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Summary

Scattering amplitudes serve as a bridge between theoretical predictions and experimental
data in Quantum Field Theories (QFTs). They are computed in perturbation theory as
a series in the coupling constants. Beyond the leading order, computing the contributing
Feynman integrals is one of the most critical and often complex steps required to draw
predictions from the theory. A well–known method for addressing this involves deriving a
system of ordinary differential equations in the canonical form that the Feynman integrals
satisfy, where solutions in terms of known functions can be readily obtained. An important
aspect of this method lies in understanding the singularity structure of Feynman integrals.

We first introduce several representations of Feynman integrals used in different parts
of this thesis. In particular, we introduce two parametric representations suitable for ana-
lyzing the singularities of Feynman integrals. Next, we address the question of determining
the location of possible kinematic singularities of Feynman integrals. To this end, we first
review the Landau equations and a modern approach for finding their solutions based on
methods from nonlinear algebra. Next, we use the connection between the singularities of
Feynman integrals and symbol alphabets to find the alphabets without ever solving the
integrals. Furthermore, we review a method for the analytic computation of Feynman
integrals based on differential equations. We argue that knowing the singularity structure
and a good basis of Feynman integrals makes the computation more efficient and simplifies
finding a solution.

The main contribution of the thesis is an efficient algorithm for finding algebraic letters
from the knowledge of the kinematic singularities of Feynman integrals. The algorithm
is based on an observed factorization property of algebraic letters. In order to make the
algorithm more efficient and ready to use in cutting–edge applications, we introduce a
criterion that significantly reduces the size of the problem at hand, allowing us to handle
large alphabets appearing in the high–multiplicity problems. Finally, we use the methods
discussed in this thesis in a state–of–the–art computation of Feynman integrals that could
not be computed without having insight into their singularity structure.
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Zusammenfassung

Streuamplituden dienen als Brücke zwischen theoretischen Vorhersagen und experimentellen
Daten in Quantenfeldtheorien (QFTs). Sie werden in der Störungstheorie als eine Reihe in
den Kopplungskonstanten berechnet. Über die führende Ordnung hinaus ist die Berech-
nung der beitragenden Feynman-Integrale einer der kritischsten und oft komplexesten
Schritte, die erforderlich sind, um Vorhersagen aus der Theorie abzuleiten. Eine bekannte
Methode, um dieses Problem anzugehen, besteht darin, ein System gewöhnlicher Differen-
tialgleichungen in der kanonischen Form herzuleiten, die die Feynman–Integrale erfüllen,
wobei Lösungen in Form bekannter Funktionen leicht zu ermitteln sind. Ein wichtiger
Aspekt dieser Methode besteht darin, die Singularitätsstruktur der Feynman-Integrale zu
verstehen.

Zunächst stellen wir verschiedene Darstellungen von Feynman–Integralen vor, die in
verschiedenen Teilen dieser Arbeit verwendet werden. Insbesondere stellen wir zwei parametrische
Darstellungen vor, die sich für die Analyse der Singularitäten von Feynman–Integralen
eignen. Als Nächstes befassen wir uns mit der Frage, wie sich mögliche kinematische Sin-
gularitäten von Feynman–Integralen lokalisieren lassen. Zu diesem Zweck werden zunächst
die Landau–Gleichungen und ein moderner Ansatz zur Lösung dieser Gleichungen auf der
Grundlage von Methoden der nichtlinearen Algebra vorgestellt. Als Nächstes nutzen wir
die Verbindung zwischen den Singularitäten von Feynman–Integralen und Symbolalpha-
beten, um die Alphabete zu finden, ohne die Integrale jemals zu lösen. Darüber hinaus
beschreiben wir eine Methode zur analytischen Berechnung von Feynman-Integralen auf der
Grundlage von Differentialgleichungen. Wir argumentieren, dass die Kenntnis der Singu-
laritätsstruktur und einer guten Basis von Feynman–Integralen die Berechnung effizienter
macht und das Finden einer Lösung vereinfacht.

Der Hauptbeitrag der Dissertation ist ein effizienter Algorithmus zur Ermittlung alge-
braischer Buchstaben aus der Kenntnis der kinematischen Singularitäten von Feynman–
Integralen. Der Algorithmus basiert auf einer beobachteten Faktorisierungseigenschaft
algebraischer Buchstaben. Um die Effizienz des Algorithmus zu steigern und ihn für den
Einsatz in innovativen Anwendungen zu optimieren, führen wir ein Kriterium ein, das die
Größe des vorliegenden Problems erheblich reduziert und es uns ermöglicht, große Alpha-
bete zu verarbeiten, die in Problemen mit hoher Multiplizität auftreten. Schließlich wenden
wir die in dieser Arbeit diskutierten Methoden für die Berechnung von Feynman–Integralen
an, die ohne die gewonnen Einsichten in ihre Singularitätsstruktur nicht berechnet werden
könnten.
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Chapter 1

Introduction

The pursuit of a fundamental understanding of the universe has been a cornerstone of
human inquiry for centuries. From ancient Greece to the present day, physics has played
a central role in this quest, seeking to unravel the mysteries of the cosmos and the laws
that govern it. Throughout its history, physics has demonstrated an uncanny ability to
uncover hidden patterns and symmetries, revealing the intricate web of relationships that
underlies the natural world.

From the majestic sweep of cosmological evolution to the intricate dance of subatomic
particles, physics has consistently pushed the boundaries of human knowledge, driven by
a deep–seated desire to understand and explain the workings of the universe. Theoret-
ical physics, in particular, has proven to be a powerful tool in this endeavor, providing
a framework for distilling complex phenomena into elegant and insightful mathematical
descriptions.

In the realm of modern physics, our understanding of the behavior of fundamental
particles and forces is rooted in the Standard Model (SM) of particle physics which is built
on a framework of Quantum Field Theory (QFT) [1–3]. QFT provides a foundation for
describing the interactions between particles in terms of fields that permeate space and
time. It has been incredibly successful in describing a wide range of phenomena, from
the electron magnetic moment [4, 5] to the Higgs boson [6–10]. The importance of QFT
lies in its ability to make precise predictions about the outcomes of high–energy particle
collisions, which are crucial for advancing our understanding of the universe at its most
fundamental level.

At the heart of QFT lies the concept of scattering amplitudes, which play a central
role in computations of the cross sections. The scattering cross section is the primary
observable in a particle scattering experiment, like the Large Hadron Collider (LHC) at
CERN. It represents the probability of a specific process happening as a function of the
particles’ energy and momentum.

Triggered by astonishing simplicity emerging from extensive computations [11], a se-
ries of breakthroughs founded new techniques for scattering amplitudes as a key field in
theoretical high–energy physics; see Ref. [12] and references therein for a recent review.
The need for precise theoretical predictions for ongoing and future experiments, coupled
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with the desire of theorists for more rigorous tests of their theoretical models, propelled
the invention of highly efficient methods that not only calculate amplitudes, but also ex-
tract physical quantities from them. The computations enabled by these new techniques
uncovered remarkable links between theories relevant to particle scattering and General
Relativity. These links extend beyond scattering, offering a fresh outlook on black holes
and the physics of gravitational waves detected by the LIGO and Virgo collaborations [13].
Furthermore, the fluctuations that give rise to patterns in the cosmic microwave back-
ground (CMB) and to the large–scale structure of the universe can be understood in terms
of correlation functions in the early universe, which can be computed using scattering am-
plitudes methods; see Ref. [14] for a review. Thus, the study of scattering amplitudes is
important not only for our understanding of the behavior of fundamental particles but also
for our understanding of the universe as a whole.

Just as experimental measurements have limited precision, it is not possible to calculate
the desired quantities with arbitrary precision. Therefore, we perform our computations
in certain approximations, as an expansion around a small parameter, which is called per-
turbation theory. One of the most powerful tools for computing scattering amplitudes is
the Feynman diagram approach, which represents the amplitude as a sum over a set of
Feynman diagrams. Each diagram corresponds to a specific contribution to the amplitude
arising from the exchange of virtual particles between the colliding particles. The evalua-
tion of Feynman diagrams beyond the leading order gives rise to a set of integrals, known
as Feynman integrals, which are a particular type of multidimensional integral. These
integrals are a cornerstone of QFT, as they provide a link between the abstract Feynman
diagrams and the physical world of concrete particles and interactions.

Despite the importance of Feynman integrals, their evaluation remains a significant
challenge in many areas of physics. Feynman integrals are typically represented as mul-
tidimensional integrals over the momentum of the virtual particles, and can be evaluated
using a variety of analytical and numerical techniques. Numerical methods such as sector
decomposition [15, 16], auxiliary mass flow [17, 18], and Monte Carlo integration [19–21]
can be used to numerically evaluate the integrals. The choice of method depends on the
complexity of the integral, the desired level of precision, and the availability of compu-
tational resources. Alternatively, Feynman integrals can be analytically evaluated using
direct integration [22, 23]; see also Ref. [24]. A widely adopted modern approach for the
analytic computation of Feynman integrals is the method of differential equations [25, 26].

One of the most fascinating aspects of Feynman integrals is their analytic structure,
which is the focus of this thesis. In particular, we want to focus on the following question:
When can a Feynman integral develop singularities? The answer to this question was first
formulated in the 1960s by Landau, Bjorken, and Nakanishi [27–29]. They developed a
set of polynomial equations, known as the Landau equations, to determine the locations
of the singularities.

Even though Landau equations have been extensively studied since their inception [22,
30–36], finding a systematic and efficient solution for most Feynman integrals relevant
to contemporary high–precision calculations remains an unresolved issue. There are two
main motivations driving the investigation of this problem. On the one hand, from a
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mathematical point of view, we would like to have the definition of the singular locus of
Feynman integrals which encapsulates all possible singularities that may occur. On the
other hand, from a phenomenological point of view, understanding the full singularity
structure enables us to simplify the computation of Feynman integrals via differential
equations or even avoid the evaluation of Feynman integrals all together and directly
bootstrap the amplitude.

The singularities of Feynman integrals are intricately linked to the concept of symbol
letters and alphabets. Symbol letters characterize the types of functions that may appear
in the solutions. Hence, recognizing them beforehand is beneficial, even prior to performing
any integral computations. There are several methods to directly predict the alphabet, for
example, using the Baikov representation [37, 38] or using the so–called Schubert prob-
lems [39–42].

The main goal of this thesis is to present an alternative approach to finding a complete
alphabet for a given Feynman integral family. Whenever the alphabet includes square
root letters, we can separate the alphabet into the polynomial part and the algebraic
part. The polynomial part of the alphabet corresponds directly to the solutions of the
Landau equations. Although, the algebraic part of the alphabet cannot be accessed directly
through the Landau equations, we can algorithmically identify missing algebraic letters
from knowledge of the polynomial part of the alphabet and the appearing square roots.
Therefore, using a conjectured factorization property [43], we propose an algorithm for
finding algebraic letters. In order to make the algorithm more efficient and ready for use
in state–of–the–art applications, we introduce a criterion that significantly reduces the size
of the problem at hand, allowing us to handle large alphabets.

The thesis is divided into several chapters. In Chapter 2, we introduce several represen-
tations of Feynman integrals suitable for studying their analytic properties. In Chapter 3,
we address the question of determining the location of possible kinematic singularities of
Feynman integrals. For this purpose, we begin by examining the Landau equations and
review a method for determining their solutions using techniques from nonlinear algebra
and algebraic geometry. Following this, we leverage the relationship between the singular-
ities of Feynman integrals and symbol alphabets to identify the alphabets without directly
solving the integrals. Furthermore, in Chapter 4, we review a method for the analytic
computation of Feynman integrals based on differential equations. We argue that knowing
the singularity structure and a good basis of Feynman integrals makes the computation
more efficient and simplifies finding a solution. This is demonstrated on the one–loop
hexagon example. Next, in Chapter 5, we apply the algorithm for finding algebraic letters
to a cutting–edge computation of planar two–loop six–point Feynman integrals. Finally,
we conclude and provide an outlook in Chapter 6.
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Chapter 2

Feynman Integrals

Scattering amplitudes have been described as the “most perfect microscopic structures in
the Universe” [44]. They are fundamental components in quantum field theory, enabling
the prediction of probabilities for the outcome of particle collisions. Consequently, they
serve as an essential bridge between theoretical frameworks and experimental data. For
instance, they permit the validation of predictions made by the Standard Model of particle
physics against the data gathered from the LHC at CERN.

Starting from a Lagrangian for a given quantum field theory, we can derive a set of
rules, i.e. Feynman rules, that translate a Feynman diagram to a mathematical expression;
see standard QFT textbooks like [2, 3]. Summing over all Feynman diagrams at a given
order in perturbation theory gives us an expression for the scattering amplitude of a certain
process. Using Feynman rules on any Feynman diagram beyond the tree level will result in
an expression involving integrals over undetermined loop momenta. Therefore, we arrive
at the expression for a Feynman integral.

In order to make precise theoretical predictions for various scattering processes at the
LHC, scattering amplitudes are required at the next–to–leading order (NLO) and next–to–
next–to–leading order (NNLO) in perturbation theory [45]. These computations require
evaluations of Feynman integrals at the one–loop and two–loop level, respectively. Thus,
this chapter is dedicated to the Feynman integrals themselves.

Most quantum field theories have a non–trivial spinor structure in loop Feynman di-
agrams, therefore resulting in tensor integrals. Although the denominator is consistently
represented by a product of scalar propagators in the form q2

i − m2
i , where qi is the mo-

mentum and m2
i is the mass, due to locality, the numerator might contain multiple Lorentz

or Weyl indices in the loop momenta lµ
i . Through certain manipulations known as tensor

reduction [46–48], any tensor quantity can be expressed as a combination of tensor mono-
mials in the external momenta pµ

i multiplying scalar Feynman integrals. Hence, our focus
will be solely on the scalar Feynman integrals.

In this chapter, we introduce several different representations of Feynman integrals.
We start with the loop momentum representation in Section 2.1. This representation
is the most natural from the perspective of Feynman rules and will be used throughout
the Chapters 4 and 5. Furthermore, we also introduce two parametric representations,
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namely the Feynman parameter representation in Section 2.2 and the Lee–Pomeransky
representation in Section 2.3. Both of these parametrizations are particularly suitable for
studying the analytic properties of Feynman integrals in Chapter 3. Lastly, in Section 2.4,
we present the Baikov representation.

2.1 Loop Momentum Representation
Feynman integrals correspond to Feynman graphs with loops. Starting with a Feynman
graph G, we translate it to a mathematical expression using the Feynman rules.

Consider a connected Feynman graph G with nint internal edges, next external edges,
and L loops. We associate external momenta pi ∈ RDext , i = 1, . . . , next to each external
edge. Each internal edge is associated with a propagator of the form

1
(q2

j − m2
j)νj

, (2.1)

where qj is the momentum flowing through that edge, mj is the mass of the corresponding
particle and νj is the power of the propagator. At each vertex, we impose momentum
conservation which allows us to express any internal momentum qj as a linear combina-
tion of independent external momenta pi and independent loop momenta li. Hence, the
momentum qj associated to an edge is

qj =
L∑

r=1
λjrlr +

next−1∑
r=1

σjrpr, λjr, σjr ∈ {−1, 0, 1}. (2.2)

It follows that the Feynman integral IG corresponding to the Feynman graph G is
obtained by associating external edges with momenta pi, internal edges with propagators
of the form (2.1) and integrating over each independent loop momentum with a measure

∫ dDlr

iπ
D
2

. (2.3)

Moreover, we multiply the integral with a conventional prefactor

eLϵγE , (2.4)

where ϵ is the dimensional regulator and γE is the Euler–Mascheroni constant. Without
this prefactor, the Euler-Mascheroni constant γE would appear in the final result for any
Feynman integral.

Thus, we arrive at the definition of a Feynman integral IG

IG = eLϵγE

∫ L∏
r=1

dDlr

iπ
D
2

nint∏
j=1

1(
q2

j − m2
j

)νj
. (2.5)
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Here, D is the number of space–time dimensions. We are interested in working in D = 4
for standard model computations, but it might be interesting to study integrals in other
dimensions.

The same Feynman diagram can generate various Feynman integrals with the same
propagator structure but differing in the propagator powers. For example, some prop-
agators might be negative, indicating that they appear in the numerator instead of the
denominator. This leads to a generalization of Feynman integrals to integral families by
allowing arbitrary integer propagator powers νj ∈ Z.

As noted previously, Feynman integrals depend on the dimensionality of space-time
D. In addition, they depend on the exponents of the propagators νj. Occasionally, we
explicitly write the dependence on the powers of propagators in the following way

IG = I(D)(ν1, . . . , νj), νj ∈ Z. (2.6)

For νj < 0, the corresponding factor (q2
j − m2

j) will appear in the numerator. A family
of Feynman integrals is defined as a set of propagators with arbitrary propagator powers.
Integrals within a family are related to each other through the so–called integration–by–
parts identities (IBPs) which will be discussed in more detail in Section 4.1.

Dimensional Regularization

Feynman integrals and thus also scattering amplitudes may be divergent in D = 4. One
way of treating these divergences is by analytically continuing the number of space-time
dimensions from four to a generic number of dimensions. Hence, we will be working in

D = D0 − 2ϵ, (2.7)

where ϵ is the dimensional regulator. In general, it can be a noninteger or a complex
number. This goes by the name of dimensional regularization [49–51].

Feynman integrals and scattering amplitudes are functions of D and are computed as
Laurent series expansions around ϵ = 0. In this formalism, loop integration divergences
appear as poles in ϵ.

We distinguish between two different types of divergences, ultraviolet (UV) and infrared
(IR) divergences. UV divergences arise from the regions where the loop momenta become
large and are regulated by assuming that ϵ > 0.

For renormalizable theories, such as the standard model, UV divergences can be ab-
sorbed in a redefinition of coupling constants, masses and fields. In those cases, we dis-
tinguish between bare (unphysical) parameters and renormalized (physical) parameters.
Renormalized parameters are parameters connected to some observable quantity in nature
and, therefore, are finite. For example, we can compute the physical coupling constant of
some renormalizable theory perturbatively in terms of the bare coupling constant. In this
way, we relate the physical coupling to the bare coupling. This relation may contain UV
divergences and we can use it to absorb them into the unobservable bare coupling. Doing
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this for all parameters of the renormalizable theory ensures that we remove all UV diver-
gences. For a more detailed discussion of regularization and renormalization, see standard
QFT textbooks like [1, 2].

On the other hand, IR arise in the scattering processes of massless particles when suffi-
ciently many propagators go on shell simultaneously, i.e. when q2

j − m2
j = 0 for sufficiently

many propagators. This may happen when the loop momentum becomes soft

lµ → 0, µ = 0, . . . D − 1 (2.8)

or when it becomes collinear with the momentum of a massless external particle

lµ ∥ pµ
i , p2

i = 0. (2.9)

We refer to those IR divergences as soft or collinear divergences, respectively. In general,
it may be that both soft and collinear divergences arise simultaneously. In dimensional
regularization, we regulate those divergences with ϵ < 0.

When considering a scattering process of particles, we assume that we have well–defined
asymptotic states with a finite number of particles. This is not the case for massless
particles. We cannot distinguish between states with a single massless particle with soft
momentum p (p2 → 0) or a state with the same massless particle surrounded by a cloud of
other soft particles or a state assembled of collinear particles whose momentum sums up to
p. This vagueness in the definition of the asymptotic states is the origin of IR divergences
in the loop integration.

Unlike UV divergences, IR divergences are not as well understood. One way of treating
IR divergences is by using the so–called cross–section method [52, 53]. The argument is that
the S–matrix elements themselves are not observable, and therefore there is no problem
with them being ill–defined in the presence of IR divergences. The observable quantities
are cross sections determined by the square of S–matrix elements integrated over phase–
space regions. In this way, IR divergences cancel between real emission contributions,
coming from the phase space integration of squared amplitudes with fewer loops but extra
radiation in the final state, and virtual contributions coming from the loop integrations.
The cancellation of IR divergences in QED was demonstrated in [54] and this approach
relies on the theory being Abelian. For non-Abelian gauge theories like QCD, the Kinoshita,
Lee, and Nauenberg (KLN) theorem [55, 56] guarantees that all IR divergences cancel
order by order in perturbation theory, when summed over all possible degenerate initial
and final states. The stronger version of the KLN theorem was recently proven [57]. For
recent developments, see Ref. [58] and for a pedagogical review of the subject, see Ref. [59]
and references therein.

For the remainder of this thesis, the details on how to properly treat UV and IR
divergences will not be important. It is enough to consider Feynman integrals within the
dimensional regularization framework where we keep the value of the dimensional regulator
ϵ generic so that we regularize both UV and IR divergences simultaneously.
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Kinematic Dependence

Lastly, Feynman integrals depend on the kinematic variables. The Feynman integrals
defined in equation (2.5) are scalar integrals, and hence they can only depend on the
independent external momenta through the Lorentz invariants pi ·pj. The maximal number
of independent variables is

next(next − 1)
2 + nint − 1. (2.10)

The first next(next − 1)/2 variables correspond to the scalar products of the external mo-
menta pi · pj, while the variables nint correspond to the masses of the propagators. Fur-
thermore, we can remove one of the variables by setting it to one because of the scaling
invariance. Of course, some of the external or internal masses may be equal or zero, which
reduces the number of kinematic variables in the problem.

As we will see in Chapter 4, Feynman integrals evaluate to multi–valued functions.
Hence, it is pivotal to specify the domain of kinematic variables. In the remainder of
this thesis, we will consider Feynman integrals with massless propagators. The kinematic
dependence of these integrals will be encoded in the Mandelstam variables

sij = (pi + pj)2, sijk = (pi + pj + pk)2. (2.11)

These variables take definite signs for the physical momentum configuration that describe
the scattering processes depending on which particles are considered incoming and outgo-
ing. Additionally, the signs of the variables are constrained by certain Gram–determinant
constraints.

We use the following definition of the Gram determinant

G

(
q1 . . . qn

u1 . . . un

)
= det(2qi · uj), 1 ≤ i, j ≤ n, (2.12)

with a shorthand notation

G(q1, . . . , qn) = G

(
q1 . . . qn

q1 . . . qn

)
. (2.13)

Additionally, we introduce the notation

Ḡn = (−1)n−1G(p1, . . . , pn), 1 ≤ n ≤ next. (2.14)

Within the physical scattering region, the Gram determinant constraints take the following
form [60]

Ḡ1 ≥ 0, Ḡ2 > 0, Ḡ3 > 0, . . . , ḠD0 > 0, (2.15)
and Ḡn = 0 for all n > D0, since there are only D0 independent momenta in D0 dimensions.
The first inequality differs for massive and massless particles, since Ḡ1 is equal to the mass
of a particle. In the case of massive particles, we have a strict inequality Ḡ1 > 0, while for
massless particles we have a strict equality Ḡ1 = 0.
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Figure 2.1: One–loop hexagon integral. In our examples, both the external momenta pi

and the propagators are considered to be massless.

Moreover, for all planar Feynman integrals, there is one particularly simple kinematic
region where all dimensionally regularized scalar Feynman integrals are real–valued and
only diverge on the boundaries where Mandelstam variables vanish. It is defined by a
kinematic domain where the F polynomial, defined in equation (2.28), is non–negative.
This region is called the Euclidean region. A sufficient condition for the existence of a
Euclidean region was given in [61]. Moreover, Feynman integrals in the Euclidean region
are completely monotonic functions [62].

In view of the fact that Feynman integrals are multivalued functions, we can compute
them in our favorite kinematical region. Then we can obtain the results valid in other
kinematical regions by analytic continuation (see, for example, Ref. [63]).

Example: One–Loop Hexagon

To better understand all the notation introduced so far, it is useful to look at a particular
example. The main example for this chapter is the one–loop hexagon integral shown in
Figure 2.1.

The massless one–loop hexagon family is defined by integrals of the form

I(D0)(ν1, ..., ν6) = eϵγE

∫ dD0−2ϵl

iπ
D0
2

1
6∏

j=1

l +
j−1∑
k=1

pk

2νj
, (2.16)

with integer propagator powers νi. Moreover, the one–loop hexagon integral is the one
with all propagator powers equal to one

I(D0)(1, 1, 1, 1, 1, 1) = eϵγE

∫ dD0−2ϵl

iπ
D0
2

1
6∏

j=1

l +
j−1∑
k=1

pk

2 . (2.17)
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In principle, this massless six–particle Feynman integral depends on six momenta pi ∈
RDext which satisfy p2

i = 0 and momentum conservation implies

6∑
i=1

pi = 0 (2.18)

if all momenta are taken to be incoming. However, due to the Lorentz symmetry, the kine-
matic dependence is simplified, and an appropriate set of variables in integer dimensions
Dext > 4 are the nine independent Mandelstam invariants

v⃗ = {s12, s23, s34, s45, s56, s61, s123, s234, s345} (2.19)

with

sij = (pi + pj)2, sijk = (pi + pj + pk)2. (2.20)

In the Euclidean region, we consider all the variables in equation (2.19) to be negative.
For physical momentum configurations describing 2 → 4 or 3 → 3 scattering processes,
the Mandelstam invariants take definite signs depending on which particles are incoming
and outgoing, respectively. For example:

12 → 3456. In the 2 → 4 scattering region with particles 1 and 2 incoming, in addition
to the Gram determinant constraints (2.15), the constraints on the Mandelstam invariants
are

s12, s34, s35, s36, s45, s46, s56 > 0,

s13, s14, s15, s16, s23, s24, s25, s26 < 0. (2.21)

Note that constraints that go beyond the set of variables introduced in (2.19) can be
reexpressed in terms of vi. For example,

s35 = s345 − s34 − s45. (2.22)

123 → 456. In the 3 → 3 scattering region with particles 1, 2 and 3 incoming, in addition
to the Gram determinant constraints (2.15), the Mandelstam invariants satisfy

s12, s13, s23, s45, s46, s56 > 0,

s14, s15, s16, s24, s25, s26, s34, s35, s36 < 0. (2.23)

2.2 Feynman Parameter Representation
The Feynman parameter representation is a parametric representation suitable both for
numerical evaluation and for studying the analytic properties of Feynman integrals. In this
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representation, we trade the (LD)–fold momentum integrations for (nint)–fold parametric
integrations.

Starting from the momentum space representation, we obtain the Feynman parameter
representation using the Feynman trick

n∏
j=1

1
P

νj

j

= Γ(ν)
n∏

j=1
Γ(νj)

∫
αj≥0

dnαδ

1 −
n∑

j=1
αj


n∏

j=1
α

νj−1
j n∑

j=1
αjPj

ν , (2.24)

where ν = ∑nint
j=1 νj and νj > 0. The denominators Pj are the propagators of Feynman

integrals Pj = (q2
j − m2

j).
We use the translation invariance of the D–dimensional loop integrals to shift each

loop momentum lr in order to complete the square. The integrand then depends only on
l2
r and all D-dimensional loop integrations can be performed. We arrive at the following

representation

IFeyn = eLϵγE
Γ(ν − lD

2 )
nint∏
j=1

Γ(νj)

∫
αj≥0

dnintαδ

1 −
nint∑
j=1

αj

nint∏
j=1

α
νj−1
j

 Uν− (l+1)D
2 (αj)

Fν− lD
2 (αj)

. (2.25)

The variables αj are called Feynman parameters and U and F are the first and the second
Symanzik polynomial, respectively.

The graph polynomials U and F are polynomials in the Feynman parameters and can
be derived in several ways [64]. One way is by writing the momenta qj as

qj =
L∑

r=1
λjrlr +

next−1∑
r=1

σjrpr. (2.26)

Then, we can express the denominator of the integrand in equation (2.24) as

nint∑
j=1

αjPj =
L∑

r=1

L∑
s=1

lrMrsls +
L∑

r=1
2lr · vr + J. (2.27)

Here, M is a L × L matrix with entries depending just on the Feynman parameters αj,
v is a L-vector of linear combinations of external momenta and J is scalar. Using these
definitions, the graph polynomials are defined as

U(α) = det(M),
F(α) = det(M)

(
vT M−1v − J

)
. (2.28)

The first Symanzik polynomial U is a homogeneous polynomial of degree L linear in each
Feynman parameter αj. Moreover, each monomial of U has a coefficient +1 if we write
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Figure 2.2: The set of spanning trees T1 for the one–loop hexagon graph contributing to
the U polynomial.

the polynomial in expanded form. On the other hand, the second Symanzik polynomial F
is a homogeneous polynomial of degree L + 1 whose coefficients depend on the kinematic
invariants. In case all internal masses are equal to zero, the polynomial F is also linear in
each Feynman parameter αj.

