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Abstract
Gender bias is a key global challenge of our time according to the United Nations
sustainability goals, which call for the elimination of all forms of gender-based
discrimination. Since it is ubiquitous online and offline, gender bias is also preva-
lent in the training data for Natural Language Processing models; these models
therefore learn and internalize this bias. Gender bias then reappears when models
are probed and used in downstream tasks such as automatic recruitment leading
to gender-based discrimination that affects people’s lives in a negative way. Thus,
gender bias is problematic as it harms individuals.

There is a growing body of research attempting to combat gender bias in lan-
guage models. However, the diversity of research is quite limited and focused on
English and on occupational biases. In this thesis, we attempt to move beyond the
current insular state of gender bias research in language models to improve the
coverage of languages and biases that are being studied.

Specifically, we undertake three projects that aim to broaden the breadth of
current gender bias research in Natural Language Processing (NLP). The first
project aims to build a dataset to investigate languages beyond English; our method-
ology makes it easy to extend the dataset to any language of choice. In addition,
we propose a new analytical bias measure that may be used to evaluate bias, given
the model’s prediction probabilities. In the second project, we demonstrate that
learned gender stereotypes regarding politeness may bleed into cyberbullying de-
tection systems, which may disproportionately fail to protect women if the system
is attacked with honorifics. In this project, we focus on Korean and Japanese NLP
models; however, our results raise the question whether other systems in other
languages can fall prey to the same biases. In the third project, we demonstrate
that visual representations of emoji may evoke harmful text generation that dis-
proportionately affects different genders, depending on the emoji choice.
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Zusammenfassung
Geschlechtsspezifische Vorurteile sind laut den Nachhaltigkeitszielen der Verein-
ten Nationen, die die Beseitigung aller Formen der geschlechtsspezifischen Diskri-
minierung fordern, eine der wichtigsten globalen Herausforderungen unserer Zeit.
Da sie online und offline allgegenwärtig sind, sind geschlechtsspezifische Vorurteile
auch in den Trainingsdaten für Modelle der natürlichen Sprachverarbeitung weit
verbreitet. Diese Modelle lernen und verinnerlichen daher diese Vorurteile. Die
geschlechtsspezifischen Vorurteile kommen dann wieder zum Vorschein, wenn
die Modelle geprüft und in nachgelagerten Aufgaben wie der automatischen Rekru-
tierung verwendet werden, was zu geschlechtsspezifischer Diskriminierung führt,
die das Leben der Menschen negativ beeinflusst. Daher sind geschlechtsspezifis-
che Vorurteile problematisch, da sie dem Einzelnen schaden.

Es gibt eine wachsende Zahl von Forschungsarbeiten, die versuchen geschlech-
tsspezifische Vorurteile in Sprachmodellen zu bekämpfen. Allerdings ist die Vielfalt
der Forschung recht begrenzt und konzentriert sich auf Englisch und auf berufliche
Vorurteile. In dieser Arbeit versuchen wir, die derzeitige Insellage der Forschung
zu geschlechtsspezifischen Vorurteilen in Sprachmodellen zu überwinden und die
Abdeckung der untersuchten Sprachen und Vorurteile, die untersucht werden, auf
eine breitere Basis zu stellen.

Konkret führen wir drei Projekte durch, die darauf abzielen, die Breite der ak-
tuellen Gender-Bias-Forschung im Bereich Natural Language Processing (NLP)
zu erweitern. Das erste Projekt zielt darauf ab, einen Datensatz zur Untersuchung
von Sprachen außerhalb des Englischen zu erstellen. Unsere Methodik macht es
einfach, den Datensatz auf jede beliebige Sprache zu erweitern. Darüber hinaus
schlagen wir ein neues analytisches Bias-Maß vor, das zur Bewertung des Bias
angesichts der Vorhersagewahrscheinlichkeiten des Modells verwendet werden
kann. Im zweiten Projekt zeigen wir, dass erlernte Geschlechterstereotypen in
Bezug auf Höflichkeit in Cybermobbing-Erkennungssysteme einfließen können,
die Frauen möglicherweise unverhältnismäßig nicht schützen, wenn das System
mit Ehrentiteln angegriffen wird. In diesem Projekt konzentrieren wir uns auf
koreanische und japanische NLP-Modelle; unsere Ergebnisse werfen jedoch die
Frage auf, ob auch andere Systeme in anderen Sprachen denselben Vorurteilen
zum Opfer fallen können. Im dritten Projekt zeigen wir, dass visuelle Darstellun-
gen von Emojis eine schädliche Textgenerierung hervorrufen können, die je nach
Emoji-Auswahl unterschiedliche Geschlechter unverhältnismäßig stark betrifft.
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1.1 Motivation

Dreams are the mind’s version of
reality perfected.

NieR: Automata
Jean-Paul

In this thesis we attempt to tackle gender bias in modern Natural Language
Processing (NLP) from novel perspectives. We propose a multilingual method to
investigate gender bias across languages, that may be expanded to any language
of interest. In addition, we also propose a bias measure based on information
theory that lends itself to simple interpretation, designed to avoid statistical prob-
lems associated with small dataset sizes, which are common in social bias studies.
Furthermore, we demonstrate modern NLP systems are susceptible to gender bias
on the basis of politeness, using Korean and Japanese, and that the performance
of cyber bullying detection systems are also susceptible to such biases. We addi-
tionally propose a simple solution to mitigating the harm in such cyber bullying
detection systems, by simply providing politeness attacks to the models as training
data. Finally, we investigate how textual and visual representations of emoji may
impact text generation models and demonstrate that these models are susceptible
to generating harmful text, which disproportionately affects one gender over the
other, depending on the emoji.

1.1 Motivation
Gender equality is one of the world’s key global challenges, as outlined by the
United Nations’ (UN) sustainability goals and the initiatives centered around it
(United Nations General Assembly, 2015). Traditionally, gender equality focuses
on the educational opportunities, economic empowerment, political representa-
tion, employment opportunities and general empowerment of women and girls
(United Nations General Assembly, 2015). Especially important is the elimina-
tion of all forms of discrimination against women, with this being listed as the
first goal under the gender equality sustainability goal (United Nations General
Assembly, 2015). The engagement of men and boys, to meet this goal is also
highlighted (United Nations General Assembly, 2015). In this work we focus on
all forms of bias on the basis of gender, which we will refer to as gender bias in
this work.

While the importance of gender equality may be apparent in society, the rele-
vance of gender bias in NLP systems may not be readily apparent. Modern NLP
systems are trained on large corpora from the internet, which contain historical
social biases, which may bleed into NLP models (Caliskan et al., 2017; Sun et al.,
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1.1 Motivation

2019). In particular, the prevalence of gender bias on the internet is substantial;
for example, on Twitter, posts that exhibit gender bias are most common out of
the posts that exhibit a form of social bias (Sap et al., 2020). These learned bi-
ases in turn may affect the performance of an NLP system in a downstream task
(Blodgett et al., 2020). One high-stakes setting where the propagation of these bi-
ases is undesirable is in recruitment (Sun et al., 2019; De-Arteaga et al., 2019). In
automated recruiting, an NLP model searches through potential candidates’ pro-
fessional profiles to determine if they would be a good fit for the role that is being
hired for (De-Arteaga et al., 2019). A well-known example of an experimental
automated recruiting system is that of Amazon, as reported by Reuters, which
was shown to assign more negative scores to resumes that contained the word
“women’s”, in the sense of “women’s soccer team” (Jeffrey Dastin, 2018). While
this particular system was never implemented in production, it serves to highlight
the dangers and allocational harms of real-life algorithmic discrimination.

Other than allocational harms, which cover the systematic biased distribu-
tion of resources (such as employment opportunities in the previous example),
representational harms cover biases concerning how people are represented by
NLP models (Blodgett et al., 2020). For example, coreference resolution systems
have been shown to perform poorly when resolving female pronouns with male-
dominated professions, as it reinforces the stereotype that women don’t participate
in male-dominated jobs (Rudinger et al., 2018). Representational biases grounded
in society are harmful in their own right as NLP models reproduce and amplify
these social biases, effectively acting as a warped social mirror (Blodgett et al.,
2020; Jia et al., 2020).

In connection with representational biases, representation in a more broad
sense is another important factor to consider when studying gender bias. Gender
equality is a global challenge, as evidenced by it being a UN sustainability goal, as
outlined earlier (United Nations General Assembly, 2015). However, in the train-
ing data of large modern NLP models, while vast in size and diversity, especially
when using large internet corpora like the Common Crawl1, certain demograph-
ics are overrepresented while others are underrepresented (Bender et al., 2021).
In particular, young men from developed countries are the largest contributor to
the training data, while women and people from developing countries contribute
less (Pew Research Center, 2021; The World Bank, 2021; Michael, 2020; Bender
et al., 2021). For example, a recent survey of Wikipedia contributors revealed that
only 8-15% of Wikipedia authors are female (Michael, 2020). Thus, large NLP
models trained on such datasets may suffer from conforming to dominant hege-
monic viewpoints, limiting the representation of the views of women and other
demographics in such models (Bender et al., 2021).

1https://commoncrawl.org/
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1.2 Current Limitations of Gender Bias Research

Generalizing the discussion, expanding on the issues relating to training data
representation, more general issues with training AI models themselves make the
task of training responsible AI models challenging. Although more focused on the
behavior of reinforcement learning agents, the field of AI alignment arguably has
significant overlap with bias research as it deals with building models that are con-
sistent with human values (such as ethics) (Hendrycks et al., 2022; Gabriel, 2020).
One key challenge in AI alignment is specification gaming (otherwise known as
proxy gaming), where models simply optimize an objective function at the ex-
pense of not conforming to the desired human values of the users or developers
of the model (Hendrycks et al., 2022; Gabriel, 2020). For example, chatbots like
ChatGPT (OpenAI, 2022) are trained to imitate text from its training set while
also maximizing the approval of human evaluators and safety systems. However,
despite performing well on these systems, the early implementation of ChatGPT
was well known to generate factually incorrect text that can even fool experts and
to propagate undesirable gender biases, despite the presence of these safety sys-
tems (i.e. the safety systems were “gamed”, the model did not actually learn the
desired values) (Ji et al., 2023; Gao et al., 2023; Davey, 2022). Hence, eliminat-
ing gender bias in NLP systems may also be viewed as an alignment problem,
i.e. aligning the learning objectives of the model with the desired output, that is
consistent with human values.

While the topic of bias research is vast, we attempt to tackle it from various
novel angles in the context of NLP. Before we outline our contributions, we will
outline the limitations of current gender bias research that inspired our research
projects, outlined in this thesis.

1.2 Current Limitations of Gender Bias Research
In this section we break the current limitations of bias research down into cate-
gories. These are areas we identified as current research gaps we aimed to address
in our research. We will go through each category in turn and briefly discuss how
we contributed to alleviating these issues in our projects.

1.2.1 English-Centric Research
One of the most prevalent limitations of current bias research is its English-centrism.
Most research papers on gender bias are written to analyze English text with some
works focusing on non-English languages; however, these are relatively rare and
focus on specific (mostly European) languages (González et al., 2020; Bartl et al.,
2020; Liang et al., 2020; Nozza et al., 2021).

This English-centrism is not necessarily a problem for some languages, as
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1.2 Current Limitations of Gender Bias Research

there are several techniques that lend themselves to being generalized. For exam-
ple Liang et al. (2020) made use of English templates that can be directly trans-
lated into Chinese to test for gender biases in masked language models. Similarly,
Nozza et al. (2021) utilized several European languages to investigate hurtful sen-
tence completion in autoregressive models, such as GPT-2 (Radford et al., 2018b).

However, while there are some successes in directly transferring methods that
work in English, more often there are situations where directly transferring the
English technique to other languages is problematic or is simply impossible with-
out a significant alteration of the technique. For example, in the work of Bartl
et al. (2020), which attempts to make use of templates to measure gender bias in
masked language models, English templates were directly translated to German,
however due to gender agreement rules in German, the templates needed to be
modified depending on the gender of the person being referred to in the sentence.
It is suspected that due to this complication, their proposed technique is ineffec-
tive for German and yields results that do not reflect real-world biases (Bartl et al.,
2020). Thus, in general, techniques may not be simply translated from English to
German, and by extension other languages with similar gender agreement rules,
as more sophisticated techniques are required.

Finally, we would also like to note that even works that are extremely critical
of current trends in bias research, such as that of Blodgett et al. (2020), fail to
acknowledge the English centrism of current research. However, given that the
mitigation of gender bias is a global challenge, as evidenced by its inclusion in
the UN sustainability goals, we see the inclusion of other languages as a vital
step to this end (United Nations General Assembly, 2015). We will attempt to
tackle this issue by building a multilingual gender bias challenge dataset, and by
studying gender bias on the basis of politeness using Japanese and Korean in our
projects.

1.2.2 Limited Coverage of Biases
Gender bias in NLP is often studied in connection with occupations. Most studies
investigate the relative prediction probabilities of gendered person terms (such as
“he” or “she”) in reference to persons described by occupations, such as “pro-
grammer” or “secretary” (Bartl et al., 2020; Bhaskaran and Bhallamudi, 2019;
Liang et al., 2020). These studies are usually done from the point of view that
these NLP models might potentially be used to make hiring decisions, which are
feared to perpetuate gender biases in future hiring outcomes, especially in the field
of software engineering (Blodgett et al., 2020; De-Arteaga et al., 2019; Bolukbasi
et al., 2016).

While these biases are important in their own right, other aspects of gender
bias are also studied, but typically less often. However, of these other studies, gen-
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1.3 Models and Methods

eral representational biases are usually tackled, with the ultimate goal of not dis-
proportionately representing different genders in demeaning ways (Nangia et al.,
2020; Nadeem et al., 2021; Blodgett et al., 2020). These studies usually focus on
a variety gender stereotypes that are chosen in a non-systematic way. Usually, the
biases or stereotypes that are chosen are all grouped together under the category
“gender bias”.

Despite this, we also believe that several gender biases are more prominent in
several cultures and that these biases are most expressed in the associated language
that is most used in said culture. For example, we will examine gender biases
relating to politeness in Japanese and Korean, where politeness is an unavoidable
aspect of these languages. Thus, the topic of limited coverage of gender biases
has overlap with the current state of English-centric research.

1.2.3 Low-Quality Data
Finally, we note the low data quality in several prominent studies on gender bias.
These shortcomings apply mostly to studies that use natural text (as opposed
to templates) to evaluate gender bias, such as that of Nangia et al. (2020) and
Nadeem et al. (2021). Blodgett et al. (2021) point out many shortcomings of these
datasets that rely on annotators to provide examples of stereotypical text. Unfortu-
nately, many problems in these datasets might be simply due to the inattentiveness
of the annotators and a non-rigorous proof-reading phase. For example, Blodgett
et al. (2021) pointed out an example where the term “women” is compared to the
unrelated term “house burglars” for a specific test example.

In addition to these shortcomings, we will also point out that several studies on
gender bias in NLP suffer from small datasets, which leads to results that are not
as statistically robust. We will attempt to alleviate these statistical shortcomings
by proposing statistical measures that lend themselves to being readily and simply
interpreted using standard statistical techniques. However, it is best to be specific
as to our contributions, which we will summarize in Section 1.4.

1.3 Models and Methods

1.3.1 Strategy for Seeking Gender Biases to Probe
In this thesis we focus on seeking novel methods for probing gender bias. Our
general approach was to search for aspects of gender bias that have not been stud-
ied, or that have relatively little coverage, and then devise a method to analyze
this bias. In particular, in our search for biases, we focused on biases that have
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1.3 Models and Methods

a historical basis or that are contemporarily relevant. We also consulted native
speakers concerning the relevance of the bias when appropriate.

Additionally, in our search, we also attempted to address the points outlined
in Section 1.2, namely we attempted to move beyond English-centric gender bias,
extend the coverage of biases considered and strived for retaining high quality
data.

With these simple guiding principles, we sought to fill gaps in current research
over the course of the time research was conducted for this thesis.

1.3.2 Deep Learning and Transformers
In this thesis we make use of numerous NLP models, which are all deep learn-
ing models, specifically models with the transformers architecture (Vaswani et al.,
2017). We will give a brief introduction on the core principles behind deep learn-
ing and transformers in this subsection.

Deep Learning

Prior to the discussion on deep learning we first have to discuss artificial neural
networks for completeness. Artificial neural networks (ANNs) are a system of
interconnected units that attempt to learn to approximate a function, f , from data
(Goodfellow et al., 2016). The term “neural” comes from ANNs being loosely
inspired by neuroscience (Goodfellow et al., 2016). A basic ANN is shown in
Figure 1.1. The ANN takes an input x (where x = (x1, x2, x3, x4)

T in Figure 1.1)
and returns an output y (where y = (y1, y2)

T in Figure 1.1). A basic ANN, such
as that in Figure 1.1, makes use of the hidden units h = (h1, h2, h3) by linearly
combining their inputs via learned weights, W and b, (e.g. xTW + b for the
hidden weights feeding into the first hidden layer) and subsequently applying a
non-linear function g (e.g. the sigma function σ) to the linear combination (i.e.
g(xTW + b))) (Goodfellow et al., 2016). The inclusion of a non-linear function
is crucial, otherwise the network can only learn linear functions (as the linear
combination of linear functions is linear) (Goodfellow et al., 2016; Sutton and
Barto, 2018). In this sense, the ANN can essentially be thought of a function f ,
where f(x) = y.

The ANN can be trained via a loss function, L, which quantifies how far the
predicted output, y, is from the desired output, ŷ (Goodfellow et al., 2016). By
taking the derivative of the loss function, with respect to the parameters (i.e. ∇L),
the parameters may be updated (using a method such as stochastic gradient decent,
shown in Eq. 1.1 for W (the same equation can be used for b, by exchanging W
for b), where α is the step size), such that the loss function may be minimized
(Goodfellow et al., 2016).
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Figure 1.1 – A basic artificial neural network with four input units and two
output units. This network also has one hidden layer.

W := W − α∇WL (1.1)

We note that it is possible to learn any continuous function to any desired ac-
curacy on a compact region of the input space with sufficiently many hidden units
hi, for an ANN with a single hidden layer (Cybenko, 1989). However, from prac-
tical and theoretical perspectives it is usually easier to model complex functions
by increasing the number of hidden layers, such that increasingly complicated
abstractions of the input may be represented by successive layers of the model
(Zeiler and Fergus, 2014; Sutton and Barto, 2018; Bengio, 2009) This is where
the term “deep” originates from in deep learning, namely deep learning concerns
itself with neural models with numerous hidden layers (Goodfellow et al., 2016;
LeCun et al., 2015).

