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Abstract

The behaviour of the equation of state of superdense

matter is studied. The relativistic Hartree and Hartree-
Fock approximations are introduced to determine the

equation of state of dense baryonic matter in the rel-
ativistic Green’s function approach. We find that the
standard ground state, in which fields are occupied up
to their Fermi momenta in momentum space, is unstable
due to appearances of instability modes for pure neu-
tron matter or asymmetric nuclear matter at high den-
sities. In those systems a phase transition may occur
from the standard ground state to a new stable ground
state. However, for the system, which is composed of
symmetric nuclear matter or in which baryons are in
B-equilibrium with leptons, the standard ground state
still remains stable. The results show that energetically
the symmetrization process and (-equilibrium phase are
favourable. The equations of state of superdense matter
are also applied to calculate the physical properties of
neutron stars. It is found that the phase transition for
neutron matter or asymmetric nuclear matter has the
small effects on the bulk properties of neutron stars at
all densities.



Zusammenfassung

In dieser Arbeit wird das Verhalten der Zustandsgle-
ichung superdichter Materie untersucht. Die relativis-
tische Hartree und Hartree-Fock Naeherungen werden
eingefuehrt, um die Zustandsgleichung dichter Baryonen-
materie im Formalismus der Greenschen Funktionen zu
bestimmen. Wir finden, dass der Standardgrundzus-

tand, in dem die Felder bis zum Fermi-Impuls im Impul-
sraum besetzt sind, instabil ist, aufgrund der Erscheinun-
gen der Instabilitaet der reinen Neutronenmaterie oder
der asymmetrischen Kernmaterie bei den hohen Dichten.
In diesen Systeme koennte Phasenuebergang zu einem

neuen stabilen Grundzustand auftreten. Aber fuer das
System, das aus der symmetrischen Kernmaterie besteht

oder in dem Baryonen im $-Gleichgewicht mit Leptonen
sind, bleibt der Standardgrundzustand noch stabil. Die
Resultate zeigen, dass der Prozess der Symmetrization
und die S-Gleichgewichtsphase energetisch guenstig sind.
Die Zustandsgleichungen superdichter Materie wird auch
angewendet, um die physikalischen Eigenschaften der Neu-
tronensterne zu berechnen. Dabei wurde gefunden, dass
der Phasenuebergang der Neutronenmaterie oder der asym-
metrischen Kernmaterie die geringen Auswirkungen auf
die physikalischen Eigenschaften der Neutronensterne hat.
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1 Introduction

The equation of state is the basic quantity for determining the physical evolu-
tion of a system. Particularly the equation of state of nuclear matter provides
detailed understanding for the stellar structure and evolution. The equation
of state below neutron drip[1], where garip & 4.3 x 10'g/em?, and at densi-
ties above neutron drip but below the saturation density of nuclear matter[2] is
relatively well known. But the physical properties of matter at high densities,
above the saturation density(go ~ 2.5 x 10*g/cm?), are still uncertain and the
associated equation of state is only poorly understood[3]. The determination
of the equation of state of superdense baryonic matter is one of the most chal-
lenging problems in modern physics [4,5,6,30,31,32]. Such superdense matter
is encountered in high-energy heavy ion reactions and in the interior of the
compact stars. For instance, a neutron star has a diameter of only 10 — 15km
but has the same mass as the sun, resulting in a central density, which may
be as dense as 10'*g/ecm?. Since it is impossible to mimic such densities in a
terrestrial laboratory over a time period large in comparison with the charac-
teristic time of the weak interaction(= 10~2sec), one is confronted in so-called
neutron stars with exotic matter, i.e. so-called neutron star matter, which is
rather asymmetric and has to obey the constraints of charge neutrality and
generalized S-equilibrium. The simplest model for a description of this kind of
matter is pure neutron matter. For a more improved description of neutron star
matter(NSM), which gives lower energies, one has used either the relativistic
Hartree- or Hartree-Fock approximation[7], where NSM consists of neutrons,
protons, and leptons in S-equilibrium. So far one has used in this scheme the
standard assumption that the particles fill the states up to their correspond-
ing Fermi momenta. However, it has been suggested by Horowitz and Serot
that a phase transition occurs for pure neutron matter at high densities in the
relativistic Hartree-Fock-approximation[8]. Such a phase transition, as already
described in another context by Landau and Lifschitz, is characterized by a
redistribution of the occupation, replacing the standard Fermi sphere by shell
structure, which leads to a lower energy state. A former investigation, in which
very simplified dynamics was used, which is not realistic for asymmetric systems,
has found such an effect[8,9]. It is one of the main aims of this investigation
to reexamine the situation for more realistic Lagrangian and compositions, and
to study the possibility of such a phase transition and to investigate further
possible impacts on the properties of neutron stars. The basic input quantity,
whose knowledge is necessary in order to solve the stellar structure equations for
neutron stars, is the equation of state, i.e. the functional dependence of pressure
on density, P(e). For neutron stars the density of matter spans an enormous
range, from high densities of ¢ = (10 — 20)go in the core down to zero at the
star’s edge. But the star’s atmosphere is so thin that the crust of neutron stars
contributes negligibly to the bulk properties of the stars like mass, radius, and
moment of inertia[10]. Most of the bulk properties of neutron stars are sensitive
to the equation of state at high densities above neutron drip. For that reason
the high density part of the equation of state plays the decisive role in deter-



mining the physical properties of neutron stars. Physically the phases and the
chemical compositions of a system must change as the density increases. Such
changes have the effects on the fundamental interactions and the equations of
state. For instance, in the neutron stars, depending on the star’s central densi-
ties, the phase transition may occur to form the new phases from pure neutron
matter. For pure neutron matter or asymmetric nuclear matter without lep-
tons, one of the possible phase transitions may be forming a new stable ground
state, shell distribution of the states, in momentum space. However, the possi-
bility of such phase transition is relatively weak because of appearances of the
unphysical phenomena at high densities, above critical density. Instead, in the
cores of neutron stars, the phase may be rather an electrically charged neutral
system of either interacting baryons and/or quarks in generalized S-equilibrium
with leptons. In S-equilibrium phase, other ingredients soften the equation of
state considerably at all densities. This behaviour of the equation of state has
direct impacts on the properties of neutron stars. Another interesting issue is
the formation of quark matter in the cores of neutron stars. Since a phase tran-
sition of hadronic matter to the quark-gluon phase has been suggested[26], in
the cores of neutron stars such a phase transition is predicted by a theory(see
Ref.[3] for a proper discussion of the phase transition in neutron stars). But the
critical density at which the phase transition might occur is still poorly under-
stood. Recently, concerning the interpretation of pulsars, which are accepted
as fast rotating neutron stars, the quark matter phase in the cores of neutron
stars and the pure quark stars are also suggested[3]. One of the recent reports
related to these issuses suggests that such a phase transition may be detected
from observations of the changes of the pulsar’s bulk properties at critical den-
sity[12]. The neutron star bulk properties, which are determined by theories,
depend on the equation of state taken into account. In return, the pulsar’s
bulk properties estimated from observations, particularly the mass of neutron
stars and rotational frequency of fast pulsars, constrain the equation of state at
high densities. As a result the improved astronomical observations provide bet-
ter understanding of the fundamental interactions and the physical properties
of superdense matter. This work is organized as follows. In Chapter 2 and 3
the treatment of the many-body problems in the framework of the relativistic
Green’s function method is summarized. In Chapter 4 we discuss the phase
transition from the spherical distribution to the shell distribution in the ground
state. Baryon phase in generalized $-equilibrium with leptons is discussed in
Chapter 5. In Chapter 5 the numerical results for quark-gluon phase in the
nuclear domain are shown. In Chapter 6 we discuss neutron star matter and
the physical properties of neutron stars. A summary is given in Chapter 7.
In Appendix the numerical results, which are graphically depicted, are listed
for the properties of neutron matter (Appendix A), asymmetric nuclear matter
(Appendix B), and the properties of non-rotating (Appendix C) and rotating
(Appendix D) neutron stars.



2 Theory

In the framework of quantum field theory we have studied the equation of state of
superdense matter. In this system superdense baryonic matter and free leptons
are in f-equilibrium. Baryons interact with each other through the exchange of
mesons. The most important contribution comes from the exchange of
m(J", T =07,1),0(0",0),w(17,0), and p(1~,1) mesons [cf. Table 3.4].

2.1 Relativistic field equations
Dynamics of the system is determined by Hamilton’s principle[11]
§ [L(z)d*'z =0 (2.1)

where L(x) is the Lagrangian density. Hamilton’s principle, Eq.(2.1), yields the
Euler-Lagrange equation for field ¢ (x):

OL(z OL(z
oo (5mtr) — g = O- (2.2)

The Lagrangian density for the present model has the form[3]

Liz)= ¥ L@@+ X L@+ ¥ ¥ Leu(@). (2.3)

B=p,n M:o,w,w,p B=p,n M=0,w,m,p

The full Lagrangian density is given by [13,3]

Lz)= © bB(@) (i7" 0 + 950(z) — gy wu(z) — Lo Fuu (z)

L (0,7 (0)) — 4oy 0) — e o G () () +
(O 0(@)9,0(z) — m20? (@) — L P (@) o (&) + ImZe () (x) +
(PR (@) (@) - mER@)F (@) — 1O ()G (@) + 2P @), (2.4)

The tensor fields F},, () and éuy(x) of Eq.(2.4) are defined by

1
2
1
2

Fo () = 040(2) — Doy Gy () = B () — Do), (2.5)
The quantity o"” in Eq.(2.4) is defined by [14]
o = 5", ] (2.6)

where v# denotes the Dirac matrices.
From the Euler-Lagrange equation, Eq.(2.2), and Lagrangian density, Eq.(2.4),
the field equations for baryons and mesons are given by

(70 — mB)YB(2) = —go B ()0 (%) + guy*wy (2)e(z) +
Th5 0" Fun (2)05 (@) — 7 (0,77(2) n (x) +
9V (@) YB(@) + 707G (z))s (@), 2.7)




(040 + mi3)o(x) = Z gale( )¥B(z), (2.8)

O Fp(x) + m2w”(z) = Z 9.0B(2)y" VB () —
Z = 04 (B (7)o, P8 (2)), (2.9)
(3”3u+mfr)ﬁ(w)=BE L= 9 (g ()57, T8 (2)), (2.10)
01 G () + m2p, (x) = 2 g,0p@)rbn(@) -
z Lyt (Dp (2)Fo,p(2)). (2.11)

2.2 Propagator

Before we solve the field equations, (2.7)-(2.11), we define the propagators for
baryons and mesons respectively.

The 2n-point Green’s function is defined by the ground state expectation value
of the time ordered product of the baryon field operators ,p, in the form
[15,16,33]

G§1---§n€’1---6’n (z'l, ey Ty .73,1, ,.'L';l) =

(i) < G0|T (g, (21)-..t, (2) g, ()t (&) 0 >. (212)
The quantity |¢p9 > denotes the ground state of infinite matter. The symbols
(&1---&,) stand for spin-isospin quantum numbers of baryons By, ..., B,. The
quantity T stands for the time-ordering operator. For the calculation of the
properties of the many-body system the two-point Green’s function, G,;-Ef (z,z),

is sufficient. It is convenient to decompose the two-point Green’s function in
the following way:

GEF (2,0) =i < Gl T(WE@)DE ()| > (2.13)
= 8(wo — 20)GZ7 (2,6 12, ) + 0wy — 20)GE7 (2,6 :2',€). (2.14)

Here the auxiliary Green’s functions G5 and G are given by

!