Starting from the one–loop hexagon integral defined in (2.17), using the Feynman trick
(2.24) and expanding the momenta according to (2.27), it follows

M =α1 + α2 + α3 + α4 + α5 + α6,

v =α2p1 + α3(p1 + p2) + α4(p1 + p2 + p3)
+ α5(p1 + p2 + p3 + p4) + α6(p1 + p2 + p3 + p4 + p5),

J =α3s12 + α4s123 + α5s56. (2.29)

From this, we can easily compute the graph polynomials using their definitions in equa-
tions (2.28)

U =α1 + α2 + α3 + α4 + α5 + α6,

F = − s12α2α6 − s23α1α3 − s34α2α4 − s45α3α5 − s56α4α6 − s61α1α5

− s123α3α6 − s234α1α4 − s345α2α5, (2.30)

and obtain the Feynman parameter representation from equation (2.25).
Another approach to computing the graph polynomials U and F is by using concepts

from graph theory. Consider a connected graph G with nint internal lines, next external
lines, and V vertices. The number of loops L of the graph G is given by the first Betti
number

L = nint − V + 1. (2.31)

A spanning tree for graph G is a connected subgraph T that contains all the vertices of
G and the first Betti number of T is zero. A spanning tree for graph G can be obtained
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Figure 2.3: The set of spanning 2–forests T2 for the one–loop hexagon graph contributing
to the F polynomial.

from G by removing L internal lines. In general, a single graph G has multiple spanning
trees. We denote the set of spanning trees as T1.

The first Symanzik polynomial U is defined as a sum over spanning trees

U(α) =
∑

T ∈T1

∏
ei /∈T

αi, (2.32)

where the product runs over the L internal edges that were removed to obtain the spanning
tree T .

Similarly, we can define a spanning 2–forest as a disjoint union of two disconnected
spanning trees T1 and T2 which contains all vertices of graph G. Again, a single graph G
has multiple spanning 2–forests that can be obtained from G by removing (L + 1) internal
lines. We denote the set of spanning 2–forests by T2.

The second Symanzik polynomial is defined as a sum over spanning 2–forests

F(α) =
∑

(T1,T2)∈T2

 ∏
ei /∈(T1,T2)

αi

 ∑
pj∈PT1

∑
pk∈PT2

pj · pk

− U(α)
nint∑
i=1

αim
2
i , (2.33)

where PTi
denotes the set of external momenta in subgraph Ti.

Let us look at the one–loop hexagon as an example. There are six ways to remove
one of the internal edges from the hexagon graph in Figure 2.1, as shown in Figure 2.2.
Moreover, there are nine spanning 2–forests which are shown in Figure 2.3. Using the
definitions (2.32) and (2.33), it follows that the graph polynomials are the ones found in
equation (2.30).

In this section, we described the Feynman parameter representation, which is well suited
for studying the analytic properties of Feynman integrals; see chapter 3. Furthermore, we
introduced two different methods to compute the graph polynomials U and F . For more
methods to compute the graph polynomials and original references, see the review [64].
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2.3 Lee–Pomeransky Representation
Another closely related representation that uses graph polynomials is the Lee–Pomeransky
representation [65]. Here, only one polynomial, which is given as the sum of the graph
polynomials G = U + F , enters the integrand

ILP = eLϵγE
Γ
(

D
2

)
Γ
(

(L+1)D
2 − ν

) nint∏
j=1

νj

∫
αj≥0

dnintα

nint∏
j=1

α
νj−1
j

G− D
2 . (2.34)

In order to derive the Lee–Pomeransky representation it is simpler to work backward and
show that it is equivalent to the Feynman representation. In order to pass from (2.34) to
(2.25) it is sufficient to insert

1 =
∫

dsδ(s −
nint∑
j=1

αj) (2.35)

into the equation (2.34), scale the variables αj → sαj and integrate over s.
If we again choose the massless one-loop hexagon as an example, the G polynomial

takes the following form

G =α1 + α2 + α3 + α4 + α5 + α6 + s12α2α6 + s23α1α3 + s34α2α4

+ s45α3α5 + s56α4α6 + s61α1α5 + s123α3α6 + s234α1α4 + s345α2α5. (2.36)

We obtain the Lee–Pomeransky representation by inserting this polynomial into the equa-
tion (2.34) with L = 1.

This integral representation is particularly interesting from a mathematical perspective.
Up to a prefactor involving Gamma functions and conventional eLϵγE , Feynman integrals
in Lee–Pomeransky representation correspond to generalized Euler integrals introduced by
Gelfand, Kapranov and Zelevinsky [66]

∫
Γ

αν1
1 · · · ανn

n

f s1
1 · · · f s1

1

dα1

α1
∧ · · · ∧ dαn

αn

=
∫

Γ
f−sxν dα

α
, (2.37)

where we used multi–index notation on the right–hand side. For a self–contained intro-
duction to the topic, see Ref. [67].

The Lee-Pomeransky representation is beneficial for counting the number of basis inte-
grals for a given integral family (Section 4.1) and for studying their singularity structure
(Section 3.2).

2.4 Baikov Representation
The last representation that we are going to discuss is the Baikov representation [68,
69]. Here, we trade the (LD)–fold integration of loop momentum representation (2.5)
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for integration over linearly independent scalar products involving both external and loop
momenta.

If we use E to denote the number of independent external momenta, Lorentz invariants
involving loop momenta li take the following form:

l2
i , 1 ≤ i ≤ L,

li · lj, 1 ≤ i < j ≤ L,

li · pj, 1 ≤ i ≤ L, 1 ≤ j ≤ E. (2.38)

Hence, we have in total

NV = L(L + 1)
2 + LE (2.39)

linear independent scalar products which we denote by

σ = {σ1, . . . , σNV
}

= {l1 · l1, l1 · l2, . . . , lL · lL, l1 · p1, . . . , lL · pE} . (2.40)

A Feynman graph G has a Baikov representation if NV = nint and if we can express
any inverse propagator as a linear combination of the linear independent scalar products
involving loop momenta and terms independent of loop momenta

q2
j − m2

j = Cjkσk + fj, ∀1 ≤ k ≤ nint. (2.41)

Here, Cij
n are integer constants and fn are functions of kinematic variables only.

The conditions for a Baikov representation to exist are always satisfied for one–loop
Feynman graphs. However, for graphs beyond one loop, this is not always the case. There,
we usually see that the number of internal edges nint is smaller than the number of inde-
pendent scalar products containing loop momenta. The scalar products that cannot be
expressed in terms of inverse propagators are called irreducible scalar products (ISPs). The
solution is to add additional inverse propagators such that all scalar products are express-
ible as inverse propagators. Therefore, after slight modifications, we can always find the
Baikov representation for a Feynman graph G. Later, we will see how this works in practice
in a particular example.

Now, we perform a change of the integration variables from loop momenta to the Baikov
variables zj

zj = q2
j − m2

j , (2.42)

where the Baikov variables are just the inverse propagators. The inverse relation follows
from equation (2.41)

σk = (C−1)kj(zj − fj). (2.43)

Next, we decompose the loop momentum into parallel and orthogonal components. This
allows us to consistently perform a change of integration variables from lµ to σi. For more
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details see Ref. [70, 71]. Finally, we change the variables from σi at the Baikov variables
zi and arrive to the Baikov representation

IB = eLϵγE
[G(p1, . . . , pE)]

−D+E+1
2

π
1
2 (NV −L) det(C)

L∏
j=1

Γ
(

D − E + 1 − j

2

) ∫C
dNV z [P (z)]

D−L−E−1
2

NV∏
k=1

1
zνk

k

, (2.44)

where P (z) is the Baikov polynomial

P (z1, . . . , zNV
) = G(l1, . . . , lL, p1, . . . , pE). (2.45)

The domain of integration C is defined by

C = C1 ∩ C2 ∩ . . . ∩ CL, (2.46)

with
Cj =

{
G(lj, lj+1, . . . , lL, p1, . . . , pE)
G(lj+1, . . . , lL, p1, . . . , pE) ≤ 0

}
. (2.47)

The Baikov representation is particularly useful for computing residues when one or
several propagators go on–shell, i.e. cuts of Feynman integrals. Moreover, it can be used
to find the canonical bases of Feynman integrals and their symbol alphabets [38, 70].

Example: One–Loop Hexagon

The first example we are going to consider is the one–loop hexagon integral family defined
in equation (2.16). Since this is a one–loop example, the conditions for the Baikov repre-
sentation to exist are immediately satisfied. Therefore, we perform the change of variables
to the Baikov variables

zi =
l +

i−1∑
j=1

pj

2

, 1 ≤ i ≤ 6. (2.48)

The Baikov polynomial is defined as

P (z1, z2, z3, z4, z5, z6) = G(l, p1, p2, p3, p4, p5), (2.49)

and we express it in terms of the Baikov variables using the following relations:

l2 = z1

l · p1 = 1
2(z2 − z1)

l · p2 = 1
2(z3 − z2 − s12)

l · p3 = 1
2(z4 − z3 + s12 − s123)
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l · p4 = 1
2(z5 − z4 − s56 + s123)

l · p5 = 1
2(z6 − z5 + s56). (2.50)

From these relations, we can also read the elements of the C matrix and take its deter-
minant. Therefore, the one–loop hexagon can be written in the Baikov representation
as

IHex = eϵγE
[G(p1, . . . , p5)]

−D+6
2

32π
5
2 Γ
(

D − 5
2

) ∫
C

d6z [P (z1, . . . , z6)]
D−7

2
6∏

k=1

1
zνk

k

. (2.51)

Example: Two–Loop Double–Pentagon

The second example we are considering is the two–loop six–point double–pentagon integral
shown in Figure 2.4.

Since this is a two–loop example, the condition for the Baikov representation to exist
is not immediately satisfied. The double–pentagon integral has nine inverse propagators:

D1 = l2
1, D2 = (l1 − p1)2, D3 = (l1 − p1 − p2)2, D4 = (l1 − p1 − p2 − p3)2,

D7 = l2
2, D10 = (l2 + p1 + p2 + p3)2, D11 = (l2 + p1 + p2 + p3 + p4)2,

D12 = (l2 + p1 + p2 + p3 + p4 + p5)2, D13 = (l1 + l2)2, (2.52)

but the number of independent scalar products involving loop momenta for this integral
is 13. Therefore, we need to supplement these inverse propagators with four irreducible
scalar products.

In general, we need to add any four propagators so that we can express all of the
irreducible scalar products in terms of inverse propagators. One way of discerning which
propagators to include is to consider the dual graph of the original Feynman graph. We
use the fact that each momentum can be represented as a difference between two points.
In particular, we relate the momenta with points xi in the dual space

pi = xi − xi−1, i = 1, . . . , next, with p1 = x1 − xnext ,

lj = xj − x1, j = 1, . . . , L. (2.53)

We call the points xi dual coordinates [72]. It is clear that dual coordinates manifestly
satisfy momentum conservation and, therefore, are useful for defining integrals of planar
Feynman graphs.

Rewriting the double–pentagon inverse propagators in terms of the dual coordinates

D1 = x2
1a, D2 = x2

2a, D3 = x2
3a, D4 = x2

4a,

D7 = x2
1b, D10 = x2

4b, D11 = x2
5b, D12 = x,

6b

D13 = x2
ab, (2.54)



2.4 Baikov Representation 19

p1

p2

p3 p4

p6

p5

x3

x2

x4

x1
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Figure 2.4: Double–pentagon graph and corresponding dual graph. Black lines represent
the double–pentagon graph, red lines represent its dual graph and the blue dashed lines
represent the irreducible scalar products.

it is easy to see that the missing propagators are {x2
5a, x2

6a, x2
2b, x2

3b}. Here we identify
l1 = xa − x1 (l2 = xb − x1) and use the short–hand notation xij = xi − xj. The missing
propagators are easily identified from a dual graph shown in Figure 2.4. The thick red
lines represent the inverse propagators that we started with, and the blue dashed lines
represent the additional propagators. Now, we can translate them back to loop momentum
representation

D5 = x2
5a = (l1 − p1 − p2 − p3 − p4)2, D6 = x2

6a = (l1 − p1 − p2 − p3 − p4 − p5)2

D8 = x2
2b = (l2 + p1)2, D9 = x2

3b = (l2 + p1 + p2)2, (2.55)

and use them to express the irreducible scalar products.
With that, we have all of the necessary ingredients to obtain the Baikov representation.

As before, we make a change of variables from scalar products involving loop momenta to
Baikov variables zi. The Baikov polynomial in the two–loop case is

P (z1, . . . , z13) = G(l1, l2, p1, p2, p3, p4, p5), (2.56)

while the Gram determinant in the coefficient of the integral remains the same as in the
one–loop case. Finally, we arrive at the following representation

Idp = e2ϵγE
[G(p1, . . . , p5)]

−D+6
2

2048π
11
2 Γ

(
D − 5

2

)
Γ
(

D − 6
2

) ∫
C

d13z [P (z1, . . . , z13)]
D−8

2
13∏

k=1

1
zνk

k

. (2.57)

Starting from two–loop integrals, we can follow another approach where the guiding
principle is to keep the number of integration variables as low as possible. In this approach,
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we utilize the known results from one loop and perform the change of variables on one of
the loops first, while treating the remaining loop momenta as external. This is known as
the loop–by–loop approach (LbL) [73].

We can start from the right loop in the double–pentagon example. We are considering
the one–loop pentagon with p4, p5, p6 and l1 as independent external momenta, while the
loop momentum is l2. The Baikov polynomial and the Gram determinant that involve just
the external momenta that appear in the Baikov representation (2.44) are

PR = G(l2, l1, p4, p5, p6), G(l1, p4, p5, p6). (2.58)

We are left with the left loop which is a pentagon integral with independent external
momenta p1, p2, p3, p6, and loop momentum l1. Hence, the Gram determinants we have to
consider are

PL = G(l1, p1, p2, p3, p6), G(p1, p2, p3, p6). (2.59)

Since we are considering two pentagons with five Baikov variables each, we end up with a
loop–by–loop representation which depends on ten variables

I
(LbL)
dp ∼

∫
d10zP

D−6
2

R [G(l1, p4, p5, p6)]
−D+5

2 P
D−6

2
L [G(p1, p2, p3, p6)]

−D+5
2

10∏
k=1

1
zνk

k

. (2.60)

The advantage of using the loop–by–loop approach is that there are fewer variables in
the problem and that the integrand factorizes into several simpler pieces. Both of these help
in the analysis of the integral and in the computations of cuts and leading singularities. On
the other hand, unlike the standard Baikov representation, the loop–by–loop representation
is not unique, since it depends on the loop we start with and the momentum routing we
choose.



Chapter 3

Singularity Structure of Feynman
Integrals

There are two aspects to the singularity structure of Feynman integrals. First, there may be
singularities that occur for any value of the kinematic variables. These are the ultraviolet
or infrared divergences of the Feynman integrals briefly described in Chapter 2. Secondly,
there may be singularities, which only occur for specific values of the kinematic variables.
These are called Landau singularities or kinematic singularities, and are the central objects
of study in this chapter.

Knowing the locations of Landau singularities for a given Feynman integral is crucial
for modern high–precision computations. It allows us to make the computations of canon-
ical differential equations satisfied by a family of Feynman integrals more efficient; see
Section 4.3 and Chapter 5. In examples discussed in this thesis and more generally in
polylogarithmic cases, Landau singularities correspond to zeros and singularities of symbol
letters [74, 75]. The symbol encodes many important features of the analytic structure of
Feynman integrals. Therefore, knowing the symbol letters in addition to the behaviour in
certain physical limits opens the door to potential bootstrap applications.

For example, in planar N = 4 super Yang–Mills (sYM), the function space of planar
six–particle scattering is, in fact, conjectured to be known to all loop orders [76]. This
conjecture, together with other physical insights, such as behaviour in limits and analytic
properties, has been used to bootstrap six–particle amplitudes to staggering loop orders;
see Ref. [77, 78].

Determining the positions of kinematic singularities has been a topic of interest for
a long time, tracing back to the seminal contributions of Bjorken, Landau, and Nakan-
ishi [27–29]. They formulated a set of polynomial conditions, now referred to as the Landau
equations, to identify the singularities. These equations are stated in Section 3.1 where
we also give an overview of the literature. In Section 3.2, we review a modern approach
to Landau analysis which is best suited for the problems considered in this thesis. In Sec-
tion 3.3, we discuss a connection between singularities of Feynman integrals and symbol
letters. Lastly, in Section 3.4, we describe an efficient algorithm to complete the alphabets
with algebraic letters. This algorithm provides key results needed for finding differential
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equations satisfied by one–loop and two–loop six–point Feynman integrals in Section 4.3
and Chapter 5, respectively.

The one–loop hexagon alphabet presented throughout this chapter is published in
Ref. [79].

3.1 Landau Equations
The main question we want to answer is: When can a Feynman integral develop kinematic
singularities? In general, Feynman integrals are too difficult for their analytic properties
to be studied after explicit integration. Therefore, we want a way to answer this question
that avoids explicit integration.

Identifying the locations of kinematic singularities has been a subject of significant
interest for many years, dating back to the foundational work of Bjorken, Landau, and
Nakanishi [27–29]. Based on a generalization of a lemma that describes singularities of a
function defined by an integral [80–82], these authors derived a system of equations which,
in principle, determine locations of singularities of Feynman integrals.

Starting with the loop momentum representation of the Feynman integrals (2.5) and
using the Feynman trick (2.24), we arrive to the following Feynman parametrization

I =
∫ (

L∏
r=1

dDlr

)nint∏
j=1

dαj

 δ

1 −
nint∑
j=1

αj


nint∑

j=1
αj(q2

j − m2
j)
nint , (3.1)

where we have omitted all kinematic independent factors since they have no influence on
the singularities.

The necessary condition for the integrand of (3.1) to develop singularities is

αj(q2
j − m2

j) = 0 ∀j ∈ {1, . . . , nint}. (3.2)

This condition will be satisfied either when the propagator goes on–shell q2
j = m2

j or
when the corresponding Feynman parameter αj is zero. However, these conditions are
not sufficient to guarantee that the Feynman integral will be singular. If these conditions
are satisfied at a generic point in the integration region, the integration contour can be
deformed so that it avoids the corresponding singularity.

Actual singularities occur if we cannot deform the contour of integration. This happens
whenever a singularity lies at an end–point of the integration contour or if two or more
singularities approach the contour of integration from opposite sides and coalesce, i.e. they
pinch the contour of integration. The pinching occurs for

∂

∂li

nint∑
j=1

αj(q2
j − m2

j) = 0, ∀i ∈ {1, . . . , L}. (3.3)
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Equations (3.2) and (3.3) together make up the Landau equations and serve as a nec-
essary condition for a Feynman integral to develop singularities. However, if a Feynman
integral has some nontrivial numerator, some of these singularities might cancel. Moreover,
the numerator cannot introduce new singularities.

Following a standard textbook [30], we classify the encountered singularities in the fol-
lowing way. If none of the Feynman parameters is set to zero and all of the propagators are
set on–shell, we call those singularities leading. In contrast, if some Feynman parameters
are zero and the remaining propagators are on–shell, we call those subleading singularities.
Setting αi = 0 corresponds to pinching the corresponding propagator. Additionally, we can
encounter singularities when one or more loop momenta diverge. We call those singularities
second–type and mixed singularities, respectively.

Landau equations and corresponding Landau singularities have received a lot of atten-
tion both from physics and mathematics perspectives. Following the original papers [27–
29], Pham et al. formally characterized Landau singularities in momentum space [31, 32];
for reviews, see, e.g. [83]. They introduced the notion of a Landau variety referring to the
projection of the critical set of propagator singularities onto the external kinematic space.
Initially, it could only be computed for sufficiently generic integrals, such as those related
to one–loop Feynman diagrams with generic masses and no UV/IR divergences. More-
over, Picard–Lefschetz theory was used to examine the local behavior of finite Feynman
integrals around real singularities in configurations with generic masses, see [84, 85] for ex-
amples. To study singularities of less generic Feynman integrals, i.e. integrals with UV/IR
divergences and/or with massless propagators, more careful analysis using blow–ups is
needed [86, 87]. Brown [33] and Panzer [22] revisited Landau varieties from the perspec-
tive of linear reducibility and algorithmic evaluation of Feynman integrals using multiple
polylogarithms. More recently, the Landau variety was studied from the perspective of
Whitney stratifications in [36].

Various authors investigated the space–time interpretation of Landau singularities and
their relationship to causality and locality in a non–perturbative manner, emphasizing the
significance of singularities where all αj ≥ 0, for a review see, for example [88]. Singularities
where all αj ≥ 0, correspond to singularities in the physical scattering region, and there
are multiple ways of computing them known in the literature; see [30]. However, for any
Feynman integral beyond the one–loop level, these methods become infeasible and difficult
to apply systematically.

Using the Lee–Pomeransky representation (2.34), Feynman integrals can be treated
as generalized Euler integrals. In that context, methods from the Gelfand–Kapranov–
Zelevinsky (GKZ) systems [89] can be used for Feynman integrals; see [90] for a recent
overview. In particular, principal A–determinants can be applied to the Landau analy-
sis [91, 92]. In Ref. [93], authors generalized A-discriminants to Landau discriminants.

The majority of results mentioned so far are relevant for Feynman integrals with generic
mass configurations. In general, if we take the massless limit on the level of results, we
are going to obtain only a subset of singularities [34, 35]. Therefore, methods directly
applicable to massless theories were developed. For instance, leading Landau singularities
in massless theories can be studied in momentum twistor space [94–96].
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As you can see from the extensive, but not complete, literature listed here, Landau
equations and singularities are a wide and still active area of research. This is due to
the fact that several problems are still not fully resolved. The biggest problem is the fact
that we do not know how to systematically account for all singularities in massless cases
and when UV/IR singularities are present. Another issue is developing practical tools for
systematic Landau analysis that are useful for state–of–the–art applications. A major step
in the right direction was made in [34, 35] where both of these issues were addressed.

3.2 Solving Landau Equations
The previous section introduced the Landau equations (3.2) and (3.3), and provided nu-
merous references regarding Landau analysis and its consequences. However, we have yet
to discuss how to solve these equations in practice. Consequently, in this section we will
review the method presented in [34, 35] which at the time of writing this thesis is the most
complete and systematic approach.

In Section 2.3, we introduced the Lee–Pomeransky representation of Feynman inte-
grals (2.34). We repeat that expression for the convenience of the reader

ILP ∝
∫

Rm
+

dmαG− D
2

m∏
i=1

ανi−1
i , (3.4)

where we have omitted all kinematic independent prefactors since they do not have influ-
ence on the locations of singularities. Moreover,

m = L(L + 1)
2 + L min(nint − 1, Dext) (3.5)

is the number of propagators together with the irreducible scalar products. This number
corresponds to the number of scalar products involving loop momenta NV , introduced in
Section 2.4, whenever external momenta are defined in a sufficiently high number of space–
time dimensions Dext so that all next −1 momenta are independent. The graph polynomial
G is again given by the sum of the two Symanzik polynomials

G(α; v⃗) = U(α) + F(α; v⃗). (3.6)

In this setting, the simplest Landau singularity is obtained by solving the critical point
equations away from the boundaries

G = ∂

∂α
G = 0, α ∈ (C∗)m, (3.7)

where we used the following notation ∂

∂α
=
(

∂

∂α1,
, . . . ,

∂

∂αm

)
and C∗ = C \ {0}. Solving

this system of equations will give us singularities at infinity or the so–called leading second–
type singularities.
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Note that instead of studying only the leading singularities where all αi ̸= 0 and
subleading singularities where some αi = 0, more complicated scaling patterns are allowed.
In general, a singularity can originate from scalings of the form

αi → εwiαi with ε → 0. (3.8)

The different regions where singularities can occur are given by the set of rational expo-
nents (w1, . . . , wm) called weight. This allows us to study different configurations obtained
by expanding and shrinking edges at specific rates. Moreover, αi ∈ C goes beyond the
standard textbook approach, where usually only αi ≥ 0 solutions are considered. There-
fore, we can detect singularities on any sheet in contrast to the ones just on the physical
sheet of the kinematic space.

The majority of remaining Landau singularities are on the boundaries. To classify
them, we use the notion of the Newton polytope

P = Newt (G) , (3.9)

which is defined as the convex hull of the columns of an integer matrix A defined by the
exponents of Feynman parameters αi in the graph polynomial G. For G = ∑s

i=1 ziα
ms ,

where αmi = αmi1
1 · · · αmin

n , the A matrix is

A =
(

m1 m2 · · · ms

1 1 · · · 1

)
∈ Z(n+1)×s. (3.10)

Example: If we take the graph polynomial G of the one–loop hexagon

G =α1 + α2 + α3 + α4 + α5 + α6 + s12α2α6 + s23α1α3 + s34α2α4

+ s45α3α5 + s56α4α6 + s61α1α5 + s123α3α6 + s234α1α4 + s345α2α5, (3.11)

the A matrix is

A =



1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0 1 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


. (3.12)

The faces of the Newton polytope P are parametrized by weights w = (w1, . . . , wm)
that correspond to the scailings (3.8). For each face f of the Newton polytope P we define
the initial form Gf which contains the leading terms in ε of G. Then the Landau equations
on the boundaries are defined as follows

Gf = ∂

∂α
Gf = 0, α ∈ (C∗)m. (3.13)
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Different faces correspond to different types of singularities. In the special case where f
is the entire polytope, i.e., for w = (0, . . . , 0), we recover the system of equations in (3.7).
The leading Landau singularity corresponds to the facet with w = (−1, . . . , −1), while the
subleading singularities are obtained by replacing −1 with 1 or 0.

The incidence variety Yf is defined by solutions to the system of equations (3.13)

Yf =
{

(α, v) ∈ (C∗)m × E : Gf = ∂

∂α
Gf = 0

}
, (3.14)

where E denotes the kinematic space and vi are kinematic variables. In general, the inci-
dence variety Yf can have many irreducible components

Yf =
⋃
i

Y
(i)

f . (3.15)

In the end, the location of the singularities depends only on the kinematic variables v.
Therefore, we need to remove the dependence on the Feynman parameters α. This is done
by projecting all components of the incidence variety onto the kinematic space E . After
projection, the components that give rise to singularities for any value v ∈ E are ignored
since they correspond to UV/IR divergences. The result of all projections is called the
principal Landau determinant (PLD)

PLD(E) =
⋃

faces f

⋃
projectons i

π
(
Y

(i)
f

)
⊂ E , (3.16)

where π is the projection operator.
The PLD detects kinematic configurations for which the surface {G(v) = 0} becomes

more singular than for generic v ∈ E . This is quantified by computing the signed Euler
characteristic

χv = |χ ((C∗)m \ {G(v) = 0})| , (3.17)

and checking whether it drops below a generic value χ∗. The Euler characteristic also com-
putes the number of master integrals for a family of Feynman integrals [67, 97, 98]. Master
integrals satisfy a system of first–order differential equations; see Section 4.3. Hence, the
PLD equivalently detects kinematic configurations for which the rank of the system of dif-
ferential equations drops. This is demonstrated in Section 4.6.2 for the one–loop hexagon
evaluated on the singularity corresponding to the system (3.7).

The methods described in this section are implemented in an open–source Julia pack-
age PLD.jl [34, 35].

Note that there are known examples where the PLD fails to detect all singular com-
ponents. The authors of Ref. [99] recently proposed an approach based on unitarity and
Baikov representation that claims to find those missing components and, therefore, might
be used as a complementary approach. The details of this approach go beyond the scope
of this thesis.
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Example: One–Loop Hexagon

By using PLD.jl for the one–loop hexagon integral (2.17) we find 49 distinct kinematic
singularities. The first 40 components of the PLD are:

W1 = s12, Wi+1 = T iW1, i = 1, . . . , 5, (3.18)
W7 = s123, Wi+7 = T iW7, i = 1, . . . , 2, (3.19)

W10 = s12 − s123, Wi+10 = T iW10, i = 1, . . . , 5, (3.20)
W16 = s12 − s345, Wi+16 = T iW16, i = 1, . . . , 5, (3.21)
W22 = −s12 − s23 + s123, Wi+22 = T iW22, i = 1, . . . , 5, (3.22)
W28 = s12 + s45 − s123 − s345, Wi+28 = T iW28, i = 1, . . . , 2, (3.23)
W31 = −s12s45 + s123s345, Wi+31 = T iW31, i = 1, . . . , 2, (3.24)
W34 = s12(−s34 + s345) + s345(s34 − s56 − s345), Wi+34 = T iW34, i = 1, . . . , 5, (3.25)
W40 = G(p1, p2, p3, p4, p5). (3.26)

Here we employ the cyclic permutation operator T that shifts the external legs by one site,

T (pi) = pi+1, i = 1, . . . , 6 (3.27)

and it acts on the variables according to

T v⃗ = {s23, s34, s45, s56, s61, s12, s234, s345, s123}. (3.28)

These components correspond to the polynomial part of the one–loop hexagon alphabet
presented in Ref. [79]. Note that in Ref. [79], W40 was defined as

−∆6

G(p1, p2, p3, p4, p5)
, (3.29)

since these two factors always appear together in the differential equation. Here, we choose
to treat them as separate components, as we treat them differently in Section 3.4.

