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Abstract

The accurate prediction of atmospheric phenomena is hindered by the inherent chaos of
the Earth’s atmosphere, coupled with a multitude of uncertainties stemming from obser-
vational limitations and model imperfections. These challenges necessitate sophisticated
forecasting methodologies capable of quantifying and addressing uncertainties to provide
reliable meteorological predictions. Ensemble Prediction Systems (EPS) have emerged as
indispensable tools in this regard, offering a probabilistic framework that accommodates
the inherent variability of atmospheric processes. However, there are several limitations to
ensembles too: from the inadequate representation of physical processes within the model,
to sampling errors because of the limited ensemble size. Moreover, the significance of dif-
ferent uncertainty sources varies across weather regimes, which requires a flow-dependent
assessment of the evolution of forecast uncertainty, often limited by the high computational
cost of running ensemble experiments several times.

This thesis addresses these challenges by performing three different convection-permitting
ensemble experiments using the ICON Limited Area Model (LAM). Firstly, the Physically
Based Stochastic Perturbation Scheme (PSP) is included as a representation of model er-
ror originating from the subgrid scale in the boundary layer, but affecting the smallest
resolved scales. The first experiment spans a whole summer season, which allows for a
systematic analysis of the impact of the scheme in different synoptic forcing conditions.
This shows that PSP efficiently increases ensemble spread of precipitation in weak synoptic
forcing, while producing realistic convective structures and without spoiling the forecast
skill. During strong forcing, the effect of the scheme is negligible, as expected by design.

The three-month period analysed in the first part offered a unique opportunity to
select two representative cases for the weak and strong forcing regimes to be analysed
in more detail in the second experiment: the flow-dependence of forecast distributions
is studied using a 120 member Icosahedral Nonhydrostatic (ICON) LAM ensemble. The
bootstrapping technique is used to investigate the convergence of sampling error for a range
of surface and mid-troposphere variables. Convergence is generally observed for the mean
and the standard deviation, but not for the 95 percentile, especially in strong forcing.
Additionally, maps of uncertainty are introduced, which allow for a more detailed analysis
of the spatial pattern of uncertainty and facilitate the interpretation of the sources and
evolution of forecast uncertainty in different synoptic forcing conditions. Overall, the main
result of the second part of the thesis is the strong connection between uncertainty of
forecast variables and convection, with synoptic forcing being crucial in determining the
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spatial distribution and uncertainty evolution within 24 hours.

In the last part of the thesis, the longer-lasting impact given by the memory effects
of soil moisture and atmospheric stability on forecast uncertainty at the convective scale
beyond the first 24 hours of the simulation is studied. Additionally, the impact of these
mechanisms is compared with that of altering the initialization time, where ongoing con-
vection is assimilated into the forecast and modifies the evolution of the forecast beyond
the first day. The flow-dependent analysis shows that all the studied mechanisms have a
larger impact in weak forcing conditions. Although the uncertainty on the convective scale
quickly grows and the predictability left comes mostly from the larger-scale flow, there
are mechanisms on the smaller scale that can still influence the forecast beyond the usual
influence time.

Addressing the challenges of limited ensemble size and uncertainty representation, as
well as its flow-dependence, is essential for advancing the capabilities of EPS in providing
reliable probabilistic forecasts crucial for mitigating weather-related risks in a changing
climate.



Zusammenfassung

Eine genaue Vorhersage atmosphérischer Phanomene wird durch die chaotische Natur der
Atmosphére in Verbindung mit einer Vielzahl weiterer Unsicherheiten erschwert, die sich
aus der begrenzten Anzahl an Beobachtungen als auch Naherungen in numerischen Mod-
ellen ergeben. Diese Herausforderungen erfordern hochentwickelte Vorhersagemethoden,
die in der Lage sind, Unsicherheiten zu reduzieren und zu quantifizieren, um zuverléssige
meteorologische Vorhersagen zu liefern. Ensemble-Vorhersagesysteme (EPS) haben sich
in dieser Hinsicht als unverzichtbare Instrumente erwiesen, da sie einen probabilistischen
Rahmen bieten, der der inhérenten Variabilitdt atmospharischer Prozesse Rechnung tragt.
Doch auch Ensembles unterliegen verschiedenen Einschrankungen: von der unzureichenden
Darstellung physikalischer Prozesse innerhalb des Modells bis hin zu Stichprobenfehlern
aufgrund der begrenzten Ensemblegrofie. Die Ensemblegrofie wird insbesondere durch die
verfiighare Rechnerkapazitit eingeschréankt, da die Anzahl der Ensemblemember mit den
Rechenkosten skaliert. Dartiber hinaus variiert die Bedeutung der verschiedenen Unsicher-
heitsquellen je nach Wetterlage, was eine stromungsabhéangige Bewertung der Entwicklung
der Vorhersageunsicherheit erfordert.

In dieser Arbeit werden diese Herausforderungen durch die Durchfithrung von drei ver-
schiedenen konvektionserlaubenden Ensemble-Experimenten unter Verwendung des ICON
Modells angegangen. Der Modellfehler wird mit dem physikalisch basierten stochastischen
Storungsschema PSP beschrieben, das die Turbulenz innerhalb der Grenzschicht stort. Das
PSP Schema reprasentiert Unsicherheiten, die sich aus nicht aufgelosten Grenzschicht-
prozessen aufgrund endlicher Gittergrofle ergeben. Das erste Experiment erstreckt sich
iiber eine ganze Sommersaison, was eine systematische Analyse der Auswirkungen des
PSP Schemas unter verschiedenen synoptischen Bedingungen erméglicht. Dabei zeigt sich,
dass PSP bei schwachem synoptischem Antrieb die Ensemblevariabilitat des Niederschlags
effizient erhoht und dabei realistische konvektive Strukturen erzeugt, ohne die Vorhersage-
fahigkeit zu beeintrachtigen. Erwartungsgeméaf ist die Auswirkung des PSP Schemas bei
starkem Antrieb vernachléssighar.

Der im ersten Teil analysierte Dreimonatszeitraum bietet die einmalige Gelegenheit,
zwei reprisentative Fille fiir das schwache und das starke Antriebsregime auszuwahlen,
die im zweiten Abschnitt eingehender analysiert werden. Die Stromungsabhéngigkeit der
Vorhersageverteilungen wird anhand eines 120 Member umfassenden ICON Ensembles un-
tersucht. Die Bootstrapping-Technik wird verwendet, um die Konvergenz des Stichproben-
fehlers sowohl fiir verschiedene meteorologische Variablen Nahe der Erdoberfliche als auch
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in der freien Troposphére zu untersuchen. Konvergenz wird im Allgemeinen fiir den Mit-
telwert und die Standardabweichung beobachtet, jedoch nicht fiir das 95. Perzentil, ins-
besondere bei starkem Antrieb. Zuséatzlich werden Karten der Unsicherheit eingefiihrt, die
eine detailliertere Analyse des rdumlichen Musters der Unsicherheit erméglichen und die
Interpretation der Quellen und der Entwicklung der Vorhersageunsicherheit bei verschiede-
nen synoptischen Antriebsbedingungen erleichtern. Insgesamt ist das Hauptergebnis des
zweiten Teils der Arbeit der starke Zusammenhang zwischen der Unsicherheit der Vorher-
sagevariablen und der Konvektion, wobei der synoptische Antrieb fiir die Bestimmung der
rdumlichen Verteilung und der Entwicklung der Unsicherheit innerhalb von 24 Stunden
entscheidend ist.

Im letzten Teil der Arbeit werden die langerfristigen Auswirkungen der Speichereffekte
von Bodenfeuchte und atmospharischer Stabilitdt auf die Vorhersageunsicherheit auf der
konvektiven Skala iiber die ersten 24 Stunden der Simulation hinaus untersucht. Aufler-
dem werden die Auswirkungen dieser Mechanismen mit denen einer Anderung der Initial-
isierungszeit verglichen, bei der die laufende Konvektion in die Vorhersage aufgenommen
wird und die Entwicklung der Vorhersage iiber den ersten Tag hinaus verandert. Die
stromungsabhéngige Analyse zeigt, dass alle untersuchten Mechanismen bei schwachem
Konvektionsantrieb einen grofleren Einfluss haben. Obwohl die Unsicherheit auf der kon-
vektiven Skala schnell zunimmt und die verbleibende Vorhersagbarkeit hauptsédchlich von
der grofiskaligen Stromung stammt, gibt es Mechanismen auf der kleineren Skala, die die
Vorhersage auch iiber die tibliche Einflusszeit hinaus beeinflussen kénnen.

Die Erforschung der Herausforderungen, die sich aus der begrenzten Ensemblegrofie
und der Darstellung der Unsicherheit sowie der Abhéngigkeit von der Stromung ergeben,
ist von entscheidender Bedeutung fiir die Verbesserung der Fahigkeiten von EPS bei der
Bereitstellung zuverlassiger probabilistischer Vorhersagen, die fiir die Minderung wetterbe-
dingter Risiken in einem sich andernden Klima entscheidend sind.
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Chapter 1

Introduction

1.1 Evolution of numerical weather prediction

Over a century ago, Abbe (1901) and Bjerknes (1904) proposed a fascinating idea: predict-
ing the weather by using the laws of physics. They acknowledged that weather prediction
could be treated as an initial value problem of mathematical physics. In this context, the
future state of the weather is determined by integrating the governing partial differential
equations, starting from the currently observed weather conditions. The transformation
from theoretical propositions to the present-day practice of weather prediction delineates
a path marked by technological advancements, scientific breakthroughs, and an enduring
pursuit of accuracy.

Today, this approach involves tackling a complex system of nonlinear differential equa-
tions on a daily basis, spanning approximately half a billion points per time step, projecting
weeks to months ahead. It encompasses the intricate interplay of dynamic, thermodynamic,
radiative, and chemical processes occurring across scales ranging from hundreds of meters
to thousands of kilometers, operating within time frames stretching from seconds to weeks.

The utility of accurate weather forecasts extends far beyond theoretical realms. Beyond
saving lives and aiding emergency management, these forecasts mitigate the socioeconomic
impact of high-impact weather events, bolstering sectors such as energy, agriculture, trans-
port, and recreation. The tangible benefits outweigh the considerable investments required
in scientific research, cutting-edge supercomputing, and observational infrastructure vital
for generating such forecasts (Lazo et al., 2009).

At the heart of atmospheric forecasting lie the Navier—Stokes and mass continuity
equations, together with the first law of thermodynamics and the ideal gas law, describ-
ing the evolution of wind, pressure, density, and temperature across spatial and temporal
dimensions (Kalnay, 2003). However, the integration of physical processes operating at
unresolved scales, down to the molecular level, involves intricate source terms for mass,
momentum, and heat, introduced through friction, condensation, evaporation, and radia-
tive heat exchange (Bauer et al., 2015). Nevertheless, an inherent and crucial attribute
of the atmosphere is that it follows particular rules, which makes it a dynamical system.
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On large scales, the atmospheric evolution is deterministic, governed by specific physical
laws. This means that if we know the atmospheric state at a given moment, we can pre-
dict its future conditions through the application of these natural laws. This deterministic
characteristic forms the fundamental basis for atmospheric prediction (Toth and Buizza,
2019a).

Two decades after Abbe’s and Bjerknes’ idea, Lewis Fry Richardson (1922) recognized
the atmosphere’s deterministic nature and undertook a pioneering effort in numerical
weather prediction. Richardson, a British mathematician and physicist, aimed to use
a simplified set of equations to forecast future weather conditions through mathematical
calculations and early computing methods. Although his forecast was unsuccessful due
to the imperfect simplifications, it represents a remarkable achievement considering the
calculations were done by hand.

The inaugural utilization of the first electronic computer for weather forecasting oc-
curred in Princeton in 1950 (Charney et al., 1950). This marked a significant milestone
achieved by incorporating approximations that effectively characterized the largest scales
of motion in the atmosphere. While the simulations conducted in Princeton focused on
retrospectively simulating past weather conditions (hindcasts), it was in Stockholm (Bolin,
1955) that the first real-time weather forecasts were made.

Since then, advancements in weather forecasting have been driven by various factors.
Improvements in representing unresolved atmospheric processes within global models, the
advent of ensemble methods for estimating forecast uncertainty, and the introduction of ob-
jective analysis techniques to establish the initial state of the atmosphere have collectively
elevated our predictive capabilities. Additionally, the evolution of computing has been
crucial in enhancing numerical weather prediction, with computational power increasing
substantially, roughly by tenfold every five years since the 1980s (Vitart and Robertson,
2019). This growth in computational capability has played an essential role in refining
predictive skill, allowing us to retain accuracy in forecasting one additional day into the
future for every decade of dedicated research and development (Bauer et al., 2015). More-
over, fluctuations in predictive accuracy are often a consequence of the varying levels of
predictability exhibited by the atmosphere. Some weather regimes exhibit higher pre-
dictability, enabling more accurate forecasts over longer periods, while others prove more
challenging. Our ongoing understanding of these atmospheric patterns continues to ad-
vance, facilitating a more nuanced and refined assessment of our predictive capabilities.

1.2 Probabilistic forecasting

When numerical weather prediction became an everyday task, forecasters realized that
sometimes the forecast was particularly "bad" compared to the average. What they did
not realize yet was that their assumption of the atmosphere being a deterministic system
was actually wrong.

In 1961, Edward Lorenz, a meteorologist, introduced the idea that small changes in ini-
tial conditions could lead to vastly different outcomes in complex systems, a phenomenon
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popularly known as the "butterfly effect" (Lorenz, 1969). Lorenz’s chaos theory revolution-
ized our understanding of complex systems, illustrated through the chaotic behavior of the
atmosphere. His theory highlighted that even small fluctuations in data could lead to dras-
tically different outcomes, challenging the traditional deterministic view of predictability in
natural phenomena. This insight transformed meteorology, emphasizing the inherent com-
plexity and nonlinearity of atmospheric dynamics, prompting a shift towards probabilistic
forecasting methods.

In the early 1990s, several groups of meteorologists embraced the concept of employ-
ing ensemble forecasts (e.g. ECMWEF, NCEP). The ensemble approach boils down to a
straightforward concept: generate N modified forecasts, called ensemble members, each
mimicking potential uncertainties in the main (control) forecast. These forecasts are then
used to determine the possible outcomes, the most likely values, and the probability of a
future variable exceeding or falling below a certain threshold.

Fig. 1.1 shows an example of an ensemble forecast for temperature at a specific location.
Initially, all the ensemble members are close together and to the control forecast. The
resulting Probability Distribution Function (PDF) is Gaussian, with the most likely value
being close to reality. As time proceeds, the nonlinear, chaotic nature of the atmosphere
causes the ensemble forecasts to diverge and form 3 clusters, resulting in a multi-modal
PDEF. The deterministic, control forecast fell into one of the clusters that diverged from
reality, which demonstrates the advantage of a probabilistic approach, where the most
likely value is close to reality, despite the large uncertainty.

Ensemble techniques in weather prediction have undergone a significant evolution.
Initially, methods like time lagged forecasts and random initial condition perturbations,
though attempted, yielded limited success. However, the 1990s brought a turning point
with the emergence of more promising and sophisticated methodologies. The first iteration
of the European Center for Medium-range Weather Forecasting (ECMWF) global ensem-
ble employed Singular Vectors (SV) to simulate initial uncertainties. SV represent the
perturbations that exhibit the most rapid growth within a defined time frame (Buizza and
Palmer, 1995). In 2008, perturbations from multiple data assimilation cycles, known as
Ensembles of Data Assimilations (EDAs), were also incorporated in addition to SV (Buizza
et al., 2008), which are still used today.

Initial condition uncertainty, however, is not the only source of uncertainty to be ac-
counted for in an ensemble forecast. An important contributor to uncertainty is the model
itself, arising from our restricted understanding of atmospheric phenomena and the inherent
limitations of finite grid size. Tackling the former involves perturbing particular elements
of the model formulation, such as parameters of simulated microphysical processes. Mean-
while, addressing the latter necessitates meticulous parameterization of subgrid processes
that are unresolved by the model. Model uncertainties were first included in the Ensem-
ble Prediction System (EPS) of the Meteorological Service of Canada (Houtekamer et al.,
1996). A few years later, a stochastic model perturbation scheme designed to simulate
model uncertainties was introduced in the ECMWF ensemble (Buizza et al., 1999).

The implementations of ensemble techniques marked an important shift in operational
NWP methodologies. This shift transitioned NWP from a deterministic approach reliant
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Figure 1.1: Conceptual representation of an ensemble forecast for temperature. Thin blue
lines represent the ensemble members (fc;), while the think blue line is the control forecast
(fco) and the red line is the reality. The PDF at time 0 is Gaussian, while after a time t it
becomes multi-modal due to nonlinear dynamics. Adapted from Toth and Buizza (2019b).

on a single forecast to a probabilistic approach. Nowadays, this paradigm shift is widely
acknowledged as a necessity in forecasting, emphasizing the incorporation of uncertainty
estimates (Toth and Buizza, 2019a). Whether for short-term, medium-range, monthly,
seasonal forecasts, or even the more extended outlooks like decadal and climate projections,
ensembles have become indispensable. They not only present the most probable scenarios
but also offer critical insights into associated uncertainties. As the predictability diminishes
over time, especially with longer forecasts, adopting a probabilistic approach becomes
imperative. This evolution underscores the significance of ensembles in modern forecasting,
enabling meteorologists to not just predict but also understand the inherent uncertainties
within the complex weather systems.
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1.3 Challenges in ensemble prediction

Although ensemble forecasting has become very useful and indispensable in weather pre-
diction, it still faces certain challenges. In this section, three challenges will be discussed.
Firstly, the high computational cost of running an ensemble limits the number of members
in the ensemble forecast, which is an important factor in determining how well a proba-
bility distribution of a weather-related variable can be estimated. Therefore, it is crucial
to investigate the question of how big an ensemble should be to study and understand
forecast uncertainty in a probabilistic framework.

Secondly, it is important to include all the relevant sources of uncertainty when design-
ing an ensemble. Early EPS methodologies, such as the Monte-Carlo approach introduced
by Leith (1974), primarily focused on addressing uncertainty in the Initial Conditions (IC).
However, over time, this scope has significantly broadened to encompass uncertainties in
all aspects of a modeling system, including atmospheric initial states, model physics, nu-
merical methods, lower boundary forcing such as land or sea surface conditions, Lateral
Boundary Conditions (LBC), and additional coupling mechanisms such as air-sea interac-
tion (Du et al., 2019). IC have been extensively studied so far and advanced methods to
account for the uncertainty in the initial state have been developed. Therefore we focus
on model uncertainty, in particular on that arising from unresolved processes due to the
limited resolution of NWP models. This has become a particularly relevant issue more re-
cently, as the resolution of operational models reached the kilometer scale, which required
a revision of the way physical processes are represented in the models.

Finally, another important aspect to consider in probabilistic forecasting is the flow-
dependence of forecast uncertainty on the convective scale. In this context, the influence
of the larger-scale flow on convection is of key importance for the forecast evolution and
its uncertainty, with important implications for predictability at the convective scale.

In the following subsections, the three issues described here are further discussed: the
limited ensemble size, the model error representation and the flow dependence.

1.3.1 Limited ensemble size

In practical terms, the ensemble size, which is the number of member forecasts utilized
to formulate the anticipated distribution of a forecast variable, stands out as a critical
factor influencing the quality of probabilistic forecasts. The size of the ensemble is particu-
larly crucial for accurately capturing the nuances of distributions, especially when dealing
with rare outlier occurrences and non-Gaussian behaviors like multi-modality or heavy
tails (Bannister et al., 2017). Nevertheless, owing to computational constraints, opera-
tional ensembles within NWP centers typically incorporate fewer than 50 members for
global models, and even fewer for limited area models (e.g., Gebhardt et al., 2011; Bouttier
et al., 2012; Hagelin et al., 2017; Schwartz et al., 2017; Frogner et al., 2019; Keil et al.,
2020). This is not enough to accurately represent the nonlinear evolution of the forecast
distributions (Leutbecher, 2019). In an insightful study, Kondo and Miyoshi (2019) con-
ducted experiments using an intermediate atmospheric general circulation model, revealing
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that approximately 1000 ensemble members were necessary to accurately represent crucial
distribution features such as multi-modality and the probability of extreme events.

On the other hand, limited understanding exists concerning the challenge of under-
sampling in convective-scale NWP. Research by Harnisch and Keil (2015) revealed that
augmenting the ensemble size from 20 to 40 members resulted in a more accurate analysis
and improved 3-hour forecasts. Similarly, Hagelin et al. (2017) demonstrated a substan-
tial enhancement in precipitation forecast skill by doubling the ensemble size from 12 to
24, utilizing the Met Office convective-scale ensemble (MOGREPS-UK). In a comparative
study, Raynaud and Bouttier (2017) evaluated the advantages of increasing ensemble size
from 12 to 34 members against increasing horizontal resolution from 2.5 to 1.3 km. Their
findings indicated that enlarging the ensemble size proves more advantageous than reso-
lution augmentation for lead times exceeding approximately 12 hours, particularly when
dealing with larger uncertainties. This aligns with the observations of Legrand et al. (2016),
who identified a growing need for larger samples due to increasing non-Gaussianity with
extended forecast lead times. A consistent trend emerges from various studies deploying
substantial ensembles on global and regional scales, emphasizing that the most significant
non-Gaussianity originates from highly nonlinear processes within deep convective clouds
(Miyoshi et al., 2014; Jacques and Zawadzki, 2015). Recent investigations employing data
assimilation in 1000-member convective-scale ensembles have underscored the rapid devel-
opment of non-Gaussianity in less than an hour during deep moist convection, originating
in the vicinity of convective updrafts (Kawabata and Ueno, 2020; Ruiz et al., 2021)

The preceding findings collectively indicate that the currently employed ensembles are
likely too small at least for some purposes. However, determining the optimal size of
ensembles remains a question. Generally, the required number of samples to estimate
the distribution of a forecast variable depends on the distribution’s shape, which can vary
considerably in weather prediction. Figure 1.2 illustrates a conceptual model depicting how
the distribution of a forecast variable might change over time. Initially, the uncertainty in
the initial conditions is relatively small, assumed to be Gaussian in the data assimilation
system. As time progresses, the distribution may broaden, developing asymmetric tails
due to factors like non-negativity constraints on quantities such as humidity (left panel).
With the influence of nonlinear processes over time, the distribution may assume a complex
form with heavy tails indicating higher probabilities of extreme events or even multi-modal
distributions associated with preferred regimes (center panel). Eventually, the forecast
ensemble loses memory of the initial conditions, and the forecast distribution converges to a
broad, smooth, climatological distribution (right panel). In convective-scale forecasting for
a limited-area model, the "climatological" distribution represents possible weather within
the model when small-scale errors have saturated, subject to synoptic-scale conditions
from the driving global ensemble (Selz, 2019). While this "climatological" distribution may
be reached within a day or two (Hohenegger and Schar, 2007), it continues to evolve on
synoptic timescales rather than being time-independent.

In addition to evolving over time, the shape of the forecast distribution is also subject
to the specific forecasting scenario under consideration. It is influenced by factors such as
the prevailing weather regime (e.g., convective or clear) and the nature of the forecasted
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Figure 1.2: Conceptual model showing the time evolution of the distribution of a hypo-
thetical forecast variable ¢. In each panel the dashed line represents the distribution at an
earlier time, which evolves into the distribution shown by the solid line. In the centre and
right panels, the dashed line is identical to the solid line in the previous panel. See text
for further details.

quantity. Variables like precipitation, constrained by non-negativity, exhibit skewed dis-
tributions, whereas aggregated measures such as time- or area-averages may display more
Gaussian characteristics compared to point values. While it might be feasible to accurately
estimate the ensemble mean with a relatively small ensemble, capturing higher moments
of the distribution or predicting the probability of extreme events could necessitate sig-
nificantly larger ensembles (Leutbecher, 2019). The question of determining the optimal
ensemble size encompasses a series of inquiries, and the challenges associated with experi-
menting with large ensembles in NWP make it challenging to provide definitive answers.

Due to concerns that computationally feasible ensemble sizes may not be sufficiently
large to accurately represent forecast uncertainty, various techniques have been proposed
to enhance the representativeness of smaller ensembles. In global ensembles, employing
perturbations based on singular vectors or bred vectors ensures the capture of the most
rapidly-growing error modes (Palmer et al., 1998; Toth and Kalnay, 1997). In the context
of limited area models, selecting lateral boundary conditions becomes crucial to ensure
that the complete spread of the global ensemble is adequately represented (Montani et al.,
2011). Research by Marsigli et al. (2014) highlights that the lack of diversity in the global
ensemble, providing boundary conditions to a limited-area ensemble prediction system, can
be a significant limitation, especially when the global ensemble is small or based on a single
forecast model. The impact of this limitation is likely to vary with the weather regime,
as demonstrated by Keil et al. (2014) in their study of ensemble forecasts in a convection-
permitting model. They found that the driving model is the primary source of uncertainty
when the synoptic forcing of convection is strong, whereas model physics perturbations
influencing the triggering of convection become the main source of uncertainty when the
forcing is weak.

