluation of most intermediates, the use of the AO

basis increases the scaling with respect to the basis set size for a given system. To counteract

this, the Cholesky decomposition of the occupied ground state density matrix with complete

pivoting77,78

Pµν =
∑

i

LµiLνi (55)

is applied. In addition, the idempotency relation of the occupied and virtual pseudo-density

matrices Pτ and Qτ

P τ
µν = w

1
4
τ

∑

i

CµiCνie
ϵitτ (56)

Qτ
µν = w

1
4
τ

∑

a

CµaCνae
−ϵatτ (57)

P τ
µν =

∑

σλ

P τ
µσSσλPλν =

∑

σλi

P τ
µσSσλLλiLνi (58)

Qτ
µν =

∑

σλ

Qτ
µσSσλQλν (59)
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is used.

For the solution of the SOS-CC2 equations, another set of asymmetric one-electron density

matrices is generated from the T1-transformed coefficients:

Q̂µν =
∑

d

CµdΛ
p
νd = Qµν −

∑

µ′σλν′

Qµµ′Sµ′σtσλSλν′Pν′ν (60)

Q̂τ
µν =

∑

d

w
1
4
τ Cµde

−ϵdtτΛp
νd = Qτ

µν −
∑

µ′σλν′

Qτ
µµ′Sµ′σtσλSλν′Pν′ν (61)

P̂µν =
∑

l

Λh
µlCνl = Pµν +

∑

µ′σλν′

Qµµ′Sµ′σtσλSλν′Pν′ν

=
∑

l

(
Lµl +

∑

µ′σλν′

Qµµ′Sµ′σtσλSλν′Lν′l

)
Lνl = P̂µlLνl (62)

P̂ τ
µν =

∑

i

w
1
4
τ Λ

h
µie

(ϵi)tτCνi

=
∑

i

[∑

σ′λ′

∑

j

(
Lµj +

∑

ν′σλν′′

Qµν′Sν′σtσλSλν′′Lν′′j

)
Lσ′jSσ′λ′P τ

λ′i

]
Lνi (63)

To obtain an expression for the single amplitudes in the AO basis, eq. 17 in the MO basis is

back-transformed to the AO basis according to

Ωµν =
∑

ai

Cµa(Ω
G
ai + ΩH

ai + ΩI
ai + ΩJ

ai)Cνi = ΩG
µν + ΩH

µν + ΩI
µν + ΩJ

µν (64)
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for which the one-electron density matrices in eq. 54-63 permit to rewrite Ωµ1 as

ΩG
µν =

∑

i

ΩG
µiLνi =

∑

i

[
− cos

∑

τ

∑

PS

∑

µ′

X̂
P,(vo)
i,τ M̂PS,(ovvv)

τ X
S,(vv)
µ′ Q̂µµ′

]
Lνi

=
∑

i

[
− cos

∑

S

Q̂µµ′X
S,(vv)
µ′ Ŷ

S,(vv)
i

]
Lνi (65)

ΩH
µν =

∑

i

ΩH
µiLνi =

∑

i

[
cos
∑

τ

∑

PS

X̂P,(vo)
µ,τ N̂PS,(vooo)

τ X̂
S,(oo)
i

]
Lνi

=
∑

i

[
cos
∑

S

Ŷ Q,(oo)
µ X̂

S,(oo)
i

]
Lνi (66)

ΩI
µν =

∑

i

ΩI
µiLνi =

∑

i

[
− cos

∑

τ

∑

P

X̂P,(vo)
µ,τ X̂

P,(vo)
i,τ n̂P,(vo)

τ

]
Lνi (67)

ΩJ
µν =

∑

i

ΩJ
µiLνi =

∑

i

[
Q̂µµ′F̂µ′ν′P̂ν′i

]
Lνi (68)

The X matrices are transformed with a computational effort scaling as O(N), by contraction

with the T1-transformed one-electron densities as

X̂P
i =

∑

µ′

XP
µ′P̂µ′i (69)

X̂P
µ,τ =

∑

µ′

Q̂τ
µµ′XP

µ′ (70)

X̂P
i,τ =

∑

µ′

XP
µ′P̂ τ

µ′i (71)

The working equations in the Cholesky basis are provided in Table 1 together with the

asymptotic computational scaling of each step.

The order of contractions follows the general ideas presented in Ref. 79. Naturally, to

minimize the number of FLOP, common intermediates, such as Â, B̂, and D̂ should be

reused as much as possible. For this, first all possible X tensors are contracted over the orbital

index. For the subsequent formation of the D̂ intermediates two possible routes have to be
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Table 1: Working equations of the intermediates for the solution of the CDD-THC-SOS-
CC2/MP2 equations. Throughout this table Einstein’s summation convention is used.

Intermediates Asymptotic Scaling

(a) Â
QR,(vovo)
τ = X̂

Q,(vo)
i,τ X

R,(vo)
i O(N)

(b) B̂
QR,(vovo)
τ = X̂

Q,(vo)
µ,τ X

R,(vo)
µ O(N)

(c) Ĉ
QR,(vovo)
τ = Â

QR,(vovo)
τ B̂

QR,(vovo)
τ O(N)

(d) D̂αβ
τ = Γ

Q,(vo)
α Ĉ

QR,(vovo)
τ Γ

R,(vo)
β O(N3)

(e) D̂
PS,(ovvv)
τ = Γ

P,(vo)
α D̂αβ

τ Γ
S,(vv)
β O(N3)

(f) D̂
PS,(vooo)
τ = Γ

P,(vo)
α D̂αβ

τ Γ
S,(oo)
β O(N3)

(e’) D̂
PS,(ovvv)
τ = ZPQ,(vovo)Ĉ

QR,(vovo)
τ ZRS,(ovvv) O(N2)

(f’) D̂
PS,(vooo)
τ = ZPQ,(vovo)Ĉ

QR,(vovo)
τ ZRS,(vooo) O(N2)

(g) Â
PS,(vooo)
τ = X̂

P,(vo)
i,τ X

S,(oo)
i O(N)

(h) B̂
PS,(ovvv)
τ = X̂

P,(vo)
µ,τ X

S,(vv)
µ O(N)

(i) M̂
PS,(ovvv)
τ = D̂

PS,(ovvv)
τ B̂

PS,(ovvv)
τ O(N)

(j) N̂
PS,(vooo)
τ = D̂

PS,(vooo)
τ Â

PS,(vooo)
τ O(N)

(k) Ŷ
S,(oo)
µ = X̂

P,(vo)
µ,τ N̂

PS,(vooo)
τ O(N)

(l) Ŷ
S,(vv)
i = X̂

P,(vo)
i,τ M̂

PS,(ovvv)
τ O(N)

(m) Î
P,(ov)
j,τ = X̂

P,(vo)
µ,τ F̂jµ O(N2)

(n) n̂
P,(ov)
τ = X̂

P,(vo)
j,τ Î

P,(ov)
j,τ O(N2)
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considered. In order to minimize the number of FLOP, the Γ-factorized form of the THC

Z tensor should be used and contracted in a total of four matrix-matrix multiplications in

steps (d)-(e). However, the fact that the one-electron density becomes sparse for sufficiently

large systems with a significant HOMO-LUMO gap can be used here to perform the step in

O(N2) operations. The first contraction of Z with intermediate Ĉ in steps (e’)-(f’) scales

quadratically, since Ĉ is sparse whereas Z is not. For the multiplication with the second Z

matrix the fact that the resulting D̂ matrix is Schur multiplied with either the Â or the B̂

matrix in steps (i)-(j) can be leveraged. Since intermediate Â is sparse, the Schur product

with intermediate D̂ will only contain elements which are significant in Â. Therefore, only

the elements in D̂, which are significant in Â need to be computed for step (j) and likewise

for step (i) with intermediate B̂. In total, this enables the formation of the expensive D̂

intermediates in O(N2) time. All final contractions in steps (k)-(n) are at most quadratically

scaling, which results in overall quadratic scaling for the entire CDD-THC-SOS-CC2 method

if Z is used. Notice that the same strategy can be leveraged when using Γ resulting in a

further reduction of the computational effort. However, the formal computational complexity

is not decreased because only the final matrix-matrix multiplication of steps (e) and (f) would

scale quadratically. Therefore, the overall scaling behavior for the entire CDD-THC-SOS-

CC2 method is cubic if Γ is used.

2.3.3 Reformulation of the Excited State Equations

The strategy outlined in the previous section can likewise be applied to the matrix-vector

products of SOS-LR-CC2 and SOS-ADC(2). For simplicity, we will only discuss the refor-
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mulation of eq. 36 according to

σSOS-CC2,(1)
µν =

∑

ai

CµaCνi

(∑

b

F̂abRbi

)
−
∑

ai

CµaCνi

(∑

j

RajF̂ji

)
+
∑

ai

CµaCνiF̄ai

− cos

∑

ai

CµaCνi

(∑

b

EabRbi

)
− cos

∑

ai

CµaCνi

(∑

j

RajEji

)

+
∑

ai

CµaCνi

(
σ

G,(1)
ai + σ

H,(1)
ai + σ

I,(1)
ai

)
(72)

The fourth and fifth term on the right-hand side are rewritten as

−cos

∑

ai

CµaCνi

(∑

b

EabRbi

)
= −cos

∑

µ′σσ′ν′

Ê ′
µ′ν′Qν′σ′

[∑

λ′λ

Sσ′λ′Rλ′λSλσ

]
Pσν (73)

−cos

∑

ai

CµaCνi

(∑

j

RajEji

)
= −cos

∑

µ′σσ′ν′

Qµµ′

[∑

λλ′

Sµ′λ′Rλλ′Sλσ

]
Pσσ′Ê ′′

σ′ν′ (74)

where the intermediates E, given by

E ′
µν =

∑

S

(∑

τ

∑

P

X̂P,(vo)
µ,τ N̂PS,(vovo)

τ

)
XS,(vo)

ν (75)

E ′′
µν =

∑

ji

LµjLνi

[∑

S

(∑

τ

∑

P

X̂
P,(vo)
i,τ M̂PS,(vovo)

τ

)
X

S,(vo)
j

]
(76)
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depend only on ground state quantities and hence are computed once and stored on disk.

The terms σG,(1), σH,(1) and σI,(1) are given as

σG,(1)
µν = −cos

∑

µ′i

Lνi

{∑

τ

eω̄tτ
∑

PS

[
X̂

P,(vo)
i,τ M̄PS,(ovvv)

τ + X̄
P,(vo)
i,τ M̂PS,(ovvv)

τ

]
X

S,(vv)
µ′

}
Q̂µµ′

= −cos

∑

S

∑

µ′i

LνiȲ
S,(vv)
i X

S,(vv)
µ′ Q̂µµ′ (77)

σH,(1)
µν = +cos

∑

i

Lνi

{∑

τ

eω̄tτ
∑

PS

[
X̄P,(vo)

µ,τ N̂PS,(vooo)
τ + X̂P,(vo)

µ,τ N̄PS,(vooo)
τ

]
X̂

S,(oo)
i

}

= +cos

∑

S

∑

i

Ȳ S,(oo)
µ X̂

S,(oo)
i Lνi (78)

σI,(1)
µν = −cos

∑

i

Lνi

{∑

τ

eω̄tτ
∑

P

[
X̄P,(vo)

µ,τ X̂
P,(vo)
i,τ + X̂P,(vo)

µ,τ X̄
P,(vo)
i,τ

]
ÎP,(vo)
τ

}

− cos

∑

i

Lνi

{∑

τ

∑

P

X̂P,(vo)
µ,τ X̂

P,(vo)
i,τ Ī

P,(vo)
τ,(1)

}
(79)

with

Ī
P,(vo)
τ,(1) =

∑

µνi

X̂P,(vo)
µ,τ X̂

P,(vo)
i,τ F̄µνLνi (80)

The matrices M̄ and N̄ , defined in eqs. 44 and45, are computed as shown in Table 2. The

general approach for the order of contractions and the reduction of the scaling is similar to

the ideas presented for Table 1. The state-specific THC X̄ matrices are given by

X̄P,(vo)
µ,τ =

∑

µ′

Q̄τ
µµ′X

P,(vo)
µ′ X̄

P,(vo)
i,τ =

∑

µ

P̄ τ
µiX

P,(vo)
µ (81)
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where the densities Q̄ and P̄ are defined as

Q̄τ
µν =

∑

a

w
1
4
τ Cµae

−ϵatτ Λ̄p
νa = −

∑

µ′ν′k

Qτ
µµ′

[∑

σλ

Sµ′σRσλSλν′

]
Lν′kLkν (82)

P̄ τ
µν =

∑

i

w
1
4
τ Λ̄

h
µie

ϵitτCνi =

{∑

µ′ν′

∑

jσ′λ′

Qµµ′

[
Sµ′λRλσSσν′

]
Lν′jLσ′jSσ′λ′P τ

λ′i

}
Lνi (83)

contain the information about the electronic transition. As discussed in Section 2.3.1, the

SOS-ADC(2) matrix-vector product is easily obtained by setting the single amplitudes to

zero and symmetrizing the intermediates in eqs. 75 and 76. Notice that, eq. 51 can be

reformulated as

σI,(2)
µν = −cos

∑

i

Lνi

{∑

τ

∑

P

XP,(vo)
µ,τ X

P,(vo)
i,τ Ī

P,(vo)
τ,(1)

}

− cos

∑

µ′ν′

∑

i

Qµν′

{∑

σλ

[2(µ′ν ′|σλ)− (µ′λ|σν ′)]LσkĪλk

}
Lµ′iLνi (84)

Īλi =
∑

P

∑

τ

X
P,(vo)
λ,τ X

P,(vo)
i,τ Ī

P,(vo)
τ,(2) (85)

Ī
P,(vo)
τ,(2) =

∑

µi

XP,(vo)
µ,τ X

P,(vo)
i,τ

[ ∑

νλσν′

QµνSνλRλσSσν′Lν′i

]
(86)

In order to minimize the number of FLOP, common intermediates, such as Ā, B̄, D̄ should

be reused as much as possible. For this, first all possible X tensors are contracted over the

orbital index. The fact that the one-electron density and transition density become sparse

can be used here to form the D̄ intermediates with O(N2) scaling behavior. As discussed in

Section 2.3.2, it is possible to carry out the computation of the D̄ intermediates using two

possible routes. To obtain the theoretical quadratic scaling behavior in the asymptotic limit,

the THC Z tensor can be used and contracted in a total of two matrix-matrix multiplications

in steps (e’)-(f’) of Table 2. The first contraction of Z with intermediate C̄ in steps (e’)-(f’)

scales quadratically, since C̄ is significantly sparse whereas Z is not. For the multiplication

with the second Z matrix the fact that the resulting D̄ matrix is Schur multiplied with ei-

29



Table 2: Working equations for the evaluation of the σG and σH contributions to the CDD-
THC-SOS-ADC(2)/LR-CC2 matrix-vector product. Throughout this table Einstein’s sum-
mation convention is used. The ADC(2) equations are obtained by setting tµ1 = 0.

Intermediates Asymptotic Scaling

(a) Ā
QR,(vovo)
τ = X̄

Q,(vo)
i,τ X

R,(vo)
i O(N)

(b) B̄
QR,(vovo)
τ = X̄

Q,(vo)
µ,τ X

R,(vo)
µ O(N)

(c) C̄
QR,(vovo)
τ = ĀQR,(vovo)B̂QR,(vovo) + ÂQR,(vovo)B̄QR,(vovo) O(N)

(d) D̄
Pβ,(vo)
τ = Γ

P,(vo)
α (Γ

Q,(vo)
α C̄

QR,(vovo)
τ Γ

R,(vo)
β ) = Γ

P,(vo)
α D̄αβ

τ O(N2)

(e) D̄
PS,(ovvv)
τ = eω̄tτ D̄

Pβ,(vo)
τ Γ

S,(vv)
β O(N2)

(f) D̄
PS,(vooo)
τ = eω̄tτ D̄

Pβ,(vo)
τ Γ

S,(oo)
β O(N2)

(e’) D̄
PS,(ovvv)
τ = eω̄tτZPQ,(vovo)C̄

QR,(vovo)
τ ZRS,(ovvv) O(N2)

(f’) D̄
PS,(vooo)
τ = eω̄tτZPQ,(vovo)C̄

QR,(vovo)
τ ZRS,(vooo) O(N2)

(g) Ā
PS,(vooo)
τ = X̄

P,(vo)
i,τ X

S,(oo)
i O(N)

(h) B̄
PS,(ovvv)
τ = X̄

P,(vo)
µ,τ X

S,(vv)
µ O(N)

(i) M̄
PS,(ovvv)
τ = M̄

PS,(ovvv)
τ,(1) + M̄

PS,(ovvv)
τ,(2) O(N)

(j) M̄
PS,(ovvv)
τ,(1) = B̂

PS,(ovvv)
τ D̄

PS,(ovvv)
τ O(N)

(k) M̄
PS,(ovvv)
τ,(2) = B̄

PS,(ovvv)
τ D̂

PS,(ovvv)
τ O(N)

(l) N̄
PS,(vooo)
τ = N̄

PS,(vooo)
τ,(1) + N̄

PS,(vooo)
τ,(2) O(N)

(m) N̄
PS,(vooo)
τ,(1) = Â

PS,(vooo)
τ D̄

PS,(vooo)
τ O(N)

(n) N̄
PS,(vooo)
τ,(2) = Ā

PS,(vooo)
τ D̂

PS,(vooo)
τ O(N)

(o) Ȳ
S,(oo)
µ = X̄

P,(vo)
µ,τ N̂

PS,(vooo)
τ + X̂

P,(vo)
µ,τ N̄

PS,(vooo)
τ O(N)

(p) Ȳ
S,(vv)
i = X̂

P,(vo)
i,τ M̄

PS,(ovvv)
τ + X̄

P,(vo)
i,τ M̂

PS,(ovvv)
τ O(N)
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ther the Â or the B̂ matrix in steps (i)-(j) can be leveraged. Since intermediate Â is sparse,

the Schur product with intermediate D̂ will only contain elements that are significant in

Â. Therefore, only the elements in D̄, which are significant in Â need to be computed for

step (j) and likewise for step (i) with intermediate B̂. In total, this enables the formation of

the expensive D̄ intermediates in O(N2) time. In order to minimize the number of FLOP,

the Γ-factorized form of the THC Z tensor should be used and contracted in a total of four

matrix-matrix multiplications in steps (d)-(f) of Table 2. Leveraging the fact that the C̄, Ā,

and B̄ intermediates are significantly sparse – for large systems and local electronic excita-

tions – steps (d)-(f) in Table 2 effectively scale as O(N2) in the asymptotic limit.

The ground state intermediates D̂ are recomputed as in Table 1 for each new matrix-vector

product and used in steps (k) and (n) of Table 2. By leveraging the sparsity of B̄ in step

(k) and Ā in step (n), it is possible to compute D̂ with quadratic time complexity. All

contractions in steps (i)-(p) are at most linear scaling, which results in overall asymptotic

quadratic scaling for the entire CDD-THC-SOS-LR-CC2/ADC(2) methods.

31



3 Computational Details

The presented CDD-THC-SOS-LR-CC2 and CDD-THC-SOS-ADC(2) methods as well as

the MO-based variants are implemented in the FermiONs++80–82 program. The program

was compiled with the Intel C/C++ Compiler 2022.0.2 and linked against the Intel Math

Kernel Library 2022.0.2 for the employed matrix algebra. All developed code was – as far as

possible – parallelized with OpenMP.83 The underlying Hartree–Fock calculations have been

converged to a maximum element of the error matrix in the DIIS procedure below 10−7. In

the SCF, the Coulomb matrix is evaluated using the RI-J approach by Kussmann et al.72

using the cc-pVDZ-JKfit or cc-pVTZ-JKfit84 RI-J basis set, respectively. For the exchange

matrix, the semi-numerical linear scaling exchange method by Laqua et al.69,70 is used.