Next, we have nine components that appear as square root leading singularities of the
basis integrals. In Section 4.3, we compute them through the leading singularity analysis
in the Baikov representation. From the leading singularity analysis, we know that these
singularities are square root singularities. In contrast, from the Landau analysis, we obtain
just the arguments of square roots. Therefore, we define the following nine components as
follows:

W41 =
√

∆3(s12, s34, s56), W42 = TW41, (3.30)

W43 =
√

∆5(s56, s61, s12, s234, s345, s34), Wi+43 = T iW43, i = 1, . . . , 5, (3.31)

W49 =
√

∆6, (3.32)
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where ∆i are defined as

∆3(s12, s34, s56) = λ(s12, s34, s56),
∆5(s23, s34, s45, s234, s345, s61) = (ω5(s23, s34, s45, s234, s345) − s34s61)2

−4s23s34s45(s34 + s61 − s234 − s345),
∆6 = ((1 + T + T 2)(s12s234s45) − s123s234s345)2 − 4s12s23s34s45s56s61, (3.33)

and

λ(s12, s34, s56) = s2
12 + s2

34 + s2
56 − 2s12s34 − 2s12s56 − 2s34s56,

ω5(s23, s34, s45, s234, s345) = s234s345 + s23(s34 − s234) + s45(s34 − s234). (3.34)

Interestingly, ∆5 takes a strikingly simple form in terms of the Källén function λ, e.g.

∆5(s12, s23, s34, s123, s234, s56) = λ(s12s34, s13s24, s23s14). (3.35)

In the context of the canonical differential equation (4.38), these components of the
Landau variety appear as arguments of d log forms which we call letters. In particular, the
letters listed here are so–called even letters, and they form a part of the full alphabet. We
call them even because they are invariant under the action of the Galois group

√
Q → −

√
Q.

To complete the alphabet, we also need to include algebraic letters of the form

P −
√

Q

P +
√

Q
, (3.36)

where P and Q are polynomials in terms of kinematic variables. We call these letters
odd, since the d log changes sign under the action of the Galois group. We postpone the
discussion of the algebraic letters to Section 3.4.

3.3 Symbology of Feynman Integrals
In the simplest cases, the Feynman integrals and the integrated amplitudes are polyloga-
rithmic functions of kinematical variables. The branch cut structure of the polylogarithmic
functions is encoded in the symbol [74, 100, 101]. In Ref. [75], it was pointed out that there
should be a close connection between the symbol letters and solutions to the Landau equa-
tions. In particular, the symbol entries appearing in any amplitude and, in fact, even in
individual Feynman integrals should be such that their zeros specify values of external
momenta where solutions of the Landau equations exist.

Understanding the symbol letters enables us to compute Feynman integrals in an effi-
cient manner and opens up the possibility to bootstrap amplitudes without computing the
Feynman integrals first. There are various approaches to predict the symbol alphabets. In
this section, we review the main methods and results, and in the next section, we give our
proposition on how to complete the alphabet from the known Landau singularities.
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Maximally supersymmetric Yang–Mills theory is often considered to be a perfect toy
model due to its simplicity and numerous symmetries [44]. From that perspective, it is
no surprise that the connection between the symbol alphabets and Landau singularities
is best understood in this setting. Using projective geometry, the authors of Ref. [94]
made a connection between the Landau singularities of Feynman integrals appearing in
the one– and two–loop maximally–helicity–violating (MHV) amplitudes and the symbols
of the amplitudes themselves. Moreover, a series of papers [95, 102, 103] proposed a
geometric algorithm for determining a complete set of branch points from the perspective
of the amplituhedron [104, 105]. Later, using an analogy between electrical circuits and
Feynman integrals, an all–loop result was obtained for a leading Landau singularity of
n–particle amplitudes in N = 4 sYM [96]. Using a connection between the letters and
the cluster variables [76] of the Grassmannian Gr(4, n), the symbol alphabets can also be
calculated from plabic graphs [106] and tensor diagrams [107].

Based on various results from N = 4 sYM and from diagrammatic coaction [108–
112], a systematic study of the singularity structure of one–loop integrals was initiated
in [113]. This resulted in a full understanding of the one–loop alphabets and several
different practical approaches to compute them. For example, alphabet letters can be
computed from the Baikov representation [37, 114] or alternatively from the principal A–
determinants of GKZ systems [92].

Going beyond one–loop, we are lacking a full systematic understanding of the relevant
alphabets. However, certain results are available in the literature. The so–called Schubert
problems were first introduced in N = 4 sYM to find symbol letters from intersections
of lines in momentum twistor space [39]. Later, these results were extended to Feynman
integrals without dual conformal symmetry by taking certain limits of dual conformal
integrals [41], by considering Schubert problems with points at infinity [40] and in the
embedding space formalism [42]. Additionally, in Ref. [115] a method using intersection
theory is proposed to compute the letters and corresponding rational coefficients of the
entries of the differential equations. Finally, a recent result [38] using the recursive structure
of the Baikov representation made a significant step towards automatizing the process of
finding alphabet letters.

In the next section, we propose an alternative approach to finding a complete alphabet
by using the results of the Landau analysis together with a certain observed factorization
property of known alphabets.

3.4 Efficiently Constructing Algebraic (Odd) Letters
In Section 3.2, we found the even part of the alphabet as solutions to the Landau equations.
Whenever the even part of the alphabet includes square roots, we need to complete the
alphabet with algebraic letters. There are several ways to define these letters, but it is
convenient to define them in the following form

P −
√

Q

P +
√

Q
, (3.37)
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where P and Q are polynomials in the kinematic variables. We could consider the numer-
ator or the denominator as a letter, but this particular form makes the action of the Galois
group manifest. The letters of the form (3.37) are odd under the sign flip of the square
root, i.e.

d log
(

P −
√

Q

P +
√

Q

) √
Q→−

√
Q−−−−−−→ −d log

(
P −

√
Q

P +
√

Q

)
. (3.38)

This property gives a valuable criterion of classification of the functions appearing in the
solution.

Although square roots are easy to recognize from the leading singularity analysis, find-
ing the form of the polynomial P in (3.37) is not trivial. Luckily, we can do this algorith-
mically [43]. If the letter (3.37) is part of the alphabet, it must be possible to factorize the
numerator and the denominator separately in the alphabet. This implies that the product
of the denominator and numerator is factorized in terms of even letters,(

P −
√

Q
)(

P +
√

Q
)

= c
∏
Wi

W ei
i , Wi ∈ Aeven, (3.39)

where c, ei ∈ N and Aeven is a subset of the full alphabet A. This indicates that the
letter (3.37) is also a solution to the Landau equations. We can use this factorization to
find suitable candidates for the polynomial P in two different ways. In both cases, we
assume the knowledge of the even alphabet letters and square roots in our problem. In
the first approach, we can construct all the possible products of even letters and find the
polynomials P . In the second approach, we can make an ansatz for the polynomial P and
check if the factorization (3.39) holds.

Example: Three–Mass Triangle Square Root

Let us look at a simple example where we can easily demonstrate the idea behind the
algorithm. In Section 3.2, we list the following components of the Landau variety

{s12, s34, s56,
√

∆3(s12, s34, s56)}. (3.40)

These components correspond to the even letters of the three–mass triangle integral at one
loop written in terms of the six–point kinematics.

The goal is to find all different polynomials P such that equation (3.39) is satisfied for
Q = ∆3(s12, s34, s56). Since ∆3(s12, s34, s56) is a degree two polynomial in Mandelstams,
we can make an ansatz for a degree two polynomial P and check whether equation (3.39)
holds for some coefficient c and exponents ei. Alternatively, we can construct different
products of even letters with some coefficient c and check if

P (v⃗)2 = Q(v⃗) + c
∏
Wi

W ei
i (3.41)

is a perfect square. We are going to follow the second approach, which will be discussed
in the next section.
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Considering all different products of degree two consisting from the first three elements
of the list (3.40), we find the following polynomials Pi

P 2
1 = ∆3(s12, s34, s56) + 4s12s34 = (s12 + s34 − s56)2,

P 2
2 = ∆3(s12, s34, s56) + 4s34s56 = (−s12 + s34 + s56)2,

P 2
3 = ∆3(s12, s34, s56) + 4s12s56 = (s12 − s34 + s56)2. (3.42)

Thus, we can construct three different odd letters for this square root. Before we add them
to the alphabet, we have to make sure that the letters are multiplicatively independent.
In this case, we can immediately check that

1 = s12 + s34 − s56 −
√

∆3

s12 + s34 − s56 +
√

∆3
· −s12 + s34 + s56 −

√
∆3

−s12 + s34 + s56 +
√

∆3
· s12 − s34 + s56 −

√
∆3

s12 − s34 + s56 +
√

∆3
. (3.43)

Hence, there are only two multiplicatively independent solutions. The full three-mass
triangle alphabet reads{

s12, s34, s56,
√

∆3,
s12 + s34 − s56 −

√
∆3

s12 + s34 − s56 +
√

∆3
,
−s12 + s34 + s56 −

√
∆3

−s12 + s34 + s56 +
√

∆3

}
, (3.44)

where
√

∆3 =
√

∆3(s12, s34, s56).
Although this appears to be an easy problem to solve, complications occur when the

same square root is embedded in a larger alphabet. If we now take the full polynomial
part of the one–loop hexagon alphabet (3.18) – (3.26), we have 444 different products of
letters which result in a degree–two polynomial. After considering all of them, we find
three additional solutions

P4 = ∆3 + 4
(
s2

123 − s12s123 + s34s123 − s56s123 + s12s56
)

= (s12 − s34 + s56 − 2s123)2 ,

P5 = ∆3 + 4
(
s2

234 + s12s234 − s34s234 − s56s234 + s34s56
)

= (−s12 + s34 + s56 − 2s234)2 ,

P6 = ∆3 + 4
(
s2

345 − s12s345 − s34s345 + s56s345 + s12s34
)

= (s12 + s34 − s56 − 2s345)2 .

(3.45)

All three solutions are multiplicatively independent; therefore, in a larger alphabet, we
need to consider all of them.

The question that naturally arises is how to find all possible solutions (or at least
sufficiently many) for a given set of square roots and a given set of polynomial letters.

3.4.1 Mathematical Formulation
Let Wi(v⃗) ∈ Z [v⃗] for i = 1, . . . , m be a set of homogeneous polynomials in kinematic
variables v⃗ with integer coefficients. Let Q(v⃗) ∈ Z [v⃗] be another homogeneous polynomial
with integer coefficients of degree q. We want to find all sets {e1, . . . , em, c, P (v⃗)} with the
property

P (v⃗)2 = Q(v⃗) + c
∏
Wi

W ei
i , (3.46)
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where ei ∈ N, c ∈ Q and P (v) ∈ Z [v⃗] is a homogeneous polynomial of degree q/2.
In other words, we are looking for all quadratic completions of Q(v⃗) that factorize over

even alphabet letters Aeven = {W1, . . . , Wm}.
Several remarks are in order. First of all, it is crucial to work with homogeneous

polynomials Q because this allows us to find a complete set of solutions. It is not clear
at the moment how to check whether we constructed all allowed solutions in the non-
homogeneous case.

For Feynman integrals, this will be the case when we work with unconstrained Man-
delstam invariants. For example, for six–point kinematics with D–dimensional external
momenta {p1, . . . , p6} ∈ RDext we can build nine unconstrained Mandelstam invariants
v⃗ = {s12, . . . , s345}. In this case, polynomials Qi are homogeneous polynomials of degrees
two, four, six, and ten, where we consider arguments of square roots in equations (3.30) –
(3.30) and products of two different arguments. If we restrict ourselves to four–dimensional
external states, we will introduce an additional non–trivial constraint on the Mandelstam
variables, effectively reducing the number of independent variables from nine to eight. The
constraint is a degree–five polynomial in the variables v⃗ that is quadratic in any of the
Mandlestams. It is also invariant under arbitrary permutations of external momenta. This
constraint will break the homogeneity of the polynomials Qi.

The second remark is about the assumed form of the odd letters (3.37). There are
cases in the literature, for example [41, 116, 117], where odd letters have an additional
polynomial in front of the square root

Pi − Pj

√
Q

Pi + Pj

√
Q

. (3.47)

In cases where there are no masses on the propagators, it is possible to rewrite these letters
in the form (3.37). However, when the propagators are massive, we could not re–express
all the letters such that there is no polynomial in front of a square root. This is not an
obstacle, as the same analysis applies to these letters if we assume Pj =

√
P 2

j . Moreover,
in the examples considered in this thesis, it is sufficient to consider cases with square–free
square roots. Thus, we focus our discussion on the letters of the form (3.37).

The last remark is about the size of the problem at hand. Looking at the square roots
listed in the one–loop hexagon example in Section 3.2, the highest degree polynomial we
have to consider is of degree ten corresponding to the product ∆5,i∆6. In this example,
m = 40 where the first 30 letters are of degree one, nine letters are of degree two, and one
letter is of degree five. Using this alphabet as an example, we can perform a back–of–the–
envelope calculation for the naive approach to the problem. For a polynomial of degree
ten, we would need to construct, store, and check roughly 108 different products of even
letters for a single choice of coefficient c. The other approach where we make an ansatz for
the polynomial P and check whether it factorizes is, in fact, even worse. For the same Q
of degree ten and if we only allowed coefficients between −2 and 2 in the polynomial P , we
would have ∼ 10989 possible polynomials, which we would need to check. For comparison,
the age of the universe is ∼ 1017 seconds and the lower bound on the mean life of a proton
is 1036 seconds [118].
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The problem becomes even worse when we embed the same square roots into a larger
alphabet at two loops. In this example m = 400 where the first 90 letters are of degree
one, 291 letters are of degree two, 18 letters are of degree three, and one letter is of degree
five. Note that this even alphabet is conjectured and it is possibly over–complete, i.e. it
is not necessary that all letters appear in the differential equation. A priori, we do not
have a criterion which would reduce the size of the alphabet and therefore also the size
of the ansatz. Looking at the same polynomial Q = ∆5,i∆6 of degree ten as at one–loop,
we would have roughly 1015 different possible products. Here we did not take into account
different possibilities for the coefficients c.

There is still some hope left! Performing factorization (3.39) for the known alphabet
letters, for example, from Ref. [116, 119], we see that only a small subset of even letters
appears for a given polynomial Q. Hence, we need to find a criterion to restrict the
construction just to this allowed subset of even letters for each polynomial Qi.

3.4.2 Finding Allowed Even Letters
As described in the previous section, we cannot construct all possible products for a given
polynomial Q because the number of these products is too large. Therefore, we need a way
to reduce the number of allowed even letters Wi for each polynomial Q.

Assume that we know the factorization of an odd letter, and that a particular letter
Wi(v⃗) appears in the product on the right–hand side of equation (3.39),

P (v⃗)2 = Q(v⃗) + cWi(v⃗)
∏
j ̸=i

W
ej

j . (3.48)

Here, we assume ei = 1 without the loss of generality. Then, for every v⃗0 ∈ Qn, where n is
the number of kinematic variables, such that Wi(v⃗0) = 0, it follows√

Q(v⃗0) ∈ Q. (3.49)

This holds for any letter that appears in the factorization. Thus, we can use it to constrain
the set of allowed letters for each polynomial Qi.

Now, we reverse the logic for unknown factorizations and unknown polynomials P . We
use property (3.49) to systematically find the list of allowed letters for each polynomial Qi

by going to the variety defined by Wi = 0. Even letters Wi are in general polynomials in
terms of Mandelstam invariants, and therefore we can find the solutions for Wi = 0 for all
letters in our even alphabet. Next, we plug in one of the solutions into the square root

√
Q

and check √
Q(v)|Wj=0

?
∈ Q. (3.50)

We can simply check whether this is true by inserting integer values for variables v⃗. If Q
becomes a perfect square on the support of the solution Wj = 0, then we add the letter
Wj to the list of allowed letters.

Going through solutions for all even letters one by one and checking whether (3.49)
holds, results in a drastically reduced list of allowed even letters for a given square root.
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Algorithm 1 The algorithm for construction of algebraic letters
Input: Square root

√
Qi, list of even letters Aeven, value of coefficient c

Output: List of algebraic letters involving a square root
√

Qi

1: for all Wj ∈ Aeven do
2: if

√
Qi|Wj=0 ∈ Q then

3: add Wj to the allowed letters list Aallowed

4: end if
5: end for
6: construct all products Rk = ∏

Wj∈Aallowed
W

ej

j of degree q
7: for all Rk do
8: if

√
Q + cRk is perfect square then

9: Pk =
√

Q + cRk

10: end if
11: end for
12: return list of Pk −

√
Qi

Pk −
√

Qi

For instance, in the two–loop hexagon alphabet example, for all Qi we get less than ten
allowed letters, drastically reducing the number of possible products we can construct.

3.4.3 Constructing Algebraic Letters
Once we find allowed even letters for each polynomial Q, we can begin with the construction
of odd letters. We do this by constructing all possible products of even letters of a certain
degree.

Whenever we are working with dimensionful variables such as Mandelstam variables, the
even letters Wi ∈ Aeven are homogeneous polynomials, and therefore their products are also
homogeneous polynomials. Moreover, polynomials Qi are also homogeneous polynomials
of a certain degree q. If the degree of the polynomial Q is q, then we construct all possible
products of even letters Wi of the same degree q. Of course, Wi are taken from the reduced
list of allowed letters. In this way, we take into account all possible powers ei in equation
(3.46). Using equation (3.46), we check whether the constructed product completes the
square by evaluating it for integer values of v⃗ and a specific value of the coefficient c. If
the product completes the square, we take the square root of (3.46) and construct the odd
letter of the form (3.37). The main steps of the algorithm are presented in the Algorithm 1
and a public implementation of this algorithm is currently in preparation.

The algorithm was tested on several known examples where we reproduced or found
equivalent algebraic letters. The examples include the one–mass pentagon alphabet [116],
the four–mass double–box alphabet [41] and the one–loop hexagon alphabet which is pre-
sented in this section. Moreover, we used it to predict the two–loop hexagon alphabet
described in Section 5.5.

Note that we tested the algorithm for integer values of c ∈ [−10, 10] for the even
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alphabet given in Section 3.2. The algorithm produces results only for c = ±4, which is
consistent with various known alphabets.

In addition, the constructed letters might not be independent. Therefore, before pro-
ceeding with further usage, we remove dependent letters from the list. Once we know
the full allowed alphabet, we can use it for bootstrap approaches and reconstruction of
differential equations. The latter application is demonstrated throughout Chapter 4 and
Chapter 5.

It should be noted that the produced alphabet could be overcomplete in the sense that
not all letters are relevant for the integrals we are considering. For the purpose of fitting
the entries of the canonical differential equations, this is not an issue since the coefficients
of the additional letters will end up being zero. However, in the bootstrap approaches, it
may happen that we do not have enough physical insights to fully determine the solution.

Example: One–Loop Hexagon

Finally, we are in a position to complete the one–loop hexagon alphabet with the odd
letters. We use the even letters defined in equations (3.18) – (3.26) and the square roots
given in equations (3.30) – (3.32) as well as their products as input for our algorithm.

First, we consider all letters with a single square root. There are 43 independent letters:

W50 =
−s12 + s34 − s56 −

√
∆3(s12, s34, s56)

−s12 + s34 − s56 +
√

∆3(s12, s34, s56)
, W51 = TW50, (3.51)

W52 =
s12 − s34 − s56 −

√
∆3(s12, s34, s56)

s12 − s34 − s56 +
√

∆3(s12, s34, s56)
, W53 = TW52, (3.52)

W54 =
s12 − s34 + s56 − 2s123 −

√
∆3(s12, s34, s56)

s12 − s34 + s56 − 2s123 +
√

∆3(s12, s34, s56)
, (3.53)

Wi+54 = T iW54, i = 1, . . . , 5, (3.54)

W60 =
s23s34 − s23s56 − s34s123 + s123s234 + s12(−s23 + s234) −

√
∆5,1

s23s34 − s23s56 − s34s123 + s123s234 + s12(−s23 + s234) +
√

∆5,1
, (3.55)

Wi+60 = T iW60, , i = 1, . . . , 5, (3.56)

W66 =
−s23s34 − s23s56 + s34s123 + s123s234 + s12(s23 − s234) −

√
∆5,1

−s23s34 − s23s56 + s34s123 + s123s234 + s12(s23 − s234) +
√

∆5,1
, (3.57)

Wi+66 = T iW66, , i = 1, . . . , 5, (3.58)

W72 =
s23s34 + s23s56 − s34s123 − 2s23s234 + s123s234 − s12(s23 + s234) −

√
∆5,1

s23s34 + s23s56 − s34s123 − 2s23s234 + s123s234 − s12(s23 + s234) +
√

∆5,1
, (3.59)

Wi+72 = T iW72, , i = 1, . . . , 5, (3.60)
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W78 =
R1 −

√
∆5,1

R1 +
√

∆5,1
, Wi+78 = T iW78, , i = 1, . . . , 5, (3.61)

W84 =
R2 −

√
∆5,1

R2 +
√

∆5,1
, Wi+84 = T iW84, , i = 1, . . . , 5, (3.62)

W90 = s34s61s123 − s12s45s234 − s23s56s345 + s123s234s345 −
√

∆6

s34s61s123 − s12s45s234 − s23s56s345 + s123s234s345 +
√

∆6
, (3.63)

Wi+90 = T iW90, i = 1, . . . , 2, (3.64)

where Ri are the polynomials

R1 = s23(−s34 + s56 − 2s123) + s12(s23 + 2s56 − 2s123 − s234)
+ s123(s34 − 2s56 + 2s123 + s234),

R2 = s23(s34 + s56 − 2s234) + (2s56 − s123 − 2s234)(s34 − s234) + s12(−s23 + s234). (3.65)

and ∆5,1 is a shorthand notation for the pentagon square root

∆5,1 = ∆5(s12, s23, s34, s123, s234, s56). (3.66)

Next, we consider all different products of two square roots. There are 27 independent
letters with two square roots that can be constructed:

W93 =
R3 −

√
∆3(s12, s34, s56)∆5,1

R3 +
√

∆3(s12, s34, s56)∆5,1
, Wi+93 = T iW93, i = 1, . . . , 5, (3.67)

W99 =
R4 −

√
∆5,1∆6

R4 +
√

∆5,1∆6
, Wi+99 = T iW99, i = 1, . . . , 5, (3.68)

W105 =
R5 −

√
∆5,1∆5,6

R5 +
√

∆5,1∆5,6
, Wi+105 = T iW105, i = 1, . . . , 5, (3.69)

W111 =
R6 −

√
∆5,1∆5,5

R6 +
√

∆5,1∆5,5
, Wi+110 = T iW111, i = 1, . . . , 5, (3.70)

W117 =
R7 −

√
∆5,1∆5,4

R7 +
√

∆5,1∆5,4
, Wi+117 = T iW117, i = 1, 2, (3.71)

where

R3 =s2
12(s23 − s234) + s12(−2s23(s34 + s56) + s34(−2s56 + s123) + (s34 + s56 + s123)s234)
+ (s34 − s56)(s23(s34 − s56) + s123(−s34 + s234)),

R4 =s2
12s45s234 (s234 − s23) − [s23 (s34 − s56) + s123 (s234 − s34)] ×
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[s34s61s123 + (s23s56 − s123s234) s345] + s12
{
s2

23s56 (2s34 − s345)
+s123s234 [s34 (s45 + s61) − s234 (s45 + s345)] + s23 [s234 (s45s56 + (s56 + s123) s345)
+s34 (−2s56s61 + s45 (s234 − 2s56) + s123 (s61 − 2s234))]} . (3.72)

We do not explicitly write the expressions for degree five polynomials R5, R6 and R7 since
they are lengthy and not needed for expressing the results of this thesis.

Combining all the components of the Landau variety (3.18) – (3.32) and all the odd
letters that we constructed (3.51) – (3.71), allows us to conjecture the one–loop hexagon
alphabet A1−loop. Note that this conjectured alphabet might be overcomplete, that is, it is
not necessary that all the letters listed throughout this chapter are needed to express the
canonical differential equation, as we will see in the following chapter.

Before we move to an application of the constructed alphabet in the next chapter, a
remark about the efficiency of the algorithm is in order. In Section 3.4.1, we commented
on the size of the problem in a naive approach where we would need to construct and check
roughly 108 different products of even letters which result in the degree–ten polynomial.
If we assumed that it takes roughly 0.1 seconds to check each possibility, it would take us
about 116 days to check all possible polynomials and construct the letter W99. However,
using a simple Mathematica implementation of the Algorithm 1 on a laptop1, we find the
same letter in 0.6 seconds. The improvement in the computation time becomes even more
evident for larger alphabets. If we embed the same square root in a much bigger two–loop
alphabet, the number of different products would be 1015 in the naive approach, and we
would need more than a million years to check all of them assuming that we have resources
to store them first. However, using the Algorithm 1, we get the result in about 3 seconds.

1The timings are obtained on a MacBook Air with Apple M2 chip with 16 GB of memory.
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Chapter 4

Integration via Differentiation

Feynman rules offer a fully systematic approach to formulating the expression of any scat-
tering amplitude in perturbation theory. As we add more external particles and more
loops, the number of Feynman diagrams increases significantly. Although the exploration
of alternative techniques is a thrilling field of study [104, 105, 120, 121], in order to make
precise theoretical predictions, Feynman integrals are still a crucial ingredient. There-
fore, in this chapter, we are going to introduce a method for the analytic computation of
Feynman integrals.

At the end of the day, if we only care about getting numerical values for our integrals,
Feynman integrals can be numerically evaluated using methods such as sector decompo-
sition [15, 16] or the auxiliary mass flow method [17] (as implemented in AMFlow [18]).
However, for integrals with many propagators, these methods become exceedingly compu-
tationally expensive and insufficient for phenomenological applications. In phenomenolog-
ical applications, we want to compute cross sections where the necessary ingredients in the
computations are scattering amplitudes. In turn, scattering amplitudes can be written as
linear combinations of Feynman integrals. In order to compute a cross section, scattering
amplitudes have to be integrated over the phase space. This means evaluating them hun-
dreds of thousands of times. Hence, speed and numerical stability are essential, which is
easier to achieve with analytic results.

Additionally, when calculating an integral numerically, one loses the opportunity to
learn about the analytic properties of the resulting function, in particular its singularities
and branch structure. Therefore, there is strong motivation from both a phenomenological
and a theoretical point of view to calculate Feynman integrals as analytically as possible.

We could attempt to obtain analytic results using direct integration, for example, by
leveraging the Feynman parametrization, but this method rapidly becomes infeasible.
Moreover, we could use algorithms for symbolic integration of Feynman integrals, such
as the one implemented in HyperInt [22]. However, these methods apply only to a small
subset of linearly reducible graphs, which are a subset of Feynman integrals that can be
evaluated in terms of polylogarithmic functions.

The method of differential equations [122, 123] has proved to be a very powerful tool
towards this goal. Of course, being a multivariate function of Mandelstam variables, the
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value of a Feynman integral is completely determined once we know all of its first derivatives
and their values at some arbitrary point in phase space. Since the derivatives of Feynman
integrals (2.5) with respect to external variables can be expanded in terms of the same
family of integrals, there is a completely algorithmic way to express them in terms of
basis integrals of the respective family using integration–by–parts (IBP) identities, see
Section 4.1.

In Section 4.2, we introduce relations between integrals in different numbers of space–
time dimensions. These relations prove to be useful for finding basis integrals that satisfy
the differential equation in canonical form. In Section 4.3, we demonstrate how to obtain
a differential equation satisfied by basis integrals. Furthermore, we argue that, with an
appropriate basis, the differential equation simplifies significantly. We call such a basis
canonical basis and the corresponding differential equation is said to be in the canonical
form. Using the one–loop hexagon family as an example, we demonstrate how to find the
canonical basis. In Section 4.4, we establish a formal solution of the canonical differential
equation in terms of iterated integrals. Moreover, we introduce a class of special functions
needed to express the solution. To fully specify the solution, we fix the boundary values
in Section 4.5. Finally, in Section 4.6, we describe the one–loop hexagon function space,
the symbol of the hexagon integral, and the Dext → 4 limit, where we recover well–known
results.

Parts of this chapter, related to finding the canonical basis of the one–loop hexagon
integral family and the corresponding function space, were already presented in [79]. Hence,
we closely follow that discussion when presenting these results.

4.1 Integration–by–Parts Identities
In Section 2.1, we introduced the concept of integral families. We began with a Feynman
integral corresponding to a Feynman diagram and allowed for arbitrary propagator powers.
In a sense, by doing this, we made the problem even more challenging since we went
from one integral to infinitely many. However, integrals within an integral family are
not independent. There are relations between integrals with different propagator powers.
Integration–by–parts identites (IBPs) provide these relations [124, 125].

A family of Feynman integrals in the loop momentum representation is defined as

IG(ν1, . . . , νn) = eLϵγE

∫ L∏
r=1

dDlr

iπ
D
2

n∏
j=1

1(
q2

j + m2
j

)νj
, (4.1)

where n = nint +nISP is the number of propagators together with possible irreducible scalar
products that were introduced in section 2.4. We have to include the ISPs to ensure that
we can express any scalar product involving loop momentum as inverse propagators and
terms independent of loop momentum. Integrals, where all indices corresponding to the
internal edges satisfy νi > 0, are called top topology integrals. In contrast, integrals where
some of the propagator powers satisfy νi ≤ 0 are called sub–topology integrals. Moreover,
integrals where the same νi are greater than zero belong to the same sector.
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Feynman integrals in the dimensional regularization are translation invariant∫
dDlf(l) =

∫
dDlf(l + q). (4.2)

We expand the right–hand side for small q and obtain the following expresion
∫

dDlf(l) =
∫

dDlf(l) + qµ
∫

dDl
∂

∂qµ
f(l + q)

∣∣∣∣∣
q=0

+ O(q2)

=
∫

dDlf(l) + qµ
∫

dDl
∂

∂qµ
f(l) + O(q2). (4.3)

This implies that total derivatives vanish in dimensional regularization
∫ dDl

iπ
D
2

∂

∂lµ
[qµf(l)] = 0, (4.4)

where vector q can be any linear combination of the loop momentum l and external mo-
menta p and f(l) is the integrand of a Feynman integral.

