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Zusammenfassung

Das Grundzustandsproblem von Vielelektronensystems stellt eine der wichtigsten Heraus-
forderungen in vielfältigen Bereichen der Physik und Chemie dar. Die exponentielle Zu-
nahme der Dimension des Lösungsraums und die steigende Komplexität des Grundzus-
tands in stark korrelierten Systemen machen es schwierig, eine genaue und gleichzeitig
effiziente Lösung zu finden. Aufgrund begrenzter Rechenressourcen ist es notwendig, spez-
ifische Eigenschaften der Verschränkungsstrukturen von Systemen mit vielen Elektronen
auszunutzen, indem man sich auf die Bereiche des Hibertraums konzentriert, in denen die
Lösungen des Grundzustandproblems liegen. Ein nützlicher Freiheitsgrad ist die Wahl-
freiheit bei der Einteilchenbasis (Orbitale), die verwendet wird um die Wellenfunktion
des Vielelektronensystems zu parametrisieren. Zunächst werden präzise Werkzeuge aus
der Quanteninformationstheorie bereitgestellt, um neben verschiedenen Eigenschaften und
der Quantifizierung von Korrelationen und Verschränkungen auch die Herausforderungen
zu berücksichtigen, die sich aus der Ununterscheidbarkeit der Elektronen ergeben. Diese
Werkzeuge ermöglichen eine systematische Untersuchung der Abhängigkeit von Orbitalver-
schränkung von der gewählten Basis, die dann zur Anpassung der Orbitalverschränkung
des Grundzustands in zwei entgegengesetzte Richtungen genutzt wird: (i) Durch die Re-
duzierung der Orbitalverschränkung gemäß entsprechend gestalteter Kostenfunktionen, der
quanteninformationsunterstützte vollständige aktive Raum (QICAS) identifiziert direkt
die energetisch optimalen aktiven Orbitale, ohne dass dabei das Grundzustandsproblem
wiederholt gelöst werden muss, wie es beim herkömmlichen Ansatz des kompletten aktiven
Raums mit selbstkonsistentem Feld (CASSCF) der Fall ist. (ii) Wird der Grundzustand
jedoch durch die Anzahl der maximal verschränkten Atomorbitale (MEAO) dargestellt,
erhält man ein äußerst intuitives Bild der Bindungsstruktur eines Moleküls. Jede kova-
lente Zweizentrenbindung entspricht einem Paar maximal (und monogam) verschränkter
Orbitale. Dieser Zusammenhäng lässt sich sogar auf Multizentrenbindungen erweitern,
indem man die sogenannte echte multipartite Verschränkung (GME) betrachtet. Die
MEAO-Basis fungiert als einzigartiges Werkzeug um natürliche chemische Konzepte aus
immer komplexeren Wellenfunktionslösungen abzurufen. Diese Ergebnisse betonen die
Flexibilität und universelle Relevanz der Konzepte von Orbitalverschränkung und können
wertvolle Einblicke in anspruchsvolle Probleme der Quantenphysik und -chemie bieten, die
über das Grundzustandsproblem hinausgehen.
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Abstract

The many-electron ground state problem is a ubiquitous challenge faced in a wide range of
subfields of physics and chemistry. The exponential scaling of the dimension of the solu-
tion space, and the growing complexity of the ground state in strongly correlated systems,
pose immense difficulties in obtaining the ground state solution with both accuracy and
efficiency. That being said, exploiting the specific features of the entanglement structures
of many-electron systems may allow one to target specific corners of the Hilbert space
where the solutions to our problems lie. A useful degree of freedom in the problem is
the choice of the single-particle basis (orbitals) in which we represent the many-electron
system and parametrize wavefunction ansätze. In this thesis, we will investigate the con-
sequences of the choice of the orbital basis in solving many-electron problems, through
the lens of orbital entanglement and correlation. We will first provide precise tools from
quantum information theory, for addressing and quantifying various aspects of correlation
and entanglement, while taking into account complications due to the indistinguishability
of electrons. With these tools, we are able to systematically explore the basis choice depen-
dence of orbital entanglement and correlation, which we use as a steering wheel for tuning
the orbital entanglement of the ground state in two opposite directions: (i) By reducing
the orbital entanglement according to appropriately designed cost functions, we developed
the quantum information-assisted complete active space (QICAS) method, which identifies
the energetically optimal active orbitals, without having to solve the ground state problem
many times as in the conventional complete active space self-consistent field (CASSCF)
approach. (ii) In contrast, if we express the ground state in terms of the set of maximally
entangled atomic orbitals (MEAO), we arrive at a highly intuitive picture of the bond-
ing structure of the molecule. Every two-center covalent bond corresponds to a pair of
maximally (and monogamously) entangled orbitals. This correspondence can even be ex-
tended to multi-center bonds, by invoking the so-called genuine multipartite entanglement
(GME). The MEAO basis serves as a unique medium for retrieving natural chemical con-
cepts, from ever more complex wavefunction solutions. Our results highlight the flexibility
and universal relevance of the concepts of orbital entanglement and correlation, and may
shed lights on challenging problems in quantum physics and chemistry beyond the ground
state problem.
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Introduction

The notion of entanglement dates back to nearly 90 years ago, when Einstein, Podolsky,
and Rosen observed the fundamental contradiction between local realism and quantum
mechanics in entangled systems [1]. The puzzling fact that measuring one of two distant
but entangled particles instantaneously “steers” the state of the other, led to the so-called
EPR paradox. The nonlocal nature of entanglement is validated by Bell [2] in 1964. Indeed,
some entangled states (also known as Bell states) contain uniquely quantum statistics that
violates so-called the Bell inequalities, thus ruling out the possibility of local realism. Since
the discovery of the Bell inequalities, for a long time entanglement and nonlocality were
used as synonyms. It was only until much later that researchers understood that not all
entangled states violate the Bell inequalities [3]. The formal definition of entanglement,
or more precisely the lack thereof, was presented in 1989 by Werner in an operational
fashion: Entangled states are those that can not be prepared with only local operations
and classical communications (LOCC) between separate parties [3].

The foundational definition of entanglement by Werner had spawned into myriads of
research directions, including in particular, detecting and quantifying entanglement for
general mixed states [4]–[10] (realistic quantum systems inevitably suffer from decoherence
which renders their states to be mixed [11]). These studies are certainly of great interests
on their own, but they are also highly motivated by the fact that entanglement is a valuable
resource for quantum information processing tasks [12], [13]. Since entangled states are
not preparable by LOCC, from a resource theory perspective they are external resources
that allows one to perform protocols that would be impossible with LOCC alone [13].
Prime examples of such tasks are quantum teleportation [14], superdense coding [15], and
quantum key distribution [16], to name a few. In perfect realization of these processes, the
entanglement is used as a resource that is irreversibly spent. Therefore, knowing precisely
the amount of usable entanglement in a general mixed state is of extremely high relevance.

The rapid development of entanglement theory in quantum information soon fos-
tered a ubiquitous presence of entanglement in many fields of physics, including high
energy physics [17]–[19], cosmology [20], quantum optics [21], [22], and condensed matter
physics [23]–[26]. In condensed matter physics, entanglement transitioned from the object
of study, to a tool for revealing fundamental physics. The unique behavior of entanglement



2 Introduction

in many-body systems signifies fascinating many-body phenomena such as quantum phase
transitions [23], [24], topological orders [25], [26], many-body localization [27], [28]. At the
same time, entanglement characterizes the structure and complexity of the ground state
itself, and sheds light on how one should approach the ground state problem by numerical
means [29]–[32]. Possibly the most prominent example along this line of research was the
discovery of the area law of entanglement in systems governed by gapped local Hamilto-
nians [30]. In such systems, the entanglement between a region A and its complement
measured by the von Neumann entropy S(ρA) = −Tr[ρA log(ρA)] of the reduced state ρA
is only proportional to the degrees of freedom on the boundary ∂A, rather than all de-
grees of freedom within A. In 1D systems, the area law implies that the entanglement is
asymptotically constant, since the boundary of any connected region in one dimension is
of length |∂A| = 2. This key observation directly justifies the suitability of matrix product
states [33] (MPS) for simulating 1D systems. The MPS ansatz bypasses the exponential
scaling of the ground state problem by mimicking precisely the entanglement growth in
1D gapped local systems, and has become one of the most successful numerical ansätze
in the past two decades. Generalizations to higher dimensional settings gave rise to more
sophisticated tensor network states such as projected entangled pair states [34] (PEPS)
and multi-scale entanglement renormalization ansatz [35] (MERA). The structure of the
Hamiltonian, and hence the structure of the ground states, are effectively translated into
the structure of the desirable ansätze through the lens of entanglement.

As powerful as entanglement is in characterizing the representational complexity of
quantum states, entanglement is hardly an intrinsic property of the quantum states for
systems of indistinguishable particles. This is because entanglement is a relative quantity.
Its value can change drastically when the underlying one-particle basis (i.e., orbitals or
sites) changes. Let us consider the simplest example of a system of one spinless fermion
in two spatial sites (labelled 1 and 2), governed by a tight-binding Hamiltonian Ĥ =

−t(f †
1f2 + f †

2f1), where f
(†)
1/2 are the fermionic annihilation (creation) operators of the

spatial sites. When t > 0, the ground state is simply |Ψgs⟩ = 1√
2
(f †

1 − f
†
2)|0⟩, where |0⟩ is

the vacuum state. The two spatial sites 1 and 2 are clearly entangled, since the fermion
is in a superposition of either occupying site 1 or site 2. The measurement outcome of
the occupation of one of the sites immediately informs us about the occupation on the
other, much like in the entangled state in the EPR paradox, or in a Bell state. Can
we then conclude that the system can never admit a simpler description than |Ψgs⟩? Is it
necessary to invoke entanglement to characterize the system? The answer to both questions
is clearly no. The system is non-interacting and translationally invariant. Therefore, it
can be solved by a mean-field state after Fourier transforming the spatial representation to
the momentum basis. In fact, by simply inspecting the ground state |Ψgs⟩ one can redefine

c†1/2 = 1√
2
(f †

1 ∓ f
†
2), leading to a new and simpler form of the ground state |Ψgs⟩ = c†1|0⟩.

The two new (momentum) sites are unentangled, since |Ψgs⟩ is a product state in this basis.

The basis dependence of entanglement may not be of utmost importance in condensed
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matter physics, since some bases (e.g. the spatial or momentum one) are naturally preferred
due to their local structures, or the symmetries of the Hamiltonians. In contrast, in
quantum chemistry (QC) the choice of single orbital basis is much more flexible, and does
play a significant role in compactifying the representations of wavefunctions and improving
numerical results [36]–[41]. Under the Born-Oppenheimer approximation where the nuclei
are treated as stationary objects, the non-relativistic many-electron Hamiltonian contains
a one-body (kinetic and nuclear potential) and two-body term (Coulomb interaction) in
second quantization

ĤQC =
∑
σ=↑,↓

D∑
i,j=1

hijf
†
iσfjσ +

1

2

∑
σ,τ=↑,↓

D∑
i,j,k,l=1

Vijklf
†
iσf

†
jτflτfkσ, (1)

where f
(†)
iσ are fermionic operators associated with a given spin-orbital basis B = {ϕi}Di=1,

and the hij and Vijkl are basis dependent coefficients. Notice that compared to typical
local Hamiltonians in condensed matter physics, the matrix elements hij of the one-particle
Hamiltonian are no longer restricted to neighbors (e.g., in the Hubbard model [42]), and
the interaction term even involves up to four orbitals at a time (instead of one for on-
site interaction, and two for nearest neighbor interaction). The complicated nature of the
Hamiltonian, together with the exponential scaling of the Hilbert space, are the reasons
why quantum chemistry remains one of the hardest problems in quantum science [43].

Knowing well that the exact solution of the ground state problem is out of reach, quan-
tum chemists solve the ground state problem by a step-by-step game of capturing “electron
correlation”. Starting from the mean field solution (via Hartree-Fock or density functional
theories), numerous methods are developed to recover the missing “correlation energy”,
i.e., the difference between the mean field energy and the exact one [44]. The choice
of (combinations of) methods depends on the type of correlation the system possesses.
Related to this is the conceptual separation of static and dynamical correlations. Static
correlations refer to the correlation due to a small number of Slater determinants with large
weights in the configuration interaction (CI) expansion of the ground state wavefunction.
This is usually due to near degenerate one-particle states such as the case of molecular
dissociation or strong interaction. Dynamical correlation contrarily refers to a long tail of
many Slater determinants with vanishingly small weights. Although each weight is small,
the sheer number of such Slater determinants makes their contribution to the ground state
energy considerable. Dynamical correlations are mostly attributed to the Kato cusp con-
dition [45] of the wavefunction (consequence of the singularity in the Coulomb interaction
when two charged particles come together). The notions of static and dynamical corre-
lations are convenient tools: They help classify electronic systems into groups in which
one type of correlation is dominating, so that ground state methods specifically designed
for targeting either static or dynamical correlations can be applied. Methods that treat
static correlations well include complete active space methods and configuration interaction
methods, whereas single reference perturbation theory [46] and coupled cluster theory [47],
[48] (CCSD) are typically capable of capturing dynamical correlation in the absence of
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strong static correlation. In the case where both types of correlations are significant, one
resorts to hybrid methods that combine the strength of both type of methods [49]–[51].

That being said, the notions of static and dynamical correlation suffer from three con-
ceptual flaws: First, they are ambiguous concepts. Despite countless efforts, there is no
clear line that separates the effect of static and dynamical correlation in a quantum state.
Second, there are no straightforward metrics for quantifying either static or dynamical
correlation. Although from the coefficients of the Slater determinants (also known as con-
figuration interaction (CI) coefficients) one can to some extent qualitatively infer the degree
of static or dynamical correlation, it is neither precise nor practically feasible for large sys-
tems, since CI coefficients are highly many-body quantities. Third, static and dynamical
correlation are basis dependent effects: The CI coefficients of the same quantum state can
vary significantly from one single-particle basis representation to another. Therefore, they
are hardly intrinsic properties of the wavefunction. The lack of computable metrics further
hinders the exploration (and ideally exploitation) of the basis dependence of both static
and dynamical correlation.

On top of these ambiguities, as the MPS ansatz or more generally tensor network
states made their entrance into quantum chemistry [52], more refined notions of electron
correlation than static/dynamical correlation are urgently needed. The reason is that
the ground states of the QC Hamiltonian are a priori not expected to be simulatable by
an MPS in the regime of large system sizes, due to the lack of apparent local structure
in the Hamiltonian, and hence the lack of an area law of entanglement in the ground
state. One faces a barrier of entanglement by trying to fit a highly nonlocal and complex
wavefunction with a locally correlated ansatz. For this reason, when simulating the many-
electron ground state, typically the required bond dimension of the MPS grows steeply with
the number of orbitals involved. Yet, the molecular ground state is not entirely without
structure. In a given orbital basis, there are orbitals that contribute more/less correlation
effects than the others. Qualitatively speaking, strongly correlated orbitals should be
placed closed to each other (and hence become more local) when mapped to an MPS, so
that the correlation effect can be more easily captured by an MPS. This then begs the
question: Can one quantitatively measure the extent of correlation of each orbital, or even
exploit the correlation pattern of the orbitals to find the optimal orbital basis such that the
entanglement barrier of the MPS representation is tamed, if not removed? Answering this
question benefit not only the application of MPS to molecular systems, but also potentially
many conventional basis-dependent wavefunction methods in quantum chemistry.

All these aspects eventually resulted in a surge of new interest in applying quantum
information theory of entanglement and correlation to many-electron systems [39], [41],
[53]–[77]. Quantum information theory in the context of fermions is by itself a broad
direction. It includes (but is not limited to) understanding the fundamental quantum
mechanical restriction on the fermionic states (e.g., generalized Pauli constraints [57]–
[59], [61], [68]), understanding the relation between the total and reduced states (e.g.,
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the N -representability problem [55], [78]) and potentially solving the Schrödinger equation
with reduced quantities [56], [79], and the analysis of the representational complexity
of many-electron states with orbital entanglement and correlation [41], [62]. Although
subtleties may arise due to the indistinguishable nature of electrons [64], this general
research direction of fermionic correlation is not only beneficial to many-body physics and
quantum chemistry, but can also give rise to new forms of entanglement resources for
quantum technologies[69], [70], [73], [75], [77].

Specifically in the context of quantum chemistry, the notion of orbital entanglement
and correlation may hold the key to exploiting the degrees of freedom in choosing a single-
particle basis. Orthogonal molecular orbitals, much like spatial or momentum sites in
condensed matter physics, do act as distinct subsystems. And there exists a plethora of
precise quantum information concepts ranging from quantum to classical correlation [8],
[80]–[82], and from bipartite to multipartite scenarios [83]–[86], which one can use to pre-
cisely quantify the correlation among molecular orbitals. In any case, orbital entanglement
and correlation are again explicitly basis dependent. Their values can change drastically
from one basis to another. Although the correlation patterns of some common orbital bases
such as the Hartree-Fock canonical orbitals or the natural orbitals have been studied [41],
[62], [87], more general statements on the basis dependence of orbital correlation are yet
to be made. For example, one important feature of a set of orbital basis is the degree of
spatial localization. It is therefore natural to ask how does orbital localization affect the
value of orbital entanglement and correlation.

The upshot of exploring the orbital entanglement and correlation pattern in differ-
ent orbital bases is three-fold: (i) Extracting the entanglement resource in atoms
and molecules. In light of the second quantum revolution, atoms and molecules will
soon become viable platforms for executing quantum information processing tasks [88]–
[90]. Given the pivotal role of entanglement as the key resource for such tasks, it is thus
crucial to measure the maximal capacity of usable orbital entanglement resource in molec-
ular systems. The term “usable” refers to taking into account also the fermionic nature
of many-electron systems, and incorporating the important superselection rules in the
quantification of orbital entanglement [64], [91], [92]. (ii) Improving interpretability
of high-level wavefunctions for chemical understanding. Numerical methods have
improved tremendously since the intuitive modelling of the hydrogen molecule by Heitler
and London. Wavefunctions are represented by more and more abstract ansätze, in orbital
basis with less and less interpretability. Recovering the chemical knowledge from high-level
wavefunction and advance our understanding of molecular properties should be the ulti-
mate goal of any wavefunction methods. By choosing the appropriate orbital basis based
on entanglement and correlation analysis, we may be able to re-express the wavefunction
in such a way that the chemistry (e.g., bonding patterns) is more readily extracted. (iii)
Expanding the limitation of numerical ansätze for the ground state problem
(and beyond). MPS being a unique example where the entanglement of the state is
directly and quantitatively related to the computational cost [29], [30], was one of the first
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ansätze to be combined with quantum information-based orbital optimization. Techniques
of reordering, locally rotating, and even globally optimizing the underlying basis based
on bipartite entanglement and pairwise orbital correlation have been shown to be hugely
effective in reducing the required bond dimension of the MPS [39], [41], [93], [94]. Besides
the MPS, there are many other orbital basis dependent ansätze in quantum chemistry.
For example, in the complete active space (CAS) methods [95]–[98], the selection of the
so-called active orbitals, which are allowed to correlate with each other. Identifying the
active space is a highly nontrivial task. Additionally, optimizing these active orbitals in-
volves expensive self-consistent cycles. These methods may not have the same quantum
informatic origin like MPS, but they too mimic specific structures of the ground state,
and these structures can be quantified by means of orbital entanglement and correlation.
Finding the optimal orbital basis where the correlation structure of the true ground state
is the closest to that of the ansatz, enables us to unlock the full potential of these methods.

This thesis is structured as follows: In Chapter 1 we first recap the relevant concepts
of entanglement and correlation in quantum information. We then explain how these con-
cepts can be adapted for systems of many-electrons, taking their indistinguishability into
consideration. In Chapter 2 we calculated analytically the orbital-orbital entanglement in
1D tight-binding systems, and derived its asymptotic properties. We then explore the con-
nection between orbital entanglement and orbital localization in Chapter 3, which leads
to the development an entanglement-based framework for analyzing the bonding struc-
tures of molecules from ab initio calculations. In Chapter 4 we establish a connection
between orbital entanglement and the complexity of wavefunctions, and present a quan-
tum information-assisted orbital optimization scheme for efficient optimization of active
space orbitals.



Chapter 1

Fermionic Entanglement and
Correlation

In the first section of this chapter, we introduce the relevant concepts from quantum infor-
mation theory. These include the notions of correlation and entanglement between distin-
guishable parties, the separation of quantum and classical part of the total correlation, and
last but not least how these various types of correlation are quantified consistently. For any
correlation type, the most crucial ingredients are the notion of subsystems and correspond-
ingly local operations. In the simplest bipartite setting, system A and B (e.g. two distant
laboratories) are associated to two separate Hilbert spaces HA and HB. Together they
form a tensor product structure H = HA ⊗HB associated to the total system. Moreover,
local operations of the type ÔA ⊗ 1B on one subsystem have no effect on the other. The
only common element of the two algebras of local operations {ÔA⊗1B} and {1A⊗ ÔB} is
the identity 1 = 1A ⊗ 1B (corresponding to no operation at all) [99]. The tensor product
structure of the Hilbert space together with the separation of local operations, provides a
solid foundation for defining entanglement and correlation.

In the second section, we will explain how the well-established theory of entanglement
(as well as other types of correlation) can be translated to systems consisting of indistin-
guishable particles, in our case, fermions. The most pressing question is: where can one
find a tensor product structure in a fully-antisymmetrized N -particle Hilbert space? The
short answer is that, within the N -particle Hilbert space, the usual notion of entanglement
is ill-defined. Even the simplest two-fermion state |Ψ⟩ with two modes ϕ and φ occupied
is seemingly entangled (in first quantization)

|Ψ⟩ =
|ϕ, φ⟩ − |φ, ϕ⟩√

2
. (1.1)

This is due to the enforced antisymmetry of the Slater determinants, which are the building
block of fermionic states. In other words, an unentangled pure product state does not exist
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in the N -particle Hilbert space. One could abandon the usual definition of uncorrelated or
unentangled states, and define from a “physical” perspective what fermionic states should
be considered free of correlation, namely those corresponding to the eigen- and thermal
states of non-interacting Hamiltonians. This leads to the formalism of particle correlation.

The alternative route to subsystems is perhaps the more familiar one to condensed
matter theorists, namely the partitioning of sites or orbitals. Unlike fermions, the fermionic
orbitals are themselves distinguishable. On one hand, if we embed the N -particle Hilbert
space into the embedding total Fock space F consisting of all possible particle number
sectors (including the vacuum), then F indeed factorizes into the tensor product of Fock
spaces on each fermionic orbital. On the other hand, invoking the second quantization
formalism means that the antisymmetry of the fermions is now encoded instead on the
level of operators. The fact that creation and annihilation operators on different orbitals
do not commute with each other (they by definition anticommute), implies that they can
no longer be considered as local operations. We shall discuss in detail how this conundrum
is resolved, by incorporating the important superselection rules.

1.1 Hierarchy of correlation types

1.1.1 Geometry of quantum states

In order to set the stage for what follows, it will be essential to first recall and discuss
basic geometric aspects of the space of quantum states. This will allow us to quantify and
compare on a unified basis the total, quantum and classical correlation, and entanglement.

Let us start by considering a complex finite-dimensional Hilbert space H of dimension
d and denote the algebra of linear operators acting on H by B(H). The corresponding
set D of density operators is given by all Hermitian operators ρ on H which are positive-
semidefinite ρ ≥ 0 (i.e., ρ has non-negative eigenvalues), and trace-normalized to unity,

D = {ρ ∈ B(H) | ρ† = ρ, ρ ≥ 0, Tr[ρ] = 1} . (1.2)

For the sake of completeness, we recall that for complex finite-dimensional Hilbert spaces,
the Hermiticity of an operator is a direct mathematical consequence of its positive semidef-
initeness and we could therefore have skipped the requirement ρ† = ρ in Eq. (1.2). As it is
illustrated in Figure 1.1, the set D is convex since the convex combination pρ + (1 − p)ρ̃
of any two density operators ρ, ρ̃ ∈ D and any 0 ≤ p ≤ 1 is again a density operator.
Moreover, D is compact, i.e., it is bounded and closed as a subset of the Hermitian opera-
tors. In order to develop a better intuition for D, we observe that a density operator ρ lies
on the boundary of D if it is not strictly positive, that is, at least one of its eigenvalues
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vanishes. A particularly important subset of boundary points is given by the extremal
points of D. These are per definition those “points” ρ ∈ D which cannot be written as
convex combinations of other points in D. One easily verifies that a density operator ρ is
extremal if and only if it is a pure state

ρ ≡ |Ψ⟩⟨Ψ| with |Ψ⟩ ∈ H , (1.3)

or, equivalently, if ρ has eigenvalues {1, 0, . . . , 0}. For Hilbert spaces of dimension larger
than two, the extremal points define a proper subset of the boundary points and only in
case of a two-dimensional H (“qubit”) they would coincide.

Since the space D of density operators is a subset of the Euclidean vector space of
linear operators on H (or equivalently just Cd×d) we can introduce a notion of distances
and angles in a straightforward manner. To this end, we introduce the Hilbert-Schmidt
inner product on B(H),

⟨Â, B̂⟩ ≡ Tr[Â†B̂] (1.4)

where Â, B̂ ∈ B(H) are linear operators. By employing either the induced norm, any other
metric or a generalized distance function we can then quantify the similarity of quantum
states. The huge advantage of this approach lies in the universality of its predictions:
Whenever two density operators are close to each other, the same follows as a mathemat-
ical consequence for their expectation values for any choice of observable. A prominent
generalized distance function is given by the quantum relative entropy [4], [100]

S(ρ||σ) ≡ Tr[ρ(ln ρ− lnσ)] . (1.5)

In a strict mathematical sense the quantum relative entropy does not define a distance
function. For instance, S(ρ||σ) ̸= S(σ||ρ) is not symmetric, and it does not obey the
triangle inequality. However, its relevance for quantum sciences and in particular our work
originates from its distinctive information-theoretical meaning. It describes by concise
means “how difficult it is to distinguish the state ρ from the state σ” [101] (see also
Ref. [102]).

1.1.2 Correlation and entanglement

The quantum information theoretical concepts of correlation and entanglement refer to a
notion of subsystems [3], [10], [103]. In order to discuss them in the context of bipartite
systems, we assume that our total system comprises two distinguishable subsystems A and
B. The corresponding Hilbert space then takes the form

H = HA ⊗HB (1.6)

and likewise for the algebra of observables,

B(H) = B(HA)⊗ B(HB) . (1.7)
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ρE
Q Iσρ

πρ

χρ

Figure 1.1: Schematic illustration of the state space D. The subsets of uncorrelated (D0),
classically correlated (Dcl) and separable states (Dsep) are shown in black, red and blue,
respectively. The corresponding measures of total correlation I, quantum correlation Q
and entanglement E are given by the quantum relative entropy (1.5) of ρ minimized with
respect to those sets, with corresponding minimizers πρ, χρ and σρ.

To motivate the concept of total correlation let us consider two local measurements, with
corresponding observables Â ∈ B(HA) of subsystem A and B̂ ∈ B(HB) of subsystem B.
The correlation between these two measurements is described by the correlation function

C(Â, B̂) ≡ ⟨Â⊗ B̂⟩ρ − ⟨Â⊗ 1B⟩ρ⟨1A ⊗ B̂⟩ρ
≡ ⟨Â⊗ B̂⟩ρ − ⟨Â⟩ρA⟨B̂⟩ρB , (1.8)

where ρA/B ≡ TrB/A[ρAB] denotes the reduced density operator of ρ for subsystem A/B
and 1A/B the identity operator on HA/B. The crucial observation is now that a vanishing

correlation function, C(Â, B̂) = 0, does not necessarily imply the same for any other pair of
local observables Â′, B̂′. This in turn strongly suggests the notion of uncorrelated states: A
density operator ρ is called uncorrelated if and only if its correlation function (1.8) vanishes
for all pairs of local observables Â, B̂. As long as the algebra AA/B of physical observables
of system A/B includes all linear operators on HA/B, this is equivalent to the factorization
of ρ into its reduced states, ρ = ρA ⊗ ρB. The corresponding set

D0 ≡ {ρ = ρA ⊗ ρB} (1.9)

of all uncorrelated states is schematically illustrated in Figure 1.1. By referring to this
geometric picture, a straightforward definition of the total correlation I(ρ) contained in a
quantum state ρ follows. It is given as the minimal “distance” of ρ to the set D0,

I(ρ) ≡ min
π∈D0

S(ρ||π) = S(ρA) + S(ρB)− S(ρ) ,

measured in terms of the quantum relative entropy S(·||·), where S(ρ) ≡ −Tr[ρ ln ρ] de-
notes the von Neumann entropy. Remarkably, the minimization in (1.10) can be executed
analytically, leading to the mutual information (second line) where the closest uncorrelated
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state follows as πρ = ρA⊗ρB [8]. Coming back to our motivation, we present an important
relation between the total correlation and correlation functions which follows directly from
results presented in [104], [105] (see Ref. [106] for a detailed derivation),

|C(Â, B̂)|
∥Â∥op ∥B̂∥op

≤
√

2
√
I(ρ) . (1.10)

Here, ∥Â∥op denotes the operator norm of Â, i.e., the largest absolute value of its eigen-
values. Relation (1.10) confirms in quantitative terms that whenever a quantum state
is close to the set D0 of uncorrelated states then its correlation function is small for any
choice of local observables Â, B̂. This highlights again the strength of quantum information
theoretical concepts which is based on the universal character of their predictions.

Due to the information theoretical meaning of the quantum relative entropy (1.5), the
total correlation (1.10) quantifies the additional information content in the state ρ beyond
the information content in ρA ⊗ ρB (local information). The term “total” emphasizes
here that I(ρ) includes both classical and quantum correlations. In order to explore and
conclusively understand the significance of either correlation part in chemical bonding and
quantum chemistry in general, concise definitions of quantum correlation and classical
correlations are needed as well. We first start, however, with the most prominent type of
quantum correlation, the entanglement.

Separable or unentangled states are precisely those states that can be prepared by
distant laboratories using local operations and classical communication (LOCC) only [3].
With local operations, two distant parties can prepare any uncorrelated state ρA ⊗ ρB. In
combination with classical communication arbitrary mixtures of uncorrelated states can
be realized. Hence, the convex set of separable states is given by

Dsep ≡

{
σ=
∑
i

piσ
(i)
A ⊗ σ

(i)
B , pi>0,

∑
i

pi=1

}
. (1.11)

As it is illustrated in Figure 1.1, this set is indeed nothing else than the convex hull of D0.
Any state ρ that is not separable is called entangled.

For a pure state |Ψ⟩, it is rather easy to check whether it is in the set D0. The only
possible way in which |Ψ⟩⟨Ψ| ∈ D0 is that |Ψ⟩ = |ΨA⟩ ⊗ |ΨB⟩ is a product state. That is
equivalent to say, the reduced states on both systems must be pure. Therefore, it suffices
to check the mixedness of either of the reduced states to tell whether |Ψ⟩ ∈ D0 is true.
One possible quantity that reveals the mixedness of the reduced states is the von Neumann
entropy S(ρ) = −Tr[ρ log(ρ)].

For a mixed total state, however, one can not tell whether the mixedness of the re-
duced states originate from entanglement or simply the mixedness of the total state. For
this reason, the von Neumann entropy of the reduced state is not a good indicator for
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entanglement, and one must construct a new measure. In complete analogy to the quan-
tification of total correlation, the entanglement of a general mixed state ρ can be quantified
through the geometric picture [4]

E(ρ) ≡ min
σ∈Dsep

S(ρ||σ) = S(ρ||σρ) . (1.12)

For general mixed states, no closed expression exists for this relative entropy of entangle-
ment, except for highly symmetric states [107]. This unpleasant fact is due to the involved
structure of the set (1.11) of separable states and the resulting complexity of its boundary.
Although the set Dsep is convex, the form of its boundary is still unknown for Hilbert space
dimension greater than 2× 3 [108], [109], which makes the minimization (1.12) much more
costly than common convex optimization problems. For pure states ρ ≡ |Ψ⟩⟨Ψ|, however,
(1.12) simplifies to the closed expression for pure state entanglement [4]

E(|Ψ⟩⟨Ψ|) = S(ρA) = S(ρB). (1.13)

As a consistency check, we recall that the spectra (and hence the von Neumann entropy)
of the reduced states ρA and ρB are indeed identical, as it is guaranteed by the Schmidt
decomposition [110] of |Ψ⟩.

1.1.3 Quantum vs classical correlation

Entanglement is certainly a key concept of quantum physics [25], [30], [111] and its broad
significance as a resource for realizing quantum information processing tasks is well estab-
lished [12], [14], [112], [113]. Yet, there also exist quantum correlations beyond entangle-
ment. In order to explain this crucial aspect of our work, and in analogy to the definition
of total correlation and entanglement, we first characterize the family of states with zero
quantum correlation [8], [81], [82] (illustrated as pink region in Figure 1.1):

Dcl ≡
{
χ=

∑
i,j

pij|i⟩⟨i|⊗|j⟩⟨j|
}
. (1.14)

On the right-hand side, {|i⟩} and {|j⟩} could be any sets of orthonormal states in the
Hilbert spaces of subsystems A and B, respectively, and pij > 0,

∑
ij pij = 1. The states

in (1.14) are indeed classical in the following sense. There exists a joint local measurement

{P (i)
A ⊗ P

(j)
B } which leaves the state ρ unchanged, namely the measurement defined by

the projectors P
(i)
A/B projecting onto the local bases {|i⟩} and {|j⟩} of ρ. Therefore, the

correlation encoded in the resulting joint probability distribution {pij} has to be purely
classical [82]. Any state not in Dcl then contains quantum correlation.

By referring again to the geometric picture of quantum states, the quantum correlation
in ρ is quantified as its minimized quantum relative entropy with respect to the set of
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classically correlated states [8] (with the minimizer denoted by χρ),

Q(ρ) ≡ min
χ∈Dcl

S(ρ||χ) ≡ S(ρ||χρ). (1.15)

Note that D0 ⊆ Dcl since every uncorrelated state

ρA ⊗ ρB ≡

(∑
i

p
(i)
A |i⟩⟨i|

)
⊗

(∑
j

p
(j)
B |j⟩⟨j|

)
(1.16)

can be written as in (1.14), namely with pij = p
(i)
A p

(j)
B . On the other hand, the set Dsep in

(1.11) is strictly larger than Dcl. This is due to the fact that in the former (1.11), {σiA/B}
are not necessarily simultaneously diagonalizable for all i. Comparing (1.10), (1.12) and
(1.15) we then get the following instructive inclusion relations

D0 ⊂ Dcl ⊂ Dsep. (1.17)

Thanks to the underlying geometric picture — which provides a unified basis for quantifying
the different correlation types — this can directly be translated into relations between the
respective measures

I(ρ) ≥ Q(ρ) ≥ E(ρ). (1.18)

Finally, we present the classical counterpart of (1.15), the classical correlation. To
motivate its measure we first rewrite (1.15) as [82]

Q(ρ) = min
{P (i)

A },{P (j)
B }

S

(
ρ

∥∥∥∥∥∑
ij

P
(i)
A ⊗ P

(j)
B ρP

(i)
A ⊗ P

(j)
B

)
(1.19)

where {P (i)
A } and {P (j)

B } are two projective measurements consisting of rank-1 projectors,

satisfying
∑

i P
(i)
A/B = 1A/B. The closest classical state χρ is then the state resulting from

ρ after the optimal projective measurements has been performed. Accordingly, the total
correlation in χρ is then nothing else than the classical correlation in ρ [8]

C(ρ) ≡ I(χρ). (1.20)

Since quantum states cannot be dissected into classical and quantum parts in a strict
mathematical sense, it is not surprising that our measures do typically not obey the relation
I = Q + C. However, this exact additive relation is valid whenever the closest classical
state χρ and the closest uncorrelated state πρ have the same eigenstates. For a proof of
this statement see Appendix A.

