
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Task Scheduling on
FPGA-based Accelerators

with Limited Partial
Reconfiguration

vorgelegt von

Pascal Jungblut
20.04.2024

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Task Scheduling on
FPGA-based Accelerators

with Limited Partial
Reconfiguration

vorgelegt von

Pascal Jungblut
20.04.2024

Erstberichterstatter: Prof. Dr. Dieter Kranzlmüller

Zweitberichterstatter: Prof. Dr. Martin Schreiber

Tag der mündlichen Prüfung: 24.07.2024

cb This work is licensed under CC BY 4.0.
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Eidesstattliche Versicherung

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, gemäß
Promotionsordnung vom 12.07.11, §8, Abs. 2, Pkt. 5, ohne unerlaubte Beihilfe angefertigt
ist.

München, den 06.10.2024

. .
Pascal Jungblut

Dedicated to Alexandra Elbakyan

Abstract

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be reconfigured
dynamically. Accelerators for offloading computation based on FPGAs demonstrate potential as
energy-efficient and flexible alternatives to conventional accelerators in High-Performance and
Cloud Computing. Scheduling tasks on FPGAs is comparable to the allocation of resources on
a chip: each offloaded task occupies an area of the chip during its execution. Task scheduling
on FPGAs is typically done using Partial Reconfiguration (PR), where a subset of the FPGA is
configured to execute a task while the remaining circuits remain unchanged, inspired years of
research for scheduling strategies based on PR. However, PR’s reliance on low-level features
limits its portability and necessitates expert knowledge, hindering the application of existing
research for task scheduling and the overall adoption of FPGA-based accelerators. In this work,
we aim to support software developers in integrating accelerators based on FPGAs by asking how
to optimize task scheduling on FPGA-based accelerators without relying on PR?

To address our research question, we present three key contributions: first, we introduce an ab-
straction-agnostic methodology for describing FPGAs and scheduling strategies, centered around
deducing scheduling constraints from a machine model representing a target FPGA. Given a
task graph, optimal schedules can be generated with constraint programming and analyzed
systematically afterwards. We apply our methodology exemplarily in a case study for two
machine models – one supporting PR and one without PR – and compare the resulting schedules
generated for task graphs of existing applications, demonstrating that avoiding PR is feasible.
Second, we introduce an algorithm that uses heuristics to find schedules in polynomial time,
since optimal scheduling is an NP-complete problem. The algorithm supports the scheduling
of tasks on FPGAs without a dependency on PR. It is evaluated and the derived schedules are
compared against optimal schedules. Third, we apply a genetic algorithm to perform Design
Space Exploration (DSE) for the machine model. Its goal is to recommend minimal or automated
changes to the input program, which in turn affect the quality of possible schedules. We show
that effective recommendations can be generated.

Our results can help vendors provide significantly more streamlined workflows for program-
ming FPGAs and thus make the platform more appealing for users. The insights can also be
used to extend established programming models, such as OpenCL, to accommodate the unique
characteristics of FPGAs. Based on our research, architectural optimizations for an approach with
a vastly simplified PR implementation both in hardware and software can be considered. Lastly,
automating the generation of constraints for an accelerator would support the selection of the
most suitable scheduling strategy without human interaction.

Kurzfassung

Field Programmable Gate Arrays (FPGAs) sind integrierte Schaltungen, die dynamisch rekonfig-
uriert werden können. Beschleuniger zur Auslagerung von Berechnungen auf Basis von FPGAs
zeigen Potenzial als energieeffiziente und flexible Alternativen zu herkömmlichen Beschleunigern
im Bereich Hochleistungs- und Cloud-Computing. Die Planung von Aufgaben auf FPGAs ist
vergleichbar mit der Zuteilung von Ressourcen auf einem Chip: Jede ausgelagerte Aufgabe belegt
während ihrer Ausführung einen Bereich des Chips. Die Aufgabenplanung auf FPGAs erfolgt
in der Regel mit Partial Reconfiguration (PR), bei der ein Teil des FPGAs zur Ausführung einer
Aufgabe konfiguriert wird, während die verbleibenden Schaltkreise unverändert bleiben. Dies
inspirierte jahrelange Forschung zu Planungsstrategien auf Basis von PR. Die Abhängigkeit von
PR von Low-Level-Funktionen schränkt jedoch seine Portabilität ein und erfordert Expertenwis-
sen, was die Anwendung vorhandener Forschung für die Aufgabenplanung und die allgemeine
Einführung von FPGA-basierten Beschleunigern erschwert. In dieser Arbeit möchten wir Softwa-
reentwickler bei der Integration von FPGA-basierten Beschleunigern unterstützen, indem wir
untersuchen, wie die Aufgabenplanung auf FPGA-basierten Beschleunigern ohne Verwendung
von PR optimiert werden kann?

Um unsere Forschungsfrage zu beantworten, präsentieren wir drei zentrale Beiträge: Erstens
führen wir eine abstraktionsagnostische Methodik ein, um FPGAs und Planungsstrategien für
FPGAs zu beschreiben, die sich darauf konzentriert, Planungsbeschränkungen aus einem Maschi-
nenmodell abzuleiten, das ein Ziel-FPGA repräsentiert. Ausgehend von einem Aufgabengraphen
können optimale Pläne mit Constraint-Programmierung erstellt und anschließend systema-
tisch analysiert werden. Wir wenden unsere Methodik beispielhaft in einer Fallstudie für zwei
Maschinenmodelle an - eines mit PR-Unterstützung und eines ohne PR - und vergleichen die
resultierenden Pläne, die für Aufgabengraphen bestehender Anwendungen erstellt wurden, und
zeigen, dass die Vermeidung von PR machbar ist. Zweitens führen wir einen Algorithmus ein, der
Heuristiken verwendet, um Pläne in polynomialer Zeit zu finden, da die optimale Planung ein
NP-vollständiges Problem ist. Der Algorithmus unterstützt die Planung von Aufgaben auf FPGAs
ohne Abhängigkeit von PR. Er wird bewertet und die abgeleiteten Pläne werden mit optimalen
Plänen verglichen. Drittens wenden wir einen genetischen Algorithmus an, um die Design
Space Exploration (DSE) für das Maschinenmodell durchzuführen. Ziel ist es, minimale oder
automatisierte Änderungen am Eingabeprogramm vorzuschlagen, die die Qualität möglicher
Pläne beeinflussen. Wir zeigen, dass effektive Empfehlungen generiert werden können.

Unsere Ergebnisse können Herstellern helfen, erheblich effizientere Arbeitsabläufe für die
Programmierung von FPGAs bereitzustellen und damit die Plattform für Benutzer attraktiver
zu gestalten. Die Erkenntnisse können auch dazu verwendet werden, etablierte Programmier-
modelle, wie zum Beispiel OpenCL, um die einzigartigen Eigenschaften von FPGAs zu erweitern.
Basierend auf unserer Forschung können architektonische Optimierungen für einen Ansatz
mit einer stark vereinfachten PR-Implementierung sowohl in Hardware als auch in Software
in Betracht gezogen werden. Schließlich würde die Automatisierung der Erstellung von Ein-
schränkungen für einen Beschleuniger die Auswahl der am besten geeigneten Planungsstrategie
ohne menschliche Interaktion unterstützen.

Contents

1 Introduction 1
1.1 Problem Statement . 7
1.2 Contributions . 8
1.3 Preliminary Works . 9

1.3.1 Publications Directly Related to the Thesis 9
1.3.2 Publications Partially Related to the Thesis 9
1.3.3 Other Publications . 10

1.4 Structure of this Thesis . 11

2 Preliminaries 13
2.1 Program Acceleration with FPGAs . 13

2.1.1 Layer 1: FPGAs . 15
2.1.2 Layer 2: Accelerator . 17
2.1.3 Layer 3: Host . 17
2.1.4 Layer 4: Kernel and Operating System (OS) 18
2.1.5 Layer 5: Driver . 18
2.1.6 Layer 6: Runtime . 18

2.2 Energy Efficiency of FPGA-based Accelerators . 19
2.3 Scheduling Techniques for FPGA-based Acceleration 20
2.4 Genetic Algorithm . 23
2.5 Fundamentals of Static Task Scheduling . 24
2.6 Extensions for Reconfiguration-Aware Scheduling 26

2.6.1 Configurations and Locations . 26
2.6.2 An FPGA-Aware Task Graph . 27

3 Reconfiguration-Aware Scheduling 31
3.1 Overview and Methodology . 31
3.2 Modeling . 32

3.2.1 Accelerator Model . 33
3.2.2 Communication Topologies . 36
3.2.3 Machine Model . 40

3.3 Properties of Machine Models . 40
3.3.1 Processing Element Properties . 41
3.3.2 Configuration Properties . 42
3.3.3 Location Properties . 42

3.4 Constraints on Schedules . 43
3.4.1 General Constraints . 43
3.4.2 Machine Constraints from PEs . 45
3.4.3 Machine Constraints from Configurations 45
3.4.4 Machine Constraints from Locations . 46
3.4.5 Communication Constraints from Communication Settings 47

xiii

Contents

3.4.6 Summary of the Schedule Constraints . 55
3.5 Generating Task Graphs . 56
3.6 Analyzing Schedules . 57
3.7 Case Study: Two Machine Models . 58

3.7.1 Definition of the Machine Models . 58
3.7.2 Derivation of Constraints . 59
3.7.3 Task Graph Generation . 60
3.7.4 Analyzing Schedules . 60

4 Polynomial Time Reconfiguration-Aware Scheduling 65
4.1 List Scheduling . 66
4.2 Heterogeneous Earliest Finish Time . 67
4.3 Reconfigurable Earliest Finish Time . 68

4.3.1 Using Instances to Avoid Undesirable Overlaps 69
4.3.2 Ranking . 69
4.3.3 Determining the EFT . 71
4.3.4 The REFT Algorithm . 71
4.3.5 REFT with Communication Congestion . 71
4.3.6 Complexity of REFT . 75

5 Design Space Exploration 79
5.1 Optimizing Reconfigurable Computing . 79
5.2 Applying Optimizations by Modifying the Machine Model 81

5.2.1 Performance Modeling . 81
5.2.2 Updating a Task Graph for an Optimized Machine Model 84

5.3 Optimization of Machine Models with GA . 85
5.3.1 Encoding of Machine Models as Chromosomes 86
5.3.2 Fitness Functions . 87
5.3.3 Operators of GA . 88

5.4 Inter-Configuration Optimization (InterCO) . 89
5.4.1 Convergence . 89
5.4.2 Resource Properties . 90
5.4.3 Enforcing Resource Properties . 91

5.5 Intra-Configuration Optimization (IntraCO) . 93
5.5.1 Semi-Explicit Parameters . 94
5.5.2 Definition of the Search Space . 94
5.5.3 Encoding for IntraCO . 95

5.6 Configuration Optimization (CO) . 96

6 Evaluation 99
6.1 The RESCH Framework . 99

6.1.1 Graph Generator Module . 100
6.1.2 Trace Importer Module . 102
6.1.3 Hardware Description Module . 102
6.1.4 Simulator Module . 103
6.1.5 OpenCL Executor Module . 104
6.1.6 DSE Module . 106
6.1.7 Analysis Module . 107

xiv

Contents

6.2 Metrics . 107
6.2.1 Metrics for Schedules . 107
6.2.2 Metrics for Machine Models and Scheduling Algorithms 108

6.3 Evaluation of Machine Models . 109
6.3.1 A Classification for Machine Models . 110
6.3.2 Determination of Parameters for Standard Processing Elements (PEs) . . . 111
6.3.3 Effects of Reconfiguration Delay . 112

6.4 Evaluation of the REFT Algorithm . 114
6.4.1 Methodology . 114
6.4.2 REFT versus Optimum . 114
6.4.3 Other Effects on REFT . 119

6.5 Evaluation of the DSE . 121
6.5.1 Evaluation of InterCO . 122
6.5.2 Evaluation of IntraCO . 123
6.5.3 Evaluation of CO . 124

6.6 Summary . 126

7 Conclusion 127
7.1 Conclusions . 127
7.2 Future Work and Applications . 128

A Listings 129

B Aggregated Evaluation Results 133

Acronyms 143

Bibliography 145

xv

Chapter 1
Introduction

Since the introduction of the Integrated Circuit (IC) in 1958, users could rely on an exponential
increase in computational capabilities over time. In 1965, Gordon Moore famously postulated the
doubling of the number of transistors for a given area every two years [1]. Simultaneously, the
energy consumed by chip area stayed constant. This observation by Dennard et al. resulted in an
increase in operations per Watt over time [2]. Around 2005, the Dennard scaling came to an end,
which led to the focus on multicore processors and more specialized chips that could provide
better performance per Watt [3].

In an attempt to counter the impending stagnation of computational performance for a given
power envelope, the computing industry is seeking new effective methods. A good reference for
state-of-the-art computing is the TOP500 list of supercomputers [4]. As the name suggests, it
lists the 500 most powerful computers worldwide and also provides historic data since its first
release in 1993. The High Performance Computing (HPC) Linpack Benchmark is used to assess
the performance of the systems and rank them accordingly [5]. A general trend since Moore’s
law began breaking down in around 2005 is the increased utilization of accelerators, hardware
extensions that are optimized for certain tasks performed by the system. Depending on the tasks,
such accelerators can be more energy efficient and thus more economical than general purpose
Central Processing Units (CPUs) [6]. The total power consumption and by extension the energy
efficiency are major concerns, since the necessary energy has to be delivered to the facility and
the waste heat has to be dissipated. Both – power consumption and heat dissipation – can be
significant factors of the Total Cost of Ownership (TCO) [7].

In the November 2022 edition of the TOP500 list Graphics Processing Units (GPUs) are the
prevalent accelerators. Over time the share of systems built with GPUs has been growing. A total
of 59% of the performance results from these systems. GPUs offer superior energy efficiency
compared to CPUs when performing the HPC Linpack Benchmark used to rank the systems
[6]. The superior efficiency is apparent in a related list, the Green500, which ranks the systems
in terms of energy efficiency instead of maximum performance [8]. Nine out of the ten most
efficient supercomputers use GPUs; the only exception is NM-3 at Preferred Networks that uses a
custom accelerator chip [9].

Energy efficiency is not only crucial for supercomputers, but also for other consumers: data
centers, desktops and mobile devices – either for the same economic reasons, to extend the
mobility or to fit a thermal budget. Thus, they also increasingly rely on accelerators. Suitable
workloads are then offloaded to the accelerator with the expectation of utilizing less time and
potentially less energy compared to complex CPUs. Among others, the following technologies
are used to implement accelerators:

• GPUs were originally developed for graphics processing but are increasingly used for
general-purpose computing.

1

Chapter 1 Introduction

• Digital Signal Processors (DSPs) are used to efficiently manipulate digital signals, e.g. to
filter specific frequencies from a digital signal.

• Tensor Processing Units (TPUs) were introduced in 2017 for machine-learning workloads
implementing efficient matrix multiplication operations [10].

• Dedicated Application Specific Integrated Circuits (ASICs) can be developed, when eco-
nomically viable.

• Field Programmable Gate Arrays (FPGAs) can be configured to represent any circuit that
will not exceed the chip’s resources.

GPUs, DSPs, TPUs and ASICs have a static logic: their circuitry is designed once and then
etched into silicon. A more flexible technology is offered by FPGAs. Field programmable means
that the circuit of the chip can be adjusted after it has been deployed. They consist of an array
of (logic) gates that can be configured and connected flexibly. The resulting circuitry is similar
to a conventional chip. Consequently, accelerators can also be built using FPGAs. Depending
on the application these can be even more energy efficient than GPUs, because FPGAs can be
configured specifically for the workload at hand. This can reduce the computational overhead, all
while providing more flexibility [6], [11].

While the exact structure of an FPGA depends on its purpose, the general layout is similar in
most devices. Figure 1.1 shows a simplified example structure of a typical FPGA. It consists of

• a 2-dimensional array of programmable logic blocks (rectangles)
• connections with programmable switches (circles), and
• an interface to Input/Output (I/O) systems (memory controllers, network interfaces, anten-

nas, buses) arranged around the logic blocks.

Modern FPGAs, such as the Intel Stratix 10 GX or Xilinx’ Virtex VU19p, contain up to 10
million logic blocks, some of which implement specialized functions [12]. For example, a certain
amount can be dedicated DSP blocks that perform operations on digital signal data and may also
perform efficient operations on IEEE-754 floating point numbers of arbitrary precision. Moreover,
memory blocks are included in the array for fast access to intermediate data. More complex chips
even feature a tight integration of CPU cores, e.g. ARM Cortex cores, or direct access to optical
fiber network interfaces [13].

Figure 1.1: Structure of an FPGA [13]

Using FPGAs as accelerators can provide a range of advantages over CPUs and GPUs:

2

• For some applications FPGAs can offer acceleration and better absolute performance than
CPUs and GPUs [14], [15].

• FPGAs can provide better energy efficiency, especially compared to CPUs, for example for
graph processing [16], matrix operations [11] or computer vision [6].

• The programmability of the FPGA offers potential for experimentation: where it may cost years
of development time and large financial investments to ship improved silicon to customers,
FPGAs can be updated in the field, so that optimizations can easily be evaluated.

• The fine-grained precise control over low-level details, e.g. the bit-width of operations,
potentially allows for more resource efficient solutions.

• Some FPGA-based accelerators offer integration of high performance network interfaces: these
can be directly connected to the FPGA, and allow the implementation of optimized network
protocols in hardware, “in network” processing and the design of distributed streaming
accelerators [17].

• CPUs that are executed on top of the FPGA substrate allow the usage of flexible and
experimental CPU implementations, so called Soft Cores.

Conceptually, the programming of FPGAs is more similar to the design process of an IC than
to software development. This leads to some disadvantages, especially from the point of view of
a software developer, who is usually tasked with the integration of accelerators:

• Compiling a program or description for an FPGA is time-consuming, because of their flexible
construction and the resulting search space. It can take hours, especially for FPGAs with a
complex structure.

• The increased control over low-level features can result in the necessity to define them
rigorously, leading to overhead in the development.

• Interfaces and architecture details are often proprietary [18].
• Debugging a circuit requires knowledge in digital circuit design.
• FPGAs operate at lower frequencies compared to CPUs and GPUs.

Despite these challenges, computer science and electrical engineering research shows great
interest in FPGAs and the semiconductor industry is also investing heavily in FPGA technology.
Intel, the world’s largest vendor of CPUs by revenue acquired the FPGA specialist Altera in 2015
for $16.7 billion (15.3 billion Euros at the time). Altera’s largest competitor, Xilinx, was later
acquired by CPU designer Advanced Micro Devices (AMD), a direct competitor of Intel, at a $35
billion (30.7 billion Euros) valuation [19]–[22]. Despite the attention and the investments of the
industry, the installed base of FPGAs accelerators for compute- or data-intense workloads is low
compared to GPUs, which can also be observed in the TOP500 as of November 2022: none of the
systems are equipped with FPGA-based accelerators.

Designing efficient circuits for FPGAs can be challenging, especially for software developers
without expert knowledge about the structure of the chip and digital circuit design. Thus,
vendors introduced higher abstractions that are supposed to make programming for FPGAs
more accessible [23]. High-Level Synthesis (HLS) allows users to describe an algorithm in a
conventional programming language or a Domain-Specific Language (DSL) which is then further
compiled to low-level representations suitable for FPGA programming. There exist a multitude
of high-level programming languages that can be compiled to an FPGA configuration, including
general purpose languages like ANSI C and C++ [24].

Figure 1.2 shows the workflow of compiling HLS applications exemplary for a Xilinx FPGA,
but the process translates directly to other vendors. The inputs at the top are source files:

3

Chapter 1 Introduction

OpenCL C, C++ RTL

xocc -c xocc -c package_xo

.xo .xo .xo

xocc -l
shell

.xclbin

Figure 1.2: The process of HLS compilation for FPGAs [25]

high-level descriptions like OpenCL, C or C++ code or lower-level Register-Transfer Level (RTL)
descriptions of the desired functionality. These inputs are compiled to xo object either by
Xilinx’ xocc command or using package_xo in the case of RTL code. The object files are then
linked together into a binary xclbin file. Thus, one can easily combine OpenCL, C/C++ and
RTL. Additionally, a shell is included. The shell serves as a well-defined interface between the
application code as supplied by the input files, and the rest of the system like memory interfaces
and clocks. The result of the linking process is a binary file that can be copied to the FPGA to
implement the functionality of the input files on the chip [26].

The binary file is called a configuration or the bitstream. This data describes the connections that
are active in the programmable switches (i.e. the routing), truth tables of all Lookup Tables (LUTs),
initialization values of other on-chip memories and potentially architecture specific values and
meta information about the configuration. The format of the file is vendor-specific and the
function of each bit is often undocumented. The configuration is either copied to a dedicated
memory or streamed to a controller that handles the process of configuring.

Today, FPGAs used in accelerators support either only Dynamic Reconfiguration (DR) or the
more evolved Partial Reconfiguration (PR):

1. DR: a change of the configuration does not require a restart of the system. This drastically
reduces the overhead of applying a new configuration. Data that is needed for the computa-
tion is then copied to the accelerator’s own memory and a runtime invokes the processing
of the function that was offloaded. After the execution, the generated result must be copied
back to the host’s main memory. When the execution of another function is requested, the
associated bitstream must be copied to the device and a reconfiguration must be conducted.
The complete workflow is described more in-depth in Section 2.1.

2. PR (or Dynamic Partial Reconfiguration (DPR)): a change of the configuration does not
require a restart of the system, and it is possible to change only a section of the configuration
while the rest keeps operating. PR is more advanced and less constrained than DR, because
it does not require changing the complete configuration at once.

PR has some advantages over pure DR:

4

• The number of elements on the chip affected by the reconfiguration is smaller, potentially
leading to shorter compilation times.

• The bitstream is smaller, because it must hold information for fewer elements, speeding up
the configuration process.

• The FPGA can be divided into regions that operate independently, allowing fine-grained
control over the chip’s circuitry.

• A runtime can react flexibly to changing load by adjusting the regions’ configurations
accordingly.

These benefits and in particular their interaction with task scheduling1 make PR a popular
prerequisite for FPGA related research.

A task is a unit of work, for example a function that was invoked. Task scheduling is the allocation
of tasks to processors and the definition of their execution order [27].

Intuitively, this maps well to the concept of allocating resources on an FPGA and changing
them over time. One idealized and simplified way to visualize the mapping of tasks to a chip
is shown in Figure 1.3. A collection of tasks together with their dependencies is shown on the
left as a Directed Acyclic Graph (DAG). The right diagram depicts an allocation at a fixed time.
The tasks are mapped to areas on the chip and arranged so that they are non-overlapping and
so that their dependencies are met, i.e. no task is allocated before all of its predecessors have
finished. The tasks are shown as 2-dimensional rectangles that are arranged without any overlap,
both in time and in space. All approaches for scheduling on FPGAs attempt to find such a
non-overlapping alignment of tasks, albeit with varying degrees of abstraction or additional
constraints.

Task

Task
Task

Task
time

ar
ea

Task

Task

Task

Task

Task Task

Task

Task

Task

Figure 1.3: A mapping of tasks to FPGA chip area

However, PR also poses disadvantages that affect its adoption:

• The complexity involved with PR results in an increased development overhead (also
compared to plain DR).

• Fragmentation can lead to the inefficient use of chip resources, because PR typically cannot
be applied arbitrarily. Instead, only certain (rectangular) regions may be changed.

• Due to the smaller search space, the circuits generated for a reconfigurable region may be
performing worse when compared to plain DR.

• PR is tied to low-level details like the physical arrangement of the chip’s resources. This
hinders the portability of any software that relies on it.

In Chapter 2 we show that considerable efforts have been made to improve the outcomes
of scheduling algorithms. Either by considering additional restrictions or by optimizing the

1In the context of FPGAs, "scheduling" is also a phase in the HLS workflow that is concerned with the decomposition
of the algorithm into steps that can be executed in one clock cycle. The scope of this thesis is task scheduling, a
more abstract process.

5

Chapter 1 Introduction

technical implementation of PR systems. Even though a lot of research has gone into scheduling
on FPGAs supporting PR, it is not a commonly used feature, especially in environments built
around high-level programming [18], [24]. Moreover, despite a plethora of existing approaches,
virtually none of them are readily available for programmers, researchers or even domain experts.
To a large degree this is caused by the strong dependency on low-level and vendor-specific
implementations. While they give users of the system precise control over its workings, they also
require expert knowledge or specific hardware. The dependence on non-standard, vendor- or
even product-specific implementations hinders the portability and thus also the adoption.

Fundamentally, there are two scenarios for offloading techniques that require PR:

1. An approach is specialized for an architecture. This leads to well-performing solutions that
are difficult to adapt to other architectures. An example for this is described by Pham et al.
[28], who present an OpenCL implementation for the ZYNQ UltraScale+ hardware.

2. An approach is general and architecture-agnostic. Formulating a scheduling algorithm in
such a way makes it more universal, but it also implies that it has to be ported for each
specific architecture. For example, an Integer Linear Programming (ILP) formulation as
presented by Redaelli et al. [29] can generate optimal schedules for FPGAs that allow
2-dimensional fragmentation of the configuration. However, it is not available for any
concrete hardware implementation and must be implemented for each vendor or even for
each specific chip model. This implementation requires expert knowledge and possibly a
significant development effort.

Porting a scheduling algorithm that uses PR is a major task, because there is no underlying stan-
dard, e.g. no equivalent of an x86 or RISC-V instruction set for FPGA programming. Abstractions
do exist, but they are not widely supported [30].

Sticking to the CPU instruction set example: analogous to PR we can consider vectorization
features of modern CPUs. Each instruction set has its own instructions for vectorization as the
implementation may differ notably. If the compiler fails to insert these automatically through
auto-vectorization, programmers must rely on architecture-specific low-level statements. These
can provide superior performance and energy-efficiency but require expert knowledge and are
not portable across architectures.

The situation is very similar with PR, except that the equivalent of auto-vectorization is not
commonly found in HLS software. As a result, although the concept of task-level PR could lay
the foundation for efficient scheduling on FPGAs, it is barely used in practice. In their recent
survey FPGA dynamic and partial reconfiguration: A survey of architectures, methods, and applications
[18] Vipin and Fahmy conclude:

“In modern commercial FPGAs, PR is an auxiliary feature rather than something around
which the architecture is designed. This means many aspects of PR design are tied to low-level
architecture details requiring significant expertise.

[. . .]

The design of PR systems remains difficult, and hence, only accessible to FPGA experts. Many
published techniques for overcoming the limitations of vendor tools have slowly become obsolete,
as a result of the increasing heterogeneity of modern devices and less open access provided
by vendors. Since many techniques are also heavily tied to specific architectures, with their
evolution, these tools can become unusable. As a result of these difficulties, most systems that
use PR at present must be designed at a low level with detailed hardware design expertise
required.”

6

1.1 Problem Statement

We share the assessment that the dependence on PR poses a high burden on implementors and
leads to the deprecation of many existing offloading approaches. Even Vipin and Fahmy’s own
efforts from 2014 to introduce a dedicated test platform specifically for the evaluation of PR are
only usable with adjustments on more recent FPGAs [31]. We analyze the current state of the art,
its features and limitations in Chapter 2.

1.1 Problem Statement

With the potential for acceleration and possibly energy efficient computing, FPGAs could be
a valid alternative to GPUs for compute-intense workloads. The broader motivation of this
work is to make the potential of FPGAs available for a wider range of users, without requiring
expert knowledge, niche technologies or complicated workflows. Instead, a more pragmatic and
user-centered approach is desired.

We identify three main reasons that hinder the adoption of the research in the field:

1) Lack of generality: due to the tendency to prefer more optimized solution over universal ones,
the approaches tend to be tailored to specific vendors or chips.

2) Lack of portability: as a result of the specialization and industry trends, these approaches
developed for one technology can be harder or impossible to apply to others.

3) Lack of comparability: the variations in abstraction level and technical conditions of the
approaches make it more difficult to identify solutions for a particular use case.

As a consequence, we propose an approach that avoids the need for specialized features that
cause the problems mentioned above. Specifically supporting partial reconfiguration on a per-task
granularity introduces overhead for the software developers, can lead to fragmentation of chip
area and hinders the portability of codes [18]. Our central Research Question (RQ) is:

How can we optimize the task scheduling of tasks on FPGA-based accelerators without relying
on low-level features?

To answer this question, we divide it into three more Sub-Research Questions (SRQs):

• SRQ 1: How can we systematically evaluate reconfiguration-aware scheduling strategies for
task-based workloads?
We first ask how an optimization can be analyzed when the strategies are notoriously
complex to implement, heterogeneous and of varying degrees of specialization. For example,
how can a strategy that was tuned to a ZYNC Ultrascale+ chip [28] be compared to an
abstract ILP formulation of the scheduling problem [29]? Without a notion of comparability,
any optimizations lack validity. We describe how such a comparable approach can be
formulated, what its benefits and limitations are and how valid its assertions are.

• SRQ 2: How can reconfiguration-aware task scheduling algorithms allow optimizations of the
schedule?
After answering SRQ 1 and having a foundation to argue about scheduling on FPGAs
systematically, is it possible to develop algorithms that do not rely on PR and compare them
against established methods? What is the cost of such scheduling strategies, compared to
existing ones? How can heuristics help to mitigate the inherent complexity of the problem?
How do heuristics perform compared to optimal solutions?

7

Chapter 1 Introduction

• SRQ 3: How can we optimize the high-level code based on a task-graph?
The HLS workflow is a complex interaction between the high-level code, the compiler(s)
and the hardware. Without changing the latter two, can we optimize the code based on
insights from SRQ 1 and SRQ 2? Is it possible to generate recommendations for a given
code, a set of tasks and the FPGA it is executed on? Can these changes affect the resulting
schedule positively?

1.2 Contributions

The main contributions of this thesis are the following:

1. A formal description to evaluate and optimize reconfiguration-aware scheduling strategies
and design space exploration for given workloads

We introduce a framework that allows the integration of reconfigurable machine models.
Two machine models are provided exemplarily: one that supports partial reconfiguration
and one that does not. This framework can be used to compare other scheduling approaches
for reconfigurable hardware as well.

2. A scheduling algorithm for tasks without the requirement for task-level reconfiguration

An algorithm using heuristics is introduced. It uses list scheduling to generate a schedule
from a task graph and the previously introduced machine model. A second variant of the
algorithm is presented to handle communication congestion.

3. A process for Design Space Exploration (DSE)

The method aims to optimize high-level programming code targeted for FPGAs. It uses a
Genetic Algorithm and existing task graphs to identify opportunities for optimization of
the code with minimal effort from the user.

4. An evaluation of the framework, the algorithms and the DSE and its effects on applications
in terms of performance

Executions of established applications traced on a high-end FPGA and random generators
are used to create cost-accurate task graphs. With these, we apply the above algorithms to
the task graphs and evaluate the resulting schedules compared to optimal schedules.

In the tradition of good scientific practice, we also provide the following with this thesis:

1. A collection of trace-data on FPGAs and derived task-graphs for HPC applications

This data was collected during the execution of the OpenDwarfs benchmark collection [32]
on a modern high-end FPGA and processed to generate representative task-graphs.

2. The software that was used to generate, compare and evaluate the data

The software collection comprises a constraint programming representation of our approach,
a framework for the simulation of schedules and programs to generate task-graphs. Addi-
tionally, software to instrument OpenCL programs and derive task-graphs is included as
well as a program to validate machine models against hardware.

Details and pointers to these resources are provided in Chapter 6.

8

1.3 Preliminary Works

1.3 Preliminary Works

A list of the author’s publications together with a description of the content and the author’s
share follow. The list is divided into three parts:

1. Publications directly related to this thesis, with some of the contents inspiring later chapters.
This is denoted in the chapters’ introduction, respectively.

2. Publications that are only partially related to scheduling on FPGAs.
3. Publications to which the author contributed a smaller part.

1.3.1 Publications Directly Related to the Thesis

• P. Jungblut and D. Kranzlmüller, “Optimal schedules for high-level programming envi-
ronments on FPGAs with constraint programming,” in 2022 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2022, pp. 96–99
In this publication we describe a simplified version of a theoretical foundation that is
found in Chapter 3. Additionally, two scheduling algorithms are described and compared
against an optimal solution based on a constraint programming formulation. Two FPGA
machine models for scheduling are introduced: one with and one without support for
partial reconfiguration.
The author developed the idea, implemented the algorithms, performed the evaluation and
wrote the paper.

• P. Jungblut and D. Kranzlmüller, “Dynamic spatial multiplexing on FPGAs with OpenCL,”
in International Symposium on Applied Reconfigurable Computing, Rennes, France: Springer,
2021, pp. 265–274
This publication contains the predecessor to the paper above with a focus on online schedul-
ing. A performance model for tasks on FPGAs is combined with a reconfiguration-aware
scheduler that was integrated into the existing runtime. The performance is evaluated and
it is shown that this runtime scheduling is on-par with manual performance tuning.
The author developed the idea, implemented the scheduler, performed the evaluation and
wrote the paper.

• P. Jungblut, “Task scheduling in reconfigurable computing with OpenCL,” in 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), New Orleans,
LA, USA, Jun. 2021, p. 1023
The author presented the research questions of this thesis in the PhD-forum.

• P. Jungblut, “Task scheduling on FPGA-based accelerators without partial reconfiguration,”
presented at the International Conference on High Performance Computing, Networking,
Storage and Analysis (SC) (Dallas, TX, USA), Nov. 17, 2022
A preliminary version of this work was selected for the doctoral showcase at the Supercom-
puting Conference 2022.

1.3.2 Publications Partially Related to the Thesis

• P. Jungblut and K. Fürlinger, “Integrating node-level parallelism abstractions into the PGAS
model,” in Proceedings of the 13th International Symposium on High-Level Parallel Programming
and Applications, vol. 13, Porto, Portugal, 2020, pp. 38–56

9

Chapter 1 Introduction

The integration of portable programming models for accelerators in a Portable Global
Address Space (PGAS) environment is the content of this work. The approach consists of a
domain decomposition scheme that is combined with distributed memory programming
and accelerator offloading. The method is demonstrated as an integration of DASH [38] and
Alpaka [39]. It is shown that the approach performs similar to traditional MPI+X solutions
but is more portable.
The author developed the decomposition scheme, programmed the integration of DASH
and Alpaka, performed the evaluation and wrote the article.
Karl Fürlinger advised the process and revised the document.

• P. Jungblut and K. Fürlinger, “Portable node-level parallelism for the PGAS model,” Interna-
tional Journal of Parallel Programming, vol. 49, no. 6, pp. 867–885, Jun. 5, 2021
This work is an extension to our work above [37]. It contains a more thorough evaluation,
especially highlighting the portability of the approach with data from additional platforms.
The author performed the extended evaluation and wrote the article. The remainder of the
paper was taken from the previous original work by the author (see above) [37].
Karl Fürlinger advised the process and revised the document.

• P. Jungblut, R. Kowalewski, and K. Fürlinger, “Source-to-source instrumentation for profil-
ing runtime behavior of C++ containers,” in 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter,
UK: IEEE, 2018, pp. 948–953
This paper describes a source-to-source compiler based on LLVM that instruments data
structures in existing code bases. During the execution, data traces are extracted and
analyzed, e.g. using a density based clustering to find outliers in the data structures.
The author performed the majority of the work which originated from his master thesis: the
selection of an appropriate method, the implementation, deriving the model for analysis
and the evaluation. The author also wrote the article.
Roger Kowalewski advised with the implementation, specifically during the evaluation of
the preceding master thesis. Karl Fürlinger introduced the idea and motivation and advised
the work and document.

1.3.3 Other Publications

• R. Kowalewski, P. Jungblut, and K. Fürlinger, “Engineering a distributed histogram sort,”
in 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM,
USA: IEEE, 2019, pp. 1–11
The publication presents a novel sorting algorithm for distributed memory systems.
The author contributed a minor part of the implementation and supported the evaluation,
especially the implementation and evaluation of a local parallel sorting and partitioning
strategies.

• K. Fürlinger, J. Gracia, A. Knüpfer, T. Fuchs, D. Hünich, P. Jungblut, R. Kowalewski, and
J. Schuchart, “DASH: Distributed data structures and parallel algorithms in a global address
space,” in Software for Exascale Computing-SPPEXA 2016-2019, Springer, 2020, pp. 103–142
The paper presents the collective work on DASH.

10

1.4 Structure of this Thesis

The author contributed Section 5.1 about the integration with ALPAKA and LLAMA [39] in
the context of the MEPHISTO project, which funded his position.

1.4 Structure of this Thesis

Figure 1.4 shows the organization of this thesis from top to bottom. It starts with this introduction
and Chapter 2, followed by the main part in Chapters 3, 4 and 5. These parts are evaluated and
finally concluded with a discussion and an outlook. The arrows indicate dependencies between
the chapters. Thus, Chapter 4 depends on Chapter 3, and both Chapters 3 and 4 are a prerequisite
for Chapter 5. The main part and the core contributions of this thesis is contained in the dotted
rectangle.

Chapter 4

Polynomial-
time
Scheduling

Chapters 1 & 2
Introduction and Preliminaries

Chapters 6 & 7
Evaluation and Outlook

Body
Chapter 3

Reconfiguration-
aware
Scheduling

Chapter 5

Design
Space
Exploration

Figure 1.4: Structure and contents of the thesis

This chapter describes the motivation, problem statement as well as preliminary works from
the author.

Chapter 2 consists of two parts:

1. An introduction of the basic concepts of reconfigurable computing, FPGAs, task scheduling
and high-level programming. We describe the architecture of an FPGA accelerator and how
it interacts with its host system. The OpenCL programming environment is introduced as a
continuous example to illustrate our approach and its applications.

2. After the fundamentals are presented, the current state of the art of scheduling on reconfig-
urable hardware is presented. We put special focus on the portability and practicality of the
existing approaches.

11

Chapter 1 Introduction

Chapter 2 concludes with the motivation for our approach as a result of a lack of portable,
future-proof and pragmatic solutions for scheduling tasks on reconfigurable hardware.

In Chapter 3 we present a theoretical framework to define models for FPGA-based accelerators
and to analyze scheduling algorithms on reconfigurable hardware. From these definitions a series
of constraints can be derived that must hold for valid schedules on machines adhering to the
models. These constraints are further adopted to form a constraint programming formulation,
which allows the automatic verification and generation of optimal schedules for a given task
graph and machine model. The chapter is mainly concerned with SRQ 1.

With the foundation in place, their application to scheduling strategies is investigated in
Chapter 4. A scheduling algorithm is introduced and studied in the context of the previously
introduced machines models. How do the scheduling algorithms impact the schedule? What is
the influence of the provided configurations, the machine models and their parameters on the
result? These are questions we pursue in Chapters 4 and 6 to answer SRQ 2.

After both the framework and concrete scheduling algorithms are defined, we explore the
possibilities of DSE in Chapter 5. Given a task graph and a scheduling algorithm: can we
recommend changes to the high-level code? Is it beneficial to migrate a kernel from one
configuration to another? Or would the execution benefit if the resources of one configuration
were balanced differently? This chapter describes strategies to systematically explore such
optimizations based on the previous findings to answer SRQ 3.

In Chapter 6 the strategies are evaluated with simulations based on parameters previously
obtained from traces on a current high-end FPGA and randomly generated task graphs. The
simulations are also compared against the results obtained from schedules executed on the
accelerator. We also focus on the influence of the various parameters on the scheduling quality.
From that, recommendations for chip designers and runtime developers are derived.

Finally, the thesis is concluded in Chapter 7. Our approach and especially the results of the
evaluation are discussed and their strengths and weaknesses are highlighted. We summarize
our findings and take a glance into the future of reconfigurable computing within high-level
computing environments.

12

Chapter 2
Preliminaries

The research conducted to accelerate applications with FPGAs is expectedly focused on the
unique characteristics of the platform. The properties that make FPGAs special compared to other
accelerators are a result of their reconfigurability: the capability to change the circuit at runtime
offers flexibility but also poses challenges. To understand both the challenges and advantages
this chapter is divided into six sections:

Section 2.1 provides a more detailed description of the architecture of an FPGA. The focus lies
on the usage of FPGAs as (part of) accelerators, their integration into a host system, the high-level
programming models supporting such hardware and the HLS workflow from the program input
to the runtime. The hardware is described in a vendor-independent and abstract form for the
following reasons:

• An advantage of the HLS workflow is its abstraction from a concrete hardware.
• Lower-level details are often vendor- or model-specific and sometimes even undocumented.
• The exact architecture is not relevant for our research questions and thus related work. The

goal is a more abstract but still useful and applicable description of the system.
• The model presented in Chapter 3 is designed for abstract descriptions of the hardware. It

supports a more narrow description where necessary.

The role of energy efficiency of FPGAs is examined in Section 2.2. The section focuses on the
claims of high energy efficiency with regard to task scheduling in particular.

With the technical prerequisites described, an in-depth analysis and classification of existing
scheduling techniques is provided in Section 2.3.

The workings of a genetic algorithm Section 2.4 are highlighted as a prerequisite for Chapter 5,
where it is used to optimize FPGA configurations.

A more theoretical description of the scheduling problem follows in Section 2.5. It covers basic
definitions to formulate the problems and objectives clearly.

Section 2.6 shows our extensions to these basic definitions to reflect the characteristics of FPGAs.
These consist of a notion of configurations and locations and an extended task graph.

2.1 Program Acceleration with FPGAs

Programming FPGAs is different from typical software development. Most computers today are
constructed using the von Neumann architecture. Besides other components, it consists of a control
unit. The unit controls the execution of instructions that are stored as data in the computer’s
memory. The CPU is capable of reading the instructions and performing the actions they encode,
i.e. executing them. This is a flexible approach to computing, since in a von Neumann architecture
the memory can be changed by the computer itself [43]. In contrast, FPGAs do typically work
with a fixed but reconfigurable circuit, not on instructions stored in memory.

13

Chapter 2 Preliminaries

To give software programmers access to their well-known way of expressing algorithms,
HLS converts a high-level description of a program or parts thereof to a configuration for an
FPGA. Copying the configuration to the FPGA and starting the execution is a complex process.
Additionally, the integration of an FPGA into a host system for acceleration is complex, since it
consists of many components – all of which can have an influence on the accelerator’s behavior.
For a comprehensible overview, we organize these components into layers, where the lowest
layer represents the hardware (FPGA in this case) and the top layer represents the functions to be
accelerated.

On-chip
BRAM

Config.
Memory

High-
speed
Memory

Reconfig.
Controller

Memory
Controller

FPGA

Accelerator

CPU

Main
Memory

Host

Kernel

Driver

Runtime

Function 0 ...Function 1 Function nFunction 2

Configuration 0 Config. 1 Config. m

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Figure 2.1: Accelerator stack

Figure 2.1 depicts the stack from the FPGA hardware at the bottom on Layer 1 up to the
accelerated functions at the top on Layer 6. Some layers are not necessarily present from the
perspective of the upper layer, e.g. a runtime may interact directly with the kernel, since it
incorporates some functionality of a driver. In this case the respective layer does not over the
whole width of the diagram. The layers are:

• Layer 1: An FPGA itself is the silicon that implements the circuits.
• Layer 2: An accelerator adds supporting interfaces and hardware to the FPGA, e.g. off-chip

memory or I/O interfaces.
• Layer 3: A host is the controlling computer with its CPU and main memory, connected

through a high-bandwidth connection to the accelerator.
• Layer 4: A kernel and an operating system are providing low-level primitives to interact

with the hardware.
• Layer 5: A driver is controlling the accelerator and by extension the FPGA.
• Layer 6: A runtime is interfacing with the driver to control the accelerator, manage configu-

rations and acceleration of user-provided functions.

14

2.1 Program Acceleration with FPGAs

While this is a typical setup, the layer of focus varies considerably. For example, some
approaches integrate the acceleration deeply into the operating system [44], [45], removing the
need for drivers and explicit runtimes. Others view Layers 1-4 as a given and provide a virtual
interface to the accelerator [46]–[48].

The techniques in Chapters 4 and 5 are primarily focused on Layer 6, the runtime and the
organization of its components. However, the framework in Chapter 3 makes no assumptions
about the abstraction level of an approach. Instead, its flexibility enables comparisons between
vastly different techniques.

To understand the interactions from the input program and the resulting configuration and, in
turn, its interaction with the runtime, each of the layers is briefly described and its influence on
scheduling is highlighted.

2.1.1 Layer 1: FPGAs

In contrast to a CPU or an ASIC, an FPGA is field programmable. Its circuitry is determined by a
configuration that is not etched into silicon at the time of production. Thus, its construction is
different from other static integrated circuits. A typical FPGA is built around core components:

• n-LUTs that take n (digital) input signals and provide one output signal that depends on
the values of the input signal. The values can be either high or low (voltage), represented by
1/true or 0/false, respectively.

• Flip-flops hold the value of a signal.
• LUTs and flip-flops are combined into Logic Blocks (LBs).
• Special hard blocks or hard IPs (intellectual property) provide optimized implementations

for typical operations.
• The signals of logic and memory blocks are connected with a switchable interconnect.

An n-LUT represents a boolean function that maps each pattern of its n inputs to either true or
false on the output. These functions can be represented by a truth table: the output values can
(and must) be configured. The LUT will load the corresponding output value depending on its
inputs and the configuration.

Flip-flops can store the value of the output of a LUT for an arbitrary number of clock cycles.
Both are logically bundled into LBs, which are connected with a switchable interconnect. Whether
a connection is enabled (meaning the signal can follow the connection) or disabled is also specified
in the configuration bits.

Any boolean function can be implemented with these components, provided the FPGA contains
enough resources. To decrease the amount of resources that are required for a given circuit, many
FPGAs additionally contain hard blocks that implement a dedicated function. One example for
such a block is an Arithmetic Logic Unit (ALU) for arithmetic and logic operations. Another
common block type is on-chip memory, so called Block Random Access Memory (BRAM).

The truth table, i.e. the boolean function each LUT implements, the initial state of the memory
and the active connections of the interconnect must be provided as a configuration. The configu-
ration ultimately determines the circuit an FPGA implements. The format of a configuration is
binary, thus it is also called the bitstream. Which bit corresponds to which resource on the chip is
not necessarily disclosed by vendors [49]. This requires reverse engineering efforts. Moreover,
it hinders the development of vendor-independent and possibly open software to manipulate
bitstreams such as described in [50] or even to generate it from scratch.