In conclusion, the size of probabilistic weather forecasts ensembles is constrained by
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cost, often limiting them to smaller sizes. Assessing errors stemming from these limited
sizes proves challenging because the distribution of a forecast variable, as observed by
a larger ensemble, is unknown, making it uncertain how many ensemble members are
necessary for accurate sampling.

1.3.2 Model error representation

In regional convection-permitting EPSs, three primary types of uncertainties are included.
Firstly, the central aspect lies in initial condition uncertainty within forecast ensembles,
usually achieved by conducting multiple simulations that commence with slightly perturbed
initial states derived from data assimilation procedures. Secondly, lateral boundary con-
dition uncertainty is typically addressed through an ensemble of global model simulations
that offer diverse large-scale flow patterns covering the simulation domain of the regional
model. Lastly, model uncertainty arising from unresolved or inadequately represented phys-
ical processes stands as another important source of uncertainty and poses a significant
challenge in ensemble forecasting.

Various approaches have been conceived to integrate model uncertainty into convection-
permitting EPSs. To address unresolved, subgrid-scale physical phenomena, stochastic
perturbation techniques are being employed, while uncertainties in the structure of physical
processes are commonly handled through methods such as "multiphysics" or perturbed
parameter strategies (e.g. Berner et al., 2017; Fleury et al., 2022; Roberts et al., 2023, and
references therein). However, current convection-permitting EPSs frequently exhibit under-
dispersion in near-surface variables (e.g. Bouttier et al., 2012; Raynaud and Bouttier, 2017),
and devising ensemble construction methodologies that adequately capture the multitude
of uncertainties at play in nature remains a persistent challenge.

Boundary layer turbulence, along with cloud microphysics and their interplay with
aerosols, constitutes significant sources of model uncertainty in convection forecasts (Clark
et al., 2016). The initiation of convection is closely tied to boundary layer processes, yet
these processes remain incompletely resolved due to their inherently small scales. In nu-
merous existing boundary layer schemes, turbulent processes are depicted by a mean state
within a grid box. This approach results in inadequate small-scale variability, particularly
hindering or postponing the initiation of convection, especially in the absence of convective
forcing to trigger convection (Kiithnlein et al., 2014). This issue is addressed by Kober and
Craig (2016) and Hirt et al. (2019), who developed the Physically Based Stochastic Per-
turbation Scheme (PSP) for subgrid processes that targets the coupling between subgrid
turbulence and resolved convection. The scheme is introduced in more detail in section
2.2.

In summary, the ongoing challenge is to develop ensemble methodologies that effectively
capture the multitude of uncertainties in natural systems and combine them to create
physically consistent and effective variability in the ensemble forecast.
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1.3.3 Flow dependence of convection

The development of convection is influenced by several factors. Firstly, the cooling of the
troposphere plays a significant role in generating instability, primarily through dynami-
cally induced ascent. This cooling at higher altitudes is balanced by heating and moisture
addition in the boundary layer, either from surface heat fluxes or through advection, which
results in the formation of Convective Available Potential Energy (CAPE). However, the
mere presence of CAPE doesn’t assure convection will take place. Often, triggering mech-
anisms from mesoscale and local features are necessary to overcome convective inhibition
caused by a capping inversion at the upper boundary of the planetary boundary layer.
These triggering features can include convergence lines, various boundary-layer forma-
tions, and disturbances from previous rounds of convective clouds, like outflow boundaries
and gravity waves. Identifying the meteorological characteristics impacting predictability
is a challenging task.

The impact of dynamical forcing on convection in mid-latitudes is often characterized
as either strong or weak. Typically, this classification relies on the presence or absence
of synoptic or mesoscale dynamical features capable of inducing upward motion and the
formation of CAPE. However, identifying such features is often subjective, necessitating a
more precisely defined measure of the convective environment’s influence. To address this
need, Done et al. (2006) introduced the convective adjustment timescale, which gauges the
extent to which convection aligns with larger-scale forcing. When inhibition of convection
is weak and triggering disturbances are abundant, convection occurs whenever instability
exists, leading to the rapid consumption of CAPE. Conversely, when inhibition is strong
and triggering disturbances are scarce, CAPE can accumulate, indicating a non-equilibrium
state. Equilibrium conditions often coincide with strong forcing because dynamical ascent
weakens inversions, while widespread convection supplies numerous triggering disturbances.

In conclusion, the distinction between strong and weak dynamical forcing of convection
in mid-latitudes and the use of the convective adjustment timescale provide insight into
the convective environment and offer a more precise measure of the influence of larger-
scale forcing on convection. Understanding these dynamics is crucial, as they dictate the
forecast evolution on the convective scale.

1.4 Uncertainty and convergence in a big ensemble:
a preliminary study

The motivation for this PhD project was born from a study on properties of distributions
of forecast variables in a big convection-permitting ensemble. The 1000 member ensemble
data set used by Craig et al. (2022) includes 14-hour forecasts, with 3 km resolution,
for eight different days that featured convective weather over Germany. Although the
length and number of forecasts is limited, the large ensemble size provides an opportunity
to characterize the forecast distributions with exceptional accuracy, and to address the
question of how big an ensemble is required for a wide variety of forecast variables drawn
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from different distributions.

Three distribution types The first goal of this investigation was to inspect histograms
of the various forecast quantities for different regions and times, in order to identify the
characteristic types of distribution produced by the ensemble. Each forecast variable was
found to have a typical shape, and these shapes could be classified into three broad cate-
gories: quasi-normal distributions, highly skewed distributions, and mixtures with two or
occasionally three peaks. Table 1.1 shows which variables are assigned to each category. A
distribution is classified as quasi-normal if it is unimodal, with a relatively small skew. In
most cases, these distributions are fitted well by a Gaussian function. Variables with this
distribution shape include temperature (see Fig. 1.3), all wind components at 500 hPa, and
mean sea-level pressure. The quasi-normal shape was found for all neighborhood widths,
averaging regions, and forecast lead times. Note that this subjective description does not
take into account outlier values, such as the temperature or vertical velocity anomalies at
the core of a convective updraft, which are very rare (around 0.1% of grid points) in the
case considered here.

Variables showing highly skewed distributions include precipitation and reflectivity.
These quantities are both related to hydrometeor content and hence bounded by zero.
The example precipitation distribution shown in Figure 1.3 is closer to lognormal than
normal in shape. Note that the full distribution of precipitation rates includes a point
mass at zero representing members that have zero precipitation at this location, and would
be best described as a mixture that resembles a combination of a lognormal distribution
and delta function at zero.

The last group, mixture distributions, includes the specific saturation deficit, qq.f, and
other humidity variables. It soon became apparent that an important factor influencing the
distributions was the distinction between cloudy (saturated) regions and unsaturated air.
To make this distinction more obvious, specific saturation deficit (qqer) was plotted instead
of specific humidity. This quantity is defined as the difference between the saturation water
vapor mixing ratio at the grid point temperature and the actual mixing ratio and is related
to relative humidity:

qdefZQSat_q:(.Z(RH_l_l)v (11)

where RH = q/qsq is the relative humidity. Figure 1.3 shows that the complex distribution
shape arises as a mixture of distinct distributions in cloudy and clear regions.

The time evolution of the shape of the specific saturation deficit distribution shown in
Figure 1.4 resembles that of the conceptual model in Figure 1.2. The distribution begins
relatively Gaussian at the analysis time but undergoes narrowing and increasing asymmetry
as time elapses. At a 6-hour lead time, the histogram concentrates near the zero bound
of saturation deficit, indicating widespread cloudiness in nearly all ensemble members. By
the end of the 14-hour forecast, the histogram exhibits peaks for both cloudy and clear-
sky conditions. The evolution of the distribution beyond this point is uncertain, but this
form aligns with expectations for the "climatological" distribution, where predictability of
convective cloud locations diminishes. At this stage, the overall humidity is influenced
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by large-scale conditions, yet there is no skill in predicting the cloudiness of a specific
gridpoint.

While the overall distribution behavior aligns with the conceptual model in Fig. 1.2,
clear identification of all stages for each forecast variable is challenging. A higher time reso-
lution would be necessary to observe the impact of the initial loss of convection predictabil-
ity, and a longer simulation time may be required before considering the distributions as
climatological, as defined in Fig. 1.2.

Table 1.1: Classification of variables. All 3-dimensional variables are extracted at 500 hPa.

Category Variable

Temperature

Horizontal wind velocity
Vertical wind velocity
Mean sea level pressure

Quasi-normal

. Precipitation
Highly skewed Reflectivity
Specific humidity
Mixture Specific saturation deficit

Relative humidity

Temperature Precipitation Relative humidity

N clear
0.025 4 cloudy

0.020 4

0.015 4

Probability

0.010 4

0.005 4

0.000 -

=20 -18 =16 -14 2

L o
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prec. in the last hour [mm]

Figure 1.3: Examples of histograms for the three categories: (left) temperature at 500
hPa, quasi-normal; (center) hourly precipitation, highly skewed; (right) relative humidity,
mixture. The criterion to distinguish cloudy grid points is a simulated radar reflectivity
higher than -19 dBZ at 500 hPa. A Gaussian function with the same mean and standard
deviation is shown for comparison (solid lines). Adapted from Craig et al. (2022).
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Figure 1.4: Evolution of the histogram of specific saturation deficit. Forecast lead time
increases from left to right from the first time step (1200 UTC) to 14 h (0200 UTC). A
Gaussian distribution function with the same mean and standard deviation is shown for
comparison (solid lines). Adapted from Craig et al. (2022).

Asymptotic convergence of sampling error Estimates of forecast quantities con-
structed from a small ensemble will suffer from sampling error, but should converge to
an accurate value as ensemble size increases. To provide a quantitative measure of this
convergence, estimates were made using a range of ensemble sizes, subsampled from the
1,000-member ensemble. Confidence intervals for the estimates were constructed as follows.
For each ensemble size, 10,000 test ensembles were created by bootstrapping with replace-
ment (more details on the method in section 2.3). The forecast parameter (e.g., ensemble
mean) was computed from each test ensemble to create a distribution of estimates. The
2.5"" and 97.5"" percentiles of this distribution then define the 95% confidence interval.
Figure 1.5 (top row) shows an example of this confidence intervals for the mean, standard
deviation and the 95 percentile of precipitation at a specific location and a specific time
and how they vary with ensemble size. The bootstrap sample median shows that the esti-
mate of the mean is biased low for small ensemble sizes and all three quantities. The rate
of decrease in the width of the confidence interval for smaller ensemble sizes is irregular,
although it becomes smoother for larger ensemble sizes.

The rate of convergence of the forecast estimates can be examined by plotting the
width of the confidence interval as a function of the ensemble size N. If the ensemble size is
large enough, and the underlying distribution is well behaved (e.g., has finite moments), the
Central Limit Theorem (CLT) states that for a large number of independent and identically
distributed random variables, the sampling distribution of the normalized sum will tend
towards a normal distribution without dependence upon the underlying distribution’s shape
(Dekking et al., 2005). The standard error of the mean of this sampling distribution will
then be proportional to N-1/2. This normality of the sampling distribution can also be
extended to a wide range of other statistics, including those of the standard deviation and
of quantiles (Walker, 1968). The width of the 95% confidence interval is a multiple of
the sampling distribution’s standard error, and can also be expected to converge as N-
1/2. However, this behavior is only expected in the limit of large ensemble size, and it is
not certain whether it can be observed for the available meteorological distributions and
ensemble sizes.
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Figure 1.5: (top row) mean, standard deviation and 95th percentile of hourly precipita-
tion. The bands show the 95% confidence interval determined for the 10,000 bootstrapped
samples (bounded by 2.5% and 97.5% quantiles), while the solid lines show the respective
median values. The dashed white horizontal line indicates the median of the distribution
computed using all 1000 members. (bottom row) Width of the 95% confidence intervals
shown above. Dashed lines show reference curves with slope N=1/2, fitted by eye. Adapted
from Craig et al. (2022).

The bottom row in Figure 1.5 shows the width of the confidence interval of hourly
precipitation as a function of the ensemble size. The resulting straight line in the left panel
means that for the ensemble mean of hourly precipitation, the width of the confidence
interval decreases proportional to N~'/2. It is quite striking that the convergence follows
the asymptotic law even for ensemble sizes of less than 10 members. For the estimates
of standard deviation of temperature and saturation deficit, the N~/2 scaling appears to
hold for ensemble sizes of 100 or greater, but the deviations for smaller ensemble sizes are
often significant. For the 95 percentile, the N~'/2 scaling is not observed even with up
to 1000 members.

The results of this motivational study suggest that in deciding what size of ensemble
is needed for a particular forecasting problem, it is important to consider whether the
ensemble is large enough for the asymptotic convergence behavior to be established. It
is significant that for the forecast problems considered here, the ensemble sizes of 40-
100 currently used in operational weather forecasting are more than adequate to show
convergence of the ensemble mean, and in most cases sufficient for the standard deviation,
although clearly inadequate for more extreme events such as the 95 percentile. It is
tempting to speculate that, since the operational ensembles are often evaluated in terms of
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their standard deviation (RMS spread), relative to the mean error, the current ensemble
sizes have been chosen as the minimum necessary to give a useful estimate of spread.

Although the presented study offered a significant insight into the field of forecast un-
certainty, a number of limitations are to be addressed in additional work. Foremost, the
limited number of cases did not allow for a systematic flow-dependent analysis. Several
studies (e.g. Keil et al., 2014, 2019; Bachmann et al., 2020) have shown that predictabil-
ity of convective precipitation is strongly related to the larger-scale forcing. Owing to
the interaction between larger-scale flow and convection, strong forcing is typically more
predictable than weak forcing. In other words, the area-averaged intensity of convection
can be predicted with greater accuracy over an extended period. Predictability is often
assessed by examining the spread of the forecast ensemble’s distribution for a specific vari-
able, such as precipitation, but we show above that distributions can have a complex shape
and therefore more accurate measures of uncertainty are needed. Other limitations of the
preliminary study are the lack of surface variables analysis, which typically experience
more variability, especially at convective spatial- and time-scales, and the focus on specific
locations to study forecast uncertainty and sampling error. These issues will be addressed
in the present thesis, to give a more complete insight into the flow-dependent evolution of
forecast uncertainty in probabilistic forecasting.

1.5 Research questions and outline

This dissertation addresses the majority of the limitations in work done so far. A period
of three months is covered, allowing a systematic convective weather regime classification.
A stochastic scheme is used in a state-of-the-art NWP model, to enlarge the ensemble
by including a new representation of model uncertainty. The resulting ensemble of 120
members is one of the largest convection-permitting ensembles run so far. Moreover, the
analysis of sampling error convergence introduced above is extended to surface variables
and the spatial distribution of uncertainty is studied, focusing on the influence of the larger-
scale flow on the convective scale. Finally, the evolution of forecast uncertainty beyond 24
hours is investigated.

The dissertation is divided into three parts. Firstly, it assesses a physically-based
stochastic perturbation (PSP) scheme with a focus on its flow-dependent impact. Secondly,
it explores the flow-dependent representation and evaluation of forecast uncertainty, as well
as of sampling error. Lastly, it extends the analysis to longer lead times, up to 48 hours,
with a focus on memory effects that extend the predictability of convection on the second
day of the simulation.

The research questions that are posed in the thesis are:

1. Does the PSP scheme systematically improve the probabilistic skill of convection-
permitting ensemble forecasts over Germany?

2. Is a 120-member ensemble sufficiently large to observe convergence of sampling error
with a fully-fledged NWP ensemble?
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3. How does the convective weather regime affect the evolution of uncertainty of forecast
variables and how does it influence its spatial distribution?

The first part of the thesis evaluates the impact of the PSP scheme (Kober and Craig,
2016; Hirt et al., 2019), which has been implemented in the convection-permitting ICON-D2
ensemble prediction system at Deutscher Wetterdienst (DWD) and run for a three-month
trial experiment in summer 2021. The scheme mimics the impact of boundary layer tur-
bulence on the smallest resolved scales and impacts in particular convective precipitation.
A weather regime-dependent systematic evaluation is carried out, including the verifica-
tion against observations, with a particular focus on ensemble spread and the spread to
skill ratio. As the scheme increases the ensemble spread without significantly affecting
the forecast skill, it is suitable for increasing the ensemble size of the ICON-D2 ensemble
forecast.

In the second part of the thesis, the flow-dependence of forecast distributions is studied
using a 120 member ICON-D2 ensemble with PSP for two representative case studies of
weak and strong synoptic forcing of convection, chosen from the three-month period exam-
ined in the first part. The bootstrapping technique is used to investigate the convergence
of sampling error for a range of surface and mid-tropospheric variables. Additionally, maps
of uncertainty are introduced, which allow for a more detailed analysis of the spatial pat-
tern of uncertainty and facilitate the interpretation of the sources and evolution of forecast
uncertainty up to 24 hours in different synoptic forcing conditions.

The analysis of the evolution of forecast uncertainty is extended to 48 hours in the
third part of the thesis. Another pair of case studies is used in the investigation of flow
dependence of the impact of the PSP scheme on the evolution of the forecast beyond one
day. This reveals interesting mechanisms that transfer the uncertainty arising from the first
day of weak forcing to the second day, as well as the impact that a different initialization
time can have on the evolution of forecast uncertainty.

Outline The outline of the thesis is the following: Chapter 2 introduces the limited-
area version of the ICON model, as well as the PSP scheme and the used methods, such
as bootstrapping and the neighborhood method. In Chapter 3, the ensemble simulations
are presented and their setup is described, along with the weather situation of the case
studies. Chapter 4 shows the results of the first part of the investigations, the trial run
with the PSP scheme, as described above. Chapter 5 is the main part of the thesis and
shows the flow-dependent evaluation of forecast uncertainty using a big ensemble, which
is extended to 48 hours in Chapter 6. Finally, Chapter 7 summarizes the results and
presents the conclusions of this work.
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Chapter 2

Model and methods

In this chapter, the limited-area NWP ICON model will be described first. It is used
operationally at DWD, both as a deterministic model and in an EPS. We use this model
for all our experiments, since our group actively contributes to its development and it offers
a state-of-the-art framework for our investigations on forecast uncertainty. Additionally,
the Physically Based Stochastic Perturbation Scheme (PSP) scheme will be introduced.
The scheme is used in all our experiments as an additional source of variability originating
from the subgrid turbulence in the Planetary Boundary Layer. It also allows to increase
ensemble size, which is needed for the sampling error analysis. The resampling method used
for this purpose is bootstrapping, which is introduced thereafter. Finally, the neighborhood
method is described, which can reduce the sampling error associated with small ensemble
size.

2.1 The ICON model

All numerical simulations are performed with the ICON model in its limited-area mode
ICON-D2, which is used in operational weather forecasting at DWD since February 2021
(Reinert et al., 2021). ICON employs an unstructured icosahedral-triangular Arakawa-C
grid in the horizontal direction, formed by spherical triangular cells that seamlessly cover
a simulation domain. The ICON-D2 domain covers Central Europe (see Figure 2.1) with
a grid spacing of 2 km (542,040 grid cells roughly encompassing 1400 km x 1600 km)
and 65 vertically discretized layers from the ground up to 22 km above mean sea level.
As described in Zéangl et al. (2015), its dynamical core is based on the non-hydrostatic
equations for fully compressible fluids. The prognostic variables are the edge horizontal
wind speed, vertical wind speed, air density, virtual potential temperature, mixing ratios
and, when using the two-moment microphysics scheme (Seifert and Beheng, 2006a), the
number density of hydrometers. Time integration is performed using a two-time level
predictor-corrector scheme. Hourly ICON-D2 output data is interpolated onto a uniform,
rotated pole coordinate consisting of 651 x 716 grid points (466,116 in total) with a grid
spacing of 2.2 km.
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Figure 2.1: Domain of the ICON-D2 limited-area model with orography. From Felger
(2022).

Initial Conditions (IC) and Lateral Boundary Conditions (LBC) are the backbone in
limited area modelling and represent a major source of forecast uncertainty. In the oper-
ational ICON-D2 ensemble prediction system (ICON-D2-EPS) at DWD, IC uncertainty
is provided by the ensemble data assimilation system ICON-D2-KENDA (Kilometer Scale
Ensemble Data Assimilation, Schraff et al., 2016). In the 40-member ICON-D2-KENDA
the model state is updated hourly by assimilating observations and 1-hour first guess fore-
casts. In 2021 only conventional observations (synoptic stations, radiosondes, wind profilers
and aircrafts) were operationally assimilated.

The uncertainty representation in LBC stems from ensemble forecasts generated by the
coarser grid model. The global ICON-EPS has a horizontal grid spacing of 40 km (26.5
km since November 2022). An ICON-EU nest is embedded online in the global ICON
simulation and covers the entire Euro-Atlantic region with half the grid spacing. The
ICON-EU ensemble provides the ICON-D2 LBC. Forecast variability in the ICON-EU-EPS
is attained by 40-member IC perturbations generated by the ensemble data assimilation
with an assimilation cycle of 3 hours, and by ensemble physics perturbations where a
random combination of tuning parameters is set for each of the ensemble members and
fixed throughout the forecast horizon. As in DWD’s operational setup (Reinert et al.,
2021), ICON-EU ensemble forecasts initialized three hours before the initialization time of
the ICON-D2 ensemble are used. Therefore, the LBC is updated hourly using the ICON-
EU-EPS output at lead times 3—27 hours. Since we primarily focus on the impact of
model uncertainties we consider the impact of IC and LBC uncertainty together and call
it Initial and Boundary Conditions (IBC) uncertainty.
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2.2 PSP scheme

The insufficient representation of physical processes in numerical models causes under-
dispersion in probabilistic forecasts, especially for near-surface variables. In other words,
the forecast is overconfident, because processes that cause variability in the atmospheric
system are not represented properly. Many of these processes play a role in convection, like
cloud microphysics, cold pool dynamics and boundary layer turbulence. The latter is of
key importance in convection triggering and its missing variability could lead to significant
forecast errors: for example, the systematic tendency for convection to be weak and late
in convection-permitting NWP models (Trentmann et al., 2009; Kiihnlein et al., 2014).

Traditional, deterministic boundary layer turbulence parametrizations were developed
for a grid size of tens of kilometers, which implied averaging the effect of many eddies
contained in one grid box. However, operational NWP models now have a horizontal
resolution of the order of 1 km, which matches the size of the largest eddies in the boundary
layer (Fig. 2.2). These eddies should lead to significant variability on the resolved scale,
which requires a stochastic representation, since the eddies themselves are not resolved.
The presence of such an eddy and its interaction with others can, for example, cause
a strong enough updraft to trigger the formation of a convective cell, which is partially
resolved when it grows upscale.

CloCoQ O OO D
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Figure 2.2: Schematic of PBL turbulence and the comparison of the size of PBL turbulent
eddies with the gridbox size in a coarse-resolution NWP model (top) and a high-resolution
model (bottom).)
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In recent years, efforts have been made to develop and test stochastic boundary layer
turbulence schemes that reintroduce the missing small-scale variability. Kober and Craig
(2016) developed a physically-based stochastic perturbation (PSP) scheme that uses tur-
bulent kinetic energy and flux information from the model’s turbulence parameterization
to compute the corresponding variances in temperature, moisture and vertical velocity.
Spatially and temporally correlated stochastic increments are then added to the model
fields to introduce the resolved portion of this turbulent variability. Using the scheme
in the Consortium for Small-scale Modeling (COSMO) model, they find that stochastic
perturbations lead to triggering of additional convective cells and improve precipitation
amounts in simulations of two days with weak synoptic forcing of convection. In a case
with strong forcing, the boundary layer perturbations have little impact, as expected, since
the amount of precipitation is controlled by the mesoscale and synoptic environment. The
PSP scheme has been revised and improved by Hirt et al. (2019), whose version is used in
this work and is described in the following.

The PSP scheme reintroduces the variability by means of stochastic perturbations
that are scaled according to the turbulence variability. The following stochastic per-
turbations are added to the temperature, humidity and vertical velocity tendencies with
¢ € {T,q,,w}:

1 1 —
atq)’PSP = fzatuning n— —0y 2. (21)
Teddy Axeff
where
% 0 <z < 20
_ )1 z90 <z < Hppp B
f() =191 _ sHons Hpp 2o < Hppy+ 2o = 500m (2.2)
0 z > Hppr, + 2.