Transformers

Transformers are a type of neural network architecture that achieved state of the
art performance and are commonly used in modern NLP models (Vaswani et al.,
2017; Devlin et al., 2019; Radford et al., 2018b). The basic architecture of a
transformer is shown in Figure 1.2. The basic architecture consists of an encoder
and a decoder. The encoder encodes the symbolic input representation into a
continuous representation, which the decoder uses to create an output sequence
(Vaswani et al., 2017).
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Prior to being fed into the model, the input text is converted into tokens,
through the use of a tokenizer, such as Byte Pair Encoding (BPE) (used in GPT-2,
which is also built on the transformer architecture) (Sennrich et al., 2016; Radford
et al., 2018b) In the embedding layer, the tokens are converted into an embedding,
which is a vector containing information regarding the semantic information of
the token (Vaswani et al., 2017; Cho et al., 2014). Subsequently, information re-
garding the position of a token in a sequence is provided by positional encodings,
sine and cosine functions sampled at points corresponding to the position of a to-
ken in an input sequence (Vaswani et al., 2017). These positional encodings are
simply added to the embeddings, which enables encoding additional positional
information (Vaswani et al., 2017).

A key innovation behind the transformer architecture is to rely solely on self-
attention (Vaswani et al., 2017). Self-attention is a mechanism to relate differ-
ent positions of a given input sequence to compute a representation of the input
(Vaswani et al., 2017). Compared to previous recurrent and convolutional ap-
proaches, the use of self-attention drastically reduces the training time as it allows
for more parallelized computation and by reducing the path length between long-
range dependencies in the network (Vaswani et al., 2017).

This architecture had a great effect on NLP and is the basis of all the models
we will discuss in the following sections.

1.3.3 Masked Language Models
Masked Language Models, such as BERT (Devlin et al., 2019), had a large effect
on NLP research in the last couple of years. In this discussion, we will focus on
BERT, a transformer-based model that was considered state of the art at the time
of publication, and still remains a vital baseline in current studies (Rogers et al.,
2020)

The BERT architecture is almost identical to the transformers architecture of
Vaswani et al. (2017) we discussed earlier (Devlin et al., 2019). A key point of
BERT is that it uses bidirectional self-attention, meaning each token attends to
context both to its left and to its right (Devlin et al., 2019). This is in contrast to
the autoregressive OpenAI GPT transformer models, where the models are con-
strained, such that each token can only attend to context to its left (Radford et al.,
2018a)

There are two training steps in BERT, the first being pre-training, where BERT
is trained on unsupervised tasks using a training corpus, and the second being fine-
tuning, where the model is trained on one specific task (Devlin et al., 2019). An
overview of the BERT training setup is shown in Figure 1.3. During pre-training
BERT is trained on two unsupervised tasks. The first is the masked language
model objective, where 15 % of input tokens are masked, meaning they are re-
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Figure 1.2 – The basic transformer architecture. The left side of the architec-
ture is the encoder and the right is the decoder. Both the encoder and decoder
are stacks of N = 6 of the shown units in the original transformer paper
(Vaswani et al., 2017). Figure taken from (Vaswani et al., 2017).
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placed with a special token, [mask], and the model has to predict the original
token that was there prior to masking (Devlin et al., 2019). This very closely fol-
lows the cloze procedure from gestalt psychology, where human participants are
asked to complete a sentence template with a missing word (Taylor, 1953; Devlin
et al., 2019). The second is the next sentence prediction task, where for a given
sentence from the corpus the following sentence (separated by a special [SEP]
token) is provided 50% of the time and a random sentence from the corpus is se-
lected the other 50 % of the time (Devlin et al., 2019). The model is then trained to
identify if the second sentence follows the first in the corpus or if it is a randomly
selected unrelated sentence (Devlin et al., 2019).

Fine-tuning is comparatively far less computationally taxing than pre-training
as it involves only modifying the inputs and outputs to the task and fine-tuning all
the parameters end-to-end (Devlin et al., 2019). For example, as part of the Gen-
eral Language Understanding Evaluation (GLUE) benchmark, the Multi-Genre
Natural Language Inference (MNLI) test probes a model’s ability to determine if
a given sentence (sentence B) is an entailment, contradiction or neutral with
respect to the first sentence (sentence A) (Wang et al., 2018; Williams et al.,
2018). To do this, the model’s input is provided in such a way that sentence
A and sentence B are separated by the [SEP] token and the output layer is
modified such that it provides a single classification label (Devlin et al., 2019).
Thus, only the input and output have to be changed for fine-tuning.

Besides BERT, other masked language models have also emerged that are
quite similar in structure and training but achieved greater performance. For ex-
ample, RoBERTa achieved greater performance than BERT by improving on sev-
eral of BERT’s hyper parameters (Zhuang et al., 2021). Similarly, ALBERT also
improves on BERT by using parameter reduction techniques to reduce memory
requirements and by using different loss functions (Lan et al., 2020).

1.3.4 Autoregressive Models
For autoregressive, or generative text models, we will make use of the popular
open-source model GPT-2 (Radford et al., 2018b). The autoregressive nature of
GPT-2 is enabled by feeding the generated output tokens back in as input for
the next tokens, as was discussed in the original transformers paper (Vaswani
et al., 2017). GPT-2 is pre-trained on the language modeling objective (Radford
et al., 2018a,b). The language modeling objective is to maximize the prediction
probability of the next correct token (Radford et al., 2018a,b). Mathematically,
the likelihood, L, in Eq. 1.2 is maximized by updating the model parameters Θ
(encapsulating all trainable parameters), where uj is the j th token of a corpus of
tokens, and k is the size of the context window of the model (Radford et al.,
2018b,a).
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Figure 1.3 – BERT training setup overview. The model is first pre-trained on
unsupervised tasks using a training corpus, and subsequently the pre-trained
model is fine-tuned to the desired downstream task (Devlin et al., 2019). Fig-
ure taken from (Devlin et al., 2019).

L =
∑
i

logP (ui|ui−k, ..., ui−1,Θ) (1.2)

Like the previous models we discussed, the model architecture is based on the
transformer architecture of Vaswani et al. (2017). The architecture builds on that
of its predecessor, GPT (Radford et al., 2018a), with some slight modifications,
including an additional layer normalization (Ba et al., 2016) after the final self-
attention block (Radford et al., 2018b).

Finally, for the input representation, the model makes use of Byte-Pair Encod-
ing (BPE) (Radford et al., 2018b; Sennrich et al., 2016). In BPE frequent char-
acter sequences are combined into separate tokens to more efficiently make use
of the model’s capacity (Radford et al., 2018b; Sennrich et al., 2016). BPE was
empirically found to combine the performance benefits of word-level-tokenized
language models, as well as the generalizability of byte-level models (Radford
et al., 2018b).

1.3.5 Sentence Transformers
For classification tasks, we will make use of Sentence Transformers (Reimers
and Gurevych, 2019), and classification heads that have been fine-tuned within
the SetFit framework, which has been shown to exhibit less variability and to be
more sample efficient than other popular fine-tuning techniques (Tunstall et al.,
2022). Sentence Transformers, such as Sentence-BERT, make use of a pre-trained
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transformer model, such as BERT (Devlin et al., 2019) and train it in a Siamese
setup.

In the Siamese setup, which was first introduced in Bromley et al. (1993)
for detecting forged signatures, a neural network learns to differentiate training
samples of dissimilar classes and associate training samples of the same class
(Reimers and Gurevych, 2019; Tunstall et al., 2022; Bromley et al., 1993). Dur-
ing training, two identical sub-networks (which are chosen to be the pre-trained
BERT model (Devlin et al., 2019) for Sentence-BERT (Reimers and Gurevych,
2019)), are fed different sentences, belonging to the same or different class, and
the output representations of the sub-networks are compared with a contrastive
loss function, such as the cosine-similarity loss, in the case of SetFit (Tunstall
et al., 2022). Note that the two sub-networks have identical weights to ensure that
the two sub-networks are identical (Reimers and Gurevych, 2019; Tunstall et al.,
2022; Bromley et al., 1993).

One important feature of this contrastive setup for few-shot learning (situa-
tions with a few number of labeled training examples, K) is that because during
training we require training pairs (as opposed to single training examples) we ar-
tificially enlarge the training set (Tunstall et al., 2022). Specifically, the number
of unique training pairs that may be chosen from K training samples is simply the
binomial coefficient shown in equation Eq. 1.3 (Tunstall et al., 2022).(

K

2

)
=

K(K − 1)

2
> K, ∀K > 4 (1.3)

Using this setup, the sub-networks learn sentence embeddings that may be
used to distinguish sentences of different classes (Tunstall et al., 2022). The final
step in SetFit is to train a classification head that learns the associated class for
each of the different embeddings, for this a simple logistic regression model is
used (Tunstall et al., 2022).

1.3.6 Image Captioning Models
Image captioning models, as their name suggests, are designed to predict a pos-
sible caption that could be used to describe an image (Wang et al., 2022). In our
case, we made use of Microsoft’s popular open-source model, GIT (Wang et al.,
2022).

The model consists of two main components, an image encoder and a text
decoder (Wang et al., 2022). The image encoder is a ViT (Vision Transformer)
model and only takes an image as input (Dosovitskiy et al., 2021; Wang et al.,
2022). This encoder was pre-trained using CLIP (Contrastive Language-Image
Pre-Training), where the image encoder was jointly trained with a text encoder to
distinguish between different images and their associated captions (Radford et al.,
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2021; Wang et al., 2022). Unlike in the previous text models where tokens are
inputs to the models, in image models, such as ViT the RGB pixel values of the
image are the inputs (Dosovitskiy et al., 2021).

The text decoder is trained similarly to GPT-2, with the only exception being
that the decoder is also conditioned on the encoded representation of the image,
I (Wang et al., 2022). In other words, the text encoder is trained to maximize the
likelihood in Eq. 1.4, where {uj} are the tokens of the text caption associated with
the image (Wang et al., 2022).

L =
∑
i

logP (ui|ui−k, ..., ui−1, I,Θ) (1.4)

1.4 Contributions

1.4.1 Project 1 - Multilingual Dataset and Information-Theoretic
Measure

In the first project we moved beyond the English-centric nature of current bias re-
search and formalize a method to measure bias that is applicable to all languages.

We will first discuss the dataset. Building off of the research of Nangia et al.
(2020), we built a multilingual gender bias dataset using sentence pairs. The
sentence pairs are gender-swapped versions of each other, where one sentence is
considered to be more stereotypical than the other, as determined by the annotators
in the original CrowS-Pairs study (Nangia et al., 2020). Consider example (1), in
this case the sentence “Robert is a pilot.” would be considered more stereotypical
than “Olivia is a pilot.” as dictated by social gender stereotypes.

(1) a. Robert is a pilot.
b. Olivia is a pilot.

A key point of these pairs of sentences is that they may be used to compare gender
differences across any language, so long as we can find gendered names that can
replace the names “Robert” and “Olivia” with names that are common in the target
language. The parts of the sentences that are compared are ones that remain the
same after gender swapping, in the example here, that would be “is a pilot.”. The
reason for using names stems from the fact that many languages, such as Turkish
or Swahili, make use of gender-neutral pronouns or they don’t have any gendered
words, so we cannot rely on pronouns such as the English pronouns “he” or “she”
to identify gender. For this project we created a cleaned version of the CrowS-
Pairs (Nangia et al., 2020) dataset, which we then translated to nine additional
languages with the help of native speakers.
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A second key contribution of this project was proposing the SJSD bias measure.
Inspired by information theory, this measure aims to provide a score of how biased
a given sentence pair is, represented by a real number that can take on a range of
values. This contrasts to previous approaches such as that of Nangia et al. (2020)
and Nadeem et al. (2021), which simply assigned a binary score of 1 if a model
considered the more stereotypical sentence more likely than the non-stereotypical,
and 0 otherwise. The measure is shown in Eq. 1.5, where JSD(P ||G) is the
Jensen-Shannon distance between the probability distributions P and G (Lin,
1991). In our case, Pmore and P less are the model’s output probability distribu-
tion of the more and less stereotypical sentences, respectively. Additionally, the
probability distribution G is a one-hot distribution identifying the correct tokens
of the parts of the sentences that overlap. We demonstrate this measure is more
suitable to use in situations where we have smaller datasets, as is the case in nu-
merous bias datasets, where it is expensive to obtain high-quality structured data.

SJSD =
√

JSD(Pmore||G)−
√

JSD(P less||G) (1.5)

1.4.2 Project 2 - Politeness Stereotypes and Attack Vectors
In the second project we moved beyond the common notions of gender bias, such
as occupation bias, that are pervasive in the NLP community, to focus on a more
subtle form of bias, namely politeness bias and demonstrate how these biases can
be harmful in downstream tasks.

In the first part of the project, we demonstrated that female speech is character-
ized by more non-formal polite speech, while male speech is comparatively more
associated with formal and rough speech. To do this, we made use of Korean and
Japanese politeness levels, which are encapsulated in verbs. For example, con-
sider example (2), which compares two different politeness levels of the Japanese
“to study”. The first instance is more appropriate among family members while
the second is more suitable among strangers and when one wishes to speak more
politely about a topic (Eri et al., 2011). Included in our study of politeness levels,
we also compare the effect of honorifics. To probe for biases, we make use of
specially designed templates with the aid of native speakers which we feed into
popular MLMs with Korean or Japanese support.

(2) a. 勉強する。 (benkyou suru)
b. 勉強します。 (benkyou shimasu)

In the second part of the project, we demonstrated that learned associations be-
tween gender and politeness levels can influence downstream performance. Specif-
ically, we investigated cyber bullying detection systems for gender differences
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in cyber bullying detection, when the system is provided an example of hate
speech supplemented with information as to who the hate speech is directed at,
using different politeness levels. This makes our experiments similar to Gröndahl
et al. (2018), who demonstrated that appending the word “love” to the input of
hate speech detection systems renders them ineffective. In our experiments we
demonstrated that the use of honorifics makes cyber bullying systems effective
when male speakers are being referred to but ineffective when referring to female
speakers. Based on our results we believe looking into biases beyond the typical
occupation biases or general gender stereotypes in languages beyond English is a
fruitful field of future research.

1.4.3 Project 3 - Textual and Visual Encapsulation of Bias in
Emoji

In the third project we investigated harmful language generation, triggered by
textual and visual representations of emoji.

To investigate biases regarding textual representations of emoji, we limited
ourselves to Unicode representations of emoji. For example, the emoji for a smile
( ) will simply be represented as its Unicode code point, namely U+1F642 (Uni-
code Consortium, 2022). We then made use of HONEST, a method for probing
generative models for harmful output, as outlined in the research of Nozza et al.
(2021), where we used the same templates but prepended with emoji Unicode
code points. Using GPT-2 (Radford et al., 2018b), we demonstrated similar rates
and patterns of harmful word detection as found by Nozza et al. (2021), where fe-
male person references evoked higher rates of harmful word detections. However,
based on our experiments the use of emoji Unicode code points does not seem to
greatly influence the gender imbalances of harmful sentence completions, beyond
the imbalances already covered by Nozza et al. (2021).

In similar spirit, we also experimented with supplying visual information to
image captioning models. For this, we probed Microsoft’s GIT model, fine-tuned
on COCO (Wang et al., 2022; Lin et al., 2015). We provided images of common
emoji, such as the wink emoji ( ), as exemplified in Figure 1.4, together with the
beginning of a sentence including a gender identity term, which is to be completed
by the model. For the beginning of sentences, we once again make use of HON-
EST (Nozza et al., 2021), but this time without any modification regarding textual
input. Thus, the visual and textual inputs are separate and only interact with each
other through the learned parameters of the model.

Evaluating the results, we find that heart-shaped emoji ( (heart suit), (black
heart) and (red heart)) lead to more harmful text generation for female identity
terms, while less emotive emoji, such as the smile and frown emoji ( and )
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Figure 1.4 – An example image for the visual representation experiments.
Here the Apple wink emoji is centered on a white background.

invoke more harmful text generation for male identity terms. The reason for these
gender differences are not known and are assumed to be a result of learned gender
stereotypes in the training set, but more tests would be needed to identify the
reason.

1.5 Summary
To summarize, in this thesis we will outline three projects that aim to broaden the
breadth of current gender bias research in NLP. The first project aimed to build
a dataset that investigates languages beyond English and that may be simply ex-
tended to any language of choice. In addition, we proposed a new analytical bias
measure that may be used to evaluate these biases, given the model’s prediction
probabilities. In the second project we demonstrated that learned gender stereo-
types regarding politeness may bleed into cyber bullying detection systems, which
may disproportionately fail to protect women if the system is attacked with hon-
orifics. Finally, the third project showcased that visual representations of emoji
may evoke harmful text generation that disproportionately affects different gen-
ders, depending on the emoji choice.
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2.1 Introduction to Multilingual Bias

Everything not saved will be lost.

Nintendo quit screen

In this project we tackle gender biases in languages beyond English. While
NLP bias research traditionally centered on English, we propose a technique and
dataset that may be simply extended to any language by making use of gender-
swapped sentence pairs.

Specifically, our contributions are as follows:

• Created a dataset for probing gender biases across languages

• Developed a novel information-theoretic measure that aims to distinguish
strong and weak biases in NLP models.

This work was published in Findings of NAACL 2022 (Steinborn et al., 2022).
The authors were Victor Steinborn, Philipp Dufter, Haris Jabbar, Hinrich Schütze.

2.1 Introduction to Multilingual Bias
Pre-trained language models (PLMs) have greatly benefited NLP (Raffel et al.,
2020; Peters et al., 2018; Devlin et al., 2019; Zhuang et al., 2021). However, com-
monly used PLMs such as BERT have been shown to encapsulate social biases,
including those relating to gender and race (Kurita et al., 2019; Nadeem et al.,
2021; Nangia et al., 2020). The general consensus is that these biases are learned
from the statistical distributional co-occurrence of words relating to a group (such
as terms relating to men or women) with a context in which that group is often
mentioned in corpora (Bolukbasi et al., 2016; Webster et al., 2021). For exam-
ple, “doctor” may co-occur with “man” more often than with “woman”, leading
to an internal representation in the model where a gender-neutral concept, such
as being a doctor, is more closely associated with male-related terms than with
female-related terms (Bolukbasi et al., 2016).

In this work we tackle these types of binary stereotypical representational gen-
der bias (henceforth simply “gender bias”) in MLMs in a multilingual setting. We
argue that unbiased models should not give different prediction probabilities for
tokens that remain unchanged after changing the gender of a person the text refers
to. Based on this, we propose a multilingual approach to study gender bias in
MLMs, outlined in Figure 2.1, which, to the best of our knowledge, can in princi-
ple be extended to any natural language.