The storage of the configuration is based on one of three technologies:

15

Chapter 2 Preliminaries

• Static Random-Access Memory (SRAM) storage is fast, rewritable and non-persistent. Once
the memory loses power, it has to be reinitialized.

• Flash memory is a rewritable and non-volatile alternative. A flash memory cell can hold its
value without any power supply.

• Antifuse is a write-once, non-volatile system, where the link between two conductors is
molten by a high current or a laser to form an electrical connection, setting one configuration
bit [51].

Accelerators based on FPGAs primarily use SRAM, because the accelerator is constantly
supplied with power. Changing the configuration is done by writing to the memory. This
process is called reconfiguration, independent of the underlying technology. It is possible either
via external interfaces like JTAG1 (and by extension the PCI Express (PCIe) bus for accelerator
cards) or with internal interfaces like Internal Configuration Access Port (ICAP) that allow the
FPGA circuit itself to set configuration bits [18].

Intuitively, the number of resources and degrees of configurability correlate directly with the
size of the required configuration. Each n-LUT requires at least n bits of configuration and each
switchable connection requires at least one bit. Further, flip-flops require a defined initial state
of one bit per flip-flop. Hard blocks may also expect configuration as well as the initial state of
BRAMs. As a result, modern FPGAs require bitstreams in the order of megabytes. For example,
a bitstream for a Virtex 4 from 2004 is approximately 1 MB [52] while a Intel Stratix 10 GX 10M,
the FPGA with the most resources at its introduction in 2019, requires 163.5 MB [53].

The speed of the reconfiguration can vary by orders of magnitudes between devices. It depends
on the rate at which the data can be copied to the chip and the size of the configuration. Legacy
interfaces like JTAG support slower reconfigurations at 0.03 Gbit/s, whereas optimized and
compressed methods like Control via Protocol (CvP) over PCIe support rates of 8 Gbit/s. This
means that it takes from 0.01 s up to 2.7 s to apply a bitstream of 10 MB [54], [55].

To reduce the overhead of reconfigurations, a range of techniques are available:

• Compression of the bitstream itself [52], [56]–[59].
• Prefetching the bitstream from slow memory to faster memory (e.g. BRAM) ahead of time

[54], [60], [61].
• Relocation of bitstream moving an existing configuration on-chip to other resources, possibly

manipulating the configuration in the process [50], [62]–[64].
• Multi-context FPGAs as dedicated architectures holding more than one configuration. These

offer fast reconfiguration within single clock cycle [65], [66], but were unfortunately never
commercially available, due to their high resource and power usage [67].

• Partial Reconfiguration (PR) applying only a fraction of the complete bitstream, reducing the
size of the bitstream and allowing the unaffected resources on the chip to keep operating
during the reconfiguration. This technique can be combined with all the aforementioned.

The most general approach is PR, which is also a prerequisite for almost all scheduling
strategies on FPGAs, because it reduces the size of the configuration and provides flexibility as
described in Chapter 1.

The influence of the FPGA on task scheduling is extensive:

1. The capabilities of its reconfiguration hardware and the structure of the FPGA limit the
speed, the granularity and potential parallelism of the reconfiguration.

1Named after the Joint Test Action Group

16

2.1 Program Acceleration with FPGAs

2. Larger FPGAs need more information in the bitstream, increasing the size.
3. The structure of the FPGA may further restrict the reconfiguration process, especially for

PR, since it cannot be applied to arbitrary resources. Instead, only consecutive blocks may
be reconfigured. The exact constraints vary per architecture [54].

4. The amount of resources limits the degree of parallelism for accelerated functions.
5. A high utilization may impair the quality of the generated configuration. This could

potentially affect the performance of the offloaded functions.

2.1.2 Layer 2: Accelerator

An FPGA on its own is of little use, since it needs supporting infrastructure for I/O, power
delivery and cooling. This is provided by Layer 2, the accelerator, consisting of an FPGA itself
and a range of supporting hardware on a printed circuit board. It contains:

• An interface to the host, typically a connection over a PCIe-bus.
• Off-chip memory modules, e.g. Double Data Rate Synchronous Dynamic Random-Access

Memory (DDR SDRAM), and memory controllers.
• Network interfaces that tightly integrate with the FPGA resources
• Further I/O to sensors and antennas
• Power management and cooling infrastructure: a high-end FPGA accelerator emits 255 Watt

of heat that must be dissipated [12].

The influence of the accelerator on task scheduling is as follows:

1. The interface to the host limits the data transfer, both for the configuration itself and for
data needed for the function execution.

2. The bandwidth of the off-chip memory and the memory controller influence the reconfigu-
ration and the function execution.

2.1.3 Layer 3: Host

The accelerator is embedded into a controlling computer, the host system. It includes but
is not limited to CPU(s) and main memory. To transfer data to/from an accelerator, a CPU
either reads it from main memory and writes it explicitly to the accelerator’s memory or vice-
versa. Alternatively the accelerator can operate with Direct Memory Access (DMA), removing
involvement of the CPU [68, pp. 440–441].

The influence of the host on task scheduling is as follows:

1. The speed, capacity and energy efficiency of the CPUs affect whether offloading is possible
and/or beneficial. If the host’s CPU performs the task(s) better than an accelerator, then
this may be considered by system-wide (hybrid) schedulers2 like presented by Lui et al.
[69] and Tang et al. [70].

2. The bandwidth and latency of the main memory to the CPU and accelerators potentially
influences the feasibility of offloading a given task.

2Hybrid scheduling is outside the scope of this work.

17

Chapter 2 Preliminaries

2.1.4 Layer 4: Kernel and Operating System (OS)

The host system runs a kernel and an Operating System (OS) that provides users with an interface
to the kernel and by extension to the hardware. Low-level primitives for process and thread
management, memory management, synchronization and hardware-software interaction are
provided by the OS.

Some approaches for offloading computation integrate FPGAs at this level and in turn imple-
ment scheduling:

• Hthreads [45] is a computational architecture that supports reconfigurable devices. Besides
of pure software threads, it also supports hardware threads that are mapped onto an FPGA.
It supports HLS by compiling its input to an intermediate representation that is compiled
to VHDL [71]. The scheduling is dynamic, not task-based and uses a mix of cooperative
and preemptive multitasking and online-scheduling. It implements a priority queue, round-
robin and a First In First Out (FIFO) queue. The approach was only implemented on a
Virtex II Pro 7 FPGA. It does not use PR [72].

• ReconOS is more evolved. It is a real-time OS with support for hardware threads [44]. Later
versions use PR. Different from Hthreads, it is available as open source with support for a
range of FPGAs from Xilinx. ReconOS supports preemptive online-scheduling that reads
back the bitstream and saves it during a context-switch [73]. Scheduling algorithms are not
evaluated, as the scheduling is defined manually.

• FOS is another OS with support for FPGAs [74]. It focuses explicitly on modularity to
tackle the aforementioned complexities for software acceleration with FPGAs. The online-
scheduling is done non-preemptively in a round-robin fashion. Due to its modularity, FOS
is technically agnostic of its underlying hardware. However, it has only been evaluated for
three different Xilinx FPGAs, as it is based on earlier works limited to such hardware [28].
It supports PR and is available as open source. FOS also includes drivers and a runtime.

The influence of the OS on task scheduling is as follows:

1. The primitives provided by the OS are the only way for software on the higher layers to
interact with the hardware. If the primitives are unsuited for reconfigurable architectures,
the performance and flexibility may be affected.

2. The (online) scheduling of (software) processes is typically handled by the OS.

2.1.5 Layer 5: Driver

The driver implements model-specific functionality and provides a standardized interface to the
users of the system. A proprietary driver is typically provided by the vendor.

The influence of the OS on task scheduling is as follows:

1. Similar to the OS, the interface provided by the by the driver is the only way for software
on the higher layers to interact with the hardware. If the driver does not implement certain
techniques, the runtime will not have access to them.

2.1.6 Layer 6: Runtime

The runtime can act as an interface between the low-level primitives of the OS and the high-level
view of a user. It is a process with the purpose of executing user-provided tasks and providing a

18

2.2 Energy Efficiency of FPGA-based Accelerators

uniform and user-friendly interface. It takes dependencies between tasks as an input, starts and
monitors their execution, handles the completion of tasks and communicates the tasks’ states
to the user program. Thus, a runtime may also handle task scheduling itself. Some scheduling
approaches are explicitly implemented as a runtime component, others are agnostic to their level
of abstraction.

The influence of the runtime on task scheduling is as follows:

1. It limits the interface between the user and the underlying system. If the runtime lacks
support for a feature of the underlying system, it is inaccessible by a user.

2. The runtime explicitly handles the scheduling of tasks by one or more scheduling strategies.

2.2 Energy Efficiency of FPGA-based Accelerators

After covering the relevant parts of FPGA-based accelerators and their influence on computation
offloading in general and task scheduling in particular, we briefly go into the claims about energy
efficiency of these accelerators and their relation to task scheduling. Energy efficiency is often
cited as one of the most important motivations for the integration of FPGAs into accelerators.
Contrary to the impression that could be created, the current state of the art has not formed a
consensus about whether FPGAs can provide a level of energy efficiency that would alleviate
their disadvantages.

The literature has a range of statements about energy efficiency and does not follow a standard-
ized method of evaluation. Muslim et al. [75] show that the energy efficiency of FPGAs ranges
from 0.5× to about 25000× for kernels executed on an FPGA compared to a NVIDIA GTX960
(consumer) GPU. However, the energy usage is measured for the FPGA chip compared to the
complete GPU. Struyf et al. [76] find a 6.5× (13.5×) increase in power efficiency over a GPU and
the GPU plus the host, respectively. Since the FPGA gets its data from a network-attached host,
this comparison highly favors the FPGA.

A more elaborate study was recently performed by Nguyen et al. [77]. In this work systolic
arrays are investigated, a technique to structure programs that is favorable for FPGAs. The
authors conclude:

“We show that although FPGA performance and bandwidth still fall far below GPUs for
compute and memory-intensive tasks, the energy efficiency of FPGAs with hardened DSPs is
now within a factor of two for SGEMM and SpMV, and in the case of genomics, can exceed
that of GPUs by 10%.”

A central motivation for the focus on task scheduling in our work is the correlation between
energy usage and performance. Nguyen et al. [77] show that the energy usage of a system does
not change drastically per configuration. An observation that is also shown by Cong et al. [78]:
in an implementation of the Rodinia benchmark [79], that consists of 15 different kernels, the
energy consumption only differs in 2.5 Watt or 12% (21.8 Watt± 2.5 Watt) between the least and
the most energy intensive kernel. At the same time the ratio of performance per Watt of the FPGA
ranges from 0.17× to 19.29× compared to a GPU. Qasaimeh et al. [6] describe that FPGAs can
implement complex computer vision algorithms with an up to 8× advantage in energy efficiency.

Thus, we do not focus on the modeling and optimization of energy consumption directly, but on
the time to solution (or makespan/schedule length) as an approximation. This also includes the
energy consumption of the whole system, something that is often ignored in literature regarding
the energy efficiency of FPGAs. Measuring and modeling solely the FPGA’s energy consumption
is not optimal for several reasons:

19

Chapter 2 Preliminaries

1. The total energy consumption of a system today is much larger than that of an accelerator
chip. A typical server power supply is capable of providing upwards of 500 Watt, while
the FPGA consumes around 30 Watt up to 150 Watt [78]. Thus, if a schedule’s makespan is
larger, all other components of the system must be provided with power during the time of
the execution, even when they are idle.

2. The support infrastructure, i.e. the accelerator, of the FPGA consumes power as well. This
seems to be missing in the estimations/measurements in literature, because the power
estimation and measurement tools of the FPGA vendors focus only on the chip. Some
works like Quasimeh et al. [6] and and Nguyen et al. [77] report the energy to move data
separately, while others do not.

3. The fraction of energy spent by executing the kernel on FPGAs is rarely set into context of
the whole application. For example, if the execution of kernels on FPGAs consumes merely
20% of the energy of a given computation, an energy efficiency advantage of 100% on the
device might only result in a 20% total reduction in overall energy usage, even when (2) is
ignored.

In the following chapters, we will therefore focus on the scheduling length as the primary
metric and argue that it is a good approximation for the total energy consumption.

2.3 Scheduling Techniques for FPGA-based Acceleration

The flexibility of FPGAs and their heterogeneity spurred the research into a wide range of
techniques for scheduling. We classify them into the following categories:

• Abstraction: on which stack layer as described in Section 2.1 – if any – is the approach
located?

• Mode: is the scheduling static or dynamic?
Static scheduling (or offline scheduling) generates the schedules before its execution and
the scheduler has access to all tasks and their dependencies. Dynamic scheduling (or online
scheduling) places – potentially newly arriving – tasks during run time.

• Optimality: is the scheduling algorithm heuristic or exact?
An exact algorithm or formulation will produce an optimal schedule for the given tasks
and hardware (abstraction). Given the NP-completeness of the scheduling problem, this is
often only feasible for small problem sizes. Algorithms using a heuristic find solutions that
are possibly local optima, but do so in polynomial time.

• Evaluation: on what hardware platform – if any – is the approach evaluated?
Due to the inherent complexity of scheduling based on PR, many approaches are evaluated
via simulation only or on a very limited set of targets. Where an evaluation on hardware
was performed, the FPGA models are noted.

• Limited PR: does the approach work with limited PR or does it require task-level PR?
Since the application of PR maps so well to the scheduling problem, it has been applied in
virtually all approaches for task scheduling on FPGAs. However, as detailed in Chapter 1,
reliance on PR hinders the portability and adoption by an approach. A limitation that we
want to overcome.

20

2.3 Scheduling Techniques for FPGA-based Acceleration

We consider approaches for task scheduling on reconfigurable devices that fulfill the following
requirements:

• Parallel execution of tasks is possible on one FPGA. Early works did not support the
execution of tasks in parallel [80], [81].
Not only is parallelism a key benefit of FPGAs, but scheduling tasks on a single processor
is merely a special case of task scheduling for parallel systems.

• Task scheduling is supported. We exclude approaches that focus on fine-grained structures
like loop scheduling or instruction level scheduling.
These approaches can either be transparently incorporated into coarse-grained tasks or
suffer from the same technical hurdles as PR.

• The tasks to be scheduled have no real-time requirement, i.e. no deadline, and do not use
preemption.
Real time (or soft real time) scheduling adds firm time constraints that are unsuitable for
offloading tasks.

Table 2.1 lists approaches that meet these criteria ordered ascending by publication date. The
first column shows the corresponding publication(s) and the second its year. The “abstraction”
column lists the corresponding layer (if any) from Section 2.1. The “mode” is either static,
dynamic or both, depending on whether the approach supports static or dynamic scheduling.
The “optimality” column shows whether the authors present an exact solution to the scheduling
problem, a heuristic-based one or both. The “limited PR” column indicates whether the approach
can work with limited PR capabilities as wide-spread HLS platforms support. Finally, the
“evaluation” column describes whether the authors evaluate the approach with a simulation or
on FPGA-based hardware. If this is the case, the vendor and model is shown. We identify major
developments in the field.

1. PR plays a central role in scheduling. All approaches require task-level PR. This is
unsurprising, since the allocation of resources on a chip directly corresponds to the resource
mapping phase during scheduling (see Section 2.3).

2. Numerous approaches are evaluated either by simulation or using a limited number of
hardware platforms. This is owed to the fact that the implementation is complex, low-level
and vendor-specific.

3. More than 10% of the approaches provide an exact solution together with a heuristic.
4. The integration of task scheduling for FPGAs into operating systems was in focus from

2005, yet it is not commonly found in today’s operating systems.
5. Some work makes simplistic assumptions about FPGAs. For example, some approaches

model the FPGA as a homogeneous 2d plane and the tasks as arbitrary rectangles to be
placed on the plane [82], [118]. However, FPGAs are often structured in rows and columns
with heterogeneous interconnects, LBs, hard blocks and I/O [102].

Especially the dependence on PR is a major concern, hindering the adoption of portable
scheduling techniques. Vendors must provide open and interoperable interfaces for PR to
change this. There is some momentum (and desire) for a more widely supported interoperable
Intermediate Representation (IR) for FPGAs [119], [120], but generally there is a tendency towards
more closed, proprietary technologies [18].

21

Chapter 2 Preliminaries

Table 2.1: Classification of techniques for tasks scheduling on FPGAs

Publication Mode Optimality

Ref. Year Layer Static Dynamic Exact Heuristic Lim. PR Evaluation

[82] 2000 – ✓ ✓ ✓ ✓ ✗ simulation
[83] 2000 – ✗ ✓ ✗ ✓ ✗ simulation
[84] 2000 2 ✗ ✓ ✗ ✓ ✗ Xilinx XVC400
[85] 2001 6 ✓ ✗ ✓ ✓ ✗ MorphoSys
[86] 2004 6 ✗ ✓ ✗ ✓ ✗ simulation
[87] 2004 6 ✗ ✓ ✗ ✓ ✗ Xilinx XC2V6000
[88] 2004 – ✓ ✗ ✗ ✓ ✗ simulation
[89] 2006 6 ✓ ✗ ✓ ✗ ✗ simulation
[90] 2008 2 ✗ ✓ ✗ ✓ ✗ simulation
[29], [91] 2008 – ✓ ✗ ✓ ✓ ✗ simulation
[92] 2009 6 ✓ ✗ ✓ ✓ ✗ simulation
[93] 2009 6 ✗ ✓ ✗ ✓ ✗ simulation
[94] 2009 4 ✓ ✓ ✓ ✓ ✗ simulation
[95] 2010 4 ✗ ✓ ✗ ✓ ✗ simulation
[96] 2010 6 ✓ ✓ ✗ ✓ ✗ simulation
[97] 2011 6 ✓ ✓ ✗ ✓ ✗ Xilinx XC2VP30
[98] 2012 – ✓ ✗ ✗ ✓ ✗ Xilinx XC2V6000
[99] 2012 6 ✗ ✓ ✗ ✓ ✗ simulation
[69] 2013 – ✓ ✗ ✗ ✓ ✗ simulation
[100] 2014 4 ✗ ✓ ✗ ✓ ✗ Xilinx XC5VLX110T
[101] 2014 – ✓ ✗ ✓ ✗ ✗ Xilinx XC5VLX330T
[102] 2014 – ✗ ✓ ✗ ✓ ✗ simulation
[103] 2014 6 ✗ ✓ ✗ ✓ ✗ simulation
[104] 2015 4 ✗ ✓ ✗ ✓ ✗ Xilinx XC7Z020
[105] 2015 6 ✗ ✓ ✗ ✓ ✗ Xilinx "Virtex-5"
[106] 2016 – ✓ ✗ ✓ ✗ ✗ simulation
[107], [108] 2017 6 ✓ ✗ ✗ ✓ ✗ simulation
[109] 2017 – ✓ ✗ ✗ ✓ ✗ simulation
[110] 2017 4 ✓ ✓ ✗ ✓ ✗ Xilinx XCKU060
[111] 2018 4 ✗ ✓ ✗ ✓ ✗ Altera

5SGSMD5H2F35I3L
[112] 2020 – ✓ ✗ ✓ ✓ ✗ Xilinx XC7Z020

Xilinx XC7Z045
Xilinx XCZU9EG

[70], [113] 2020 – ✓ ✗ ✓ ✗ ✗ simulation
[74] 2020 4 ✗ ✓ ✗ ✓ ✗ Xilinx XCZU3EG

Xilinx XCZU9EG
[114] 2020 – ✓ ✗ ✓ ✗ ✗ simulation
[115] 2021 – ✓ ✗ ✗ ✓ ✗ simulation
[116] 2021 – ✗ ✓ ✓ ✗ ✗ simulation
[117] 2023 – ✓ ✗ ✗ ✓ ✗ simulation
This work 2024 – ✓ ✓ ✓ ✓ ✓ simulation

Xilinx XCU280
Intel
1SX280HN2F43E2VG
OpenCL

22

2.4 Genetic Algorithm

2.4 Genetic Algorithm

In Chapter 5 we present a method to automatically optimize HLS programs for a task graph,
a process called DSE. The method uses a Genetic Algorithm (GA) to reduce the search space
of possible solutions and to rate existing ones. A GA is an evolutionary algorithm inspired by
natural selection. It is particularly well suited for the optimizations of problems that have the
following characteristics [121, pp. 116–117]:

• Large search space
• Noisy fitness function
• No “smooth” or unimodal cost function
• No necessity of identifying a global optimum

GAs follow a simple, yet often effective, iterative structure. We describe it briefly here and
refer the reader to Chapter 1 of [121, pp. 7–10] for a more thorough introduction to GAs. The
peculiarities of our approach are portrayed in Section 5.3. The structure of a GA is the following:

1. A subset of solutions – the population – is the starting point. The initial population is often
generated randomly. Each chromosome in the population corresponds to a solution to the
problem that is being optimized. A chromosome encodes information about the solution in
genes, either as a simple bit string or more complex variables like integers.

2. Each iteration – a generation – consist of three steps:

a) Fitness: each solution in the population – a chromosome – is rated according to a fitness
function. The fitness function is an indicator for the performance of a solution, but
does not necessarily have to be the exact target of the optimization. For example, it
might not be possible to test the optimality of a solution for each chromosome in
the population, because it would be too compute-intensive and thus take too long.
Therefore, the fitness function can be a proxy for the optimality of a solution.

b) Selection: choose chromosomes for the next iteration based on a stochastic process
and the fitness. In each generation, pairs of chromosomes – the parents – get selected
for reproduction. The probability for selection is proportional to each chromosome’s
fitness.

c) Reproduction: apply reproduction operators (mutation and crossover) to the population.
These operators define how a chromosome is changed (mutation) or combined with
another chromosome (crossover). With probability pc each parent pair is crossed over
at a random point in the chromosome in the crossover-phase. With probability pm the
value of a gene is changed in the mutation phase.

To generate a set of random solutions for the problem, it must be possible to encode a solution
(or an indirect representation) into a chromosome. An encoding is a numeric representation of
a solution. It determines what information can be mapped by the GA and influences whether
the optimal solution may be directly representable or not. The encoding used in this work is
value encoding. Rather than a bit string, it allows us to encode more complex values into the
chromosome, for example integers.

Figure 2.2 shows the process within a generation (step 2 from above). The progress (measured
in generations) is depicted from top to bottom. Within each generation and an intermediary step
in the middle, three chromosomes are depicted from left to right as rectangles. Each chromosome

23

Chapter 2 Preliminaries

consists of five genes, for each of which its current value (integer) is shown. The chromosomes
show value encoding. In the crossover phase, a random point in the chromosomes 2 and 3 is
selected and the genes after that point are swapped between both parent chromosomes to create
the offspring. After that the mutation operator is applied with an (often small) probability pm
to the resulting chromosomes. It replaces a gene randomly in a chromosome. For example, in
Figure 2.2 the fourth gene in chromosome 1 is mutated from the value 3 to 1.

0 2 1 3 1 1 1 3 1 2 2 2 1 0 1

0 2 1 3 1 1 1 3 0 1 2 2 1 1 2

0 2 1 1 1 1 1 3 0 1 2 2 1 1 2

Crossover
phase

Mutation
phase

Chromosome 1 Chromosome 2 Chromosome 3

n

n + 1

Generation

Figure 2.2: Example of two generations in the GA

After a fixed amount of generations, the best solution is selected by its fitness from the resulting
population.

Our approach, appropriate encodings, a fitness functions and further details of the selection
process are presented in Section 5.3.

2.5 Fundamentals of Static Task Scheduling

In this section, we define fundamentals of task scheduling. Existing work regarding task
scheduling differs mostly in the notation and other minor details (e.g. whether the first task starts
at time 0). We chose to use the notation and mental model from the book:

O. Sinnen, Task scheduling for parallel systems (Wiley Series on Parallel and Distributed
Computing), A. Y. Zomaya, red. Hoboken, NJ, USA: John Wiley & Sons, Inc., Apr. 20, 2007

Sinnen defines a formal and flexible framework for arguing about scheduling in parallel systems.
In particular, the definition allows us to define our own hardware model(s) corresponding to
our specific needs. Additionally, adhering to the framework makes it easy to compare existing
algorithms. We mark compatible definitions with a black line around the definition and note
the corresponding reference in the book. For example, Definition 1.12 would be denoted as
Sinnen 1.12 in our definition. Definitions that are merely adjusted are denoted as Sinnen 4.25 .
Of course, not every definition is directly or indirectly borrowed from Sinnen, since we extend
the framework extensively.

Definition 1 (Task) A task v is a non-preemptable unit of computational work.

Since a goal of parallel computing is the parallel execution of applications, these must be split
up into smaller tasks or units of work, that in turn can be executed in parallel.

Figure 2.3 shows the process of parallelization from an input application to an executable
binary from left to right. The respective steps are as follows:

24

2.5 Fundamentals of Static Task Scheduling

Application
Specification

Task
Task

Task

Task
Task

Task

Task

Task
Task

Task

Task
Task

Task

Task

1011
0110

Decomposition Scheduling
and Mapping

Execution

PU

Figure 2.3: The process of parallelization [27, p. 23]

1. The decomposition of the application into tasks: this may happen automatically, for example
by a compiler, or manually through the directives of a programmer. For our approach, we
assume that this decomposition is given.

2. The scheduling of tasks: The phase can be split up into the two sub-phases mapping and
scheduling:

• Mapping or (resource) allocation is the process of assigning compute resources to a
task.

• Temporal assignment is the process of finding an order in which the tasks can be
performed.

3. The execution on the assigned resources and at the assigned time: the mapping and schedule
is taken as an input by a task scheduler software that controls the execution.

The second step, mapping and scheduling, is to decide where and when the tasks are executed.
This process happens before the execution of the tasks starts, because we use static scheduling
(see Figure 2.3). Dependencies between tasks imply a partial order between them [27, pp. 23–24]
that must be taken into account during scheduling.

Definition 2 (Processing Element) A Processing Element (PE) p is a resource that can execute at least
one task.

On conventional computers, tasks are executed on homogeneous processors. Processing on
FPGAs (given they do not emulate CPUs) is different:

• The circuit is not directly capable of general purpose processing.
The hardware function, i.e. the circuit configured by a bitstream, implements a fixed function.
Hence, only tasks that expect an implementation for that function can be executed by the
circuit under consideration and produce the expected result.

• The resources are not static and not necessarily permanently available.
Due to reconfigurability, an implementation is only available when a bitstream is loaded
(instantiated). Additionally, multiple hardware implementations for one task with varying
performance characteristics could exist.

Conventionally, the execution entities are defined as processors. The definition of PEs is more
general, because the implementation and capabilities on FPGAs is flexible over time, static
regarding its function, and heterogeneous. Chapter 3 concerns PEs and their properties in detail.

25

Chapter 2 Preliminaries

Definition 3 (Generic Task Graph) A program decomposed into tasks can be represented by a generic
task graph, a DAG G′ = (V, E), where V represent tasks (vertices, nodes) and E : V × V the edges
(dependencies). In particular (v0, v1) ∈ E indicates that task v0 communicates to task v1.

The directed edges, i.e. the communications, define a partial order “≺” between tasks. If
(v0, v1) ∈ E, then v0 ≺ v1. This relationship is transitive:

v0 ≺ v1 ∧ v1 ≺ v2 ⇒ v0 ≺ v2 (2.1)

Iff a task v0 of a program precedes another task, v0 ≺ v1, v0 has to finish its execution and
communicate to v1 before the execution of v1 can be started. This “happened-before” relation
“a→ b” is often used in parallel computing to express that a happened before b, similar to that
v0 → v1 must hold [122]. Nevertheless, we chose to express the order of execution in terms of
start and finish times as described in Section 2.6, because it allows us to argue more nuanced
about the structure of a schedule. Particularly, it allows us to relax the strict “happened-before”
requirement in certain cases, e.g. as demonstrated in Section 3.4.5.4, where the execution of two
tasks may overlap. Additionally, all timings of all tasks are known in static scheduling, enabling
us to reason about concrete points in time compared to “happened-before”.

For a given node v of a task graph G′ = (V, E), the nodes with outgoing edges to v are called
predecessors pred(v) and the nodes with incoming edges from v are called successors succ(v).

pred(v) = {vi|(vi, v) ∈ E} (2.2)
and succ(v) = {vo|(v, vo) ∈ E} (2.3)

To accommodate for the unique characteristics of FPGAs, more concepts must be introduced,
before we can formerly define the resource allocation and scheduling itself.

2.6 Extensions for Reconfiguration-Aware Scheduling

The generic description of a framework for task scheduling is extended by two concepts:

1. Configurations and locations describe bitstreams and their allocation on FPGAs.
2. An FPGA-aware task graph contains information that is needed to accurately perform schedul-

ing on a dynamically reconfigurable system.

2.6.1 Configurations and Locations

Every PE must be contained in a configuration (a bitstream). A configuration may contain more
than one PE, but a PE is always contained in exactly one configuration. Typically, in a PR system,
each configuration contains exactly one PE, i.e. it implements one function.

Definition 4 (Configuration) A configuration c = {p0, . . . , pn} is a set of n PEs p0, ..., pn−1.

We write conf(p) = c if p ∈ c.
A configuration must be copied to some part of an FPGA to have an effect, i.e. to make the PEs

available for processing. Since systems with PR can have multiple configurations applied at a
time or the same configuration multiple times, the concept of a location is introduced.

Definition 5 (Location) A location l ⊆ L is a subset of all available locations L.

26

2.6 Extensions for Reconfiguration-Aware Scheduling

The available chip area is modeled as a set L. The part of the chip, where a configuration
can occupy resources is called a location. The granularity at which this is modeled may differ
considerably. For example, one could model an FPGA with two slots for PR as L = {0, 1} and
the locations as location l0 = 0 and location l1 = 1. Or the area can be seen as a two-dimensional
plane of dimension of xw × yh, then L = {(x, y)|0 ≤ x ≤ xw, 0 ≤ y ≤ yh}.

If a configuration c is configured (instantiated) at a location l, we write loc(c) = l. Similarly,
loc(p) = l if p ∈ c and loc(c) = l.

2.6.2 An FPGA-Aware Task Graph

Conventionally – with homogeneous processors – each task has a fixed cost assigned, e.g. its
execution time. In a flexible FPGA environment with the set P PEs, the computation and
communication depends on many factors, as described above. To account for that, the notion of a
task graph is extended by three functions:

• The weight w : V × P→N represents a task’s computation cost.
• The non-negative weight c : E→N0 represents the communication cost.
• The type t : V →N represents the class of computations that a task belongs to.

The weight function w assigns computational costs for combinations of tasks and PEs. An
FPGA can provide more than one implementation for a task, similar to how a CPU can contain
multiple cores (and execute multiple threads). Different from typical CPUs, the implementations
may change in cost. One PE could consume more FPGA resources but execute tasks faster than
another one.

The weight function c assigns communication costs to an edge in the task graph. The commu-
nication between two tasks is local if the PE that executes both tasks is in the same location. Local
computations have no communication cost. The meaning of non-local communication may vary
per use case:

• If each location is connected to a dedicated DDR SDRAM bank, moving the data to a
different bank constitutes non-location communication.

• If the FPGA is a network-connected FPGA-based accelerator, each location can model an
FPGA and in this case, non-local communication involves network transfer.

• If two or more FPGA-based accelerators are connected to the same host, the host’s
DDR SDRAM memory can be considered non-local communication, whereas each ac-
celerator’s memory is considered local.

The function t assigns each task an identifier for the type of function this task represents. This
is useful for tasks that are executed on an FPGA, since its implementation must be generated
in a configuration. In contrast to the flexible von Neumann architecture, FPGAs typically only
implement a small fixed set of specific functions per bitstream and thus the scheduling algorithm
must account for that during the resource allocation.

With the above definitions, an FPGA-specific task graph can be defined as follows.

Definition 6 ((FPGA-specific) Task Graph) A program decomposed into tasks can be represented by a
task graph, a Directed Acyclic Graph G = (V, E, w, c, t), with:

• V and E as defined in Definition 3.

• w, c and t are functions as described above.

27

Chapter 2 Preliminaries

The definitions based on a generic task graph from Definition 3 can be applied as-is to the task
graph from Definition 6.

The process of scheduling tasks consists of two phases:

1. Mapping: tasks need an assigned PE that performs the execution.
2. Temporal assignment: the start (or finish) times for all tasks must be chosen.

Definition 7 (Resource Allocation) A resource allocation A of the task graph G = (V, E, w, c, t) on a
finite set P of PEs is the allocation function alloc : V → P× L of the nodes of G to the PEs of P at locations
L. The shorthand functions proc : V → P and loc : V → L return the PE and location, respectively.

A schedule consists of an allocation combined with a function to assign start times to tasks.

Definition 8 (Schedule) A schedule S for the task graph G = (V, E, w, c, t) on a set of PEs P is the
function pair (ts, alloc):

• ts : V × P→N is the start time function of the nodes of G.

• alloc : V → P× L is the allocation function of the nodes of G to the PEs of P and locations L.

The node finish time of a task is defined analogous to the start time and depends on its cost
and, by extension, the allocation.

Definition 9 (Node Finish Time) Let S be a schedule for task graph G = (V, E, w, c, t). The node
finish time of task v ∈ V on PE p is:

t f (v, p) = ts(v, p) + w(v, p) (2.4)

Sinnen 6.7

We write the short notation ts(v) = ts(v, p) and t f (v) = t f (v, p) where it is clear from the
context which p is used.

The edge finish time (in contrast to the task finish time) includes the communication cost.

Definition 10 (Edge Finish Time) Let G = (V, E, w, c, t) be a task graph. For a given schedule the edge
finish time of eab = (va, vb) ∈ E:

t f (eab) = t f (va) + c(eab) (2.5)

The cost function c assumes a uniform cost between all PEs. Below we will also introduce
a technique that can be used to reflect the relative distance between the locations and model
congestion.

Definition 11 (Schedule Length) Let S be a schedule for task graph G = (V, E, w, c, t). The schedule
length is:

sl(S) = max
v∈V

t f (v)−min
v∈V

ts(v) (2.6)

Sinnen 4.10

28

2.6 Extensions for Reconfiguration-Aware Scheduling

Of importance for further analysis of schedules is their length, sometimes called makespan. This
is the time passed from the start time of the first executed task to the finish time of the last. To
make the notation easier, we set the first task to start at 0, i.e. minv∈V ts(v) := 0, for the rest of
this document. With the schedule length we have a metric that can be used to assess the quality
of a schedule, since it is an indication of the degree of acceleration and energy consumption as
described in Section 2.2. As a basis, the accumulated time of all tasks can be used to normalize
the quality of different task graphs.

Definition 12 (Sequential Time) Let G = (V, E, w, c, t) be a task graph and A = (ts, alloc) an
allocation. The graph’s sequential time is:

seq(G) = ∑
v∈V

w(v, proc(v)) (2.7)

Sinnen 4.12

The parallel time pt(S) of the schedule is the execution time. The speedup of a schedule S
is the ratio of its sequential time to the parallel time: speedup(S) = sl(S)

pt(S) [27, p. 222]. It is a
measure for the amount of parallelism a schedule achieves and a direct indicator for the amount
of acceleration a schedule achieves over the sequential execution of a task graph. Hence, a high
speedup is desirable in parallel computing.

The length of a path in a task graph is its accumulated computational and communication cost:

Definition 13 (Path Length) Let G = (V, E, w, c, t) be a task graph and a path p = ⟨v0, v1, . . . , ⟩
with (v0, v1), . . . ∈ E in G, then the length of path p is:

len(p) = ∑
v∈p

w(v) + ∑
e∈p

c(e). (2.8)

Sinnen 4.17

The critical path is the longest path in a task graph. It provides a lower bound for the schedule
length, since all accumulated costs must be included in a schedule - see Sinnen Lemma 4.4 [27,
p. 94].

Definition 14 (Critical Path) Let G = (V, E, w, c, t) be a task graph, the critical path CP is the longest
path in G:

len(CP) = max
p∈G

len(p). (2.9)

Sinnen 4.18

In this chapter we described the fundamentals of program acceleration with FPGAs:

• The workflow for program acceleration with FPGAs was briefly described.
• The typical integration of an FPGA into a host system for program acceleration was presented

with a special focus on each of its component’s influence on task scheduling.
• The relation between task scheduling and energy efficiency was outlined.
• Existing approaches for task scheduling on FPGAs were analyzed.
• The fundamentals of tasks scheduling and our extensions ware defined.

29

Chapter 2 Preliminaries

With this basis we can now present our first central contribution: a theoretical framework to
define FPGA-based accelerators for task scheduling, which allows us to further describe, analyze
and optimize task scheduling approaches for FPGAs in Chapters 4 and 5.

30

Chapter 3
Reconfiguration-Aware Scheduling

Since evaluating the potential of task scheduling (algorithms) on FPGAs is hard, as established in
Chapter 2, many approaches are evaluated solely through simulations. Others rely on the result
and implementation of one FPGA model or vendor. In contrast, we aim to provide a universal
and flexible method to analyze and compare scheduling approaches for tasks on FPGAs. The
following three chapters constitute the body of this thesis and describe our methodology to
analyze task scheduling algorithms for FPGAs, our approach to scheduling on FPGAs and code
optimization.

3.1 Overview and Methodology

Task graphs

Algorithm Hardware Trace data

Machine
model

Statistical
analysis

Constraints

Schedules

Input

Output

Section 3.2 Section 3.3

Section 3.6

Section 3.4

Task generator

Algorithm 3.2Section 3.5

Figure 3.1: Methodology overview

Figure 3.1 depicts the structure of our methodology to evaluate scheduling algorithms. At
the top the inputs are shown: scheduling algorithms, hardware descriptions, task generators
and trace data. Arrows describe transformations of the inputs to generate intermediate steps
during the process. For example, both the scheduling algorithm and a hardware description are
transformed into a machine model. Similarly, trace data can be used to supply parameters for
task generators. The arrows are annotated to show where the transformation is described in
detail.

31

Chapter 3 Reconfiguration-Aware Scheduling

The outputs can be found at the bottom: statistical analysis can be performed on the generated
schedules. The methodology, as depicted in Figure 3.1 to derive, analyze and compare scheduling
algorithms is as follows:

• A machine model for the target FPGA-based accelerator is defined. We show two sources for
the structure and parameters of machine models:

– The premises of a scheduling algorithm about the underlying hardware are converted
to a machine model as described in Section 3.2.

– The properties of an existing (or future) piece of hardware are converted to a machine
model as described in Section 3.3.

• A set of task graphs is gathered. We present two ways to do this:

– The task generators are algorithms that produce task graphs with a predefined structure
and parameters as described in Algorithm 3.2.

– A collection of trace data can be used to construct task graphs directly from it as shown
in Section 3.5 or to provide parameters (e.g. the cost of tasks) for the task generators.

• The constraints are derived from the machine model. Constraints must hold for schedules
as described in Section 3.4.

• The constraints are used to generate schedules for the task graphs using constraint program-
ming.

• The resulting schedules are statistically analyzed in Section 3.6.

These steps are described in more detail below. To compare scheduling approaches with vastly
different abstractions, our methodology is based on machine models. A machine model is an
abstraction of the target FPGA-based accelerator, its communication system and optionally parts
of the host system. It defines which PEs are available to execute tasks and also the performance
characteristics of the entire system.

The machine model must account for several factors.

1. The assumptions a scheduling algorithm has about the hardware. Scheduling approaches
make (or omit) assumptions about the underlying hardware of the target accelerator. For
example some approaches assume a homogeneous 2-dimensional plane as a FPGA sub-
strate. Others incorporate more structural information about the chip into their scheduling
decisions.

2. The limitations hardware and software have. Both the hardware and software itself influence
the execution of tasks. For example, if an approach is evaluated for a certain FPGA model,
its memory bandwidth should be reflected in the model.

3. The functions a bitstream includes. The configuration directly describes the functionality of
the FPGA. Each bitstream may implement one or more PEs.

4. The features and limitations that result from reconfigurability. It enables fast dynamic
replacement of PEs and at the same time introduces a reconfiguration-overhead.

3.2 Modeling

The hardware, its capabilities and – if a certain scheduling approach should be analyzed – its
assumptions about the hardware are described with models. We strive to describe models that
can be held as simple as possible and extended where needed. This is founded in the wide range

32

3.2 Modeling

Location l0 Location l1

Configuration c0

Config. c1

Accelerator model Asimple

0 1 2 3 4 5

2 locations

2 configurations 8 PEs

76

Figure 3.2: An accelerator model Asimple with two locations, two configurations and a total of
eight PEs (circles)

of abstractions that existing task scheduling approaches for FPGAs use (see Section 2.3). On the
one hand, a user should be able to construct a simple description of the accelerator hardware
and evaluate a scheduling approach on it. On the other hand, a vendor with deep knowledge,
incentive and resources could invest a lot of effort into a machine model to match its real-world
characteristics as close as possible. Both can then be used as a part of the software stack to
aid optimizations, e.g. for task scheduling. Furthermore, if such a model exists for an existing
hardware, one can easily simulate changes in the hardware that would otherwise take hours in
the case of a synthesis of a configuration and possibly years in the case of new accelerator design.

3.2.1 Accelerator Model

The first building block for a machine model is an accelerator model, which describes the
computational capabilities and their organization in configurations.

Definition 15 (Accelerator Model) An accelerator model A = (C, L) consists of:

• C: a set of configurations. Each configuration in C consists of a set of PEs. The set P =
⋃

c∈C c
denotes the PEs of A. It holds that ∀cx, cy ∈ C : x ̸= y ⇒ cx ∩ cy = ∅, i.e. a PE must only be
element of one configuration.

• L: a set of locations (on the FPGA).

An accelerator model consists of a set of configurations C, each of which contains a set of
unique PEs for task execution. Locations denote regions to which a configuration can be copied.
The notion of locations is intentionally uncertain, since what constitutes a location varies widely
between scheduling approaches and software abstractions.

Figure 3.2 depicts an accelerator model diagram for an exemplary accelerator model Asimple. Such
diagrams can show a simple overview of any accelerator model as an intuitive illustration. Two
locations l0 and l1 are shown as rectangles with rounded corners and (two) configurations c0 and
c1 are shown as rectangles. The PEs P0, . . . , P7 are grouped into configurations and shown as
circles containing the PE’s index and color representing its type. In particular two PEs P0 and P1,
represented with a red color in configuration c0, have a matching type with PE P6 in configuration
c1. The semantics of types of PEs are described in Section 3.3, as some more definitions are
needed. For now, it suffices that the type reflects what functions (see stack layer 6) a PE executes.

Definition 16 (Instance) For an accelerator model A, an instance I = (c, l, i) is a 3-tuple of a configura-
tion c ∈ C, a location l ∈ L and an interval i = [b, e) with begin and end time b, e ∈N.

33

Chapter 3 Reconfiguration-Aware Scheduling

location: 0

0 50 100 150

0
1
2
3

PE

Task schedule

0

0 50 100 150
time

Lo
ca

ti
on

Configuration schedule

Figure 3.3: Two instances over time with the task schedule on top and the associated instances
shown at the bottom

When a configuration (and hence a number of PEs) is configured to a location, so its PEs can
execute, it is instantiated. The combination of a configuration, a location and its active interval,
is thus called an instance. The PEs of a configuration only become available for execution when
a configuration is copied to a location and are no longer available when another configuration
is written to the same location. A configuration can be instantiated at more than one location
simultaneously. The associated PEs are then available for parallel processing.

Figure 3.3 shows two instances with four PEs in total. The time is depicted on the x-axis. The
top shows the only location l0 and the tasks that are executed by PEs 0, 1, 2 and 3. Below is the
configuration schedule that shows the instances over time, one from time 0 to 100 and one from
110 to 170. One can see that PEs 0 and 1 are contained within one configuration denoted by the
red bar, whereas PEs 2 and 3 are contained in the second one shown as the blue bar. Note that the
configuration has to be instantiated during the execution on any PE, but the reverse is not true.

3.2.1.1 Applicability of Accelerator Models

The accelerator models are expressive and not limited to FPGAs or even single nodes. The
following three examples show the flexibility of the model:

1. A single-region FPGA-based accelerator
2. A hybrid CPU-FPGA architecture
3. A multi-FPGA cluster

Single-Region FPGA-based accelerator A single-region FPGA-based accelerator is modeled such
that the number of configurations |C| ≥ 1 and the number of locations |L| = 1.

There is one reconfigurable region (one location l ∈ L) inMR and possibly many configura-
tions that can be instantiated on it. This does not allow partial reconfiguration, but dynamic
reconfiguration – even with multiple PEs at a time – is possible.

Figure 3.4 depicts an example accelerator modelMR: shown is a single region l that contains
two configurations c0 and c1. Configuration c0 contains six PEs, three of which have the same
type (same, red color). Configuration c1 contains two PEs with a different type each.

34

3.2 Modeling

l

c0

c1

AR

0 1 2 3 4 5

6 7

Figure 3.4: Accelerator model diagram for AR

Hybrid CPU-FPGA architecture In a hybrid CPU-FPGA architectureAhybrid is modeled as follows.
The set of configurations C consists of cCPU and the remaining c1, . . . cn. cCPU = {pc0 , pc1 , . . . pcn}
represent the CPU-Cores.

The model has at least two locations L = {lCPU, l1, . . .}. The CPU cores are instantiated
permanently on lCPU. This can be ensured through the property P L

c (lcpu) := {cCPU} and P L
c (li) :=

C \ {ccpu} for li ∈ L \ lCPU.

This means that all PEs from the configuration cCPU must reside on one location and the
remaining configurations must be configured (more flexibly) on the remaining locations. Commu-
nication cost between the CPU and FPGA can be introduced with a cost matrix c, that encodes
this cost per edge and location pair.

Figure 3.5 depicts an example accelerator model Ahybrid. It shows (the subset of) three locations
lCPU, l1, l2 and three configurations. The CPU is modeled as the location lCPU and a configuration
cCPU that contains four PEs (i.e. CPU-cores). Since the cores are flexible w.r.t the work they can
perform, their type is not specified, so they are not colored. The other two locations l1 and l2,
representing the FPGA(s), can be configured with configuration c1 and location l2 can additionally
be configured with location c2. In contrast to lCPU, the PEs in c1 and c2 have associated types and
are thus colored.

lCPU

cCPU

l1

c1

0 1

2 3

4 5 6 7 8

Ahybrid

l2

c2

...