The perturbations are based on a horizontal random field 7(z,y, t|Teday, Azess). It
evolves over time by an autoregressive process with a time correlation corresponding to
the characteristic life time of turbulent eddies 7,44, = 10 min thereby allowing for mem-
ory effects due to missing scale separation (Berner et al., 2017). The random field 7 also
has a spatial correlation of Az.s; (via an approximate Gaussian convolution), which cor-
responds to the smallest effectively resolved scale, Az.rr = 5Ax (see e.g. Bierdel et al.,
2012). Importantly, the random field is scaled according to the subgrid standard deviation
Vor computed by the deterministic turbulence parameterization (Raschendorfer, 2001).
Furthermore, the scheme becomes scale-adaptive by multiplying the perturbations with

\/A}—, since the number of eddies of scale l.44y = 1000 m in a grid box, Negqy = l%—”g,
eddy

eddy
characterizes the variance of the subgrid scale impact (Craig and Cohen, 2006). In the

vertical, we linearly taper the perturbations to zero above the top of the boundary layer
(Hppr), as well as in the lowest part of the boundary layer, near the surface, as described
by factor f.. Finally, the parameter cuyping should be of order one and independent of
weather regimes or model resolution. Here, tyning is set to 5. The implementation of PSP
into ICON closely follows the version from Hirt et al. (2019) implemented in the COSMO
model including the autoregressive process and the tapering of the perturbations at the
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top of the boundary layer, but excluding the perturbations of the horizontal wind. Fig. 2.3
shows an example of the random perturbation field, the subgrid standard deviation and
the resulting combied perturbations of temperature in the COSMO simulations by Hirt
et al. (2019).
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Figure 2.3: Example of the perturbation field created by the PSP scheme in the COSMO
model: random field (left), subgrid standard deviation of 2m temperature (center) and
resulting tendency perturbations (right). Adapted from Hirt and Craig (2018).

i |
o oa W N e
24

2.3 Bootstrapping

Because of the many degrees of freedom within the atmosphere, ensembles of operational
size inherently contain a discernible sampling uncertainty. This arises from the inability
of an ensemble to perfectly replicate the true distribution when the number of ensemble
members is fewer than the degrees of freedom. Consequently, this sampling uncertainty
contributes to inaccuracies in forecast predictions. To estimate the extent of this inaccu-
racy, bootstrapping, a technique introduced by Davison and Hinkley (1997), can be em-
ployed. Bootstrapping involves sampling from a distribution with replacement to generate
a statistically equivalent new distribution. Specifically, non-parametric bootstrapping is
utilized when the underlying distribution is unknown. This method enables the inference
of statistical properties about the underlying distribution without making any assumptions
about it. By sampling with replacement from an empirical Cumulative Distribution Func-
tion (CDF), bootstrapped distributions are created, which can then be utilized to construct
Confidence Intervals (CIs). These Cls provide a probability indicating the likelihood that
a statistic falls within the bounds of the chosen interval, e.g. 95% (Jolliffe, 2007). This
approach proves valuable in estimating the actual sampling uncertainty.

Following Craig et al. (2022) and Tempest et al. (2023), we also use this approach:
different ensemble sizes are used to generate estimates by subsampling from the full, 120-
member ensemble. To quantify this convergence, confidence intervals are calculated by
creating 1,000 test ensembles for several ensemble sizes using bootstrap sampling with
replacement. Various forecast parameters, like the ensemble mean of temperature at 2m,
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are then computed for each test ensemble to create a distribution of estimates. The 95%
confidence interval is defined by the 2.5"* and 97.5'" percentiles of this distribution.

2.4 Neighborhood method

In numerous forecasting problems, especially those involving convective or subseasonal to
seasonal scales, predictions often pertain to averaged quantities. This approach is adopted
because a substantial portion of the ensemble’s variability may be linked to rapidly chang-
ing weather systems, which can obscure predictable variations on larger scales (Toth and
Buizza, 2019a). If the small-scale variations are uncorrelated among ensemble members,
increasing the averaging region results in a decrease in variability. Additionally, for prob-
abilistic predictions of cumulus convection, enhancing the effective ensemble size can be
achieved by sampling statistics within neighborhoods rather than individual grid points
(Ebert, 2009; Ben Bouallegue et al., 2013; Hagelin et al., 2017). While these methods can
help mitigate sampling errors arising from a small ensemble size, their applicability hinges
on specific assumptions about the variability of the weather being predicted.

Several neighborhood approaches have been shown to effectively improve probabilistic
forecasts (e.g. Theis et al., 2005; Schwartz et al., 2010; Hitchens et al., 2013). Here a
neighborhood method is applied following Craig et al. (2022) to effectively increase the
size of the ensemble, with the difference that in this work, the neighborhood is circular and
is defined by the radius of this circle, as in Blake et al. (2018). By treating each individual
grid point in the selected area as an independent member of the ensemble, the effective
size of the ensemble is increased. However, this approach only adds new information if the
different grid points are not correlated with one another. For this method to work, the
neighborhood size must be large enough for the convection at different grid points within
the area to be uncorrelated. Moreover, the statistical properties must be homogeneous,
which means that they are not affected by factors such as significant changes in orography
or synoptic weather conditions.

Craig et al. (2022) showed that the neighborhood method can reduce the sampling error
associated with small ensemble size. The success of the method depends on the small-scale
variability of the forecast quantity being uncorrelated in space. The additional points in
the neighborhood then provide independent realizations of the variability, leading to a
larger effective ensemble size. A quantitative estimate of this increase for ensemble mean
precipitation or humidity showed that increase in effective ensemble size corresponds to a
correlation length of about 10 gridpoints, which is larger than the effective resolution of
the model and may be evidence of some degree of convective organization.

Since the neighborhood method relies on random variability in space, its success for
the convection forecasts considered here cannot be generalized to other phenomena such as
fog or synoptic weather systems which have smoother spatial structures. Even for 500 hPa
temperature the method brought no benefit. This suggests that convective-scale ensemble
forecasting systems may be able to use smaller ensemble sizes than the global systems used
for medium-range forecasting. It is also possible that sub-seasonal to seasonal forecasts,
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where the synoptic weather systems can sometimes be regarded as small-scale noise, would
again benefit from neighborhood methods.
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Chapter 3

Ensemble simulations

This chapter introduces and compares the ensemble simulations used in this work. The
three research questions posed in the introduction are addressed by performing three dif-
ferent experiments with the ICON limited-area model, as summarized in Table 3.1. Firstly,
a trial run (TR) was performed with the PSP scheme for 3 summer months to assess the
improvement of the probabilistic skill given by the scheme, as described in section 3.1.
Secondly, section 3.2 describes the two case studies with a 120-member ensemble (CS24)
that were used to study the convergence of sampling error, as well as the evolution and
spatial distribution of uncertainty in weak and strong convective forcing regime. Lastly,
another pair of case studies (CS48), performed to extend this analysis beyond 24 hours, is
described in section 3.3

Table 3.1: Description of the ensemble simulations. The IBC and PSP columns indicate
the number of different realizations of the respective perturbations.

id number of days | number of members | IBC | PSP
TR |92 20 20 |20
CS24 | 2 120 40 3
CS48 | 4 40 40 |40

3.1 Trial run with PSP scheme

The trial run of the PSP scheme was made possible by a collaboration with DWD, who
showed interest in the newly-implemented scheme in ICON. It consists of 92 24-hour fore-
casts in summer 2021. The ICON ensemble had 20 members and each member had its
own instance of initial and boundary conditions (IBC) as well as its own random seed
of the PSP scheme. The simulations were entirely run on DWD machines by Christoph
Gebhardt and Chiara Marsigli, while most of the post-processing and analysis was done at
the Meteorological Institute in Munich.
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Figure 3.1: Timeseries of June, July and August 2021 illustrating the daily 24-h accumu-
lated precipitation (bars) and convective adjustment timescale 7. (dots). The colors of
the dots represent weak (red), intermediate (white) and strong (blue) forcing regimes (see
chapter 4 for details). Green bars depict the reference run ensemble mean and grey bars
the radar-observed daily area-averaged rainfall. From Matsunobu et al. (2024).

The ICON model was used for the experiment, more specifically the ICON-D2-EPS of
DWD (DWD, Reinert et al., 2021), operational since February 2021, having a horizontal
grid spacing of approximately 2.2 km, 65 vertical levels, 20 ensemble members with initial
conditions from the KENDA data assimilation system (Schraff et al., 2016) and lateral
boundary conditions from the operational ICON-EU ensemble. The model runs for the
24-hour forecasts were initialized at 00 UTC, using the 21 UTC runs of ICON-EU-EPS of
the day before for the lateral boundary conditions. The output was saved hourly for the
main prognostic variables. The trial period spans 3 months of summer 2021, from 26 May
to 31 August 2021, which means 98 days of 24-hour forecasts in total.

The trial simulation consists of two separate experiments with slightly different setups:
the reference run and the stochastic run with the PSP scheme turned on. The only repre-
sentation of model uncertainty in the reference run, which mirrors the operational setup,
are the parameter perturbations, which are constant in forecast lead time and space, but
vary among the ensemble members and between forecast runs. In the "psp' run, the PSP
scheme is applied with a different random seed to each ensemble member, on top of pa-
rameter perturbations. The scheme is described now.

Figure 3.1 shows the daily precipitation and convective forcing classification for the
whole period. In summer 2021 the weather was characterized by abundant precipitation,
with the largest accumulations in the last 10 years on average over Germany (DWD, 2022).
Several high impact weather events occurred, including the floods in western Germany (13-
14 July) and the hailstorms in southern Germany in the last third of June, including a
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squall line with widespread severe winds on 29 June.

3.2 Case studies of weak and strong forcing - large
ensemble

Again, the ICON-D2 model is used for the experiments. It features a horizontal grid
spacing of approximately 2.2 km, 65 vertical levels and initial conditions sourced from the
KENDA data assimilation system (Schraff et al., 2016). The lateral boundary conditions
are based on the operational ICON-EU ensemble, and the 24-hour forecasts commence at
00 UTC using the 21 UTC runs of ICON-EU-EPS from the previous day for the lateral
boundary conditions, updated hourly at lead times ranging from 3 to 27 h. Hourly output
is saved for the primary prognostic variables. The numerical experiments are conducted
with 120 independent ensemble members, consisting of 40 different initial and boundary
condition sets combined with three distinct random seeds of the PSP stochastic boundary
layer scheme (Kober and Craig, 2016; Hirt et al., 2019). The scheme mimics the impact
of boundary layer turbulence on the smallest resolved scales and impacts in particular
convective precipitation. It was shown to improve the forecast in terms of the spread to
skill ratio (Puh et al., 2023; Matsunobu et al., 2024). As in the operational ensemble,
each of the 40 members in the three groups also has parameter perturbations to represent
uncertainty in the formulation of the parameterization schemes, with different values chosen
randomly for each ensemble member. The simulations use the two-moment microphysics
scheme by Seifert and Beheng (2006b).

Two case studies, representative of weak and strong coupling of convection to the syn-
optic flow, are chosen following the analysis performed by Puh et al. (2023), who used the
convective adjustment timescale to classify 32 days in summer 2021, based on the strength
of synoptic forcing of convection (see Section 4.2.1). The two chosen days were also used
in Matsunobu et al. (2024) as examples of different convective regimes.

On 10 June, the weak forcing case, a weak geopotential gradient resulted in a weak
north-westerly flow over Germany (see Figure 3.2). Scattered convection was triggered
around noon, reaching its peak intensity at 14 UTC. Atmospheric conditions stabilized
towards the end of the day, marking the conclusion of the daily cycle of convection. Among
the 16 cases of weakly forced summer convection in 2021, 10 June is one of the most typical,
with a significant impact of PSP on precipitation. The second case, 29 June, was selected
as a strong forcing day for several reasons. It was characterized by a strong geopotential
gradient and the largest accumulated precipitation in the summer, as estimated by the
radar network. A Mesoscale Convective System (MCS) along the cold front in southern
Germany caused high-impact weather, such as severe winds, hail, and heavy precipitation.
Furthermore, 29 June was a suitable choice due to the similar lead time (+14 h) for the
maximum convection activity to 10 June, which is beneficial for comparing uncertainty in

the initial conditions. This day was also part of an intensive observation period (IOP 5,
28-30 June) of the Swabian MOSES field campaign (Kunz et al., 2022).
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Figure 3.2: ERAS reanalysis of geopotential (m? s™2, white contours) and temperature at
500 hPa (°C, shading) for 10 June 2021, 12 UTC (left, weak forcing) and 29 June 2021, 12
UTC (right, strong forcing).

3.3 Case studies of weak and strong forcing - extended
forecast

Lastly, another dataset consisting of 40 ensemble members was produced to study the
evolution of forecast uncertainty beyond 24 hours. The setup of the ICON model is similar
to the one in the previous section, with the difference that every ensemble member has
its own random seed for the PSP scheme, which was found to have a positive impact on
the variance in the ensemble. Additionally, simulations are run for up to 48h. Figure 3.3
shows the conceptual flow chart of the four simulations: two with the PSP scheme turned
on and two without it (named reference simulations). The initialization time for one pair
of experiments is 0 UTC (running for 48h), for the other pair it’s 12 UTC (running for
36h). The aim of the different initialization times was to examine how ongoing convection
and the updated environmental conditions affect the forecasts through data assimilation.

The second pair of case studies is from August 2022. A '"case study' in this section
is defined as two consecutive days of the same convective forcing, as we wanted to assess
the flow-dependent characteristics of the evolution of forecast uncertainty and a forcing
regime transition would have added additional complexity. The cases have been chosen
subjectively, based on the observed convection evolution on the visible satellite and radar
images.

The first weak forcing day, 26 August 2022, was characterized by a weak pressure
and geopotential gradient over most of continental Europe, with a shallow cyclone near
Iceland and a high pressure system over eastern Scandinavia and Russia. The atmosphere
over Germany was increasingly unstable as colder air aloft was being advected by the
weak south-westerly wind at 500 hPa over Germany. This environment was overlapping
with a moderate vertical wind shear, since the surface wind was predominantly northerly
to north-westerly, favoring convection organization in multi-cell convective storms, whose
clouds were covering most of Germany by sunset. Convective activity continued throughout
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Figure 3.3: Flow chart of the 4 simulations with the extended lead time (CS48).

2

Figure 3.4: ERA5 reanalysis of geopotential (m? s~ white contours) and temperature at
500 hPa (°C, shading) for 19 August 2022, 00 UTC (left, strong forcing) and 27 August
2022, 00 UTC (right, weak forcing).

the night in Eastern Germany and left a widespread cloud layer that persisted until the
afternoon on the second day. This made convective initiation on 27 August uncertain,
which happened nevertheless. On this day, convection was limited to Southern and Eastern
Germany, where a weak cyclonic vortex formed in the lower troposphere. Figure 3.4 shows
the temperature and geopotential fields at 500 hPa for 00 UTC on 27 August.

The first day of strong forcing was 18 August 2022. The weather in Europe was affected
by a deep low over Iceland and a shallow trough over Western Europe with an associated
shallow cyclone over the Northern Mediterranean (see Figure 3.4). In the morning on 18
August, an extremely severe convective system that developed around the Balearic Isles
hit Corsica with wind gusts up to 62.2 m/s and continued raging on its path all the way
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to southern Czechia, causing hail up to 11lcm in diameter in Italy and killing 12 people in
total, while 106 were injured (ESSL, 2022). The remnants of this exceptional convective
system were then advected over Germany, where they merged with locally triggered con-
vection into large coherent precipitating systems, which slowly moved northwards. During
the night, convective activity intensified over Southern Germany, with slowly moving con-
vective systems that caused large accumulations of precipitation. This situation persisted
throughout the second day, when the precipitation area gradually moved eastward.



Chapter 4

Improving probabilistic forecasts of
convection with a stochastic
perturbation scheme

4.1 Background

Ensemble prediction systems (EPS) have been implemented to account for the chaotic
nature of the atmosphere, imperfect NWP models and uncertain initial conditions. They
provide multiple scenarios as an alternative to a single forecast started from the best
estimate of the initial state. This is particularly beneficial on the kilometer scale that
is now resolved by the high-resolution NWP models, where errors grow rapidly due to
nonlinear processes, significantly limiting the predictability (Hohenegger and Schéar, 2007).

One of the main advantages of using an ensemble instead of a single deterministic fore-
cast is its ability to represent different sources of uncertainty. A major source of error
in limited-area models is the uncertainty in the initial and boundary conditions (Lorenz,
1965), which is commonly introduced by constructing the ensemble using perturbed input
fields of global ensembles. Another important source of uncertainty is the model itself,
as a consequence of our limited knowledge about atmospheric phenomena and the finite
grid size. The former can be addressed by perturbing specific components of the model
formulation (e.g. parameters), while the latter requires a careful parameterization of sub-
grid, unresolved processes. Since convection is mostly resolved at the kilometer scale,
the quality of its forecast is limited by our understanding of the key physical processes
in convection, like boundary layer turbulence, cloud microphysics (e.g. Thompson et al.,
2021; Matsunobu et al., 2022), and cold pool dynamics (e.g. Hirt and Craig, 2021). There
is still much fundamental research required in this field, including detailed observations
of these processes (Clark et al., 2016). On the other hand, convective initiation is often
driven by unresolved boundary layer processes, especially when synoptic forcing is weak
and local mechanisms are the main factor in overcoming convection inhibition. In such
circumstances, high-resolution models have shown insufficient convective initiation (see e.g.
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Clark et al., 2016).

In the context of a convection-permitting EPS, the insufficient representation of physical
processes in the model is likely a cause for the underdispersion of the ensemble, especially
for near-surface variables. This may be mitigated by stochastic schemes: Bouttier et al.
(2012) find that using the Stochastically Perturbed Parameterization Tendencies (SPPT)
scheme in the underdispersive AROME ensemble is an effective technique for enhancing
spread. Keil et al. (2019) study the relative contributions of soil moisture heterogeneities,
a stochastic boundary-layer perturbation scheme and varied aerosol concentrations repre-
senting microphysical uncertainties on the diurnal cycle of convective precipitation and its
spatial variability. They observe that in the COSMO model the stochastic boundary-layer
perturbations leads to the largest spatial variability impacting precipitation from initial
time onwards with an amplitude comparable to the operational ensemble spread. Similarly,
the results of Jankov et al. (2017) indicate that a WRF ensemble combining three stochas-
tic methods consistently produces the best spread—skill ratio and generally outperforms the
multiphysics ensemble (see also Jankov et al., 2019), suggesting that using a single-physics
ensemble together with stochastic methods should be considered in the design of future
high-resolution regional and global ensembles.

In recent years, efforts have been made to develop and test stochastic boundary layer
turbulence schemes that reintroduce the missing small-scale variability. Kober and Craig
(2016) developed a physically-based stochastic perturbation (PSP) scheme that uses tur-
bulent kinetic energy and flux information from the model’s turbulence parameterization
to compute the corresponding variances in temperature, moisture and vertical velocity.
Spatially and temporally correlated stochastic increments are then added to the model
fields to introduce the resolved portion of this turbulent variability. Using the scheme in
the COSMO model, they find that stochastic perturbations lead to triggering of additional
convective cells and improve precipitation amounts in simulations of two days with weak
synoptic forcing of convection. In a case with strong forcing, the boundary layer pertur-
bations have little impact, as expected, since the amount of precipitation is controlled by
the mesoscale and synoptic environment. The PSP scheme has been revised and improved
by Hirt et al. (2019), whose version is used in this work (for details see Section 2.2).

Clark et al. (2021) implemented a similar, physically consistent stochastic boundary
layer scheme in the Met Office’s Unified Model, that introduces temporally correlated mul-
tiplicative Poisson noise with a scale-dependent distribution. They evaluate the scheme
using small ensemble forecasts of two case studies of severe convective storms over the
UK. They find that with horizontal grid lengths around 1 km temporal correlation is far
more important than spatial. They also show that the scheme produces sufficient differ-
ences between ensemble members at the scale of convective cells. Fleury et al. (2022) test
two process-oriented perturbation schemes in a single-column version of the convection-
permitting AROME model. They study three idealized boundary layer cases using a Plan-
etary Boundary Layer (PBL) turbulence scheme and a shallow convection scheme. They
find that these schemes do not produce enough spread to represent the small-scale vari-
ability in temperature and humidity seen in large eddy simulations for the same cases. For
wind, the variability compares favorably due to perturbations generated by the stochastic
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turbulence scheme.

In this chapter, we use the physically-based stochastic perturbation scheme PSP to
represent small-scale model error in the boundary layer in the operational ICON-D2-EPS
for a three-month period in summer 2021 over Germany. The large number of forecasts
in the parallel trial allows for a systematic analysis of the impact of the scheme and
thereby infer properties of forecast uncertainty in different weather regimes. A better
understanding of these properties and their dependence on the weather regime will allow
setting up a more optimal prediction system to represent the future state of the atmosphere
and the uncertainty associated with it.

The chapter is structured as follows. Section 4.2 introduces the experimental setup, the
simulation period and the used perturbation scheme. In section 4.3, the effect of the scheme
on the diurnal cycle of precipitation in different forcing regimes is presented, including its
beneficial impact on the spread in weak forcing conditions. Then the effect on spatial
uncertainty of precipitation is shown, as measured by the Fractions Skill Score (FSS),
as well as the probabilistic verification of other near-surface variables, which indicates
a general improvement in the spread to skill relationship. Section 4.4 summarizes the
conclusions of this work, discusses its limitations and offers a basis for future investigations.

4.2 Results and discussion

4.2.1 Synoptic forcing regime classification

From the perspective of forecast uncertainty at the convective scale, the type of convective
forcing is important. Hence, studying separately the strong and weak forcing regimes allows
to infer properties of forecast error and uncertainty evolution conditional to the weather
regime. To make the distinction between strong and weak synoptic forcing, we applied the
convective adjustment timescale 7. (equation 4.1). It is an estimate of the time-scale for
the removal of conditional instability, measured by Convective Available Potential Energy
(CAPE), by convective heating (Done et al., 2006; Keil et al., 2014). The convective
adjustment timescale is defined as

(4.1)

CAPE 1 (ponT()) CAPE

"* T ACAPE/dt ~ 2\ Lyg P

In accordance with Done et al. (2006), the second definition hinges on the expression
of the rate of change of CAPE with the vertically integrated latent heat release. This
latent heat release can be directly inferred from the precipitation rate P (kg s~ m™2),
with quantities within the brackets being constants, where py and T represent reference
values of density and temperature, ¢, the specific heat of air at constant pressure, L, the
latent heat of vaporization, and ¢ represents the acceleration due to gravity (e.g. Zimmer
et al., 2011). A small value of 7. compared to the timescale of the synoptic flow (about
12 hours) means that CAPE is removed by the convection as soon as it is created and the
large-scale flow controls the amount of convection. If the value of 7. is large, the removal
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of the CAPE by convection is too slow, so small scale factors drive the convection. The
computation of 7. is only done on days when at least once the threshold of 1mm/h was
exceeded in more than 100 grid points over Germany (as in Kiihnlein et al., 2014).

In summer 2021 the weather was characterized by abundant precipitation, with the
largest accumulations in the last 10 years on average over Germany (DWD), 2022). Several
high impact weather events occurred, including the floods in western Germany (13-14
July) and the hailstorms in southern Germany in the last third of June, including a squall
line with widespread severe winds on 29 June. Daily average values of the convective
adjustment timescale, averaged over Germany, vary between less than an hour to more
than 5 hours (dots in Fig. 4.1). Most of the strongly forced days have large amounts
of domain averaged accumulated precipitation. In contrast, weakly forced days typically
feature smaller domain averaged precipitation sums, while its spatial distribution is highly
variable (see Fig. 5.4). To partition out the days with the strongest and the weakest
synoptic control we take the lowest 20% of average 7. values and classify these as strong
forcing, while the highest 20% of daily values are considered as weak forcing. An advantage
of this approach over setting certain fixed thresholds is the creation of equally populated
samples containing 16 days for each regime.
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Figure 4.1: Time series of daily total precipitation (bars) and daily averaged convective
adjustment timescale (dots), both for the reference experiment, averaged over Germany, for
summer 2021. Red indicates weakly forced days, blue strongly forced days. The horizontal
dotted lines show the threshold value of the convective adjustment timescale for weak
forcing (red) and strong forcing (blue).