The set of classically correlated states (1.14) has a complicated and highly non-convex
structure, which makes an optimization over it a formidable task. Fortunately, Ref. [8]
provides a suitable theorem that connects the spectrum of the closest classical state χρ to
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Algorithm 1: Calculating Quantum Correlation

INPUT: bipartite quantum state ρ
OUTPUT: Q(ρ) and the closest classical state χρ to ρ
COMPUTATION:
SET initial local bases {|i(0)⟩A} and {|j(0)⟩B};
SET n = 0 and U

(0)
A = U

(0)
B = 1;

COMPUTE χ
(0)
ρ =

∑
ij |i(0)⟩⟨i(0)|⊗|j(0)⟩⟨j(0)|ρ|i(0)⟩⟨i(0)|⊗|j(0)⟩⟨j(0)|;

COMPUTE Q(ρ)(0) = S(ρ||χ(0)
ρ );

WHILE n < Nstep DO:
SAMPLE random unitary matrices VA,B;

COMPUTE VA,B ← V
1
M
A,B;

UPDATE U
(n+1)
A,B ← VA,BU

(n)
A,B;

COMPUTE new local bases
U

(n+1)
A |i(n)⟩ 7→ |i(n+1)⟩, U (n+1)

B |j(n)⟩ 7→ |j(n+1)⟩
COMPUTE new classical state
χ
(n+1)
ρ =

∑
ij |i⟩⟨i|⊗|j⟩⟨j|ρ|i⟩⟨i|⊗|j⟩⟨j|;

COMPUTE Q(n+1) = S(ρ||χ(n+1));
IF Q(n+1) < Q(n):

UPDATE Q(ρ)← Q(n)(ρ);

UPDATE χρ ← χ
(n)
ρ ;

UPDATE n← n+ 1;
END

the diagonal entries of ρ in the eigenbasis of χρ. More precisely, if χρ =
∑

ij λij|i⟩⟨i|⊗|j⟩⟨j|
is the closest classical state to ρ, then its spectrum is given by

λij = ⟨i|⊗⟨j| ρ |i⟩⊗|j⟩. (1.21)

In other words, the closest classical state to ρ is of the form

χρ =
∑
ij

(|i⟩⟨i|⊗|j⟩⟨j|) ρ (|i⟩⟨i|⊗|j⟩⟨j|) . (1.22)

This finding represents the starting point for our quest to search for the optimal local
bases {|i⟩} and {|j⟩} of two subsystems A and B, respectively, recovering the minimizer of
(1.15). Given that any two bases can be connected by a unique unitary operator U |i⟩ 7→ |i′⟩,
provided that we fix the local computational bases, this search is then equivalent to finding
the optimal unitary operators UA and UB for the respective subsystems. In the following
we present a random walk algorithm assisted by probabilistic rejection, in search for the
optimal local unitary operators UA and UB within the manifolds of local unitaries UA and
UB, respectively.
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The computational scheme outlined in Algorithm 1 consists of the following steps: One
first initializes a pair of local bases sets {|i(0)⟩} and {|j(0)⟩} for the two subsystems as well

as the two local unitary operators as U
(0)
A,B = 1. The initial bases determine a candidate for

the closest classical state χ
(0)
ρ according to (1.22) and the distance Q(0) = S(ρ||χ(0)

ρ ). The
unitary operators live on the connected manifolds UA,B ∋ UA,B which allows us to make
use of a random walk algorithm to find the optimal set of unitary operators. We start
by performing a small step in UA,B by multiplying U

(0)
A,B with a “small” unitary operator

VA,B close to the identity, arriving at U
(1)
A,B, which, in turn, determines a pair of local

bases U
(1)
A |i(0)⟩ ≡ |i(1)⟩, U

(1)
B |j(0)⟩ ≡ |j(1)⟩. If these new bases define a closer classical state

according to (1.22), then this step is accepted, and otherwise rejected. This procedure is
repeated until (i) a desired accuracy or (ii) a predefined number of steps is reached. To
compensate for the stochastic nature of Algorithm 1, 10 initial local bases sets are chosen
and the closest resulting classical state is taken as the optimal one. As a default in the
subsequent chapters, the step size parameter M is chosen to be 103, and the number of
steps Nstep = 104.

1.2 Particle vs orbital correlation for fermions

In this section, we will discuss how the previously defined quantum information concepts are
adapted to systems of fermions. For this, we need to establish first a notion of subsystems.
As pointed out before, a proper notion of subsystems requires a tensor product structure
in both the Hilbert space and the algebra of observables. To this end, we will consider
two routes, namely regarding particles as subsystems, and regarding orbitals as subsystems.
Both routes have their own practical merits as well as theoretical caveats, and should not be
considered as competing perspectives of fermionic correlation, but rather complementing.

To set the stage, we consider a system of N fermions, each residing in a D-dimensional
single-particle Hilbert space H(1). To represent H(1) we can choose a basis of single-particle
wavefunctions (spin-orbitals) {ϕi}Di=1. Note that i can be a compound index consisting of

both spatial and spin indices, for spinful fermions. f
(†)
ϕi

denotes the annihilation (creation)
operator associated to the spin-orbital ϕi. They satisfy the fermionic anti-commutation
relations

{f (†)
ϕi
, f

(†)
ϕj
} = 0, {f †

ϕi
, fϕj} = δi,j1, (1.23)

with {A,B} ≡ AB +BA.
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1.2.1 Particles as subsystems

Fermions themselves as indistinguishable particles can not be considered in the conventional
sense subsystems. The antisymmetry of the fermionic wavefunction fundamentally forbids
any product state with respect to the partition of particles, since they do not acquire a
minus sign upon the exchange of any two particles:

|ϕ1⟩1 ⊗ · · · |ϕi⟩i ⊗ · · · |ϕj⟩j ⊗ · · · ⊗ |ϕN⟩N
̸= −|ϕ1⟩1 ⊗ · · · |ϕj⟩i ⊗ · · · |ϕi⟩j ⊗ · · · ⊗ |ϕN⟩N ,

(1.24)

where |ϕi⟩j denotes the single particle state where particle j is occupying the orbital (mode)
ϕi. The building block of N -fermion states are instead fully-antisymmetrized Slater deter-
minants

A(|ϕ1⟩1 ⊗ · · · |ϕi⟩i ⊗ · · · |ϕj⟩j ⊗ · · · ⊗ |ϕN⟩N)

≡
∑
π∈PN

sign(π)|ϕπ(1)⟩1 ⊗ · · · |ϕπ(1)⟩i ⊗ · · · |ϕπ(j)⟩j ⊗ · · · ⊗ |ϕπ(N)⟩N (1.25)

where A is the antisymmetrization operator, the permutation π is an element of the N -
order permutation group PN , and sign(π) = 1 (sign(π) = −1) for even (odd) permutation.
Although (1.25) formally looks “entangled”, this entanglement is merely due to the artificial
labelling that we put on the fermions. In fact, Slater determinants are ground states of
systems of N non-interacting fermions, and should be considered as part of the uncorrelated
states. Then what should be the proper definition of fermionic paricle correlation?

Recall that a two-qubit state is correlated if and only if there exists information on the
two-qubit level which is inaccessible by single-qubit measurements. Such inaccessibility
is signified by a pair of observables ÔA and ÔB on the two qubits A and B, whose joint
measurement expectation can not be factorized

C(ÔA, ÔB) = ⟨ÔA ⊗ ÔB⟩ − ⟨ÔA⟩⟨ÔB⟩ ≠ 0. (1.26)

According to (1.10), it necessarily implies that the total correlation between the two qubits
measured by the mutual information is non-zero. For systems of two fermions, the anal-
ogous “local” and “global” observables are instead the single-particle and two-particle
operators, which are monomials of f †

i fj and f †
i f

†
j fl fk , respectively. By analogy, a two-

fermion state should be considered correlated only when not all two-particle measurement
outcomes can be inferred from single particle measurements. Fermionic states for which
the expectation values of all N -particle observables can be decomposed into single-particle
components are said to obey the Wick’s Theorem, and they are called the free states.
Formally, the set of free states defined on a collection of D orbitals is the closure of the set
of thermal states of all possible non-interacting (single-particle) Hamiltonians

Dfree =

{
e−ĥ

Tr[e−ĥ]

∣∣∣∣∣ ĥ =
D∑

i,j=1

hijf
†
i fj

}
, (1.27)
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where hij’s are elements of a Hermitian matrix h. In general, free states are mixed, and
can be convex combinations of states of different particle numbers. Therefore, Dfree is no
longer part of the N -fermion Hilbert space. The closure makes sure that N -particle Slater
determinants are also included in the set. They are realized by Hamiltonians ĥ with the
highest N eigenvalues set at infinity.

At first sight it seems rather difficult to tell if a general fermionic state ρ belongs to
Dfree. Even when given a pure state, one in principle should check whether it admits the
form of a single Slater determinant in all possible orbital/mode basis. However, such an
exhaustive check is not necessary. The set Dfree is in fact invariant under orbital/mode
basis transformation, which hints the possibility of checking the freeness of a general state
by the property of a basis-independent object. This object turns out to be the spectrum
of the one-particle reduced density matrix (1RDM) γ

γij = Tr[ρf †
i fj ]. (1.28)

The elements of the 1RDM can be evaluated in any basis associated with {f †
i }, and the

spectrum would remain the same. The eigenbasis of γ is commonly referred to as the
natural orbitals, and the eigenvalues are called the natural occupations. The diagonal
elements of the 1RDM in any basis are constraint to be between 0 and 1, by Pauli’s exclusion
principle. If |Ψ⟩ is a single Slater determinant, then it takes the form |Ψ⟩ = c†1c

†
2 · · · c

†
N |Ω⟩

in some orbital basis with the associated creation operators c†i . Then in this basis, the
1RDM is diagonal, with γij = Tr[ρc†icj] = niδij where ni is the occupation number of the
i-th natural orbital, which is either 1 or 0. Matrices with eigenvalues 1’s and 0’s are called
idempotent matrices, as they satisfy

γ2 = γ. (1.29)

Therefore, to check whether a pure state |Ψ⟩ is a single Slater determinant, it suffices
to calculate the 1RDM γ in any feasible orbital basis, and then check the eigenvalues of
γ. If the eigenvalues are all 1’s and 0’s, then |Ψ⟩ must be a single Slater determinant.
Equivalently, one can check if the von Neumann entropy of the 1RDM S(γ) vanishes.

For mixed states, we again need to inspect the spectral property of the corresponding
1RDM to decide whether it belongs to the set Dfree of free states. A nice property of
the free states ρ ∝ e−ĥ, as pointed out by Peschel [114], is that h and the 1RDM γ of ρ
are diagonalized by the same orbital basis. To see this, we re-express ρ by inserting the
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eigenbasis of h (with corresponding creation operators f †
i )

ρ =
1

Z
e−

∑D
i=1 ηif

†
i fi

=
1

Z

D⊗
i=1

(|0⟩i⟨0|i + e−ηi |1⟩l⟨1|i)

=
D⊗
i=1

|0⟩i⟨0|i + e−ηl |1⟩i⟨1|i
1 + e−ηi

≡
D⊗
i=1

ρi.

(1.30)

In other words, in the eigenbasis of ĥ, ρ is a product state consisting of local density
matrices ρi. Then by the property of the von Neumann entropy, S(ρ) is decomposed into
the following sum

S(ρ) = S

(⊗
i

ρi

)
=
∑
i

S(ρi). (1.31)

The natural orbital reduced states ρi’s are diagonal, and their eigenvalues are given by

spec(ρi) =

{
1

1 + e−ηi
,

e−ηi

1 + e−ηi

}
. (1.32)

Now we compute the 1RDM in the diagonal basis of ĥ. This can be done element-wise as

γij = ⟨Ψ|f †
i fj |Ψ⟩ = Tr[ρf †

i fj ] = Tr[(ρi ⊗ ρj)f †
i fj ] = δij

e−ηi

1 + e−ηi
≡ δijλi. (1.33)

Inserting the natural occupations λi into the spectrum of ρi we find that it becomes

spec(ρi) = {λi, 1− λi}. (1.34)

Therefore the entropy of the total state ρ and the entropy of the one-particle (hole) RDM
γ (1− γ) are succinctly related as

S(ρ) =
∑
i

S(ρi) =
∑
i

[−λi log(λi)− (1− λi) log(λi)]

=
∑
i

[−λi log(λi)] +
∑
i

[−(1− λi) log(λi)]

= S(γ) + S(1− γ)

(1.35)

One can check that for a single Slater determinant ρ, both the left and right-hand side
vanishes. Therefore, (1.35) is the exact criterion for checking whether a general fermionic
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state ρ is free. Any state violating the above criterion is considered to possess particle
correlation, with respect to which not all the many-body information can be recovered
from the single-particle level.

The form of the criterion (1.35) suggests that one can propose the following quantity
as a measure for any deviation from the set of free states

N (ρ) = S(γ) + S(1− γ)− S(ρ). (1.36)

This measure enjoy many appealing properties. First, it vanishes if and only if ρ is free.
Indeed, N (ρ) is a non-negative number for any state ρ, and is refered to as the nonfree-
ness of the state ρ. Second, it is determined only by the spectrum of ρ and γ, and not
the single-particle basis one chooses to represent the system in. N (ρ) is thus explicitly
invariant under arbitrary orbital rotations. Third, and perhaps most remarkably, N (ρ)
can be understood in a similar geometric picture as the bipartite total correlation: It is the
minimum distance from the state ρ to the set of free states Dfree measured by the quantum
relative entropy [115], [116]

N (ρ) = min
σ∈Dfree

S(ρ∥σ). (1.37)

1.2.2 Orbitals as subsystems

Recovering a tensor product structure

In contrast to fermions, orbitals which the fermions occupy are in fact distinguishable. But
to define the tensor product structure with respect to orbital partitions, we have to again
lift the fully-antisymmetrized N -fermion Hilbert space to the total Fock space

F(H(1)) =
D⊕
n=0

H(n), H(n) = ∧nH(1). (1.38)

The corresponding Fock space F [H(1)] is then spanned by the configuration states in a
given single particle basis {ϕi}Di=1

|n1↑, n1↓, . . . , nD↓⟩ ≡
D∏
i=1

(
f †
ϕi

)ni

|0⟩ . (1.39)

Here, |0⟩ is the vacuum state. With respect to the ordered basis {ϕi}Di=1, we now es-
tablish the notion of subsystems. When considering the partitioning of orbitals {ϕi}Di=1

into two subsets A and B, H(1) is effectively divided into two complementary subspaces



20 1. Fermionic Entanglement and Correlation

of dimensions DA/B, H(1) = H(1)
A ⊕ H

(1)
B . This splitting in turn induces a tensor-product

decomposition on the Fock space,

F [H(1)
A ⊕H

(1)
B ] ∼= F [H(1)

A ]⊗F [H(1)
B ], (1.40)

through the map

|n1↑, n1↓, . . . , nDA↓, nDA+1↑, . . . , nD↓⟩ 7→
|n1↑, n1↓, . . . , nDA↓⟩⊗|nDA+1↑, , . . . , nD↓⟩. (1.41)

In fact, the corresponding tensor product structure can be generalized to arbitrary parti-
tioning of the orbitals, including multipartite scenarios. In this thesis, we focus mainly on
the partitioning of the spatial orbitals. That is, for spinful fermions, the smallest subsys-
tem we consider is the composite Fock space generated by the two spin-orbitals ϕi↑ and
ϕi↓.

Finally, we introduce the primary objects of interest, namely the one- and two-orbital
reduced density matrices (RDMs). Formally, the one- and two-orbital RDMs of a pure
state |Ψ⟩ are defined via the following requirements

ρi : Tr[ρiÔ] = ⟨Ψ|Ô|Ψ⟩, ∀Ô ∈ Ai (1.42a)

ρij : Tr[ρijÔ] = ⟨Ψ|Ô|Ψ⟩, ∀Ô ∈ Aij. (1.42b)

In practice, they are computed from partial two- and four-particle RDMs [117], respectively.
Exploiting the symmetry of the overall quantum state reduces further the computational
cost [62]. For example, it is common to restrict the calculation of the molecular ground
state to a predefined, fixed particle number N and spin magnetization mS (for a given
spin state 2S + 1). Consequently, the one- and two-orbital RDM can only be mixtures of
fixed electron-number and magnetization states. In other words, the one-orbital RDM is
diagonal in the fixed particle number and magnetization basis

ρi =


⟨1− n̂i↑ − n̂i↓ + n̂i↑n̂i↓⟩ 0 0 0

0 ⟨n̂i↑ − n̂i↑n̂i↓⟩ 0 0
0 0 ⟨n̂i↓ − n̂i↑n̂i↓⟩ 0
0 0 0 ⟨n̂i↑n̂i↓⟩

 . (1.43)

And the two-orbital RDM ρij = Tr\{i,j}[|Ψ⟩⟨Ψ|] is block diagonal in the tensor product
basis [62], labelled by also the total particle number N = Ni + Nj and magnetization
Sz = Szi + Szj . We list below the non-zero matrix elements (omitting terms related by
Hermiticity)

• N = 0, Sz = 0:

⟨0, 0|ρij|0, 0⟩ = ⟨(1− n̂i↑)(1− n̂i↓)(1− n̂j↑)(1− n̂j↓)⟩ (1.44)
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• N = 1, Sz = 1/2:

⟨↑, 0|ρij|↑, 0⟩ = ⟨n̂i↑(1− n̂i↓)(1− n̂j↑)(1− n̂j↓)⟩,
⟨0, ↑|ρij|0, ↑⟩ = ⟨(1− n̂i↑)(1− n̂i↓)n̂j↑(1− n̂j↓)⟩,
⟨↑, 0|ρij|0, ↑⟩ = ⟨f †

i↑fj↑(1− n̂i↓)(1− n̂j↓)⟩,
(1.45)

• N = 1, Sz = −1/2:

⟨↓, 0|ρij|↓, 0⟩ = ⟨(1− n̂i↑)n̂i↓(1− n̂j↑)(1− n̂j↓)⟩,
⟨0, ↓|ρij|0, ↓⟩ = ⟨(1− n̂i↑)(1− n̂i↓)(1− n̂j↑)n̂j↓⟩,
⟨↓, 0|ρij|0, ↓⟩ = ⟨f †

i↓fj↓(1− n̂i↑)(1− n̂j↑)⟩,
(1.46)

• N = 2, Sz = 1:
⟨↑, ↑|ρij|↑, ↑⟩ = ⟨n̂i↑(1− n̂i↓)n̂j↑(1− n̂j↓)⟩, (1.47)

• N = 2, Sz = −1:

⟨↑, ↑|ρij|↑, ↑⟩ = ⟨(1− n̂i↑)n̂i↓(1− n̂j↑)n̂j↓⟩, (1.48)

• N = 2, Sz = 0:

⟨0, ↑↓|ρij|0, ↑↓⟩ = ⟨(1− n̂i↑)(1− n̂i↓)n̂j↑n̂j↓⟩
⟨↑↓, 0|ρij|↑↓, 0⟩ = ⟨n̂i↑n̂i↓(1− n̂j↑)(1− n̂j↓)⟩
⟨↑, ↓|ρij|↑, ↓⟩ = ⟨n̂i↑(1− n̂i↓)(1− n̂j↑)n̂j↓⟩
⟨↓, ↑|ρij|↓, ↑⟩ = ⟨(1− n̂i↑)n̂i↓n̂j↑(1− n̂j↓)⟩
⟨0, ↑↓|ρij|↑↓, 0⟩ = ⟨f †

j↑f
†
j↓fi↓fi↑⟩,

⟨0, ↑↓|ρij|↑, ↓⟩ = ⟨f †
j↑fi↑(1− n̂i↓)n̂j↓⟩,

⟨0, ↑↓|ρij|↓, ↑⟩ = ⟨fi↓f
†
j↓(1− n̂i↑)n̂j↑⟩,

⟨↑↓, 0|ρij|↑, ↓⟩ = f †
j↓fi↓n̂i↑(1− n̂j↑),

⟨↑↓, 0|ρij|↓, ↑⟩ = fi↑f
†
j↑n̂i↓(1− n̂j↓),

⟨↑, ↓|ρij|↓, ↑⟩ = ⟨f †
j↓f

†
i↑fj↑fi↓⟩,

(1.49)

• N = 3, Sz = 1/2:

⟨↑, ↑↓|ρij|↑, ↑↓⟩ = ⟨n̂i↑(1− n̂i↓)n̂j↑n̂j↓⟩,
⟨↑↓, ↑|ρij|↑↓, ↑⟩ = ⟨n̂i↑n̂i↓n̂j↑(1− n̂j↓)⟩,
⟨↑, ↑↓|ρij|↑↓, ↑⟩ = fi↓f

†
j↓n̂i↑n̂j↑,

(1.50)



22 1. Fermionic Entanglement and Correlation

• N = 3, Sz = −1/2:

⟨↓, ↑↓|ρij|↓, ↑↓⟩ = ⟨(1− n̂i↑)n̂i↓n̂j↓n̂j↑⟩,
⟨↑↓, ↓|ρij|↑↓, ↓⟩ = ⟨n̂i↑n̂i↓(1− n̂j↑)⟩n̂j↓,
⟨↓, ↑↓|ρij|↑↓, ↓⟩ = fi↑f

†
j↑n̂i↓n̂j↓,

(1.51)

• N = 4, Sz = 0:

⟨↑↓, ↑↓|ρij|↑↓, ↑↓⟩ = ⟨n̂i↑n̂i↓n̂j↑n̂j↓⟩. (1.52)

Superselection rules

With the tensor product structure of the total Fock space recovered, it would seem that we
are already back to the setting of distinguishable subsystems in Section 1.1. It is important
to note, however, that such a tensor-product decomposition does not hold on the level of
fermionic operators that are defined within the respective subsystems. This is clear from
the observation that the creation and annihilation operators associated with spin-orbitals
in subsystem A and B do not commute with each other, and, as a result, cannot be
considered local observable operators. The immediate consequences is the violation of
special relativity, exemplified by the possibility of superluminal signaling [118], [119]. We
resolve this by invoking the fermionic parity superselection rule [120], [121] (P-SSR). The
P-SSR excludes observables that do not commute with the local particle number parity
operator Π̂(A/B) = P̂

(A/B)
even − P̂ (A/B)

odd , where P̂
A/B
τ is the projection onto the τ ∈ {even,odd}

parity subspace acting on subsystem A/B. As a result, the accessible correlation and
entanglement in a bipartite state ρAB is reduced to those in the superselected state formed
by the projection GΠA/B

onto the local subspaces compatible with P-SSR [91], [119]

ρPAB ≡ GΠA
⊗ GΠB

[ρAB] =
∑

τ,τ ′=even, odd

P̂ (A)
τ ⊗ P̂ (B)

τ ′ ρABP̂
(A)
τ ⊗ P̂ (B)

τ ′ , (1.53)

since, from an operational point of view, ρAB and ρPAB are equivalent. To summarize, the
correlation quantities X = I, C,Q,E defined in Section 1.1 under P-SSR can be calculated
as

XP(ρAB) = X(ρPAB). (1.54)

When the creation or annihilation of pairs of particles is also not possible, this results in
an even more restrictive particle number superselection rules [120], [122] (N-SSR). In this
case we simply replace ρPAB in (1.54) with the N-SSR superselected state

ρNAB =

2DA∑
m=0

2DB∑
n=0

P̂ (A)
m ⊗ P̂ (B)

n ρABP̂
(A)
m ⊗ P̂ (B)

n , (1.55)
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SWAP SWAP

φA φB

qA qB

SSR 
Filter

E(ρAB)

E(ρ̃AB)

Figure 1.2: Entanglement swapping protocol under SSR between the two electronic orbitals
φA and φB, and the two qubit registers qA and qB. See text for more details.

where P̂
(A/B)
m is the projection onto the m-particle subspace acting on subsystem A/B.

We remark that if one is only interested in the numerical structure of the quantum state,
it is possible to quantify correlation and entanglement without superselection rules, simply
by mapping the fermionic state to that of a spin system via the respective Jordan-Wigner
transformation. By contrast, if the orbital entanglement in the molecules is to be accessed
or utilized, e.g. through an entanglement swapping protocol from molecule to quantum
registers, the inclusion of superselection rules is operationally crucial. Accessing orbital
entanglement requires measurement or more generally operations to be performed on the
orbitals, which are limited precisely by the superselection rules. Although at the moment,
perfect control over every element within a molecule or arbitrary operations on orbitals is
not yet possible, this status may greatly improve in the near future [123]. If superselection
rules are ignored, one would overestimate the accessible correlation and entanglement.

Nature’s restriction on the implementable local observables has a profound implication
on the entanglement in fermionic states. From the perspective of state tomography, co-
herent terms between different local parity states can never be observed under P-SSR, for
the observable needed for such measurement is simply not available by the laws of physics.
Therefore, the entanglement arising from SSR-violating coherence, sometime referred to
as the “fluffy bunny entanglement” [92], is not accessible. This reduction of entanglement
due to SSR is proven rigorously in Ref. [91] on an abstract mathematical level. Here we
demonstrate it in concrete terms with a swapping protocol.

In Figure 1.2 we depict schematically an entanglement swapping protocol between two
fermionic orbitals (φA, φB) in the state ρAB, and two qubits (qA, qB) in the state |00⟩, both
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shared by Alice and Bob. We shall denote the orbital Fock spaces as FφA/B
and the qubit

Hilbert spaces as HqA/B
. For both the Fock spaces and the qubit Hilbert spaces, we denote

the local basis as B = {|0⟩, |1⟩}. One should keep in mind that for the qubit space B
is the computational basis, while for the Fock space, B refers to the occupational basis.
The protocol in Figure 1.2 extracts the entanglement between the fermionic modes onto
the qubit registers, on which this entanglement could be used to perform more flexible
quantum information protocols.

The protocol consists of Alice swapping the two states on φA and qA, and Bob doing
the same on φB and qB. Specifically, the SWAP channel S on a bipartite system is defined
element-wise as

S : |i⟩⟨j| ⊗ |k⟩⟨l| 7→ |k⟩⟨l| ⊗ |i⟩⟨j|, (1.56)

for all i, j, k, l ∈ {0, 1}. In a world without SSR, after the SWAP operation, the final state
of the two qubits would be exactly ρAB, and it would accordingly contain exactly the same
amount of entanglement as the original two-orbital state. However, the SWAP operation
clearly does not preserve the local parities, and hence cannot be realized with physical
fermionic operators. Instead, Alice/Bob can only perform the superselected channel

S̃A/B = GΠA/B
◦ SA/B ◦ GΠA/B

. (1.57)

To see the difference between SA/B and S̃A/B, let us first observe the action of the
SWAP channel on a pure state |ψA⟩ = |+⟩ ⊗ |+⟩ ∈ FφA

⊗HqA where |+⟩ = 1√
2
(|0⟩+ |1⟩),

which clearly violates the P-SSR. In a world free of SSR, |ψA⟩ would be invariant under
the SWAP channel. Under the P-SSR, however, the action of the physically implementable
S̃A consists of three steps: (1) GΠA

turns |ψA⟩ into a mixed state GΠA
[ρA] = 1

2
⊗ |+⟩⟨+|.

Namely, the coherent terms between different fermionic parities are erased. (2) SA swaps
the two states to SA ◦ GΠA

[ρA] = |+⟩⟨+| ⊗ 1

2
, which again contains P-SSR violating terms.

(3) GΠA
then eliminates said terms and the final state is GΠA

◦ SA ◦ GΠA
[ρA] = 1

2
⊗ 1

2
. In

this example we see evidently that SWAP does not leave |ψA⟩ invariant. Instead, P-SSR
filters out any coherence between different parity sectors, and only the superselected state
ρ̃PA ≡ GΠA

[|ψA⟩⟨ψA|] can be transferred onto the qubit register. Moreover, the final state
on the fermionic mode φA is also the superselected variant of the original qubit state.

Now that we understand the action of (1.57), we can proceed to write down the action
of the protocol S̃ ≡ S̃A ⊗ S̃B on the composite Hilbert space FφA

⊗HqA ⊗FφB
⊗HqB : for

any states ρAB on FφA
⊗FφB

and σAB on HqA ⊗HqB , we have

S̃[ρAB ⊗ σAB] = σ̃P
AB ⊗ ρ̃PAB, (1.58)

where

ρ̃PAB ≡ GΠA
⊗ GΠB

[ρAB]

=
∑

τ,τ ′=even,odd

P̂ (A)
τ ⊗ P̂ (B)

τ ′ ρABP̂
(A)
τ ⊗ P̂ (B)

τ ′
(1.59)
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and the same for σ̃P
AB. The final state ρ̃PAB on the qubit registers contains the same

information as the original two-orbital state ρAB, except it is rid of the coherence between
the different local parity sectors, which does not contribute to the physical entanglement.
The decohering map GΠA

⊗ GΠB
thus acts as an entanglement filter as depicted in Figure

1.2, and effectively reduces the available entanglement in the fermionic state. Only the
entanglement within each local parity sector can be extracted for operational purposes.

We remark that so far we have restricted ourselves to the scenario where only one copy
of the system is available. When multiple copies of the system are available, forming a
bipartition A1A2 · · ·An|B1B2 · · ·Bn, SSR-violating operations on one of the components
Ai are possible, as long as SSR is satisfied on the subsystem A1A2 · · ·An. In this case,
the accessible entanglement of the state ρAiBi

with respect to the partition Ai|Bi would be
higher than what we have calculated above.

Connection to particle correlation

Before ending this chapter, we would like to point out that the two seemingly orthogonal
pictures of fermionic correlation (particle versus orbital) are on some level elegantly con-
nected. The particle correlation measured by the nonfreeness N is invariant under any
unitary transformation of the single particle basis, whereas the orbital correlation is ex-
plicitly basis dependent. To draw a connection, we need to find a way to remove the basis
dependence of the latter.

To this end, let us consider the smallest subsystem in the orbital picture, the spin-
orbitals. The Fock space of a single spin-orbital labelled by the composite index i with
both spatial and spin information, is only two-dimensional, isomorphic to C2. A spin-
orbital reduced state of an N -particle wavefucntion |Ψ⟩ is a simple diagonal matrix

ρi = Tr [|Ψ⟩⟨Ψ|] =

(
⟨1− n̂i⟩ 0

0 ⟨n̂i⟩

)
, (1.60)

where n̂i = f †
i fi = γii is the particle number operator defined on the spin-orbital i. It is

necessary to refer to the smallest subsystem since ρi can be expressed with the elements
of the 1RDM γ alone, just as in the case of the nonfreeness for pure states.

For any N -particle wavefucntion |Ψ⟩, the following statement holds true: The sum of
all single spin-orbital entropy is bounded from below by the nonfreeness∑

i

S(ρi) ≥ N (|Ψ⟩⟨Ψ|) . (1.61)

In particular, the minimum of the left-hand side is obtained, if the spin-orbital basis is the
eigenbasis of γ. To prove this statement, we first consider the following inequality

−
∑
i

γii log(γii) ≥ −
∑
i

λi log(λi) = S(γ), (1.62)
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where λi’s are the eigenvalues of the 1RDM γ. The entropy of the diagonal vector of γ is no
less than the entropy of the spectrum of γ, which is guaranteed by the Hardy-Littlewood-
Pólya theorem [124], and the Schur concavity of the von Neumann entropy. The same
applies to the single-hole RDM 1− γ

−
∑
i

(1− γii) log(1− γii) ≥ −
∑
i

(1− λi) log(1− λi) = S(1− γ). (1.63)

Combining the two inequalities we arrive at∑
i

S(ρi) = −
∑
i

γii log(γii)−
∑
i

(1− γii) log(1− γii)

≥ −
∑
i

λi log(λi)−
∑
i

(1− λi) log(1− λi)

=
∑
i

S(ρNO
i ) = N (|Ψ⟩⟨Ψ|) .

(1.64)

Here, we use the superscript NO to distinguish the spin-orbital RDM in the natural basis
(eigenbasis of γ). In other words, the particle correlation measured by the nonfreeness, is
the same as the orbital correlation measured by the sum of spin-orbital entropy, minimized
over all possible spin-orbital basis. And the minimizer is always the natural basis, namely
the eigenbasis of the 1RDM γ. This profound connection (see also Ref. [60]) suggests
that a part of the correlation in the ground state is only due to a suboptimal orbital
representation, whereas the nonfreeness represent the intrinsic correlation of the quantum
state. A similarly exact statement has not been proven yet on the level of orbital entropy
rather than spin-orbital entropy, to the best of the author’s knowledge. And therefore
we do not expect the natural orbitals to be the most simplifying reference basis for every
problem. However, this elegant connection between the particle and orbital pictures of
correlation continues to motivate the exploration of orbital optimization guided by quantum
information concepts, for the rest of this thesis.

Chapter Summary

In this chapter, we provided a comprehensive toolbox for correlation analysis, by recalling
first the concepts of entanglement and correlation in the setting of distinguishable subsys-
tems. This includes the formal definitions and operational meanings of entanglement and
correlation, and the dissection of the total correlation into quantum and classical parts.
We then explained various subtleties that arise when these concepts are translated into the
context of indistinguishable electrons, and how these subtleties can be resolved. Two main
approaches emerged as viable ways of quantifying electron correlation in a theoretically
sound manner. First, the particle correlation measured by the nonfreeness quantifies the
deviation of a quantum state from the set of free states, namely the ground and thermal
states of particle number conserving single-particle Hamiltonians. Second, with orbitals
considered as distinguishable subsystems, their entanglement and correlation are addressed
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in the same as in the conventional qubit setting, with the caveat that one needs to incorpo-
rate the pertinent superselection rules. Both approaches offer unique perspectives into the
problem of electron correlation, and can be in fact unified elegantly: The minimized sum
of spin-orbital entropy is equal to the particle correlation measured by the nonfreeness.
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Chapter 2

Orbital Entanglement in a Lattice

In the previous chapter, we mentioned that entanglement for mixed states is in general
very expensive to calculate. It requires the optimization for the closest separable state
from the set D0. However, when the system displays a high level of symmetry, one can
exploit the symmetry of the ground state to simplify the task of finding the closest separable
state [107], [125], even to a point that analytic expression for the entanglement is available.
In Ref. [107] the author of the thesis and coworkers derived the first analytic formula for
the superselected bipartite relative entropy of entanglement for two spatial orbitals (as a
subsystem of a potentially much larger system equipped with several common symmetries).
If the system is also exactly solvable, then the entanglement can be fully derived from the
parameters of the Hamiltonian, and becomes a powerful tool for extracting analytic insights
from the ground state, as has been the case of block entropy in integrable systems [114],
[126], [127]. In this chapter we seize this rare opportunity, and apply the orbital-orbital
entanglement formula to the system of free fermions in a tight-binding model. We then
compare the results we obtained to the entanglement structure in the Hydrogen ring (H16),
to investigate if the behavior of the orbital-orbital entanglement is robust against electron-
electron interaction.