9 10

Figure 3.5: Accelerator model diagram for Ahybrid

35

Chapter 3 Reconfiguration-Aware Scheduling

Multi-FPGA Cluster A multi FPGA cluster Amulti is modeled so that each of the n FPGAs in
the cluster is represented by a location, so L = {l0, . . . , ln−1}. If the cluster is composed of
homogeneous FPGAs, then all configurations can be instantiated on all locations: Pc,p(p) := L.

Similar to the CPU-FPGA architecture, the communication cost between the locations can be
encoded in a cost matrix c.

Figure 3.6 depicts an example accelerator model Amulti. It contains a set of locations l0, l1, . . .
and two configurations c1 and c2 that can be configured on (all of) them. Each location represent
a distinct FPGA. Note that a FPGA cluster with multiple slots on each FPGA can be similarly
modeled.

l0

c0

Amulti

l1

c1

...

l2

0

6

1 2 3 4 5

Figure 3.6: Accelerator model diagram for Amulti

3.2.2 Communication Topologies

Accelerator models by themselves can only be used for scheduling algorithms that do not account
for communication between tasks at all or make simplistic assumptions about the underlying
hardware. A typical FPGA-based accelerator can have a wide range of connections, especially but
not limited to the case where it is equipped with network interfaces. Other connections include
the (accelerator-) global RAM, the PCIe-link and interfaces of PEs to a location’s global RAM.

The structure of these connections and their capabilities have a large influence on the accuracy
of schedules, i.e. the similarity between the generated (projected) schedules and the execution in
a real-world setup. To increase the accuracy, two factors have to be incorporated into the model,
a topology and a network scheduling model:

1. The topology describes the structure and the capabilities (in terms of bandwidth between
communicating nodes).

2. The communication scheduling model describes the influence of the topology on the (viable)
schedules.

Since the accelerator models are an extension to Sinnen’s framework for scheduling, both the
topology and the communication scheduling model can be borrowed and adjusted from [27].

The connections between the communicating entities (PEs) are not always point-to-point
connections. They are instead described as a network, which in turn is modeled as a set of
vertices and edges. Note that the topologies in FPGA-based accelerators are typically simple
compared to full-fledged network applications.

36

3.2 Modeling

P0 P1 P2 P3 P4 P5 P6 P7

P L
b (l0)

P L
b (l0) P L

b (l1)
P L

b (l1)
b((l0, l1))

b((l1, l0))

l0 l1

r0 t0 r1 t1

Figure 3.7: A default topology Tdefault for the accelerator model Asimple in Figure 3.2

Definition 17 (Topology) A (communication) topology is modeled as a graph TG = (N, O, D, b),
where N is a finite set of vertices, O is a subset of N, O ⊆ N, and D is a finite set of directed edges. A
vertex n ∈ N is referred to as a network vertex, of which two types are distinguished: a vertex o ∈ O
represents a PE, while a vertex s ∈ N, /∈ O represents a switch. A directed edge Dij ∈ D represents a
directed communication link from network vertex ni to network vertex nj and ni, nj ∈ N. The weight
b(d) associated with a link d ∈ D, b : D → Q+, represents its relative data rate.

Sinnen 7.3

The topology is described as a graph consisting of the vertices N and a subset of graph P,
which in turn describes the PEs, in contrast to the switches. The set of links K describes paths
through the network as a combination of vertices and edges.

3.2.2.1 Default Topology

The accelerator model can now be accompanied by a topology to describe the underlying
communication hardware. If not specified explicitly, a default topology is used as described below.
Given an accelerator model A = (C, L), a default topology Tdefault consists of:

• N = P ∪ L ∪ R ∪ T: the set of network vertices consists of PEs, locations and one transmit
node t ∈ T and one receive node r ∈ R per location l ∈ L, i.e. |T| = |R| = |L|.

• O = P: the set of non-switch nodes is equal to the set of PEs.
• D = PR ∪ RL ∪ LT ∪ TP ∪ LL, where

– PR = {(p, r) | p ∈ P, r ∈ R},
– RL = {(r, l) | r ∈ R, l ∈ L},
– LT = {(l, t) | l ∈ L, t ∈ T},
– TP = {(t, p) | t ∈ T, p ∈ P}, and
– LL =

{
(l f , lt) | l f , lt ∈ L, l f ̸= lt

}
.

• b is set according to the properties PP
b and P L

b as described in Section 3.3.

Figure 3.7 shows an example of an accelerator model A and its corresponding default topology
Tdefault. The set of non-switch nodes O (equal to the set of PEs P) is depicted as circles and

37

Chapter 3 Reconfiguration-Aware Scheduling

switches (all other nodes N \O) as squares. Both location l0 and location l1 are connected with
a directed communication link and both have transmit nodes t{0,1} and receive nodes r{0,1},
respectively. The transmit and receive nodes allow the modeling of bandwidth limitations and
congestion independently of the PEs. Also, often PEs do not communicate directly (for instance
via OpenCL Pipes) but write data to their location’s global memory. For example, all PEs
P0, . . . , P7 could each have a maximum bandwidth of u, but the global memory at location l0
provides 2 · u in total. Therefore, if all 8 PEs were to communicate at the same time, the necessary
bandwidth of 8 · u > 2 · u would lead to congestion. The bandwidth is noted at the edges, except
for edges to and from PE nodes: for clarity the labels b((Pm, rn)) and b((tn, Pm)), where 0 ≤ m ≤ 7
and 0 ≤ n ≤ 1, are omitted.

Typically, the bisection bandwidth is used to identify bottlenecks in a communication network.
It is the minimum bandwidth across any cut that splits the network into two subnets with an
equal number of non-switch nodes [123, p. 1156]. This is typically used in undirected graphs, but
we can extend the bisection bandwidth for directed graphs using a similar description.

Definition 18 ((Directed) Bisection bandwidth) Let T = (N, O, D, b) be a topology and the sets S and
T with S ∪ T = O and S ∩ T = ∅ form two partitions of the PE nodes O with a difference of at most one
in size, i.e. 0 ≤ ||S| − |T|| ≤ 1. The (directed) bisection bandwidth is the minimal bandwidth available
between any two sets S and T according to b.

Suppose the bandwidth b is 1 for all edges a default topology Tdefault, then the bisection
bandwidth is 1. The communication from any PE Ps ∈ S to PE Pt ∈ T must flow through a single
edge from its location’s receiver node and transmit node, respectively. If the topology Tdefault
consists of more than one location, the communication must flow through the connection between
locations (the edges in LL). In a typical setup, the (single) edge from receiver/transmit nodes
will indeed be a bottleneck, since it models the connection to the global memory.

3.2.2.2 Ring-Connected Topology

A different topology, for modeling inter-FPGA communication networks, is shown below. Suppose
accelerator model Aring consists of three FPGA-based accelerators that are connected in a full
duplex ring topology, represented by three locations l0, l1 and l2. For brevity, we assume only one
configuration with one PE per location can be instantiated. The topology Tring is then:

• N = {P0, P1, P2} ∪ {r0, r1} ∪ {t0, t1}: same as the default topology
• O = {P0, P1, P2}: same as the default topology
• D = {((P0, r0), (r0, l0), (l0, t0), (t0, P0), . . . , (t2, P2), (P0, P1), . . . , (P1, P0), . . . }
• b is set equal to the default topology and additional values for the links (P0, P1), . . . (P1, P0).

Figure 3.8 shows a corresponding topology Tring for accelerator model Aring. The PEs P0, P1 and
P2 are connected in a ring topology. Each of the PEs is connected to its location accumulation node,
which is in turn connected to the location node (representing the global memory). This topology
could be simplified by removing the accumulation nodes altogether, since the connections to the
location nodes are not shared. Conversely, if there were more PEs per location, accumulation
nodes could be inserted between the PEs ring connection (red).

The bisection bandwidth for Tring is independent of the location bandwidth. If the ring’s edges
(depicted as red arrows in Figure 3.8) have bandwidth b of 1, then the bisection bandwidth is 2 –
similar to a ring topology in an undirected graph.

38

3.2 Modeling

r0

P0

P1

P L
b (l0) P L

b (l0)

l0

t0

P L
b (l2)P L

b (l1)

l1

r1 t1

P L
b (l2)

l2

r2 t2

P2

P L
b (l1)

Figure 3.8: Ring topology Tring applied to the accelerator model Aring

3.2.2.3 CPU-FPGA Topology

Another example is the topology Thybrid for a hybrid CPU-FPGA model Ahybrid as depicted in
Figure 3.5. As described in Chapter 2, the FPGA-based accelerator card is connected with, for
example, PCIe or Compute Express Link (CXL) to the host system. The CPU and the accelerator
share data across this connection and thus it must be part of the topology. There are several
scenarios one can represent as a topology:

1. A system with coherent memory

Modern interconnects like CXL offer cache coherency across different memory subsystems
like the host memory and the accelerators global memory [124, pp. 83 ff.]. In this case the
topology can be described with additional connections from lCPU to the accelerator’s global
memory.

2. A system with explicit memory transfers

Explicit memory transfers from host to the accelerator and vice-versa can be described
by an additional switch node, so the connection from the host memory to the accelerator
(global memory) can be parameterized and modeled.

3. A system with a complex cache hierarchy

Current CPUs contain multiple levels of caches (the so-called cache hierarchy). Each level
has its own bandwidth characteristics which can be described as a topology and therefore
considered during scheduling.

Figure 3.9 shows the first scenario for a hybrid accelerator model Ahybrid. The CPU is modeled
as a separate location lCPU with the corresponding receive and transmit nodes rCPU and tCPU,
respectively. The PEs P0 and P1 are connected to this location, whereas PEs P2 and P3 are
connected to location l0 through its receive and transmit nodes. The locations lCPU and l0 are
connected and the relative bandwidth is shown as “CXL”, representing the bandwidth a CXL
link provides relative to the other components. Different from a default topology, the PEs are
not connected to the receive and transmit nodes of both locations, since a CPU-core cannot be
instantiated at an FPGA-based accelerator and vice-versa.

Suppose every link in the topology Thybrid has bandwidth 1 and the CXL-link a bandwidth of
C, then the bisection bandwidth is min(1, C).

39

Chapter 3 Reconfiguration-Aware Scheduling

P0 P1 P2 P3

P L
b (lCPU)

P L
b (lCPU) P L

b (l0)
P L

b (l0)
CXL

CXL

lCPU l0

rCPU tCPU r0 t0

Figure 3.9: Hybrid CPU-FPGA topology Thybrid applied to the accelerator model Ahybrid

3.2.3 Machine Model

An accelerator model alone or a topology alone are of limited value to solve the scheduling
problem accurately. Instead, we combine them both and introduce a machine model that both
includes the topology and an accelerator model. The accelerator model describes the compute
capabilities of the machine and the topology its communication capabilities. The information
about the modeled system is only of structural nature, i.e. describing the organization of PEs and
their connections to each other and other parts of the system. The modeled hardware, however,
has additional characteristics. These range from link bandwidths, constraints on the capabilities
of the PEs, up to reconfiguration time overhead.

Definition 19 (Machine Model) A tupleM = (A, T ,P) is a machine model, where:

• A = (C, L) is an accelerator model,

• T = (N, O, D, b) is a topology, and

• P : X ⊸ Y is a multifunction, where X = A∪ N ∪ D ∪ C ∪ P ∪ L. A multifunction or correspon-
dence f : A ⊸ B maps elements of A to subsets of B, i.e. f : A→ P(B). We write PX′

Z to denote
a function X′ → Y′, where X′ ⊂ X and Y′ ⊂ Y. Y is the codomain for a property of Z, which is
described below.
PZ assigns a set of properties Z to accelerator models, network nodes, network links, configurations,
PEs, and locations, respectively. If not specified differently, O = P is assumed throughout this
document.

The third and final piece of a machine model is therefore a property function P that allows us
to assign any kind of property to any entity of the machine model. For example, defining the
bandwidth b of x for a link d ∈ D in the topology T , we can specify PD

b (d) = x. By using the
information provided by properties, algorithms may enhance the search for optimal solutions.
The properties of machine models are described below.

3.3 Properties of Machine Models

The machine model and, in particular, two of its subparts, the accelerator model and the topology,
describe the structure of the accelerator. It may also contain elements of the host system if it is

40

3.3 Properties of Machine Models

necessary, e.g. to achieve higher accuracy of scheduling algorithms or to reflect a central role of
the host system in the scheduling process as in a machine model constructed with the hybrid
CPU-FPGA accelerator model Ahybrid. Machine models describe which PE is contained in which
configuration in C. But this information is not sufficient to accurately describe an FPGA-based
accelerator complete with its host interface. For example, the types (colors in the diagrams) have
not been described by the machine models above.

Properties are a flexible way to describe the quantitative, non-structural characteristics of
a machine model (and by extension of the accelerator model and topology). The property
multifunction P takes an element from a machine model M as an input and returns a set of
values, describing the properties of the object. In particular PZ describes the property Z and
PX

Z (x) gives the value of property Z for an element x ∈ X. Note that PX
Z may be defined for two

disjunct sets X. In other words: a type of property (Z) may be used for more than one entity. For
example, the bandwidth b is used for PEs and links.

Be aware that this list is not considered complete. If anything, users applying our approach
are expected to add their own properties as needed. Also, properties are described informally in
terms of their real-world representation. Their (more formal) effect on schedules as well as the
process of introducing new properties is described in Section 3.4.

A set of properties used in this work are described below. Properties can be defined for all
entities (sets) in a machine model, but we limit ourselves to properties for PEs P, configurations
C, locations L, and links D. It is also possible to construct properties recursively. For example,
the properties describing the resource usage of PEs in one configuration can simply be summed
up to get the resource usage of the configuration. This example is described in Section 5.4.

3.3.1 Processing Element Properties

Since machine models are build around PEs, their definition contains a set of PE properties PP.
Properties are used to define the characteristics of the hardware or assumptions the software
makes about the hardware. For example, a PE may have a limited bandwidth to the main memory
that is used to communicate with PEs instantiated to another location. This limitation can be
described as a property.

Property Identifier Codomain Default Example

Collision PP
c P ∅ {p3, p8}

Dependency PP
d P ∅ {p1}

Type PP
t N 0 4

Start overhead PP
s s 0 s 112 ns

Table 3.1: Possible PE properties for a set of PEs {p0, p1, . . . , pn} = P

Table 3.1 shows one possible PE-property per row. The identifier column shows the name of
the property (function). All properties in the table apply to PEs, so the upper index is P, i.e. PP.
The lower index identifies the property, e.g. c for the collision property. The codomain for each
property is shown in the respective column. For example, collisions are described in terms of
elements from the set of PEs P – the colliding PEs. The default value is used if no explicit value
is specified for a property. For example, if a PE p has no collisions specified, then PP

c (p) = ∅.
The last column shows an example for each property. The PE p collides with PE p3 and p8 in the
example PP

c (p) = {p3, p8}. The list of properties may be extended as described in Section 3.4.
The semantics of the properties from Table 3.1 are the following:

41

Chapter 3 Reconfiguration-Aware Scheduling

• The collision property PP
c denotes PEs that may not be instantiated simultaneously.

• The dependency property PP
d denotes PEs that must be instantiated simultaneously.

• The type property PP
t denotes the type of tasks that a PE can execute. If a type is not set, all

tasks can be executed.
• The start overhead property PP

s denotes the overhead of executing an empty task on a PE.

3.3.2 Configuration Properties

Configurations in the accelerator model define how PEs are combined into bitstreams. Con-
figuration properties describe characteristics of such a configuration. Similar to PE properties,
configuration properties are used to specify hardware characteristics – in this case of a configura-
tion.

Property Identifier Codomain Default Example

Collision PC
c C ∅ {c1}

Dependency PC
d C ∅ {c1}

Placement PC
p L L {l0, l1}

Size PC
s bit 0 433 kB

Table 3.2: Configuration properties with c1 ∈ C

Table 3.2 shows possible configuration properties. The columns are equal to Table 3.1. The
property identifiers have the upper index C, denoting the applicability to configurations.

The semantics of the properties from Table 3.2 are the following:

• The collision property PC
c denotes configurations that must be instantiated simultaneously

(at other locations).
• The dependency property PC

d denotes configurations that must not be instantiated simultane-
ously at other locations.

• The placement property PC
p denotes all possible locations at which a configuration may be

instantiated.
• The size property PC

s represents the size of the bitstream file.

3.3.3 Location Properties

Similar to PE- and configuration properties, location properties describe characteristics of a certain
location. For example, a location may only accept new bitstreams with a given bandwidth or a
fixed overhead.

Property Identifier Codomain Default Example

Bandwidth P L
b bit/s ∞ 15 Mbit/s

Reconfiguration delay P L
r s 0 s 13 ms

Configurations P L
c C C {c1, c3}

Table 3.3: Location properties with c1, c3 ∈ C

Table 3.3 shows possible configuration properties. The columns are equal to Table 3.1. The
property identifiers have the upper index L, denoting the applicability to locations.

42

3.4 Constraints on Schedules

The semantics of the properties from Table 3.2 are the following:

• The bandwidth property P L
b denotes the bandwidth at which the location reads/instantiates

configurations.
• The reconfiguration delay property P L

r denotes the time to instantiate a configuration.
• The configurations property P L

c denotes a list of configurations that can be instantiated at
the location, i.e. it is the counterpart of PC

l .

The arrangement as seen in the accelerator model diagrams in Figures 3.4, 3.5 and 3.6 can
now be described in terms of properties and vice versa. When a configuration overlaps with a
location in such a diagram, the configuration can be instantiated at this location. This means
if for location l and a configuration c: c ∈ P L

c (l), then c will overlap l in an accelerator model
diagram. PEs from a configuration can thus be configured to all locations that are overlapped by
the configuration box. Going back to Figure 3.2 on page 33, it shows that configuration c0 can be
instantiated at location l0 and l1, whereas configuration c1 may only be instantiated at location l1.
Similarly, the color of a circle representing a PE p shows its type that is equal to its type property
PP

t (p).

3.4 Constraints on Schedules

Clearly, not every schedule is valid. Consider the precedence relation ≺. If a task v1 starts
executing before a preceding task v0 executes, then it cannot receive the communication from v0
and will yield an invalid result. Thus, a schedule S is subject to constraints to make it viable.
These can be split up into three categories for our purposes:

1. General constraints inherent to task scheduling.
2. Machine constraints resulting from the restrictions of the target machine model, i.e. from PEs,

configurations, locations and topologies.
3. Communication constraints resulting from the communication setting.

The following sections go over the derivation of constraints for all three categories. Section 3.4.1
highlights general constraints that must hold for all schedules. Sections 3.4.2, 3.4.3, 3.4.4 and 3.4.5
describe how machine constraints are derived for each entity (PEs, configurations, locations and
topologies). In Section 3.4.5 we also illustrate a range of communication settings and their effect
on the set of constraints. The summary in Section 3.4.6 and Table 3.7 show an overview.

3.4.1 General Constraints

The first category of conditions must hold for all schedules, independently of the target machine
model. There are two general constraints:

• Exclusive PE allocation
• Exclusive instantiation

The exclusive PE allocation constraint ensures that at any time each PE p ∈ P executes at most
one task v ∈ V. If a PE p was capable of executing multiple tasks concurrently (or even truly
in parallel), it must be modeled as multiple PEs p0, . . . , pn. Two tasks overlap, if there exists a
point in time, when both are executing. The predicates overlapb and overlap denote this, with and
without a buffer between the tasks, respectively. Given two tasks va, vb ∈ V, then

43

Chapter 3 Reconfiguration-Aware Scheduling

overlapb(va, vb, b) =ts(vb) + b ≥ ts(va) ∧ ts(vb) ≤ t f (va) + b∨
ts(va) ≥ ts(vb) + b ∧ ts(va) ≤ t f (vb) + b and (3.1)

overlap(va, vb) = overlapb(va, vb, 0). (3.2)

Constraint 1 (Exclusive PE allocation) Let S be a schedule for task graph G = (V, E, w, c, t) on PEs P.
For any two nodes (tasks) va, vb ∈ V:

proc(va) = proc(vb)⇒ ¬ overlap(va, vb) (3.3)

A location can hold exactly one configuration, which is described in the following constraint.

Constraint 2 Let S be a schedule for task graph G = (V, E, w, c, t) on machine modelM = (A, T ,P).
For any two instances ia = (ca, la, [ba, ea)) and ib = (cb, lb, [bb, eb)):

ca = cb ⇒ ba > eb ∨ ea < bb (3.4)

This is similar to constraint 1, only instead of tasks it mandates no overlap of instantiated
configurations at a given location.

Definition 20 (Generally feasible schedule) A schedule S is called generally feasible, if it fulfills both
constraints 1 and 2.

We require all schedules to fulfill constraints 1 and 2, since any schedule violating either one
could not reliably compute the desired result. We call these schedules generally feasible. However,
other constraints need to be fulfilled by a schedule that can be considered valid. The following
sections describe such constraints and how they are constructed.

In Section 2.3 we established that not all possible schedules are valid. Aside from constraints 1
and 2, the machine model also influences the solution space for valid schedules. Thus, the
machine modelM must be converted to a set of machine constraints C on the schedule.

Definition 21 (Feasible schedule) A generally feasible schedule S is called feasible if it fulfills all
machine constraints C.

Each property may be transformed into one or more constraints. After the conversion, all
feasible schedules violate none of the machine model’s properties, i.e. a feasible schedule S can
be executed on a machine modeled by the input model M. We demonstrate this process in a
case study in Section 3.7.

A set of constraint derivation rulesR is used to generate constraints in a systematical manner. The
constraint derivation (multi-)function constR : P ⊸ C maps each property to a set of constraints
using the rule set R.

A machine model can be converted to a set of constraints with the procedure depicted in
Algorithm 3.1. The procedure takes a machine model and a set of constraint derivation rules as
input. It iterates over all entities of the machine model and applies constR for all properties for
each entity. The resulting constraints are combined into a set of constraints K.

While Algorithm 3.1 shows the universal process to generate machine constraints from a
machine model, the concrete constraint derivation rules depend on the properties of the machine
model. The following sections show the derivation rules for the properties introduced in
Section 3.3.

44

3.4 Constraints on Schedules

Input: Machine modelM = (A, T ,P); constraint derivation rule set R
Result: Set of constraints K

1Z ← all properties inM
2foreach x ∈ X do
3foreach z ∈ Z do
4K ← K ∪ constR(PX

z (x))
5end
6end
7return K

Algorithm 3.1: Generating the complete set of machine constraints K for a given machine
modelM

3.4.2 Machine Constraints from PEs

Table 3.4 shows the derivation rules for properties of PEs. Each row contains one role, corre-
sponding to one property. For each property it lists the property name, its identifier and the
constraint derivation rule that must be applied to create the constraint set. For example, the
first row shows the constraint to be generated from the (PE) collision property PP

c . Assuming a
collision constraint PP

c (p) = {p2, p3} is defined for a PE p, then the resulting constraint rule is

∀x ∈ {p2, p3} : ¬ overlap(p, x). (3.5)

In other words, all feasible schedules must ensure that as long as PE p is instantiated, neither
p2 nor p3 is instantiated at the same time.

The other rules in the table – and the following tables – are derived similarly, although some
make use of other information, such as the task graph. For example, the rule for the (PE) type
property PP

t uses the set of locations L from the machine model and the set of tasks V from the
task graph to create a constraint.

Property Identifier Rule

Collision PP
c ∀x ∈ PP

c (p) : ¬ overlap(p, x)
Dependency PP

d ∀x ∈ PP
d (p) : overlap(p, x)

Type PP
t ∀l ∈ L, ∀v ∈ V : t(v) ̸= PP

t (p)⇒ alloc(v) ̸= (p, l)
Start overhead PP

s ∀v ∈ V : t f (v, p) ≥ t f (v, p) + PP
s

Table 3.4: Constraint derivation rules for a PE p and a task graph G = (V, E, w, c, t)

3.4.3 Machine Constraints from Configurations

Table 3.5 shows the derivation rules for properties of configurations. The columns are identical to
Table 3.4. Each row corresponds to one configuration property from Table 3.2. Applying the rules
from the third column with Algorithm 3.1 creates the machine constraints from the configurations’
properties. The following provides an explanation of the rules:

• Collision: ensure for all instances of configurations in the collision property PC
c (c0) that they

do not overlap with instances of c0.

45

Chapter 3 Reconfiguration-Aware Scheduling

• Dependency: ensure for all instances of configurations in the dependency property PC
d (c0)

that they do overlap with instances of c0.
• Placement: ensure for all tasks allocated on a PE from configuration c0 that it must be

instantiated only at locations from the placement property PC
p (c0).

• Size: ensure for all locations L that whenever configuration c0 is instantiated at location
l ∈ L, it does not overlap with a buffer of P

C
s (c0)
P L

b (l)
, respecting the reconfiguration overhead

and configuration bandwidth property P L
b (l) of location l.

For example, suppose the placement property is PC
p (c) = {l0, l3} for a configuration c. Then

the resulting rule is:

∀v ∈ V, p ∈ c : alloc(v) = (p, l)→ l ∈ {l0, l3}

Property Identifier Rule

Collision PC
c ∀x ∈ PC

c : ¬ overlap(x, c0)
Dependency PC

d ∀x ∈ PC
d : overlap(x, c0)

Placement PC
p ∀v ∈ V, p ∈ c : alloc(v) = (p, l)⇒ l ∈ PC

p (c0)

Size PC
s ∀l ∈ L : ¬ overlapb

(
x, c0, P

C
s (c0)
P L

b (l)

)
Table 3.5: Constraint derivation rules for a configuration c0 and a task graph G = (V, E, w, c, t)

3.4.4 Machine Constraints from Locations

Table 3.6 shows the derivation rules for properties of locations. The columns are equal to Table 3.4.
Each row corresponds to one location property from Table 3.3. Applying the rules from the third
column with Algorithm 3.1 creates the machine constraints from the locations’ properties.

• Bandwidth: ensure for all pairs of configuration c0, c1 that they do not overlap with a buffer
(the reconfiguration duration) depending on the respective size property PC

s (c0) and PC
s (c1),

respectively, if they are both instantiated at location l.
• Reconfiguration overhead: ensure for all pairs of configurations that they do not overlap with a

buffer of the size of the reconfiguration overhead property P L
r , if they are both instantiated

at location l.
• Configurations: ensure that whenever a configuration c0 is instantiated at location l, it must

be any of the configurations listed in P L
c (l).

Property Identifier Rule

Bandwidth P L
b ∀c0, c1 ∈ C : loc(c0) = loc(c1) = l ⇒

¬ overlapb

(
c0, c1, max(PC

s (c0),PC
s (c1))

P L
b (l)

)
Reconfiguration overhead P L

r ∀c0, c1 ∈ C : loc(c0) = loc(c1) = l ⇒
¬ overlapb

(
c0, c1,P L

r (l)
)

Configurations P L
c ∀c ∈ C : loc(c) = l ⇒ c ∈ P L

c (l)

Table 3.6: Constraint derivation rules for a location l and a task graph G = (V, E, w, c, t)

46

3.4 Constraints on Schedules

3.4.5 Communication Constraints from Communication Settings

The last set of constraints are the ones imposed by the communication costs and the topology.
The constraints stemming from communication between tasks are not constructed through rules
from the machine model. Instead, the communication setting defines which constraints must hold
for a valid schedule. In the following, we will look into five communication settings, detail their
semantics and define the constraints based on those semantics.

Communication can be modeled in numerous ways, depending on the use case and resources at
hand. For example, one could decide to ignore the communication entirely to trade accuracy for a
faster time to solution. We define five communication settings, each of which leads to a different
set of constraints. They can be split up into two categories, with and without configuration:

1. Without communication

Communication costs are not considered.

2. With communication

Communication cost are considered.

a) Direct communication

Transferring data between tasks introduces communication cost that are dependent on
the locality. If the tasks are executed in different locations, the communication cost is
non-zero and may delay the dependent’s task start time.

b) With congestion

Transferring data from one task (and PE) occupies links and therefore might disturb
other communication and prolong the execution.

c) With computation-communication overlap

Computation-communication overlap is an optimization technique to achieve better
utilization of computing resources.

d) With PE-to-PE communication

Rather than writing data to memory and reading it later, it is sometimes written
directly from one PE to another on FPGAs.

Each of the communication settings defines a set of constraints and includes a definition
based on those constraints. If a schedule is valid and adheres to the set of constraints of a
communication setting, we say that the schedule is valid with a certain setting. For instance, a
schedule S for machine modelM can be valid with congestion.

3.4.5.1 Without Communication

The simplest setting ignores communication entirely. If the communication is not considered, the
schedule must only consider the precedence of tasks, exclusivity and machine constraints. In this
case neither the topology nor the communication cost function c are used. This may be useful if
the communication costs are small compared to computational costs, because it can lead reduced
algorithmic (scheduling) cost.

Constraint 3 (Precedence without Communication) Let S be a schedule for task graph G =
(V, E, w, c, t) and A = (ts, alloc) a resource allocation. For vd ∈ V,

∀vs ∈ pred(vd) : ts(vd) ≥ t f (vs) (3.6)

47

Chapter 3 Reconfiguration-Aware Scheduling

Therefore, constraint 3 merely requires the precedence relation to be honored and the commu-
nication costs are ignored.

Definition 22 (Communication-Free Schedule) A schedule S for a task graph G = (V, E, w, c, t) is
communication-free if it is feasible and fulfills constraint 3.

Feasible schedules that fulfill constraint 3 are called “communication-free schedules”. However,
this communication setting should be used with care, since it potentially ignores a large part of
the cost of executing a task graph. This problem is addressed with the following setting.

3.4.5.2 Direct Communication

The communication setting direct communication assumes a fixed communication cost for a pair of
two tasks and a pair of locations, the precedence constraint must be changed to incorporate the
communication cost function c.

Constraint 4 (Precedence with Direct Communication) Let S be a schedule for task graph G =
(V, E, w, c, t) and A = (ts, alloc) a resource allocation. For esd = (vs, vd) ∈ V,

∀(vs, vd) = esd ∈ E : ts(vd) ≥ t f (esd) (3.7)

Definition 23 (Communication-Aware Schedule) A schedule S for a task graph G = (V, E, w, c, t) is
communication-aware if it is feasible and fulfills constraint 4.

Feasible schedules that fulfill constraint 4 are called “communication-aware schedules”. How-
ever, this communication setting ignores that simultaneous access to the same resources is not
possible, i.e. it does not handle congestion. The next communication setting explicitly handles
congestion using topologies and a dedicated scheduling strategy for communication.

3.4.5.3 With Congestion

Modeling congestion is more involved than applying the first two communication settings. The
reason is that each edge in the task graph, i.e. each dependency, cannot be considered in isolation.
Instead, the communication of results of a task may have an effect on the scheduling of any other
edge.

Defining a topology in the first place has the purpose of modeling the congestion that occurs
whenever more data per time unit is sent than the communication channel allows. A simple
endpoint congestion model can be used already with the properties PP

b ,PC
b and P L

b . However, this
can lead to inaccurate results, i.e. the planned schedule does not reflect the actual execution [27,
p. 222]. To offer congestion-aware scheduling algorithms that respect the network topology, we
borrow the approach of edge scheduling from [125] – that is also described in [27, pp. 203–209] –
and integrate it into our approach. Edge scheduling was chosen for three reasons:

1. It allows us to formulate the congestion awareness as a constraint problem, too.
2. It integrates with machine models and other techniques used in this work.
3. It integrates with our polynomial time scheduling algorithm in Chapter 4.

In this subsection, we resort to some of the definitions from Sinnen’s work [27] again. However,
they are simplified and adjusted to our use case and thus marked with a dashed box as
introduced in Section 2.5.

Generally, congestion-aware scheduling relies on three aspects: topology, a communication model
and scheduling.

48

3.4 Constraints on Schedules

1. The topology itself must be defined to accurately model communication congestion.
2. The communication model defines four parameters of the communication.
3. A strategy to schedule communication and its integration into task scheduling

Topologies in general and default topologies in particular have been introduced in Section 3.2.2.
To apply congestion-aware scheduling, what remains is to define the communication model and
edge scheduling as a communication scheduling strategy.

Communication Model The communication model defines parameters, such as the routing and
switching methods. For brevity and simplicity we assume the following communication model:

• Static rather than dynamic routing: routes between two communication endpoints do not
change over time.

• Circuit switching rather than packet switching: a communication channel is established
between two communication endpoints. Note that the bandwidth is not reserved for a
switched circuit: just the route is static for that communication.

• Cut-through rather than store-and-forward: all links on a route are used simultaneously and
nodes do not store any messages.

• No routing delay rather than some delay per hop: no entity introduces a delay in transmitting
data.

This is similar to Sinnen’s definition of a communication model in Sinnen 7.5 [27, p. 202]. For
a more in-depth explanation of the parameters see Section 7.2.2 [27, pp. 198 ff].

The third component to enable congestion-aware scheduling is the scheduling strategy for
communication. We use well-established edge scheduling to model the allocation and occupation
of resources due to communication that leads to congestion.

Edge Scheduling As explained in Section 2.5, an edge from the task graph represents a
communication (dependency) between two tasks. The communication is either local (the same
location and PE) or it – the edge – must occupy some part of the network topology for some
duration. We assume the link is occupied and reserved for that edge exclusively.

ti
m

e

Edge 0

Link 0 Link 1

b = 1 b = 0.5

Edge 0

Edge 1

Figure 3.10: An edge schedule of two edges, Edge 0 and Edge 1, on two links, Link 0 and Link 1,
each with different relative bandwidth b

We chose a strategy to schedule communication that is akin to task scheduling: similar to the
mapping of tasks to PEs, edge scheduling is concerned with the mapping of communication
(edges) onto links in a topology. Figure 3.10 shows an edge schedule. The x-axis shows two
links, Link 0 and Link 1 and the y-axis time flowing from top to bottom. The gray rectangles
depict the allocation of communication edges from a task graph on the links. For example, Edge
0 first occupies both Link 1 and Link 0 and later Edge 1 is allocated on Link 0 only. The relative

49

Chapter 3 Reconfiguration-Aware Scheduling

bandwidth b is denoted on the bottom of each link. Link 1 has half of the bandwidth of Link 0,
which means that edges occupy Link 1 twice as long as Link 0.

Tasks executed on two different PEs that have a dependency must communicate using the
topology. A path the communication takes in the topology is called a route, consisting of a list of
links. For example, the route Edge 0 takes in Figure 3.10 goes along Link 0 and Link 1.

Definition 24 (Route) Let T = (N, O, D, b) be a topology. For any two distinct processors Ps and Pd,
Ps, Pd ∈ P, the routing algorithm of T returns a route R ∈ T from Ps to Pd in the form of an ordered list
of links R = ⟨d1, . . . , dn⟩, di ∈ D for i = 1, . . . , l.

Sinnen 7.8

Integrating task scheduling with edge scheduling is a matter of re-defining the start and finish
times of tasks for this communication setting. Instead of a static communication time directly
taken from the communication cost function c, the start times of tasks have to take the congestion
into account. To properly define the start time of a task with congestion, we first need to have a
notion of the finish time of an edge:

Definition 25 (Edge Start, Communication and Finish Time on Link) Let G = (V, E, w, c, t) be a
task graph and T = (N, O, D, b) be a topology.
The start time ts(e, d) of an edge e ∈ E on a link d ∈ D is the function ts : E× D → Q+

0 .
The communication time of e on d is:

ζ(e, d) =
c(e)
b(d)

. (3.8)

The finish time of e on d is:

t f (e, d) = ts(e, d) + ζ(e, d) (3.9)

Sinnen 7.6

The communication time of an edge on a certain link, i.e. the duration for that a link is
occupied by an edge, depends on the link’s relative bandwidth. Only when an edge finished its
communication, the successor task may start its execution. The point in time when all incoming
edges have been communicated to a task is called the data ready time.

Definition 26 (Data Ready Time) Let S be a schedule for task graph G = (V, E, w, c, t) on machine
modelM = (A, T ,P). The data ready time of a node vj ∈ V on PE p ∈ P is

td(vj, loc(p)) = max
vi∈pred(vj)

t f (eij, loc(vi), loc(p)) (3.10)

Sinnen 4.8

Figure 3.11 shows three sub-figures as an example of an edge schedule consisting of a task
graph, a topology and the edge schedule itself.

Figure 3.11 (a) on the left shows a task graph G = (V, E, w, c, t) with two tasks v0 and v1. Task
v1 depends on task v1, so edge e = (v0, v1) ∈ E.

Figure 3.11 (b) in the middle shows a topology connecting two PEs P0 and P1. The route
R = ⟨d0, d1, d2⟩ from PE P0 over the switches n0 and n1 to PE P1 is highlighted.

50

3.4 Constraints on Schedules

e

v0

v1

(a) A task graph G = (V,
E, w, c, t) consisting
of two tasks v0 and
v1

d0

d1

d2

P0 P1

n0 n1

(b) Excerpt of topology T with
two PEs P0 and P1 and two
switches n0 and n1

ti
m

e

e
e

e

d0 d1 d2

e′

b = 1 b = 2 b = 1

t0

(c) A schedule of two edges e and e′ on
three links d0, d1 and d2 with band-
width b = 1 and b = 2, respectively
[125]

Figure 3.11: A topology and a corresponding edge scheduling for two edges

Figure 3.11 (c) on the right shows the edge schedule of task graph G on topology T , similar to
Figure 3.10. The three links d0, d1 and d2 along route R from the topology T are depicted on the
x-axis and the time from top to bottom on the y-axis. In the edge schedule the edge e is scheduled
to communicate over the route R. Each of the three links are occupied by edge e just before the
time t0. Note that link d1 has twice the bandwidth b of links d0 and d2, so it is occupied half of
the duration in comparison to the other two links.

Another edge e′ – not part of task graph G – occupies link d1 for some time to show the
effect of congestion. The edge e′ is scheduled on d1 and occupies it before e is scheduled.
If e′ occupies d1 longer, the finish time of e (that is t f (e, d2)) would move past t0 and thus
finish later. One possibly counterintuitive detail about the schedule is that the finish time of
e is the same on all three links, namely t0. Further, it seems as if ts(e, d2) < ts(e, d1), i.e. the
communication starts on a subsequent link d2 before it starts on the preceding link d1. Recall
that edge scheduling models congestion. Even if we remove edge e′ from the picture and only
consider e, ts(e, d1) > ts(e, d2) and t f (e, d1) = t f (e, d2) must hold. If this was not the case, for
example ts(e, d0) = ts(e, d1) = ts(e, d2) then edge e would finish on link d1 before it is finished on
link d0. Further, if ts(e, d1) = ts(e, d2), then a faster link d1 would prolong t f (e, d2) [125].

Constraints for Schedules with Congestion Although the communication setting with conges-
tion is more involved than the previous two settings, it is expressed by two constraints to form a
valid schedule:

1. The Link constraint ensures that an edge occupies a link exclusively.
2. The Causality constraint ensures that the finish time of an edge is consistent along the route.

The link constraint, similar to constraint 1 for PEs, guarantees that a link is only occupied by
one edge at a time.

51

Chapter 3 Reconfiguration-Aware Scheduling

Constraint 5 (Link) Let G = (V, E, w, c, t) be a task graph and T = (N, O, D, b) be a topology. For
any two edges e, f ∈ E scheduled on link d ∈ D:

ts(e, d) ≤ t f (e, d) ≤ ts(f , d) ≤ t f (f , d) ∨ ts(f , d) ≤ t f (f , d) ≤ ts(e, d) ≤ t f (e, d), (3.11)

or equivalently

¬ overlap(e, f , d). (3.12)

Sinnen 7.1

Analogous to constraint 4, the precedence constraint for tasks, the communication of an edge
on a link later on the router must not start before the allocation on first link. Similarly, the
communication on the first link must not start before the predecessor’s node finish time and the
successors start time must be larger than the finish time of the edge on the last link of the route.

Constraint 6 (Causality) Let G = (V, E, w, c, t) be a task graph and T = (N, O, D, b) be a topology.
For the start and finish times of edge e = (vs, vd) ∈ E: on the links of the route R = ⟨d0, d1, . . . , dl⟩,
R ∈ T,

ts(e, d1) ≥ t f (vs), (3.13)

t f (e, dk−1) ≤ t f (e, dk), (3.14)

ts(e, d0) ≤ ts(e, dk), (3.15)
ts(vd) ≥ t f (e, dl), (3.16)

for 0 < k ≤ l.

Sinnen 7.2

Constraints 5 and 6 must hold for a congestion-aware schedule. The first one guarantees that
the communication is overlap-free on each link. In reality, the link can use packet switching,
but as an approximation to model congestion, we assume circuit switching characteristics. This
means that the data is not split into small chunks that are individually sent but as a contiguous
data stream from source to destination. The second condition ensures the causality between
the communication links. Additionally, it ensures that the communication only starts after the
predecessor task has finished executing, and the destination task starts executing only after the
communication on the last link of the route finished. Note that Equations (3.13) and (3.16) are not
included in Sinnen 7.2 , but implicit in their definition for edge scheduling instead.

Since ts(e, d) and more so t f (e, d) for any edge e and link d depend on the relative bandwidth,
this property can be constructed from the normalized PX

b . In other words, using the available
bandwidth of PEs (and by extension configurations) and locations, the edge weights of the
topology graphs can be computed. The constraints for congestion-aware scheduling are fully
described by constraints 5 and 6, because the properties are already contained in the topology
description.

Definition 27 (Congestion-aware Schedule) A schedule S for a task graph G = (V, E, w, c, t) and a
topology T = (N, O, D, b) is congestion-aware if it is feasible and fulfills constraints 5 and 6.

52

3.4 Constraints on Schedules

Feasible schedules that fulfill constraints 5 and 6 are called “congestion-aware schedules”.
However, this communication setting ignores two possible optimizations that are commonly
found in FPGA programs:

1. Computation-communication overlap
2. Direct PE-to-PE communication

The next communication settings each address one of these.

3.4.5.4 With Computation-Communication Overlap

Up to this point, we assumed that a PE is either scheduled, executing or finished and produced
data that can be communicated. Since FPGAs do not implement the conventional Von Neumann
architecture, they can communicate and execute at the same time. In fact, it is a design pattern in
the HLS workflow to construct a PE such that it works in three phases:

(1) Consumption of data: the input data for the PE is read, for example from a global memory, a
network interface or another PE (see Section 3.4.5.5). This allows the interface to coalesce
transfers and achieve a higher bandwidth through less overhead. The data can be stored in
a local buffer.

(2) Processing of data: the data is processed and stored into a local buffer.

(3) Production of data: the output data is written from the local buffer to global memory, a
network interface or another PE.

These three phases can be pipelined: while phase (1) keeps ingesting data, phase (2) may
already write output to the local buffer and possibly allow phase (3) to produce output to the
target. The implication for scheduling are the following:

• A task v may start its communication before its finish time t f , but its computational cost
(w(v)) remains unchanged.

• A task v may start executing before all data has arrived, i.e. the td(v) conforms with
Definition 26.

• A task may execute and simultaneously consume and produce data.
• The start edge time ts((vs, v)) of the incoming data must come before the start edge time

of the outgoing edge ts((v, vd)) for tasks vs, v, vd. One could construct a case where a PE
produces output data before the arrival of the first input data, but we consider the former
case.

• Notably the start time ts(vd) may be before the finish time t f (vs), where vd ∈ succ(vs).

Constraint 7 (Communication Overlap) Let G = (V, E, w, c, t) be a task graph and T = (N, O, D, b)
be a topology. For the start and finish times of edge e = (vs, vd) ∈ E: on the links of the route
R = ⟨d1, d2, . . . , dl⟩, R ∈ T,

ts(e, d1) ≥ t f (vs)−PP
o (proc(vs)), (3.17)

ts(e, d1) ≥ ts(vs), (3.18)

ts(vd) ≥ t f (e, dl)−PP
o (vd), (3.19)

for 1 < k ≤ l.

53

Chapter 3 Reconfiguration-Aware Scheduling

The communication overlap constraint allows the earlier execution time. Note that, this will
not result in a feasible schedule as defined by Definition 20, because ts(vd) < t f (vs) may be
true, violating constraint 4. However, the definition relies on the edge finish time as defined
for location-based communication cost (Definition 10), which does not make much sense for a
topology-based communication setting. Thus, Definition 10 and by extension constraint 4 are
ignored in this setting.

Definition 28 (Overlap-aware Schedule) A schedule S for a task graph G = (V, E, w, c, t) and a
topology T = (N, O, D, b) is computation-communication overlap aware, if it is feasible and fulfills
constraint 7

Feasible schedules that fulfill constraint 7 are called “overlap-aware schedules”. Another
optimization is having direct PE-to-PE communication.

3.4.5.5 With PE-to-PE Communication

A common theme in implementations of software on FPGA-based accelerators is the usage of
direct communication channels. With a producer-consumer model, where a PE consumes data
from a producer PE, data is directly send from one PE to another. A PE may also be both, a
consumer and producer. For FPGA-based accelerators it is a popular approach, because the data
does not need to be saved to the global memory, but can use the direct on-chip interconnect and
local buffers.

The channel communication mode is supported by relevant platforms, for example by Xilinx’s
HLS implementation Vitis [25] called streams and by Intel’s oneAPI [126] named pipes. It was
adopted as pipes into the OpenCL specification since version 2.0 [127], that are semantically
equivalent to buffered or unbuffered FIFO queues. OpenCL’s pipes are used – similar to Unix
pipes – to directly connect PEs with no or only minor buffering. Storing intermediate results
is thus not necessary. Listing 3.1 shows OpenCL code with one kernel function that takes two
arguments, an in_data read pipe and an out_data write-only pipe. In lines 2–3 it reads data
from in_data and saves it into a private buffer buf. In lines 5–6 the function compute_val is
applied to all elements in the buffer buf and the remaining code writes the result to out_data
which in turn can be read by another PE. This structure also corresponds to the three phases as
presented in Section 3.4.5.4 and thus may be pipelined, potentially also enabling computation-
communication overlap.