4.2.2 Diurnal cycle of precipitation

One of the key challenges in convective scale weather prediction is an accurate forecast of
precipitation amount, timing, and uncertainty. This holds especially true in the absence
of larger-scale forcing, when local processes in the boundary layer drive the convection.
Figure 4.2 shows composite time series of domain-averaged precipitation amounts and
its variability for both regimes based on 16 strongly and 16 weakly forced days. The
PSP scheme has an overall higher impact during weak forcing, both in terms of average
precipitation amounts and ensemble spread of precipitation. During weak forcing days
the diurnal cycle is clearly evident and peaks in the afternoon (around 15 UTC). The
PSP scheme shifts the maximum about an hour earlier due to more efficient triggering
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of convection, caused by buoyant air bubbles in the boundary layer, created by the PSP
scheme. The onset of perturbations is directly connected to the subgrid standard deviation
of selected variables, which increases as the solar radiation heats the surface. Hence,
convection is formed earlier than in the absence of the PSP scheme, which is one of the
goals of the scheme. For a more detailed discussion about the role of PSP in triggering
mechanisms, the reader is referred to Hirt et al. (2019).

The earlier shift of the diurnal cycle of precipitation is beneficial since precipitation
in convective-scale models usually lags the observed precipitation maximum in these flow
conditions (e.g. Keil et al., 2019). Moreover, the magnitude of the peak is higher, espe-
cially in spread. Thus, physically-based perturbations in the boundary layer lead to a
reduction of the underdispersion of precipitation (not shown), which is a general issue of
convection-permitting ensemble prediction systems. This includes the ICON-D2 EPS as
well, according to spread-skill ratios mostly below 0.5 in the DWD operational verification
based on rain-gauge data.

On strong forcing days, there is no clear diurnal cycle in precipitation amount and the
PSP perturbations have little effect. While the average amount of precipitation is higher
in strong forcing, the magnitude of the spread is higher in weak forcing. These results are
consistent with those of earlier case studies using the PSP scheme in the COSMO model
(Kober and Craig, 2016; Keil et al., 2019; Hirt et al., 2019).
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Figure 4.2: Composite time series of hourly precipitation amount (continuous lines) and
spread (dashed lines) for weak forcing (left) and strong forcing days (right), for the reference
experiment (black) and the PSP experiment (red), averaged over Germany.

4.2.3 Spatial uncertainty of precipitation

To assess the predictive skill of the precipitation forecasts we apply a spatial verification
method to account for the spatiotemporal highly variable nature of precipitation. The
widely-used Fractions Skill Score (FSS) directly compares the fractional coverage of the
events in windows surrounding the observations and forecasts (Roberts and Lean, 2008).
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Figure 4.3: Spatial forecast skill as measured by the FSS for each ensemble member (thin
lines) of the two ensembles (PSP in red and reference in black) as a function of the lead time
averaged over the 16 days with weakly forced convection. The mean over the members is
plotted as thick dashed line. The scores are shown for the exceedance of 0.1 mm/h (top), 1
mm /h (middle) and 5 mm/h (bottom) and for two aggregation window sizes with dimension
of 15 pixels (about 30km, left) and 65 pixels (about 140km, right)

Observations are provided by the quality-controlled precipitation field estimated by the
German radar network on a lkm grid every 5 minutes. The observed data is upscaled
to the ICON-D2 grid and accumulated to hourly values for comparison with the model
output.

In Figure 4.3, the FSS is shown for each ensemble member (thin lines) of both ensembles
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(PSP experiment in red and reference in black) as a function of the lead time on days
classified as weakly-forced according to the convective adjustment time scale (see Fig. 4.1).
The scores are shown for the exceedance of three selected hourly precipitation thresholds
(0.1 mm/h, 1 mm/h and 5 mm/h, respectively upper, middle and lower row) and for
two aggregation window sizes, with dimension of 15 pixels (left column), corresponding to
about 30 km, and 65 pixels (right column), corresponding to about 140 km. For easiness
of reading, the average value of the FSS of the members is also plotted, as thick dashed
line, for both the PSP experiment and the reference one.

Generally, the F'SS is higher at short forecast lead times and decreases over time. How-
ever, after convective initiation and the generation of precipitation from 9 UTC onwards,
the FSS increases and attains higher F'SS values in the central part of the day, between 9
and 18 UTC, when the maximum of convection occurs. A relative minimum is observed
around 21 UTC. At the smaller aggregation scale (left column), the lines related to individ-
ual members of both experiments tend to stay close together, showing similar performance
of the two experiments. Between 12 and 15 UTC, the period of most active convection, the
mean score shows a slightly better performance for the PSP experiment. Both ensembles
become more disperse at longer forecast lead times with a higher precipitation threshold,
as shown by the larger difference in F'SS between the members.

When the larger aggregation window is considered (right column), the difference in
performance of the two ensembles becomes more marked. The individual ensembles are
more disperse, and the PSP experiment outperforms the reference one, as shown by the
larger mean FSS value, in particular for the 0.1 and 1 mm/h thresholds. The difference is
clearly evident during strong convection between 12 and 15 UTC. Interestingly, the FSS of
the 5 mm/h threshold is slightly higher than of the 1 mm /h threshold at peak precipitation
at 15 UTC. This is presumably caused by the sample size and averaging effects. After 18
UTC the FSS of the PSP experiment is slightly lower than that of the reference run in the
last part of the day, in agreement with the behavior shown when representing the diurnal
cycle of the spread (see Fig. 4.2). During strong forcing, the time series of the FSS do not
show a significant impact of the PSP scheme and predominantly show a steady decrease
with lead time (not shown).

4.2.4 Probabilistic verification of near-surface variables

An objective verification of the performance of both experiments has been carried out
for a wide range of meteorological variables using a standard set of indices for the whole
trial period. The results are shown in Figure 4.4 for a selection of variables: wind speed
at 10m above the ground (first column), cloud cover for low clouds (second column),
temperature and dew-point temperature at 2m above the ground (third and fourth column,
respectively). The scores are computed against observations at the SYNOP stations over
Germany. Due to the representativity error of these observations we exclude the verification
of precipitation in this section. In the first row, the Continuous Ranked Probability Score
(CRPS) is shown as a measure of quality of the ensemble forecasts (negatively oriented),
in the second row the Root Mean Square Error (RMSE) of the ensemble mean, in the
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Figure 4.4: Diurnal cycle of domain averaged CRPS, RMSE, mean error, ensemble spread
and the spread to skill relationship (see text for details) for 10m wind (FF), low cloud cover
(NL), 2m temperature (T2M) and 2m dewpoint temperature (TD2M) of the reference
(black) and PSP experiments (red), verified against SYNOP observations, for the period
between 26 May and 31 August 2021.

third row the mean error of the ensemble mean (ME), and in the fourth row the ensemble
standard deviation (SPREAD). Finally, in the fifth row the spread to skill relationship
is shown, expressed as the ratio between the spread and the standard deviation (SD) of
the error of the ensemble mean. This measure has been chosen because the ensemble
spread should match the random component of the RMSE of the ensemble mean, having
subtracted the bias, so that values less than one indicate underdispersion. For a description
of the indices, the reader is referred to Wilks (2019). In each plot the red color is for the
PSP experiment, while the black color is for the reference experiment. The dots are filled
with color when the difference between the scores of the two experiments is significant, as
computed following a bootstrap method. No significance estimation has been performed
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for the spread to skill relationship.

Probabilistic verification scores over the whole period are improved for a wide range of
variables when using the PSP scheme, especially the spread and spread to skill relation.
The CRPS is also slightly improved for the PSP experiment, compared to the reference,
with the exception of the 2m dew-point temperature between 18 and 24 UTC. The 2m
dew-point temperature scores are also slightly deteriorated in terms of RMSE in this part
of the day, while for other variables the RMSE is either smaller (low cloud cover) or not
significantly different for the PSP experiment, compared with the reference experiment.
The combination of larger spread and equal to smaller RMSE leads to an increased, bene-
ficial spread/skill relation. This is a particularly positive result, given the general issue of
models being underdispersive for near-surface variables.

However, a more detailed look at the verification scores shows some issues, specifically
for 2m dew-point temperature and low cloud cover. The mean error of the 2m dew-point
temperature points to a marked drying effect in the considered period. Moreover, the (at
first sight) beneficial behavior of the PSP scheme causing a reduction of the mean error
of low clouds turns out to be mainly caused by increased patchiness of the low cloud field
on non-rainy days, resulting in a reduced mean error. Visual inspection indicates that
the increased patchiness is unrealistic (not shown). Preliminary inspection of a few case
studies with low cloud cover, but no rain, indicates that the current vertical profile of the
perturbations in PSP entrains too much dry air from aloft into the boundary layer causing
a dry bias in the boundary layer (see mean error of the 2m dew-point temperature, too).
A modification of the vertical profile at the upper boundary of the PBL determining the
perturbation strength of PSP leads to improved results for a non-rainy and a rainy case
study and will be pursued in future PSP applications (a systematic investigation is beyond
the scope of the present trial). For medium and high clouds, the impact of PSP is almost
neutral (not shown).

The PSP scheme also shows an increase of the mean error of 10m wind speed, which was
detected also in the verification of wind gusts (not shown). This is likely caused by a double
counting of turbulence effects that are taken into account when diagnosing near-surface
wind speed. We should point out that the verification in Fig. 4.4 was performed against
SYNOP observations, a traditionally used observation type for near-surface variables that
has limitations when estimating forecast errors of cloud cover and wind gusts. Therefore, a
different kind of observations should be used in future to improve the diagnostics, including
e.g. satellite observations to directly compare visible reflectances (using a satellite forward
operator, e.g., Scheck et al., 2020).

4.3 Conclusions

Increasing resolution of NWP models makes traditional parameterizations of boundary
layer turbulence inadequate, because the assumption that the gridbox size is much larger
than the size of eddies does not hold anymore in kilometer-scale models. In this chapter,
we use the recently implemented physically-based stochastic perturbation scheme PSP in
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ICON-D2-EPS as a representation of model error originating from the subgrid scale in
the boundary layer, but affecting the smallest resolved scales. The experimental period
spans a whole summer season, which allows for a systematic analysis of the impact of the
scheme in different synoptic forcing conditions. The main conclusions of this work are the
following.

1. The PSP scheme provides a good representation of the effect of subgrid scale turbu-
lence in ICON-D2 and has realistic, beneficial effects in ensemble forecasts, especially
on the ensemble spread. It helps triggering convection, while preserving the intensity
of single convective cells and does not produce spurious convection. PSP reduces the
underdispersion of precipitation.

2. Small-scale perturbations, introduced by PSP, have a larger impact on convective
precipitation in weak than in strong synoptic forcing, especially on its spread. This
is in line with the hypothesis of local processes in the boundary layer driving the con-
vection on weakly forced days, whereas on strong forcing days, the synoptic pattern
controls the convection.

3. The PSP scheme slightly improves the spatial distribution of precipitation (FSS)
around the peak of its diurnal cycle in weak synoptic forcing, compared to radar
observations. Its impact is neutral during strong forcing.

4. The probabilistic verification of near-surface variables predominantly shows a neutral
to slightly beneficial forecast performance. The systematic assessment indicates few
issues that deserve further research (namely the 2m dewpoint temperature and wind

gusts at the surface) on the way towards operational implementation of PSP in
ICON-D2-EPS.

A general issue with physically-based schemes are interactions between different schemes
and the double-counting of physical processes. Further work will therefore examine the
effects of combining PSP with the stochastic shallow convection scheme developed by
Sakradzija and Klocke (2018) in ICON. The two schemes should act independently by
design, although both would likely affect the layers around the top of the PBL, where we
found a detrimental impact of PSP in its current implementation.

The results of this work are encouraging: PSP improves the spread to skill ratio of the
ensemble for several variables, especially those near the surface, for which the forecast is
often underdispersive. This is a promising step on the way to operational use of the scheme
and in general for the development of physically-based stochastic schemes. Limitations of
certain observation types and the deterioration of the forecasts for few variables provide a
basis for further research.



Chapter 5

Flow dependence of forecast
uncertainty in a large ensemble

5.1 Background

The atmosphere is by nature a chaotic system and there will always be a certain degree of
uncertainty in the prediction of its future state (Lorenz, 1969; Selz et al., 2022). Moreover,
a variety of errors occur in the weather forecasting process, from inaccurate observations
to imperfect models, which further limit the predictability (Buizza, 2021a). To account
for all these sources of uncertainty in the forecast, ensemble prediction systems (EPS) are
used. They offer a useful probabilistic forecasting method that allows for a probability
to be attached to the meteorological prediction (Leutbecher and Palmer, 2008; Buizza,
2021b). Typically, the different sources of uncertainty in a limited-area ensemble include
perturbed initial and boundary conditions, as well as some representation of model error,
due to incomplete description of physical processes and an insufficient representation of
the subgrid-scale variability in numerical weather prediction (NWP) models (Clark et al.,
2016). The errors arising from these sources quickly grow and propagate, due to highly
nonlinear processes at these scales (Hohenegger and Schér, 2007). Therefore, there have
been several endeavors to incorporate representations of these processes, such as boundary
layer turbulence and convective initiation, into kilometer-scale models (e.g. Leoncini et al.,
2010; Kober and Craig, 2016; Hirt et al., 2019; Clark et al., 2021).

The relative importance of different sources of uncertainty depends on the weather
regime. Initial and boundary conditions are the dominant source of uncertainty when the
synoptic forcing of convection is strong. On the other hand, local uncertainty sources have a
significant impact on the amount and spread of precipitation in the ICON-D2 EPS ensemble
when synoptic forcing of convection is weak and triggering of storms is driven by small-scale
turbulence (Keil et al., 2014; Puh et al., 2023). Furthermore, the spatial predictability of
precipitation strongly depends on the prevailing convective forcing regime. During weak
forcing, spatial error and spread largely depend on the diurnal cycle of precipitation and
are more affected by introducing stochastic perturbations in the boundary layer compared
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with the strong forcing regime, when these perturbations have little effect (Matsunobu
et al., 2024).

Another important factor that determines how well the ensemble captures the sources
of uncertainty is the size of the ensemble, that is the number of ensemble members that
construct the probabilistic forecast and define a probability distribution of a variable.
Although most operational data assimilation systems assume and produce a Gaussian error
distribution, its shape is actually multi-modal or shows other kinds of non-Gaussianity.
These complex shapes arise due to the nonlinear evolution of the atmosphere and large
ensembles are needed to capture all their complexity (Leutbecher, 2019). Operational
ensemble prediction systems typically have a few tens of members for global models (e.g.
51 members in the ECMWEF medium-range EPS), while the ensemble size for limited area
models is even smaller (e.g. 20 members in the ICON-D2 EPS). This is not enough to
accurately capture infrequent, extreme events (e.g. Leutbecher, 2019). Kondo and Miyoshi
(2019) showed that up to 1000 ensemble members are needed to represent characteristics
of non-Gaussian distributions. Craig et al. (2022) explored the errors in numerical weather
forecasts resulting from limited ensemble size using 1,000-member forecasts of convective
weather over Germany at 3-km resolution. They examined sampling error and found
that an asymptotic convergence behavior was observed for most distribution properties.
Although this convergence was reached with as few as 10 ensemble members for the mean
of forecast variables, sizes of up to 100 were required for the convergence law to apply for
the standard deviation and there was no clear sign of convergence for the 95 percentile
even with 1,000 members.

However, the computational cost of large NWP ensembles is very high. Tempest et al.
(2023) studied how ensemble size affects the uncertainty in ensemble forecasts using an
idealized, computationally efficient model, which replicates the properties of cumulus con-
vection, allowing ensemble sizes of up 100,000 members. It was found that for all computed
distribution properties, including mean, variance, skewness, kurtosis, and several quantiles,
the sampling uncertainty scaled as n—/2 for sufficiently large ensemble size n. The Central
Limit Theorem predicts that the uncertainty in a determined statistic is influenced by the
distribution shape and is greater for those relying on rare events. This expected behavior
was confirmed, along with finding that larger ensemble sizes are needed for such statistics to
enter the asymptotic regime. Through evaluating asymptotic behavior in small ensembles,
it was shown that the asymptotic theory can be applicable to certain forecast quantities
even for the currently used operational ensemble sizes.

The idealized model was then expanded by Tempest et al. (2024) to include weak and
strong forcing convective weather regimes in order to examine differences in sampling un-
certainty convergence for each regime. Differences in distribution shape between the weak
and strong forcing regimes affected the Convergence Measure, leading to significant dispar-
ities. Notably, substantial spread differences between weak and strong forcing runs over
24 hours resulted in considerable variations in the sampling uncertainty of mean and stan-
dard deviation. In extreme statistics like the 95" percentile and cases with precipitation,
moisture variables in weak forcing showed the highest sampling uncertainty, necessitating
a greater number of members for convergence. This was due to the low density in the



5.2 Results and discussion 43

tails of weak forcing moisture variables. They concluded that different ensemble sizes are
required depending on the convective weather regime.

This chapter builds on the previous work by Craig et al. (2022), Tempest et al. (2023)
and Tempest et al. (2024), but with some important differences. Firstly, the fully-fledged
ICON-D2 EPS model is used, while Tempest et al. (2024) used an idealized model, so their
conclusions are not necessarily valid for a NWP model. Secondly, the flow dependence of
forecast distributions is analyzed, which is new compared with Craig et al. (2022), who used
a comparably complex model, but did not investigate the flow-dependence of their results.
Moreover, the analysis of uncertainty convergence is expanded to surface variables, which
are compared to mid-troposphere variables in a flow-dependent framework. Our hypothesis
is that the evolution of surface variables is more influenced by convection than that of the
mid-tropospheric variables in the weak forcing regime. In the strong forcing regime, we
expect this influence to be comparable between the surface and the middle troposphere.
Finally, novel maps of uncertainty allow for a more detailed analysis of its spatial pattern
and an easier interpretation of the sources and evolution of forecast uncertainty in different
convective forcing conditions and for different variables.

This chapter is structured as follows. Section 2 introduces the used NWP model, the
experimental setup and summarizes some of the used methods introduced by Craig et al.
(2022). Section 3 presents the results of the analyzes including the spatial distribution
of uncertainty, focusing on the differences between a weak and a strong synoptic forcing
case, the convergence of sampling uncertainty and its time evolution as represented by the
evolving probability distributions of surface and mid-troposphere variables. Conclusions
are drawn in section 4.

5.2 Results and discussion

5.2.1 Convergence of uncertainty with ensemble size

If a statistic follows the Central Limit Theorem, its sampling uncertainty scales as n~"/?

for sufficiently large n, where n is the size of the sample. This is expected in a large
ensemble from which smaller samples are selected, as documented by Craig et al. (2022)
and Tempest et al. (2023). In this section, we apply this method on an extended dataset,
which includes more variables and is produced by an operational NWP model.

To analyze how sampling uncertainty decreases with ensemble size, we focus on a lo-
cation near Reutlingen. Figures 5.1 (weak forcing regime) and 5.2 (strong forcing regime)
show the convergence of uncertainty for temperature at 2 m and at 500 hPa for one grid-
point and a 10-kilometer neighborhood, for the mean, the standard deviation and the 95"
percentile. Figures for all analyzed variables can be found in Appendix A.

For most quantities, the width of the confidence interval follows the power law at large
ensemble sizes, but the number of ensemble members needed to reach this asymptotic
regime is the lower for the mean (less than 5 - see Figures 5.1a,d and 5.2a,d) than for the
standard deviation (around 20 - see Figures 5.1b,e and 5.2b,e) and even higher for the
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Figure 5.1: Width of the 95% confidence intervals for the mean, standard deviation and
95" percentile (columns), for temperature at 500 hPa (a, b, ¢) and at 2 m (d, e, f).
Forecast quantities are computed for 10 June (weak forcing) at 14 UTC for a gridpoint
near Reutlingen. The dashed line shows the reference curve with slope N~='/2, fitted by eye.
Gridpoint: single gridpoint forecast, neighborhood: 10-km radius neighborhood forecast.

95" percentile (more than 120 - see Figures 5.1c,f and 5.2¢,f). This is in agreement with
previous studies (e.g. Craig et al., 2022) and confirms the universality of this behavior.
The width of the confidence interval is generally smaller for the neighborhood, since its
effective ensemble size is three orders of magnitude larger, which is the purpose of the
neighborhood method. Furthermore, convergence is reached with a smaller ensemble size
compared to the same variable at a single gridpoint (as in Tempest et al., 2024).

The width of the confidence interval in weak forcing is always smaller for the neighbor-
hood distribution, compared to the gridpoint distribution. In strong forcing, this difference
is smaller, especially for surface variables. This is likely a consequence of the larger in-
fluence of synoptic scale systems in strong forcing, namely the cold front, which increases
variability over a larger area, compared to the local effects of single convective cells, which
are increasingly negligible as the size of the neighborhood increases. Craig et al. (2022)
looked at this effect more in detail and drew a similar conclusion.

While the convergence law holds for most variables, there are a few exceptions. For
instance, the convergence for the 95 percentile for a single gridpoint is either not clear
or the uncertainty is evidently not converging, especially in strong forcing, e.g. the 95
percentile of temperature at 500 hPa, for which the slope of apparent convergence is flatter
(Figure 5.2c). The reason for this exception is the long tail in the distribution (see Figure
5.7, top right panel), which affects the 95" percentile more than the mean or the standard
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Figure 5.2: As in fig. 5.1, but for 29 June (strong forcing).

deviation. The reason for the skewed distribution could be latent heat release, which is
produced in ensemble members with exceptionally strong convection, thereby increasing
the temperature at 500 hPa, or advection of very warm air in the warm sector before the
cold front. A similar behavior is observed for the zonal wind. In the case of the zonal wind
at 500 hPa, convergence is not reached not only for the 95 percentile, but also for the
mean in both forcing regimes. In this case the bulk of the distribution is the cause, rather
than the tails (Figure 5.7, bottom row).

An unusual behavior is also found in uncertainty convergence for the 95 percentile of
relative humidity in the strong forcing case (Figure 5.3 top left panel). There is a large
uncertainty for small ensemble sizes that suddenly decreases and flattens again, converging
as n~'/2. This happens more abruptly and at a larger ensemble size for one gridpoint than
for the neighborhood in ICON data. The cause for this "two-phase" behavior is the bimodal
shape of the distribution (Figure 5.3 bottom left panel) with one large peak and one smaller
peak, which strongly affects the value of the 95" percentile. With an insufficient number
of samples, this peak might be completely missed, leading to a different value of the 95"
percentile. However, once both peaks are sufficiently represented in the majority of the
samples, the uncertainty of the 95 percentile sharply decreases.

A similar performance is observed for the height distribution in the idealized model used
by Tempest et al. (2024)(Figure 5.3 top right panel). Although the distributions are not of
the same shape, since one has the larger peak at small values and one at large values, we can
conclude that such a bimodal distribution shape requires more ensemble members to reach
convergence of uncertainty, which agrees with previous work (Craig et al., 2022; Tempest
et al., 2023). The significant difference between the curve for a single gridpoint in idealized
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model panel and the ICON panel (blue lines in Figure 5.3) is hard to interpret, but it should
be pointed out that the two models have a substantially different structure, one being a
1-dimensional idealized model and the other being a fully fledged NWP model. Although
this does not allow for a direct comparison, the qualitative behavior of the idealized model
was found to be sufficiently realistic by Tempest et al. (2024).
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Figure 5.3: (Top row) Width of the 95% confidence intervals for the 95 percentile of
relative humidity of the ICON ensemble (left) and height in the 1-D idealized model by
Tempest et al. (2024) (right). (Bottom row) histogram of relative humidity at 500 hPa
(left, ICON ensemble) for the gridpoint and the 10-km neighborhood and height (idealized
model, right) used to calculate the confidence interval plotted in the top row.

5.2.2 Maps of uncertainty

Convection increases the uncertainty of most forecast variables, since it is one of the most
uncertain and unpredictable phenomena at small scales. To visualize the impact of convec-
tion on the spatial distribution of forecast uncertainty, we use the bootstrapping approach
to create maps of uncertainty for several variables and statistics: the mean, standard de-
viation and 95" percentile. Due to computational resources, uncertainty is calculated for
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a 10 km neighborhood around every second gridpoint for a 14h lead time in the two case
studies, using 120-member samples.

We first consider the spatial pattern of uncertainty for the mean of 2m temperature in
Figure 5.4 as an example before going on to examine other variables. Histograms of 2m
temperature at indicated locations are included as a reference for the interpretation of the
uncertainty map. The correlation between precipitation (i.e. convection) and 2m temper-
ature uncertainty is clearly visible in the top panels. This is expected, since precipitation
lowers the surface temperature in summer and therefore a fraction of ensemble members
with precipitation will make the mean of surface temperature more uncertain.