For the solution of the least-squares equations in THC the pivoted Cholesky decomposition

ansatz by Matthews58 is used. The hand-optimized grid for the cc-pVTZ basis set by Kokkila

Schumacher et al.85 is used as a parent grid together with a pruning threshold of 10−10, unless

otherwise noted. As demonstrated in the SI, it is pivotal to reorder the grid points after the

pruning, since the pivoting in the Cholesky decomposition significantly reduces the sparsity of

intermediates based on the pruned collocation matrices. The computational performance of

the CDD-THC-SOS-LR-CC2 and CDD-THC-SOS-ADC(2) methods is improved using sparse

linear algebra. The current implementation leverages block-sparse (BS) matrices, which

divide the matrices into smaller blocks of maximum size 96× 96. Further information about

the BS matrix implementation is provided in the SI of Ref. 38. The thresholds controlling

the storage sparsity (ϑa) and the matrix-matrix multiply sparsity (ϑm) are set to 10−7 and

10−9, respectively. The threshold controlling the storage sparsity of the transition density

matrix is set to 10−4. The single cluster amplitudes and ground state energy at the SOS-CC2

level are optimized via the DIIS procedure, which terminates when the L2-norm of the single

vector function is lower than 10−5 and the variation in the energy is lower than 10−6. For

excited states calculations, the trial excitation vectors and energies are first optimized at

the ADC(1)/CCS level via the Davidson procedure, until the L2-norm of residuals and the
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variation in the eigenvalues are below 10−3. Then, SOS-LR-CC2 or SOS-ADC(2) excitation

vectors and energies are optimized using the DIIS algorithm, which terminates when the

L2-norm of the residuals are lower than 10−5 and the variations in the eigenvalues are lower

than 10−6. It is important to note that the ADC(1)/CCS trial vectors and eigenvalues can be

pre-optimized via the Davidson procedure at the CC2 or ADC(2) level if the DIIS procedure

fails to converge to the correct root. Optimized minimax grids with 7 quadrature points for

the Laplace expansion are used for both ground and excited states calculations. Moreover,

the frozen-core approximation is used in the THC fitting as well as in the ground state and

excited states calculations. Throughout, the Dunning cc-pVXZ (X ∈ {D,T}) basis sets63,64

are used together with their corresponding RI basis sets.65 All calculations are performed

using a compute node with two AMD EPYC 7452 32-Core 2.35 GHz CPUs (64 cores in

total), 1 TB of RAM, and 24 TB of disk space. All runtimes are reported as wall times, not

CPU times.

4 Results

4.1 Accuracy

The present work aims to increase the efficiency of the SOS-ADC(2) and SOS-LR-CC2 meth-

ods to extend their applicability to molecules with several hundreds of atoms while retaining

accuracy as far as possible. To assess the accuracy of the ground state implementation, the

errors produced by the MO-based as well as by the CDD-based THC-SOS-MP2/CC2 meth-

ods are investigated with respect to MO-RI-SOS-MP2/CC2. For this purpose, the THC

error ∆ETHC is defined as |EMO-RI-SOS-MP2/CC2 − EMO-THC-SOS-MP2/CC2|, i.e., measuring the

error introduced by the THC approximation alone, whereas the CDD error ∆ECDD is de-

fined as |EMO-THC-SOS-MP2/CC2 − ECDD-THC-SOS-MP2/CC2|, i.e., measuring the error introduced

by CDD reformulation and the associated use of sparse matrix algebra. For the assessment

of the accuracy for excitation energies, the definition of the ∆ETHC error and the ∆ECDD
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error is analogous.

4.1.1 THC Error

Table 3 summarizes the THC errors in terms of the mean absolute deviations (MAD), the

maximum absolute errors (MAX), and the root mean square deviations (RMSD) for ground

state calculations on three different benchmark sets: 1) the Thiel benchmark set,86 2) the

benchmark set used by Hohenstein et al.55 in their work on THC-EOM-CC2, and 3) a

benchmark set comprised of 27 alanine tetrapeptide conformers.56 For these sets of small

and medium sized molecules, the CDD errors are negligible, cf. Section 5 of the SI containing

detailed results for the three different benchmark sets.

Table 3: Mean absolute errors for the three different benchmark sets in Refs. 86, 55 and 56.
Errors are reported as mean absolute deviations (MAD), maximum absolute errors (MAX),
and root mean square deviations (RMSD) as obtained by the MO-THC-SOS-MP2/CC2
methods relative to the MO-RI-SOS-MP2/CC2 results. All calculations are performed with
the cc-pVTZ/cc-pVTZ-RI basis set combination.

∆ETHC / eV
SOS-MP2 SOS-CC2

Thiel86

[Abs. Energy]
MAD < 0.001 0.006
MAX 0.001 0.021
RMSD < 0.001 0.008

Hohenstein55

[Abs. Energy]
MAD 0.002 0.024
MAX 0.004 0.055
RMSD 0.002 0.029

Alanine tetrapeptides56

[Abs. Energy]
MAD < 0.001 0.036
MAX 0.001 0.039
RMSD < 0.001 0.036

[Rel. Energy]
MAD < 0.001 0.004
MAX < 0.001 0.043
RMSD < 0.001 0.012
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Regarding the accuracy of the THC approximation in MP2, MO-THC-SOS-MP2 shows only

small deviations of the absolute energies on the order of ∼10−4 − 10−3 eV compared to

the reference method MO-RI-SOS-MP2. For CC2, however, the use of THC in MO-THC-

SOS-CC2 produces errors that are roughly one order of magnitude larger with a maximum

error of 0.055 eV. These errors exhibit only modest error cancellation for relative energies,

e.g., the RMSD for alanine tetrapeptides56 reduces from 0.036 eV to 0.012 eV going from

absolute to relative energies and the maximum error even slightly increases from 0.039 eV

to 0.043 eV The larger THC errors in CC2 compared to MP2 are due to the inclusion of

(ov|vv)-type integrals in the THC fitting as these are necessary for the iterative solution

of the CC2 equations, whereas MP2 only requires (ov|ov)-type integrals. Fitting the much

larger (ov|vv) subspace with the THC grids – originally optimized for MP285 – is substan-

tially more challenging which explains the observed increase in the THC error going from

MP2 to CC2. Note that these findings regarding larger THC errors for CC2 compared to

MP2 are mostly in line with previous work,50,51 albeit somewhat more pronounced due to

our more comprehensive collection of benchmark sets and the use of the larger triple-zeta

basis sets (cc-pVTZ/cc-pVTZ-RI) in contrast to the double-zeta basis sets used previously.

Nevertheless, since the errors are below ∼0.1 eV (“chemical accuracy”), they are considered

to be acceptable in most applications and are still substantially smaller than the method

error of CC2 itself.

Going beyond ground state energies, the applicability of THC-SOS-CC2/ADC(2) for excita-

tion energies is assessed by comparing MO-THC-SOS-LR-CC2/ADC(2) with the RI-based

reference implementation. The absolute deviations are summarized in Table 4 for excita-

tions to the three lowest-lying singlet (S) and triplet (T) states of the molecules in the Thiel

benchmark set,86 as well as in the benchmark set used by Hohenstein et al.55 Analogous to

the situation for ground state energies, the CDD errors here are also virtually zero, due to the

small size of the molecules within the considered benchmark sets. Detailed data including
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the error for each individual molecule is provided in Section 5 of the SI.

Table 4: Errors for the excitation energies to the three lowest-lying singlet and triplet
excited states of the molecules from the benchmark sets from Ref. 86 and Ref. 55. Errors are
reported as mean absolute deviations (MAD), maximum absolute errors (MAX), and root
mean square deviations (RMSD) from the reference energies obtained with MO-RI-SOS-
LR-CC2/ADC(2). All calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set
combination.

∆ETHC / eV
SOS-ADC(2) SOS-LR-CC2

Thiel86

[Singlet]
MAD 0.026 0.019
MAX 0.190 0.055
RMSD 0.046 0.023

[Triplet]
MAD 0.067 0.022
MAX 0.320 0.200
RMSD 0.130 0.034

Hohenstein55

[Singlet]
MAD 0.026 0.017
MAX 0.110 0.091
RMSD 0.034 0.023

[Triplet]
MAD 0.075 0.012
MAX 0.240 0.035
RMSD 0.100 0.015

Compared to the results for ground state energies, the application of THC to SOS-ADC(2)

and SOS-LR-CC2 produces errors that are significantly larger with mean absolute errors

up to 0.075 eV and maximum errors up to 0.320 eV. In particular, triplet excitations are

described less accurately compared to singlet excitations, with the largest observed deviation

being 0.320 eV for THC-SOS-ADC(2) and 0.200 eV for THC-SOS-LR-CC2. However, these

large errors are mostly exceptional, the vast majority (>95 %) of excitation energies are

actually within 0.05 eV which we would consider acceptable for most applications. Again,

these errors are mostly in line with previous work,55 although the exceptional cases with

errors in excess of 0.1 eV were not seen before and are probably a consequence of the more
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comprehensive data sets and the use of larger triple-zeta basis sets. Unfortunately, improving

the accuracy of THC beyond the limitations imposed by the pre-defined THC grids is not

trivial and beyond the scope of this work. Instead, we rather focus on the reduced-scaling

local CDD-based reformulation and its advantages compared to the non-local MO-based RI

reference algorithms, particularly in terms of accessible molecule sizes.

4.1.2 CDD Error

After having assessed the intrinsic errors associated with LS-THC, we now turn our atten-

tion toward the errors introduced by the local Cholesky-MOs and the sparse matrix algebra.

Since the errors are only significant for larger molecules, the assessment provided in Tables 5

and 6 is carried out for a series of linear carboxylic acids (LCAn) and adenine-thymine base

pair stacks (ATn) ranging from 62 atoms (AT1) to 362 atoms (LCA120).

For the LCAn model systems, the CDD error increases linearly with the system size for

ground state calculations using the CDD-THC-based versions of SOS-MP2 or SOS-CC2, as

shown in Table 5. In passing, we note that the THC error also increases linearly with the

system size, matching observations in previous work.47 Moreover, the CDD error is almost

identical between the CDD-THC-SOS-MP2 and the CDD-THC-SOS-CC2 method, whereas

the THC error is increased going from SOS-MP2 to SOS-CC2, as discussed in the previous

section. Overall, it is demonstrated that the CDD error is on the same order as the THC

error only for SOS-MP2 energies of the LCAn series, while in the remaining cases its contri-

bution to the total CDD-THC error is negligible with a maximal error of 1.6 meV.

Regarding the accuracy for excitation energies, Table 6 demonstrates almost constant CDD

errors as well as THC errors for the targeted excited states in the LCAn series beyond LCA80.

This behavior is expected since the investigated electronic excitations are localized on the

carboxylic acid group.
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Table 5: Absolute ∆ETHC and ∆ECDD errors for the ground state energies for a series
of LCAn and ATn molecules. All calculations are performed with the (CDD-)THC-based
reformulations of the SOS-MP2 and SOS-CC2 methods and employ the cc-pVTZ/cc-pVTZ-
RI basis set combination.

SOS-MP2 SOS-CC2
∆ETHC / meV ∆ECDD / meV ∆ETHC / meV ∆ECDD / meV

LCA40 0.702 0.076 37.706 0.076
LCA80 1.499 0.767 44.305 0.767
LCA120 2.214 1.550 51.582 1.610
AT1 2.511 0.007 48.738 0.002
AT2 9.928 0.180 117.397 0.183
AT4 21.910 0.117 233.018 0.167

For the more globular ATn series, the CDD errors are quite a bit larger with a maximum

error of 9.4 meV, since the electronic structure is much less local compared to LCAs resulting

in higher total errors from neglecting small (below the sparse algebra thresholds ϑa = 10−7

and ϑm = 10−9) contributions in the sparse-matrix algebra. Nonetheless, the CDD error

are still smaller than the THC error and are not expected to pose significant challenges in

practical applications. Moreover, the results can – in contrast to the THC error – always be

converged to the desired accuracy using tighter thresholds.

Table 6: Absolute ∆ETHC and ∆ECDD errors for the excitation energies to the lowest-lying
singlet excited state for a series of LCAn and ATn molecules. All calculations are performed
with the (CDD-)THC-based reformulations of the SOS-ADC(2) and SOS-LR-CC2 methods
and employ the cc-pVTZ/cc-pVTZ-RI basis set combination.

SOS-ADC(2) SOS-LR-CC2
∆ETHC / meV ∆ECDD / meV ∆ETHC / meV ∆ECDD / meV

LCA40 13.393 0.002 70.689 0.021
LCA80 12.854 0.025 64.477 0.280
LCA120 12.731 0.028 53.472 0.230
AT1 21.919 0.002 12.183 0.177
AT2 20.503 3.100 32.366 9.370

Considering the demonstrated influence of the application of the LS-THC approximation

together with the CDD approach on the accuracy in Tables 5 and 6, the focus of the remainder

of this work is on the computational improvements gained thereby in terms of runtime,

asymptotic scaling behavior, and memory requirements.
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4.2 Computational Efficiency

The sparsity of the ground state one-electron density is closely related to the energy gap

between the highest occupied (HOMO) and the lowest unoccupied MO (LUMO). Given

a significant HOMO-LUMO gap, asymptotically linear-scaling variants of many common

quantum chemistry methods have been proposed.87,88 In addition, for excited state calcu-

lations the transition density R with elements Rµν in eqs. 82 and 83 must be considered,

for which the sparsity is related to the locality of the excitation. In order to assess the

computational complexity of the newly proposed density-based grid-projection algorithm for

LS-THC and the resulting CDD-THC-SOS-LR-CC2 and CDD-THC-SOS-ADC(2) methods,

a series of LCAn molecules is selected as a best-case scenario. LCAn are particularly suitable

for the demonstration of the asymptotic time complexity, due to the strong locality of their

electronic ground state and first singlet excited state (S1), which is mostly localized on the

carboxyl group. In addition, the time complexity of the presented methods is discussed for

three-dimensional systems, here representatively DNA fragments in the ATn series.

4.2.1 Integral-direct Tensor Hypercontraction

First, the efficiency of the proposed density-based, integral-direct algorithm for the grid-

projection of the three-center RI integrals, i.e., for the formation of intermediates Y in eq. 13,

is demonstrated. For this, a comparison between the previously published Cholesky MO-

based natural blocking approach (nat. block.)59 and density-based implementations based on

the J-engine (J-engine),60 RI-J (RI-J ),61 and the newly proposed method in Section 2.2.3

(this work) is drawn in Table 7.

For the natural blocking algorithm, the recommended settings from Ref. 59 are used, most

notably, attenuated Coulomb RI40 with an attenuation strength of ω = 0.1. The latter is

required to achieve sparsity in the three-center integrals, which makes this approach effi-

cient. In contrast, all density-based approaches use the regular 1/r12 metric. As previously

reported, the natural blocking-based formation of the Y intermediate approaches linear time
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Table 7: Wall time in hours required for the formation of the Y(oo), Y(vo), and Y(vv)

intermediates based on the previously published natural blocking (nat. block.)59 approach as
well as density-based and integral-direct using the J-engine (J-engine),60 the RI-J algorithm
(RI-J ),61 and the proposed algorithm (this work) from Section 2.2.3. Since the natural
blocking approach was optimized for the formation of Y in the virtual-occupied subspace,
only timings for Y(vo) are reported. Extrapolated values are marked with an asterisk (*).

cc-pVDZ cc-pVTZ
nat. block. J-engine RI-J this work nat. block. J-engine RI-J this work

Y(oo)

LCA20 – <0.1 <0.1 <0.1 – 0.1 <0.1 <0.1
LCA40 – 0.1 <0.1 <0.1 – 0.5 0.1 <0.1
LCA80 – 1.2 0.1 <0.1 – 4.9 0.3 <0.1
LCA160 – 8.7 0.3 <0.1 – 52.8 1.2 0.4

Y(vo)

LCA20 <0.1 0.1 <0.1 <0.1 <0.1 1.0 0.2 <0.1
LCA40 <0.1 0.7 0.1 <0.1 0.1 9.0 0.8 <0.1
LCA80 <0.1 9.1 0.5 <0.1 0.2 85.2 3.2 0.3
LCA160 0.1 69.8 1.9 0.2 0.7 924.0* 13.1 2.7

Y(vv)

LCA20 – 0.1 0.1 <0.1 – 1.3 0.4 <0.1
LCA40 – 1.3 0.2 <0.1 – 11.8 1.5 0.1
LCA80 – 14.5 1.0 <0.1 – 113.8 5.8 0.4
LCA160 – 118.0 3.8 0.3 – 1235.4* 24.1 3.2

complexity for the largest molecule sizes and is the fastest among the approaches presented

in Table 7, due to the efficiency of the screening in combination with the best-case sparsity

of the LCAn series. In contrast, the RI-J implementation exhibits quadratic scaling due

to the considerable sparsity of the R(Q) slices acting as the density matrix in the Coulomb

matrix build, which is leveraged by density- and shell-pair-based screening in the RI-J im-

plementation.61 Both the J-engine implementation60 as well as the algorithm proposed in

Section 2.2.3 show cubic time complexity since shell-pair sparsity is leveraged while density-

based screening is not employed. It is noteworthy, that, while both variants scale cubically

with the system size, the J-engine based method has a significantly higher prefactor, which

leads to it being slower than all other variants. In contrast, for the proposed – likewise

cubically scaling – approach from Section 2.2.3 the prefactor is low enough to render the

method competitive to the natural blocking approach even for very large and untypically

sparse molecules like LCAs. In turn, the proposed algorithm is especially advantageous for
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more realistic, less sparse systems. In order to demonstrate the effectiveness of the algorithm,

the time complexity for the formation of the Y(oo), Y(vo), and Y(vv) intermediates for LCAn

up to LCA160 is shown in Figure 1 (left).

Figure 1: System size scaling (time complexity) presented as a log-log plot (left) and strong
scaling speedup (right) of the proposed density-based integral-direct grid-projection algo-
rithm for the cc-pVTZ/cc-pVTZ-RI basis set combination and linear carboxylic acids (LCAn,
n ∈ {20, 40, 80, 160}) of increasing size. The strong scaling analysis is performed using LCA40

on a single dual-socket compute node comprised of 2×32 cores with core performance boost
disabled and all cores operating at the base clock speed.

While the asymptotic time complexity is cubic as expected for all MO subspaces (oo, ov,

vv), the grid-pruning technique from Matthews58 reduces the prefactor for forming the Y(oo)

intermediate significantly due to the compactness of the occupied-occupied subspace. Ad-

ditionally, the strong scaling, i.e., the time-to-solution behavior for the same molecule size

but increasing numbers of threads, is assessed and shown in Figure 1 (right). Keeping the

individual workload high enough on all processors is key to ideal strong scaling speedup. In

this regard, good parallel efficiency and almost ideal strong scaling is observed for up to 32

threads, with only slightly diminishing returns beyond.

In summary, while the proposed grid-projection algorithm has asymptotic cubic time com-

plexity with respect to the systems size, its prefactor is diminutive and it exhibits near-perfect

strong scaling speedups. Furthermore, it is competitive to the previously published natural

blocking approach while only relying on the shell-pair sparsity of the atomic orbitals, which

41



makes it better suited for non-sparse three-dimensional systems.

4.2.2 THC-SOS-LR-CC2 and THC-SOS-ADC(2)

The computational complexity of the proposed CDD-THC-SOS-LR-CC2 and CDD-THC-

SOS-ADC(2) implementations is investigated by taking into account the number of floating-

point operations (FLOP) and wall times required to form the singles-manifold CC vector

and the matrix-vector product for ground and excited state calculations, respectively. In

particular, the number of FLOP and timings for the last iteration of the DIIS procedure

is assessed. Note that the FLOP count and timings of LR-SOS-CC2 and SOS-ADC(2) are

similar because the steps required to form the matrix-vector products are mostly identical.

Figure 2 shows the time complexity measured by the number of FLOP (top) and wall times

(bottom) for the ground (left) and the excited state calculations (right) for the MO-RI-

SOS-LR-CC2/ADC(2) reference implementations (black) in comparison with the proposed

MO/CDD-THC-SOS-LR-CC2/ADC(2) methods (colored) for the LCAn series.