The importance of developing AI systems that are mindful of different societal
groups, such as people of different genders, is a topic much discussed in the area of

30



2.1 Introduction to Multilingual Bias

SJSD

That

That

SJSD

doctor

SJSD

the

SJSD

is

is

Woman

Man

English

the doctor

SJSD

here

here

Diese

Dieser

Ärztindie

SJSD

ist

ist

Frau

Mann

German

Thai

der Arzt

SJSD

hier

hier

AVG.

Score

Score

...

CPS: {0,1}

AVG.

SJSD : [-1,1]

Figure 2.1 – Following (Nangia et al., 2020), we assess multilingual gender
bias in MLMs by matching gender-specific tokens (light blue) in the context
of non-gender-specific tokens (dark blue) in sentence pairs. We develop a
methodology for creating sentence pairs that we argue is applicable across
languages, in contrast to prior work. We mask unchanged tokens one at a
time and calculate SJSD, a novel information-theoretic bias measure whose
sentence-level average we show to be better behaved than competing mea-
sures.

fairness research in NLP (Blodgett et al., 2020). However, a shortfall of this area is
its almost exclusive focus on English. As far as we are aware, ours is the first study
to attempt to create a truly multilingual approach to study gender bias in language
models. Previous multilingual approaches were largely limited to sentences with
fixed templates and grammar structures, which heavily constrains the range of
languages that may be studied with a given template (González et al., 2020). Our
approach builds on (Nangia et al., 2020) and attempts to study natural sentences by
comparing a pair of sentences that differ only by the gender of persons mentioned,
a process which we will refer to as gender swapping.

To illustrate the problem of using templates, consider the following sentence
pair and its German translation.

(1) a. He is the doctor here.
b. She is the doctor here.

(2) a. Er ist der Arzt hier.
b. Sie ist die Ärztin hier.

In German the only parts that remain the same are “ist” and “hier” under gender
swapping, as the German word for the profession “doctor” and its associated def-
inite article change form depending on the gender of the person. Thus, template
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structures developed for English of the form

(3) [person] is the [profession] here

have to be heavily modified and constrained to create grammatically correct sen-
tences in German. The problem is exacerbated with multilingual studies, where
appropriate templates need to be decided upon for each language.

We take inspiration from CrowS-Pairs (CPS) (Nangia et al., 2020), which stud-
ies pairs of crowd-sourced sentences, for a range of social biases. It includes
gender-swapped pairs for the diagnosis of gender bias. However, we found that
we cannot simply translate CPS into other languages. The main problem is that
English pronouns are clear indicators of gender – at least of binary gender, which
we focus on in this project. But this clear indication gets lost in translation for
languages that have gender-neutral pronouns like Finnish and those that predom-
inantly use null pronouns like Thai.1 We could mandate that only words with
“gender-inherent” meaning like “mother”, “wife” and “sister” are used, but that
would exclude many topics that we need to cover in a good diagnostic dataset,
e.g., work life and sports.

The solution we propose is to simply use names to indicate gender. Our as-
sumption here is that all languages have words for names and that there are two
subsets of names that can only have female and male referents. Note that there
are certainly “unisex” names, i.e., names that can refer to both men and women,
even in English (“Jess”, “Leslie”). But as far as we know no language has been
discovered in which there are no “monosex” names, i.e., names that can refer to
only one gender. We rely on such monosex names to construct sentence pairs.

In English, we select a few frequent male and female names and only use
them for the English dataset. Before translating the sentence pairs into another
language, we first identify corresponding frequent male and female names in the
target language. The translators are then instructed to only use those names. This
methodology should be applicable universally, so that we can construct a mul-
tilingual gender bias resource for any set of languages. Additionally, the CPS
dataset has been edited to heed the recommendations of (Blodgett et al., 2021).
We initially translated the modified CPS dataset into German, Indonesian, Thai
and Finnish. Subsequently, after publication, we extended the translations to Ara-
bic, French, Korean, Vietnamese and Chinese. A more detailed description will
be given in Section 2.3.1.2

The second contribution of this project is SJSD, a novel measure based on the

1The English sentence “she ate it” is simply expressed as “ate” in many “pro-drop” languages
as long as subject and object of “ate” are clear from context.

2Blodgett et al. (2021) argue against using names for race. Their arguments do not apply to
gender. See Section 2.3.1.
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Jensen–Shannon divergence (Lin, 1991), to test MLMs for social biases by using
sentence pairs that capture a binary contrast between two groups. The measure
used in CPS (see Section 2.3.2) makes use of a binary decision process, which
has the effect of removing information of the probability values from the MLM,
which we show reduces the measure’s predictive power. Our motivation for intro-
ducing SJSD is to retain as much information from the MLM output probabilities
as possible in our final reported score in order to make effective use of the limited
amount of human-translated sentences that are available.

Thus, our contributions are (1) developing a method for creating multilingual
datasets for diagnosing gender bias in language models that is applicable across
the diverse set of human languages, (2) applying this method, taking the CPS
dataset (Nangia et al., 2020) as a starting point, and creating a multilingual gender
bias diagnosis dataset for ten different languages, (3) proposing the SJSD measure,
which retains information regarding the numeric output probabilities of MLMs.

2.2 Related Work
Given this work focuses on multilingual methods to measure gender bias in MLMs,
this discussion will focus on evaluation measures and techniques; a thorough dis-
cussion of debiasing methods is beyond the scope of this project.

2.2.1 Bias Measures in MLMs
Recently, pre-trained masked language models, such as BERT (Devlin et al.,
2019), have significantly gained in popularity, which in turn has led to numerous
studies analyzing their behavior, including their encapsulation and reproduction
of social bias. Prior to the emergence of these models however, it was already
well known that NLP models can learn social biases from corpora, as exempli-
fied in work by Bolukbasi et al. (2016) who demonstrated that word embeddings
encapsulate societal gender biases. Subsequently, further tests, such as the word
embedding association test (WEAT) by (Caliskan et al., 2017), demonstrated that
word embeddings also encapsulate other biases, including racial biases. May et al.
(2019) extended WEAT to sentence encoders, including BERT with the sentence
encoder association test (SEAT), to study sentence-level social biases in these
models using template constructed sentences. However, the results of this study
were not conclusive, and Kurita et al. (2019) showed that the cosine-based meth-
ods used in WEAT and SEAT are not appropriate for contextualized embeddings,
and instead use a scoring method based on the prediction probability of an at-
tribute given a target in template sentences.
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The evaluation method used in the StereoSet (Nadeem et al., 2021) was in-
spired by SEAT while CPS (Nangia et al., 2020) uses pseudo-log-likelihood MLM
scoring (Salazar et al., 2020). A contribution of CPS and StereoSet is to provide
techniques that evaluate natural sentences instead of simple templates. Nonethe-
less, Kaneko and Bollegala (2021) criticize CPS and StereoSet for their evaluation
measures, arguing that the act of masking tokens results in a systematic overes-
timate in measured biases. However, they also describe this effect as systematic,
and thus we would expect systematic trends in bias scores between models to
remain conserved when masking tokens.

2.2.2 Multilingual Studies of Bias in MLMs
As far as we are aware, there are no studies that have attempted to develop a multi-
lingual method to test for gender bias in MLMs without template structures. How-
ever, there are several that studied a well-defined set of languages. For example,
González et al. (2020) constructed sentence templates for languages with type B
reflexivization (including Swedish and Russian), which can be used to construct
challenge datasets to measure gender bias. Bartl et al. (2020) also constructed
templates to study biases in German and English BERT models, but sometimes a
different form of a template has to be used depending on the gender of a mentioned
person. Liang et al. (2020) examined the case of English and Chinese using tem-
plates while focusing on the cross-lingual transfer of removing biases in Chinese
using English training data.

2.2.3 Bias From a Social Science Perspective
A critical survey of 146 NLP papers by (Blodgett et al., 2020) outlines common
pitfalls in NLP research, including the CPS study, when attempting to study social
bias. We attempt to take into account in this work.

2.3 Methodology

2.3.1 Dataset
A major obstacle in transferring existing techniques to measure gender bias in
languages beyond English is in adapting methods to the target language’s gender
agreement system. Methods intended to measure gender bias in MLMs often rely
on fixed sentence templates, where predefined words are inserted that are intended
to test some aspect of bias, such as occupational gender bias (e.g., (Kurita et al.,
2019; Webster et al., 2021)). While these template structures can be modified and
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applied to a range of languages, once a template is chosen, the range of languages
that can be studied is restricted (González et al., 2020).

Thus, to design a multilingual approach to gender bias, we want to move be-
yond the rigid artificial sentence structures that result from using templates. We
also speculate that moving away from rigid sentence structures allows us to probe
the language model more deeply for biases. It may be possible that superficially
debiased language models can perform well on certain bias evaluation tasks that
use templates, similar to the situation for linearly debiased word embeddings that
perform well on some bias measures but still encapsulate significant distributional
biases (Gonen and Goldberg, 2019).

Two evaluation datasets that go beyond templates are StereoSet (Nadeem et al.,
2021) and CPS (Nangia et al., 2020). One important difference between their
methods is the masking pattern. While StereoSet’s context association test masks
words that may be gendered in a different language (e.g., adjectives in Spanish),
CPS consists of pairs of sentences and only masks tokens that are shared by the
two sentences. Here we will only consider the CPS dataset, which also marks
which of the two sentences is more stereotypical (Nangia et al., 2020).

For our dataset, we consider sentence pairs where people of the male and
female gender are being contrasted, for example:

(4) a. He is a pilot
b. She is a pilot.

For this example, we assume each word is a separate token. The unmodified
tokens common to both sentences are: “is”, “a”, “pilot”. For each sentence, the
unmodified tokens form a set U and the remaining modified tokens a set M (“He”
for example (4), sentence a, for example). Thus, for each sentence, the set of all
tokens is the union of U and M .

Connecting to multilinguality, as far as we are aware, for sufficiently long and
complex sentences, when swapping the gender of a person reference in a sentence
there remain sections of the sentence that remain unchanged in any natural lan-
guage. From this observation, we found the masking pattern CPS implements
to be appropriate for multiple languages and thus the sentences labeled with the
“gender” tag in the CPS dataset were selected as the basis for subsequent transla-
tions.

It is worth mentioning that the CPS dataset recently received criticism for lack-
ing clear explanations of what types of social biases are being measured (Blodgett
et al., 2021). For this reason the selected CPS sentences have been minimally
modified to be mindful of the pitfalls outlined in (Blodgett et al., 2021). Some
sentences were omitted because the contrasted groups were unrelated to the stated
“gender” label, such as for sentences that contrasted two racial groups instead.
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We will now outline the modifications of the CPS dataset for this study.
First, we ensured each sentence only compares binary gender. Non-binary

gender adds a level of complexity in the multilingual context that we decided to
leave for future work. We also removed sentences that compare clothing items,
most likely intended as a proxy for gender. Clothing items and their significance
differ across cultures, so such sentences are difficult to translate.

Second, for sentences that only used a pronoun to identify gender, we ex-
changed the pronoun with a common name that is stereotypically associated with
one gender in the English dataset. Subsequently, when translating the English
dataset into other languages, the names were exchanged for others that are com-
mon gendered names in the target language. We limited the number of names in
the English dataset to four to simplify the subsequent translation process. Names
were introduced because many languages do not have gendered pronouns, and
thus information relating to gender may be lost in translation. For example, a
typical translation of (4) into Indonesian results in two identical sentences, which
makes the sentence pair useless for Indonesian. Using names as a proxy for iden-
tifying a social group is discouraged in (Blodgett et al., 2021) for race bias, but
using stereotypically gendered names as a proxy for binary gender seems un-
problematic to us. For example, whereas names only indirectly and ambiguously
identify race (at least in English), we can easily find names that are “monosex”,
i.e., names that can only have either male or female referents. Thus, we would
modify example (4) as follows for our dataset:

(5) a. Robert is a pilot
b. Olivia is a pilot.

Finally, we removed sentences that did not correctly isolate a stereotype, an issue
noted in the original paper (Nangia et al., 2020).

In this work we investigate binary gender stereotypes as a representational
harm across languages, to use the terminology of (Blodgett et al., 2020). The
CPS dataset was created by US crowdworkers (Nangia et al., 2020). We make
the assumption that most aspects of gender bias should be part of a diagnostic
test across languages and cultures. For example, the associations of “doctor” with
“male” or of “childcare” with “female” are biases that most cultures are at risk
for. So we should test whether our language models exhibit these biases for all
cultures. There probably are aspects of gender bias that are relevant to only a
few cultures (e.g., maybe the association of “being eligible to drive a car” with
“male”). We stress the importance of investigating gender bias multilingually.
Given that our study is the first to do this, we feel justified to leave the issue of
how to comprehensively test for all aspects of bias in gender diagnosis to future
work.
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Ar De En Fi Fr Id Ko Th Vi Zh
#w 4949 5470 5548 4151 6136 4790 10019 6693 7623 7430
#w/s 12 13 13 10 14 11 24 16 18 18

Table 2.1 – Our multilingual bias diagnosis dataset consists of 212 sentence
pairs in five languages. The table gives total number of words (#w) and words
per sentences (#w/s) for each language. Thai was tokenized with Deepcut
(Kittinaradorn et al., 2019), Korean with Kiwi (Lee, 2022) and Chinese with
Jieba (Sun, 2020).

Note that we do not make the assumption that gender bias is the same across
languages! If “childcare” is strongly associated with “female” in (the training cor-
pus of) language A, but not in (the training corpus of) language B, then (assuming
we use models that pick up bias from their training corpora) our methodology will
find less gender bias for language B – and this would be the intended result of our
work.

For the translations, we hired translators to translate the modified English
dataset into their native language. Translators were paid an agreed upon amount
above the minimum wage in their respective country of residence and were in-
formed of the intended use of their translations. Each translator was provided an
instruction sheet, which exemplifies the translation process of CPS sentence pairs
from English to German. The translation instructions can be found in Section 2.8
as supplementary material and the target languages of the translations were Ger-
man (De), Finnish (Fi), Indonesian (Id) and Thai (Th) initially. The translations
were later extended to include Arabic (Ar), French (Fr), Korean (Ko), Vietnamese
(Vi) and Chinese (Zh) after the publication of the associated paper. We chose
these languages to cover different language families and because translators for
them were easily available to us.

An overview of the metadata of the edited and initial translated dataset is given
in Table 2.1.

2.3.2 Bias Measure
Our aim is to create a bias measure that can retain meaningful information from
the model output that is relevant for detecting multilingual gender bias. Before
introducing our proposed measure, we will go over the CPS measure (Nangia
et al., 2020).

37



2.3 Methodology

CrowS-Pairs Measure

Given is a pair of gender-swapped sentences. One sentence is considered socially
more stereotypical than the other by the annotators in the CPS study (Nangia et al.,
2020). The set of tokens that are shared (resp. are not shared, i.e., modified) be-
tween the two sentences is denoted as U (resp. M ) – see Section 2.3.1. For each
sentence the tokens in U are masked one at a time. Each time a token is masked,
the sentence is passed through the model and the model output probabilities are
obtained. Following Nangia et al. (2020)’s notation, we denote the output prob-
ability of the model for the ith correct token under the mask uG,i ∈ U in the
more stereotypical sentence as Pmore(uG,i) ≡ P (ui|U\ui

,M, θ), where M are the
unique tokens in the more stereotypical sentence and θ are the model parameters.
The output probability for the other sentence P less is defined analogously.

The score for a sentence in the pair is its pseudo-log-likelihood, calculated
as the sum of logP (uG,i) over all u in U where P is either Pmore or P less. The
sentence pair is assigned a binary score of 1 (resp. 0) if the more stereotypical
sentence has a larger (resp. smaller) score. A possible advantage of this binariza-
tion is that the numerical value of the pseudo-log-likelihood cannot be interpreted
(hence “pseudo”) (Nangia et al., 2020; Salazar et al., 2020), so one can only rely
on the comparison of the scores, not on their absolute values. The final score is
the percentage of sentences that have been assigned a score of 1.

According to (Nangia et al., 2020), an ideal unbiased model would achieve
a score of 50 on a dataset. However, it is important to keep in mind that each
sentence pair contributes with equal weight to the final score, due to binarization.
Consider as an example a language in which a small part of the sentence pairs
are diagnosed as extremely biased, but most sentence pairs do not show bias, so
their final score will be randomly 0 or 1. In such a case, CPS does not distinguish
strong bias from weak bias and sentence pairs that are not biased contribute noise
to the final measure. Hence, unusually biased behavior of the model may not be
effectively captured by the measure, and in order to obtain meaningful results a
large number of human-annotated sentence pairs is required.

To make the connection to dataset size, if we ignore the internal mechanisms
of the model and for simplicity assume that a biased model has a fixed probability,
of say p = 0.55, to assign a binary score of 1, then this may be modeled as a
Bernoulli process (Papoulis and Pillai, 2002). For such a model and for a set of
n = 200 sentence pairs, the expected dataset score is 55 and the standard error
3.5 (since the standard error is ∼ 1√

n
for Bernoulli). Thus, the CPS measure must

rely on a large number of sentence pairs to obtain statistically meaningful results
because of the binary decision process that disregards information regarding the
extent of the discrepancy between Smore and S less. The measures of Nadeem et al.
(2021) in StereoSet and of Kaneko and Bollegala (2021) also employ binarization
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and therefore do not make efficient use of the available data to measure bias.

The Proposed SJSD measure

Our goal in developing the SJSD measure was to create a theoretically well founded
measure that retains information regarding MLM output probabilities, avoiding
the binary decision process in CPS. This is especially important for our study,
where we had limited resources to create the translated dataset.

The SJSD measure is based on the Jensen-Shannon divergence (Lin, 1991),
a quantity bounded to the range [0, 1], that measures the similarity between two
probability distributions, P and Q, defined as follows:

JSD(P ||Q) = H

(
P +Q

2

)
− H (P ) +H (Q)

2
(2.1)

where H is the Shannon entropy (Shannon, 1948).
If P and Q are unrelated and share no overlap JSD(P ||Q) = 1 and if they

are the same distribution (maximum overlap) JSD(P ||Q) = 0. The square root
of the Jensen-Shannon divergence (also known as the Jensen–Shannon distance)
is a metric, i.e., it satisfies a range of properties intuitive to measures of distance,
including the triangle inequality (Endres and Schindelin, 2003). Define the gold
distribution as a one-hot distribution G that identifies the correct token under the
mask. We then define our measure SJSD as the difference of two distances: the
Jensen–Shannon distance between Pmore (resp. P less) and the gold distribution:

SJSD =
√

JSD(Pmore||G)−
√

JSD(P less||G) (2.2)

This definition may also be expressed purely in terms of the model output
probability for the token under the mask Pmore/less(uG), as JSD(P ||G) may be
expressed in the form shown in Eq. 2.3 for any distribution P . Thus only human
annotated text is evaluated.