Previously, we concluded that the true physical entanglement in a bipartite fermionic
state ρAB in the presence of P-SSR, is precisely the entanglement in its superselected
variant ρ̃PAB = GΠA

⊗ GΠB
[ρAB] quantified in the usual manner without P-SSR. In this

section, we will briefly summarize the analytic formula for physical entanglement between
two spatial orbitals in electronic systems, derived in Ref. [107]. We consider two orbitals
A and B with internal spin-1

2
degrees of freedom. This system is described by a state ρAB

acting on the Fock space FA ⊗ FB, spanned by {|α⟩A ⊗ |β⟩B}, where α, β ∈ {0, ↑, ↓, ↑↓}.
The mixedness of ρAB accounts for the physically relevant scenario where A and B are
in contact with other orbitals. A key step in quantifying the entanglement E(ρ̃PAB) is
understanding its restriction to several smaller subspaces of the total Fock space, after
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imposing several common symmetries exhibited by realistic condensed matter and quantum
chemical systems.

The relevant systems in our case, the tight-binding model and the hydrogen ring, enjoy
many symmetries, including (1) particle number, (2) magnetization, and (3) reflection
symmetry between orbitals A and B (e.g. two orthogonalized 1s orbitals in a hydrogen
ring). Under these symmetries, there are only four entangled pure states compatible with
local P-SSR:

|Φ±⟩ =
|0⟩A ⊗ |↑↓⟩B ± |↑↓⟩A ⊗ |0⟩B√

2
,

|Ψ±⟩ =
|↑⟩A ⊗ |↓⟩B ± |↓⟩A ⊗ |↑⟩B√

2
.

(2.1)

Naturally, if ρ̃PAB enjoys the symmetries (1), (2), and (3), then |Φ±⟩ and |Ψ±⟩ are eigenstates
of ρ̃PAB, with eigenvalues p± and q±, respectively. Even so, the exact P-SSR orbital-orbital
entanglement, though entirely analytic, has a heavily involved form, which can be found
in the Appendix of Ref. [107]. Instead, we highlight another related entanglement formula
from Ref. [107] in the case where the particle number superselection rule (N-SSR) applies.
In this setting, no superposition between different local particle number states is possible
and therefore even |Φ±⟩ are forbidden. The N-SSR-compatible two-orbital state is obtained
with the same reasoning via the superselection map

ρ̃NAB ≡ GNA
⊗ GNB

[ρAB] =
2∑

nA,nB=0

P̂nA,nB
ρABP̂nA,nB

, (2.2)

where P̂nA,nB
= P̂nA

⊗ P̂nB
and P̂nA/B

is the projection onto the sector of local particle

number nA/B on subsystem A/B. The N-SSR entanglement of ρ̃NAB can then be derived,
after considerable efforts, to be

E(ρ̃NAB) =

{
r log

(
2r
r+t

)
+ t log

(
2t
r+t

)
, r < t,

0, r ≥ t,
(2.3)

where

t ≡ max{q±}, r ≡ Tr[P̂1,1ρAB]− t. (2.4)

Note that r < t, or explicitly

Tr[P̂1,1ρAB] < 2 max{q±}, (2.5)

is the exact entanglement criterion. Later, we will see that the P- and N-SSR orbital-orbital
long-distance entanglement on a localized orbital chain are virtually indistinguishable. The
simple form of the latter thus allows us to derive analytically asymptotic properties of the
physical entanglement between orbitals for both P- and N-SSR.
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2.1 Free Fermions

2.1.1 Reduced states in free fermions systems

In the second quantized formalism, a general particle number conserving non-interacting
fermionic Hamiltonian Ĥ defined on a set of L orbitals (characterized by an algebra of
associating creation and annihilation operators {f †

i }Li=1 and {fi }Li=1, respectively) can be
written as a sum of one-body operators whose coefficients form a Hermitian matrix h

Ĥfree =
L∑

i,j=1

hijf
†
i fj , hij = h∗ji. (2.6)

The spectrum of Hfree can be analytically solved by applying to the Hamiltonian a unitary
transformation U such that the transformed matrix d = UhU† is diagonal. The unitary
U transform the operators {f †

i }Li=1 to a new basis, where the Hamiltonian is rewritten as

Ĥfree =
L∑
i=1

diic
†
ici ≡

L∑
i=1

diin̂i, c†i =
L∑
j=1

Uijf
†
j . (2.7)

Notice that in the new basis, the orbital degrees of freedom are completely decoupled,
and each term (local particle number operator n̂i = c†ici ) in the Hamiltonian commutes
with all other terms. Eigenstates of Ĥfree are simply tensor product states consisting of
eigenstates (|0⟩i and |1⟩i ≡ c†i |0⟩i) of the local particle number operators (also known as
Slater determinant)

|n1, . . . , ni, . . . , nL⟩ =
L∏
i=1

(
c†i

)ni

|0⟩, |0⟩ ≡
L⊗
i=1

|0⟩i. (2.8)

If we further assume that the spectrum dii is ordered increasingly (which can always be
achieved by relabelling the orbitals), then

|ΨN⟩ = c†1c
†
2 · · · c

†
N |0⟩, (2.9)

is a (possibly degenerate) ground state of the Hamiltonian Ĥ.

In order to calculate the entanglement of the state |ΨN⟩ (and in the same fashion any
eigenstates or Gibbs state of Ĥ) with respect to a partitioning of the orbitals (in any basis),
we must be able to compute first the reduced density matrix

ρA = Tr\A[|ΨN⟩⟨ΨN ] (2.10)

of the ground state defined on a sub-lattice A. The entanglement between the subsystem
A and its complement is simply given by the von Neumann entropy

S(ρA) = −Tr[ρA log ρA]. (2.11)
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At first glance, one might consider the reduced state ρA to be trivial. If A is a sub-lattice
being associated with the subalgebra {ci}i∈A, then the reduced state is simply given by
discarding the tensor product states of the complement lattice

ρA =
⊗
i∈A

|ni⟩⟨ni|. (2.12)

Since ρA is always pure, its entropy is by definition 0. Consequently, the entanglement
between the sub-lattice A and its complement is always 0, for any A defined by {ci}i∈A.
The problem is entirely trivial.

However, the crucial point is that the partitioning of the sub-lattice A and its comple-
ment that we are interested in may not be realizable in the basis where h is diagonalized.
For example, a translationally invariant free hopping Hamiltonian is diagonalized in the
momentum lattice, but one might be interested in the entanglement between the left and
the right half of the spatial lattice, which is likely to be non-trivial. Let A be defined by
the subalgebra {f †

i }i∈A where f †
i ’s are related to the natural basis c†i by c†i =

∑
j Vijf

†
j .

The most direct way of computing ρA is to first transform the state |ΨN⟩ to the new basis

|ΨN⟩ =
N∏
i=1

(
L∑
j=1

Vijf
†
j

)
|0⟩, (2.13)

and then perform the partial trace on the complementary lattice. This way of calculating
the reduced state is, however, extremely cumbersome.

Remarkably, Peschel put forward a shortcut, which allows us to compute S(ρA) with
much less effort [128]. From an information point of view, one realizes that in the virtue
of Wick’s theorem, the expectation value of any observable of the non-interacting state
|ΨN⟩ is a function of the two-point correlator ⟨ΨN |f †

i fj |ΨN⟩ ≡ γji. The latter defines the
one-particle reduced density matrix (1-RDM) γ of the ground state. As ρA is uniquely
defined via the expectations of all physical observables on the subsystem A [64], one can
then, in principle, express any functions (including the von-Neumann entropy) of ρA using
only information contained in γ.

2.1.2 Tight-binding model

We consider the following tight-binding Hamiltonian on a periodic chain with L lattice
sites

Ĥtb = −1

2

∑
σ=↑,↓

L∑
l=1

f †
lσfl+1,σ + h.c. (2.14)

with periodic boundary conditions imposed. Here, f
(†)
lσ annihilates(creates) an electron

with spin σ at the Wannier orbital/lattice site labeled by l. Each Wannier orbital can host
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up to two electrons with different spin. The discrete translation invariance of the system
allows us to diagonalize the Hamiltonian via a Fourier transform

c†kσ =
1√
L

L∑
l=1

e−
2πi
L
klf †

lσ. (2.15)

In this basis, the Hamiltonian (2.14) is diagonal, and the one-electron spectrum is given
by the dispersion relation

Ek = − cos

(
2πk

L

)
, k = 0,±1, . . . ,±L− 1

2
. (2.16)

As the system is non-interacting, the N -electron ground state is the configuration where
the N lowest energy levels are filled. For simplicity, we shall assume from now on that the
number of electrons is either N = 0, or N = 4kmax + 2 where kmax ≥ 0 denotes the highest
occupied momentum. In the former case, the ground state is simply the vacuum. In the
latter, the N -particle ground state |ΨN⟩ is uniquely characterized by the Fermi level

⟨ΨN |c†kσck′σ′ |ΨN⟩ = δkk′δσσ′Θ(kmax − |k|), (2.17)

where Θ is the Heaviside step function. With (2.15) and (2.17) at hand, we are ready to
compute the matrix elements of the 1RDM in the spatial basis as

⟨ΨN |f †
lσfl′σ′ |ΨN⟩ =

1

L
δσ,σ′

kmax∑
k=−kmax

e
2πi(l−l′)k

L . (2.18)

When l = l′, all summands in (2.18) become 1, and thus we obtain

⟨ΨN |f †
lσflσ′|ΨN⟩ = δσσ′

2kmax + 1

L

= δσσ′
N

2L
≡ δσσ′η,

(2.19)

where η = N/(2L) is the particle filling fraction. This agrees with the physical intuition
that the electrons travel freely along the chain and appear at every site with uniform
probability. When l ̸= l′, by introducing ω ≡ 2π(l−l′)

L
, we arrive at

⟨ΨN |f †
lσfl′σ′ |ΨN⟩ =

1

L
δσσ′

eiωkmax − e−iωkmax

1− eiw

=
1

L
δσσ′

sin
[
ω
(
kmax + 1

2

)]
sin
(
ω
2

)
=

1

L
δσσ′

sin
(
ωN
4

)
sin
(
ω
2

) .
(2.20)
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In the thermodynamic limit where N,L → ∞ while η = N/(2L) is kept fixed, the off-
diagonal elements of the 1RDM become

lim
L→∞
⟨ΨN |f †

lσfl′σ|ΨN⟩ =
sin(πdη)

πd
≡ W (d, η), (2.21)

where d= |l − l′| is the orbital separation distance.

Next, we use Wick’s theorem to calculate the quantities needed for the entanglement
between the orbitals l and l′ from the elements of the 1RDM derived above. The relevant
operators for calculating r and t in the analytic formula (2.3) are the orthogonal projection
P̂ ll′
−− onto the local odd parity subspace, and the orthogonal projections P̂ ll′

Ψ±
onto |Ψ±⟩, all

defined on the orbitals l and l′

P̂ ll′

−− =
∑
i,j=l,l′

∑
στ

n̂iσn̂jτ (1− n̂iσ̄)(1− n̂jτ̄ )

P̂ ll′

Ψ± = |Ψll′

± ⟩⟨Ψll′

± |
= n̂l↑n̂l′↓(1−n̂l↓)(1−n̂l′↑)± f †

l↑f
†
l′↓fl′↑fl↓.

(2.22)

Here, n̂lσ =f †
lσflσ denotes the spin-σ particle number operator on orbital l, and σ̄ denotes

the opposite spin of σ. After some straightforward but lengthy calculations, we obtain the
following expressions for the parameters r and t, required in Eq. (2.3),

t = max{⟨ΨN |P̂ ll′

Ψ± |ΨN⟩} = A+B,

r = ⟨ΨN |P̂ ll′

−−|ΨN⟩ − t = 3A− 3B,
(2.23)

where
A ≡

[
η2 − η −W (d, η)2

]2
, B ≡ W (d, η)2. (2.24)

With this, the N-SSR entanglement can be neatly expressed as

E(ρ̃Nll′) = (A+B) log

(
A+B

2A−B

)
+ (3A− 3B) log

(
3A− 3B

2A−B

)
(2.25)

provided the entanglement criteria (2.5) (here it translates to A < 2B) is met, and oth-
erwise 0. We present in Figure 2.1 the orbital-orbital entanglement as a function of the
filling fraction η, at various orbital separations d, together with the entanglement when
only P-SSR is assumed, also obtained analytically.

Figure 2.1 reveals the rich entanglement structure of the Slater determinant ground
state. At different particle filling fraction η, the orbital-orbital entanglement behaves in
qualitatively distinct ways, which we will now account for in detail. First, we notice that
the curve of orbital-orbital entanglement is symmetric around the half-filling point η=1/2.
This is due to the unbroken particle-hole symmetry of the Hamiltonian (2.14) in the ground
states. Moreover, observing (2.25), we notice that the entanglement as a function of η is
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Figure 2.1: Entanglement between the spatial orbitals separated by inter-orbital distance
1 (solid), 2 (dashed), 10 (dashed-dotted), and 100 (dotted), under P-SSR (red) and N-
SSR (blue) in the ground state of the tight-binding Hamiltonian (2.14) as a function of
the particle/hole density η. In the left panel, the dashed-dotted and dotted curves look
essentially flat. They can be seen more clearly in the log-log plot in the right panel.

symmetric about η=1/2. Because of this, it suffices to consider only 0≤η≤1/2, and treat
it as a particle or hole filling fraction. For this η-region, we present the entanglement and
filling fraction both in log-scale in the right panel of Figure 2.1 for more details.

Second, the analytic properties of the orbital-orbital entanglement highly depend on
the combination of orbital separation d and the filling fraction η. The common feature
here is the vanishing of orbital-orbital entanglement at both η=0 and η=1. In these two
cases the ground state is invariant under any orbital rotation and contains zero correlation
in any orbital basis. For two neighboring orbitals (d = 1), the entanglement between
them is maximized exactly when the chain is half filled (η=1/2), for both P- and N-SSR
entanglement. Around half-filling, the P-SSR entanglement is significantly higher than the
N-SSR one. This is not surprising, as N-SSR imposes a stronger restriction on the accessible
entanglement. Yet, at small particle or hole filling fractions, the two become essentially
the same. For d≥2, the P- and N-SSR entanglement is practically indistinguishable. This
is because at small particle (hole) filling, the chances of finding a doubly occupied (empty)
orbital is very low, which suppresses the possible amount of entanglement arising from the
even-even parity sector. This observation allows us to restrict the investigation of analytic
properties to the latter by referring to (2.25) for all practical purposes here, and also in
the following section. In this case, two maxima occur which appear symmetrically on the
η-axis about η=1/2 (see the left panel of Figure 2.1) due to the particle-hole symmetry of
(2.25). At a lower η, more and farther separated orbital pairs become entangled, though
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Figure 2.2: Minimal disentangling distance dmin as a function of particle/hole density η.

this entanglement grows vanishingly small with the filling fraction.

Third, we find that entanglement across extremely long distances can be engineered
by tuning the filling fraction to be infinitesimally small. In the right panel of Figure 2.1,
we see more clearly in the log-log scale that for each separation d, there exists a critical
η, below which the two orbitals are always entangled. At the same time, for any filling
fraction η, there is a minimal disentangling distance dmin(η), beyond which all orbital pairs
are in a separable state. This phenomenon of completely vanishing entanglement is called
the sudden death of entanglement [129]. Geometrically, it means nothing else than that the
two-orbital reduced quantum state evolves along a trajectory which at some point enters
the convex set of separable states. We shall explore this phenomenon in more details in
the next section.

Previously, we observed that interesting phenomena such as long-distance entanglement
and sudden death of entanglement occur when the particle filling η or hole filling 1−η is
small. Moreover, the P- and N-SSR entanglement in this region are practically identical.
Therefore, we can focus on the latter in our analysis.

For a fixed orbital separation d, when η ≪ d−1, we Taylor expand (2.21) as W (d, η) =
η +O(η3). The N-SSR entanglement between two orbitals separated by d becomes

E(ρ̃Nij) = 2 log(2)η2 +O(η5), η ≪ d−1, (2.26)

i.e., the N-SSR orbital-orbital entanglement is quadratic in η for small η. In log-log scale
this relation becomes linear

log(E(ρ̃Nij)) = 2 log(η) +O(1), η ≪ d−1. (2.27)
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For the sake of completeness, we also verify that the P-SSR entanglement indeed reduces
to the N-SSR one, i.e.

log(E(ρ̃Pij)) = 2 log(η) +O(1), η ≪ d−1. (2.28)

Eqs. (2.27) and (2.28) then explain the asymptotic linear behavior of both the P-SSR
(red) and N-SSR (blue) entanglement in the log-log scale, with the same slope and for any
separation d, in Figure 2.1 (right panel). This relation is more robust for small separation
d, as we can see that for large separation the orbital-orbital entanglement quickly deviates
from the linear asymptote and plunges into sudden death as η increases. On the other
hand, for small η and d < dmin(η), the orbital-orbital entanglement is only a function of
η, but not of d. All orbital pairs below the critical separation are equally entangled with
one another. Due to the particle-hole symmetry, the orbital-orbital entanglement at small
hole fraction 1−η ≪ d−1 is also quadratic in 1−η.

Beyond the critical separation dmin(η), all orbital pairs are disentangled. Based on
Figure 2.2, dmin(η) seems to diverge as η approaches 0. To understand the asymptotic
behavior of dmin(η) at small η, we analyze the entanglement criteria (2.5). Recall from the
previous section that the two orbitals are in a separable state if A and B in (2.24) satisfy
the relation A ≥ 2B, which in explicit terms reads

η2 − η ≤ W (d, η)2 −
√

2|W (d, η)|. (2.29)

Although (2.29) cannot be solved analytically, in the limit of large d using the expansion
W (d, η) ≈ (πd)−1 we can derive an analytic estimation for the minimal disentangling
separation dmin(η)

dmin(η) =

√
2

π

1

η(1−η)
+O(1). (2.30)

In log-log scale, this relation becomes linear

log(dmin(η)) =

{
−

√
2
π

log(η) +O(η), η ≪ 1,

−
√
2
π

log(1−η) +O(1−η), 1−η ≪ 1.
(2.31)

In Figure 2.2, we plot the exact minimal disentangling distance obtained by numerically
locating the sudden death of entanglement using (2.29), together with the analytic estima-
tion (2.30). We can see the agreement is excellent, even up to the order 10−1 in η.

2.2 Hydrogen ring

In the previous section, we thoroughly explored the orbital-orbital entanglement of the
tight-binding model (2.14), using the analytic tools provided in Ref. [107]. In this section,
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we upgrade the tight-binding model to the hydrogen ring H16, while fashioning an orbital
localization scheme that produces Wannier type orbitals similar to the tight-binding model.
The hydrogen ring (or open chain) is a common system for benchmarking ground state
methods due to its strongly correlated character [130]–[133]. This system shares many
similarities with the tight-binding chain: a localized orbital basis can be established, and
there is a local hopping generated by the overlapping atomic orbitals. As a molecular
system, however, it additionally contains a periodic nuclear potential and the Coulomb
interaction between the electrons, which is the source of computational complexity. It
is thus of considerable interest to ask, to what extent the entanglement effects in the
hydrogen ring can be explained by the insights we gained from the tight-binding model
(2.14) of non-interacting electrons in the previous section.

2.2.1 Model and Hamiltonian

We consider a finite periodic hydrogen ring, defined by the uniform nearest internuclear
distance R, with the minimal STO-3G basis set. This basis contains one 1s orbital at each
atomic center, and it is the minimal setting for describing the dissociation of hydrogen
molecules.

The electronic Hamiltonian contains three terms: the nuclear potential, the kinetic
energy, and the Coulomb interaction. In the second quantization formalism, they can be
conveniently packed into the one- and two-electron Hamiltonians ĥ and V̂ , which comprise
the total electronic Hamiltonian

Ĥ = ĥ+ V̂ =
∑
ij

∑
σ

hijf
†
iσfjσ +

1

2

∑
ijkl

∑
σσ′

Vijklf
†
iσf

†
jσ′flσ′fkσ, (2.32)

where

hij =

∫
dx3ϕ∗

i (x)

(
− ℏ

2me

∇2 +
M−1∑
m=0

Zm
|x̂−Xm|

)
ϕj(x),

Vijkl =

∫
dx3dx′3ϕ∗

i (x)ϕ∗
j(x

′)
1

|x̂− x̂′|
ϕl(x

′)ϕk(x).

(2.33)

Here, ϕi’s are orthonormal molecular orbitals which form a complete basis of the one-
particle Hilbert space spanned by the non-orthogonal atomic orbitals. M is the total
number of nuclear centers with charges Zm. In the case of H16, Zm=1 for all m=1, 2, . . . , 16
and Xm are defined as

Xm =
R

2 sin
(
θ
2

)(cos(mθ), sin(mθ), 0), θ =
2π

16
, (2.34)

so that the 16 hydrogen atoms are arranged evenly on a ring, with the straight-line distance
between two nearest neighbor atoms equal to R. From here on, we shall use atomic units
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Figure 2.3: Wavefunction values of the localized orbitals in H16 in the STO-3G basis, for
various nearest neighbor distances R (a.u.). Nuclear centers are represented as black dots.
The horizontal range is 16 a.u., and the vertical range 6 a.u..
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Figure 2.4: Absolute values of matrix elements of the one-electron Hamiltonian |(h1)ij|
(a.u.) with i ̸= j, for nearest neighbor separation R = 1, 2, 3, 5 (a.u.). Periodic boundary
conditions are imposed by the ring geometry.

(denoted by a.u.) for both distance and energy, which correspond to Bohr and Hartree,
respectively.

The matrix elements of the one- and two-electron Hamiltonians are explicitly orbital
basis dependent. The set of localized orthonormal orbitals is obtained by symmetrically
orthogonalizing [134] the local 1s atomic orbitals. In Figure 2.3, we plot these localized or-
bitals for different nearest neighbor distances R. Locally they resemble the atomic orbitals,
but they necessarily have finite contributions from atomic orbitals on other nuclear centers
to ensure orthogonality. At R=1, each localized orbital at the corresponding atomic center
still contains significant weight of the atomic orbitals on the nearest neighbors, while for
R≥3, the localized orbitals are virtually single-centered.

Do these localized orbitals exhibit a local interaction structure similar to the tight-
binding chain? To answer this question, we plot the hopping terms hij for i ̸= j in Figure
2.4. Recall that the hydrogen atoms are arranged on a ring, and therefore orbital 1 and
16 are in fact nearest neighbors, despite appearing on the opposite ends of the axes in
Figure 2.4. At small separation, e.g. R = 1 (a.u.), hopping between distant localized
orbitals is possible, but the hopping strength decays exponentially as internuclear distance
increases. As we stretch the hydrogen ring, the hopping strength decays faster with the
orbital separation. Finally atR=5 (a.u.), the hopping is strictly between nearest neighbors,
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Figure 2.5: P-SSR entanglement between localized orbitals in H16 in STO-3G basis, for
various numbers N of electrons and nearest neighbor distances R (a.u.). Since all orbitals
are identical up to relabeling, only entangled pairs involving orbital 1 (filled red circle) are
shown.

just as in the tight-binding model (2.14).

The calculation of the ground state of the hydrogen ring is done in three steps: (1)
using the atomic wavefunction overlap matrix provided by Molpro [135]–[137], we sym-
metrically orthogonalize [134] the atomic orbitals into the localized orbitals, for nearest
neighbor separation R = 1, 2, 3, 5 (a.u.). (2) With a preceding Hartree-Fock calculation,
we then transform the Hartree-Fock canonical orbitals into the localized orbitals as a post
Hartree-Fock step, and compute the matrix elements of the one- and two-electron Hamil-
tonians followed by outputting them in FCIDUMP [138] file format, all within the framework
of Molpro. (3) With the FCIDUMP file, quantum chemistry density matrix renormaliza-
tion group (QC-DMRG) calculations are performed to solve for the ground states, using
the SyTen [139], [140] package, originally created by Claudius Hubig. The calculations
are carried out for various electron numbers, initialized with random configuration states.
The DMRG convergence is particularly challenging, because of both the strong intrinsic
correlation in the system and the additional entanglement due to the localized orbital basis
representation. For the data we use, the maximal bond dimension is set at m=1000. The
final energies are chemically accurate, verified by the energy improvement below the order
10−3 (a.u.) in the DMRG calculations performed with bond dimension 2000.
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2.2.2 Entanglement between orthogonal atomic orbitals in H16

In this section, we present our main findings on the entanglement structure of the hydrogen
ring H16. We tabulate in Figure 2.5 the P-SSR entanglement between two localized orbitals
for various nearest neighbor separations R and different numbers of electrons N in the
ground state. For readability, we exploit the rotational symmetry of the system and only
plot the entanglement associated to the localized orbital labeled 1 (represented as filled red
circle). Entanglement involving other localized orbitals can be understood by relabeling
them. The exact values of the P- and N-SSR entanglement can be found in Table D.1 and
Table D.2 in Appendix D, respectively. With these data, we observe three consequential
features of the orbital-orbital entanglement between the localized orbitals in H16.

First, we observe that at half-filling (N = 16), the orbital-orbital entanglement is in
complete agreement with the tight-binding model (2.14), namely only neighboring localized
orbitals are entangled. In fact, this agreement extends beyond half-filling, as there is
a region of filling fraction around 1/2 where all orbital pairs separated by more than one
lattice constant are disentangled, exactly as in Figure 2.1. This is particularly surprising for
systems with small nearest neighbor distance R, since there the hopping strength beyond
nearest neighbors is rather considerable.

Second, at low or high filling, the hydrogen ring also displays long-distance entangle-
ment similar to the tight-binding model. This phenomenon here differs from the latter,
however, by preferring to entangle localized orbitals that are farther apart. Recall that in
the tight-binding model, the orbital-orbital entanglement is uniform when long-distance
entanglement is realized. This departure from the non-interacting scenario is best exem-
plified by the N=2 column in Figure 2.5. In the ground state, due to the strong Coulomb
repulsion, the two electrons would like to situate themselves as far apart as possible, form-
ing singlet pairs at distant localized orbitals. Singlet states of such type, usually observed
in a dissociated molecule, contain significant amount of entanglement. Singlet states real-
ized on orbitals located closer to each other are of course possible, but they contribute to
the total ground state with smaller weights. These two observations put together qualita-
tively explain the system’s preference for long-distance entanglement at low particle filling.
Furthermore, we notice that despite the lack of particle-hole symmetry in the system, the
orbital entanglement in the N =30 column in Figure 2.5 displays a similar behavior as in
N=2.

Third, the long-distance entanglement in the hydrogen ring is far more potent than
that in the tight-binding model. In Eq. (2.26), we see that the long-distance entanglement
in the tight-binding chain is quadratic in η for small η, which is obviously not the case
here. This is best demonstrated by the entanglement between orbitals 1 and 9, which form
the farthest separated pair, at N=2. The entanglement between them is of the order 10−2,
which is the same order as the nearest neighbor entanglement. In the tight-binding model,
the available entanglement at this filling fraction would yield at the order 10−3. This
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yet again validates that interacting electronic systems contain significant entanglement
that naturally distributed across distant spatial regions, making them ideal platforms for
realizing quantum information protocols.

Chapter Summary

To summarize, in Section 2.1 we built upon Ref. [107] and derived analytic expressions for
the entanglement between any two spatial orbitals in the tight-binding model (2.14), as
a function of both inter-orbital separation d and particle filling fraction η. In particular,
Eq. (2.3) revealed the existence of long-distance entanglement when the filling fraction is
close to 0 or 1. Moreover, our asymptotic analyses for small particle (hole) filling fraction
revealed that the entanglement between two orbitals is almost independent of their distance
d, and quadratic in the particle (hole) filling fraction. For a fixed filling η, the entangling
range is still finite, evident by the sudden death of entanglement when the two orbitals
are separated beyond a critical distance. The leading order of the minimal disentangling
distance dmin is proven to be diverging as η−1 when η is small, and (1−η)−1 when η is close
to 1.

In Section 2.2 we then upgraded the tight-binding model to the hydrogen ring, and
analyzed the orbital-orbital entanglement therein. We discovered that the entanglement
between the localized orbitals on the hydrogen ring can to a large degree be rationalized
using the much simpler tight-binding model: close to half-filling only nearest neighbor
orbitals can be entangled, but away from half-filling, long-distance entanglement appears.
Yet, in contrast to the vanishingly weak long-distance entanglement in the tight-binding
model, the entanglement between two localized orbitals sitting on far-separated nuclei is
much more potent, at an order comparable to the nearest neighbor entanglement at half-
filling. This surprising feature, conjectured to be a result of Coulomb interaction, suggests
that chain-like molecules can potentially be considered as reservoirs of entanglement, and
platforms for quantum information processing tasks.
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Chapter 3

Orbital Entanglement in Covalent
Bonds

Covalent bonding is a fundamentally quantum effect that binds atoms together as molecules.
In 1916, Lewis first proposed the “octate rule” which defines the Lewis structure of bonding
molecules [141] that every chemistry undergraduate student nowadays learns. The overlap
between atomic orbitals from different atoms promotes the sharing of electron, and thus
lowers the energy when the system is at equilibrium geometry. The idea of electron sharing
from the Lewis theory still lies in the heart of modern theories of covalent bonding, and
gave birth to many quantifiers that measures the order of a bond [142]. Examples include
the covariance of atomic populations [143], electron delocalization index [144], Wiberg’s
index [145], to name a few. Most of these quantifiers can recover quite well the bonding
picture in the Lewis paradigm.

However, there are many more systems that lie beyond the standard Lewis structures,
and their bonds involve more than two atomic centers at a time. To characterize them,
several multi-center bonding indices (MCI) were developed in attempt to prolong the suc-
cess of the idea of electron sharing [146]–[151], but they suffer from several conceptual
limitations. First, they generally require the pre-determined knowledge of the number of
centers involved in the bond. Second, in the regime of large basis set, MCI can be rather
difficult to calculate. Third, with or without additional normalization of such indices, it is
conceptually delicate to compare the MCI values in bonds that involve different numbers
of centers. Due to these limitations, so far there is no universally accepted post-Lewis
bond order measure that is able to consistently and automatically extract the multi-center
bonding structures from ab initio calculations with improvable accuracy.

Taking a step back, one realizes that electron sharing between two spatial regions
is essentially reflected by the correlation function of electron density of the two regions,
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much like a two-site correlator serving as the order parameter of a phase in a lattice
model [152], [153]. Similar to the idea of using entanglement as an indicator of phase
transition rather than resorting to one specific order parameter for each phase [23], [24],
quantifying the all-inclusive entanglement between (among) the atomic regions, may finally
resolve the above ambiguities related to electron sharing [154], [155]. Moreover, extenstive
theories from quantum information on the quantification of bipartite [4]–[6], [156] and even
multipartite entanglement [83]–[86] could facilitate a new bonding measure that assesses
the large variety of bonding mechanisms under a unified framework.

To this end, there are a few conceptual questions we need to answer. First, how are
the atomic regions defined? Establishing the notion of an atom in the molecule is the
necessary first step of any bonding theory. Currently, there are two main approaches:
One is the partitioning of the real space, leading to Bader’s quantum theory of atoms in
molecules (QTAIM) [157] and theories of “fuzzy atoms” [158]. While the real space ap-
proach is intuitive and is relatively insensitive to the choice of atomic basis sets, integrating
(many-)electron density over the real space comes with demanding computational cost and
is prone to numerical errors [159]. The other approach is the partitioning of the single-
particle Hilbert space based on various orbital localization schemes [160]–[163], which is
the approach we follow. But they introduce an additional degree of arbitrariness in the way
that the orbitals are localized. This then brings us to the second question, namely, how
does orbital localization affect orbital entanglement? To answer this, we must compare
the orbital entanglement patterns at different degrees of orbital localization (delocalized,
partially localized, and fully localized). The third question is, given the variety of different
correlation measures discussed in Section 1.1, which one is more relevant for the description
of a chemical bond? Or more precisely, should it be the total correlation, quantum correla-
tion, or entanglement between the orbitals? And lastly, keeping in mind the ongoing second
quantum revolution, we are also interested in the amount of useful entanglement between
the atomic regions. This would mean to also take into account different superselection
rules when quantifying orbital entanglement.

This chapter is organized as follows: In Section 3.1 we will thoroughly explore the
effect of orbital localization together with P- and N-SSR, on various correlation quantities
including the pivotal entanglement. We will demonstrate these effects in terms of both
toy model examples for gaining analytic insights on the connection between orbital entan-
glement and chemical bonds, and ab initio ground state calculations for validating these
insights in the presence of electron interaction. In Section 3.2 we turned what we learned
in Section 3.1 into a fully automated construction of maximally entangled atomic orbitals
(MEAO). Under this framework, we will define a unified measure for two- and multi-center
bonds using genuine multipartite entanglement (GME).
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3.1 Basis dependence of orbital entanglement

3.1.1 Analytic examples

In this subsection we demonstrate with two analytic examples (i) the strong influence of
superselection rules on the accessible correlation and entanglement, (ii) the drastic dif-
ference of orbital correlation and entanglement between delocalized and localized orbital
basis representation, and (iii) the subtle connection between entanglement and chemical
bonding.

Single electron state

We consider a single polarized electron within the space of two orbitals A and B. The
state of the electron is then simply a superposition of the form

|Ψ(θ, φ)⟩ = cos(θ)|1A, 0B⟩+ eiφ sin(θ)|0A, 1B⟩, (3.1)

where |nA, nB⟩ ≡ (f †
A)nA(f †

B)nB |0⟩ are local occupation number eigenstates, and θ ∈ [0, π),
φ ∈ [0, 2π). Such a state belongs to the one-particle Hilbert space H(1) isomorphic to that
of a single qubit, which is a subspace of the four-dimensional total Fock space F [H(1)].

Referring to the tensor product between the two local Fock spaces F [H(1)] = F [H(1)
A ]⊗

F [H(1)
B ], the density operator ρ(θ, φ) is given in the basis |0A, 0B⟩, |1A, 0B⟩, |0A, 1B⟩, |1A, 1B⟩

by,

ρ(θ, φ) = |Ψ(θ, φ)⟩⟨Ψ(θ, φ)| =


0 0 0 0

0 cos2(θ) eiφ

2
sin(2θ) 0

0 e−iφ

2
sin(2θ) sin2(θ) 0

0 0 0 0

 . (3.2)

Since ρ(θ, φ) is pure (cf. Eq. (1.3)), the associated entanglement E and quantum correlation
Q are the same, and so are the closest separable χρ and classical states σρ, respectively.
The closest product state πρ as well as the classical and separable states (in this case they
coincide) χρ to ρ(θ, φ) is diagonal in the same basis with

diag(πρ) = (cos4(θ),
1

4
sin4(2θ),

1

4
sin4(2θ), sin4(θ)),

diag(χρ) = (0, cos2(θ), sin2(θ), 0).
(3.3)

Moreover, the total correlation I, quantum correlation Q, classical correlation C, and
entanglement E of ρ(θ, φ) are given by

1

2
I(ρ) = Q(ρ) = C(ρ) = E(ρ)

= −[cos2(θ) log(cos2(θ))+sin2(θ) log(sin2(θ))]

≡ P (θ).