In the weak forcing case, the pattern of uncertainty is patchy and the impact of indi-
vidual convective cells is visible. At location number 2, most ensemble members predict
convection, but slightly displaced, which leads to a skewed distribution with a longer tail
towards lower temperatures for the strongest occurrences of convective storms. On the
other hand, the uncertainty is smaller at location 3, because most members predict a clear
sky and the distribution is narrower and unimodal. One exception to this framework is
location 1, where uncertainty is relatively large, despite the absence of convection and pre-
cipitation. Further examination shows that this is again a consequence of an underlying
bimodal distribution, in this case in cloud cover: most members predict clear skies, but
a considerable number of them has low clouds over the North Sea (not shown), which is
represented by the peak at lower temperatures. This makes the sampling uncertainty of
the mean of 2 m temperature larger, as Tempest et al. (2023) showed more generally for
bimodal distributions.

In the strong forcing case, areas of higher uncertainty are concentrated around MCSs,
like the squall line in SW Germany (location 5) and other areas of widespread convection
(Austria, NW Italy). This is mainly a consequence of the uncertain location of the indi-
vidual MCS, since the majority of members predict it, but slightly displaced, which leads
to a high uncertainty. In the case of the squall line, its uncertain timing and positioning
at location 5 is clearly visible in the histogram, with a peak at relatively low temperatures
and a smaller secondary peak at higher temperatures. The source of bimodality in this
case is not the separation between cloudy and clear sky gridpoints, since the vast majority
of data points are associated with cloudy skies. On the other hand, before the arrival of
the front at location 7, the distribution is very narrow, indicating that the vast majority
members agree that the squall line has not yet arrived. This is also the case where pre-
cipitation is not directly caused by convection, like at location number 4, while at location
6 the uncertainty is larger due to a more convective nature of precipitation, although the
ensemble mean precipitation is about the same (between 2 and 5 mm).

Uncertainty maps for the mean, standard deviation and 95" percentile of dew-point
temperature at 2m and relative humidity at 500 hPa are shown in Figure 5.5. These
are compared for the two forcing regimes and provide an example of surface and mid-
tropospheric variable. Figures with uncertainty maps of other analyzed variables can be
found in the Appendix, since they do not provide significant additional insight.

Firstly, the largest uncertainty of the mean is not necessarily at the same location as
the largest uncertainty of other statistics. For example, one of the regions with larger
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Figure 5.4: (Top left): ensemble mean of hourly precipitation in millimeters for a weak
forcing (10 June 2021 at 14 UTC, top row) and a strong forcing case (29 June 2021 at 14
UTC, bottom row). (Top right): width of the 95% confidence interval for the mean of 2m
temperature in Kelvin for the respective cases. (Bottom): histograms of 2m temperature
for a 10km neighborhood around selected gridpoints, numbered on the uncertainty maps.
Blue indicates cloudy gridpoints, brown cloud-free gridpoints, separated by the threshold
of 95% cloud cover.
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uncertainty in the mean of relative humidity at 500 hPa (Figure 5.5b) is around Salzburg,
while in the uncertainty map of the standard deviation (Figure 5.5f) the magnitude is below
average compared with other regions, like eastern Germany. This can again be attributed
to the shape of the underlying distribution (not shown), which is often bimodal for relative
humidity, like in the case of location 1 in Figure 5.4, as discussed above. The uncertainty
of the standard deviation is not heavily affected because it does not depend that much on
the relative importance of one or the other peak of the bimodal distribution, but rather on
its total width.

The uncertainty pattern of the 95 percentile is less coherent and shows a much larger
sampling uncertainty, since 120 members are not enough to accurately estimate extreme
values, as seen in the previous section. Nevertheless, the impact of convection is identifi-
able, both in weak and strong forcing and for all variables. It is interesting that convection
not only impacts the uncertainty of surface variables, but also of mid tropospheric vari-
ables, even in weak forcing conditions. An example can be seen in Figure 5.5j, where the
convective cells in southern Germany are recognizable in the uncertainty map of the 95"
percentile of relative humidity at 500 hPa.

A closer look at specific variables reveals a few interesting aspects. The strong gradients
observed in the uncertainty pattern of relative humidity, especially for the 95 percentile
(Figure 5.5j and 1), are caused by the typical source of bimodality for this variable: the
cloudy versus clear sky separation. This has already been shown to play an important role
in the context of forecast uncertainty by Craig et al. (2022). If ensemble members largely
agree on one or the other side of the distribution of cloudiness, the uncertainty of relative
humidity is low, because the underlying distribution is unimodal and narrow. As soon as a
couple of members disagree, the uncertainty quickly grows, which is manifested in strong
gradients in the uncertainty map.

The uncertainty of the statistics of dew-point temperature at 2m in the weak forcing
regime (Figure 5.5a, e, i) is highest at the boundaries between regions with and without
convection and is generally larger in regions without convection over land. A hypothesis is
that soil moisture variability strongly influences the uncertainty of surface humidity, while
at the boundary between wet and dry weather, the uncertainty is the highest due to the
uncertain position of this boundary. Soil-atmosphere interactions are, however, beyond the
scope of this work.

Additionally, to better quantify the influence of convection on the uncertainty of other
variables, the correlation between uncertainty maps of different variables was computed for
the weak and strong forcing regime (not shown). In the case of weak forcing, the correlation
between uncertainty fields of different variables is strongest between precipitation and 2m
temperature, as well as between precipitation and 10m wind, which confirms our hypothesis
of a stronger influence of convection on surface variables in the weak forcing regime. For
most other variable combinations it is stronger in the strong forcing case. Correlation is
generally strongest for the uncertainty of the mean and weakest for the uncertainty of the
95 percentile. This is a consequence of the patchier structure of the latter, due to its
sensitivity to random sampling.
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Figure 5.5: Width of the 95% confidence interval for the mean (top row), standard deviation
(middle row) and 95 percentile (bottom row) of dew-point temperature at 2m in Kelvin
(a, e, i and ¢, g, k) and relative humidity at 500 hPa (b, f, j and d, h, 1) on 10 June 2021
at 14 UTC (left half of the panels) and 29 June 2021 at 14 UTC (right half of the panels).

5.2.3 Flow-dependent evolution of forecast uncertainty

Finally, the evolution of forecast distributions is investigated with particular attention to
the dependence on the forcing regime of convection. This is expected to emerge from the
direct impact of the diurnal cycle of convection and the frontal passage on the distributions
of forecast variables.

Two-dimensional histograms of several variables are drawn for the location near Reut-
lingen for the two case studies, shown in Figures 5.6 and 5.7. They show similar properties
as in Craig et al. (2022), which confirms the classification of variables in three categories:
quasi-normal, highly skewed and multimodal. Compared to the dataset used in Craig et al.
(2022), the ICON experiments allow for more custom output, which made the analysis of
additional variables possible.

Surface variables can be classified in two categories, depending on the convective regime
and the time. Apart from the precipitation distribution, which is always highly skewed,
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the distributions of other variables are quasi-normal or multimodal. In weak forcing, the
dominant influence on the evolution of the distributions is the daily cycle of convection. In
the first 10 hours of the forecast, when the atmosphere is mostly stable, the distributions
are quasi-normal. With the onset of convection, the spread of temperature and dew-point
temperature at 2m increases and the shape of the distributions is more complex, at certain
times even bimodal, e.g. temperature at 12 UTC. As convection decays in the evening and
the atmosphere stabilizes again, the distributions become narrower and the shape is again
quasi-normal. This evolution is in line with that of the idealized model by Tempest et al.
(2024).

The bimodality of the temperature distribution at midday cannot be explained by the
cloudy and clear sky gridpoint discrimination, as initially hypothesized. An additional in-
spection of the neighborhood in question reveals that the bimodality is caused by orography
inside the 10-kilometer neighborhood (not shown). Before the onset of larger convective
cells, most gridpoints in the neighborhood are still cloud-free and the solar radiation heats
the valley more than the surrounding hills, resulting in a temperature difference of a few
degrees. This example shows that a neighborhood of 10 km is too large for 2 meter tem-
perature in complex terrain.

Mid-troposphere temperature and wind are less influenced by the daily cycle in weak
forcing. On the other hand, relative humidity closely follows the daily cycle of convection,
although with a delay of around two hours, which corresponds to the time between the
onset of convection and the time when significant moisture is transported by convection
from the boundary layer to the middle troposphere. During this time, the distribution
shape changes from quasi-normal to bimodal and even highly skewed when the peak is
close to saturation. In the evening, the peak moves back to drier values, but a long tail of
moister values remains.

In strong forcing, the main source of uncertainty is the timing of the cold front passage
around 14 UTC with the associated squall line. This coincidentally matches with the time
of the greatest extent of convection in the weak forcing case, at 14 UTC. In the histogram of
precipitation, the higher values associated with the squall line have a significant impact on
the distribution shape with a much denser tail for values larger than 10 mm. The peak in
the first few hours of the forecast is still in the spin-up phase, so it is not of interest for our
study. The temperature at 2 m and the wind at 10 meters have a clear step change in the
distribution at the passage of the front, due to the abrupt change in temperature and wind
speed and direction near the surface. The dew-point temperature, however, experiences a
more gradual decrease, but the spread increases when the front passes.

The distributions of mid-tropospheric temperature and wind evolve in a smoother man-
ner than surface variables. Compared to weak forcing, the spread in the strong forcing case
is larger throughout the forecast, which is a consequence of the uncertain location of syn-
optic systems that directly affect the middle troposphere. The temperature gradually
decreases with lead time, while the spread increases, with a temporary tail of higher tem-
peratures around 14 UTC, probably caused by advection just before the front or latent
heat release, as mentioned in section 5.2.1. The distribution of zonal wind does not evolve
as monotonically as for the temperature, but the spread also increases with lead time.
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Figure 5.6: Two-dimensional histograms of surface variables for a 10km neighborhood
around Reutlingen on 10 June 2021 (left column) and 29 June 2021 (right column). The
horizontal axis shows forecast lead time and the vertical axis shows the range of values.
Shading represents the frequency of occurrence. From top to bottom: hourly precipitation,
temperature at 2 meters, dew-point temperature at 2 meters and zonal wind speed at 10
meters.
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Figure 5.7: As in Figure 5.6, but for mid-tropospheric variables: temperature, relative
humidity and zonal wind speed, all at 500 hPa.

Similarly to temperature, two long tails develop at 14 UTC, indicating the large variation
of the wind speed and direction (the negative values) between some ensemble members.
The evolution of the relative humidity distribution is the most dramatic. From a skewed
distribution with a peak at around 20% in the morning it quickly changes to a bimodal
distribution with the highest peak at saturation around 14 UTC. From then on, the lower
peak of the distribution gradually moves towards higher values to eventually merge with
the peak near saturation in the late evening. As anticipated in previous sections and
studies, humidity-related variables have the most complex distribution properties and re-
quire a larger ensemble to be sufficiently resolved and represented. This confirms what
Tempest et al. (2024) found using their idealized model, who pointed out that this is due
to the tails in moisture variables’ distributions, which are longer and less dense in weak
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forcing, compared to strong forcing. This translates into a larger sampling uncertainty;,
which demands more ensemble members for a desired level of uncertainty and to reach
convergence of sampling error at all. It is worth noting, however, that the idealized model
did not simulate a frontal passage or squall line, which determines the strong forcing case
in this chapter. Therefore, the impact of this phenomenon on the distributions of variables
and the convergence of sampling error are a novel contribution to the understanding of
flow-dependent forecast uncertainty, together with its spatial analysis.

5.3 Conclusions

The question explored in this chapter is how does the weather regime, namely the strength
of synoptic forcing of convection, impact the evolution of forecast uncertainty and how is
this represented with sampling uncertainty in a big ensemble. A 120-member ICON-D2
ensemble is employed, which is to our knowledge the largest ICON ensemble ever run in
a limited-area setting. The bootstrapping method to evaluate sampling error is used in
a full operational NWP model for the first time, after Craig et al. (2022) and Tempest
et al. (2023) showed its advantages with simpler models. This allows to create maps of
uncertainty, which facilitates the identification of the key factors determining how large
the uncertainty was for different variables. Two representative cases of weak and strong
convective forcing are chosen based on the systematic classification performed by Puh et al.
(2023). Moreover, convergence of sampling error is investigated for a chosen location and
it is compared to the time evolution of distributions of forecast variables for two synoptic
forcing regimes. The main conclusions of this work are summarized here.

1. The sampling error convergence law introduced by Craig et al. (2022) holds for ICON
output variables, for both surface and mid-tropospheric variables. However, conver-
gence is not observed for the 95" percentile, which shows an unexpected behavior
with a "step" between two distinct quasi-converging sections in the strong forcing
regime. This behavior is also found in an idealized model by Tempest et al. (2024).

2. Convection increases the uncertainly of model variables and is the key factor in
determining the spatial pattern of uncertainty, which is heavily influenced by synoptic
forcing. In weak forcing, the uncertainty pattern is patchy, with single convective
cells emerging, while in strong forcing the structure is more coherent due to the larger
scale of mesoscale convective systems.

3. The shape of the underlying distribution is heavily influenced by convection and
its evolution in both forcing regimes, which dictates the properties of uncertainty.
The flow-dependence of the distributions is reflected in the ubiquitous daily cycle of
convection in weak forcing, while the passage of a squall line associated with a cold
front is prevalent in strong forcing.

When interpreting the findings of this chapter, it is essential to consider several lim-
itations. Although the two analyzed cases are representative, the results obtained may
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not hold for every strong or weak synoptic forcing case. Secondly, this chapter focuses on
summertime convection over Germany, so the findings may not necessarily hold true for
other regions, seasons and weather conditions. Additionally, the ensemble comprises only
120 ensemble members, which has been determined to sufficiently represent certain forecast
distribution properties such as the ensemble mean or standard deviation. However, it is not
sufficient for capturing more sensitive aspects, especially those related to extreme events.
The chosen number of 1000 bootstrapping samples may also not be sufficient to determine
whether convergence was reached, but it is approximately one order of magnitude larger
than the size of the sampled ensemble, which Craig et al. (2022) found to be sufficient.
Another limitation is that the sampling error convergence analysis is performed only for
one specific location. Nevertheless, our results are expected to qualitatively hold for most
of the model domain, since maps of uncertainty for smaller samples show a very similar
pattern of uncertainty, which was tested by correlating the fields for smaller samples to
the largest, 120-member sample. The correlation coefficient is mostly larger than 0.9, in-
dicating that the uncertainty fields are qualitatively similar. Lastly, only a limited range
of forecast variables, statistics and atmospheric layers is investigated for practical reasons.
The vertical distribution of uncertainty is beyond the scope of this work. In conclusion,
although this chapter has several limitations, the relationships identified here between the
meteorological flow, the forecast distribution, and sampling uncertainty should be typical
of those found in many contexts.

The main result of this chapter is the strong link between uncertainty of forecast vari-
ables and convection, which increases uncertainty by modifying the shape of the distri-
butions. Moreover, we find that the synoptic forcing of convection plays a key role in
determining the spatial distribution and the evolution of uncertainty through the interac-
tion or lack thereof between the synoptic scale and the mesoscale at forecast lead times
up to 24 hours. Investigating the effect of flow-dependent convection on the uncertainty
of variables at longer lead times would be an intriguing path for future work. Further
research on the sources and evolution of forecast uncertainty will eventually lead to a more
accurate and informative probabilistic weather forecasting.
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Chapter 6

Forecast uncertainty beyond 24 hours

6.1 Background

The atmosphere is often considered a deterministic system in the context of classical
physics, as it follows well-defined physical laws governing the behavior of gases and fluids.
At the same time, a number of reasons make it difficult to accurately predict its future
state. Firstly, the governing laws of natural systems are not perfectly known. Addition-
ally, observational uncertainties prevent us from knowing the precise state of the natural
system. Consequently, our ability to forecast is limited to imperfect numerical models
based on imperfect initial conditions. Errors originating from these initial conditions tend
to amplify over time due to atmospheric system instabilities and become intertwined with
errors stemming from the use of imperfect models. Since the true states of natural systems
remain elusive, the exact error patterns in analysis fields are also unknown. Nonetheless, it
is possible to investigate the evolution of potential forecast errors by examining the changes
in various perturbations applied to the system’s state.

An important consideration is that the magnitude of instabilities, and consequently the
velocity or rate at which errors grow, are influenced by the scale of the movements (Lorenz,
1969). Since spatial and temporal scales of atmospheric phenomena are connected, small-
scale systems evolve faster than large-scale systems. For small-scale systems, this results
in much faster nonlinear perturbation growth that, simply due to their size, saturates at
a low energy level. The instabilities driving the formation of characteristics within the
flow are also accountable for the generation of errors, which either alter features, intensify
them, or lead to their absence. Consequently, accelerated perturbation growth aligns with
faster error growth, leading to a quicker decline in predictability for features at smaller
scales (Hohenegger and Schér, 2007). For example, perturbations originating from the
boundary layer, although small, may have a significant impact on the larger scale flow in
an environment with high convective available potential energy (CAPE) and convective
inhibition (Selz and Craig, 2015). In this context, perturbations may have the capacity to
initiate the formation of extra convective cells rather than simply shifting those already
present. Moreover, there is evidence suggesting that the broader influence of convection on
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the geostrophically balanced flow could be heavily influenced by the prevailing convective
regime (Done et al., 2006). Hence, the existence of moist convection by itself doesn’t
always indicate low predictability, as it heavily relies on the prevailing weather conditions.
This holds true especially for lead times longer than about 12 hours, when smaller-scale
errors have saturated and predictability decays to a background distribution determined by
the synoptic-scale flow. If the evolution of convection is determined by the synoptic-scale
pattern, like in the case of a cold front, its predictability will be higher than on average
(Keil et al., 2014). Nevertheless, moist convection strongly promotes rapid error growth,
with typical timescales of the order of an hour (Leoncini et al., 2010).

The influence of the larger-scale flow on convection itself is of key importance in the
context of predictability. The impact of dynamical forcing on convection in mid-latitudes is
often characterized as either strong or weak. Typically, this classification relies on the pres-
ence or absence of synoptic or mesoscale dynamical features capable of inducing upward
motion and the formation of CAPE. When inhibition of convection is weak and triggering
disturbances are abundant, convection occurs whenever instability exists, leading to the
rapid consumption of CAPE. Conversely, when inhibition is strong and triggering distur-
bances are scarce, CAPE can accumulate, indicating a non-equilibrium state. Equilibrium
conditions often coincide with strong forcing because dynamical ascent weakens inversions,
while widespread convection supplies numerous triggering disturbances. However, excep-
tionally strong capping inversions or other inhibitory factors can prevent convection from
reaching equilibrium, causing rapid CAPE increases despite strong forcing.

However, there are exceptions to the lower predictability of weakly forced convection.
Craig et al. (2012) found that the impact time of radar rainfall assimilation on the fore-
cast is related to the large-scale control of convection, with shorter impact time-scales
when convection is in equilibrium with the large-scale forcing, and longer impacts when
instability is present but convection is inhibited, which corresponds to the non-equilibrium
regime. In the equilibrium limit, the influence of the data assimilation increments on to-
tal precipitation is forgotten over a couple of hours, while in the case of non-equilibrium,
the insertion of radar data is sufficient to initiate convective systems that are long-lived,
prolonging their predictability. Therefore, a forecast initialization during active convection
can significantly modify the forecast evolution and reduce its uncertainty later on.

Soil moisture (SM) was identified as another source of predictability and uncertainty
for convection initiation and intensity. It influences the partitioning of net radiative flux
into latent and sensible surface heat fluxes, eventually moistening and heating the bound-
ary layer and playing an important role in cloud development as well as in the initiation
and formation of convective precipitation (Wallace and Hobbs, 2006). In the majority of
cases, there is a positive feedback between SM and the initiation of convective activity (Liu
et al., 2022). Baur et al. (2022) showed that initial soil moisture influences the triggering
of convection, but with dry conditions accelerating and moist conditions decelerating its
onset within the first hours. Their results thus show a negative soil-moisture—precipitation
coupling during the initiation phase, especially near soil moisture gradients, and a posi-
tive coupling afterwards. Schneider et al. (2019) also found that in the majority of their
analyzed cases, the model produces a positive SM—precipitation feedback when averaged
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over the entire model domain. Furthermore, SM, along with aerosols, is responsible for the
maximum precipitation response, while the sensitivity to terrain forcing always shows the
smallest spread. Their results show that the impact of these perturbations, including those
to SM, on precipitation is on average higher for weak than for strong synoptic forcing, as
for other local factors in the literature (e.g. Keil et al., 2019).

Apart from soil moisture, atmospheric moisture and stability also serve as a mem-
ory mechanism for the evolution of convection. Petch (2004) uses a 2-dimensional cloud-
resolving model to show that the differences in the atmospheric conditions at sunrise on
the second day of the simulation lead to very large differences in the timing and intensity
of convective rainfall in the ensemble. The amount of total daily rainfall is shown to have
a major impact on the subsequent day’s convection, due to significantly different amounts
of moisture in the atmosphere at sunrise. Hence, if different ensemble members produce
a wide variety of total rainfall during the day, the very different moisture and tempera-
ture profiles at sunrise on the second day increase the variability in the diurnal cycle of
convection on the next day.

The question that we pose in this chapter is how much does the longer-lasting impact
given by memory effects discussed above influence forecast uncertainty at the convective
scale beyond the first 24 hours of the simulation, especially the precipitation. These in-
clude soil moisture and atmospheric stability, as well as forecast initialization during active
convection. The role of small-scale stochastic perturbations in these mechanisms is studied
in the flow-dependent framework of weak and strong forcing. The hypothesis is that the
impact of memory effects is stronger in weak forcing.

In previous chapters, the evolution of forecast uncertainty was studied in the first 24
hours of the forecast, which for a case of weak forcing means investigating one diurnal
cycle of convection. With a maximum forecast lead time of 48 h (36 h), the second diurnal
cycle can be predicted and the influence of the different evolution on the first day, based
on added perturbations or the different initialization time, can be inferred.

6.2 Results

6.2.1 Time evolution of precipitation

We first focus on the time evolution of precipitation in the weak and strong forcing cases.
The description of the general weather pattern of the case studies is in section 3.3. The
evolution of other variables does not provide additional insight, since precipitation is the
least robust variable of the chosen set and the one that is most directly influenced by
convection. The interested reader can see figures for other variables in the Appendix.
Figure 6.1a illustrates the time series of precipitation under weak forcing conditions,
characterized by the presence of two distinct diurnal cycles. The initial cycle conforms
to the typical pattern associated with weak forcing convection, initiating around 10 UTC
with the onset of triggered convection. Conversely, the second cycle exhibits greater un-
certainty within the forecasts, commencing as early as nighttime. When comparing the
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Figure 6.1: Time series of hourly precipitation (in mm) for the 4 simulations and the
estimated amount from radar observations on weak forcing (a, c, e - 26 and 27 August)
and strong forcing (b, d, f - 18 and 19 August), averaged over Germany. The lines show
the ensemble mean, while the shading in panels ¢, d, e and f represents the range between
the first and 3rd quartile of the distribution given by the ensemble members (¢ and d
initialized at 00 UTC, e and f initialized at 12 UTC). The black lines show the reference
experiment (00 UTC initialization continuous, 12 UTC dotted), while the red lines show
the PSP experiment (00 UTC initialization continuous, 12 UTC dotted). The estimated
precipitation from radar observations is shown with the continuous blue line. The x axis
shows the forecast lead time in hours.
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observations with the simulations, it is important to keep in mind that the curves for the
different experiments are showing the ensemble mean, while the observation curve is to
be interpreted as one realization of the forecast distribution and is therefore expected to
experience more variability. However, it is still useful to make the comparison between
forecasts and observations to get an idea of the skill and realism of the simulations.

The comparison between the reference simulations and the observations is discussed
first. Overall, the simulations initialized at 12 UTC demonstrate the closest alignment with
radar observations. This is not surprising, since they contain information about ongoing
convection up to 12UTC on the first day, which constrains the whole forecast evolution
and lowers the uncertainty! especially on the second day of weak forcing (compare panel
6.1c and e). This is the first "memory mechanism" that we discuss in the introduction
(Craig et al., 2012). As expected, this effect is weaker in the case of strong forcing, with
uncertainty growing at a similar pace in the 00 UTC and the 12 UTC forecast, although
reaching a slightly lower absolute value by the end of the forecast due to the shorter
time for the growth of errors (compare panel 6.1d and f). The uncertainty band of the
reference simulation encompasses the radar estimation, except for the peak in the evening
of day 1. This peak is around midnight, which cannot be considered to be caused by the
diurnal cycle of convection, although some influence is not excluded in this case. Moreover,
the model domain does not include the main feature of the larger-scale forcing, which is
a cyclone in the Mediterranean region (see Figure 3.4). As a consequence, clouds and
convective clusters are advected from the south-east (as seen in Figure 6.7) and are therefore
mainly determined by the coarser lateral boundary conditions, hence a direct quantitative
comparison of observed and simulated precipitation requires caution. Additionally, the
ensemble size of 40 members is likely not large enough to capture events that are further
away from the ensemble mean, as seen in Chapter 5.