1 __kernel void consumer_producer(pipe int in_data, write_only pipe
↪→ int out_data) {

2 int buf[100];
3 for (int i = 0; i < 100; i++)
4 read_pipe(in_data, &buf[i]);
5 for (int i = 0; i < 100; i++)
6 buf[i] = compute_val(buf[i]);
7 for (int i = 0; i < 100; i++)
8 while(write_pipe(out_data, &buf[i]));
9 }

Listing 3.1: OpenCL kernel that uses three phases: reading, computing and writing data via pipes

Optionally, this communication setting can be combined with the congestion-aware setting.
However, all participating PEs must be present at the same time which in turn has an influence on
the instantiation of configurations. Contrary to the communication settings above, no dedicated

54

3.4 Constraints on Schedules

constraints have to be introduced for this setting. Instead, the dependencies of the PEs must be
modeled with the topology and the dependency property PP

d . If two PEs ps and pd use PE-to-PE
communication, e.g. via pipes, the following must hold:

• The topology T = (N, O, D, b) must contain a link d = (ps, pd) ∈ D, possibly with b(d) = ∞.
• The destination PE pd must have a dependency on the source ps or vice-versa: {pd} ⊆
PP

d (ps).

A schedule that follows this communication mode is called pipe-aware.

Definition 29 (Pipe-aware Schedule) A schedule S for a task graph G = (V, E, w, c, t) and a machine
modelM = (A, T ,P) is pipe-aware if:

• it is feasible.

• there exists at least one direct PE-to-PE pipe: ∃(os, od) ∈ D : os ̸= os ∧ {os, od} ⊆ O.

• those PEs are dependent: ∀(os, od) ∈ D : os ∈ PP
d (od) ∨ od ∈ PP

d (os).

3.4.6 Summary of the Schedule Constraints

Summarizing, constraints are a central component of this work. They are being used to limit
possible schedules based on the properties of the modeled hardware. We introduced three types
of constraints: general constraints, machine constraints and communication constraints.

Table 3.7 shows the communication settings and the constraints that must be fulfilled by a
schedule to be considered valid with that setting. The communication setting names are listed in
the first column and the remaining 7 columns represent one of the constraints each. Each row
shows a communication setting and the constraints that must hold for a schedule that is valid with
the row’s setting are marked with ✓. Optional constraints are marked with (✓). For example,
a pipe-aware schedule must fulfill the two general constraints 1 and 2, the (communication)
constraint 7 and may optionally fulfill constraints 5 and 6.

Constraint

Setting 1 2 3 4 5 6 7

Without communication ✓ ✓ ✓
Direct communication ✓ ✓ ✓ ✓
Congestion-aware ✓ ✓ ✓ ✓ ✓ ✓
Overlap-aware ✓ ✓ (✓) (✓) ✓
Pipe-aware ✓ ✓ (✓) (✓) ✓

Table 3.7: The constraints that must hold for the communication settings

To reiterate Chapter 3 so far, we introduced accelerator models and communication topologies
and combined them to machine models. We’re able to describe their properties and derive
constraints on schedules using the structure from machine model and these very properties.

The next step in the methodology, as described in Section 3.1, addresses the problem of working
with existing applications. With the previously described approach it is possible to decide whether
a schedule is valid or not on a particular machine model. Still missing are realistic workloads to
analyze. The next section focuses on gathering workloads from existing applications, possibly
already accelerated by an FPGA-based accelerator.

55

Chapter 3 Reconfiguration-Aware Scheduling

3.5 Generating Task Graphs

Nontrivial analysis of scheduling approaches requires representative input workloads. Especially
statistical analysis relies on input data for simulations. Such workloads can be obtained:

• as statistical models [128],
• through static code analysis,
• through profiling or, as in our case,
• through tracing applications to construct task graphs.

Task graphs and particularly their cost function c : V × P → N are not always available,
especially for FPGA based accelerators. Hence, we propose using tracing to generate task graphs
from program executions. With tracing, a task based application is deployed on an FPGA and its
execution is logged from the host.

The advantages of tracing over workload modeling or static analysis are the following.

• Information that is only available at runtime can be obtained.
• The logging of measured execution data is agnostic to the FPGA implementation.
• Observing the execution from the host introduces no overhead on the accelerator.
• The application under investigation does not need to be instrumented.
• Traces provide an exact sequence of the program execution, rather than a statistical model.

The disadvantages of tracing over workload modeling or static analysis are the following.

• An application must be executed – or simulated – at least once on a target architecture.
• Varying parameters, e.g. input sizes or precision, require repeated execution of the applica-

tion. The degrees of freedom and number of the parameters may inflate the exploration
space prohibitively and make it impracticable to generate all traces.

• Tracing must be implemented at runtime.

Tracing an application is the process of recording events during the execution of a program. At
certain points during the execution of a program, an often small set of information is collected,
so the timeline of the execution can be reconstructed later. For our purposes a trace must collect
a tuple (i, I, p, os, o f , d) during the execution of a task, where:

• i ∈N is a unique task identifier
• I ⊂N is the set of direct predecessor task identifiers
• p ∈ P, where P is the set of available PEs and p is the assigned PE
• os ∈N is the start time offset of the task i
• o f ∈N is the finish time offset of the task i
• d ∈N is the amount of data transferred during the task’s execution

After the data is gathered, a task graph can be generated with Algorithm 3.2. The tuples
obtained from the execution of the program are used as an input. If the program generates tasks
deterministically and stable identifiers are assigned to the tasks, the algorithm can be invoked
with tracing data of multiple program executions. The algorithm iterates over all trace tuples and
inserts tasks into the task graph based on this information. It also creates dependencies based
on the predecessor tasks I and sets the computation and communication costs in lines 2 – 8. In
line 10 it handles the case of multiple traces of the same application. The motivation for tracing

56

3.6 Analyzing Schedules

Input: Set T of trace tuples; binary reduction functions ⊙{ω,w}
Result: Task graph G = (V, E, w, c, t)

1foreach (i, I, p, os, o f , d) ∈ T do
2if i /∈ V then insert task into task graph
3V ← V ∩ {i}
4w(i, p)← o f − os

5foreach ip ∈ I do
6E← E ∩ {(ip, i)}
7c((ip, i))← d
8end
9else update task cost

10w(v)← min(w(v), ω(i, p))
11end
12return (V, E, w, c, t)
13end

Algorithm 3.2: Task graph generation from trace data

multiple application runs and combining their traces into a single task graph is an increase in
accuracy. Algorithm 3.2 uses a min function to select the minimal runtime cost of a task over all
runs.

This algorithm is implemented as a module of the RESCH framework as described in Sec-
tion 6.1.2.

With a description of the hardware (a machine model) and appropriate workloads (task graphs
gathered through tracing) the next step according to our methodology from Section 3.1 is the
analysis of schedules.

3.6 Analyzing Schedules

Recall that SRQ 1 asks how reconfiguration-aware schedules can be systematically evaluated.
We have now laid the groundwork for the proper analysis of task scheduling algorithms on
reconfigurable hardware. With this set of tools, we enable statistical analysis of schedules and
also, by extension, the analysis of machine models.

After generating schedules for a range of input task graphs, for example using constraint
programming, the result can be systematically analyzed. The approach allows us to build one-
time abstractions of the hardware and then analyze schedules for a wide range of workloads
and parameters. A possible alternative to this are formal proofs. However, while these provide
universally valid statements, proofs must be rather conservative in its assumptions, whereas
statistical analysis allows a direct relationship to real-world problems and their solutions. This
method allows us to quickly iterate the solution space and assess the quality of a schedule in
Chapter 5.

Our approach to analyze the machine model, scheduling algorithms and their interactions is to
generate valid – and possibly optimal – schedules and then analyze the outcome with statistical
methods. The process requires three steps:

1. Choose a target metric.
2. Generate feasible and optimal schedules according to the criterion.

57

Chapter 3 Reconfiguration-Aware Scheduling

3. Accumulate the result metric(s). This can be the same that we used to optimize or a different
set, for example the achieved parallelism, energy usage or the speedup.

For example, using a set of task graphs generated with the previous step, it is now possible to
generate optimal schedules according to the target metric. The mean of the result metric can now
be used to assess the quality of an approach.

The following section demonstrates our approach on the basis of a simple example in a case
study. In particular, it shows how to isolate and examine the effect of PR.

3.7 Case Study: Two Machine Models

With respect to SRQ 1, we want to compare two machine models and demonstrate the process
described in this chapter. Recall that we are particularly interested in the effect of partial
reconfiguration on scheduling tasks and the costs of avoiding task-level PR all together in favor
of an easier development process. As an example comparison, we present two similar artificial
machine modelsMPR andMR, with one difference: the first supports PR while the latter does
not.

This case study follows the methodology from Section 3.1 and is structured as follows:

1. The machine models are defined in Section 3.7.1.
2. The constraints are derived from the models in Section 3.7.2.
3. The task graph is generated from (fictional) trace data in Section 3.7.3.
4. The analysis is applied to the task graph in Section 3.7.4.

We prefer brevity and simplicity over realism in this example to make the case study more
accessible, as it should serve as an illustration of the application of our methodology. More
complex scenarios are evaluated in Chapter 6.

3.7.1 Definition of the Machine Models

In this scenario, we have three PEs in total {p0, p1, p2} = P. Each PE can execute two tasks of
the task graph depicted in Figure 3.12. Each node represents a task, with the task label (a name)
on the left and its cost on the right. The edges are annotated with the communication cost. For
the sake of simplicity, all tasks have an execution time of 100 ms on all PEs, the reconfiguration
overhead is 10 ms for all PEs and properties like the bandwidth are ignored. The two machine
modelsMPR andMR can be described as the following:

1. MPR = (APR, T ,PPR) describes an FPGA with two PR-slots, i.e. two PEs can execute
simultaneously.

2. MR = (AR, T ,PR) describes an FPGA without PR capability and two bitstreams:

1. A bitstream with two PEs {p0, p1}.
2. A bitstream with one PE {p2}.

Both machine modelsMPR andMR contain the same set of PEs P. Disregarding PR specifics
for now, we define properties that are true for both machine models.

• All v ∈ V have w(v, p) = 100 ms for all p ∈ P.
• All l ∈ L have P L

r (l) = 10 ms.

58

3.7 Case Study: Two Machine Models

41 41

41

22

22

75

102 59

2 100 3 100

4 100

6 100

1 100

5 100

Figure 3.12: Case study task graph Gc: the task label is denoted on the left within each node and
its cost in ms on the right. The labels on edges denote communication cost in MB.

• Each pn ∈ P has PP
t (pn) = {vn, vn∗2+1}, i.e. p1 can execute tasks v2 and v3.

The PEs of both machine models have model-specific properties. These describe the charac-
teristics specific to PR or the lack thereof, respectively. PR is described by the set of available
locations L of the machine model.

• Machine modelMPR has two slots, so the set of locations LPR = {s0, s1} of its accelerator
model APR reflects that. To allow all PEs to be configured in both slots, one property has to
be added:

– Both c ∈ C have PC
p = {s0, s1}.

• Machine modelMR has one slot, so the set of locations LR = {s0} of its accelerator model
AR reflects that. The PEs contained in one bitstream are instantiated at the same time, since
there is no partial reconfiguration. Equivalently, the PEs not in the same bitstream are
exclusive, since only one bitstream can be loaded at a time. These characteristics are already
described by the machine model and in particular constraint 2, so no additional properties
have to be set.

With these properties, both machine modelsMPR andMR are fully defined. The next step is
the derivation of constraints. The rules R from Tables 3.4, 3.5 and 3.6 are applied according to
Algorithm 3.1.

3.7.2 Derivation of Constraints

The derivation process for constraints is repetitive and can be automated. For illustration, we
apply one rule for an exemplary property; all other properties and PEs are processed equivalently.
The goal of this step is to determine a set of constraints that must hold for feasible schedules.
The constraint set is specific for a machine model. However, since the PEs of machine models

59

Chapter 3 Reconfiguration-Aware Scheduling

MPR andMR share all properties, the application of the rules for these properties is the same for
both of them.

The property P L
r = 10 ms is valid for all locations. According to Algorithm 3.1 (line 2) we

iterate over all PEs p ∈ P and for each PE p over all properties PP. In this example we only
consider P L

r and p0. In line 4 constR(Pr) maps the property Pr to a rule and inserts it into the
constraint set C:

C ← ∅ ∪ constR(P L
r) = {∀l ∈ L : t f (v, l) ≥ tr(v, l) + 10 ms}.

After the application of Algorithm 3.1, C contains all constraints to limit feasible schedules for
MPR andMR respectively.

Information that is typically only available at runtime is the execution cost. In this case study all
locations have a consistent configuration cost of 10 ms. This information is gathered in a separate
step, where the task graph along with the computation and communication cost is generated.

3.7.3 Task Graph Generation

To generate the task graph from a program execution, we collect the tuple (i, I, p, os, o f , d) of
tracing data per executed task. Table 3.8 shows the tuples for a trace of a fictional example
application. Each column corresponds with an element from the tuple. Each row corresponds to
one tracing record, i.e. one event during the execution of the fictional case study application. For
example, the task with identifier 3 has two predecessors 1 and 2, was executed on PE p1 during
the interval from 10,160 ms to 10,260 ms and transmitted 75 MB of data.

Table 3.8: Trace data for a fictional example task application

i I p os o f d

1 ∅ p0 10,042 ms 10,142 ms 41 MB
2 {1} p0 10,188 ms 10,288 ms 22 MB
3 {2} p1 10,160 ms 10,260 ms 75 MB
4 {1, 2} p1 10,341 ms 10,441 ms 102 MB
5 {3} p2 10,316 ms 10,416 ms 59 MB
6 {2, 4, 5} p2 10,580 ms 10,680 ms 0

With the application of Algorithm 3.2, the task graph in Figure 3.12 is generated. Although
a (feasible by definition) schedule was observed during the execution, we cannot make any
assumptions about the quality of the schedule. Especially, the lower bound of the makespan is
yet unknown.

To find a lower bound and analyze the application systematically, we generate an optimal
schedule and analyze it below.

3.7.4 Analyzing Schedules

To generate an optimal schedule, the constraint set constructed in Section 3.7.2 is transformed for a
constraint programming language or toolkit. Constraint programming languages or toolkits take
a set of variables and constraints on the variables as an input. They produce a set of assignments
to the variables that fulfill the constraints. Additionally, they may also minimize some cost

60

3.7 Case Study: Two Machine Models

function (while maintaining the fulfillment of constraints). This is the mode of operation that is
used below.

The software used for the case study is OR-Tools [129]. However, the procedure is similar for
other constraint programming languages and toolkits:

1. Define PEs.
2. Define tasks, dependencies and cost as part of the task graph.
3. Define the optimization target. In this case it is the makespan of a schedule.
4. Translate constraints from the previous steps to constraints on the schedule.

The first three steps are the same regardless of the machine model but only dependent on the
application under investigation. Listing 3.2 shows code for the first two steps using the Python
programming language: in line 1, the tasks with labels and cost are defined. The dependencies
– corresponding to the task graph from Figure 3.12 – are defined in line 2 as a simple two-
dimensional array, i.e. dependencies[2] returns the dependencies of task 2 as a list of task
identifiers.

1 tasks = [[1, 100], [2, 100], [3, 100], [4, 100], [5, 100], [6, 100]]
2 dependencies = [[], [1], [1], [1,2], [3], [4,5]]

Listing 3.2: Definition of the task graph and its dependencies.

The information specific for a machine model is defined in Listing 3.3 in terms of PEs, con-
figurations and locations (pe_to_config, config_to_location). Additionally, the task
types (task_to_pes), i.e. P f ,t, are defined for each task. The listing shows the definitions
for machine model MR: pe_to_config specified that p0 and p1 are contained in the same
configuration (0) and p2 is contained in another configuration (1). There is only one location 0, see
config_to_locations). The tasks are assigned to PEs as described in Section 3.7.1, i.e. task 1
and 2 are executable on p0 and so on.

1 pe_to_config = [0, 0, 1]
2 config_to_locations = [[0], [0], [0]]
3 tasks_to_pes = [[0], [0], [1], [1], [2], [2]]

Listing 3.3: Definition of the configurations, locations and task types.

These definitions are the input to a program1 using OR-Tools to identify the schedule. The
program encodes the rules from Tables 3.4, 3.5 and 3.6 and applies them to the input task graph
and machine model.

The output is an optimal schedule and a list of non-optimal but feasible schedules, both of
which can be transformed into a graphic representation for easy inspection.

Figure 3.13 shows the optimal schedules SPR and SR, respectively, for both machine model
MPR (Figure 3.13 (a)) and machine modelMR (Figure 3.13 (b)) for task graph Gc. Both figures
depict the timing of the schedule, the locations, the assignment of tasks to PEs and the assignment
of configurations to locations. On the top of both diagrams in Figure 3.13, the task schedule is
shown with each of the six tasks scheduled to the PEs. The configuration schedule below shows the
instantiations for each location. The color denotes the task (index) in the task schedule (upper)
part and the active configuration in the configuration schedule (lower) part.

Notable is the difference in the schedule length: in this example, the schedule for machine model
MPR reconfigures location s1 (the second slot) with configuration c2 and (after a reconfiguration

1The code of this example is available at https://github.com/pascalj/resch

61

Chapter 3 Reconfiguration-Aware Scheduling

location: 1

location: 0

0 100 200 300 400 500

0
1
2

0
1
2

PE

Task schedule

0
1

0 100 200 300 400 500
time

Lo
ca

ti
on

Configuration schedule

(a) Schedule SPR forMPR

location: 0

0 100 200 300 400 500

0
1
2

PE

Task schedule

0
0 100 200 300 400 500

time

Lo
ca

ti
on Configuration schedule

(b) Schedule SR forMR

Figure 3.13: Optimal schedules generated for Gc (from Figure 3.12)

overhead of 10ms) starts executing task 5 on PE p2. OnMR, the execution of task 4 must finish
before the single location s0 can be configured with configuration c1 that contains PE p2. Thus,
the schedule length of SPR is sl(SPR) = 410 while the schedule length of ScR is sl(SR) = 510.

With the constraint programming technique, it is possible to generate feasible schedules as
well as the optimal one, since the constraint solver can iterate all possible schedules for the given
inputs. We can trivially provide an upper bound on the schedule, so the search space is finite.
There are several issues that can be addressed with further analysis:

• The optimal schedule is only valid for one task graph and one machine model.
• Small changes to the task graph, e.g. its cost, can affect the schedule significantly. Therefore,

the impact of noise in the program execution, inaccuracies and properties that are not
correctly modeled is not quantifiable using solely one optimal schedule.

• Statements about the machine model in general cannot be made.
• Any optimizations we apply to either the machine model or the task graph are affected by

the same limitations as listed above.

62

3.7 Case Study: Two Machine Models

With deductive analysis, we can further investigate any potential for optimization and assess
the quality of the machine model(s) at hand.

3.7.4.1 Statistical Analysis

For a statistical analysis a number of task graphs are required. In this case study, only one task
graph (Gc, Figure 3.13) is available. To get a better picture of the influence of the machine model
on the schedule, we generate similar task graphs by adding noise to the task and communication
costs.

We generate 100 versions of task graph Gc = (V, E, w, c, t) by adding a random sample from a
normal distribution with µ = w(v) and σ = 0.1 ·w(v), i.e. the imbalance is 10%. Optimal schedules
for all 100 task graphs are generated for both machine model MPR and machine model MR
using the constraint programming solution from the previous section.

1.1

1.2

1.3

1.4

1.5

1.6

pr r
model

sp
ee

du
p

Figure 3.14: Speedup of 100 variations of Gc for two machine modelsMPR andMR

With this data, more information can be gained about the two machine models. Figure 3.14
shows the speedup for the 100 executions of both models as a box plot. It shows that machine
model MPR can achieve a higher speedup and more parallelism with partial reconfiguration.
It achieves an average speedup of 1.46 while machine model MR has an average speedup of
1.17. While it is intuitively clear that a system that supports PR will lead to shorter schedules
(everything else being equal), we can now quantify the effect and argue about whether the
increased development time, resource usage and complexity is worth the effort.

Further, it is now possible to examine changes to the system. The following questions are short
examples for issues that might come up during the analysis of a system. A user of our approach
can adapt the machine model or the communication setting accordingly and simulate scheduling
for further insights.

• What is the influence of reconfiguration delay P L
r to the speedup? What if its time changes

relative to the average task execution time? Figure 3.15 (a) depicts the mean schedule length
relative to the configuration overhead for both machine modelMPR and machine model
MR. It is apparent that as the overhead increases to 200% of the average task size, the
difference between the PR and R model decreases.

• What if the reconfiguration overhead was more realistically modeled relative to the changed
area? In contrast, Figure 3.15 (b) shows the behavior under this constraint, everything else
being equal. Clearly machine model MPR performs better than in the former case, even
widening the gap to the performance of machine modelMR.

63

Chapter 3 Reconfiguration-Aware Scheduling

• What if we consider edge scheduling and congestion? The difference is shown in Fig-
ure 3.15 (c). For both models it shows the speedup with and without the usage of edge
scheduling. Clearly, when considering congestion-aware scheduling in this setting, the
speedup is lower. This can be an indication that PEs might be combined, equipped with
more local memory or make use of direct PE-to-PE configuration.

1.0

1.2

1.4

0 50 100 150 200
overhead

sp
ee

du
p Model

pr
r

(a) Speedup of optimal schedules of all graphs
in Gc for two machine models MPR and
MR

1.0

1.2

1.4

0 50 100 150 200
overhead

sp
ee

du
p Model

pr
r

(b) Speedup of optimal schedules of all graphs
in Gc for two machine models MPR and
MR for a range of reconfiguration over-
heads.

1.2

1.4

1.6

With Without
Edge scheduling

sp
ee

du
p

(c) Speedup of optimal schedules of all graphs
in Gc for two machine modelsMPR andMR
for a range of reconfiguration overheads.

Figure 3.15: Analysis of a set of 100 graphs structured as Gc with the cost normally distributed
around 100 with a standard deviation of 10.

Figure 3.15 shows the data for some simulations we performed for the set of task graphs. With
this method it is possible to compare how a system with a certain structure and properties would
perform with the same input workload.

This chapter introduced a methodology to derive a machine model for task scheduling on
FPGAs. From a description of the hardware and the assumptions a scheduling approach makes
about it, a set of constraints is derived. The constraint set is used to generate feasible and optimal
schedules. The machine model and its ability to describe FPGA-based accelerators are utilized in
Chapters 4 and 5 to optimize schedules and the organization of configurations.

Chapter 4 is concerned with the optimization of schedules at runtime. Given a (subset of a)
task graph and a machine model, how can an efficient and feasible schedule be generated in
polynomial time?

64

Chapter 4
Polynomial Time Reconfiguration-Aware
Scheduling

The scheduling of tasks is an NP-complete problem even for homogeneous processors and
ignoring task cost for a bounded number of processors [130]. For heterogeneous processors or
even reconfigurable architectures such as FPGAs, the search space is inherently more complex.
Finding the optimal schedule can be excessively time-consuming, even for relatively small task
graphs.

Hence, even for static scheduling, i.e. without any soft real-time requirement, it can be imprac-
tical to find an optimal solution. Therefore, many approaches rely on algorithms that are not
guaranteed to result in a global optimum, but use heuristics to trade optimality for practicality. A
wide range of approaches exist to perform static scheduling on heterogeneous resources. For an
overview see the literature reviews of Boudet et al. [131], Oh et al. [132] and the list of heuristics
in Sinnen’s work [27, pp. 157–158]. The approaches can be classified into the following categories:

1. Heuristic-based algorithms, which are further divided into two categories:

a) List scheduling: a task in the set of ready tasks (the ready set) is selected according to
some heuristic, assigned a start (or finish time) and a resource to execute on – also
according to some heuristic.

b) Clustering: tasks are grouped into clusters that are to be executed on the same re-
source to minimize communication cost. The clusters are assigned to processors and
subsequently the tasks in each cluster are assigned their start (or finish) time.

2. Guided random search-based algorithms use random choices to navigate the search space,
combining it with information obtained from earlier choices [133].

Heuristic-based algorithms employ a certain strategy to generate solutions that are as near to
the optimum as possible but find solutions in polynomial time. The two sub-categories are based
on the algorithms’ structures. List scheduling algorithms are built around the ready set – a set of
tasks that already have all (recursive) predecessors scheduled and are thus ready to be scheduled.
Tasks from the ready set are selected based on a sorting criterion, for example by giving tasks
with higher cost a higher priority in the scheduling process. In contrast, clustering algorithms
first group tasks by resource, i.e. the allocation is decided first. Subsequently, the start time per
task is selected.

Guided random search-based algorithms directly work on the set of possible schedules instead
of constructing one from scratch. The algorithms select schedules from a randomly generated set.
The selection process is guided by schedules from earlier random sets.

Algorithms in both categories offer a polynomial runtime which allows scheduling, even in
complex scenarios [27, pp. 108 ff.].

65

Chapter 4 Polynomial Time Reconfiguration-Aware Scheduling

In this work we focus on heuristic-based algorithms, since random search-based algorithms
yield good results, but suffer from relatively long runtimes. Topcuoglu et al. describe the
difference in runtime of random search-based scheduling algorithms as an order of magnitude,
compared to heuristic-based algorithms [133]. List scheduling in particular provides a good
compromise between low runtime and good results. Clustering performs worse for a finite set of
processors (which is relevant to us) [133].

List scheduling algorithms exist for homogeneous and heterogeneous systems. The heteroge-
neous versions utilize heuristics that incorporate the differences in computation or communication
cost in their rank functions. We present an extension for the scheduling on FPGAs based on
hardware models that are described in Chapter 3. With the model as a starting point a compatible
version of a well-known list scheduling algorithm is introduced.

Based on our previous work [33], we implement two scheduling algorithms with heuristics.
For a given problem size, both returned a (local) optimum in under 30 ms. The same problem fed
into a constraint programming solver took more than 10 h to find a solution with an equal cost.

The remainder of this chapter is structured as follows:

1. List scheduling algorithms for heterogeneous machines in general are introduced in Section 4.1.
Variants of them are typically similar apart from minor details to accommodate specific use
cases.

2. Heterogeneous Earliest Finish Time (HEFT), a list scheduling algorithm for heterogeneous
systems, is described in Section 4.2. The algorithm is well-known and suitable for heteroge-
neous systems with communication costs.

3. Our new HEFT-based list scheduling algorithm for reconfigurable computing, Reconfigurable
Earliest Finish Time (REFT), is introduced in Section 4.3. The section explores in depth the
peculiarities of task scheduling with a list scheduling algorithm.

4.1 List Scheduling

List scheduling is a popular heuristic-based algorithm class. It describes a range of algorithms
that follow the same two-phase structure:

1. Rank all nodes of the task graph in a sorted list L according to a priority scheme and the
precedence relation.

This ensures that all nodes scheduled in the second phase are sorted, such that all precedence
constraints are fulfilled. This means that all predecessors pred(v) are guaranteed to appear
before task v in L.

2. Map each node to a processor and schedule it.

The mapping and scheduling apply some form of heuristic, for example the one of Earliest
Finish Time (EFT) or as soon as possible (ASAP) techniques. Clearly, both mapping and
scheduling, must take the constraints into account to produce a valid schedule.

Algorithm 4.1 shows the general structure of list scheduling algorithms with their two phases.
In the first phase (lines 1–3) the tasks V are sorted into a list L by some ranking or sorting function
Rank. In the second phase (lines 4–9) a processor is assigned for each task and a start time on
this processor is scheduled for that task. This is repeated for all tasks in the sorted list L and in
the end the allocation and start times are returned as the schedule.

66

4.2 Heterogeneous Earliest Finish Time

List scheduling algorithms generally also support online/dynamic scheduling, i.e. constructing
a schedule as new tasks arrive. In that case, the first phase is skipped, and the second phase
is executed for each newly arriving task. This makes this class of algorithms applicable for
scheduling at the runtime level as well. However, that is not investigated further here.

Input: Task graph G = (V, C, w, c)
Result: Schedule S

1begin Phase 1: rank all nodes according to precedence constraints and priority
2L← Rank (V)
3end
4begin Phase 2: map and schedule all nodes in the sorted list L
5foreach v ∈ L do
6proc(v)← Allocate (v)
7ts(v)← Schedule (v, proc(v))
8end
9end

10return (ts, proc)

Algorithm 4.1: Generating a schedule S with list scheduling after [27, p. 109]

Major effects on the resulting schedule are the priority scheme, the mapping and scheduling
strategies:

1. The priority scheme sorts tasks into a list. Calculating the priority of a node affects the sorting
of the list.

2. The mapping strategy assigns processors to tasks. Selecting the processor for a node affects
the scheduling of the rest of the ready set.

3. The scheduling strategy assigns start times to tasks. The point in time at which the task is
planned to execute affects the schedule directly.

For each of these components of a list scheduling algorithm, many alternatives and combina-
tions have been described in the literature [27, p. 117].

Originally, list scheduling was introduced for homogeneous systems where all processors have
the same capability such that each task has the same cost on all processors [134]. Since we are
dealing with heterogeneous processors – PEs in our case – a look into a variant of list scheduling
supporting such architectures is warranted.

4.2 Heterogeneous Earliest Finish Time

A simple and well-known implementation of list scheduling for heterogeneous machines is the
Heterogeneous Earliest Finish Time (HEFT) algorithm by Topcuoglu et al. [133]. Being a list
scheduling algorithm, it has the same structure as Algorithm 4.1. Its two adjustments concern the
ranking of tasks in phase one and the allocation in phase two of the algorithm:

1. The upward rank is used as a ranking function.
2. The EFT is used as a heuristic for the allocation.

In the first phase, tasks are ranked by their upward rank, which is defined recursively. It
consists of its average cost on all processors and the maximum of its successors’ upward rank in
addition to the respective communication cost.

67

Chapter 4 Polynomial Time Reconfiguration-Aware Scheduling

Definition 30 (Upward rank) Let G = (V, E, w, c, t) be a task graph and task vi ∈ V, then the upward
rank ranku(vi) of task vi is given by

ranku(vi) = wi + max
vj∈succ(vi)

{ci,j + ranku(vj)}

The functions w and c represent the average computation cost over all processors and the average
communication cost over all processor-pairs, respectively.

wi =
∑p∈P w(i, p)
|P| and (4.1)

cij =
∑p1,p2∈P c(i, j, p1, p2)

|P|2 (4.2)

In the second phase, a processor is selected for the tasks. This is done with the EFT strategy.
The function EFT(S p, v) returns the processor that minimizes v’s finish time t f (v). Given a partial
schedule S p (where not all tasks have been scheduled yet) and a task v:

EFT(S p, v) = arg min
p∈P

t f (v, p) (4.3)

This strategy has a polynomial O(|E| × |P|) complexity and typically yields good results on
heterogeneous systems [135].

However, HEFT is not sufficient for our purposes of scheduling tasks on FPGA-based accelera-
tors. The unique characteristics of FPGAs in particular and reconfigurability in general are not
considered by the algorithm. Therefore, we present our extension to HEFT for reconfigurable
systems utilizing the definitions from Chapter 3. The following section explains the motivation
for our new algorithm and defines it.

4.3 Reconfigurable Earliest Finish Time

The flexibility and constraints of FPGAs must be reflected by the list scheduling algorithm(s).
Especially the constraints the hardware imposes on the schedule must be taken into account to
generate feasible schedules. For example, if the reconfiguration imposes an overhead, this is
typically not considered by scheduling algorithms. In particular, the following properties should
be considered by a scheduling algorithm for FPGAs:

• Conflict (PP
c): certain PEs cannot execute simultaneously with a conflicting set of PEs.

• Reconfiguration overhead (P L
r): the cost of making a PE available is not supported.

• Type (PP
t): the influence of the hard-coded function in a PE is not supported.

This is the motivation behind our reconfiguration-aware list scheduling approach: Reconfig-
urable Earliest Finish Time (REFT) is our list scheduling algorithm with support for reconfigurable
hardware. It supports all machine models as described in Chapter 3.

The structure of the REFT algorithm is similar to HEFT – or any list scheduling algorithm –
but it explicitly supports:

• Locations: the communication cost is based on locations, rather than processors or PEs.

68

4.3 Reconfigurable Earliest Finish Time

• Configurations and reconfigurability: the notion of instances ensures conflict-free operation.
• Reconfiguration overhead: the cost of reconfiguration is handled in the schedule.

REFT uses three strategies to generate feasible and preferably optimal schedules: instances, a
new ranking function and a reconfiguration-aware EFT function. These strategies and the REFT
algorithm are described in the following sections:

1. Invalid overlaps in the schedules are prevented in REFT as described in Section 4.3.1.
2. A ranking function specifically handling the characteristics of reconfigurable systems is

described in Section 4.3.2.
3. The REFT algorithm itself is detailed in Section 4.3.4.
4. The communication congestion is handled by a second variant of REFT which is presented in

Section 4.3.5.
5. The complexity of both REFT variants is discussed in Section 4.3.6 .

4.3.1 Using Instances to Avoid Undesirable Overlaps

To support locations and the allocation of configurations, REFT relies on instances from Defini-
tion 16. Every allocated task requires an active instance, because some PE must execute it and
hence a configuration must be instantiated at some location. When a task is allocated and/or the
EFT is evaluated for a PE p at location l, REFT performs the following steps:

1. Set the disjoint interval Ap,l = [0, ∞).
2. For each scheduled instance I = (ci, l, i), remove the interval i plus optional reconfiguration

overhead from interval Ap,l if the configuration ci is not equal to conf(p).
3. For each scheduled task, remove its interval from Ap,l if the PE is p.

The remaining disjoint interval Ap,l represents all available slots for the execution of tasks,
since it is ensured that PE p is available and either configuration conf(p) or no configuration is
instantiated. This method avoids overlaps of configurations on locations and overlaps of tasks on
PEs but allows reconfigurations and ensures that the schedule is feasible, since the properties of
the hardware model are considered.

4.3.2 Ranking

Recall that HEFT uses the upward rank ranku to sort the tasks into a priority list. A high upward
rank indicates that the finish time of a task has a significant influence on the total schedule. More
specifically, the entry task ve has the highest upwards rank and all (recursive) successors have a
rank of at most ranku(ve). The tasks on the critical path – of which ve is a part by definition – all
have the highest upper rank amongst all their siblings. In other words: the upper rank describes
the minimum distance between the start time of a task and the makespan of a schedule, i.e. its
length.

Since the critical path provides a lower bound on the schedule length, sorting tasks by the
upper rank gives priority to the scheduling of those tasks. However, ranku does not take into
account any artifacts of reconfigurations and the machine model. A set of new ranking functions
are introduced to accommodate for these characteristics.

The pressure is defined to represent the weighted cost of instantiating the resources to execute a
task vb after a task va was executed previously. Since this cost is calculated before the resource
allocation is done, it can only be a heuristic.

69

Chapter 4 Polynomial Time Reconfiguration-Aware Scheduling

Configuration Location Reconfiguration

same same unlikely
different possible

different same necessary
different possible

Table 4.1: Reconfiguration possibilities

Table 4.1 shows the four possible scenarios – one per line – that can occur when scheduling two
adjacent tasks. The first column denotes whether both tasks are executed on a PE that is contained
in the same or a different configuration. The second column describes whether the location at
which both tasks are executed is the same or a different one. The third column describes whether
a reconfiguration is unlikely, possible or necessary in this scenario. As depicted in row three, for
example, two tasks are executed in the same location, however have a different configuration
on PEs, therefore a reconfiguration must be performed, since the configuration containing the
second PE must be instantiated. Or alternatively, even if both tasks share the same location and
the same configuration as in row one of Table 4.1, a third task could be scheduled between them
on the location using a different configuration, which would result in two reconfigurations. If the
location is not the same, i.e. the tasks are executed on different locations, we cannot make any
assumptions about the reconfiguration behavior at this point.

To incorporate this dynamic behavior into the ranking function, we introduce the reconfigu-
ration pressure between two tasks. For two adjacent tasks va ∈ V and vb ∈ succ(va), pressure is
defined as:

pressure(va, vb) =
∑(la,lb,pa,pb)∈Pa×Pb

0|la−lb| · (1− 0|conf(pa)−conf(pb)|) · P L
c (la)

|Pa| · |Pb| · |La| · |Lb|
(4.4)

For all possible combinations of locations and configurations for the two given tasks, it evaluates
the weighted cost of reconfiguration. This is an optimistic approach in two regards:

1. A scenario with an equal location and an equal configuration will add 0 cost.
2. A scenario where only the location differs will add 0 cost.

The ranking function used in REFT is the upper rank with pressure, ranku,p:

ranku,p(vi) = wi + max
vj∈succ(vi)

{ci,j + pressure(vi, vj) + ranku(vj)}. (4.5)

This gives those tasks a higher rank that are more likely to introduce a reconfiguration overhead
and thus would increase the makespan, everything else being equal. The rationale behind this
has to do with the EFT that REFT selects for each task. If a task vr is more likely to introduce
reconfiguration overhead than task v, giving vr a higher priority will allow REFT to schedule
it before task v. Thus, REFT may select an earlier EFT (and start time) for task vr. When v is
scheduled later REFT might find an EFT that is later than if it had been scheduled before vr, but
the maximum EFT of either of the tasks is lower, since reconfiguration may have been avoided.
Basically, the ranking gives REFT additional information about a task’s possible negative effect
on the schedule length.

70

4.3 Reconfigurable Earliest Finish Time

4.3.3 Determining the EFT

Finding the EFT for a given task and a given partial schedule is deterministic and possible in
polynomial time. Thus, it does not need to be optimized for performance, but for conformance
with the machine model. In particular, the EFT must respect the properties like reconfiguration
overhead and the communication overhead that depend on the location.

To identify the EFT for a given task from task graph G = (V, E, w, c, t) for machine model
M = (C, L,P), REFT evaluates the lowest consecutive interval that has at least w(v, p) length for
a task v ∈ V, the PE p ∈ P and a location l ∈ L:

EFT(v, p, l) = max
{
[a, b) | b− a = w(v, p), a ≥ td(v), [a, b) ⊆ Ap,l

}
and (4.6)

EFT(v, p) = min
l∈Lv

EFT(v, p, l). (4.7)

Different from HEFT’s evaluation of EFT is the usage of the intervals Ap,l that each hold an
interval denoting whether PE p on location l is free, i.e. able to execute work.

4.3.4 The REFT Algorithm

The REFT algorithm is a list scheduling algorithm with reconfiguration-aware enhancements and
adapts HEFT to the characteristics of FPGAs-based accelerators as described above. Algorithm 4.2
shows the complete algorithm. It takes a task graph G = (V, E, w, c, t) and a machine model
M = (A, T ,P) as input and produces a feasible schedule S = (ts, proc) as output. In the first
step, in lines 1–3, the tasks V are ranked, similar to HEFT. This ranking is done using the upper
rank with pressure ranku,p to reflect additional cost for reconfigurations. In the second phase, in
lines 4–13, it iterates over the free set and selects the processor that minimizes the EFT using
the modifications described above for the highest rated task (line 10). When a task is scheduled,
REFT keeps track of the allocation for each configuration-location combination (line 11).

Recall that we defined several communication settings in Section 3.4.5. REFT, that is Algo-
rithm 4.2, outputs schedules that are valid with communication. This means that communication is
modeled, but congestion is not.

4.3.5 REFT with Communication Congestion

Algorithm 4.2 does not model the congestion of the communication – in fact it does not consider a
possible topology at all. The communication itself is represented through the cost function c and
the edge finish time. A task can only start executing once its data is ready, which is encoded in its
EFT. As described in Section 3.2.2, merely attributing a cost to an edge in the task graph may not
represent the real world behavior accurately, since it leaves out the topology of the underlying
hardware and ignores contention on communication links.

Three changes are made to REFT to introduce congestion-awareness:

1. A topology is an additional input to the algorithm.
2. All routes of the communicating PEs are computed.
3. The EFT function considers edge scheduling.

The congestion-aware REFT algorithm consists of three phases rather than two, which are
described separately below due to the increased complexity.

71

Chapter 4 Polynomial Time Reconfiguration-Aware Scheduling

Input: Task graph G = (V, C, w, c, t)
Machine modelM = (C, L,P)

Result: Schedule S = (ts, proc, loc)
/* (L,R) is an ordered set with the relation
R = {(va, vb) ∈ V ×V : ranku,p(va) ≤ ranku,p(vb)}) */

1begin Phase 1: rank all nodes according to precedence constraints and priority
2L← V
3end
4begin Phase 2: find the EFT for all tasks and schedule them
5foreach task v ∈ L do
6p← arg minp∈Pv

EFT(v, p)
7l ← arg minl∈Lv

EFT(v, proc(v), l)
8proc(v)← p
9loc(v)← l

10ts(v)← EFT(v, proc(v), loc(v))− w(v, p)
/* Remove the interval from the new instance from Ap,l */

11Ap,l ← Ap,l \
[
ts(v), t f (v)

]
12end
13end
14return The schedule S = (ts, proc, loc)

Algorithm 4.2: REFT

1. Generate routes between all pairs of PEs.
2. Rank all nodes of the task graph just as before in Algorithm 4.2.
3. Map each node to a processor, each edge to links along its corresponding route and schedule

both using the EFT heuristic.

4.3.5.1 Phase 1 of REFT

The newly introduced first phase uses edge scheduling as described in Section 3.4.5.3 to make
REFT congestion-aware. First, a topology is needed to define the communication paths. The
topology graph T = (N, O, D, b) is an input to the extended REFT algorithm. If none is
explicitly provided, we assume the default topology (see Section 3.2.2) that models an FPGA-
based accelerator with a global memory. In the phase, a set of routes for all pairs of PEs within
the topology is computed. Any fitting path finding algorithm can be used for this purpose.
For example, Dijsktra’s well-known algorithm to find the shortest path between two points in a
graph with (positively) weighted edges [136] is a good fit. The routes are static throughout the
scheduling, so they can be computed once upfront. Additionally, for any given default topology,
the routes can be specified without invoking a path finding algorithm. For any two PEs ps and
pd ∈ O with loc(ps) = ls and loc(pd) = ld, the route R from ps to pd is

R =

{
⟨(ps, rs), (rs, l), (l, ts), (ts, pd)⟩ if loc(ps) = loc(pd),
⟨(ps, rs), (rs, ls), (ls, ld), (ld, td), (td, pd)⟩ otherwise

. (4.8)

72

4.3 Reconfigurable Earliest Finish Time

4.3.5.2 Phase 2 of REFT

The second phase, ranking, is the same as the first phase of Algorithm 4.2.

4.3.5.3 Phase 3 of REFT

In the third phase we follow a similar strategy as instance tracking to adjust the EFT, i.e. to keep
track of the active instantiation and their PEs for a schedule. Algorithm 4.2 uses the EFT to insert
tasks in the earliest possible idle gap of a PE. It tracks the availability (and conflicts) of PEs
and configurations with the interval Ap,l . A new set of intervals Bd is introduced. It tracks the
occupancy of link d ∈ D by edges in the task graph, similar to the instance tracking as described
in Section 4.3.1. If an edge e ∈ E of the task graph G = (V, E, w, c, t) is to be scheduled in the link
d ∈ D, REFT performs the following three steps:

1. Initialize Bd = [0, ∞) once for each d ∈ D.
2. Find the sub-interval [a, b) in Bd such that b− a ≤ ζ(e, d) holds and that minimizes b.
3. Remove the interval [a, b) =

[
ts(e, d), t f (e, d)

)
from Bd.

This change to REFT affects the EFT for all tasks. To create a congestion-aware schedule, the
algorithm must especially take constraints 5 and 6 (Link and Causality) into account. Constraint 5
is satisfied by the occupancy interval Bd as described above. For constraint 6 it is sufficient
to redefine the edge finish time t f accordingly. Let G = (V, E, w, c, t) be a task graph, T =
(N, O, D, b) a topology, an edge eij = (vi, vj) ∈ E, PEs ps, pd ∈ P and route R = ⟨. . . , dl⟩ from
ps to pd, then for a congestion-aware REFT version, the edge finish time is either equal to the
task’s finish time t f (vi, ps) if the communication is local or equal to the finish time on the last
link otherwise:

t f (eij, ls, ld) =

{
t f (vi, ps) if ps = pd,
t f (eij, dl) otherwise

. (4.9)

Algorithm 4.3 shows the REFT variant generating congestion-aware schedules according to
Definition 27. In the new first phase (lines 1–3), routes between all PE nodes in T are statically
computed. The second phase (lines 4–6) is identical and in the third phase (lines 7–22), the
definition of t f from above ensures that the EFTs of all tasks are adjusted to account for congestion,
because it factors in the link occupancy. The occupancy is tracked with the intervals Bd, that are
set accordingly at the end of the algorithm (lines 13, 18).

Figure 4.1 shows output of congestion-aware REFT for a random task graph G = (V, E, w, c, t)
with |V| = 25 and |E| = 15 for a machine modelM generated with the method as described in
Section 6.1.1. The figure shows three aspects of the same schedule from top to bottom:

• A task schedule
• An edge schedule
• A configuration schedule

The task schedule shows the occupancy of three PEs (0, 1, 2) on two locations (0 and 1) over
time. The colored bars in the task schedule denote whether a task is executing on a PE. The color
of the bars serves the purpose of distinguishability of tasks.

73

Chapter 4 Polynomial Time Reconfiguration-Aware Scheduling

Input: Task graph G = (V, E, w, c, t)
Machine modelM = (A, T ,P)
Routing algorithm r : P× P→ P(D) for T

Result: Schedule S = (ts, proc, loc)
/* (L,R) is an ordered set with the relation
R = {(va, vb) ∈ V ×V : ranku,p(va) ≤ ranku,p(vb)}) */

1begin Phase 1: for all pairs of PEs ps, pd ∈ O, generate a route
2Rsd ← r(ps, pd)
3end
4begin Phase 2: rank all nodes according to precedence constraints and priority
5L← V
6end
7begin Phase 3: find the EFT for all tasks
8foreach task vj ∈ L do
9p← arg minp∈Pv

EFT(v, p)
10l ← arg minl∈Lv

EFT(v, proc(v), l)
11proc(v)← p
12loc(v)← l
13ts(v)← EFT(v, proc(v), loc(v))− w(v, p)

/* Remove the interval from the new instance from Ap,l */

14Ap,l ← Ap,l \
[
ts(v), t f (v)

)
15foreach task vi ∈ pred(vj) do
16foreach link d ∈ Rij do
17e← (vi, vj)

18Bd ← Bd \
[
ts(e, d), t f (e, d)

)
19end
20end
21end
22end
23return The schedule S = (ts, proc, loc)

Algorithm 4.3: The REFT algorithm variant to generate congestion-aware schedules

The edge schedule shows the occupancy of 19 links of the topology over time. The colored
bars show whether an edge is being communicated on a given link at any given time. The edges
are color-coded, i.e. each edge in the task graph has its own color.