(3.4)
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I C Q E

No SSR 2P (θ) P (θ) P (θ) P (θ)

P/N-SSR P (θ) P (θ) 0 0

Table 3.1: Total correlation I, classical correlation C, quantum correlation Q, and entan-
glement E between the two orbitals A and B in the single electron state (3.1), for the case
without SSR and with P/N-SSR.

In the presence of a superselection rule, the superselected state ρP(θ, φ) (ρN(θ, φ)) loses all
coherence between different local parity (particle number) sectors

ρP, N(θ, φ) = cos2(θ)|1A, 0B⟩⟨1A, 0B|+ sin2(θ)|0A, 1B⟩⟨0A, 1B| . (3.5)

As can be easily seen from its form in Eq. (3.5), the superselected state ρP, N(θ, φ) is
separable, since it can be written as a simple mixture of product states. Furthermore,
it is also classical since it is diagonal in a product basis. From this it follows, that all
correlation in (3.5) between the two orbitals are classical. Therefore a single electron state
of the form (3.1) does not contain any useful entanglement or quantum correlation resource.
We summarize all correlation quantities with and without SSRs in Table 3.1.

Single covalent bond

In the second analytic example, we apply the same quantum information concepts as in
the previous section now to a pair of bonding electrons in a symmetric diatomic molecule,
described by the state

|Ψ⟩ = f †
ϕ↑f

†
ϕ↓|0⟩ . (3.6)

Here, ϕ is the bonding orbital, formed by superimposing two 1s-like orbitals on the two
nuclear centers L (left) and R (right)

ϕ =
φL + φR√

2(1 + ⟨φL|φR⟩)
. (3.7)

Before we are able to proceed with a calculation of the correlation in |Ψ⟩, being it quan-
tum or classical, we first have to decide on a choice of orbital splitting. An obvious choice
would be to consider the correlation between the bonding orbital ϕ and the corresponding
antibonding orbital

ϕ̄ =
φL − φR√

2(1− ⟨φL|φR⟩)
. (3.8)

Together ϕ and ϕ̄ form a minimal active space, within which we will perform all our
entanglement analysis. Referring to the splitting between ϕ and ϕ, |Ψ⟩ is clearly a product
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Figure 3.1: (a) Formation of the (up to normalization) bonding orbital ϕ with two local
atomic 1s-type orbitals φL and φR with nuclear centers at xL,R. (b) Projection of the
bonding orbital onto the left and right half space. (c) Rotated bonding and antibonding
orbitals ψL and ψR.
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state. As a result, it has zero correlation and entanglement. While this finding seems odd
at first sight, as one would expect a considerable amount of entanglement to be “stored” in
a chemical bond, let us next consider a different, seemingly less intuitive alternate choice
of the splitting.

In the top panel of Figure 3.1, we illustrate the formation of the bonding orbital ϕ from
the two local 1s-type orbitals φL and φR, respectively. We then make a cut at the center
of the molecule dividing the space into left and right half, and project the bonding orbital
onto the two half-spaces (central panel), denoted as ϕL and ϕR. After normalization, the
resulting two-electron wave function (3.6) can be written as

|Ψ⟩ =
1

2
(f †
ϕL↑ + f †

ϕR↑)(f
†
ϕL↓ + f †

ϕR↓)|0⟩

=
1

2
(f †
ϕL↑f

†
ϕL↓+f †

ϕR↑f
†
ϕR↓+f †

ϕL↑f
†
ϕR↓−f

†
ϕL↓f

†
ϕR↑)|0⟩.

(3.9)

Hence, with respect to a splitting between the left and right projected orbitals ϕL and
ϕR, simple calculations lead to a set of entirely different values of correlation quantities of
ρ = |Ψ⟩⟨Ψ|

1

2
I(ρ) = Q(ρ) = C(ρ) = E(ρ) = 2 log 2. (3.10)

When superselection rules are considered, P-SSR and N-SSR eliminate coherent terms
between different local parity and particle number sectors, respectively, leading to supers-
elected states of the form

ρP =
1

2
|Ψeven⟩⟨Ψeven|+

1

2
|Ψodd⟩⟨Ψodd|

ρN =
1

4
|Ψ2,0⟩⟨Ψ2,0|+

1

4
|Ψ0,2⟩⟨Ψ0,2|+

1

2
|Ψ1,1⟩⟨Ψ1,1|,

(3.11)

where

|Ψodd⟩ = |Ψ1,1⟩ =
1√
2

(f †
ϕL↑f

†
ϕR↓ − f

†
ϕL↓f

†
ϕR↑)|0⟩,

|Ψeven⟩ =
1√
2

(f †
ϕL↑f

†
ϕL↓ + f †

ϕR↑f
†
ϕR↓)|0⟩

|Ψ2,0⟩ = f †
ϕL↑f

†
ϕL↓|0⟩,

|Ψ0,2⟩ = f †
ϕR↑f

†
ϕR↓|0⟩.

(3.12)

In this case both P- and N-SSR reduce quantum correlation as well as entanglement by 50%
and 75%, respectively, while at the same time having no effect on the classical correlation.
Consequently, the total correlation is lowered by the same amount of decrease in the
quantum correlation, as the relation I = C + Q holds in this case. We summarize the
correlation quantities with and without SSRs in Table 3.2.
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ϕ, ϕ I C Q E

No SSR 0 0 0 0

P, N-SSR 0 0 0 0

ϕL, ϕR I C Q E

No SSR 4 log 2 2 log 2 2 log 2 2 log 2

P-SSR 3 log 2 2 log 2 log 2 log 2

N-SSR 5
2

log 2 2 log 2 1
2

log 2 1
2

log 2

Table 3.2: Total correlation, classical correlation, quantum correlation, and entanglement
between the bonding and antibonding orbitals in single bond state |Ψ⟩ in (3.6) (top panel),
and between the two projected orbitals in the same state |Ψ⟩ re-expressed in (3.9) (bottom
panel), for the case without SSR, with P- and N-SSR.

This example already illustrates that, by referring to a suitable orbital splitting that
allows to capture a certain degree of spatial locality, one can recover strong correlation as
one would expect in a chemical bond. Although the above choice of splitting seems from a
quantum information perspective to be reasonable in terms of recovering correlation effects,
it requires an artificial cut of the bonding orbital into two halves. Moreover, from the
resulting orbitals ϕL and ϕR, one cannot recover the antibonding orbital ϕ ∝ φL−φR. As a
matter of fact, {ϕL, ϕR} do not span the same Hilbert space as the two local atomic orbitals
{φL, φR}. Therefore, the optimal approach must include in addition the antibonding orbital
ϕ into the total Hilbert space. To explore all possible choices of orbital bases, we unitarily
(assuming for simplicity but without loss of generality real coefficients) transform the
orbitals ϕ, ϕ

ψL = cos(θ)ϕ+ sin(θ)ϕ,

ψR = − sin(θ)ϕ+ cos(θ)ϕ.
(3.13)

After this unitary basis rotation, we can rewrite the state |Ψ⟩ in Eq. (3.6) as

|Ψ⟩ = [cos2(θ)f †
ψL↑f

†
ψL↓ + sin2(θ)f †

ψR↑f
†
ψR↓ + cos(θ) sin(θ)(f †

ψL↑f
†
ψR↓ − f

†
ψL↓f

†
ψR↑)]|0⟩. (3.14)

The spectrum of the orbital reduced state ρL can be read off from the above expansion

Spec(ρL) = {cos4(θ), sin4(θ), cos2(θ) sin2(θ), cos2(θ) sin2(θ)}. (3.15)

The entanglement of ρ = |Ψ⟩⟨Ψ| is simply the von Neumman entropy of ρL

E(ρ) = S(ρL)

= − cos4(θ) log(cos4(θ))− sin4(θ) log(sin4(θ))

− 2 cos2(θ) sin2(θ) log(cos2(θ) sin2(θ))

= −2 cos2(θ) log(cos2(θ))− 2 sin2(θ) log(sin2(θ))

= 2P (θ).

(3.16)
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From Eq. (3.16) it follows that maximal entanglement is realized by a rotation with angle
θ = π

4
. As can be seen from Table 3.2, in the latter basis the resulting E(ρ) reaches also

2 log 2, in perfect agreement with the case of the artificial half-splitting discussed previously.
Moreover, assuming a rotation of θ = π

4
, the transformed orbitals ψL and ψR, illustrated in

the bottom panel (c) of Figure 3.1, are simply equal superpositions of the initial bonding
ϕ and antibonding ϕ orbitals, with plus and minus signs respectively. As a matter of fact,
the final expression for the state in Eq. (3.14), expressed in the basis {ψL, ψR}, takes the
same form as its counterpart in Eq. (3.9), with the replacement ψL,R → ϕL,R. Therefore,
in the particular choice of θ = π

4
, we find that all correlation quantities (with or without

SSRs) of the state given by Eq. (3.14) coincide with those of the state in Eq. (3.9). Thus,
we can interpret the rotation angle θ = π

4
as the point where maximal orbital localization

effect is achieved, while still keeping the orbitals orthogonal and without dissecting them.

To explore more comprehensively the connection between orbital entanglement and
chemical bonding, let us consider the cases of maximal and minimal entanglement in some
prototypical states of definite bond order. In molecular orbital (MO) theory, the bond
order of a state is defined as the difference in the occupation number between the bonding
orbital ϕ and its antibonding orbital partner ϕ divided by 2 [164], [165]

bond order =
1

2
(Nbond −Nantibond). (3.17)

To illustrate the concept of a bond order we consider the following four states

|Ψ1⟩ = f †
ϕ↑|0⟩,

|Ψ2⟩ = f †
ϕ↑f

†
ϕ↓|0⟩,

|Ψ3⟩ = f †
ϕ↑f

†
ϕ↑f

†
ϕ↑|0⟩,

|Ψ4⟩ = f †
ϕ↑f

†
ϕ↓f

†
ϕ↑f

†
ϕ↓|0⟩,

(3.18)

which have a bond order of 1
2
, 1, 1

2
, and 0, respectively, according to (3.17). We can

easily find the minimal entanglement of all four states to be zero, with respect to the
orbital partition between ϕ and ϕ, that is, the bonding and antibonding orbitals. Under
an arbitrary orbital rotation of angle θ

f †
ψLσ

= cos(θ)f †
ϕσ + sin(θ)f †

ϕσ
,

f †
ψRσ

= sin(θ)f †
ϕσ − cos(θ)f †

ϕσ
,

(3.19)

the four states transform to

|Ψ1⟩=cos(θ)f †
ψL↑|0⟩+ sin(θ)f †

ψR↑|0⟩,
|Ψ2⟩=cos2(θ)f †

ψL↑f
†
ψL↓|0⟩+ sin2(θ)f †

ψR↓f
†
ψR↓|0⟩+ cos(θ) sin(θ)(f †

ψL↑f
†
ψR↓ − f

†
ψL↓f

†
ψR↑)|0⟩,

|Ψ3⟩=f †
ψL↑(cos(θ)f †

ψL↓f
†
ψR↑−sin(θ)f †

ψR↑f
†
ψR↓)|0⟩,

|Ψ4⟩=f †
ψL↑f

†
ψL↓f

†
ψR↑f

†
ψR↓|0⟩.

(3.20)
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ϕ ↑ ↑↓
ϕ ↑ ↑↓ ↑↓ ↑↓

|Ψ1⟩ |Ψ2⟩ |Ψ3⟩ |Ψ4⟩
Bond Order 1

2
1 1

2
0

Emax log 2 2 log 2 log 2 0

Emin 0 0 0 0

Table 3.3: Bond order, maximal and minimal entanglement of the four states given in
Eq. (3.18).

The latter shows that the resulting entanglement E with respect to the partition between
ψL and ψR of |Ψ1,2,3⟩ is maximized for θ = π

4
, whereas the entanglement of |Ψ4⟩ remains

invariant under orbital transformation. To summarize these findings we compile in Table
3.3 the maximal and minimal entanglement of these four states as a function of the bond
order. Remarkably, we find that the maximal entanglement, realized between the maxi-
mally localized orbitals, is indeed proportional to the bond order (3.17) of each state. A
single bond of bond order 1 thus corresponds to the entanglement value E = 2 log 2 be-
tween the fully-localized atomic-like orbitals. Intriguingly, this value exceeds by an order
of magnitude the numbers reported in previous studies [62], [155], [166]–[172]. In turn,
this clearly demonstrates that quantum information tools applied to delocalized orbitals
describe primarily the validity of the independent electron-pair picture rather than the
bonding structure of molecular systems.

Lastly, we remark that the insights we gained from the single covalent bond states
extends beyond bonds of order 1. Namely, for a prototypical K-fold bond state |ΨK⟩ =∏K

k=1 f
†
ϕk↑f

†
ϕk↓|0⟩, rotating pairs of bonding and antibonding orbitals ϕk and ϕ̄k by π/4

leads to K pairs of maximally entangled rotated orbitals, amounting to K(2 log 2) of total
orbital-orbital entanglement.

3.1.2 Numerical examples: ethylene, polyene, and benzene

In the previous section we identify in the simple molecular orbital (MO) picture that a
single covalent bond correspond to a pair of maximally entangled localized atomic-like or-
bitals. Now, we would like to extend this identification (i) to cases of interacting electrons
in molecules, (ii) cases of more than two atomic centers, and (iii) cases without a clear
Lewis structure. To still maintain a tight connection to the analytic examples above, we
consider only the out-of-plane π-orbitals of ethylene (C2H4), polyenes (CH2-(CH)n-CH2),
and bezene C6H6, so that only one atomic orbital per atomic center is taken into consider-
ation. The π-orbitals of each molecule form a complete active space (CAS), within which



54 3. Orbital Entanglement in Covalent Bonds

we solve the electronic interaction problem to near exact accuracy using a matrix product
state (MPS) ansatz optimized by density matrix renormalization group (DMRG) software
QCMaquis [173]–[175]. The remaining orbitals associated to the σ-bonds are treated in a
mean-field manner. All calculations were carried out in C1 point group symmetry as well
as with correlation-consistent Dunning-type basis sets [176] of double-ζ quality (cc-pVDZ).

In order to critically assess the correlation contributions introduced in Section 1.1
within the π-space of our molecular systems, we considered three distinct set of MOs that
are related to each other by suitable orbital rotations. We first performed self-consistent
field (SCF) Hartree-Fock (HF) calculations for the spin-singlet (S = 0) ground state of
each molecule, yielding a set of canonical HF MOs for the respective molecular systems.
In a following step, we then applied a Pipek-Mezey (PM) [161] localization procedure which
gives a second set of partially localized MOs (dubbed as “PM-localized” in the following)
while retaining the σ- and π-character of the initial canonical MOs, respectively. It should
be emphasized that, although it is possible to perform the PM-localization on the entire
set of canonical MOs [154], in this work the PM-localization is implemented separately
within the bonding (occupied) and antibonding (virtual) orbital subspaces, as it is common
practice in the quantum chemistry community. The final set of atomic-like orbitals was
obtained by means of a (sequence of) 2 × 2 Jacobi-rotation(s) by an angle θ within the
π-space, and setting out from either the PM-localized MO basis (ethylene and polyenes)
or the canonical MO basis (benzene). In the former, a single rotation by θ = π

4
within a

pair of bonding π and its antibonding partner π∗ suffices to yield the desired atomic-like
molecular basis. In contrast to the remaining molecules studied in this work, obtaining an
atomic-like orbital basis for benzene requires in general six-orbital unitary transformations,
which can be decomposed into three consecutive sets of pairwise rotations (see Appendix
B).

Ethylene

We first study one of the simplest molecules containing a prototypical π-bond, namely
ethylene (C2H4). Since the π-bond comprises only two carbon centers, the resulting CAS
contains only ne = no = 2 or for short CAS(2,2), that is the bonding and antibonding
orbitals π and π∗, which are constructive and destructive superposition of two out-of-plane
pz-orbitals on the two carbon atoms, respectively. For non-interacting electrons, both
electrons would occupy the energetically more favorable π-orbital, forming a product state
with respect to partitioning of the bonding and antibonding orbitals, as in (3.6), whereas
electron interaction lifts the occupancy of the π∗-orbital to around 0.03 electron pair, thus
introducing a small deviation from the aforementioned product state. From this simple
observation, we should expect a low correlation and entanglement between the π- and
π∗-orbital, and this is indeed what we conclude from our analysis in Figure 3.2 for the
common, canonical case. However, more correlation and entanglement will be recovered
as we fully localize these two orbitals.
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C2H4

Canonical I C Q E

No SSR 0.2819 0.1410 0.1410 0.1410

P-SSR 0.2819 0.1410 0.1410 0.1410

N-SSR 0.1410 0.1410 0.0000 0.0000

PM-localized I C Q E

No SSR 0.2819 0.1410 0.1410 0.1410

P-SSR 0.2819 0.1410 0.1410 0.1410

N-SSR 0.1410 0.1410 0.0000 0.0000

Atomic-like I C Q E

No SSR 2.6468 1.3234 1.3234 1.3234

P-SSR 2.0165 1.3234 0.6931 0.6931

N-SSR 1.7916 1.3234 0.4682 0.4682

Figure 3.2: Total correlation I, classical correlation C, quantum correlation Q, and en-
tanglement E between two canonical, PM-localized, and atomic-like orbitals used for con-
structing the ground state of C2H4, for the case without SSR, with P-SSR, and with N-SSR.
For each choice of orbital pair, contour plots (with an isosurface value of 0.05) of the or-
bitals are shown on the right most column.

In Figure 3.2 we listed the total correlation I, classical correlation C, quantum corre-
lation Q, and entanglement E between the two orbitals based on canonical, PM-localized,
and atomic-like orbitals. In addition, for each correlation quantity, the effect of P-SSR and
N-SSR are taken into account in our analysis. Since the active space comprises in all three
cases only two orbitals, it follows that single orbital correlation and entanglement (those
between one orbital and the rest of the system) will coincide with the orbital-orbital ones.

Starting with the canonical case (upper panel of Figure 3.2), all correlation quanti-
ties are low, as anticipated above. In the case without SSRs and recalling that in this
particular example the two-orbital reduced state is pure, the total correlation I is simply
twice the amount of the classical C and quantum parts Q such that there is no distinction
between quantum correlation Q and entanglement E. Interestingly, P-SSR does not show
any diminishing effect in any of the correlation quantities. We can explain this some-
what surprising fact with the observation that the electronic ground state does not contain
contributions from singly-excited configurations, and thus can solely be written as a super-
position of doubly-occupied and empty configurations, respectively. Moreover, this is also
the reason why no quantum correlation or entanglement survive in the presence of N-SSR:
the ground state contains only a superposition of configurations with different local particle
numbers.
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Hence, in order to recover strong correlation and entanglement in the π-bond, we
applied two different localization schemes to the canonical orbitals as detailed at the start
of this section. In this particular case, the PM-localization scheme yields localized π-MOs
matching the original canonical π-orbitals, since the system comprises only σ- and π-type
orbitals and the PM-localization scheme preserves the σ- and π-character of the MOs. As
a result, we see no difference in their respective correlation quantities with respect to the
canonical case and the data for the PM case coincide in all three rows (see second panel
in Figure 3.2) with their respective counterpart in the upper panel of the canonical case.
In passing we note that these findings will not hold when the canonical MOs span over
several bonding regions, as we shall see in the following sections. Our second localization
scheme sets out from the PM-localized MOs (in this case equivalently the canonical MOs)
where we apply in an ensuing step a 2 × 2 Jacobi rotation between the two PM-localized
orbitals by an angle θ = π

4
. This unitary rotation leads to two atomic-like orbitals

ψL =
1√
2
πPM +

1√
2
π∗
PM,

ψR =
1√
2
πPM −

1√
2
π∗
PM,

(3.21)

where π
(∗)
PM are the PM-localized π(∗)-orbitals. As illustrated in the third panel of Figure

3.2 (atomic-like), the resulting ψ1,2 are indeed fully localized around one carbon center
in stark contrast to the localized molecular orbitals obtained from the PM localization
scheme. Moreover, these atomic-like orthogonal orbitals act identically as the original
atomic orbitals, in a sense that the same linear combination of the former as the latter give
rise to the bonding and antibonding orbitals (up to overall normalization)

πPM =
1√
2
ψL +

1√
2
ψR,

π∗
PM =

1√
2
ψL −

1√
2
ψR,

(3.22)

thus preserving the information of the bond construction. And most importantly, we now
recover strong correlation and entanglement in the π-bond. Without SSRs, the entan-
glement E between ψ1 and ψ2 reaches 95% of its maximum value of 2 log 2, in excellent
agreement with the degree of entanglement that we observed for a prototypical bond in the
analytic example discussed in Section 3.1.1. Moreover, the effect of SSRs is qualitatively
different in case of the atomic-like orbitals. P-SSR cancels around half of the entangle-
ment, whereas around a third of the entanglement is still accessible under the restriction of
N-SSR. The latter is rooted in the complexity of the ground state wave function which, in
contrast to the much simpler form within the canonical and PM-localized orbitals bases, is
now composed of several configurations of comparable weights, including those with single
local occupations.

It is worth noting that the fully localized orbitals are only 95% maximally entangled.
This deviation from the perfect single bond in Section III B is not an artifact of an imper-
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Figure 3.3: Single orbital entanglement in the CAS(10,10)-optimized electronic ground
state of C10H12. The orbital numbering on the x-axis in the lower panel follows the one
given for the canonical, PM-localized, and atomic-like orbitals in the upper panel (plotted
with an isosurface value of 0.05). The color code for the single orbital entanglement data
is as follows: no SSR (all color), P-SSR (black and dark grey), and N-SSR (dark grey).

fect choice of orbitals, but rather an inevitable consequence of electron interaction. The
latter namely introduces a multireference character to the ground state, and excites finite
occupation in the antibonding orbital. In other words, the maximal entanglement 2 log 2
in a perfect single bond state f †

ϕ↑f
†
ϕ↓|0⟩ can never be realized in an interacting molecule.

To summarize the main conclusions from this seemingly simple example, enforcing
atomic-like locality in the MO basis for the π-orbital space leads to two distinct features
of the π-bond in comparison to the commonly considered canonical case: (i) the ground
state electronic wave function markedly changes character from single- to strongly multi-
configurational and, more importantly, (ii) the actual entanglement E between the valence
π(∗)-orbitals without SSR increases drastically from 5% to 95% of its maximum value of
2 log 2 which was established by means of an analytical model for a chemical bond in
Section 3.1.1.

Polyene

Having analyzed in the previous section the conceptually most simple “mono”-ene, we will
focus in the following on all-trans polyenes CH2-(CH)n-CH2, a family of extended, pro-
totypical, π-conjugated molecular systems. More specifically, we consider two exemplary
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Figure 3.4: Single orbital entanglement in the CAS(20,20)-optimized electronic ground
state of C20H22. The orbital numbering on the x-axis in the lower panel follows the one
given for the canonical, PM-localized, and atomic-like orbitals in the upper panel (plotted
with an isosurface value of 0.05). The color code for the single orbital entanglement data
is as follows: no SSR (all color), P-SSR (black and dark grey), and N-SSR (dark grey).
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systems with n = 8 (decapentaene, C10H12) and n = 18 (eicosadecaene, C20H22). To un-
ambiguously study the individual correlation contributions within the valence π(∗)-space
requires for those molecular systems active orbital spaces of CAS(10,10) and CAS(20,20),
respectively. Given the size of these CAS spaces, single-orbital and orbital-orbital correla-
tions will no longer coincide, and need to be addressed separately. With no > 2, the single
orbital correlation quantifies the correlation between one orbital and all other orbitals,
including multipartite correlations, much beyond any orbital-orbital correlations. As in
the case of ethylene in the previous section, we will consider for our analysis three distinct
choices of MO basis, namely canonical, PM-localized, and atomic-like orbitals.

As we are dealing with a pure ground state, single orbital correlation can be related
to the single orbital entanglement via simple linear relations [119], and the latter is equiv-
alent with the single-orbital quantum correlation. To this end, it suffices to focus in this
paragraph solely on single-orbital entanglement data.

In Figure 3.3 and Figure 3.4, respectively, we present the canonical, PM-localized,
and atomic-like orbitals for C10H12 and C20H22 (upper panels) along with the single orbital
entanglement of each orbital (lower panels of Figures 3.3 and 3.4), namely the entanglement
between one orbital and the remaining orbitals comprised in the active space. Before
embarking on an in-depth discussion of the entanglement data, we first emphasize two
obvious key differences between the MOs of the polyenes shown in the upper panels of
Figure 3.3 and Figure 3.4, respectively, and those of ethylene: (i) the canonical MOs for
both extended systems are highly delocalized across the entire carbon-carbon chain; (ii)
the PM-localized MOs no longer coincide with the canonical ones, and are localized only
around two carbon centers involved in a π(∗)-bond. Hence, the PM-localization scheme
succeeds in partially localizing the canonical MOs. Finally, as was the case for ethylene,
to obtain atomic-like orbitals requires a further rotation of each corresponding pair of
PM-localized π(∗)-MOs by θ = π

4
.

Considering next the single orbital entanglement shown in the lower panels of the
respective Figures 3.3 and 3.4, the three choices of MO basis reveal drastically different
behaviors. For both molecules, the canonical MOs display a large variation in their single
orbital entanglement. The most entangled orbital #6 (#11 in C20H22) corresponds to the
lowest unoccupied molecular orbital (LUMO) in either case and contains almost three times
the amount of the least entangled ones. The difference between the two SSRs manifests
itself as follows: while the superselected entanglement (allowed by either P- or N-SSR) of
the first half of the canonical π-MOs is mostly forbidden by N-SSR, that of the second
half of the orbitals — corresponding to the π∗-subspace — is mostly N-SSR compatible.
The fact that we still find single orbital entanglement for the π-orbitals is therefore a
clear indication of their departure from a double occupancy (as would be expected in
an uncorrelated mean-field model) in the CAS-optimized ground-state wave function due
to the presence of electron-electron correlation which is most dominant for the highest
occupied molecular orbital (HOMO) and the one directly below (HOMO-1). Likewise, a
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similar explanation holds for P- and N-SSR single orbital entanglement data within the
π∗-subspace where the discernible deviations between the two SSR schemes are a result
of the departure from zero occupancy of the π∗-MOs, predominantly of the LUMO and
LUMO+1.

Naively, one would expect that the single orbital entanglement of the PM-localized and
atomic-like orbitals should qualitatively show the same kind of deviation from that of the
canonical MOs, with the latter being stronger for the atomic-like orbitals. However, this
is clearly not the case here. The single orbital entanglement of the PM-localized MOs is
much more uniformly distributed than that of the canonical ones, and overall visibly lower.
On the one hand, the uniformity of the entanglement originates from the near translation
invariance of the PM-localized MOs. Moreover, the entanglement differs only slightly
from uniformity when the MO is located at the edge of the carbon-carbon chain, where a
boundary effect comes into play. On the other hand, the lower value of entanglement of
the PM-localized MOs is rooted in their shapes. Each MO is centered around two carbon
atoms involved in a chemical π-bond, effectively masking the entanglement of the bond
within the subspace of local bonding and antibonding orbitals. Interestingly, from the
orbital plots shown in the upper panels of Figures 3.3 and 3.4, we conclude that the PM-
localized MOs can still be identified as either bonding π- or antibonding π∗-MOs. This
classification remains also apparent in the superselected entanglement values. The bonding
π-orbitals (with odd indices) contain mostly N-SSR forbidden entanglement whereas in the
antibonding π∗ ones (even indices) most superselected entanglement is N-SSR compatible,
similar to the situation encountered within the canonical MO basis.

By contrast, the single orbital entanglement of the atomic-like orbitals is almost equally
distributed, with or without superselection rules. This finding is perhaps not surprising as
the atomic-like orbitals are almost identical up to translation and a possible phase change.
Furthermore, the even distribution of entanglement after applying either the P- or N-SSR
for the single orbital entanglement is a clear indication that there are no favored orbitals
in terms of parity or occupation number. In stark contrast to the PM-localized orbitals,
the degree of entanglement becomes substantially higher than that of the canonical MOs,
reaching 96% of the theoretical maximum of 2 log 2. To explain this finding, we recall that
the atomic-like orbitals are, by construction, a superposition of bonding and antibonding
PM-localized orbitals. Such a rotation between matching π-π∗-MOs entails a release of
the entanglement tucked away within the PM-localized orbitals, and becomes manifest in
an entanglement between the atomic-like orbitals . As we shall see later, each atomic-like
orbitals centered on one carbon atom has a pairwise entanglement with exactly only one
other atomic-like orbital, localized around the second carbon center that is contributing to
the same chemical bond.

We now analyze the orbital-orbital correlations (classical, quantum, entanglement) in
the ground states of C10H12 and C20H22. We consider the two-orbital reduced density states
as the “overall” state, which are typically mixed. They serve as our point of departure
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Figure 3.5: Pairwise orbital total correlation I, classical correlation C, quantum correlation
Q, and entanglement E in the CAS(10,10)-optimized electronic ground state of C10H12 in
case of no SSR, P-SSR, and N-SSR. The orbital numbering follows the one given for the
canonical, PM-localized, and atomic-like orbitals in the upper panel of Figure 3.3. The
corresponding pairwise correlation sum (see Eq. (3.23)) is given below each plot.

to study the correlation between any two orbitals (within our CAS). In this scenario, the
total correlation I is no longer linearly related to the entanglement E, and the latter is
always smaller or equal to the quantum correlation Q. In order to enable an unambiguous
comparison of correlation strengths throughout our various choices of MO bases, we define
the following quantities as the pairwise total correlation sum Isum, pairwise classical corre-
lation sum Csum, pairwise quantum correlation sum Qsum, and pairwise entanglement sum
Esum,

X(P, N)
sum ({ϕl}, |Ψ⟩) =

∑
i<j

X(ρ
(P, N)
ij )

X = I, C,Q,E

(3.23)

where ρ
(P, N)
ij is the (P, N-SSR compatible) reduced state of |Ψ⟩ on the orbital ϕi and ϕj of

the specified basis set {ϕl}.

In Figure 3.5 and 3.6 we highlight the orbital-orbital total correlation I, classical corre-
lation C, quantum correlationQ, and entanglement E between the canonical, PM-localized,
and atomic-like orbitals in the ground states of C10H12 and C20H22, respectively. More-
over, the corresponding pairwise correlation sum is shown below each plot. We discuss in
the following three major conclusions that can be drawn from the orbital-orbital correla-
tion data. We first observe a primarily low total correlation I between either canonical
or PM-localized MOs, whereas the degree of correlation between the atomic-like orbitals
is strikingly higher, exhibiting a six-fold increase in going from the PM-localized to the
atomic-like orbitals basis. Simultaneously, the pairwise entanglement E reaches up to 91%
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Figure 3.6: Pairwise orbital total correlation I, classical correlation C, quantum correlation
Q, and entanglement E in the CAS(20,20)-optimized electronic ground state of C20H22 in
case of no SSR, P-SSR, and N-SSR. The orbital numbering follows the one given for the
canonical, PM-localized, and atomic-like orbitals in the upper panel of Figure 3.4. The
corresponding pairwise correlation sum (see Eq. (3.23)) is given below each plot.

of 2 log 2 for both C10H12 and C20H22. Moreover, in the atomic-like orbitals basis, we find
that the pairwise quantum correlation Q can be as large as 94% of 2 log 2. We already saw
in the case of C2H4 that 100% of maximal entanglement can never occur in an interacting
molecule. Here however, the entanglement is further lowered due to the presence of orbital
coupling. To see this we first notice that the two-orbital reduced states are now mixed, as
a result of interaction between the two orbitals and the rest of the system. This degree of
mixedness indicates that the two orbital system is also entangled with other orbitals, and
hence reduces the maximally achievable entanglement between them.

In addition to a comparison of absolute correlation data, it is instructive to consider the
relative contributions of quantum and classical correlation to the total correlation, focusing
first on the case without SSRs. In the canonical MO basis, a larger portion of the total
correlation is classical rather than quantum in nature. For example, the pairwise quantum
correlation sum Qsum in the ground state of C10H12 is only 29% of the pairwise total corre-
lation sum Isum, and, similarly, 33% for C20H22. As we move to the PM-localized MO basis,
though the overall total correlation does not increase, the relative contribution of quantum
correlation Q rises to 40% and 41% for C10H12 and C20H22 respectively. This effect becomes
even more apparent in the atomic-like orbitals basis, where the fraction of quantum corre-
lation (> 52%) surpasses that of the classical correlation for both molecules. Furthermore,
in passing from a canonical as well as PM-localized to an atomic-like orbitals basis, we not
only observe an increase of the percentage of quantum correlation comprised in the total
correlation, but also encounter a significant increase of the share of entanglement E in the
quantum correlation. The latter increases from 37% and 85% to up to 93% for C20H22, as
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the orbitals are becoming more and more localized. Secondly, besides the effects on the
importance of quantum correlation and entanglement, (almost fully) localizing the MOs
introduces a distinct pairing structure. Among the canonical MOs, we do not find any
obvious pairing structure except for those MOs located around the Fermi level (HOMO–
LUMO, HOMO-1–LUMO-1) which also exhibit the largest pairwise correlations. Moving
to the PM-localized MOs, a clear pairing structure emerges with pairs of MOs grouped
together by relatively strong (total) pairwise correlation and entanglement. Nonetheless,
such a pairwise correlation is still too weak to fully describe a chemical bond, compared to
the maximal entanglement we found in Subsection 3.1.1. The pattern observed in this case
stems from the fact that the two pairing MOs are the respective bonding π- and antibond-
ing π∗-orbitals located primarily on the same two carbon atoms, an effect similar to the
correlation between the canonical and PM-localized MOs in C2H4 in Section 3.1.2. In a
mean-field picture, all the local bonding orbitals are doubly occupied while the antibonding
ones remain empty. By contrast, in a correlated picture electron-electron interaction intro-
duces a finite occupation in the latter while simultaneously reducing the double-occupancy
occupation of the former, thus creating a weak pairwise correlation between the local bond-
ing and antibonding orbitals. Considering next the atomic-like orbitals basis, the overall
picture changes strikingly. The pronounced pairing structure of the correlation and entan-
glement data between MOs located on neighboring carbon atoms is an order of magnitude
stronger than that of the PM-localized MOs. The pairwise entanglement E becomes even
so strong that a so-called monogamy effect results, namely each atomic-like orbitals is only
entangled to one other MO with which a bond is formed, in sharp contrast to the weak
correlation background (yellow connecting lines) in the quantum correlation plots where
MOs from different pairs are still correlated. This clear distinction indicates that (pair-
wise) entanglement may be a more appropriate quantity to describe chemical bonds than
quantum correlation would be.