The MO-based THC-SOS-LR-CC2 and THC-SOS-ADC(2) algorithms allow for a O(N3)

scaling evaluation of the ground state energy and excitation energies with an effort that is

∼19 and ∼33 times smaller than the respective O(N4) scaling MO-RI reference variant for

the largest molecule size considered. Reformulating the equations for the SOS-CC2 single

amplitudes in the local Cholesky MO basis, as described in Section 2.3.2 and using sparse lin-

ear algebra to solve eq. 64 further decreases the computational effort to ∼58-fold. Although

the formal scaling behavior is cubic due to steps (e) and (f) in Table 1, a scaling expo-

nent < 3 is observed for the ground state CDD-THC-SOS-CC2 method by leveraging the

sparsity, as described in Section 2.3.2. For CDD-THC-SOS-LR-CC2 and CDD-THC-SOS-

ADC(2) O(N2.3) scaling is obtained with a ∼86-fold diminution of the effort to evaluate the

matrix-vector product in eq. 72 for the largest LCA size considered. The observed scaling

exponent is slightly larger than the theoretically predicted one reported in Table 2, due to the

reduced sparsity of the density matrices within the larger triple-zeta basis. For the smaller

42



Figure 2: Number of FLOP and wall time required to evaluate the SOS-CC2 single ampli-
tudes (left) and the SOS-LR-CC2/SOS-ADC(2) matrix-vector product (right) for a series
of LCAn (n ∈ {20, 40, 80, 120, 160, 200}) molecules using the MO-THC (green) and the
CDD-THC-based implementations (orange). Labels represent the FLOP reduction and time
speedup compared to the MO-RI-SOS-LR-CC2/ADC(2) implementation (black) and all cal-
culations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination. Extrapolated
values are marked with an asterisk (*).
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cc-pVDZ/cc-pVDZ-RI basis set combination, the observed scaling behavior is closer to the

predicted quadratic scaling with an observed time complexity of O(N2.1), which is shown in

Section 6.1 of the SI.

A significant reduction of the computational effort is likewise achieved for three-dimensional

DNA fragments with up to 12 AT pairs. On the one hand, the cubically scaling MO-based

THC-SOS-LR-CC2 and THC-SOS-ADC(2) methods grant ∼16-fold and ∼26-fold reduction

of the effort for computing the contributions to the single amplitudes in eq. 24 and the

matrix-vector product in eq. 37, respectively, as shown in Figure 3. On the other hand, the

CDD-THC-SOS-LR-CC2 and CDD-THC-SOS-ADC(2) reformulations allow for the solution

of the singles-manifold cluster equation in eq. 64 and the calculation of the matrix-vector

product of eq. 72 with a computational effort in terms of FLOP that is ∼27 times smaller

than their MO-RI variant in both cases. Consequently, the reduction of the number of FLOP

translates to a decrease of the wall times up to 24 times for the ground state and up to 17

times for the excitation energy calculation. Despite the observed O(N2.5) behavior for the

calculation of the excitation energies of the ATn series, the scaling exponent is expected to

decrease toward ∼2 in the asymptotic limit.

Overall, employing CDD-THC-SOS-ADC(2) makes it possible to compute the excitation

energy to the two lowest-lying singlet excited states of AT12 for the cc-pVDZ/cc-pVDZ-RI

basis set combination in ∼7.5 days, for which the most time-consuming steps are shown in

Figure 4 with their individual contributions to the overall wall time. Most of the time is spent

computing the ADC(2) excitation energies, which requires ∼72% of the total computation

time, while only ∼18% of the total computation time is spent evaluating the THC Γ matrices.

Note that the ADC(2) optimization procedure is converged with thresholds of 10−6 and 10−5

for the excitation vector and the energy, respectively. The guesses for the DIIS procedure are

optimized at the ADC(1) level via Davidson optimization, which requires ∼10% of the total
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Figure 3: Number of FLOP and wall time required to evaluate the SOS-CC2 single ampli-
tudes (left) and the SOS-LR-CC2/SOS-ADC(2) matrix-vector product (right) for a series of
ATn (n ∈ {1, 2, 4, 8, 12}) molecules using the MO-THC (green) and the CDD-THC-based
implementations (orange). Labels represent the FLOP reduction and time speedup com-
pared to the MO-RI-SOS-LR-CC2/ADC(2) implementation (black) and all calculations are
performed with the cc-pVDZ/cc-pVDZ-RI basis set combination. Extrapolated values are
marked with an asterisk (*).
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time. The SCF procedure, the calculation of the MP2 energy correction, and the evaluation

of the ground state intermediates E from eq. 76 together requires ∼1% of the total time.

Figure 4: Distribution of the wall time for an illustrative CDD-THC-SOS-ADC(2) calculation
of the excitation energies to the two lowest-lying singlet excited states of AT12 using the cc-
pVDZ/cc-pVDZ-RI basis set combination.

Finally, the memory and storage savings of the THC-based algorithms should be considered

which extends the applicability of SOS-ADC(2) and SOS-LR-CC2 to large basis sets and

much larger systems, without the need of batching the workload until the ∼1000 atoms

scale is reached. Indeed, in the THC-based reformulations only second-order tensors are

stored and the space complexity is at most quadratic due to the integral-direct formation

of the THC tensors. Moreover, within the CDD-THC-based approach, sparse linear algebra

decreases the space complexity of most intermediates, further reducing the memory and

storage requirements of the resulting methods. The space complexity is discussed in detail

in Section 6.2 of the SI.

5 Conclusion

An efficient reformulation of SOS-CC2 for ground state and SOS-LR-CC2 as well as SOS-

ADC(2) for excitation energies is presented. The implementation leverages the THC-factorized
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representation of the ERI tensor in conjunction with local Cholesky pseudo-MOs from the

CDD approach together with block-sparse linear algebra for the resulting tensor contrac-

tions. For the expensive formation of the Y intermediates, which are the grid-projected

three-center RI integrals, an efficient near-perfect strong-scaling integral-direct and density-

based algorithm is proposed and implemented. The presented algorithm exhibits cubic time

complexity with a very low prefactor, rendering it competitive to the previously published

natural blocking approach. Further reduction to quadratic or even linear time complexity

would require the use of a local metric, as in the natural blocking approach. In this way,

an efficient way to obtain the THC tensors for any orbital space is provided, which is lever-

aged by THC-based reformulations of SOS-MP2, SOS-(LR-)CC2, and SOS-ADC(2) for both

ground state and excitation energy calculations.

The derived methods show reasonable accuracy for both absolute and relative ground state

energies. However, due to the larger fitting space of the (ov|vv)-type integrals required in

SOS-CC2, the mean absolute errors are increased from ∼10−3 to 10−2 eV compared to SOS-

MP2. The LS-THC errors are even more pronounced for SOS-ADC(2) and SOS-LR-CC2

excitation energies, especially for the triplet states, for which the maximum errors are as large

as ∼0.3 eV. Thus, more work regarding the accuracy of the THC approximation especially

for (ov|vv)-type integrals is needed. One possible solution is the use of robust THC,89 which

however entails further computational complexity and is therefore not suitable for the target

applications. In addition, a more comprehensive hierarchy of THC specific integration grids

would enable finer grained control over the THC error so that more accurate results could

be obtained for applications where this is necessary.

In contrast, the additional use of the CDD approach together with the application of sparse

linear algebra, does not incur significant further errors, justifying the applicability of the

presented methods. In particular, for small molecules the error introduced by the CDD ap-

proach sparse algebra is virtually zero as no sparsity can be exploited. For large systems the

CDD algorithm proved to yield energies close to the MO-based one with error in the range
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of ∼10−5 to ∼10−3 eV, which can be rigorously controlled through the associated thresholds.

Since both SOS-LR-CC2 and SOS-ADC(2) only involve Coulomb-type integral contractions,

no higher than second-order tensors have to be formed and all FLOP-intensive contractions

can be performed efficiently by matrix-matrix multiplications. Application of the THC ap-

proximation yields cubic scaling MO-based algorithms – contrary to the fourth-order scaling

RI-based ones – and grants significant speedups for the evaluation of both ground and exci-

tation energies. For ground state calculations, leveraging Cholesky-MOs and sparse algebra

further reduces the computational effort and scaling, hence providing additional speedups.

However, the scaling behavior of the time-determining steps and the overall scaling of CDD-

THC-SOS-MP2 and CDD-THC-SOS-CC2 is reduced to O(N2) only if the Z fitting tensor

is used. Contrary to ground state calculations, the use of Cholesky-MOs and sparse algebra

reduces the computational scaling of CDD-THC-SOS-ADC(2)/LR-CC2 to quadratic in the

asymptotic limit while decreasing the computational effort up to∼25-fold for DNA fragments

with approximately 800 atoms. The reformulation in the Cholesky-MOs basis and the use

of sparse algebra within the LS-THC framework also allow for a significant reduction of the

memory demand, which has at most quadratic space complexity. The overall demonstrated

computational savings, in both FLOP and wall time required for the solution of the energy

expressions, as well as the presented memory savings, render the implemented CDD-THC-

based algorithms promising candidates for calculations on large molecular systems.
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1 Sparsity-conserving Grid Pruning

Throughout this work the grid pruning technique by MatthewsS1 was used, which serves two

purposes: 1) a removal of unnecessary linear combinations of grid points and 2) the solution of

the system of linear equations required for forming the final Γ intermediates. Instead of defining

novel parent grids from which to prune from, the hand-optimized grid for the cc-pVTZ basis set

by Kokkila Schumacher et al.S2 is used as a parent grid. In the following, the influence of the

pruning threshold ε, i.e., the rank threshold in the underlying pivoted Cholesky decomposition

(PCD), on the accuracy is assessed. Figure S1 shows the behavior of the error (solid lines) of

THC-SOS-RI-MP2 compared to SOS-RI-MP2 as well as the growth of the numerical rank (dashed

lines), i.e., the resulting number of grid points Ngrid after pruning, for LCAs up to 160 carbon

atoms.

Figure S1: Behavior of the error (solid lines) of THC-SOS-RI-MP2 compared to SOS-RI-MP2 as
well as the growth of the numerical rank (dashed lines) with an increasingly tight pruning threshold
ε. All calculations were performed with the cc-pVDZ/cc-pVDZ-RI basis set combination and with
the hand-optimized grids for the cc-pVDZ (left) and cc-pVTZ (right) basis set as parent grids.

In general a smooth linear reduction of the error and a linear growth of the number of resulting grid

points is observed with increasingly tight pruning thresholds. Also, with the hand-optimized grid

for the cc-pVDZ basis set serving as a parent grid, the accuracy deteriorates beyond a threshold

of 10−9. This has also been observed in previous work by MatthewsS1 and is most likely due

to numerical instabilities in the pivoted Cholesky decomposition or the subsequent least-squares

fitting. While with the tightest reasonable threshold an acceptable accuracy on the order of

10−5 H for absolute energies is achieved for both parent grids, the cc-pVTZ based parent grid was
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chosen for all calculations in the main part of this paper because of the more well-behaved error.

Additionally note that by comparing the errors between the LCAs of different chain length, it is

observed that the error grows linearly with the molecule size, as reported previously.S1,S3

One potential drawback of the PCD-based grid pruning is the pivoting, which changes the order

of the grid points, or rather linear combinations thereof. To increase sparsity in the one-particle

density matrix it is custom to reorder atoms according to the reverse Cuthill–McKee (RCM)S4

algorithm in order to minimize the bandwidth of the resulting density matrix. Likewise, this re-

ordering also reduces the bandwidth of grid-based intermediates like the grid metric S, for which

the order of the grid points is predominately determined by the order of the atoms since the con-

stituting grids are atom-centered. However, the pivoting in the PCD causes a reordering of the

grid points, which results in unwanted fill-in. To preserve sparsity, all resulting grid points after

pruning are assigned to their closest neighboring atom and then ordered according to their parent

atom in the order determined by the RCM algorithm. Figure S2 demonstrates the described situ-

ation for the THC grid metric tensor S for LCA80 and highlights the importance of the reordering

of the grid points after pivoting.

Figure S2: Block sparsity pattern of the THC grid metric S in the AO basis before (left) and
after pruning (center), as well as after reordering of the grid points (right). Red pixels indicate
significant blocks while white pixels represent blocks for which the norm is less than 10−10. All
sparsity patterns are obtained from LCA80 using the cc-pVDZ basis set and pruning from the
hand-optimized cc-pVTZ based grid for the occupied-virtual subspace. Note that the images for
the S tensor after pruning are scaled up; before pruning S was of size 45411 × 45411 and after
pruning of size 22906× 22906.
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2 Ground State Equations

In the following the working equations of the ground state expressions for the SOS-CC2 singles

amplitudes and the SOS-CC2 energy in terms of the THC-based intermediates defined in the main

part of this work are given.
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α ÂQR,(vovo)

τ B̂QR,(vovo)
τ Γ

R,(vo)
β Γ

S,(vv)
β

]
X̂S,(vv)

a

= −cos
∑

τ

∑

PS

X̂
P,(vo)
i,τ MPS,(ovvv)

τ X̂S,(vv)
a (1)

ΩH
ai = cos

∑

τ

wτ

∑

kbj

∑

αβ

∑

PQRS

X̂P,(vo)
a X̂

P,(vo)
k ΓP,(vo)

α ΓQ,(vo)
α X̂

Q,(vo)
b X̂

Q,(vo)
j e−ϵaktτ e−ϵbjtτ

·
(
X

R,(vo)
j X

R,(vo)
b Γ

R,(vo)
β Γ

S,(oo)
β X

S,(oo)
k X̂

S,(oo)
i

)

= cos
∑

τ

∑

PS

X̂P,(vo)
a,τ

[∑

αβ

∑

QR
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3 Excited State Equations - Triplet States

The matrix-vector products for triplet (T) states are given by

σ
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The derivation of the singlet equations is discussed in the main part of this work. In order to

derive the equations for the triplet states it is necessary to consider the following spin-symmetry

relationships for singlet

Raαiα = Raβiβ (5)

and triplet states

Raαiα = −Raβiβ (6)

where α, β here are the spin of the electrons. Accordingly, the intermediates of the matrix-vector

product are given by
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where for triplet states

F̄ib = −(jĉ|kb)Rck (11)
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4 Working Equations for the MO-based algorithm

Table S1: Working equations of the intermediates for the solution of eq. 24 and 29 in the main
part of this work. Notice that, for SOS-MP2 calculations, tai = 0 and only eq. (a)-(d) need to be
solved.
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Table S2: Working equations of the intermediates for the solution of the MO-THC-SOS-LR-CC2
excitation energy calculations.
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PS,(vooo)
τ = X̄

P,(vo)
i,τ X

S,(oo)
i NoccNgrid-ovNgrid-oo

(d) B̄
PS,(ovvv)
τ = X̄

P,(vo)
a,τ X

S,(vv)
a NvirtNgrid-ovNgrid-vv

(e) Ȳ
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S,(vv)
i = X̂

P,(vo)
i,τ M̂

PS,(ovvv)
τ NoccNgrid-ovNgrid-vv

S-8



5 Detailed Results – Accuracy

In the following, detailed results for the accuracy of the proposed MO/CDD-THC-SOS variants of

the MP2, CC2, LR-CC2, and ADC(2) methods are given. Section 5.1 summarizes the ground state

energies of 27 tetraalanine conformersS5 as obtained with the THC-SOS-MP2 and the THC-SOS-

CC2 method in Tables S3 and S5, respectively. The resulting relative energies and the associated

method errors are given in Tables S4 and S6. Additionally, the performance of the proposed

methods is assessed for the Thiel benchmark setS6 in Section 5.2 for both ground and excitation

energies in Sections 5.2.1 and 5.2.2, respectively. The ground state energies relative to the MO-

RI-SOS-based reference implementation are given in Table S7 for MP2 and in Table S8 for CC2.

For the comparison of the excitation energies both the three lowest-lying singlet (S) and triplet

states (T) are considered in Tables S9–S12 for ADC(2) and LR-CC2. Likewise, the same analysis

is shown for the benchmark set used by Hohenstein et al.S7 in their work on THC-EOM-CC2 in

Tables S13–S18 in Section 5.3.
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5.1 Tetraalanine Conformer Benchmark Set

Table S3: Detailed results for the ground state energies of the 27 conformers in the tetraalanine
conformer benchmark set.S5 Errors of the MO- and CDD-based THC-SOS-MP2 methods are re-
ported as deviations from the RI-based reference implementation. All calculations are performed
with the cc-pVTZ/cc-pVTZ-RI basis set combination.

conformer ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
1 −3.667 064 −3.667 049 1.52×10−5 −3.667 048 1.5× 10−5

2 −3.668 537 −3.668 520 1.71×10−5 −3.668 520 1.7× 10−5

3 −3.674 690 −3.674 671 1.92×10−5 −3.674 671 1.9× 10−5

4 −3.668 832 −3.668 819 1.38×10−5 −3.668 818 1.4× 10−5

5 −3.668 713 −3.668 699 1.42×10−5 −3.668 699 1.4× 10−5

6 −3.672 337 −3.672 329 7.37×10−6 −3.672 329 7.4× 10−6

7 −3.674 497 −3.674 482 1.55×10−5 −3.674 482 1.6× 10−5

8 −3.674 896 −3.674 873 2.25×10−5 −3.674 873 2.3× 10−5

9 −3.674 377 −3.674 362 1.51×10−5 −3.674 362 1.5× 10−5

10 −3.675 256 −3.675 246 1.05×10−5 −3.675 246 1.1× 10−5

11 −3.675 327 −3.675 304 2.24×10−5 −3.675 304 2.2× 10−5

12 −3.675 834 −3.675 814 1.99×10−5 −3.675 814 2.0× 10−5

13 −3.670 409 −3.670 389 1.99×10−5 −3.670 389 2.0× 10−5

14 −3.670 941 −3.670 924 1.70×10−5 −3.670 924 1.7× 10−5

15 −3.676 361 −3.676 345 1.56×10−5 −3.676 345 1.6× 10−5

16 −3.673 609 −3.673 596 1.29×10−5 −3.673 596 1.3× 10−5

17 −3.675 224 −3.675 213 1.09×10−5 −3.675 213 1.1× 10−5

18 −3.672 219 −3.672 201 1.81×10−5 −3.672 201 1.8× 10−5

19 −3.672 817 −3.672 805 1.23×10−5 −3.672 805 1.2× 10−5

20 −3.672 345 −3.672 322 2.34×10−5 −3.672 322 2.4× 10−5

21 −3.673 284 −3.673 269 1.51×10−5 −3.673 269 1.5× 10−5

22 −3.674 540 −3.674 531 9.07×10−6 −3.674 530 9.2× 10−6

23 −3.674 351 −3.674 339 1.21×10−5 −3.674 339 1.2× 10−5

24 −3.673 938 −3.673 932 6.20×10−6 −3.673 932 6.3× 10−6

25 −3.672 778 −3.672 760 1.77×10−5 −3.672 760 1.8× 10−5

26 −3.618 773 −3.618 761 1.15×10−5 −3.618 761 1.2× 10−5

27 −3.673 077 −3.673 052 2.46×10−5 −3.673 052 2.5× 10−5
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Table S4: Detailed results for the relative energies of the 27 conformers in the tetraalanine con-
former benchmark set.S5 Errors of the MO- and CDD-based THC-SOS-MP2 methods are reported
as deviations from the RI-based reference implementation. All calculations are performed with the
cc-pVTZ/cc-pVTZ-RI basis set combination.

conformer ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
1 0.001 473 0.001 471 1.9× 10−6 0.001 471 1.9× 10−6