The configuration schedule shows the occupancy of two locations over time, i.e. when a
configuration is instantiated on a location. This corresponds to the combined occupancy shown
in the task schedule. It shows the active configuration for both locations, encoded by color. Since
we only used one configuration for brevity, the plot merely shows the active intervals for the
configurations.

The machine model M used in Figure 4.1 has the number of locations |L| = 2 and one
configuration c ∈ C with 3 PEs, i.e. |c| = 3. For all v ∈ V the cost is uniformly w(v, p) = 100,
while all edges e ∈ E have the cost c(e) = 10. The configuration schedule shows REFT using both
locations and location 1 having an active instance up until time 420. The uniform task cost of 100
creates phases of congestion on the communication links. For example, at around 100 the output

74

4.3 Reconfigurable Earliest Finish Time

data from the first tasks is transferred to their respective successors. This congestion results in
gaps in the task schedule, clearly visible for example at time 100 on PE 2 at location 0.

4.3.6 Complexity of REFT

Recall that – in contrast to the constraint programming solution presented in Chapter 3 – both
REFT variants are algorithms of polynomial time complexity. Nonetheless, it is important to
understand the runtime behavior of the algorithms, especially with regard to the changes to
HEFT. The asymptotic complexity of both algorithms is described below.

4.3.6.1 Complexity of Algorithm 4.2

The asymptotic complexity of REFT as shown in Algorithm 4.2 for creating a schedule from a
task graph G = (V, E, w, c, t) and a machine modelM = (A, T ,P) is deduced as follows:

• For each task, the upper rank with pressure ranku,p must be computed. Since this must only
be computed once per task, the complexity for this step is O(V + E).

• The original HEFT algorithm has a complexity of O(E× P) (or O(V2× P) for a dense graph
with E ∝ V2) [133].

• REFT introduces locations, so the complexity grows proportional to the number of locations:
O(E× P× L).

This makes the total complexity of the algorithm O((V + E) + E× P× L), or O(V + E× P× L).
The number of PEs and locations are additional factors compared to HEFT’s complexity. In
practice, these factors are not expected to have a large impact, since neither the number of PEs
|P| nor the number of locations |L| will grow considerably (especially compared to the number
of tasks |V| and edges |E|). Therefore, the overall impact of our changes to HEFT is expected to
be small.

4.3.6.2 Complexity of Algorithm 4.3

The asymptotic complexity of REFT with support for congestion, as shown in Algorithm 4.3, is
deduced as follows:

• The complexity of the first phase depends on the complexity of the routing algorithm.
Suppose algorithm r has the complexity K, then the first phase is an O(O× K) operation.

• Scheduling the communication graphs at the end of phase 3 is an additional O(V × N)
operation.

This makes the additional complexity O(O× K + V × N) = O(P× K + V × N), so in total the
algorithm requires O(P× K + V + E× P× L + P× K + V × N) = O(V × N + P× (E× L + K)).
Again, P, L, and N are dependent on the machine model and the topology alone. Thus, they are
typically small and static and could arguably be removed from the asymptotic consideration.

In essence, both algorithms do increase the complexity compared to HEFT, but are still linear
with respect to the number of tasks and edges.

This chapter introduced list scheduling, a well-known class of polynomial time task scheduling
algorithm. An established list scheduling algorithm for heterogeneous architectures, HEFT,
and its building blocks were detailed. Building on this existing algorithm, we presented our
new reconfiguration-aware list scheduling algorithm, REFT, along with a variant that supports

75

Chapter 4 Polynomial Time Reconfiguration-Aware Scheduling

location: 1

location: 0

0 200 400 600

0
1
2

0
1
2

PE

Task schedule

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0 200 400 600

Li
nk

Edge schedule

0

1

0 200 400 600
time

Lo
ca

ti
on

Configuration schedule

Figure 4.1: A task schedule and edge schedule for a randomly generated graph with 25 tasks and
15 edges

76

4.3 Reconfigurable Earliest Finish Time

communication congestion. Our motivation and the extensions to HEFT as well as the asymptotic
complexity are described in detail.

Chapter 5 is concerned with the optimization of PEs and their organization into configurations.
Given a task graph and a machine model, how can PEs be arranged into configurations? Where
should computational resources be allocated to optimize the schedules? To answer these questions,
REFT is used as a part of an optimization procedure to quickly generate a large range of schedules.

77

Chapter 5
Design Space Exploration

Chapters 3 and 4 are concerned with finding the optimal schedule for a given machine model
and a given task graph. In conventional computing scenarios, the potential for optimization is
depleted after an optimal schedule is found. The hardware is static and already optimized for
some use case and the task graph can only be changed by a different algorithm – something that
possibly requires manual intervention.

5.1 Optimizing Reconfigurable Computing

In reconfigurable computing there exists another dimension that can be optimized: the equivalent
of the hardware itself in the form of configurations. Although the input HLS code describes the
semantic of the program, compilers are free to generate any configuration that represents the
program’s semantic. We model the hardware as a machine model (see Chapter 3) and apply three
strategies for the optimization:

1. IntraCO: changes contained within a configuration to affect the behavior of the circuits
2. InterCO: migrations between configurations
3. CO: the combination of both, IntraCO and InterCO

IntraCO will reserve more or different resources for some circuit in order to speed up a
computation, make it more energy efficient or allow for different schedules. Listing 5.1 shows
an OpenCL code that trivially uses such optimizations. The code shows a vector addition of
two double precision floating point numbers. It can be translated to a configuration for an
FPGA-based accelerator. Line 2 sets the unroll factor N. In conventional computing following the
Von Neumann model, unrolling a loop will reduce the overall overhead of the loop condition
by executing more instructions per iteration. On an FPGA, unrolling a loop will typically allow
for a deeper pipeline, i.e. to process more elements of the loop per step, and could yield better
performance. However, it will also require more resources, could limit the maximum frequency of
the chip and even have no benefit at all, because of stalled loop iterations or memory bandwidth
limits.

1 __kernel void add(__global double *a, __global double *b, __global
↪→ double *result, int n) {

2 #pragma unroll(N)
3 for (int i = 0; i < n; i++)
4 result[i] = a[i] + b[i];
5 }

Listing 5.1: OpenCL code to add two vectors of size n. The loop is unrolled by a factor of N.

79

Chapter 5 Design Space Exploration

InterCOs describe the migration of PEs to other configurations. As established in Chapter 3,
scheduling approaches for reconfigurable hardware assume a one-to-one mapping of PEs to
configurations. While this is not unreasonable, it suffers from the described drawbacks of large
development overhead and limited portability.

Recent high-level parallel programming environments like Intel OneAPI [126] or implementa-
tions of the OpenMP target directive [137] support offloading to FPGA-based accelerators. This
continued shift towards higher level of abstractions is convenient for users, but it also transfers
some responsibilities from the user to the runtime and compiler(s). Among others, the tools must
organize the accelerated functions as PEs within configurations. For simple cases it is possible to
combine all PEs of a program into one configuration to avoid reconfiguration. In Section 5.2.1 we
show that in highly optimized codes, such as HPC programs, the organization of PEs can have
an effect on the program’s performance, due to reconfiguration overhead and congestion. We see
potential to aid the compiler in two categories:

• IntraCOs may balance the resources of PEs inside a configuration according to some cost
function.

• InterCOs may automatically identify beneficial combinations of PEs that perform better
inside a single configuration.

Grouping and weighing the resources of PEs to achieve a better execution is the goal, but the
search space is large. Even just considering grouping the implementation of n functions into an
arbitrary number of configurations c ≤ n results in cn combinations1 of arrangements. Identifying
the right combinations and – if possible – including some InterCOs in the search space is our
goal.

To answer RQ 3 we are using the notion of machine models and definitions from Chapter 3.
Once the underlying hardware is described in terms of a machine model and one or more task
graphs are available, can we recommend inter- and intra- configuration optimization to aid
authors of software and automatic tools alike? In essence, the goal is to find a modified machine
model, given an existing one for a set of task graphs.

The remainder of this chapter describes our process to achieve that goal in five subsections:

• The process to modify machine models in general and to evaluate the effects on schedules is
discussed in Section 5.2. Accurately modeling the behavior of a machine model after it has
been changed, for example by adding PEs, can be challenging. The section highlights the
problems with resource usage modeling and our approach to it.

• A GA automates the optimization of machine models and explores the search space of possible
machine models in Section 5.3. The GA’s purpose is to automatically generate new –
potentially better – machine models using the knowledge from Section 5.2 and then evaluate
their performance compared to other machine models. The structure and functionality of
GAs was introduced in Section 2.4, here we describe the details of our adaptation of the
GA to machine model optimization.

• Our three optimizations InterCO, IntraCO and CO are presented in Sections 5.4, 5.5 and 5.6,
respectively.

1One can think of the problem as coloring n shapes in at most c colors.

80

5.2 Applying Optimizations by Modifying the Machine Model

5.2 Applying Optimizations by Modifying the Machine Model

The purpose of optimizations such as IntraCO is to optimize the scheduling and therefore to lead
to a better application runtime. However, IntraCOs have trade-offs: they introduce changes to
the hardware model of which the effects are difficult to predict accurately. The reasons are the
following:

• Increasing the resource usage of a PE does not have to result in better performance.
• Changing the resources or increasing the resources for one function in a configuration may

influence other functions in the same configuration negatively.
• If a task only has a short run time or is not in the critical path, any optimizations of the PE

will not lead to a faster execution.

The process of predicting the performance of changes in the hardware model is also called
performance modeling. Suppose we know how a program behaves on a fixed hardware, either
directly through tracing or indirectly through a task graph. If this hardware is changed, the
effects must be modeled or evaluated to assess whether the modified version performs better,
e.g. generating shorter makespans. An evaluation of the hardware for every change is time-
consuming for FPGAs, since the compilation can take hours per configuration. Hence, we resort
to (performance) modeling.

5.2.1 Performance Modeling

There have been attempts to project the performance of IntraCO in a HLS environment, especially
with the goal of DSE. Since the synthesis process to the bitstream is extremely time-consuming,
especially for a large search space, the performance of an applied optimization must be estimated
and typically cannot be measured effectively. Additional to the uncertainties of predicting the
performance of executing tasks on a given hardware, FPGAs suffer from the effects of congestion.
As more resources are allocated to optimize the cost of executing some tasks, the performance
may degrade. This congestion can be divided into two categories, static and dynamic:

• Dynamic congestion affects the memory bandwidth and other resources at runtime.
• Static congestion affects the chip resources like LUTs, LBs, DSPs and the interconnect.

For an accurate prediction of the performance, both categories must be considered. Together,
they result in non-linear behavior when optimizations are applied.

5.2.1.1 Static and Dynamic Congestion

The content of this section is based on our paper: P. Jungblut and D. Kranzlmüller,
“Dynamic spatial multiplexing on FPGAs with OpenCL,” in International Symposium on
Applied Reconfigurable Computing, Rennes, France: Springer, 2021, pp. 265–274.

Dynamic congestion is handled by the scheduling algorithm, since the congestion appears
at runtime. An example of an approach to handling dynamic congestion is described in Sec-
tion 3.4.5.3, specifically the derivation of scheduling constraints by applying edge scheduling.

Static congestion, however, is determined by the resource usage and it can be observed even
when only one PE is executing. The mere presence of other PEs and their resource usage have a
negative effect on the executing PE.

81

Chapter 5 Design Space Exploration

Figure 5.1 shows the effect of resource utilization on an Intel Stratix 10 DX accelerator card. It
shows the performance in Floating Point Operations per Second (FLOPS) for two PEs combined
in one configuration on the y-axis for a matrix of given size on the x-axis. Both PEs implementing
the same OpenCL kernel (a Double Precision General Matrix Multiplication (DGEMM)). PE 1 is
given more chip resources using the Single Instruction, Multiple Data (SIMD) width attribute
((num_simd_work_items(n))). The plot marked 1× does not use SIMD, while the SIMD
width of PE 1 is 2 in the middle and 4 on the right. Notably, the plot also shows that the other
PE 2 is affected by that allocation, although the input code was not changed at all. Where PE 2
can generate 38 GFLOPS in the left plot, its maximum performance drops to 25 GFLOPS in the
right plot. The performance of these PEs was measured sequentially, i.e. the effect can be purely
explained by the static and not by dynamic congestion.

1× 2× 4×

12
8

51
2

20
48

81
92 12

8
51

2
20

48
81

92 12
8

51
2

20
48

81
92

0

25 G

50 G

75 G

100 G

Problem size

FL
O

PS

PE
PE 1
PE 2

Figure 5.1: Effect of resource usage on the performance of PEs

The roofline model and roofline plots [138] are a straightforward way to assess the potential
performance of a given code on a given processor or accelerator. The Computational Intensity (CI)
of a code is the number of operations performed per loaded byte. In the roofline model, the
maximum operations per second for a given CI is compared against the actual achieved operations
per second of a code. The x-axis of a roofline plot as depicted in Figure 5.2 (a) shows the CI and
the y-axis shows operations per second. A line depicting the hardware’s maximum operations per
second increases from 0 to a maximum that is reached when the maximum number of operations
per second equals the processors peak operations per second and it is no longer bound be the
memory bandwidth. Increasing the CI further will not allow a better maximum performance.
Such a maximum can be seen in Figure 5.2 (a) as a red line. The performance of two codes 1 and
2 is depicted as red dots. Code 1 on the left is at the maximum operations per second. To allow
more performance, the CI of the code would have to be increased, for example by changing the
algorithm or by changing to data types requiring less data. Code 2 on the other hand has the
same number of operations per second but has a higher CI. The difference between the “roofline”
and the code’s data point can be seen as potential for optimization, since it has not reached the
theoretical limit of the hardware.

Da Silva et al. [139] present an extension to the roofline model for FPGAs. Increasing the CI
is part of the manual or automatic optimization that happens in the development process or
during the compilation phase, respectively. The extended roofline for HLS takes into account
the scaling factor (SC). Due to the factor, it is not possible to add arbitrarily many PEs or
optimizations to the design. Figure 5.2 shows a comparison between the conventional roofline
model in Figure 5.2 (a) on the left and one that has been adjusted for FPGAs in Figure 5.2 (b) on
the right. Both graphics show two codes 1 and 2 with different CI. Code/PE 1 (left) with a lower
CI is I/O-bound and a more optimized version (of the PE) with a higher CI was introduced as

82

5.2 Applying Optimizations by Modifying the Machine Model

code/PE 2. In Figure 5.2 (a), code 2 on the right is below the roofline and therefore has potential
left for optimization, since it is not bound by the limits of the hardware. A software engineer
can be tasked with detailed analysis to determine why the code does not reach the maximum
performance.

In Figure 5.2 (b) PE 2 has fewer operations per second, although it has a higher CI. This
is due to the effect of the resources that are consumed by the PE (and other PEs on the same
configuration), to increase the CI.

Potential
for optimization

I/O-bound

Computational intensity

O
pe

ra
ti

on
s/

s

1 2

(a) Traditional roofline model [138]

Computational intensity

O
pe

ra
ti

on
s/

s

Effect of
scarsity1 2

(b) Da Silva roofline model [139]

Figure 5.2: Comparison of the traditional roofline model and the model proposed by Da Silva
with resource congestion

The experimental evaluation of Da Silva et al. [139] is not conclusive, since it shows the effect of
congestion only for some cases (including no counterexample). However, the underlying principle
of congestion can easily be observed, as we did in our paper [34]. The evaluation by Nguyen et
al. shows a similar picture (Fig. 24) where the saturation can be seen for more optimized kernels
and higher CI [77].

Static congestion is one reason why predicting the outcome of an optimization of a ma-
chine model is particularly difficult. Even without considering the congestion, predicting the
performance of optimizations in PEs is not an easy task.

5.2.1.2 Performance of Optimized PEs

Figure 5.3 shows a series of measurements performed by Wang et al. by applying a range of
optimizations on a PE [140]. The optimizations are:

• CUx: cloning a PE x times
• ULx_ULy: loop unrolling with a factor of x for the inner and y for the outer loop, respec-

tively.
• SM: local memory optimization (caching)
• MC: memory address optimization

Combinations of these are denoted with “A_B_. . . ”. A few observations can be made by
comparing the predictions of the authors’ model with the measurements:

1. Not every optimization scales linearly. For example, CU16 does not give a 16-fold speedup
over Baseline, although the PE was cloned 16 times. Similarly, UL8_UL4 and UL8_UL8
perform approximately equal, although the author’s estimation predicts a doubling in
performance, as can be seen by the dashed line.

83

Chapter 5 Design Space Exploration

2. Combinations of optimizations will not always scale multiplicatively. For example, the com-
bination SM_UL8_UL8_MC provides a 1,7-fold speedup over SM_UL8_UL4_MC, although
UL8_UL4 and UL8_UL8 perform approximately equal.

3. Even with this limited set of variants (we call them “parameters” below), the search space is
too large to compile. Even if compiling every variant takes only 30 minutes, just the shown
18 combinations would result in a 9 hour wait. Evaluating all variants and combinations
would be 1 + 4 · 5 · 2 · 2) · 5 h = 40 hours.

Figure 5.3: A range of optimizations applied to a single matrix-matrix multiplication kernel [141]

This behavior is exemplary for many optimizations and their combinations on FPGAs. Hence,
a strategy to incorporate the effects of congestion and performance increases must be included in
the DSE process. There are some methods to achieve that for HLS code.

Other approaches to performance modeling require runtime data but provide more accurate
results (rather than an upper bound). An analytical approach is taken by Wang et al. [140],
[141], where an IR of the compilation step is analyzed automatically to predict the outcome of
optimizations. Both approaches use runtime profiling to gain information about the memory
access patterns. Especially the FlexCL model achieves good accuracy at an 8.7% and 9.5% error
rate for the Rodinia [142] and Polybench [143] benchmark suites, respectively. FlexCL is compared
to the prediction accuracy of Xilinx’ analysis which only achieves an error rate between 30.4%
and 84.9% for the same benchmarks. This suggests that even vendor tools can only provide rough
estimates of the effects of optimizations on the performance.

The implementations of Wang et al. [140], [141] are unfortunately not available, thus we
resort to vendor tools for the performance estimation in the process. However, the method of
performance modeling is exchangable in our process.

5.2.2 Updating a Task Graph for an Optimized Machine Model

To explore a potential optimized machine modelM′ for a given machine modelM, the input
task graph G = (V, E, w, c, t) is modified to G′ = (V, E, w′, c′, t), where the updated computation
cost w′ and communication cost c′, respectively. The task graph G′ represents the task graph as

84

5.3 Optimization of Machine Models with GA

executed by the optimized machine modelM′. Both computation cost w′ and communication
cost c′ are created by using the estimated performance and communication cost and applying
them as a factor to w and c on a per-node and per-edge basis, respectively.

Input: Task graph G = (V, C, w, c, t), machine modelM = (A, T ,P), machine model
M′ = (A′, T ′,P ′)

Result: Task graph G′ = (V, C, w′, c′, t)
1foreach v ∈ V, p ∈ P, p′ ∈ P′ ∈ C′ do
2w′(v, p′)← estimate(v, p′)
3end
4foreach e ∈ E, la, lb ∈ L, l′a, l′b ∈ L′ do

5c′(e, la, lb)← c(e, l′a, l′b) ·
minl∈la ,lb

P L
b (l)

minl′∈l′a ,l′b
P ′Lb (l′)

6end
7return G’ = (V,E,w’,c’,t)

Algorithm 5.1: Algorithm to create a new task graph from an original and an optimized
machine model

Algorithm 5.1 shows the process of creating a derived task graph G′ form an input task graph
G for a given machine model M and another machine model M′ with some optimizations
applied. In lines 1–3 the algorithm iterates over all combinations of nodes v from task graph G,
all existing/unoptimized The function estimate(v, p) takes a node v of a task graph and a PE
p and generates an estimate for the cost of the task v on p. This is a placeholder for suitable
estimation methods like the ones introduced by Wang et al. [140] or vendor-supplied software.
The computation cost w is scaled to match the estimator’s cost. The communication cost c is
scaled according to the bandwidth property P L

b in line 5, so that a lower or higher bandwidth is
reflected accordingly in the task graph G′.

With the process of introducing potential changes to a machine model and creating adjusted
task graphs stated, we can now continue with the DSE below, i.e. with automatic evaluation and
discovery of optimized machine models and thus schedules.

5.3 Optimization of Machine Models with GA

GAs in general were introduced in Section 2.4 and in this section we describe our adoption to meet
our needs. There exist some approaches that directly optimize schedules (e.g. [144]–[146]), but
we aim to optimize the underlying machine model with GA. The section describes our application
of GA to the problem at hand. It discusses choices and trade-offs for the algorithm.

The search space for optimal machine models grows quickly compared to the size of the input.
Consider a machine model with 4 distinct PEs. Just the combinatorical possibilities of assigning
the PEs to 1 or 2 configurations results in 24 = 16 combinations. If we also take IntraCO into
account and assume just one parameter that can have a range of 4 different values per PE, then
44 · 16 = 4096 combinations exist, far too many to synthesize. Thus, we want to quickly analyze
the available solutions and reduce the number of them to consider. In general this process is
called Design Space Exploration (DSE). One of the more commonly used algorithms for DSE is
the GA. However, many techniques exist to perform DSE in the context of FPGAs and HLS [147].
Since the compilation times are so long, it is especially rewarding to prune the search space with
DSE. In fact, the goals of the approach to optimize HLS programs by Liu et al. [147] are very

85

Chapter 5 Design Space Exploration

similar to our approach as described below. However, our approach differs from existing ones in
two ways:

1. We do not require a costly synthesis and learning phase – possibly to the disadvantage of
the result and in favor of speed and applicability.

2. We view the HLS program (abstracted as machine models) in the context of task graphs.

In the following the peculiarities of applying the GA to the problem of optimizing machine
models are highlighted. We determine the following parameters of the GA below:

• Two options for an encoding

– Simple encoding
– Duplicate encoding

• A fitness function based on scheduling metrics
• Operators for the mutation phase

5.3.1 Encoding of Machine Models as Chromosomes

Since the goal of the optimization is to find a near optimal machine model, these models must be
encoded into the chromosome. The following assumptions can be made in this approach:

1. The number of locations is known and static.
2. A PE can be moved between configurations (inter configuration optimization), possibly

with influence on the cost of executing tasks.
3. A machine model can be fully described byM = (C, L,P).
4. One or more task graphs are known as an input.

Since the machine model can be described fully by the tripleM = (C, L,P), it is sufficient to
encode only this information in the chromosome. Since the locations L are static and known,
there is no need to encode them explicitly. Further, if it is assumed that the properties P do not
change (apart from renaming/reassigning), it does also not have to be encoded.

5.3.1.1 Simple Encoding

The remaining information C can be encoded easily. Recall that C is a set of configurations
c0, c1, . . . , cn each consisting of a disjunctive set of PEs p0,0, p0,1, . . . , pm,n where pi,j is PE i in
configuration j. This leads to a simple value representation. Each chromosome has |P| genes.
The values of all genes are integers in the range [0, |C|). If the value of gene x is set to y, then PE
px,y ∈ cy.

Figure 5.4 shows a chromosome of a machine model using this encoding. It consists of two
configurations and a total of five PEs on the left. The chromosome is shown on the right with
each gene representing a PE. The first gene from the left represents PE 0 and so on. The value of
the gene (0 or 1) denotes in which configuration the gene is contained. For example, the third
gene has the value 1, so the PE 2 is contained in configuration 1.

86

5.3 Optimization of Machine Models with GA

Configuration 1

Chromosome

Configuration 0

0 1 1 0 0
0 3 4

1 2

Figure 5.4: Simple encoding with two configurations and five PEs

5.3.1.2 Duplication Encoding

The simple encoding has the drawback that it only allows the assignment of PEs to configurations.
It may also be beneficial to create clones of PEs for both IntraCO and InterCO. If schedules
are limited by the amount of achievable parallelism, increasing it by cloning PEs should have a
positive influence on the schedule. Also, task types that are common but do not dominate the
runtime can be cloned to avoid reconfigurations.

The duplication encoding allows for a PE to be cloned either into the same configuration as the
original or into a different one. The chromosome consists of k · |P| genes, where k is the cloning
factor. This allows each PE to have at most k− 1 clones. The genes can have an integer value in
the range [−1, |C| − 1), where a value of −1 encodes the absence of a clone.

The disadvantage of this approach is that the search space is |C|k∗|P| instead of |C||P|.
Figure 5.5 shows the duplication encoding with k = 2 and two configurations. The genes are

arranged in the chromosome such that gene x (gray background) represents the original gene
and x + 1 represents the clone. PE 2 is cloned in configuration 1 so that it exists twice, while PE 4
is present both in configuration 0 and 1. All other PEs are not cloned, since the values at index
x + 1 are −1.

Configuration 1

Chromosome

Configuration 0

0 1 4

2

0 -1 0 -1 1 1 1 -1 0 1

3 4’2’

Figure 5.5: Example of duplication encoding with two configurations, five PEs and two clones

5.3.2 Fitness Functions

The encoding allows us to formulate a solution – in our case a machine model – in a simple
numeric fashion, enabling the GA to manipulate it with simple operations. The other parameter
the GA requires to operate is an objective function or fitness function in the context of GAs. The
fitness function takes a solution – a machine model – as input and maps it to a real number
reflecting the solution’s optimality (or lack thereof). We propose to use metrics of schedules as
the core of the fitness function.

The machine model by itself does not provide much information about the fitness of the
resulting schedules. Therefore, we resort to deriving metrics from the schedules generated by

87

Chapter 5 Design Space Exploration

the machine model, since we are ultimately interested in the optimization of schedules. As
established in Chapter 3, the problem of scheduling on heterogeneous hardware is NP-hard and
generating an optimal schedule as part of the fitness function is not feasible.

In contrast, the complexity of generating a schedule with a heuristic like REFT from Chapter 4
is polynomial. This makes it a good algorithm to generate a schedule as part of the fitness
function. Metrics of the schedule can then be used to compute a single number representing the
fitness. We established in Section 2.2 that the schedule length sl is the primary optimization goal
in this work. Hence, we use it as part of the fitness function. Further metrics are presented in
Chapter 6.

For a given schedule metric m(S), for example the schedule length sl(S), a schedule Sc for the
machine model represented by the chromosome c, and mmax the maximum m(S) of the whole
population, the fitness function f is:

f (c) = mmax −m(Sc). (5.1)

The fitness function has a direct influence on the probability for the selection of a chromosome
for reproduction. A chromosome c with a high value of f (c) (and thus a lower m(S)) will be
reproduced more often.

5.3.3 Operators of GA

To create a new population (of solutions) from an existing one, three steps happen in each
generation (iteration) in the GA:

1. Selection: which chromosomes should be considered for the next generation?
2. Crossover: how are existing parent chromosomes combined into new ones, the offspring?
3. Mutation: what changes are applied to genes?

5.3.3.1 Selection

The selection of chromosomes for reproduction is dependent of its fitness. For our work we use
the rank selection technique. All chromosomes of a population of n are ranked by their fitness
from 1 (worst) to n (best). The random process to select parents for reproduction then selects by
rank, i.e. rank k has a chance of 2·k

n·(n+1) to get selected.
The roulette wheel selection method was dismissed, because it removed low fitness chromosomes

at a too high rate. In this method the probability of being selected is directly proportional to the
normalized fitness.

5.3.3.2 Crossover

For both the simple and the duplication encoding a single point crossover function is used: a
random point in the chromosome is selected and all genes with an index higher than that will be
swapped between the two chromosomes taking part in the crossover.

5.3.3.3 Mutation

The mutation step changes the value of each gene with the probability pm to a random value in
its possible value range. Note that pm is typically chosen small, e.g. pm = 1 is what we used for
all experiments.

88

5.4 Inter-Configuration Optimization (InterCO)

Chromosome Configurations Reconfigurations

[3,2,3,2,3] 2 1
[0,1,2,3,4] 5 4
[2,2,2,2,2] 1 0

Table 5.1: Minimal number of reconfigurations for two genomes in the simple encoding

With the encoding, a fitness function and operations defined, we continue to describe InterCO,
IntraCO and CO, where these are applied.

5.4 Inter-Configuration Optimization (InterCO)

Our methods of optimization use the GA as described above. While all three approaches (InterCO,
IntraCO and CO) are just applications of the GA, each of them has specifics that are detailed
below.

The machine modelM = (A, T ,P) consists of an accelerator model A = (C, L), a topology
T = (N, O, D, b) and properties P . We assume that the locations L, the topology T and properties
P are static and given. The GA only optimizes the combination of PEs into configurations that
make up C. This poses the following challenges which we will discuss further below:

1. How to prevent the GA to converge due to wrong incentives?
2. How can the resources of a machine model be described?
3. How can the resource limits be enforced?

5.4.1 Convergence

When the target optimization metric is the schedule length sl(S) for schedule S , then there are
several parts of the machine model that affect the schedule length. Among others:

• Cost of execution of each task
• Order of execution of the tasks
• Communication cost between locations
• Reconfiguration overhead

Since InterCO only optimizes the assignment of PEs to configurations, its outcome is mainly
affected by the reconfiguration overhead if the properties of the system are not sufficiently defined.
Table 5.1 shows the minimal number of reconfigurations for three chromosomes. Recall that each
value in the chromosome assigns a PE to a configuration. The table shows the minimal number
of reconfigurations under the assumption that the number of locations |L| = 1 and each PE must
execute at least one task.

If we use the GA directly as described above to perform InterCO, the trivial solution to any
input would be to combine as many PEs into one configuration as possible. Even without the
reconfiguration overhead, combining all PEs into one configuration can yield shorter schedules,
since all PEs are instantiated at all times. Thus, without a more precise definition of the
machine model, the GA will converge towards a minimum number of configurations, one. We
demonstrated in Section 5.2.1 that the utilization of resources comes at a cost of PE-performance,
which is not reflected if we apply the GA naively.

89

Chapter 5 Design Space Exploration

2000

4000

6000

8000

10000

1 2 3 4 5
Number of configurations |C|

Sc
he

du
le

le
ng

th
sl

Figure 5.6: The schedule length sl in relation to the number of configurations |C| over 100
generations of GA

An example of this difficulty can be seen in Figure 5.6. It shows the schedule length for all
chromosomes of 100 generations during a run of the GA as described above. On the x-axis it
shows the number of configurations used by the machine model and on the y-axis the schedule
length sl. During the convergence of the GA it tends to set all genes to the same value, because the
trivial solution to combine all PEs in one configuration has the optimal cost. This solution makes
all PEs available without reconfiguration and allows parallel execution of |P| tasks. For example,
the chromosome [0, 0, 0, 0, 0] has a minimal schedule length, since all five PEs are contained in
configuration 0.

An FPGA, however, consists only of a limited amount of resources. If one tries to synthesize a
configuration with PEs that require more resources than the chip can provide, the process fails.
Even if the number of resources is sufficient, it is not necessarily possible to synthesize a group of
PEs. The placement of resources is also dependent on the routing between LBs, LUTs, DSPs and
so on. Additionally, the maximum achievable frequency for a configuration might go down as
the resource usage approaches 100%.

In our work on dynamic task scheduling on FPGAs [34] we showed that the optimization of
one PE can have negative effects on other PEs in the same configuration – even if they are not
executing in parallel. This can be an effect of the aforementioned routing and frequency issues.
Additionally, access to memory buses must be shared among PEs. This adds complexity in the
design but can also introduce congestion during the execution.

5.4.2 Resource Properties

The machine model must be able to reflect the scarcity of resources when applying InterCO
as well as IntraCO. Otherwise, the trivially optimal solution is to combine all PEs into one
configuration and apply all optimization technique at the expense of chip resources, but it does
not reflect the behavior of the real system.

To model these limitations more accurately during the optimization process, additional proper-
ties can be used to describe:

1. The available resources per location
2. The required resources per PE

As with the properties introduced in Chapter 3, the granularity of describing the system may be
arbitrarily fine. For practicality the resources are described directly in terms of FPGA components:
the number of LUTs, LBs and DSPs are used. The information about the required resources

90

5.4 Inter-Configuration Optimization (InterCO)

Entity Property Identifier Domain Default Example

Location LUTs P L
LUT N ∞ 512000

LBs P L
LB N ∞ 12400

DSPs P L
DSP N ∞ 10800

PE LUTs PP
LUT N 0 14144

LBs PP
LB N 0 8392

DSPs PP
DSP N 0 32

Configuration LUTs PC
LUT N ∑p∈c PP

LUT(p) PP
LUT(p0) + PP

LUT(p1)

LBs PC
LB N ∑p∈c PP

LB(p) PP
LB(p0)

DSPs PC
DSP N ∑p∈c PP

DSP(p) PP
DSP(p4) + PP

DSP(p3)

Table 5.2: Resource properties to describe resource limits of locations and resource usage of a
configuration c and PEs p0, . . .

can be obtained very early in the synthesis process and the available resources are part of the
specification of the FPGA.

Table 5.2 introduces the properties describing the available resources for a location and the
required resource for PEs and configurations. For each entity in the first column, the property
describing a certain resource is broken down in the second column. The property uses the same
convention for identifiers as introduced in Section 3.3. The domain column shows the underlying
image of values which are the natural numbers in all presented cases. The default value will
be used when no other value is set. The last column shows an example of a value for each
property. For example, the number of DSPs used per PE is identified with the property PP

DSP. If
the property is not specified, 0 is assumed. Notable are the default values for the resource usage
of the configuration: they are the sum over the same property of all PEs inside a configuration.
The list of properties can be extended, if more information about the system is available.

5.4.3 Enforcing Resource Properties

In contrast to the constraint for PEs in Table 3.4, the properties above do not need to be translated
into constraints on the schedule. The resource properties limit the design space of the machine
model. The effect of the resource limits on the performance is encoded in the cost function w
of the task graph G = (V, E, w, c, t). Hence, the resource properties have an effect on the fitness
of a model in the context of a GA. We propose two methods to enforce these effects and limits
described by the resource properties:

1. Exact cutoff : enforces that only as many resources as locations provide are used.
2. Linear cutoff : takes into account the performance effects of a highly occupied FPGA.

5.4.3.1 Exact Cutoff

The exact cutoff method ensures that the amount of necessary resources within a configuration
do not exceed the available resources of a location. It is clear that a valid machine model must
fulfill the following three constraints:

91

Chapter 5 Design Space Exploration

∀c ∈ C, ∀l ∈ L : P L
LUT(l) ≤ PC

LUT(c), (5.2)

∀c ∈ C, ∀l ∈ L : P L
LB(l) ≤ PC

LB(c) and (5.3)

∀c ∈ C, ∀l ∈ L : P L
DSP(l) ≤ PC

DSP(c). (5.4)

Providing the GA with appropriate values for the resource properties removes the trivial
solution to combine all PEs into one configuration from the search space. This strategy instead
gives the GA an incentive to search for solutions that can be synthesized but still perform well.

The GA does not have a mechanism to invalidate solutions (e.g. not fulfilling the above
constraints) per se. Instead, the integration of the resource properties into the GA is done via a
penalty in the fitness function. If the initial population or any of the offspring after a crossover or
mutation phase emit an invalid machine model, a penalty is subtracted from the fitness of that
chromosome. The adapted fitness function becomes:

fcutoff(c) =

{
mmax −m(Sc) ifM is valid
0 otherwise.

(5.5)

The fitness function will behave as before for all valid machine models but will assume the
worst case for all invalid machine models. This may lead to a convergence towards valid machine
models in the GA, since all chromosomes representing valid machine models are guaranteed to
have a higher fitness. An alternative fitness function for InterCO is presented below.

5.4.3.2 Linear Cutoff

The exact cutoff has the disadvantage that it incentivizes machine models that combine as many
PEs into each configuration as possible, just undercutting the location’s resources. These do not
account for the increasing computational cost for PEs in configurations with a high resource
usage (cf. Section 5.2.1).

Our second approach is to introduce a function that penalizes machine models that have a (too)
high resource usage. We call it the resource congestion function. For some location l, let P L

R(l) be
the resource property for resource R and let PP

R(p) be the resource property for some PE p. The
resource congestion is defined by

Definition 31 (Resource Congestion Function) The resource congestion is a function congR(c, l) =
h
(
PC

x (c)
P L

x (l)

)
where R is a resource, c is a configuration, l is a location and h is a function h : [0, ∞) 7→ [0, 1]:

h(x) =

0 if x ≤ a,
x−a
b−a if a < x < b,
1 otherwise.

(5.6)

The resource congestion function is used as an indicator for the effect of the resource utilization
on the performance of the PEs. The function h is used to map the ratio of available and used
resources to a value between 0 and 1 inclusive. Using the ratio as an indicator directly would not
accurately reflect the performance for lower utilization.

92

5.5 Intra-Configuration Optimization (IntraCO)

Besides the fraction of allocated resources x, the function h has two parameters a, b ∈ [0, 1],
which specify the range (a, b) over which the congestion function increases from 0 to 1. These
parameters are dependent on the hardware and software being modeled.

The parameters a and b can be obtained by measuring the relative performance of a benchmark-
ing PE (or a set thereof). Suppose PE p has performance 1 if no other PE is contained in the same
configuration. After introducing a second (third, fourth, . . .) PE and measuring the performance
of PE p for these scenarios as data points (xi, yi) with i = 1,n, where xi is the resource usage
of the i-th measurement and yi ≤ 1 the relative performance. The parameters for a function h can
be obtained for example by a numerical least squares method, minimizing the sum:

n

∑
i=1

(yi − h(xi, a, b))2 . (5.7)

We found a = 0.5 and b = 0.9 to yield results reflecting the behavior of an Intel Stratix 10 DX
accelerator. However, we want to stress that this approach – and even more so using the exact
cutoff – is not an accurate approximation for reasons described in Section 5.2.1.

Putting everything together, the fitness function f becomes:

flinear(c) = mmax −
(

1− max
l∈L,r∈R

congr(c, l)
)
·m(Sc) (5.8)

where R is the set of resources to consider, e.g. LUTs and DSPs. The linear fitness function
reduces the fitness of a solution if the congestion is above a and considers it the worst case
solution if the congestion is b or above.

With these fitness functions, InterCO can be performed while respecting the resource limits of
the hardware. The second approach, IntraCO is not concerned with the migration of PEs between
configurations, but with the relative weighting of PEs inside the same configuration.

5.5 Intra-Configuration Optimization (IntraCO)

In this section we highlight IntraCO, an approach to automatically balance the resources used by
PEs to optimize the scheduling. There are several ways to affect the allocation of resources to PEs
within a configuration. Similar to conventional software, users of an HLS environment have an
influence on the bitstream that is generated by the compiler.

1. Explicit changes to the structure of the algorithm will be reflected in the bitstream.
2. Semi-explicit annotations are hints to the compiler how the code should be transformed into

a bitstream.
3. Implicit factors influence the bitstream generation as well.

Users of FPGAs for program acceleration must have good knowledge of the hardware to write
well performing code. Similar to how the understanding of compilers and the structure of CPUs
and their interaction with memory enables programmers to write performant code for the specific
architecture, HLS programs can be considerably optimized by restructuring the code.

There are many explicit techniques to change the code of a functional PE to a better performing,
equivalent one. For example loop fission, loop unrolling, explicit pipelining and even some bit
width optimizations [148, pp. 39–40]. Additionally, one could change the algorithm to better

93

Chapter 5 Design Space Exploration

reflect the target architecture, for example replacing a quicksort implementation by a sorting
network.

Since changes are error-prone and the optimization techniques for FPGAs are similar across
devices, some HLS compilers support annotations for simpler application of the approaches.
These semi-explicit changes can be parameterized. For example, for a loop unroll annotation, the
unroll factor can be a parameter.

Compiler and driver versions, thermal conditions and shared load on the system are implicit
influences, that are often more difficult to change systematically. For example, it is often not
predictable how a version change of the compiler will influence the output bitstream.

We focus on semi-explicit parameters to change the weighting of PEs inside configurations
to provide more resources to PEs that have a positive influence on the schedule. This section
describes how semi-explicit parameters in conjunction with the GA are used to perform IntraCO.

5.5.1 Semi-Explicit Parameters

Semi-explicit parameters have the advantage that they typically do not require large changes to
the code, but instead support a limited set of options:

• A toggle enables or disables a feature or a block of code, hints or forces the compiler to
apply an optimization or configures the compiler to make assumptions about the HLS code.

• A number range that configures parameters like buffer- or block size, work group sizes or
unrolling factors.

Annotations and their parameters are easy to insert into the code, but anticipating the resulting
interactions with the application can be challenging. Similar to inter-configuration optimization,
congestion can have an effect on the configurations and the performance of the PEs. We propose
a similar approach to performing InterCO for IntraCO: use the GA as described above. The
procedure differs for IntraCOs in two aspects:

• Search space: instead of optimizing the allocation of PEs into multiple configurations,
IntraCOs only consider one configuration.

• Encoding: the representation of the machine models must be adapted to the problem. Before,
a chromosome encoded a mapping of PEs to configurations. With intra-configuration opti-
mization we take a different approach and let the GA change the (semi-explicit) parameters
of the PEs.

5.5.2 Definition of the Search Space

The search space is spanned by the parameters of the semi-explicit optimizations. For example,
if a PE contains the annotation #pragma unroll(n), one dimension represents values for n
from 1 to some upper limit. Unrolling a loop further could decrease the runtime of tasks for that
PE, but in turn will consume more resources. Additionally, if executions on this PE are not (or
only a small) part of the critical path of the application, the effect of the schedule will be small,
non-existent or even negative in turn.

The parameters can be identified automatically by lexical or semantic analysis of the input
program or specified explicitly, for example by using annotations or macros. The optimizer has
to have some knowledge about the semantic of the macros for two reasons:

94

5.5 Intra-Configuration Optimization (IntraCO)

1. It needs to set the range of valid values. If the parameter is a toggle, it only has two valid
values – on or off. In the case of a number range, it must know a valid and preferably
sensible set of numbers. For example, a SIMD-width is often specified as a low power-of-two.
If such parameter is set to 4 in the program code, it is unreasonable to expect a value of
4223 to perform well.

2. The scope of the parameters is important. A loop unroll factor only has an effect on the
annotated loop, whereas a different loop might only be affected indirectly. If a parameter
BLOCK_SIZE is set for a file and it is used across all PEs (functions in the code), then the
optimizer must assume that the value must be consistent across all PEs.

Parameters can be classified into three categories: PE-level, configuration-level and machine-
level.

If a parameter is used in the scope of a function (compiled to a PE), the optimizer can classify
it as a PE-level parameter. If all PEs inside a configuration use the parameter, it must be at least
classified as configuration-level. If all PEs make use of a parameter, it is a machine-level parameter.
The level of the parameter has direct influence on how it is represented in the chromosome.

A machine-level parameter only needs to be encoded once on each chromosome. If it was
encoded for each PE, inconsistent values could lead to invalid code. For example, if the block
size of a sending PE is different from the block size of the receiving one, the program might
not terminate. A configuration-level parameter needs to be encoded once for each possible
configuration (which was set to the number of PEs in Section 5.4). Conversely, PE-level parameters
must be encoded for each PE separately. An automated analysis must be conservative: changing
a parameter on finer granularity can compromise the program’s correctness.

Again, we resort to properties to describe additional information about the accelerator model,
such as the parameters. Suppose the parameter n of PE p is to be optimized with IntraCO. We
set PP

n (p) = k to its input value k. The key difference between InterCO and IntraCO is that for
machine model M = (A, T ,P), accelerator model A and topology T are fixed, whereas the
properties P is optimized.

5.5.3 Encoding for IntraCO

We propose the following encoding for IntraCO:

• For each configuration-level parameter PC
a (c) of configuration c, introduce a gene gc

a. If the
parameter is a toggle, then it is binary encoded. If it is a number range, it is encoded by
value.

• For each PE-level parameter PP
a (p) of PE p, introduce a gene gp

a .

The order of the genes inside the chromosome is not important. It needs to be consistent
across chromosomes and must be able to construct a valid configuration/machine model from a
chromosome, i.e. given a gene and its value, the parameter must be set correctly.

Figure 5.7 shows an example for the value and binary encodings for an extract of an OpenCL
HLS code. The HLS code shown on top in Figure 5.7 (a) depicts an extract from an OpenCL file
containing a kernel function do_process with three parameters:

• b: a block size in line 1
• e: a toggle to disable the expression balance in line 2
• n: an unroll factor in line 5

95

Chapter 5 Design Space Exploration

The value encoding on the bottom in Figure 5.7 (b) shows each gene directly corresponding to
a value for each parameter. For example, n has the value 4 and the block size b is set to 128 in
this chromosome. In contrast, each possible value in the binary encoding is either 0 or 1. If more
than one gene per parameter is set to 1, the PE would be synthesized more than once.

1 #define BLOCK_SIZE b
2 #pragma HLS expression_balance e
3
4 __kernel void do_process() {
5 #pragma unroll(n)
6 for(size_t i = 0; i < BLOCK_SIZE; i++) {
7 // ...
8 }
9 }

(a) OpenCL HLS code

4 128 1Value encoding: ...

n b eParameter:

Chromosome

...

(b) Parameters and encodings

Figure 5.7: An excerpt of OpenCL code and value and binary encodings for IntraCO

A chromosome can encode a machine models incapable of executing the given task graph(s)
for several reasons:

• High resource usage: similar to InterCO, it might be impossible to synthesize a configuration
due to limited resources.

• Constraints: if the properties of a PE prohibit combinations with other PEs, this must be
reflected in valid machine models.

• Types: the machine model must contain at least one PE for each type of task in the task
graph.

An invalid machine model is penalized by the fitness function as defined in Section 5.4.3, so
that the GA will converge to a valid one if it exists.

5.6 Configuration Optimization (CO)

To find a schedule as near to the global optimum as possible, both InterCO and IntraCO are
combined. This means that both, the assignment of PEs to configurations and their parameters are
to be optimized. We propose a combination of the value encoding. For all levels of parameters.