Finally, we would like to highlight the effect of SSRs and their implication on the
resulting complexity of the ground state wave function. For the canonical and PM-localized
MO basis, P-SSR hardly changes the pairwise entanglement, whereas N-SSR suppresses
almost all of it. This suggests that the dominating configurations in the total wave function
are those with double or zero occupancy on the respective orbitals. In particular, the
leading configurations are those where the bonding π-orbitals are doubly occupied rather
than the antibonding π∗ ones, giving rise to a weak pairing structure that could not survive
in the presence of N-SSR. In other words, within the two-electron Hilbert space of two
pairing orbitals (one bonding πi and antibonding π∗

j ), the leading configuration is simply
|↑↓⟩πi ⊗|0⟩π∗

j
. Turning instead to atomic-like orbitals ϕi and ϕj that form a chemical bond,

a far more complicated structure of the ground state emerges in this basis. For a given
pair i, j of strongly entangled orbitals, none of the four configurations with fixed local
occupation numbers

|↑↓⟩ϕi ⊗ |0⟩ϕj , |0⟩ϕi ⊗ |↑↓⟩ϕj ,
|↑⟩ϕi ⊗ |↓⟩ϕj , |↓⟩ϕi ⊗ |↑⟩ϕj ,

(3.24)
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in the two-electron Hilbert space is particularly dominating, as the entanglement is nearly
at its maximum (if we only consider the two-electron subspace). This is also the reason why
we encounter a strong P-SSR and N-SSR entanglement between the atomic-like orbitals.
The drastically increased number of configurations with appreciable non-zero weight in
the total wave function leads to a strongly, and statically correlated ground state descrip-
tion. Hence, even though the atomic-like orbital basis is the most suitable for an intuitive
description of chemical bonds, this basis compared to the canonical and PM-localized coun-
terparts introduces a strong correlation structure in the electronic molecular ground state
wave function.

Benzene

Having discussed the linear, π-conjugated systems, we will in this section focus on the
correlation pattern of the ground state of the prototypical, cyclic, π-conjugated aromatic
molecule, namely benzene (C6H6).

To ease comparison, we perform the same correlation analysis as in Section 3.1.2, by
making use of the same three distinct sets of MO bases: canonical, PM-localized, and
atomic-like orbitals , whose isosurfaces are shown in Figure 3.7. Before embarking on the
correlation analysis, a comment is in order on how the atomic-like orbitals basis can be
obtained for benzene. Compared to the other π-conjugated molecular systems, an atomic-
like orbitals basis for benzene requires a generalized localization scheme. To explain this
fact, we first point out that, for the polyenes, the PM-localized orbitals already indicated
how atomic-like orbitals can be obtained. As we can see in Figure 3.3 and 3.4, the PM-
localized orbitals of C10H12 and C20H22 are of bonding and antibonding π-type, respectively,
stretching primarily across two carbon centers. Making then use of the insight from our
analytic example in Section 3.1.1, it is straightforward to see that the respective atomic-like
orbitals result from a unitary rotation with angle θ of the bonding and antibonding orbital
pairs located on the same carbon centers by θ = π

4
. By contrast, such a pairing structure

no longer emerges for the PM-localized basis in case of benzene. First, the PM-localized
orbitals span over more than two carbon centers, due to the absence of a fixed local bonding
region. Second, there is no obvious way of rotating any two orbitals which could give rise
to atomic-like ones, solely based on geometrical considerations. Hence, we propose in the
following a systematic way that leads to an atomic-like orbitals basis starting from the
canonical rather than the PM-localized MO basis.

The canonical π-MOs of benzene (denoted as ϕi’s) are linear combinations of atomic
orbitals (LCAO)

ϕ̃i =
∑
j

Uijαj. (3.25)

where αi’s are the atomic orbitals and U a unitary matrix. Because the atomic orbitals
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have finite overlap with each other, the LCAO’s need to be further normalized

ϕi = Λijϕ̃j = (ΛU)ijαj =
ϕ̃i

∥ϕ̃i∥
. (3.26)

This last normalization transformation Λ makes the mapping ΛU from the atomic orbitals
to the canonical orbitals non-unitary. Hence, we may ask ourselves what would happen if
we transform the canonical orbitals by U−1? The resulting orbitals are still orthogonal of
course, since U−1 is unitary. To assess the locality of these orbitals, we first consider an
extreme example. Suppose that we have a molecule with internuclear distances such that
all of its atomic orbitals (at different atomic centers) have vanishingly small overlap with
each other. This entails that the LCAO’s in Eq. (3.25) are already normalized (Λ = 1).
Then the inverse transform

α̃i =
∑
j

(U−1)ijϕj =
∑
j

(U−1ΛU)ijαj (3.27)

would only give back the original atomic orbitals α̃i =
∑

j(U
−1U)ijαj = αi. When the

atomic overlap is finite, Λ then deviates from the identity map, and so does U−1ΛU.
However, as long as the atomic overlap is not exceedingly large1, Λ is close to an identity
map, and each orbital αi will have a dominating contribution from the atomic orbital αi
and, simultaneously only small weights from the remaining ones, thus making the new
molecular orbitals α̃i atomic-like. We applied for benzene the above localization scheme
starting out from the canonical MO basis. As can be seen from Figure 3.7, each atomic-like
orbitals has a large contribution from a pz-shaped atomic orbital on one carbon center,
and only small weights from the remaining pz-shaped orbitals on the other carbon centers.
Moreover, all atomic-like orbitals are identical up to translations by an integer multiple of
the lattice constant along the benzene ring. The localization scheme therefore successfully
preserves the original shape of the atomic orbitals, while maintaining the orthogonality of
the canonical ones.

In Figures 3.7 and 3.8, respectively, we present the single-orbital and orbital-orbital
correlation results for all three sets of MO bases. The correlation patterns within the
canonical and PM-localized MO basis mainly resemble those of the linear polyenes discussed
in the previous subsection. In more detail, we first observe an overall low single orbital and
orbital-orbital entanglement. Secondly, in the case without SSR most of the orbital-orbital
correlation is again classical in nature with a share of 76% and 71%, respectively, of the
orbital-orbital total correlation for the two MO bases. Thirdly, the distribution pattern of
the superselected single orbital entanglement is also in alignment with previous findings.
The bonding π-orbitals (odd indices in Figure 3.7) have an occupancy close to the mean-
field value of 2.0 and, consequently, only exhibit a small amount of N-SSR entanglement,

1For example, straightforward calculation would show for the case of two identical atomic orbitals with
overlap of 0.75, each resulting atomic-like orbital is still dominated by one atomic orbital with 69% relative
weight.
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Figure 3.7: Single orbital entanglement in the CAS(6,6)-optimized electronic ground state
of benzene. The orbital numbering on the x-axis in the lower panel follows the one given
for the canonical, PM-localized, and atomic-like orbitals in the upper panel (plotted with
an isosurface value of 0.05 for the canonical and PM-localized MOs, and 0.1 for the atomic-
like orbitals ). The color code for the single orbital entanglement data is as follows: no
SSR (all color), P-SSR (black and dark gray), and N-SSR (dark gray).

Figure 3.8: Pairwise orbital total correlation I, classical correlation C, quantum correlation
Q, and entanglement E in the CAS(6,6)-optimized electronic ground state of benzene in
case of no SSR, P-SSR, and N-SSR. The orbital numbering follows the one given for the
canonical, PM-localized, and atomic-like orbitals in the upper panel of Figure 3.7. The
corresponding pairwise correlation sum (see Eq. (3.23)) is given below each plot.
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whereas the occupancy in the antibonding π∗-MOs (even indices in Figure 3.7) departs
from its mean-field value of zero such that their superselected single orbital entanglement
becomes N-SSR compatible.

Similar to the situation encountered for polyene systems, the correlation structure in
the atomic-like orbitals basis becomes much richer. Considering first the single-orbital
entanglement without SSR, we find that every atomic-like orbitals is maximally entangled
(with value 2 log 2) with the rest of the system, as can be seen from Figure 3.7. This strong
entanglement is missing at the orbital-orbital level, though. A closer inspection of Figure
3.8 reveals that the maximal pairwise entanglement E is considerably weaker than the one
between the atomic-like orbitals in the polyenes. Compared to 92% of 2 log 2 for the latter,
the maximum value of E in benzene amounts to merely 33% of 2 log 2. The origin of this
discrepancy can be explained as follows. In sharp contrast to the pairing structure of the
entanglement between the atomic-like orbitals in the polyenes, each atomic-like orbital on
the benzene ring is equally entangled to both of its neighbors. This “left-right pairing” is
rooted in the underlying symmetry of the molecular Hamiltonian and closely resembles the
simplified “left-right overlap” model of the Hückel Hamiltonian for benzene [177]. Hence,
the unique electronic ground state within our minimal π-π∗ CAS(6,6) active orbital space
enjoys the same symmetry as the molecule itself, and is invariant under six-fold rotation
and reflection about the mirror planes. A simplified, polyene-like pairing structure which
would gives rise to a π-type bond involving only two neighboring carbon centers is therefore
suppressed by the molecular symmetry. Although, even if we are to sum up the orbital-
orbital entanglement between one orbital and both of its neighbors, 33% of the single orbital
entanglement would not be accounted for from this partially summed bipartite orbital-
orbital entanglement sum. As a result, we ascribe the missing part of the entanglement in
this π-conjugated, aromatic molecule to genuine multipartite entanglement.

3.2 Maximally Entangled Atomic Orbitals (MEAO)

Previously we established that a single covalent bond can be identified as the maximal
entanglement between two atomic-like orbitals, which is observed on the π-orbital level
for several conjugated molecules with well pronounced π-bonds. Moreover, compared to
other correlation quantities (quantum or classical), entanglement was found to be specially
suitable for describing chemical bonding, due to its monogamy effect. Our scheme of local-
izing said atomic-like orbitals however has the following limitations. First, so far we have
studied the case where only one atomic-like orbital was considered per atomic center. Sec-
ond, we relied on the existence of localized bonding and antibonding orbitals from the PM
method, as well as manual orbital rotations to localize the orbitals further. Third, although
we demonstrated that going from PM-localized orbitals to atomic-like orbitals the pair-
wise entanglement is enhanced, there is still a conceptual gap between orbital localization
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(referring to the geometry of the orbitals) and orbital-orbital entanglement maximization
(referring to the entanglement properties of the ground state). Mixing localized orbitals
assigned to the same atomic center should not change the locality of the orbitals, but could
lead to completely different entanglement patterns than the dimerized Lewis structure we
observed above. In this section, we will resolve these issues by implementing an orbital
optimization scheme that directly maximizes the entanglement between pairs of orbitals
localized on different atomic centers.

3.2.1 Dissecting chemical bonds with MEAO

In order to assign localized orbitals to atoms, we start by defining the notion of atom in
molecules (AIM), which is given by the intrinsic atomic orbitals [163] (IAO). The IAO are
free atomic orbitals polarized by the molecular environment through a mean-field singlet
wavefunction |ΨMF⟩ =

∏N/2
i=1 f

†
i↑f

†
i↓|0⟩. The mean-field orbitals form a large molecular

orbital basis B1 = {|i⟩}, with the first N/2 orbitals being doubly occupied. Now let us
consider a potentially much smaller basis set B2 = {|α⟩} consisting of the minimal free
atomic orbitals (AO) on all atoms (e.g., 1s+2s+2px,y,z for the first row elements). These
free AOs are well understood in terms of their geometries and can facilitate chemical
interpretation. However, the fact that B2 is much smaller than B1 means that the overlaps
between the mean-field MOs |i⟩ and the basis B2 can be also quite small. In the original
language of Knizia, the set B2 lacks polarization from the molecular environment [178],
and hence the mean-field wavefunction |Ψ⟩ can not be reconstructed with MOs expanded
in terms of orbitals in B2 only.

To build a new basis set the size of B2 that is capable of representing the HF MOs,
while maintaining its atomic character, Knizia performed the following procedure. He first
decomposed the HF MOs into the part |̃i⟩ within the span of B2 and their orthogonal
counterparts

|i⟩ = |̃i⟩+ |̃i⊥⟩. (3.28)

The vector |̃i⟩’s are what Knizia called depolarized MOs and can be entirely expressed in
terms of free atomic AOs in B2. Then we identify the occupied subspaces in both basis
{|i⟩} (polarized MOs) and {|̃i⟩} (depolarized MOs) using the projectors

P =
∑
i≤N

2

|i⟩⟨i|,

P̃ =
∑
i,j≤N

2

(
S−1

)
ij
|̃i⟩⟨j̃|,

(3.29)

where Sij = ⟨̃i|j̃⟩ is the overlap matrix of the depolarized basis. The pre-orthogonal IAO
|α̃⟩ is then constructed from the free AOs |α⟩ as

|α̃⟩ =
[
PP̃ + (1− P )(1− P̃ )

]
|α⟩. (3.30)
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To see that the span of {|α̃⟩} indeed contains the span of the occupied MOs {|i⟩}N/2i=1 , we
simply check the span of the projected orbitals {P |α̃⟩} on the subspace of occupied MOs

P |α̃⟩ = PP̃ |α⟩, (3.31)

and conclude that they are indeed N/2 linearly independent vectors. One might suggest

that simply using {P |α⟩} one can also span {|i⟩}N/2i=1 just by simple dimension counting.
But {P |α⟩} becomes entirely of MO character instead of AO. As a minimal example, we
can consider the single covalent bond in H2 with a minimal basis set. Since there is only one
bonding orbital, the two orbitals in {P |α⟩} with |α⟩ being the left and the right 1s orbital
are then proportional to the bonding orbital, and in this case also identical. Therefore, the
non-zero support on the unoccupied subspace is crucial for maintaining localization. If the
projector 1−P is used but the P̃ and 1− P̃ projectors are dropped, then |α̃⟩ reduces back
to the free AOs, which are ignorant of the molecular environment. Therefore, the inclusion
of the second set of projectors (1− P )(1− P̃ ) is also important.

After symmetric orthogonalization [134], the IAOs form an orthonormal basis set of
a low-dimension subspace of the single-particle Hilbert space. Given their well-defined
atomic character, IAO can be used for computing atomic properties (e.g., partial charges),
and are shown to be insensitive to the choice of basis set [163]. The span of all IAO on one

atomic center A is a subspace H(A)
1 of the one-particle Hilbert space H1 which defines the

atom A in the molecule. Based on this definition of AIM, any linear combinations of IAO
in H(A)

1 can be considered as an orbital localized on atom A. Although the IAOs correctly
account for the polarization of the atomic orbitals due to the molecular environment, they
are constructed as pre-hybridized atomic orbitals. Because of this, IAOs from two different
atomic centers cannot form maximally entangled orbital pairs that resemble the Lewis
structure of a prototypical bond as in (3.9). In fact, the entanglement between IAOs
are far from the maximum of 2 log(2). Since the IAO are already fully localized, and
the atomic partition is fixed, the only degrees of freedom left to optimize are the internal
orbital rotation within the atomic centers. The basis BMEAO of maximally entangled atomic
orbitals is defined through the following maximization problem

BMEAO = arg max
B∈Slocal

∑
(i,j)

E(B)ij, (3.32)

where (i, j) runs over all pairs of inter-center orbitals, and E(B)ij is the entanglement
between orbital i and j in basis B. The set Slocal collects all orbital bases that are related
to the IAO basis BIAO by local unitary transformations, which leave the AIM defined by
the IAOs invariant.

The entanglement E(B)ij between two orbitals is in general very costly to compute. It
refers to the mixed state ρij = Tr\{i,j}[|Ψ⟩⟨Ψ|], whose entanglement is only properly defined
by yet another optimization problem

E(B)ij = E(ρij) = min
σ∈Dsep

S(ρij∥σ), (3.33)



70 3. Orbital Entanglement in Covalent Bonds

where the minimization is over all separable states σ that can be written as sums of
product states (recall Eq. (1.11) in Section 1.1), and S(ρ∥σ) = Tr[ρ(log ρ − log σ)] is
the quantum relative entropy. This entanglement measure is also known as the relative
entropy of entanglement, which has many favorable properties. Unfortunately (3.33) is not
analytically computable except for highly symmetric states in low dimensions [4], [107].
Although we can calculate (3.33) using techniques from semidefinite programming [179],
(3.33) is still too expensive as a cost function. Moreover, to calculate the full two-orbital
RDM one needs the information from up to four-particle RDMs (since two orbitals can be
at most occupied by four electrons), which poses a tremendous challenge in computational
storage and tensor manipulations. To make the maximization problem (3.32) feasible, we
need a computable substitute for the entanglement. In Ref. [107] (see also Section 2.1),
it was observed that two coherent terms in ρij play an important role in the value of
entanglement

Γi↑,i↓j↑,j↓(B) = ⟨0, ↑↓|ρij|↑↓, 0⟩,
Γi↑,j↓j↑,i↓(B) = ⟨↑, ↓|ρij|↓, ↑⟩

(3.34)

which are elements of the two-particle reduced density matrix Γ (2RDM)

Γiσ,jτkσ,lτ (B) = ⟨Ψ|f †
iσf

†
jτflτfkσ|Ψ⟩. (3.35)

The pivotal role of the two coherence terms in (3.34) can also be seen in the prototypical
bonding state (3.9): They are precisely the coherence between the two even-occupancy
states, and that between the two odd-occupancy states. The magnitudes of both terms in
this case are simultaneously maximized to 1/4. We therefore propose to use the sum of
magnitudes of the two coherence terms as a substitute for E(B)ij in the orbital optimization
problem (3.32). To reiterate, the MEAOs based on a mean-field wavefucntion are obtained
as

BMEAO = arg max
B∈Slocal

FMEAO(B),

FMEAO(B) ≡
∑
(i,j)

∣∣∣Γi↑,i↓j↑,j↓(B)
∣∣∣2 +

∣∣∣Γi↑,j↓j↑,i↓(B)
∣∣∣2 . (3.36)

The 2RDM can be calculated from any level of theory, ranging from SCF to exact diagonal-
ization. If the trial wavefunction |Ψ⟩ is a mean-field one, similar to the trial wavefunction
for constructing the IAOs, then the 2RDM elements can be expressed fully in terms of the
one-particle reduced density matrix γiσjσ = ⟨Ψ|f †

iσfjσ|Ψ⟩ in the virtue of Wick’s theorem as

Γi↑,i↓j↑,j↓(B) = Γi↑,j↓j↑,i↓(B) = γi↑j↑(B)γi↓j↓(B). (3.37)

The optimization for the basis BMEAO can be performed efficiently with a gradient-based
method. We reserve the explicit expressions of the gradients of the relevant 2RDM elements
for Appendix C.
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Figure 3.9: Entanglement between ψL and ψR in Eq. (3.40) (left axis, black) and the
cost function FMEAO in Eq. (3.36) (right axis, red) as functions of the orbital rotational
parameter θ.

Before we proceed, we provide an additional justification for the cost function FMEAO

in (3.36), by revisiting the example of the perfect covalent bond in the active space of two
electrons and two orbitals

|Ψbond⟩ = |↑↓⟩ϕ ⊗ |0⟩ϕ̄, (3.38)

where ϕ and ϕ̄ are the bonding and antibonding orbitals, respectively. The entanglement
between the two orbitals is zero. But when we perform the following orbital transformation

ψL = cos(θ)ϕ+ sin(θ)ϕ,

ψR = − sin(θ)ϕ+ cos(θ)ϕ,
(3.39)

the state |Ψbond⟩ is re-expressed as

|Ψbond⟩ = cos2(θ)|↑↓⟩ψL
⊗ |0⟩ψR

+ sin2(θ)|0⟩ψL
⊗ |↑↓⟩ψR

+ cos(θ) sin(θ)|↑⟩ψL
⊗ |↓⟩ψR

− cos(θ) sin(θ)|↓⟩ψL
⊗ |↑⟩ψR

.
(3.40)

Then the entanglement between the transformed orbitals ψL and ψR is a function of θ (see
Eq. (3.16) for a derivation)

E(θ) = −2 cos2 θ log(cos2 θ)− 2 sin2 θ log(sin2 θ), (3.41)

Correspondingly, in the transformed bases, the cost function FMEAO(θ) is also θ-dependent,
and can be written as

FMEAO(θ) = 2 cos4 θ sin4 θ. (3.42)
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Figure 3.10: Ab initio procedure for determining the bonding structures of molecules with
maximally entangled atomic orbitals (MEAO).

Remarkably, E(θ) and FMEAO(θ) are maximized at the same θ value of π
4
. Therefore, in this

example, FMEAO(θ) is indeed a viable cost function for maximizing the exact entanglement.

Once we obtained the set of MEAOs, we can extract from them the bonding structure
of the molecule. This consists of three extra steps. First, we calculate the total correlation
(mutual information) between any two orbitals residing on different atomic centers. This is
an approximation step where high level of accuracy is unnecessary. We therefore calculate
the pairwise total correlation instead of the expensive entanglement, and the wavefunction
we used for this can be as inexpensive as a mean-field one for most systems. Second,
the inter-center orbital-orbital mutual information is used to form a weighted adjacency
matrix I, where only the values of the mutual information above 10% of its maximal value
4 log(2) is taken into account. The weighted adjacency matrix I allows us to separate
the orbitals into bonds. This can be performed either by reading off the non-zero blocks
in I, or by the support of the eigenvectors of I which correspond to the inseparable
clusters. We remark that in all cases we studied in this section, the bond separation step
is insensitive to the choice of wavefunction ansatz, and we have chosen the HF solution
for this purpose. To obtain the two-orbital RDMs from the HF one-particle RDM γ, we
recall Eq. (1.44) to (1.52), and invoke Wick’s theorem. In the last step, we calculate
exactly the entanglement within the clusters, using accurate wavefunction methods. The
value of bipartite (multipartite) orbital entanglement is then interpreted as the order of
the two-center (multi-center) bond. We summarize this scheme in Figure 3.10.
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3.2.2 Restoring the Lewis structures from accurate wavefucn-
tions

We now demonstrate the power of the MEAO formalism in restoring the Lewis structures
in molecules with two-center bonds. First, we compare the shapes of the IAOs and the
MEAOs. In Figure 3.11 we present the isosurface plots of IAO and MEAO of the organic
molecules CH4, C2H6, C2H4, and C2H2 in the cc-pVDZ basis set. The IAOs are constructed
from the set of minimal atomic orbitals. These molecules are prototypical for hosting
single, double, and triple bonds, with well understood mechanisms of bonding in terms of
atomic orbital hybridization. While both orbital sets are fully localized by construction,
the key difference lies in the hybridization of the orbitals. The IAOs retain most of the free
atomic orbital features, with clear separation between s- and p-orbitals in all three spatial
directions. In contrast, the MEAOs are combinations of the s− and p− orbitals with the
right degree of hybridization. For CH4 the carbon MEAOs are sp3-hybrids (hybridization
of one 2s orbital and three 2p orbitals) pointing towards the vertices of the tetrahedron
where the hydrogen atoms are located. They then form covalent bonds with the hydrogen
MEAOs. The Carbon MEAOs in C2H6 share the same shape as the ones in CH4, while two
of them points towards each other to form a C-C σ-bond. For C2H4 the σ-type MEAOs
are instead sp2-hybrids (hybridization of one 2s orbital and two 2p orbitals), and the out-
of-plane pz-orbitals are correctly preserved in the orbital transformation, forming a π-bond
between the two carbon atoms. For C2H2 only the 2p-orbital along the molecule is mixed
with the s-orbitals forming sp-hybridiztation, and now two p-orbitals on each carbon atom
are left invariant during the transformation from the IAOs to the MEAOs.

The drastic differences between the IAOs and the MEAOs in terms of orbital shapes
lead to also distinct pairwise correlation patterns. We recall again from Section 1.1 the
simplest orbital correlation/entanglement quantities, namely the single orbital entropy [62],
[87], [119], [180], [181]

Si = S(ρi) = −Tr[ρi log(ρi)], (3.43)

which quantifies the entanglement between orbital i and the rest of the system, and the
pairwise mutual information [8], [62], [87], [119], [180]–[183]

Iij = Si + Sj − Sij, (3.44)

which measures the correlation (both quantum and classical), between the two orbitals i
and j only. In the “perfect” single covalent bond (3.9), the single orbital entropy is S1 =
S2 = 2 log(2), whereas the mutual information between the two orbitals is I12 = 4 log(2).
We therefore normalize Si to 2 log(2), and Iij to 4 log(2).

The orbital reduced density matrices used for calculating Si and Iij are from a matrix
product state (MPS) ansatz parametrized with up to 1500 bond dimension, whose energy
we have converged to sub-µ Hartree accuracy. For the systems we studied, the ground state
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CH4 C2H6 C2H4 C2H2
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Figure 3.11: The carbon IAOs and MEAOs (excluding 1s) of CH4, C2H6, C2H4, and C2H2

in the cc-pVDZ basis. For obtaining both bases the Hartree-Fock wavefunction is used.
The isosurface value is 0.2 for CH4 and 0.1 for the rest.
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Figure 3.12: Single orbital entropy Si (vertices) and Correlation Iij (edges) between the
IAOs and MEAOs of CH4, C2H6, C2H4, and C2H2 in the cc-pVDZ basis. For obtaining
both bases the Hartree-Fock wavefunction is used. Single orbital entropy is normalized to
2 log(2) and correlation is normalized to 4 log(2).
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MPS can be considered exact. The discrepancy between the IAO-DMRG and MEAO-
DMRG energies are also less than 10−6 Ha, so that we can safely claim that the correlation
patterns of in the IAO basis and those in the MEAO basis stem from the same ground
state wavefunctions. A very important step for converging the energy in DMRG with
highly localized orbitals is the ordering of the orbitals. Since the orbital entanglement is
very strong, if two highly entangled orbitals are placed far from each other, the required
bond dimension of the MPS would be much higher and the energy minimization would
become much more difficult. To resolve this, one can use methods such as the Fiedler
ordering [39]. In our case we simply place after orbital i the corresponding orbital ī with
which orbital i is the most correlated, in terms of the estimation of the pairwise orbital
correlation given by the HF wavefunction.

In Figure 3.12 we present a direct comparison of the correlation structures in the IAO
basis and the MEAO basis of the ground states of all four molecules. The orbitals are
grouped according to the atomic assignment. The orbitals are represented as vertices
whose color encodes the value of single orbital entropy (normalized to 2 log(2)), whereas
the pairwise orbital correlation (normalized to 4 log(2)) are color coded as connecting
edges. We use Xi where X = C,H, . . ., and i = 1, 2, . . ., to distinguish identical elements.
We notice first that for every set of carbon IAO, there is one extremely weakly correlated
orbital. These are the 1s-orbitals which are almost fully occupied. Second, we observe that
the correlation between the IAO correctly identified the connectivity graph of the molecule.
That is, from the IAO correlation plot we can tell which carbon atom is bonding with which
hydrogen atom, based on the correlation edges connecting the two centers. However, the
internal structure of the correlation between any two centers is entirely scrambled due to
the lack of hybridization of the IAO. For example, in CH4, the 2s- and 2px,y,z IAO on
the carbon are evenly correlated with every 1s IAO on the hydrogens. Third, while the
pairwise correlation not maximal, the single orbital entropy Si of the carbon IAO is very
close to 1 (excluding the 1s-orbitals). This means each IAO is maximally entangled with
its environment, but this entanglement is distributed to several orbitals on other atomic
centers.

The MEAO bases on the other hand display much clearer correlation patterns. The
MEAO bases still reveal the connectivity graphs between atomic centers, but they do
so distinctly with separated, maximally correlated (closed to 1) orbital pairs. All other
pairwise correlation is of the order 10−3. Interestingly, even correlation involving the
1s-IAO can be transformed into the correlation of the frontier MEAOs, rendering the 1s-
MEAO much less correlated in terms of the single orbital entropy. In the above examples,
each frontier MEAO is highly correlated to only one other, and together they are identified
as a two-center bond. In that sense, the MEAO basis representation of the ground state
wavefunctions is a perfect reconstruction of the Lewis picture. If we trim away the edges
corresponding to weak correlation, we are left with a perfect dissection of the single-particle
Hilbert space into orbital groups, each corresponding to a covalent bond.
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bond Iij Eij Eu
ij

CH4 C-H 0.957 0.954 0.782

C2H6 C-H 0.928 0.930 0.678
C-C(σ) 0.955 0.947 0.732

C2H4 C-H 0.914 0.917 0.644
C-C(σ) 0.944 0.933 0.687
C-C(π) 0.918 0.895 0.738

C2H2 C-H 0.906 0.911 0.642
C-C(σ) 0.915 0.909 0.658
C-C(π) 0.915 0.875 0.693

Table 3.4: Pairwise correlation Iij, entanglement Eij, and unextendible entanglement Eu
ij

between the bonding MEAOs. Correlation is normalized to 4 log(2) and (unextendible)
entanglement is normalized to 2 log(2).

We present the entanglement (normalized to 2 log(2)) and correlation (normalized to
4 log(2)) between every pair of bonding MEAOs in Table 3.4. The entanglement is calcu-
lated via semidefinite programming [179] with the CVX package [184], [185]. The entangle-
ment values between the bonding MEAO are also very close to 1, just like their correlation
values. Notice that some entanglement values in Table 3.4 is even higher than the total
correlation. This is, however, not a contradiction, since their normalization factors differ
by a factor of 2. There is also no need to calculate the entanglement values between two
MEAOs that are not bonding, since they are necessarily of the order 10−3 or less based
on the correlation values (recall from Section 1.1 that the entanglement is always bounded
from above by the total correlation). This is again reminiscent of the monogamy effect of
entanglement. If two orbitals i and j in a system are exactly maximally entangled, then
the corresponding reduced state ρij is necessarily a pure state. Therefore, the subsystem
formed by orbital i and j can not be entangled to any other orbitals. Of course in our
calculations the entanglement is not exactly maximal, because the two orbital reduced
state ρij is mixed. Therefore, in theory each highly entangled orbital can still share some
entanglement with an orbital other than its monogamous partner. The only question is,
how much entanglement can it actually share?

One can quantify the lack of “sharability” of the entanglement in the following way.
For a given bipartite state ρAB we define a set of state on system A and C (which is a
copy of B) such that they can be reduced from a same state on the joint system tripartite
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system ABC [186], namely

DρAB
= {σAC | ∃ωABC , s.t. TrB[ωABC ] = σAB and TrC [ωABC ] = ρAB}. (3.45)

If ρAB is entangled and ρAB ∈ DρAB
, then the entanglement between system A and B can

be simultaneously held between also A and C (of the same dimension as B) for a given
state ωABC . If ρAB /∈∈ DρAB

, then the entanglement is not entirely sharable. The extent to
which the entanglement is unsharable or unextendible, is quantified by the distance from
ρAB to the set DρAB

Eu(ρAB) =
1

2
min

σ∈DρAB

S(ρAB∥σAB). (3.46)

This is called the generalized unextendible entanglement [186]. The prefactor 1/2 is for it
to have the same maximal value as the standard bipartite entanglement. For pure states
one can check that (3.46) reduces to the relative entropy of entanglement (3.33). Eu can
be calculated efficiently via semidefinite programming, since the set DρAB

is convex and
its constraints can be neatly summarized by a set of linear matrix inequalities. We again
performed the semidefinite programming using the CVX package [184], [185]. We present
the values of Eu (normalized to 2 log(2)) for the relevant orbital pairs in Table 3.4. We see
that approximately 70% to 80% of the entanglement between two bonding MEAOs is not
extendible for σ-bonds, and this ratio is closer to 80% for π-bonds.

The values of Eu in Table 3.4 seems to show that the entanglement between two
bonding MEAOs are not as “monogamous” as we thought. However, simply because the
unextendible entanglement Eu is not extremely close to the entanglement E, does not
mean in the ground state wavefunction of these molecules (CH4 to C2H2) each MEAO
is significantly entangled to more than two orbitals. Again, we know for a fact that the
total correlation between two non-bonding MEAOs are of the order 10−3× 4 log(2), which
bounds the exact value of entanglement from above in the virtue of the unified geometric
picture of different correlation types outlined in Section 1.1. The discrepancy between
the theoretical value of unextendible entanglement, and the almost perfectly monogamous
entanglement structure we observed in the above examples, is indeed puzzling. We try to
ascribe the discrepancy to the fact that in the definition of DρAB

there is no constraint
regarding the symmetry of the three-orbital RDM ωABC . Since ωABC is the reduced state
of the ground state with well-defined particle number and magnetization, ωABC should also
enjoy these symmetries, and admit a block diagonal form where each block correspond to
a fixed particle number and magnetization sector. Implementing this constraint would
effectively reduce the set DρAB

, and increases the value of the unextendible entanglement
Eu. However, after implementing these constraints, we only found an insignificant increase
in the unextendible entanglement. Although this discrepancy does not affect the excellent
efficacy of the MEAO framework in restoring the Lewis structure of various molecules, it
would be an interesting question to explore in the future.
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3.2.3 Genuine multipartite entanglement in multi-center bonds

Multi-center bonds are bonding effects beyond the standard Lewis paradigm. Such bonds
cannot be described by bonding orbitals localized to two atomic centers, or localized or-
bitals from two separate centers alone. Instead, several electrons are shared among several
centers, and the number of electrons and number of centers involved may not match. Much
unlike the two-center bonds, where we know exactly how the maximally bipartite entangled
state (3.9) looks like, in the multipartite scenario there is no single maximally entangled
state (up to local unitary transformations). Instead, one is presented with many classes of
multipartite entangled state. For example, in the tripartite scenario, where our subsystems
are qubits for simplicity’s sake, the Greenberger–Horne–Zeilinger (GHZ) state [187], [188]
and the W-state [189]

|GHZ⟩ =
1√
2

(|000⟩+ |111⟩),

|W⟩ =
1√
3

(|100⟩+ |010⟩+ |001⟩),
(3.47)

are both “maximally entangled” in their own rights, but they belong to different multipar-
tite entanglement classes as they are not related by any local transformations [189]. And
most strikingly, simple calculations reveal that while for |W⟩ every two qubits are entan-
gled with each other, no qubit pairs are entangled in |GHZ⟩. Instead, the three qubits are
collectively entangled in |GHZ⟩ (also see the illustration in Figure 3.13). Therefore, the
goal is not to design a prototypical three- or four-center bond, in analogy to |Ψbond⟩, but
to find a tool that can detect and measure the entanglement truly shared among several
orbitals.

Let us first recall some concepts in multipartite entanglement theory. A k-partite pure
state |Ψ⟩ is k-separable if it has a k-partite tensor product form |Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗
|ψk⟩ [8], [10]. Any pure state not of that form then contains k-partite entanglement. But
note that not all k-partite entanglement truly involves all k parties. For example, the state
|Ψ⟩ = |ψ123⟩⊗|ψ45...k⟩ where |ψ123⟩ and |ψ45...k⟩ are entangled states, does contain k-partite
entanglement. But the tensor product reveals that the first three qubits are not entangled
with the last k−3 qubits. A k-partite pure state |Ψ⟩ is said to contain genuine multipartite
entanglement (GME) if there is no bipartition under which |Ψ⟩ is a product state [84]. The
set of biseparable mixed states is however much more complicated

Dbisep =

{
ρ =

∑
i

pi|ψi⟩⟨ψi|

∣∣∣∣∣ ψi is biseparable, pi ≥ 0,
∑
i

pi = 1

}
. (3.48)

Note that the states |ψi⟩ in the convex combination might be biseparable under different
bipartitions [84]. Similar to the bipartite setting, we can define the genuine multipartite
entanglement (GME) as the minimal distance to the set of all biseparable states

GME(ρ) = min
σ∈Dbisep

S (ρ∥σ) . (3.49)
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Beyond Simple Lewis Structure
Multi-center Bonding: What are the prototypes?

Figure 3.13: Illustration of the entanglement structure of the tripartite entangled states
|W⟩ and |GHZ⟩.

Note that in the bipartite setting, GME(ρ) reduces to the usual relative entropy of entan-
glement.