Working out the derivatives in equation (4.4) and using a bit of algebra, we can show
that the action of the differential operator on the rest of the integrand can be written in
terms of the integrals within the same integral family but with different propagator powers.

Let us look at our favorite one–loop hexagon example again. The integral family is
defined in equation (2.16). For instance, for q = l the equation (4.4) results in[

(D − 2ν1 − ν2 − ν3 − ν4 − ν5 − ν6) − j−
1

( 6∑
i=2

νij
+
i

)
+

+s12ν4j
+
4 + s123ν3j

+
4 + s56ν5j

+
5

]
I(D)(ν1, ν2, ν3, ν4, ν5, ν6) = 0, (4.5)

where we j+
i and j−

i are raising and lowering operators, respectively, defined as

j±
i I(D)(ν1, . . . , νi, . . . , νn) = I(D)(ν1, . . . , νi ± 1, . . . , νn). (4.6)

As we can see, IBPs relate integrals with different propagator powers, and as already
anticipated, only a finite number of integrals is independent [126]. Hence, the integrals in
an integral family form a finite–dimensional vector space, and the independent integrals
form a basis of this space. The basis integrals are commonly referred to as master integrals.

Based on equation (4.4), we can construct a sufficient number of IBP relations, forming a
system of linear equations. This system of equations allows us to express more complicated
integrals in terms of basis integrals, which are usually simpler given an ordering criterion.
This procedure is called IBP reduction and its output are master integrals. The basis is of
course not unique and it depends on the choice of the ordering criteria. The choice of the
basis makes all the difference when we want to analytically evaluate the integrals, as will
be demonstrated in Section 4.3.
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Solving systems of linear equations is, in principle, straightforward, but can become
rather computationally heavy, especially when the dimension of vector space becomes large.
Hence, several implementations based on the Laporta algorithm [127] are publicly available
on the market for automatic and efficient IBP reductions [128–136].

Although this is a widely used method in state–of–the–art computations, there are
several bottlenecks. The first bottleneck arises from the simplification of large rational
coefficients in the IBP identities. This is addressed by employing finite field methods,
as outlined in Refs. [137, 138]. In essence, the necessary computations are carried out
for kinematics with integer values modulo a large prime number. Subsequently, after
sufficient data about the resulting rational functions is obtained, they can be analytically
reconstructed. This is implemented, for example, in [139]. A further limitation is the
number of linear equations that are included in the system which is often bigger then
necessary. To reduce the size of the problem, more direct procedures have been developed
based on algebraic geometry [140–142], intersection theory [143–146], syzygyes [147, 148],
and Gröbner basis [149].

4.2 Dimension–Shift Identities
As we will see in the remainder of this chapter and in Chapter 5, considering Feynman
integrals in different numbers of space-time dimensions D is often useful. For example,
depending on the dimension D, an integral can be finite or divergent. Moreover, integrals
in different numbers of dimensions D evaluate to pure functions. This property is important
for finding a canonical basis of master integrals, which will be introduced in the following
section.

In fact, if D differs from D′ by integer multiples of two, these integrals are related to
the D′ integrals by dimension shift identities [47, 150].

Using the Baikov representation (2.44), we can derive the dimension lowering relations
that relate the integrals in the dimensions (D + 2) and the dimensions D. We start with
an integral in (D + 2) dimensions

I
(D+2)
B = C

[G(p1, . . . , pE)]
−(D+2)+E+1

2

L∏
j=1

Γ
(

(D + 2) − E + 1 − j

2

) ∫
C

dNV z [P (z)]
(D+2)−L−E−1

2

NV∏
k=1

1
zνk

k

, (4.7)

where C denotes all factors that do not depend on the number of dimensions. Next, we
separate all appropriate factors to recognize the D-dimensional integral

I
(D+2)
B = [G(p1, . . . , pE)]−1

L∏
j=1

D − E + 1 − j

2

∫
C

dNV z [P (z)]
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× C
[G(p1, . . . , pE)]

−D+E+1
2

L∏
j=1

Γ
(

D − E + 1 − j

2

) [P (z)]
D−L−E−1

2

NV∏
k=1

1
zνk

k

. (4.8)

The first row shows the additional factors compared to the D–dimensional integral we
recognize in the second row. The product in the denominator of the first row comes from
using the following property of the Gamma function

Γ(z + 1) = zΓ(z). (4.9)

Using the lowering operator j−
i we can pull out the Baikov polynomial out of the integral

and write
I(D+2) = [G(p1, . . . , pE)]−1

L∏
j=1

D − E + 1 − j

2

P (j−
1 , . . . , j−

NV
)I(D). (4.10)

Similarly, we can derive the dimension raising relations, relating the integrals in the D
and (D + 2) dimensions. Using the graph polynomials U and F defined in equation (2.28),
we can write another parametric representation of Feynman integrals

I
(D)
Sch = eLϵγE

1
nint∏
k=1

Γ(νk)

∫
αk≥0

dnintα

(
nint∏
k=1

ανk−1
k

)
1

U D
2

e− F
U . (4.11)

This is the so–called Schwinger parametrization and it is closely related to the Feynman
parametrization introduced in Section 2.2.

We expand the fraction in equation (4.11) with U

I
(D)
Sch = eLϵγE

1
nint∏
k=1

Γ(νk)

∫
αk≥0

dnintα

(
nint∏
k=1

ανk−1
k

)
U

U D+2
2

e− F
U . (4.12)

We recognize that the additional factor of U in the denominator increases the number of
dimensions by two. The additional factor of U in the numerator is interpreted as follows.
Recall that the graph polynomial U is a homogeneous polynomial of degree L linear in each
parameter αi. Each instance of parameter αi in the numerator acts like a raising operator
j+

i . Hence, we have the following relation

I(D) = U(j+
1 , . . . , j+

nint)I
(D+2). (4.13)

Let us look at the one–loop hexagon example again. The hexagon integral in (D + 2)
dimensions is related to the same integral in D dimensions through the following relation

I(D+2)(ν1, ν2, ν3, ν4, ν5, ν6) = G(l, p1, p2, p3, p4, p5)(
D − 5

2

)
G(p1, p2, p3, p4, p5)

I(D)(ν1, ν2, ν3, ν4, ν5, ν6) (4.14)
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Here, similar to the IBPs case, we can expand the Gram determinant in the numerator
in terms of the lowering operator j−

i . Likewise, we find the following relation between the
integrals in D dimensions and (D + 2) dimensions

I(D)(ν1, ν2, ν3, ν4, ν5, ν6) =
6∑

i=1
j+

i I(D+2)(ν1, ν2, ν3, ν4, ν5, ν6). (4.15)

These relations will turn out to be quite important for finding a "good" basis of master
integrals, as we shall see in the next section and in Chapter 5.

4.3 Canonical Differential Equations
The main finding of Section 4.1 is the existence of a finite–dimensional basis for a given
family of Feynman integrals. Typically, this basis is determined by establishing a suffi-
cient number of IBP relations. With this basis, any integral within the family can be
expressed as a linear combination of these basis integrals, involving rational coefficients in
the kinematic variables and space–time dimensions D. Hence, it is sufficient to compute
the basis integrals. We will employ differential equations in the kinematic variables for this
purpose [122, 123, 151].

Rather than computing the Feynman integral directly, we first derive a differential
equation of the Feynman integral with respect to the kinematic variables. In the next
step, we solve this differential equation, thereby finding the required Feynman integral.
Specifically, we examine a system of differential equations for a basis of master integrals.
This method has the benefit of dealing with only first–order differential equations.

We start with a loop momentum representation of a Feynman integral family, e.g. the
one–loop hexagon family (2.16). The integrand is given in terms of momenta, but we want
to take derivatives in terms of the kinematical variables. Therefore, we need to construct
differential operators that can act on the integrand directly.

It is straightforward to rewrite the Mandelstams in terms of scalar products,

si,i+1,...,i+k = 2
i+k∑
l=i

i+k∑
m=l+1

pl · pm. (4.16)

In fact, to determine the derivatives, it is best to reintroduce s12...n−1 = m2
n as a nonzero

variable and only restrict it to the constraint surface in the end.
At six points, we have 10 variables

s12 = 2p1 · p2, s23 = 2p2 · p3, s34 = 2p3 · p4, s45 = 2p4 · p5

s123 = 2(p1 · p2 + p2 · p3 + p1 · p3), s234 = 2(p2 · p3 + p3 · p4 + p2 · p4),
s345 = 2(p3 · p4 + p4 · p5 + p3 · p5),
s56 = s1234 = 2(p1 · p2 + p2 · p3 + p3 · p4 + p1 · p3 + p2 · p4 + p1 · p4),
s61 = s2345 = 2(p2 · p3 + p3 · p4 + p4 · p5 + p2 · p4 + p3 · p5 + p2 · p5),
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s12345 = 2(p1 · p2 + p2 · p3 + p3 · p4 + p4 · p5 + p1 · p3 + p2 · p4+
+ p3 · p5 + p1 · p4 + p2 · p5 + p1 · p5). (4.17)

With this, we can calculate the transformation matrix to go from derivatives with respect
to scalar products to derivatives with respect to Mandelstams

∂

∂s⃗
=

∑
1≤i<j<n

∂pi · pj

∂s⃗

∂

∂pi · pj

, (4.18)

where at six points we have the following kinematic variables

s⃗ = {s12, s23, s34, s45, s56, s61, s123, s234, s345, s12345}. (4.19)

In particular, if we write

s⃗ = Ms⃗p, (4.20)

with s⃗p the vector formed by all independent scalar products, we have

∂

∂s⃗
= (M−1)T ∂

∂s⃗p
. (4.21)

Explicitly, for s⃗p = {p1 · p2, p1 · p3, p1 · p4, p2 · p3, p2 · p4, p2 · p5, p3 · p4, p3 · p5, p4 · p5} at six
points, the matrix M takes the following form

M =



2
2

2
2

2 2 2
2 2 2

2 2 2
2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2



, (4.22)

and hence

(M−1)T = 1
2



1 −1
−1 1 1 −1

−1 1 1 −1
−1 1

1 −1
−1 1 1 −1

−1 1
1 −1

−1 1
1



, (4.23)
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allowing us to rewrite the derivatives according to

∂

∂s12
=
(

∂

∂p1 · p2
− ∂

∂p1 · p3

)
,

∂

∂s23
=
(

∂

∂p1 · p4
− ∂

∂p1 · p3
+ ∂

∂p2 · p3
− ∂

∂p2 · p4

)
,

∂

∂s34
=
(

∂

∂p2 · p5
− ∂

∂p2 · p4
+ ∂

∂p3 · p4
− ∂

∂p3 · p5

)
,

∂

∂s45
=
(

∂

∂p4 · p5
− ∂

∂p3 · p5

)
,

∂

∂s123
=
(

∂

∂p1 · p3
− ∂

∂p1 · p4

)
,

∂

∂s234
=
(

∂

∂p1 · p5
− ∂

∂p1 · p4
+ ∂

∂p2 · p4
− ∂

∂p2 · p5

)
,

∂

∂s345
=
(

∂

∂p3 · p5
− ∂

∂p2 · p5

)
,

∂

∂s1234
=
(

∂

∂p1 · p4
− ∂

∂p1 · p5

)
,

∂

∂s2345
=
(

∂

∂p2 · p5
− ∂

∂p1 · p5

)
,

∂

∂s12345
= ∂

∂p1 · p5
. (4.24)

Now we would like to rewrite the derivatives in terms of scalar products of momenta in
terms of derivatives with respect to momenta, since these can be easily applied to Feynman
integrals. In general, we make the ansatz

∂

∂pi · pj

=
n−1∑
k=1

akpk · ∂

∂pi

(4.25)

and impose
∂

∂pi · pj

pl · pm = δilδjm + δimδjl. (4.26)

Clearly,
∂

∂pi · pj

pl · pm =
n−1∑
k=1

akpk · plδim +
n−1∑
k=1

akpk · pmδil, (4.27)

Hence, we can satisfy the constraint by choosing [132]

ak = G−1
jk , (4.28)
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where Gij = pi · pj, i, j = 1, ..., n − 1 is the Gram matrix. By symmetry, we have the two
alternative representations

∂

∂pi · pj

=
n−1∑
k=1

(G−1)jkpk · ∂

∂pi

=
n−1∑
k=1

(G−1)ikpk · ∂

∂pj

. (4.29)

Expanding one these expressions and substituting it back into (4.24) allows us to write
down the differential operators with respect to kinematic variables in terms of operators
with respect to momenta thus allowing us to act directly on the Feynman integrals.

When acting with such differential operators on the Feynman integrals, we have to
perform algebraic manipulations similar to those when deriving the IBP relations. Again,
we obtain integrals within the same integral family but with different propagator powers,
which we re-express in terms of the basis integrals I⃗. Particularly, we arrive at a system
of first–order partial differential equations,

∂I⃗

∂si

= Asi
(ϵ, v⃗)I⃗ , ∀si ∈ v⃗. (4.30)

Here, Asi
(ϵ, v⃗) is a N ×N matrix with rational coefficients depending both on the kinematic

variables and on the space–time dimension through the dimensional regulator ϵ, and N is
the number of master integrals.

Using the standard notation for the total differential

d =
∑

k

dsk
∂

∂sk

, sk ∈ v⃗, (4.31)

we can rewrite the system of partial differential equations (4.30) in a compact form

dI⃗ = A(ϵ, v⃗)I⃗ , (4.32)

where A is a matrix–valued one–form

A(ϵ, v⃗) =
∑

k

Ask
(ϵ, v⃗)dsk. (4.33)

The matrices Ask
have to satisfy integrability conditions

∂Asi

∂sj

−
∂Asj

∂si

+
[
Asi

, Asj

]
= 0, (4.34)

since the partial derivatives of the basis integrals commute[
∂

∂si

,
∂

∂sj

]
I⃗ = 0. (4.35)
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These integrability conditions serve as a check for an implementation of the differential
equations.

In summary, we showed that every integral family has an integral basis. This basis
satisfies a linear system of first–order differential equations (4.32), which can be determined
using a fully algorithmic approach. However, their solutions are typically not systematic.
In addition, the selection of the basis is arbitrary. We have the freedom to choose any basis
that we like as long as it spans the whole vector space. A new basis I⃗ ′ satisfies a system
of differential equations equivalent to (4.32)

dI⃗ ′ = B(ϵ, v⃗)I⃗ ′, (4.36)

where
Bsk

= T · Ask
T −1 + ∂T

∂sk

· T −1, (4.37)

and T is a transformation matrix from the basis I⃗ to the basis I⃗ ′.
It was conjectured that a particular choice of basis can simplify differential equations,

making the solution more accessible [152]. The differential equation takes the following
canonical form

dI⃗ = ϵ
(
dÃ(v⃗)

)
I⃗ , (4.38)

where, in general,
Ã =

∑
k

ckωk(v⃗). (4.39)

Here, ck are constant rational matrices, and ωk are differential one–forms that have only
simple poles. The sole dependence on the dimensional regulator ϵ is through the overall
factor on the right–hand side. Consequently, it is straightforward to find a general solution
to the canonical differential equation as a Laurent series in ϵ where each term in the
expansion is given in terms of iterated integrals; see Section 4.4.

For the differential equation in the canonical form (4.38), the integrability condi-
tion (4.34) becomes

∂sj
Ãi − ∂si

Ãj = 0,[
Ãi, Ãj

]
= 0, (4.40)

where
Ãsk

= ∂Ã

∂sk

. (4.41)

In the cases we are considering in this thesis, the one–forms that appear in the canonical
differential equation (4.38) can be written in terms of logarithmic one–forms, i.e. d log–
forms. Hence, the dÃ(v⃗) matrix takes the following form

dÃ =
∑

k

ckd log(Wk), (4.42)
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where Wi are algebraic functions of the kinematic variables. We refer to the one–forms
as letters and the collection of all independent letters as the alphabet. Note that in this
thesis, we will refer to the arguments of the one–forms Wk as letters, instead of the complete
one–forms d log(Wk).

Once we have the differential equation in canonical form (4.38), we can read off the
letters as independent entries of the Ã matrix. However, knowing the alphabet in advance is
beneficial for reducing the overall computation time since we can perform numerical fits to
find the coefficients in front of the letters. The letters Wi encode the singularity structure
of the basis integrals and therefore can be predicted through Landau analysis, which is
covered in Chapter 3. Furthermore, they also specify which class of special functions is
needed to write a solution, see Section 4.4.

The basis that satisfies the differential equation in canonical form is called the canonical
basis. Such a basis should have simple properties under the differentiation. To define what
we exactly mean by “simple”, let us introduce the notion of transcendental weight. A
function f has transcendental weight k if we need to perform k iterated integrals to define
it. For example, the ordinary logarithm has transcendental weight one, since

log(x) =
∫ x

0

dt

t
. (4.43)

Clearly, T (f1f2) = T (f1) + T (f2), where T denotes the transcendental weight.
In addition, if the transcendental weight of a function f is reduced by differentiation

T (df) = T (f) − 1, (4.44)

we call these functions pure functions. Consequently, if functions f1 and f2 are pure
functions of weight k, so is any Q–linear combination of them. Moreover, if f1 and f2 are
pure functions of weight k1 and k2, respectively, then their product is a pure function of
weight T (f1f2) = k1 + k2. Finally, a function f that is given as a sum of terms with the
same transcendental weight is said to have a uniform transcendental weight (UT).

Let us look at the transcendental weight of the canonical differential equation (4.38)

T (dI⃗ ) = T (ϵ) + T (dÃ) + T (I⃗ ). (4.45)

It is conventional to assign transcendental weight −1 to the dimensional regulator ϵ. More-
over, since the matrix dÃ is written in terms of d log–forms, it has zero transcendental
weight. It follows

T (dI⃗ ) = T (I⃗ ) − 1. (4.46)
Therefore, integrals in the canonical basis are pure functions. The reverse holds as well;
any pure function satisfies a differential equation in canonical form. Through this thesis,
we will interchangeably refer to the basis satisfying the canonical differential equation as
the canonical basis or UT basis.

Although it is feasible to begin with a generic basis produced by the IBP reduction pro-
cedure and subsequently determine the transformation to the canonical basis [26, 153–156],
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this approach is generally quite challenging. This procedure is simplified and automated
if we already know at least one pure integral in the top sector [157–159].

Ideally, we would like to have an UT basis from the beginning, since this simplifies find-
ing a solution and makes the whole computation more efficient. There are several guiding
principles that can help in finding such integrals. Although a general proof is not currently
known, it has been observed that integrals with constant leading singularities [160, 161]
exhibit characteristics of pure functions. The loop integrand contains all the information
about the rational factors that arise after integration, which could spoil the properties of
pure functions. If the integrand possesses only simple poles in the integration variables, one
can systematically extract the rational factors by computing (multi–variate) residues. The
“maximal” that fix all integrations are referred to as leading singularities [30, 162]. There-
fore, one way of obtaining pure functions is by normalizing basis integrals by the inverse
leading singularities. One particularly important result is that D–gons in D dimensions
normalized by its leading singularities are pure functions [163]. This will be demonstrated
in the one–loop hexagon example below.

An alternative method to reveal the properties of pure functions is by using an appropri-
ate d log representation [164], where the integrand is expressed in a logarithmic differential
form

I =
∑

cId log(ri1) ∧ . . . ∧ d log(rin). (4.47)

Here, cI are algebraic functions of kinematic variables and ri are algebraic functions of
kinematic variables and integration variables. The coefficients cI are the leading singular-
ities and can be computed by taking residues to localize all integrations. The hypothesis
behind this approach suggests that integrands possessing a d log representation with con-
stant leading singularities evaluate to pure functions [161, 165]. There is a lot of evidence to
support this statement, and important steps have been taken to better understand it [166].

Algorithmically, all d log forms with constant leading singularities can be derived for a
specific integral family. The initial proposal for this algorithm can be found in Ref. [167].
The algorithm with subsequent refinements was implemented into a Mathematica package
DlogBasis [168]. The systematic approach of the method, coupled with the remarkable
simplicity of the derived pure integrals compared to other techniques, has contributed to
its great success.

Example: One–loop Hexagon Differential Equation

Let us finally look at a specific example where we are going to demonstrate how to find
the canonical differential equation starting from the IBP reduction procedure. Our main
example will again be the one–loop hexagon integral family defined in equation (2.16).

Using IBP identities (4.4), all integrals in the hexagon family can be reduced to a
basis of 33 master integrals when the external momenta are considered to be (Dext >
4)–dimensional. We use a combination of FIRE [128] and LiteRed [132] to perform the
reductions automatically. A convenient basis choice Ij is spanned by six cyclic permutations
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Figure 4.1: Graphical representations of the integrals in the IBP basis of the one–loop
hexagon integral family. The figure is adapted from Ref. [79].

of the massive bubble integral
Ii = T i−1I(4)(1, 0, 1, 0, 0, 0), i = 1, ..., 6, (4.48)

three cyclic permutations of the massive bubble integral
I6+i = T i−1I(4)(1, 0, 0, 1, 0, 0), i = 1, ..., 3, (4.49)

two cyclic permutations of the three–mass triangle integral
I9+i = T i−1I(4)(1, 0, 1, 0, 1, 0), i = 1, 2, (4.50)

six cyclic permutations of the one–mass box integral
I11+i = T i−1I(4)(0, 0, 1, 1, 1, 1), i = 1, ..., 6, (4.51)

six cyclic permutations of the two–mass–hard box integral
I17+i = T i−1I(4)(0, 1, 0, 1, 1, 1), i = 1, ..., 6, (4.52)

three cyclic permutations of the two–mass–easy box integral
I23+i = T i−1I(4)(0, 1, 1, 0, 1, 1), i = 1, 2, 3, (4.53)

six cyclic permutations of the one–mass pentagon integral
I26+i = T i−1I(4)(0, 1, 1, 1, 1, 1), i = 1, ..., 6, (4.54)

and the hexagon integral
I33 = I(4)(1, 1, 1, 1, 1, 1). (4.55)

The basis integrals are shown in Figure 4.1.
The integrals in this basis do not have uniform transcendentality and therefore satisfy

the differential equation (4.32) but do not satisfy a differential equation in the canonical
form (4.38).
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Constructing a UT Basis. To determine a UT basis, we use the observation that n–
point and (n − 1)–point integrals in D = n − 2ϵ dimensions have uniform transcendental
weight if they are normalized by their leading singularities in D = n dimensions [163].
Therefore, for the construction of an UT basis, we prefer to include integrals in D = 2 − 2ϵ
and D = 6 − 2ϵ dimensions. In fact, if D0 differs from four by integer multiples of two,
these integrals are related to the D0 = 4 integrals by dimension shift identities introduced
in Section 4.2. Explicitly, this allows us to express bubble integrals in two dimensions
through bubble integrals in four dimensions as

I(2)(1, 0, 1, 0, 0, 0) = 2(1 − 2ϵ)
s12

I(4)(1, 0, 1, 0, 0, 0), (4.56)

as well as pentagon integrals in six dimensions through box and pentagon integrals in four
dimensions

I(6)(0, 1, 1, 1, 1, 1) = 1
2ϵG(p2, p3, p4, p5)

c⃗P · I⃗P , (4.57)

where
I⃗P =

(
I12 I17 I18 I22 I24 I27

)
(4.58)

and

cP 1 = s34s45(s234s345 − s34s61 + s23(s345 − s34) + s45(s34 − s234)),
cP 2 = s23s34(s23(s34 − s345) − s34(s61 + s45) + s234(s345 + s45)),
cP 3 = s45(−2s23s61s34 + s23s234(s34 + s345) + s234(s61s34 − s34s45 + s234(−s345 + s45))),
cP 4 = s23(−2s61s34s45 + s34s345(−s23 + s61 + s45) + s345(s23s345 + s234(−s345 + s45))),
cP 5 = (s61s34 − s234s345)(s61s34 − s234s345 + s23(−s34 + s345) + s234s45 − s34s45),
cP 6 = 2s23s34s45(s61s34 − s234s345). (4.59)

Finally, the six–dimensional hexagon integral can be decomposed into four–dimensional
pentagon and hexagon integrals according to

I(6)(1, 1, 1, 1, 1, 1) = 1
2(1 + 2ϵ)G(p1, p2, p3, p4, p5)

c⃗H · I⃗H , (4.60)

where
I⃗H =

(
I27 I28 I29 I30 I31 I32 I33

)
(4.61)

and

cHi = −T i G(l, p1, ..., p4; p5, p1, . . . , p4)|l·pj=−
∑

k<j
pk·pj− 1

2 p2
j
, i = 1, . . . , 6

cH7 = − G(l, p1, ..., p5)|l·pj=−
∑

k<j
pk·pj− 1

2 p2
j
. (4.62)

Using these dimension–shift identities, we can establish an intermediate basis, where the
bubbles are two–dimensional, the triangles and boxes four–dimensional and the pentagons
and hexagon six–dimensional integrals, i.e.

Īi = d̂−2Ii, i = 1, . . . , 9,
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Īi = Ii, i = 11, . . . , 26,

Īi = d̂2Ii, i = 27, . . . , 33 (4.63)

with the dimension–shift operator d̂. This basis is still not of uniform transcendental
weight, as we are still missing leading singularities in the normalization.

Leading Singularities from the Baikov Representation. To transform the above
basis of the master integrals into a basis where every single element is a pure function
of uniform transcendental weigh we normalize the integrals by their leading singularities.
Calculating the leading singularities of one–loop integrals is most straightforward in the
Baikov representation introduced in Section 2.4.

The leading singularity can be easily extracted by taking the residue at zi = 0 starting
from the representation given in equation (2.44). We can neglect all coefficients in front of
the integral that are kinematic–independent constants since they have no impact on the
UT property of an integral. Hence, the leading singularity of an integral takes the form

LS(I(ν1, . . . , νn)) = [G(p1, . . . , pE)]
E−D+1

2 Res
zi=0

P (z)D−E−L−1
2

1
zν1

1 . . . zνn
n

. (4.64)

The expression becomes even simpler if all propagator powers νj = 1:

LS(I(D)(1, . . . , 1)) = [G(p1, . . . , pE)]
E−D+1

2 Res
zi=0

P (z)D−E−2
2 . (4.65)

Defining a Gram determinant on the maximal cut as

G⋆(q1, . . . , qn−1; u1, . . . , un) = G(l, q1, ..., qn−1; u1, . . . , un)|l·pj=−
∑

k<j
pk·pj− 1

2 p2
j
, (4.66)

for the one–loop n–point integrals in n or (n + 1) dimensions we can further rewrite the
leading singularity as

LS(I(D)(1, . . . , 1︸ ︷︷ ︸
n entries

)) =


√

G⋆(p1, ...., pn−1)
−1

, if D = n,√
G(p1, ..., pn−1)

−1
, if D = n + 1.

(4.67)

Using this expression, we can easily calculate the leading singularities for our basis of
integrals, namely1

LS(I(2)(1, 0, 1, 0, 0, 0)) = s−1
12 ,

LS(I(2)(1, 0, 0, 1, 0, 0)) = s−1
123,

LS(I(4)(1, 0, 1, 0, 1, 0)) =
√

∆3(s12, s34, s56)
−1

,

LS(I(4)(0, 0, 1, 1, 1, 1)) = (s34s45)−1,

1Note that due to (2.15), the leading singularities of the three–mass triangle and of the one–mass
pentagon integrals are purely imaginary in physical regions.
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LS(I(4)(0, 1, 0, 1, 1, 1)) = (s234s45)−1,

LS(I(4)(0, 1, 1, 0, 1, 1)) = (s234s345 − s34s61)−1

LS(I(6)(0, 1, 1, 1, 1, 1)) =
√

∆5(s23, s34, s45, s234, s345, s61)
−1

LS(I(6)(1, 1, 1, 1, 1, 1)) =
√

∆6
−1

, (4.68)

and the permutations thereof, where the arguments of square roots are defined in (3.32).
Finally, having started with the four–dimensional basis I, after using dimension–shift

identities to construct the basis Ī we can further transform it into a basis of uniform
transcendental weight Ĩ, by normalizing it according to

Ĩi = Īi

LS(Īi)
×


ϵ, i = 1, . . . , 9,
ϵ2, i = 10, . . . , 26,
ϵ3, i = 27, . . . , 33.

(4.69)

Here, the explicit powers of ϵ make sure that not only is every single integral of uniform
transcendental weight but that all the different integrals also have vanishing transcendental
weight, c.f. [84].2 Since the finite part of the pentagon and hexagon integrals in four
dimensions are transcendental functions of weight three, their epsilon expansion in arbitrary
dimensions starts at order ϵ3 and the first correction to the four–dimensional result is of
order ϵ4.

Acting with the differential operators on the UT basis integrals (4.69), we find the
following system of partial differential equations

∂Ĩ

∂si

= ϵÃsi
Ĩ . (4.70)

In principle, we could find the logarithmic DE matrix Ã by integrating the entries of Ãsi

into logarithms. This would provide us with a constructive determination of the hexagon
alphabet A1−loop. However, we find that it is more efficient to start with an educated ansatz
for the alphabet, constructed in Chapter 3, and fit it to the derivatives with respect to
Mandelstam invariants entry by entry.