GBP (2,64, €) =i <P («) >, (2.15)
GEP (2,6:2,€) = —i <98 ()P (2) >. (2.16)

The Heaviside’s step function is defined by

1
—iw(zg—=y)

0(.’1}0 — .’L';)) = ﬁ f ewT dw. (217)



From the Fourier transformation
9(z) = @ayr J 9p)e™ % d'p (2.18)

9(p) = [ g(z)e* d*z (2.19)

the momentum space representation of the Green’s function can be written in
the form [7,16,17]:

aB ! (waif)

B _ e

G 0) = | o= Simytramy (2.20)
Here the quantity up denotes the chemical potential of baryons of type B. The
spectral function aé, (w,P) of Eq.(2.20) is given by the cut of the analytically

continued propagator, éfg’ (z, D), along the real axis.
It is written by

~ a® 1 (w,P)
G (2,9) = [ 25— dw. (2.21)
Using the relation
i = 5 F70(2) (2.22)
the spectral function afg, (w,P) can be rewritten as

G2/ (wtinp)=G 2, (w—in,p)
ag (w,p) = — P : (2.23)

The two-point Green’s function for mesons are defined analogously to Eq.(2.13)
in the following;:

For o-meson:
Az, 7)) =i < ¢o|T(o(z)o(z))|do >. (2.24)
For w-meson:
AR (g,2') =i < ¢o|T (W (z)w” (z))|do >. (2.25)
For 7-meson:
A, (@,2) = i < go|T(mn(@)m,e ()] do >. (2.26)
For p-meson:
A (z,2) = i < go|T(pk(2)p% (z))|go >. (2.27)

The momentum space representation of the propagators of mesons are given in
the form:

10



For o-meson:

A%p) = — =l (2.28)

T prP-mZtin

For w-meson:

AL, (1) = (g — £22) (= i) (2.29)
For m-meson:
A (p) = =0, e (2.30)
For p-meson:
At () = byt (g — ) (= o) (2:31)

Here r = 1,2, 3 refers to isospin indices.

2.3 Solution of the field equations

From the definition of the Green’s function the Eq.(2.7) may be written in the
form:

GB(1,1) = GIP1,1)+i [GIB1,1") < 1"2[vPB |34 > G B(34,2+1'). (2.32)

Here integers 1 = (29,%1; 1), ...,n = (22, Fn; &) stand for the space-time coor-
dinates (denoted by z1 = (29,#1),...,zn = (22, %,)) as well as the spin-isospin
quantum number (&1, ..., &,) of baryons By, ..., B,. The quantity G¢ denotes the
free two-point baryon propagator which satisfies

GOB(z — ') = (—i7"0, + mp)ee 8 (z — ). (2.33)

The quantity v®® is a two-body potential term and it contains the baryon-
meson vertices. The matrix elements of vBB are given by[3]:

<120BF3a>= Y <12]VEF (34> (2.34)
M=o,w,m.p
= Iy E (54(.23'1 — .1'3)(54(.1'2 — .Z'4)F£1JE3BF£§€4B A(J)w(.’L'l,l'z). (235)
=0,Ww,T.p

The function AY, in Eq.(2.35) is the single particle propagator of free meson
fields of type M. The scalar, pseudo-vector, and vector meson-baryon vertices
I'M:B of Eq.(2.35) are given respectively by:

TZie = 190066, (scalar), (2.36)
IEg = —inn—:(i’Ys’yuaf)gl& (pseudo-vector), (2.37)
T8 = (¥ + 52220% [, Deres (vector). (2.38)

11



By introducing the reducible T-matrix in the form [3,13]

[ <1288 |34 > GE B(34,1'2) =

[ <12TBE 34> GF (3,1)GF(4,2), (2.39)
3,4:B’'

and the mass operator (self-energy) %

$B(1,2) = —i [ <13[TBF |42 > GF (4,3"), (2.40)
3,4:B’

equation (2.32) leads to the Dyson’s equation

GP(1,1) =G (1,1) - [ G9B(1,3)25(3,4)GP(4,1), (2.41)
3,4

whereby we introduce the notation [, o, =Y [d*z;.
Equivalently the momentum-space representation of the Dyson’s equation is
given by:

(Y P, —mp — ZB(p))§1€3G{3(p)§352 = —0g1¢.- (2.42)

For each baryon of type B, the corresponding Green’s function GZ of Eq.(2.21)
solves the analytically continued Dyson equation following from Eq.(2.42) (p =

&)

]

[(mps + 8 (2,5) + (1] + 25 (2,9) 7D +

(S8 (z,P) + (z + uP)1GE (z,p) = 1. (2.43)

In Eq.(2.43), P has been decomposed into a scalar, vector, and time-like part
according to

zg, =23 (V)eer + 27 (TD)ger + EOBWEE,. (2.44)

By means of Cauchy’s integral formular one can derive the spectral representa-
tion for X[3]:

$B B(c0) Tee' (0P)
Eggl(z,_ﬁ)zz‘ggl +dew (245)
where
B(co
Egg(’ ) — (,y“pu — mB)gg’ . (2.46)

From Eq.(2.45) one derives for the real and imaginary part of $5:
ReX(w + in, p) = ReX(w — in, P), (2.47)
Im%(w +in,7) = —ImX(w — in, p). (2.48)

12



Note that the unitary matrix of Eq.(2.44) consists of the Dirac and an isospin
part. It therefore has the explicit form

(Dggr = AP @ 199) 01 = 6,0 83 (2.49)
where ¢,¢ denote the spin (a,a’) and isospin (i,4 ) indices, i.e. £ = (a,4) and

§ = (alai )
Inversion of Eq.(2.43) yields[7]

AB _ (mp+E2(2,0) (P45 (z,0) 99— (58 (z,8)+ (z+1"))7°
GZ(z,p) = (mfs+i;‘3(2,13"))2+(\z?|+i£3(2,15'))2f(ioé?(2,15')+(2+1~LB))2 ’ (2.50)

The physical baryon propagators G and baryon self energy Y8 are connected
to the analytically continued functions G® and ¥ by the following boundary
values (j = s,v,0):

GE(p) = GE (00 = ) (L + i), B), (2.51)
B _ B o_,B :

From Eq.(2.48) and Eq.(2.52) one finds

Imf]j'zg, (w—pB £in,p) = Fsgn(u? - w)FZ, (w, P). (2.53)

The self-energy Ef is split into its real and imaginary parts, denoted by Af
and I‘f’ respectively. The latter quantities define the following function[13,16]:

L8 (w,p) = 2(07 (w, P)[mp + A7 (w, P)] + T (w, PIA] + A (w, §)] —
I'F (w, P)IAF (w, ) — w]).- (2.54)

In the case of the Hartree-Fock the imaginary part of P vanishes[13], and
therefore IT'2(w, p) — 0. Eqgs.(2.50)-(2.54) lead to a spectral function of single-
particle structure,

a®(w, p) = 8[D" (w+u®, Psgn[~wl'® (w+uP)[[mps+A7 (w, 7]~ [P1+AT (w, 5] 75—

[AG (w, ) = w]7°], (2.55)
with the definition
DB (w,p) = [mp + A7 (w, P)* + |71 + A7 (w0, D)) — [AF (w, P) — w]*. (2.56)

Eq.(2.55) can be decomposed into a baryon and an anti-baryon part. We neglect
the anti-baryon part. The spectral function is rewritten by[13]

ag, (w,p) = 6(w+pf — wB(ﬁ))aZ, () (2.57)
with
(me+E7) (1) o —(IFIHEF) (78) o +H(wB (7)) —ZF)°
B (3 _ € ¢ %
ager (P) = [ T— (2.58)

13



= allge +al (D) + agfygg, . (2.59)
The derivative of the function DP follows immediately from Eq.(2.56):
D" (w,p) _
Ow -
ok o8

Ams + L8 (w, D)%t + |81 + 20w, D) Bt + 55 (w, ) — w](1 — B )].(2.60)

The baryon energy-momentum relation in matter is given by the zeros of Eq.(2.56),

wP () = ¢ (W, 9) + VImp + 3P (w, O + (7 + 3 (w, D> (2.61)

The chemical potentials of baryons having Fermi momenta Pp.p are obtained
from

uP = wB(pr.5)- (2.62)

In the non-interacting case one has ¥ = 0, and then Eq.(2.57) and (2.61) are
written by

wP(p) = /m} + P*, and o (§) = (WP (9)7° — 7.5+ ms)/ (2w" (7))- (2.63)

In the non-relativistic treatment the self-energies of Eq.(2.44) is given by[18]:

Y(p) = 0, Z,(p) = 0, Zo(p) = X(p) (2.64)
which leads to the replacements
m%—)mB,p*%p,W—)\/rWsz-i-;fB. (2.65)
The relativistic energy-momentum relation of Eq.(2.61) is to be replaced by
WB(P) = WB (@) — mp = BB = 2 + S(EP(H) — 1P, p). (2.66)

The spectral function a®(p) of Eq.(2.57) plays the role of a momentum density
function, i.e.

a®(p°, p) = n®(Ip)o(° — EX () + p°), (2.67)
with
”B(m) = |1 - % ;Ig:EB(ﬁ)- (268)

14



3 Model

Here we apply the Hartree-Fock model to the determination of self-energy. The
anti-symmetrized Hartree-Fock T-matrix has the form [13,3]

< 12ITHFBB |34 >=< 12[vBP |34 > — < 12vBP |43 > (3.1)

where the first and second term refer to the direct (i.e. Hartree) and ex-
change (Fock) contribution respectively. This leads for the baryon self-energy
of Eq.(2.40) to the following Hartree (X:B) and Fock (£°8) terms

SHB(1,1) =iy < 120BP |1'3 > GF (3,21), (3.2)
BI

SEB(1,1) =iy < 12[vB5 (31 > G (3,2%) (3.3)
Bl

which give the total contribution:

SHEB(1 1) = £HB(1,1") + ©FB(1,1). (3.4)

3.1 Self-energy

The self-energies arising from o, w, m,and p-meson after a lengthy calculation are
given by

Sere )l —iéglg;AO(O)g?,%; qf4 €1 5,6, GP . (), (3.5)
See 0)lo = ig; qf e’ A (p — g)(1® GP(g) ® 1)1, (3.6)
Eng(p)'w:”glg 0)g5, qf ' Tr(vGP (g)), (3.7)
See 0o = —ig} qf4 €Ml A (0~ DG, (D1 (3.8)
Sere D)l =0, (3.9)
e B)lr =

=) e (35 )grea (P — @) (0 — @) A% (0 — )G L, (@) (157 gyer»  (3.10)

EggB( )|p=12femq gp’Yu_izng (p— Q) UAu) ’A +#v(0)

TT[(gp%+z2,,;B - 9)*0w)GP (q)], (3.11)

15



F,.B v
Sere 0o = =i [ € (g7 = it (0 = ) ora)eses A% (0 = )
q*

Gl e @9 + 525 (0 — ) o)y - (3.12)

Here the symbols “H and “ F refer to the Hartree and Fock terms respectively.
Via substituting G2, from Eq.(2.20), in Eqgs.(3.5)-(3.12) and subsequent contour
integrations over the variable G, one obtains for self-energy:

Serer (P)le = =201 (32 E(N r+1) fa (@OF (WP —wB(@),  (3.13)

S0 Bl = 2 [ 166,08 @7 (@D + (P)g,g; (PP (@ (@, +
90, B (WP (@, DA — P (@, 5~ DOP (P — wP(@), (3.14)

She e =20 (B DTy +1) [of @07 (W7 —w"@), (.19

0_ B 2 (= a2 N A A
See Ol =93 [[=0¢,¢ [4— = D= 1aP (P (@), ) + (79)¢, ¢, (P2 —
q

2 O—wB 2 5 Al
PRI O 1 2Tl (P (@), §) — b~ D — WP (@)af (7,0 +
0 B ()2 —(F—)2
Yol -0 =P (D)l (D, D2+ D=0 ) (P, PIIA (5 -

WB(@),7— DOF (1P —wB (), (3.16)
W)l =0, (3.17)