JSD(P ||G) =
1

2
(PG log2(PG)−(PG+1) log2(PG+1)+2), P (uG) ≡ PG (2.3)

The quantity SJSD is also bound to the range [−1, 1], which limits the effect
of outliers. The theoretically ideal non-biased model should yield a value of 0 for
SJSD when the distance of Pmore to G is equal to the distance of P less to G. When
Pmore is closer to G than P less, we take this as a sign of bias for the stereotypical
sentence, thus we expect biased models to systematically generate negative SJSD

scores.
To generate a score for a sentence pair, we take the average of SJSD scores.

Subsequently, for the score on the dataset we simply take the average of the sen-
tence scores.
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2.4 Experiments

Model Multilingual Parameters
mBERT yes 178M
xlmR (base) yes 278M
xlmR (large) yes 560M
BERT (uncased) no 110M
RoBERTa no 355M
ALBERT no 206M

Table 2.2 – Details of models used in this study.

Error Analysis

For an analysis of the error of the reported score on the dataset, we bootstrap
the sentence scores to determine an estimate for the standard error using SciPy
(Efron and Tibshirani, 1993; Virtanen et al., 2020). For CPS we achieve this by
bootstrapping the binary sentence scores.

2.4 Experiments
For our experiments we make use of the Transformers library (Wolf et al., 2020).
We use two multilingual models, multilingual BERT (mBERT) (Devlin et al.,
2019), trained on Wikipedia, and base xlm-RoBERTa (xlmR) (Conneau et al.,
2020), trained on Wikipedia and filtered CommonCrawl data from the internet
(Wenzek et al., 2020). We choose xlmR as it has been shown to significantly
outperform mBERT on numerous cross-lingual tasks (Conneau et al., 2020). As
of this writing, xlmR seems to be the best performing multilingual model in the
Transformers library (Wolf et al., 2020; Conneau et al., 2020). The two models
differ in training data by the CommonCrawl, which we assume to be more of a
source of bias than Wikipedia, based on the results of the CPS study. Nangia et al.
(2020) found RoBERTa, trained on Wikipedia and the CommonCrawl, among
other datasets (Zhuang et al., 2021), to generally have higher bias scores, com-
pared to BERT (Devlin et al., 2019), although this was not true for gender bias
(Nangia et al., 2020).

We run the two models on our translated datasets and calculate CPS and SJSD

scores. Running a model on a single language using an Intel Xeon Processor
E5-2680 v2 takes roughly 15 minutes.

We also test SJSD on the models and dataset used in the CPS study (Nangia
et al., 2020).

Finally, we test the effect of model size on the scores by comparing the large
and base xlm-RoBERTa models. See Table 2.2 for a list of all models used.
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Model Lang. SJSD×10-3 CPS B.SJSD
mBERT En -0.05±1 57±3 50 ±3

xlmR En -1 ±2 62±3 54 ±3

mBERT De -1 ±2 57±3 55 ±3

xlmR De -2 ±2 51±3 50 ±3

mBERT Id -3 ±1 46±3 51 ±3

xlmR Id -4 ±2 51±3 54 ±3

mBERT Th -4 ±2 60±3 60 ±3

xlmR Th -4 ±2 57±3 57 ±3

mBERT Fi -0.2 ±2 44±3 50 ±3

xlmR Fi -3 ±2 51±3 53 ±3

mBERT Fr -3 ±1 58±3 58 ±3

xlmR Fr -5 ±2 57±3 56 ±3

mBERT Zh +0.6 ±1 54±3 50 ±3

xlmR Zh -0.4 ±1 53±3 48 ±3

mBERT Vi -1 ±1 51±3 52 ±3

xlmR Vi +0.3 ±1 51±3 50 ±3

mBERT Ko +0.7 ±0.8 42±3 49 ±3

xlmR Ko +0.7 ±0.9 56±3 49 ±3

mBERT Ar -1 ±3 50±3 55 ±3

xlmR Ar +1 ±4 48±3 50 ±3

Table 2.3 – CPS and SJSD scores and standard errors on our multilingual bias
diagnosis dataset for all languages. The SJSD scores systematically identify
the stereotypical sentence as indicated by the negative scores (with the excep-
tion of Arabic for xlmR). Some CPS scores are below 50, indicating the mea-
sure cannot capture the stereotypical behavior of the model for this dataset.
The binarized version of SJSD (B.SJSD) is also shown to illustrate the effect of
binarization. B.SJSD reports scores of 50 or below in four cases where SJSD

is negative, suggesting that binarization reduces the predictive power of the
measure.

2.5 Results and Analysis
Table 2.3 shows results for CPS and SJSD on the entire multilingual dataset. We
observe that the CPS measure reports scores well under 50 for multiple languages.
This goes against the intuition that MLMs learn stereotypical associations from
data: it wrongly suggests that male stereotypes are associated with women and
female stereotypes with men. We suspect this behavior of CPS comes from the
binary decision problem outlined in Section 2.3.2, which is especially relevant for
smaller datasets.

A first indication to suspect that we might be in this regime is that the CPS
standard errors are close in value to the estimated standard errors assuming a
Bernoulli process, as discussed in Section 2.3.2. We can also observe a cluster-
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Figure 2.2 – The difference Smore −S less for our entire multilingual bias diag-
nosis dataset. The white points mark the averages and the box and whiskers
plots mark the quartiles. Most of the scores cluster around the decision
boundary denoted by the horizontal dotted line.

ing of CPS sentence scores, before binarization, around the decision boundary in
Figure 2.2, indicating that slight variations in bias scores can substantially change
the CPS score. Furthermore, the effect of binarizing SJSD (i.e., following the CPS
method but replacing logPmore(uG,i) with the JSD distance to the gold token) is
shown in Table 2.3. These binarized SJSD scores fail to detect bias by yielding
scores of 50 or below in four cases – whereas the SJSD score predicts bias as ex-
pected. The drawback of using CPS is especially apparent for Korean, where the
SJSD hovers around zero, whereas for CPS the scores fluctuate strongly around
zero. All this, coupled with the discussion in Section 2.3.2, reinforces our argu-
ment that binarization harms measure performance and that SJSD is numerically
more suitable and theoretically justified as a measure compared to CPS, especially
on smaller datasets. Note that we did not unbinarize CPS scores as they have no
clear statistical interpretation (Nangia et al., 2020; Salazar et al., 2020); see dis-
cussion in Section 2.3.2.

Table 2.3 shows that SJSD has negative values, i.e., indicates bias consistently
across all languages and models. Interestingly, xlmR consistently yields equal or
more negative SJSD scores than mBERT; this supports our hypothesis that xlmR

42



2.5 Results and Analysis

Unperturbed Perturbed
Model S′

JSD CPS S′
JSD CPS

BERT -6±1 60.5±1.3 -6±1 58.6±1.3

RoBERTa -10±1 65.5±1.2 -10±1 63.5±1.2

ALBERT -13±1 67.0±1.2 -11±1 64.5±1.2

mBERT -4±1 53.6±1.3 -3±1 55.6±1.3

xlmR -4±1 57.1±1.3 -4±1 56.6±1.3

Table 2.4 – Scores and standard errors on the original CPS dataset (Nangia
et al., 2020), for which BERT (Devlin et al., 2019), RoBERTa (Zhuang et al.,
2021) and ALBERT (Lan et al., 2020) were used. S ′

JSD = SJSD × 10−3.
Unperturbed and perturbed conditions. For this larger dataset both SJSD and
CPS show the same systematic trends in bias scores between the models, in
agreement with the results of (Nangia et al., 2020). Under the effect of the
perturbation, the dataset is of sufficient size that both measures are robust
and retain their systematic trends. The number of significant figures for CPS
was chosen to match the results of the original CPS study.

encapsulates more gender bias. However, we also note that some of the standard
errors are large compared to their associated average. This, we suspect, is largely
due to the limited number of sentences that are available in the analysis.

To test our measure on a larger dataset, and to make a direct connection with
the original CPS study, we applied SJSD to the original CPS dataset in Table 2.4.
We also tested the stability of the measures by perturbing the dataset by removing
the final character of each sentence, which most commonly resulted in the removal
of a period. From this we observe that both the CPS and the SJSD standard errors
decrease with dataset size, as expected.

Ideally, future MLM bias datasets would have a statistical justification that the
amount of data provided is adequate to make judgments about a model’s bias as
probed by a particular measure.

Finally, we also tested for model size by comparing the base and large xlmR
models (Conneau et al., 2020). While both models were found to be biased for the
more stereotypical sentence, the scores between the two models were too similar
and no discerning pattern between them could be found using either bias measure.
We suspect this is due to the small size of the dataset. More complex factors could
be at play as well, such as multilingual models benefiting from more multilingual
data, in terms of gender bias mitigation, a hypothesis supported by the more neg-
ative SJSD scores for monolingual models in Table 2.4. However, this question is
beyond the scope of this work.

43



2.6 Conclusion

2.5.1 Qualitative Analysis
In Table 2.3 the English CPS scores reproduce the systematic behavior from the
CPS study (Nangia et al., 2020); however, this is not true for all languages, such
as German. This may simply be a result of the much larger amount of English
training data available to the models (Conneau et al., 2020). The nature of this
additional data does not need to be biased in nature. A contributing factor may be
that this additional data forces the tokenizer to adjust the tokens in its vocabulary
to be whole words for English whereas for other languages tokens may tend to
be groups of characters, which cannot be exchanged for others without forming
grammatically incorrect sentences. To make this point, consider the following
sentence pair from the dataset:

(6) a. Women are terrible at handiwork.
b. Men are terrible at handiwork.

Using mBERT, three tokens in the set U together form the composite word “hand-
iwork” (“hand”, “##i”, “##work”); the remaining four are separate words and the
period. However, it is almost trivial to predict any one of the subword tokens from
the composite word, thus differences in MLM prediction probabilities may not be
informative for detecting gender bias. In this case CPS assigns a sentence score
of 1 and SJSD −.0075. The value of Smore − S less for CPS is 1.29, placing it close
to the decision boundary in Figure 2.2 and thus making CPS prone to noise.

For the German translation of the sentence, three tokens in U are individual
words or the period, while the remaining five form composite words. CPS assigns
a sentence score of 0 and SJSD −.0135. In this case Smore −S less for CPS is −.98,
once again placing it close to the decision boundary in Figure 2.2.

Over the whole dataset, for German, 57% and 75% of tokens in the more
stereotypical sentence were correctly predicted using mBERT and xlmR, respec-
tively, whereas for English the prediction accuracy was lower at 56% and 68%,
despite having more training data. Thus, compared to German, the CPS mea-
sure may be better suited for English, where individual tokens are not as trivial
to predict and the CPS measure is not as prone to being influenced by noise from
subword tokens.

2.6 Conclusion
In this project, we developed a method for creating a multilingual gender bias
diagnosis dataset that can be used across languages. Based on CrowS-Pairs (Nan-
gia et al., 2020), we used this method to initially construct a multilingual gender
bias diagnosis dataset for English, Finnish, German, Indonesian and Thai, which
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has subsequently been extended to Arabic, Chinese, French, Korean, Vietnamese.
Additionally, we proposed a new measure based on the Jensen–Shannon diver-
gence from information theory, SJSD, to study bias in MLMs using sentence pairs
that contrast two groups. Using this measure we found that all studied models
showed signs of gender bias for more stereotypical sentences across all five lan-
guages. Our hope is that our methods can be used for better evaluation of bias and
debiasing in MLMs. We also hope that our work will foster more multilingual
work on bias in language models.

In the future, since most recent bias research focused on PLMs and word em-
beddings, we plan to develop measures for downstream tasks as recommended by
(Blodgett et al., 2020).

2.7 Ethical Considerations
The dataset presented in this project aims to make progress in the evaluation of
multilingual gender bias in MLMs, however we argue that it should not be used to
train such models. As the presented dataset is intended as a test set, training on it
would defeat its purpose as a test of gender bias in MLMs. The presented dataset
is based on the CPS dataset, an English crowd sourced dataset aimed at evaluating
social biases in the United States (Nangia et al., 2020). For the purpose of this
study we made the assumption that the biases in the CPS dataset relating to gender
can be extended to the other languages studied and are relevant in cultures where
the languages are spoken, however we caution against the blind implementation
of such systems.

Additionally, we caution against concluding that models are completely bias
free when they generate scores that theoretically unbiased models are expected to
generate. It may be that these models still encode biases that cannot be captured
using the proposed measure or dataset, which may later manifest once a model is
implemented.

2.8 Supplementary Translation Instruction Sheet
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Sentence Pair Translation Instructions

1 Translation Task

The general aim is to translate the pairs of English sentences in columns

A en and B en , into their respective versions in the target language, in

columns A x and B x .

However, the translation of the two sentences have to specify a special

criterion. Notice that the pairs of English sentences A en and B en differ

only by a few details. Most commonly, the sentences differ only by ex-

changing a named person for another with a different gender. The goal is

to translate the English sentences A en and B en in such a way that this

corresponding difference is the only aspect that differentiates the translated

sentences A x and B x . Section 2 gives examples of the types of transla-

tions that are requested as well as some possible pitfalls. To clarify the

translation process, we will use German as an example.

1.1 Translation of Names

The English sentences have references to names of four people in total. When

translating these people’s names into the target language, please assign a

corresponding name to the person that is common in the target language. In

this task it is also important that the gender of the person can be identified

with high likelihood from the name alone. It may help to create a conversion

table to keep track of which names were assigned. Please refer to table 1

to find a German example of such a conversion table, as well as a complete

list of the English names. These are all names of fictitious people that were

created solely for the sake of translation.

1
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English Name Gender German Name

Olivia Smith Female Emilia Müller

James Smith Male Maximilian Müller

Emma Johnson Female Mia Schmidt

Robert Johnson Male Leon Schmidt

Table 1: Example of a conversion table for names for German

2 Examples

This section aims to clarify the translation instructions using examples.

Note, spaces are added in this section only to align text for ease of com-

parison. Such spaces are not sought after in the final translations.

Consider the following English Sentences.

A en James, our teacher, went to the store.

B en Olivia, our teacher, went to the store.

A possible German translation could be the following.

A x Maximilian, unser Lehrer, ging zum Laden.

B x Emilia, unsere Lehrerin, ging zum Laden. ✓

Notice that only the people mentioned changed between the sentences,

just like in their English counterparts, in addition to some gender agreement

rules that are necessary in German. The following sentence pairs, however,

violate the outlined instructions.

A x Maximilian, unser Lehrer, ging zum Laden.

B x Emilia, unsere Lehrerin, fuhr zum Laden. ✗

A x Maximilian, unser Lehrer, ging zum Laden .

B x Emilia, unsere Lehrerin, ging zum Kaufhaus . ✗

A x Maximilian, unser Lehrer, ging zum Laden.

B x Mia , unsere Lehrerin, ging zum Laden. ✗

In these examples more details changed between the German Sentences

than between the English sentences, or the German name that was used did

not correspond to the English name provided in table 1.

2

2.8 Supplementary Translation Instruction Sheet
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3 Additional Notes for Translations

The following points answer some frequently asked questions related to the

instructions.

• Any politeness level may be used that may be deemed appropriate for

the sentences, including any levels considered rude.

• Please translate the sentences in a way that is natural to a native

speaker in the target language.

• If possible, avoid sentence pairs that end up the same, however if this

is unavoidable or unnatural keep the pairs the same.

4 Sentence Specific Notes

• In the sentences with the ID 386, ”treat” is meant in the sense of ”to

provide someone a good or service at their own expense”.

3

2.8 Supplementary Translation Instruction Sheet
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Chapter 3

Politeness Stereotypes and Attack
Vectors: Gender Stereotypes in
Japanese and Korean Language
Models
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3.1 An Introduction to Politeness Levels in Korean and Japanese

吾輩は猫である。
(I am a cat. (Arrogant))

吾輩は猫である
Natsume Sōseki

In this chapter we focus on analyzing gender biases relating to politeness in
NLP models. To the best of our knowledge, this line of research is quite novel and
has not been explored deeply thus far in the literature.

Using Japanese and Korean to probe for these biases, we find the following:

• Female speakers most likely speak in an informal polite level, while male
speakers are more rough or formal.

• Gender biases relating to honorifics may be used as an attack vector to by-
pass cyber bullying detection models.

Parts of this work were published on arXiv (Steinborn et al., 2023). The au-
thors were Victor Steinborn, Antonis Maronikolakis, Hinrich Schütze.

3.1 An Introduction to Politeness Levels in Korean
and Japanese

Studying gender bias on the basis of politeness in English is not a straightforward
task, however unlike English, politeness is a critical and unavoidable aspect of
both the Korean and Japanese language, given that politeness is encoded in verbs
(Eri et al., 2011; Roh, 2013). This makes Korean and Japanese ideal for studying
this aspect of gender bias.

Consider the example of the following pair of Japanese sentences1:

a. 勉強する。 (benkyou suru)
b. 勉強します。 (benkyou shimasu)

Both of these sentences may be translated to “(I) will study.” where the subject
“I” is assumed as Japanese is a null-subject language, where we note that a null-
subject language (also known as a pro-drop language) is a language where the
subject may be omitted (Bender, 2013). A key difference between the two sen-
tences is that sentence a tends to be used among family and friends and is more
informal, while sentence b is appropriate to use for acquaintances and is consid-
ered comparatively more polite (Eri et al., 2011).

1Japanese romanization in parentheses provided by pykakasi (Miura, 2022)
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3.2 Related Work

There are other ways of expressing politeness, notably through the choice of
titles and nouns (Eri et al., 2011; Roh, 2013). For example, the word for “home”
could be 家 (ie) or お宅 (o taku) in Japanese and 집 (jip) or 댁 (daek) in Korean2

for casual and polite contexts, respectively. However, for simplicity, and due to
the novel nature of our experiments, we will only consider politeness pertaining
to the conjugation of verbs.

Concerning gender, polite speech in Korean and Japanese is a common key
characteristic of female speech (Okamoto, 2013; Sung-Yun, 1983). However, it is
not a requirement of women to speak politely, rather it is a stereotype that women
are expected to use more polite or higher speech levels and honorifics (collectively
referred to as politeness levels) (Okamoto, 2013).