We now assess the impact of PSP on the time evolution of precipitation. The 00 UTC
PSP simulation performs the worst compared to the observations in terms of precipitation
amount, although it slightly improves the timing of the onset of precipitation and its
highest peak. The more effective triggering of convection, however, increases the cloud
cover too quickly (not shown), limiting successive triggering by the turbulence in the PBL,
caused by solar heating of the surface, and significantly reducing the average precipitation
later in the afternoon. This is a worsening of a bias that is already present in the reference
simulation. This negative bias on the first day is likely the cause for the positive bias on
the second day, as there is more CAPE to be consumed by generating more precipitation,
together with other environmental effects which will be discussed in the following section.
The uncertainty in both simulations quickly grows as the convection develops, but it is
larger for the reference experiment until the early night, when the PSP experiment has
larger uncertainty, with a lower first quartile due to the bias in precipitation. Afterwards,
the uncertainty in the PSP experiment outgrows the reference simulation for most of the
second day, until they roughly overlap again in the evening. On the second day, the larger

!The uncertainty bands in Figure 6.1 are defined by the first and third quartile, which contain 50% of
the ensemble members.
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uncertainty of the PSP simulation is a consequence of the higher upper quartile, since a
portion of members have a significantly larger amount of precipitation. However, on neither
of the days the PSP scheme improves the forecast quantitatively, as the radar estimation
falls out of the uncertainty bend of the PSP simulation on both peaks of the diurnal cycles,
while it is mostly contained by the band of the reference simulation. It is likely that this
pronounced undesired effect of the PSP scheme is a characteristic of the chosen case, and
therefore it is not possible to draw general conclusions about the effect of the scheme on
longer forecasts, for which more cases are needed.

In strong forcing (Figure 6.1b), the PSP and reference experiments are much more
similar. There are only slight differences in the ensemble- and area-average precipitation,
as well as in the uncertainty. However, the 12 UTC forecasts are distinctly different, which
confirms our hypothesis and the previous findings of the larger-scale conditions being more
important in strong forcing, while in weak forcing they are equally important to the small-
scale features in terms of the impact on precipitation and uncertainty.

Figure 6.2 shows the time evolution of the histogram of precipitation for a neighbour-
hood around the indicated location in Eastern Germany in figures in section 6.2.2. The
analysis underscores the shift in the diurnal cycle by PSP and the denser tail in the ref-
erence simulation on day 1. Conversely, the PSP simulation has a denser and longer tail
from the early morning hours of day 2, resulting in a higher average precipitation amount
and uncertainty. A similar effect, although of a smaller magnitude, can be observed on day
2 in the 12 UTC initialized forecasts, comparing the PSP and the reference simulations.
The diurnal cycle on day 2 is more pronounced in both simulations in comparison with the
00 UTC forecasts, slightly enhanced by PSP. Additionally, the spinup effect is discernible
in the 12 UTC runs, characterized by a shorter tail and lower average precipitation levels
(too low compared to observations, not shown). The appendix shows the same figure for
strong forcing, since its inclusion does not yield significant additional insights, given the
insignificant impact of PSP.

6.2.2 Spatial distribution of precipitation

The impact of the PSP scheme on precipitation is now analyzed more in detail, including
its spatial distribution. As expected, the impact is more significant in the case of weak
forcing of convection.

Weak forcing

The comparison of the maps of precipitation estimates from radar observations and the
ensemble mean for the reference simulation for weak forcing is depicted in Figure 6.3, as
well as the anomalies caused by PSP, relative to the reference. These are to be interpreted
in a broader sense, since the ensemble mean is not designed to represent reality, but rather
to show agreement between ensemble members on the spatial distribution of higher or
lower amounts of precipitation. On day 1 of weak forcing, there is widespread convective
activity. In Eastern Germany there is a pronounced reduction observed with PSP, relative
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Figure 6.2: 2D histogram (the x axis represents lead time) of hourly precipitation for a
10-km neighbourhood around a location in Eastern Germany on 26 and 27 August (weak
forcing), for the 4 simulations: reference, PSP and their 12 UTC equivalents. The shading
indicates the frequency of occurrence.

to the reference simulation (panel 6.3c). This reduction can be attributed to the shading
effect of the anvil clouds produced by preceding convection events, whose onset was earlier
with PSP, as discussed and seen in the time series in the previous section. Moving to day
2, the convective patterns are more concentrated, primarily affecting southern and eastern
regions of Germany. Although both simulations exhibit a mismatch in the exact location
of the heaviest precipitation accumulation, PSP demonstrates a noteworthy improvement
by shifting the precipitation southwards (panel 6.3g), aligning more closely with observed
data. The predominant factor contributing to the substantial PSP impact on precipitation
is identified as nighttime and morning convection, elucidated below with Figure 6.4. Inter-
estingly, the forecast initialized at 12 UTC demonstrates a comparable effect of PSP, albeit
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to a lesser extent (panel 6.3h). The impact of the later initialization time is comparable in
magnitude to that of PSP on the second day (panel 6.3d), but it is more widespread.
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Figure 6.3: Total accumulated precipitation on day 1 (26 August) and day 2 (27 August)
as estimated by the radar observations (RADAR, a and e), in the ensemble mean of the
reference simulation (REF, b and f). Difference in total accumulated precipitation between
the PSP and the reference simulation initialized at 00 UTC (PSP-REF, c and g), at 12 UTC
(PSP-REF 1200, day 2, h) and between the 12 UTC and 00 UTC reference simulations
(REF 1200 - REF 0000, day 2, d). The units for all panes are millimeters. The green dot
indicates the location for the neighbourhood analysis in the previous section.

To better understand the mechanisms behind the impact of PSP on precipitation, we
now focus on the early morning hours. During the night and early morning, all forecasts
overlook a convective cluster positioned in central Germany, which moves eastwards dur-
ing this time frame. However, PSP stands out by effectively shifting the focal point of
convective activity towards the south, while intensifying its overall impact (top right panel
in Figure 6.4). Notably, the 12 UTC forecast demonstrates a more accurate prediction of
the spatial distribution of convection, although with a drawback of weaker intensity in the
ensemble mean (lower middle panel in Figure 6.4).

Delving into the underlying causes of the substantial impact observed in PSP’s night-
time convection in Figure 6.4, several factors come into play. We now investigate potential
mechanisms that led to the observed effects, i.e. soil moisture memory and atmospheric
stability. Firstly, the soil moisture anomaly with respect to the reference is analyzed. Al-
though there is a clear pattern in the spatial distribution of anomalies (Figure 6.5, lower
left panel), these closely follow the pattern already seen in the precipitation (see Figure
6.3c) after 24 h, with a dry signal where the precipitation was scarcer and vice versa. No
clear signal is observed in the region with the highest precipitation increase on day 2. This
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=

Figure 6.4: Total accumulated precipitation between 03UTC and 09UTC of day 2 (27
August) as estimated by the radar observations (RADAR), in the ensemble mean of the
reference simulation (REF), the PSP simulation (PSP) and the simulation initialized at 12
UTC (1200). Difference in accumulated 6h precipitation between the PSP and the refer-
ence simulation initialized at 00 UTC (top right) and the 12 UTC and 00 UTC reference
simulations (bottom right). The units for all panes are millimeters. The green dot indi-
cates the location for the neighbourhood analysis in the previous section.

proves once again that it is hard to clearly assess the impact of soil moisture variability
on convection (as in e.g. Hauck et al., 2011). Nevertheless, the apparent anti-correlation
of the soil moisture anomaly with the humidity anomaly at 950 hPa at midnight would
confirm the findings of Baur et al. (2022), if the 950 hPa level were above the boundary
layer (not assessed).

However, a larger CAPE, attributable to a moister boundary layer, alongside increased
Convective Inhibition (CIN) in Northeast Germany, as shown in Figure 6.5 (upper panels
and lower right panel), clearly point towards the second possible mechanism. Concurrently,
ongoing convection benefits from more favorable environmental conditions conducive to its
sustenance and organization, characterized by enhanced CAPE, vertical wind shear, and
low-level convergence (not shown). It is hard to attribute more precisely which factors con-
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Figure 6.5: Maps of the difference in CAPE, CIN (in J/kg), soil moisture at 5 mm depth
(in kg/m?) and specific humidity at 950 hPa (in g/kg) at 00 UTC of 27 August, between
the ensemble mean of the PSP simulation and the reference simulation. The green dot
indicates the location for the neighbourhood analysis in the previous section.

tributed the most to the anomalies of the PSP simulation, but we can conclude that the
perturbations introduced by the scheme could modify the convective environment. This
"memory effect" represents an opportunity to increase the predictability horizon of con-
vection in such weakly forced conditions if the location of convective activity is precisely
predicted on the first day, as well as its intensity, which strongly influences the environ-
mental conditions for the development of convection on the next day. Indeed, the time
series of the difference in domain-average precipitable water (Figure B.1 in the Appendix)
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between the PSP and the reference simulations shows an opposite evolution, with the final
amounts after 48 hours being almost equal, which confirms the findings of Petch (2004).

The enhanced convective dynamics facilitated by PSP also cause a discernible alteration
in the synoptic-scale flow, as evidenced by the analysis presented in Figure 6.6. This figure
delineates the pressure difference that emerged 24 and 48 hours into the simulations. A
distinctive dipole-like impact observed in the pressure field signifies a notable shift in the
synoptic pattern, primarily influenced by the intensified convective processes and latent
heat release, particularly prevalent in Eastern Germany. This enhanced convective activity
corresponds to a more robust outflow within the upper troposphere, further impacting the
broader circulation pattern. A similar impact was also observed by Done et al. (2006) in a
weak forcing case 12 hours after the initial triggering of convection, when the background
250 mb jet speed was increased by up to 20 ms~!, compared to a simulation without
convection. In this chapter, these mechanisms have not been fully investigated, therefore we
cannot make solid conclusions and further work is needed to confidently link the interplay
of these factors.
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Figure 6.6: Ensemble mean of sea level pressure for the reference simulation (contours, in
hPa) and difference between the PSP simulation and the reference simulation (shaded, in
hPa) at 00 UTC on 27 August (24 h lead time, left) and at 00 UTC on 28 August (48 h
lead time, right). The green dot indicates the location for the neighbourhood analysis in
the previous section.

Strong forcing

For the strong forcing case, fewer results are presented, since the impact of PSP on pre-
cipitation is not significant. As shown in Figure 6.7, the predominant accumulations of
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precipitation are notably concentrated in the southern regions of Germany over the two-
day span. However, on the initial day, forecasts initialized at 00 UTC failed to capture
the heightened precipitation intensity observed in Central Germany, near the border with
Czechia (panels 6.7a, b and c¢). Moreover, the nighttime maximum of precipitation in
southern Germany, caused by quasi-stationary convection, is misplaced and positioned on
the northern edge of the Alps instead in the reference simulation (panels 6.7e and f), while
the forecast initialized at 12 UTC improved significantly the predicted amount and spatial
distribution of precipitation in this region (panel 6.7d). The implementation of PSP does
not yield a substantial impact (panel 6.7g, h), as its effect appears comparatively minor
when compared with the outcomes of the later initialization time (panel 6.7d). Specifi-
cally, the impact of PSP on the disparity in accumulated precipitation is quantified to be
approximately two to three times smaller than its impact on scenarios characterized by
weaker forcing dynamics. This observation underscores once again the flow-dependence of
the upscale growth of small-scale perturbations and of forecast uncertainty.

PSP-REF

DAY 1
REF 1200 - REF 0000

DAY 2
PSP-REF 1200

Figure 6.7: Total accumulated precipitation on day 1 (18 August) and day 2 (19 August)
as estimated by the radar observations (RADAR, a and e), in the ensemble mean of the
reference simulation (REF, b and f). Difference in total accumulated precipitation between
the PSP and the reference simulation initialized at 00 UTC (PSP-REF, c and g), at 12 UTC
(PSP-REF 1200, day 2, h) and between the 12 UTC and 00 UTC reference simulations
(REF 1200 - REF 0000, day 2, d). The units for all panes are millimeters. The green dot
indicates the location for the neighbourhood analysis (in Appendix B for strong forcing).
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6.3 Summary and conclusions

This chapter delves into the influence of small-scale stochastic perturbations on forecast
uncertainty within a 48-hour time frame, examining two cases of strong and weak forcing
of convection. It contrasts the impact of PSP with that of altering the initialization time,
where existing convection is assimilated into the forecast, initiating convective systems that
can be long-lived. This represents one of the memory effects that are investigated, along
with soil moisture and atmospheric stability. While prior chapters primarily focused on
analyzing forecast uncertainty within the initial 24-hour period, extending the maximum
forecast lead time to 48 hours enables the prediction of a second diurnal cycle. This
expanded scope allows for a deeper understanding of how added perturbations or changes
in initialization time influence the evolution of forecast uncertainty during the second day
of the forecast, with a focus on the responsible memory mechanisms that cause an observed
change in the precipitation with the addition of PSP. The main conclusions are summarized
here.

In weak forcing conditions, the PSP scheme can systematically influence mesoscale con-
ditions and flow, thereby exerting a discernible impact on subsequent convective activity,
particularly noticeable on the second day of the simulations. This influence can be de-
lineated through the following mechanism. Firstly, triggered convection depletes CAPE
while inhibiting the development of additional nearby convection due to the shading by
the cloud cover it created. Secondly, any remaining CAPE is advected and transferred to
the following day, shaping the subsequent environmental conditions for the development
of convection. Thirdly, alterations in low-level convergence and upper-level divergence
impact wind fields and vertical wind shear, further modulating convective dynamics. Ad-
ditionally, if the ensuing environmental conditions are favorable to enhanced convection, it
results in increased precipitation and the formation of a positive anomaly, and vice versa.
Soil moisture anomalies between the two simulations were shown to not significantly influ-
ence subsequent convective activity. Nevertheless, we conclude that the complex interplay
between thermodynamic stratification, state of the soil and available net radiation deter-
mines the importance and behaviour of different sources of uncertainty in the forecast (as
in Keil et al., 2019).

The impact of initialization time, alongside PSP, is also larger in weak forcing, when
the magnitude of their influence on the precipitation is comparable, which confirms our
hypothesis. In strong forcing, the impact of a different initialization time is significantly
stronger than that of PSP, although slightly weaker than its impact in weak forcing.

When assessing the implications of this research, it is crucial to acknowledge inherent
limitations. Firstly, while the two cases studied serve as representative examples, it’s im-
portant to recognize that the findings may not universally apply to all instances of strong
or weak synoptic forcing scenarios. Secondly, given the focus on summertime convection
specifically within Germany, the generalizability of the results to other regions, seasons, and
weather conditions may be limited. Moreover, the ensemble utilized in this study consists
of only 40 members, which may not be sufficiently robust for capturing extreme events, but
was shown to be adequate for estimating the uncertainty of the mean. Finally, the memory
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mechanisms discussed in this chapter are not fully investigated and therefore need to be
elucidated in more detail in future work. In summary, despite these acknowledged limi-
tations, the relationships elucidated here between weather regime, forecast distributions,
and their evolution are expected to be broadly applicable across various contexts.

The most important conclusion of this chapter is that although the uncertainty on the
convective scale quickly grows and the predictability left comes mostly from the larger-scale
flow, there are mechanisms on the smaller scale that can still influence the forecast beyond
the usual influence time. Moreover, if the factors that contribute to this extended influence
are assimilated and well represented in the initial conditions, the resulting forecast is more
accurate. Therefore, several weather prediction centers developed forecasting systems that
are initialized with an hourly frequency, like SINFONY (Seamless INtegrated FOrecastiNg
sYstem) at DWD using a rapid update cycle (RUC) in the ICON-LAM-EPS (Blahak,
2023) or the High-Resolution Rapid Refresh (HRRR) model (Dowell et al., 2022) at NOAA
(National Oceanic and Atmospheric Administration). As shown in this chapter, a more
recent initialization time, including information on local environmental conditions, reduces
uncertainty in weak forcing situations and prolongs the predictability of convection beyond
the typical timescale when local predictability is lost, which confirms the findings of Craig
et al. (2012). This is particularly beneficial for early warnings of high impact weather
caused by convection, which can cause damage to a wide spectrum of society.



Chapter 7

Conclusions

The accurate prediction of atmospheric phenomena is hindered by the inherent chaos of
the Earth’s atmosphere, coupled with a multitude of uncertainties stemming from obser-
vational limitations and model imperfections. These challenges necessitate sophisticated
forecasting methodologies capable of quantifying and addressing uncertainties to provide
reliable meteorological predictions. Ensemble Prediction Systems (EPS) have emerged as
indispensable tools in this regard, offering a probabilistic framework that accommodates
the inherent variability of atmospheric processes.

However, there are several limitations to ensembles too. Firstly, the size of ensembles is
constrained by cost, often limiting them to smaller sizes. Assessing errors stemming from
these limited sizes proves challenging because the exact distribution of a forecast variable,
as observed by a larger ensemble, is unknown, making it uncertain how many ensemble
members are necessary for accurate sampling. Moreover, an ongoing challenge is to develop
ensemble methodologies that effectively capture the multitude of uncertainties in natural
systems and combine them to create physically consistent and effective variability in the
ensemble forecast.

The aim of this thesis is to address these challenges by providing a more complete
understanding of the nature and the evolution of forecast uncertainty in a convection-
permitting ensemble. There are three central research questions to this thesis. Firstly,
does the PSP scheme systematically improve the probabilistic skill of convection-permitting
ensemble forecasts over Germany? Secondly, is a 120-member ensemble sufficiently large
to observe convergence of sampling error with a fully-fledged NWP ensemble? Lastly, how
does the convective weather regime affect the evolution of uncertainty of forecast variables
and how does it influence its spatial distribution?

To answer these questions, three different convection-permitting ensemble experiments
are performed using the ICON Limited Area Model (LAM). To begin with, the impact
of the PSP scheme is assessed over a 3-month period in a 20-member ensemble, focusing
on its flow-dependent behaviour in strong and weak forcing regimes. Two cases from this
period are then chosen for a large, 120-member ensemble experiment, which allowed for
a more detailed analysis of the evolution of forecast uncertainty and the convergence of
sampling error, as well as the spatial distribution of uncertainty and the role of convection
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therein. Lastly, this analysis is extended to longer lead times with 40-member ensemble
experiments spanning up to 48 hours, allowing the forecast of a second diurnal cycle of
convection in weak forcing conditions.

Conclusions from each part of the thesis are now summarized. A closing remark will
highlight and discuss limitations and implications for future applications and research.

Physically-based stochastic perturbation scheme The PSP scheme is used in [CON-
D2-EPS as a representation of model error originating from the subgrid scale in the bound-
ary layer, but affecting the smallest resolved scales. The experimental period spans a whole
summer season, which allows for a systematic analysis of the impact of the scheme in dif-
ferent synoptic forcing conditions.

The scheme provides a good representation of the effect of subgrid scale turbulence in
ICON-D2 and has realistic, beneficial effects in ensemble forecasts, especially by increasing
the ensemble spread and therefore reducing the underdispersion of surface variables. It
helps triggering convection, while preserving the intensity of single convective cells and
does not produce spurious convection.

The small-scale perturbations introduced by PSP have a larger impact on convective
precipitation in weak than in strong synoptic forcing, especially on its spread. This is in
line with the hypothesis of local processes in the boundary layer driving the convection
on weakly forced days, whereas on strong forcing days, the synoptic pattern controls the
convection.

The main result of this chapter is the improvement of the spread to skill ratio of the
ensemble with PSP for several variables, while preserving the same level of skill. Combined
with its physical foundation, the scheme is a good representation of model error stemming
from unresolved eddies in the PBL and can therefore be used in large ensemble experiments.

Flow dependence of forecast uncertainty A 120 member I[CON-D2 ensemble with
PSP is used to answer the question of how the weather regime, namely the strength of
synoptic forcing of convection, impacts the evolution of forecast uncertainty and how this
is represented by sampling uncertainty in a big ensemble. To our knowledge this is the
largest ICON ensemble ever run in a limited-area setting. The bootstrapping method to
evaluate sampling error is used in a full operational NWP model for the first time, after
Craig et al. (2022) and Tempest et al. (2023) showed its advantages with simpler models.
This allows the creation of maps of uncertainty, which facilitates the identification of the
key factors determining how large the uncertainty was for different variables. Two repre-
sentative cases of weak and strong convective forcing are chosen based on the systematic
classification performed in the first part of the thesis. Moreover, convergence of sampling
error is investigated for a chosen location and it is compared to the time evolution of
distributions of forecast variables for two synoptic forcing regimes.

It was found that the sampling error convergence law introduced by Craig et al. (2022)
holds for ICON output variables, for both surface and mid-tropospheric variables. However,
convergence is not observed for the 95 percentile, which shows an unexpected behaviour
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with a "step" between two distinct quasi-converging sections in the strong forcing regime.
This behaviour is also found in an idealized model by Tempest et al. (2024).

Secondly, convection increases the uncertainly of model variables and is the key factor
in determining the spatial pattern of uncertainty, which is heavily influenced by synoptic
forcing. In weak forcing, the uncertainty pattern is patchy, with single convective cells
emerging, while in strong forcing the structure is more coherent due to the larger scale of
mesoscale convective systems.

The shape of the underlying distribution of forecast variables is heavily influenced
by convection and its evolution in both forcing regimes, which dictates the properties of
uncertainty. The flow-dependence of distributions is reflected in the ubiquitous daily cycle
of convection in weak forcing, while the passage of a squall line associated with a cold front
is prevalent in strong forcing.

The main result of this chapter is the strong link between uncertainty of forecast vari-
ables and convection, which increases uncertainty by modifying the shape of the distribu-
tions. Moreover, synoptic forcing of convection plays a key role in determining the spatial
distribution and the evolution of uncertainty through the interaction or lack thereof be-
tween the synoptic scale and the mesoscale at forecast lead times up to 24 hours.

Forecast uncertainty beyond 24 hours In the last part of the thesis, the analysis of
the flow dependence of forecast uncertainty is extended to 48 hours with another pair of
cases with weak and strong forcing of convection. We study the longer-lasting impact given
by the memory effects of soil moisture and atmospheric stability on forecast uncertainty
at the convective scale beyond the first 24 hours of the simulation. While prior chapters
primarily focused on analyzing forecast uncertainty within the initial 24-hour period, ex-
tending the maximum forecast lead time to 48 hours enables the prediction of a second
diurnal cycle. This expanded scope allows for a deeper understanding of how added per-
turbations or changes in initialization time influence the evolution of forecast uncertainty
during the second day of the forecast.

Investigations showed that the PSP scheme can systematically influence mesoscale con-
ditions and flow in weak forcing conditions, thereby exerting a discernible impact on subse-
quent convective activity, particularly noticeable on the second day of the simulations. This
influence can be delineated through the following mechanism. Firstly, triggered convection
depletes CAPE while inhibiting the development of additional nearby convection due to
the shading by the cloud cover it created. Secondly, any remaining CAPE is advected and
transferred to the following day, shaping the subsequent environmental conditions for the
development of convection. Thirdly, alterations in low-level convergence and upper-level
divergence impact wind fields on a larger scale, further modulating convective dynamics.
Additionally, if the ensuing environmental conditions are favorable to enhanced convec-
tion, it results in increased precipitation and the formation of a positive anomaly, and vice
versa. Soil moisture anomalies between the two simulations were shown to not significantly
influence subsequent convective activity. Nevertheless, we conclude that the complex in-
terplay between thermodynamic stratification, state of the soil and available net radiation
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determines the importance and behaviour of different sources of uncertainty in the forecast.

The impact of initialization time, alongside PSP, is larger in weak forcing, when the
magnitude of their influence on the precipitation is comparable. In strong forcing, the
impact of a different initialization time is significantly stronger than that of PSP, although
slightly weaker than its impact in weak forcing.

The most important conclusion of this chapter is that although the uncertainty on the
convective scale quickly grows and the predictability left comes mostly from the larger-
scale flow, there are mechanisms on the smaller scale that can still influence the forecast
beyond the usual influence time. Moreover, if the factors that contribute to this extended
influence are assimilated and well represented in the initial conditions, forecast uncertainty
is decreased and the resulting forecast is more accurate. Understanding the processes that
modulate forecast uncertainty beyond 24 hours is important in the context of ensemble
design, since these can significantly impact our interpretation of the resulting ensemble
spread, which is still the most common measure of uncertainty.