SEL Bl = () [ ey [ (00— (@) +(F-0)1a (P (@, D+ (D) ¢ (1150~

B (115G — 1a1) — (0° — wP(@)* — (0 — O)*)pd)ay (W (@), D) + 2(1qlBq — |21) (»° —
wH(@)ag @7, DI+7g, ¢ 2015104 — |2 (° ~w P (@)a) (W7 (@), D+ ((P° - (@) +

(7 — D)?)af (B, PIA (P — wB (@), 7 — DOF (uP — wB (@), (3.18)

Sae Ol =20 o (2 D@y + Vg [ af @O (0 ~wP(@),  (3.19)
1 1 B’ q

See @)l =9 10, ¢, (—4x2 ((0° 0 (@)~ (7=9))ay (07 (@), D+ Lo (-

Day (WP (@), O+°—w(@)af (WP, D)+ (TD)e, ¢ [mi;c’;—(m—l(ﬂﬁéaf WP (D), D+

2pg + |Al@(BD*(F — 2xF) + Xy — (@ + )pq(x2 -x3) = x50 -
wB(@)?pg)al (WP (D), D+x5 (°—w? (@) (|q1p4— |I31)ao (w 7<1“)]+7,51§ (- m—,f’;(po—

wWB(@)al (WP (D), D + x5 @0° — WP (@)7F — Qal (WP (D), D) + (F — xF) " -

W (D) + o

x5 @ — 92+ 2)ag (W5, PNA(° — wB (), 57— POF (1P —wB(])). (3.20)
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The following abbreviations have been introduced in Eq.(3.20):

Xt = ng - ﬁ(%)za (3.21)
X2B = mlg + (m;)g(;f_:)27 (3.22)
XF = 2+ oy (L2)? (3.23)

The quantity 2Jp + 1 in Egs.(3.13), (3.15), and (3.19) denotes the spin degen-
eracy factor of baryons of type B.

3.2 The baryonic matter equation of state

The baryonic matter equations of state, the pressure P and energy E as a
function of density, are determined by the expectation value of the energy-
momentum tensor defined by [11]

TI“’('Z') = % aV@bB(m)#&:zw)) - guuL(x) (324)

for field ¥g(x). The use of one previous expression of the Lagrangian density
leads to

Tyv(z) = %I VB (@)[iI7 00 — g [I7* O\ —mB +go0(T) — gy wa () — gV oA (T) —

T TG (3) — LN 037 (@[ (2) — g [— B2 (9307 +m2 )0 (2)+ 10 (0/(2) D o (2)) —
10\ (wa(z )Fw )+ [0 F*) () +m2 w (z )]—16A<pn< )G (2))+ P29, G () +
%ﬁ*( )]- T2 (0, 6*+m) 7(2)+ 505 (7 (2) 07 (2))]+0,0(2) B, 0 (2)+ 0w () Fau+

v ( >GA,L( )+ Our(@)dym(z) +
g[m ()0, 70, P (@)0E (2) — L= b5 (2)157, 70,7 (@)1 (2)]. (3.25)

By means of the two-point Green’s functions G?, one can express the expecta-
tion value of the energy-momentum tensor of Eq.(3.25) as

< ¢o|Tyw|¢po >= — lim 61/ZT7"yu B(g,z')—

E—)E

39 %f dyTrEB(x,y)GB(y, - (3.26)
Here the limit # — 2+ ensures the infinitesimal proper time ordering of oper-

ators (z+ = (2° + 1, %),n > 0).
The energy density and pressure are determined respectively by

E =< ¢o|Too(z)|do >, (3.27)

3
P= %21: < ¢o|Tii(z)|po >, (3.28)
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from which one calculates

E=— lim Zaofe =290, GE (q) - § 3 [ €158, (g), (3.29)
z' —wzt B B ¢4
and
P =45 [ (D Glela) + 55 few 152, (9)GE (a). (3.30)
B ¢4

By means of inserting the spectral decomposition of Eq.(2.20) into Eqs.(3.29)
and (3.30), the energy and pressure densities can be written as

E=22Jp+1) J2ImpBag (@) = 1qa (D] + [E7 (@ (D), Da (7) -

28 (w8 (@), DaP (@) + Z8 WP (@), Dal (D]OF (15 —wB (@), (3.31)
and

P=3@Jp+1) [[2P 7@ 9ol @ ~ 50" @,0) + 31dllal (@ +

22 @B (@), Daf @]OF (1P — wP(@)). (3.32)

The density of baryons of type B is obtained as follows:

P=N =1 P Az < Bolvh (2)¥p (@)|do > |00, (3.33)
- 7’ zh—I)r;'f' 755’ Gg’g( ) I)J (334)
=iy [ e GE (a), (3.35)
q4
=2(2Jp +1) [ aB(DOF (P - wP (). (3.36)
P

The total number density, of, is obtained from
B =% oB. (3.37)
B

In the nonrelativistic case, using Eqgs.(2.64) - (2.67) the energy density, pressure
and baryon density are written by

E=2 [[55; +3§5(EP@ —u” D" (0" (), (3.38)
=2 [ §[55; + 32(E7 (@ — u”. D" (2O (1), (3.39)

and

e =2/ n"(2)O” (17, (3.40)
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For the shell structure the chemical potential is calculated from the thermody-
namic relation

P=o2(5) (3.41)
From Eq.(3.41) the chemical potential is given by

n= %(5 + P). (3.42)

3.3 The equation of state of lepton

To calculate the equations of state for lepton matter we begin with the La-
grangian density of free leptons. The Lagrangian density of free leptons is given
by([3]

Ly,(@) = 3 da(@)(iv*0y — ma)pa(). (3.43)

A=e~,pu~

From Eq.(3.24) and Eq.(3.43) we obtain the energy-momentum density tensor
of Leptons

Tier(z) = 3 a@)[ivu00 — guv (17705 — ma) (). (3.44)

A=e~,pu~
The expectation value of the energy-momentum tensor becomes

<GolTlPlpo >=— lim ¥ 8,Tr(3Gw,x), (3.45)

' =zt \=e—,pu—

=— lim 8, Y f(2(14)4e—iq(mfm')Tr('qu’\(q)). (3.46)

z' —zt A=e—,u—

in analogy to Eq.(2.20), the momentum-space representation of the lepton prop-
agator, denoted by G}, is given by (a and a refer to spin quantum numbers)

™, (w,p)
A — aa
Gy ) = | w2y (3.47)
The free leptonic spectral functions are
IMNw,p) = 6(w + p* = (P)T}(B), i = 5,v,0, (3.48)
with
wh(P) = /m3 + 77, (3.49)
A — m
D) = 572 (3.50)
Ap) — Pl
() = o fmE A (3.51)
TA() = L. (3.52)
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The calculation of the lepton density, o*, can be performed analogously to
Eq.(3.33). By denoting the leptonic distribution function with

0Xq) = O(Pra — |41), (3.53)
one gets
=i lim 'ygg,G (z,) (3.54)
.’L‘ —)Z‘
—; [ 0ind®A0 (A
—zqf4 e Y G (a) (3.55)
=2(2Jp + 1) [ TH(DO (3.56)
7@
PF
=2Jptl “Fy (3.57)

The total number density of leptons ,0'°?, is given by

dr= 3 oM (3.58)

A=e~,u~

The energy density and pressure contributions are obtained from Eq.(3.46):

Pr
Bop=<Tl@)>=% ¥ @J+1) [ dg@y/m}+&, (3.59)
A=e~,u~ 0
and
1 lep 1 Fr
Pp=2) <TF(x) > = = 2Jp + d 3.60
lep 3; i (@) G”QA:;“—( B )f Q\/— (3.60)

The quantity 2Jp + 1 in the Eq.(3.59) and Eq.(3.60) refers to the spin degen-
eracy factor of leptons of type A(see Table 3.1). The Fermi momenta of leptons
of type A are denoted by Pr,y.

Table 3.1:Masses, spin quantum numbers and electric charges of leptons in-
cluded in the determination of the equations of state of neutron star matter.

Lepton()\) max(MeV) Jx  ax
e~ 0.511 1% -1
p,_ 106 2 -1
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3.4 Coupling constants of the Hartree-Fock approxima-
tion

The coupling constants of the Lagrangian of Eq.(2.3) are not determined by the
nucleon-nucleon interaction in free space, but must be adjusted to the bulk prop-
erties of nuclear matter at the saturation density[19]. These are binding energy,
effective mass, compression modules, and symmetry energy. The baryon and
meson masses usually are taken to be equal to their physical values[20], except
for the hypothetical o-meson, which is introduced to simulate the correlated 27
exchange. The 7- and p-meson coupling constants, fr and g,, can be deduced
from the description of the nucleon-nucleon interactions[11], and the ratio of the
tensor to the vector coupling strength, f,/g,, can be obtained from the vector-
dominance model which leads to f,/g, =~ 3.7[3]. Two coupling strengths, g,
and g, are adjusted to the above mentioned ground state properties of nuclear
matter. In this work we have adopted the parameter sets adjusted by Jetter et
al.[19]. The parameter sets are summerized in Table 3.2.

Table 3.2: m, = 550MeV, m,, = 783MeV, m, = 138MeV, m, = T7T0MeV,
my = 939MeV, B.E = —-15.75MeV, ay = 33.6MeV.

2 2 2 2
model Pr(fm™1) b= S i—; Z—; 5—2
(o,w)H 1.42 7.3052  10.8621 — — —
(o,w,p)H 1.42 7.3052  10.8621 —  2.9231 —
(o,w)mF 1.42 6.6268  8.6136  — — —
(o,w, ™) gp  1.42 7.2262  8.0901 0.08 — —
(o,w, 7, p)gr 1.42 5.8594  4.7138 0.08 0.55 6.6

Table 3.3: Masses, electric charge(gp) and quantum numbers (spin(Jg), isospin(Ig),
strangeness(Sg), hypercharge(Yg), third component of isospin(/35)) of the baryons.

Baryon(B) mp(MeV) Jg Ig Sp Y Iz B
n 939.6 1 L0 1 -1 o0
£ £ t

Table 3.4: quantum numbers(spin(Jyy), parity(r), and isospin(Tys)) of Meson
M and coupling of the meson exchange model for nucleon-nucleon interaction.