As a result, the integrals in the UT basis (4.69) satisfy the canonical differential equation

dĨ = ϵdÃ(v⃗)Ĩ , (4.71)

where d is the total differential in terms of the nine kinematic variables

d =
6∑

i=1
dsi,i+1

∂

∂si,i+1
+

3∑
i=1

dsi,i+1,i+2
∂

∂si,i+1,i+2
. (4.72)

Moreover, Ã is a matrix of logarithmic forms

Ãjk =
104∑
i=1

ci
jk log(Wi), (4.73)

2Recall that ϵ has transcendental weight −1.
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where ci
jk are rational matrices and the arguments of d log are algebraic functions of kine-

matic variables. By performing a linear fit, we observe that the conjectured alphabet from
Chapter 3 is too big and that the last 15 letters (3.69) – (3.71) are not part of the one–loop
hexagon alphabet.

We can understand why those 15 letters do not appear in the differential equation
matrix by looking at a toy example. Assume the following UT basis(√

Q1f1,
√

Q2f2, f3

)T

, (4.74)

satisfying the canonical differential equation (4.38). Since all functions in the basis have a
definite parity behaviour under the action of the Galois group

√
Qi → −

√
Qi, this property

is also reflected in the Ã matrix of the canonical differential equation. Therefore, Ã has
the following schematic form

Ã =


∑

Wi∈Aeven
ciWi cj

P1 −
√

Q1
√

Q2

P1 +
√

Q1
√

Q2
ck

P1 −
√

Q1

P1 +
√

Q1∑
Wi∈Aeven

ciWi cl
P1 −

√
Q2

P1 +
√

Q2∑
Wi∈Aeven

ciWi

 . (4.75)

From this toy example, it is easy to see that odd letters with two square roots appear only
in the entries that relate the two functions normalized by those square roots.

The 15 letters that do not appear in the hexagon differential equation have two different
pentagon square roots in the argument, hence, they can only appear in the entries of the
Ã matrix that relate the two corresponding pentagons. Considering that two pentagons do
not “talk” to each other in the hexagon differential equation, those letters do not appear
in the one–loop alphabet. However, we cannot rule out the possibility that those letters
might be a part of the alphabet at higher loop orders.

A machine–readable expression of the Ã matrix is provided in the ancillary files of
Ref. [79].

4.4 Solutions to the Canonical Differential Equation
In Section 4.3, we demonstrated the procedure of deriving differential equations satisfied
by basis integrals of a specific Feynman integral family. Additionally, we anticipated that
having an UT basis simplifies the process of finding a solution. This is the primary ob-
jective of this section. In this section, we will outline a formal solution to the canonical
differential equation and present a class of special functions pertinent to the Feynman
integrals discussed in this thesis.

Once we have the differential equation in the canonical form (4.38), the formal solution
can be written as a path–ordered integral.

Ĩ(v⃗, ϵ) = P exp(ϵ
∫

γ
dÃ) · b⃗, (4.76)
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where γ denotes a path from a boundary point v⃗0 to v⃗ and b⃗ = Ĩ(v⃗0) is a vector of master
integral values at the boundary point v⃗0. This equation is to be understood as a Laurent
expansion around ϵ = 0,

Ĩ(v⃗, ϵ) =
∞∑

k=0
ϵkĨ(k)(v⃗). (4.77)

Substituting this expansion in the canonical differential equation (4.38), we see that the
equation decouples order by order in ϵ

dĨ(k+1)(v⃗) =
∑
k≥0

(dÃ(v⃗))Ĩ(k)(v⃗) (4.78)

The (k +1)–th term in the expansion is then given by a (k +1)–fold iterated integral along
the contour γ of the matrix differential form Ã

Ĩ(k+1)(v⃗) =
∫

γ
(dÃ(v⃗))Ĩ(k)(v⃗) + b⃗(k), (4.79)

where b⃗(k) are weight k boundary values which we discuss in the following section. We can
rewrite this equation in terms of Chen iterated integrals [169]

Ĩ(k)(v⃗) =
k∑

k′=0

∑
i1,...,ik′ ∈A

a(i1) . . . a(ik′ )⃗b(k−k′)
[
Wi1 , . . . , Wik′

]
v⃗0

(v⃗), (4.80)

where
[Wi1 , . . . , Wik

]v⃗0
(v⃗) =

∫
γ

d log Wk(v⃗′)
[
Wi1 , . . . , Wik−1

]
v⃗0

, (4.81)

and [ ]v⃗0
= 1. In order for the integral to be well–defined, it has to be homotopy invariant

i.e. it should be independent of the choice of the contour as long as the singularities are
not crossed. Since the differential equation satisfies the integrability conditions (4.40), the
solution (4.80) is homotopy invariant, but the separate integrals (4.81) are not.

Special Functions

Iterated integrals naturally arise as solutions to the differential equations satisfied by Feyn-
man integrals. If our primary objective is to obtain numerical values of Feynman integrals,
it becomes advantageous to express their solutions in terms of well–established functions,
since computer codes may exist for their evaluation and manipulation.

The best understood class of iterated integrals are multiple polylogarithms (MPLs).
These types of functions are already known from the mathematics literature [170–174].

The Goncharov polylogarithms (GPLs) or multiple polylogarithms are recursively defined
in the integral representation as [100, 175]

G(a1, a2, . . . , an; x) =
∫ x

0

dt

t − a1
G(a2, . . . , an; t), ∀n ∈ N, an ̸= 0, (4.82)
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where the recursion starts with
G(; x) = 1. (4.83)

Here, the number n counts the number of recursions and denotes the weight of the GPL.
If an = 0, then the GPLs are divergent, and we need to regularize them. This is usually

done by defining
G(0, . . . , 0︸ ︷︷ ︸

n

; x) = 1
n! logn(x). (4.84)

The GPLs have intricate mathematical properties. For instance, they obey a shuffle
product rule, which transforms the vector space of GPLs into an algebra. In addition,
GPLs have a rich branch–cut structure. The details of their mathematical properties go
beyond the scope of this work. The interested reader may find more on this topic in
Chapter 8 of Ref. [71]. Another useful reference for manipulating and evaluating GPLs is
the Mathematica package PolyLogTools [23].

MPLs also have a definition in terms of nested sums [176, 177]

Lin1,...,nm(x1, . . . , xm) =
∑

0<k1<k2<...<km

xk1
1 xk2

2 · · · xkm
m

kn1
1 kn2

2 · · · knm
m

, (4.85)

where the number (n1 + . . . + nm) indicates the weight and the number m denotes the
depth of MPLs. Note that these two numbers are not equal, in general, for the nested sum
representation. The relations between the two representations are given by

Lin1,...,nm(x1, . . . , xm) = (−1)mGn1,...,nm

( 1
x1

,
1

x1x2
, . . . ,

1
x1 . . . xm

; 1
)

Gn1,...,nm(z1, . . . , zm; y) = (−1)mLin1,...,nm

(
y

z1
,
z1

z2
, . . . ,

zm−1

zm

)
, (4.86)

where we used the following notation

Gn1,...,nm(z1, . . . , zm; y) = G(0, . . . , 0︸ ︷︷ ︸
n1−1

, z1, . . . , zm, 0, . . . , 0︸ ︷︷ ︸
nm−1

, zm; y). (4.87)

The multiple polylogarithms contain ordinary logarithm and classical polylogarithms as
special cases

G(a; x) = log
(

1 − x

a

)
G(0, . . . , 0︸ ︷︷ ︸

n−1

, a; x) = −Lin
(

x

a

)
. (4.88)

Classical polylogarithms can also be defined recursively in terms of iterated integration or
via nested sums

Lin(x) =
∫ x

0

dy

y
Lin−1(y)
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=
∞∑

k=1

xk

kn
, ∀n ∈ N. (4.89)

The recursion starts with the ordinary logarithm Li1(x) = − log(1 − x).
Additionally, the values of multiple polylogarithms at x1 = . . . = xm = 1 are known as

multiple ζ–values
ζn1,...,nm = Lin1,...,nm(1, . . . , 1︸ ︷︷ ︸

m

), (4.90)

and in special case of depth one they correspond to Riemann ζ–functions

ζn = Lin(1) =
∞∑

k=1

1
kn

. (4.91)

For even n, the Riemann ζ–functions evaluate to powers of π.
Since the early days of quantum field theory, it has been known that not all Feynman

integrals fall into the class of MPLs [178]. Less understood classes of special functions such
as elliptic polylogarithms [179, 180], modular forms [181, 182] and Calabi-Yau manifolds
also appear [183–188]. We will not go into the details of these functions, as they go beyond
the scope of this thesis. The interested reader can find more relevant references in the
review [189]. Note that the Feynman integrals considered in this work are in the MPL
class of iterated integrals at least up to transcendental weight two, where we have found
the explicit function basis, see Sections 4.6 and 5.6.3.

The Symbol

The symbol [190, 191] is a powerful mathematical tool which captures the main analytical
and combinatorial properties of polylogarithmic functions. Given that the symbol cap-
tures the main properties of polylogarithmic functions, a necessary condition for the two
expressions written in terms of MPLs to be equal is that they have the same symbol. It
was first introduced in physics to simplify long expressions written in terms of GPLs [74]
and later became an ubiquitous tool for bootstrap approaches [78, 192–196]. Moreover, the
symbol encodes the cluster adjacency properties of scattering amplitudes in N = 4 super
Yang–Mills theory [197, 198] and certain Feynman integrals [199]. For an introduction to
cluster algebras, see, for example, [200–204].

The symbol can be defined through its action on the Chen iterated integrals where it
maps a k–fold iterated integral to the k–fold tensor product

S
(
[W1, . . . , Wk]v⃗0

(v⃗)
)

= d log(W1) ⊗ · · · ⊗ d log(Wk), (4.92)

of d log forms. Since all of the factors of the symbol have the d log sign, we will omit it to
simplify the notation and write instead

S
(
[W1, . . . , Wk]v⃗0

(v⃗)
)

= W1 ⊗ · · · ⊗ Wk. (4.93)
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We can extend the definition of the symbol to the transcendental functions whose total
differential is a linear combination of d log–forms multiplied by transcendental functions of
weight minus one

df (n) =
∑

i

cif
(n−1)d log(Wi), (4.94)

where ci are rational coefficients and f (n) denotes a function of transcendental weight n.
One additional requirement is that the total differential of lower–weight functions can again
be written in the same manner.

Additionally, we will use S(k)(f) to denote the symbol of the weight–k part of f , i.e. if
f has an expansion

f =
∑

k

ϵkf (k) (4.95)

then we define
S(k)(f) = S(f (k)). (4.96)

The symbol map inherits many properties from iterated integrals. First, the symbol
map is linear. Second, the symbol of a product of two functions is mapped into the shuffle
product of their respective symbols

S(f · g) = S(f)� S(g), (4.97)

where � denotes the shuffle product of tensors. For example,

(a ⊗ b)� c = a ⊗ b ⊗ c + a ⊗ c ⊗ b + c ⊗ a ⊗ b. (4.98)

Additionally, the additivity of the logarithm log(ab) = log(a) + log(b), translates into the
following basic properties

. . . ⊗ (ab) ⊗ . . . = . . . ⊗ a ⊗ . . . + . . . ⊗ b ⊗ . . .

. . . ⊗ an ⊗ . . . = n(. . . ⊗ a ⊗ . . .). (4.99)

Next, since the the total differential of any constant is zero, any symbol with constant
entries vanishes

. . . ⊗ c ⊗ . . . = 0, for c = const. (4.100)
Some of the information is lost due to this last property. Consequently, there is no algorithm
that recovers this information in order to go from a symbol to a function that works in
general.

Lastly, we can ask whether every possible Q–linear combination of tensors

F =
∑

i1,...,ik

ci1,...,ik
Wi1 ⊗ . . . ⊗ Wik

, (4.101)

corresponds to some function f , such that S(f) = F . Such a function f exists if and only
if F satisfies the integrability conditions [205]∑

i1,...,ik

ci1,...,ik
d log(Wij

) ∧ d log(Wij+1)Wi1 ⊗ . . . ⊗ Wij−1 ⊗ Wij+2 ⊗ Wik
= 0, (4.102)
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for all 1 ≤ j ≤ k − 1 and where ∧ denotes the wedge product of differential forms. Hence,
there is a finite number of integrable symbols of any transcendental weight for a given
symbol alphabet.

4.5 Fixing the Boundary Constants
To uniquely fix a solution of the first–order canonical DE, we have to provide boundary
information for all of the integrals at a single point in the space of kinematical variables.

There are two different approaches that we can follow to fix the boundary values. The
first approach is to use one of the available software on the market like AMFlow [17, 18] or
pySecDec [16, 206–208] to numerically evaluate basis integrals at a particular point with
high precision. Afterwards, we can use this information to fully fix the solutions of the
canonical differential equations.

Another approach is to use physical arguments such as certain physical limits [209] or
the absence of spurious singularities [168, 210] to put constraints on the boundary values.
Using these arguments, we can usually fix all of the boundary values up to an overall
normalization factor. This normalization factor can be determined by computing a simple
integral like the bubble integral at one loop or the sunrise integral at two loops.

Using the one–loop hexagon differential equation as the example, we will see how we
can determine the values of our integral basis at the point

v⃗0 = {−1, −1, −1, −1, −1, −1, −1, −1, −1} (4.103)

up to weight four in the ϵ expansion by imposing the absence of certain spurious singu-
larities and by matching to the analytical solution of a bubble integral which is known
analytically

Ĩ1 = ϵeϵγE
Γ(−ϵ)2Γ(1 + ϵ)
Γ(−2ϵ)(−s12)ϵ

. (4.104)

To be a bit more explicit, even though the Feynman integrals in our basis are manifestly
finite throughout the Euclidean region, this is not true for the DE matrix A. In fact, the
vanishing (or divergence) of any of the hexagon letters

Wi = 0, (4.105)

defines a hypersurface that might intersect the Euclidean region. The situation is sketched
in Fig. 4.2. Imposing finiteness of the solution to the canonical differential equation (4.38)
on any of these hypersurfaces severely constrains the possible boundary values at the point
v⃗0, c.f. [210]. Hence, we will determine the cij in the expansion

Ĩi(v⃗0) =
4∑

j=0
cijϵ

j. (4.106)

We also denote the vector of boundary constants as

b⃗ = Ĩ(v⃗0). (4.107)
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Figure 4.2: Schematic representation of the Euclidean region R which is bounded by the
inequalities sij < 0 and sijk < 0 (solid black lines). The dashed lines represent different
hypersurfaces where some alphabet letters Wj vanish.

In the following analysis, we will call spurious letter singularities at the bulk point v⃗0 type–I
singularities and singularities on any other hypersurfaces that do not contain v⃗0 type–II
singularities; see Figure 4.2.

Absence of Type–I Singularities

We parameterize the paths that start at the boundary point v⃗0 by an infinitesimal param-
eter δ to remove spurious letter divergences at that point. Then, the divergent letters will
have an expansion in δ according to

log Wj = cj log δ + O(1). (4.108)

The set of letters vanishing at v⃗0 is given by

A0 = {W10, . . . , W21, W28, . . . , W33}. (4.109)

Since the master integrals are supposed to diverge only on the boundaries of the Euclidean
region, the boundary vector must be such that

lim
δ→0

A⃗b = finite. (4.110)

Using different parametrizations to approach the boundary point on different curves,
we find that this requirement constrains b⃗ (non-perturbatively in ϵ) to be of the form

b⃗ = {b1, b1, b1, b1, b1, b1, b1, b1, b1, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21,
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− b12 + b14 − b15 + b17 + b18 − b19 + b21, −b13 + b14 − b16 + b17 + b18 − b20 + b21,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. (4.111)

Absence of Type–II Singularities

Beyond the singular letters at the point v⃗0, there are additional letters that diverge at some
other point in the Euclidean region, for example

log W22 = log(−s12 − s23 + s123). (4.112)

In order to prevent these singularities from appearing in our differential equation solution,
we perform the integration from the boundary point v⃗0 to the hypersurface where the ad-
ditional letters diverge. By enforcing the absence of logarithmic divergences, we further
restrict the boundary constants bi. Given that we typically lack a non-perturbative solu-
tion to (4.38), these constraints are perturbative in ϵ. A convenient path from v⃗0 to the
hypersurface where W21 vanishes is given by

v⃗ = {−1, −(1 − x)2, −1, −(1 − x)2, −1, −(1 − x)2, −1 + x, −1 + x, −1 + x}, (4.113)

which satisfies the Gram constraint. On this line, the hexagon alphabet simplifies to

A → Aline = {x, 1 − x, x − ρ, x − ρ̄}, (4.114)

with ρ = 1
2(1 + i

√
3). Hence, there are four potential singular points on the line. The

absence of type–I singularities ensures that all log x singularities are dropped. The log(1−x)
singularities lie on the boundary of the Euclidean region and hence are not necessarily
unphysical. Finally, the singularities at the points ρ and ρ̄ are nonphysical, and we can
further determine the boundary values by imposing them to drop out.

Using PolyLogTools [23], it is straightforward to integrate the differential equation
with the alphabet (4.114) into GPLs with entries {0, 1, ρ, ρ̄}. To isolate the singularities,
we use shuffle identities to bring the GPLs to a convenient Lyndon basis [211], see also
Chapter 8 of Ref. [71]. Then, imposing that all log(x−ρ) drop out for x → ρ (and similarly
for x → ρ̄), we can fully determine the boundary values order by order in ϵ. Up to weight
four, we find the following non–vanishing boundary constants,

b1,...,9 = −2 + ζ2ϵ
2 + 14

3 ζ3ϵ
3 + 47

8 ζ4ϵ
4 + O(ϵ5),

b10,11 = i(6 Im[Li2(1 − ρ2) + 2π log(3))ϵ2

+ i
(10

9 πζ2 + 12 Im[Li3(1 − ρ2)] + π log2(3)
)

ϵ3

+ i
(

− 3ζ2 Im[Li2(1 − ρ2)] + 24 Im[Li4(1 − ρ2)]

+ 16
3 Im[Li4(1 + ρ2)] + π

3 log3(3) + 12πζ2 log(3)
)

ϵ4 + O(ϵ5),
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b12,...,17 = 2 − 3ϵ2ζ2 − 20
3 ϵ3ζ3 − 43

8 ϵ4ζ4 + O(ϵ5),

b18,...,23 = 1 − ϵ2 ζ2

2 + ϵ3 ζ3

3 + ϵ4
(17

16ζ4 + 6 Im[Li2(1 − ρ2)]2

+ 2
3π2 log2(3) + 4π log(3) Im[Li2(1 − ρ2)]

)
+ O(ϵ5). (4.115)

Both Lin and ζn are functions of transcendental weight n and therefore the boundary
values are of uniform transcendental weight. In addition, the constants appearing in equa-
tion (4.115) are embedded in the basis of polylogarithms at sixth roots of unity discussed
in Ref. [212].

Moreover, the inverse leading singularities of all pentagon integrals and the hexagon
integral vanish on the entire line, leading to trivial boundary conditions for these functions.
With these constants determined, we have full analytic control over the entire function
space at weight four on the line given by (4.113).

The boundary constants in Eq. (4.115) are valid in the Euclidean region. To obtain the
boundary constants in the physical scattering regions defined in the example in Section 2.1,
we can either perform an analytic continuation or determine the boundary constants di-
rectly in the physical region of interest following a similar procedure [210].

4.6 One–loop Hexagon Function Space
Although canonical differential equations can be solved to any desired order in the di-
mensional regulator ϵ by employing iterated integrals (4.80 – 4.81), for the calculation of
physical scattering amplitudes, it is common practice to determine them up to the finite
part. It is conjectured that an L–loop Feynman integral in D dimensions can at most
involve transcendental functions of weight ⌊LD

2 ⌋. This statement was proven for generic
masses in Ref. [84]. As a consequence, we are interested in the solution of the canonical
differential equation (4.38) up to weight four in the dimensional regulator ϵ.

At weights one and two, we can explicitly integrate the iterated integrals (4.80) into
special functions such that they are well–defined in the whole Euclidean region. Moreover,
the only integrals that contribute at these weights are the ones coming from the subsectors,
thus their function space is already known [213–215].

At weight one, we need to perform a one–fold integration over the d log kernel

log(x) =
∫ x

0

dt

t
(4.116)

Therefore, the only function that can appear is the logarithm

f
(1)
i = log(−si i+1), i = 1, . . . , 6, (4.117)

f
(1)
i+6 = log(−si i+1 i+2), i = 1, . . . , 3. (4.118)

The minus sign in the argument of the logarithm is included so that the functions are
well–defined within the Euclidean region.
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At weight two, we construct the initial basis as

{f (2), (f (1)f (1)), ζ2}, (4.119)

where f (2) are weight–two functions and (f (1)f (1)) are products of two weight–one functions
given in (4.118). Genuine weight–two functions that can appear are dilogarithms Li2. We
chose the arguments of these functions so that they are well defined in the Euclidean region.
Genuine weight two functions that appear are:

f
(2)
1 = Li2

(
1 − s12

s123

)
, f

(2)
i+1 = T if

(2)
1 , i = 1, . . . , 5,

f
(2)
7 = Li2

(
1 − s23

s123

)
, f

(2)
i+7 = T if

(2)
7 , i = 1, . . . , 5,

f
(2)
13 = Li2

(
1 − s12s45

s123s345

)
, f

(2)
i+13 = T if

(2)
13 , i = 1, . . . , 2,

f
(2)
16 = Tri(s12, s34, s56), f

(2)
17 = Tri(s23, s45, s61), (4.120)

where the Tri(a, b, c) function is the Bloch–Wigner dilogarithm

Tri(a, b, c) = −Li2

− 2b

a − b − c −
√

∆3(a, b, c)

− Li2

− 2c

a − b − c −
√

∆3(a, b, c)


− π2

6 − 1
2 log

(
c

b

)
log

a − b + c −
√

∆3(a, b, c)

a + b − c −
√

∆3(a, b, c)


− 1

2 log
 2b

−
√

∆3(a, b, c) + a − b − c

 log
 2c

−
√

∆3(a, b, c) + a − b − c

 .

(4.121)

This basis of special functions is sufficient to express the solution up to weight two for
any master integral in our one–loop hexagon integral basis.

We still need to get weight three and four parts of the solution. We could try to find
a similar basis of functions at higher weight consisting of classical polylogarithms like Li3
and Li4 and multiple polylogarithms like Li2,2. Finding such a basis of functions is not
easy, since it is not generally understood which arguments to use in order for them to form
a basis and for their symbol to belong to the given alphabet. Moreover, we could also
demand that such functions be well defined in a desired kinematic region. In general, there
is no completely algorithmic way to find such functions even though there are systematic
strategies [101]. Computing the symbol of a classical polylogarithm

S (Lin(R)) = −(1 − R) ⊗ R ⊗ . . . ⊗ R︸ ︷︷ ︸
(n−1) entries

, (4.122)

we see that both R and (1 − R) must factorize in terms of the letters of the alphabet Wi

R = c
∏
i∈A

W ei
i , 1 − R = c′ ∏

i∈A
W

e′
i

i . (4.123)
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Another requirement is that the arguments of the polylogarithms have to be dimensionless
which puts constraints on allowed powers ci and c′

i. However, there is no algorithmic way
to solve these constraints which in turn makes finding allowed arguments quite difficult
especially when considering bigger alphabets.

Additionally, at higher weights, there is a proliferation of terms that may lead to a
slowdown in numerical evaluations. This is a consequence of functional identities that
relate different arguments of polylogarithms. For example, already at weight two, the
dilogarithm satisfies two reflection identities [216]

Li2
(1

x

)
= −Li2(x) − π2

6 − 1
2 log2(−x),

Li2(1 − x) = −Li2(x) + π2

6 − log(x) log(1 − x), (4.124)

which tell us that dilogarithms{
Li2(x), Li2

( 1
1 − x

)
, Li2

(
x − 1

x

)
, −Li2

(1
x

)
, −Li2 (1 − x) , −Li2

(
x

x − 1

)}
(4.125)

are all equivalent modulo elementary functions. There are even more complicated identities
like the five–term identity

Li2(x) + Li2(y) + Li2
(

1 − x

1 − xy

)
+ Li2(1 − xy) + Li2

(
1 − y

1 − xy

)
= (4.126)

π2

6 − log(x) log(1 − x) − log(y) log(1 − y) + log
(

1 − x

1 − xy

)
+ log

(
1 − y

1 − xy

)
. (4.127)

Identities similar to these also exist for higher–weight functions. For example, one of the
identities at weight three is

Li3(x) + Li3(1 − x) + Li3
(

1 − 1
x

)
= ζ3 + 1

6 log3(x) + π2

6 log(x) − 1
2 log2(x) log(1 − x).

(4.128)

There are many more identities similar to this that make finding an optimal basis of
functions difficult. Equivalent arguments of polylogarithms produce branch cuts in different
locations of the kinematic space. Therefore, we might end up writing a very complicated
zero if we do not account for all different relations between the arguments, which slows
down numerical evaluations.

To avoid an increase in the number of terms at higher weights, we follow a hybrid
approach suggested in Ref. [217]. Assuming that we know the boundary value at the point
v⃗0 up to weight (n + 2) and function basis up at weight n

f (n)(v⃗) = [Wi1 , . . . , Win ]v⃗0
(v⃗), (4.129)
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we can use that information to set up a one–fold integration to obtain weight–(n + 1) and
weight–(n + 2) functions. Setting up a straight path from the boundary point v⃗0 to some
end point v⃗i

γ(t) = (1 − t)v⃗0 + tv⃗i, (4.130)
we obtain weight–(n + 1) functions as a one–fold integral over the weight–n functions

Ĩ (n+1)(v⃗i) = b⃗(n+1) +
∫ 1

0
dt1

dÃ

dt1
f⃗ (n)(t1). (4.131)

At weight (n + 2), we need to perform two integrations over the weight–n functions

Ĩ (n+2)(v⃗i) = b⃗(n+2) +
∫ 1

0
dt

dÃ

dt
b⃗ (n+1) +

∫ 1

0
dt1

∫ t1

0
dt2

dÃ

dt1

dÃ

dt2
f⃗ (n)(t2). (4.132)

Using integration by parts with respect to t1, we rewrite the two–fold integration as a
one–fold integration

Ĩ (n+2)(v⃗i) = b⃗(n+2) +
∫ 1

0
dt

(
dÃ

dt
b⃗ (n+1) +

(
Ã(1) − Ã(0)

) dÃ

dt
f⃗ (n)(t)

)
. (4.133)

Although the representations given in equations (4.131) and (4.133) hold globally, both
the weight–n functions and the differential equation matrix Ã are multivalued functions.
Therefore, we must make sure that they are evaluated on the right Riemann sheet and that
an analytic continuation is performed in an appropriate way if the contour γ goes beyond
the region of analiticity where the boundary point v⃗0 lies.

Going back to our one–loop hexagon example, the finite part of the pentagon and
hexagon integrals are transcendental functions of weight three, and the first correction is
of weight four. These functions are obtained using the one–fold integral representation
(4.131) and (4.133) from the known weight–two functions and the boundary value at the
point v⃗0.

We choose several points in the bulk of the Euclidean region (see Table 4.1) and con-
struct straight paths to those points. The point v⃗(1) corresponds to the point K(3) from
Ref. [218] while the points v⃗(2) and v⃗(3) are generic points within the Euclidean region.
Implementing the one–fold integration in Mathematica using the NItegrate function, we
numerically evaluate all of our basis integrals. Moreover, we compare the numerical values
obtained using the one–fold integral representation with the values obtained using AMFlow
and find that the results are in complete agreement.

Even by using a simple Mathematica implementation of one–fold integration, running
times are significantly faster compared to state–of–the–art software for numerical evalu-
ation of Feynman integrals such as pySecDec and AMFlow. For example, it takes around
∼ 1 minute to evaluate all of the basis integrals using the one–fold integral representation,
while it takes ∼ 10 minutes to do the same with AMFlow on the same machine.

Moreover, explicit expressions of polylogarithms at high transcendental weight often
fall short compared to the performance of one-fold integral representations in terms of
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Kinematic point Ĩ33

v⃗(1) =
{
−1, −1, −1, −1, −1, −1, −1

2 , −5
8 , −17

14

} 1.69878610466574714627iϵ3

+ 6.62873216549319714468iϵ4

+ O(ϵ5)

v⃗(2) =
{
−2

3 , − 7
10 , − 9

11 , −15
17 , −24

29 , −30
37 , −37

43 , −47
53 , −53

59

} 1.2966474952363382027iϵ3

+ 5.241756401399539064iϵ4

+ O(ϵ5)

v⃗(3) =
{
−7

9 , −4
5 , −29

33 , −47
51 , −77

87 , − 97
111 , −39

43 , −49
53 , −55

59

} 0.81389548925976547185iϵ3

+ 3.2221858302838235961iϵ4

+ O(ϵ5)

Table 4.1: Numerical evaluation of the hexagon integral at several kinematic points. The
values correspond to the UT hexagon integral and are obtained using the one–fold integral
representation.

computational efficiency [213–215, 217]. Therefore, since the highest transcendental weight
required in two–loop computations in D = 4 − 2ϵ dimensions is weight four, having an
explicit basis of functions up to weight two allows us to numerically evaluate all necessary
functions in an efficient way.