A chromosome consists of two parts:

1. A set of genes for the assignment of PEs to configurations representing InterCO
2. A set of genes for machine-, configuration- and PE-level parameters representing IntraCO

96

5.6 Configuration Optimization (CO)

Chromosome m0 m1 c0 c1 p0,0 a0,0 a0,1 c2 c3 p1,0 a1,0 a1,1

m
achine

config.0
param

s

PE
0

PE
0

param
s

config.1
param

s

PE
0

PE
1

param
s

Figure 5.8: A chromosome encoded for CO with two machine parameters, two configurations
and one PE

Figure 5.8 shows the encoding a machine with two machine parameters (m0 and m1), two
configurations with two parameters each (c0, . . . , c3) and one PE (p0). The PE can be cloned into
each of the configurations and within each configuration it may have a unique set of parameters
(a0,1, . . . , a1,1). The semantic is as follows:

• The machine-, configuration and PE-level parameters use the same encoding as IntraCO as
described above in Section 5.5.1.

• The genes px,y either have the value 0 when the PE is not included in the configuration
(and the parameters ay,z have no effect) or for values k ≥ 1 a number of k clones of PE y is
inserted into configuration x.

This encoding allows independent configuration of all parameters except for the clones of PEs
in the same configuration: these will share the same set of values for all parameters.

All three approaches are evaluated in Chapter 6.
This chapter introduced three methods of optimizing existing machine models with the

help of GA. Inter-Configuration Optimization is concerned with the distribution of PEs into
configurations, Intra-Configuration Optimization is concerned with the distribution of resources
within a configuration to different PEs and Configuration Optimization (CO) combines both
applications. Special attention was paid to the problem of static congestion and its effects on the
schedule.

Chapter 6 is concerned with the evaluation of the previous three chapters, Chapters 3, 4 and 5.
We describe our methodology for the evaluation, the software that was used and developed,
present our results and discuss them briefly.

97

Chapter 6
Evaluation

In this chapter we evaluate our work presented in Chapters 3, 4 and 5. Evaluating scheduling
algorithms and by extension machine models is not an easy task, since it heavily depends on the
input data. Our strategy to perform an accurate and reproducible evaluation is the following:

1. Establish that we can accurately simulate task graphs for a machine model. This is done by
executing task graphs on existing hardware and comparing the resulting schedules to our
simulations.

2. Compare our polynomial time scheduling algorithm to optimal schedules to assess REFT’s
results and the effects of input sizes.

3. Show the effect of machine models optimized through DSE by comparing scheduling and
machine model metrics prior to and after the optimization.

This strategy is manifested in the structure of this chapter as outlined below. Before the
evaluation and its results are reported, the software framework we used to perform it is described
and metrics are introduced. The chapter highlights several results of the evaluation, aggregated
results are prevented in Appendix B and raw measurements can be found in the corresponding
repository. The rest of this chapter is outlined as follows:

1. The description of RESCH outlines our software framework that was used for this evaluation.
2. The definition of metrics introduces more metrics that can be used to assess the quality of

machine models and schedules.
3. The evaluation of the machine models is considered with the capability of the theoretical

framework to model the underlying HLS workflow and the hardware as presented in
Chapter 3.

4. The evaluation of the polynomial time scheduling algorithm, REFT, is directly considered with
the quality of the emitted schedules as presented in Chapter 4.

5. The evaluation of the DSE process is considered with the output machine models created by
the GA as presented in Chapter 5.

6.1 The RESCH Framework

The REconfigurable SCHeduling (RESCH) framework is a collection of software modules to gener-
ate, execute and analyze schedules on reconfigurable hardware such as FPGA-based accelerators.
It implements the concepts and algorithms presented in Chapters 3, 4 and 5 and extends them
for the evaluation. RESCH consists of the following modules, each of which is described more
thoroughly below:

1. The graph generator module is used to create random or predefined task graphs.

99

Chapter 6 Evaluation

2. The trace importer module can be used to automatically extract task graphs from existing
applications without interference.

3. The hardware description module can be used to define machine models as described in
Chapter 3.

4. The simulator module consists of two submodules:

a) The optimal solver generates optimal schedules using a constraint programming tech-
nique.

b) The heuristic scheduler produces schedules for a given machine model and task graph
in polynomial time by using the REFT algorithm.

5. The OpenCL executor module derives an OpenCL program from a machine model and
executes an arbitrary task graph on it.

6. The DSE module applies the GA to generate recommendations for HLS code.
7. The analysis module receives a set of schedules or machine models and performs statistical

analysis for the evaluation.

The software workflow reproduces the methodology as shown in Figure 3.1 on page 31. The
inputs consist of task graphs, either generated from the graph generator or observed by the trace
importer, and the machine model as described by the Python hardware description. The inputs
are used to generate schedules, either via simulation or via execution on an OpenCL platform.
The generated schedules can either be used for analysis using the metrics module or fed into the
optimizer module for optimization of the input machine model.

6.1.1 Graph Generator Module

The graph generator module is one of the two possible ways to inputs graphs, the other being
task graphs based on OpenCL traces. The module is extensible and parameterizable for several
key variables. It supports structured and random generation of task graphs:

1. Structured task graphs emulate existing programs with well known execution patterns like
the Cholesky decomposition [149] and the LU factorization [150].

2. Random task graphs are generated according to some schema with their structure and
parameters based on a stochastic process. We implement three schemes:

a) layer-by-layer technique [151]
b) Erdős–Rényi technique [152]
c) uniformly random

The graph generator module is implemented in Python and uses the Boost Graph Library [153]
to interact with graph data structures.

6.1.1.1 Structured Graphs

Structured graphs emulate well-known algorithms. The RESCH framework supports the creation
of graphs emulating the LU factorization and the Cholesky decomposition [154, pp. 915–920].

The LU factorization decomposes a matrix A into a lower triangular L and an upper triangular
matrix U such that A = LU. Task-based implementations work recursively blockwise on
matrices [154, pp. 819–822] with four different kernel functions. A task graph G = (V, E, w, c, t)
representing the LU factorization uses four different types as described by function t. We assume

100

6.1 The RESCH Framework

a square n× n matrix as an input that is split up into blocks of size b× b, thus the first two
parameters for the graph generator are n and b. An execution time w(v) for all tasks must be
specified as well. Due to the blocked construction, it is sufficient to observe the execution time
once for each task type for a given block size (b). For example, we observed a runtime of 16 ms
for all tasks of a block size of 50 on an Intel Stratix 10 DX accelerator card. The third parameter
is the execution cost w in ms. The communication cost c can be calculated using the memory
bandwidth B as c = s·b2

B , where s is the size of the underlying data type in bytes (e.g. s = 8 for
double).

From a task scheduling perspective, the Cholesky decomposition is similar: it also works
blockwise on a (now Hermitian positive-definite) matrix A, but produces a lower triangular
matrix L such that A = LLT. A task-based formulation of the algorithm also contains 4 types of
tasks, similar to the LU factorization. Thus, the parameters for the generator are identical, but it
produces a task graph with a different structure.

6.1.1.2 Random Graph

Task scheduling algorithms are often evaluated by executing randomly generated graphs. This
prevents bias towards a certain set of problems and may produce numerous graphs with pre-
defined properties. The RESCH framework implements three methods to generate task graphs
randomly:

1. The layer-by-layer technique partitions tasks into a well-defined number of layers.
2. The Erdős–Rényi technique connects vertex i and j with a probability p.
3. The enumeration method to generate uniformly random graphs by Kuipers et al. [155].

All algorithms have as the first parameter the number n of vertices (tasks) to generate.
The layer-by-layer technique requires two additional parameters, l and p and generates graphs

in two steps:

1. It generates n vertices and partitions these into l ≤ n layers, i.e. every vertex vk belongs to a
layer 0 < k < l.

2. It creates a directed edge (vk, vk+1) ∈ E with probability p.

This technique does not guarantee that the resulting graph consists of l layers, since for each
layer k an edge to layer k + 1 is not created with probability of (1− p)nk ·nk+1 , where nk is the
number of nodes in the k-th partition.

The Erdős-Rényi technique creates an n× n adjacency matrix A. The matrix represents the
graph with n vertices. An edge exists from vertex v f to vt if the element A f ,t in the matrix is 1 –
it is 0 otherwise. The entry Ai,j with i < j is set to 1 with probability p. Thus, an edge exists from
vi to vj with probability p. Acyclicity is guaranteed because A is a lower triangular matrix, since
only elements with i < j can be set to 1.

The enumeration method by Kuipers et al. [155] is capable of generating uniformly random
graphs. It recursively constructs a DAG by drawing random numbers and reconstructing the
associated graph of all enumerated DAGs. While the Erdős–Rényi method produces random
tasks as well, they are not uniformly random, i.e. not every DAG has an equal probability of
being generated for a given set of parameters.

101

Chapter 6 Evaluation

6.1.2 Trace Importer Module

A challenge in the quantitative analysis of scheduling algorithms is the availability of suitable
task graphs. As detailed above, the graph generator module is able to generate structured and
random graphs for further examination. However, especially the structured graphs must resemble
the workload accurately. Obtaining accurate task graphs is not trivial. Some data sets exist,
but none capture the unique characteristics of FPGAs [151]. Even if such data sets existed, the
heterogeneity of the field of FPGA makes it difficult to use task graphs obtained from one device
and draw conclusions for the properties of others as we observed in Section 5.2.1.

Therefore, the RESCH framework includes a C++ trace importer module. It is based on
the Intel OpenCL Intercept Layer1 (ICL) and extends ICL to emit machine-readable logs that
contain information to create task graphs using Algorithm 3.2 on page 57. To obtain a trace
from an OpenCL program (where the kernels may execute on an FPGA-based accelerator), the
program must be called as an argument to the resch_trace binary. For example, calling the
Hello World example code of the Xilinx Vitis Accel examples2, one must call resch_trace
↪→ ./hello_world configuration.xclbin. The trace importer will intercept the OpenCL
calls and log relevant information to a file.

The module gathers dependencies of tasks by observing OpenCL events (cl_event) instances.
With each task a user can specify an event wait list of events that must be completed before its
execution may start. Also, each task creates an event that other tasks may use in their respective
wait list and so on. The exact timings of the execution are obtained by the profiling feature of
OpenCL. Intercepting the creation of OpenCL command queues (cl_command_queue) lets us
pass the parameter CL_QUEUE_PROFILING_ENABLE. After the program finishes its execution,
the trace importer can read the timings using the clGetEventProfilingInfo function per
task invocation. Data movement is tracked by intercepting (and logging) calls that allocate
and/or transfer memory objects to and from the device (the FPGA-based accelerator), like
clEnqueueWriteBuffer. These allow to track the data size and dependencies with event
waiting list, similar to the task exeuction tracing.

A caveat of this method is that some OpenCL programs are not formulated according to
the underlying task dependencies, but use clFinish to wait for all enqueued tasks and data
movements to succeed before a new task is enqueued and executed. In this case the RESCH
framework cannot reconstruct a task graph, but only a series of task enqueues and clFinish
calls. Similarly, it is possible to read arguments of the kernels to assess which memory objects
(buffers) they have read or write access to, but it is not possible to determine the actual amount
of data read or written.

In the evaluation the module was used to obtain accurate parameters for the structured graph
generator algorithms by executing OpenCL implementations on Xilinx Alveo U280 accelerators
and tracing it with resch_trace.

6.1.3 Hardware Description Module

Machine models are a central part of this work and it must be possible to formulate them with
the RESCH framework. That is the purpose of the hardware description module. It contains
definitions and convenience functions for the constructs introduced in Chapter 3 for machine
models, accelerator models, topologies as well as task graphs and schedules.

1https://github.com/intel/opencl-intercept-layer
2https://github.com/Xilinx/Vitis_Accel_Examples

102

https://github.com/intel/opencl-intercept-layer
https://github.com/Xilinx/Vitis_Accel_Examples

6.1 The RESCH Framework

1 locations = [Location(0), Location(1)]
2 config = Configuration(0, locations)
3 PEs = [PE(i, config) for i in range(num_PEs)]
4 acc = Accelerator(PEs)
5 topo = Topology.default_from_accelerator(acc)
6 machine_model = Machine(acc, topo))

Listing 6.1: Definition of a machine model using the hardware description module

Listing 6.1 shows how a machine modelM = (A, T ,P) (machine_model) is constructed in
a bottom-up fashion. In line 1, the locations L (locations) are declared. A configuration is
created and passed the list of locations, which also sets PC

l (config). Then a list of num_PEs
PEs is created, each of which is assigned to the configuration config. The PEs are passed to the
constructor of the accelerator model. The default topology (see Section 3.2.2) is created from the
accelerator model and passed to the machine model, together with the accelerator model. Not
used here is a third, optional parameter properties: an dictionary of properties, that maps
PEs, locations, configurations, and vertices and edges of the topology graph to properties. For
example, the code properties[pe]["s"] returns the property PP

s (pe). The first parameter
for Location, Configuration and PE is its index – it must be unique per class and machine
model.

6.1.4 Simulator Module

The simulator module is used to for the scheduling of task graphs on arbitrary machine models.
Its input are either task graphs of traced applications or task graphs from the graph generator
module. It consists of two submodules:

1. The optimal solver to generate the best solution
2. The heuristic scheduler relying on heuristics

6.1.4.1 Optimal Solver

The implementation makes use of constraint programming by formulating the constraints from
Section 3.4 as inputs for the OR-Tools constraint programming solver [129]. It implements the
constraint derivation rules to translate properties of the machine model to constraints for the
solver. Input to the solver is a set of variables, in our case the values for the start time ts, the
finish time t f and the resource mapping proc for all tasks. It attempts to find values for these
variables. Of course, the goal is not to find arbitrary values, but such values that represent a valid
schedule for the given machine model. Therefore, the set of constraints is extended depending
on the communication setting (see Table 3.7), the machine model and the task graph.

The output of the simulator module is a list of valid schedules including the optimal one (for
a specific hardware model). The variable to be optimized is the maximum finish time, i.e. the
makespan of the schedule.

One drawback of the constraint solver is its runtime. It can generate a valid schedule quickly,
but the search for the optimal schedule can be prohibitively long: while an optimal schedule can
be found within 30 ms for a task graph with 10 tasks, it takes over 180 s for a task graph with
30 tasks, everything else being equal. Thus, the implementation should not be used in practice
to find optimal schedules, but it serves as a provider for a ground truth for optimal schedules,
especially as a baseline for REFT.

103

Chapter 6 Evaluation

6.1.4.2 Heuristic Scheduler

The simulator contains an implementation of REFT. It supports all task graphs and machine
models as the solver. It also supports edge scheduling with the congestion-aware communication
setting.

The implementation is not particularly optimized for runtime, but performs significantly better
than the solver. Especially larger task graphs can be computed in time frames that make the
implementation usable in practice. For example, it generates a schedule for the same random
graph with 30 tasks in 70 ms, where the constraint solver module requires 180 s.

6.1.5 OpenCL Executor Module

The OpenCL executor module’s purpose assures accuracy of the simulated schedules. One major
challenge of the simulation of schedules is to ensure that the simulated schedules reflect the
behavior of the modeled hardware. In our case, the hardware is modeled with machine models.
We do not want to rely on low-level, vendor-specific features and therefore resort to the OpenCL
programming model to meet this challenge.

6.1.5.1 Inputs

The OpenCL executor module is implemented in C++. To interact with the rest of the Python-based
components, it takes four input files which are described further below:

1. A machine model description in JavaScript Object Notation (JSON) [156] format
2. A schedule description in JSON
3. A bitstream for each configuration defined in the machine model
4. A task graph to execute in GraphML format [157]

Machine Model Description The machine model definition only needs to contain structural
information, such as the configurations and their PEs. However, it does not require any properties,
since these are inherent to the hardware. Listing 6.2 shows an example of such a definition: a
configuration with id 0 contains two PEs with ids 0 and 1. The implementation will look for a
configuration file with the filename basic and – depending on the underlying hardware – will
append an appropriate file extension like .xclbin for Xilinx- or .aocx for Intel-based FPGAs.
Since all PEs must be implemented by an OpenCL kernel function, instead of specifying a PE’s
type, its corresponding kernel function name is used in the function_name key. When a task is
scheduled on the PE, the function with this name is called.

1 {
2 "configurations": ["id": 0, "file_name": "basic", "PEs": [
3 { "id": 0, "function_name": "fmmult" },
4 { "id": 1, "function_name": "check" }
5]
6 }

Listing 6.2: An example description of a machine model with one configuration and two PEs

A corresponding JSON Schema [158] definition of the file format can be found in Listing A.1.

104

6.1 The RESCH Framework

Schedule Description The schedule S that is to be executed by the OpenCL executor is similarly
described in the JSON format. It consists of an entry for each of the tasks v ∈ V of the task graph
G = (V, E, w, c, t) and holds a unique identifier id, the allocation to a PE PE (alloc(v)) and the
value for t_s(v): t_s. An example of a schedule with two tasks is depicted in Listing 6.3.

1 {
2 "schedule": [
3 { "id": 0, "PE": 0, "t_s": 0 },
4 { "id": 1, "PE": 1, "t_s": 100 }
5]
6 }

Listing 6.3: An example schedule with two tasks on two PEs

A JSON Schema definition of the file format can be found in Listing A.2.

Bitstream Configurations must be suited to execute the input task graphs. We provide a
universal OpenCL implementation that supports up to nine PEs per configuration. These
standard PEs are described below in the methodology in Listing 6.4. An OpenCL file containing
these PEs is compiled using the HLS compiler from the vendor to create the bitstream(s).

Task Graph Task graphs are imported using the standard GraphML [157] file format. The files
are read and processed using the Boost Graph Library [153]. Attributes like communication and
computation cost can be saved as attributes in the GraphML file. The easiest way to obtain a
GraphML task graph is through the task graph generator module.

6.1.5.2 Methodology

To perform schedules accurately, the OpenCL executor must be able to create tasks with the
cost denoted in the task graph description. Suppose G = (V, E, w, c, t) is a task graph andM =
(A, T ,P) a machine model. The GraphML description contains computation cost information
w(v) for each task v ∈ V and communication cost information c(e) for each edge e ∈ E. How the
abstract cost value of a task graph is applied depends on the use case, e.g. a cost of w(v) = 10 could
represent the energy cost in Joule. We use the cost to represent execution (and communication)
time in this evaluation for reasons presented in Section 2.2. Therefore, our method to construct
tasks with a defined execution (and communication) time is:

1. For each configuration C, create an OpenCL file with a matching number of standard PEs.
2. Enqueue a standard PE task with work size 1, increase the work size and repeat the process

m times.
3. Enqueue a standard PE task with data size 1, increase the data size and repeat the process

n times.
4. Perform a linear regression on the observed execution times.

Using this method of standard PE allows us to finely control the execution and communication
times. Listing 6.4 shows the (simplified) OpenCL code used to implement it. The complete
code can be found in Listing A.3 on page 131. Lines 4–5 load data_size integers from the
global memory and store them temporarily in a local variable. Lines 5–6 perform an arithmetic
operation cost times on an arbitrary integer value val. In the end – to prevent optimization – a

105

Chapter 6 Evaluation

result value is written to a buffer in global memory. The data (input) buffer must be sufficiently
large to hold data_size elements, while the output out buffer must only hold one element.

1 kernel void standard_pe(const int cost, global const int *restrict
↪→ data,

2 const int data_size, global int *restrict out) {
3 float val = 23;
4 for(int i = 0; i < data_size; i++) // Data loading
5 val = data[i];
6 for (int i = 0; i < cost; i++) // Processing
7 val += i;
8 *out = val;
9 }

Listing 6.4: The standard PE in OpenCL

After m + n tasks have been executed, profiling data is used to determine the exact execution
times for each given input size. Let xi be the work size of the i-th task with 1 ≤ i ≤ m, x the
arithmetic mean of all xi, yi the measured execution time for xi and y the arithmetic mean of all
yi. Compute the simple linear regression with

β1 =
∑m

i=1(xi − x)(yi − y)
∑m

x=1(xi − x)2 (6.1)

and

β0 = y− β1x. (6.2)

Since ŷi = β0 + β1xi gives the estimate ŷi for an input size of xi, it can also be formulated as:

ŷi = β0 + β1xi (6.3)

⇒ x̂i =
yi − β0

β1
. (6.4)

To create a kernel that executes for a duration of yi, the input parameter must have the value
xi. With this method, it is possible to precisely control the execution time of tasks on standard
PEs. The procedure is equivalent with data sizes (communication times).

6.1.6 DSE Module

The purpose of the DSE module is to apply the CO techniques presented in Chapter 5 to optimize
machine models. The module uses the GA to perform the optimization. The input to the GA is a
machine model defined using the hardware description module and a task graph. The output is
an optimized machine model and a valid schedule for the task graph.

The module supports InterCO, IntraCO and CO and applies modifications to the task graph
as described in Section 5.2. The encoding of machine models is performed as detailed in the
respective sections in Chapter 5.

106

6.2 Metrics

6.1.7 Analysis Module

The purpose of the analysis module is to perform automatic evaluation of machine models and
schedules. It consists of two parts:

1. The benchmark submodule performs automated test series for the results presented in
Sections 6.3, 6.4 and 6.5.

2. The metrics submodule calculates metrics for machine models and schedules.

The benchmark submodule uses the infrastructure provided by the RESCH framework and
performs automated test series for the evaluation of machine models, REFT and DSE. The metrics
module implements all metrics as defined below, so machine models and schedules can be
quantitatively evaluated.

6.2 Metrics

The metrics used to assess the quality of both schedules and machine models are presented below.
So far, we have focused solely on the schedule length as a primary metric for reasons described
in Section 2.2. However, there are several more ways to evaluate the quality of a schedule or
machine model. These metrics are mainly shown in the results in Appendix B, but some are also
highlighted in the evaluation below. The metrics can be split into two categories presented below:

1. Metrics for schedules

a. Schedule length/makespan
b. Schedule length ratio
c. Speedup
d. Slack

2. Metrics for machine models

a. Stability
b. Mean schedule metric
c. Efficiency

6.2.1 Metrics for Schedules

Schedule metrics assign a single real number to a schedule. A metric m has the form m : S 7→ R.
In this section S = (ts, proc) denotes a schedule and G = (V, E, w, c, t) is a task graph.

6.2.1.1 Schedule Length/Makespan

Often used in the literature is the schedule length sl(S), which is the difference between the
earliest node start time and the latest node finish time:

sl(S) = max
v∈V

t f (v)−min
v∈V

ts(v). (6.5)

Since we defined minv∈V ts(v) := 0, this can be simplified to

107

Chapter 6 Evaluation

sl(S) = max
v∈V

t f (v). (6.6)

Generally low values for the makespan are preferable, especially when energy efficiency is of
concern as we stated in Section 2.2.

6.2.1.2 Schedule Length Ratio

The schedule length ratio describes the ratio between the makespan and the sum of the smallest
execution cost of the critical path CP.

slr(S) = sl(S)
∑v∈CP minp∈P w(v, p)

(6.7)

Because the denominator is a lower bound on the schedule length, lower values are better and
a value of slr(S) = 1 is a lower bound [135].

6.2.1.3 Speedup

The speedup in our case is defined as the ratio between the sequential execution time and the
makespan. The sequential execution time is the lowest execution time on any PE without any
communication cost. The main difference to the inverse of the schedule length ratio is that the
sequential execution time includes all tasks rather than the critical path [135].

speedup(S) = ∑v∈V minp∈P w(v, p)
sl(S) (6.8)

6.2.1.4 Slack

The slack is a metric for the variance in the schedule lengths generated by a scheduling algorithm.
It describes the robustness of the results of the algorithm given uncertainty in the task processing
time [135].

slack(S) = ∑v∈V (sl(S)− ranku(v)− rankd(v))
|V| (6.9)

The lower the slack, the nearer the schedule operates on the global optimum for an infinite
number of PEs. Intuitively, a machine with no limit on the number of PEs can schedule each task
at its data ready time and the numerator approaches 0. Note that minimizing the makespan is
not automatically minimizing the slack, since tasks not on the critical path may contribute to
higher slack without affecting the makespan.

6.2.2 Metrics for Machine Models and Scheduling Algorithms

To assess the fitness of a machine model and a scheduling algorithm – as opposed to a schedule
generated for a machine model – we introduce additional metrics. In this section Gn is a set of n
task graphs G = (V, E, w, c, t) andM = (C, L,P) a machine model.

108

6.3 Evaluation of Machine Models

6.2.2.1 Stability

In Section 3.7.4.1, we introduced noise into the cost functions of a task graph and showed its
effect on the resulting schedule for two machine models. The stability reduces the effect to
a single number. Let Gp be a set of o · n task graphs G′ = (V, E, w′, c′, t) where w′ and c′ are
constructed by adding Gaussian noise with a mean µ = 0 to the computational cost w(v, p) and
communication cost c(e, l0, l1), respectively. The stability for machine modelM and task graph G
is given by:

stability(M, Gm) =
σ

sm
, (6.10)

where σ is the standard deviation of the Gaussian noise and sm is the sample standard deviation
of the metric m for all schedules generated for the task graphs Gm onM. We use the schedule
length for m.

6.2.2.2 Mean Schedule Metric

The arithmetic mean over all generated schedules for a metric m is:

m(M, Gn) =
1
n ∑

G∈Gn
m(SG), (6.11)

where SG is the schedule for G. This may be of interest when optimizing machine models for a
specific schedule metric. For example, instead of working with a single task graph during DSE,
one could work on a set of task graphs and use this metric instead of the underlying schedule
metric instead.

6.2.2.3 Efficiency

The efficiency is often described as the ratio of speedup to number of processors [27], [135,
p. 222]. However, that does not provide a meaningful metric in reconfigurable computing, since
a processor (i.e. a PE) can consume an arbitrary amount of resources. We propose a more
specialized notion based on the resources being used. The resource-specific efficiency efficiencyr
for a configuration c ∈ C is defined as follows:

efficiencyr(S , c) =
speedup(S)

∑p∈c PP
r (p)

PC
r (c)

(6.12)

The overall efficiency is defined as the mean minimal efficiency over all resources R:

efficiency(S) = 1
|C| ∑

c∈C
min
r∈R

efficiencyr(S , c) (6.13)

With these schedule and machine model metrics defined, we can proceed to the evaluation of
machine models, REFT and the DSE.

6.3 Evaluation of Machine Models

The machine models as defined in Chapter 3 represent one of our novel contributions to describe
reconfigurable hardware for program acceleration. A challenge is to evaluate the accuracy of

109

Chapter 6 Evaluation

the model for the (described) hardware. How well do machine models map to FPGA-based
accelerators and their behavior in task scheduling? The RESCH framework, our software
implementation, supports the execution of task graphs on FPGA-based accelerators as OpenCL
tasks. To assess the accuracy of the models, the same task graphs are scheduled using REFT on
the machine model. The schedules from both the execution on hardware and the simulation are
then compared. This section consists of three parts:

1. A classification of machine models for a quick description of the models under consideration
in the evaluation.

2. A systematic determination of parameters for standard PEs.
3. An investigation of the effects of reconfiguration overhead of a machine model.

6.3.1 A Classification for Machine Models

The evaluation makes extensive use of different machine models with a wide range of properties.
We introduce a classification to describe the fundamentals of each model with a small set of
variables. Especially in the statistical analysis it is neither feasible nor useful to describe each
machine model exactly. However, classifying machine models makes it easy to compare results
without overwhelming readers with data. The relevant data and logs are still available in the
RESCH framework’s repository.

Each machine modelM = (A, T ,P) is classified with the following features3:

• The number of locations |L|
• The number of configurations |C|
• The mean number of PEs per configuration |C| = ∑c∈C |c|

|C|
• The heterogeneity h(M), where

h(M) =
∑ca,cb∈C Jt(ca, cb)

|C| , where (6.14)

Jt(A, B) =
At ∩ Bt

At ∪ Bt
is the Jaccard index, (6.15)

At = {PP
t (p) | p ∈ A} and (6.16)

Bt = {PP
t (p) | p ∈ B}. (6.17)

The heterogeneity function h = 0 if all the PEs have the same type and h = 1 if there is no
overlap in the types, i.e. each configuration contains no PE with an equal type of any other PE.

Table 6.1 shows three classes that depend on the features. A static machine model makes
no use of reconfiguration, i.e. only one configuration is provided. A partially reconfigurable
model has one PE per configuration, but contains multiple locations and configurations. Every
other constellation is called (dynamically) reconfigurable4 The heterogeneity is included in
this classification, because it provides context on the amount of reconfiguration that must be
performed.

3We use features instead of properties to avoid confusion with the machine model’s properties P.
4We prefer the term reconfigurable but sometimes use the terms dynamically reconfigurable to distinguish from partially

reconfigurable.

110

6.3 Evaluation of Machine Models

Feature

|L| |C| |C| Class

≥ 1 1 - static
1 > 1 1 reconfigurable

> 1 > 1 1 partially reconfigurable
> 1 > 1 > 1 reconfigurable

Table 6.1: A set of machine model classes based on their features

We write that a machine model M = (A, T ,P) (or a set thereof) is an (|L|, |C|, |C|, h(M))-
model to give the reader a quick and precise description of its characteristics, e.g. a (3, 5, 1, 1)-
model is a partially reconfigurable model with 3 locations, 5 configurations and each with 1 PE
per configuration, i.e. 5 different in total that can be instantiated at all 3 locations.

6.3.2 Determination of Parameters for Standard PEs

To accurately simulate given schedules on real hardware, we must be able to execute tasks and
data transfers with precise parameters. As described in Section 6.1.5.2, this is done with a linear
regression. To obtain the parameters for the evaluation, the linear regression was performed on
two high-end FPGA accelerators.

Computing Data

20 22 24 26 28 210 212 214 216 218 220 222 20 22 24 26 28 210 212 214 216 218 220 222

210

215

220

225

230

Input size

ti
m

e
(n

s)

Platform
CPU
GPU
Intel Stratix 10
Xilinx U280

Figure 6.1: Execution times for the standard kernel for a range of input sizes at 500 MHz

Figure 6.1 shows the determined values for a range of input sizes on the Xilinx Alveo U280 and
Intel Stratix 10 accelerator cards as a log-log plot. The x-axis shows the input size, in this case
measured in 32bit integers, and the y-axis the execution time in ns at 500 MHz. The values for an
Intel Core i7-1185G7 CPU and Intel Iris Xe Graphics G7 GPU are shown for comparison. For the
Xilinx Alveo U280 accelerator, it is apparent that a standard task cannot be executed shorter than
circa 33 µs. Once the input size is large enough (circa 210 = 1024), the execution time increases
linearly with the input. This property can be used to produce tasks of arbitrary execution time
over the 33 µs limit.

After the parameters are determined, the tasks are executed. An Out-Of-
Order (OOO) command queue cl::CommandQueue is created using the property
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE. A single OOO queue can provide parallel
execution of the tasks. Afterward, for each task the corresponding kernel function is selected and

111

Chapter 6 Evaluation

executed. For each task the corresponding kernel function (PE) is selected and set up. Listing 6.5
shows the procedure that is repeated for all scheduled tasks, ordered by the start time ts. It shows
the procedure described above, where lines 1–2 compute the input sizes, lines 4–8 set up the
arguments and finally lines 9–10 enqueue the kernel for execution. The enqueuing in lines 9–10
is delayed using a timer in the second strategy, so that the task v can only start executing after
the time ts(v) passes.

1 comp_size = comp_beta_1 + data_beta_0 * task.comp_duration
2 data_size = data_beta_1 + data_beta_0 * task.data_curation
3 // Enqueue the task
4 cl::NDRange gsize(1), offset(0), lsize(1);
5 kernel.setArg(0, comp_size);
6 kernel.setArg(1, in_buf);
7 kernel.setArg(2, data_size);
8 kernel.setArg(3, out_buf);
9 queue.enqueueNDRangeKernel(pe.kernel, offset, gsize, lsize,

↪→ &dependent_events, &task_event);
10 queue.flush()

Listing 6.5: Building and enqueing a kernel object for a task using the allocation-only strategy

6.3.3 Effects of Reconfiguration Delay

Since the overhead of reconfiguration can be an important variable for the metrics of the schedule,
its influence on the outcome must be evaluated. An advantage of our approach to the machine
models is that we can vary the reconfiguration overhead and observe its effect on any schedule.
This can deliver important insights for developers of FPGA HLS code and vendors alike. Devel-
opers are interested in whether it is worth the effort to implement complex task scheduling logic.
Vendors can weigh the effort of providing and optimizing, for example, PR capabilities with the
benefits this could bring to users.

For his section two features of our approach are particularly important: the type function t(v)
and the cost function c(v, p). The former returns a type for each node v in the task graph and the
latter the execution cost per PE p for each node v. Previously, with machine models MPL and
MPP all PEs may execute all tasks. In this section we investigate the influence of reconfiguration
overhead. Thus, the task graph generators are extended to include types (setting t(v) for each
v ∈ V) and PP

t (p) is assigned uniformly random for each p ∈ P. This models a workload where
reconfigurations are necessary, because the PEs of a configuration do not have a compatible type
for all tasks. To ensure that a schedule can be built, at least one PE with PP

t (p) = tv is generated
for each type tv. If the number of PEs is greater than the number of types, each additional PE is
assigned a type uniformly at random.

There are several variables of interest:

1. What effect does the reconfiguration overhead have on a schedule?
2. What effect does the reconfiguration overhead have on machines supporting PR compared

to machines without?
3. How is the impact of reconfiguration overhead on REFT compared to the output of the

optimal solver?
4. Does sorting the task graph into a priority queue using ranku,p from Section 4.3.2 have a

benefit compared to using the conventional ranku (as in HEFT)?

112

6.3 Evaluation of Machine Models

360

400

440

480

0.0 0.5 1.0 1.5 2.0
Reconfiguration overhead P L

r

M
ea

n
sc

he
du

le
le

ng
th

sl

Machine
MPR

MR

Benchmark
optimal
REFT

Figure 6.2: Effects of reconfiguration overhead on the schedule length sl in the range 340 – 480
relative to the reconfiguration overhead P L

r for two machine models and an optimal
and REFT-generated schedule

5. What effect does the reconfiguration overhead have for a range of task graphs with different
parameters?

The effects of reconfiguration overhead P L
r on the schedule can be directly measured, both for

an optimal schedule and for REFT generated ones. Since the cost associated with tasks does not
have a unit attached, the reconfiguration overhead is formulated relative to the mean task cost.
For a task graph G = (V, E, w, c, t), let

w =
∑p∈P ∑v∈V w(v, p)

|V| · |P| (6.18)

be the mean computation cost over all tasks. In the following the reconfiguration overhead for
a location is denoted as multiple (or fractions) of w.

Figure 6.2 shows the effects of the reconfiguration overhead relative to the average task size
for 300 random task graphs. The x-axis shows the reconfiguration overhead/delay P L

r where
0 is no overhead and 2 is double the average task cost, i.e. 100 in this case. The y-axis shows
the mean schedule length sl for all task graphs. The plot contains lines for the optimal solver
output (“optimal”) and REFT and differentiates between the two machine modelsMR andMPR.
Machine modelMR is a (1, 3, 3, 0)-model that does not have to perform any reconfiguration to
execute any of the task graphs in Gn. Machine modelMPR in contrast is a (3, 3, 1, 1)-model that
represents a conventional PR-based FPGA system. First, the graphic shows that for machine
modelMPR, REFT performs optimal if the reconfiguration overhead is 0 but performs increasingly
worse as the overhead grows. Second, the optimal schedules for machine modelMR perform
more similar to machine model MPR as the overhead grows. Third, the length of the optimal
schedules does not scale linearly with the configuration overhead. At P L

r ≤ 1 the slope decreases
forMPR, indicating that it can perform tasks parallel to the reconfiguration and thus negating
some of the cost. The performance of REFT using ranku,p does not differ from using ranku for
all values of P L

r , showing that the well-known upper rank function ranku is sufficient even in a
reconfigurable scenario. From here on we use ranku in REFT.

113

Chapter 6 Evaluation

6.4 Evaluation of the REFT Algorithm

Our REFT algorithm introduced in Chapter 4 provides polynomial time task scheduling on
reconfigurable hardware. In this section we provide an evaluation of its performance and
behavior. The evaluation consists of three parts:

1. The methodology of evaluating this unique approach is explained.
2. REFT is compared to optimal schedules.
3. Effects of properties of the machine model are evaluated.

6.4.1 Methodology

The challenge of evaluating REFT lies partly in its novelty: other scheduling algorithms do
not support our machine model directly. This can be overcome by adapting either a machine
model accordingly or the scheduling algorithms themselves. However, the lack of support of the
scheduling of HLS configurations without task-level reconfiguration cannot be overcome this way.
We identify two approaches to evaluate REFT:

1. Port other scheduling algorithm so it uses the machine model: This strategy has the problem
that we would evaluate the port of the scheduling approach that is used as a baseline or
comparison. Also, none of the presented approaches from Chapter 2 supports a wide range
of hardware that a machine model can describe.

2. Use optimal schedules as emitted by the simulator module of the RESCH framework as a
baseline. This has the benefit that the lower bound is independent of the implementation
and can be generated for all machine models. The drawback is the comparably long runtime
of the solver.

After careful consideration, we chose the option 2. over picking a set of comparison algorithms.
Due to the large runtime, the number of tasks, locations and PEs for that is feasible to find a
solution is rather small, but still sufficient to make meaningful statements about the quality of
REFT. Especially for smaller input sizes, we expect REFT to perform near the optimum and any
large deviations must lead to careful investigation.

Thus, the evaluation starts with simple constellations and gets progressively more complex. We
evaluate a series of ({1, . . . , l}, {1, . . . , m}, {k | k ≥ 1}, [0, 1]})-machine models on random and
structured task graphs.

6.4.2 REFT versus Optimum

The purpose of this subsection is to establish a baseline with the simulator module output and
to compare schedules generated with REFT with it. For each machine model and each set of
parameters, a set of random task graphs Gn = {G0, G1, . . . , Gn−1} are generated and simulated
with the solver module as well as the REFT Python implementation. Unless specified otherwise
the number of graphs per set of parameters n = 30: each of the three graph generator algorithms
is used to generate ten graphs. Note that although the graphs are random, the same set Gn is used
for the simulation in the solver as well as with REFT.

6.4.2.1 Parallel Locations

In this simple scenario the ({1, 2, 3} , 1, 1, 0)-machine modelMPL allows partial reconfiguration
and is restricted as little as possible:

114

6.4 Evaluation of the REFT Algorithm

|L| = 1 |L| = 2 |L| = 3

3 4 5 6 7 8 9 1011 3 4 5 6 7 8 9 1011 3 4 5 6 7 8 9 1011
0

250

500

750

Vertices |V|

M
ea

n
sc

he
du

le
le

ng
th

sl

Benchmark
optimal
REFT

Figure 6.3: The mean schedule length sl for a partially reconfigurable ({1, 2, 3}, 1, 1, 0)-machine
model for random task graphs with 3 to 11 vertices |V|

• No properties are set, i.e. P is empty.
• Task types (t) are not set for any task, i.e. any PE can execute any task. This is equivalent to

all tasks having the same type.
• Communication cost is not set.
• Computation cost is uniformly 100.

Figure 6.3 shows the makespan for the number of locations |L| = {1, 2, 3}. The x-axis shows
the number of tasks in the uniformly random task graph and the y-axis shows the corresponding
makespan. The gray area denotes the standard deviation, although it is barely visible for such a
simple scenario. As expected, the makespan grows linearly when only one location is available
for execution. Due to the lack of properties, the reconfiguration overhead is 0 and the tasks are
executed in topological order.

REFT manages to find that solution in all cases. For two locations, there is potential for
parallelism, although the amount of possible parallelism is dependent on the task graph. Having
more than one location in a PR-enabled machine model allows for parallelism, and it can be seen
that the makespan is reduced for |L| = 2 and further reduced for |L| = 3. It is also visible that
REFT performs as well as the optimal solver for these scenarios, since both lines are congruent.

6.4.2.2 Parallel PEs

In this parallel scenario the (1, 1, {2, . . . , }, 0)-machine modelMPP is static, i.e. the configuration
can contain more than one PE, but it can only be configured to one location. Trivially, this should
yield comparable results to the simple scenario, especially since communication is not considered.
Since there is only one configuration, none of the schedules does involve any reconfiguration,
but without the reconfiguration overhead P L

r set, REFT should perform similar. Indeed, the
makespan and other metrics do not show much difference between both scenarios as can be seen
in Table 6.2. The table shows the mean values for both the simpleMPL model above andMPP
from this section. The values are so similar that we do not include the makespan plot for this
machine model. The table shows that, without any communication or reconfiguration overheads,
the schedule has the same quality for both scenarios. This is unsurprising, since schedules for
MPP can execute a task on a different PE within the same configuration, whereas schedules for
MPL must configure one of the available locations with a PE (without any overheads).

115

Chapter 6 Evaluation

Machine

Model |P| |L| Makespan Speedup SLR Slack

MPP 1 1 500.00 1.00 5.00 296.44
2 295.41 1.63 2.95 91.84
3 245.96 1.99 2.46 42.40

MPL 1 1 500.00 1.00 5.00 296.44
2 295.26 1.63 2.95 91.70
3 245.59 2.00 2.46 42.03

Table 6.2: Comparison of the mean of a set of metrics for both MPL and MPP. Both machines
executed the same set of task graphs.

|P| = 1 |P| = 2 |P| = 3

3 4 5 6 7 8 9 1011 3 4 5 6 7 8 9 1011 3 4 5 6 7 8 9 1011

0

200

400

600

Vertices |V|

M
ea

n
sl

ac
k
sl
ac
k

Benchmark
optimal
REFT

Figure 6.4: The mean slack slack for a partially reconfigurable ({1, 2, 3}, 1, 1, 0)-machine model
for random task graphs with 3 to 11 vertices

Figure 6.4 shows the slack for both the solver output and for REFT. The x-axis shows the
number of vertices |V| and the y-axis shows the slack per task graph size. The figure also shows
the slack for three different numbers of PEs |P|. For |P| = 1 the slack grows at a higher rate with
the task graph size compared to |P| = 2 or |P| = 3. This is to be expected: with only one PE
(and one location), the speedup is 1 and the tasks are executed in topological order one after
another. Slack exists, because for two tasks in the same equivalence class under ≺, then their start
times can be interchanged without violating constraint 3. For |P| > 1 the tasks can be scheduled
closer to the optimal start time (w.r.t an infinite number of PEs) and thus lowering the slack. The
graphs in Figure 6.4 indicate that the machine model with |P| = 3 is already near the optimum
and introducing more PEs will not yield a benefit, especially for smaller task graphs.

6.4.2.3 Task Graphs

Besides the machine model the task graphs have an impact on the schedule. In this section
we evaluate how REFT handles different task graph structures with varying parameters. The
construction of the random task graphs is described in Section 6.1.1. The first parameter we
can adjust is the task graph size (n) as in the previous sections. The second parameter is p, the
probability that an edge between two nodes exist. The layer-by-layer techniques offers a third
parameter, specifically the number of layers. A total of 84,000 task graphs were simulated for this
section. The average runtime of the prototypical REFT implementation in Python, that is the time
it takes REFT to generate the schedule (not the makespan) is 10.5 ms, compared to 300 ms that

116

6.4 Evaluation of the REFT Algorithm

the solver takes. For larger graphs the runtimes diverge further as shown below.

0.92

0.94

0.96

0.98

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge probability p

M
ea

n
sp

ee
du

p
sp
ee
d
u
p

Machine model
MPR

MR

Figure 6.5: The mean speedup of REFT speedup in the range 0.92 – 1.0 over the optimal solution
for uniformly random graphs (dashed lines) and graphs from the Erdős–Rényi method
over a range of edge probabilities p; a total of 84,000 schedules are summarized

Figure 6.5 shows the relative speedup of REFT compared to the optimal solution of a total
of 84,000 task graphs with size 10 constructed with the random and the Erdős–Rényi models.
The dashed line shows the speedup for uniformly random task graphs, whereas the solid line
shows values for the Erdős–Rényi graphs. For the latter the x-axis shows an increasing value of p,
i.e. the probability of which an entry is 1 in the upper triangle adjacency matrix. Error bars are
omitted as the standard deviation is close to 0. The graph shows that REFT performs worse for
low p and better for high values of p. It also shows that REFT performs better – even optimal –
for reconfigurable machine models and worse for partially reconfigurable ones. The tendency to
perform better for higher values of p is likely due to the ranking function outputting more suitable
orders for the REFT algorithm with many edges. Further analysis of single schedules showed that
REFT tends to introduce more fragmentation regarding the instances on partially reconfigurable
machines. Once a configuration is instantiated at a location, all PEs from other configurations
are unavailable for that time. A problem that is not as apparent in dynamically reconfigurable
machines, since the PEs from the same configuration do not suffer from fragmentation.

Figure 6.6 shows the relative speedup of REFT over the optimal solution for 75,600 task graphs
with size 10 constructed with the layer-by-layer technique. The x-axis shows the probability p
with which an edge from two vertices is created and the y-axis shows the number of levels from
1 (only 1 layer) to 10 (each task on its own layer). Again, the figure distinguishes between two
machine models: one with PR support and one without. In general the performance of REFT is
worse for the PR-based machine model with a mean speedup speedup of 0.922 compared to 0.978
for the machine model without PR. A penalty of – on average – 7.8% and 2.2% is relatively low,
considering that the prototypical Python implementation of REFT uses a fraction of the time of
the solver. Further, REFT produces particularly good results for independent tasks (either low p
or with one layer).

6.4.2.4 Contention-Aware Schedules

Instead of using the fixed communication cost, REFT also supports edge scheduling to model
communication congestion, i.e. to generate contention-aware schedules according to Definition 27.

117

Chapter 6 Evaluation

MPR MR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1
2
3
4
5
6
7
8
9

10

Edge probability p

N
um

be
r

of
la

ye
rs speedup

0.90

0.95

1.00

Figure 6.6: The mean speedup of REFT speedup in the range 0.85 – 1.0 over the optimal solution
for the number of layers, the edge probability p and two machine models; a total of
75,600 schedules are summarized

This is further described in Section 3.4.5.3 and the REFT variant using edge scheduling is described
in Section 4.3.5, in particular by Algorithm 4.3 on page 74.