Meson(M) Jiy Tum  coupling

o ot 0 scalar

w 1- 0 vector

™ 0~ 1 pseudo-vector
p 1~ 1 vector
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4 Phase transition of superdense matter

A possible phase transition of superdense matter have been proposed to under-
stand the instability modes of the ground state at high densities[8]. According
to this suggestion, the states of the fields may redistribute in momentum space
as the density increases. This redistribution of the states may change the micro-
scopic properties of the ground state of the system. Normally the states of the
particles are occupied up to their Fermi momenta in the ground state. But at
high densities the standard spherical distribution may be unstable, because of
the fluctuation in the patterns of the energy spectrum. For that reason another
distribution of the states, shell structure, has been suggested and some results
have been reported [8,9]. But earlier calculations have been carried out only for
neutron matter using the simple dynamics, only taking o- and w-mesons into
account. In this work we have studied more general cases, that is, asymmetric
nuclear matter. The shell distribution function is given by

By 1 Pl <P<Pr,,
) =1 o P<PR, .P>PR,.~ (4.1)
where the quantities PZ, and PB  satisfy the following relation:

3 _ p3 _ p3
PF,B_Paw,B P

m min,B"*

(4.2)

Here Pp,p denotes the Fermi momenta of baryon B in the ground state. P5,
and PB,  are the lowest and highest momentum state occupied by baryon B
respectively. In the ground state the energy density of the spherical and shell

distribution are given respectively by

Pr B
Esp = % % ‘Of HSB;)(p) dﬁga (43)
and
Prae
Esh = % %: f HSB;L(p) dﬁ%) (44)
PB

where the quantity H(p) denotes the sum of the kinetic energy and potential
energy of a single particle. The quantity V is the volume in momentum space,
V= gﬂ'Pg. We now define the order parameter to describe the phase transition
in the following way:

AE = E;, — Egp. (4.5)
At the certain density, g., the order parameter AE changes:
AE ={%) esee. (4.6)

The difference of the order parameter may be interpreted as the evidence for
the phase transition. Above the critical density, g., the shell structure may be
a more stable ground state than sphere structure. We illustrate in Fig. 1 the
density dependence of the order parameter. We will continue this topic more in
detail in Section 4.1 and 4.2.
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Figure 1: Effective mass, effective momentum and order parameter as a function
of density for neutron matter in the Hartree and Hartree - Fock approximations.
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4.1 Neutron matter

To determine the physical properties of neutron matter, the self-consistent
Hartree-Fock approximation is introduced. The exchange corrections to the
Hartree calculation lead to a phase transition to a new ground state at high
densities(Fig. 1). The results, which are obtained from different models, are
compared and shown in Fig. 6 - Fig. 18 in Appendix A. The equation of state
for the H1(o,w) model shows the local minimum and there is a phase tran-
sition similar to the liquid-gas transition at low densities(Fig. 12), which are
below the nuclear saturation density. But in the H2(o,w,p) p-meson stiffens
the equation of state and the local minimum diappears. In the HF1(o,w) and
HF2(0,w, 7, p) the exchange terms modify the low density equation of state and
the self-consistent exchange corrections remove also the local minimum. In these
density ranges Fock terms, which are contributed from 7 and p-meson, soften
the equations of state relatively. At intermediate densities(gg < ¢ < 10gp), ex-
change corrections of p-meson soften the equations of state very much(Fig. 13).
But at high densities(p > 10g¢) the self-consistent exchange corrections from 7
and p-meson stiffen the equations of state apparently(Fig. 13). The equations
of state for the Hartree approximations are relatively soft at high densities. The
self-consistent effective mass for neutron matter is shown in Fig. 1. In the
HF2 it approaches zero drastically and it seems to be self-contradicting to the
behaviour of the self-energy(Fig. 15). In the HF2 one remarkable result is the
exchange contributions of p-meson to the scalar component of the self-energy
and the Fock term contributions of p-meson turns out to be positive in contrast
to the results from other meson(Fig. 15). However, in the self-consistent HF
calculations this has the small effects on the results of £8 ... In Fig. 1, effective
momentum in the HF2 shows the different patterns at low densities, where the
exchange contributions in the HF2 are positive(Fig. 15). In Fig. 18 all compo-
nents of the self-energy for different models are illustrated. We now turn to the
single particle energy spectrum, which is defined as

EB(p) =T%(p) + VE(p), (4.7)

where T2(p) and VB(p) are the kinetic and potential energy of a particle re-
spectively and are given by

Tow) = (48)
VP () = TP (p) + MBI, (4.9)
with
my(p) =mp + 7 (p) (4.10)
and
p*(p) =p+ =7 (p). (4.11)

24



As shown in Fig. 6 - Fig. 9 in Appendix A at normal densities (PF =
1.42fm~1), EB(p) in the HF1 and HF?2 is similar to the Hartree results. As the
density increases, the effect of exchange corrections on the spectrum becomes
apparent. Unlike the Hartree model there is inversion of the energy spectrum in
the Hartree-Fock Theories. The inversion of the single particle spectrum in the
HF approximations is caused by two main factors: the behaviors of the vector
component ¥F and timelike component ¥F of the self-energy in Eq.(4.8) and
Eq.(4.9). The behaviours of the self-energy are illustrated in Fig.16 - Fig.17 as a
function of momentum at high densities. Near the Fermi surface the Fock term
reduces the repulsive contribution 7 and increases the attractive contribution
$B. As a result the energy spectrum is inverted at PF = 3.8fm~! for the
HF1 and at PF = 4.0fm~" for the HF2 respectively. Above these densities the
spherical distribution of the states may be unstable and a phase transition may
occur from the spherical structure to a new stable ground state, which may be
the shell structure. Such a phase transition has effects on the equation of state
and energy spectrum. It softens the equation of state slightly at above critical
density. It disturbs the inversion of energy spectrums and lowers them (Figs.
7 and 9). For that reason the shell structure may be a stable ground state at
high densities. We can understand the phase transition more explicitly from
the behaviour of the energy density as a function of P, (Figs. 10 - 11). At
the transition point the energy density curve is flat as Pp,;, changes. Above
the critical point there is a local minimum in the energy density. Other inter-
esting results are the fluctuation of the kinetic and potential energy in certain
momentum ranges at high densities. In Figs. 6 - 9 the kinetic and potential
energy spectrums of single particle are illustrated. The fluctuation of the single
particle kinetic energy is related directly to the behavior of m*(p) and p*(p). In
the Hartree models there is no such fluctuation pattern in the kinetic energy. At
above certain high density exchange terms reduce baryon mass and momentum
very strongly near rest momentum. As a result they certainly yield the unphys-
ical results. For instance, at certain density baryon’s effective mass, m*(p) ,
begins negative at near rest. They happen at PF = 3.7fm ™! in the HF1 and at
PF = 4.5fm™! in the HF2. The p-meson contributions show less effect on the
reduction of baryon mass at near rest at certain density. Momentum dependent
effective momentum, p* = p+ 2| also has negative value at PF = 3.6fm ™! in
the HF1 and at PF = 3.4fm~"! in the HF2. In contrast to the results of m*, the
p-meson contributions has strong influence on the reduction of p*. In the HF1
m™* is the main cause for the fluctuation of kinetic energy but in the HF2 p* is
more responsible for the fluctuation, because in the HF2 the attractive exchange
contribution of the vector component of the self-energies play the dominent role
at high densities. But potential energy spectrum shows rather strong fluctua-
tion near the Fermi surface where potential energy decreases rapidly. The strong
reduction of timelike component ¥ near the Fermi surface causes mainly the
fluctuation of potential energy(Figs. 16 - 17). Such fluctuations for the ki-
netic and potential energy are still poorly understood and the standard models,
e.g. the Hartree-Fock theory, may have the limitation on studying the physical
properties of superdense matter.
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4.2 Asymmetric nuclear matter

For asymmetric nuclear matter the results are illustrated in Fig. 19 - Fig. 25
in Appendix B. Here asymmetric parameter is defined by

§=tn—tr (4.12)

2B

For 6 = 1 the results are the same as that of pure neutron matter. For § # 1 the
symmetrization process has the effects on the change of the physical properties
of the system. For instance, in contrast to pure neutron matter the equations
of state for models, which are taken into calculation, shows the same pattern
around the saturation density in the symmetrization process(Figs. 20 and 22 ).
One of interesting results is the behavior of effective chemical potential in Fig.
19.

Here we define the effective chemical potentials(ECP) for proton and electron
in the following way

Nf;ff = (ptn — ptp)/pin =1 — pip/ pin, (4.13)

pe!? = (pn = pe) /i =1 = pre/ pin- (4.14)

In the Hl(o,w), HF1(o,w), and HF2(o,w, 7, p) there is a local maximum in
ECP. However, the local maximum is not apparent in the H2(o,w, p). The self
consistent approximation and the associated behaviour of the self-energy(Fig.
18) cause such patterns for ECP. At low densities the most of contributions to
tp and py, come from neutrons because of the self-consistent calculation. Until
ECP reaches the local maximum at ¢ = 3.6g¢ for the H1 and ¢ = 4.179¢ in the
H2, p, is smaller than pu, relatively because the density of neutrons is larger
than that of protons in asymmetric nuclear matter and the scalar and vector
component of the self-energy does not much affect on p, and p,, in these density
ranges. Above the local maximum in ECP p,, suffers more depression than p,
and the ratio pp,/p, becomes slowly increasing as the density increases. But
the pattern of ECP in the H2 is different from that in the H1 at high densities,
since the contributions from timelike component of self-energy to ECP in the
H2 play a more dominant role than that from scalar component. As the density
increases pp and p, in the H2 are changing fast at the same rate, which makes
the relative contribution to ECP constant. In the Hartree-Fock approximations
the exchange contributions have large impact on the behavior of ECP. In the
HF1 ECP mode is not too much deviated from the Hartree calculation, but in
the HF2 the local maximum is shifted to higher densities. In the HF2 scalar
component of self-energy has very small effect on ECP at low densities and that
causes the shift of local maximum to high densities. At high densities exchange
contributions from p-meson play a decisive role in the behavior of ECP. At lower
and higher densities than the density, at which the local maximum appears in
ECP of protons, p, is comparable to u, and the behaviour of ECP shows
the saturation of the population of protons for each §. As is shown in figures
ECP is decreasing during the symmetrization process. Such a behaviour of
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chemical potential is related to the population of chemical species. Since ECP
of neutrons and protons in the HF2 undergoes symmetrization process rapidly
at high densities, population of protons in the HF2 is more favorable. These
results reflect more population of protons in the HF2 model in S-equilibrium(cf.
Fig. 2). Another interesting result is disappearance of the shell structure in
the symmetrization process. In asymmetric nuclear matter the shell structure
may be a stable ground state at high densities, because for the shell structure
the equation of state is slightly soft and energy density is relatively lower at
high densities(Fig. 23). But in symmetric nuclear matter the shell structure
disappears and the spherical structure is still a stable ground state. This effect
can be seen in Fig. 24 and Fig. 25., where the energy densities are illustrated
as a function of P,,;,. At below critical density the energy density increases
monotonically and at critical density the flatness pattern appears in the energy
density. At above critical density the shell structure has the local minimum
for asymmetric nuclear matter, but local minimum disappears in symmetric
nuclear matter. In this symmetrization process the critical point, at which a
phase transition occurs, moves to higher densities. For instance, for asymmetric
nuclear matter the HF1 results show that for § = 1 there is the phase transition
at the density of o &~ 12g9. For § = 0.5 the phase transition occurs at the
density of ¢ ~ 14g9. But in symmetric nuclear matter, 6 = 0, there is no
evidence for phase transition up to such densities. Another important thing
is the impact of p-meson on the equations of state. At low densities p-meson
contributions stiffen the equation of state in the Hartree calculation. At high
densities the exchange contributions of p-meson stiffen the equation of state
for asymmetric nuclear matter in the Hartree-Fock approximations. But during
symmetrization process p-meson contributions soften the equation of state at all
densities. For symmetric nuclear matter, in which the Hartree term of p-meson
vanishes, there is very little difference in both models, HF1(o,w) and H2(0, w, p),
but the equation of state is much softer in the HF2(o, w, 7, p) model.
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5 Hadronic phase in p-equilibrium and quark
matter phase

In the ground state the fermion fields occupy up to the Fermi momenta according
to the Pauli’s exclusion principle. As a result the baryon fields in the ground
stste are one of the ordered systems in momentum space. But as the density
increases, a new kind of order may be created. Generally, creation of a new
order is related to the stability condition of the system. Apart from the shell
structure, which is discussed in Chapter 4, there may be other possibilities
to create new orders in the density evolution. At low densities the system
is supposed to be composed of pure neutron matter. But increasing density
leads to the population of other species, because creation of the new particles
makes the system more stable. In this process the shell structure may not
be created, since the spherical distribution is still a stable ground state if the
symmetrization effect(see Section 4.2), creation of protons, is taken into account.
The other possibility may be phase transition from confined hadronic matter to
deconfined quark-gluon mixed phase.