2 0.006 153 0.006 151 2.2× 10−6 0.006 151 2.0× 10−6

3 −0.005 858 −0.005 852 5.4× 10−6 −0.005 853 5.2× 10−6

4 −0.000 119 −0.000 119 4.0× 10−7 −0.000 119 3.7× 10−7

5 0.003 623 0.003 630 6.9× 10−6 0.003 630 7.0× 10−6

6 0.002 160 0.002 152 8.2× 10−6 0.002 152 8.2× 10−6

7 0.000 399 0.000 392 7.0× 10−6 0.000 392 7.0× 10−6

8 −0.000 519 −0.000 511 7.4× 10−6 −0.000 511 7.4× 10−6

9 0.000 879 0.000 884 4.6× 10−6 0.000 884 4.5× 10−6

10 0.000 070 0.000 058 1.2× 10−5 0.000 059 1.2× 10−5

11 0.000 507 0.000 510 2.5× 10−6 0.000 510 2.5× 10−6

12 −0.005 425 −0.005 425 4.7× 10−8 −0.005 425 2.0× 10−7

13 0.000 532 0.000 535 2.9× 10−6 0.000 535 3.0× 10−6

14 0.005 420 0.005 421 1.4× 10−6 0.005 421 1.5× 10−6

15 −0.002 752 −0.002 749 2.7× 10−6 −0.002 749 2.7× 10−6

16 0.001 615 0.001 617 2.0× 10−6 0.001 617 2.0× 10−6

17 −0.003 005 −0.003 012 7.2× 10−6 −0.003 012 7.4× 10−6

18 0.000 598 0.000 603 5.8× 10−6 0.000 604 5.9× 10−6

19 −0.000 472 −0.000 483 1.1× 10−5 −0.000 483 1.1× 10−5

20 0.000 939 0.000 947 8.2× 10−6 0.000 947 8.4× 10−6

21 0.001 256 0.001 262 6.1× 10−6 0.001 262 6.0× 10−6

22 −0.000 188 −0.000 191 3.1× 10−6 −0.000 191 3.0× 10−6

23 −0.000 413 −0.000 407 5.9× 10−6 −0.000 407 5.9× 10−6

24 −0.001 161 −0.001 172 1.2× 10−5 −0.001 172 1.2× 10−5

25 −0.054 005 −0.053 999 6.2× 10−6 −0.053 999 6.1× 10−6

26 0.054 304 0.054 291 1.3× 10−5 0.054 291 1.3× 10−5

27 −0.006 013 −0.006 004 9.4× 10−6 −0.006 004 9.3× 10−6
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Table S5: Detailed results for the ground state energies of the 27 conformers in the tetraalanine
conformer benchmark set.S5 Errors of the MO- and CDD-based THC-SOS-CC2 methods are re-
ported as deviations from the RI-based reference implementation. All calculations are performed
with the cc-pVTZ/cc-pVTZ-RI basis set combination.

conformer ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
1 −3.704 518 −3.703 223 1.3× 10−3 −3.703 222 1.3× 10−3

2 −3.706 243 −3.704 903 1.3× 10−3 −3.704 903 1.3× 10−3

3 −3.713 146 −3.711 714 1.4× 10−3 −3.711 714 1.4× 10−3

4 −3.706 538 −3.705 272 1.3× 10−3 −3.705 272 1.3× 10−3

5 −3.706 265 −3.704 960 1.3× 10−3 −3.704 960 1.3× 10−3

6 −3.710 283 −3.708 942 1.3× 10−3 −3.708 942 1.3× 10−3

7 −3.712 606 −3.711 233 1.4× 10−3 −3.711 233 1.4× 10−3

8 −3.713 154 −3.711 794 1.4× 10−3 −3.711 794 1.4× 10−3

9 −3.712 665 −3.711 314 1.4× 10−3 −3.711 314 1.4× 10−3

10 −3.713 348 −3.712 029 1.3× 10−3 −3.712 029 1.3× 10−3

11 −3.713 740 −3.712 329 1.4× 10−3 −3.712 329 1.4× 10−3

12 −3.714 224 −3.712 841 1.4× 10−3 −3.712 841 1.4× 10−3

13 −3.708 323 −3.706 938 1.4× 10−3 −3.706 937 1.4× 10−3

14 −3.708 678 −3.707 366 1.3× 10−3 −3.707 366 1.3× 10−3

15 −3.714 620 −3.713 261 1.4× 10−3 −3.713 261 1.4× 10−3

16 −3.711 825 −3.710 421 1.4× 10−3 −3.710 421 1.4× 10−3

17 −3.713 875 −3.712 424 1.5× 10−3 −3.712 424 1.5× 10−3

18 −3.710 408 −3.709 053 1.4× 10−3 −3.709 053 1.4× 10−3

19 −3.711 024 −3.709 635 1.4× 10−3 −3.709 635 1.4× 10−3

20 −3.710 394 −3.709 030 1.4× 10−3 −3.709 030 1.4× 10−3

21 −3.711 490 −3.710 084 1.4× 10−3 −3.710 084 1.4× 10−3

22 −3.712 674 −3.711 332 1.3× 10−3 −3.711 332 1.3× 10−3

23 −3.712 438 −3.711 118 1.3× 10−3 −3.711 118 1.3× 10−3

24 −3.711 950 −3.710 596 1.4× 10−3 −3.710 596 1.4× 10−3

25 −3.710 823 −3.709 507 1.3× 10−3 −3.709 507 1.3× 10−3

26 −3.665 611 −3.665 864 2.5× 10−4 −3.665 864 2.5× 10−4

27 −3.711 086 −3.709 761 1.3× 10−3 −3.709 760 1.3× 10−3
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Table S6: Detailed results for the relative energies of the 27 conformers in the tetraalanine con-
former benchmark set.S5 Errors of the MO- and CDD-based THC-SOS-CC2 methods are reported
as deviations from the RI-based reference implementation. All calculations are performed with the
cc-pVTZ/cc-pVTZ-RI basis set combination.

conformer ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
1 0.001 725 0.001 680 4.5× 10−5 0.001 680 4.5× 10−5

2 0.006 903 0.006 811 9.2× 10−5 0.006 811 9.2× 10−5

3 −0.006 608 −0.006 442 1.7× 10−4 −0.006 442 1.7× 10−4

4 −0.000 273 −0.000 312 3.9× 10−5 −0.000 312 3.9× 10−5

5 0.004 018 0.003 982 3.6× 10−5 0.003 982 3.6× 10−5

6 0.002 323 0.002 292 3.1× 10−5 0.002 292 3.1× 10−5

7 0.000 548 0.000 561 1.3× 10−5 0.000 561 1.3× 10−5

8 −0.000 489 −0.000 480 8.7× 10−6 −0.000 480 8.7× 10−6

9 0.000 683 0.000 715 3.2× 10−5 0.000 715 3.2× 10−5

10 0.000 392 0.000 299 9.3× 10−5 0.000 300 9.3× 10−5

11 0.000 484 0.000 513 2.9× 10−5 0.000 513 2.9× 10−5

12 −0.005 901 −0.005 904 2.9× 10−6 −0.005 904 3.1× 10−6

13 0.000 355 0.000 428 7.3× 10−5 0.000 428 7.3× 10−5

14 0.005 942 0.005 895 4.7× 10−5 0.005 895 4.7× 10−5

15 −0.002 795 −0.002 840 4.5× 10−5 −0.002 840 4.5× 10−5

16 0.002 049 0.002 004 4.6× 10−5 0.002 004 4.6× 10−5

17 −0.003 466 −0.003 372 9.5× 10−5 −0.003 372 9.5× 10−5

18 0.000 615 0.000 583 3.3× 10−5 0.000 583 3.3× 10−5

19 −0.000 630 −0.000 606 2.4× 10−5 −0.000 606 2.4× 10−5

20 0.001 097 0.001 054 4.3× 10−5 0.001 054 4.3× 10−5

21 0.001 184 0.001 248 6.5× 10−5 0.001 248 6.4× 10−5

22 −0.000 237 −0.000 214 2.2× 10−5 −0.000 214 2.2× 10−5

23 −0.000 488 −0.000 522 3.4× 10−5 −0.000 522 3.4× 10−5

24 −0.001 128 −0.001 090 3.8× 10−5 −0.001 090 3.8× 10−5

25 −0.045 211 −0.043 643 1.6× 10−3 −0.043 643 1.6× 10−3

26 0.045 474 0.043 896 1.6× 10−3 0.043 897 1.6× 10−3

27 −0.006 568 −0.006 538 3.0× 10−5 −0.006 538 3.0× 10−5
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5.2 Thiel Benchmark Set

5.2.1 Ground State

Table S7: Detailed results for the ground state energies of the molecules in the benchmark set from
Ref. S6. Errors of the MO- and CDD-based THC-SOS-MP2 methods are reported as deviations
from the RI-based reference implementation. All calculations are performed with the cc-pVTZ/cc-
pVTZ-RI basis set combination.

molecule ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
ethene −0.346 126 −0.346 126 1.7× 10−7 −0.346 126 1.7× 10−7

butadiene −0.658 266 −0.658 268 1.3× 10−6 −0.658 268 1.3× 10−6

hexatriene −0.971 382 −0.971 378 4.0× 10−6 −0.971 378 4.0× 10−6

octatetraene −1.284 868 −1.284 862 5.5× 10−6 −1.284 862 5.5× 10−6

cyclopropene −0.489 211 −0.489 212 3.3× 10−7 −0.489 212 3.3× 10−7

cyclopentadiene −0.801 368 −0.801 368 4.8× 10−7 −0.801 368 4.8× 10−7

norbornadiene −1.129 467 −1.129 454 1.3× 10−5 −1.129 454 1.3× 10−5

benzene −0.932 969 −0.932 963 6.0× 10−6 −0.932 963 6.0× 10−6

naphthalene −1.526 318 −1.526 281 3.8× 10−5 −1.526 281 3.8× 10−5

furan −0.849 522 −0.849 526 4.6× 10−6 −0.849 526 4.6× 10−6

pyrrole −0.830 485 −0.830 483 1.8× 10−6 −0.830 483 1.8× 10−6

imidazole −0.857 685 −0.857 677 7.2× 10−6 −0.857 677 7.2× 10−6

pyridine −0.960 355 −0.960 343 1.2× 10−5 −0.960 343 1.2× 10−5

pyrazine −0.990 077 −0.990 059 1.9× 10−5 −0.990 059 1.9× 10−5

pyrimidine −0.985 217 −0.985 200 1.7× 10−5 −0.985 200 1.7× 10−5

pyridazine −0.994 744 −0.994 716 2.8× 10−5 −0.994 716 2.8× 10−5

triazine −1.007 924 −1.007 900 2.4× 10−5 −1.007 900 2.4× 10−5

tetrazine −1.056 582 −1.056 545 3.8× 10−5 −1.056 545 3.8× 10−5

formaldehyde −0.394 740 −0.394 741 6.3× 10−7 −0.394 741 6.3× 10−7

acetone −0.742 969 −0.742 970 1.1× 10−6 −0.742 970 1.1× 10−6

benzoquinone −1.342 556 −1.342 550 6.0× 10−6 −1.342 550 6.0× 10−6

formamide −0.593 511 −0.593 510 6.2× 10−7 −0.593 510 6.2× 10−7

acetamide −0.767 468 −0.767 466 1.7× 10−6 −0.767 466 1.7× 10−6

propanamide −0.944 016 −0.944 017 4.0× 10−7 −0.944 017 4.0× 10−7

adenine −1.698 357 −1.698 320 3.7× 10−5 −1.698 320 3.7× 10−5

cytosine −1.404 395 −1.404 366 2.9× 10−5 −1.404 366 2.9× 10−5

thymine −1.602 804 −1.602 792 1.2× 10−5 −1.602 792 1.2× 10−5

uracil −1.424 320 −1.424 312 8.1× 10−6 −1.424 312 8.1× 10−6
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Table S8: Detailed results for the ground state energies of the molecules in the benchmark set from
Ref. S6. Errors of the MO- and CDD-based THC-SOS-CC2 methods are reported as deviations
from the RI-based reference implementation. All calculations are performed with the cc-pVTZ/cc-
pVTZ-RI basis set combination.

molecule ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
ethene −0.348 739 −0.348 686 5.3× 10−5 −0.348 686 5.3× 10−5

butadiene −0.663 446 −0.663 380 6.6× 10−5 −0.663 380 6.6× 10−5

hexatriene −0.979 143 −0.979 049 9.4× 10−5 −0.979 049 9.4× 10−5

octatetraene −1.295 213 −1.295 095 1.2× 10−4 −1.295 095 1.2× 10−4

cyclopropene −0.492 823 −0.492 790 3.3× 10−5 −0.492 790 3.3× 10−5

cyclopentadiene −0.807 157 −0.807 080 7.7× 10−5 −0.807 080 7.7× 10−5

norbornadiene −1.137 341 −1.137 264 7.7× 10−5 −1.137 264 7.7× 10−5

benzene −0.939 401 −0.939 347 5.4× 10−5 −0.939 347 5.4× 10−5

naphthalene −1.537 366 −1.537 288 7.8× 10−5 −1.537 288 7.8× 10−5

furan −0.857 677 −0.857 469 2.1× 10−4 −0.857 469 2.1× 10−4

pyrrole −0.836 547 −0.836 444 1.0× 10−4 −0.836 444 1.0× 10−4

imidazole −0.865 179 −0.865 023 1.6× 10−4 −0.865 023 1.6× 10−4

pyridine −0.968 200 −0.968 035 1.7× 10−4 −0.968 035 1.7× 10−4

pyrazine −0.998 919 −0.998 795 1.2× 10−4 −0.998 795 1.2× 10−4

pyrimidine −0.994 847 −0.994 602 2.5× 10−4 −0.994 602 2.5× 10−4

pyridazine −1.003 959 −1.003 804 1.5× 10−4 −1.003 804 1.5× 10−4

triazine −1.019 467 −1.019 106 3.6× 10−4 −1.019 106 3.6× 10−4

tetrazine −1.068 661 −1.068 384 2.8× 10−4 −1.068 384 2.8× 10−4

formaldehyde −0.400 267 −0.400 264 3.6× 10−6 −0.400 264 3.6× 10−6

acetone −0.750 418 −0.750 305 1.1× 10−4 −0.750 305 1.1× 10−4

benzoquinone −1.360 323 −1.359 716 6.1× 10−4 −1.359 716 6.1× 10−4

formamide −0.601 044 −0.601 090 4.5× 10−5 −0.601 090 4.5× 10−5

acetamide −0.775 695 −0.775 803 1.1× 10−4 −0.775 803 1.1× 10−4

propanamide −0.953 435 −0.953 162 2.7× 10−4 −0.953 162 2.7× 10−4

adenine −1.716 516 −1.715 858 6.6× 10−4 −1.715 858 6.6× 10−4

cytosine −1.422 304 −1.421 549 7.5× 10−4 −1.421 549 7.5× 10−4

thymine −1.623 172 −1.622 436 7.4× 10−4 −1.622 436 7.4× 10−4

uracil −1.444 001 −1.443 282 7.2× 10−4 −1.443 282 7.2× 10−4
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5.2.2 Excited State

Table S9: Detailed results for the excitation energies to the first three singlet excited states for
the molecules in the benchmark set from Ref. S6. Errors of the MO- and CDD-based THC-SOS-
ADC(2) methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
ethene S1 8.357 8.351 0.005 8.351 0.005

S2 8.732 8.736 0.003 8.736 0.003
S3 8.930 8.932 0.003 8.932 0.003

butadiene S1 6.549 6.557 0.008 6.557 0.008
S2 8.011 8.019 0.008 8.019 0.008
S3 8.098 8.103 0.005 8.103 0.005

hexatriene S1 5.504 5.512 0.008 5.512 0.008
S2 7.075 7.086 0.012 7.086 0.012
S3 7.421 7.427 0.006 7.427 0.006

octatetraene S1 4.835 4.842 0.007 4.842 0.007
S2 6.308 6.320 0.012 6.320 0.012
S3 6.836 7.002 0.166 7.002 0.166

cyclopropene S1 7.090 7.098 0.008 7.098 0.008
S2 7.232 7.237 0.004 7.237 0.004
S3 8.245 8.246 0.002 8.246 0.002

cyclopentadiene S1 5.699 5.708 0.008 5.708 0.008
S2 7.360 7.372 0.012 7.372 0.012
S3 8.253 8.264 0.011 8.264 0.011

norbornadiene S1 5.826 5.837 0.011 5.837 0.011
S2 6.817 6.856 0.039 6.856 0.039
S3 7.608 7.623 0.015 7.623 0.015

benzene S1 5.030 5.037 0.008 5.037 0.008
S2 6.393 6.455 0.062 6.455 0.062
S3 7.499 7.693 0.193 7.693 0.193

naphthalene S1 4.302 4.308 0.006 4.308 0.006
S2 4.918 4.930 0.012 4.930 0.012
S3 6.348 6.504 0.155 6.504 0.155

furan S1 6.713 6.729 0.016 6.729 0.016
S2 6.850 6.955 0.105 6.955 0.105
S3 7.810 7.824 0.014 7.824 0.014

pyrrole S1 6.496 6.499 0.004 6.499 0.004
S2 6.632 6.640 0.008 6.640 0.008
S3 6.795 6.895 0.101 6.895 0.101

imidazole S1 6.672 6.679 0.007 6.679 0.007
S2 6.987 7.001 0.014 7.045 0.058
S3 7.040 7.045 0.005 7.250 0.211

pyridine S1 5.078 5.086 0.008 5.086 0.008
S2 5.345 5.365 0.019 5.365 0.019
S3 5.694 5.701 0.007 5.701 0.007

pyrazine S1 4.507 4.514 0.008 4.514 0.008
S2 4.924 4.962 0.038 4.962 0.038
S3 5.351 5.360 0.009 5.360 0.009

pyrimidine S1 4.751 4.759 0.008 4.759 0.008
S2 5.093 5.103 0.010 5.103 0.010
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S3 5.253 5.269 0.016 5.269 0.016
pyridazine S1 4.183 4.186 0.003 4.186 0.003

S2 4.801 4.813 0.012 4.813 0.012
S3 5.119 5.132 0.013 5.132 0.013

triazine S1 4.864 4.871 0.007 4.871 0.007
S2 5.034 5.047 0.013 5.047 0.013
S3 5.117 5.133 0.016 5.133 0.016

tetrazine S1 2.795 2.797 0.002 2.797 0.002
S2 4.179 4.189 0.010 4.189 0.010
S3 4.931 4.968 0.037 4.968 0.037

formaldehyde S1 4.064 4.077 0.013 4.077 0.013
S2 8.157 8.174 0.016 8.174 0.016
S3 9.256 9.288 0.032 9.288 0.032

acetone S1 4.448 4.462 0.013 4.462 0.013
S2 7.642 7.643 0.002 7.643 0.002
S3 9.068 9.135 0.067 9.135 0.067

benzoquinone S1 3.132 3.153 0.021 3.153 0.021
S2 3.215 3.237 0.022 3.237 0.022
S3 5.031 5.111 0.079 5.111 0.079

formamide S1 5.623 5.631 0.008 5.631 0.008
S2 7.831 7.839 0.007 7.839 0.007
S3 7.530 7.598 0.068 7.598 0.068

acetamide S1 5.657 5.667 0.010 5.667 0.010
S2 7.542 7.594 0.052 7.594 0.052
S3 7.616 7.622 0.006 7.622 0.006

propanamide S1 5.680 5.692 0.011 5.692 0.011
S2 7.525 7.589 0.064 7.589 0.064
S3 7.615 7.621 0.006 7.621 0.006

adenine S1 5.169 5.182 0.013 5.182 0.013
S2 5.444 5.518 0.074 5.518 0.074
S3 5.523 5.532 0.009 5.532 0.009

cytosine S1 4.822 4.831 0.010 4.831 0.010
S2 5.415 5.427 0.012 5.427 0.012
S3 5.870 5.938 0.067 5.938 0.067

thymine S1 5.023 5.030 0.007 5.030 0.007
S2 5.468 5.555 0.087 5.555 0.087
S3 6.419 6.433 0.014 6.433 0.014

uracil S1 5.000 5.011 0.012 5.011 0.012
S2 5.544 5.631 0.087 5.631 0.087
S3 6.350 6.362 0.011 6.362 0.011
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Table S10: Detailed results for the excitation energies to the first three triplet excited states for
the molecules in the benchmark set from Ref. S6. Errors of the MO- and CDD-based THC-SOS-
ADC(2) methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
ethene T1 4.570 4.568 0.002 4.568 0.002