The purpose of this subsection is to investigate the effect of edge scheduling on schedules
and the output of REFT in particular. We repeat the experiments from the previous section but
include edge scheduling. For all machine models the default topology (see Section 3.2.2.1) is used.
Then we vary the communication cost per edge from 0 to double the cost of the average task.
Sinnen describes this ratio for a task graph G = (V, E, w, c, t) as the Computation-Communication-
Ratio (CCR) CCR = ∑e∈E c(e)

∑v∈V w(v) [125]. Varying this parameter gives insight into how a scheduling
algorithm (and in our case also a machine model) responds more communication or more
computation-bound workloads.

Figure 6.7 compares the mean schedule length sl for 840 randomly generated task graphs for
the solver and REFT each with and without edge scheduling. This means in both cases the
communication cost are included, but only with edge scheduling the congestion is also accounted
for. It also shows the mean runtime on a logarithmic scale using the same breakdown of solver
and REFT output and edge scheduling. Both plots are divided up for a partially reconfigurable
and a dynamically reconfigurable machine model. The figure gives a few insights:

1. The effect of the edge scheduling is clearly visible. Over all task graphs, the mean optimal
schedule length is 2,486 with congestion compared to 932 without.

2. REFT performs well within 3% of the optimal schedule length except for the partially
reconfigurable machine with edge scheduling.

3. This combination also took the solver significantly more time to find the optimal solution,
i.e. more than 149 s compared to 0.38 s on average.

4. In general – and somewhat unsurprisingly – scheduling edges additional to tasks increases
the search space and therefore the runtime for the solver. The effect is also visible for REFT
but orders of magnitude smaller.

This further shows the problem of using the solver for anything other than the verification of
other algorithms like REFT: even for small task graphs the time to find a solution is much longer

118

6.4 Evaluation of the REFT Algorithm

MPR MR

with without with without
0

1000

2000

3000

Edge SchedulingM
ea

n
sc

he
du

le
le

ng
h
sl

MPR MR

with without with without
1e-02
1e-01

1e+00
1e+01
1e+02

Edge scheduling

R
un

ti
m

e
(s

)

Benchmark
optimal
REFT

Figure 6.7: The logarithmic runtime of REFT and the mean schedule length sl with and without
congestion for two machine models

than a typical application executes, let alone making up for the optimization potential over even
a naive schedule.

Figure 6.8 shows the effect of the CCR on REFT and the optimal schedule. The x-axis shows
the CCR and the y-axis shows the mean schedule length sl in the upper part and the runtime
in seconds in the lower part. Again, the negative impact of REFT with edge scheduling for the
partially reconfigurable machine is clearly visible. It is also apparent that the difference between
the optimum and REFT’s output increases with the CCR. At the same time, REFT’s output is
again within 3% of the optimum for all other cases.

Upon further inspection of the schedules it becomes apparent that this effect seems to have its
origin in the much simpler allocation process of communication edges that REFT uses. Whereas
the solver can find – for each link – the optimal point in time, REFT uses the union of all
communication free time slots along the path. This means that REFT must find an interval
where all links along the path do not communicate at the same time and allocate an edge during
this interval. Even more so, REFT must take the slowest link’s communication bandwidth as
bandwidth for all links across the path. In contrast, the solver is much more flexible, since it must
only fulfill constraints 5 and 6 (Definition 27).

6.4.3 Other Effects on REFT

While the comparison with optimal schedules gives a clear frame of reference, it is not feasible to
use the solver module for significantly larger task graphs, since it is too slow. However, the effects
the machine model, its properties and other parameters are of interest in more complex scenarios.

We generated a set of 2,100,000 task graphs with a size of 100 vertices on average with varying
factors like the CCR and the imbalance (the range of task costs) for both partially reconfigurable
and dynamically reconfigurable machine models. These were scheduled by REFT, both in the

119

Chapter 6 Evaluation

MPR MR

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

1000

2000

3000

4000

5000

CCRM
ea

n
sc

he
du

le
le

ng
th

sl

MPR MR

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0

1000

2000

Computation-communication ratio CCR

R
un

ti
m

e
(s

)

Edge Scheduling
with
without

Benchmark
optimal
REFT

Figure 6.8: The runtime of REFT and the mean schedule length sl over the computation-
communication ratio CCR

more simple static communication cost variant as well with the edge scheduling variant.
Figure 6.9 shows the impact of the CCR and the imbalance on the schedule length. The x-axis

shows the CCR and the y-axis the mean schedule length sl over all executed schedules. A few
observations can be made from the figure:

• Clearly, the CCR has an effect on the schedule. This can also be observed in Figure 6.8 and
is confirmed here.

• The dynamically reconfigurable machine model performs better than the partially reconfig-
urable one. Further inspection indicates that REFT can make better use of backfilling in the
former case which leads to shorter schedules. This effect is negligible if the configuration
overhead is near zero (not shown in the figure).

• The imbalance has an effect on the schedule. Large imbalances lead to longer schedules,
although the mean total execution cost is equal for all imbalance values. This effect can be
attributed to fragmentation and higher mean data ready times. Any long task will postpone
all successors, while the successors of a short(er) task can only start execution once all other
dependencies are met.

• The effect the CCR on schedules with congestion is large. Note that the scales on the top
plot differs an order of a magnitude compared to the bottom one.

• The edge scheduling works significantly better with no imbalance. Both partially recon-
figurable and dynamically reconfigurable machine models perform better without any
imbalance. This can be attributed to a similar effect as the third point.

• Although it may be difficult to see in Figure 6.9, using edge scheduling gives shorter
schedules for a ccr = 0 for larger imbalance compared to not using it. This may be

120

6.5 Evaluation of the DSE

W
ith

edge
scheduling

W
ithout

edge
scheduling

0.0 0.5 1.0 1.5 2.0

0

100 000

200 000

10 000

15 000

20 000

25 000

Computation-communication ratio CCR

M
ea

n
sc

he
du

le
le

ng
th

sl Machine model
MPR

MR

Imbalance
0
30
60
90

Figure 6.9: The mean schedule length sl of REFT over the computation-communication ratio CCR
with and without edge scheduling

counterintuitive, but fact that every edge is explicitly scheduled allows for better backfilling,
i.e. finding lower EFTs for the tasks.

We also tested much larger graphs with up to 10,000 nodes: the general trends persisted.
Performing edge scheduling does come at a price, though. Already for task graphs with 500
nodes we observed runtimes of REFT of over 200 seconds. Upon further investigation it is
clear that the Python package portion used for interval operation becomes a bottleneck. It
is not well optimized for the operations done in REFT. However, we want to emphasize that
REFT is a prototype implementation for experimental purposes. One could optimize the interval
implementation, employ caching or explicitly construct the intervals during the allocation,
removing the need for costly operations altogether.

6.5 Evaluation of the DSE

The DSE process aims to optimize a machine model for a given task graph using the GA. In this
section we assess how well the optimization process works. In particular, we are interested in the
difference in schedule length of a naive input program and an optimized program. This scenario
represents the usage of DSE as a compilation step. In this scenario, a programmer writes an HLS
program and the DSE identifies a good allocation of PEs and configurations.

The resource usage plays an important role in DSE. If the resource usage is not considered,
the DSE will opt to create as many clones as possible, disregarding all negative effects of static
and dynamic congestion. As detailed in Section 5.4.3, our DSE approach uses the available chip

121

Chapter 6 Evaluation

resources to model static congestion and to avoid overfilling configurations, so that they can be
synthesized.

Resource Quantity

LUT 1,866,240
FF 3,732,480
Memory Blocks 11,721
DSP Units 5,760

Table 6.3: Resources of Intel FPGA PAC D5005 with Intel Stratix 10 GX FPGA [12]

For this evaluation we use the resource properties of an Intel FPGA PAC D5005 accelerator card
which contains an Intel Stratix 10 GX FPGA. Table 6.3 shows the resources that are available on
the FPGA. The values already have the resources used by the OpenCL shell subtracted, meaning
that all resources are available for PEs. For the PEs the used resources are estimated by the aoc
compiler offered by Intel. A call to aoc -report -profile -g -rtl -report pes.cl
will generate a report file with accurate numbers for the kernel functions (PEs) included in
pes.cl that will be included in one configuration. The -rtl flag stops the compilation at the
RTL-level, avoiding the long-lasting place-and-route step of the compilation. The numbers aoc
generates generally do not change when invoked without the -rtl flag, which results in the
configuration file, i.e. the bitstream.

The structure of this evaluation follows the structure of Chapter 5:

1. An evaluation of InterCO
2. An evaluation of IntraCO
3. An evaluation of CO

6.5.1 Evaluation of InterCO

Recall that the purpose of InterCO is to solve the combinatorial problem of arranging PEs in
configurations for a given task graph. In this section we evaluate the effect of the GA and its
performance.

2000

3000

4000

1 2 3 4 5 6 7 8 9 10
Cloning factor k

Sc
he

du
le

le
ng

th
sl

Figure 6.10: InterCO: schedule length sl over the cloning factor k

Figure 6.10 shows a box-plot for schedule lengths for all machine models generated – over all
generations – during an execution of the DSE for an implementation of the LU-decomposition.

122

6.5 Evaluation of the DSE

The y-axis shows the makespan sl and the x-axis shows the cloning factor k. A cloning factor of 1
is equivalent of the simple encoding as described in Section 5.3.1. The vertical lines on the boxes
show the minimum/maximum, the box itself show the 25% quantile and the bold line represents
the median. The dots show outliers. The GA generated 50 generations with 5 solutions each per
k. The upper bound for the number of possible configurations is 4, since there are 4 different
kernel types. It is clear that without any cloning, the schedule length is not optimal, i.e. the best
optimal schedule generated by the GA is 1,900, while the best overall schedule length is 1,500.
However, the best schedule length is found already with k = 2 and does not improve for higher k.

While this represents the GA’s output for one particular task graph and set of resource
properties, the overall procedure for optimization can be applied for all task graphs and hardware.

Furthermore, for a single user (e.g. in an HPC use case), the goal might be to reduce the
makespan. In multi-tenant system, the fitness function could target the resource usage or a
weighted combination of both. This is especially true if the task graphs of all tenants cannot
be considered in combination, but in isolation. In the former case one could still optimize the
combined set of tasks graphs, in the latter one cannot assume knowledge about the behavior of
other users.

6.5.2 Evaluation of IntraCO

The purpose of IntraCO is the automatic optimization of a given HLS program and one (or
more) task graphs using one configuration. For the evaluation, we used the LU-decomposition
of matrices split up into 10× 10 blocks. The task graph was built from a trace of an OpenCL
program on an Intel Stratix 10 GX accelerator card as described in Chapter 3.

0

2500

5000

7500

GA generationSc
he

du
le

le
ng

th
sl

0

1

2

GA generation

Ef
fic

ie
nc

y

Figure 6.11: IntraCO: schedule length sl and efficiency over the GA generation

We input this data into the GA using the encoding presented in Section 5.5.3 and generate 50
generations with a population of five chromosomes each to optimize the machine model (i.e. the
HLS program). Figure 6.11 shows two bar charts: on the top, the best (minimal) schedule length
per GA generation on the x-axis is shown. On the bottom, the efficiency for the same generations
of the GA is plotted. The GA is able to reduce the schedule length from 10,578 down to 6,773, a

123

Chapter 6 Evaluation

reduction of over 35 %. This solution is also the one with the highest efficiency with 2.6 compared
to a naive solution with an efficiency of 0.5.

To show the generality of IntraCO, we perform a set of optimizations on 100 (1, 1, 9, 1)-machine
models that are randomly generated using the three techniques from Section 6.1.1. Each machine
model starts an equal allocation of the system’s resources. For example, if the location provides n
LUT blocks and 5 PEs are required, then the machine model is generated so that each PE requires
n
5 LUT blocks.

5

10

15

20

500 700 900 1100 1300
Schedule length sl

Ef
fic

ie
nc

y

Figure 6.12: IntraCO: efficiency over the schedule length sl

Figure 6.12 shows the schedule length and efficiency for both the initial and optimized machine
model. The x-axis shows the schedule length sl and the y-axis the efficiency. Each machine model
is depicted as an arrow that points from the model’s initial schedule length and efficiency to its
optimized values. For example, if arrow points from the (1300, 10) coordinate to (900, 15), then it
represents a machine model that was optimized so that the input task graph is executed with
a schedule length of 900 instead of 1,300, while the efficiency improved from 10 to 15. Clearly
visible is the tendency for arrow pointing top-left, i.e. the GA manages to increase the efficiency
and reduce the schedule length.

This impression is backed by the underlying data. Considering the relative speedup as slin
slout

where slin and slopt are the input and optimized schedule lengths, respectively. The relative
speedup for the optimized machine models is 1.34 with a standard deviation of 0.26. Conversely,
the relative gain in efficiency is 0.48 over the input machine models with a standard deviation of
0.52. This shows that IntraCO is able to automatically identify optimized machine models for
specific work loads. In particular, it is possible to decrease the schedule length using only one
configuration and a limited set of resources.

6.5.3 Evaluation of CO

As a combination of InterCO and IntraCO, CO can be evaluated as such. To assess the benefits of
the combination of both strategies, we generate 100 (1, {1, 2, 3}, 9, 1)-machine models and observe
their optimization potential. In addition to IntraCO, the machine models are now also optimized
with InterCO to examine if this further reduces the target metric, the schedule length.

Figure 6.13 shows the results of optimizing the 100 generated task graphs with CO. It depicts
the schedule length on the x-axis and the efficiency on the y-axis and arrows denoting the
development form input machine model to optimized machine model, similar to Figure 6.12.
Note that the (1, 1, 9, 1)-machine model – represented by the figures in the left column with

124

6.5 Evaluation of the DSE

|C| = 1 |C| = 2 |C| = 3

P
Lr
=

0
P

Lr
=

100
P

Lr
=

200

500 1000 1500 2000500 1000 1500 2000500 1000 1500 2000

10

20

10

20

10

20

Schedule length sl

Ef
fic

ie
nc

y

Figure 6.13: CO: efficiency over the schedule length sl split by the number of configurations |C|
and configuration delay P L

r

|C| = 1 is equivalent to only performing IntraCO, since there exist only one configuration and
consequently the optimizations may only be performed within that configuration. In the middle
and right column two and, respectively, three configurations are available for the GA. The top
row shows machine models without any reconfiguration delay P L

r . The middle row shows a
reconfiguration delay equal to the mean task length and the bottom row a reconfiguration delay
equal to twice the mean task length. We make the following observations:

• As expected, CO is able to optimize the machine models over all. All arrows in the plot
point to the left direction, i.e. the CO identified a machine model that generates a faster
schedule.

• The introduction of a second configuration is beneficial for the schedule length as well as
for the efficiency. The second (third) configuration make use of the existing resources (like
LUTs and DSPs) a second (third) time, increasing the efficiency.

• The increase in efficiency is not affected by a lower configuration delay, i.e. in the top row.
Remember that REFT performs the scheduling during the optimization. This indicates that
REFT is able to alleviate the cost of reconfiguration.

• The introduction of more configurations is not always beneficial.

The last point is evident by looking at the accumulated data. Where the mean schedule length
sl = 977 (135 standard deviation) when the number of configurations |C| = 1, it is considerably
lower for |C| = 2 with a mean schedule length sl = 798 (131) but it goes up to sl = 824 (158) for
|C| = 3.

125

Chapter 6 Evaluation

This concludes the evaluation of CO. Accumulated date for all the measurements performed
in this chapter can be found in Appendix B.

6.6 Summary

This chapter presents the evaluation of our work in Chapters 3, 4 and 5. Our software framework
RESCH to describe machine models, task graphs and REFT is introduced. Using the RESCH
framework, we evaluated:

1. The definition of a machine model and how it can describe FPGA-based accelerators for
task scheduling.

2. The polynomial time scheduling task algorithm REFT.
3. The DSE to optimize machine models representing HLS programs for a given workload.

We found that machine models are able to accurately describe FPGA-based accelerators for
the purpose of analyzing task scheduling algorithm. The challenge of reliably re-producing
existing task graphs is met by automatically tuning OpenCL kernels to the hardware and using
the RESCH framework as a scheduling runtime.

The polynomial task scheduling algorithm REFT is compared against optimal schedules
generated from a constraint programming framework. We found that REFT can perform at
near-optimal schedule lengths for a wide range of settings, while having a significantly shorter
runtime. It also handles limited reconfigurability well, with the results being nearer to the
optimum than using conventional PR-based schedules.

The DSE can be used to optimize machine models for a given task graph, descreasing the
schedule length and increasing the efficiency for a wide range of workloads. Both InterCO
and IntraCO and their combination CO have a positive impact on the resulting schedules. The
process is executed in time frames that allow an integration into the HLS compilation process to
automatically optimize code without the interaction of a user.

The next chapter provides a conclusive view on our work and wages an outlook for further
research based in our work.

126

Chapter 7
Conclusion

In this chapter we summarize our work and venture an outlook to future work as well as potential
applications of the approach.

7.1 Conclusions

FPGAs have a lot of potential for computation offloading, which is currently not widely utilized.
The PR feature of FPGAs, commonly leveraged in research for task scheduling, faces limited
practical application due to various impediments. Consequently, we pursue an alternative
approach, devising and evaluating task scheduling methodologies on FPGAs without relying on
task-level reconfiguration.

We present a novel framework to describe FPGA-based accelerators at differnt levels of
precision as the basis for analysis. The evaluation shows that it can not only be applied to a
range of accelerators but also be used to compare purely Partial Reconfiguration (PR)-based
scheduling strategies to alternative ones. Additionally, comparing the framework against existing
FPGA-based hardware demonstrates that it can accurately model the scheduling behavior as
implemented in our RESCH framework evaluation. Using this model, the differences between
task-level reconfigurations and more ergonomic reconfigurations can be quantified. This opens a
path to potentially vastly simplified software development models with comparable efficiency
and performance.

Two approaches for task scheduling, built on the framework, have been introduced. Both are
also agnostic to the granularity of possible reconfigurations. The static scheduling approach is
employed to generate optimal schedules for a particular hardware model. Due to the nature of the
scheduling problem, it is only feasible for problems of smaller size or for exact comparisons. A
polynomial-time algorithm is more suited for implementations in live systems. In the evaluation,
we demonstrate that it performs near optimally in many cases, but does so in intervals feasible
for use in production environments. It must be mentioned that both approaches – in contrast to
published research – work transparently with currently available, standardized technologies like
OpenCL.

Another central and novel contribution is the optimization of the underlying hardware model
for a given task graph or set of task graphs. Since FPGAs are reconfigurable, this GA-based
algorithm determines the best organization of logic into configurations. The evaluation shows that
the approach is able to increase the efficiency of the usage of FPGA resources while optimizing task
schedules. A new generation of software environments can integrate this algorithm, automatically
optimizing applications for a given FPGA-based accelerator.

127

Chapter 7 Conclusion

7.2 Future Work and Applications

Our work lays the groundwork for further endeavors in task scheduling on FPGA-based accelera-
tors, especially considering limited support for PR to build better abstractions.

Our approach can be applied as part of a HLS workflow: for example, an FPGA vendor with
precise knowledge about its FPGA-based accelerator platform may describe the accelerator as
a machine model. During the HLS workflow, the machine model may be used to find possible
schedules and perform DSE to either automatically implement optimizations or present the user
of the workflow with feedback and hints about their code. Also, REFT can be implemented as a
part of a HLS runtime environment, steering the execution of tasks in a reconfiguration-aware
manner without reliance on task-level reconfiguration. FPGA software engineers can use our
approach to assess the benefit of implementing a complex PR-based scheduling approach.

We see the following concrete issues that need further research:

1. The potential impact of hardware support for the proposed approach is significant, especially
considering the current motivation stems from the absence of portable PR features. If
vendors wish to adopt this approach and invest in explicit support for shell-based setups, it
could lead to notable changes in scheduling strategies such as REFT.

2. The granularity of the machine model plays a crucial role in the accuracy of schedules.
Certain characteristics of the model may significantly influence the precision of scheduling
outcomes. It is essential to develop a method to measure the significance of each property
in the overall model.

3. The applicability of the proposed approach extends beyond FPGA-based hardware. It is
conceivable that Coarse-Grained Reconfigurable Architectures (CGRAs) could be modeled
and utilized within the REFT framework, suggesting a broader potential for the approach
in various reconfigurable hardware contexts.

It may be also be interesting to investigate whether the application of our approach leads to
broader acceptance by users and vendors, thereby bringing wider adoption to FPGAs. Further, it
needs to be evaluated whether a PR-less scheduling strategy could enable task-based approaches
in areas that currently refrain from using a tasking programming model.

128

Appendix A
Listings

Listing A.1 shows the JSON Schema description for machine model definitions. This schema
defines required fields and the structure of valid definitions, so that the RESCH framework can
process it and use it to generate an internal representation of the machine model. An example of
a complying file can be found in the RESCH framework’s sample directory.

1 {"$schema": "http://json-schema.org/draft-04/schema#",
2 "type": "object",
3 "properties": {
4 "configurations": {
5 "type": "array",
6 "items": {
7 "type": "object",
8 "properties": {
9 "id": { "type": "integer" },

10 "file_name": { "type": "string" },
11 "PEs": {
12 "type": "array",
13 "items": {
14 "type": "object",
15 "properties": {
16 "id": { "type": "integer" },
17 "function_name": { "type": "string" }
18 },
19 "additionalProperties": true,
20 "required": ["id", "function_name"]
21 },
22 "additionalItems": true
23 }
24 },
25 "additionalProperties": true,
26 "required": ["id", "file_name", "PEs"]
27 },
28 "additionalItems": true
29 }
30 },
31 "additionalProperties": true, "required": ["configurations"]}

Listing A.1: JSON Schema for machine model definitions.

129

Appendix A Listings

Listing A.2 shows the JSON Schema description for a schedule so that is can be processes by
the RESCH framework. For each scheduled task it consists of a PE identifier, a task identifier and
the start time of the task execution.

1 {
2 "$schema": "http://json-schema.org/draft-04/schema#",
3 "type": "object",
4 "properties": {
5 "schedule": {
6 "type": "array",
7 "items": {
8 "type": "object",
9 "properties": {

10 "id": { "type": "integer" },
11 "PE": { "type": "integer" },
12 "t_s": { "type": "integer" }
13 },
14 "additionalProperties": false,
15 "required": ["id", "PE", "t_s"]
16 },
17 "additionalItems": false
18 }
19 },
20 "additionalProperties": false,
21 "required": ["schedule"]
22 }

Listing A.2: JSON Schema for schedules.

130

Listing A.3 shows the implementation of standard PEs in OpenCL that are used in the evalua-
tion. It uses the definition in the CLONE_PES macro to implement a standard PE and a series of
macros in lines 10–19 to generate clones of the function. Compiling the file with NUM_PES set to
an integer between 1 and 9 can be used to set the number of standard PEs. The size of the buffer
(to influence the resource consumption per PE) can be specified with BUFSIZE.

1 #ifndef NUM_PES
2 #define NUM_PES 1
3 #endif
4
5 #define BUFSIZE 16
6
7 #define PASTER(x, y) x##_##y
8 #define EVALUATOR(x, y) PASTER(x, y)
9

10 #define PE_CLONE_1 CLONE_PES(1)
11 #define PE_CLONE_2 PE_CLONE_1 CLONE_PES(2)
12 #define PE_CLONE_3 PE_CLONE_2 CLONE_PES(3)
13 #define PE_CLONE_4 PE_CLONE_3 CLONE_PES(4)
14 #define PE_CLONE_5 PE_CLONE_4 CLONE_PES(5)
15 #define PE_CLONE_6 PE_CLONE_5 CLONE_PES(6)
16 #define PE_CLONE_7 PE_CLONE_6 CLONE_PES(7)
17 #define PE_CLONE_8 PE_CLONE_7 CLONE_PES(8)
18 #define PE_CLONE_9 PE_CLONE_8 CLONE_PES(9)
19 #define GEN_PES() EVALUATOR(PE_CLONE, NUM_PES)
20
21 #define CLONE_PES(INDEX) \
22 kernel void pe_##INDEX(\
23 const int cost, global const int *restrict data, \
24 const int data_size, global int *restrict out) { \
25 float val = 23; \
26 float local_buf[BUFSIZE]; \
27 for (int i = 0; i < data_size; i++) { \
28 local_buf[i % BUFSIZE] += data[i]; \
29 } \
30 val = local_buf[cost % BUFSIZE]; \
31 for (int i = 0; i < cost; i++) { \
32 val += i; \
33 } \
34 *out = val; \
35 }
36
37 GEN_PES()

Listing A.3: The implementation of the standard PE in OpenCL

131

Appendix B
Aggregated Evaluation Results

This section shows some of the aggregated evaluation results. The evaluation data is condensed
where needed. For the raw data see the logs directory in the RESCH framework’s repository.

Table B.1 shows the underlying data for the machine model execution for selected log2 values
of the input size and the mean execution time of the standard PEs in nanoseconds.

Table B.1: Standard PE timings

Parameter Platform Data time (ns)

2 679
8 657

16 993944

Intel Stratix 10

22 64527981
2 42461
8 48271

16 1637494

Computing

Xilinx U280

22 98014286
2 1704
8 1679

16 207410

Intel Stratix 10

22 12929069
2 40095
8 39715

16 266894

Data

Xilinx U280

22 14119722

133

Appendix B Aggregated Evaluation Results

Table B.2 shows the aggregated results of the REFT evaluation, comparing the optimal solver
solution. The data is grouped by the machine model, the benchmark, the algorithm for task graph
generation, number of PEs |P| and number of locations |L|. It shows the mean execution time of
the scheduling algorithm in seconds, the mean makespan sl, speedup speedup, and slack slack.

Table B.2: REFT metrics

Model Benchmark Algorithm |P| |L| avg. time (s) sl speedup slr slack

1 0.010 500 1.0 5.0 291.5
2 0.023 278 1.7 2.8 69.3

Erdős–Rényi

3 0.030 233 2.1 2.3 24.8
1 0.011 500 1.0 5.0 364.8
2 0.022 278 1.7 2.8 142.6

layer-by-layer

3 0.029 200 2.4 2.0 64.8
1 0.010 500 1.0 5.0 216.1
2 0.022 322 1.4 3.2 38.3

optimal

enumeration

3 0.029 300 1.6 3.0 16.1
1 0.004 500 1.0 5.0 291.5
2 0.006 289 1.7 2.9 80.4

Erdős–Rényi

3 0.007 233 2.1 2.3 24.8
1 0.004 500 1.0 5.0 364.8
2 0.005 278 1.7 2.8 142.6

layer-by-layer

3 0.007 200 2.4 2.0 64.8
1 0.004 500 1.0 5.0 216.1
2 0.006 322 1.4 3.2 38.3

MR

REFT

enumeration

3 0.007 300 1.6 3.0 16.1

1

0.011 500 1.0 5.0 291.5
2 0.023 278 1.7 2.8 69.3

Erdős–Rényi

3 0.029 233 2.1 2.3 24.8
1 0.010 500 1.0 5.0 364.8
2 0.025 278 1.7 2.8 142.6

layer-by-layer

3 0.028 200 2.4 2.0 64.8
1 0.011 500 1.0 5.0 216.1
2 0.022 322 1.4 3.2 38.3

optimal

enumeration

3 0.029 300 1.6 3.0 16.1
1 0.004 500 1.0 5.0 291.5
2 0.006 289 1.7 2.9 80.4

Erdős–Rényi

3 0.007 233 2.1 2.3 24.8
1 0.004 500 1.0 5.0 364.8
2 0.006 278 1.7 2.8 142.6

layer-by-layer

3 0.006 200 2.4 2.0 64.8
1 0.004 500 1.0 5.0 216.1
2 0.006 322 1.4 3.2 38.3

MPR

REFT

enumeration

1

3 0.007 300 1.6 3.0 16.1

134

Table B.3 shows the aggregated results of the REFT evaluation using the layer-by-layer technique.
The data is grouped by the machine model, the benchmark, and the number of locations. It
shows the mean execution time of the scheduling algorithm in seconds, the mean makespan sl,
speedup speedup, and slack slack.

Table B.3: REFT metrics

Model Benchmark Overhead |L| time (s) sl speedup slr slack

0 - 40 0.582 417 2.4 4.2 187.0
40 - 80 0.589 423 2.4 4.2 193.3
80 - 120 0.594 432 2.3 4.3 202.3
120 - 160 0.604 448 2.3 4.5 217.4

optimal

160 - 200 0.603 463 2.2 4.6 232.9
0 - 40 0.013 444 2.3 4.4 213.7
40 - 80 0.013 485 2.1 4.8 254.8
80 - 120 0.013 518 2.0 5.2 287.6
120 - 160 0.013 553 1.9 5.5 323.1

MPR

REFT

160 - 200

3

0.013 594 1.7 5.9 363.5
0 - 40 0.036 514 2.0 5.1 284.0
40 - 80 0.036 514 2.0 5.1 284.0
80 - 120 0.036 514 2.0 5.1 284.0
120 - 160 0.036 514 2.0 5.1 284.0

optimal

160 - 200 0.036 514 2.0 5.1 284.0
0 - 40 0.008 538 1.9 5.4 308.1
40 - 80 0.008 538 1.9 5.4 308.1
80 - 120 0.008 538 1.9 5.4 308.1
120 - 160 0.008 538 1.9 5.4 308.1

MR

REFT

160 - 200

1

0.008 538 1.9 5.4 308.1

Table B.4 shows the aggregated results of the REFT evaluation using the layer-by-layer technique.
The data is grouped by the machine model, the benchmark, and the number layers. It shows the
mean execution time of the scheduling algorithm in seconds, the mean makespan sl, speedup
speedup, and slack slack.

135

Appendix B Aggregated Evaluation Results

Table B.4: REFT metrics by layer

Model Benchmark Layers time (s) sl speedup slr slack

1 0.562 411 2.4 4.1 311.1
2 0.610 418 2.4 4.2 228.0
3 0.611 439 2.3 4.4 186.7
4 0.602 445 2.3 4.4 174.6
5 0.601 453 2.3 4.5 172.8
6 0.594 444 2.3 4.4 178.2
7 0.592 445 2.3 4.4 197.3
8 0.582 435 2.3 4.4 201.8
9 0.581 433 2.4 4.3 199.1

optimal

10 0.579 432 2.3 4.3 205.2
1 0.012 497 2.1 5.0 396.8
2 0.013 505 2.0 5.1 314.9
3 0.013 506 2.0 5.1 253.4
4 0.013 510 2.0 5.1 240.3
5 0.013 532 1.9 5.3 251.5
6 0.013 519 2.0 5.2 254.1
7 0.013 525 2.0 5.3 277.8
8 0.013 514 2.0 5.1 281.0
9 0.013 518 2.0 5.2 283.7

MPR

REFT

10 0.013 510 2.0 5.1 282.4
1 0.032 481 2.1 4.8 381.1
2 0.038 507 2.0 5.1 316.3
3 0.039 531 1.9 5.3 278.5
4 0.037 512 2.0 5.1 242.1
5 0.037 534 1.9 5.3 254.0
6 0.036 513 2.0 5.1 248.0
7 0.036 526 2.0 5.3 278.3
8 0.036 513 2.0 5.1 279.9
9 0.035 511 2.0 5.1 277.2

optimal

10 0.035 512 2.0 5.1 284.9
1 0.007 481 2.1 4.8 381.1
2 0.008 531 1.9 5.3 340.7
3 0.008 560 1.8 5.6 307.4
4 0.008 541 1.9 5.4 271.0
5 0.008 571 1.8 5.7 290.7
6 0.008 546 1.9 5.5 280.2
7 0.008 546 1.9 5.5 298.3
8 0.008 531 1.9 5.3 297.6
9 0.008 538 1.9 5.4 303.9

MR

REFT

10 0.008 538 1.9 5.4 310.5

136

Table B.5 shows the aggregated results of the REFT with CCR influence. The data is grouped
by the machine model, the benchmark, and the number layers. It shows the mean execution time
of the scheduling algorithm in seconds, the mean makespan sl, speedup speedup, and slack slack.

137

Appendix B Aggregated Evaluation Results

Table B.5: REFT metrics

Model CCR Imbalance time (s) sl speedup slr slack

0 0.435 8095 1.7 81.0 2761.4
30 1.066 11849 1.8 165.9 3653.7
60 1.833 15318 1.9 359.0 4233.5

0

90 2.778 18693 1.9 1344.4 4627.4
0 0.520 8950 1.7 89.5 1570.2

30 1.140 12859 1.8 180.3 1995.7
60 1.934 16237 1.8 385.7 1900.2

50

90 2.934 19558 1.9 1385.6 1477.1
0 0.601 10567 1.5 105.7 907.2

30 1.263 14070 1.7 196.4 151.2
60 2.060 17660 1.8 410.7 0.0

100

90 3.096 20862 1.8 1612.4 0.0
0 0.689 11450 1.5 114.5 0.0

30 1.391 15519 1.6 218.5 0.0
60 2.243 19396 1.6 459.5 0.0

150

90 3.318 22531 1.7 1740.8 0.0
0 0.788 12881 1.4 128.8 0.0

30 1.527 16764 1.5 234.7 0.0
60 2.397 20809 1.6 489.5 0.0

MPR

200

90 3.567 24331 1.6 1880.0 0.0
0 0.275 6501 2.3 65.0 1167.4

30 0.586 9618 2.5 134.6 1423.1
60 1.018 12681 2.5 297.6 1596.6

0

90 1.598 15763 2.5 1111.5 1697.1
0 0.326 7169 2.4 71.7 0.0

30 0.650 10394 2.4 145.7 0.0
60 1.108 13459 2.4 319.7 0.0

50

90 1.713 16427 2.5 1170.6 0.0
0 0.378 8516 2.1 85.2 0.0

30 0.726 11496 2.3 160.4 0.0
60 1.211 14501 2.4 336.9 0.0

100

90 1.838 17527 2.4 1360.7 0.0
0 0.438 9167 2.2 91.7 0.0

30 0.810 12576 2.2 177.0 0.0
60 1.322 15877 2.3 376.7 0.0

150

90 1.975 18937 2.4 1463.1 0.0
0 0.501 10354 2.1 103.5 0.0

30 0.905 13584 2.1 190.1 0.0
60 1.444 16975 2.2 398.6 0.0

MR

200

90 2.133 20284 2.3 1553.8 0.0

138

Table B.6 shows the aggregated results of the REFT with communication influence. The data is
grouped by the machine model, the benchmark, and by whether edge scheduling is enabled. It
shows the mean execution time of the scheduling algorithm in seconds, the mean makespan sl,
speedup speedup, and slack slack.

Table B.6: REFT communication metrics

Model Benchmark Edge Scheduling time (s) sl speedup slr slack

without 0.721 924 1.1 9.2 0.0optimal
with 295.906 1956 0.6 19.6 622.3
without 0.014 957 1.1 9.6 0.0

MPR

REFT
with 0.163 3082 0.5 30.8 1748.7
without 0.050 941 1.1 9.4 0.0optimal
with 2.812 3017 0.5 30.2 1683.5
without 0.008 946 1.1 9.5 0.0

MR

REFT
with 0.078 3052 0.5 30.5 1718.3

139

Appendix B Aggregated Evaluation Results

Table B.7 shows the accumulated results of the InterCO evaluation. The data is grouped by the
number of possible configurations k, the number of generations in steps of 25. It shows the mean
makespan sl, speedup speedup, Schedule Length Ratio (SLR) slr and slack slack.

Table B.7: InterCO metrics

k Generation sl speedup slr slack n

0 - 25 3346 1.7 5.6 1591.3 24
25 - 50 3443 1.7 5.7 1688.3 14
50 - 75 3650 1.6 6.1 1895.5 2

1

75 - 100 3600 1.6 6.0 1845.5 3
0 - 25 2254 2.5 3.8 499.8 46
25 - 50 1890 3.0 3.2 135.9 42
50 - 75 1858 3.0 3.1 103.3 38

2

75 - 100 2052 2.8 3.4 297.8 42
0 - 25 2016 2.8 3.4 261.8 49
25 - 50 1718 3.3 2.9 0.0 49
50 - 75 1787 3.1 3.0 32.1 45

3

75 - 100 1695 3.3 2.8 0.0 44
0 - 25 2008 2.8 3.3 253.6 49
25 - 50 1975 2.8 3.3 220.5 48
50 - 75 1815 3.1 3.0 60.0 48

4

75 - 100 1746 3.2 2.9 0.0 50
0 - 25 1734 3.2 2.9 0.0 50
25 - 50 1662 3.4 2.8 0.0 50
50 - 75 1740 3.2 2.9 0.0 50

5

75 - 100 1720 3.3 2.9 0.0 50
0 - 25 1888 3.0 3.1 133.5 50
25 - 50 1706 3.3 2.8 0.0 50
50 - 75 1624 3.4 2.7 0.0 50

10

75 - 100 1720 3.3 2.9 0.0 50

140

Table B.8 shows the accumulated results of the IntraCO evaluation based on the structured LU
decomposition graph set. The data is grouped by the number of generations in steps of 5 and
shows the mean makespan sl, speedup speedup, slack slack and efficiency efficiency. The number
n of valid solutions varies per generation, in this case sometimes no valid solution was found.

Table B.8: IntraCO metrics

Generation sl speedup slr slack efficiency n

0 - 5 7776 1.8 9.7 5256.5 1.66 13
5 - 10 7755 1.8 9.7 5234.9 1.65 6
10 - 15 8165 1.7 10.2 5644.7 1.43 8
15 - 20 8942 1.6 11.2 6421.7 0.51 2
20 - 25 7497 1.9 9.4 4977.1 2.37 1
25 - 30 7529 1.9 9.4 5009.0 2.30 2
30 - 35 9583 1.5 12.0 7063.1 0.81 4
35 - 40 8544 1.7 10.7 6023.5 1.17 5
45 - 50 9400 1.5 11.7 6879.9 1.79 1
50 - 55 8343 1.7 10.4 5822.9 2.02 1
55 - 60 8629 1.6 10.8 6109.4 1.63 4
60 - 65 10578 1.3 13.2 8058.2 0.43 1
65 - 70 9400 1.5 11.7 6879.9 1.89 1
75 - 80 8876 1.6 11.1 6355.8 0.51 1
80 - 85 9225 1.5 11.5 6704.9 0.49 1
85 - 90 7759 1.8 9.7 5239.2 2.29 1
95 - 100 10182 1.4 12.7 7662.5 1.74 2

Table B.9 shows the accumulated results of the IntraCO evaluation based on randomly gen-
erated graphs. The data is grouped by the number of generations in steps of 5 and shows the
mean makespan sl, speedup speedup, slack slack and efficiency efficiency. The number n of valid
solutions varies per generation.

Table B.9: GA IntraCO metrics

Generation sl speedup slr slack efficiency n

0 - 25 4406 6.5 44.1 3604.6 5.8 7455
25 - 50 6820 6.2 68.2 6018.9 5.6 3590

50 - 75 5641 6.1 56.4 4839.9 5.4 2432
75 - 100 5524 6.1 55.2 4723.0 5.4 2008

141

Appendix B Aggregated Evaluation Results

Table B.10 shows the accumulated results of the CO evaluation. The data is grouped by the
configuration overhead ρ and the number of configurations |C| and shows the mean makespan sl,
speedup speedup, slack slack and efficiency efficiency. The number n of valid solutions varies per
generation.

Table B.10: CO metrics

ρ |C| Generation sl speedup slr slack efficiency n

0 - 25 3483 6.7 34.8 2964.8 6.5 5881
25 - 50 3753 6.7 37.5 3234.4 6.3 220
0 - 25 2237 7.8 22.4 1719.5 7.1 24272
25 - 50 1769 8.9 17.7 1251.4 8.0 2385
0 - 25 2410 7.3 24.1 1892.2 7.2 2574

0

3
25 - 50 1982 8.3 19.8 1463.8 8.0 2595
0 - 25 4255 6.5 42.6 3743.1 6.8 5911
25 - 50 5701 6.6 57.0 5188.8 6.9 219
0 - 25 2317 7.6 23.2 1796.6 7.5 24182
25 - 50 1885 8.8 18.9 1364.4 8.8 2333
0 - 25 2211 8.2 22.1 1692.5 8.3 2645

100

3
25 - 50 1792 9.4 17.9 1273.8 9.3 2693
0 - 25 3840 6.8 38.4 3332.1 8.0 6371
25 - 50 3075 6.9 30.7 2566.4 8.0 184
0 - 25 2575 7.6 25.8 2060.1 6.8 24892
25 - 50 1802 9.1 18.0 1286.5 7.9 2397
0 - 25 2271 7.9 22.7 1754.7 7.9 2639

200

3
25 - 50 1717 8.9 17.2 1200.1 8.7 2611

142

Acronyms

IntraCO Intra-Configuration Optimization . xiv

ASIC Application Specific Integrated Circuit . 2

BRAM Block Random Access Memory . 15

CCR Computation-Communication-Ratio . 118

CI Computational Intensity . 82

CO Configuration Optimization . xiv

CPU Central Processing Unit . 1

CXL Compute Express Link . 39

DAG Directed Acyclic Graph . 5

DDR SDRAM Double Data Rate Synchronous Dynamic Random-Access Memory 17

DR Dynamic Reconfiguration . 4

DSE Design Space Exploration . 8

DSP Digital Signal Processor . 1

EFT Earliest Finish Time . 66

FIFO First In First Out . 18

FPGA Field Programmable Gate Array . 2

GA Genetic Algorithm . 23

GPU Graphics Processing Unit . 1

HEFT Heterogeneous Earliest Finish Time . 66

HLS High-Level Synthesis . 3

HPC High Performance Computing . 1

InterCO Inter-Configuration Optimization . xiv

IC Integrated Circuit . 1

ILP Integer Linear Programming . 6

I/O Input/Output . 2

IR Intermediate Representation . 21

JSON JavaScript Object Notation . 104

LB Logic Block . 15

LUT Lookup Table . 4

OOO Out-Of-Order . 111

OS Operating System . 18

143

Acronyms

PCIe PCI Express . 16

PE Processing Element . xv

PR Partial Reconfiguration . 4

REFT Reconfigurable Earliest Finish Time . 66

RQ Research Question . 7

RTL Register-Transfer Level . 4

SIMD Single Instruction, Multiple Data . 82

SRAM Static Random-Access Memory . 16

SRQ Sub-Research Question . 7

TPU Tensor Processing Unit . 2

144

Bibliography

[1] G. E. Moore, Cramming more components onto integrated circuits, McGraw-Hill New York,
1965.

[2] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE Journal of
solid-state circuits, vol. 9, no. 5, pp. 256–268, 1974. doi: 10.1109/jssc.1974.1050511.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark silicon
and the end of multicore scaling,” in 2011 38th Annual International Symposium on Computer
Architecture (ISCA), Jun. 2011, pp. 365–376. doi: 10.1145/2000064.2000108.

[4] “TOP500.” (2023), [Online]. Available: https://www.top500.org/lists/top500/
(visited on 16.12.2023).

[5] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark: Past, present and
future,” Concurrency and Computation: Practice and Experience, vol. 15, no. 9, pp. 803–820,
2003. doi: 10.1002/cpe.728.

[6] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones, “Comparing
energy efficiency of CPU, GPU and FPGA implementations for vision kernels,” in 2019
IEEE international conference on embedded software and systems (ICESS), IEEE, 2019, pp. 1–8.
doi: 10.1109/icess.2019.8782524.

[7] S. Sharma, C.-H. Hsu, and W.-c. Feng, “Making a case for a Green500 list,” in Proceedings
20th IEEE International Parallel Distributed Processing Symposium, Apr. 2006. doi: 10.1109/
IPDPS.2006.1639600.

[8] “Green500.” (2022), [Online]. Available: https://www.top500.org/lists/green500/
(visited on 16.2.2022).

[9] “PFN’s Supercomputers,” PFN’s Supercomputers. (2023), [Online]. Available: https:
//projects.preferred.jp/supercomputers/ (visited on 8.5.2023).

[10] N. P. Jouppi, C. Young, N. Patil, et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th annual international symposium on computer
architecture, 2017, pp. 1–12.

[11] B. Betkaoui, D. B. Thomas, and W. Luk, “Comparing performance and energy efficiency
of FPGAs and GPUs for high productivity computing,” in 2010 International Conference
on Field-Programmable Technology, IEEE, 2010, pp. 94–101. doi: 10.1109/fpt.2010.
5681761.

[12] “Intel® Stratix® 10 GX 10M FPGA - Product Specifications,” Intel. (Mar. 17, 2022), [Online].
Available: https://www.intel.com/content/www/us/en/products/sku/
210290/intel-stratix-10-gx-10m-fpga/specifications.html (visited on
17.3.2022).

[13] S. M. S. Trimberger, “Three ages of FPGAs: A retrospective on the first thirty years of
FPGA technology,” IEEE Solid-State Circuits Magazine, vol. 10, no. 2, pp. 16–29, 2018. doi:
10.1109/MSSC.2018.2822862.

145

https://doi.org/10.1109/jssc.1974.1050511
https://doi.org/10.1145/2000064.2000108
https://www.top500.org/lists/top500/
https://doi.org/10.1002/cpe.728
https://doi.org/10.1109/icess.2019.8782524
https://doi.org/10.1109/IPDPS.2006.1639600
https://doi.org/10.1109/IPDPS.2006.1639600
https://www.top500.org/lists/green500/
https://projects.preferred.jp/supercomputers/
https://projects.preferred.jp/supercomputers/
https://doi.org/10.1109/fpt.2010.5681761
https://doi.org/10.1109/fpt.2010.5681761
https://www.intel.com/content/www/us/en/products/sku/210290/intel-stratix-10-gx-10m-fpga/specifications.html
https://www.intel.com/content/www/us/en/products/sku/210290/intel-stratix-10-gx-10m-fpga/specifications.html
https://doi.org/10.1109/MSSC.2018.2822862

Bibliography

[14] L. Gan, H. Fu, W. Luk, et al., “Solving the global atmospheric equations through heteroge-
neous reconfigurable platforms,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 8, no. 2, pp. 1–16, 2015. doi: 10.1145/2629581.

[15] O. Lindtjorn, R. Clapp, O. Pell, H. Fu, M. Flynn, and O. Mencer, “Beyond traditional
microprocessors for geoscience high-performance computing applications,” IEEE Micro,
vol. 31, no. 2, pp. 41–49, 2011. doi: 10.1109/mm.2011.17.

[16] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and energy-efficient graph pro-
cessing on FPGA,” in 2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), Washington, DC, USA: IEEE, May 2016, pp. 103–110.
doi: 10.1109/FCCM.2016.35.