5.1 Hadronic Phase

Now we suppose that the system is composed of almost pure neutron matter
with small amounts of electrons at low densities. For increasing density §-decay
does occur:

n=p+e + U, (5.1)
PR e e + - (5.2)
We can compute the physical properties of such a mixture of electrons, muons,
protons, and neutrons by assuming that they are in generalized $-equilibrium.

The equilibrium is imposed through the chemical potentials corresponding
to baryon and lepton:

pu(n) = p(p) + p(e), (5.3)
m(p) = p(e). (5.4)
The constraint of charge neutrality leads to

o = ¢° + o". (5.5)
The conservation of baryon number is defined by

0=0"+ 0. (5.6)

The chemical compositions of neutron stars can be calculated by a density evo-
lution equation.

The density evolution equation may be written as the coupled nonlinear equa-
tions in the following way

lfi_wgi :Fi(xla"'amiaWBjB(Q)ag)' (57)
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Here z; denotes the ratio of the density of the i-th chemical element to the
total baryon density, that is z; = p; . The quantity, Vi, ;, (0), is the interaction
contributions from baryons of ig and jp.

This nonlinear evolution equation can be solved only under certain physical
boundary conditions. But under certain circumstances it is more simple to de-
termine the chemical composition by the coupled nonlinear algebraic equations,
which is given by

f’i(ml)"‘)m’iJ‘/iBjB(g)Jg) =0. (58)

For instance, in the Hartree and Hartree-Fock approximations the chemical evo-
lution of neutron star matter can be determined directly by Eq.(5.8) and it leads
to the following relations

Tp+ T, —1=0, (5.9)
Tp =T — Ty =0, (5.10)
Z5(0) + V(ma + T7)? + (Bn22,0)'7 +27)% — Tf(0) +

V(my, + I0)2 + (3r2x,0) 1% + £0)2 — \/m2 + (372z,0)2/% = 0, (5.11)
¢m3+@ﬁ%m”3—v%§+®ﬁ%mP”=0. (5.12)

Energetically the phase of pure neutron matter is not favorable with increasing
densities, and at certain density protons are populated with the same amount of
electrons. Generally the threshold condition for population of baryons including
protons is given by

p"r = qpp > p. (5.13)

Here gp is the electric charge of baryon B and % denotes the threshold chemical
potential of baryon B. In the case of protons in the Hartree and Hartree-Fock
approximations the threshold chemical potential is given by

1y = SEWE D), 9) + LS8 WP @), 5) + ms + TP (WP (), P) (5.14)

Since above the nuclear saturation density electrons are highly relativistic, pop-
ulation of muons is more favorable. The threshold condition for muons is given
by

pe > pl, =my,. (5.15)

Since the chemical potentials ™, u® are positive and the self-energy $F, is neg-
ative, it follows from Eq.(5.14) that (i) negatively charged baryons are charge-
favored and (ii) baryons having the same isospin projection as the neutron (i.e.
Is < 0)are isospin-unfavored. Another mechanism which influences the selec-
tion densities of the various state has its origin in the effective baryon mass
mis(0) = mp + TB(p). Since m} decreases with increasing density, it tends to
depress the selection of each baryon species. In this work we investigate the sim-
ple system, which is only composed of protons and neutrons in S-equilibrium
with electrons and muons. The results are shown in Fig. 2. At below sat-
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uration density pure neutron matter are still in a stable phase. As density
increases proton will be populated with the same amount of electrons, because
of charge neutrality conditions. Near the nuclear saturation density it is ener-
getically favorable for population of muons, since around the saturation density
the chemical potential of electrons is greater than the rest mass of muons. But
the population density is very sensitive to the models taken into calculations.
In the simple Hartree treatment, H1(o,w), protons and electrons are populated
at o ~ 1.35 x 10~*fm—3, and muons are populated at ¢ ~ 0.22fm 3. In the
H2(0,w, p) model, protons and electrons are populated at o ~ 1.0 x 10~* fm =3
and muons are populated at ¢ ~ 8.7 x 10~ 2fm 3. We can understand such
results from the selection conditions for population. Protons fulfill the isospin-
favored conditions with the p-meson contributions. In the Hartree-Fock cal-
culations Fock terms modify the results which are obtained from the Hartree
treatment. Protons and electrons are populated at o ~ 1.20 x 10~ 4fm 23 for
the HF1(o,w) and at ¢ ~ 1.08 x 10~* fm~2 for the HF2(o,w, 7, p). Muons are
populated at o ~ 0.15fm—2 for the HF1 and at o =~ 0.17fm ™3 for the HF2.
Because of p-meson contributions the isospin-favored conditions are fulfilled in
the HF2. However, there are still differences in the population densities between
the Hartree and Hartree-Fock theories. If we take the rest threshold conditions,
which are the effective mass and timelike component of the self-energy, then we
can understand such differences. The behaviour of the effective mass is shown in
Fig. 1. At very low densities the exchange terms have less effect on the reduction
of effective mass than the Hartree treatment. We remember that in Eq.(5.14)
Yo03(p), which is contributed from p-meson, is negative for proton. This reduces
amount of the timelike component of the self-energy for proton. But the dif-
ference of the effective mass among the models is very small. Reduction of the
timelike component of the self-energy by p-meson contributions for proton play
a decisive role in the threshold conditions. That’s why protons are populated
first in the H2. The difference of the population densities between two models,
H2 and HF2, can be understood in the following way. In the threshold condition
of Eq. (5.15) the right term of the inequality are smaller in the HF2 than in
the H2. That means that in the HF2 the population of protons must be more
favorable than in the H2. But the left term of the inequality is relatively much
smaller in the HF2 than in the H2, because the exchange contributions reduce
the chemical potential of neutrons much strongly. Therefore protons are popu-
lated first in the H2 model. For increasing densities the population of protons is
more favorable in the HF2 model. At high densities they approach rapidly the
same amount of neutron matter. This shows that the symmetrization effect is
one of the stabilization processes. In Fig. 3 effective chemical potential(ECP)
for neutron star matter is illustrated. The physical meaning of ECP for baryons
is given in Section 4.2. ECP of electron decreases at low densities where they
are populated. It builds the local minimum at certain density and then it in-
creases at high densities where muons are populated. The equation of state of
baryon-lepton mixed phase is shown in Fig. 4. This topic will be discussed in
Chapter 6.
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Figure 2: Evolution of the chemical compositions in neutron star. Population(I)
for the Hartree(o,w), population(II) for the Hartree-Fock(o,w), and popula-
tion(I11) for the Hartree-Fock(o,w, 7, p) respectively.
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5.2 Quark-Gluon Phase

We now study another possible phase, quark-gluon plasma, in high dense regime.
To study the quark-gluon phase we make a simple model based on strong inter-
action model in the nuclear domain. The Lagrangian density of Quark-Gluon
system can be written as[11]

Lo -a(z) = Qg diﬁ_Q(w)[iV"(au + $9A1 A% () — mQlvo(x) —
LFo (z)Fom (z), (5.21)

Here Af(z) (with a = 1,...,8) are the gluon fields, \* are the standard SU(3)
matrices of Gell-mann. The matrices A* connect the color indices R, G,andB of
the quark field ¢g. The quantity F};, is the gluon field-stength tensor given by

Fp, () = 04 A4 (2) — 0, Ay (2) — gf**° A} (2) Aj (2) = —Fy, (2). (5.22)
The quantities f2¢ are the SU(3) structure constants defined by
[3A%, $AP] = ifabegae. (5.23)

The quantity g is the single coupling constant. The triplet quark fields are de-
noted by

vo=| .2 | (5.24)

In the nuclear domain we confine our attention only to the u and d quarks and
interactions in the quark-gluon phase will be neglected. However the model
must satisfy the confinement property and this is achieved by introducing a
constant, the positive energy per unit volume in the vacuum, (%)vacuum =b.
This constant can be interpreted as the energy needed to create a bubble in
the vacuum, in which the noninterating quarks and gluons are confined. Anal-
ogously to leptonic case we can calculate the equation of state of free quark
phase and bubble fields. The energy-momentum density tensor for free quark
and bubble can be written by[11]

T“,,(.Z') = Q; dw_Q ('Z')[h/uau — Guv (7:7060 - mQ)]¢Q (x) + T/w,bubble (:L‘) (5-25)

The propagator for free quark is defined by
See (@, 2') =i < $o|T (e (@) )| do > (5.26)

where ¢,¢ denote the Dirac (a,a’), flavor(l,l') and color(m,m’) indices, i.e.
¢ =(a,l,m) and ( = (a,l,m ). The momentum-space representation of the
propagator is given by

Seer () = 8 St G ()- (5.27)
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Table 4.1:Masses, spin quantum numbers and electric charges of the quarks
and gluons. Bag constant used here, b = 131.2MeV/ fm?>.

Quark(Q) mqo(MeV) J§  qq Strangeness
u 2-8 A
d 515 L
100-300 1" —le —1
g mg =0MeV) JE=1" ¢gg=0

The baryon density and equation of state in this model can be calculated anal-
ogously to the leptonic case. The results are

0B = 53 = g (u? — (@), (5.28)

E = e 33 /m2 + PO (ul — w? 5.29

bt G T S 4y + PO - w0@), (5:29)

P=-bt+t35d > [ dsfqu“@(lﬂ—w@(@); (5.30)
Q=u,d moT4

where the degeneracy factors in this model are yg = 2x3 = 6. The quarks carry
baryon number B = % and the contribution of gluon to the energy-momentum
tensor has been omitted. P = 0 now corresponds to self bound quark-gluon gas,
in which the Fermi pressure of the quarks just balances the bubble pressure.
This occurs for

[7= ()] pn=emin = 0. (5.31)
In this simple model quarks are assumed to be massless. The equation of state

of the quark-gluon phase and the energy per baryon for massless quark model
are given respectively by

P=1E— 3, (5.32)
2
& =55+ {Pr. (5.33)

Hadronic phase is interpreted as the confined state of quark matter. This con-
fined state may change at high temperature or at high densities and a phase
transition may occur from baryon-meson phase to deconfined quark-gluon mat-
ter. But the critical density, at which the phase transition occurs, and the
real mechanism of phase transition are still poorly understood. In this simple
model the phase transition occurs at the density range of ¢ ~ (1.5 — 2.0)gg
where gy is the nuclear saturation density. The results are illustrated in Fig. 4.
The equation of state of quark matter is softer than that of hadronic phase at
high densities. At low and high densities energy per particle shows enormous
difference between two phases. Such a difference can be understood by the con-
finement of quark matter in hadronic phase at low densities and non-interacting
free phase of quark matter at high densities.
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Figure 4: The equation of state and energy per particle of baryon matter in (-
equilibrium with leptons in the Hartree(o,w), QHD(I)(Hartree-Fock(o,w)), and
QHD(II) (Hartree-Fock(o, w, 7, p)). Quark matter results in the nuclear domain
are also determined in the framework of quantum chromodynamics. THE Equa-
tion of state(I) is the results for baryon matter with leptons and the equation

of state(II) is calculated only for baryon matter.
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6 Application to celestial objects

Generally the fact is accepted that compact objects are the last stage of stellar
evolution. Neutron stars, which contain matter in one of the densest forms
found in the universe, are one kind of the compact objects ever found. The
understanding of matter under such extreme conditions of the density is one
of the central issues at present. Because of extrem high density gravitational
potential is very strong even on the surface of the star so that the geometry of
space-time is changed considerably from flat space. Thus for the construction
of realistic stellar models of neutron stars Einstein’s theory of general relativity
will play the key role.