Both detecting and measuring GME for mixed states are generally extremely difficult
tasks [7]. For pure states however, at least the detection of GME becomes much simpler,
and one simply needs to check whether the entropy of all possible subsystems is non-zero.
Based on this observation, the following measure for pure state GME was introduced [85],
[190]

GME(|Ψ⟩) = min
A
S(ρA), (3.50)

where A runs over all possible subsystems. We have replaced the linear entropy in Ref. [85]
with the von Neumann entropy to be consistent with our chosen bipartite entanglement
measure. The pure state GME measure (3.50) enjoys the following easy-to-check properties:

1. GME(|Ψ⟩) is 0 if and only if |Ψ⟩ is biseparable. This is fulfilled by construction,
since GME(|Ψ⟩) = 0 implies there exists a subsystem A such that ρA is pure, and
therefore |Ψ⟩ is biseparable. The other direction is obviously true.

2. GME(|Ψ⟩) is invariant under any k-partite local unitary transformation U = U1 ⊗
U2 ⊗ · · · ⊗ Uk applied to |Ψ⟩. This is fulfilled by the unitary invariance of the von
Neumann entropy of the reduced states of all subsystems.

3. When k = 2, GME(Ψ⟩) reduces to the standard bipartite entanglement measure for
pure states, namely the von Neumann entropy of one of the reduced states.

As demonstrations, in Figure 3.14 we presented the MEAO correlation plot of three
typical molecules with multi-center bonds: C3H−

5 (3-center with 4-electron, (3c, 4e)), B2H6

((3c, 2e)), and C6H6 (6c, 6e). We first obtained the mutual information plot from a mean-
field HF wavefunction. Using the bond separation scheme outlined in the previous sections,



80 3. Orbital Entanglement in Covalent Bonds

1 2 3 4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5 10-3

10-2

10-1

100

1
2

3
4

5
 

6 789
10

11
 

12
 

13
14

15
16

17  18  
19

 

20
 

C1

H1C2

H2

C3

H3
H4

H5

1
2
3

4
5

 

6
 

7
891011 12 

13
14

15
16

17
 

18
 

19
20
21
22

23
 

24
 

25
26 27 28 29  30  

31
32

33
34

35
 

36
 

C1

H1

C2H2

C3

H3

C4

H4

C5 H5

C6

H6

1
2

3
4

5
 

6 7
 

8
 

9
10
11

12
13

 
14  15

 

16
 

B1

H1H2

H3

B2

H4 H5

H6

C3H5 C6H6

B2H6

-

Figure 3.14: Single orbital entropy Si (vertices) and Correlation Iij (edges) between the
MEAO of C3H−

5 , B2H6, and C6H6 in cc-pVDZ basis. Single orbital entropy is normalized
to 2 log(2) and correlation is normalized to 4 log(2).
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bond type CAS GME

C3H−
5 (3c, 4e) (3c, 4e) 0.772

B2H6 (3c, 2e) (6o, 4e) 0.130
(3o, 2e) 0.852

C6H6 (6c, 6e) (6o, 6e) 0.970

C10H8 (10c, 10e) (10o, 10e) 0.968

C5H−
5 (5c, 6e) (5o, 6e) 0.954

C4H5N (5c, 6e) (5o, 6e) 0.720

C4H4O (5c, 6e) (5o, 6e) 0.560

C4H4S (5c, 6e) (5o, 6e) 0.557

Table 3.5: GME (normalized to 2 log(2)) of various multi-center bonds with cc-pVDZ basis
set. The bond type describes the numbers of centers and electrons involved in the bond,
and CAS denotes the number of active orbitals and electrons we used to solve for the MPS
ground state.

we are able to isolate inseparable orbital clusters of sizes larger than 2. These clusters are
signatures of GME: no matter how we partition the cluster, we always separate a pair of
entangled orbitals. In the next step, we then group the MEAOs into two collections, the
active setA consisting of orbitals from the multi-center clusters, and the non-active orbitals
N containing all other orbitals. Then the natural orbitals of the 1RDM restricted to N
are taken as core and virtual orbitals, depending on the corresponding natural occupation
numbers. The orbitals involved in the multi-center clusters form complete active spaces
(CAS), where the number of active electrons are automatically determined by the number
of core orbitals. The active spaces are then solved exactly with MPS ansätze using the
Block2 [191] DMRG package. The corresponding values of GME (normalized to 2 log(2))
are presented in Table 3.5.

First, we notice in Figure 3.14 that the two-center bonds (C-C σ, C-H σ, and B-H σ) are
clearly separated from the multi-center bonds. The two-center bonds are again represented
by the near maximal and monogamous entanglement between two MEAOs, whereas the
multi-center bonds are represented by an inseparable cluster of orbitals. Second, we observe
in Table 3.5 that all GME values are less than its normalization 2 log(2). This is always
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guaranteed by the definition (3.49), since

min
A
S(ρA) ≤ S(ρi) ≤ 2 log(2). (3.51)

But this does not necessarily mean that the minimum is obtained in the bipartition of
one orbital versus the rest. The entropy of two orbitals, for example, could in some cases
be smaller. Third, among the three molecules C3H−

5 , B2H6, and C6H6, the benzene ring
contains the highest amount of GME. We explain this via the argument of symmetry: the
six-π-orbital cluster of the benzene ring has the highest level of point group symmetry,
including six mirror axes, and a six-fold rotational symmetry. In contrast, the three-
center bonds in C3H−

5 and B2H6 are only symmetric about one mirror axis. The other
symmetry the benzene uniquely enjoy among all three is the particle hole symmetry in the
π-orbital ring. Without any electron deficiency or over-abundance, the CAS state on the
π-orbital ring lives in the half-filled subspace of the Hilbert space, which has the highest
dimensionality, and therefore more degrees of freedom for hosting entanglement. Both
types of symmetry allow the π-electron of the benzene to be more evenly shared among
all orbital centers, and enhance the value of GME. Lastly, we find that it is absolutely
crucial to calculate the GME only for each multi-center bond separately. We have the
unique opportunity in B2H6 to calculate the GME of the two electron-deficient bonds.
Expectedly, the GME of the six-orbital cluster is rather low, at 0.130. This is because the
two three-orbital clusters are only weakly correlated. But once we separate the two bonds,
and we do so by including the MEAOs on one of the (3c, 2e) bonds into the non-active
space, we immediately observe a drastic increase of GME within a single three-orbital
cluster, at the value of 0.852.

A direct comparison between the values of GME and the values other multi-center
bonding indices can be rather arbitrary, since different indices have different origins and
normalization [149], [159]. But we can already anticipate the potential advantage of GME
within the MEAO framework over other multi-center indices, because we do not require
any pre-existing knowlegde of the number of atomic centers involved within a bond, or
the specific ordering of the atomic centers along the ring [149], [159]. The framework we
propose is fully automatic after the input of molecular geometry.

We now check whether GME can stand the tests of expected chemical trends (see
Table 3.5). First, we compare the GME of benzene and naphthalene (C10H8). The lat-
ter is essentially two benzene rings fused together. The second ring distorts the perfectly
symmetric electron sharing in the original ring, and the multi-bonding character is weak-
ened, as indicated by various multi-center bonding indices [192]. And indeed the distortion
by the second ring reduces slightly the GME, as is shown in Table 3.5. Another test is
the substitution of one of the carbon atom by another element, which is also expected to
weaken the multi-center bond by breaking the point group symmetry. For this, we use a
family of molecules with (5c, 6e) bonds: cyclopentadienide (C5H−

5 ), pyrrole (C4H5N), fu-
ran (C4H4O), and thiophene (C4H4S). The distortions caused by the substitutions become
stronger as the substituting atoms become heavier and heavier starting from C to S [193].
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This trend is indeed confirmed by a visible decrease of GME in the correct order, from
0.954 for C5H−

5 to only 0.557 for C4H4S. Moreover, all the GME values for the (5c, 6e)
bonds are lower than that of benzene (which has a (6c, 6e) bond), which again emphasizes
the roles of particle-hole and point group symmetries in promoting the value of GME. All
the above active space calculations are performed with an MPS ansatz, and the ground
states are solved to sub-µ accuracy using the Block2 DMRG solver [191].

Chapter Summary

In this chapter, we thoroughly explored the resourcefulness of entanglement and quantum
correlation in molecules. We investigated the potency of various types of correlation in
the electronic ground state in several common orbital basis sets of different degrees of
orbital localization. We also incorporated two important superselection rules to exactly
quantify the potential resource in these systems for quantum information processing tasks.
We found that partially localizing (via Pipek-Mezey) the canonical Hartree-Fock (HF)
molecular orbitals (MO) further reduce the weak correlation among the HF MOs, while
fully (but still manually) localizing the orbitals to a single atomic center reveals maximally
entangled structures. Remarkably, the maximally entangled orbitals form monogamous
pairs, each corresponding to a well-defined two-center covalent bond. We therefore put
forward a conjecture that a single covalent bond can always be rationalized by the maximal
entanglement between two fully localized atomic-like orbitals.

Based on this conjecture, we designed a systematic procedure for identifying these
atomic-like orbitals for arbitrary molecules. Using the intrinsic atomic orbitals (IAO) as
a starting point, we maximized the inter-center orbital-orbital entanglement, and arrived
at the set of maximally entangled atomic orbitals (MEAO). The MEAOs are automati-
cally equipped with the correct hybridization, and naturally reproduces the standard Lewis
structures of simple molecules, again in the form of maximally and monogamously entan-
gled orbital pairs. To characterize the more exotic multi-center bonds beyond the Lewis
paradigm, we extended the bipartite entanglement to the genuine multipartite entangle-
ment (GME). Our results showed that not only can the GME detect the existence of
multi-center bonds, it can also serve as a multi-center bond order index which agrees well
with expected chemical trends in families of multi-center bonding molecules. Our unifying
scheme of analyzing the bonding structure of molecules requires no manual intervention, or
expert knowledge of chemical bonding (e.g., the classification of bonding, antibonding and
non-bonding orbitals). We therefore anticipate that after future works on fully testing the
MEAO framework with large datasets of molecules, it can be a powerful tool for extracting
chemical insights from ever more accurate ab initio wavefunction solutions.
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Chapter 4

Quantum Information-Assisted
Orbital Optimization

In the previous chapters, we have developed a comprehensive quantum information tool-
box for electronic structure analysis. Especially, we have established both analytically
and numerically that the level of orbital correlation can vary drastically from one orbital
basis to another. At the same time, we also know that the choice of orbitals also affects
significantly both the accuracy and the efficiency of various wavefunction methods. Let
us again take the example of matrix product states (MPS). Mathematically speaking, at
a fixed maximal bond dimension, different orbital bases give rise to different manifolds of
MPS, and consequently different energetically minimal solutions. From a practical point
of view, a poor choice of orbital basis can lead to a suboptimal convergence behavior, and
requires a larger bond dimension to achieve the desired accuracy [41].

The MPS ansatz is somewhat a special case, as its tuning parameter for expressiveness
and complexity — the bond dimension m — is directly connected to orbital entanglement.
Specifically, m is the maximal Slater rank (number of positive Slater coefficients) of the
Schmidt decomposition of the MPS with respect to the left-right partition at a given
bond. The Shannon entropy of the corresponding squared Schmidt coefficients is then
the entanglement between the left and right subset of the orbitals. It is therefore natural
to reduce some measure of orbital entanglement via orbital transformation, in attempt
to achieve an optimal MPS structure for the target ground state. Such a transformation
can be discrete, i.e. in the form of orbital reordering based on the orbital-orbital mutual
information [39], [93]. It can also be continuous orbital rotations which can be implemented
on the fly during a DMRG sweep [41].

As for other common wavefunction ansätze, the connection between the orbital cor-
relation/entanglement and the quality of the ansatz is yet to be precisely established.
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Nonetheless, the quantum chemistry community has been guided by the notion of corre-
lation for decades, regardless of the term they use for correlation: It is well established
that Møller-Plesset perturbation theory and coupled cluster theory work well in the regime
where the ground state is close to a single Slater determinant [194]. This is the regime
where all orbitals have small entropy. It has also been proposed and tested that active
orbitals should be those with strongly fractional occupation numbers in some description
of the ground state beyond the restricted Hartree-Fock approach (e.g., unrestricted Hartree
Fock [36], second-order Møller-Plesset perturbation theory [38], coupled clusters singles
and doubles [38], etc.). This intuition is then later made more precise by Stein and Reiher,
that active orbitals are those of high orbital entanglement [195]. The goal of this chapter
is to harness the insights we gained in the previous chapters, and actively exploit quantum
information tools to simplify electronic wavefunctions. Accordingly, such simplification
leads to a novel way of active space optimization.

This chapter is organized as follows: In Section 4.1 we draw a quantitative connection
between the notions of orbital correlation and the representational complexity of a quantum
state. With this as the foundational motivation, we present in Section 4.2 a quantum
information-assisted complete active space optimization (QICAS) method. We will show
that our algorithm can bypass the expensive complete active space self-consistent field
iterations.

4.1 Orbital correlation and representational complex-

ity

In this section, we provide both analytic and numerical evidence that orbital correlation
can indeed be used as a descriptor of the representational complexity of the wavefunction.
The latter we define it to be the Shannon entropy of the configuration interaction (CI)
coefficients

H
(B)
CI (|Ψ⟩) = −

∑
n1,n2,...,nD

|c(B)n1,n2,...,nD
|2 log(|c(B)n1,n2,...,nD

|2), (4.1)

in the expansion of the wavefunction |Ψ⟩B in a single-particle basis B = {ϕi}Di=1

|Ψ⟩ =
∑

n1,n2,...,nD

c(B)n1,n2,...,nD
|n1, n2, · · · , nD⟩B, (4.2)

where ∑
n1,n2,...,nD

|c(B)n1,n2,...,nD
|2 = 1. (4.3)

H
(B)
CI is clearly orbital basis dependent. Moreover, it vanishes for single Slater determinants

in its natural basis, and positive if the quantum state always require more than one single
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Slater determinant to represent, regardless of the single-particle basis. Although H
(B)
CI (|Ψ⟩)

is a straightforward measure for the multireference character or the representational com-
plexity of a wavefunction |Ψ⟩ expanded in a basis B, it is in general very expensive to
calculate as the number of configurations grows factorially with the number of electrons
and the number of orbitals.

To circumvent the factorial scaling, we can use orbital entropy as an inexpensive alter-
native to H

(B)
CI (|Ψ⟩). Calculating the orbital entropy only requires the expectation values

of a handful of local observables, the number of which grows only linearly with the system
size. Yet, the orbital entropy is closely related to the CI entropy. Let us first look at
the example of a two-electron singlet state |Ψ⟩ in two orbitals (1 and 2) associated with

annihilation (creation) operators f
(†)
1/2σ. Then the following form is general

|Ψ(p)⟩ = p0|Ψ0⟩+ p1|Ψ1⟩+ p2|Ψ2⟩, (4.4)

where

|Ψ0⟩ = f †
1↑f

†
1↓|0⟩,

|Ψ1⟩ =
1√
2

(f †
1↑f

†
2↓ − f

†
1↓f

†
2↑)|0⟩,

|Ψ2⟩ = f †
2↑f

†
2↓|0⟩.

(4.5)

Although the form of |Ψ(p)⟩ is the most general, it is not the most concise in terms of its
CI expansion. We calculate the CI entropy of |Ψ(p)⟩ in the current basis as

HCI(|Ψ(p)⟩) = −p20 log(p20)− p21 log

(
p21
2

)
− p22 log(p2). (4.6)

In this very special case, the CI entropy precisely coincides with the entanglement
between the two spatial orbitals, given by the von Neumann entropy

S(ρ) = −Tr[ρ log(ρ)] (4.7)

of either one of the orbital reduced density matrix

ρ1/2(p) = Tr2/1[|Ψ(p)⟩⟨Ψ(p)] =


p20 0 0 0
0 p21/2 0 0
0 0 p21/2 0
0 0 0 p22

 . (4.8)

The sum of orbital entropy in this case is precisely the double of the CI entropy, in every
orbital basis.

The relation between the two entropic quantities we observed in the above example in
general does not hold. One would also not expect any exact and general relation to hold,
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Figure 4.1: CI entropy (H
(B)
CI ) against the sum of orbital entropy (

∑
i S(ρ

(B)
i )) for H2 (in

cc-pVDZ basis) and N2 (in STO-3G basis) at λ = 1, 2, 3 times of the respective equilibrium
bond length (0.74 Å for H2 and 1.09 Å for N2). For each geometry we collect data points
corresponding to 1000 orbital bases, transformed from the Hatree Fock canonical basis by
a random orthogonal matrix sampled uniformly from the orthogonal group.

as the CI expansion simply contains more information than the orbital reduced state. We
therefore turn to a numerical approach to investigate the correlation between the sum of
orbital entropy and the CI entropy. In Figure 4.1 we present results from full configuration
interaction (FCI) calculation of the ground states of H2 and N2. The x- and y-axis show
the values of the sum of orbital entropy and the CI entropy, respectively. We have studied
for both molecules three molecular geometries at different multiples (λ = 1, 2, 3) of the
equilibrium bond length. For each geometry, the ground state is expanded in 1000 orbital
bases transformed from the Hartree-Fock canonical basis by orthogonal matrices sampled
uniformly from the appropriate orthogonal group.

In Figure 4.1 we first observe that for both molecules, a rough linear relation between∑
i S(ρ

(B)
i ) and H

(B)
CI persists even beyond the setting of two electrons in two orbitals.

Compared to H2, the deviation from perfect linear behavior is stronger in the case of N2.
We see that the deviation is already quite considerable at equilibrium geometry. The second
observation we make is that true multireference character can not be transformed away by
orbital rotation. This can be seen when comparing across different internuclear distances.
At equilibrium, the ground state is more of a single reference character. Interestingly,
the ranges of both entropic quantities are wider at equilibrium. This means although
in some basis the ground state might seem multiconfigurational, by choosing a suitable
orbital basis this “fake” correlation can be transformed away. In contrast, at stretched
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geometries where the ground state is genuinely multiconfigurational, the ranges of both
entropic quantities are much smaller. This in turn implies that the true multireference
character of the wavefunction can not be transformed away via orbital rotations.

4.2 Complete active space optimization

In strongly correlated systems, the ground states are not accurately represented by single
Slater determinants, such as the ones obtained by solving the Hartree-Fock (HF) equation.
Instead, multiple configurations are needed for a qualitatively correct description of the
system. This type of correlation is commonly referred to as static correlation. Although a
full configuration interaction (full CI, or FCI) approach is not realistic for systems consist-
ing of more than a couple of dozens of orbitals at half-filling [196], it is possible to recover
the electron correlation to a large degree, by restricting the interacting configurations to
those that only differ in a small fraction of orbitals. This amounts to the so-called complete
active space configuration interaction (CASCI) approach. If, in addition, the underlying
molecular orbital basis is optimized in a self-consistent fashion, CASCI turns into the vari-
ationally superior complete active space self-consistent field (CASSCF) approach [95]–[98],
[197], [198].

That being said, determining accurate active spaces in practice is a crucial challenge
since the quality as well as the rate of convergence of a CASCI/CASSCF calculation are
highly sensitive to the choice of (initial) active orbitals [199]. Moreover, the purpose of
choosing an active space is to recover correlation effects sufficiently well such that the
system is described adequately by a CAS model. To this end, chemical knowledge of the
individual systems is often required [178], [200]–[202] for active space selection. However,
such a priori knowledge of the system may not always be available, especially when the
system is large, and its absence severely hinders the black-box applications of CAS methods.
Nonetheless, there is hope that the electronic structure estimated by post-HF solutions can
be exploited to remove this roadblock: Based on a correlated wavefunction, active orbitals
may be selected by means of orbital “observables” (e.g. their occupation numbers) that
provide an estimate of orbital correlation effects [36], [38], [203]–[206].

Consequently, diagnostic tools offered by quantum information (QI) which quantify
the orbital correlations concisely [87], [119], [180], [195], [207], [208] may hold the key to
effective black-box active space selection protocols. There is a caveat, though, as extract-
ing orbital correlation inevitably requires a multireference description of the system. Such
a description obviously should not be an exact, but rather an affordable approximation
(otherwise the purpose of the general idea would be defeated). The latter is nowadays
accessible at reasonable computational cost, thanks to the advent of the matrix prod-
uct state (MPS) ansatz [33], [209] underlying the density matrix renormalization group
(DMRG) approach [210], [211] in QC [52], [212]–[215].
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To provide first evidence for the promising prospects of this QI-inspired paradigm, Stein
and Reiher determined in [195] suitable active space sizes based on approximate ground
states |Ψ0⟩ obtained from preceding DMRG calculations with low bond dimensions. To be
more specific, it was their crucial observation that for a given system with orbitals {ϕi}
the corresponding entanglement profile {S(ρi)} of single-orbital entropy

S(ρi) = −Tr[ρi log(ρi)],

ρi ≡ Tr\{ϕi}[|Ψ0⟩⟨Ψ0|],
(4.9)

reveals a plateau structure, by which one can determine reasonable choices for the active
space size. Despite the fruitful application of the single orbital entropy (4.9) in the context
of fixed orbital bases, the full analytic potential of QI quantities such as S(ρi) is yet to
be exploited for active space optimization. In particular, it is still an open challenge to
establish a correlation-based measure of the “goodness”/“badness” of an active space and
the accompanying CASCI energy.

In this section, we provide this pivotal missing link by proposing a tailored measure
that evaluates the quality of a given active space based on orbital entanglement entropy.
This in turn then allows us to propose a quantum information-assisted complete active
space optimization (QICAS) method with the following appealing features: QICAS (1)
requires little system-dependent knowledge, (2) chooses active orbitals not from a fixed
but a variable set of orbitals which is optimized based on our QI-motivated cost function,
and (3) produces active spaces from which a subsequent CASSCF calculation is either
practically converged or requires much fewer iterations.

4.2.1 Cost function based on orbital entropy

In Ref. [195] the authors proposed a novel scheme (AutoCAS) for selecting active orbitals
from a set of orthonormal orbitals {ϕi}Di=1 (e.g. Hartree Fock canonical orbitals) based
on single orbital entropy. The scheme relies on the so-called entropy threshold diagrams
(see Figure 4.10 for an example). Each orbital ϕi is associated with its single orbital
entropy S(ρi). For the purpose of a naive selection, any orbital with entropy value higher
than a threshold T is deemed active. The number of active orbitals is a T -dependent
integer DT . The threshold diagram is then the plot T -DT . If a subgroup of orbitals are
significantly more correlated than the others, indicated by their higher values of entropy,
then the threshold diagram should exhibit a plateau structure (a horizontal segment).
Within the plateau, increasing the inclusion threshold T does not change the number of
active orbitals. The larger the difference between the entropy of the active and non-active
orbitals, the longer and more prominent the plateau. Through identifying the earliest
prominent plateau in the threshold diagram, one can determine both the size of the active
space, and the proposed active orbitals.
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It is rather natural to notice that entropy threshold diagram, and specifically its plateau
structure, is orbital basis dependent. Can one find a set of orthonormal orbitals such that
the plateau structure is more prominent, and therefore leads to a more accurate active
space? To optimize the orbitals we would need a well-motivated cost function F that
suits our purpose. We are aiming at (i) an overall simplification of the representational
complexity, and (ii) a maximally pronounced plateau structure in the threshold diagram.
From the previous Section, we know that the minimizing the sum of orbital entropy can
lead to (i). Therefore, a component of the cost function can be

F1 =
D∑
i=1

S(ρi). (4.10)

To achieve (ii), we can maximize the difference in entropy between the active and non-active
orbitals

F2 =
∑
i active

S(ρi)−
∑

i non-active

S(ρi). (4.11)

Combining the two components, we then arrived at our QI-motivated cost function FQI for
active space optimization

FQI(B) ≡ 1

2
(F1 − F2) =

∑
i non-active

S(ρi). (4.12)

Two remarks are in order here. First, one notices that to evaluate FQI(B) one must first
decide on the size of the active space DCAS. This can be resolved by a preceding AutoCAS
calculation, or based on the threshold diagram in the orbital basis that minimizes F1

which is agnostic of the target active space size. We shall revisit this point in Section
4.2.4. Second, given a set of orbitals, one needs to decide beforehand which orbitals are
active and which orbitals are non-active. For the purpose of orbital optimization, this
decision can be arbitrarily made (e.g., the first DCAS orbitals are active). Since reordering
is also an orbital rotation, the optimization process will take care of the assignment.

In the following, we provide both theoretical and numerical arguments that FQI is
indeed a suitable cost function for active space optimization. Let B be an ordered orbital
basis, and let us consider a CAS problem defined by the tuple (NCAS, DCAS) of the number
of active electrons NCAS and the number of active orbitals DCAS. A corresponding CASCI
calculation leads to a B-CASCI ground state energy ECASCI

0 (B) with respect to an electronic
Hamiltonian Ĥ. When ECASCI

0 (B) is minimized over all possible choice of orbital bases B,
we arrive at the CASSCF ground state energy ECASSCF

0 . When DCAS = D, then any
active space calculation is equivalent to exact diagonalization, and would result in the
exact ground state energy E0. This can be summarized as

ECASCI
0 (B) ≥ min

B′
ECASCI

0 (B′) = ECASSCF
0 ≥ E0, ∀B. (4.13)

The energy gap ∆E(B) ≡ ECASCI
0 (B) − E0 is the missing correlation energy from the B-

CAS scheme. ∆E(B) is the most direct measure of the accuracy of the active space. In
the following Theorem, we prove that ∆E(B) is bounded from above by FQI.
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Theorem 1. For any molecular system with electronic Hamiltonian Ĥ the following energy-
correlation relation holds

∆E(B) ≡ ECASCI
0 (B)− EFCI

0 ≤ k(Ĥ)FQI(B), (4.14)

for all orbital bases B, where k(Ĥ) is a constant independent of B.

Proof. For a fixed orbital basis B, and a CAS(NCAS,DCAS), the corresponding linear space
of complete active space N -electron wavefunctions is given by

SCAS ≡ {|Ψ⟩ = |n⟩N ⊗ |ψ⟩A, with N̂ |Ψ⟩ = N |Ψ⟩,
N̂ |ψ⟩A = NCAS|Ψ⟩}.

(4.15)

Here |n⟩N =
⊗

i∈N |ni⟩ is the wavefunction in the non-active subspace (denoted by N ),
where ni ∈ {0, ↑↓} defines the occupation numbers of the non-active orbitals ϕi, i ∈ N ,
N̂ denotes the total particle number operator, and |ψ⟩A is an NCAS-electron wavefunction
defined within the active space (denoted by A) of DCAS active orbitals. The orthogonal
projection operator onto the subspace SCAS shall be denoted by P̂ . In the following, we
consider two states in SCAS: The state |Ψ′

CAS⟩ which has maximal overlap with the full CI
ground state |Ψ0⟩,

|Ψ′
CAS⟩ = arg max

|Φ⟩∈SCAS

|⟨Φ|Ψ0⟩|2 =
P̂ |Ψ0⟩
∥P̂ |Ψ0⟩∥2

, (4.16)

and the B-CASCI ground state |ΨCAS⟩ of the Hamiltonian Ĥ,

|ΨCAS⟩ = arg min
|Φ⟩∈SCAS

⟨Φ|Ĥ|Φ⟩. (4.17)

Because of the Rayleigh-Ritz variational principle, the two states satisfy the inequality

⟨Ψ′
CAS|Ĥ|Ψ′

CAS⟩ ≥ ⟨ΨCAS|Ĥ|ΨCAS⟩. (4.18)

Using the spectral decomposition of the Hamiltonian Ĥ =
∑

i≥0Ei|Ψi⟩⟨Ψi|, we can split

the expectation ⟨Ψ′
CAS|Ĥ|Ψ′

CAS⟩ as

E ′ ≡ ⟨Ψ′
CAS|Ĥ|Ψ′

CAS⟩

= E0|⟨Ψ′
CAS|Ψ0⟩|2 +

∑
i>0

Ei|⟨Ψ′
CAS|Ψi⟩|2

≤ E0|⟨Ψ′
CAS|Ψ0⟩|2 + max

i
Ei(1− |⟨Ψ′

CAS|Ψ0⟩|2).

(4.19)

By introducing ϵ ≡ 1− |⟨Ψ′
CAS|Ψ0⟩|2, we then obtain

∆E ≤ ∆E ′ ≤ ∆Emaxϵ, (4.20)

where ∆E ′ ≡ E ′ − E0, and ∆Emax ≡ maxiEi − E0.
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By definition, the CAS state with the largest overlap with the exact ground state is
|Ψ′

CAS⟩ = P̂ |Ψ0⟩/
√

1− ϵ. We can therefore decompose the exact ground state |Ψ0⟩ into
the component in the CAS subspace SCAS, and the component perpendicular to it

|Ψ0⟩ = P̂ |Ψ0⟩+ (1− P̂ )|Ψ0⟩

=
√

1− ϵ|Ψ′
CAS⟩+

√
ϵ
∑
m ̸=n

λm|m⟩ ⊗ |ψm⟩, (4.21)

where
∑

m ̸=n |λm|2 = 1 and |ψm⟩ = (⟨m|⊗1)(1− P̂ )|Ψ0⟩/(
√
ϵλm). The summation

∑
m ̸=n

explicitly omits the occupation vector n in the non-active space, which can be justified by
the following logic: If |Ψ0⟩ can be written as

|Ψ0⟩ =
√

1− ϵ|Ψ′
CAS⟩+

√
ϵλn|n⟩ ⊗ |ψn⟩+

√
ϵ
∑
m ̸=n

λm|m⟩ ⊗ |ψm⟩, (4.22)

then we can redefine

|Ψ′′
CAS⟩ =

√
1− ϵ|Ψ′

CAS⟩+
√
ϵλn|n⟩ ⊗ |ψn⟩√

1− (1− |λn|2)ϵ
, (4.23)

which attains a larger overlap with the exact ground state |Ψ0⟩ than |Ψ′
CAS⟩. This then

contradicts with the definition of the CAS state |Ψ′
CAS⟩ with the largest overlap with the

exact ground state.

With the expansion of the ground state (4.21), we are now equipped to calculate the
orbital reduced density matrices ρi where the index i belongs to the non-active subspace.
We first notice that ρi is diagonal in the occupation number basis. This is because the
particle number and the magnetization are well-defined symmetries of the Hamiltonian,
and hence also of the ground state. Then all there is left to do is to calculate the diagonal
elements of ρi based on the following expressions

(ρi)00 = ⟨0|ρi|0⟩ = Tr[ρi(1− n̂i↑ − n̂i↓ + n̂i↑n̂i↓)],

(ρi)11 = ⟨↑ |ρi|↑⟩ = Tr[ρi(n̂i↑ − n̂i↑n̂i↓)],
(ρi)22 = ⟨↓ |ρi|↓⟩ = Tr[ρi(n̂i↓ − n̂i↑n̂i↓)],
(ρi)33 = ⟨↑↓|ρi|↑↓⟩ = Tr[ρin̂i↑n̂i↓].

(4.24)

Since in (4.21) the expansion is already in the occupational basis of the non-active orbitals,
computing the above expectation values is rather straightforward. For instance, to compute
⟨n̂i↑⟩ = Tr[ρ n̂i↑], one simply collects the configurations in (4.21) where the local state on
the i-th orbital is |↑⟩, and sums over the collected squared amplitudes. For a virtual orbital
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i, the diagonal elements of ρi are given by

(ρi)00 = 1− ϵ+ ϵ
∑

m ̸=n:mi=0

|λm|2 ≡ 1− ϵpi,

(ρi)11 = ϵ
∑

m ̸=n:mi=↑

|λm|2 ≡ ϵqi,

(ρi)22 = ϵ
∑

m ̸=n:mi=↓

|λm|2 ≡ ϵri,

(ρi)33 = ϵ
∑

m ̸=n:mi=↑↓

|λm|2 ≡ ϵsi,

(4.25)

where pi =
∑

m ̸=n:mi ̸=ni
|λm|2. For a core orbital i, the diagonal elements of ρi are instead

given by

(ρi)00 = ϵ
∑

m ̸=n:mi=0

|λm|2 ≡ ϵsi,

(ρi)11 = ϵ
∑

m ̸=n:mi=↑

|λm|2 ≡ ϵqi,

(ρi)22 = ϵ
∑

m ̸=n:mi=↓

|λm|2 ≡ ϵri,

(ρi)33 = 1− ϵ+ ϵ
∑

m ̸=n:mi=↑↓

|λm|2 ≡ 1− ϵpi,

(4.26)

Note that si and pi are defined differently depending on the core/virtual nature of the
orbital, and the equality pi = qi + ri + si is satisfied in both cases. The von Neumann
entropy S(ρi) of ρi is then given by the Shannon entropy H(xi)

S(ρi) = H(xi) = −
3∑

k=0

(xi)k log((xi)k), (4.27)

of the spectrum of ρi which we denote as xi ≡ spec(ρi) = (1 − ϵpi, ϵqi, ϵri, ϵsi). We
further define yi ≡ (1 − ϵpi, ϵpi, 0, 0), which satisfies yi ≻ xi, where ≻ stands for vector
majorization. For two probability vectors a and b of length L, the majorization condition
reads

a ≻ b ⇔
∑
k≤K

ak ≥
∑
k≤K

bk, ∀K ≤ L, and
L∑
k=1

ak =
L∑
k=1

bk = 1. (4.28)

Because the Shannon entropy is Schur concave, and that yi ≻ xi, the entropy of xi and yi
then satisfy

H(x) ≥ H(y) = B(ϵpi). (4.29)
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Figure 4.2: Concavity of the binary entropy B(x), and illustration of B(x) ≥ log(4)x when
0 ≤ x ≤ 1/2.

Here, B(x) ≡ −x log(x)− (1−x) log(1−x) is the so-called binary entropy. In other words,
we arrived at ∑

i∈N

S(ρi) ≥
∑
i∈N

B(ϵpi). (4.30)

The binary entropy B(x) is a concave function, and symmetric about the vertical line
defined by x = 1/2, where the function attains its maximal value log(2) (see Figure 4.2).
Consequently, B(x) is bounded from below by log(4)x, in the region 0 ≤ x ≤ 1/2. We now
insert an additional but well motivated assumption to the theorem, namely 0 ≤ ϵ ≤ 1/2.
This assumption states that the norm squared of the projection of the exact ground state
|Ψ0⟩ onto the CAS subspace S should be at least 1/2. This is a valid assumption, if we
consider the active space method to be a sensible ansatz for the current problem. Finally,
we conclude that ∑

i∈N

S(ρi) ≥ log(4)ϵ
∑
i∈N

pi ≥ log(4)ϵ, (4.31)

where we have used the inequality
∑

i∈N pi ≥ 1. To prove this inequality, recall that
pi =

∑
m ̸=n:mi ̸=ni

|λm|2. Since m ̸= n, there exists for every such m a non-active orbital
index i such that mi ̸= ni. Therefore

∑
i∈N

pi =
∑
i∈N

∑
m ̸=n:mi ̸=ni

|λm|2 ≥
∑
m ̸=n

|λm|2 = 1. (4.32)
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Inserting ∆Emaxϵ ≥ ∆E, we then arrive at

∆E ≤ ∆Emax

log(4)

∑
i∈N

S(ρi) =
∆Emax

log(4)
FQI(B), (4.33)

which concludes the proof.