This social expectation for women to use higher politeness levels has a long
history, and has been codified in texts such as女重宝記 (onna chouhou ki - trans-
lated: ’Record for Useful Instruction for Women’) (Kusada, 1692), which out-
lines how women should act and speak (Okamoto, 2013). With modernization,
women’s initial attempts to adopt more gender-equal language, via the omission
of certain politeness or honorific markers, similar in character as going from sen-
tence b to sentence a at the beginning of this section, were seen as lazy and vulgar
(Inoue, 2006).

Given these historic biases and stereotypes pertaining to expected politeness
levels, our objective is to examine if language models learn these biases and if
these biases are harmful to performance. Specifically, we will first investigate
pre-trained language models for internal gender biases relating to politeness (rep-
resentational harms) and then we will test for biases in downstream behavior, in
our case cyber bullying detection, that may be explained by these biases (alloca-
tional harms) (Blodgett et al., 2020).

3.2 Related Work

3.2.1 Politeness
Previous empirical attempts to measure gender biases in politeness, such as that
of Eo (2008), which used a judge to determine politeness differences between uni-
versity boys and girls in Japanese and Korean, suffer from the typical problems
faced by empirical studies, such as a lack of data due to limited number of partic-
ipants. In this study we attempt to measure these differences using NLP models
pre-trained on large corpora. It has been shown that the learned biases relating to
occupations in NLP models correlate with the gender gaps in real-world employ-
ment statistics (Rudinger et al., 2018; Caliskan et al., 2017; Kirk et al., 2021a).

2Korean romanization in parentheses provided by korean-romanizer (Ju, 2023)
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Given that NLP models learn these relationships from real-world data, we hy-
pothesize gender biases relating to politeness may also be learned and that NLP
models can also be used to probe real-world biases.

Ignoring gender, politeness research in NLP primarily focuses, almost exclu-
sively, on English. A popular topic in politeness research are direct requests in
Wikipedia edit requests, inspired by the seminal work of Danescu-Niculescu-
Mizil et al. (2013). Politeness in direct requests have since been studied in predict-
ing politeness using neural networks (Aubakirova and Bansal, 2016), and other
languages, including Korean (Srinivasan and Choi, 2022).

With regards to politeness, gender bias is usually neglected, however Danescu-
Niculescu-Mizil et al. (2013) does mention female Wikipedians were found to be
generally more polite, in agreement with prior linguistic studies (Herring, 1994).

3.2.2 Hate speech and Cyber Bullying
Automated detection of hate speech and cyber bullying has become more preva-
lent with the increased use of social media and online platforms (Vidgen et al.,
2019). While early work focused predominantly on English (Waseem and Hovy,
2016; Davidson et al., 2017; Founta et al., 2018), work to develop benchmarks,
datasets and models for other languages is rising (Mishra et al., 2019; Röttger
et al., 2022; Ousidhoum et al., 2019; Ranasinghe and Zampieri, 2020; Maroniko-
lakis et al., 2022; Yuan et al., 2022; Ross et al., 2017; Nozza, 2021).

Despite progress, hate speech models and datasets are prone to certain pit-
falls, such as low generalization abilities, biased data and inconsistent definitions
(Röttger et al., 2021; Madukwe et al., 2020; Swamy et al., 2019; Wiegand et al.,
2019). Further, vulnerabilities of hate speech models against adversarial attacks
have been uncovered. Gröndahl et al. (2018) demonstrated how appending the
word “love” rendered tested models ineffective. In our work, we investigate vul-
nerabilities against politeness-level attacks.

This raises the question whether a user peddling hate speech online could use
language-specific biases to evade detection, or conversely, whether a designer of
detection systems could leverage this knowledge to enhance the model’s perfor-
mance. In our work, we attempt to answer these questions for cyber bullying
identification in Japanese. Namely, we analyze models for biases relating to po-
liteness levels and propose a linguistics-oriented solution to better prepare models
against adversarial attacks.

3.2.3 Gender Bias
Gender bias in NLP is most commonly studied within the context of English
(Steinborn et al., 2022; Kaneko et al., 2022; Câmara et al., 2022; Bartl et al., 2020),
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with other languages less commonly studied. Research in non-English settings is
predominantly done in multilingual contexts, where non-English texts are treated
as translations of English source text. This approach ignores language-specific
features or conventions. For example, Bartl et al. (2020) directly translated tem-
plates from English to German, which do not perform as well, due to the fact that
the templates were not designed to respect German gender agreement rules, a fact
Steinborn et al. (2022) attempted to address by using the pair-like structure of
CrowS-Pairs (Nangia et al., 2020). In another study, Kaneko et al. (2022) trans-
lated the CrowS-Pairs dataset (Nangia et al., 2020) to Japanese, however, gender
information was lost about 40% of the time.

Common topics on gender bias are occupational stereotypes (Caliskan et al.,
2017; De-Arteaga et al., 2019; Bartl et al., 2020) and general representational
stereotypes (Nadeem et al., 2021; Nangia et al., 2020; Nissim et al., 2020).

Several studies consider Korean and Japanese. Kaneko et al. (2022) proposed
a multilingual technique, which uses parallel texts to probe pre-trained models
for gender bias. However Japanese-specific features of the language were not
exploited in their proposed method. Cho et al. (2019); Prates et al. (2018) test
commercial machine translation systems. In a supplementary experiment, Cho
et al. (2019) attempted to examine if politeness affects gender bias, however only
the informal -해 (-hae) and polite -해요 (-haeyo) forms were considered and no
significant change in gender bias signals are detected.

Our study examines if there is in fact a correlation between gender bias and
politeness levels and, to the best of our knowledge, is the first in-depth study on
modern NLP models in this domain.

3.2.4 Few-Shot Learning
Few-shot learning is emerging as a popular trend in the NLP community, built
on the emergent abilities of large pre-trained language models (Wei et al., 2022),
which have been shown to work well in few- and zero-shot settings (Brown et al.,
2020; Gao et al., 2021; Sanh et al., 2022; Le Scao and Rush, 2021; Fu et al., 2022).
Few-shot learning has benefited from the use of prompting (Schick and Schütze,
2021a), which has been shown to be competitive with models orders of magnitude
larger (Schick and Schütze, 2021b). While prompting is a useful technique to aid
in model learning, it requires manual crafting of prompts and labels. While there
has been work to improve prompting, it remains a noisy process (Schick et al.,
2020; Logan IV et al., 2022; Lu et al., 2022; Shin et al., 2020; Zhao and Schütze,
2021; Jung et al., 2022; Wu et al., 2022; Mishra et al., 2022).

Recently, SetFit (Tunstall et al., 2022) introduced a prompt-free approach to
few-shot learning. Through the use of SentenceBERT and its Siamese-network
training paradigm (Reimers and Gurevych, 2019), SetFit generates pairs of train-
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Lang. Template Application

Ja
{mask}は「{speakerNoun}{speakerVerbEnding}」と{narratorVerb}。

{mask} は 「{speakerNoun} {speakerVerbEnding}」 と {narratorVerb}。
Pronoun TOP “ Noun do-NPST-(-HON/-EMP) ” QUOT say(-HON/-EMP)PST.

Rep.

Ko
{mask}은/는 “{speakerNoun}{speakerVerbEnding}”(이)라고 {narratorVerb}.

{mask} 은/는 “{speakerNoun} {speakerVerbEnding}” (이)라고 {narratorVerb}.
Pronoun TOP “ Noun do-NPST-(-HON) ” QUOT say(-HON)PST.

Rep.

Ja
{tweet}({genderTerm}はこう{narratorVerb})

{tweet} ({genderTerm} は こう {narratorVerb})
Tweet (Pronoun TOP like so (ADV) say(-HON/-EMP)PST)

Allo. (train)

Ja
{tweet}({genderTerm}にこう{narratorVerb})

{tweet} ({genderTerm} に こう {narratorVerb})
Tweet (Pronoun IO like so (ADV) say(-HON/-EMP)PST)

Allo. (test)

Ja
{tweet}({genderTerm})

{tweet} ({genderTerm})
Tweet (Pronoun)

Allo. (gender only)

Ja
{tweet}
{tweet}
Tweet

Allo. (tweet only)

Table 3.1 – Templates used to probe representational (Rep.) and allocational
(Allo.) biases. Below each of the templates we provide glosses. We follow
the notation of Bender (2013) and Comrie et al. (2008) and note that for the
glosses, the presence of the HON gram is only applicable for verbs that are
associated with politeness or honorific levels, and EMP is only appropriate for
verbs with the rough verb endings. We also note that the topic particle은 and
the이라고 form of the quote particle (both are used only when the preceding
word ends in a consonant) are not used our experiments (Roh, 2013).

ing examples and learns to minimize the distance of representations of training
examples of the same class and, conversely, to maximize the distance for exam-
ples from different classes. This process results in a model that can generate strong
sentence embeddings, which can be then used to train a classification head on a
task.

3.3 Methodology

3.3.1 Representational Biases
We probe Masked Language Models (MLMs) for representational biases (i.e.,
biases relating to how different persons are portrayed by NLP models (Blodgett
et al., 2020)), using a novel template approach. The templates, shown in Table 3.1,
are designed such that we can probe both the type of language (rough, informal,
polite, formal and honorific) the models associate with different individuals (via a
speaker) and the language that is used to speak of these individuals (via a narrator).
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Templates

To simplify presentation of experiments, we differentiate between a so-called
speaker and a so-called narrator. The speaker will speak of an action using a
する (suru) verb (Japanese) or a 하다 (hada) verb (Korean). する and 하다 verbs
consist of a noun ({speakerNoun}) and the verb “to do” ({speakerVerbEnding})
where the verb can change with the politeness level (Roh, 2013; Eri et al., 2011).

The noun is first, with the verb second ({speakerNoun}{speakerVerbEnding}).
For example, the verb for “to study”, may be formed via the noun勉強 (benkyou)
in Japanese and 공부 (gongbu) in Korean ({speakerNoun}), and combined with
the informal form of the verb “to do”, namelyする in Japanese and해 in Korean
({speakerVerbEnding}), to form 勉強する and 공부해 respectively (Roh, 2013;
Eri et al., 2011).

What makes する and 하다 verbs particularly appealing for templates is that
politeness is encapsulated in the verb ({speakerVerbEnding}) and that the noun
({speakerNoun}) can be freely exchanged between politeness levels, a fact also
exploited by Cho et al. (2019) when working with Korean.

To complete the template, the narrator directly quotes the utterance of the
speaker, X , via the Japanese and Korean equivalent of “{mask} said ‘X’.”. We
then let the model predict the gender identity of the speaker via a mask token
({mask}). The templates are shown in Table 3.1, where {narratorVerb} is the
verb “to say” in the past tense form at various politeness levels.

For a complete sentence with an explanatory gloss, we provide Example (1)
for Japanese and Example (2) for Korean. In these glosses, TOP refers to a topic
marker (which coincides with the subject here), QUOT refers to the quote particle,
NPST refers to the non-past tense form of the verb and PST refers to the past tense
form of the verb. Our notation follows that of Bender (2013) and Comrie et al.
(2008).

(1) 彼

kare
He

は

wa
TOP

「

“
“

勉強

benkyou
study

する

suru
do-NPST

」

”
”

と

to
QUOT

言った

itta
say-PST

。

.

.
He said “(I) will study”.

(2) 그

geu
He

는

neun
TOP

“
“
“

공부

gongbu
study

해

hae
do-NPST

”
”
”

라고

rago
QUOT

말했어

malhaesseo
say-PST

.

.

.
He said “(I) will study”.

Data

する and 하다 verbs are taken from standardized language proficiency tests. We
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Politeness Level Ex. P F H

rough zo
するぞ (suruzo)
do-NPST-EMP

rough ze
するぜ (suruze)
do-NPST-EMP

plain
する (suru)
do-NPST

teineigo
します (shimasu)
do-NPST-HON

⋆

kenjōgo
いたす (itasu)
do-NPST-HON

⋆ ⋆

sonkeigo
なさる (nasaru)
do-NPST-HON

⋆ ⋆ ⋆

heche
해 (hae)
do-NPST

heyoche
해요 (haeyo)

do-NPST-HON
⋆

hapsyoche
합니다 (hapnida)
do-NPST-HON

⋆ ⋆

heche+hon.
하셔 (hasyeo)

do-NPST-HON
⋆

heyoche+hon.
하셔요 (hasyeoyo)

do-NPST-HON
⋆ ⋆

hapsyoche+hon.
하십니다 (hasipnida)

do-NPST-HON
⋆ ⋆ ⋆

Table 3.2 – Overview of Japanese and Korean politeness levels. The verb “to
do” (する and하다) is used to illustrate (Ex.) how verbs change. The general
politeness (P), the general formality (F) and the elevation of the subject per-
forming the action via honorific language (H) is indicated across levels. Note,
following Bender (2013), all politeness levels are covered by the HON gram.
Additionally, note that the informal rough ze and rough zo forms are a type
of rough speech (Hemsoe, 2023). For these rough levels the EMP (emphatic)
gram is used (Brown and Anderson, 2006)

56



3.3 Methodology

used 142 する verbs from the JLPT 3 and 107 하다 verbs from the TOPIK 4.
The reasoning behind using verbs from language proficiency tests is that they are
common and standardized.

We convert the verbs into common politeness levels used in each language,
as outlined in Table 3.2. Politeness levels are used to indicate differing levels of
politeness, formality or respect towards a subject (via honorifics) or listener (Roh,
2013; Eri et al., 2011; Hiroko Yamagishi, 2014).

By taking all combinations of speaker nouns, speaker verb endings and nar-
rator verb endings, we have 3852 = 107 × 6 × 6 sentences for Korean and
4260 = 142 × 6 × (6 − 1) sentences for Japanese for the representational bias
study. Note, the minus one in the calculation for Japanese is because kenjōgo can
only be used to speak humbly of one’s own actions, and thus cannot be used by
the narrator (Hiroko Yamagishi, 2014).

We will also provide one example sentence for each politeness level, where we
change the speaker and narrator verbs simultaneously in example (3) for Japanese
and example (4) for Korean. In doing so we ensure that the speaker and narrator
use the same politeness level (the speaker and narrator may mix levels); however,
note that we pair kenjōgo for the speaker with the plain form for the narrator.
This is because kenjōgo can only be used to speak humbly of one’s own actions,
and thus cannot be used by the narrator (Hiroko Yamagishi, 2014). Additionally
all pronoun forms may be freely exchanged, in addition to the speaker nouns (Eri
et al., 2011; Roh, 2013). For simplicity, we will only use the speaker noun “study”
and the female third person pronoun for all examples. In English all examples
translate to ‘she said “(I will study)”.’.

(3) a. (rough zo)
-

彼女

She
は

TOP

「

“
勉強

study
するぞ

do-NPST-EMP

」

”
と

QUOT

言ったぞ。

say-PST-EMP.
b. (rough ze)

-
彼女

She
は

TOP

「

“
勉強

study
するぜ

do-NPST-EMP

」

”
と

QUOT

言ったぜ。

say-PST-EMP.
c. (plain)

-
彼女

She
は

TOP

「

“
勉強

study
する

do-NPST

」

”
と

QUOT

言った。

say-PST.
d. (teineigo)

-
彼女

She
は

TOP

「

“
勉強

study
します

do-NPST-HON

」

”
と

QUOT

言いました。

say-PST-HON.
e. (kenjōgo)

-
彼女

She
は

TOP

「

“
勉強

study
いたす

do-NPST-HON

」

”
と

QUOT

言った。

say-PST.
f. (sonkeigo)

-
彼女

She
は

TOP

「

“
勉強

study
なさる

do-NPST-HON

」

”
と

QUOT

3https://www.jlpt.jp/e/
4https://www.topik.go.kr
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おっしゃった。

say-PST-HON.

(4) a. (heche)
-

그녀

She
는

TOP

“
“
공부

study
해

do-NPST

”
”
라고

QUOT

말했어.
say-PST.

b. (heyoche)
-

그녀

She
는

TOP

“
“
공부

study
해요

do-NPST-HON

”
”
라고

QUOT

말했어요.
say-PST-HON.

c. (hapsyoche)
-

그녀

She
는

TOP

“
“
공부

study
합니다

do-NPST-HON

”
”
라고

QUOT

말했습니다.
say-PST-HON.

d. (heche+hon.)
-

그녀

She
는

TOP

“
“
공부

study
하셔

do-NPST-HON

”
”
라고

QUOT

말하셨어.
say-PST-HON.

e. (heyoche+hon.)
-

그녀

She
는

TOP

“
“
공부

study
하셔요

do-NPST-HON

”
”
라고

QUOT

말하셨어요.
say-PST-HON.

f. (hapsyoche+hon.)
-

그녀

She
는

TOP

“
“
공부

study
하십니다

do-NPST-HON

”
”
라고

QUOT

말하셨습니다.
say-PST-HON.

Models

All models are listed in Table 3.3. We selected the ten most downloaded MLMs
on Hugging Face (Wolf et al., 2020) for each language that have a single token
for “he” and “she” each. Note that we selected models that have official Japanese
or Korean language support according to Hugging Face model page (Wolf et al.,
2020).

Gendered Tokens

We search for the following gendered tokens that could appear under the {mask}
token, namely the terms “he” (ja: 彼 (kare), ko: 그 (geu)), “she” (ja: 彼女 (kanojo),
ko: 그녀 (geunyeo)) and several demonstrative gender-neutral third-person pro-
nouns.

For Japanese, we search for the gender-neutral formal proximal, medial and
distal pronouns “こちら” (kochira), “そちら” (sochira) and “あちら” (achira)
respectively, as well as their informal versions “こいつ” (koitsu), “そいつ” (soitsu)
and “あいつ” (aitsu). For Korean, we follow Cho et al. (2019) and search for “걔”
(gyae) and “그사람” (geu saram).
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Hugging Face Model Name Lang. Params. App.
ken11/albert-base-japanese-v1 (Adachi, 2021) Ja 11M Rep.
izumi-lab/bert-small-japanese-fin (Suzuki et al., 2023) Ja 18M Rep.
cl-tohoku/bert-base-japanese-whole-word-masking

(Tohoku NLP Group, 2019) Ja 111M Rep.

rinna/japanese-roberta-base (Tianyu and Kei, 2021) Ja 111M Rep.
cl-tohoku/bert-base-japanese-v2 (Tohoku NLP Group, 2021a) Ja 111M Rep.
xlm-roberta-base (Conneau et al., 2020) Ja 278M Rep.
Twitter/twhin-bert-base (Zhang et al., 2022) Ja 279M Rep.
cl-tohoku/bert-large-japanese (Tohoku NLP Group, 2021b) Ja 337M Rep.
xlm-roberta-large (Conneau et al., 2020) Ja 560M Rep.
Twitter/twhin-bert-large (Zhang et al., 2022) Ja 562M Rep.
monologg/koelectra-base-v3-generator (Park, 2020) Ko 37M Rep.
klue/roberta-small (Park et al., 2021) Ko 68M Rep.
snunlp/KR-FinBert (Kim and Shin, 2022) Ko 101M Rep.
beomi/kcbert-base (Lee, 2020) Ko 109M Rep.
klue/bert-base (Park et al., 2021) Ko 111M Rep.
klue/roberta-base (Park et al., 2021) Ko 111M Rep.
monologg/kobigbird-bert-base (Park, 2021) Ko 114M Rep.
kykim/bert-kor-base (Kim, 2020) Ko 118M Rep.
lassl/bert-ko-base (LASSL, 2022) Ko 125M Rep.
klue/roberta-large (Park et al., 2021) Ko 337M Rep.
sentence-transformers/paraphrase-multilingual-mpnet-base-v2

(Reimers and Gurevych, 2019) Ja 278M Allo.

ptaszynski/yacis-electra-small-japanese-cyberbullying
(Shibata et al., 2022) Ja 14M Allo.