6.1 General theory of relativity
The Einsten’s field equation is defined by[10,3]

Ry — 3(A+ R)gu = 87GT (6.1)

where G is the gravitational constant. The terms involving R,,, and R constitute
the Einstein curvature tensor. The cosmological constant A is, according to the
best astronomical evidence, very close to zero in our universe and may generally
be omitted. The tensor T}, is derivable from the star’s matter Lagrangian

Ly (),

OLm(x) OLm(z) _
59e)r ~ sty =0 for field (z). (6.2)

The matter Lagrangian L,,(z) of Eq.(6.2) is in the case of neutron star matter
contributed from various baryon, meson and leptonic fields. From Eq.(6.1) it
follows that the field equations for empty space, everywhere outside the star,
are

R,, =0 (6.3)

The corresponding unique solution of Eq.(6.3) is known as the Schwarzschild
metric.

6.2 Non-rotating neutron star

For a static metric describing a spherically symmetric space, the solution of the
Einstein Eq.(6.1) is known to have the form[21,3]

ds®> = —e*®(dt? + 22 dr? + 12 (dh? + sin? 0dg?), (6.4)
where ®(r) and A(r) are the metric functions. By denoting the spherical star’s

radius and mass by R, and Mg, respectively, and introducing the abbreviation

2Gm(r)

T(r) = { 2ah. i Tt (6.5)

if r>Rs
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the metric functions of Eq.(6.4) are then given by

) = L 6.6)
e2®() = ¢=2A(") =1 —T(r) (outside the star). (6.7)

The structure of spherical neutron stars is determined by the Oppenheimer-
Volkoff equations[22] of hydrostatic equilibrium:

& = —Gr>(o(r) + P(r))(m(r) + 4zr®P(r))(1 = T(r)) ', (6.8)
with the boundary condition P(r = 0) = P(g.) = P.[22]. The mass contained
in a sphere of radius r( < R.), denoted by m(r), follows from the density o(r)

m(r) = 47r0fr dr'rIQQ(r’). (6.9)

The metric function ®(r) satisfies the differential equation

d®(r) _ 1 dP(r)
dr —  o(r)¥P(r) dr > (610)

with the boundary condition

®(r = Ry) = 1 In[1 — T(R,)). (6.11)
The Oppenheimer-Volkoff Egs.(6.9) - (6.11) can only be solved once the equation
of state of matter, P = P(p), has been specified.

One of important neutron star properties is the redshift of photons emitted
at the star’s surface. For non-rotating neutron star the shifts in spectral line
frequency of photons are caused by the strong gravitational field.

In the non-rotating limit it is written by

2= ¥R 1= /1 2MG 1 (6.12)

Here M, and R, denote the spherical star’s mass and radius, respectively.

6.3 Rotating neutron star

The gravity of the normal stars is not strong enough to hold their matter against
rotational shedding if they rotate fast. Only compact objects, whose gravity is
strong enough, can rotate fast. Since the first pulsar, very fast rotating star,
has been detected, the existence of such objects has had a profound impact on
subsequent astrophysical research. To identify such objects several possibilities
have been suggested, but only a rotating neutron star meets all theoretical
objections[10]. The rotational effect causes the deformation of the star. As a
result the metric is not spherically symmetric. There are two main approaches,
exact solution and perturbation solution, to determine the physical properties of
the deformed stars. In this work we perform our investigations in the framework
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of an improved version of Hartle’s perturbative method.

6.3.1 Perturbation solution

The basic idea in Hartle’s treatment is the developement of a perturbation so-
lution based on the Schwarzschild metric of Eq.(6.4). The assumption that
under the influence of rotation the star distorts and the pressure, energy, and
baryon number density change by amounts of AP, Ae, Ap, respectively, the
energy-momentum density tensor of Eq.(6.1) changes by AT, and becomes
(guu = (_17 17 17 1)6l“/) [2372473]

T;w = TI?V + AT;W; (613)
T3, = (e + P)uyu, + Py, (6.14)
AT,, = (Ae+ AP)uyu, + APg,,. (6.15)

The quantity T}, of Eqs.(6.13) and (6.14) denotes the perfect fluid energy mo-
mentum tensor where P, ¢ ,and p are measured by an observer in a locally
inertial frame comoving with the fluid at the instant of measurement.

The normalization of the fluids four-velocity v of Eqs.(6.14) and (6.15) is g*"u,u, =
—1. For the distortion functions of Egs.( 6.13) and (6.15) a multipole expansion

is performed. Assuming axial symmetry, one can write

AP = (e + P)(po + p2P(cos9)), (6.16)
Ae= AP, (6.17)
Ag=APfs. (6.18)

The quantities pg, p2, and P(cosf) of Eq.(6.16) are the monopole and quadrupole
pressure perturbation function, and the second order Legendre polynomial re-
spectively. The perturbed metric, expended through second order in the star’s
rotational velocity,(2, has the form[25]

d82 — _eQV(T,G,Q)dt2 + 6211;(7',0,9) (dd) _ CU(’I“, Q)dt)2 + eQu(r,G,Q)d02 + 62)\(7',9,Q)d7.2 +
O(93). (6.19)

The metric functions in the disturbed line element of Eq.(6.19) have the form[23,25,3]

eV (102 — 221 4 2(hg(r, Q) + ha(r, Q) Px(cosh))], (6.20)
2 (0.0 — p25in20[1 + 2(va(r, Q) — ha(r, Q) Pa(cosh)], (6.21)
202 — ¢2[1 4 2(vy(r, Q) — ha(r, Q) P2(cosh)], (6.22)
eNT0.9) = ¢2A(1)[] 4 %mo(nQ)GJgr_rtlg((:,)sz(cosa)]' (6.23)

They are independent of time and azimuthal angle ¢, assumming stationary
rotation and axial symmetry about the axis of rotation. Here, w is the angular
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velocity of the local inertial frame and is proportional to Q. It is known as
dragging of the local inertial frame. The functions pg, hg, Mg, P2, he, Mo, and
vy are all functions of r proportional to Q2 which are obtained from the field
equations. The critical angular velocity for which this approach should be valid
is given by[23]

Q. = /Ts/(2R2) = 36/[M,;/Mg]/[Rs/km]? x 10*s71, (6.24)

which expresses Neutonian balance of centrifuge and gravity.
The angular velocity relative to the local inertial frame, w, is defind by

@w=0—w. (6.25)

in terms of which the fluid inside the star moves.
The stellar equilibrium condition of Eq.(6.8) is now supplemented by the cen-
trifugal forces and yields a condition for @ from the field equation

IR + 4 e =0, (6.26)
where

r) =e %"\ /1-T(r). (6.27)
Equation (6.26) is to be solved subject to the boundary conditions that (i)w is
regular at » = 0 and (ii)dw/dr|,—¢ = 0.
Outside the star one has
w(r,Q) =0 —-25J(Q), r>R,, (6.28)
where J(Q) is the total angular momentum of the star, defined by
JQ) = B(),,. (6.29)

The moment of inertia, I, is then defined to be[3]

AP =%, (6.30)

I= J(Q) = 8” f drrt

Relativistic corrections to the Newtonian expression for I come from the drag-
ging of local inertial frames(w/€ < 1) and the redshift (e¢®) and space-curvature
factors(1/v/1 —T).

The set of coupled monopole (I = 0) equations can be integrated once @ is
known from Eq.(6.26). The differential equations for the monopole mass and
pressure perturbation functions, mg and po (for r < R), are given by[23,24,3]

e = 4mr® Z5 (e + Plpo + g d’r! (5)° + 50ty 5%, (6.31)
P 3.2 _ 2
o — GG, — anGSH gy + LI (2)2 + LA(DLE). (6.32)

The boundary conditions are that mo — 0 and py — 0 for » — 0. Outside the
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star one has
mo(Q) = AM(Q) — §J(Q)2, (6.33)

where AM is the change in gravitational mass due to rotation. Evaluation of
Eq.(6.33) at the star’s surface leads for AM to

AM () = mo(Rs) + 557 (). (6.34)

The spherical function hg of Eq.(6.20) can be solved from the algebraic relations

ho = —po + 5% *® + hoe, T <R, (6.35)
and
ho = —AMG + JG r>R, (6.36)

where hg. is chosen to make ho(r) continuous at r = R;.
Inside the star the quadrupole perturbation functions vs and hs of Eqs.(6.20) -
(6.22) satisfy the following coupled set of differential equations[23,24,3]:

3 -2_ 2
=20+ [+ Rl G+ S (R, (6.37)
and
dhy = 292 4 20.(92) 1o (e + P) — B]hs — iy (42) Tus +
sl — mam (&) TG — s E + mf r)(i—‘l’) )4 (6.38)

Their boundary conditions are h2(0) = v2(0) = 0 and ha(00) = v2(00) = 0.

Outside the star the solutions are

hy = ($)?(1+ ) + AQ3(% - 1), (6.39)
and
U2 = ( ) \/—Qz( 1). (6.40)

Here Q7 (cosf) are the associated Legendre polynomials of the second class.
The constant A which is a chosen to make ho and vs continuous at r = Ry is
given by

B . - (P) dh{™(R.) | dh$D)(R.)
A=IGH A+ 37 = he i T + T -

_ . 2(2/Ts— —1) bl (R,
(G5 (L + ) [l — 4] x [1RCR) - ST Sl (6.41)

Here the quantities th) (Rs) and hgp) (Rs) are the homogeneous and particular
solutions of Eq.(6.38) respectively.
The quadrupole mass and pressure perturbation functions ms and p are given
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by

ma = r(1 = T)[—hy — (%02 + 74 (£)2], (6.42)
and
ps = —hy — L(r)2e 2% (6.43)

From the functions pg, p2, v2 ,hs and the constant A the properties of the rota-
tionally deformed star can be calculated.

The star’s spherical surface of constant density is distorted by rotation into the
spheroid

r— 1+ &(r) + &(r) + r[va(r) — ha(r)] Pa(cosh), (6.44)
where

&o(r) = —po(e + P)(35) ™" (6.45)
and

&(r) = —pa(e+ P)(ZE)~". (6.46)

The star’s eccentricity, defined by Hartle, is

\/T_N\/_;g[vz o(r) + &0, _p (6.47)

An alternative definition of the star’s eccentricity is given by[25]

e=/1—-(52) (6.48)

The quadrupole moment of the rotating star can be calculated from
Q=3A4%)+G(¥)* (6.49)

6.3.2 Kepler frequency

An upper limit on neutron star rotation is set by the Kepler frequency {1y,
beyond which instability sets in because of mass shedding at the star’s equator.
For the metric function of Egs.(6.20) and (6.21), the general relativistic Kepler
frequency is given as the solution Q of [25]

Q = [e"@ YOV (Q) + w()]e, (6.50)
with
dw () /dr W)—v(w dv(w)/dr dw(Q)/dr W) —v(w
V(Q) = [de;((w))//drew( e )+\/d¢((w))§dr +(2d¢((w))//d ev(@-vw)2l,,. (6.51)

The subscript "eq” refers to evaluation at the star’s equator. The quantity
V' denotes the orbital velocity of a comoving observer at the star’s equator
relative to a locally non-rotating observer with zero angular momentum in the
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¢-direction. If one neglects the distortion functions in the metric of Eq.(6.19)
and sets @ = (2, neglecting the dragging effect of local inertial frames, then the
orbital velocity V., of Eq.(6.51) takes on the form

Leq
Vg = /52 \/11T (6.52)
= ReyQ for Ty << 1, (6.53)

with Q. given by Eq.(6.24).

As indicated here, the result of classical Newtonian mechanics for the velocity
of a particle in a circular orbit is recovered from Eq.(6.52) by neglecting the
curvature of space-time geometry(i.e. T,y << 1), the rotational deformation
of the star, and the dragging effect of local inertial frames. an approximate
solution of Eq.(6.50) in the case of a rotating neutron star of limiting mass
can be obtained from the empirically established expression of Haensel and
Zdunik[28] ,and Friedman, Ipser and Parker[29], which reads

Q ~ 24/[M,/Mg]/[Rs/km]? x 10*s~! = 2Q.. (6.54)

This formular has been established from the exact numerical solution of the
Einstein’s field equations for a rapidly rotating neutron star.