For phenomenological applications of our results, a necessary requirement is the evalu-
ation of the hexagon integrals in the 2 → 4 physical scattering region. Although the same
differential equations are satisfied as in the Euclidean region, the transition to the physical
scattering region requires additional refinements. One approach is to determine the values
of the entire basis of integrals at a particular boundary point within the physical domain
and solve the differential equations with a new boundary value. Alternatively, we could
use a suitable analytic continuation to transfer the information from our known boundary
point to the desired physical region. This involves navigating a complex landscape of an-
alytic functions to ensure that the data obtained on the Euclidean plane are seamlessly
extended to the relevant physical scattering domain.

4.6.1 Symbol of the Hexagon Integral
Of course, the most interesting integral in our basis is the massless hexagon integral. In this
section, we discuss its finite part and its order epsilon part in generic external spacetime
dimensions Dext. The finite part of the hexagon integral was first calculated in Ref. [219].
Using the canonical differential equation matrix Ã and the boundary constants determined
in section 4.5, it is straightforward to determine the symbols for the O(1) and O(ϵ) parts
of the hexagon integral. In agreement with Ref. [219], we find

S(3)(Ĩ33) = (u1 ⊗ u2 + u2 ⊗ u1 −
3∑

j=1
uj ⊗ (1 − uj)) ⊗ y3 + (cyclic) (4.134)
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where we used the dual–conformal cross ratios

u1 = s12s45

s123s345
, u2 = s23s56

s234s123
, u3 = s34s61

s345s234
, (4.135)

as well as the parity–odd dual–conformal letters

y1 = 1 + u1 − u2 − u3 −
√

∆
1 + u1 − u2 − u3 +

√
∆

, y2 = 1 + u2 − u3 − u1 −
√

∆
1 + u2 − u3 − u1 +

√
∆

, y3 = 1 + u3 − u1 − u2 −
√

∆
1 + u3 − u1 − u2 +

√
∆

,

(4.136)
where ∆ = (1 − u1 − u2 − u3)2 − 4u1u2u3 and it is related to the leading singularity of the
hexagon integral through the following relation√

∆6 = s123s234s345
√

∆. (4.137)

Both ui and yi form threefold orbits under cyclic permutations of the external points.
At weight four, the symbol of the hexagon decomposes according to3

S(4)(Ĩ33) = S(3)(Ĩ33) ⊗ Whex +
6∑

i=1
Ti

(
S(3)(Ĩ27) ⊗ W100

)
+ 1

2

3∑
i=1

Ti (Ω ⊗ W90) , (4.138)

where we remind the reader that Ĩ27 and its permutations are the one–mass pentagons and
Ω is given by the following combination of box integrals

Ω = S(3)(Ĩ18) + S(3)(Ĩ19) + S(3)(Ĩ21) + S(3)(Ĩ22)
− S(3)(Ĩ13) − S(3)(Ĩ16) − S(3)(Ĩ24) − S(3)(Ĩ25) − S(3)(Ĩ26). (4.139)

By inspecting the expressions for the symbol at weight three and four, we can determine
the reduced alphabets that are necessary to describe the hexagon integral at weight three
and weight four respectively. They read

A(3)
hex = {u1, u2, u3, 1 − u1, 1 − u2, 1 − u3, y1, y2, y3} (4.140)

and

A(4)
hex = A\{W41, . . . , W48}. (4.141)

Starting at weight five, all 104 letters of the one–loop hexagon alphabet appear in the
symbol.

4.6.2 Limit to Four–Dimensional External Momenta
It is well known that for four–dimensional external momenta, the hexagon integral can be
decomposed into a linear combination of pentagon integrals [220–224], i.e.

I33 = −1
2

6∑
j,k=1

(S−1)jkI26+j, (4.142)

3We note that Whex = −∆6/G(p1, p2, p3, p4, p5), W90 = 1/y3, W91 = 1/y1 and W92 = 1/y2.
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with

S = −1
2



0 0 s45 s123 s23 0
0 0 0 s56 s234 s34

s45 0 0 0 s61 s345
s123 s56 0 0 0 s12
s23 s234 s61 0 0 0
0 s34 s345 s12 0 0


. (4.143)

In this section, we show that this identity comes out of the differential equation for free as
a finiteness condition in four–dimensional kinematics. When the kinematics are generated
by four–dimensional vectors, the nine Mandelstam invariants are not independent anymore
but they satisfy the Gram determinant constraint,

G(p1, p2, p3, p4, p5) = 0. (4.144)

A parameterization of the external degrees of freedom that hardwires this constraint, as
well as momentum conservation and on–shell conditions, can be provided by choosing a
momentum twistor configuration [225]. We employ a particular parameterization [226, 227]

s12 = x1,

s23 = x1x5,

s34 = x1 [x5 − x2x3x6 + x3x5 (1 + x2 − x2x7)]
x2

,

s45 = x1

[
x5 − x5x7 − (1 + x3) x4 (x5 (−1 + x7) + x8) + x2x3x4 (x5 (−1 + x7) + x6x8)

x5

]
,

s56 = x1x3 [(x2 − x5) x5 (−1 + x7) + (−x5 + x2x6) x8]
x5

,

s61 = x1x2x3x4 [x5 (−x6 + x7) + x6x8]
x5

,

s123 = x1x8,

s234 = x1x3 (x2x6 − x5x7) ,

s345 = x1

{
x6 + x4

{
−1 + x6 + x3

[
−1 + x6 + x2

(
−1 + x7 + x6x8

x5

)]}}
(4.145)

where xi ∈ R are unconstrained variables.
In terms of the momentum twistor variables, the leading singularities of the pentagons

and the hexagons become perfect squares. However, substituting the parametrization into
the differential equation matrix Ã, a subset of logarithmic letters diverges, namely

Adiv = {Whex, W99, . . . , W104}. (4.146)

Since Whex = −∆6/G(p1, p2, p3, p4, p5), it is obvious why it diverges. However, the diver-
gence of the logs of the letters W96, . . . , W101 are less straightforward and require some
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explanation. Let us focus on W96 since the behaviour of the other letters follows from
cyclic permutations. It takes the form

W99 =
R4 −

√
∆5,1∆6

R4 +
√

∆5,1∆6
, (4.147)

where
∆5,1 = ∆5(s12, s23, s34, s123, s234, s56) (4.148)

and R4 is a homogeneous polynomial of degree four. The exact form of R4 is provided in
Section 3.4, but it is not important for this discussion. By inspection, one finds

∆5,1∆6 = R2
4 − 4s12s23s34(s23s56 − s123s234)G(p1, p2, p3, p4, p5) (4.149)

which is valid for arbitrary D–dimensional kinematics. Clearly, in the limit of four–
dimensional external kinematics, the product of ∆5,1 and ∆6 approaches the square of
R4 and we have

W99

∣∣∣∣
Dext→4

→ R4 − |R4|
R4 + |R4|

. (4.150)

Depending on the sign of R4, the letter W95 will either vanish or diverge in the limit D → 4,
hence its logarithm will go to ∓∞.

The divergent letters appear only in the last row of the matrix, i.e. the derivative of the
hexagon integral, and correspond to the coefficients of the pentagon and hexagon integrals
in this derivative. Hence, for the four–dimensional limit of the hexagon integral to be
finite, these divergences must cancel. To approach the surface where the Gram determinant
constraint holds more carefully, we deform the two–particle Mandelstam invariants by a
small parameter δ, i.e.

si,i+1 → si,i+1 + δ, i = 1, . . . , 6, (4.151)
explicitly breaking the Gram determinant constraint at order O(δ). Then, the divergent
letters take the form4

Wi = −ci log(δ) + O(1), Wi ∈ Adiv, (4.152)
where the signs of the log(δ) divergence depend of the sign of R4, i.e.

c99+i = sgn(T iR4), i = 0, . . . , 5, (4.153)

whereas c40 = −1. The requirement that the logarithmic divergence cancels leads to a very
simple identity for the UT integrals in four–dimensional kinematics, namely

Ĩ33 =
5∑

j=0
c99+iĨ27+i. (4.154)

4Note that this analysis is valid for a generic point in four–dimensional kinematics, at which no other
letters diverge. At more special points, there can be additional constraints emerging from the differential
equation.
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Interestingly, comparing with the well–known identity (4.142), we find after dividing (4.154)
by ∆6

∆5,j

∆6
=
(

1
2

6∑
k=1

(S−1)jk

)2

(4.155)

on the momentum twistor parametrization. Hence, after taking into account the signs
ci, the identity we find from the canonical differential equation for the UT integrals is
equivalent to (4.142).

At the level of the weight–four symbol of the hexagon integral, the four–dimensional
limit implies

lim
Dext→4

S(4)(Ĩ33) = 1
2

3∑
i=1

Ti (Ω ⊗ W90) , (4.156)

where Ω is the linear combination of weight–three symbols of box–integrals given in
eq. (4.139).

Relations between Letters in Four–Dimensional Kinematics

Beyond the divergent letters, there are additional dependencies among the letters that
emerge in four–dimensional kinematics. For ease of discussion, we consider only the case
where all ci = −1. Other cases can be obtained through Galois transformations that map
the corresponding square roots to their negatives (and thereby invert the respective odd
letters). The complete set of identities is

T i−1
(

W90

W65W66

)
= 1, i = 1, . . . , 6

T i−1 (W93W95W97) = 1, i = 1, 2

T i−1
(

W72W74W84

W61W67W78

)
= 1, i = 1, . . . , 6

T i−1
(

W78W81W90W91W92

W62W65W68W71W74W77

)
= 1, i = 1, 2, 3. (4.157)

The hexagon alphabet reduces to 89 independent letters on the support of these identities.
At last, we can compare the results valid for Dext > 4 and Dext = 4 kinematics. We

find it very convenient to work in a Dext > 4 setting and only fix the dimensionality to
four at the very end by using momentum twistor variables (4.145) which satisfy the Gram
determinant constraint (4.144). Although the integral family is slightly larger in Dext > 4,
we profit from a more systematic understanding of the alphabet and manifest realizations
of permutation invariance. While at one loop, the single additional independent integral
in Dext > 4 kinematics is not a vast complication, at two–loops there is a bigger trade–off
between additional integrals and alphabet letters on the one hand and clearer structures
and free movement in the nine–dimensional kinematic space on the other hand.
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In this chapter, we have outlined a method for the analytical computation of Feynman
integrals. We began with an integral family and used the IBP reduction method in Sec-
tion 4.1 to relate it to a basis of integrals. Dimension shift identities were also introduced,
connecting integrals in D dimensions with those in (D + 2) or (D − 2) dimensions, which
helped in finding a UT basis. This basis facilitates the simplification of the differential
equation in the canonical form; see Section 4.3. Another essential component of the canon-
ical differential equation (4.38), along with the UT basis, are the alphabet letters that
act as arguments for the d log forms. Alphabet letters encode the singularity structure
of Feynman integrals, see Chapter 3, and specify the types of possible solutions. To fully
specify the solution in Section 4.4, we have determined the boundary values at a specific
point in Section 4.5.

Finally, we are in a position to apply these techniques to a state–of–the–art computation
of planar two–loop six–point Feynman integral families in the next chapter.



Chapter 5

Two–Loop Six–Point Feynman
Integrals

The last few years have seen substantial advancements in the computation of two–loop
Feynman integrals, scattering amplitudes, and cross sections. Analytical calculations for
two–loop five–point massless integrals have been achieved [210, 213, 228–230], offering a
comprehensive set for 2 → 3 massless scattering process.

In particular, a dedicated computer implementation has been established for efficient
and reliable evaluation of five–point Feynman integrals in the physical region, detailed
in Ref. [214]. Analytical progress has already found applications in various amplitude
computations [231–245] and phenomenological processes [246–250].

In addition, all master integrals for two–loop five–point scattering with one off–shell
leg [116, 119, 251, 252] were calculated analytically and the results were further optimized
for fast evaluation of the functions in the physical scattering region [215].

On the other hand, for the production of four or more jets, i.e., for the 2 → 4 massless
scattering process, only NLO cross sections are known in the literature [253, 254]. On the
amplitude side, one–loop six–gluon [255, 256] and photon amplitudes [257–260] are known.
However, only the special case of all plus helicities for the two–loop six–gluon amplitudes
is presented in the literature [261, 262].

On the Feynman integrals side, in Ref. [226], the potential of computing two–loop
six–point integrals in dimensional regularization via integrals with uniform transcendental
weights and the canonical differential equation was demonstrated. The maximal cuts of a
UT basis for genuine (non–factorizable) two–loop six–point massless planar integrals were
found and the diagonal blocks of the canonical differential equations and symbol letters
were calculated. Based on these results, we computed the off–diagonal blocks for three out
of six integral families in [263].

In this chapter, we review the computation we performed in [263] where the double–
box, pentagon–triangle, and hexagon–bubble families were computed. Moreover, we extend
these results to two additional families, namely the pentagon–box family and the hexagon–
box family. Hence, the only missing family at the time of writing this thesis is the double–
pentagon family.



74 5. Two–Loop Six–Point Feynman Integrals

This chapter is organized as follows. In Section 5.1, we review the six–point kinematics
and set up conventions that are used throughout the chapter. In Section 5.3, we present
the complete UT basis for the two–loop six–point hexagon–box, pentagon–box, double–
box, pentagon–triangle and hexagon–bubble families. In Section 5.4, we describe how
to efficiently calculate the differential equation by fitting against an ansatz in terms of
the hexagon alphabet. To that end, we employ an efficient method to find algebraic
symbol letters introduced in Section 3.4. In Section 5.5, we identify all the symbol letters
that appear in the canonical differential equations for those five families, defining the
symbol alphabet. In Section 5.6, the boundary values at a specific point are obtained
analytically based on the singularity structure of the canonical differential equations in
the Euclidean region. Furthermore, we set up integration paths in the Euclidean region to
solve the canonical differential equations. The weight one and two parts of those integrals
are presented in terms of classical polylogarithms, while weight three and four parts are
presented as one–fold iterated integrals suitable for fast numerical evaluation.

The majority of this chapter follows the structure of Ref. [263] where the results for three
families, the double–box, pentagon–triangle and hexagon–bubble families, are presented.
The discussion is altered in several places to provide additional information about the UT
basis and the two new families. Additionally, labels of the alphabet letters are modified to
accommodate a larger alphabet needed to express the remaining two families.

5.1 Kinematics and Conventions
Kinematics of the massless six–point Feynman integrals were introduced in the example of
Section 2.1. There are nine independent kinematic invariants for the momenta defined in
Dext > 4

v⃗ = {s12, s23, s34, s45, s56, s61, s123, s234, s345} (5.1)

with

sij = (pi + pj)2, sijk = (pi + pj + pk)2. (5.2)

Since only four vectors can be independent in four dimensions, there is a linear relation
among any five momenta. After using momentum conservation to eliminate p6, the re-
maining constraint is captured by the vanishing of the following Gram determinant,

G(1, 2, 3, 4, 5) = 0. (5.3)

This reduces the number of independent Mandelstam variables from nine to eight.
Throughout this chapter, we use a scheme such that external momenta are in four

dimensions, while the loop integration is (4 − 2ϵ)–dimensional. At the level of the ampli-
tudes, this is compatible with both the ‘t Hooft–Veltman and the four–dimensional helicity
scheme. An advantage of computing in this scheme is that we can use a momentum twistor
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parametrization [225] to rationalize the majority of square roots in the canonical differen-
tial equation. Furthermore, in this convention, the number of irreducible scalar products
is smaller than the corresponding number for D–dimensional external momenta; see Sec-
tion 5.2 for the discussion.

To fully describe the kinematics of a scattering process, in addition to the parity–even
invariants mentioned earlier, it is essential to determine the sign of a parity–odd pseudo–
scalar invariant [30]. A pseudo–scalar can be formed by contracting the antisymmetric
Levi–Civita tensor with any four momenta of the scattering process, i.e.

ϵijkl ≡ 4
√

−1 εµ1µ2µ3µ4pµ1
i pµ2

j pµ3
k pµ4

l , 1 ≤ i, j, k, l ≤ 6. (5.4)

Only one of these objects is independent, since the product of two ϵijkl may be written in
terms of a Gram determinant. In particular, the squares of the pseudo scalars equal

ϵ2
ijkl = G(i, j, k, l) . (5.5)

Spinor–Helicity Variables

In spinor–helicity variables the sign of the ϵijkl is fixed via

2[ij]⟨jk⟩[kl]⟨li⟩ = sijskl − siksjl + silsjk + ϵijkl. (5.6)

Here, the spinor products are defined as,

⟨ij⟩ ≡ λα
i λj,α ,

[ij] ≡ λ̃i,α̇λ̃α̇
j , (5.7)

and the bi–spinor is given by
piµσµ

αβ̇
= λiαλ̃jβ̇, (5.8)

with the Pauli matrices σµ = (I2×2, σ1, σ2, σ3).
We also introduce the object

∆6 = tr(γ5/p1/p2/p3/p4/p5/p6)
= ⟨12⟩[23]⟨34⟩[45]⟨56⟩[61] − [12]⟨23⟩[34]⟨45⟩[56]⟨61⟩, (5.9)

which naturally arises as the four–dimensional limit of the leading singularity of the one–
loop hexagon integral (4.68). In the definition of ∆6 we employ slashed momenta and the
chiral γ5, both of which are 4 × 4 matrices given by

/pi
=
(

0 |i]⟨i|
|i⟩[i| 0

)
, γ5 =

(
12×2 0

0 −12×2

)
. (5.10)
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Momentum Twistor Parametrization

Throughout this chapter, we will work with the momenta defined in Dext = 4. Therefore,
we need to solve the Gram determinant constraint (5.3).

We adopt momentum twistor variables [225], which have been proven to be valuable
in studying scattering amplitudes. Momentum twistors automatically satisfy momentum
conservation and massless on–shell conditions. Additionally, they hardwire the Gram de-
terminant constraint, allowing us to describe the six–point kinematics in terms of eight
unconstrained variables. For a more comprehensive understanding of momentum twistors
and detailed definitions, interested readers can refer to [225].

For our purposes, it is sufficient to know that for an n–particle process, we encode the
external kinematics via n momentum twistors

Zi = (λi, µi), (5.11)

which are related to invariants built from consecutive sums of momenta via

(pi + pi+1 + · · · + pj−1)2 = ⟨i − 1ij − 1j⟩
⟨i − 1i⟩⟨j − 1j⟩

, (5.12)

with the momentum twistor four–bracket ⟨ijkl⟩ = ϵijklZiZjZkZl and the ordinary spinor
brackets ⟨ij⟩ = ⟨ijI∞⟩ which are expressed in terms of momentum twistors using the
infinity bitwistor

I∞ =


0 0
0 0
0 1

−1 0

 . (5.13)

In the case of six external momenta, we can use SL(4)–transformations of the momen-
tum twistors, to pick a particular parametrization in terms of eight independent variables
xj, cf. [227]. To be explicit, in the remainder of this paper we will use

Z =


1 0 x1 x1x2 x1x3 x1x6
0 1 1 x8 1 1
0 0 0 1 x4 1
0 0 1 0 x5 x7

 , (5.14)

where x⃗ = {x1, . . . , x8} are free variables. The parametrization in (5.14) can be written
explicitly as,

s12 = 1
x1

, s23 = 1
x1 (x2 − x8)

, s34 = x3 − x2x4 − x5

x1 (x3x8 − x2)
,

s45 = x2 (x4(1 − x7) + x5 − 1) − x5 (x6 + x8 − 1) − (x6 − x7)(x4x8 − 1) + x3 (x7 + x8 − 1)
x1 (x3 − x6) (x2 − x8)

,

s56 = −x8x5 − x5 + x7 − x4x7x8

x1 (x2 − x3x8)
, s61 = − x5 − x4x7

x1 (x3 − x6)
,
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p1

2

1

p2

3

p3

4

p4

11

13

p5

12

p6

7

(c) Pentagon–Box (pb)

(d) Double-Box (db) (e) Pentagon-Triangle (pt) (f) Hexagon-Bubble (hbb)

Figure 5.1: Two–loop six–point massless planar Feynman diagrams.

s123 = x7 + x8 − 1
x1 (x8 − x2)

, s234 = x5

x1 (x2 − x3x8)
, s345 = x3 − x5 − x4x6 + x4x7

x1 (x3 − x6)
. (5.15)

All ϵijkl and ∆6, appearing in the alphabet and in the normalization of UT integrals, are
rationalized by this parametrization, e.g.

ϵ1234 = −x7 (x3 + x4x8 − 1) + x2 (x5 + x4 (x8 − x7) − 1)
x2

1 (x2 − x8) (x2 − x3x8)
. (5.16)

Note that the parity degree of freedom is reflected in the momentum twister space by the
fact that (5.15) has two different solutions for any choice of Mandelstam invariants.

5.2 Integral Families
All planar two-loop hexagon integrals take the general form

Ia⃗ = e2ϵγE

∫ d4−2ϵl1
iπ2−ϵ

d4−2ϵl1
iπ2−ϵ

N∏13
j=1 D

νj

j

, (5.17)

where νj ∈ Z, N is a numerator that possibly depends on the external and loop momenta,
whereas the denominators Dj are chosen as

D1 = −l2
1, D2 = −(l1 − p1)2, D3 = −(l1 − p1 − p2)2, D4 = −(l1 − p1 − p2 − p3)2,

D5 = −(l1 − p1 − p2 − p3 − p4)2, D6 = −(l1 − p1 − p2 − p3 − p4 − p5)2,
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D7 = −l2
2, D8 = −(l2 + p1)2, D9 = −(l2 + p1 + p2)2,

D10 = −(l2 + p1 + p2 + p3)2, D11 = −(l2 + p1 + p2 + p3 + p4)2,

D12 = −(l2 + p1 + p2 + p3 + p4 + p5)2, D13 = −(l1 + l2)2. (5.18)

In Section 2.1, the propagators are defined with an overall minus sign compared to the
propagators listed here. The difference between the two conventions is just an overall
factor of (−1)ν where ν = ∑

j νj.
In this chapter, we study the five out of six families in which at most nine of the

νj take positive values. Up to permutations of the external legs, these families can be
described by the Feynman diagrams in Figure 5.1, which we call top–topologies, and the
diagrams which are obtained by pinching some of the internal legs, which we refer to
as subtopologies. The calculation of the top–topology integrals is the main goal of this
chapter. We are considering the following families distinguished by which νj’s are allowed
to be non–negative:

hexagon–box (hb): ν1, ν2, ν3, ν4, ν5, ν7, ν11, ν12, ν13 ≥ 0,

pentagon–box (pb): ν1, ν2, ν3, ν4, ν7, ν11, ν12, ν13 ≥ 0,

double–box (db): ν1, ν2, ν3, ν10, ν11, ν12, ν13 ≥ 0,

pentagon–triangle (pt): ν1, ν2, ν3, ν4, ν11, ν12, ν13 ≥ 0,

hexagon–bubble (hbb): ν1, ν2, ν3, ν4, ν5, ν12, ν13 ≥ 0, (5.19)

For the remaining values of j, we have νj ≤ 0.
Note that the set of propagators (5.18) is only linearly independent for external mo-

menta defined in Dext > 4 space–time dimensions. If the external momenta are four–
dimensional, there are two identities connecting the propagators. This is because e.g. p5 · l1
and p5 · l2 may be expressed in terms of scalar products between the loop momenta and
the first four external momenta. We could explicitly use these identities to eliminate two
of the above propagators (irreducible scalar products). However, this involves making an
arbitrary choice which propagators to remove. This obscures the simple structures of the
UT integrals we describe in the following Section 5.3. Instead, we add the corresponding
integral identities to the seeds of the IBP system. To be more explicit, we choose to rewrite
the scalar products between loop momenta and p5 or p6 in terms of the other four momenta
according to the following

lj · pk = 1
G(1, 2, 3, 4)

[
G

(
pk p2 p3 p4
p1 p2 p3 p4

)
lj · p1 + G

(
p1 pk p3 p4
p1 p2 p3 p4

)
lj · p2+

G

(
p1 p2 pk p4
p1 p2 p3 p4

)
lj · p3 + G

(
p1 p2 p3 pk

p1 p2 p3 p4

)
lj · p4

]
, (5.20)

for j = 1, 2 and k = 5, 6. We then insert these identities as numerators into the seed inte-
grals and treat them in the same manner as the ordinary IBP identities that are generated
using LiteRed [132].
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Figure 5.2: Schematic representation of the structure of the canonical differential equa-
tion (4.38) for the two–loop six–point planar integral families. The green blocks with a
dotted pattern represent the maximal cut blocks computed in [226], the yellow blocks with
horizontal lines represent the subsector integrals [116] and the red blocks with vertical lines
are the ones discussed here. Moreover, the blue blocks with diagonal lines correspond to
the off-diagonal blocks of the double–pentagon family. Their computation is left for future
work.

As expected, for all six–point integral families, the number of master integrals with four–
dimensional kinematics is lower than the number of master integrals for D–dimensional
kinematics. The kinematic identities from relations like (5.20) reduce the number of master
integrals.

5.3 Canonical Bases of Master Integrals
In Ref. [226] the UT basis for the two–loop hexagon families on their respective maximal
cuts was discovered, and the corresponding canonical differential equation on the cut was
calculated. This corresponds to the blocks on the diagonal of the matrix of the differential
equation dÃ, see Figure 5.2. However, the full expression of the UT integrals or the
canonical differential equation was unknown beyond the maximal cut. The definitions
of the UT integrals beyond their maximal cuts for three of the top–sector families: the
double–box, the pentagon–triangle, and the hexagon–bubble family (see Figure 5.1) were
calculated in [263]. In the remainder of this section, we extend the definitions of the
UT integrals beyond their maximal cuts for two additional families: the hexagon–box
and pentagon–box families. In addition to the newly constructed top sector integrals, we
use the known subsector integrals from Ref. [116] to complete the UT basis. Complete
canonical differential equations, including the off–diagonal blocks, are obtained using the
methods described in Chapter 4. Note that, at the time of writing this thesis, only the
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off–diagonal blocks of the double–pentagon family are not known.
Finding a canonical basis at higher loops is much harder compared to one loop. One of

the main difficulties arises from the fact that at higher loop orders we can have more than
one master integral in each sector. Therefore, finding enough UT integrals in each sector
can be a problem. The general strategy which we use to find “good” candidates for UT
integrals, in this section, is to write them as “D–dimensional” as possible. This means that
we want to replace possible chiral numerators from Ref. [226], with numerators of definite
parity and where scalar products are written in terms of Gram determinants. Moreover,
we utilize known one–loop results (see Section 4.3) and dimension–shift identities (see
Section 4.2) to write possible numerators of UT integrals.

5.3.1 Hexagon–Box Family
There is only one master integral in the top sector of this family. Here, we can find
the UT integral by performing leading singularity analysis in the loop–by–loop Baikov
representation introduced in Section 2.4.

We start with the right loop. There we have a one–loop box diagram with loop momenta
l2 and independent external momenta p5, p6, and l1. The Baikov polynomial and the
Gram determinant that involve just the external momenta that appear in the Baikov
representation (2.44) are

PR = G(l2, p5, p6, l1), G(p5, p6, l1). (5.21)

We are left with the left loop which is a pentagon integral with independent external
momenta p1, p2, p3, p4, and loop momentum l1. Hence, the Gram determinants we have to
consider are

PL = G(l1, p1, p2, p3, p4), G(p1, p2, p3, p4). (5.22)
Since we are considering a box with four Baikov variables and a pentagon with five Baikov
variables, we end up with a loop–by–loop representation which depends on nine variables

I
(LbL)
hb ∼

∫
d9zP

D−5
2

R [G(p5, p6, l1)]
−D+4

2 P
D−6

2
L [G(p1, p2, p3, p4)]

−D+5
2

9∏
k=1

1
zνk

k

. (5.23)

The leading singularity is obtained by cutting all propagators zi = 0, setting D = 4 and
computing the residue

LS
(
I

(LbL)
hb

)
= [G(p1, p2, p3, p4)]

1
2

s56(l1 · p6)PL

(5.24)

Therefore, the UT integral with constant leading singularity is

Ihb = ϵ4e2ϵγE

∫ d4−2ϵl1
iπ2−ϵ

d4−2ϵl2
iπ2−ϵ

Nhb

D1D2D3D4D5D7D11D12D13
, (5.25)

where the numerator is

Nhb = s56
G(l1, p1, p2, p3, p4)

ϵ1234
(l1 + p6)2. (5.26)
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In addition, there are 201 integrals in the basis coming from the subtopologies. Sixteen
of those correspond to six–point integrals discussed in the remainder of this section and
185 are from five–point sectors. This is shown schematically in the figure 5.3.