T2 8.584 8.597 0.014 8.597 0.014
T3 8.620 8.634 0.013 8.634 0.013

butadiene T1 3.511 3.515 0.004 3.552 0.041
T2 5.216 5.458 0.242 5.494 0.279
T3 7.987 8.002 0.015 7.996 0.009

hexatriene T1 2.960 2.964 0.004 2.964 0.004
T2 4.424 4.667 0.243 4.667 0.243
T3 5.457 5.684 0.227 5.684 0.227

octatetraene T1 2.598 2.602 0.004 2.602 0.004
T2 3.785 3.785 0.000 3.785 0.000
T3 4.861 4.861 0.000 4.861 0.000

cyclopropene T1 4.466 4.468 0.002 4.468 0.002
T2 6.830 6.848 0.018 6.848 0.018
T3 7.909 7.931 0.022 7.931 0.022

cyclopentadiene T1 3.414 3.418 0.004 3.418 0.004
T2 5.085 5.334 0.250 5.334 0.250
T3 7.308 7.322 0.015 7.322 0.015

norbornadiene T1 3.873 3.879 0.006 3.879 0.006
T2 4.207 4.509 0.302 4.509 0.302
T3 6.870 6.900 0.029 6.900 0.029

benzene T1 4.298 4.303 0.006 4.303 0.006
T2 4.991 5.076 0.085 5.076 0.085
T3 6.010 6.039 0.029 6.039 0.029

naphthalene T1 3.300 3.306 0.006 3.306 0.006
T2 4.271 4.354 0.083 4.354 0.083
T3 4.760 4.783 0.023 4.783 0.023

furan T1 4.334 4.343 0.010 4.343 0.010
T2 5.445 5.649 0.203 5.649 0.203
T3 7.236 7.311 0.075 7.311 0.075

pyrrole T1 4.639 4.642 0.003 4.642 0.003
T2 6.603 6.614 0.011 6.614 0.011
T3 7.057 7.200 0.144 7.200 0.144

imidazole T1 4.845 4.848 0.003 4.848 0.003
T2 5.821 5.982 0.161 5.982 0.161
T3 6.765 6.838 0.073 6.838 0.073

pyridine T1 4.449 4.454 0.005 4.454 0.005
T2 4.924 5.003 0.079 5.003 0.079
T3 5.145 5.292 0.148 5.292 0.148

pyrazine T1 3.969 3.974 0.005 3.974 0.005
T2 4.529 4.717 0.189 4.717 0.189
T3 5.355 5.492 0.137 5.492 0.137

pyrimidine T1 4.447 4.453 0.006 4.453 0.006
T2 4.705 4.710 0.004 4.710 0.004
T3 5.066 5.164 0.098 5.164 0.098

pyridazine T1 3.562 3.563 0.001 3.563 0.001
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T2 4.419 4.679 0.260 4.679 0.260
T3 4.877 4.994 0.117 4.994 0.117

triazine T1 4.743 4.749 0.006 4.749 0.006
T2 4.820 4.838 0.018 4.838 0.018
T3 5.093 5.336 0.243 5.336 0.243

tetrazine T1 2.240 2.240 0.000 2.240 0.000
T2 3.956 3.976 0.020 3.976 0.020
T3 4.486 4.580 0.094 4.580 0.094

formaldehyde T1 3.678 3.688 0.011 3.688 0.011
T2 5.917 6.290 0.373 6.290 0.373
T3 7.842 7.868 0.025 7.868 0.025

acetone T1 4.145 4.157 0.012 4.157 0.012
T2 6.133 6.455 0.323 6.455 0.323
T3 7.563 7.568 0.005 7.568 0.005

benzoquinone T1 2.868 2.888 0.020 2.888 0.020
T2 2.964 2.998 0.034 2.998 0.034
T3 3.236 3.533 0.297 3.533 0.297

formamide T1 5.386 5.394 0.008 5.394 0.008
T2 5.923 6.151 0.227 6.151 0.227
T3 7.506 7.521 0.015 7.521 0.015

acetamide T1 5.443 5.453 0.010 5.453 0.010
T2 6.057 6.272 0.215 6.272 0.215
T3 7.309 7.328 0.019 7.328 0.019

propanamide T1 5.470 5.481 0.010 5.481 0.010
T2 6.075 6.290 0.214 6.290 0.214
T3 7.308 7.323 0.014 7.323 0.014

adenine T1 4.171 4.179 0.008 4.179 0.008
T2 5.034 5.125 0.092 5.125 0.092
T3 5.339 5.481 0.141 5.481 0.141

cytosine T1 3.969 3.975 0.006 3.975 0.006
T2 4.843 4.942 0.099 4.942 0.099
T3 5.280 4.971 0.309 4.971 0.309

thymine T1 3.872 3.878 0.006 3.878 0.006
T2 4.857 4.875 0.019 4.875 0.019
T3 5.606 5.781 0.176 5.781 0.176

uracil T1 3.968 3.977 0.009 3.977 0.009
T2 4.835 4.858 0.024 4.858 0.024
T3 5.619 5.804 0.185 5.804 0.185
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Table S11: Detailed results for the excitation energies to the first three singlet excited states for
the molecules in the benchmark set from Ref. S6. Errors of the MO- and CDD-based THC-SOS-
LR-CC2 methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
ethene S1 8.409 8.368 0.041 8.368 0.041

S2 8.702 8.658 0.044 8.658 0.044
S3 9.484 9.442 0.042 9.442 0.042

butadiene S1 6.613 6.585 0.028 6.585 0.028
S2 7.991 7.955 0.036 7.955 0.036
S3 8.067 8.042 0.025 8.042 0.025

hexatriene S1 5.567 5.556 0.012 5.556 0.012
S2 7.059 7.034 0.026 7.034 0.026
S3 7.384 7.376 0.007 7.376 0.007

octatetraene S1 4.896 4.884 0.012 4.884 0.012
S2 6.301 6.279 0.023 6.279 0.023
S3 6.890 6.879 0.011 6.879 0.011

cyclopropene S1 7.075 7.071 0.004 7.071 0.004
S2 7.279 7.256 0.023 7.256 0.023
S3 8.224 8.217 0.008 8.217 0.008

cyclopentadiene S1 5.745 5.728 0.017 5.728 0.017
S2 7.269 7.240 0.029 7.240 0.029
S3 7.326 7.301 0.025 7.301 0.025

norbornadiene S1 5.851 5.856 0.005 5.856 0.005
S2 6.813 6.812 0.000 6.812 0.000
S3 7.574 7.587 0.012 7.587 0.012

benzene S1 5.018 5.000 0.018 5.000 0.018
S2 6.429 6.420 0.009 6.420 0.009
S3 7.511 7.499 0.013 7.499 0.013

naphthalene S1 4.299 4.287 0.012 4.287 0.012
S2 4.953 4.951 0.002 4.951 0.002
S3 6.368 6.360 0.008 6.360 0.008

furan S1 6.712 6.702 0.010 6.702 0.010
S2 6.850 6.822 0.028 6.822 0.028
S3 7.765 7.746 0.019 7.746 0.019

pyrrole S1 6.493 6.459 0.034 6.459 0.034
S2 6.558 6.558 0.000 6.558 0.000
S3 6.797 6.790 0.006 6.790 0.006

imidazole S1 6.676 6.648 0.029 6.648 0.029
S2 6.979 6.956 0.023 6.956 0.023
S3 7.018 7.005 0.013 7.005 0.013

pyridine S1 5.070 5.016 0.054 5.016 0.054
S2 5.345 5.335 0.010 5.335 0.010
S3 5.703 5.687 0.016 5.687 0.016

pyrazine S1 4.475 4.471 0.004 4.471 0.004
S2 4.905 4.875 0.030 4.875 0.030
S3 5.316 5.314 0.002 5.314 0.002

pyrimidine S1 4.770 4.755 0.015 4.755 0.015
S2 5.129 5.109 0.020 5.109 0.020
S3 5.264 5.212 0.052 5.212 0.052

pyridazine S1 4.163 4.161 0.001 4.161 0.001
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S2 4.772 4.777 0.005 4.777 0.005
S3 5.111 5.068 0.043 5.068 0.043

triazine S1 4.931 4.906 0.026 4.906 0.026
S2 5.085 5.065 0.020 5.065 0.020
S3 5.141 5.125 0.016 5.125 0.016

tetrazine S1 2.748 2.739 0.009 2.739 0.009
S2 4.123 4.117 0.006 4.117 0.006
S3 4.931 4.876 0.055 4.876 0.055

formaldehyde S1 4.218 4.197 0.021 4.197 0.021
S2 8.243 8.213 0.030 8.213 0.030
S3 9.409 9.411 0.002 9.411 0.002

acetone S1 4.633 4.644 0.011 4.644 0.011
S2 7.712 7.709 0.002 7.709 0.002
S3 9.250 9.234 0.017 9.234 0.017

benzoquinone S1 3.269 3.291 0.021 3.291 0.021
S2 3.382 3.409 0.027 3.409 0.027
S3 4.970 4.994 0.024 4.994 0.024

formamide S1 5.853 5.844 0.010 5.844 0.010
S2 7.673 7.650 0.022 7.650 0.022
S3 7.808 7.777 0.031 7.777 0.031

acetamide S1 5.888 5.879 0.009 5.879 0.009
S2 7.594 7.570 0.024 7.570 0.024
S3 7.653 7.642 0.011 7.642 0.011

propanamide S1 5.912 5.937 0.025 5.937 0.025
S2 7.594 7.574 0.021 7.574 0.021
S3 7.653 7.663 0.010 7.663 0.010

adenine S1 5.212 5.190 0.022 5.190 0.022
S2 5.521 5.504 0.017 5.504 0.017
S3 5.584 5.579 0.005 5.579 0.005

cytosine S1 4.977 4.932 0.045 4.932 0.045
S2 5.556 5.539 0.017 5.539 0.017
S3 6.015 5.979 0.037 5.979 0.037

thymine S1 5.264 5.253 0.011 5.253 0.011
S2 5.552 5.546 0.006 5.546 0.006
S3 6.660 6.639 0.021 6.639 0.021

uracil S1 5.247 5.226 0.021 5.226 0.021
S2 5.650 5.632 0.018 5.632 0.018
S3 6.591 6.589 0.002 6.589 0.002
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Table S12: Detailed results for the excitation energies to the first three triplet excited states for
the molecules in the benchmark set from Ref. S6. Errors of the MO- and CDD-based THC-SOS-
LR-CC2 methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
ethene T1 4.570 4.535 0.035 4.535 0.035

T2 8.552 8.510 0.043 8.510 0.043
T3 8.622 8.612 0.009 8.612 0.009

butadiene T1 3.553 3.525 0.027 3.525 0.027
T2 5.258 5.236 0.022 5.236 0.022
T3 7.956 7.945 0.011 7.945 0.011

hexatriene T1 2.967 2.955 0.012 2.955 0.012
T2 4.432 4.418 0.013 4.418 0.013
T3 5.464 5.455 0.009 5.455 0.009

octatetraene T1 2.606 2.594 0.012 2.594 0.012
T2 3.795 3.780 0.014 3.780 0.014
T3 4.870 4.858 0.012 4.858 0.012

cyclopropene T1 7.075 7.071 0.004 7.070 0.005
T2 7.279 7.256 0.023 7.260 0.019
T3 8.224 8.217 0.008 8.220 0.004

cyclopentadiene T1 3.424 3.404 0.020 3.404 0.020
T2 5.090 5.070 0.020 5.070 0.020
T3 7.275 7.250 0.025 7.250 0.025

norbornadiene T1 3.884 3.881 0.003 3.881 0.003
T2 4.211 4.204 0.006 4.204 0.006
T3 6.861 6.859 0.002 6.859 0.002

benzene T1 4.296 4.280 0.016 4.280 0.016
T2 4.999 4.983 0.016 4.983 0.016
T3 6.042 6.034 0.008 6.034 0.008

naphthalene T1 3.308 3.301 0.008 3.301 0.008
T2 4.284 4.276 0.008 4.276 0.008
T3 4.768 4.759 0.010 4.759 0.010

furan T1 4.354 4.338 0.016 4.338 0.016
T2 5.478 5.452 0.026 5.452 0.026
T3 7.248 7.229 0.019 7.229 0.019

pyrrole T1 4.650 4.637 0.013 4.637 0.013
T2 6.531 6.530 0.001 6.530 0.001
T3 7.046 7.027 0.019 7.027 0.019

imidazole T1 4.863 4.842 0.021 4.842 0.021
T2 5.835 5.810 0.025 5.810 0.025
T3 6.621 6.759 0.138 6.759 0.138

pyridine T1 4.447 4.419 0.028 4.419 0.028
T2 4.935 4.895 0.040 4.895 0.040
T3 5.157 5.119 0.038 5.119 0.038

pyrazine T1 3.948 3.941 0.007 3.941 0.007
T2 4.485 4.465 0.020 4.465 0.020
T3 4.537 4.519 0.018 4.519 0.018

pyrimidine T1 4.452 4.439 0.013 4.439 0.013
T2 4.694 4.663 0.031 4.663 0.031
T3 5.090 5.051 0.039 5.051 0.039

pyridazine T1 3.553 3.546 0.007 3.546 0.007
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T2 4.423 4.398 0.024 4.398 0.024
T3 4.891 4.864 0.027 4.864 0.027

triazine T1 4.743 4.731 0.012 4.731 0.012
T2 4.850 4.833 0.018 4.833 0.018
T3 5.068 5.036 0.032 5.036 0.032

tetrazine T1 2.204 2.192 0.011 2.192 0.011
T2 3.909 3.901 0.008 3.901 0.008
T3 4.492 4.458 0.034 4.458 0.034

formaldehyde T1 3.806 3.785 0.021 3.785 0.021
T2 5.982 5.930 0.052 5.930 0.052
T3 7.911 7.882 0.029 7.882 0.029

acetone T1 4.301 4.310 0.010 4.310 0.010
T2 6.216 6.178 0.038 6.178 0.038
T3 7.629 7.627 0.002 7.627 0.002

benzoquinone T1 2.987 3.010 0.022 3.010 0.022
T2 3.107 3.133 0.025 3.133 0.025
T3 3.264 3.262 0.002 3.262 0.002

formamide T1 5.586 5.578 0.008 5.578 0.008
T2 5.992 5.958 0.034 5.958 0.034
T3 7.473 7.444 0.029 7.444 0.029

acetamide T1 5.644 5.635 0.009 5.635 0.009
T2 6.136 6.103 0.033 6.103 0.033
T3 7.279 7.257 0.023 7.257 0.023

propanamide T1 5.672 5.693 0.021 5.693 0.021
T2 6.155 6.134 0.021 6.134 0.021
T3 7.280 7.261 0.019 7.261 0.019

adenine T1 4.190 4.174 0.016 4.174 0.016
T2 5.057 5.051 0.006 5.051 0.006
T3 5.373 5.354 0.019 5.354 0.019

cytosine T1 4.032 4.010 0.022 4.010 0.022
T2 4.909 4.886 0.022 4.886 0.022
T3 5.396 5.600 0.203 5.600 0.203

thymine T1 3.915 3.909 0.006 3.909 0.006
T2 5.071 5.062 0.010 5.062 0.010
T3 5.669 5.658 0.012 5.658 0.012

uracil T1 4.013 3.998 0.015 3.998 0.015
T2 5.055 5.036 0.019 5.036 0.019
T3 5.686 5.667 0.019 5.667 0.019
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5.3 Martínez Benchmark Set

5.3.1 Ground State

Table S13: Detailed results for the ground state energies of the molecules in the benchmark set from
Ref. S7. Errors of the MO- and CDD-based THC-SOS-MP2 methods are reported as deviations
from the RI-based reference implementation. All calculations are performed with the cc-pVTZ/cc-
pVTZ-RI basis set combination.

molecule ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
butadiene −0.658 266 −0.658 268 1.3× 10−6 −0.658 268 1.5× 10−6

hexatriene −0.971 382 −0.971 378 4.0× 10−6 −0.971 378 4.3× 10−6

malonaldehyde −0.928 473 −0.928 469 4.3× 10−6 −0.928 469 4.4× 10−6

methylsalicylate −1.910 410 −1.910 398 1.2× 10−5 −1.910 398 1.2× 10−5

HBT −2.543 654 −2.543 520 1.3× 10−4 −2.543 520 1.3× 10−4

stilbene −2.151 922 −2.151 908 1.4× 10−5 −2.151 908 1.4× 10−5

GFP −2.335 196 −2.335 177 1.9× 10−5 −2.335 177 1.9× 10−5

PYP −2.046 621 −2.046 610 1.1× 10−5 −2.046 610 1.1× 10−5

acridine red −2.913 065 −2.912 992 7.4× 10−5 −2.912 992 7.3× 10−5

anthanthrene −3.281 459 −3.281 362 9.7× 10−5 −3.281 362 9.7× 10−5

N -methyl-benzcarbaxole −2.783 274 −2.783 203 7.0× 10−5 −2.783 203 7.1× 10−5

coumarin 153 −3.849 149 −3.849 068 8.1× 10−5 −3.849 068 8.1× 10−5

difluoro-indigo −3.626 637 −3.626 523 1.1× 10−4 −3.626 523 1.1× 10−4

nile red −3.927 931 −3.927 846 8.5× 10−5 −3.927 846 8.5× 10−5

oxazine 9 −3.187 605 −3.187 530 7.5× 10−5 −3.187 530 7.5× 10−5

rubicene −3.878 599 −3.878 435 1.6× 10−4 −3.878 435 1.6× 10−4

ester −3.384 816 −3.384 736 7.9× 10−5 −3.384 736 8.0× 10−5
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Table S14: Detailed results for the ground state energies of the molecules in the benchmark set from
Ref. S7. Errors of the MO- and CDD-based THC-SOS-CC2 methods are reported as deviations
from the RI-based reference implementation. All calculations are performed with the cc-pVTZ/cc-
pVTZ-RI basis set combination.

molecule ERI / H ETHC / H ∆ETHC / H ECDD-THC / H ∆ECDD-THC / H
butadiene 0.663 446 −0.663 380 6.6× 10−5 −0.663 380 6.6× 10−5

hexatriene 0.979 143 −0.979 049 9.4× 10−5 −0.979 049 9.4× 10−5

malonaldehyde 0.941 556 −0.940 910 6.5× 10−4 −0.940 910 6.5× 10−4

methylsalicylate 1.931 444 −1.930 642 8.0× 10−4 −1.930 642 8.0× 10−4

HBT 2.567 426 −2.566 600 8.3× 10−4 −2.566 600 8.3× 10−4

stilbene 2.167 465 −2.167 414 5.1× 10−5 −2.167 414 5.1× 10−5

GFP 2.360 494 −2.359 745 7.5× 10−4 −2.359 745 7.5× 10−4

PYP 2.068 245 −2.067 535 7.1× 10−4 −2.067 535 7.1× 10−4

acridine red 2.943 776 −2.941 744 2.0× 10−3 −2.941 744 2.0× 10−3

anthanthrene 3.307 075 −3.306 840 2.4× 10−4 −3.306 840 2.4× 10−4

N -methyl-benzcarbaxole 2.805 027 −2.804 581 4.5× 10−4 −2.804 581 4.5× 10−4

coumarin 153 3.887 952 −3.886 496 1.5× 10−3 −3.886 496 1.5× 10−3

difluoro-indigo 3.668 254 −3.667 169 1.1× 10−3 −3.667 169 1.1× 10−3

nile red 3.966 831 −3.965 170 1.7× 10−3 −3.965 170 1.7× 10−3

oxazine 9 3.221 792 −3.219 770 2.0× 10−3 −3.219 770 2.0× 10−3

rubicene 3.908 834 −3.908 510 3.2× 10−4 −3.908 510 3.2× 10−4

ester 3.426 647 −3.425 046 1.6× 10−3 −3.425 046 1.6× 10−3
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5.3.2 Excited State

Table S15: Detailed results for the excitation energies to the first three singlet excited states for
the molecules in the benchmark set from Ref. S7. Errors of the MO- and CDD-based THC-SOS-
ADC(2) methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
butadiene S1 6.549 6.557 0.008 6.557 0.008

S2 8.011 8.019 0.008 8.019 0.008
S3 8.098 8.103 0.005 8.103 0.005

hexatriene S1 5.504 5.512 0.008 5.512 0.008
S2 7.075 7.086 0.012 7.086 0.012
S3 7.421 7.427 0.006 7.427 0.006

malonaldehyde S1 4.179 4.189 0.009 4.189 0.009
S2 4.935 5.042 0.107 5.042 0.107
S3 7.816 7.883 0.067 7.883 0.067

methylsalicylate S1 4.289 4.301 0.012 4.301 0.012
S2 5.517 5.530 0.014 5.530 0.014
S3 5.565 5.605 0.040 5.605 0.040