There are a number of limitations with the results presented in this thesis. Firstly,
although the analyzed cases are representative, the results obtained may not hold for
every strong or weak synoptic forcing case. Secondly, this work focuses on summertime
convection over Germany, so the findings may not necessarily hold true for other regions,
seasons and weather conditions. Additionally, the ensembles comprise only 20, 40 or 120
ensemble members, depending on the chapter, which has been determined to sufficiently
represent certain forecast distribution properties such as the ensemble mean or standard
deviation for the latter. However, it is not sufficient for capturing more sensitive aspects,
especially those related to extreme events. The chosen number of 1000 bootstrapping
samples may also not be sufficient to determine whether convergence was reached, but it is
approximately one order of magnitude larger than the size of the sampled ensemble, which
Craig et al. (2022) found to be sufficient. Another limitation is that the sampling error
convergence analysis is performed only for one specific location. Nevertheless, our results
are expected to qualitatively hold for most of the model domain, as explained in chapter
5. Finally, the memory mechanisms discussed in the last part of the thesis are not fully
investigated and therefore need to be studied in more detail in future work. In summary,
despite these acknowledged limitations, the relationships elucidated here between weather
regime, forecast distributions, forecast uncertainty and its evolution are expected to be
broadly applicable across various contexts.

This thesis provides significant progress towards understanding the evolution of forecast
uncertainty, however there is scope for further investigation. To begin with, improvements
in the design of the PSP scheme should be tested, aimed at containing unwanted effects
caused by the scheme, like excessive drying of the boundary layer. This could be done, for
example, by adapting the vertical tapering profile of the perturbations to prevent exces-
sive mixing around the top of the boundary layer. Some preliminary tests show promising
results, but a more systematic assessment is needed, which the DWD is currently working
on. Moreover, the effect of the scheme in combination with other model perturbations,
especially if stochastic, should be studied before operational usage. Since the scheme is
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designed to represent only a specific source of model uncertainty, it not expected to sub-
stitute established approaches like parameter perturbations, but rather to be combined
with other physically-based schemes, e.g. the stochastic shallow convection scheme devel-
oped by Sakradzija and Klocke (2018) in ICON. Matsunobu et al. (2024) recently found
that complementing PSP by perturbed parameters in the microphysics scheme shows an
additive effect on spatial error and spread for a characteristic case study. Therefore, an
ensemble design with such complementing uncertainty sources seems to be the way forward
in the field of model uncertainty representation.

This thesis, alongside Craig et al. (2022), Tempest et al. (2023) and Tempest et al.
(2024), showed that the required ensemble size to accurately estimate the properties of
forecast distributions, and hence uncertainty, strongly depends on the property of interest.
Extreme, rare events will become more frequent in a warming climate, which calls for
a larger ensemble size in probabilistic forecasting. Furthermore, an efficient transition to
renewable energy production demands accurate probabilistic forecasts of different variables,
like cloud cover and wind speed. Such multi-variate distributions were not studied in this
thesis, but a larger ensemble size is expected to be needed for the sampling uncertainty
to decrease to a useful level. Another example of such a multi-variate problem is the
prediction of storm surge, which is becoming a more dangerous threat as the sea level
rises, affecting millions of people around the globe.

The recent fast development of data-driven models, which show a forecast skill com-
parable, or even superior to conventional forecast models (e.g. Bi et al., 2023; Lam et al.,
2022), combined with the huge advantage that, once trained, Artificial Intelligence (AI)
models require much less computational effort to compute a weather forecast, seems to
open new opportunities for ensemble forecasting. Ensemble sizes of thousands of members
do not sound as impossible as before, which could be a significant breakthrough in the his-
tory of weather prediction. This thesis shows that the sampling error can be minimized in
a very large ensemble, even for extreme, rare events. However, the question arises whether
these events can be represented, since state-of-the-art data-based models usually learn from
the past evolution of the weather, and future extreme events may be different, especially
in a changing climate. Nevertheless, from early warnings of high-impact weather events to
extremely accurate short-term forecasts with many practical applications, Al could help
mitigate the impacts of climate change on humanity and make it more resilient.
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7. Conclusions




Appendix A

Additional figures for chapter 5

The interested reader can see Figures 5.1, 5.2 and 5.5 with the full set of variables in this
appendix. Figures A.1 and A.2 show the convergence of the confidence interval for the weak
and strong forging regimes. Figures A.3 and A.4 show the maps of uncertainty for surface
variables, while Figures A.5 and A.6 show the maps of uncertainty for mid-tropospheric
variables, for the two forcing regimes.
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Figure A.1: Width of the 95% confidence intervals for the mean, standard deviation and
95" percentile (columns), for a range of variables (rows, see panel titles). For precipitation,
probability of exceeding 0.1 mm and 10 mm is shown instead of the standard deviation and
the 95" percentile. Forecast quantities are computed for 10 June at 14 UTC for a gridpoint
near Reutlingen. The dashed line shows the reference curve with slope N~/2, fitted by
eye. Gridpoint: single gridpoint forecast, neighbourhood: 10-km radius neighbourhood
forecast.
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in fig. A.1, but for 29 June 2021.
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p95 of Td2m

Figure A.3: Width of the 95% confidence interval for the mean (top row), standard devia-
tion (middle row) and 95 percentile (bottom row) of (from left to right) temperature and
dew-point temperature at 2m in Kelvin, precipitation in millimeters per hour and zonal
wind at 10 meters in meters per second on 10 June 2021 at 14 UTC. For precipitation,
probability of exceeding 0.1 mm and 10 mm is shown instead of the standard deviation
and the 95" percentile. In white regions, none of the ensemble members exceeded the
threshold. In white regions, none of the ensemble members exceeded the threshold.
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Figure A.4: As in figure A.3, but for 29 June 2021 at 14 UTC.
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Figure A.5: Width of the 95% confidence interval for the mean (top row), standard devia-
tion (middle row) and 95 percentile (bottom row) of (from left to right) temperature in

Kelvin, relative humidity and zonal wind in meters per second, all at 500 hPa, on 10 June
2021 at 14 UTC
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Figure A.6: As in Figure A.5, but for 29 June 2021 at 14 UTC.
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Appendix B

Additional figures for chapter 6

The interested reader can see the time series of precipitable water difference between the
PSP and the reference simulations in this appendix. Additionally, figures like Figure 6.2
are shown for the full set of variables and both cases .
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Figure B.1: Time series of the difference in precipitable water (black line with coloured
area) and hourly precipitation (grey line) between the PSP and reference simulations.
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2m temperature, 26-27.08.2022
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Figure B.2: 2D histogram of 2m temperature (in degrees Celsius) for a 10-km neighbour-
hood around a location in Southern Germany on 18 and 19 August (weak forcing), for the
4 simulations: reference, PSP and their 12 UTC equivalents. The shading indicates the
frequency of occurrence.
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10m zonal wind, 26-27.08.2022
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Figure B.3: 2D histogram of 10m wind (in m/s) for a 10-km neighbourhood around a
location in Southern Germany on 18 and 19 August (weak forcing), for the 4 simulations:
reference, PSP and their 12 UTC equivalents. The shading indicates the frequency of
occurrence.
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850 hPa temperature, 26-27.08.2022
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Figure B.4: 2D histogram of temperature at 850 hPa (in degrees Celsius) for a 10-km
neighbourhood around a location in Southern Germany on 18 and 19 August (weak forcing),
for the 4 simulations: reference, PSP and their 12 UTC equivalents. The shading indicates
the frequency of occurrence.
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850 hPa relative humidity, 26-27.08.2022
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Figure B.5: 2D histogram of relative humidity at 850 hPa for a 10-km neighbourhood
around a location in Southern Germany on 18 and 19 August (weak forcing), for the 4
simulations: reference, PSP and their 12 UTC equivalents. The shading indicates the
frequency of occurrence.
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Hourly precipitation, 18-19.08.2022
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Figure B.6: 2D histogram (the x axis represents lead time in hours) of hourly precipita-
tion (in mm) for a 10-km neighbourhood around a location in Southern Germany on 18
and 19 August (strong forcing), for the 4 simulations: reference, PSP and their 12 UTC
equivalents. The shading indicates the frequency of occurrence.
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2m temperature, 18-19.08.2022
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Figure B.7: 2D histogram of 2m temperature (in degrees Celsius) for a 10-km neighbour-
hood around a location in Southern Germany on 18 and 19 August (strong forcing), for
the 4 simulations: reference, PSP and their 12 UTC equivalents. The shading indicates
the frequency of occurrence.
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10m zonal wind, 18-19.08.2022
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Figure B.8: 2D histogram of 10m wind (in m/s) for a 10-km neighbourhood around a
location in Southern Germany on 18 and 19 August (strong forcing), for the 4 simulations:
reference, PSP and their 12 UTC equivalents. The shading indicates the frequency of
occurrence.
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850 hPa temperature, 18-19.08.2022
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Figure B.9: 2D histogram of temperature at 850 hPa (in degrees Celsius) for a 10-km
neighbourhood around a location in Southern Germany on 18 and 19 August (strong
forcing), for the 4 simulations: reference, PSP and their 12 UTC equivalents. The shading
indicates the frequency of occurrence.
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850 hPa relative humidity, 18-19.08.2022
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Figure B.10: 2D histogram of relative humidity at 850 hPa for a 10-km neighbourhood
around a location in Southern Germany on 18 and 19 August (strong forcing), for the
4 simulations: reference, PSP and their 12 UTC equivalents. The shading indicates the
frequency of occurrence.



List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2

4.3
4.4

5.1
5.2
5.3
5.4

5.9
5.6
5.7

6.1
6.2
6.3

Conceptual representation of an ensemble forecast . . . . . . . .. .. ...
Conceptual model of the evolution of a distribution . . . . . . ... .. ..
Three distribution types . . . . . . . .. ..o L o
Time evolution of the distribution of saturation deficit . . . . . .. .. ..
Sampling error convergence example . . . . .. .. ... L.

ICON-D2 domain . . . . . . . . . . . . . .
Schematic of PBL turbulence . . . . . ... ... ... ... ........
Example of the perturbation field created by the PSP scheme . . . . . ..

Overview of daily precipitation and convective forcing classification
Synoptic charts for the case studies of the big ensemble simulations
Flow chart of 48h simulations . . . . . . .. ... .. .. ... ... ....
Synoptic charts for the case studies with extended forecasts . . . . . . . ..

Overview of daily total precipitation and convective adjustment timescale .
Composite time series of hourly precipitation amount and spread - weak and
strong forcing . . . . ... L
Time series of FSS of precipitation - weak forcing . . . . .. ... ... ..
Probabilistic verification scores of near-surface variables . . . . . . . . . ..

Convergence of sampling error of temperature - weak forcing . . . . . . ..
Convergence of sampling error of temperature - strong forcing . . . . . . .
Convergence comparison - ICON and idealized model . . . . . . . . .. ..
Uncertainty maps for the mean of T2m with the corresponding histograms
at various locations . . . . . .. ...
Uncertainty maps for humidity variables . . . . . .. ... ... ... ...
2D histograms of surface variables . . . . . . . ... ...
Two-dimensional histograms of mid-tropospheric variables . . . . . . . ..

Time series of hourly precipitation . . . . . . ... ... ... ... ....
2D histogram of precipitation . . . .. ... ..o
Maps of total accumulated precipitation and difference PSP-REF - weak
forcing . . . . ..

~J

12
13

18
19
21

26
28
29
29

34



96

List of figures

6.4
6.5
6.6
6.7

Al
A2
A3
A4
A5
A6

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Maps of nighttime precipitation . . . . . . . .. ... ... 65
Maps of nighttime CAPE, CIN and humidity difference . . . . . . . . . .. 66
Sea level pressure difference after 24 and 48 hours . . . . . . . . .. .. .. 67
Maps of total accumulated precipitation and difference PSP-REF - strong

forcing . . . . . L 68
Convergence plots of sampling error - weak forcing . . . . . ... ... ... 78
Convergence plots of sampling error - strong forcing . . . . . . . .. .. .. 79
Maps of uncertainty for surface variables - weak forcing . . . . . . . . . .. 80
Maps of uncertainty for surface variables - strong forcing . . . . . . . . .. 81
Maps of uncertainty for mid-tropospheric variables - weak forcing . . . . . 82
Maps of uncertainty for mid-tropospheric variables - strong forcing . . . . . 83
Time series of precipitable water difference . . . . . . .. .. .. ... ... 85
2D histogram of T2m - weak forcing . . . . . ... ... ... .. ... .. 86
2D histogram of UlOm - weak forcing . . . . . . .. .. .. ... ... ... 87
2D histogram of T850 - weak forcing . . . . .. . ... .. ... ... ... 88
2D histogram of rth850 - weak forcing . . . . . . .. ... 89
2D histogram of precipitation - strong forcing . . . . ... ... ... .. 90
2D histogram of T2m - strong forcing . . . . . . .. .. ... ... ... .. 91
2D histogram of Ul0m - strong forcing . . . . . . . .. .. ... ... ... 92
2D histogram of T850 - strong forcing . . . . . . .. .. .. ... ... ... 93

B.10 2D histogram of rh850 - strong forcing . . . . . . . . ... 94



List of Tables

1.1 Classification of forecast variables . . . . . . . . . . . .. ... .. ... ..

3.1 Description of the ensemble simulations . . . . . . ... ... ... .....



98

List of tables




List of Abbreviations

AT Artificial Intelligence. 75

AROME Application of Research to Operations at Mesoscale. 32

CAPE Convective Available Potential Energy. 9, 33, 34, 57, 58, 61, 65, 69, 73
CDF Cumulative Distribution Function. 21

CI Confidence Interval. 21

CIN Convective Inhibition. 65

COSMO Consortium for Small-scale Modeling. 20, 21, 32, 35

CRPS Continuous Ranked Probability Score. 37, 39

D2 Domain 2. 15, 17, 18, 26, 27, 33, 35, 36, 40-43, 54, 72, 95

DWD Deutscher Wetterdienst. 15, 17, 18, 25, 26, 35, 70, 74

ECMWF European Center for Medium-range Weather Forecasting. 3, 42

EDA Ensembles of Data Assimilations. 3

EPS Ensemble Prediction System. v, vi, 3, 5, 8, 17, 18, 26, 27, 31-33, 35, 40-43, 70-72
F'SS Fractions Skill Score. 33, 35-37, 40

IBC Initial and Boundary Conditions. 18, 25
IC Initial Conditions. 5, 18

ICON Icosahedral Nonhydrostatic. v, 15, 17, 18, 20, 25-28, 33, 35, 36, 40-43, 45, 46, 50,
54, 70-72, 75, 95

KENDA Kilometer Scale Ensemble Data Assimilation. 18, 26, 27



100 List of Abbreviations

LAM Limited Area Model. v, 70, 71

LBC Lateral Boundary Conditions. 5, 18

MCS Mesoscale Convective System. 27, 47

MOGREPS-UK Met Office convective-scale ensemble. 6

NCEP National Centers for Environmental Prediction. 3

NWP Numerical Weather Prediction. 3, 5-7, 14, 17, 19, 31, 39, 41-43, 46, 54, 71, 72

PBL Planetary Boundary Layer. 17, 19, 32, 39, 40, 61, 72
PDF Probability Distribution Function. 3, 4

PSP Physically Based Stochastic Perturbation Scheme. v, 8, 14, 15, 17, 20, 21, 25-28,
32-35, 37-40, 61-64, 66-69, 71-75, 95

RMS Root Mean Square. 14

RMSE Root Mean Square Error. 37-39

SM Soil Moisture. 58, 59
SPPT Stochastically Perturbed Parameterization Tendencies. 32
SV Singular Vectors. 3

SYNOP Surface Synoptic Observations. 37, 39
UTC Coordinated Universal Time. 28

WRF Weather Research and Forecasting. 32



Bibliography

Abbe, C., The physical basis of long-range weather forecasts, Monthly Weather Review, 29
(12):551-561, 1901.

Bachmann, K., Keil, C., Craig, G. C., Weissmann, M., and Welzbacher, C. A., Predictabil-
ity of deep convection in idealized and operational forecasts: Effects of radar data as-
similation, orography, and synoptic weather regime, Monthly Weather Review, 148(1):
63-81, 2020. doi: 10.1175/MWR-D-19-0045.1.

Bannister, R. N., Migliorini, S., Rudd, A. C., and Baker, L. H., Methods of in-
vestigating forecast error sensitivity to ensemble size in a limited-area convection-

permitting ensemble, Geoscientific Model Development Discussions, 2017:1-38, 2017.
doi: 10.5194/gmd-2017-260.

Bauer, P., Thorpe, A., and Brunet, G., The quiet revolution of numerical weather predic-
tion, Nature, 525(7567):47-55, 2015.

Baur, F., Keil, C., and Barthlott, C., Combined effects of soil moisture and microphysical
perturbations on convective clouds and precipitation for a locally forced case over central
europe, Quarterly Journal of the Royal Meteorological Society, 148(746):2132-2146, 2022.
doi: https://doi.org/10.1002/qj.4295.

Ben Bouallegue, Z., Theis, S. E., and Gebhardt, C., Enhancing COSMO-DE ensemble
forecasts by inexpensive techniques, Meteorologische Zeitschrift, 22(1):49-59, 02 2013.
doi: 10.1127/0941-2948/2013/0374.

Berner, J., Achatz, U., Batté, L., Bengtsson, L., de la Camara, A., Christensen, H. M.,
Colangeli, M., Coleman, D. R. B., Crommelin, D., Dolaptchiev, S. 1., Franzke, C. L. E.,
Friederichs, P., Imkeller, P., Jarvinen, H., Juricke, S., Kitsios, V., Lott, F., Lucarini, V.,
Mahajan, S., Palmer, T. N., Penland, C., Sakradzija, M., von Storch, J.-S., Weisheimer,
A., Weniger, M., Williams, P. D., and Yano, J.-I., Stochastic Parameterization: Toward
a New View of Weather and Climate Models, Bulletin of the American Meteorological
Society, 98(3):565 — 588, 2017. doi: 10.1175/BAMS-D-15-00268.1.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q., Accurate medium-range
global weather forecasting with 3d neural networks, Nature, 619:533-538, 1 2023. doi:
10.1038/s41586-023-06185-3.



102 BIBLIOGRAPHY

Bierdel, L., Friederichs, P., and Bentzien, S., Spatial kinetic energy spectra in
the convection-permitting limited-area NWP model COSMO-DE, Meteorologische
Zeitschrift, 21(3):245-258, jun 2012. ISSN 0941-2948. doi: 10.1127/0941-2948/2012/
0319.

Bjerknes, V., Das problem der wettervorhersage, betrachtet vom standpunkte der mechanik
und der physik, Meteor. Z., 21:1-7, 1904.

Blahak, U. Current status of sinfony - the combination of nowcasting and numerical
weather prediction on the convective scale at dwd. EMS2023, page 254, 2023. doi:
https://doi.org/10.5194 /ems2023-254.

Blake, B. T., Carley, J. R., Alcott, T. L., Jankov, 1., Pyle, M. E., Perfater, S. E., and Al-
bright, B., An Adaptive Approach for the Calculation of Ensemble Gridpoint Probabil-
ities, Weather and Forecasting, 33(4):1063-1080, 2018. doi: 10.1175/WAF-D-18-0035.1.

Bolin, B., Numerical forecasting with the barotropic model 1, Tellus, 7(1):27-49, 1955.

Bouttier, F., Vié, B., Nuissier, O., and Raynaud, L., Impact of Stochastic Physics in a
Convection-Permitting Ensemble, Mon. Wea. Rev., 140(11):3706-3721, November 2012.
ISSN 0027-0644, 1520-0493. doi: 10.1175/MWR-D-12-00031.1.

Buizza, R., Milleer, M., and Palmer, T. N., Stochastic representation of model uncertainties

in the ecmwf ensemble prediction system, Quarterly Journal of the Royal Meteorological
Society, 125(560):2887-2908, 1999. doi: https://doi.org/10.1002/qj.49712556006.

Buizza, R. Chapter 4 - predictability. In Olafsson, H. and Bao, J.-W., editors, Uncertainties
in Numerical Weather Prediction, page 119-146. Elsevier, 2021a. ISBN 978-0-12-815491-
5. doi: 10.1016/B978-0-12-815491-5.00004-5.

Buizza, R. Chapter 3 - probabilistic view of numerical weather prediction and ensem-
ble prediction. In Olafsson, H. and Bao, J.-W., editors, Uncertainties in Numeri-
cal Weather Prediction, page 81-117. Elsevier, 2021b. ISBN 978-0-12-815491-5. doi:
10.1016/B978-0-12-815491-5.00003-3.

Buizza, R. and Palmer, T. N., The singular-vector structure of the atmospheric global
circulation, Journal of the Atmospheric Sciences, 52(9):1434-1456, 1995.

Buizza, R., Leutbecher, M., and Isaksen, L., Potential use of an ensemble of analyses
in the ecmwf ensemble prediction system, Quarterly Journal of the Royal Meteorolog-
ical Society: A journal of the atmospheric sciences, applied meteorology and physical
oceanography, 134(637):2051-2066, 2008.

Charney, J. G., Fjortoft, R., and Neumann, J. v., Numerical integration of the barotropic
vorticity equation, Tellus, 2(4):237-254, 1950.



BIBLIOGRAPHY 103

Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C., Convection-
permitting models: A step-change in rainfall forecasting, Meteor. Appl., 23:165-181,
2016.

Clark, P. A., Halliwell, C. E., and Flack, D. L. A., A Physically Based Stochastic Bound-
ary Layer Perturbation Scheme. Part I: Formulation and Evaluation in a Convection-
Permitting Model, Journal of the Atmospheric Sciences, 78(3):727 — 746, 2021. doi:
10.1175/JAS-D-19-0291.1.

Craig, G. C. and Cohen, B. G., Fluctuations in an Equilibrium Convective Ensemble. Part
I: Theoretical Formulation, Journal of the Atmospheric Sciences, 63(8):1996-2004, aug
2006. ISSN 0022-4928. doi: 10.1175/JAS3709.1.

Craig, G. C., Keil, C., and Leuenberger, D., Constraints on the impact of radar rainfall
data assimilation on forecasts of cumulus convection, Quarterly Journal of the Royal
Meteorological Society, 138(663):340-352, 2012. doi: https://doi.org/10.1002/qj.929.

Craig, G. C., Puh, M., Keil, C., Tempest, K., Necker, T., Ruiz, J., Weissmann, M.,
and Miyoshi, T., Distributions and convergence of forecast variables in a 1,000-member
convection-permitting ensemble, Quarterly Journal of the Royal Meteorological Society,
148(746):2325-2343, 2022. doi: https://doi.org/10.1002/qj.4305.

Davison, A. C. and Hinkley, D. V., Bootstrap Methods and their Application, Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1997.

Done, J. M., Craig, G. C., Gray, S. L., Clark, P. A., and Gray, M. E. B., Mesoscale
simulations of organized convection: Importance of convective equilibrium, Quarterly
Journal of the Royal Meteorological Society, 132(616):737-756, 2006. doi: https://doi.
org/10.1256/qj.04.84.

Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin,
G. S., Blake, B. T., Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T.,
Kenyon, J. S., Ahmadov, R., Turner, D. D., Duda, J. D., and Alcott, T. I., The High-
Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast
Model. Part I: Motivation and System Description, Weather and Forecasting, 37(8):
1371-1395, 2022. doi: 10.1175/WAF-D-21-0151.1.

Du, J., Berner, J., Buizza, R., Charron, M., Houtekamer, P., Hou, D., Jankov, 1., Mu, M.,
Wang, X., Wei, M., and Yuan, H. Ensemble Methods for Meteorological Predictions, page
99-149. Springer Berlin Heidelberg, Berlin, Heidelberg, 2019. ISBN 978-3-642-39925-1.
doi: 10.1007/978-3-642-39925-1_ 13.

DWD. Deutschlandwetter im Sommer 2021. https://www.dwd.de/DE/presse/
pressemit--teilungen/DE/2021/20210830_deutschlandwetter_sommer2021 news.
html, 2022. Accessed: 18.05.2022.


https://www.dwd.de/DE/presse/pressemit- -teilungen/DE/2021/20210830_deutschlandwetter_sommer2021_news.html
https://www.dwd.de/DE/presse/pressemit- -teilungen/DE/2021/20210830_deutschlandwetter_sommer2021_news.html
https://www.dwd.de/DE/presse/pressemit- -teilungen/DE/2021/20210830_deutschlandwetter_sommer2021_news.html

104 BIBLIOGRAPHY

Ebert, E. E., Neighborhood verification: A strategy for rewarding close forecasts, Weather
and Forecasting, 24(6):1498-1510, December 2009. doi: 10.1175/2009waf2222251.1.

ESSL. The derecho and hailstorms of 18 August 2022. https://www.essl.org/cms/
the-derecho-and-hailstorms-of-18-august-2022/, 2022. Accessed: 19.12.2023.