[17] T. De Matteis, J. de Fine Licht, and T. Hoefler, “FBLAS: Streaming linear algebra on FPGA,”
in SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE, 2020, pp. 1–13. doi: 10.1109/sc41405.2020.00063.

[18] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration: A survey of
architectures, methods, and applications,” ACM Computing Surveys (CSUR), vol. 51, no. 4,
pp. 1–39, 2018. doi: 10.1145/3193827.

[19] “Gartner says worldwide semiconductor revenue grew 25.1% in 2021, exceeding $500
billion for the first time,” Gartner. (2022), [Online]. Available: https://www.gartner.
com/en/newsroom/press-releases/2022-01-19-gartner-says-worldwide-
semiconductor-revenue-grew-25-point-one-percent-in-2021-exceeding-
500-billion-for-the-first-time (visited on 17.2.2022).

[20] D. Clark, “Intel completes acquisition of Altera,” Wall Street JournalTech, Dec. 29, 2015.

[21] D. Clark, “AMD agrees to buy Xilinx for $35 billion in stock,” The New York TimesTechnology,
Oct. 27, 2020.

[22] “AMD completes acquisition of Xilinx.” (2022), [Online]. Available: https://www.amd.
com/en/press-releases/2022-02-14-amd-completes-acquisition-xilinx
(visited on 17.2.2022).

[23] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” IEEE Design
Test of Computers, vol. 26, no. 4, pp. 18–25, Jul. 2009. doi: 10.1109/MDT.2009.83.

[24] R. Nane, V.-M. Sima, C. Pilato, et al., “A survey and evaluation of FPGA high-level synthesis
tools,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, Oct. 2016. doi: 10.1109/TCAD.2015.2513673.

[25] “Vitis high-level synthesis user guide.” (2023), [Online]. Available: https://docs.
xilinx.com/r/en-US/ug1399-vitis-hls/Streaming-Data-Paradigm (visited
on 30.1.2023).

[26] L. Wirbel, “Xilinx SDAccel: A unified development environment for tomorrow’s data
center,” The Linley Group Inc, 2014.

[27] O. Sinnen, Task scheduling for parallel systems (Wiley Series on Parallel and Distributed
Computing), A. Y. Zomaya, red. Hoboken, NJ, USA: John Wiley & Sons, Inc., Apr. 20, 2007.
doi: 10.1002/0470121173.

[28] K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch, “ZUCL: A ZYNQ UltraScale+ framework
for OpenCL HLS applications,” p. 10, 2018.

146

https://doi.org/10.1145/2629581
https://doi.org/10.1109/mm.2011.17
https://doi.org/10.1109/FCCM.2016.35
https://doi.org/10.1109/sc41405.2020.00063
https://doi.org/10.1145/3193827
https://www.gartner.com/en/newsroom/press-releases/2022-01-19-gartner-says-worldwide-semiconductor-revenue-grew-25-point-one-percent-in-2021-exceeding-500-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2022-01-19-gartner-says-worldwide-semiconductor-revenue-grew-25-point-one-percent-in-2021-exceeding-500-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2022-01-19-gartner-says-worldwide-semiconductor-revenue-grew-25-point-one-percent-in-2021-exceeding-500-billion-for-the-first-time
https://www.gartner.com/en/newsroom/press-releases/2022-01-19-gartner-says-worldwide-semiconductor-revenue-grew-25-point-one-percent-in-2021-exceeding-500-billion-for-the-first-time
https://www.amd.com/en/press-releases/2022-02-14-amd-completes-acquisition-xilinx
https://www.amd.com/en/press-releases/2022-02-14-amd-completes-acquisition-xilinx
https://doi.org/10.1109/MDT.2009.83
https://doi.org/10.1109/TCAD.2015.2513673
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Streaming-Data-Paradigm
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Streaming-Data-Paradigm
https://doi.org/10.1002/0470121173

[29] F. Redaelli, M. Santambrogio, and S. O. Memik, “An ILP formulation for the task graph
scheduling problem tailored to bi-dimensional reconfigurable architectures,” in 2008
International Conference on Reconfigurable Computing and FPGAs, Dec. 2008, pp. 97–102. doi:
10.1109/ReConFig.2008.42.

[30] D. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make sense on FPGAs?”
USENIX Symposium on Operating Systems Design and Implementation, vol. 14, pp. 991–1010,

[31] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled accelerator and test
platform,” in 2014 24th International Conference on Field Programmable Logic and Applications
(FPL), Sep. 2014, pp. 1–7. doi: 10.1109/FPL.2014.6927507.

[32] K. Krommydas, W.-c. Feng, C. D. Antonopoulos, and N. Bellas, “Opendwarfs: Characteri-
zation of dwarf-based benchmarks on fixed and reconfigurable architectures,” Journal of
Signal Processing Systems, vol. 85, no. 3, pp. 373–392, 2016. doi: 10.1007/s11265-015-
1051-z.

[33] P. Jungblut and D. Kranzlmüller, “Optimal schedules for high-level programming envi-
ronments on FPGAs with constraint programming,” in 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2022, pp. 96–99. doi:
10.1109/ipdpsw55747.2022.00025.

[34] P. Jungblut and D. Kranzlmüller, “Dynamic spatial multiplexing on FPGAs with OpenCL,”
in International Symposium on Applied Reconfigurable Computing, Rennes, France: Springer,
2021, pp. 265–274. doi: 10.1007/978-3-030-79025-7_19.

[35] P. Jungblut, “Task scheduling in reconfigurable computing with OpenCL,” in 2021 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW), New Orleans,
LA, USA, Jun. 2021, p. 1023. doi: 10.1109/IPDPSW52791.2021.00160.

[36] P. Jungblut, “Task scheduling on FPGA-based accelerators without partial reconfiguration,”
presented at the International Conference on High Performance Computing, Networking,
Storage and Analysis (SC) (Dallas, TX, USA), Nov. 17, 2022.

[37] P. Jungblut and K. Fürlinger, “Integrating node-level parallelism abstractions into the
PGAS model,” in Proceedings of the 13th International Symposium on High-Level Parallel
Programming and Applications, vol. 13, Porto, Portugal, 2020, pp. 38–56.

[38] K. Fürlinger, J. Gracia, A. Knüpfer, et al., “DASH: Distributed data structures and parallel
algorithms in a global address space,” in Software for Exascale Computing-SPPEXA 2016-
2019, Springer, 2020, pp. 103–142.

[39] E. Zenker, B. Worpitz, R. Widera, et al., “Alpaka–An Abstraction Library for Parallel Kernel
Acceleration,” in 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), IEEE, 2016, pp. 631–640. doi: 10.1109/ipdpsw.2016.50.

[40] P. Jungblut and K. Fürlinger, “Portable node-level parallelism for the PGAS model,”
International Journal of Parallel Programming, vol. 49, no. 6, pp. 867–885, Jun. 5, 2021. doi:
10.1007/s10766-021-00718-x.

[41] P. Jungblut, R. Kowalewski, and K. Fürlinger, “Source-to-source instrumentation for
profiling runtime behavior of C++ containers,” in 2018 IEEE 20th International Conference on
High Performance Computing and Communications; IEEE 16th International Conference on Smart
City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Exeter, UK: IEEE, 2018, pp. 948–953. doi: 10.1109/hpcc/smartcity/dss.2018.
00157.

147

https://doi.org/10.1109/ReConFig.2008.42
https://doi.org/10.1109/FPL.2014.6927507
https://doi.org/10.1007/s11265-015-1051-z
https://doi.org/10.1007/s11265-015-1051-z
https://doi.org/10.1109/ipdpsw55747.2022.00025
https://doi.org/10.1007/978-3-030-79025-7_19
https://doi.org/10.1109/IPDPSW52791.2021.00160
https://doi.org/10.1109/ipdpsw.2016.50
https://doi.org/10.1007/s10766-021-00718-x
https://doi.org/10.1109/hpcc/smartcity/dss.2018.00157
https://doi.org/10.1109/hpcc/smartcity/dss.2018.00157

Bibliography

[42] R. Kowalewski, P. Jungblut, and K. Fürlinger, “Engineering a distributed histogram sort,”
in 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM,
USA: IEEE, 2019, pp. 1–11. doi: 10.1109/cluster.2019.8891005.

[43] J. Von Neumann, “First draft of a report on the EDVAC,” IEEE Annals of the History of
Computing, vol. 15, no. 4, pp. 27–75, 1993. doi: 10.1109/85.238389.

[44] E. Lubbers and M. Platzner, “ReconOS: An RTOS supporting hard-and software threads,”
in 2007 International Conference on Field Programmable Logic and Applications, IEEE, 2007,
pp. 441–446.

[45] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews, “Hthreads: A
computational model for reconfigurable devices,” in 2006 International Conference on Field
Programmable Logic and Applications, IEEE, 2006, pp. 1–4. doi: 10.1109/FPL.2006.
311336.

[46] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtualized execution
runtime for FPGA accelerators in the cloud,” IEEE Access, vol. 5, pp. 1900–1910, 2017. doi:
10.1109/ACCESS.2017.2661582.

[47] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside, “Resource elastic virtualization for
FPGAs using OpenCL,” in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL), Dublin, Ireland: IEEE, Aug. 2018, pp. 111–1117. doi: 10.1109/
FPL.2018.00028.

[48] T. Xia, J.-C. Prevotet, and F. Nouvel, “Hypervisor mechanisms to manage FPGA reconfig-
urable accelerators,” in 2016 International Conference on Field-Programmable Technology (FPT),
Xi’an, China: IEEE, Dec. 2016, pp. 44–52. doi: 10.1109/FPT.2016.7929187.

[49] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream reverse-engineering,”
in 22nd International Conference on Field Programmable Logic and Applications (FPL), IEEE,
2012, pp. 735–738. doi: 10.1109/fpl.2012.6339165.

[50] K. D. Pham, E. Horta, and D. Koch, “BITMAN: A tool and API for FPGA bitstream
manipulations,” in Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, IEEE, 2017, pp. 894–897. doi: 10.23919/date.2017.7927114.

[51] S. Hauck and A. DeHon, Eds., Reconfigurable computing: the theory and practice of FPGA-based
computation (The Morgan Kaufmann series in systems on silicon). Amsterdam ; Boston:
Morgan Kaufmann, 2008, 908 pp.

[52] R. Stefan and S. D. Cotofana, “Bitstream compression techniques for Virtex 4 FPGAs,”
in 2008 International Conference on Field Programmable Logic and Applications, Sep. 2008,
pp. 323–328. doi: 10.1109/FPL.2008.4629952.

[53] “Configuration bit stream sizes,” Intel. (Apr. 27, 2022), [Online]. Available: https://
www.intel.com/content/www/us/en/docs/programmable/683181/current/
configuration-bit-stream-sizes.html (visited on 27.4.2022).

[54] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial reconfiguration in
FPGA systems: A survey and a cost model,” ACM Transactions on Reconfigurable Technology
and Systems, vol. 4, no. 4, pp. 1–24, Dec. 1, 2011. doi: 10.1145/2068716.2068722.

[55] Intel Stratix 10 Configuration User Guide.

[56] C. Beckhoff, D. Koch, and J. Torresen, “Portable module relocation and bitstream compres-
sion for Xilinx FPGAs,” in 2014 24th International Conference on Field Programmable Logic
and Applications (FPL), IEEE, 2014, pp. 1–8. doi: 10.1109/fpl.2014.6927480.

148

https://doi.org/10.1109/cluster.2019.8891005
https://doi.org/10.1109/85.238389
https://doi.org/10.1109/FPL.2006.311336
https://doi.org/10.1109/FPL.2006.311336
https://doi.org/10.1109/ACCESS.2017.2661582
https://doi.org/10.1109/FPL.2018.00028
https://doi.org/10.1109/FPL.2018.00028
https://doi.org/10.1109/FPT.2016.7929187
https://doi.org/10.1109/fpl.2012.6339165
https://doi.org/10.23919/date.2017.7927114
https://doi.org/10.1109/FPL.2008.4629952
https://www.intel.com/content/www/us/en/docs/programmable/683181/current/configuration-bit-stream-sizes.html
https://www.intel.com/content/www/us/en/docs/programmable/683181/current/configuration-bit-stream-sizes.html
https://www.intel.com/content/www/us/en/docs/programmable/683181/current/configuration-bit-stream-sizes.html
https://doi.org/10.1145/2068716.2068722
https://doi.org/10.1109/fpl.2014.6927480

[57] H. Gu and S. Chen, “Partial reconfiguration bitstream compression for Virtex FPGAs,”
in 2008 Congress on Image and Signal Processing, vol. 5, IEEE, 2008, pp. 183–185. doi:
10.1109/cisp.2008.253.

[58] R. Jia, F. Wang, R. Chen, X.-G. Wang, and H.-G. Yang, “JTAG-based bitstream compression
for FPGA configuration,” in 2012 IEEE 11th International Conference on Solid-State and
Integrated Circuit Technology, IEEE, 2012, pp. 1–3. doi: 10.1109/icsict.2012.6467807.

[59] J. H. Pan, T. Mitra, and W.-F. Wong, “Configuration bitstream compression for dynamically
reconfigurable FPGAs,” in IEEE/ACM International Conference on Computer Aided Design,
2004. ICCAD-2004., IEEE, 2004, pp. 766–773. doi: 10.1109/iccad.2004.1382679.

[60] A. Morales-Villanueva, R. Kumar, and A. Gordon-Ross, “Configuration prefetching and
reuse for preemptive hardware multitasking on partially reconfigurable FPGAs,” in 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2016, pp. 1505–
1508. doi: 10.3850/9783981537079_0486.

[61] F. Redaelli, M. D. Santambrogio, and D. Sciuto, “Task scheduling with configuration
prefetching and anti-fragmentation techniques on dynamically reconfigurable systems,” in
2008 Design, Automation and Test in Europe, IEEE, 2008, pp. 519–522. doi: 10.1109/date.
2008.4484902.

[62] S. Corbetta, M. Morandi, M. Novati, M. D. Santambrogio, D. Sciuto, and P. Spoletini,
“Internal and external bitstream relocation for partial dynamic reconfiguration,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 11, pp. 1650–1654,
2009. doi: 10.1109/tvlsi.2008.2005670.

[63] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, “Replica: A bitstream manipulation filter
for module relocation in partial reconfigurable systems,” in 19th IEEE International Parallel
and Distributed Processing Symposium, IEEE, 2005, 8–pp. doi: 10.1109/ipdps.2005.380.

[64] K. Manev, J. Powell, K. Matas, and D. Koch, “Byteman: A bitstream manipulation frame-
work,” in 2022 International Conference on Field-Programmable Technology (ICFPT), IEEE, 2022,
pp. 1–9. doi: 10.1109/icfpt56656.2022.9974549.

[65] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-multiplexed FPGA,” in
Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines Cat. No. 97TB100186), IEEE, 1997, pp. 22–28.

[66] W. Chong, S. Ogata, M. Hariyama, and M. Kameyama, “Architecture of a multi-context
FPGA using reconfigurable context memory,” in 19th IEEE International Parallel and Dis-
tributed Processing Symposium, IEEE, 2005, 7–pp. doi: 10.1109/ipdps.2005.112.

[67] K. Vipin and S. A. Fahmy, “Automated partial reconfiguration design for adaptive sys-
tems with CoPR for Zynq,” in 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines, IEEE, 2014, pp. 202–205. doi: 10.1109/fccm.
2014.63.

[68] J. Corbet, A. Rubini, G. Kroah-Hartman, and A. Rubini, Linux device drivers, 3rd ed. Beijing
; Sebastopol, CA: O’Reilly, 2005, 615 pp.

[69] P. Liu, J. Wu, and Y. Wang, “Hybrid algorithms for hardware/software partitioning and
scheduling on reconfigurable devices,” Mathematical and Computer Modelling, vol. 58, no. 1-2,
pp. 409–420, 2013. doi: 10.1016/j.mcm.2012.11.001.

149

https://doi.org/10.1109/cisp.2008.253
https://doi.org/10.1109/icsict.2012.6467807
https://doi.org/10.1109/iccad.2004.1382679
https://doi.org/10.3850/9783981537079_0486
https://doi.org/10.1109/date.2008.4484902
https://doi.org/10.1109/date.2008.4484902
https://doi.org/10.1109/tvlsi.2008.2005670
https://doi.org/10.1109/ipdps.2005.380
https://doi.org/10.1109/icfpt56656.2022.9974549
https://doi.org/10.1109/ipdps.2005.112
https://doi.org/10.1109/fccm.2014.63
https://doi.org/10.1109/fccm.2014.63
https://doi.org/10.1016/j.mcm.2012.11.001

Bibliography

[70] Q. Tang, B. Guo, and Z. Wang, “SW/HW partitioning and scheduling on region-based
dynamic partial reconfigurable system-on-chip,” Electronics, vol. 9, no. 9, p. 1362, 2020.
doi: 10.3390/electronics9091362.

[71] “IEEE Standard for VHDL Language Reference Manual,” IEEE Std 1076-2019, pp. 1–673,
Dec. 2019. doi: 10.1109/IEEESTD.2019.8938196.

[72] D. Andrews, W. Peck, J. Agron, et al., “Hthreads: A hardware/software co-designed
multithreaded RTOS kernel,” in 2005 IEEE Conference on Emerging Technologies and Factory
Automation, vol. 2, Sep. 2005, 8 pp.–338. doi: 10.1109/ETFA.2005.1612697.

[73] M. Happe, A. Traber, and A. Keller, “Preemptive hardware multitasking in ReconOS,” in
Applied Reconfigurable Computing, K. Sano, D. Soudris, M. Hübner, and P. C. Diniz, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer International Publishing, 2015,
pp. 79–90. doi: 10.1007/978-3-319-16214-0_7.

[74] A. Vaishnav, K. D. Pham, J. Powell, and D. Koch, “FOS: A modular FPGA operating
system for dynamic workloads,” ACM Transactions on Reconfigurable Technology and Systems,
vol. 13, no. 4, pp. 1–28, Jan. 26, 2020. doi: 10.1145/3405794.

[75] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient FPGA implementation of
OpenCL high-performance computing applications via high-level synthesis,” IEEE Access,
vol. 5, pp. 2747–2762, 2017. doi: 10.1109/ACCESS.2017.2671881.

[76] L. Struyf, S. De Beugher, D. H. Van Uytsel, F. Kanters, and T. Goedemé, “The battle of
the giants-a case study of GPU vs FPGA optimisation for real-time image processing,” in
International Conference on Pervasive and Embedded Computing and Communication Systems,
vol. 2, SCITEPRESS, 2014, pp. 112–119. doi: 10.5220/0004730301120119.

[77] T. Nguyen, C. MacLean, M. Siracusa, D. Doerfler, N. J. Wright, and S. Williams, “FPGA-
based HPC accelerators: An evaluation on performance and energy efficiency,” Concurrency
and Computation: Practice and Experience, vol. 34, no. 20, Sep. 10, 2022. doi: 10.1002/cpe.
6570.

[78] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding performance
differences of FPGAs and GPUs,” in 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), IEEE, 2018, pp. 93–96. doi:
10.1109/fccm.2018.00023.

[79] S. Che, M. Boyer, J. Meng, et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE international symposium on workload characterization (IISWC), Ieee, 2009,
pp. 44–54. doi: 10.1109/iiswc.2009.5306797.

[80] R. Maestre, M. Fernandez, R. Hermida, and N. Bagherzadeh, “A framework for scheduling
and context allocation in reconfigurable computing,” in Proceedings 12th International
Symposium on System Synthesis, Nov. 1999, pp. 134–140. doi: 10.1109/ISSS.1999.
814272.

[81] S. Trimberger, “Scheduling designs into a time-multiplexed FPGA,” in Proceedings of the
1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays - FPGA
’98, Monterey, California, United States: ACM Press, 1998, pp. 153–160. doi: 10.1145/
275107.275135.

[82] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement for reconfigurable
computing systems,” IEEE Design & Test of Computers, vol. 17, no. 1, pp. 68–83, 2000. doi:
10.1109/54.825678.

150

https://doi.org/10.3390/electronics9091362
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1109/ETFA.2005.1612697
https://doi.org/10.1007/978-3-319-16214-0_7
https://doi.org/10.1145/3405794
https://doi.org/10.1109/ACCESS.2017.2671881
https://doi.org/10.5220/0004730301120119
https://doi.org/10.1002/cpe.6570
https://doi.org/10.1002/cpe.6570
https://doi.org/10.1109/fccm.2018.00023
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1109/ISSS.1999.814272
https://doi.org/10.1109/ISSS.1999.814272
https://doi.org/10.1145/275107.275135
https://doi.org/10.1145/275107.275135
https://doi.org/10.1109/54.825678

[83] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt, “Dynamic schedul-
ing of tasks on partially reconfigurable FPGAs,” IEE Proceedings-Computers and Digital
Techniques, vol. 147, no. 3, pp. 181–188, 2000. doi: 10.1049/ip-cdt:20000485.

[84] H. Simmler, L. Levinson, and R. Männer, “Multitasking on FPGA coprocessors,” in
Field-Programmable Logic and Applications: The Roadmap to Reconfigurable Computing, R. W.
Hartenstein and H. Grünbacher, Eds., red. by G. Goos, J. Hartmanis, and J. van Leeuwen,
vol. 1896, Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 121–130. doi: 10.
1007/3-540-44614-1_13.

[85] R. Maestre, F. Kurdahi, M. Fernandez, R. Hermida, N. Bagherzadeh, and H. Singh, “A
framework for reconfigurable computing: Task scheduling and context management,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 9, no. 6, pp. 858–873,
Dec. 2001. doi: 10.1109/92.974899.

[86] J. Noguera and R. M. Badia, “Multitasking on reconfigurable architectures: Microarchitec-
ture support and dynamic scheduling,” ACM Transactions on Embedded Computing Systems,
vol. 3, no. 2, pp. 385–406, May 2004. doi: 10.1145/993396.993404.

[87] J. Resano and D. Mozos, “Specific scheduling support to minimize the reconfiguration
overhead of dynamically reconfigurable hardware,” in Proceedings of the 41st annual confer-
ence on Design automation - DAC ’04, San Diego, CA, USA: ACM Press, 2004, p. 119. doi:
10.1145/996566.996604.

[88] A. Sudarsanam, M. Srinivasan, and S. Panchanathan, “Resource estimation and task
scheduling for multithreaded reconfigurable architectures,” in Proceedings. Tenth Interna-
tional Conference on Parallel and Distributed Systems, 2004. ICPADS 2004., 2004, pp. 323–330.
doi: 10.1109/ICPADS.2004.1316111.

[89] Y. Qu, J.-p. Soininen, and J. Nurmi, “Using constraint programming to achieve optimal
prefetch scheduling for dependent tasks on run-time reconfigurable devices,” in 2006
International Symposium on System-on-Chip, 2006, pp. 1–4. doi: 10.1109/ISSOC.2006.
321973.

[90] Z. Pan and B. E. Wells, “Hardware supported task scheduling on dynamically reconfig-
urable SoC architectures,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 11, pp. 1465–1474, Nov. 2008. doi: 10.1109/TVLSI.2008.2000974.

[91] F. Redaelli, M. D. Santambrogio, and D. Sciuto, “Task scheduling with configuration
prefetching and anti-fragmentation techniques on dynamically reconfigurable systems,” in
2008 Design, Automation and Test in Europe, 2008, pp. 519–522. doi: 10.1109/DATE.2008.
4484902.

[92] R. Cordone, F. Redaelli, M. A. Redaelli, M. D. Santambrogio, and D. Sciuto, “Partitioning
and scheduling of task graphs on partially dynamically reconfigurable FPGAs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 5,
pp. 662–675, May 2009. doi: 10.1109/TCAD.2009.2015739.

[93] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “Online task scheduling for the FPGA-
based partially reconfigurable systems,” in International Workshop on Applied Reconfigurable
Computing, Springer, 2009, pp. 216–230. doi: 10.1007/978-3-642-00641-8_22.

[94] J. Teller and F. Ozguner, “Scheduling tasks on reconfigurable hardware with a list sched-
uler,” in 2009 IEEE International Symposium on Parallel Distributed Processing, May 2009,
pp. 1–4. doi: 10.1109/IPDPS.2009.5161222.

151

https://doi.org/10.1049/ip-cdt:20000485
https://doi.org/10.1007/3-540-44614-1_13
https://doi.org/10.1007/3-540-44614-1_13
https://doi.org/10.1109/92.974899
https://doi.org/10.1145/993396.993404
https://doi.org/10.1145/996566.996604
https://doi.org/10.1109/ICPADS.2004.1316111
https://doi.org/10.1109/ISSOC.2006.321973
https://doi.org/10.1109/ISSOC.2006.321973
https://doi.org/10.1109/TVLSI.2008.2000974
https://doi.org/10.1109/DATE.2008.4484902
https://doi.org/10.1109/DATE.2008.4484902
https://doi.org/10.1109/TCAD.2009.2015739
https://doi.org/10.1007/978-3-642-00641-8_22
https://doi.org/10.1109/IPDPS.2009.5161222

Bibliography

[95] M. Fazlali, M. Sabeghi, A. Zakerolhosseini, and K. Bertels, “Efficient task scheduling for
runtime reconfigurable systems,” Journal of Systems Architecture, vol. 56, no. 11, pp. 623–632,
2010. doi: 10.1016/j.sysarc.2010.07.016.

[96] F. Redaelli, M. Santambrogio, D. Sciuto, and S. O. Memik, “Reconfiguration aware task
scheduling for multi-FPGA systems,” Reconfigurable Computing, p. 57, 2010.

[97] J. A. Clemente, D. Mozos, and J. Resano, “A replacement technique to maximize task
reuse in reconfigurable systems,” in 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum, IEEE, 2011, pp. 250–257. doi: 10.1109/
ipdps.2011.149.

[98] Y. M. Lam, “Integrated task clustering, mapping and scheduling for heterogeneous com-
puting systems,” International Journal of Computer Science & Information Technology, vol. 4,
no. 1, p. 127, 2012. doi: 10.5121/ijcsit.2012.4111.

[99] M. F. Nadeem, I. Ashraf, S. A. Ostadzadeh, S. Wong, and K. Bertels, “Task scheduling in
large-scale distributed systems utilizing partial reconfigurable processing elements,” in
2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD
Forum, May 2012, pp. 79–90. doi: 10.1109/IPDPSW.2012.6.

[100] J. A. Clemente, I. Beretta, V. Rana, D. Atienza, and D. Sciuto, “A mapping-scheduling
algorithm for hardware acceleration on reconfigurable platforms,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 2, pp. 1–27, 2014. doi: 10.1145/
2611562.

[101] Y. Ma, J. Liu, C. Zhang, and W. Luk, “HW/SW partitioning for region-based dynamic
partial reconfigurable FPGAs,” in 2014 IEEE 32nd International Conference on Computer
Design (ICCD), IEEE, 2014, pp. 470–476. doi: 10.1109/iccd.2014.6974721.

[102] Y. Sheng, Y. Liu, R. Li, and X. Xiao, “A communication-aware scheduling algorithm
for hardware task scheduling model on FPGA-based reconfigurable systems,” Journal of
Computers, vol. 9, no. 11, pp. 2552–2558, Nov. 1, 2014. doi: 10.4304/jcp.9.11.2552-
2558.

[103] G. Wassi, M. E. A. Benkhelifa, G. Lawday, F. Verdier, and S. Garcia, “Multi-shape tasks
scheduling for online multitasking on FPGAs,” in 2014 9th International Symposium on
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), May 2014, pp. 1–7.
doi: 10.1109/ReCoSoC.2014.6861366.

[104] G. Charitopoulos, I. Koidis, K. Papadimitriou, and D. Pnevmatikatos, “Hardware task
Scheduling for partially reconfigurable FPGAs,” in Applied Reconfigurable Computing, K.
Sano, D. Soudris, M. Hübner, and P. C. Diniz, Eds., vol. 9040, Cham: Springer International
Publishing, 2015, pp. 487–498. doi: 10.1007/978-3-319-16214-0_45.

[105] D. Pnevmatikatos, K. Papadimitriou, T. Becker, et al., “FASTER: Facilitating analysis and
synthesis technologies for effective reconfiguration,” Microprocessors and Microsystems,
vol. 39, no. 4-5, pp. 321–338, Jun. 2015. doi: 10.1016/j.micpro.2014.09.006.

[106] E. M. Abdali, M. Pelcat, F. Berry, J.-P. Diguet, and D. Heller, “Task clustering approach
to optimize the scheduling on a partially dynamically reconfigurable FPGAs for image
processing algorithms,” in Proceedings of the 10th International Conference on Distributed
Smart Camera, 2016, pp. 230–231. doi: 10.1145/2967413.2974042.

152

https://doi.org/10.1016/j.sysarc.2010.07.016
https://doi.org/10.1109/ipdps.2011.149
https://doi.org/10.1109/ipdps.2011.149
https://doi.org/10.5121/ijcsit.2012.4111
https://doi.org/10.1109/IPDPSW.2012.6
https://doi.org/10.1145/2611562
https://doi.org/10.1145/2611562
https://doi.org/10.1109/iccd.2014.6974721
https://doi.org/10.4304/jcp.9.11.2552-2558
https://doi.org/10.4304/jcp.9.11.2552-2558
https://doi.org/10.1109/ReCoSoC.2014.6861366
https://doi.org/10.1007/978-3-319-16214-0_45
https://doi.org/10.1016/j.micpro.2014.09.006
https://doi.org/10.1145/2967413.2974042

[107] X. Xu, Q. Xu, J. Huang, and S. Chen, “An integrated optimization framework for parti-
tioning, scheduling and floorplanning on partially dynamically reconfigurable FPGAs,”
in Proceedings of the on Great Lakes Symposium on VLSI 2017, 2017, pp. 403–406. doi:
10.1145/3060403.3060447.

[108] S. Chen, J. Huang, X. Xu, B. Ding, and Q. Xu, “Integrated optimization of partitioning,
scheduling, and floorplanning for partially dynamically reconfigurable systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 1,
pp. 199–212, 2018. doi: 10.1145/3060403.3060447.

[109] A. Yoosefi and H. R. Naji, “A clustering algorithm for communication-aware scheduling
of task graphs on multi-core reconfigurable systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 10, pp. 2718–2732, Oct. 1, 2017. doi: 10.1109/TPDS.2017.
2703123.

[110] B. da Silva, A. Braeken, F. Domínguez, and A. Touhafi, “Exploiting partial reconfigu-
ration through PCIe for a microphone array network emulator,” International Journal of
Reconfigurable Computing, vol. 2018, 2018. doi: 10.1155/2018/3214679.

[111] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Rossbach, “Sharing,
Protection, and Compatibility for Reconfigurable Fabric with AmorphOS,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), 2018, pp. 107–127.

[112] A. Dhar, M. Yu, W. Zuo, X. Wang, N. S. Kim, and D. Chen, “Leveraging Dynamic Partial
Reconfiguration with Scalable ILP Based Task Scheduling,” in 2020 33rd International
Conference on VLSI Design and 2020 19th International Conference on Embedded Systems
(VLSID), Jan. 2020, pp. 201–206. doi: 10.1109/VLSID49098.2020.00052.

[113] Q. Tang, Z. Wang, B. Guo, L.-H. Zhu, and J.-B. Wei, “Partitioning and scheduling with mod-
ule merging on dynamic partial reconfigurable FPGAs,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 13, no. 3, pp. 1–24, 2020. doi: 10.1145/3403702.

[114] Z. Wang, Q. Tang, B. Guo, J.-B. Wei, and L. Wang, “Resource partitioning and application
scheduling with module merging on dynamically and partially reconfigurable FPGAs,”
Electronics, vol. 9, no. 9, p. 1461, 2020. doi: 10.3390/electronics9091461.

[115] Q. Jiang, J. Xu, and Y. Chen, “A genetic algorithm for scheduling in heterogeneous mul-
ticore system integrated with FPGA,” in 2021 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Com-
munications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New
York City, NY, USA: IEEE, Sep. 2021, pp. 594–602. doi: 10.1109/ISPA-BDCloud-
SocialCom-SustainCom52081.2021.00087.

[116] R. Ramezani, “Dynamic scheduling of task graphs in multi-FPGA systems using critical
path,” The Journal of Supercomputing, vol. 77, no. 1, pp. 597–618, Jan. 2021. doi: 10.1007/
s11227-020-03281-3.

[117] J. Xu, H. Shi, and Y. Chen, “Efficient tasks scheduling in multicore systems integrated
with hardware accelerators,” The Journal of Supercomputing, vol. 79, no. 7, pp. 7244–7271,
2023. doi: 10.1007/s11227-022-04955-w.

[118] J. Teich, S. P. Fekete, and J. Schepers, “Optimization of dynamic hardware reconfigura-
tions,” The Journal of Supercomputing, vol. 19, no. 1, pp. 57–75, 2001. doi: 10.1023/A:
1011188411132.

153

https://doi.org/10.1145/3060403.3060447
https://doi.org/10.1145/3060403.3060447
https://doi.org/10.1109/TPDS.2017.2703123
https://doi.org/10.1109/TPDS.2017.2703123
https://doi.org/10.1155/2018/3214679
https://doi.org/10.1109/VLSID49098.2020.00052
https://doi.org/10.1145/3403702
https://doi.org/10.3390/electronics9091461
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00087
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00087
https://doi.org/10.1007/s11227-020-03281-3
https://doi.org/10.1007/s11227-020-03281-3
https://doi.org/10.1007/s11227-022-04955-w
https://doi.org/10.1023/A:1011188411132
https://doi.org/10.1023/A:1011188411132

Bibliography

[119] J. Oppermann, M. Reuter-Oppermann, A. Koch, and O. Sinnen, “’Optimising’ high-level
synthesis in CIRCT,” 2022.

[120] M. Urbach and M. B. Petersen, “HLS from PyTorch to System Verilog with MLIR and
CIRCT,” Latte’22, 2022.

[121] M. Mitchell, An Introduction to Genetic Algorithms. Mar. 2, 1998. doi: 10.7551/mitpress/
3927.001.0001.

[122] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communi-
cations, 1978. doi: 10.1145/359545.359563.

[123] D. A. Padua, Ed., Encyclopedia of parallel computing (Springer reference). New York, NY:
Springer, 2011.

[124] Compute Express Link Consortium, Compute express link (CXL) specification 3.0, Available
online at: https://www.computeexpresslink.org/, 2022.

[125] O. Sinnen and L. Sousa, “Communication contention in task scheduling,” IEEE Transactions
on Parallel and Distributed Systems, vol. 16, no. 6, pp. 503–515, Jun. 2005. doi: 10.1109/
TPDS.2005.64.

[126] “FPGA optimization guide for Intel® oneAPI toolkits.” (2023), [Online]. Available: https:
//www.intel.com/content/www/us/en/develop/documentation/oneapi-
fpga-optimization-guide/top/optimize-your-design/throughput-1/
pipes.html (visited on 30.1.2023).

[127] Khronos OpenCL Working Group, “The OpenCL C specification, version 2.0,” Specification,
2015.

[128] D. G. Feitelson, Workload modeling for computer systems performance evaluation. Cambridge:
Cambridge University Press, 2015. doi: 10.1017/CBO9781139939690.

[129] L. Perron and V. Furnon, OR-Tools, version 9.3, Google, Mar. 15, 2022.

[130] J. D. Ullman, “NP-complete scheduling problems,” Journal of Computer and System sciences,
vol. 10, no. 3, pp. 384–393, 1975. doi: 10.1016/s0022-0000(75)80008-0.

[131] V. Boudet, “Heterogeneous task scheduling: A survey,” Research Report RR-6895, 2001.

[132] H. Oh and S. Ha, “A static scheduling heuristic for heterogeneous processors,” in European
Conference on Parallel Processing, Springer, 1996, pp. 573–577. doi: 10.1007/bfb0024750.

[133] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and low-complexity
task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, no. 3, pp. 260–274, Mar. 2002. doi: 10.1109/71.993206.

[134] C. N. Potts and V. A. Strusevich, “Fifty years of scheduling: A survey of milestones,” Journal
of the Operational Research Society, vol. 60, S41–S68, 2009. doi: 10.1057/jors.2009.2.

[135] A. K. Maurya and A. K. Tripathi, “On benchmarking task scheduling algorithms for
heterogeneous computing systems,” The Journal of Supercomputing, vol. 74, no. 7, pp. 3039–
3070, Jul. 2018. doi: 10.1007/s11227-018-2355-0.

[136] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik,
vol. 1, no. 1, pp. 269–271, Dec. 1, 1959. doi: 10.1007/BF01386390.

[137] F. Mayer, M. Knaust, and M. Philippsen, “OpenMP on FPGAs - a survey,” in OpenMP:
Conquering the Full Hardware Spectrum, X. Fan, B. R. de Supinski, O. Sinnen, and N.
Giacaman, Eds., ser. Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2019, pp. 94–108. doi: 10.1007/978-3-030-28596-8_7.

154

https://doi.org/10.7551/mitpress/3927.001.0001
https://doi.org/10.7551/mitpress/3927.001.0001
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/TPDS.2005.64
https://doi.org/10.1109/TPDS.2005.64
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/pipes.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/pipes.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/pipes.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top/optimize-your-design/throughput-1/pipes.html
https://doi.org/10.1017/CBO9781139939690
https://doi.org/10.1016/s0022-0000(75)80008-0
https://doi.org/10.1007/bfb0024750
https://doi.org/10.1109/71.993206
https://doi.org/10.1057/jors.2009.2
https://doi.org/10.1007/s11227-018-2355-0
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-030-28596-8_7

[138] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance
model for multicore architectures,” Communications of the ACM, vol. 52, no. 4, pp. 65–76,
2009. doi: 10.2172/1407078.

[139] B. da Silva, A. Braeken, E. H. D’Hollander, and A. Touhafi, “Performance modeling for
FPGAs: Extending the roofline model with high-level synthesis tools,” International Journal
of Reconfigurable Computing, vol. 2013, pp. 1–10, 2013. doi: 10.1155/2013/428078.

[140] Z. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis framework for optimizing
OpenCL applications on FPGAs,” in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Barcelona, Spain: IEEE, Mar. 2016, pp. 114–125. doi: 10.
1109/HPCA.2016.7446058.

[141] S. Wang, Y. Liang, and W. Zhang, “FlexCL: An analytical performance model for OpenCL
workloads on flexible FPGAs,” in Proceedings of the 54th Annual Design Automation Con-
ference 2017, Austin TX USA: ACM, Jun. 18, 2017, pp. 1–6. doi: 10.1145/3061639.
3062251.

[142] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka, “Evaluating and
optimizing OpenCL kernels for high performance computing with FPGAs,” in Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, (Salt Lake City, Utah), ser. SC ’16, Piscataway, NJ, USA: IEEE Press, 2016, 35:1–
35:12. doi: 10.1109/sc.2016.34.

[143] L.-N. Pouchet. “Polybench: The polyhedral benchmark suite.” (2012), [Online]. Available:
http://www.cs.ucla.edu/pouchet/software/polybench.

[144] I. Ahmad and M. K. Dhodhi, “Multiprocessor scheduling in a genetic paradigm,” Parallel
Computing, vol. 22, no. 3, pp. 395–406, 1996. doi: 10.1016/0167-8191(95)00068-2.

[145] M. S. Benten and S. M. Sait, “Genetic scheduling of task graphs,” International Journal of
Electronics, vol. 77, no. 4, pp. 401–415, 1994. doi: 10.1080/00207219408926072.

[146] Y.-K. Kwok and I. Ahmad, “Efficient scheduling of arbitrary task graphs to multiprocessors
using a parallel genetic algorithm,” Journal of Parallel and Distributed Computing, vol. 47,
no. 1, pp. 58–77, 1997. doi: 10.1006/jpdc.1997.139.

[147] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-space exploration
with high-level synthesis,” in Proceedings of the 50th Annual Design Automation Conference,
Austin Texas: ACM, May 29, 2013, pp. 1–7. doi: 10.1145/2463209.2488795.

[148] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for FPGAs,” ArXiv
e-prints, May 2018.

[149] “Note sur une méthode de résolution des équations normales provenant de l’application de
la méthode des Moindres Carrés a un système d’équations linéaires en nombre inférieur
a celui des inconnues.,” Bulletin géodésique, vol. 2, no. 1, pp. 67–77, Apr. 1, 1924. doi:
10.1007/BF03031308.

[150] R. E. Lord, J. S. Kowalik, and S. P. Kumar, “Solving linear algebraic equations on an
MIMD computer,” Journal of the ACM (JACM), vol. 30, no. 1, pp. 103–117, 1983. doi:
10.1145/322358.322366.

[151] L.-C. Canon, M. E. Sayah, and P.-C. Héam, “A comparison of random task graph generation
methods for scheduling problems,” in Euro-Par 2019: Parallel Processing: 25th International
Conference on Parallel and Distributed Computing, Göttingen, Germany, August 26–30, 2019,
Proceedings 25, Springer, 2019, pp. 61–73. doi: 10.1007/978-3-030-29400-7_5.

155

https://doi.org/10.2172/1407078
https://doi.org/10.1155/2013/428078
https://doi.org/10.1109/HPCA.2016.7446058
https://doi.org/10.1109/HPCA.2016.7446058
https://doi.org/10.1145/3061639.3062251
https://doi.org/10.1145/3061639.3062251
https://doi.org/10.1109/sc.2016.34
http://www.cs.ucla.edu/pouchet/software/polybench
https://doi.org/10.1016/0167-8191(95)00068-2
https://doi.org/10.1080/00207219408926072
https://doi.org/10.1006/jpdc.1997.139
https://doi.org/10.1145/2463209.2488795
https://doi.org/10.1007/BF03031308
https://doi.org/10.1145/322358.322366
https://doi.org/10.1007/978-3-030-29400-7_5

Bibliography

[152] P. Erdős and A. Rényi, “On random graphs. I.,” Publicationes Mathematicae Debrecen, vol. 6,
no. 3-4, pp. 290–297, Jul. 1, 2022. doi: 10.5486/PMD.1959.6.3-4.12.

[153] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The boost graph library: user guide and reference
manual. Pearson Education, 2001.

[154] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT
press, 2009.

[155] J. Kuipers and G. Moffa, “Uniform random generation of large acyclic digraphs,” Statistics
and Computing, vol. 25, no. 2, pp. 227–242, Mar. 2015. doi: 10.1007/s11222-013-9428-
y.

[156] T. Bray, “The JavaScript object notation (JSON) data interchange format,” Internet Engi-
neering Task Force, Request for Comments RFC 8259, Dec. 2017, 16 pp. doi: 10.17487/
RFC8259.

[157] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall, “GraphML
progress report structural layer proposal,” in Graph Drawing: 9th International Symposium,
GD 2001 Vienna, Austria, September 23–26, 2001 Revised Papers 9, Springer, 2002, pp. 501–512.
doi: 10.1007/3-540-45848-4_59.

[158] R. Polli, “REST API media types,” Internet Engineering Task Force / Internet Engineering
Task Force, Internet-draft draft-ietf-httpapi-rest-api-mediatypes-02, Sep. 7, 2022, 14 pp.

156

https://doi.org/10.5486/PMD.1959.6.3-4.12
https://doi.org/10.1007/s11222-013-9428-y
https://doi.org/10.1007/s11222-013-9428-y
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://doi.org/10.1007/3-540-45848-4_59

	Introduction
	Problem Statement
	Contributions
	Preliminary Works
	Publications Directly Related to the Thesis
	Publications Partially Related to the Thesis
	Other Publications

	Structure of this Thesis

	Preliminaries
	Program Acceleration with FPGAs
	Layer 1: FPGAs
	Layer 2: Accelerator
	Layer 3: Host
	Layer 4: Kernel and Operating System (OS)
	Layer 5: Driver
	Layer 6: Runtime

	Energy Efficiency of FPGA-based Accelerators
	Scheduling Techniques for FPGA-based Acceleration
	Genetic Algorithm
	Fundamentals of Static Task Scheduling
	Extensions for Reconfiguration-Aware Scheduling
	Configurations and Locations
	An FPGA-Aware Task Graph

	Reconfiguration-Aware Scheduling
	Overview and Methodology
	Modeling
	Accelerator Model
	Communication Topologies
	Machine Model

	Properties of Machine Models
	Processing Element Properties
	Configuration Properties
	Location Properties

	Constraints on Schedules
	General Constraints
	Machine Constraints from PEs
	Machine Constraints from Configurations
	Machine Constraints from Locations
	Communication Constraints from Communication Settings
	Summary of the Schedule Constraints

	Generating Task Graphs
	Analyzing Schedules
	Case Study: Two Machine Models
	Definition of the Machine Models
	Derivation of Constraints
	Task Graph Generation
	Analyzing Schedules

	Polynomial Time Reconfiguration-Aware Scheduling
	List Scheduling
	Heterogeneous Earliest Finish Time
	Reconfigurable Earliest Finish Time
	Using Instances to Avoid Undesirable Overlaps
	Ranking
	Determining the EFT
	The REFT Algorithm
	REFT with Communication Congestion
	Complexity of REFT

	Design Space Exploration
	Optimizing Reconfigurable Computing
	Applying Optimizations by Modifying the Machine Model
	Performance Modeling
	Updating a Task Graph for an Optimized Machine Model

	Optimization of Machine Models with GA
	Encoding of Machine Models as Chromosomes
	Fitness Functions
	Operators of GA

	
	Convergence
	Resource Properties
	Enforcing Resource Properties

	
	Semi-Explicit Parameters
	Definition of the Search Space
	Encoding for

	

	Evaluation
	The RESCH Framework
	Graph Generator Module
	Trace Importer Module
	Hardware Description Module
	Simulator Module
	OpenCL Executor Module
	DSE Module
	Analysis Module

	Metrics
	Metrics for Schedules
	Metrics for Machine Models and Scheduling Algorithms

	Evaluation of Machine Models
	A Classification for Machine Models
	Determination of Parameters for Standard pe
	Effects of Reconfiguration Delay

	Evaluation of the REFT Algorithm
	Methodology
	REFT versus Optimum
	Other Effects on REFT

	Evaluation of the DSE
	Evaluation of
	Evaluation of
	Evaluation of CO

	Summary

	Conclusion
	Conclusions
	Future Work and Applications

	Listings
	Aggregated Evaluation Results
	Acronyms
	Bibliography