HBT S1 3.961 3.973 0.012 3.973 0.012
S2 4.426 4.446 0.020 4.446 0.020
S3 4.784 4.817 0.033 4.817 0.033

stilbene S1 4.484 4.492 0.008 4.492 0.008
S2 4.647 4.653 0.006 4.653 0.006
S3 4.689 4.684 0.005 4.684 0.005

GFP S1 3.919 3.934 0.015 3.934 0.015
S2 4.195 4.211 0.016 4.211 0.016
S3 4.494 4.500 0.006 4.500 0.006

PYP S1 4.486 4.495 0.009 4.495 0.009
S2 4.685 4.709 0.024 4.709 0.024
S3 5.076 5.089 0.013 5.089 0.013

acridine red S1 2.655 2.670 0.015 2.670 0.015
S2 3.538 3.582 0.044 3.582 0.044
S3 4.475 4.505 0.030 4.505 0.030

anthanthrene S1 3.211 3.222 0.010 3.222 0.010
S2 3.297 3.389 0.092 3.389 0.092
S3 3.944 3.979 0.035 3.979 0.035

N -methyl- S1 3.537 3.550 0.013 3.550 0.013
benzcarbaxole S2 4.137 4.153 0.016 4.153 0.016

S3 4.582 4.608 0.025 4.608 0.025
coumarin 153 S1 3.474 3.497 0.023 3.497 0.023

S2 4.095 4.125 0.030 4.125 0.030
S3 4.793 4.830 0.037 4.830 0.037

difluoro-indigo S1 2.553 2.566 0.013 2.566 0.013
S2 2.950 2.970 0.020 2.970 0.020
S3 3.361 3.410 0.050 3.410 0.050

nile red S1 2.905 2.921 0.017 2.921 0.017
S2 3.402 3.411 0.009 3.411 0.009
S3 3.820 3.861 0.041 3.861 0.041

oxazine 9 S1 2.349 2.360 0.010 2.360 0.011
S2 3.239 3.278 0.039 3.280 0.041
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S3 3.971 3.987 0.016 3.990 0.019
rubicene S1 2.838 2.857 0.019 2.860 0.022

S2 3.209 3.268 0.059 3.270 0.061
S3 3.412 3.449 0.038 3.450 0.038

ester S1 4.025 4.047 0.022 4.047 0.022
S2 4.702 4.753 0.050 4.753 0.050
S3 5.098 5.165 0.067 5.165 0.067

Table S16: Detailed results for the excitation energies to the first three triplet excited states for
the molecules in the benchmark set from Ref. S7. Errors of the MO- and CDD-based THC-SOS-
ADC(2) methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
butadiene T1 3.548 3.552 0.004 3.552 0.004

T2 5.253 5.494 0.242 5.494 0.242
T3 7.979 7.996 0.017 7.996 0.017

hexatriene T1 2.960 2.964 0.004 2.964 0.004
T2 4.424 4.667 0.243 4.667 0.243
T3 5.457 5.684 0.227 5.684 0.227

malonaldehyde T1 3.673 3.682 0.009 3.682 0.009
T2 3.987 4.009 0.023 4.009 0.023
T3 6.325 6.548 0.223 6.548 0.223

methylsalicylate T1 3.922 3.982 0.059 3.982 0.059
T2 4.163 4.171 0.008 4.171 0.008
T3 4.689 4.800 0.111 4.800 0.111

HBT T1 3.359 3.370 0.011 3.370 0.011
T2 4.149 4.117 0.032 4.117 0.032
T3 4.389 4.306 0.083 4.306 0.083

stilbene T1 2.966 2.970 0.004 2.970 0.004
T2 4.100 4.284 0.185 4.284 0.185
T3 4.578 4.666 0.088 4.666 0.088

GFP T1 2.544 2.554 0.010 2.554 0.010
T2 4.054 4.179 0.125 4.179 0.125
T3 4.481 4.554 0.073 4.554 0.073

PYP T1 3.181 3.187 0.006 3.187 0.006
T2 4.572 4.568 0.004 4.568 0.004
T3 4.823 4.736 0.088 4.736 0.088

acridine red T1 2.303 2.316 0.013 2.316 0.013
T2 3.302 3.368 0.066 3.368 0.066
T3 3.613 3.728 0.115 3.728 0.115

anthanthrene T1 1.969 1.983 0.014 1.983 0.014
T2 3.158 3.290 0.132 3.290 0.132
T3 3.364 3.422 0.057 3.422 0.057

N -methyl- T1 2.863 2.873 0.011 2.873 0.011
benzcarbaxole T2 3.624 3.677 0.054 3.677 0.054

T3 3.899 3.940 0.040 3.940 0.040
coumarin 153 T1 2.779 2.796 0.018 2.796 0.018

T2 3.942 4.030 0.087 4.030 0.087
T3 4.281 4.385 0.104 4.385 0.104

difluoro-indigo T1 2.304 2.364 0.060 2.364 0.060
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T2 3.039 3.160 0.122 3.160 0.122
T3 3.550 3.649 0.100 3.649 0.100

nile red T1 2.079 2.092 0.014 2.092 0.014
T2 3.249 3.422 0.173 3.422 0.173
T3 3.742 3.836 0.094 3.836 0.094

oxazine 9 T1 1.821 1.830 0.009 1.830 0.009
T2 2.999 3.066 0.068 3.066 0.068
T3 3.558 3.633 0.075 3.633 0.075

rubicene T1 1.885 1.900 0.015 1.900 0.015
T2 2.796 2.866 0.071 2.866 0.071
T3 2.838 2.945 0.107 2.945 0.107

ester T1 2.797 2.812 0.015 2.812 0.015
T2 3.848 4.033 0.185 4.033 0.185
T3 4.149 4.258 0.109 4.258 0.109

Table S17: Detailed results for the excitation energies to the first three singlet excited states for
the molecules in the benchmark set from Ref. S7. Errors of the MO- and CDD-based THC-SOS-
LR-CC2 methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
butadiene S1 6.613 6.585 0.028 6.585 0.028

S2 7.991 7.955 0.036 7.955 0.036
S3 8.067 8.042 0.025 8.042 0.025

hexatriene S1 5.567 5.556 0.012 5.556 0.012
S2 7.059 7.034 0.026 7.034 0.026
S3 7.384 7.376 0.007 7.376 0.007

malonaldehyde S1 4.397 4.390 0.007 4.390 0.007
S2 5.103 5.064 0.039 5.064 0.039
S3 7.865 7.846 0.020 7.846 0.020

methylsalicylate S1 4.338 4.319 0.020 4.319 0.020
S2 5.643 5.634 0.009 5.634 0.009
S3 5.732 5.726 0.006 5.726 0.006

HBT S1 4.010 3.997 0.012 3.997 0.012
S2 4.454 4.440 0.014 4.440 0.014
S3 4.850 4.837 0.013 4.837 0.013

stilbene S1 4.502 4.491 0.010 4.491 0.010
S2 4.640 4.623 0.017 4.623 0.017
S3 4.697 4.683 0.014 4.683 0.014

GFP S1 4.030 4.014 0.016 4.014 0.016
S2 4.342 4.338 0.004 4.338 0.004
S3 4.506 4.488 0.018 4.488 0.018

PYP S1 4.517 4.498 0.019 4.498 0.019
S2 4.769 4.749 0.019 4.749 0.019
S3 5.314 5.295 0.019 5.295 0.019

acridine red S1 2.861 2.794 0.067 2.790 0.071
S2 3.683 3.652 0.031 3.650 0.033
S3 4.580 4.556 0.024 4.560 0.020

anthanthrene S1 3.208 3.201 0.007 3.201 0.007
S2 3.330 3.331 0.000 3.331 0.000
S3 3.949 3.964 0.015 3.964 0.015
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N -methyl- S1 3.556 3.553 0.004 3.550 0.006
benzcarbaxole S2 4.147 4.149 0.001 4.150 0.003

S3 4.605 4.597 0.008 4.600 0.005
coumarin 153 S1 3.577 3.580 0.003 3.580 0.003

S2 4.147 4.157 0.011 4.160 0.013
S3 4.850 4.864 0.014 4.864 0.014

difluoro-indigo S1 2.629 2.639 0.010 2.639 0.010
S2 3.051 3.067 0.015 3.067 0.015
S3 3.397 3.396 0.001 3.396 0.001

nile red S1 2.997 2.981 0.016 2.981 0.016
S2 3.629 3.616 0.014 3.616 0.014
S3 3.865 3.869 0.004 3.869 0.004

oxazine 9 S1 2.563 2.472 0.091 2.472 0.091
S2 3.355 3.316 0.040 3.316 0.040
S3 4.046 4.027 0.019 4.027 0.019

rubicene S1 2.852 2.860 0.008 2.860 0.008
S2 3.215 3.225 0.010 3.225 0.010
S3 3.413 3.425 0.012 3.425 0.012

ester S1 4.080 4.078 0.003 4.078 0.003
S2 4.770 4.766 0.004 4.766 0.004
S3 5.144 5.137 0.007 5.137 0.007

Table S18: Detailed results for the excitation energies to the first three triplet excited states for
the molecules in the benchmark set from Ref. S7. Errors of the MO- and CDD-based THC-SOS-
LR-CC2 methods are reported as deviations from the RI-based reference implementation. All
calculations are performed with the cc-pVTZ/cc-pVTZ-RI basis set combination.

molecule state ERI / eV ETHC / eV ∆ETHC / eV ECDD-THC / eV ∆ECDD-THC / eV
butadiene T1 3.553 3.525 0.027 3.525 0.027

T2 5.258 5.236 0.022 5.236 0.022
T3 7.956 7.945 0.011 7.945 0.011

hexatriene T1 2.967 2.955 0.012 2.955 0.012
T2 4.432 4.418 0.013 4.418 0.013
T3 5.464 5.455 0.009 5.455 0.009

malonaldehyde T1 3.738 3.711 0.027 3.711 0.027
T2 4.173 4.169 0.004 4.169 0.004
T3 6.436 6.401 0.035 6.401 0.035

methylsalicylate T1 3.971 3.958 0.013 3.958 0.013
T2 4.175 4.167 0.008 4.167 0.008
T3 4.724 4.711 0.013 4.711 0.013

HBT T1 3.392 3.387 0.005 3.387 0.005
T2 4.154 4.147 0.007 4.147 0.007
T3 4.419 4.413 0.006 4.413 0.006

stilbene T1 2.973 2.962 0.010 2.962 0.010
T2 4.102 4.092 0.010 4.092 0.010
T3 4.593 4.583 0.010 4.583 0.010

GFP T1 2.579 2.569 0.010 2.569 0.010
T2 4.082 4.071 0.011 4.071 0.011
T3 4.495 4.485 0.010 4.485 0.010

PYP T1 3.214 3.198 0.016 3.198 0.016
T2 4.589 4.576 0.013 4.576 0.013
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T3 4.846 4.833 0.013 4.833 0.013
acridine red T1 2.381 2.361 0.020 2.361 0.020

T2 3.411 3.389 0.022 3.389 0.022
T3 3.712 3.678 0.033 3.678 0.033

anthanthrene T1 1.968 1.969 0.001 1.969 0.001
T2 3.168 3.165 0.003 3.165 0.003
T3 3.706 3.711 0.005 3.711 0.005

N -methyl- T1 2.867 2.866 0.001 2.866 0.001
benzcarbaxole T2 3.638 3.633 0.004 3.633 0.004

T3 3.919 3.916 0.003 3.916 0.003
coumarin 153 T1 2.831 2.837 0.006 2.837 0.006

T2 4.003 4.008 0.004 4.008 0.004
T3 4.362 4.342 0.019 4.342 0.019

difluoro-indigo T1 2.369 2.364 0.005 2.364 0.005
T2 3.061 3.058 0.003 3.058 0.003
T3 3.590 3.586 0.003 3.586 0.003

nile red T1 2.120 2.118 0.002 2.118 0.002
T2 3.451 3.439 0.012 3.311 0.140
T3 3.786 3.775 0.011 3.775 0.011

oxazine 9 T1 1.905 1.872 0.032 1.872 0.032
T2 3.090 3.057 0.033 3.057 0.033
T3 3.620 3.601 0.019 3.601 0.019

rubicene T1 1.888 1.892 0.004 1.892 0.004
T2 2.796 2.802 0.007 2.802 0.007
T3 2.844 2.850 0.006 2.850 0.006

ester T1 2.824 2.823 0.001 2.823 0.001
T2 3.874 3.871 0.004 3.871 0.004
T3 4.214 4.210 0.004 4.210 0.004
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6 Detailed Results – Computational Efficiency

6.1 Time Complexity

In the following, supplementary results for the computational complexity of the proposed THC-

based reformulations of the methods presented in the main part of this work are given.

The computational complexity of the MO/CDD-THC-SOS-MP2 methods is assessed by taking

into account the number of FLOP required to evaluate the SOS-MP2 singles amplitude for the

LCAn (Figure S3) and the ATn series (Figure S4).

Figure S3: Number of FLOP required to evaluate the SOS-MP2 singles amplitudes for a series of
LCAn (n ∈ {20, 40, 80, 120, 160, 200}) molecules. Labels represent the FLOP reduction compared
to the MO-RI-SOS-MP2 implementation and all calculations are performed with the cc-pVDZ/cc-
pVDZ-RI (left) or cc-pVTZ/cc-pVTZ-RI basis set combination (right). Extrapolated values are
marked with an asterisk (*).

For the LCAn series, MO-THC-SOS-MP2 exhibits exactly cubic scaling with the system size for

both basis set sizes considered. Overall, in comparison to the RI-based reference implementation,

the application of MO-THC yields a 17-fold diminution of the effort for the double-ζ basis set and

a 33-fold diminution of the effort for the larger triple-ζ basis set. Furthermore, a reformulation

in the local Cholesky MO basis results in improvements of up to 148-fold for the largest LCA

molecule considered, while reducing the apparent scaling exponent to ∼2.5. In the limit of the

largest fragment sizes considered, the observed scaling behavior is similar for the less-sparse ATn
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series, as shown in Figure S4.

Figure S4: Number of FLOP required to evaluate the SOS-MP2 singles amplitudes for a series of
ATn (n ∈ {1, 2, 4, 8, 12}) molecules. Labels represent the FLOP reduction compared to the MO-
RI-SOS-MP2 implementation and all calculations are performed with the cc-pVDZ/cc-pVDZ-RI
basis set combination. Extrapolated values are marked with an asterisk (*).

In addition to the results presented in the main part of this work for the larger triple-ζ basis

set, Figure S5 shows the scaling behavior of the THC-SOS-LR-CC2/SOS-ADC(2) methods for the

LCAn series using the cc-pVDZ/cc-pVDZ-RI basis set combination.

Figure S5: Number of FLOP required to evaluate the SOS-CC2 singles amplitudes (left)
and the SOS-LR-CC2/SOS-ADC(2) matrix-vector product (right) for a series of LCAn (n ∈
{20, 40, 80, 120, 160, 200}) molecules. Labels represent the FLOP reduction compared to the
MO-RI-SOS-LR-CC2/ADC(2) implementation and all calculations are performed with the cc-
pVDZ/cc-pVDZ-RI basis set combination. Extrapolated values are marked with an asterisk (*).
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6.1.1 THC Grid Comparison

Table S19: Average number of PFLOP (1015 FLOP) required per DIIS iteration to form the matrix-
vector product in MO-THC-SOS-ADC(2) and CDD-THC-SOS-ADC(2). Additionally, the ×-fold
reduction in the number of FLOP is shown with respect to MO-RI-SOS-ADC(2). All calculations
are performed using the cc-pVDZ/cc-pVDZ-RI basis set combination and the grids generated
from both the hand-optimized cc-pVDZ- (grid 1 ) and cc-pVTZ-based parent grids (grid 2 ) from
Martínez and coworkers.S2 Extrapolated values are marked with an asterisk (*).

MO-RI MO-THC CDD-THC
System Nbf PFLOP PFLOP Scaling Reduction PFLOP Scaling Reduction

grid 1
AT04 2904 6.2 0.3 — 20.3× 0.5 — 12.4×
AT08 5896 110.0* 2.6 3.0 41.0× 2.6 2.3 40.0×
AT12 5896 537.0* 8.8 3.0 61.0× 2.6 2.3 76.4×
AT16 11880 1800.0* 21.0 3.0 83.5× 15.0 2.5 119.3×

grid 2
AT04 2904 6.2 0.7 — 8.9× 0.9 — 6.9×
AT08 5896 110.0* 5.9 3.0 17.8× 6.8 2.8 15.4×
AT12 5896 537.0* 20.0 3.0 41.0× 2.6 2.3 40.0×
AT16 11880 1800.0* 49.1* 3.0 35.7× 38.0* 2.5 46.1×

Table S20: Time required to perform one iteration of the excited state calculation. Scaling and
speedups are reported for the THC-based methods relative to MO-RI-SOS-ADC(2) using the cc-
pVDZ/cc-pVDZ-RI basis set combination together with the grids generated from both the hand-
optimized cc-pVDZ- (grid 1 ) and cc-pVTZ-based parent grids (grid 2 ). Extrapolated values are
marked with an asterisk (*).

MO-RI MO-THC CDD-THC
System Nbf Time / h Time / h Speedup Time / h Speedup

grid 1
AT4 2904 1.1 0.1 8.9× 0.3 4.1×
AT8 5896 19.0* 0.8 23.4× 1.0 18.8×
AT12 8888 98.7*
AT16 11 880 312.2* 6.6* 47.0× 4.6 68.1×

grid 2
AT4 2904 1.1 0.4 2.6× 0.5 2.2×
AT8 5896 19.0* 2.3 8.3× 2.5 7.7×
AT12 8888 98.7* 8.0* 8.3× 2.1 8.9×
AT16 11 880 312.2* 19.0* 16.4× 11.1* 28.1×

S-33



6.1.2 THC Z vs. Γ Tensor

In the following, the scaling of the computational effort required to evaluate the THC-SOS-LR-

CC2/ADC(2) matrix-vector product using either a formulation of the intermediates in terms of the

THC Z or the Γ tensor is exemplarily demonstrated for a series of LCAn molecules in Figure S6.

Here, the label CDD-THC (Γ) indicates the results obtained by using eqs. (d)–(f) in Table 2 in

the main part of this work, whereas the CDD-THC (Z) label indicates the results obtained using

eqs. (e’)–(f’) in the same table.

Figure S6: Number of FLOP required to evaluate the SOS-LR-CC2/SOS-ADC(2) matrix-vector
product for a series of LCAn (n ∈ {40, 80, 160}) molecules. Labels represent the FLOP reduction
compared to the MO-RI-SOS-LR-CC2/ADC(2) implementation. All calculations are performed
with the cc-pVDZ/cc-pVDZ-RI basis set combination and the hand-optimized cc-pVDZ-based
THC parent grid.

As expected, the MO-THC-based implementation exhibits cubic time complexity, whereas the use

of the THC Γ or the THC Z tensor in conjunction with the CDD approach reduce the scaling

exponent to ∼2.2 or ∼2.0, respectively. Despite the scaling advantage, the use of the THC Γ

tensor is favorable in terms of the number of FLOP required to evaluate the CDD-THC-SOS-

LR-CC2/ADC(2) matrix-vector due to the reduced dimension of the Γ vs. the Z tensor, i.e.,

(Ngrid ×Naux) vs. (Ngrid ×Ngrid).
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6.2 Space Complexity

The memory demand of relevant intermediates in both ground and excited state calculations in

the block sparse format is directly proportional to the number of significant and therefore allocated

blocks within a given intermediate. The observed space complexity of the intermediates computed

within the CDD-THC-SOS-CC2 and CDD-THC-SOS-LR-CC2/ADC(2) algorithms scale at most

as O(N1.5) with the system size for both LCAs – Figures S7–S10 in the cc-pVTZ basis – and

the AT pairs – Figures S11–S12 in the cc-pVDZ. Notice that the memory demands of the THC

fitting matrices scale as O(N2) since they are always dense. Thus, in the case of CDD-based

reformulations and electronically sparse systems, the memory demands are dominated by either

the Γ or Z THC fitting matrices and formally scale as O(N2). Nonetheless, the reduction of the

space complexity and the significant memory savings for the intermediates are crucial to extend

the application of the proposed methods to systems with hundreds of atoms without the need to

batch the work load.