Felger, P. The impact of the psp2 scheme on humidity in the boundary layer during
non-rainy conditions. Bachelor’s thesis, LMU Munich, 2022.

Fleury, A., Bouttier, F., and Couvreux, F., Process-oriented stochastic perturbations ap-
plied to the parametrization of turbulence and shallow convection for ensemble predic-
tion, Quarterly Journal of the Royal Meteorological Society, 148(743):981-1000, 2022.
doi: https://doi.org/10.1002/qj.4242.

Frogner, I.-L., Singleton, A. T., Kgltzow, M. 0., and Andrae, U., Convection-permitting
ensembles: Challenges related to their design and use, Quarterly Journal of the Royal
Meteorological Society, 145(51):90-106, April 2019. doi: 10.1002/qj.3525.

Gebhardt, C., Theis, S. E., Paulat, M., and Ben Bouallegue, Z., Uncertainties in COSMO-
DE precipitation forecasts introduced by model perturbations and variation of lateral
boundaries, Atmos. Res., 100(2):168-177, May 2011. ISSN 0169-8095. doi: 10.1016/j.
atmosres.2010.12.008.

Hagelin, S., Son, J., Swinbank, R., McCabe, A., Roberts, N., and Tennant, W., The met
office convective-scale ensemble, mogreps-uk, Quarterly Journal of the Royal Meteoro-
logical Society, 143(708):2846-2861, 2017. doi: 10.1002/qj.3135.

Harnisch, F. and Keil, C., Initial Conditions for Convective-Scale Ensemble Forecasting
Provided by Ensemble Data Assimilation, Monthly Weather Review, 143(5):1583-1600,
2015. ISSN 0027-0644. doi: 10.1175/MWR-D-14-00209.1.

Hauck, C., Barthlott, C., Krauss, L., and Kalthoff, N., Soil moisture variability and its
influence on convective precipitation over complex terrain, Quarterly Journal of the Royal
Meteorological Society, 137(51):42-56, 2011. doi: https://doi.org/10.1002/qj.766.

Hirt, M. and Craig, G. C. PSP - Parameterizing boundary layer variability
and subgrid scale orography. https://download.dwd.de/pub/DWD/Forschung und_
Entwicklung/ICCARUS2018_pre--sentations_ PDF/Tuesday/04_Hirt.pdf, 2018. Ac-
cessed: 07.12.2023.

Hirt, M. and Craig, G. C., A cold pool perturbation scheme to improve convective initiation

in convection-permitting models, Quarterly Journal of the Royal Meteorological Society,
147(737):2429-2447, 2021. doi: https://doi.org/10.1002/qj.4032.

Hirt, M., Rasp, S., Blahak, U., and Craig, G. C., Stochastic parameterization of processes
leading to convective initiation in kilometer-scale models, Monthly Weather Review, 147
(11):3917 — 3934, 2019. doi: 10.1175/MWR-D-19-0060.1.


https://www.essl.org/cms/the-derecho-and-hailstorms-of-18-august-2022/ 
https://www.essl.org/cms/the-derecho-and-hailstorms-of-18-august-2022/ 
https://download.dwd.de/pub/DWD/Forschung_und_Entwicklung/ICCARUS2018_pre- -sentations_PDF/Tuesday/04_Hirt.pdf
https://download.dwd.de/pub/DWD/Forschung_und_Entwicklung/ICCARUS2018_pre- -sentations_PDF/Tuesday/04_Hirt.pdf

BIBLIOGRAPHY 105

Hitchens, N. M., Brooks, H. E., and Kay, M. P., Objective Limits on Forecasting
Skill of Rare Events, Weather and Forecasting, 28(2):525-534, 2013. doi: 10.1175/
WAF-D-12-00113.1.

Hohenegger, C. and Schar, C., Predictability and Error Growth Dynamics in Cloud-
Resolving Models, Journal of the Atmospheric Sciences, 64(12):4467-4478, 2007. doi:
10.1175/2007JAS2143.1.

Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H., and Mitchell, H. L., A system
simulation approach to ensemble prediction, Monthly Weather Review, 124(6):1225-1242,
1996.

Jacques, D. and Zawadzki, 1., The impacts of representing the correlation of errors in radar
data assimilation. part ii: Model output as background estimates, Monthly Weather
Review, 143(7):2637-2656, 2015. doi: 10.1175/MWR-D-14-00243.1.

Jankov, L., Berner, J., Beck, J., Jiang, H., Olson, J. B., Grell, G., Smirnova, T. G., Ben-
jamin, S. G., and Brown, J. M., A Performance Comparison between Multiphysics and
Stochastic Approaches within a North American RAP Ensemble, Mon. Wea. Rev., 145
(4):1161-1179, April 2017. ISSN 0027-0644, 1520-0493. doi: 10.1175/MWR-D-16-0160.1.

Jankov, 1., Beck, J., Wolff, J., Harrold, M., Olson, J. B., Smirnova, T., Alexander, C., and
Berner, J., Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble,
Monthly Weather Review, 147(1):153 — 173, 2019. doi: 10.1175/MWR-D-18-0092.1.

Jolliffe, I. T., Uncertainty and inference for verification measures, Weather and Forecasting,
22(3):637-650, 06 2007. Copyright - Copyright American Meteorological Society Jun
2007; CODEN - WEFOES3.

Kalnay, E., Atmospheric modeling, data assimilation and predictability, Cambridge univer-
sity press, 2003.

Kawabata, T. and Ueno, G., Non-gaussian probability densities of convection initia-
tion and development investigated using a particle filter with a storm-scale numer-
ical weather prediction model, Monthly Weather Review, 148(1):3-20, 2020. doi:
10.1175/MWR-D-18-0367.1.

Keil, C., Heinlein, F., and Craig, G. C., The convective adjustment time-scale as indicator

of predictability of convective precipitation, Quarterly Journal of the Royal Meteorolog-
ical Society, 140(679):480-490, 2014. doi: https://doi.org/10.1002/qj.2143.

Keil, C., Baur, F., Bachmann, K., Rasp, S., Schneider, L., and Barthlott, C., Relative con-
tribution of soil moisture, boundary-layer and microphysical perturbations on convective
predictability in different weather regimes, Quarterly Journal of the Royal Meteorological
Society, 145(724):3102-3115, 2019. doi: 10.1002/qj.3607.



106 BIBLIOGRAPHY

Keil, C., Chabert, L., Nuissier, O., and Raynaud, L., Dependence of predictability of pre-
cipitation in the northwestern mediterranean coastal region on the strength of synoptic
control, Atmospheric Chemistry and Physics, 20(24):15851-15865, December 2020. doi:
10.5194/acp-20-15851-2020.

Kober, K. and Craig, G. C., Physically based stochastic perturbations (psp) in the bound-
ary layer to represent uncertainty in convective initiation, Journal of the Atmospheric
Sciences, 73(7):2893 — 2911, 2016. doi: 10.1175/JAS-D-15-0144.1.

Kondo, K. and Miyoshi, T., Non-gaussian statistics in global atmospheric dynamics: a
study with a 10 240-member ensemble kalman filter using an intermediate atmospheric
general circulation model, Nonlinear Processes in Geophysics, 26(3):211-225, 2019. doi:
10.5194 /npg-26-211-2019.

Kiihnlein, C., Keil, C., Craig, G. C., and Gebhardt, C., The impact of downscaled initial
condition perturbations on convective-scale ensemble forecasts of precipitation, @.J.R.
Meteorol. Soc., 140(682):1552-1562, July 2014. ISSN 1477-870X. doi: 10.1002/q;j.2238.

Kunz, M., Abbas, S. S., Bauckholt, M., Bohmlander, A., Feuerle, T., Gasch, P., Glaser, C.,
Grof3, J., Hajnsek, I., Handwerker, J., Hase, F., Khordakova, D., Knippertz, P., Kohler,
M., Lange, D., Latt, M., Laube, J., Martin, L., Mauder, M., Md&hler, O., Mohr, S.,
Reitter, R. W., Rettenmeier, A., Rolf, C., Saathoff, H., Schrén, M., Schiitze, C., Spahr,
S., Spéth, F., Vogel, F., Volksch, 1., Weber, U., Wieser, A., Wilhelm, J., Zhang, H., and
Dietrich, P., Swabian moses 2021: An interdisciplinary field campaign for investigating
convective storms and their event chains, Frontiers in Earth Science, 10, 2022. ISSN
2296-6463. doi: 10.3389/feart.2022.999593.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F.,
Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., et al., Graphcast: Learning skillful
medium-range global weather forecasting, arXiv preprint arXiv:2212.1279/, 2022.

Lazo, J. K., Morss, R. E., and Demuth, J. L., 300 billion served: Sources, perceptions,
uses, and values of weather forecasts, Bulletin of the American Meteorological Society,
90(6):785-798, 2009.

Legrand, R., Michel, Y., and Montmerle, T., Diagnosing non-gaussianity of forecast and
analysis errors in a convective-scale model, Nonlinear Processes in Geophysics, 23(1):
1-12, 2016. doi: 10.5194 /npg-23-1-2016.

Leith, C. E., Theoretical Skill of Monte Carlo Forecasts, Monthly Weather Review, 102(6):
409-418, 1974. doi: 10.1175/1520-0493(1974)102<0409: TSOMCF>2.0.CO;2.

Leoncini, G., Plant, R. S., Gray, S. L., and Clark, P. A., Perturbation growth at the
convective scale for csip iopl8, Quarterly Journal of the Royal Meteorological Society,
136(648):653-670, 2010. doi: https://doi.org/10.1002/qj.587.



BIBLIOGRAPHY 107

Leutbecher, M. and Palmer, T., Ensemble forecasting, Journal of Computational Physics,
227(7):3515-3539, 2008. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2007.02.
014. Predicting weather, climate and extreme events.

Leutbecher, M., Ensemble size: How suboptimal is less than infinity?, Quarterly Journal
of the Royal Meteorological Society, 145(S1):107-128, 2019. doi: 10.1002/qj.3387.

Liu, W., Zhang, Q., Li, C., Xu, L., and Xiao, W., The influence of soil moisture on
convective activity: a review, Theor Appl Climatol, 149(149):221-232, 2022. doi: https:
//doi.org/10.1007 /s00704-022-04046-z.

Lorenz, E. N., A study of the predictability of a 28-variable atmospheric model, Tellus, 17
(3):321-333, 1965. doi: https://doi.org/10.1111/j.2153-3490.1965.tb01424.x.

Lorenz, E. N., The predictability of a flow which possesses many scales of motion, Tellus,
21:289-307, 1969. doi: 10.1111/j.2153-3490.1969.tb00444 .x.

Marsigli, C., Montani, A., and Paccagnella, T., Perturbation of initial and boundary
conditions for a limited-area ensemble: multi-model versus single-model approach,
Quarterly Journal of the Royal Meteorological Society, 140(678):197-208, 2014. doi:
https://doi.org/10.1002/qj.2128.

Matsunobu, T., Zarboo, A., Barthlott, C., and Keil, C., Impact of combined microphysical
uncertainties on convective clouds and precipitation in icon-d2-eps forecasts during dif-
ferent synoptic control, Weather and Climate Dynamics Discussions, 2022:1-25, 2022.
doi: 10.5194 /wed-2022-17.

Matsunobu, T., Puh, M., and Keil, C., Flow- and scale-dependent spatial predictability
of convective precipitation combining different model uncertainty representations, Quar-
terly Journal of the Royal Meteorological Society, 2024. doi: https://doi.org/10.1002/qj.
4713.

Miyoshi, T., Kondo, K., and Imamura, T., The 10,240-member ensemble kalman filtering
with an intermediate agem, Geophysical Research Letters, 41(14):5264-5271, 2014. doi:
10.1002/2014GL060863.

Montani, A., Cesari, D., Marsigli, C., and Paccagnella, T., Seven years of activity in the
field of mesoscale ensemble forecasting by the COSMO-LEPS system: main achievements
and open challenges, Tellus A: Dynamic Meteorology and Oceanography, 63(3):605-624,
January 2011. doi: 10.1111/;.1600-0870.2010.00499.x.

Palmer, T. N., Gelaro, R., Barkmeijer, J., and Buizza, R., Singular vectors, metrics, and
adaptive observations, Journal of the Atmospheric Sciences, 55(4):633-653, February
1998. doi: 10.1175/1520-0469(1998)055<0633:svmaao>2.0.co;2.



108 BIBLIOGRAPHY

Petch, J. C., The predictability of deep convection in cloud-resolving simulations over land,
Quarterly Journal of the Royal Meteorological Society, 130(604):3173-3187, 2004. doi:
https://doi.org/10.1256/qj.03.107.

Puh, M., Keil, C., Gebhardt, C., Marsigli, C., Hirt, M., Jakub, F., and C. Craig, G.,
Physically based stochastic perturbations improve high-resolution forecast of convection,
Quarterly Journal of the Royal Meteorological Society, n/a(n/a), 2023. doi: https://doi.
org/10.1002/qj.4574.

Raschendorfer, M. The new turbulence parameterization of LM. COSMO Newsletter No.
1, 89-97, 2001.

Raynaud, L. and Bouttier, F., The impact of horizontal resolution and ensemble size for
convective-scale probabilistic forecasts, Quarterly Journal of the Royal Meteorological
Society, 143(709):3037-3047, 2017. doi: 10.1002/qj.3159.

Reinert, D., Prill, F., Denhard, H. F. M., Baldauf, M., C. Schraff, C. G., Marsigli, C., and
Zangl, G., DWD Database Reference for the Global and Regional ICON and ICON-EPS
Forecasting System, 2021. doi: 10.5676/DWD\__pub/nwv/icon\ 2.1.7.

Richardson, L. F., Weather prediction by numerical process, University Press, 1922.

Roberts, B., Clark, A. J., Jirak, I. L., Gallo, B. T., Bain, C., Flack, D. L. A., Warner,
J., Schwartz, C. S., and Reames, L. J., Model configuration versus driving model:
Influences on next-day regional convection-allowing model forecasts during a real-
time experiment, Weather and Forecasting, 38:99-123, 1 2023. ISSN 1520-0434. doi:
10.1175/WAF-D-21-0211.1.

Roberts, N. M. and Lean, H. W., Scale-Selective Verification of Rainfall Accumulations
from High-Resolution Forecasts of Convective Events, Monthly Weather Review, 136(1):
78 — 97, 2008. doi: 10.1175/2007MWR2123.1.

Ruiz, J., Lien, G.-Y., Kondo, K., Otsuka, S., and Miyoshi, T., Reduced non-gaussianity
by 30-second rapid update in convective-scale numerical weather prediction, Nonlinear
Processes in Geophysics Discussions, 2021:1-13, 2021. doi: 10.5194 /npg-2021-15.

Sakradzija, M. and Klocke, D., Physically constrained stochastic shallow convection in
realistic kilometer-scale simulations, Journal of Advances in Modeling Earth Systems, 10
(11):2755-2776, 2018. doi: https://doi.org/10.1029/2018MS001358.

Scheck, L., Weissmann, M., and Bach, L., Assimilating visible satellite images for
convective-scale numerical weather prediction: A case-study, ). J. Roy. Meteor. Soc.,
146(732):3165-3186, oct 2020. ISSN 1477-870X. doi: 10.1002/Q.J.3840.

Schneider, L., Barthlott, C., Hoose, C., and Barrett, A. 1., Relative impact of aerosol, soil
moisture, and orography perturbations on deep convection, Atmospheric Chemistry and
Physics, 19(19):12343-12359, 2019. doi: 10.5194/acp-19-12343-2019.



BIBLIOGRAPHY 109

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., and Peridnez, A.,
Kilometre-scale ensemble data assimilation for the COSMO model (KENDA), Quar-
terly Journal of the Royal Meteorological Society, 142(696):1453-1472, 2016. doi:
https://doi.org/10.1002/qj.2748.

Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R., Kong, F., Thomas, K. W.,
Levit, J. J., Coniglio, M. C., and Wandishin, M. S., Toward improved convection-allowing
ensembles: Model physics sensitivities and optimizing probabilistic guidance with small
ensemble membership, Weather and Forecasting, 25(1):263-280, February 2010. doi:
10.1175/2009waf2222267.1.

Schwartz, C. S., Romine, G. S., Fossell, K. R., Sobash, R. A., and Weisman, M. L., Toward
1-km ensemble forecasts over large domains, Monthly Weather Review, 145(8):2943-2969,
August 2017. doi: 10.1175/mwr-d-16-0410.1.

Seifert, A. and Beheng, K. D.; A two-moment cloud microphysics parameterization for
mixed-phase clouds. part 1: Model description, Meteorology and atmospheric physics, 92
(1):45-66, 2006a.

Seifert, A. and Beheng, K. D., A two-moment cloud microphysics parameterization for
mixed-phase clouds. part 1: Model description, Meteorology and atmospheric physics, 92
(1):45-66, 2006b.

Selz, T., Estimating the intrinsic limit of predictability using a stochastic convec-
tion scheme, Journal of the Atmospheric Sciences, 76(3):757-765, March 2019. doi:
10.1175/jas-d-17-0373.1.

Selz, T. and Craig, G. C., Upscale Error Growth in a High-Resolution Simulation of a
Summertime Weather Event over Europe, Monthly Weather Review, 143(3):813-827,
2015. doi: 10.1175/MWR-D-14-00140.1.

Selz, T., Riemer, M., and Craig, G. C., The Transition from Practical to Intrinsic Pre-
dictability of Midlatitude Weather, Journal of the Atmospheric Sciences, 79(8):2013 —
2030, 2022. doi: https://doi.org/10.1175/JAS-D-21-0271.1.

Tempest, K. 1., Craig, G. C., and Brehmer, J. R., Convergence of forecast distributions in
a 100,000-member idealised convective-scale ensemble, Quarterly Journal of the Royal
Meteorological Society, n/a(n/a), 2023. doi: https://doi.org/10.1002/qj.4410.

Tempest, K. 1., Craig, G. C., Puh, M., and Keil, C., Convergence of ensemble forecast
distributions in weak and strong forcing convective weather regimes, Quarterly Journal
of the Royal Meteorological Society, 2024. doi: https://doi.org/10.1002/qj.4684.

Theis, S. E., Hense, A., and Damrath, U., Probabilistic precipitation forecasts from a
deterministic model: a pragmatic approach, Meteorological Applications, 12(3):257-268,
2005. doi: https://doi.org/10.1017/S1350482705001763.



110 Acknowledgements

Thompson, G., Berner, J., Frediani, M., Otkin, J. A., and Griffin, S. M., A Stochastic
Parameter Perturbation Method to Represent Uncertainty in a Microphysics Scheme,
Monthly Weather Review, 149(5):1481 — 1497, 2021. doi: 10.1175/MWR-D-20-0077.1.

Toth, Z. and Buizza, R. Chapter 2 - weather forecasting: What sets the forecast
skill horizon? In Robertson, A. W. and Vitart, F., editors, Sub-Seasonal to Sea-
sonal Prediction, pages 17-45. Elsevier, 2019a. ISBN 978-0-12-811714-9. doi: https:
//doi.org/10.1016/B978-0-12-811714-9.00002-4.

Toth, Z. and Buizza, R. Chapter 2 - Weather Forecasting: What Sets the Fore-
cast Skill Horizon? In Robertson, A. W. and Vitart, F., editors, Sub-Seasonal to
Seasonal Prediction, pages 17 — 45. Elsevier, 2019b. ISBN 978-0-12-811714-9. doi:
https://doi.org/10.1016/B978-0-12-811714-9.00002-4.

Toth, Z. and Kalnay, E., Ensemble forecasting at NCEP and the breeding method, Monthly
Weather Review, 125(12):3297-3319, December 1997. doi: 10.1175/1520-0493(1997)
125<3297:efanat>2.0.co;2.

Trentmann, J., Keil, C., Salzmann, M., Barthlott, C., Bauer, H.-S., Schwitalla, T.,
Lawrence, M. G., Leuenberger, D., Wulfmeyer, V., Corsmeier, U., Kottmeier, C., and
Wernli, H., Multi-model simulations of a convective situation in low-mountain terrain
in central europe, Meteorology and atmospheric physics, 103(1-4):95-103, 2009. ISSN
0066-6416, 0177-7971, 0259-8477, 1436-5065. doi: 10.1007/s00703-008-0323-6. 12.01.02;
LK 01.

Vitart, F. and Robertson, A. W. Introduction: Why sub-seasonal to seasonal prediction
(s28)? In Sub-seasonal to seasonal prediction, pages 3-15. Elsevier, 2019.

Wallace, J. M. and Hobbs, P. V., Atmospheric science: an introductory survey, volume 92,
Elsevier, 2006.

Wilks, D. S. Chapter 9 - forecast verification. In Wilks, D. S., editor, Statistical Methods in
the Atmospheric Sciences (Fourth Edition), pages 369-483. Elsevier, fourth edition edi-
tion, 2019. ISBN 978-0-12-815823-4. doi: https://doi.org/10.1016/B978-0-12-815823-4.
00009-2.

Zimmer, M., Craig, G. C., Keil, C., and Wernli, H., Classification of precipitation events
with a convective response timescale and their forecasting characteristics, Geophysical
Research Letters, 38(5), 2011. doi: https://doi.org/10.1029/2010GL046199.

Zangl, G., Reinert, D., Ripodas, P., and Baldauf, M., The icon (icosahedral non-
hydrostatic) modelling framework of dwd and mpi-m: Description of the non-hydrostatic

dynamical core, Quarterly Journal of the Royal Meteorological Society, 141:563-579, 1
2015. ISSN 00359009. doi: 10.1002/qj.2378.



Acknowledgements

Firstly, I am deeply grateful to my supervisor Dr. George Craig for his unwavering support
and guidance throughout this doctoral journey. His expertise and encouragement have been
invaluable in shaping this thesis and pushing me to achieve my best.

Secondly, I would like to thank Dr. Christian Keil for all his prompt feedback, the
discussions and the advice he gave me. I am convinced that by learning from his attention
to detail and clarity, I have become a better scientist.

Thanks to all my colleagues, Kirsten Tempest, Jonas Spath, Tobias Selz to name a few,
who have helped me in one way or another during my PhD journey. Special thanks to
Takumi Matsunobu, this thesis would not have been finished without his help in setting
up the experiments and when things were not going according to plan. I also want to give
a shout-out to Oriol Tinto, Fabian Jakub and Robert Redl for their help with technical
issues.

I am grateful for having been part of the Waves to Weather community, which made
me feel like my work is part of a bigger effort for improvements in weather predictability.
I will always keep fond memories of all the meetings, meaningful connections and friend-
ships I made inside the W2W community. Special thanks to Audine Laurian for all the
organisational work she did and her help with administrative issues. Her positive attitude
made me feel like I was part of a big family.

I would additionally like to thank Christoph Gebhardt and Chiara Marsigli from DWD
for the excellent collaboration which made the first part of this project possible. The
ongoing work to include the PSP scheme in operational forecasting at DWD is a result of
their effort and collaborative spirit.

Last but not least, a sincere "grazie"/"hvala" to my parents. Without their unconditional
support I would not have been able to study in Munich and achieve what I did. I will forever
be thankful for their sacrifices.

W2W This work was carried out in Project A6 of the Collaborative Research Cen-
tre Waves to Weather, funded by the DFG (Deutsche Forschungsgemeinschaft) grant
SFB/TR165.



	Abstract
	Zusammenfassung
	Introduction
	Evolution of numerical weather prediction
	Probabilistic forecasting
	Challenges in ensemble prediction
	Limited ensemble size
	Model error representation
	Flow dependence of convection

	Uncertainty and convergence in a big ensemble: a preliminary study
	Research questions and outline

	Model and methods
	The ICON model
	PSP scheme
	Bootstrapping
	Neighborhood method

	Ensemble simulations
	Trial run with PSP scheme
	Case studies of weak and strong forcing - large ensemble
	Case studies of weak and strong forcing - extended forecast

	Improving probabilistic forecasts of convection with a SP scheme
	Background
	Results and discussion
	Synoptic forcing regime classification
	Diurnal cycle of precipitation
	Spatial uncertainty of precipitation
	Probabilistic verification of near-surface variables

	Conclusions

	Flow dependence of forecast uncertainty in a large ensemble
	Background
	Results and discussion
	Convergence of uncertainty with ensemble size
	Maps of uncertainty
	Flow-dependent evolution of forecast uncertainty

	Conclusions

	Forecast uncertainty beyond 24 hours
	Background
	Results
	Time evolution of precipitation
	Spatial distribution of precipitation

	Summary and conclusions

	Conclusions
	Additional figures for chapter 5
	Additional figures for chapter 6
	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography
	Acknowledgements