5.3.2 Pentagon–Box Family
There are three master integrals in the top sector of the pentagon–box integral family.
Similarly to the other integral families, we aim to have the UT integrals of definite parity
and write the scalar products appearing in the numerators in terms of Gram determinants.
This leads us to use a different basis compared to Ref. [226]. The three UT integrals can
be written as

Ipb,i = ϵ4e2ϵγE

∫ d4−2ϵl1
iπ2−ϵ

d4−2ϵl2
iπ2−ϵ

Npb,i

D1D2D3D4D7D11D12D13
, i = 1, . . . , 3, (5.27)

where the numerators are

Npb,1 = s56
G(l1, p1, p2, p3, p6)

ϵ6123
, (5.28)

Npb,2 = s12s23s56(l1 + p6)2, (5.29)

Npb,3 = 4−s12ϵ4561 + s123ϵ5612

G(p1, p2, p3, p6)
G

(
l1 p1 p2 p3 p6
l2 p1 p2 p3 p6

)
. (5.30)

These numerators can be obtained in the following way. We know that a one–loop
pentagon is UT if normalized by its leading singularity in D = 6 dimensions and similarly
a one–loop box is UT in D = 4 dimensions. Therefore, we can use a dimension–lowering
relation (4.10) to lower the dimension of the pentagon loop to D = 4 and “glue” it to
the one–loop box. This results in the numerator Npb,1. The second numerator can be
obtained from leading singularity analysis in the loop–by–loop Baikov representation. Here,
the additional D6 = (l1 + p6)2 in the numerator effectively turns the pentagon–box into
a double–box whose leading singularity is (s12s23s56)−1. Finally, the last numerator is
obtained by computing a leading singularity of the pentagon–box integral with the following
numerator

G

(
l1 p1 p2 p3 p6
l2 p1 p2 p3 p6

)
(5.31)

in the loop–by–loop Baikov representation.
Additionally, 114 integrals come from subtopologies. Seven of them are coming from

the double–box family, one from the pentagon–triangle family, and the remaining ones
from the five–point one–mass integrals.

5.3.3 Double–Box Family
The double–box top sector contains seven master integrals. In addition, the subsectors of
the double–box family include 59 master integrals [116]. Although the integrals introduced
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Figure 5.3: Schematic representation of the hexagon–box basis of integrals. The red arrows
represent different pinches of propagators that lead to different six–point topologies. The
number of master integrals (MI) for each of the topologies is written in the bottom right
corner of the corresponding diagram.
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in Ref. [226] produce an ϵ–factorised differential equation on the maximal cut (i.e., when all
subsector integrals are set to zero), this property does not persist beyond the maximal cut.
Therefore, it is necessary to modify the UT basis beyond the maximal cut. Essentially, the
findings in Ref. [226] are not sensitive to redefinitions of the top–sector master integrals,
which vanish on the maximal cut but might compromise the UT property of the integrals.

In the double–box sector given in Figure (5.1a), the seven double–box UT integrals can
be chosen as,

Idb,i = ϵ4e2ϵγE

∫ d4−2ϵl1
iπ2−ϵ

d4−2ϵl2
iπ2−ϵ

Ndb,i

D1D2D3D10D11D12D13
, i = 1, . . . , 6, (5.32)

Idb,7 = ϵ4e2ϵγE

∫ d4−2ϵl1
iπ2−ϵ

d4−2ϵl2
iπ2−ϵ

Ndb,7

D1D2D3D10D11D12D2
13

, (5.33)

where

Ndb,1 = −s12s45s156, (5.34)
Ndb,2 = −s12s45(l1 + p5 + p6)2, (5.35)

Ndb,3 = s45

ϵ5126
G

(
l1 p1 p2 p5 + p6
p1 p2 p5 p6

)
, (5.36)

Ndb,4 = s12

ϵ1543
G

(
l2 − p6 p5 p4 p1 + p6

p1 p5 p4 p3

)
, (5.37)

Ndb,5 = −1
4

ϵ1245

G(1, 2, 5, 6)G

(
l1 p1 p2 p5 p6
l2 p1 p2 p5 p6

)
, (5.38)

Ndb,6 = 1
8G

(
l1 p1 p2

l2 − p6 p4 p5

)
+ D2D11(s123 + s345)

8 , (5.39)

Ndb,7 = − 1
2ϵ

∆6

G(1, 2, 4, 5)G

(
l1 p1 p2 p4 p5
l2 p1 p2 p4 p5

)
. (5.40)

To get the above concise expression of UT integrals, we used two guiding principles:
we aim at constructing integrals of definite parity and at writing scalar products in terms
of Gram determinants. Even though there is no guarantee that the resulting integrals
will be UT, we find empirically that these principles help us to find a canonical basis.
The UT integrals on the maximal cut that were presented in Ref. [226] are constructed by
employing chiral numerators in terms of spinor brackets, hence they transform non-trivially
under parity and are only sensible in four–dimensional kinematics. For example, for the
double–box top sector, consider a pair of conjugate chiral numerators in terms of spinor
helicity formalism,

NA = s45
(
⟨15⟩[52] + ⟨16⟩[62]

)
l1 · (λ2λ̃1), (5.41)

NB = s45
(
[15]⟨52⟩ + [16]⟨62⟩

)
l1 · (λ1λ̃2). (5.42)
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From the six–point four–dimensional kinematics, choose {p1, p2, p5, p6} as a basis and a
linear expansion shows,

(⟨15⟩[52] + ⟨16⟩[62])λ2λ̃1 + ([15]⟨52⟩ + [16]⟨62⟩)λ1λ̃2

= (s25 + s26)p1 + (s15 + s16)p2 − s12p5 − s12p6. (5.43)

Therefore the parity–even combination of two chiral numerators equals,

NA + NB = −1
2s12s45(l1 + p5 + p6)2 + 1

2s12s45s156

+
(

terms proportional to D1, . . ., D7

)
. (5.44)

So we use N2 = s12s45(l1 + p5 + p6)2 in (5.35) as a numerator to obtain a UT integral.
The parity–odd combination has the following kinematic relation,

NA − NB =
−8s45G

(
l1 p1 p2 p5 + p6
p5 p1 p2 p6

)
ϵ5126

, (5.45)

so we formulate the expression of N3 in (5.36) as another numerator to construct a UT
integral. The numerator N4 is also a parity–odd combination of chiral numerators.

The numerator N6 originates from the product of two chiral numerators. The second
term in (5.39) is obtained by transforming the whole differential equation, including the
subsectors, to the canonical form. Furthermore, N7 is discovered from the on–cut IBP
reduction to the maximally cut UT basis of the double box in [226].

5.3.4 Penta–Triangle Family
There is one master integral in the top sector. An appropriate choice of uniform transcen-
dentality integral is

Ipt = ϵ4e2ϵγE

∫ d4−2ϵl1
iπ2−ϵ

d4−2ϵl2
iπ2−ϵ

Npt

D1D2D3D4D11D12D13
, (5.46)

with numerator
Npt = 1

32
G (l1, p1, p2, p3, p5)

ϵ1235
. (5.47)

This is obtained by using a lowering dimension–shift relation (4.10) on the pentagon loop.
In addition, there are 43 integrals from subtopologies.

5.3.5 Hexagon-Bubble Family
There is one master integral in the top sector. An appropriate choice of uniform transcen-
dentality integral is

Ihbb = ϵ3e2ϵγE

∫ d4−2ϵl1
iπ2−ϵ

d4−2ϵl2
iπ2−ϵ

Nhb

D1D2D3D4D5D12D2
13

, (5.48)
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with numerator
Nhbb = 1

32
G (l1, p1, p2, p3, p4)

ϵ1234
(l1 + p6)2. (5.49)

Notice that the propagator D13 is doubled. This comes from a raising dimension–shift
relation (4.13) acting on the bubble loop. Similarly, the numerator can be thought of as a
dimension lowering operator acting on the hexagon loop. The additional irreducible scalar
product in the numerator, D6 = (l1 +p6)2, transforms the hexagon into a pentagon and the
fraction involving Gram determinants lowers the dimension of the pentagon from D = 6
to D = 4.

In addition, there are 31 integrals from subtopologies.

5.4 Efficiently Calculating Feynman Integrals
As described in Chapter 4, the method of differential equations has proved to be a very
powerful tool for analytic computations of Feynman integrals. Since the derivatives of
(5.17) with respect to the external variables can be expanded in terms of the same family
of integrals, there is a completely algorithmic way to express them in terms of the mas-
ter integrals of the respective family using IBP identities; see Section 4.1. However, the
swell of intermediate expressions renders this approach unfeasible for state–of–the–art ap-
plications. Since this algorithm relies solely on linear algebra involving rational functions
of kinematic variables, it can be drastically accelerated by using finite field reconstruc-
tions [137–139]. In a nutshell, the required calculations are performed for integer–valued
kinematics modulo some large prime. Then, once enough information about the resulting
rational functions is known, they can be reconstructed in an analytical form. However, in
our particular application of eight–scale six–point integrals, the functional reconstruction
itself poses a significant bottleneck of this computation. Hence, it is invaluable to provide
as much analytic information about the function space as possible, to simplify this final
reconstruction step.

Reconstruction and solving of differential equations is simplified by choosing a basis of
master integrals I⃗fam that consists of pure transcendental functions of uniform transcenden-
tal weight; see Section 4.3. Then, the derivatives for the integral family take the canonical
form

dI⃗fam(ϵ, x⃗) = ϵ dÃfam(x⃗) · I⃗fam(ϵ, x⃗), (5.50)

where the total differential is given in terms of the eight momentum twistor variables
and the basis integrals are described in Section 5.3. Here and in the following we use the
subscript fam ∈ {hb, pb, db, pt, hbb} to distinguish the five families under study, see Figure
5.1. A special feature of eq. (5.50) is that the dependence on the dimensional regulator
ϵ is via a factor on the R.H.S., so that the matrix dÃfam depends on the kinematics only.
This matrix is expanded in a basis of dlog forms according to

dÃfam(x⃗) =
∑

j

c
(fam)
j dlog(wj(x⃗)) , (5.51)
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where the the wj are algebraic functions of the kinematic variables, whereas the c
(fam)
j are

block upper triangular matrices whose entries are rational constants. The size of these
matrices is determined by the number of master integrals for each of the families. There
are 202, 117, 66, 44, and 32 master integrals for the hexagon–box, the pentagon–box,
the double–box, the pentagon–triangle and the hexagon-bubble family, respectively. The
required alphabet for the five families of integrals we are studying is described in Section 5.5.
Moreover, machine–readable expressions for the UT basis, Ã matrices and the alphabet
can be found at

github.com/antonela-matijasic/hexagon-functions.git.

We also note that the question of whether an integral basis can possibly form a canonical
basis can be tested efficiently. It is sufficient to perform the finite field evaluation of the
differential equation for a small set of kinematic configurations and for different values of ϵ
to verify the ϵ–factorized form. Hence, this step does not require functional reconstruction.

Naively, to find the Ãfam matrices, one would reconstruct the rational functions in the
derivative matrices

Ãj
fam = ∂Ãfam

∂xj

, (5.52)

and integrate those into dlog forms sequentially. In the present case, where some of the
leading singularities evaluate to square roots, the square roots have to be extracted from
the derivative matrices first. This is straightforward to do, cf. Sec. 6.3 of [139]. However,
reconstruction can be avoided entirely if the alphabet A is known a priori [228]. Then,
provided that a UT basis has been found, the only remaining objects to determine are
the Q–valued matrices c

(fam)
j in equation (5.51). This amounts to a linear fit problem.

Since here the final step only consists in a rational reconstruction, instead of a functional
reconstruction, this approach requires only a small number of finite field evaluations.

Ultimately, combined knowledge of the UT basis and the alphabet allows efficient de-
termination of differential equations. Calculating the full differential equation in this setup
takes around 1.25 hours, 41 minutes and 31 minutes for the double–box, pentagon–triangle
and hexagon–bubble, respectively.1 While for the families with more master integrals, the
penatgon–box and the hexagon–box family, it took around 1 and 4 days, respectively, to
solve the IBP system and to fit the alphabet.2 In contrast, performing a partial functional
reconstruction of the dependence on 7 out of the 8 variables on one single entry of the
double–box partial differential equation takes roughly 41 hours on a more powerful ma-
chine3, rendering the whole reconstruction of all 8 partial derivatives for all non-vanishing
elements highly inefficient.

1The timings were obtained on AMD Ryzen 7 5700G, with 8 CPU cores and only involve solving the
IBPs and the linear fit step.

2The timings were obtained on Intel(R) Xenon(R) Platinum 8160 CPU @ 2.10 GHz using 4 threads
with 100 GB and 1 thread with 4 TB of memory for the pentagon–box and the hexagon–box, respectively.

3We used 4 threads on Intel(R) Xenon(R) Platinum 8160 CPU @ 2.10 GHz with 800 GB of memory.

https://github.com/antonela-matijasic/hexagon-functions.git
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5.5 The Hexagon Alphabet at Two Loops
The analytical structure of the function space of two-loop hexagon integrals is encoded in
the hexagon alphabet A.

The hexagon alphabet consists of letters known from two–loop five–point integrals with
one off–shell leg [116] rewritten in terms of six–particle kinematics, letters from the maximal
cut [226], letters from the one–loop hexagon integrals [79], and new letters appearing in
the off–diagonal blocks of the differential equations.

The alphabet presented in the following sections is closed under the action of dihedral
transformations. Hence, it will be sufficient to describe not only the integrals studied in
this paper but also all of their dihedral images. The dihedral group is generated by cyclic
permutations T defined via

T (pi) = pi+1, i = 1, . . . , 6, (p7 ≡ p1), (5.53)

and reflections ρ
ρ(pi) = p8−i, i = 1, . . . , 6, (5.54)

where the indices on the right–hand side are defined modulo 6.
With permutations included, the two–loop hexagon alphabet has 283 letters, which we

classify according to parity transformations and list in the following sections. The subset
of letters appearing in the differential equations for different families considered is given in
Table 5.2.

Note that the differential equations (4.38) are valid for four–dimensional kinematics,
but we provide the letters in terms of nine scalar products sij. This allows for shorter ex-
pressions which are easily converted to four–dimensional kinematics using the map (5.15).
Although the alphabet we provide in this section is multiplicatively independent as func-
tions of the nine Mandelstam variables, there is a set of identities (App. A) that hold on
the support of the Gram determinant constraint (4.144).

Of course, the well-known nine–letter alphabet for the six–point remainder function in
N = 4 sYM theory [192, 219] is contained within our alphabet.

5.5.1 Predicting Alphabet Letters
As described in Section 5.4, for an efficient calculation of the multi–scale differential equa-
tion, it is invaluable to know the alphabet letters a priori.

The letters describe the locations of possible singularities of the Feynman integrals,
thus they are dictated by the Landau equations and more general by PLD; see Chapter 3.
The letters produced by Landau analysis are rational functions of the kinematic variables.
However, it has been observed that in situations where some of the leading singularities of
the Feynman integrals under study evaluate to square roots, the alphabet that is required
to describe the differential equation in the canonical form also contains algebraic letters of
the form

wk = Pk −
√

Qk

Pk +
√

Qk

, (5.55)
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where both Pk and Qk are homogeneous polynomials of the kinematic variables.
In order to predict the alphabet, we follow the approach described in Chapter 3. In

this approach, we would solve the Landau equations (3.13) and detect/recognize possible
square roots. This would give us the even part of the alphabet which can be used as input
for the Algorithm 1 that produces algebraic letters.

Since the publicly available code for solving Landau equations [34, 35] became available
after we have already conjectured the two–loop alphabet, we followed a slightly different
approach. We assumed that all even letters, including the occurring square roots

√
Qk,

needed to fit the differential equation matrices, are already known in the literature [79,
116, 226]. This resulted in an overcomplete alphabet consisting of 400 letters where the
first 90 letters are of degree one, 291 letters are of degree two, 18 letters are of degree three,
and one letter is of degree five. A priori, we do not have a criterion which would reduce
the size of the alphabet and therefore also the size of the ansatz.

In the construction of odd letters, we assume that the nine kinematic variables v⃗ are
independent. In particular, in these D–dimensional kinematics, all square roots in the
problem are independent and square–free, i.e. no polynomial can be factored from under
the square roots. The 39 square roots we consider are:{√

λ(s12, s34, s56),
√

λ(s12, s36, s45),
√

G(p1, p2, p3, p4),
√

G(p1, p2, p3, p5),
√

G(p1, p2, p4, p5),√
∆6,

√
(s12ϵ1456 + s123ϵ1256)2,

√
(s234ϵ6123 − s61ϵ1234)2,√

(s56ϵ1234 − s34ϵ1245 − (s34 − s234)ϵ1345 − (s56 − s234)ϵ2345)2
}

+ cyclic permutations,
(5.56)

where ∆6 is defined in equation (3.32). Furthermore, we also consider all products of two
different square roots listed here. This allows us to construct the relevant odd letters using
the approach described in Section 3.4.

Note that the square roots of Gram determinants listed in (5.56) can only be treated
independently in D–dimensional kinematics. For D–dimensional on-shell six–point kine-
matics, the Gram determinants of four momenta satisfy the identities

G(pi, pj, pk, pl)G(pi, pj, pm, pn) = G

(
pi pj pk pl

pi pj pm pn

)2

− G(pi, pj, pm + pn)G(1, 2, 3, 4, 5)

G(pi, pj, pk, pl)G(pi, pj, pk, pn) = G

(
pi pj pk pl

pi pj pk pn

)2

− G(pi, pj, pk)G(1, 2, 3, 4, 5),

(5.57)

for all i, j, k, l, m, n ∈ {1, 2, 3, 4, 5, 6}. These relations imply that, in the four–dimensional
limit where G(1, 2, 3, 4, 5) → 0, the product of any two Gram determinants of four mo-
menta turns into a perfect square. Hence, in four–dimensional kinematics, the square roots
of Gram determinants of four momenta are no longer independent roots. Consequently,
there is a set of identities among odd letters generated from the construction described
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in Section 3.4. We use the momentum twistor parametrization (5.15) to satisfy the Gram
constraint manifestly and to find these relations between the letters for four–dimensional
external kinematics. We list the identities in App. A. Thus, we obtain a list of candidate
letters to express the differential equation in four–dimensional kinematics.

Ultimately, the proof that we have constructed the full alphabet lies in the success
of the linear fit to the equation (5.51). If some letters are missing from the ansatz, the
corresponding entries of the differential equation cannot be determined. However, we find
for the five families studied that the letters constructed via Algorithm 1 are sufficient to
describe the entire respective differential equations.

In the following sections, we list all the letters that appear in the differential equations
for the five families considered in this chapter.

5.5.2 Parity–Even Letters
The first part of the alphabet is parity–even letters that are given as scalar products of
external momenta.

There are 48 letters linear in the Mandelstam variables sij:

w1 = s12, wi+1 = T iw1, i = 1, . . . , 5, (5.58)
w7 = s123, wi+7 = T iw7, i = 1, 2, (5.59)

w10 = −s12 − s23, wi+10 = T iw10, i = 1, . . . , 5, (5.60)
w16 = s12 − s123, wi+16 = T iw16, i = 1, . . . , 5, (5.61)
w22 = s12 − s345, wi+22 = T iw22, i = 1, . . . , 5, (5.62)
w28 = −s12 − s23 + s123, wi+28 = T iw28, i = 1, . . . , 5, (5.63)
w34 = s12 − s34 − s123, wi+34 = T iw34, i = 1, . . . , 5, (5.64)
w40 = s12 − s56 + s345, wi+40 = T iw40, i = 1, . . . , 5, (5.65)
w46 = s12 + s45 − s123 − s345, wi+46 = T iw46, i = 1, 2. (5.66)

The following 51 letters are quadratic in the Mandelstam variables sij:

w49 = −s12s45 + s123s345, wi+49 = T iw49, i = 1, 2, (5.67)
w52 = s12s56 − s12s123 + s34s123, wi+52 = T iw52, i = 1, . . . , 5, (5.68)
w58 = −s12s45 − s23s345 + s123s345, wi+58 = T iw58, i = 1, . . . , 5, (5.69)
w64 = −s12s45 − s34s123 + s123s345, wi+64 = T iw64, i = 1, . . . , 5, (5.70)
w70 = s12s56 − s123s56 + s34s123, wi+70 = T iw70, i = 1, . . . , 5, (5.71)
w76 = −s12(s34 + s45) − (s34 − s56 + s123)s345, wi+76 = T iw76, i = 1, . . . , 5, (5.72)
w82 = (s12 + s23)s45 + s123(s61 − s23 − s345), wi+82 = T iw82, i = 1, . . . , 5, (5.73)
w88 = s12(−s34 + s345) + (s34 − s56 − s345)s345, wi+88 = T iw88, i = 1, . . . , 5, (5.74)
w94 = (s34 − s12 + s123)(s12 − s34 + s234) − s23s56,
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wi+94 = T iw94, i = 1, . . . , 5, (5.75)

while another 18 letters are cubic in the scalar products sij:

w100 = s23s56(−s34 + s345) − (s61 − s234)(s12s45 + s34s123 − s123s345),
wi+100 = T iw100, i = 1, . . . , 5 (5.76)

w106 = −s123 (s34 − s56) (s56 − s234) − s12s56 (s23 + s56 − s234) ,

wi+106 = T iw106, i = 1, . . . , 5 (5.77)
w112 = (s234 − s61) s2

23 − (s56s61 − s123s61 + (s45 + s123) s234) s23 + s45s123s234,

wi+112 = T iw112, i = 1, . . . , 5. (5.78)

The next five letters are square roots that remain square roots even in the momentum
twistor parametrization. They are defined as:

w118 = r1 =
√

λ(s12, s34, s56), (5.79)

w119 = r2 =
√

λ(s23, s45, s61), (5.80)

w120 = r3 =
√

λ(s12, s36, s45),
wi+120 = ri+3 = T iw120, i = 1, 2, (5.81)

where λ denotes the Källén function

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. (5.82)

These letters change sign under the
√

λ → −
√

λ transformations, but d log (
√

λ) is invari-
ant.

The remaining 34 even letters including pseudo scalars:

w123 = ϵ1234, wi+123 = T iw123, i = 1, . . . , 5, (5.83)
w129 = ϵ1235, wi+129 = T iw129, i = 1, . . . , 5, (5.84)
w135 = ϵ1245, wi+135 = T iw135, i = 1, 2, (5.85)
w138 = ∆6 (5.86)
w139 = s12ϵ1456 + s123ϵ1256, wi+139 = T iw139, i = 1, . . . , 5, (5.87)
w145 = s56ϵ1234 − s34ϵ1245 − (s34 − s234)ϵ1345 − (s56 − s234)ϵ2345,

wi+145 = T iw145, i = 1, . . . , 5, (5.88)
w151 = s234ϵ6123 − s61ϵ1234, wi+151 = T iw151, i = 1, . . . , 5. (5.89)

A pseudo–scalar transforms as wj → −wj under parity transformations, but again d log wj

is invariant. Furthermore, all of the above pseudo–scalars are square roots in terms of
Mandelstam variables sij which become rationalized in momentum twistor variables xi.

To summarize, the parity–even part of the alphabet contains 156 letters closed under
the action of the dihedral symmetry group. All of these letters are already known either
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Family # even letters # even letters Additional lettersin DE from PLD.jl
Hexagon–box (hbb) 48 48 (+1) –

Pentagon–triangle (pt) 57 48 (+1) w13, w36, w45, w56, w64,
w77, w85, w100, w129

Double–box (db) 56 48 (+1) w36, w39, w41, w44,
w96, w99, w120, w135

Pentagon–box (pb) 67 48 (+1)

w13, w34, w36, w37, w42,
w45, w62, w64, w70, w77,

w85, w94, w97, w100, w106,
w121, w129, w136, w139

Hexagon–box (hb) 79 48 (+1)

w13, w14, w34 − w37, w40,
w42, w45, w56, w62 − w65,
w70, w77, w78, w85, w94,

w97, w100, w101, w106, w115,
w121, w129, w130, w136,

w139, w145, w154

Table 5.1: Comparison between the even letters predicted by PLD.jl and even letters that
appear in the differential equations. The package predicts the same singularities for all five
families (and the Gram determinant constraint, represented by (+1) in the table).

from the two–loop six–point maximal cut differential equations or from the two–loop five–
point integrals with one off–shell leg.

Recently, great progress has been made in finding even letters directly from the study
of the Landau variety; see Section 3.2. We compared the even letters listed in this section
with the components of the Landau singular locus of the five families, computed using
the principal Landau determinants implemented in PLD.jl [34, 35]. As noted in the pre-
ceding references, the current implementation of principle Landau determinants can miss
some of the components of the singular locus. For the hexagon–bubble family, all letters
are correctly predicted, while for the remaining families some letters are missed by the
package PLD.jl. We list the additional letters needed for the DE in Table 5.1.

5.5.3 Parity–Odd Letters
This section lists the parity–odd letters that transform as d log(wi) → −d log(wi) under
parity transformations.

First, there are 25 letters that change their sign under the sign change of a square
root ri:

w157 = s12 + s34 − s56 − r1

s12 + s34 − s56 + r1
, w157 = Tw157, (5.90)

w159 = −s12 + s34 + s56 − r1

−s12 + s34 + s56 + r1
, w159 = Tw159, (5.91)
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w161 = s12 − s34 + s56 − 2s123 − r1

s12 − s34 + s56 − 2s123 + r1
, wi+161 = T iw161, i = 1, . . . , 5, (5.92)

w167 = s123 + s345 − r3

s123 + s345 + r3
, wi+167 = T iw167, i = 1, 2, (5.93)

w170 = s123 − s345 − r3

s123 − s345 + r3
, wi+170 = T iw170, i = 1, 2, (5.94)

w173 = s123 + s345 − 2s12 − r3

s123 + s345 − 2s12 + r3
, wi+173 = T iw173, i = 1, 2, (5.95)

w176 = s123 − s345 + 2s34 − 2s56 − r3

s123 − s345 + 2s34 − 2s56 + r3
, wi+176 = T iw176, i = 1, 2 (5.96)

w179 = s123 − s345 − 2s23 + 2s61 − r3

s123 − s345 − 2s23 + 2s61 + r3
, wi+179 = T iw179, i = 1, 2 (5.97)

These letters are already known from the two–loop five–particle integrals with one off–shell
leg.

In addition, there are 87 letters that are odd with respect to the sign change of the
pseudo scalars ϵijkl and ∆6:

w182 = s12s23 − s23s34 + s23s56 + s34s123 − s234(s12 + s123) − ϵ1234

s12s23 − s23s34 + s23s56 + s34s123 − s234(s12 + s123) + ϵ1234
,

wi+182 = T iw182, i = 1, . . . , 5, (5.98)

w188 = s12(s23 − s234) − s23(s34 + s56) + s123(s34 + s234) − ϵ1234

s12(s23 − s234) − s23(s34 + s56) + s123(s34 + s234) + ϵ1234
,

wi+188 = T iw188, i = 1, . . . , 5, (5.99)

w194 = s12(−s23 + s234) + s23(s34 + s56) + s123(s34 − s234) − ϵ1234

s12(−s23 + s234) + s23(s34 + s56) + s123(s34 − s234) + ϵ1234
,

wi+194 = T iw194, i = 1, . . . , 5, (5.100)

w200 = s12(s23 + s234) + s23(−s34 + s56) + s123(s34 − s234) − ϵ1234

s12(s23 + s234) + s23(−s34 + s56) + s123(s34 − s234) + ϵ1234
,

wi+200 = T iw200, i = 1, . . . , 5, (5.101)

w206 = s12(s23 + s234) − s23(s34 + s56 − 2s234) + s123(s34 − s234) − ϵ1234

s12(s23 + s234) − s23(s34 + s56 − 2s234) + s123(s34 − s234) + ϵ1234
,

wi+206 = T iw206, i = 1, . . . , 5, (5.102)

w212 = s12(s23 − s234) + s23(−s34 + s56 − 2s123) + s123(−s34 + s234) − ϵ1234

s12(s23 − s234) + s23(−s34 + s56 − 2s123) + s123(−s34 + s234) + ϵ1234
,

wi+212 = T iw212, i = 1, . . . , 5, (5.103)

w218 = s12(s23 + 2s56 − 2s123 − s234) + s23(−s34 + s56) + s123(s34 − s234) − ϵ1234

s12(s23 + 2s56 − 2s123 − s234) + s23(−s34 + s56) + s123(s34 − s234) + ϵ1234
,

wi+218 = T iw218, i = 1, . . . , 5, (5.104)

w224 = 2s2
12 + s12(s23 − 2s34 − 2s123 + s234) + s23(−s34 + s56) + s123(s34 − s234) − ϵ1234

2s2
12 + s12(s23 − 2s34 − 2s123 + s234) + s23(−s34 + s56) + s123(s34 − s234) + ϵ1234

,
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wi+224 = T iw224, i = 1, . . . , 5, (5.105)

w230 = −s23 (s56 − s34) + s12 (s23 + 2s56 − s234) + s123 (s34 − 2s56 + s234) − ϵ1234

s23 (s56 − s34) + s12 (s23 + 2s56 − s234) + s123 (s34 − 2s56 + s234) + ϵ1234
,

wi+230 = T iw230, i = 1, . . . , 5, (5.106)

These 54 letters are known from the one–loop hexagon integral and the two–loop five–point
integrals with one massive leg.