Theorem 1 laid the foundation for using FQI as a cost function for orbital optimization.
The theorem ensures that when FQI approaches 0, the missing correlation energy in the
B-CASCI calculation also approaches 0 at most linearly as FQI. When FQI = 0, then the B-
CASCI result is the exact ground state solution. There is a serious issue, however, that the
prefactor of this linear bound is almost unattainable: It involves the highest excitation gap
of the Hamiltonian. This is because the CAS solution |ΨCAS⟩ is not an exact eigenstate of
Ĥ but a superposition of all eigenstates, and a priori we have no mathematical knowledge
about the weight of the highest eigenstate of the Hamiltonian in the CAS solution. In other
words, we have taken into account the worst case scenario where |ΨCAS⟩ is a superposition
of only the ground state and the highest excited state. If the prefactor is uncontrollably
large, it could potentially render Theorem 1 irrelevant. That being said, physically we
expect this worst case scenario to be highly unlikely, and that most of the significantly
contributing eigenstates in the expansion of |ΨCAS⟩ to be only the low-lying ones. We
therefore also expect that the prefactor k(Ĥ) in Theorem 1 to be much smaller in practical
scenarios, and therefore the theorem is still highly relevant.

To further explore the relation between the CASCI energy and the cost function FQI in
practice, we conduct the following numerical experiment. For this we choose the molecule
C2 at internuclear distance R = 1.243 Å in the cc-pVDZ basis set (12 electrons in 28 orbitals
in total), and adopt a CAS(8,8) model (an active space of 8 electrons in 8 orbitals). We start
by calculating the 28-orbital ground state with an MPS ansatz. The DMRG calculation
is performed with a maximal bond dimension of 200 and 50 sweeps in total. From this
we obtained the 1- and 2-particle reduced density matrices (1- and 2-RDM), γ and Γ,
respectively, which allow us to compute the cost function FQI(B) in any basis B. We are
able to find the optimal basis B∗ (details presented in the next Section) which minimizes the
cost function FQI(B). We then sample 103 orbital bases randomly from the neighborhood
of B∗. The sampling is achieved by 103 orthogonal rotation U = exp(αX) parametrized
by 28-by-28 antisymmetric matrices X and angles α. The independent elements of X are
drawn uniformly from [−1, 1], and α is drawn uniformly from [0, 0.05]. For every sampled
orbital basis B, we compute the corresponding B-CASCI(8,8) energy, treating the first 2
orbitals as core orbitals, and the last 18 orbitals as virtual. At the same time, the cost
function FQI(B) is also computed for every B.

In Figure 4.3, we present the result of our numerical experiment. The x-axis represents
the value of FQI(B) whereas the y-axis marks the corresponding B-CASCI(8,8) energy for
each basis B. The sampled orbital basis sets are presented as scattered red dots. The
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Figure 4.3: B-CASCI(8,8) energy for C2 at R = 1.243 Å in the cc-pVDZ basis set versus
out-of-CAS correlation FQI(B). 103 random orbital bases B (red dots) are sampled (see
text for more details on the sampling scheme). The CASSCF(8,8) energy is plotted as a
solid line for reference.

variationally optimal CASSCF(8,8) energy is also plotted as a reference. First, we notice
that the correlation of the two quantities is strikingly strong. Recall that Theorem 1 only
guaranteed a linear inequality, and by no means implies any quasi-linear relation that we
observe in Figure 4.3 between the cost function FQI(B) and the B-CASCI energy. From
left to right FQI(B) increases, meaning more orbital correlation is discarded by the CAS
ansatz when the B-CASCI calculation is performed. Accordingly, the quality of the CAS
deteriorates, leading to a larger error compared to the optimal CASSCF energy. Based
on this observation, we can interpret FQI(B) as the out-of-CAS correlation, which can
serve as a measure for the quality of the current active space. Second, we notice that
the quasi-linear relation is stronger when B is closer to the minimizer B∗ of FQI(B), and
that dispersion starts to appear when FQI(B) becomes large. Given that we are sampling
only within a small neighborhood around B∗, we expect the quasi-linear relation to break
down beyond a certain distance from B (e.g., when α is of the order 1). Third, and perhaps
most importantly, the B∗-CASCI energy approximates extremely well the CASSCF energy.
This indicates the two landscapes, FQI(B) and the B-CASCI energy, share a very similar
minimizing orbital basis, despite the fact that they are conceptually distinct quantities.
This instrumental observation strongly validates the approach of using FQI(B) as a cost
function for active space optimization.

To summarize, in this section we constructed a cost function FQI(B) for active space
optimization based on the intuition that orbitals with high entropy should be included in
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4

Method(Ncas, Dcas) # Micro Energy (a.u.) S2

HF-CASSCF(12, 12) 0 -2098.56762004 0.0000
8 -2098.65815254 0.0000
16 -2098.78440779 0.0000
24 -2098.90386814 0.0000
32 -2098.97374464 0.0000
40 -2099.07661965 0.0000
48 -2099.15989834 0.0000
56 -2099.22523508 0.0000
66 -2099.26654074 0.0000
76 -2099.26725524 0.0000
80 -2099.26725943 0.0000
82 -2099.26725956 0.0000
83 -2099.26725956 0.0000

HF-iCAS-CASSCF(12, 12) 0 -2099.21963835 0.0000
10 -2099.26689887 0.0000
16 -2099.26725514 0.0000
19 -2099.26725944 0.0000
21 -2099.26725956 0.0000
22 -2099.26725956 0.0000

HF-CASSCF(12, 14) 0 -2098.56831064 0.0000
8 -2098.27411466 0.0231
16 -2098.79419658 0.0000
24 -2098.92256223 0.0000
32 -2099.03522226 0.0000
40 -2099.09255949 0.0000
48 -2099.18377830 0.0000
56 -2099.26174338 0.0000
64 -2099.28119366 0.0000
72 -2099.28981686 0.0000
82 -2099.29106266 0.0000
92 -2099.29109795 0.0000
94 -2099.29109837 0.0000
95 -2099.29109845 0.0000

HF-iCAS-CASSCF(12, 14) 0 -2099.24319492 0.0000
10 -2099.29090519 0.0000
18 -2099.29109765 0.0000
21 -2099.29109853 0.0000
22 -2099.29109856 0.0000

TABLE II. Energy evolution as the number of micro iterations in CASSCF(12,12) and CASSCF(12,14) for Cr2 in the cc-pV5Z-
dk basis set at R = 1.679 Å, starting from HF-orbitals and from iCAS optimized orbitals.

Initial orbitals

Low-m DMRGCI(N , D)

Calculate 1- and 2-RDM � and �

Minimize the entropy of non-active orbitals

QICAS optimized orbitals

FIG. 1. Schematic flowchart of QICAS to be used as a sub-
routine.

6

Start

Hartree-Fock

QICAS

CASCI/CASSCF(NCAS, DCAS)

Stop

FIG. 1. Schematic flowchart of QICAS method as a preceed-
ing step of CASCI/CASSCF calculations. The QICAS sub-
routine is described in Figure ??.Figure 4.4: Flowchart of the QICAS subroutine and its applications as a post-HF treatment

to prepare orbitals for CASCI/CASSCF calculations.

the active space. We provided further motivation and validation through the forms of an
analytic theorem and a numerical experiment that FQI(B) is indeed closely connected to the
CASCI energy landscape. Most importantly, minimizing FQI(B) results in an energetically
optimal active space.

4.2.2 The QICAS algorithm

We now present the quantum information-assisted complete active space optimization (QI-
CAS) algorithm. In Figure 4.4 we show QICAS as a subroutine as a post-HF treatment for
the purpose of active space preparation. The QICAS block contains the following steps:
(i) Taking into account all initial orbitals and all electrons, a low bond dimension MPS
ground state is calculated using a partially converged DMRG run. (ii) From (i), the 1- and
2-RDM γ and Γ are computed. (iii) The entropy-based cost function FQI(B) is minimized,
and the minimizer is returned as the QICAS optimized orbitals. We shall elaborate on
these three steps in more details below. After executing QICAS, the optimized orbitals
then contain a proposed partition of active and non-active orbitals, which can be used for
a direct CASCI calculation, or as a starting point for CASSCF.

Step (i) is the crucial step of estimating the out-of-CAS correlation, by explicitly cor-
relating all orbitals on the same footing. Recall that the entropy of the reduced state ρi
of non-active orbitals are by definition 0 for a CAS wavefunction, since ρi = |0⟩⟨0| for
virtual orbitals, and ρi = | ↑↓⟩⟨↑↓ | for core orbitals. To estimate the correlation loss due
to the assumption of an active space, one necessarily has to go beyond the scope of CAS
wavefunctions. Ideally the information regarding the correlation loss can be obtained via
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Figure 4.5: HF-QICAS-CASCI(8, 8) energy for C2 in the cc-pVDZ basis at R = 1.243 Å
versus the bond dimension m of the MPS ground state |Ψ0⟩. The HF-CASSCF energy is
plotted as a reference.

a full CI wavefunction that contains the all orbital correlation. However, that would be
computationally intractable, and would defeat the purpose of employing a CAS scheme for
the problem at hand. What we need is an inexpensive estimate that democratically corre-
late all orbitals, in such a way that the accuracy of this estimation can be systematically
tuned. For this purpose, we adopt a low bond dimension (m) MPS ansatz, similar to the
AutoCAS scheme in Ref. [195]. The intuition is that the quantum state itself converges to
a decent quality faster than the energy [216], thus provides a good estimation of the orbital
correlation. We indeed verify that effective estimation of the orbital entropy for QICAS is
possible using a low-m MPS. In Figure 4.5 we demonstrated the performance of QICAS
evaluated by a subsequent CASCI calculation, as a function of the bond dimension m of
the trial wavefunction. The data are computed for the C2 molecule at R = 1.243Å in the
cc-pVDZ basis set. On one hand, we see that with a higher bond dimension m, the perfor-
mance of QICAS indeed improves, indicated by a lower CASCI energy based on the QICAS
optimized orbitals. On the other hand, the QICAS-CASCI energy quickly approaches the
lower bound, the CASSCF energy, for bond dimension beyond 80. At m = 80, the energy
error of QICAS-CASCI compared to CASSCF is already around 1.4 mHa.

Step (ii) highlights the simplicity of the necessary ingredients for computing the QI
based cost function FQI(B). Since each orbital can be occupied by up to two electrons
of opposite spins, only partial information from the 1- and 2-RDM, γ and Γ, is needed
for computing single orbital reduced states. The elements of 1- and 2-RDM of the (ap-
proximate) ground state |Ψ0⟩ are defined as two-point and four-point correlation functions
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respectively

γij = ⟨Ψ0|f †
i↑fj↑|Ψ0⟩,

γ īj̄ = ⟨Ψ0|f †
i↓fj↓|Ψ0⟩,

Γijkl = ⟨Ψ0|f †
i↑f

†
j↑fl↑fk↑|Ψ0⟩,

Γij̄
kl̄

= ⟨Ψ0|f †
i↑f

†
j↓fl↓fk↑|Ψ0⟩,

Γīj
k̄l

= ⟨Ψ0|f †
i↓f

†
j↑fl↑fk↓|Ψ0⟩,

Γīj̄
k̄l̄

= ⟨Ψ0|f †
i↓f

†
j↓fl↓fk↓|Ψ0⟩.

(4.34)

Note that the spin symmetry of the ground state requires the non-spin-preserving correla-
tion functions to vanish. The eigenvalues of the orbital RDM ρi are related to the particle
RDMs in the following way [62], [119]

ρi |0⟩i = (1− γii − γ īī + Γīiīi) |0⟩i ≡ λ
(i)
0 |0⟩i,

ρi |↑⟩i = (γii − Γīiīi) |↑⟩i ≡ λ
(i)
1 |↑⟩i,

ρi |↓⟩i = (γ īī − Γīiīi) |↓⟩i ≡ λ
(i)
2 |↓⟩i,

ρi |↑↓⟩i = Γīiīi |↑↓⟩i ≡ λ
(i)
3 |↑↓⟩i.

(4.35)

For the sake of readability, the orbital basis B dependence of ρi, γ and Γ is only implicitly
assumed in the above equations. We now can rewrite the cost function FQI(B) as

FQI(B) = −
∑
i∈N

3∑
k=0

λ
(i)
k log(λ

(i)
k ). (4.36)

To compute FQI(B′) for another orbital basis B′, one simply rotates the 1- and 2-RDM γ
and Γ to basis B′, compute the eigenvalues of the orbital RDMs according to (4.35), and
evaluates the cost function according to (4.36). In other words, the computation for the
particle RDMs only needs to be performed once, in the initial orbital basis.

We now discuss step (iii), the minimization of FQI(B). In this Section, we adopt a non-
gradient optimization method, and all numerical results presented here are based on this
optimization method. In Appendix C we devise a quasi-newton optimization scheme based
on analytically calculated gradient and the diagonal of the Hessian of the cost function.
Relevant python-based codes have been made public in [217].

We target the following minimization problem

B∗ = min
B
FQI(B). (4.37)

We start by parametrizing the manifold of orbital bases by an orthogonal transformation
U acting on the initial basis B(0) = {ϕi} according to

ϕ̃i =
∑
j

Uijϕj. (4.38)
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Then we established a one-to-one correspondence between the group of orthogonal matrices
of order D, and the set of real orbital bases. The former can be parametrized as an
exponential of antisymmetric matrices

U ≡ exp(X) = 1 + X +
1

2
X2 + · · · , (4.39)

where XT = −X. Now the quest of solving (4.37) is reduced to optimizing the D(D−1)/2
independent parameters Xij’s in X.

A remark is in order here. Notice that the CASCI energy is invariant under the so-
called redundant rotation within the core and virtual orbital subspace, separately. In
contrast, FQI(B) is explicitly not invariant under internal rotation within the non-active
space. Therefore, there is an apparent mismatch between the two quantities. On one hand,
there is a chance that redundant rotations are included in the process of minimizing FQI(B).
On the other hand, ignoring redundant rotations may prevent us from reaching the true
minimum of FQI(B), thus affecting the accuracy of the optimized active space. This is a
cost-and-effect trade-off that many methods face. As a guide, we can follow two strategies:
If QICAS is followed directly by a CASCI calculation and high level of accuracy of the active
space is desired, then it is beneficial to consider all orbital rotations. This is suitable for a
small system. If QICAS is used to prepare a starting point for a CASSCF calculation, then
one can afford to consider only rotation between the non-redundant rotations (core-active,
active-virtual, and core-virtual). This is suitable for the scenario where the underlying
orbital space is significantly larger than the target active space.

We optimize the elements of the antisymmetric matrix Xij sequentially. This effectively
applies a two-orbital rotation (Jacobi rotation) J(ij)(Xij) between the orbital i and j

J(ij)(Xij) =



1 0
. . .

cos(Xij) · · · sin(Xij)
...

...
− sin(Xij) · · · cos(Xij)

. . .

0 1


(4.40)

to the current orbital basis. After an element in X is optimized, the 1- and 2-RDM are
updated and the history of two-orbital rotations is documented. The final orthogonal
matrix U∗ is the product of the documented Jacobi rotations

U∗ =

Ncycle∏
n=1

∏
(i,j)

J(ij)(X
(n)
ij )U0. (4.41)
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Here, Ncycle is the number of times the list of relevant parameters is repeated, and U0 is
the initial orthogonal matrix which can either be the identity or randomized. The process
of obtaining U∗ can be summarized as follows:

1. Shuffle the orbital indices L = {1, 2, . . . , D} and denote it as L′ = {d1, d2, . . . , dD}.

2. For i, j ∈ L′, if i ∈ N or j ∈ N (to ignore rotations within the non-active space,
replace “or” with the “exclusive or”), do the next step.

3. For Xij ∈ [0, π] in step size 10−2, evaluate FQI(J
(ij)(Xij)) and find the minimizing X∗

ij.
Then in the smaller interval [X∗

ij − 10−2, X∗
ij + 10−2], in step size 10−4 sample again

the minimum of FQI(J
(ij)(Xij)). If the improvement FQI(0) − FQI(J

(ij)(Xij)) > ϵ1,
rotate γ and Γ by J(ij)(Xij), and update U with J(ij)(Xij)U.

4. For Ncycle times, repeat the above procedures, or until the improvement in FQI after
the cycle is less than ϵ2 compared to the end of the last cycle. When the algorithm
terminates, the optimized orthogonal matrix is then U∗ = U.

Before moving on to the demonstration of QICAS, we briefly discuss the scaling of
the algorithm. The MPS calculation using DMRG scales polynomially with the number of
sites/orbitals D, and the bond dimension m [218]. Moreover, since we do not fully converge
the DMRG run, we expect further reduction in the computational cost (e.g. a lower pref-
actor in the scaling). For the orbital optimization step, if redundant orbital rotations are
ignored, then the complexity is formally the same for CASSCF and QICAS. The exhaus-
tive manner of minimizing FQI(B) presented above is a rather expensive implementation of
QICAS. With the newton method in the next Section, the cost of orbital optimization in
QICAS is comparable to CASSCF. The biggest cost comes from the exponentiation of the
antisymmetric matrix into an orthogonal matrix, and the rotation of the 2-RDM Γ, which
is a rank-4 tensor. In CASSCF, however, the tensor of Coulomb integrals (again a rank-4
tensor) also needs to be rotated. The potential major advantage of QICAS compared to
CASSCF lies in the fact that the orbital optimization step does not require any calculation
of the energy or its gradients. In CASSCF, the orbital rotation is guided by the energy
gradient. After the orbital is rotated, the full CI problem needs to be solved again in the
updated active space, which concludes a macro iteration. In QICAS, the orbital rotation
is guided entirely by the orbital correlation provided by the 1- and 2-RDM. The full CI
problem is solved only once, namely after the orbitals are completely optimized (in the
case where QICAS is followed by a CASCI calculation). We therefore expect in the regime
of large active spaces (which is solved by again basis-dependent ansätze such as MPS),
QICAS should fair better than CASSCF.

Now that we are equipped to minimize FQI(B) and perform the QICAS algorithm, we
propose and test two applications of QICAS as post-HF treatments (see also Figure 4.6):



4.2 Complete active space optimization 103
O

rb
ita

l R
ot

at
io

na
l P

ar
am

et
er

Orbital Rotational Parameter

CASCI Energy

HF Basis 

CAS
SC

F
QIC

AS

Orbital Rotational Parameter
O

rb
ita

l R
ot

at
io

na
l P

ar
am

et
er

CASCI Energy

HF Basis

CAS
SC

F

CASSCF 

but faster!

QI
CA

S

(A) (B)

Figure 4.6: Illustration of two possible way of using QICAS. (A) QICAS is followed by a
CASCI calculation. (B) QICAS is performed on a subset of orbitals to prepare a warm
starting point for CASSCF.

(A) QICAS is followed by a CASCI calculation (HF-QICAS-CASCI),

(B) QICAS is performed on a subset S of orbitals (DCAS < |S| ≤ D) to prepare a warm
starting point for CASSCF (HF-QICAS-CASSCF).

4.2.3 Results on C2 and Cr2

First we revisit the example of C2 at equilibrium geometry R = 1.243 Å, and examine the
change in the orbital correlation pattern before and after the QICAS optimization. We use
the HF canonical orbital as the starting basis, and an MPS with bond dimension m = 200
to estimate the orbital correlation. In the upper panel of Figure 4.7, we present the single
orbital entropy of the HF (gray) and QICAS (red) optimized orbital basis. In both bases
the active space consists of the orbitals indexed 3 to 10 (pink shaded region). We recall that
the single orbital entropy of the inactive orbitals explicitly enter the cost function FQI(B).
For the non-active orbitals, the entropy profile in the QICAS optimized basis is much lower
than that in the HF basis, which is expected. Most of the reduction occurs for orbitals 14-
17, which are considerably correlated in the HF basis. The out-of-CAS correlation FQI(B)
reduces from 0.64 in the HF basis BHF to 0.38 in the QICAS optimized basis B∗. For
the active orbitals, although the two profiles look rather similar up to some reordering,
the sum of orbital entropy is actually slightly higher in the QICAS basis, namely 3.28
compared to 3.17 in the HF basis. This might seem counter-intuitive at first, but it in fact
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Figure 4.7: Single orbital entropy S(ρi) (upper panel) and orbital-orbital correlation I(ρij)
(lower panel) of the Hartree-Fock orbitals (HF) and QICAS optimized orbitals (QICAS)
for C2 in the cc-pVDZ basis set, with internuclear distance at R = 1.243 Å.
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Figure 4.8: HF-CASCI(8, 8), HF-CASSCF(8, 8) and HF-QICAS-CASCI(8, 8) energy (a.u.)
for C2 with cc-pVDZ basis set as functions of internuclear distance R (Å).

aligns perfectly with the purpose of QICAS: It determines an active space that discards
the least amount of correlation by reducing the correlation within the inactive space, while
simultaneously shuffling some excess correlation into the active orbitals.

Besides the improvement in the single orbital entropy profile, the success of QICAS lies
also in the consistent simplification of the correlation pattern between orbitals. To verify
this on a quantitative level, we measure the correlation between every pair of orbitals i
and j with the quantum mutual information [8], [62], [87], [119], [180]–[183]

I(ρij) ≡ S(ρi) + S(ρj)− S(ρij). (4.42)

In our calculation, the two-orbital reduced density matrices ρij are obtained by using the
Syten toolkit [139], [140]. In the lower panel of Figure 4.7 we present I(ρij) for both bases
as colored curves connecting corresponding vertices i, j, with the single orbital entropy
S(ρi) color-coded on the respective vertices. Compared to the HF basis, the “correlation
net” is indeed thinner for the QICAS optimized basis. In particular, the pairwise correlation
associated with orbitals 14-17 is absorbed into the active space. Figure 4.7 unambiguously
demonstrates the ability of QICAS to position most of the correlation effects into the active
space, thus achieving a more compact active space structure and, by virtue of Theorem 1,
an optimal CASCI energy.

The nearly perfect efficacy of QICAS indeed holds for all internuclear distances of C2.
In Figure 4.8 we present one of our key results: using the HF-QICAS-CASCI method we
are able to reproduce the entire dissociation curve of C2 in the cc-pVDZ basis with an
error of up to only 2.3 mHa compared to the HF-CASSCF method. For the most part



106 4. Quantum Information-Assisted Orbital Optimization

of the dissociation curve (for 39 out of 41 evenly spaced data points), the error is within
chemical accuracy (< 1.6 mHa), as evidenced by the fact that the HF-QICAS-CASCI
data points (red dots) are virtually on top of the HF-CASSCF ones (grey dots on solid
line). Tabulated data can be found in Appendix D obtained by performing QICAS based
on MPS ground states with a maximal bond dimension m = 100 and 50 QC-DMRG
sweeps. The HF-CASSCF energy at R = 1.65 Å is computed with the Molpro [135]–
[137] package, and all other HF-CASCI/CASSCF energies with PySCF [219]. Here we
again emphasize that the orbital optimization is based solely on the quantum information-
inspired cost function FQI(B), which, despite not being directly connected to the complex
CASCI energy landscape, leads to the correct minimum. The success of QICAS confirms
that the underlying correlation structure of the approximate ground state |Ψ0⟩ can indeed
be exploited for an accurate active space identification. Moreover, the useful part of the
correlation is mostly static, evident by the fact that even when |Ψ0⟩ is approximated by
an MPS with a small bond dimension m = 100, the correlation captured by the MPS
is already sufficient for QICAS to identify a chemically accurate active space. Lastly, in
Figure 4.8 we compared the CASCI energy obtained by using the QICAS orbitals, and
the CASCI energy with the natural orbital (NO) basis of the second-order Møller-Plesset
perturbation theory (MP2) solution. In this example, we find the QICAS orbitals to be
consistently better. At the same time, QICAS does not suffer from the potential failure of
MP2 when degeneracies arise.

For larger systems, performing a QC-DMRG calculation involving all orbitals can be
rather expensive, if not unrealistic, even for moderate bond dimensions. To overcome this
limitation, we propose to optimize just a subset S of D̃ = |S| orbitals with QICAS, based
on the MPS ground state on the chosen D̃ orbitals. Since not all orbitals in the basis
are optimized, a gap would inevitably appear between the HF-QICAS-CASCI energy and
the HF-CASSCF energy. Nonetheless, one would expect the former to still be much lower
than the HF-CASCI energy, and that the convergence of CASSCF could be accelerated by
starting with the optimized basis B∗ instead of the HF orbitals.

To showcase exactly this second promising application (B) of QICAS, we study the
notoriously strongly correlated Cr2 at an internuclear distance R = 1.679 Å around the
experimental equilibrium [220]. The cc-pV5Z-DK (306 orbitals) and aug-cc-pV5Z-DK (404
orbitals) basis sets [221] are used, together with the scalar-relativistic exact two-component
(X2C) Hamiltonian [222], [223]. With such large basis sets, CASSCF starts to become
costly, even with a small active space for which full CI is still feasible. We consider in the
following two active space sizes, CAS(12, 12) and CAS(12, 14) and freeze the most inner
12 HF orbitals (the “Mg core”). We reduce the scope of QICAS to the subset of D̃ = 60
lowest lying HF orbitals above the fixed Mg core, and correlate 24 electrons, such that
sufficient correlation can be captured at a manageable cost. The bond dimension of the
60-orbital MPS is set at m = 250 and 50 DMRG sweeps are performed.

To compare the convergence of CASSCF starting from either the HF or QICAS opti-
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Figure 4.9: Energy evolution as the number of micro iterations in CASSCF(12,12) and
CASSCF(12,14) for Cr2 in the cc-pV5Z-DK and aug-cc-pV5Z-DK basis set at R = 1.679 Å,
starting from HF-orbitals and from QICAS optimized orbitals. See text for more details.

Basis D Method(NCAS,DCAS) Energy (a.u.) Post-HF Time (h)

V5Z 306 CASSCF(12, 12) -2099.26725956 1.24

QICAS-CASSCF(12, 12) -2099.26725956 1.57 (1.25+0.32)

CASSCF(12, 14) -2099.29109845 8.24

QICAS-CASSCF(12, 14) -2099.29109856 3.18 (1.40+1.78)

aV5Z 404 CASSCF(12, 12) -2099.26745743 2.93

QICAS-CASSCF(12, 12) -2099.26745742 1.99 (1.04+0.95)

CASSCF(12, 14) -2099.29130834 9.46

QICAS-CASSCF(12, 14) -2099.29130846 3.38 (1.13+2.25)

Table 4.1: Energy and runtime comparison of CASSCF(12,12) and CASSCF(12,14) for Cr2
in the cc-pV5Z-DK (V5Z) and aug-cc-pV5Z-DK (aV5Z) basis set at R = 1.679 Å, between
starting from HF-orbitals and from QICAS optimized orbitals. In particular, the post-HF
time when QICAS is invoked is broken down into the run time of QICAS and that of the
CASSCF calculation.
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mized orbitals, we present in Figure 4.9 the respective energy evolution against the number
of CASSCF micro iterations. The horizontal gap between two adjacent data points repre-
sents one macro iteration. In the case of CAS(12,14), for both basis sets the state drifted
to a subspace of incorrect spin symmetry at one macro iteration during the HF-CASSCF
calculation. Both macro iterations are omitted from the plot, but the exact values of the
unphysical drifted energy can be found in the Appendix D. The spin symmetry remains un-
broken in all other macro iterations, and is retained in all final CASSCF solutions. Other
indicators of computational effort of CASSCF are displayed in Table 4.1, including the
number of micro iteration and the post-HF run time (all calculations are performed on an
Intel Xeon Platinum 8358 central processing unit). The results clearly reveal that QICAS
provides a distinctly superior starting basis for CASSCF and can significantly accelerate
convergence. For both basis sets, and for both active space sizes, the HF-QICAS-CASCI
energy (at 0 iteration in the respective plots) is already much lower than the HF-CASCI
energy, demonstrating a drastic improvement thanks to QICAS relative to the HF orbitals.
Furthermore, starting from the optimized orbitals the correct CASSCF energy is practi-
cally reached after only 1 or 2 macro iterations. In contrast, starting from HF-orbitals
CASSCF takes at least 8 macro iterations to reach chemical accuracy. Consequently, each
post-QICAS CASSCF calculation requires much fewer computations of the two-electron
integrals, and the run time is overall 3-4 times shorter than that of the corresponding
post-HF CASSCF calculation.

Obtaining the QICAS optimized orbitals is certainly not for free. Yet, the effort in-
vested in computing the MPS ground state and minimizing the out-of-CAS correlation
FQI(B) is well exceeded by the computational cost saved in a post-QICAS CASSCF. The
majority of the QICAS run time is spent on the QC-DMRG calculation, whereas the min-
imization of FQI(B) takes only a few minutes. In this sense, QICAS is at least as economic
as other methods that are based as well on MPS ground state approximations with low
bond dimension (e.g., Ref. [195]), while at the same time QICAS offers an advantageous
starting point for CASSCF uniquely achieved by our QI-motivated orbital optimization.

4.2.4 Determining active space sizes with QICAS

An apparent requirement for implementing the orbital optimization for the minimization
of the QI cost function FQI(B) is the number of active/non-active orbitals. This feature
is however not a drawback, as we readily have all the ingredients to calculate the entropy
profile of the initial set of orbitals once the 1- and 2-RDMs are obtained, which can be used
for active space size selection, also known as AutoCAS proposed by Stein and Reiher [195].
The main idea in Ref. [195] is that the set of orbitals with substantially higher orbital
entropy than the others should constitute the active space. To be more concrete, Stein
and Reiher utilized the so-called threshold diagrams, where they count the number of
orbitals whose entropy exceeds a certain percentage of the maximal entropy among all
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Figure 4.10: Threshold diagrams of the entropy of three orbital basis for the C2 molecule
at equilibrium geometry R = 1.243Å in cc-pVDZ basis set: the Hartree-Fock (HF) basis as
the initial guess, the basis with minimal overall orbital entropy (Min. Orb. Entr.) which
minimizes F ′

QI(B), and the QICAS optimized basis with DCAS = 8.
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orbitals. This diagram effects a top-down scanning of the entropy profile for identifying
strong orbital correlation.

The success of AutoCAS relies on two assumptions: (i) the optimal active orbitals
exhibit a high plateau in the orbital entropy profile, and (ii) the entropy profile of the
current basis set based on which the prediction of the active space size is made, is similar
to that of the optimal basis. Assumption (i) lies in the heart of almost all correlation-based
active space selection methods. Instead of relying on high orbital entropy, active orbitals
can also be distinguished by other indicators of strong orbital correlation, such as fractional
occupation numbers. The second assumption, however, may not always hold. A poorly
chosen set of initial guess orbitals could have a qualitatively different entropy profile than
that of the optimal orbitals.

QICAS can lift the assumption (ii) by optimizing the orbital entropy profile. For this,
we propose to generalize the QICAS cost function FQI(B) to the following

F ′
QI(B) =

∑
i

S(ρi), (4.43)

namely summing over all orbitals instead of just the non-active ones. This yields an
unbiased optimization of the overall orbital entropy, based on which a threshold diagram
can be produced. Once an active space size DCAS is predicted, an ordinary QICAS routine
can be run.

As an example, we present in Figure 4.10 the threshold diagrams of the entropy of three
orbital bases for the C2 molecule at the equilibrium geometry R = 1.243Å in the cc-pVDZ
basis set: (a) the Hartree-Fock (HF) basis as the initial guess, (b) the basis with minimal
overall orbital entropy (Min. Orb. Entr. ) which minimizes F ′

QI(B), and (c) the QICAS
optimized basis with DCAS = 8. The y-axis represents the number of orbitals with entropy
larger than [Threshold × maxi S(ρi)]. The first identifiable plateau in the low threshold
regime then predicts the size of the active space. First we focus on the HF orbitals. The
earliest plateau in the HF basis predicts DCAS = 7, while at the optimal size DCAS = 8 the
HF orbitals do not exhibit a plateau. In basis (b) where the overall entropy is minimized,
the first plateau appears at DCAS, albeit it is not very prominent. However, when we
feed this predicted active space size into QICAS and obtain the corresponding optimized
orbitals, the plateau at DCAS = 8 is further accentuated with a substantial extension,
confirming that this is indeed the correct active space size.

Chapter Summary

In this chapter, we proposed an orbital optimization scheme QICAS which exploits the
correlation structure of cheaper post-HF solutions to determine accurate active spaces.
To this end, we utilized a preceding QC-DMRG calculation with a low bond dimension,
and minimize the sum of orbital correlations FQI(B) of the non-active orbitals in a basis
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B. According to Theorem 1, this choice of a cost function is very well-motivated: FQI(B)
bounds exactly that portion of the correlation energy which the corresponding active space
fails to recover. In practical applications, QICAS demonstrated a remarkable potential.
For C2, we observed an excellent agreement between the CASCI energy of the QICAS
optimized orbitals and the CASSCF energy along the entire dissociation curve. For the
more challenging Cr2, we found that optimizing a subset of orbitals using QICAS provided
a warm starting point for CASSCF, and consistently reduced the number of iterations
required for convergence.

We believe that the potential transformative impact of QI tools in theoretical and com-
putational chemistry to simplify electronic structure is not limited to active space methods.
Schemes and ideas related to QICAS may lead to advances in the development and appli-
cation of any method where orbital optimization plays a prominent role. Prime examples
would be quantum computing [224]–[227], where a poor choice of reference orbitals results
in a large circuit depth, and the density matrix embedding theory [228]–[230], where the
sought-after local fragment and bath orbitals form a structure similar to that of an active
space [229].
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Summary and Conclusions

Solving the ground state problem for strongly correlated electrons requires a deeper under-
standing of what exactly electron correlation means and how we can manipulate it to our
advantage. In this thesis, we focused on a major aspect of electron correlation, namely the
correlation of single-particle basis functions, or orbitals. The choice of orbital basis does
not affect the formal complexity of the electronic Hamiltonian in a molecule (the inter-
action remains two-body), nor the energy of the exact ground state wavefunction. But it
certainly has a huge impact on both the accuracy and efficiency of any imposed, non-exact
ansätze, such as, complete active space configuration interaction (CASCI), coupled cluster
singles and doubles (CCSD), or matrix product states (MPS) with limited bond dimen-
sions. Moreover, the choice of the orbital basis also alters the representation of the ground
state, which depending on the particular choice may facilitate or hinder the physical or
chemical interpretation of the solution. All these aspects of orbital dependence are in fact
quantifiable through the lens of orbital entanglement and correlation.

We started by thoroughly investigating the basis dependence of orbital entanglement
and correlation in the ground states of molecular systems. The degree of orbital localization
was found to have a drastic effect on the overall pattern of orbital entanglement. On one
hand, we discovered that partially localizing the orbitals leads to a lower overall orbital
entanglement profile, which confirms the expectation that there is still some level of locality
in chemical systems despite the long-range Coulomb interaction. These orbitals are then
particularly well-suited for any ansatz whose accuracy hugely hinges on a local structure,
such as the MPS ansatz and parametrized quantum circuits. On the other hand, fully
localized atomic-like orbitals exhibit almost maximal entanglement. While these orbitals
are highly entangled among each other, this entanglement is again locally confined. And,
for molecules with well-defined Lewis structure, these fully localized orbitals form dimerized
entangled pairs, each representing a localized two-center covalent bond.