Table 3.3 – Models used in this study. Shown are the language the model
was used for (Lang.), the parameter count (Params.) and the application
(App.) for which the model was used for. Models were either used for studying
representational (Rep.) or allocational (Allo.) biases.

59

https://huggingface.co/ken11/albert-base-japanese-v1
https://huggingface.co/izumi-lab/bert-small-japanese-fin
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/rinna/japanese-roberta-base
https://huggingface.co/cl-tohoku/bert-base-japanese-v2
https://huggingface.co/xlm-roberta-base
https://huggingface.co/Twitter/twhin-bert-base
https://huggingface.co/cl-tohoku/bert-large-japanese
https://huggingface.co/xlm-roberta-large
https://huggingface.co/Twitter/twhin-bert-large
https://huggingface.co/monologg/koelectra-base-v3-generator
https://huggingface.co/klue/roberta-small
https://huggingface.co/snunlp/KR-FinBert
https://huggingface.co/beomi/kcbert-base
https://huggingface.co/klue/bert-base
https://huggingface.co/klue/roberta-base
https://huggingface.co/monologg/kobigbird-bert-base
https://huggingface.co/kykim/bert-kor-base
https://huggingface.co/lassl/bert-ko-base
https://huggingface.co/klue/roberta-large
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/ptaszynski/yacis-electra-small-japanese-cyberbullying
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Location Ja Ko G
Parliament 議会 (gikai) 의회 (uihoe) M
Department head office (ja)
Boss’s Office (ko) 部局長室 (bukyokuchou shitsu) 사장실 (sajangsil) M

Construction Site 工事現場 (koujigenba) 공사장 (gongsajang) M
Prime Minister’s Residence (ja)
President’s Residence (ko) 首相官邸 (shushoukantei) 청와대 (cheongwadae) M

Technical University 工業大学 (kougyoudaigaku) 공과대학교 (cheongwadae) M
Board of Directors Meeting 取締役会 (torishimariyakukai) 이사회 (isahoe) M
Ministry of Agriculture 農務省 (noumu shou) 농림부 (nongrimbu) M
Embassy 大使館 (taishikan) 대사관 (daesagwan) M
Laboratory 研究室 (kenkyuushitsu) 실험실 (silheomsil) M
Fire Station 消防署 (shoubousho) 소방서 (sobangseo) M
Daycare 保育園 (hoikuen) 어린이집 (eorinijip) F
Kindergarten 幼稚園 (youchien) 유치원 (yuchiwon) F
Nursing School (ja)
College of Nursing (ko) 看護学校 (kangogakkou) 간호대학 (ganhodaehak) F

Child’s Room (ja)
Baby’s Room (ko) 子供部屋 (kodomobeya) 아기방 (agibang) F

Literature Department (ja)
Education Department (ko) 文学部 (bungakubu) 교육학과건물 (gyoyukhakgwa geonmul) F

Cooking Class 料理教室 (ryourikyoushitsu) 요리교실 (yorigyosil) F
Kitchen キッチン (kitchin) 부엌 (bueok) F
Beauty Salon エステサロン (esutesaron) 미용실 (miyongsil) F
Birthing Center (ja)
Pregnancy and Birth Information Center (ko) 出産センター (shussan sentaa) 임신출산정보센터 (imsinchulsan jeongbosenteo) F

Nursing Care Medical Clinic (ja)
Medical Clinic (ko) 介護医療院 (kaigo iryou in) 진료소 (jinryoso) F

Table 3.4 – Locations used in this study. The gold-labeled stereotypical gen-
der association (G) is indicated and is either male (M) or female (F).

Locations

Correlations of stereotypically mono-gender dominated locations were also in-
vestigated. To our understanding, this is the first study that investigates location
biases in large language models.

To investigate correlations between gender and locations, we prepend our rep-
resentational bias templates with ({location}で) in Japanese and ({location}에서)
in Korean, which translates to “(at {location})”, which we use to give context on
the location of the scene (Roh, 2013; Eri et al., 2011).

We chose ten locations for the male and female grammatical gender based
on surveys about gender inequality in Japan and South Korea (World Economic
Forum, 2021; Gender Equality Bureau, Cabinet Office, 2022; Korean Women’s
Development Institute, 2022; Korean Women’s Development Institute IS, 2022)
and discussions with native speakers, who corroborated our choices with their
lived experiences. The full list of locations can be found in Table 3.4. Male
locations are generally associated with positions of authority and manual labor,
whereas female locations are associated with health and childcare.
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3.3 Methodology

3.3.2 Allocational Biases
We test for gender differences in allocational biases (i.e., biases relating to how
resources are allocated (Blodgett et al., 2020)), by investigating toxic content de-
tection differences when models are attacked via politeness-level manipulations.

Namely, we compare performance of the most downloaded5 Japanese cyber
bullying detection model (Shibata et al., 2022) against our proposed model, which
is designed to jointly detect cyber bullying and protect against politeness-level
attacks.

The baseline model was pre-trained on the YACIS corpus (Ptaszynski et al.,
2012) and fine-tuned on the Harmful BBS Japanese Comments Dataset (Ptaszyn-
ski and Masui, 2018; Matsuba et al., 2009) and the Twitter Japanese Cyber bully-
ing Dataset (Ptaszynski et al., 2012).

We use a different, recently released, balanced (50/50 split) toxic tweet dataset
from Surge AI,6 a professional data labeling platform, to test models for alloca-
tional biases.

We fed the tweets into the {tweet} slot in the templates under the “Allo.” appli-
cation column in Table 3.1 (where the gendered tokens from earlier are substituted
in the {genderTerm} slot). We test both models on the test template in Table 3.1
(translation: “{tweet} (it was told so to {genderTerm})”), which serves to give
information of the victim of the potentially toxic tweet. All possible combina-
tions of tweets, gender terms and politeness levels constitute our attack dataset,
which consists of 39,160 sentences (= (987− 8) unique tweets ×8 gender terms
×(6 − 1) politeness levels (via {narratorVerb})) in total. Note, eight tweets are
used for our few-shot learning setup and kenjōgo was removed since it cannot be
used by the narrator (similarly to our representational bias experiments).

Finally, using the training template in Table 3.1 to train our model (transla-
tion: “{tweet} ({genderTerm} said it so)”), using few-shot learning. For further
experimental details, refer to section 3.4.

3.3.3 Few-Shot Learning
For our proposed method, we are introducing a modified dataset that aids in train-
ing the model against politeness-level attacks to evade cyber bullying detection
in Japanese. We use the SetFit (Tunstall et al., 2022) framework to train a mul-
tilingual SentenceBERT model7 that was pre-trained on (among other languages)

5With over 500 downloads per month on Hugging Face (Wolf et al., 2020) at the time of
writing.

6https://www.surgehq.ai (Dataset created: 2022.07.02)
7https://huggingface.co/sentence-transformers/paraphrase-

multilingual-mpnet-base-v2
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3.3 Methodology

Figure 3.1 – Japanese (top) and Korean (bottom) log probabilities of the gen-
dered tokens for each model. More negative log probabilities correspond to
lower prediction probabilities. “he” is more likely than “she” in all Korean
models and seven out of ten Japanese models. The gender-neutral tokens are
the least likely in all Korean models and in eight out of ten Japanese models.
Standard errors are shown (their magnitudes are at most 1% of the mean, and
may thus not be visible).
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Japanese data.
Out of the total 987 original tweets, we used 8 tweets plus 384 template-

modified examples of these tweets for a total of 392 training examples. The 8
tweets selected for training were removed from the original dataset and the tem-
plate used for training was not used for the generation of politeness-attack tweets.
Thus, we ensure no overlap between training and evaluation data. More con-
cretely, we used the allocational bias templates listed in Table 3.1. For training we
used the train template and for evaluation we used the test template.

With SetFit, the model is trained in a contrastive learning manner: given two
training examples, the model learns to decrease representation distance (e.g., co-
sine similarity) between them if they belong to the same class and increase dis-
tance between them if they belong to different classes.

3.4 Experimental Setup
For probing representational biases, all possible sentence combinations (3852 and
4260 combinations for Korean and Japanese, respectively) are fed into the selected
models. Evaluation took roughly 15 minutes using a single NVIDIA GeForce
GTX 1080Ti GPU with a batch size of 64, for each language.

For the allocational biases, we use the selected cyber bullying model instead,
and evaluation took roughly 5 minutes with a batch size of 64 on the same GPU.

For few-shot learning, the default SetFit (Tunstall et al., 2022) parameters were
used for epochs (set to 1) and number of sentence pairs (i.e., how many pairs to
generate from one sentence; set by default to 20). A batch size of 32 was used.
Training took place on the same GPU as the probing experiments (i.e., NVIDIA
GeForce GTX 1080Ti). Training time is approximately 5 minutes for the entire
training set.

3.5 Results and Discussion

3.5.1 Representational Bias
In our representational bias experiments, we find that “he” is the most likely
form of address, while gender-neutral pronouns are the least likely. We observe
this effect by comparing the distribution of log probabilities of the tokens “he”,
“she” and the gender-neutral tokens under the mask (distributions of gender to-
kens shown in Figure 3.1). Apart from the male and female pronouns, the only
gender-neutral tokens with high probability are the polite proximal and polite me-
dial demonstrative pronouns (こちら and そちら, respectively) for Japanese, and

63



3.5 Results and Discussion

Figure 3.2 – Japanese (left) and Korean (right) mean log probability differ-
ences between “she” and “he” across speaker levels. Negative scores indi-
cate more male-biased predictions. We observe the male pronoun “he” is the
most likely pronoun across all speaker levels. Furthermore, female speakers
are most likely to speak in the informal and general polite levels, while male
speakers are more likely to speak in rough or formal levels. Standard errors
are shown.

the casual demonstrative pronoun 걔 for Korean. Generally, we observe the “he”
token has a higher probability than the “she” token, with gender-neutral tokens
being even less likely.

Further, we identify that female speakers most likely speak in an informal
polite level, while male speakers are more rough or formal. We observe represen-
tational biases within the model by taking the average of the difference between
the logs of the prediction probabilities of “she” and “he” under the mask (i.e.,
log p(mask=she)− log p(mask=he)), across all sentences. Figure 3.2 presents the
results.

We first verify that the differences of log probabilities across speaker levels
are (roughly) normally distributed and the variances of log probabilities across
speaker levels are of similar sizes. Then, we perform ANOVA (Analysis of Varia-
tion, Snedecor et al. (1996)) and reject (via a statistical F- and p-test) the null hy-
pothesis of all averages between politeness levels being equal with p = 2× 10−8

and Fcrit. = 2.6 < F = 8.9 for Japanese and p = 3 × 10−12 and Fcrit. = 2.6 <
F = 13 for Korean, assuming a significance level α = 0.05.

We observe the largest differences between sonkeigo (honorific speech; most
male-biased) and teineigo (informal polite speech; most female-biased) in Japanese
and hapsyoche (formal language; most male-biased) with an honorific marker and
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heyoche (informal polite speech; most female-biased) in Korean. Additionally,
we observe negative averages across all politeness levels, indicative of a general
male bias within the models. Thus, we conclude that biases associating female
speech with informal polite speech, and male speech with both formal and rough
speech do exist within the studied language models.

We also demonstrate that narrators speaking of the female gender tend to use
informal polite levels, while honorific and rough language is used for the male
gender. Similarly to analyzing speaker levels, we examine variations between
narrator levels via differences in the logs of the prediction probabilities of the to-
kens for “she” and “he”. Results are shown in Figure 3.4. The kenjōgo politeness
level in Japanese can only be used to speak humbly of one’s own actions, and is
thus omitted in this analysis.

After verifying we have normal distributions for each speaker level with vari-
ances of similar magnitudes, we perform ANOVA and reject the null hypothesis
that all averages between politeness levels are equal with p = 6 × 10−16 and
Fcrit = 2.8 < F = 20 for Japanese, and p = 1× 10−16 Fcrit = 2.6 < F = 17 for
Korean, at a significance level α = 0.05.

We observe the largest distance between the rough ze and rough zo forms
(rough speech; most male-biased speech) and teineigo (informal polite speech;
most female-biased) for Japanese, and for Korean we see the largest difference
between heyoche (informal polite speech; most female-biased) and hapsyoche
(formal language; most male-biased) with an honorific marker. We note that for
Korean, the largest predictor of pro-male bias is the use of honorifics. In other
words when a person is the subject of respect and social distinction, the model is
most likely to predict the male grammatical gender. We do not see this effect in
the Japanese results of this experiment.

We conclude that the female grammatical gender is more likely to be spoken
of in a polite and informal levels, whereas the male gender is spoken of in levels
that are either rough (Japanese) or formal (Korean).

Using the modified location templates, we observe stereotypical associations
between gender and locations. We take the mean difference between the log pre-
diction probabilities between the tokens for “she” and “he”, similarly to our pre-
vious studies, and plot the differences across locations in Figure 3.3.

We note that the male-dominated spaces are male-biased (heavily negative
scores). The female dominated spaces, while they are less male-biased than male
locations, still exhibit predominantly negative scores. In Korean especially, all
female locations have negative scores. This effect is less pronounced in Japanese
with half of female locations exhibiting female-bias.

Thus, we conclude that gender bias associated with stereotypically mono-
gender dominated spaces is present in language models, however, we note that
their effect may be dwarfed by the general leverage of male bias.
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Figure 3.3 – Japanese (top) and Korean (bottom) gender associations with
locations. The vertical axis shows the mean difference between female and
male token prediction log probabilities for each of the locations. Models as-
sign more negative score (i.e., a higher log probability of predicting the “he”
token over the “she” token) for stereotypically male-dominated spaces (in
blue), while assigning more positive scores to female dominated spaces (in
red). We observe male-dominated spaces are more associated with the male
pronoun, while female-dominated spaces are more associated with the female
pronoun. Standard errors are shown (their magnitudes are roughly 1% of the
mean, and might thus not be visible).
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Figure 3.4 – Japanese (left) and Korean (right) mean log probability differ-
ences between “she” and “he” across narrator levels. Negative scores in-
dicate more male-biased predictions. We observe the narrator is more likely
to speak of male speakers and less likely to speak of female speakers. Addi-
tionally, we note that the female speakers are more likely to be spoken of in
polite and informal levels, whereas the male gender is spoke of in a rough
(Japanese) or formal (Korean) level. Standard errors are shown.

3.5.2 Correlation between Pro-Male Bias and Model Size
Although not following our main analysis, the correlation of gender bias with pa-
rameter count was also investigated. We follow Srivastava et al. (2022) and modify
the proposed social bias measure to our sentence templates. Namely, we calculate
the bias score sb, defined in Eq. 3.1, by identifying the context C (which includes
the speaker verb and the narrator and speaker politeness levels) that minimizes the
difference between the log probabilities of “she” and “he” for each used model.

sb = min
C

log p(mask=she|C)− log p(mask=he|C) (3.1)

We observe a general correlation between trainable parameter count and pro-
male-biased, with larger models exhibiting higher male bias. We calculate sb via
equation Eq. 3.1 and plot the variation of sb with the parameter count in Figure 3.5.
We observe a general trend that models become more male-biased with increasing
parameter count, in line with the results of Srivastava et al. (2022), however we
also note that the observed correlations are not statistically significant. The null
hypothesis, which we take to be the slope being zero, cannot be rejected with
significance α = 0.05. Namely, we find p = 0.63 for Japanese and p = 0.31 for
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Figure 3.5 – Japanese (left) and Korean (right) bias scores sb with param-
eter count. We observe a general correlation between parameter count and
male bias, however this result is not statistically significant. Negative scores
correspond to more male-biased predictions.

Korean via8 a Wald test using a t-distribution of the Wald test statistic (Cameron
and Trivedi, 2005).

Thus, these results are interpreted as a general trend but not as a hard rule. We
expect this correlation to be more pronounced if we probe models with an order
of magnitude larger parameter count. However, we note Srivastava et al. (2022)
also observed sb is not monotonically decreasing with parameter count, thus the
presence of plateauing regions, with little correlation, cannot be ruled out.

3.5.3 Allocational Bias
For our allocational bias experiments, we show that gender biases relating to
honorifics may be used as an attack vector against cyber bullying models, thus
demonstrating downstream allocational biases can lead to gender biases relating
to politeness levels.

As an initial test (tweet only), we evaluate only on the original tweets in the
test set (i.e., without modifying the tweets as per our attack approach). For this
we simply used the tweet only template in Table 3.1. The baseline model (Shibata
et al., 2022) has an F1 score of 0.40 while our proposed SentenceBERT model
has an F1 score of 0.82. This serves as an initial gauge of how our examined
models fare on normal cyber bullying tweets found online. After our attack, we

8Using SciPy’s LINREGRESS function (Virtanen et al., 2020).
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Politeness Level Base Test

rough zo rough ze plain teineigo kenjōgo sonkeigo (gender only)

he .20 → .87 .20 → .86 .20 → .83 .20 → .82 .20 → .83 .99 → .83 .69 → .82
she .20 → .87 .20 → .86 .20 → .83 .20 → .82 .20 → .83 .20 → .83 .34 → .83
proximal p .20 → .84 .20 → .83 .20 → .81 .20 → .80 .20 → .81 .95 → .81 .32 → .81
medial p .20 → .85 .20 → .84 .20 → .82 .20 → .81 .20 → .82 .81 → .82 .29 → .81
distal p .20 → .87 .20 → .87 .20 → .83 .20 → .82 .20 → .82 .93 → .83 .54 → .81

Pr
on

ou
n

proximal r .20 → .88 .20 → .87 .20 → .84 .20 → .82 .20 → .84 1.00 → .84 .69 → .82
medial r .20 → .87 .20 → .86 .20 → .83 .20 → .82 .20 → .82 .99 → .83 .69 → .82
distal r .20 → .88 .20 → .87 .20 → .84 .20 → .82 .20 → .83 1.00 → .84 .67 → .82

(tweet only)
(tweet only) 0.40 → 0.82

Table 3.5 – F1 scores for the baseline model (left of the arrows), and our
SentenceBERT model (right of the arrows) evaluated across politeness levels.
We also included results of our base tests, where we only provided gender in-
formation, but no politeness levels (gender only) and our test where we only
provided the tweet and no pronouns or politeness levels (tweet only). The
gender-neutral polite (appended with p) and rough (appended with r) prox-
imal, medial and distal pronouns are also included. We observe our proposed
model retains comparatively high, gender-equal performance.

are expecting to see a drop of performance for the baseline model, while we are
aiming for a minimal drop (or, ideally, no drop at all) for our proposed model.