The frequency shift of light emitted at the star’s equator in backward(B) or
forward(F) direction is given by[25]

2p/r(Q) = €7V (1 £ w(Q)eV (D) =1 (12712 — 1. (6.55)

The redshift of photons emitted at the star’s pole is obtained from
2p(Q) = e V() — 1. (6.56)

In rotating star the redshift of photons is caused by the Doppler shift as well as
the presence of a strong gravitational field.

The stability parameter which is important for a proper understanding of the
stability of rotating neutron star is defined by

HQ) = ) (6.57)
with

T(Q) = LI(Q)9, (6.58)
W(Q) = M, (Q) + T(Q) — M,(€). (6.59)

Here T'(2) and W(Q) are the star’s rotational energy and gravitational energy
respectively. The general relativistic Kepler periods, which are derived directly
from Kepler frequencies Qg , are given by

Pg = 2= (6.60).

Qx -
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6.4 Matter in neutron star

For neutron stars the density of matter spans an enormous range, from high
densities of g ~ (2.5 — 5) x 10'®g/cm? (o ~ (10 — 20)go, where gy is the density
of normal nuclear matter, go = 2.5 x 10**g/cm?)in the cores of neutron stars
obtained from a given equation of state down to zero at the star’s edge. As an
example we illustrate in Fig. 5 the radial dependence of the energy density in
relativistic non-rotating neutron star models for the matter equations of state.
One sees that the typical central energy densities in the cores of neutron stars
lie in the range of 7 < €./€p < 11 in this study. The pressure as a function of
radial distance of non-rotating neutron star models is exhibited in Fig. 5. The
composition of neutron star matter is presently understood to be as follows[3]:

1. Surface: Matter at mass densities 10* < ¢ < 108g/cm?®(which corresponds to
energy densities 5.6 x 107% < € < 3.9 x 1075 MeV/fm3)is composed of normal
nuclei and non-relativistic electrons.

2. Outer crust:At densities 7 x 10° < p < 4 x 10'*g/em® (3.9 x 1076 < € <
0.22MeV/ fm?) the electrons become relativistic(forming a relativistic e~ gas),
and the nuclei (lighter metals), while becoming more and more neutron rich,
form a solid Coulomb lattice.

3. TInner crust: At densities 4 x 10" < p < 2 x 10'g/em?®(0.22 < € <
110MeV/ fm?) one encounters the neutron drip regime of neutron matter: neu-
trons begin to populate free states outside the(neutron saturated) nuclei. Fur-
thermore matter clusters into extremely neutron rich nuclei(heavy metals) that
are arranged on a lattice and immersed in a neutron and a relativistic electron
gas.

4. Neutron liquid: For ¢ > 2 x 10*g/em®( € > 110MeV/fm?) the clusters
begin to dissolve and n,p, and e— form a Fermi fluid.

5. Core region: Hyperon production sets in at densities ¢ > 5 x 10**g/cm?®(e >
300MeV/fm?). Unsolved issues concern meson condensation, phase transition
of confined hadronic matter to quark matter.

The surface and crust regions of neutron stars are so thin that these contribute
negligibly to the bulk properties (e.g. mass, radius, moment of inertia) of the
more massive members (stars of gravitational masses My, > Mg)of a neutron
star sequence constructed for a given equation of state. Most of the bulk prop-
erties of the star is contributed by superdense matter. The sub-nuclear equation
of state used in this work are joined with the nuclear equation of state at den-
sities typically on the order of €/€y ~ (1 — 10) x 10~2(see Table 6.1).

The high density (i.e. €./ep > 1) neutron star matter equation of state is the key
uncertainty in neutron star models. It forms the basic input quantity necessary
for solving both the sets of non- rotating as well as rotating structure equations.
By means of solving the neutron star matter field equations subject to the con-
straints of charge neutrality and generalized S-equilibrium for the relativistic
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Hartree-Fock approximation, it has been found that in the vicinity of nuclear
matter density , o & 00(0o = 0.15fm~3), neutron star matter consists almost
purely of neutrons with a small admixture of electrons and protons. For increas-
ing values of p, high-momentum neutrons are subject of $-decay into protons
and electrons or muons. A detailed discussion of the composition of neutron
star matter is given in Section 5.1. Other unsettled issues are the possibility
of a phase transition from nuclear matter (confined hadronic phase of baryons
and mesons) into quark matter in the cores of neutron stars and the influence
of meson condensation.

In this work the neutron star models are constructed on the equations of state
which fulfill the following physical constraint:

(1) The internal energy of the star, €™ (g) = €(0) — mpo, is positive.
(2) The equations of state satisfy the microscopic stability condition %—1: > 0(Le
Chatelier’s principle) and the causality condition %—f < c2.

(3) The equations of state below some matching density is known[3,10].

Table 6.1:Neutron star matter equation of state.

Model Equation of state Mass density range Composition
HW Harrison-Wheeler 7.8 < o <101 Crystalline;light

& metals,electron gas
NV Negele-Vautherin 101 < o < 1013 Crystalline;heavy
& metals,relativistic
& electron gas

HF1 RHF (o,w) 1013 < o < 1.25 x 1016 pLe T
HF2 RHF (0 ,w,m,p) 10" < p < 1.25 x 106 pn,e
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6.5 Neutron star properties

Astronomical observation provides more or less accurate results of the neutron
star bulk properties such as masses, rotational frequencies, moment of inertia,
redshifts, etc.. The gravitational mass, which is one of the most important
properties of neutron stars, can be inferred directly from observation of X-ray
binaries and binary pulsars (e.g. the Hulse - Taylor radio pulsar PSR 1913+16).
For instance, the extremely accurately determined mass of the Hulse - Taylor
binary pulsar PSR 1913416,

M(PSR1913 + 16) /M, = 1.444 + 0.0003,

is given by Taylor and Weisberg[27].

The approximate range of neutron star masses which are determined from ob-
servation is 1.0 < M/Mg < 2.0. One of the fastest so far observed pulsars,
which are interpreted as rapidly rotating neutron stars, has rotational period of
about 1.6ms. The fastest known pulsar is PSR 1937 + 21, which spins on its
axis every 1.56ms. It is known that there is no method to determine the radius
of neutron stars directly. But the radius can be derived from combinations of
data of well-observed objects with theoretical assumptions. It yields a radius
range from 10 to 15 km[3]. Another global neutron star properties are the mo-
ment of inertia and redshift. The low bound on the moment of inertia, which is
estimated for the pulsar in the Crab nebular, is known to be = 10%5gem?[34].
Redshift data, which is provided by measurements of y-ray burst pair annihi-
lation lines in the range of 300 — 511(MeV), shows range of 0.2 < z < 0.5[35].
In the following two sections we discuss the results of non-rotating and rotating
neutron star calculations, which are carried out in this work.

6.5.1 Non-rotating neutron star

By solving the neutron star properties the basic input quantity is the equation
of state. The equations of state for neutron star matter are illustrated in Fig. 4.
For pure baryon matter the equation of state is very analogous to the results of
asymmetric matter in the Hartree and Hartree-Fock calculations. However, the
equation of state of baryon-lepton mixed phase behaves much differently. For
instance the exchange contribution of p- meson stiffens the equation of state at
high densities in the Hartree-Fock(o,w, 7, p) calculation. However lepton matter
softens the equation of state for the Hartree-Fock(o,w, 7, p) model at all densi-
ties. This is the symmetrization effect. In this work the lepton’s contributions
are also taken into the calculation. The bulk properties of non-rotating neutron
stars are determined in the central density ranges of (0.8 - 50)eg, where ¢ is the
energy density of normal nuclear matter. The six different equations of state,
which are determined in this work, are used as an input parameter for calcula-
tion of neutron star properties. All results are evaluated on the maximum mass
condition, which is defined by %| M=M,,,., = 0. The results for pure neutron
matter and baryon matter in S-eqilibrium with leptons are illustrated in Fig.
26 - Fig. 27 in Appendix C. In pure neutron matter the core densities of the
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stars reach €, = 5.71¢p in the HF'1 and €, = 7.14¢p in the HF2 respectively. For
baryon matter in S-eqilibrium with leptons the core densities of the stars are
€. = 7.14¢y for the HF1 and €. = 10.7¢q for the HF2 respectively. For baryon
and lepton system maximum masses span a range of 2.14My < M < 24M @,
and in pure neutron matter maximum masses of the star lie in the range of
2.28Mg < M < 2.84Mg. Maximum masses, which are calculated using the re-
alistic Hartree-Fock models, lie in the range of upper limits, which are estimated
from observations. Radius, which are determined in this work, coincide with
the results that are obtained from observations. Radshift data shows range of
0.50 < z < 0.61. The moment of inertia is about to be ~ 10**gcm? and baryon
numbers of the star are &~ 10°7. All global quantities, which are given above, are
dependent on the behavior of the equation of state. If the equation of state is
soft, then the core density of star is higher, and its mass and radius are smaller
than those of the star systems, for which the equation of state is stiff. There is
very little difference in maximum mass which is obtained from the spherical and
shell structure calculations. The shell structure is created at the energy densi-
ties of € > 12¢g(€g is the energy density of normal nuclear matter). Such energy
densities are much higher than the energy density range of 7 < e./ep < 11, at
which the bulk properties of neutron stars are estimated. The estimated bulk
properties of neutron stars above the energy density range of 7 < e./€g < 11 are
unphysical. Therefore the calculations from shell structure may have no effect
on neutron star results.

6.5.2 Rotating neutron star

The results for rotating neutron star calculations are illustrated in Fig. 28 - Fig.
31 in Appendix D. Rotational effect changes some bulk properties (e.g. gravi-
tatioal mass, radius, etc.) of the star considerably. We now discuss the results
of neutron star models that are rotating at their respective absolute maximum
Kepler frequencies k. The calculations are performed for the models of the
equations of state for neutron star matter of Fig. 4. The Kepler frequencies
Qg set on absolute upper limit on stable rotation. For rotational frequencies
Q > Qg the star is unstable because of mass shedding at the star’s equator. The
equations of state, which are determined in this work, lead to absolute limiting
Kepler frequencies in the range of 1.025 x 10*s™! < Qg < 1.087x 10*s~!. These
Kepler frequencies yield rotational Kepler periods of Px = 0.63ms and 0.60ms
for the HF1 and HF2 respectively. These results are by far smaller than the
smallest observed pulsar period. The rotational Kepler periods are exhibited as
a function of gravitational mass in Fig. 31. The central energy densities in the
cores of neutron stars at their Kepler frequencies are shown in Fig. 28 for differ-
ent equations of state. The star models constructed for the HF1 and HF2 have
central energy densities in the range of 6.0 < e./eg < 7.2. This result shows that
rotation causes the decrease of the central energy density. For the HF1 and HF2
rotation decreases the central energy density ~ 11% and =~ 33% respectively.
The determination of rotating mass M,.¢(€., 2k (€.)) demands for a self- consis-
tent numerical solution of the general relativistic stellar structure equations of
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rapidly rotating massive objects. The numerical outcome obtained for M, ,; as
a function of €. is graphically depicted in Fig. 28. The rotating masses obtained
from this work are M, ,; = 2.75Mg and 2.75M for the HF1 and HF2 respec-
tively. As mentioned in Section 6.5.1, the largest gravitational mass is obtained
for equation of state, which is rather stiff behavior at high densities. In Fig. 29
the numerical results for gravitational masses are illustrated as a function of the
core density e.. Rotational effect increases the gravitational mass ~ 15% for
the HF1 and HF2. The eccentricities of the rotationally deformed neutron star
models, in Eq.(6.48), depend on the ratio of polar to equatorial radius, R,/ R.q.
The polar and equatorial radii as a function of gravitational mass are exhibited
in Fig. 29. We find R,/R., ~ 0.73 for the HF1 and HF2. The calculated
velocities at the star’s equator are exhibited as a function of gravitational mass
in Fig. 30. It amounts at most to 59.4% and 57.8% of the velocity of light
for the HF1 and HF2 respectively. The smaller Kepler frequencies imply lower
equatorial velocities. The stability parameter ¢ as a function of Qx are shown
in Fig. 31. The value of the stability parameter obtained for limiting-mass
models (here HF1 and HF2) takes on values of 0.10 < ¢ < 0.11. The forward
and backward redshifts at the star’s equatorial are illustrated in Fig. 30. We
can see a large rotational effect on redshift.