This observation eventually led to the development of maximally entangled atomic
orbitals (MEAO), designed to reveal the bonding structure of a molecule from ab ini-
tio ground state calculations. These orbitals combine the appealing qualities of both the
molecular orbital and valence bond picture of chemical bonding. Namely, they are fully
localized and correctly hybridized, thus providing an intuitive chemical picture, and at the
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same time orthonormal to each other, setting a solid base for a wide range of wavefunction
methods. Most importantly, the entanglement structure of the MEAOs fully reflects the
bonding structure of the molecule. Compared to other bonding analysis tools, our scheme
is entirely automated and free of manual intervention, while maintaining a low compu-
tational cost. The correspondence of entangled pairs of orbitals and two-center covalent
bonds can even be extended to multi-center bonds, which are bonding effects beyond the
standard Lewis structures. This was achieved by measuring the genuine multipartite en-
tanglement shared among more than two MEAOs. With more and more sophisticated but
hard to interpret wavefunction ansatz becoming available, the MEAO framework offers an
intuitive representation of the molecular ground states, thus opening the door to extract-
ing properties and chemical insights such as aromaticity and agostic bonds from highly
accurate numerical solutions.

Another highlight of the thesis is the development of the novel quantum information-
assisted complete active space optimization (QICAS) algorithm. With QICAS, we suc-
cessfully tackled the long-standing problem of active space selection and optimization. We
started by noticing that the accuracy of an active space in an orbital basis B is intuitively
linked to the correlation effects that are discarded in the non-active orbital subspace. In
the form of a theorem (see Theorem 1 in Chapter 4 Section 4.2), we established for the
first time a connection between orbital entanglement, measured by the sum of non-active
orbital entropy (denoted as FQI(B)), and the energy discrepancy ∆E(B) between the ac-
tive space approximation and the exact ground state energy. Specifically, the inequality
∆E(B) ≤ k(Ĥ)FQI(B) holds where k(Ĥ) is a B-independent constant. Using the entropy
of the non-active orbitals as a cost function, we were able to minimize the correlation in
the ground state that the active space ansatz as a powerful but limited ansatz would fail to
recover. Based on an MPS solution with low bond dimension, we managed to get an esti-
mate of the correlation beyond the active space, and optimize for the energetically optimal
active orbitals. As a result, QICAS produces for small systems energetically optimal active
spaces, without the need for solving the full configuration interaction (FCI) problem within
the active space many times as in the standard complete active space self-consistent field
(CASSCF) approach. For larger systems, QICAS prepares a warm starting orbital basis,
and drastically reduces the required number of micro- and macro-iterations in a subsequent
CASSCF calculation, for achieving the desired accuracy of the active space. Conceptu-
ally, QICAS offers a fresh perspective into the electronic ground state problem. Using
orbital entanglement as a guide, we can choose a suitable representation of the ground
state wavefunction such that the given ansatz approximation achieves maximal accuracy.

All these results demonstrated the tremendous potential of quantum information the-
oretical concepts and tools for the many-electron ground state problem. In particular,
orbital entanglement and correlation analyses allow for (i) quantitative assessment of elec-
tron correlation, (ii) highly interpretable representations of wavefunctions, and (iii) the
improvement or even invention of wavefunction methods for describing correlated elec-
trons. The versatility and broad relevance of orbital entanglement is certainly not limited
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to the ground state problem. In some other problems such as state-average calculations
and time evolution simulations, one faces an even steeper challenge posed by the entangle-
ment. In state-average calculations, the requirement for a good orbital basis is even more
stringent, as the same set of orbitals are used for both ground and excited states, which
are not expected to display a similar entanglement structure. During time evolution, the
wavefunction moves through different regions of the Hilbert space. To keep up with the
time-evolved state with the limited coverage by an ansatz and describe the shifting entan-
glement structure, the reference orbitals would also need to evolve in time. These major
problems exemplify the broad relevance of orbital entanglement and correlation analysis.
We therefore firmly believe that the insights and methods developed in this thesis can be
potentially transferred to a wide range of areas in quantum physics and chemistry.
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Appendix A

Correlation Sum Rule

In this section we will show that the quantum and classical correlation of ρ sum up to the
total correlation of ρ, if its closest product state πρ = ρA⊗ρB and its closest classical state
χρ are simultaneously diagonalized. For the definitions of the closest product/classical
state, we refer the reader to Section 1.1.

From here on, we assume that πρ and χρ can be simultaneously diagonalized. First, we
observe that the descrepancy ∆ between the total correlation I and the sum of quantum
and classical correlation, Q and C, respectively, can be written as

∆ = I(ρ)−Q(ρ)− C(ρ)

= (S(ρA) + S(ρB)− S(ρ))− (S(χρ)− S(ρ))− (S(χA) + S(χB)− S(χρ))

= S(ρA) + S(ρB)− S(χA)− S(χB),

(A.1)

where χA,B are the reduced states of χρ on subsystem A and B, respectively. We can then
show that the descrepancy ∆ vanishes, by showing that the spectrum of ρA and that of
χA coincide (and the same applies for subsystem B). Let us denote the eigenstate of χρ as
{|i⟩⊗|j⟩}. From this it follows that the eigenvalues of ρA are precisely its diagonal entries
in this basis

λi = (ρA)ii = ⟨i|ρA|i⟩ =
∑
j

⟨i|⊗⟨j|ρ|i⟩⊗|j⟩. (A.2)

Moreover, the eigenvalues of χA are given by[8]

µi = ⟨i|TrB[χρ]|i⟩

= ⟨i|TrB

[∑
kj

|k⟩⟨k|⊗|j⟩⟨j|ρ|k⟩⟨k|⊗|j⟩⟨j|

]
|i⟩

=
∑
j

⟨i|⊗⟨j|ρ|i⟩⊗|j⟩ = λi.

(A.3)
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Using similar considerations, the spectrum of ρB and χB also coincide. As a result, the
descrepancy ∆ (A.1) must vanish, leading to the sum rule

I(ρ) = Q(ρ) + C(ρ). (A.4)

This allows us to dissect the total correlation exactly into quantum and classical correlation
contributions. When ρA/B is not simultaneously diagonalized as χA/B, its diagonal entries
still coincide with those of χA/B, namely the elements of µ⃗. From this, it follows that the

spectrum of ρA/B given by λ⃗ majorizes µ⃗, leading to the inequality S(ρA/B) > S(χA/B) by
the Schur concavity of the von Neumann entropy. Hence, a general relation between the
total, quantum, and classical correlation reads as

I(ρ) ≥ Q(ρ) + C(ρ). (A.5)



Appendix B

Atomic-like Orbitals in Benzene

The pre-normalized canonical Hartree-Fock orbitals ϕ̃i’s within the π-subspace of the one-
particle Hilbert space of the benzene ring are related to the pz orbitals αi’s by

ϕ̃i = Uijαj, (B.1)

where

U =


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6


, (B.2)

is a unitary matrix. The atomic-like orbitals α̃i proposed by us is obtained by applying
the inverse U−1 to the normalized canonical Hartree-Fock orbitals ϕi = ϕ̃i/∥ϕ̃i∥

α̃i = U−1
ij ϕj. (B.3)

The above transformation can be achieved by a sequence of two-orbital rotations.

• Step 1

ϕ1 ← − 1√
2
ϕ1 + 1√

2
ϕ6, ϕ1 ← 1√

2
ϕ1 + 1√

2
ϕ6

ϕ2 ← − 1√
2
ϕ2 + 1√

2
ϕ5, ϕ5 ← 1√

2
ϕ2 + 1√

2
ϕ5

ϕ3 ← − 1√
2
ϕ3 + 1√

2
ϕ4, ϕ4 ← 1√

2
ϕ3 + 1√

2
ϕ4
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• Step 2

α̃1 ← − 1√
3
ϕ1 +

√
2
3
ϕ2, ϕ2 ←

√
2
3
ϕ1 + 1√

3
ϕ2

ϕ5 ← − 1√
3
ϕ5 +

√
2
3
ϕ6, α̃6 ←

√
2
3
ϕ5 + 1√

3
ϕ6

• Step 3

α̃2 ← − 1√
2
ϕ2 − 1√

2
ϕ4, α̃4 ← − 1√

2
ϕ2 + 1√

2
ϕ4

α̃3 ← − 1√
2
ϕ3 + 1√

2
ϕ5, α̃5 ← 1√

2
ϕ3 + 1√

2
ϕ5

We then arrive at the atomic-like orbitals α̃i’s.
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Gradient-Based Orbital Optimization

In this section, we describe the general framework for gradient-based orbital optimization
used in Chapter 3 and 4. The goal is to solve the following optimization problem given a
cost function F (B) depending on the orbital basis B

B∗ = arg min
B
F (B). (C.1)

The first task is to parametrize the set of all possible orbital bases of size D, which is
in fact a manifold. Every two bases B1 = {ϕi}Di=1 and B2 = {φi}Di=1 are connected by a
unitary transformation U via

φi =
D∑
j=1

Uijϕj. (C.2)

In this thesis we only deal with real orbital bases. Therefore the unitary transformation U is
actually orthogonal. If we choose a fixed orbital basis as a reference, then the parametriza-
tion of the manifold of all orbital bases can be achieved by the following parametrization
the group of D ×D orthogonal matrices

U = exp(X), θij = −Xji, (C.3)

where X is an anti-symmetric matrix. Then the (D−1)D/2 independent degrees of freedom
in X becomes our parameter space, and the cost function F (B) can be written as F (X).
The set of all anti-symmetrice matrices is a vector space, with basis elements being the
generators A(ij) of Jacobi rotations

(A(ij))kl =


1 i = k, j = l

−1 i = l, j = k

0 otherwise

. (C.4)
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The Jacobi rotation involving the i-th and j-th orbitals is then

J(ij)(θ) =



1 0
. . .

cos(θ) · · · sin(θ)
...

...
− sin(θ) · · · cos(θ)

. . .

0 1


. (C.5)

With the basis A(ij), any anti-symmetric matrix X can be expanded as

X =
∑
i<j

θijA
(ij). (C.6)

We optimize the cost function F (X(θ)) by using the Newton-Raphson method. For
this we need the anti-symmetrized gradient G

Gij = −Gji =
∂F (X(θ))

∂θij
= lim

δ→0

F (X(θ) + δA(ij))− F (X(θ))

δ
, (C.7)

and the approximated Hessian H

Hij = Hji =
∂2F (X(θ))

∂θ2ij
= lim

δ→0

F (X(θ) + δA(ij)) + F (X(θ)− δA(ij))− 2F (X(θ))

δ2
.

(C.8)
Note that we only calculate the diagonal part of the Hessian, namely the second derivatives
with respect to the same parameter. In the following sections we will explain how are the
first and second derivatives we use are analytically derived. Once the gradients and the
diagonal part of the Hessian is obtained, the X matrix is updated at each numerical
iteration by the following equation

X← X− α[H− (min(H)− β)]−1G, (C.9)

where α (typically between 0.1 and 0.3) is the step size and β is a level shift hyper-parameter
(typically between 10−4 to 10−1). When the objective is the maximize a function, then α
takes negative values. After every step, we reset the orbital basis of reference to be the
current basis, i.e., X = 0. Therefore we only need the analytic expressions for the first and
relevant second derivatives evaluated at X = 0.

C.1 MEAO

The two-particle RDM Γ is defined as

Γ(B)ijkl = ⟨f †
i↑f

†
j↓fl↓fk↑⟩. (C.10)
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The objective function for maximizing the entanglement between connected orbitals is

FMEAO(B) =
∑
(i,j)

|Γ(B)īijj̄|
2 + |Γ(B)ij̄

jī
|2. (C.11)

Here (i, j) denotes a pair of orbitals from two different atomic centers, and i (̄i) denotes
the i-th spin-up (-down) orbital.

A Jakobi rotation on the pair (k, l) by an angle θ transforms Γ(B) to a new basis B′ as

Γ(B)ijkl =
∑
abcd

J(kl)(θ)iaJ
(kl)(θ)jbJ

(kl)(θ)kcJ
(kl)(θ)ldΓ(B)abcd. (C.12)

Then it is straightforward to calculate the first derivative of F with respect to θkl evaluated
at the current basis B (which we omit for simplicity)

∂FMEAO

∂θkl

∣∣∣∣
θkl=0

= 2
∑
(i,j)

(Γiijj)
∂Γīijj̄
∂θkl

∣∣∣∣∣
θkl=0

+ (Γij̄
ij̄

)
∂Γijij
∂θkl

∣∣∣∣∣
θkl=0

,

∂Γīijj̄
∂θkl

∣∣∣∣∣
θkl=0

= δik(Γ
l̄i
jj̄ + Γil̄jj̄)− δil(Γ

kī
jj̄ + Γik̄jj̄) + δjk(Γ

īi
lj̄ + Γīijl̄)− δjl(Γ

īi
kj̄ + Γīijk̄),

∂Γij̄
jī

∂θkl

∣∣∣∣∣
θkl=0

= δik(Γ
lj̄
jī

+ Γij̄
jl̄

)− δil(Γkj̄jī + Γij̄
jk̄

) + δjk(Γ
il̄
jī + Γij̄

l̄i
)− δjl(Γik̄jī + Γij̄

kī
).

(C.13)

And likewise the diagonal elements of the Hessian are obtained via

∂2FMEAO

∂θ2kl

∣∣∣∣
θkl=0

=
∑
(i,j)

2

(
∂Γīijj̄
∂θkl

)2
∣∣∣∣∣∣
θkl=0

+ 2Γīijj̄
∂2Γīijj̄
∂θ2kl

∣∣∣∣∣
θkl=0

+ 2

(
∂Γij̄

ij̄

∂θkl

)2
∣∣∣∣∣∣
θkl=0

+ 2Γij̄
ij̄

∂2Γij̄
ij̄

∂θ2kl

∣∣∣∣∣
θkl=0

,

∂2Γīijj̄
∂θ2kl

∣∣∣∣∣
θkl=0

= −2(δik+δil+δjk+δjl)Γ
īi
jj̄ + 2(δikΓ

ll
jj+δilΓ

kk̄
jj̄ +δjkΓ

īi
ll̄+δjlΓ

īi
kk̄)

− 2(δikδjl+δjlδik)(Γ
ij̄
ij̄

+Γij̄
jī

+Γjī
ij̄

+Γjī
jī

),

∂2Γij̄
jī

∂θ2kl

∣∣∣∣∣
θkl=0

= −2(δik+δil+δjk+δjl)Γ
ij̄
jī

+ 2(δikΓ
lj̄

jl̄
+δilΓ

kj̄

jk̄
+δjkΓ

il̄
l̄i+δjlΓ

ik̄
kī)

− 2(δikδjl+δjlδik)(Γ
īi
jj̄+Γjj̄

īi
+Γij̄

ij̄
+Γjī

jī
).

(C.14)

When the 2RDM is calculated from a mean-field trial wavefunction, we can express
the relevant part of the 2RDM with 1RDM γ

Γij̄
kl̄

= ⟨f †
i↑f

†
j↓fl↓fk↑⟩ = ⟨f †

i↓fk↓⟩⟨f
†
j↓fl↓⟩ = γikγ

j̄

l̄
, (C.15)
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which can be substituted into the expressions of the gradient and second derivatives above.

C.2 QICAS

To obtain the QICAS orbitals, we minimize the following cost function

FQI(B) =
∑
i∈A

S(ρi), (C.16)

where A collects all active orbitals. The derivatives of FQI can be broken down using the
chain rule

∂FQI

∂θij
(0) = −

∑
i∈A

3∑
k=0

log(λ
(i)
k (0))

∂λ
(i)
k

∂θij
(0), (C.17)

where

λ
(i)
0 (X) = 1− γ(X)ii − γ(X)īī + Γ(X)īiīi,

λ
(i)
1 (X) = γ(X)ii − Γ(X)īiīi,

λ
(i)
2 (X) = γ(X)īī − Γ(X)īiīi,

λ
(i)
3 (X) = Γ(X)īiīi.

(C.18)

Here, γ(X) and Γ(X) are the 1- and 2-RDMs in the rotated basis given by

γ(X)ii =
∑
ab

(eX)ia(e
X)ibγ(0)ab ,

Γ(X)īiīi =
∑
abcd

(eX)ia(e
X)ib(e

X)ic(e
X)idΓ(0)ab̄cd̄,

(C.19)

The derivatives of the RDMs at X = 0 are gievn by

∂γ(0)ii
∂θij

= γ(0)ji + γ(0)ij,

∂γ(0)jj
∂θij

= −γ(0)ji − γ(0)ij,

∂Γ(0)īiīi
∂θij

= Γ(0)jī
īi

+ Γ(0)ij̄
īi

+ Γ(0)īijī + Γ(0)īiij̄.

∂Γ(0)jj̄
jj̄

∂θij
= −Γ(0)ij̄

jj̄
− Γ(0)jī

jj̄
− Γ(0)jj̄

ij̄
− Γ(0)jj̄

ij̄
.

(C.20)

The diagonal elements of the Hessian are calculated as

∂2FQI(0)

∂θ2ij
=−

∑
i∈A

3∑
k=0

 1

λ
(i)
k (0)

(
∂λ

(i)
k (0)

∂θij

)2

+ log(λ
(i)
k (0))

∂2λ
(i)
k (0)

∂θ2ij

]
, (C.21)
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which involves the second derivatives of the RDMs

∂2γ(0)ii
∂θ2ij

= −2γ(0)ii + 2γ(0)jj,

∂2γ(0)jj
∂θ2ij

= 2γ(0)ii − 2γ(0)jj,

∂2Γ(0)īiīi
∂θ2ij

= −4Γ(0)īiīi + 2
∑

(a,b,c,d)∈P(i,i,j,j)

Γ(0)bd̄ac̄,

∂2Γ(0)jj̄
jj̄

∂θ2ij
= −4Γ(0)jj̄

jj̄
+ 2

∑
(a,b,c,d)∈P(i,i,j,j)

Γ(0)bd̄ac̄,

(C.22)

where P(i, i, j, j) collects all permutations of the tuple (i, i, j, j).
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Appendix D

Tabulated Data

This section collects the data for producing some of the figures in this thesis. The P-SSR
entanglement values for H16 in Table D.1 were used in Figure 2.5, and the N-SSR entan-
glement values in Table D.2 are listed here for completeness. The C2 CASCI/CASSCF
energies with HF, MP2, and QICAS active orbitals, along the dissociation curve are sum-
marized in Table D.3 and D.4, which were used in Figure 4.8. The energies at each macro
iteration during a CASSCF calculation for Cr2 with different starting orbital bases are
tabulated in Table D.5 and D.6, which were used to produce Figure 4.9 and Table 4.1 in
the main text.
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N R = 1 R = 2 R = 3 R = 5

2 (1, 0.00079) (1, 0.00004) (1, 0.00001) (3, 0.00015)
(2, 0.00155) (2, 0.00027) (2, 0.00013) (4, 0.00101)
(3, 0.00289) (3, 0.00111) (3, 0.00071) (5, 0.00401)
(4, 0.00481) (4, 0.00308) (4, 0.00244) (6, 0.01019)
(5, 0.00708) (5, 0.00642) (5, 0.00589) (7, 0.01751)
(7, 0.01090) (7, 0.01409) (7, 0.01505)
(8, 0.01149) (8, 0.01549) (8, 0.01685)

4 (1, 0.00317) (1, 0.00020) (6, 0.00192) (6, 0.00132)
(2, 0.00104) (2, 0.00007) (7, 0.02821) (7, 0.03748)
(3, 0.00002) (8, 0.04705) (8, 0.06498)

8 (1, 0.02806) (1, 0.01858) (6, 0.01120) (1, 0.00065)
(2, 0.00036) (2, 0.00217) (7, 0.00561) (2, 0.00554)

(8, 0.00091)
12 (1, 0.06344) (1, 0.05666) (1, 0.04819) (1, 0.03391)
16 (1, 0.09116) (1, 0.10340) (1, 0.10637) (1, 0.08142)
20 (1, 0.06569) (1, 0.06303) (1, 0.05458) (1, 0.03310)
24 (1, 0.03235) (1, 0.02917) (1, 0.02084) (1, 0.00418)

(2, 0.00024) (2, 0.00030) (2, 0.00200) (2, 0.01301)
28 (1, 0.00709) (1, 0.00380) (1, 0.00078) (6, 0.00169)

(2, 0.00142) (2, 0.00113) (2, 0.00030) (7, 0.03275)
(3, 0.00005) (3, 0.00002) (8, 0.05492)
(4, 0.00002)

30 (1, 0.00306) (1, 0.00082) (1, 0.00018) (3, 0.00046)
(2, 0.00381) (2, 0.00170) (2, 0.00071) (4, 0.00193)
(3, 0.00468) (3, 0.00314) (3, 0.00199) (5, 0.00535)
(4, 0.00559) (4, 0.00506) (4, 0.00417) (6, 0.01064)
(5, 0.00642) (5, 0.00719) (5, 0.00708) (7, 0.01584)
(6, 0.00710) (6, 0.00914) (6, 0.01011) (8, 0.01805)
(7, 0.00753) (7, 0.01052) (7, 0.01242)
(8, 0.00768) (8, 0.01102) (8, 0.01328)

Table D.1: Tuples (d,EP) of orbital separation distance d and P-SSR entanglement EP

between orthonormal atomic orbitals for different numbers of electrons N in the ground
state of H16 in STO-3G basis.
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N R = 1 R = 2 R = 3 R = 5

2 (1, 0.00079) (1, 0.00004) (1, 0.00001) (3, 0.00015)
(2, 0.00155) (2, 0.00027) (2, 0.00013) (4, 0.00101)
(3, 0.00289) (3, 0.00111) (3, 0.00071) (5, 0.00401)
(4, 0.00481) (4, 0.00308) (4, 0.00244) (6, 0.01019)
(5, 0.00708) (5, 0.00642) (5, 0.00589) (7, 0.01751)
(6, 0.00929) (6, 0.01056) (6, 0.01067) (8, 0.02091)
(7, 0.01090) (7, 0.01409) (7, 0.01505)
(8, 0.01149) (8, 0.01549) (8, 0.01685)

4 (1, 0.00315) (1, 0.00020) (6, 0.00192) (6, 0.00132)
(2, 0.00102) (2, 0.00007) (7, 0.02821) (7, 0.03748)

(8, 0.04705) (8, 0.06498)
8 (1, 0.02361) (1, 0.01714) (6, 0.01097) (1, 0.00065)

(2, 0.00016) (2, 0.00213) (7, 0.00560) (2, 0.00554)
(8, 0.00091)

12 (1, 0.03441) (1, 0.03542) (1, 0.03722) (1, 0.03344)
16 (1, 0.04525) (1, 0.05546) (1, 0.06732) (1, 0.07892)
20 (1, 0.03529) (1, 0.03805) (1, 0.04065) (1, 0.03261)
24 (1, 0.02639) (1, 0.02565) (1, 0.01995) (1, 0.00418)

(2, 0.00015) (2, 0.00196) (2, 0.01301)
28 (1, 0.00696) (1, 0.00378) (1, 0.00078) (6, 0.00169)

(2, 0.00132) (2, 0.00112) (2, 0.00030) (7, 0.03275)
(3, 0.00002) (8, 0.05492)

30 (1, 0.00305) (1, 0.00082) (1, 0.00018) (3, 0.00046)
(2, 0.00381) (2, 0.00170) (2, 0.00071) (4, 0.00193)
(3, 0.00468) (3, 0.00314) (3, 0.00199) (5, 0.00535)
(4, 0.00559) (4, 0.00506) (4, 0.00417) (6, 0.01064)
(5, 0.00642) (5, 0.00719) (5, 0.00708) (7, 0.01584)
(6, 0.00709) (6, 0.00914) (6, 0.01011) (8, 0.01805)
(7, 0.00753) (7, 0.01052) (7, 0.01242)
(8, 0.00768) (8, 0.01102) (8, 0.01328)

Table D.2: Tuples (d,EN) of orbital separation distance d and N-SSR entanglement EN

between orthonormal atomic orbitals for different numbers of electrons N in the ground
state of H16 in STO-3G basis.
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R HF-CASCI HF-CASSCF HF-QICAS-CASCI Error HF-MP2-CASCI Error

0.90 -75.12946759 -75.20144209 -75.19934023 0.0021 -75.18463955 0.0168
0.95 -75.27135392 -75.34401603 -75.34240062 0.0016 -75.32828484 0.0157
1.00 -75.37418035 -75.44713825 -75.44586770 0.0013 -75.43240495 0.0147
1.05 -75.44681960 -75.51972363 -75.51869917 0.0010 -75.50581173 0.0139
1.10 -75.49619999 -75.56875202 -75.56805195 0.0007 -75.55544219 0.0133
1.15 -75.52774827 -75.59969614 -75.59886872 0.0008 -75.58676044 0.0129
1.20 -75.54573301 -75.61685395 -75.61600405 0.0008 -75.60407385 0.0128
1.25 -75.55352667 -75.62360515 -75.62280752 0.0008 -75.61078031 0.0128
1.30 -75.55380393 -75.62260941 -75.62185183 0.0008 -75.60956170 0.0130
1.35 -75.54868975 -75.61595998 -75.61522372 0.0007 -75.60253499 0.0134
1.40 -75.53986690 -75.60530313 -75.60453251 0.0008 -75.59137073 0.0139
1.45 -75.52865167 -75.59193145 -75.59115951 0.0008 -75.57738559 0.0145
1.50 -75.51604788 -75.57685721 -75.57614399 0.0007 -75.56161491 0.0152
1.55 -75.50279544 -75.56087022 -75.56011649 0.0008 -75.54486974 0.0160
1.60 -75.48942913 -75.54458384 -75.54390621 0.0007 -75.52778131 0.0168
1.65 -75.47498850 -75.52847206 -75.52755548 0.0009 -75.52024140 0.0082
1.70 -75.46761485 -75.51603912 -75.51439989 0.0016 -75.51093774 0.0051
1.75 -75.45996259 -75.50679056 -75.50449374 0.0023 -75.50138186 0.0054
1.80 -75.45221991 -75.49754368 -75.49602688 0.0015 -75.49179947 0.0057
1.85 -75.44449233 -75.48847010 -75.48691210 0.0016 -75.48235903 0.0061
1.90 -75.43691689 -75.47969780 -75.47818189 0.0015 -75.47318460 0.0065

Table D.3: HF-CASCI(8, 8), HF-CASSCF(8, 8), HF-QICAS-CASCI(8, 8) energy (a.u.)
and HF-MP2-CASCI(8, 8) (a.u.) for C2 with cc-pVDZ basis set as functions of the internu-
clear distance R (Å). The columns directly after HF-QICAS-CASCI and HF-MP2-CASCI
show the error between the corresponding CASCI energy and the HF-CASSCF energy.
For QICAS the bond dimension is set at m = 100 with 50 DMRG sweeps. For the HF-
MP2-QICAS, the natural orbitals of the MP2 solution is used for the subsequent CASCI
calculation. The HF-CASSCF energy at R = 1.65Å is computed with the Molpro[135]–
[137] package, and all other HF-(MP2)-CASCI/CASSCF energies with PySCF[219].
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R HF-CASCI HF-CASSCF HF-QICAS-CASCI Error HF-MP2-CASCI Error

1.95 -75.42960501 -75.47132136 -75.46992772 0.0014 -75.46436648 0.0070
2.00 -75.42262399 -75.46341031 -75.46210159 0.0013 -75.45596985 0.0074
2.05 -75.41605627 -75.45601527 -75.45499966 0.0010 -75.44804145 0.0080
2.10 -75.40992543 -75.44917221 -75.44834985 0.0008 -75.44061440 0.0086
2.15 -75.40428211 -75.44290490 -75.44184310 0.0011 -75.43371138 0.0092
2.20 -75.39914843 -75.43722600 -75.43621747 0.0010 -75.42734653 0.0099
2.25 -75.39451911 -75.43213719 -75.43156663 0.0006 -75.42152625 0.0106
2.30 -75.39039472 -75.42762900 -75.42695443 0.0007 -75.41624947 0.0114
2.35 -75.38676296 -75.42368088 -75.42330421 0.0004 -75.41150757 0.0122
2.40 -75.38360577 -75.42026186 -75.41983790 0.0004 -75.40728441 0.0130
2.45 -75.38087573 -75.41733213 -75.41692488 0.0004 -75.40355674 0.0138
2.50 -75.37852375 -75.41484545 -75.41454286 0.0003 -75.40029491 0.0146
2.55 -75.37653318 -75.41275185 -75.41246927 0.0003 -75.39746416 0.0153
2.60 -75.37484268 -75.41100054 -75.41083042 0.0002 -75.39502619 0.0160
2.65 -75.37341422 -75.40954236 -75.40939055 0.0002 -75.39294095 0.0166
2.70 -75.37220493 -75.40833169 -75.40829325 0.0000 -75.39116835 0.0172
2.75 -75.37110250 -75.40761748 -75.40678190 0.0008 -75.38966973 0.0177
2.80 -75.37023221 -75.40677594 -75.40649893 0.0003 -75.38840902 0.0181
2.85 -75.36949194 -75.40607585 -75.40587908 0.0002 -75.38735350 0.0184
2.90 -75.36886008 -75.40549195 -75.40531755 0.0002 -75.38647408 0.0188
2.95 -75.36831894 -75.40500335 -75.40479502 0.0002 -75.38574544 0.0190
3.00 -75.36785398 -75.40459304 -75.40432654 0.0003 -75.38514585 0.0192

Table D.4: HF-CASCI(8, 8), HF-CASSCF(8, 8), HF-QICAS-CASCI(8, 8) energy (a.u.)
and HF-MP2-CASCI(8, 8) (a.u.) for C2 with cc-pVDZ basis set as functions of the internu-
clear distance R (Å). The columns directly after HF-QICAS-CASCI and HF-MP2-CASCI
show the error between the corresponding CASCI energy and the HF-CASSCF energy.
For QICAS the bond dimension is set at m = 100 with 50 DMRG sweeps. For the HF-
MP2-QICAS, the natural orbitals of the MP2 solution is used for the subsequent CASCI
calculation. All HF-(MP2)-CASCI/CASSCF energies are calculated with PySCF[219].
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Method(NCAS,DCAS) # Micro Energy (a.u.) ⟨S2⟩

HF-CASSCF(12, 12) 0 -2098.56762004 0.0000
8 -2098.65815254 0.0000
16 -2098.78440779 0.0000
24 -2098.90386814 0.0000
32 -2098.97374464 0.0000
40 -2099.07661965 0.0000
48 -2099.15989834 0.0000
56 -2099.22523508 0.0000
66 -2099.26654074 0.0000
76 -2099.26725524 0.0000
80 -2099.26725943 0.0000
82 -2099.26725956 0.0000
83 -2099.26725956 0.0000

HF-QICAS-CASSCF(12, 12) 0 -2099.21963835 0.0000
10 -2099.26689887 0.0000
16 -2099.26725514 0.0000
19 -2099.26725944 0.0000
21 -2099.26725956 0.0000
22 -2099.26725956 0.0000

HF-CASSCF(12, 14) 0 -2098.56831064 0.0000
8 -2098.27411466 0.0231
16 -2098.79419658 0.0000
24 -2098.92256223 0.0000
32 -2099.03522226 0.0000
40 -2099.09255949 0.0000
48 -2099.18377830 0.0000
56 -2099.26174338 0.0000
64 -2099.28119366 0.0000
72 -2099.28981686 0.0000
82 -2099.29106266 0.0000
92 -2099.29109795 0.0000
94 -2099.29109837 0.0000
95 -2099.29109845 0.0000

HF-QICAS-CASSCF(12, 14) 0 -2099.24319492 0.0000
10 -2099.29090519 0.0000
18 -2099.29109765 0.0000
21 -2099.29109853 0.0000
22 -2099.29109856 0.0000

Table D.5: Energy as a function of the number of micro iterations in CASSCF(12,12) and
CASSCF(12,14) for Cr2 in the cc-pV5Z-DK basis set at R = 1.679 Å, starting from HF-
orbitals and from QICAS optimized orbitals.
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Method(NCAS,DCAS) # Micro Energy (a.u.) ⟨S2⟩

HF-CASSCF(12, 12) 0 -2098.55947438 0.0000
8 -2098.62309906 0.0000
16 -2098.76339556 0.0000
24 -2098.85949993 0.0000
32 -2098.95413261 0.0000
40 -2099.14159937 0.0000
48 -2099.24342692 0.0000
56 -2099.26371403 0.0000
66 -2099.26724865 0.0000
72 -2099.26745342 0.0000
76 -2099.26745730 0.0000
77 -2099.26745741 0.0000
78 -2099.26745743 0.0000

HF-QICAS-CASSCF(12, 12) 0 -2099.11949368 0.0000
10 -2099.26475360 0.0000
18 -2099.26726838 0.0000
25 -2099.26745489 0.0000
28 -2099.26745735 0.0000
29 -2099.26745742 0.0000

HF-CASSCF(12, 14) 0 -2098.55949885 0.0000
8 -2098.62956185 0.0000
16 -2097.84547862 0.1102
24 -2098.91240284 0.0000
32 -2098.94968193 0.0000
40 -2099.05590176 0.0000
48 -2099.17568356 0.0000
56 -2099.25780515 0.0000
64 -2099.28634932 0.0000
72 -2099.29085930 0.0000
82 -2099.29122633 0.0000
92 -2099.29130420 0.0000
96 -2099.29130780 0.0000
98 -2099.29130824 0.0000
99 -2099.29130834 0.0000

HF-QICAS-CASSCF(12, 14) 0 -2099.13797545 0.0000
10 -2099.29041858 0.0000
18 -2099.29130378 0.0000
21 -2099.29130838 0.0000
22 -2099.29130846 0.0000

Table D.6: Energy as a function of the number of micro iterations in CASSCF(12,12) and
CASSCF(12,14) for Cr2 in the aug-cc-pV5Z-DK basis set at R = 1.679 Å, starting from
HF-orbitals and from QICAS optimized orbitals.
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vanni, Sebastian..., I enjoyed those lovely banters and occasional beers that brightened my
days.

I thank my parents for keeping their composure when I told them I was going for a PhD
and not a “proper job”. Thank you for only wanting me to be happy.

Finally, to my partner Gian, thank you for tolerating my “zombie mode” every time I was
stuck on a problem and telling me the answer was four, for being my rock, and for letting
me be yours.


	Zusammenfassung
	Abstract
	Publications
	Introduction
	Fermionic Entanglement and Correlation
	Hierarchy of correlation types
	Geometry of quantum states
	Correlation and entanglement
	Quantum vs classical correlation

	Particle vs orbital correlation for fermions
	Particles as subsystems
	Orbitals as subsystems


	Orbital Entanglement in a Lattice
	Free Fermions
	Reduced states in free fermions systems
	Tight-binding model

	Hydrogen ring
	Model and Hamiltonian
	Entanglement between orthogonal atomic orbitals in H16


	Orbital Entanglement in Covalent Bonds
	Basis dependence of orbital entanglement
	Analytic examples
	Numerical examples: ethylene, polyene, and benzene

	Maximally Entangled Atomic Orbitals (MEAO)
	Dissecting chemical bonds with MEAO
	Restoring the Lewis structures from accurate wavefucntions
	Genuine multipartite entanglement in multi-center bonds


	Quantum Information-Assisted Orbital Optimization
	Orbital correlation and representational complexity
	Complete active space optimization
	Cost function based on orbital entropy
	The QICAS algorithm
	Results on C2 and Cr2
	Determining active space sizes with QICAS


	Summary and Conclusions
	Correlation Sum Rule
	Atomic-like Orbitals in Benzene
	Gradient-Based Orbital Optimization
	MEAO
	QICAS

	Tabulated Data
	Bibliography
	Acknowledgement