Table 3.5 shows the F1 scores when testing on our attack dataset across the
different gender terms and politeness levels for the baseline and our proposed
model.9 As hypothesized, the baseline model performs worse under our attack,
across most politeness levels. The sole exception is sonkeigo, where there is a
large gap between “he” and “she” attacks, indicating a strong gender bias. On
the other hand, our proposed SentenceBERT model is robust against politeness
attacks, scoring equivalently to the tweets only test (i.e., there is little difference
before and after the attack).

As another base test (gender only) we evaluate on the original tweets with only
“({genderTerm})” appended at the end (no politeness levels). For this test we use
the gender only template listed in Table 3.1. We observe (on the right side of the
vertical line in Table 3.5) that, with the baseline model, “he” scores significantly
higher than “she”. Additionally, we also note that compared to rough pronouns,
polite gender-neutral pronouns generally have lower F1 scores, presumably be-
cause rough pronouns are more common in hate speech. For SentenceBERT we

9We further experimented with a simplified few-shot learning model, where we only train using
the original tweets (and not the data generated through our template scheme). Model performance
was low and was thus omitted for brevity. We conjecture that since we only had 8 tweets at our
disposal for training, low performance was expected.
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note higher performance and substantially fairer results across genders and polite-
ness levels.

We interpret these results as a clear case where gender bias and biases relating
to women generally not being the subject of honorific language (compared to
men), manifest themselves as an allocational bias. An attacker, as we show, can
abuse this deficiency in models to evade detection and push hate speech onto an
online platform. For example, by substituting the “(hate speech)” placeholder
for actual hate speech, the attacker may use the template shown in example (5),
utilizing sonkeigo (which signals “respect” towards the person referenced by the
gendered pronoun), to effectively avoid detection by automatic systems, while the
male version of the template, shown in example (6) is ineffective for avoiding
detection. In the examples, part (a) is the template, and (b) is the associated gloss
and translation.

(5) a. (hate speech) (彼女にこうおっしゃった)
b. (hate speech)

(hate speech)
(彼女
(she

に

IO

こう

like so (ADV)
おっしゃった)
say-HON/-PST)

(hate speech) (I told her like so)

(6) a. (hate speech) (彼にこうおっしゃった)
b. (hate speech)

(hate speech)
(彼
(he
に

IO

こう

like so (ADV)
おっしゃった)
say-HON-PST)

(hate speech) (I told him like so)

3.6 Conclusion
In our work we investigate the manifestation of gender bias relating to politeness
levels in language models, using a template-based setup to probe large pre-trained
language models.

We demonstrate (via the speaker) that polite speech is most associated with
the female grammatical gender, while formal and rough speech is most associated
with the male gender. Additionally, we observe (via the narrator) that the female
gender was most likely to be spoken of using a polite informal tone, while the
male gender was most likely to be spoken of using formal and honorific language
(for Korean) or rough language (for Japanese).

Further, we observe that gender biases relating to politeness levels can also
manifest in popular cyber bullying detection models, leading to allocational bi-
ases. We propose a method to mitigate these biases through few-shot learning on
a linguistically-informed dataset, increasing performance and providing robust-
ness against politeness-level and gender-based attacks.
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3.7 Limitations and Ethical Considerations

We hope our study inspires further investigation of gender bias manifestation
through linguistic features across more under-explored languages.

3.7 Limitations and Ethical Considerations

3.7.1 Limitations
In this preliminary study on the influence of politeness levels on gender bias in
language models, we limited ourselves to a select set of verbs and basic politeness
levels in Korean and Japanese. There are, however, other classes of verbs we did
not consider and there are more complex and nuanced ways of expressing polite-
ness, respect and humility than the politeness levels we presented here (Hiroko
Yamagishi, 2014).

Additionally, there are other methods of demonstrating respect within these
languages that does not involve a straightforward modification of a verb. Polite-
ness may also be demonstrated through the choice of pronouns, as we have seen,
but also through the use of titles and the choice of nouns (for example, the word
for “home” could be “家” or “お宅” in Japanese and “집” or “댁” in Korean, in
casual and polite contexts respectively). Thus, the topic of politeness levels and
its connection to gender bias is far more vast and complex than what is presented
in this study.

3.7.2 Ethical Considerations
In this work we demonstrated representational and allocational gender biases with
respect to politeness levels in NLP models. The release of this knowledge could
potentially be exploited in practice to bypass cyber bullying detection systems,
however, we see the release of this knowledge to be an important first step to
making other NLP practitioners aware of this problem and how this could poten-
tially affect their NLP systems.

Additionally, in this study we did not simply point out issues with the learned
biases of modern NLP systems, but also attempted to mitigate them via our pro-
posed linguistically-informed method. With the release of our dataset and code,
we hope to assist NLP practitioners making their systems safer and more robust
against attacks abusing politeness levels and gender biases, as well as to inspire
future work in this area.
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Chapter 4

Textual and Visual Triggers of Bias:
Emoji and Their Role in Triggering
Hurtful Language Completion
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4.1 An Introduction to Emoji

Wapingapo fahali wawili, ziumiazo
ni nyasi.
(When two bulls fight, it is the
grass that suffers.)

Swahili Proverb

In this chapter we test for gender biases that may be evoked via emoji. We test
the text generation model GPT-2 (Brown et al., 2020) and the image captioning
model GIT from Microsoft (Wang et al., 2022) for harmful sentence completion.
To our knowledge gender bias experiments relating to emoji have not been done
prior to writing this text, however we argue their relevance will grow as the market
for chat bots continues to expand.

Inspired by the approach of (Nozza et al., 2021), we find the following biases
relating to emoji:

• Harmful female-biased sentence generation for all emoji when using emoji
code points in the text generation model GPT-2

• Gender stereotypes relating to emoji are evoked through the use of emoji in
the image captioning model GIT.

4.1 An Introduction to Emoji
Emoji are a set of over 700 pictographs, that are used as a communication tool
in modern devices (Cappallo et al., 2015; Seargeant, 2019). The word “emoji”,
comes from Japanese, and is composed of the kanji for “picture” (e-, 絵) and
“character” (-moji, 文字) (Seargeant, 2019). Examples of emoji are the follow-
ing: , and , representing a winking face, a heart symbol and an open book,
respectively.

In the 1990s the Japanese telecommunication company NTT DoCoMo first
introduced emoji, with other companies soon following suit, given their rising
popularity (Seargeant, 2019). The global adoption of emoji began in 2011, and
only four years later over 90% of the world’s online population made use of them
(Seargeant, 2019). In fact, their prevalence and impact on modern culture is so
great that the “face with tears of joy” emoji ( ) was chosen as the Oxford Lan-
guages (formally, Oxford Dictionaries) word of the year in 2015 (Oxford Lan-
guages, 2015).

Given their widespread use and the diversity of available pictographs, emoji
have a wide semantic coverage (Cappallo et al., 2015; Seargeant, 2019). This
aspect of emoji is especially relevant in NLP, where emoji have been shown to
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vastly improve sentiment, sarcasm and emotion classification models, as well as
casual conversation models (Delobelle and Berendt, 2019; Felbo et al., 2017).

Despite their utility in NLP and their prevalence in modern culture, emoji are
often not supported in NLP models (Delobelle and Berendt, 2019). For example
word2vec and GloVe both do not have comprehensive emoji support, which has
been addressed by emoji2vec (Mikolov et al., 2013; Pennington et al., 2014; Eis-
ner et al., 2016). Similarly, BERT has no native emoji support as emoji are not
included in the pre-trained model’s vocabulary (Devlin et al., 2019).

4.2 Biases Relating to Emoji
In this chapter we analyze biases that may be evoked in generative NLP models
via emoji-related information. Specifically, we investigate harms that arise due to
emoji, which disproportionately affect different genders.

4.2.1 Gender Biases Relating to Language Generation
Gender biases in text generation models, such as GPT-2 have been shown to repro-
duce similar occupational stereotypes as those found via non-generative models,
such as MLMs (Sheng et al., 2019; Radford et al., 2018b; Kirk et al., 2021b).
In addition to occupational stereotypes, general toxic and inappropriate sentence
completion is also undesirable, and has been shown to appear in generation mod-
els (Nozza et al., 2021). How emoji influence gender biases relating to text gen-
eration however has not been investigated, which is a topic we attempt to address.

4.2.2 Biases Relating to Emoji
Emoji are commonly ignored in NLP models, as we have discussed, however
they have been shown to be useful in detecting abusive language. For example,
Safi Samghabadi et al. (2020) and Wiegand and Ruppenhofer (2021) demonstrated
that emoji are effective at online abusive language detection by providing addi-
tional emotional context. This line of emoji-orientated research was expanded
upon by Kirk et al. (2022), who developed a test suite for detecting shortcomings
of hateful language detection.

4.2.3 Current Gaps in Research
Based on our research, no work attempted to investigate how emoji contribute to
the generation of harmful content. Additionally, gender inequalities in different
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genders being the target of generated harmful speech induced by emoji were also
not studied. In this chapter we aim to tackle these issues.

4.3 Models
Having identified the relevant current research landscape surrounding emoji and
language generation, we will now give a brief technical explanation of the models
we will be using for our experiments.

4.3.1 Text Generation Model - GPT-2
For the generative text tests, we will make use of the open-source model GPT-2
(Radford et al., 2018b). GPT-2 is an upgraded version of GPT (Radford et al.,
2018a), which is pre-trained on the language modeling objective (Radford et al.,
2018a,b).

The language modeling objective is to maximize the prediction probability of
the next correct token (Radford et al., 2018a,b). Mathematically, the likelihood,
L, in Eq. 4.1 is maximized by updating the model parameters Θ, where uj is the
j th token of a corpus of tokens, and k is the size of the context window of the
model (Radford et al., 2018b,a).

L =
∑
i

logP (ui|ui−k, ..., ui−1,Θ) (4.1)

The pre-training data is WebText, a curated text dataset for GPT-2, focusing on
data quality (Radford et al., 2018b). A key element in the data collection stage was
to use websites that were linked in posts on the social media website Reddit that
received at least 3 karma, a heuristic scoring mechanism that measures positive
community engagement (Radford et al., 2018b). It is argued by Radford et al.
(2018b) that this setup would improve data quality by using websites that have
received approval from an online community.

The model architecture is based on the transformers architecture of Vaswani
et al. (2017). The architecture builds on that of its predecessor, GPT (Radford
et al., 2018a), with some slight modifications, including an additional layer nor-
malization (Ba et al., 2016) after the final self-attention block (Radford et al.,
2018b).

Finally, for the input representation, the model makes use of Byte-Pair Encod-
ing (BPE) (Radford et al., 2018b; Sennrich et al., 2016). In BPE frequent char-
acter sequences are combined into separate tokens to more efficiently make use
of the model’s capacity (Radford et al., 2018b; Sennrich et al., 2016). BPE was
empirically found to combine the performance benefits of word level-tokenized
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language models, as well as the generalizability of byte-level models (Radford
et al., 2018b).

4.3.2 Image Captioning Model - GIT
Image captioning models, as their name suggests, are designed to predict a possi-
ble caption that could be used to describe an image (Wang et al., 2022). For our
experiments we will make use of Microsoft’s popular open-source model, GIT
(Wang et al., 2022).

The model consists of two main components, an image encoder and a text
decoder (Wang et al., 2022). The image encoder is a ViT (Vision Transformer)
model and only takes an image as input (Dosovitskiy et al., 2021; Wang et al.,
2022). This encoder was pre-trained using CLIP (Contrastive Language-Image
Pre-Training), where the image encoder was jointly trained with a text encoder to
distinguish between different images and their associated captions (Radford et al.,
2021; Wang et al., 2022).

The text decoder is trained similarly to GPT-2, with the only exception being
that the decoder is also conditioned on the encoded representation of the image,
I (Wang et al., 2022). In other words, the text encoder is trained to maximize the
likelihood in Eq. 4.2, where {uj} are the tokens of the text caption associated with
the image (Wang et al., 2022).

L =
∑
i

logP (ui|ui−k, ..., ui−1, I,Θ) (4.2)

Concerning training data, GIT has been pre-trained using 1.4B image-text
pairs from a wide range of sources (Wang et al., 2022). For our experiments,
we make use of the base model of the GIT model fine-tuned on COCO, which
focuses on common objects (Wang et al., 2022; Lin et al., 2015).

4.4 Method
As mentioned earlier, we will investigate two different types of models to investi-
gate emoji-based gender biases in generative models. The first type of model we
will consider are generative NLP text models. An example of a generative model
for research purposes, and the one we will be using due to its availability, is GPT-2
(Radford et al., 2018b). In the light of the recent and massively popular release
of ChatGPT by OpenAI (OpenAI, 2022), which is a sibling model of InstructGPT
(Ouyang et al., 2022), the importance of understanding the biases of generative
models is of great contemporary importance.
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The other type of model we will consider are image captioning models. The
image captioning model we will investigate is Microsoft’s Generative Image-to-
text Transformer (GIT) (Wang et al., 2022), which is openly available on Hugging
Face (Wolf et al., 2020). The model was considered the state of the art at the
time of publication, surpassed human performance (Wang et al., 2022) on no-
caps (Agrawal et al., 2019) and was the first to surpass human performance on
TextCaps (Sidorov et al., 2020). The nocaps benchmark combines the COCO
(Lin et al., 2015) and Open Images (Kuznetsova et al., 2020) datasets to have a
resulting dataset with more object classes (Agrawal et al., 2019). In TextCaps the
model is challenged to describe text in images (Sidorov et al., 2020). We will be
using the base model fine-tuned on COCO, which focuses on everyday objects
(Lin et al., 2015; Wang et al., 2022).

4.4.1 Using Unicode Code Points for Emoji
To investigate gender biases in textual generative models, we modify the approach
of Nozza et al. (2021), nicknamed HONEST, which tests for harmful sentence
completion in generative models. HONEST makes use of HurtLex (Bassignana
et al., 2018), a multilingual lexicon of hurtful words, to detect harmful sentence
completions (Nozza et al., 2021). The HONEST score, which indicates how harm-
ful a given model’s output is, would simply be the percentage of generated texts
that contained words in HurtLex (Nozza et al., 2021). Using HONEST, the au-
thors find that depending on the choice of hyperparameters (e.g., language, gender
and model) as much as 20% of model outputs contain harmful words in HurtLex
(Nozza et al., 2021).

While HONEST focuses on both MLMs and generative language models, we
will only be focusing on tests that are relevant for generative models. For language
generation, HONEST makes use of incomplete templates that will be filled in by
a model. The template consists of an identity term revealing the gender of the
subject, such as “the woman”, followed by an incomplete description, which we
will refer to as the “rest of the template”, such as “is good at”, which will be
completed by the language model (Nozza et al., 2021). An example of such a
template would then be the following:

(1) The woman is good at

where the rest of the template is to be filled in by the model.
To incorporate emoji, we made use of Unicode code points. Due to the fact

that many pre-trained models do not support emoji, we resorted to using Unicode
representations of emoji to feed emoji-related information into the model. So for
example, the emoji ( ) may be represented by the Unicode code point U+1F609,

77



4.4 Method

following the Unicode Consortium’s emoji list, which lists their associated code
points (Unicode Consortium, 2023). We prepend the Unicode code points to the
HONEST templates, so that we test all combinations of relevant Unicode code
points and HONEST templates. An example of such an emoji-injected template
is the following:

(2) U+1f609 The woman is good at

Thus, the complete template consists of three parts: the Unicode code point of the
emoji, an identity term and a selected template. The template may be summarized
as:

(3) [emoji] [identity] [rest of the template]

Given this setup, according to the authors there are 15 “rest of the templates”,
28 identity terms (Nozza et al., 2021) and however many emoji that we wish to
test for.

Due to time and hardware limitations and the fact that the number of Unicode
emoji exceeds 3000 at the time of this writing, we will limit ourselves to popular
emoji (Unicode Consortium, 2023). To sample which emoji are popular, we ran-
domly extracted 365,233,500 text samples from the C4 corpus and counted how
many times each emoji appears (Raffel et al., 2020). Detecting emoji instances,
was done via the emoji (Kim and Wurster, 2023) python library. Using this ap-
proach, the most popular emoji are displayed in Table 4.1, where we excluded
the registered trademark symbol (®), the copyright symbol (©) and the trademark
symbol (™), as these are characters associated with legal texts.

For completeness, we note that the red heart emoji ( ) consists of two Uni-
code code points, namely the Unicode code point U+2764 (the heart emoji ) and
the variation selector U+FE0F (Unicode Consortium, 2022; Mark Davis and Ned
Holbrook, 2022). The variation selector U+FE0F serves to modify the visual pre-
sentation of an emoji, in this case resulting in the red variation of the heart emoji
(Unicode Consortium, 2022; Mark Davis and Ned Holbrook, 2022). It should be
noted that depending on the implementation of how Unicode code points are han-
dled, the visual representation of the heart emoji ( ) may simply be rendered as
the red heart emoji ( ) (Unicode Consortium, 2022). In this study we follow the
Unicode Consortium’s official emoji test document, which is used to test which
emoji forms should be used and displayed in keyboards (Unicode Consortium,
2022).