The following six letters appear for the first time in the off–diagonal block of the
differential equations for pentagon–triangle integral family,

w236 = −s12(s45 + s61 − s234) + s23(s34 + s56 − s345) + s123(−s34 + s61 − s234 + s345) − ϵ1235

−s12(s45 + s61 − s234) + s23(s34 + s56 − s345) + s123(−s34 + s61 − s234 + s345) + ϵ1235
,

wi+236 = T iw236, i = 1, . . . , 5. (5.107)

Furthermore, the letters {w242, . . . , w253} appear for the first time in the off–diagonal block
of the double–box differential equation. These are defined as

w242 = P1 − ϵ1245

P1 + ϵ1245
, wi+242 = T iw242, i = 1, 2, (5.108)

w245 = P2 − ϵ1245

P2 + ϵ1245
, wi+245 = T iw245, i = 1, 2, (5.109)

w248 = P3 − ϵ1245

P3 + ϵ1245
, wi+248 = T iw248, i = 1, 2, (5.110)

w251 = P4 − ϵ1245

P4 + ϵ1245
, wi+251 = T iw251, i = 1, 2, (5.111)

where P1, P2, P3 and P4 are polynomials defined as

P1 = s12s45 + s23(−s34 + s56 + s345) + s61(s34 − s56) + s123(s34 + s61 − s234)
+ s345(s56 − s123 − s234), (5.112)

P2 = s12s45 − s34s61 + s56s61 − s34s123 + s123(−s61 + s234 + s345)
+ s23(s34 − s56 − s345) − s56s345 + s234s345, (5.113)

P3 = s12s45 + s123(−s34 + s123) + 2s2
23 + s23 (s34 + s56 − 2(s61 + s123 + s234) + s345)

+ s61(−s34 − s56 + s123 + 2s234) + s345(s56 − s123 − s234), (5.114)
P4 = s12s45 + s23(s34 − s56 − s345) + 2s2

34 + s34(−2s56 + s61 + s123 − 2(s234 + s345))
− s56s61 + s61s123 + 2s56s234 − s123s234 + s345(s56 − s123 + s234). (5.115)

The following three odd letters are known from the one–loop hexagon integral,

w254 = −s12s45s234 + s34s61s123 + s345(−s23s56 + s123s234) − ∆6

−s12s45s234 + s34s61s123 + s345(−s23s56 + s123s234) + ∆6
,

wi+254 = T iw254, i = 1, 2. (5.116)
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The last 12 letters appear for the first time in the pentagon–box family and in the
off–diagonal terms of the hexagon–box family:

w257 = −P5 − (s12ϵ1456 + s123ϵ1256)
P5 + (s12ϵ1456 + s123ϵ1256)

,

wi+257 = T iw257, i = 1, . . . , 5, (5.117)

w263 = −P6 − (s234ϵ6123 − s61ϵ1234)
P6 + (s234ϵ6123 − s61ϵ1234)

,

wi+263 = T iw263, i = 1, . . . , 5, (5.118)

where the polynomials P5 and P6 are defined as follows

P5 = s12 (s23s56 − s61s56 + s45 (s234 − s56))
+ s123 (−s34s61 − s234s345 + s56 (s61 + s345)) , (5.119)

P6 = s12 (s23 (s61 − s234) + s45s234) + s123 (s234s345 − s34s61)
+ s23 (s34s61 − s56s61 − s234s345) . (5.120)

5.5.4 Letters with Mixed Parity Transformations
The last 15 letters in the hexagon alphabet transform non–trivially under the parity trans-
formations. They are even under simultaneous changes of the sign of a square root ri and
a pseudo–scalar ϵijkl, but odd under the sign change of just one of them.

The letters are defined as:

w269 = P7 − r1ϵ1234

P7 + r1ϵ1234
,

wi+269 = T iw269, i = 1, . . . , 5, (5.121)

w275 = P8 − r4ϵ1234

P8 + r4ϵ1234
,

wi+275 = T iw275, i = 1, . . . , 5, (5.122)

w281 = P9 − r3ϵ1245

P9 + r3ϵ1245
,

wi+281 = T iw281, i = 1, 2, (5.123)

where P5, P6 and P7 are the following polynomials:

P7 = s2
12(s23 − s234) + s12 (−2s23(s34 + s56) + s34(−2s56 + s123) + s234(s34 + s56 + s123))

+ (s34 − s56) (s23(s34 − s56) + s123(−s34 + s234)) , (5.124)
P8 = s12 (s23(2s56 − s123 + s234) − s234(s123 + s234)) − s123(s34 − s234)(s123 + s234)

+ 2s2
23s56 + 2s23 (s34(2s56 + s123 − s234) − s56(s123 + s234) − 2s123s234) , (5.125)

P9 = s12s45 (2s23 + 2s34 + 2s56 + 2s61 − s123 − 4s234 − s345) + (s123 + s345)·



5.6 Solving the Differential Equations 95

(s23(s34 − s56 − s345) − s61(s34 − s56) − s123(s34 + s61 − s234) − s345(s56 − s123 − s234)) .
(5.126)

The first 12 letters are already known from the literature, while the letters {w281, . . . , w283}
are new. These new letters appear in the off–diagonal blocks of the double–box differential
equations and consequently in all other families where a double–box appears as a subsector.

5.5.5 Summary of Two–Loop Hexagon Alphabet
Throughout previous sections we provided the two–loop hexagon alphabet closed under
cyclic permutations and under reflections. In total, the alphabet has 283 letters, 156 of
which are even, 112 odd, and 15 with mixed parity behavior. To express the DEs of the
particular orientations of the integral families shown in Figure 5.1, only a subset of letters
is needed.

The specific letters appearing in the differential equations for each of the families are
listed in Table 5.2. The letters are classified according to the weight at which they first
appear in the symbol. Moreover, only letters appearing up to weight four are listed, since
they also contribute to the relevant function space.

For all of the families except for the hexagon–bubble family, there are letters which
appear at weight five or six for the first time. For the hexagon–box, these letters are

A(5)
hb = {w94, w97, w106, w115, w121, w129, w130, w177, w180, w224, w227, w230, w260, w269, w272},

A(6)
hb = {w136, w139, w145, w154}, (5.127)

while in the pentagon–box family, they are

A(5)
pb = {w94, w97, w106, w121, w129, w177, w180, w224, w227, w230, w269, w272},

A(6)
pb = {w136, w139}. (5.128)

Starting from weight seven, all letters will appear in the symbol. On the other hand, for
the double–box family and the pentagon–triangle family, all letters will appear already at
weight six, while the new letters at weight five are

A(5)
db = {w96, w99, w120, w176, w179, w226, w229, w271, w274},

A(5)
pt = {w129}. (5.129)

5.6 Solving the Differential Equations
In this section, we describe how to solve the canonical differential equations (4.38) for the
double–box, pentagon–triangle and hexagon–bubble families. The general solution to the
canonical differential equations is given as a Chen’s iterated integral (4.80); see Section 4.4.
To fully determine the solution, we provide boundary constants for all integrals in the
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three families up to transcendental weight four. Following similar steps as in the one–loop
hexagon, described in Section 4.6, we fix the full functional dependence in the Euclidean
region in terms of classical polylogarithms up to weight two. Moreover, we describe how
to define one–fold integral representations for all functions up to weight four, which can
be used to provide fast numerical evaluations of the integrals.

Note that the determination of boundary values for the hexagon–box and pentagon–box
families is still ongoing and, as such, is not included in this thesis. As a result, solutions
for these integrals are also not provided.

5.6.1 Boundary Constants
To uniquely fix a solution of the first–order canonical DE, we have to provide boundary
information for all of the integrals at a single point. Similarly to the one–loop example
presented in Chapter 4, we fix the boundary constants analytically by imposing regularity
of our basis of integrals throughout the Euclidean region. We record the values of our
integral bases at the symmetric reference point

v⃗0 = {−1, . . . , −1}. (5.130)

While the basis should be regular all through the Euclidean region, defined by

sij < 0, sijk < 0, (5.131)

this is not true for the differential equation matrices. Instead, the Euclidean region is
crossed by hypersurfaces defined by the vanishing of any alphabet letter

wj = 0. (5.132)

Schematically, the situation is depicted in Figure 4.2, where solid black lines denote the
boundaries of the Euclidean region, while the dashed lines depict the spurious hypersurfaces
defined by vanishing of one of some alphabet letters. Imposing the absence of singularities
on these spurious surfaces puts constraints on the boundary constants. The constraints
arising from the hypersurfaces that contain the boundary point v⃗0 are labeled Type–I in
Figure 4.2. The constraints from all other spurious hypersurfaces, which we call Type–II
constraints, must first be transported to the boundary point using the differential equation
along some path γ.

We find that solving the DEs on the one–parameter curve defined by

s12 = s34 = s56 = −1,

s23 = s45 = s61 = −(x − 1)2,

s123 = s234 = s345 = x − 1, (5.133)

and requiring regularity at the points x = 0, ρ, ρ̄ with ρ = 1
2(1 − i

√
3) is sufficient to fix all

boundary constants up to weight four up to an overall rescaling. The latter is fixed once
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we substitute the known expansion for our UT choice for the sunrise integrals

Isunrise(v⃗0) = −e2γEϵ Γ(1 − ϵ)3Γ(1 + 2ϵ)
2Γ(1 − 3ϵ)

= −1
2 + π2

12ϵ2 + 16
3 ζ3ϵ

3 + 19π4

240 ϵ4 + O(ϵ5). (5.134)

On the curve defined by equation (5.133), the alphabet of the three families under study
simplifies massively, so that all remaining nonconstant logarithms have arguments from
the set

Aline = {x, x − 1, 1 − x + x2}. (5.135)

Since the last letter can be factorized over the complex numbers as

1 − x + x2 =
[
x − 1

2
(
1 − i

√
3
)] [

x − 1
2
(
1 + i

√
3
)]

(5.136)

we can express the general solution to the DEs on this curve in terms of Goncharov G–
functions (4.82) with entries in the set {0, 1, ρ, ρ̄}. Hence, the boundary constants can
be expressed in terms of linear combinations of polylogarithms at the sixth roots of unity
[212], as we already saw in the one–loop hexagon in Section 4.5.

Using the function DecomposeToLyndonWords from PolyLogTools [23], it is straight-
forward to isolate the log–divergent contributions in the limits x → 0, ρ, ρ̄. Imposing their
vanishing order–by–order in ϵ fixes the boundary constants relative to each other. Here we
provide the boundary values for the top–sector integrals,

Idb,1(v⃗0) = 1 + π2

6 ϵ2 + 38
3 ζ3ϵ

3 +
(

49π4

216 + 32
3 Im [Li2(ρ)]2

)
ϵ4,

Idb,2(v⃗0) = 1 + π2

6 ϵ2 + 34
3 ζ3ϵ

3 +
(

71π4

360 + 20 Im [Li2(ρ)]2
)

ϵ4,

Idb,3(v⃗0) = Idb,4(v⃗0) = Idb,5(v⃗0) = 0,

Idb,6(v⃗0) = −
(

π4

540 + 4
3 Im [Li2(ρ)]2

)
ϵ4,

Idb,7(v⃗0) = Ipt(v⃗0) = Ihbb(v⃗0) = 0. (5.137)

All boundary values for the subsector integrals are written in a similar manner, but we do
not list them here, since the list would be quite long. Machine–readable analytic expressions
for the boundary values of the double–box, pentagon–triangle, and hexagon–bubble families
can be found in the ancillary files of Ref. [263].

5.6.2 Analytic Properties of the Hexagon Function Space
A formal solution to canonical differential equations is discussed in Section 4.4, where we
also introduce the notion of the symbol. In this section, we provide a brief reminder of what
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a formal solution entails. Moreover, we use the symbol to examine the analytic properties
of the two–loop hexagon function space.

The solutions to the canonical differential equations can be found as a series expansion
in the dimensional regulator ϵ. By construction, the expansion starts at O(ϵ0),

I⃗fam(v⃗, ϵ) =
∞∑

k=0
ϵkI⃗

(k)
fam(v⃗ ), (5.138)

where I⃗fam denotes the basis integrals for one of the five families. The weight k solution is
then given as k–fold iterated integral

I⃗
(k)

fam(v⃗ ) = I⃗
(k)
fam(v⃗0) +

∫
γ
(dÃ(v⃗ ′))I⃗ (k−1)

fam (v⃗ ′), (5.139)

where I⃗
(k)

fam(v⃗0) are weight k boundary values described in the previous section and γ is a
path connecting the boundary point v⃗0 and some other point v⃗.

The integral in equation (5.139) can be written as

I⃗
(k)

fam(v⃗ ) =
k∑

k′=0

283∑
i1,...,ik′ =1

a(a1) . . . a(ik′ )I⃗
(k−k′)

fam (v⃗0)
[
wi1 , . . . , wik′

]
v⃗0

(v⃗ ), (5.140)

where we use the recursive definition of Chen iterated integrals (4.81) of weight k

[wi1 , . . . , wik
]v⃗0

(v⃗ ) =
∫

γ
d log wik

(v⃗ ′)
[
wi1 , . . . , wik−1

]
v⃗0

(v⃗ ′) (5.141)

with [ ]v⃗0 = 1. The differential equations ensure that only homotopy invariant linear
combinations of iterated integrals appear in the solution (5.140), while a single term is not
homotopy invariant.

One useful tool for studying the properties of polylogarithmic functions is the symbol.
The symbol map S can be defined by its action on the Chen iterated integrals (4.93). It
maps the k–fold iterated integral into the k–fold tensor product. Using the symbol map, we
classify the alphabet letters according to the weight at which they appear in the symbol for
the first time for each family. We record this information in Table 5.2 and in Section 5.5.5.
Moreover, we use it to predict the function space for the basis integrals at weight one and
weight two described in the following section.

Furthermore, we confirm the validity of the extended Steinmann relations [264] for
all integrals in the basis of all five families considered. These relations state that double
discontinuities in partially overlapping channels vanish [265, 266] and require that the
three–point kinematic variables s123, s234 and s345 never appear next to each other in the
symbol. Physically, they reflect the incompatibility of the different three–particle cuts
on all possible Riemann sheets. The differential equation matrices A(fam) ensure that the
Steinmann relations hold at any order in ϵ at any depth into the symbol [199]

c
(fam)
j · c

(fam)
k = 0, j ̸= k, j, k = 7, 8, 9. (5.142)
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In practice, these adjacency conditions imply that any two letters wj and wk for which this
identity holds will never appear as consecutive letters in the symbol.

Constraints like these are very important for bootstrap approaches to amplitudes or
other observables. For example, one such observable is the Wilson loop with Lagrangian
insertion in N = 4 sYM [267]. It was observed that it is related to all–plus amplitudes in
pure Yang–Mills theory [268, 269], and hence depends on the same function space.

If the alphabet for an object is known, one can make an ansatz in terms of all possible
functions built from this alphabet and determine the respective coefficients from physical
properties of the result, see e.g. [192, 193, 195]. However, for large alphabets and with
growing weight, the size of the required function basis grows rapidly. Then, a priori knowl-
edge about the structure of the function space, like the above adjacency conditions, cuts
down the size of the required ansatz. Motivated by this application, we also consider the
adjacency constraints for all other pairs of letters in our alphabet. Considering the overlap
of all five families, we find 1052 forbidden pairs of letters. Of course, this number of for-
bidden pairs is not preserved under basis changes for the function alphabet. Additionally,
it is possible that some of these forbidden pairs are accidental at the two–loop level and
will not continue to hold at higher loops.

5.6.3 One–Fold Integral Representation for Numerical Evalua-
tions

In Section 4.6, we motivated a hybrid approach to write a solution to the canonical differ-
ential equations where one part of the solution is given in terms of the function basis and
the rest as a one–fold integral representation. In this section, we are following the same
approach. We are interested in the solution to the canonical differential equations (5.50)
up to weight four in the dimensional regulator ϵ.

At weights one and two, iterated integrals (5.139) are explicitly integrated into special
functions, ensuring that they are well–defined across the entire Euclidean region. Further-
more, only the integrals of the subsectors contribute at these weights, so their functional
space is already established [213–215]. At weight one, the only function that can appear
is the logarithm

f
(1)
i = log(−si i+1), i = 1, . . . , 6,

f
(1)
i+6 = log(−si i+1 i+2), i = 1, . . . , 3. (5.143)

The function basis at weight two is given by genuine weight two functions and products
of weight one functions. Genuine weight two functions that appear are:

f
(2)
1 = Li2

(
1 − s12

s123

)
, f

(2)
i+1 = T if

(2)
1 , i = 1, . . . , 5,

f
(2)
7 = Li2

(
1 − s23

s123

)
, f

(2)
i+7 = T if

(2)
7 , i = 1, . . . , 5,

f
(2)
13 = Li2

(
1 − s12s45

s123s345

)
, f

(2)
i+13 = T if

(2)
13 , i = 1, . . . , 2,
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f
(2)
16 = Tri(s12, s34, s56), f

(2)
17 = Tri(s23, s45, s61), (5.144)

where the Tri(a, b, c) function is the Bloch–Wigner dilogarithm

Tri(a, b, c) = BW(z, z̄)|zz̄=a/b,(1−z)(1−z̄)=c/b (5.145)

defined via

BW(z, z̄) = 2Li2(z) − 2Li2(z̄) + log(zz̄) [log (1 − z) − log (1 − z̄)] . (5.146)

This basis of special functions is sufficient to express the solution up to weight two for
any master integral in our basis for the three families considered in [263]. For the two
remaining families, we expect that the same basis of functions is sufficient to express the
solutions since there are no new letters appearing in the symbol at these weights. Moreover,
this basis perfectly agrees with the basis found at one–loop in Section 4.6.

We still need to get weight three and four parts of the solution. Since we know the
boundary value at the point v⃗0 up to weight four, we can use that information to set up
a one–fold integration over the weight–two functions along a straight line to some other
point within the Euclidean region. This representation is well–suited for fast numerical
evaluations with high precision.

We start by setting up a straight line between our starting point v⃗0 and an end point.
When considering such a path, we need to ensure that the path satisfies the Gram constraint
(4.144), otherwise our differential equations are no longer valid. To do this, we use the
momentum twistor parametrization (5.15) and set straight paths between two points in
terms of momentum twistor variables. The starting point v⃗0 in this parametrization is

x⃗0 = {−1, 1, 0, 0, 1, 1, 0, 0}, (5.147)

and a straight line between our starting point and an endpoint is

x⃗1(t) = (1 − t)x⃗0 + tx⃗1. (5.148)

The solution at weight three is given as a one–fold integration over the weight two
functions

I⃗
(3)

fam = I⃗
(3)

fam(x⃗0) +
∫ 1

0
dt

dÃfam

dt
f⃗ (2)(t), (5.149)

where I⃗
(3)

fam(x⃗0) is the boundary value at weight three and f⃗ (2) are the weight two functions
expressed in terms of the momentum twistor variables. At weight four, we use integra-
tion by parts to rewrite two–fold integration over the weight–two functions as a one–fold
integration

I⃗
(4)

fam = I⃗
(4)

fam(x⃗0) +
∫ 1

0
dt

dÃfam

dt
I⃗

(3)
fam(x⃗0) +

∫ 1

0
dt1

∫ t1

0
dt2

dÃfam

dt1

dÃfam

dt2
f⃗ (2)(t2)

= I⃗
(4)

fam(x⃗0) +
∫ 1

0
dt

(
dÃfam

dt
I⃗

(3)
fam(x⃗0) +

(
Ãfam(1) − Ãfam(t)

) dÃfam

dt
f⃗ (2)(t)

)
. (5.150)
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We use the one–fold integral representation to numerically evaluate all basis integrals
of the double–box, pentagon–triangle and hexagon–bubble families at four different points
in the bulk of the Euclidean region:

x⃗1 =
{

−299
300 ,

221
200 ,

1
300 ,

1
200 ,

53
50 ,

21
20 ,

1
100 ,

1
700

}
,

x⃗2 =
{

−31
30 ,

161
150 ,

43
875 , − 17

630 ,
10153
9450 ,

243
250 , −22

75 ,
1
30

}
,

x⃗3 =
{

−17
10 ,

51
50 ,

109
3670 , − 197

5505 ,
3799
3670 ,

774
815 , − 3

20 ,
1
25

}
,

x⃗4 =
{

−1,
9021
8950 ,

7
1250 , − 17

250 ,
2003
1790 ,

466
475 , − 637

3580 ,
5

179

}
. (5.151)

The numerical values obtained through one–fold integration are in complete agreement
with the numerical values obtained with AMFlow up to the desired precision of 20 digits.

A proof–of–concept implementation of the one–fold integration in Mathematica is pro-
vided in the auxiliary files of Ref. [263]. Although the representations given in equations
(5.149) and (5.150) hold globally, both the weight–two functions and the differential equa-
tion matrix Ãfam are multi–valued functions that must be analytically continued appro-
priately across their branch cuts. This is beyond the scope of our work and hence our
implementation is suitable for fast evaluations in the Euclidean region on the paths that
do not cross any branch cuts. We leave the analytic continuation to the entire Euclidean
region and the physical scattering regions for future work.

In this section, we have identified the function space for three families of six–point
Feynman integrals up to weight four in the dimensional regulator. Following the hybrid
approach, the function space up to weight two is given in terms of a basis of special
functions, while at weight three and four we employ a one–fold integral representation.
Extending this result to the remaining two families is still a work in progress, since we do
not have complete boundary values for these families.
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Chapter 6

Conclusions and Outlook

Scattering amplitudes play an important role in the study of the fundamental laws of
the universe. They allow us to make precise comparisons with data from collider experi-
ments and provide insight into the intricate mathematical structure of a theory. Scattering
amplitudes are computed in the perturbative expansion. Beyond the leading order, the
calculation of the contributing Feynman integrals becomes one of the most important and
increasingly challenging tasks. A well–known approach for the analytic computation of
Feynman integrals, which we followed in this thesis, is to derive a system of ordinary dif-
ferential equations in the canonical form so that solutions in terms of known functions
can be readily obtained. An alternative approach is to bypass the evaluation of Feynman
integrals and directly bootstrap the amplitudes from an understanding of their physical
properties. In both approaches, understanding the symbol alphabets associated with the
singularity structure of Feynman integrals is essential.

The question of when a Feynman integral can develop kinematic singularities is closely
connected to the Landau equations. In this thesis, we reviewed these equations and a mod-
ern method for finding their solutions. The solutions to the Landau equations correspond
to the zeros and singularities of the symbol letters. Indeed, the irreducible components
of the principal Landau determinant correspond to the polynomial part of the alphabet.
Nevertheless, the algebraic part of the alphabet cannot be accessed directly through the
Landau equations. A conjectured factorization property of these letters allows for an algo-
rithmic identification of missing algebraic letters. However, for cutting–edge applications,
a naive approach rapidly becomes infeasible. In light of the above, we propose an efficient
algorithm for identifying the algebraic letters in question, based on the observed factor-
ization property. Assuming that the factorization property holds, we define a criterion to
filter the polynomial letters that enter the ansatz. This drastically reduces the size of the
problem and allows us to complete the alphabet with algebraic letters in minutes.

The proposed algorithm can be used in a wide range of examples with non–rational
symbol alphabets. In this thesis, we demonstrated its usage on a highly non–trivial example
of the two–loop hexagon alphabet. Moreover, the proposed two–loop alphabet was used
to fit the differential equation matrices for the hexagon–box, pentagon–box, double–box,
pentagon–triangle, and hexagon–bubble integral families where several previously unknown
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letters appear.
Furthermore, the results for the letters of the five integral families provided in this thesis

constitute valuable data that may be used as a benchmark for independent approaches that
aim at predicting the singular locus of Feynman integrals, for example, based on an analysis
of the Landau equations [34–36, 99], or via other methods [38, 42].

Based on the findings discussed in this thesis, there are several interesting directions
for future study:

1. How to systematically find all components of the Landau variety for massless scat-
tering? Landau equations have been known for more than sixty years, and recently
received a lot of renewed attention, yet there are still several unresolved question. The
question of systematically finding components of the singular locus in the presence of
massless particles and UV/IR divergences was addressed in Ref. [34, 35]. However,
as we saw in Section 5.5, it does not yield the complete set of letters beyond the
simplest family. Hence, an open question is how to systematically find the missing
components.

2. Assumed form of algebraic letters and nested square roots. When constructing al-
gebraic letters, we assumed that all square roots are independent and square–free,
i.e. no polynomial can be factored from under the square root. However, there are
cases in the literature, for example [117], where an additional polynomial appears in
front of the square root (3.47). This is not an obstacle for the proposed algorithm.
Nevertheless, it would be interesting to understand when such algebraic letters are
necessary, which polynomials can actually appear in front of the square root and
what their connection is to the leading singularities.
In addition, there are several examples in the literature [117, 270] where nested
square roots appear as a normalization in the canonical basis. The corresponding
letters do not satisfy the factorization (3.39) and therefore are outside the scope of
the algorithm.

3. Obtaining the full six–point alphabet for two–loop massless amplitudes. The 283 al-
phabet letters identified here are likely to constitute the main part of the full hexagon
alphabet, but we also expect more letters to be needed for the remaining integral
family. There is evidence from both a leading singularity calculation and Schubert
analysis [42] that the double–pentagon integral for D–dimensional external states in-
volves elliptic integrals. For four–dimensional external states (i.e. in the dimensional
reduction scheme), all leading singularities for this family are algebraic [226]. Hence,
while more new letters might appear in the remaining family, we still expect the dif-
ferential equations to be epsilon–factorizable and expressible in terms of logarithmic
one–forms.
However, the leading singularity of the double–pentagon integral in D = 6 − 2ϵ is
rather involved, and the corresponding odd letters [226] do not satisfy the factor-
ization condition (3.39) in the momentum twistor parametrization. It remains an
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open question as to how the presented algorithm for predicting symbol letters can be
applied to the aforementioned special case.
Moreover, understanding the entire planar six–particle alphabet could enable possible
bootstrap applications. For instance, the Wilson loop with Lagrangian insertion in
N = 4 sYM [267] has been found to be connected to all–plus amplitudes in pure
Yang–Mills theory [268, 269], and therefore depends on the same function space.

4. Computing the remaining planar two–loop six–point Feynman integrals. In this the-
sis, we have presented the results for the hexagon–box, pentagon–box, double–box,
pentagon–triangle, and hexagon–bubble integral families. Therefore, the only miss-
ing planar family is the double–pentagon family whose UT basis on the maximal cut
was obtained in [226]. We expect that by following similar steps as in Section 5.3, it
should be possible to extend its definition beyond the maximal cut and derive and
solve the complete canonical differential equation.

5. Two–loop six–point function space. The availability of canonical differential equations
together with boundary values allows for systematic classification of the relevant func-
tion space. We can straightforwardly write the needed functions in terms of iterated
integrals for any permutation of the considered integral families, see Figure 5.1. How-
ever, these functions are generally not independent and some of them are reducible,
i.e. they can be written as a products of lower weight functions. Therefore, once
we have all differential equations, it will be interesting to see how many irreducible
functions appear at each weight up to weight four.

6. Providing solutions valid in the physical region for four–jet production. This is crucial
for applying these Feynman integrals to phenomenology. One method of accomplish-
ing this is to transport the known analytic boundary value to various kinematic
regions. Alternatively, as explored in [214], we can compute the boundary value
for a specific point in the desired physical region using the physical constraints dis-
cussed here, or through numerical computation, and subsequently solve the canonical
differential equation within this region.
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Appendix A

Identities among Letters in
Four–Dimensional Kinematics

In Section 5.5, we provide an alphabet that is closed under cyclic permutations of the
external legs and multiplicatively independent as functions of nine Mandelstam variables.
However, in four–dimensional kinematics, the relations between Gram determinants (5.57)
together with the Gram determinant constraint (4.144) lead to a set of identities among
the letters, which we provide in this section.

Identities among rationalized letters. Since the ϵijkl become rationalized in the four–
dimensional limit, many previously algebraic letters turn into purely rational letters in
terms of the momentum twistor parametrization. Here, we list a basis of 33 identities
between letters in our alphabet that hold, provided that the external momenta lie in a
four–dimensional space.

0 = T j(−W182 − W231 + W258), j = 0, ..., 5,

0 = T j(−W183 − W190 + W256), j = 0, ..., 5,

0 = T j(−W184 − W187 + W244), j = 0, 1, 2,

0 = T j(−W182 + W188 − W207 + W217), j = 0, ..., 5,

0 = T j(−W183 + W189 + W195 + W219 + W226 + W251), j = 0, 1, 2,

0 = T j(W195 + W196 + W219 + W220 + W246), j = 0, ..., 4,

0 = T j(W182 − W188 − W224 − W226 + W249 − W251), j = 0, 1,

0 = W186 + W189 + W197 + W221 − W229 + W248,

0 = −W226 + W192 + W194 + W218 + W228 + W253 + W256. (A.1)

Again, T is the generator of a cyclic permutation of the external legs, while Wj = log wj.
We note that the remaining permutations of the last four identities also hold; however,
they are not independent of the previous identities.



108 A. Identities among Letters in Four–Dimensional Kinematics

Identities among odd letters. Our alphabet contains five square roots which are not
rationalized by the momentum twistor parametrization. For the odd letters related to each
of these square roots, there is one identity. The identities are given by

0 = T j(W269 + W271 − W273), j = 0, 1,

0 = T j(W275 − W278 − W282), j = 0, 1, 2. (A.2)
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