Figure S7: Scaling of the memory requirements of various intermediates of the CDD-THC-SOS-
CC2 method. Here relevant intermediates of dimension Ngrid × Nbf or Ngrid × Nocc are included.
For Laplace point-dependent intermediates the values are averaged over the number of quadrature
points. All calculations are performed for a series of LCAn molecules with the cc-pVTZ/cc-pVTZ-
RI basis set combination.
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Figure S8: Scaling of the memory requirements of various intermediates of the CDD-THC-SOS-
CC2 method. Here relevant intermediates of dimension Ngrid × Ngrid are included. For Laplace
point-dependent intermediates the values are averaged over the number of quadrature points. All
calculations are performed for a series of LCAn molecules with the cc-pVTZ/cc-pVTZ-RI basis set
combination.

Figure S9: Scaling of the memory requirements of various intermediates of the CDD-THC-SOS-
ADC(2) method. Here relevant intermediates of dimension Ngrid×Nbf or Ngrid×Nocc are included.
For Laplace point-dependent intermediates the values are averaged over the number of quadrature
points. All calculations are performed for a series of LCAn molecules with the cc-pVTZ/cc-pVTZ-
RI basis set combination.
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Figure S10: Scaling of the memory requirements of various intermediates of the CDD-THC-SOS-
ADC(2) method. Here relevant intermediates of dimension Ngrid×Ngrid are included. For Laplace
point-dependent intermediates the values are averaged over the number of quadrature points. All
calculations are performed for a series of LCAn molecules with the cc-pVTZ/cc-pVTZ-RI basis set
combination.

Figure S11: Scaling of the memory requirements of various intermediates of the CDD-THC-SOS-
ADC(2) method. Here relevant intermediates of dimension Ngrid×Nbf or Ngrid×Nocc are included.
For Laplace point-dependent intermediates the values are averaged over the number of quadrature
points. All calculations are performed for a series of ATn molecules with the cc-pVDZ/cc-pVDZ-RI
basis set combination.
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Figure S12: Scaling of the memory requirements of various intermediates of the CDD-THC-SOS-
ADC(2) method. Here relevant intermediates of dimension Ngrid×Ngrid are included. For Laplace
point-dependent intermediates the values are averaged over the number of quadrature points. All
calculations are performed for a series of ATn molecules with the cc-pVDZ/cc-pVDZ-RI basis set
combination.

Taking AT12 as an illustrative example, one set of MO-based RI integrals using the cc-pVDZ/cc-

pVDZ-RI basis set combination would require ∼6 TB of memory/disk space, with a < 20% saving

if Cholesky pseudo-MOs and sparse algebra are put to use. Hence, considering that at least one

other set of integrals must be stored in the CDD-RI-SOS-ADC(2) implementation, both the num-

ber of input/output (I/O) operations (IOP) as well as storage demands easily become a bottleneck

for common high-performance compute nodes and would render batching – with its intrinsic over-

head – mandatory. In contrast, for the same basis set the evaluation of the SOS-ADC(2) and

SOS-LR-CC2 excitation energy of AT12 using THC only requires ∼500 GB of memory space. In

addition, the presented implementations of MO- and CDD-THC-SOS-ADC(2)/CC2 only require

disk I/O for the D̂ intermediates (∼72 GB for AT12/cc-pVDZ/cc-pVDZ-RI) in the Laplace inte-

gration, while all other intermediates can be kept in memory.
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4. Conclusion

This thesis is mainly concerned with the development and extension of the LS-THC
integral factorization method. LS-THC enables to decompose the fourth-order ERI tensor
into second-order tensors and represents the next generation of integral factorizations, go-
ing beyond the capabilities of more established methods, like the PS or RI approximation.
To extend the applicability of LS-THC, low-scaling and efficient algorithms to obtain
the LS-THC tensor are developed. While the efficiency of the algorithm put forward in
Publication I relies on integral screening and sparse linear algebra, in Publication
IV an integral-direct density-based algorithm is proposed. The latter is particularly
convenient for implementation, since it only requires the ability to evaluate basis functions
on a DFT-like grid and to perform J-builds, which is readily available in all quantum
chemistry packages which implement KS-DFT. With the presented algorithms to obtain
the LS-THC tensors, the development of efficient reformulations of electron correlation
methods is facilitated. This is demonstrated for MP2 and CC2 ground state energies, as
well as for excitation energies at the LR-CC2 and ADC(2) levels of theory in Publica-
tions I and IV. Furthermore, the necessity to efficiently perform integral contractions
is even more pronounced when going from energies to molecular properties through
differentiation of the underlying energy functional. Here, many more types of integral
tensor are present, due to the additional occurrence of differentiated integrals and density
matrices. This is highlighted in Publication II, in which the MP2 equations for HFCCs
are reformulated in terms of the LS-THC tensor. Compared to previous implementations,
this approach enables the accelerated and low-scaling calculation of HFCCs with a low
memory footprint at the MP2 level of theory. In general, the ability to theoretically
predict molecular properties is crucial to bridge the gap between theory and experiment.
Of particular note are spectroscopic methods that find widespread use in all fields of
experimental chemistry, such as NMR. Inspired by the high accuracy of numerically
calculated RPA NMR shifts, in Publication III an analytic expression is derived. It is
noteworthy that this represents the first analytic derivation of a second-order property
using RPA as a post-KS method based on the ACFDT. The developed theory represents
a meaningful starting point for the development of an efficient method for accurate NMR
shifts, due to the low formal quartic scaling of RI-RPA. In this regard, it would be
beneficial to apply the developed LS-THC approach, as it was already demonstrated in
Publication II that LS-THC leads to considerable savings in terms of computation time
and memory requirements for the calculation of molecular properties. Since, as of yet,
there is no analytic expression for the magnetic field derivatives of the LS-THC tensors,
the development thereof is a natural extension of the presented research in future work.





A. Appendix

A.1. Second Quantization
A.1.1. Creation and Annihilation Operators
The Pauli exclusion principle [43] is one of the most fundamental axioms of quantum
mechanics and states – in its stricter formulation – that the wave function for fermions
must be antisymmetric. One way of ensuring the antisymmetry of the wave function
upon interchange of the electronic coordinates of two identical particles, i.e., swapping
the space and spin coordinates, is to encapsulate the information in the so-called Slater
determinant wave function [3]. This ansatz is known as first quantization in quantum
mechanics.

However, one is not restricted to encode the antisymmetry principle in the wave function,
instead this requirement can also be met by transferring the antisymmetry property
onto the algebraic properties of the operators, which is known as second quantization
[44]. Since throughout this thesis second quantization will be used to concisely outline
the fundamentals of the various correlation methods presented in Section 2.1, a brief
explanation is given here.

Let â†
p be a creation operator defined by its action on a Slater determinant as

â†
p|φq · · ·φs⟩ = |φpφq · · ·φs⟩ , (A.1)

which creates an electron in the spin orbital φp. Likewise, let âp be an annihilation
operator, defined by its action as

âp|φpφq · · ·φs⟩ = |φq · · ·φs⟩ , (A.2)

which annihilates an electron in spin orbital φp and is the adjoint of the creation operator
â†

p. Any Slater determinant may therefore be written in terms of the collective action of
a chain of creation operators starting from the vacuum state |VAC⟩ as

|φpφq · · ·φs⟩ = â†
pâ

†
q · · · â†

s|VAC⟩ . (A.3)

Pairwise interchange of a set of creation or annihilation operators results in the following
anticommutation relations
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{â†
p, â

†
q} = â†

pâ
†
q + â†

qâ
†
p = 0 , (A.4)

{âp, âq} = âpâq + âqâp = 0 , (A.5)
{âp, â

†
q} = âpâ

†
q + â†

qâp = δpq , (A.6)

which incorporate all properties of the Slater determinant. Using eq. (A.3) and the
anticommutation relations from eqs. (A.4)–(A.6), any arbitrary Slater determinant can
be formed. Furthermore, the one- and two-electron operators Ô1 and Ô2 can be expressed
in second quantization as follows

Ô1 =
∑
pq

⟨p|ĥ|q⟩â†
pâq , (A.7)

Ô2 = 1
2
∑
pqrs

⟨pq|rs⟩â†
pâ

†
qâsâr . (A.8)

A.1.2. Field Operators

Alternative to the use of single-particle creation â†
p and annihilation operators âp, which

create or destroy a particle in a specific state p, so-called field operators ψ̂†(τ ), ψ̂(τ )
can be applied to create and annihilate particles at different positions in space. A field
operator can be expressed as the sum over all possible states in a single-particle basis
and vice versa a creation/annihilation operator is obtained from a field operator by
integration over the coordinate τ as

ψ̂(τ ) =
∑

p

φp(τ ) âp , (A.9)

âp =
∫
dτ φp(τ )ψ̂(τ ) . (A.10)

Based on eqs. (A.4)–(A.6) the anticommutation relations for field operators are given by

{ψ̂†(τ 1), ψ̂†(τ 2)} = 0 , (A.11)
{ψ̂(τ 1), ψ̂(τ 2)} = 0 , (A.12)

{ψ̂†(τ 1), ψ̂(τ 2)} = δτ 1,τ 2 . (A.13)

A.1.3. Normal Order

An arbitrary string of creation and annihilation operators â†
p · · · âq is said to be in normal

order if all creation operators are left to all annihilation operators. Let Â be a string of
creation and annihilation operators, then N (Â) denotes the normal ordered form of Â.
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Defining a normal order allows to directly evaluate the action of a string of creation and
annihilation operators, e.g.,

N (Â)|VAC⟩ = 0 → except when Â contains only creation operators
⟨VAC|N (Â) = 0 → except when Â contains only annihilation operators

⟨VAC|N (Â)|VAC⟩ = 0 → except when Â contains no operators

and avoids terms where annihilation operators act on the vacuum state, which would
simply yield zero. To obtain normal ordered operators, Wick’s theorem [45] can be
applied, which states that an arbitrary string of creation and annihilation operators can
be expressed as a linear combination of increasingly pairwise contracted normal ordered
operator strings, i.e.,

âb̂ĉ · · · x̂ŷẑ = N (âb̂ĉ · · · x̂ŷẑ) +
∑

singles
N (âb̂ĉ · · · x̂ŷẑ) +

∑
doubles

N (âb̂ĉ · · · x̂ŷẑ) + · · · ,

(A.14)

where “singles”, “doubles”, etc. symbolizes the sum over the given number of pairwise
contractions. A contraction between two arbitrary creation and annihilation operators â
and b̂ is defined as

âb̂ = âb̂− N (âb̂), (A.15)

whereas the term fully contracted is used when all elementary operators in an operator
string are pairwise contracted.

A.1.4. Particle-hole Formalism
Since the vacuum state |VAC⟩ is only of little interest for practical applications, it is
more convenient to define the Hartree–Fock determinant |0⟩ := |ΨHF⟩ [3], also known
as the Fermi vacuum, as the reference state. For this, the orbital space is partitioned
into a hole (orbitals i, j, k, . . . ) and a particle space (orbitals a, b, c, . . . ), while operators
creating or destroying particles or holes are referred to as quasiparticle operators. Based
on the definition of the reference state, the operators â†

a and âi are quasiparticle creation
operators and âa and â†

i are quasiparticle annihilation operators. The action of the
quasiparticle creation operators â†

a and âi is shown schematically in Fig. A.1.
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↑↓
↑↓
↑↓

↑
↑↓
↑↓
↑↓

↑
↑↓
↑↓

|0⟩ â†
a|0⟩ âi|0⟩

Figure A.1.: Schematic representation of the action of quasiparticle operators on the
Fermi vacuum.

Changing the reference state to the Fermi vacuum requires to adjust the definition of the
normal order. A string of quasiparticle operators is normal ordered with regard to the
Fermi vacuum if all quasiparticle creation operators are left of all quasiparticle annihilation
operators. As a consequence of the change of the definition of the normal order, the
only non-zero contractions between quasiparticle operators are between quasiparticle
annihilation operators that are left to quasiparticle creation operators, i.e.,

â†
i âj = â†

i âj − N (â†
i âj) = â†

i âj + âj â
†
i = {â†

i , âj} = δij , (A.16)

âaâ
†
b = âaâ

†
b − N (âaâ

†
b) = âaâ

†
b + â†

bâa = {âa, â
†
b} = δab . (A.17)

A.1.5. Electron-Electron Interaction Potential in Second Quantization

To describe pairwise interactions in systems with interacting particles, general two-
particle operators Ô2 are used. In this regard, every two-particle operator Ô2 in second
quantization can be expressed as

Ô2 =
∑
pqrs

Opqrsâ
†
pâ

†
qâsâr , (A.18)

from the first quantized form, where Opqrs = ⟨pq|Ô2|rs⟩. The two-particle electron-
electron Coulomb interaction potential V̂ee = 1

2
∑

i ̸=j
1

rij
is therefore given as

V̂ee = 1
2
∑
pqrs

∫∫
dτ 1dτ 2φ

∗
p(τ 1)φ∗

q(τ 2) 1
r12

φr(τ 1)φs(τ 2) â†
pâ

†
qâsâr , (A.19)

which can be rewritten as
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V̂ee = 1
2

∫∫
dτ 1dτ 2 ψ̂

†(τ 1)ψ̂†(τ 2) 1
r12

ψ̂(τ 2)ψ̂(τ 1) , (A.20)

using the field operators introduced in Section A.1.2. Applying the anticommutation
relations given in eqs. (A.11)–(A.13) gives

ψ̂†(τ 1)ψ̂†(τ 2)ψ̂(τ 2)ψ̂(τ 1) = ψ̂†(τ 1)ψ̂(τ 1)ψ̂†(τ 2)ψ̂(τ 2) − δτ 1,τ 2ψ̂
†(τ 1)ψ̂(τ 1) . (A.21)

Finally, defining the density operator as

n̂(r) =
∫
dσ ψ̂†(τ )ψ̂(τ ) , (A.22)

allows to rewrite the electron-electron interaction as

V̂ee = 1
2

∫∫
dr1dr2

1
r12

[n̂(r1)n̂(r2) − δr1,r2 n̂(r1)] . (A.23)

A.2. Many-body Green’s Function

A.2.1. Mathematical Basics

In general, Green’s functions are special solutions to inhomogeneous linear differential
equations of the form

L̂xu(x) = f(x) , (A.24)

where L̂x is a linear differential operator and f(x) is the inhomogeneity. The general
solution to eq. (A.24) can be constructed from the homogeneous solution u0(x) of
L̂xu0(x) = 0 and the special solution. If for the special solution the inhomogeneity is
taken to be a Dirac function, i.e.,

L̂xuGreen(x) = δ(x− x′) , (A.25)

the solution G(x) := uGreen(x) is referred to as the fundamental solution or Green’s
function. From the Green’s function the solution for eq. (A.24) for any inhomogeneity
f(x) can be obtained by convolution (∗) with the Green’s function, given as

u(x) = G(x) ∗ f(x) =
∫
G(x− x′)f(x′)dx′ . (A.26)
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A.2.2. Many-body Green’s Functions in Quantum Chemistry
Like eq. (A.24), the time-dependent Schrödinger equation (TDSE) [38] represents a linear
differential equation given by

(
i ∂
∂t

− Ĥ
)

|Ψ(r, t)⟩ = 0 , (A.27)

in atomic units, for which the wave function can be expressed as

Ψ(r, t) =
∫∫

dr′dt′G(r, t; r′, t′)Ψ(r′, t′) , (A.28)

according to Section A.2.1. As implied by eq. (A.28), the Green’s function acts as a
propagator for the wave function and represents the probability amplitude that a particle
gets from an event (r, t) to an event (r′, t′). Depending on the number of interacting
particles on a path, the Green’s functions can be understood as single-, two-, ..., many-
particle propagators. Fig. A.2 exemplarily shows diagrammatic representations of a
single-particle electron propagator (left) used to describe ionization processes and a
two-particle electron-hole propagator (right) used to describe excitations.

(r′, t′) (r, t)

(r′
1, t

′
1)

(r′
2, t

′
2)

(r1, t1)

(r2, t2)

Figure A.2.: Diagrammatic representation of a single-particle electron propagator (left)
and a two-particle electron-hole propagator (right). Electrons are represented
by • and holes by ◦. The sine wave represents a photon interaction.

To demonstrate the action of a Green’s function, consider the single-particle Green’s
function given by

Gpq(t, t′) = −iΘ(t− t′)⟨ΨN
0 | T̂

(
âp(t)â†

q(t′)
)

|ΨN
0 ⟩ , (A.29)

where N for the wave function indicates the electron number. Furthermore, Θ(t) is the
Heaviside function and T̂ is the time-ordering operator defined as

T̂
(
Â(t)B̂(t′)

)
=
{

Â(t)B̂(t′) for t− t′ > 0
−B̂(t′)Â(t) for t− t′ < 0

. (A.30)

In eq. (A.29) the Heisenberg operators âp(t) and â†
q(t′) create and destroy an electron in

a single-particle state at the times t and t′, respectively. Eq. (A.29) thereby describes the
process of adding an electron in the single-particle state q at time t′, which is added to the



A.2 Many-body Green’s Function 267

exact ground state. As a consequence of not being in an eigenstate of the Hamiltonian,
the electron interacts with other electrons in the system and is then removed again at
time t. The Green’s function then describes the amplitude at the time of the removal.
Furthermore, forming the Fourier transform of eq. (A.29) yields the spectral or Lehmann’s
representation [69] of the Green’s function as

Gpq(ω) =
∑
n ̸=0

(
⟨ΨN

0 |âp|ΨN+1
n ⟩⟨ΨN+1

n |â†
q|ΨN

0 ⟩
ω − (EN+1

n − EN
0 ) + iη︸ ︷︷ ︸

G+(t,t′)

+
⟨ΨN

0 |â†
q|ΨN−1

n ⟩⟨ΨN−1
n |âp|ΨN

0 ⟩
ω + (EN

0 − EN−1
n ) − iη︸ ︷︷ ︸

G−(t,t′)

)
, (A.31)

where η = 0+ is the positive infinitesimal. Analyzing the poles of eq. (A.31) reveals that
the first term G+(t, t′) originating from the positive time domain of eq. (A.29) gives
access to electron affinities (EA), while the second term G−(t, t′) from the negative time
domain of eq. (A.29) contains ionization potentials (IP):

ω = (EN+1
0 − EN

n ) − iη ⇒ EA = EN
0 − EN+1

n (A.32)
ω = (EN−1

n − EN
0 ) + iη ⇒ IP = EN−1

n − EN
0 (A.33)

The single-particle Green’s function therefore contains spectral information about single-
particle excitations which change the number of electrons in the system by one, with the
poles corresponding to the excitation energies.

To obtain excitation energies for particle conserving processes the so-called polarization
propagator can be formulated as

Πpqrs(t, t′) = − iΘ(t− t′)⟨ΨN
0 | T̂

(
â†

q(t)âp(t)â†
r(t′)âs(t′)

)
|ΨN

0 ⟩

+ i⟨ΨN
0 | â†

qâp|ΨN
0 ⟩⟨ΨN

0 | â†
râs|ΨN

0 ⟩ , (A.34)

in analogy to eq. (A.29). In the Heisenberg picture eq. (A.34) can also be rewritten
in terms of the density fluctuation operator ñ(r) := n̂(r) − n(r), with the density n(r)
obtained as the expectation value of the density operator n̂(r). Therefore, eq. (A.34)
is also often referred to as the density-density response function, which is apparent by
comparing against eq. (2.37) for the linear response function.1 To obtain excitation
energies from eq. (A.34), its Lehmann representation given by

1The nomenclature in the literature is ambiguous as to whether there is a difference between a response
function and a propagator or not. Since both can be understood as two-particle correlation functions,
the terms will be used interchangeably throughout.
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Πpqrs(ω) =
∑
n̸=0

(
⟨ΨN

0 |â†
qâp|ΨN

n ⟩⟨ΨN
n |â†

râs|ΨN
0 ⟩

ω − (EN
n − EN

0 ) + iη︸ ︷︷ ︸
Π+(t,t′)

+
⟨ΨN

0 |â†
râs|ΨN

n ⟩⟨ΨN
n |â†

qâp|ΨN
0 ⟩

ω + (EN
n − EN

0 ) − iη︸ ︷︷ ︸
Π−(t,t′)

)
, (A.35)

can be analyzed for poles ω = EN
n − EN

0 , as for the single-particle Green’s function.