For the templates, we limit ourselves to emoji that consist of a single Unicode
code point, so we omit the variation selector for the red heart emoji. Thus, we have
nine emoji we use in our tests, bringing the total number of sentence templates to
15 (rest of templates) × 28 (identity terms) × 9 (Unicode Code Points) = 3,780.
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Emoji Occurrence Count Unicode Code Point
881,159 U+1F642
267,369 U+1F609
111,340 U+1F600

(heart suit) 84,707 U+2665
(heart) 56,736 U+2764
(red heart) 54,355 U+2764 & U+FE0F

54,328 U+1F641
43,964 U+1F60A
37,543 U+1F602
32,281 U+1F61B

Table 4.1 – Occurrence counts of different emoji sampled from the C4 corpus.
The emoji and its associated Unicode code point(s) are provided. The red
heart emoji ( ) is made up of two code points, namely the heart symbol and
the variation selector U+FE0F, which renders the symbol as a colorful emoji
(Mark Davis and Ned Holbrook, 2022). Note, the way emoji are rendered
depend on the device, here we are using Apple emoji (Unicode Consortium,
2023).

Following HONEST, these templates are then simply fed into GPT-2, and their
outputs are analyzed using HurtLex. We follow HONEST and test the model with
k = 1, 5 and 20 independent model completions per template.

4.4.2 Using Visual Representations of Emoji
The image captioning experiments are set up in a similar spirit to the previous text
experiments. We supply an image captioning model with an image of emoji and
prefix the HONEST template to the image caption, such that the model completes
the template, given the visual representation of the emoji.

The emoji are prepared using the open-source image editing software GIMP
(Spencer Kimball and Peter Mattis and the GIMP Development Team, 2022).
Emoji images are 300 pixels x 300 pixels png files with a white background.
The emoji themselves are the Apple emoji in Table 4.1 with a font size 200 pixels,
centered in the middle of the image file (Unicode Consortium, 2023). An example
of such an image is shown in Figure 4.1.

For testing gender bias, we simply prepend the HONEST templates (without
Unicode code points) to the text input of the image captioning model. We will
be making use of Microsoft’s Generative Image-to-text Transformer (GIT), fine-
tuned on COCO (Wang et al., 2022; Lin et al., 2015). Since GIT was trained
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Figure 4.1 – An example image for the visual representation experiments.
Here the Apple wink emoji is centered on a white background.

to caption images autoregressively, when provided with the HONEST template
as input it will condition the model output on the template (Wang et al., 2022).
Thus, we test the internal biases of the model by asking the model to complete the
HONEST caption, given the visual representation of the emoji we are testing for.

In this experiment we have a total of 4,200 template-image combinations. We
will also follow the approach of HONEST and independently probe the model
with k = 1, 5 and 20 completions per template. The templates are simply fed to
the model and evaluated via HONEST.

4.5 Experimental Setup
For the Unicode experiments, all emoji code points and HONEST sentence com-
binations (6516 combinations in total) are fed into the model. The calculations ran
on for 10, 15 and 24 minutes for k = 1, 5 and 20 respectively on an Intel Xenon
E5-2630 CPU processor.

For the visual representation experiments, all emoji images and HONEST sen-
tence combinations (in total, 7240 combinations) were fed into the model. Sim-
ilarly to the code point experiments the calculations took 7, 20 and 75 hours for
k = 1, 5 and 20 respectively on the same CPU.

4.6 Results and Discussion
For the text experiments, we observe modest HONEST scores of about 7.84% for
the converged k = 20 case, as presented in Table 4.2. The HONEST scores from
the original study lie around 7%, so this result is comparable to what would be
expected without the use of Unicode code points (Nozza et al., 2021).

However, we are interested in gender imbalances in the HONEST scores across
emoji, thus we break down this result further in Table 4.3. We observe that sen-
tences containing female identity terms generate more hurtful completions than
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k HONEST Score
1 7.66
5 7.58
20 7.84

Table 4.2 – Aggregate HONEST scores across textual emoji Unicode codes
and gender identity terms for different sentence completions per template, k.
The results become more converged for larger k values. Using the HONEST
(Nozza et al., 2021) framework we observe a harmful sentence completion
rate of roughly 7.84 percent. This effect size is similar to that of the origi-
nal HONEST study (roughly 7%), and suggests that the use of Unicode code
points do not substantially alter the scores (Nozza et al., 2021).

their male counterparts. Additionally, we note that the use of specific Unicode
code points do not seem to greatly influence the gender imbalances in harmful
completion rates.

Analyzing the results of the image experiments we calculate relatively large
HONEST scores, where more than 18% of sentence completions triggered the
HurtLex. The aggregate HONEST scores are summarized in Table 4.4. From
these preliminary results alone we expect a larger level of bias to be present within
these models.

Breaking down the results by emoji and gender, we provide the scores in
Table 4.5. For this we follow Nozza et al. (2021) and report the scores as the
percentage of harmful sentence completions for male and female identity terms,
separately. From these results we observe gender differences in harmful sentence
completion when the model is prompted with an emoji.

Using the converged k = 20 results, we observe female gender bias for the
heart-shaped emojis and male gender bias for the slightly smiling face and the
slightly frowning face. For a visual representation of the results of Table 4.5
at k = 20, please refer to Figure 4.2. We hypothesize that gender stereotypes
relating to emoji use or social acceptability regarding the display of emotions in
the training data may be the cause for these discrepancies, however further tests
would need to be conducted to verify this.

In terms of the type of bias, this seems to be indicative of both an alloca-
tional and representational bias, to use the language of Blodgett et al. (2020),
where persons of different genders may be subject of different rates of hurtful lan-
guage completion, depending on the visual representation of the emoji fed into
the model.
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k = 1 k = 5 k = 20
Emoji Female Male Female Male Female Male

1.13 0.76 0.90 0.79 0.99 0.81
1.26 0.64 1.00 0.81 1.04 0.84
0.83 0.73 0.78 0.69 0.91 0.83

(heart suit) 1.16 0.76 0.84 0.73 0.84 0.78
(heart) 0.80 0.67 0.94 0.74 0.87 0.75

0.93 0.63 0.85 0.77 0.96 0.82
1.00 1.08 0.90 0.83 1.01 0.86
0.57 0.83 0.94 0.76 0.89 0.75
0.73 0.83 1.02 0.90 0.94 0.82

Avg. per Emoji 0.94 0.77 0.91 0.78 0.94 0.81

Table 4.3 – HONEST scores across emoji Unicode code points and gender
identity terms for different sentence completions at different k values. A larger
k value signifies more converged results. We note that generally sentences
containing female identity terms generate more harmful captions. This coin-
cides with the results of Nozza et al. (2021). However, it seems like textual
emoji information does little to challenge the gender imbalance.

k HONEST Score
1 18.99
5 18.74
20 18.77

Table 4.4 – Aggregate HONEST scores across emoji images and gender iden-
tity terms for different sentence completions per template, k. A larger k value
signifies more converged results. We note that the HONEST scores are sig-
nificantly larger than for the pure textual case. This suggests that within the
context of our experiment, multi-modal models introduce substantially more
harmful sentence completions than purely textual models. From this prelimi-
nary result alone we believe investigating biases in multi-modal models to be
a fruitful area of future research.
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k = 1 k = 5 k = 20
Emoji Female Male Female Male Female Male

1.20 0.97 1.17 1.28 1.18 1.33
1.08 0.92 1.06 1.08 0.98 0.99
1.26 1.49 1.34 1.09 1.33 1.37

(heart suit) 3.11 2.61 3.02 3.16 3.21 3.07
(heart) 3.11 3.01 3.36 2.85 3.18 3.05
(red heart) 4.49 4.61 4.49 4.62 4.61 4.31

1.65 1.49 1.25 1.34 1.23 1.37
1.38 1.26 1.05 1.19 1.02 1.05
0.87 0.69 0.77 0.70 0.74 0.77
1.50 1.32 1.28 1.36 1.37 1.39

Avg. per Emoji 1.96 1.84 1.88 1.87 1.88 1.87

Table 4.5 – HONEST scores across emoji images and gender identity terms
for different sentence completions at different k values. We note that at the
converged k = 20 results, we observe female bias for heart-shaped emojis and
male gender bias for the slightly smiling face and slightly frowning face. In-
terestingly, on average, there is no significant gender disparity between male
and female scores across emojis. This suggests that the emoji choice strongly
determines the rate of harmful sentence completion, and also who is most af-
fected by model bias. Furthermore, this result provides evidence that these
systems are fragile and unsafe to use in situations where biased or harmful
model-generated content is undesirable.
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Figure 4.2 – HONEST scores across emoji images and gender identity terms
for different sentence completions at k =20. This is a spider web plot rep-
resentation of Table 4.5. Red represents female scores, blue represents male
scores. Here we see again that emoji choice strongly determines the rate of
harmful sentence completion and who is most affected by model bias, evidenc-
ing the fragility and safety concerns of these systems.
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4.7 Limitations
In this project we made use of HONEST (Nozza et al., 2021) to evaluate biases
related to emoji, which in turn made use of the HurtLex (Bassignana et al., 2018)
to identify hurtful sentence completion. A disadvantage of this method is that a
word could be generated that is in the HurtLex but that is not used in a negative
sense. For example, the HONEST method cannot handle negation (e.g. “She
is good at working as a [HurtLex Word]” vs “She is good at not working as a
[HurtLex Word]”). A potential avenue for future research would be to develop a
classification system that can handle regard for different pronouns, thus enabling
analyzing sentences using more context, using a method similar to Sheng et al.
(2019). This would at least address the single-word simplicity of the HurtLex
method.

4.8 Conclusion
In this chapter we demonstrated that models can learn and reproduce gender
stereotypes relating to visual emoji. This novel experiment showcased that emoji
relating to heart-shaped objects (e.g. ) induce female bias, while slightly smiling
and frowning faces ( and ) induce male bias. We hypothesize this may be due
to gender norms learned by the model, where heart-shaped emoji are more as-
sociated with female speakers while male speakers are more associated with less
emotive emoji. The exact reason for this resulting in more harmful text generation
is unknown and requires more experiments, but we hope these experiments serve
as an inspirational starting point for further research aiming to develop more safe
and robust systems.

Additionally, we demonstrated that for the textual experiments utilizing Uni-
code code points, female gender bias emerges for all emoji. This final result is
consistent with Nozza et al. (2021), which demonstrates female gender terms are
more likely to induce harmful generation than male gender terms, however adding
the Unicode code points did little to change the bias direction or the rate of bias
generation.

These results call into question how gender-biased text generation and image
captioning models are with regards to emoji. We believe the study of and mitiga-
tion of biases in multi-modal models, in a direction similar to Hundt et al. (2022)
would be a fruitful field of future research, as consequences relating to bias would
no longer be limited to generated text, but also to consequences in the real world.
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The ultimate aim of martial arts is
not having to use them.

The Book of Five Rings
Miyamoto Musashi

In the introduction of this thesis, we outlined several of the challenges in the
bias literature to achieving gender equality in NLP models. These challenges
include allocational harms and representational harms that may be evoked via
biased models.

Recall an example of such an allocational harm is the algorithmic discrimina-
tion experienced by female applicants for positions in male dominated fields, as
was the case at Amazon for software engineering roles (Jeffrey Dastin, 2018). An
example of a representational harm on the other hand is when coreference reso-
lution systems poorly resolve female pronouns with male-dominated professions
(Rudinger et al., 2018).

In the introduction we also discussed the limitations of current bias research
in detecting, measuring and mitigating these harms. In this concluding chapter we
will summarize our contributions to addressing these shortcomings through our
research projects along with some closing remarks.

5.1 Addressing Limitations

5.1.1 English-Centric Research
English-centrism is a key limitation of bias research in NLP. While the scope of
bias literature is vast, it primarily focuses English. We observe this, for example,
through the omission of the mention of languages other than English in the litera-
ture review of Blodgett et al. (2020), which is notable in the field for its criticism
of the state of bias research. In this thesis we focused on addressing the lack of
diversity in studied languages in projects 1 and 2.

Project 1 focused on providing a method to measure bias in MLMs across
languages. As part of this effort, we developed a multilingual dataset that covers
ten different languages. The sentences consist of sentence pairs, such as those
shown in example (1). The sentence pairs are a filtered and translated version
of the CrowS-Pairs (Nangia et al., 2020) sentences, where one sentence is more
stereotypical than the other.

(1) a. Robert is a pilot.
b. Olivia is a pilot.
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The final languages the sentence pairs cover are Arabic, German, English, Finnish,
French, Indonesian, Korean, Thai, Vietnamese and Chinese. Our goal in choosing
languages was to cover a wide range of language families, given the resources that
were available to us. By providing a multilingual dataset for studying represen-
tational biases, we provide the research community a means of studying gender
bias beyond existing English-centric methods.

In project 2 we studied gender biases associated with politeness levels in
Japanese and Korean. We focused on politeness levels, as this is a feature promi-
nent in Japanese and Korean that is not present in English.

Specifically, we focused on politeness encapsulated in verb endings, such as
those that are highlighted in example (1). Both sentences translate to the English
equivalent of “(I) will study”, where the subject “I” is implied as Japanese is a
null-subject language. The difference between the two sentences is that sentence a
would be appropriate to say among friends and family, whereas sentence b would
be more appropriate among acquaintances.

(2) a. 勉強する。 (benkyou suru)
b. 勉強します。 (benkyou shimasu)

In this project we demonstrated that gender associations between different polite-
ness levels exist and that they may be abused to bypass cyberbullying detection
systems. In an English-centric approach this type of bias may not have been dis-
covered as English does not have politeness levels. From our perspective, this
highlights the importance of multilingual studies of bias and the need to move
beyond the prevalent paradigm of English-centric bias research.

5.1.2 Limited Coverage of Biases
Another limitation of bias research we highlighted was the limited coverage of
biases. It is common practice in the gender bias literature to not make distinc-
tions between the types of biases that people might be subject to. For example,
when talking of representational biases, all gender-related stereotypes are usually
lumped together under the category “gender bias” (Nangia et al., 2020; Nadeem
et al., 2021; Blodgett et al., 2020).

We believe a more fine-grained approach allows for a greater understanding of
model behavior, which we most notably exemplify in project 2, on studying gen-
der associations with politeness levels. In this project we demonstrated that asso-
ciations between gender and politeness do exist and that they may be exploited;
a result that likely may not have been discovered had only general “gender bias”
been studied.

Furthermore, in project 3 we also studied gender associations with textual and
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visual representations of emoji. In this project we demonstrated that injecting an
emoji’s Unicode code point as a string in a text generation model, does not sub-
stantially change the relative frequencies of hurtful male- and female-biased gen-
erated text. However, when supplying the model with visual images of emoji in
image captioning models, the rate at which the model generates hurtful responses
increases significantly (more than doubles) on average. We also demonstrate that
the choice of the emoji itself strongly determines the rate of hurtful responses.
Namely, heart-shaped emoji were found to induce more hurtful responses when
female identity terms are present in the text and the slightly smiling and frowning
faces induce a larger male bias.

We hypothesize the model may make these gendered associations due to gen-
der norms learned by the model, but we are unsure how this translates to a higher
rate of harmful text generation. Further experiments would be required to under-
stand this phenomenon in more detail, however this experiment highlights how
gender biases may manifest in models in unexpected ways and that there is po-
tential for abuse in seemingly benign settings. We believe documenting these
unexpected phenomena and pushing the envelope of the types of biases that are
studied will expand our understanding of how these models operate and expand
our library of application settings to be weary of.

5.1.3 Low-Quality Data
The final limitation of bias research we discussed encompasses low-quality data.
By this we mean both datasets that are not clean (e.g. contain poorly labeled
data) or datasets are too small (e.g. there are not enough data points to derive
statistically meaningful results using a specific method).

In project 1 we focused on providing a clean dataset to the research commu-
nity across the languages we studied. As part of this effort we focused on data
quality by cleaning an existing dataset, the CrowS-Pairs dataset of Nangia et al.
(2020), and adapting it so that it would be appropriate for male and female gender
comparisons across languages. This cleaning process partially tackles the issue of
low-quality data, and removed many of the original problems of the CrowS-Pairs
dataset which, for example, compared stereotypically male and female clothing
items instead of the genders of the speakers (Nangia et al., 2020).

Another contribution of project 1 is in providing a novel information-theoretic
measure for measuring biases. This measure addresses the issue of low-quality
data as the measure is designed for smaller datasets, that are common in the bias
research literature due to the cost of hiring annotators. The measure, which is
shown in Eq. 5.1, quantifies the difference between how far off the token predic-
tion probabilities of the more stereotypical sentence, Pmore, and less stereotypical
sentence, P less are from the one-hot distribution identifying the gold token, G.
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SJSD =
√

JSD(Pmore||G)−
√

JSD(P less||G) (5.1)

A key insight into the inner workings of the measure is the fact that unlike pre-
vious bias measures, it does not introduce statistical sensitivity by binarizing the
output of the studied model, as was done in the CrowS-Pairs measure of Nangia
et al. (2020), the StereoSet measure of Nadeem et al. (2021) and the measures of
Kaneko and Bollegala (2021), for example. This is achieved through the use of
the Jensen-Shannon distance (

√
JSD(P ||G)), as the distance returns real values

and is a metric (e.g. it satisfies the triangle inequality) (Endres and Schindelin,
2003).

In projects 2 and 3 we also addressed the issue of low-quality data by studying
a clearly defined aspect of gender bias, such as bias relating to politeness levels in
project 2. By focusing on a specific aspect of gender bias we avoid data points that
are not clearly aligned with our measurement target and avoid situations where
comparisons are drawn between unrelated aspects of bias (e.g. comparing clothing
items as opposed to gender, as in CrowS-Pairs) (Nangia et al., 2020).

The topic of low-quality data is vast, deeply rooted in the literature and cannot
simply be solved over the three projects presented in this thesis, however we see
potential in future bias studies benefiting from a more focused approach. Through
our observations we find this more focused approach, as a heuristic, not only helps
in avoiding the common topics relating to poorly labeled data, but also helps in
discovering novel unstudied aspects of bias in models.

5.2 Closing Remarks
Over the course of this thesis we investigated gender bias from various previously
unstudied angles. We deviated from the status quo in the bias literature and tackled
studying gender bias beyond English, gender bias as it pertains to politeness levels
and gender bias that may be induced via emoji. In doing so we expanded the
number of resources that are available to be studied in non-English languages and
discovered previously unknown gender biases that may be learned by NLP and
multimodal models.

With the adoption of NLP and multimodal models becoming more widespread
in commercial products we anticipate an increase in the demand for non-biased
models and methods for detecting biases. We expect bias benchmarks to be more
sought after in commercial research and development laboratories, especially for
non-English languages that may not be readily understood by the development
team. This is an exciting time in the rapidly expanding field of responsible AI.
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José Vinı́cius de Miranda Cardoso, Joscha Reimer, Joseph Harrington, Juan
Luis Cano Rodrı́guez, Juan Nunez-Iglesias, Justin Kuczynski, Kevin Tritz,
Martin Thoma, Matthew Newville, Matthias Kümmerer, Maximilian Boling-
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