48



7 Summary

In the framework of the Hartree-Fock approximations the physical properties
of superdense matter have been studied. In these models dynamics is deter-
mined by self-consistent baryon-baryon interactions which are mediated by the
exchange of mesons. The density ranges of matter, which is investigated in this
work, span from below the nuclear saturation density to the density of p = 5099,
where gy is the density of normal nuclear matter. The main aim of this work is
the investigation of the behaviour of the ground state in the density evolution.
For such an investigation one of the necessary basic quantities is the equation
of state of matter. We have determined the equations of state for different
kinds of matter, which are pure neutron matter, asymmetric nuclear matter
and neutron star matter in the Hartree and Hartree-Fock theories. The results
for neutron matter show the instability mode of the ground state above the
density of p & 129 where gq is the nuclear saturation density. For that reason
above the density of ¢ & 129y there may be other new stable ground states. A
phase transition may occur from the standard ground state, in which states of
matter are distributed in the Fermi sphere in momentum space, to a new stable
ground state at high densities. For neutron matter such a phase transition has
been suggested earlier and is confirmed in this work taking more realistic dy-
namics. For asymmetric nuclear matter this instability modes are decreasing in
the symmetrization process and the instabilities disappear in symmetric nuclear
matter. In symmetric nuclear matter there is no evidence for shell structure at
high densities and the spherical structure is still a stable ground state. Another
interesting and more realistic phase of matter is neutron star matter, in which
baryons are in f-equilibrium with leptons in the density evolution. It is more
realistic to suppose that neutron stars are not composed of pure neutron matter
but consist of baryons in S-equilibrium with leptions. Since the equation of
state of matter is the basic input parameter for determining the bulk properties
of neutron stars, we have applied the equations of state, which are obtained
in this work, to the neutron star calculations. But results show that there are
small differences in the bulk properties of neutron stars for different models used
in this work. In conclusion the equation of state of matter is still uncertain in
the density range of ¢ & (2 — 15) 09, because the real dynamics of matter in this
density range is poorly understood. For above densities of g & 1599 the simple
standard models(e.g. Hartree and Hartree-Fock etc.) may not be applied to de-
termine the physical properties of matter, because of appearances of unphysical
results as shown in the calculation of neutron matter. More realistic dynamics
is necessary to understand the physical properties of superdense matter.
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A Appendix A

Neutron Matter

Fig. 6 - Fig. 18
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Figure 6: Single particle spectrum ,kinetic energy and potential energy as a
function of momentum at given densities in the H1 (o,w) calculation. The
results are for pure neutron matter.
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Single particle energy spectrum(HF1)
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Figure 7: Single particle spectrum ,kinetic energy and potential energy as a
function of momentum at given densities in the HF1 (o, w) approximation. The
results are for pure neutron matter.
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Single particle energy spectrum(H2)
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Figure 8: Single particle spectrum ,kinetic energy and potential energy as a
function of momentum at given densities in the H2 (o, w, p) calculation. The
results are for pure neutron matter.
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Single particle energy spectrum(HF2)
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Figure 9: Single particle spectrum ,kinetic energy and potential energy as a
function of momentum at given densities in the HF2 (o, w, 7, p) treatment. The
results are for pure neutron matter.
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Figure 10: Energy density as a function of P;, for the shell distribution of
neutron matter in the HF1(o,w) approximation.
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Figure 13: Equation of state of neutron matter at high densities for different
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Figure 14: Hartree and Fock term contributions to self-energies of neutron mat-
ter for the HF1(o,w) calculations. The results are illustrated as a function of
the Fermi momentum.
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Figure 16: Hartree and Fock term contributions to self-energies of neutron mat-
ter for the HF1(o,w) calculations. The results are illustrated as a function of
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Figure 17: Hartree and Fock term contributions to self-energies of neutron mat-
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B Appendix B

Asymmetric Nuclear Matter

Fig. 19 - Fig. 25
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Figure 19: Behavior of chemical potential of asymmetric nuclear matter in the
symmetrization process. Here the AH1(o,w) and AH2(o,w, p) are the Hartree
treatment for asymmetric nuclear matter. The AHF1(o,w) and AHF2(o, w, 7, p)

are the Hartree-Fock approximations for asymmetric nuclear matter. Here Del
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Figure 20: Equation of state of asymmetric nuclear matter at low densities for
the same models as those in Fig. 19.
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Figure 21: Equation of state of asymmetric nuclear matter at high densities for
the same models as those in Fig. 19.
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Figure 22: Energy per nucleon of asymmetric nuclear matter for the same models
as those in Fig. 19.
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Figure 23: Equation of state of asymmetric nuclear matter for the spherical and
shell structure at high densities. Here The AHF1(0,w) and AHF2(0,w, 7, p) for
spherical distribution, AH F1g,(0,w) and AHF2.,(0,w,w, p) for shell distribu-

tion respectively.
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Figure 25: Energy density of asymmetric nuclear matter as a function of P,
for shell distribution in the HF2(o,w, 7, p).
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C Appendix C

Non-rotating Neutron Star

Fig. 26 - Fig. 27
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Figure 26: Mass,radius and redshift of non-rotating neutron stars in
the Hartree-Fock calculations for the spherical (HF1,,,HF2,,) and the
shell(HF 1,44, HF24,) structure of pure neutron matter. There are very small
differences in results between the spherical and shell structure. The results for
neutron star matter are also illustrated.
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Figure 27: Inertial moment, baryon number of non-rotating neutron stars for
the same models and matter as those in Fig. 26. Here Kepler frequencies are

the results of Eq.(6.54).
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D Appendix D

Rotating Neutron Star

Fig. 28 - Fig. 31
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Figure 28: Maximum mass, Kepler frequency and central energy density of
rotating neutron stars in the Hartree-Fock approximations, HF1(o,w) and
HF2(o,w, 7, p). The results are obtained for neutron star matter.
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Mass of rotating neutron star
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Figure 29: Gravitational mass and radius of rotating neutron stars in the
Hartree-Fock approximations, HF1(o,w) and HF2(o,w, 7, p). The results are
obtained for neutron star matter.
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Redshift of rotating neutron star
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Figure 30: Redshift and rotational velocity of rotating neutron stars in the
Hartree-Fock approximations, HF1(o,w) and HF2(o,w, 7, p). The results are
obtained for neutron star matter.
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Kepler frequency of rotating NS
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Figure 31: Kepler frequency, rotating period and stability parameter of
rotating neutron stars in the Hartree-Fock approximations, HF1(o,w) and
HF2(o,w, 7, p). The results are obtained for neutron star matter.

79



References

[1] B. K. Harrison and J. A. Wheeler, cited in B. K. Harrison et al. Gravitation
Theory and Gravitational collapse, University of Chicago Press, Chicago,
1965.

[2] J. W. Negele and D. Vautherin, Nucl. Phys. A207 (1973) 298.
[3] F. Weber, Habilitation Thesis, University of Munich, 1992.

]
]
[4] C. J. Horowitz and B. D. Serot, Nucl. Phys. A399 (1983) 529.
[5] B. Ter Haar, R. Malfliet, Phys. Rev. Lett. 59 (1987) 1652.

]

[6] F. Weber, N. K. Glendenning, and M. K. Weigel, Astrophys. J. 373 (1991)
579.

[7] F. Weber, M. K. Weigel, Nucl. Phys. A505 (1989) 779.
[8] C. J. Horowitz and B. D. Serot, Phys. Lett. 109B (1982) 341.
[9] Y. Yang, S. Gao, Nucl. Phys. A514 (1990) 706.

[10] S.L. Shapiro and S. A. Teukolsky, Black holes, White Dwarfs, and Neutron
stars, John Wiley & Sons, N.Y., 1983.

[11] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16 (1986) 1.
[12] N. Glendenning, S. Pei, F. Weber, Phys. Rev. Lett. 79 (1997) 1603.
[13] P. Poschenrieder, Dissertation, University of Munich, 1987.

]

[14] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, Mc Graw-Hill,
New York, 1965.

[15] L. Wilets, Green’s functions method for the relativistic field theory many-
body problem, in mesons in nuclei, Vol. III, ed. M. Rho, D. Wilkinson,
North-holland, Amsterdam, 1979.

[16] F. Weber, M. K. Weigel, Z. Phys. A330 (1988) 249.
[17] L. Dolan and R. Jackiw, Phys. Rev. D 9 (1974) 3320.
[18] M. K. Weigel and G. Wegmann, Fortschr. Phys. 19 (1971) 451.

]
]
]
[19] M. Jetter, F. Weber, M. K. Weigel, Europhys. Lett. 14 (1991) 633.
[20] R. M. Barnett et al., Phys. Rev. D54 (1996) 1.

]

[21] Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H.
Freeman and Company, San Francisco, 1973.

[22] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55 (1939) 374.

80



[29] J. L. Friedman, J. R. Ipser, and L. Parker, Phys. Rev. Lett. 62 (1989) 3015.

[23] J. B. Hartle, Astrophys. J. 150 (1967) 1005.
[24] J. M. Irvine, Neutron stars, Clarendon Press, Oxford, 1978.
[25] J. L. Friedman, J. R. Ipser, and L. Parker, Astrophys. J. 304 (1986) 115.
[26] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, (1975) 1353.
[27] J. H. Taylor and J. M. Weisberg, Astrophys. J. 345 (1989) 434.
[28] P. Haensel and J. L. Zdunik, Nature 340 (1989) 617.
]
]

[30] H. Mishra, S. P. Misra, P. K. Panda and B. K. Parida, Int. J. Mod. Phys.
E2 (1993) 547.

[31] L. Engvik, G. Bao, M. Hjorth-Jensen, E. Osnes, E. Oestaard, Astrophys.
J. 469 (1996) 794.

[32] Shmuel Balberg, Avraham Gal, Nucl. Phys. A625 (1997) 435.

[33] P. C. Martin and J. Schwinger, Phys. Rev. 115(1959) 1342.

[34] V. Trimble and M. Rees, Astrophys. Lett. 5(1970) 93.

]

[35] E. P. Liang, Astrophys. J. 304 (1986) 682.

81



Danksagung

Mein herzlicher Dank gilt Herrn Prof. Dr. M. K. Weigel.

82



Curriculum Vitae

I was born in a village in Chungcheong Province in Korea on Nov. 11, 1957
as the first child. I entered primary school near our village. After primary
school I entered middle school in town ,Cho Chi Won. I entered high school in
the city of Taejeon. I studied physics at the Chungnam National University. I
received a Bachelor’s of Science degree in 1980 from the Chungnam National
University. Continuously I studied physics at Graduate School at the Chungnam
National University. During Graduate School I served as a research assistant
from 1981—1983. T received a Master’s of Science degree in 1982 from the
Chungnam National University. Then I served as a teaching assistant at the
Chungnam National University from 1983—1985. After then I served as a Part-
Time Instructor at the Chungnam National University from 1985—1988. In 1988
I have got married. I visited the German Language School at the University of
Wuerzburg and at the University of Munich. I studied physics at the University
of Munich. Since 1992 I have worked as a Ph.D. student at the University of
Munich.

83