A.3. Connection Between LT-AO-MP2 and AO-RI-dRPA
A.3.1. Correlation Energy
In matrix notation the Laplace-transform (LT-) AO-MP2 energy [154–156] equation is
given by

Ec
MP2 = −

∫ ∞

0
dτ Tr

[(
P(τ) ⊗ P(τ)

)
I
(
P(τ) ⊗ P(τ)

)
(2I − I ′)

]
, (A.36)

where the analytic integral for the Laplace transformation is used instead of numerical
integration. Here P and P are the usual pseudodensities, defined as

P(τ) = eτPoccFPocc , (A.37)
P(τ) = e−τPvirtFPvirt , (A.38)

while I and I ′ are the fourth-order ERI tensors associated with the integrals of type
(µν|λσ) and (µσ|λν), respectively. Inserting the RI approximation from Section 2.4.1
into the ERI tensor I results in

I = BVBT , (A.39)

where B is three-center and V is the two-center RI integral tensor. This results in the
expression for the opposite-spin (OS) contribution to the LT-AO-MP2 energy given by

Ec
OS-MP2 = −

∫ ∞

0
dτ Tr

[(
P(τ) ⊗ P(τ)

)
BVBT

(
P(τ) ⊗ P(τ)

)
BVBT

]
= −

∫ ∞

0
dτ Tr

[
BT

(
P(τ) ⊗ P(τ)

)
BVBT

(
P(τ) ⊗ P(τ)

)
BV

]
. (A.40)

In the second rearrangement in eq. (A.40), cyclic permutation under the trace is used,
which with the definition of an additional intermediate Z [157] given by
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Z(τ) = BT
(
P(τ) ⊗ P(τ)

)
B , (A.41)

the OS contribution to the LT-AO-MP2 can be simplified to

Ec
OS-MP2 = −

∫ ∞

0
dτ Tr [Z(τ)VZ(τ)V] . (A.42)

Furthermore, the AO-RI-dRPA energy expression [158, 159] is given by

Ec
dRPA =

∫ ∞

0

dω

2πTr
[
ln
(
1 − X̂0(iω)V

)
+ X̂0(iω)

]
, (A.43)

with the non-interacting density-density response function X̂0(iω) in the imaginary
frequency domain iω defined as the Fourier transform of the response function in the
imaginary time domain iτ given by

X̂0(iω) =
∫ ∞

−∞
dτeiωτ X0(iτ) , (A.44)

X0(iτ) = BT (G0(−iτ) ⊗ G0(iτ)) B . (A.45)

Here, G0(iτ) denotes the non-interacting Green’s function in the imaginary time domain,
see Section A.2, given by

G0(iτ) = Θ(−τ)G0(iτ) + Θ(τ)G0(iτ) , (A.46)
G0(iτ) = Pocce

−τ(HKS−εF S)Pocc , (A.47)
G0(iτ) = −Pvirte

−τ(HKS−εF S)Pvirt . (A.48)

To compare the expressions for the LT-AO-MP2 energy in eq. (A.42) with the AO-RI-
dRPA energy, the logarithm in eq. (A.43) can be expanded in a series as ln(1 − x) =
−
∑∞

n
xn

n yielding a corresponding series expansion for the energy. In this expansion the
nth-order term is given by

E
(n)
dRPA = − 1

4π
1
n

∫ ∞

−∞
dωTr

[
X̂0(iω)V

]n
∀n ≥ 2 . (A.49)

The lowest order contribution (n = 2) is therefore given by

E
(2)
dRPA = − 1

8π

∫ ∞

−∞
dωTr

[
X̂0(iω)V

]2
, (A.50)

and can be transformed to the imaginary time domain by inserting eq. (A.44) into
eq. (A.50) and by using the identity

∫
dω eiωτ = 2πδ(τ), which yields
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E
(2)
dRPA = −1

4

∫ ∞

−∞
dτ Tr [X0(iτ)V]2 ,

= −1
2

∫ ∞

0
dτ Tr [X0(iτ)VX0(iτ)V] , (A.51)

where the symmetry of the response function is used to restrict the integral to the positive
imaginary time domain.

Comparing eq. (A.42) for the LT-AO-MP2 energy, with the expression for the second-
order contribution to the AO-RI-dRPA in eq. (A.51) reveals a close relation between
the two expressions. Both expressions involve an integration over an (imaginary) time
domain and the involved matrices closely resemble each other, as is evident by comparing
eq. (A.41) for intermediate Z(τ) with eq. (A.45) for the response function X0(iτ).

A.3.2. Molecular Gradient of LT-AO-MP2
According to the chain rule of differentiation, the derivative with respect to a general
perturbation ξ of the LT-AO-MP2 energy in eq. (A.36) can be obtained as

∂Ec
MP2
∂ξ

= Tr
{
∂Ec

MP2
∂I

∂I
∂ξ

}
+ Tr

{
∂Ec

MP2
∂I ′

∂I ′

∂ξ

}

+ Tr
{
∂Ec

MP2
∂P(τ)

∂P(τ)
∂ξ

}
+ Tr

{
∂Ec

MP2
∂P(τ)

∂P(τ)
∂ξ

}
. (A.52)

Here, the derivative of the MP2 correlation energy with respect to the ERI tensor I is
given by

∂Ec
MP2
∂I = −

∫ ∞

0
dτ

{(
P(τ) ⊗ P(τ)

) (
P(τ) ⊗ P(τ)

)
(2I − I ′)

+ 2
(
P(τ) ⊗ P(τ)

)
I
(
P(τ) ⊗ P(τ)

)}
= −

∫ ∞

0
dτ

{
4
(
P(τ) ⊗ P(τ)

)
I
(
P(τ) ⊗ P(τ)

)
+
(
P(τ) ⊗ P(τ)

)
I ′
(
P(τ) ⊗ P(τ)

)}
. (A.53)

Note that the permutation of terms is allowed here due to the surrounding trace in
eq. (A.52). Likewise the derivative with respect to I ′ is given by

∂Ec
MP2
∂I ′ =

∫ ∞

0
dτ
{(

P(τ) ⊗ P(τ)
)

I
(
P(τ) ⊗ P(τ)

)}
. (A.54)
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The derivative of the MP2 correlation energy with respect to the occupied pseudodensity
P is given by

∂Ec
MP2

∂P(τ) = −
∫ ∞

0
dτ
{

P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′) +

(
P(τ) ⊗ P(τ)

)
IP(τ)(2I − I ′)

}
= −

∫ ∞

0
dτ
{

2P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′)

}
, (A.55)

and likewise the derivative with respect to the virtual pseudodensity P is given by

∂Ec
MP2

∂P(τ)
= −

∫ ∞

0
dτ
{

2P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′)

}
. (A.56)

Combining all presented partial derivatives in eqs. (A.53)–(A.56), the final total derivative
in eq. (A.52) becomes

∂Ec
MP2
∂ξ

= −
∫ ∞

0
dτ Tr

{
4
(
P(τ) ⊗ P(τ)

)
I
(
P ⊗ P(τ)

)
Iξ

−
(
P(τ) ⊗ P(τ)

)
I ′
(
P(τ) ⊗ P(τ)

)
Iξ

−
(
P(τ) ⊗ P(τ)

)
I
(
P(τ) ⊗ P(τ)

)
I ′ξ

+ 2P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′)P(τ)ξ

+ 2P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′)P(τ)ξ

}
. (A.57)

In index notation it can easily be shown that the parts involving I ′ are equivalent, i.e.,∑
µνλσ(µν|λσ)(ξ)(µσ|λν) =

∑
µνλσ(µν|λσ)(µσ|λν)ξ, where the short-hand notation (ξ)

is used to denote that only the integrals are differentiated and not the pseudodensities.
Therefore the derivative becomes

∂Ec
MP2
∂ξ

= −
∫ ∞

0
dτ ,Tr

{
2
(
P(τ) ⊗ P(τ)

)
I
(
P(τ) ⊗ P(τ)

) (
2Iξ − I ′ξ

)
+ 2P(τ)I

(
P(τ) ⊗ P(τ)

)
(2I − I ′)P(τ)ξ

+ 2P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′)P(τ)ξ

}
. (A.58)

Defining the following intermediates

I(τ) := Tr
{(

P(τ) ⊗ P(τ)
)

I
(
P(τ) ⊗ P(τ)

) (
2Iξ − I ′ξ

)}
, (A.59)

R(τ) := P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′) , (A.60)

R(τ) := P(τ)I
(
P(τ) ⊗ P(τ)

)
(2I − I ′) , (A.61)
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where the perturbation independent parts of the integrals collected in the R/R interme-
diates, the above expression becomes

∂Ec
MP2
∂ξ

= −
∫ ∞

0
dτ
{

2I(τ) + 2Tr
[
R(τ)P(τ)ξ

]
+ 2Tr

[
R(τ)P(τ)ξ

]}
, (A.62)

which is consistent with the LT-AO-MP2 gradient equations given in Ref. [160]. In order
to avoid the evaluation of the derivatives of P(τ) and P(τ), the pseudodensities are
expanded in terms of the regular occupied and virtual densities Pocc and Pvirt as

P(τ) = eτPoccFPocc , (A.63)
P(τ) = e−τPvirtFPvirt . (A.64)

Thus the derivatives of eqs. (A.63) and (A.64) are given by

Pξ(τ) = ∂eτPoccF

∂ξ
Pocc + eτPoccF∂Pocc

∂ξ
, (A.65)

Pξ(τ) = ∂e−τPvirtF

∂ξ
Pvirt + e−τPvirtF∂Pvirt

∂ξ
. (A.66)

By further making use of the identity

PoccS + PvirtS = 1 , (A.67)

the perturbed virtual density can be related to the perturbed occupied density as

Pξ
virt = −Pξ

occ − S−1SξS−1 . (A.68)

With eqs. (A.63), (A.64), and (A.68), eq. (A.62) for the energy gradient becomes

∂Ec
MP2
∂ξ

= −
∫ ∞

0
dτ
{

2I(τ) + 2Tr
[
R(τ)Pξ(τ)

]
+ 2Tr

[
R(τ)Pξ(τ)

]}
= − 2

∫ ∞

0
dτ

{
I(τ) + Tr

[
R(τ)eτPoccFPξ

occ

]
+ Tr

[
PoccR(τ)∂e

τPoccF

∂ξ

]

− Tr
[
R(τ)e−τPvirtF(Pξ

occ + S−1SξS−1)
]

+ Tr
[
PvirtR(τ)∂e

−τPvirtF

∂ξ

]}
.

(A.69)

Here, cyclic permutation under the trace is applied to obtain terms with the general form
of
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tr
[
B∂eA

∂ξ′

]
= tr

[
Y∂A
∂ξ′

]
, (A.70)

with

Y =
∞∑

k=1

k−1∑
i=0

1
k!A

iBAk−i−1 , (A.71)

which can be solved for Y by recursion, as detailed in Refs. [160] and [161]. Let Y(τ)
be the solution of eq. (A.70) with A ≡ τPoccF and B ≡ PoccR, and let Y(τ) be the
solution with A ≡ −τPvirtF and B ≡ PvirtR, then the intermediates Y(τ) and Y(τ)
can be related to the intermediates Y1(τ), Y2(τ), Y1(τ) and Y2(τ) from the derivation
by Schweizer et al. [160] by

Y1(τ) = −τFY(τ) , (A.72)
Y2(τ) = −τY(τ)Pvirt , (A.73)
Y1(τ) = τFY(τ) , (A.74)
Y2(τ) = τY(τ)Pocc . (A.75)

The derivative from eq. (A.69) can then be rewritten as

∂Ec
MP2
∂ξ

= −2
∫ ∞

0
dτ

{
I(τ) + Tr

[(
Y1(τ) − Y1(τ) +

(
Y2(τ) + Y2(τ)

)
(2I − I ′)

+ R(τ)eτPoccF − R(τ)e−τPvirtF
)

Pξ
occ

]
+ Tr

[(
Y2(τ) + Y2(τ)

)
F(ξ)

]
− Tr

[(
Y1 + R(τ)e−τPvirtF

)
S−1SξS−1

]}
= −2

∫ ∞

0
dτ

{
I(τ) + Tr

[
P(τ)Pξ

occ

]
+ Tr

[
F(τ)F(ξ)

]
− Tr

[
S(τ)S−1SξS−1

]}
,

(A.76)

with

P(τ) = Y1(τ) − Y1(τ) +
(
Y2(τ) + Y2(τ)

)
(2I − I ′)

+ R(τ)eτPoccF − R(τ)e−τPvirtF , (A.77)
F(τ) = Y2(τ) + Y2(τ) , (A.78)
S(τ) = Y1(τ) + R(τ)e−τPvirtF , (A.79)
F(ξ) = hξ + Gξ [Pocc] . (A.80)
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By realization that intermediate F(τ) also appears in the expression for P(τ), the latter
can be reformulated to

P(τ) = Y1(τ) − Y1(τ) + G [F(τ)] + R(τ)eτPoccF − R(τ)e−τPvirtF , (A.81)

where intermediate G [F(τ)] resembles the two-electron part of the Fock matrix with
F(τ) substituting the density matrix, i.e.,

Gµν [F(τ)] =
∑
λσ

Fλσ(τ) [2(µν|λσ) − (µσ|λν)] . (A.82)

A.3.3. Nuclear Magnetic Moment Derivative of LT-AO-MP2

In the case of perturbations where the basis functions are independent of the perturbation,
i.e., for the nuclear magnetic moment m, eq. (A.76) for the LT-AO-MP2 gradient simplifies
to

∂Ec
MP2
∂m = −2

∫ ∞

0
dτ (Tr [P(τ)Pm

occ] + Tr [F(τ)hm]) , (A.83)

where the functional independence of the basis functions from m causes the derivatives
of the I(τ) and Sξ intermediates to be zero. Furthermore, the partial Fock matrix
derivative F(ξ) simplifies to the derivative of the core Hamiltonian h only. Carrying out
the integration for the P(τ) and F(τ) intermediates yields the final expression for the
nuclear magnetic moment derivative as

∂Ec
MP2
∂m = −2 (Tr [PPm

occ] + Tr [Fhm]) . (A.84)

A.3.4. Comparison of the LT-AO-MP2 and AO-RI-dRPA Nuclear Magnetic
Moment Derivatives

As derived in the previous section, the final expression for the AO-MP2 gradient with
respect to the nuclear magnetic moment m is given by

∂Ec
MP2
∂m = −2Tr

[
Fhm + PPm

occ

]
. (A.85)

Similarly, the AO-RI-dRPA gradient, as derived in Publication III, is given by

∂Ec
RPA
∂m = Tr

[
PRPAhm + VRPAPm

occ

]
. (A.86)
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Evidently, the above equations for the LT-AO-MP2 and the AO-RI-dRPA gradient only
differ by the definition of intermediates belonging to the hm-term and the Pm

occ-term.
Relabeling the MP2 intermediates as PMP2 and VMP2 allows to make a direct comparison
between AO-RI-dRPA and LT-AO-MP2:

First, intermediates PMP2 and VMP2 are split up, to closer resemble the AO-RI-dRPA
intermediates

PMP2 =
∫ ∞

0
dτ
(
Y2(τ) + Y2(τ)

)
, (A.87)

VMP2 =
∫ ∞

0
dτ
(
Y1(τ) − Y1(τ) + R(τ)eτPoccF − R(τ)e−τPvirtF

)
+ G [PMP2] . (A.88)

Next, intermediates Y1, Y2, Y1 and Y2 are substituted with their definitions in terms
of Y and Y from eqs. (A.72)–(A.75) to yield

PMP2 =
∫ ∞

0
dτ
(
Y(τ)Pocc − Y(τ)Pvirt

)
, (A.89)

VMP2 =
∫ ∞

0
dτ
(
FY(τ) + FY(τ) + R(τ)eτPoccF − R(τ)e−τPvirtF

)
+ G [PMP2] .

(A.90)

With the definition of the additional intermediates M, M, and MMP2 given by

M =
∫ ∞

0
dτ
[
FY(τ) + R(τ)eτPoccF

]
, (A.91)

M =
∫ ∞

0
dτ
[
FY(τ) − R(τ)e−τPvirtF

]
, (A.92)

MMP2 = M + M , (A.93)

intermediate VMP2 becomes

VMP2 = MMP2 + G [PMP2] . (A.94)

Furthermore, by expanding the two-electron integral contribution as G[PMP2] = J[PMP2]+
K[PMP2], intermediate VMP2 becomes

VMP2 = MMP2 + J[PMP2] + K[PMP2] . (A.95)

Finally, by comparing eqs. (A.89) and (A.95) to their counterparts in the AO-RI-dRPA
gradient given in Publication III in eqs. 37 and 38 as
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PRPA = 1
2

∫ ∞

0
dτ
(
PoccY(−iτ) − PvirtY(iτ)

)
, (A.96)

VRPA = 1
2 (MRPA + J[PRPA] + VKS[PRPA]) , (A.97)

it is evident that the LT-AO-MP2 and the AO-RI-RPA gradient only differ in three
aspects:

1. The Fock matrix in MP2 theory is replaced with the level-shifted Kohn–Sham
Hamiltonian in RPA theory:

F → HKS − εF S (A.98)

2. The exchange part of the two-electron integrals in MP2 theory is replaced with the
Kohn–Sham potential:

G[PMP2] = J[PMP2] + K[PMP2] → G[PRPA] = J[PRPA] + VKS[PRPA] (A.99)

3. The perturbation independent part of the two-electron interaction is given by the
R and R intermediates in LT-AO-MP2 theory and by the correlated self-energy Σ
in AO-RI-dRPA theory:

R/R → Σ (A.100)

A.3.5. Comparison of the LT-AO-MP2 and AO-RI-dRPA NMR Second
Derivatives

According to the approach presented in Section 2.3.4, eqs. (A.85) and (A.86) can be
further differentiated with respect to an external magnetic field B to obtain analytic
expressions for the calculation of the NMR shielding tensor. After establishing a close
connection of the gradient expressions of both methods, it is evident that the NMR second
derivatives also closely resemble each other. Following the derivation in Publication III,
relevant intermediates – beyond those of the first derivative – are presented in Fig. A.3.
Detailed expressions for the intermediates shown in Fig A.3 are given in Ref. [161] for
LT-AO-MP2 and in Publication III for AO-RI-dRPA.
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1 YB
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(31)
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VB
RPA
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RPA

YB(iτ)

AB(τ) BB(iτ)

ΣB(iτ)
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c (iτ) ŴB

c (iω)

X̂B
0 (iω)XB

0 (iτ)
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(76)
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(75)

(73)
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(71)

(68)

(63)–(66)

(61)

(59)

(79)

(b) AO-RI-dRPA

Figure A.3.: Schematic representation of the derivation of the central intermediates for
the calculation of the chemical shielding tensor in LT-AO-MP2 (left) and
dRPA (right). The notation for the intermediates follows Ref. [161] for
LT-AO-MP2 and Publication III for AO-RI-dRPA. All arrows are labeled
with the corresponding equations from the respective publications. (b)
Reprinted with permission from J. Chem. Theory Comput. 19, 7542–7554
(2023). Copyright 2023 American Chemical Society.

Based on the derivation outlined in Fig. A.3, it is apparent that the NMR derivatives for
LT-AO-MP2 and AO-RI-dRPA mainly differ in the intermediates containing the B field
derivatives of the correlation terms RB/RB and ΣB, respectively. The ensuing steps are
equivalent in both theories, which allows to treat LT-AO-MP2 and AO-RI-dRPA in an
equal fashion. Their implementations can therefore be conjoined, even though at first
glance the theories appear to be dissimilar.
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